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[While] the creative power of pure thought is at work, the outside world asserts itself
again; through the real phenomena it forces new questions upon us; it opens up new fields
of mathematical science; and while we try to gain these new fields of science for the realm
of pure thought, we often find the answers to old unsolved problems and so at the time best
further the old theories....

Besides it is wrong to think that rigor in proof is the enemy of simplicity. Numerous
examples establish the opposite, that the rigorous method is also the simpler and the easier to
grasp. The pursuit of rigor compels us to discover simpler arguments; also, often it clears the
path to methods susceptible of more development than were the old, less rigorous ones....

While I insist upon rigor in proofs as a requirement for a perfect solution of a problem,
I should like, on the other hand, to oppose the opinion that only the concepts of analysis, or
even those of arithmetic alone, are susceptible of a fully rigorous treatment. This opinion,
occasionally advocated by eminent men, I consider entirely mistaken. Such a one-sided
interpretation of the requirement of rigor would soon lead us to ignore all concepts that
derive from geometry, mechanics, and physics, to shut off the flow of new material from
the outside world, and finally, indeed, as a last consequence, to reject the concepts of the
continuum and of the irrational number. What an important, vital nerve would be cut, were
we to root out geometry and mathematical physics! On the contrary, I think that wherever
mathematical ideas come up, whether from the theory of knowledge or in geometry, or from
the theories of natural science, the task is set for mathematics to investigate the principles
underlying these ideas and establish them upon a simple and complete system of axioms
in such a way that in exactness and in application to proof the new ideas shall be no whit
inferior to the old arithmetical concepts.

To new concepts correspond, necessarily, new symbols. Those we choose in such a
way that they remind us of the phenomena which gave rise to the formation of the new
concepts....

If we do not succeed in solving a mathematical problem, it is often because we have
failed to recognize the more general standpoint from which the problem before us appears
only as a single link in a chain of related problems.... This way to find general methods is
certainly the most practicable and the surest, for he who seeks for methods without having
a definite problem in mind mainly seeks in vain.

A role still more important than generalization's in dealing with mathematical problems
is played, I believe, by specialization. Perhaps in most cases where we seek in vain for the
answer to a question the cause of failure lies in our having not yet or not completely solved
problems simpler and easier than the one in hand. Everything depends then on finding these
easier problems and solving them by use of tools as perfect as possible and of concepts
susceptible to generalization. This rule is one of the most important levers for overcoming
mathematical difficulties ....

[The] conviction that every mathematical problem can be solved is a powerful incentive
to us as we work. We hear within us the perpetual call: There is the problem. Seek its solution.
You can find it by pure thinking, for in mathematics there is no ignorabimus!

Hilbert
Mathematical Problems
Archiv fur Mathematik and Physik (3) 1,
44-63, 213-237 (1901).
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Preface

In their origins, hydrodynamics and acoustics were sciences largely mathematical.
In them during the eighteenth century originated, and for them was developed, much
of the theories of partial-differential equations and the kinematics of continuous
media. From them in the early nineteenth century grew most of the theory of
elasticity and, later, electrostatics and electrodynamics. Until the end of the period
closed by the First World War, every mathematician and every physicist inclined
to theory mastered their elements as a matter of course, and most research journals
in mathematics or physics published research enlarging them. For outlines of what
a beginner in physics was expected to learn about continuum mechanics, some
ninety or more years ago, we may look at Part III of Webster's Dynamics, 1904,
and Joos's Theoretical Physics, 1932 correct, simple, clear, immortal.

As applications and experimental studies grew more numerous, and as publica-
tion rather than mastery became essential to nutrience of multitudes of employees,
specialists proliferated, their abcdarians were trained more and more in their spe-
cialties alone, and the old science of continuum mechanics was silted over by an
alluvium of verbose, intricate ramifications, each said to be a profession. After the
Second World War, "applied mathematicians" arose to provide in ever increasing,
baffling abundance precise, rigorous theorems of existence, uniqueness and failure
of it, regularity, stability and instability. To comprehend the very statements they
announce, advanced knowledge of modern analysis is required. Often these diffi-
cult analytical researches, which employ a setting in one or another function space
claimed natural to the problem studied and solved, are products of some institute.

In this book we have endeavored to provide a compact and moderately general
foundation of the mechanics of continua, turning aside now and then to particular
applications that rise to hand as illustrations of some general principles. Here, we
proffer some applications special to fluids, first of rather general kinds and then
for the classical fluids named after Euler, Navier, and Stokes. Certainly we do not
denigrate approximate theories and numerical work, but since they dominate most



xiv Preface

recent books on hydrodynamics, aerodynamics, and acoustics, we have chosen to
set before the student a bit of mathematically exact work, if only to let him see
that some of it formerly studied is still good, and that some more recent progress
in that old-fashioned way may yet enlighten and serve.

No mathematical analysis beyond that commonly taught to undergraduates
who have learn mathematics in mathematics departments is needed.

Acknowledgement. The authors are greatly indebted to Reza Malek-Madani
for his helpful comments on the entire book and especially for his assistance with
Chapter 9; to M. Scheidler for his help on Section 5; to A. Srinivasa and J. Rao
for solutions to the problems and to them and I. Lapczyk, C. le Roux, J. Malek, F.
Mollica, M. Ruzicka, and L. Tao for proofreading the book.
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1

Bodies, Configurations, and Motions

1.1 Introduction'

A body B is a set that has a topological structure and a measure structure. It is
assumed to be a a-finite measure space with a nonnegative measure µ(P) defined
over a a-ring of subsets P of B called subparts of the body. The open sets of B are
assumed to be the or-ring of sets. The members of the smallest a-ring containing
the open sets are called Borel sets of B.

A one-to-one mapping x : B x I -+ S, where I c (-oo, to) for some to, and
£ denotes three-dimensional Euclidean space, or more explicitly

x = x(X, t), (1.1-1)

is called a motion of B. Here X is a particle, t is the time (-00 < t < oo), and x is
a place in Euclidean space. The value of x is the place x that the particle X comes
to occupy at the time t. The notations BX and PX will indicate the configurations of
B and P at the time t. We shall consider only motions that are smooth in the sense
that x is differentiable with respect to X and t as many times as may be needed.

The velocity i, acceleration i, and nth acceleration fix} of the particle X at the time
t are defined as usual-

i := atx(X, t),
x a, x (X, t),

cx' := a! x(X, t),

'The concepts of bodies, configurations and motions are developed in great detail in chapter 1, C.
Truesdell, "A First Course in Rational Continuum Mechanics," vol. 1 (New York: Academic Press,
1991).
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-so that
(1) .. (2)X =X, X =X

By the Radon-Nikodym theorem, the mass of P may be expressed in terms of a
mass density Px,

M(P) = Px dv, (1.1-3)
vX

where the integral is in the sense of the Lebesgue integral. Clearly the function Px
depends on X, and, as indicated, the integration is carried out over the configuration
Px of P.

The existence of a mass density expresses a relation between the abstract body
13 and the configuration tax it occupies. For a suitably chosen sequence of parts Pk,
nested so that Pk+1 C Pk, that all the Pk have but the single point x in common,
and that the volume V(Pk) approaches 0 as k - . oc, the density is the ultimate
ratio of mass to volume:

Px(X, t) = lim M(Pk) (1.1-4)
k-roc V(Pk)

To find the relation between the mass densities corresponding to different
configurations of the same part P, we begin with the formulae

M(P) = J Px,dv = J PX,dv. (1.1-5)
PX, PxZ

If we let A stand for the mapping that carries X, (13) into X, (8) and write J for the
absolute value of its Jacobian determinant,

J - I det VAL, (1.1-6)

then

J
Px, dv = J PX2 Jdv, (1.1-7)

for every part P. Thence follows an equation relating the two densities:

PX, J = Px2. (1.1-8)

This equation shows that the density in any one configuration determines the den-
sities in all others.

1.2 Reference Configuration

Often it is convenient to select one particular configuration and refer everything
concerning the body to that configuration, which need be only a possible one, not
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one ever occupied by the body. Let K be a mapping of the abstract body B into
three-dimensional Euclidean space, namely, a placement. Then the mapping

X = K(X) (1.2-1)

gives the place X occupied by the particle X in the configuration X (B). Since the
mapping is smooth, by assumption,

X -= K-'(X). (1.2-2)

Hence the motion (1.1-1) may be written in the form

X = X[K-1(X), t] = XK(X, t). (1.2-3)

In the description furnished by this equation, the motion is a sequence of map-
pings of the reference configuration K(13) onto the actual configuration X (13). Thus
the motion is visualized as mapping parts of space onto parts of space. A refer-
ence configuration is introduced to allow us to employ the apparatus of Euclidean
geometry.

The choice of reference configuration, like the choice of a coordinate system,
is arbitrary. The reference configuration, which may be any smooth image of the
body, need not even be a configuration ever occupied by the body in the course
of its motion. For each different K, a different function XK results in (3). Thus
one motion of the body is represented by infinitely many different motions of
parts of space, one for each choice of K. For some choice of K, we may get a
particularly simple description, just as in geometry one choice of coordinates may
lead to a simple equation for a particular figure, but the reference configuration
itself has nothing to do with such motions as it may be used to describe, just as
the coordinate system has nothing to do with geometrical figures themselves. A
reference configuration is introduced to allow the use of mathematical apparatus
familiar in other contexts. Again there is an analogy to coordinate geometry, where
coordinates are introduced, not because they are natural or germane to geometry
but because they allow the familiar apparatus of algebra to be applied at once.

1.3 Descriptions of Motion

There are four methods of describing the motion of a body: the material, the
referential, the spatial, and the relative (discussed in Section 1.7). Because of our
hypotheses of smoothness, all are equivalent.

In the material description we deal directly with the abstract particles X. This
description corresponds to the only one used in analytical dynamics, where we
always speak of the first, second, ..., nth masses. To be precise, we should say,
"the mass point Xi whose mass is mi," but commonly this expression is abbreviated
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to "the mass i" or "the body m;". In a continuous body B there are infinitely many
particles X. In the material description, the independent variables are X and t, the
particle and the time. While the material description is the most natural in concept,
it was used in continuum mechanics until 1951 but is not used much now. For
some time the term "material description" was used to denote another and older
description often confused with it, the description to which we turn next.

The referential description employs a reference configuration. In the mid-
eighteenth century Euler introduced the description that hydrodynamicists still call
"Lagrangean." This is a particular referential description in which the Cartesian
coordinates of the position X of the particle X at the time t = 0 are used as a label
for the particle X. It was recognized that such labeling by initial coordinates is
arbitrary, and writers on the foundations of hydrodynamics have often mentioned
that the results must be and are independent of the choice of the initial time, and
some have remarked that the parameters of any triple system of surfaces moving
with the material will do just as well. The referential description, taking X and t as
independent variables, includes all these possibilities. The referential description,
in some form, is always used in classical elasticity theory, and the best studies of
the foundations of classical hydrodynamics have employed it almost without fail.
It is the description commonly used in modem works on continuum mechanics,
and we shall use it in this book. We must always bear in mind that the choice of
K(B) is ours, that K(13) is merely some configuration that the body might occupy,
and that physically significant results must be independent of the choice of x(13).
Any motion has infinitely many different referential descriptions, equally valid.

In the spatial description, attention is focused on the present configuration
of the body, the region of space currently occupied by the body. This description,
which was introduced by d'Alembert, is called "Eulerian" by the hydrodynamicists.
The place x and the time t are taken as independent variables. Since (1.1-1) is
invertible,

X = X-1(x, t), (1.3-1)

any function f (X, t) may be replaced by a function of x and t:

f (X, t) = f [X-1(x, t), t] = F(x, t). (1.3-2)

The function F, moreover, is unique. Thus, while there are infinitely many refer-
ential descriptions of a given motion, there is only one spatial description. With
the spatial description, we watch what is occurring in a fixed region of space as
time goes on. This description seems perfectly suited to studies of fluids, where
often a rapidly deforming mass comes from no one knows where and goes no one
knows whither, so that we may prefer to consider what is going on here and now.
However convenient kinematically, the spatial description is awkward for questions
of principle in mechanics, since in fact what is happening to the body, not to the
region of space occupied by the body, enters the laws of dynamics. This difficulty
is reflected by the mathematical gymnastics writers of textbooks on aerodynamics
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often go through in order to get formulae that are easy and obvious in the material
or referential descriptions.

According to (2), the value of any smooth function of the particles of B at time
t is given also by a field defined over the configuration !3 at time t. In this way,
for example, we obtain from (1.1-2) the velocity field and the acceleration field:

i=i(x,t), x=x(x,t). (1.3-3)

Here we have written i and x in two senses each: as the field functions and also as
their values.

1.4 Deformation Gradient

The gradient of XK in (1.2-3) is called the deformation gradient F:

F := FK(X, t) := VXK(X, t). (1.4-1)

It is the linear approximation of the mapping XK. More precisely, we should call it
the gradient of the deformation from K(B) to X(13), but when, as is usual, a single
reference configuration K(5) is laid down and kept fixed, no confusion should
result from the failure to remind ourselves that the very concept of a deformation
gradient presumes use of a reference configuration.

Going back to (1.1-8), we derive EULER's referential equation for the density,

P J = PK , (1.4-2)

where p is written for px, the mass density in the present configuration, and where

J := I detF1. (1.4-3)

Henceforth J will be used in the sense just defined rather than in the more general
one expressed by (1.1-6). Since XK is invertible, det F is of one sign for all X and t,
for a given reference configuration K(B). While (2) is often called "the Lagrangean
equation of continuity," that name is misleading, since if the motion is spatially
smooth, (2) holds, but if the motion is not spatially smooth, generally J cannot be
defined at all, so (2) becomes impossible to consider as a condition. The proper
way to interpret (2) is to regard it as a condition giving the present density p, once
the density pK in the reference configuration is known.

EXERCISE 1.4.1
By using the formula for differentiating a determinant, derive the following identity
of Euler:

J = J div i, (1.4-4)
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where the dot denotes the time-derivative of J(X, t) and where div a is the diver-
gence of the velocity field (1.3-3)1.

If we differentiate (2) with respect to time, regarding all quantities in it as
functions of X and t, and then use (4), we obtain d'Alembert and Euler's spatial
equation for the density:

,o+p diva=0. (1.4-5)

This equation has exactly the same meaning as (2), which, conversely, may be
obtained from it by integration.

EXERCISE 1.4.2
A motion is called isochoric if the volume V(P) of each part P of the body remains
constant in time. Show that any one of the following three equations is a necessary
and sufficient condition for isochoric motion:

divi = 0, p = p,, J = 1. (1.4-6)

In plane flow the velocity is everywhere parallel to a given plane and is the
same at all points on each line normal to the plane. To study plane flow, it suffices
to confine attention to the fields of velocity and acceleration restricted to any one
place.

EXERCISE 1.4.3 (D'Alembert, Noll)
If the boundary of a region on which plane flow x is defined is the union of a finite
number of curves in rigid motion, and if (for an infinite region) there is no flux into
or out of the region of the plane beyond some sufficiently large circle, show that
the general solution of (6)1 is given in terms of a stream function q by

x = (Oq)l, (1.4-7)

where V denotes the gradient operator in the plane and L denotes rotating coun-
terclockwise through a right angle about the normal to the plane. The velocity x is
tangent to the curve q ( , t) = const. through each x and t.
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1.5 Material Time Rates and Gradients in the Spatial
Description

In continuum mechanics the need to distinguish a vast number of quantities often
deprives us of the luxury of using for a function a symbol different from that for its
value, as logically we ought to do. If two functions of different variables have the
same value and if both are denoted by that value, when we come to differentiate it is
not clear which function is intended. The distinction, which of course is essential,
is made by introducing different symbols for the differential operators. Henceforth
f and V f will be used to denote the partial time derivative and the gradient of the
function f (X, t) such that

f = f(X, t), (1.5-1)

while 8t f and grad f shall denote the time derivative and the gradient of the
function j (x, t) that has the same value as f, namely,

f = Ax, t). (1.5-2)

Since x = XK (X, t), application of the chain rule to the equation AX, t) = AX, t)
yields the classical formula of Euler:

f = at f + (grad f )i. (1.5-3)

In particular, the acceleration x is calculated from the velocity field i(x, t) by the
formula

x = 8ti + (grad x)i. (1.5-4)

EXERCISE 1.5.1
If f is a scalar-valued function, then show that

V f =FT grad f. (1.5-5)

The notations "div" and "curl" will be used only in the spatial description, and
superimposed (n) shall stand for n superimposed dots. The notation "Div" shall
stand for the divergence formed from V and the notation "div" for the divergence
from grad.

It follows from (3) that (1.4-5) can be expressed in the forms

p' + (grad p) i + p div i = 0, p' + div(pi) = 0, (1.5-6)

where denotes partial derivative with respect to time with x held fixed.
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1.6 Change of Reference Configuration

Let the same motion (1.1-1) be described in terms of two different reference con-
figurations, K1(C3) and K2(t3):

X = XK,(X, t) = XK2(X, t). (1.6-1)

The deformation gradients F1 and F2 at X, t are of course generally different. Let
X1 and X2 denote the positions of X in Kl (C3) and K2(13):

X1 = K1(X), X2 = K2(X). (1.6-2)

Then

X2 = KAKI 1(X1) := A(X1), (1.6-3)

say. The deformation from K1 to X can be effected in two ways: either straight off
by use of XK, , or by using A to get to K2 and then using XK2 to get to X. If o denotes
the composition of mappings, then

XK, = XK2 0 A. (1.6-4)

Since this relation holds among the three mappings, their linear approximations,
the gradients, are related through

F1 = F2P, (1.6-5)

where

P - V A. (1.6-6)

Of course, the relation (5) expresses the "chain rule" of differential calculus.

1.7 Current Configuration as Reference

To serve as a reference, a configuration need only be a diffeomorph of the body. So
far, we have employed a reference configuration fixed in time, but we could just as
well use a varying one. Thus one motion may be described in terms of any other.
The only variable reference configuration really useful in this way is the present
one. If we take it as a reference, we describe the past and future as they seem to an
observer fixed to the particle X now at the place x. The corresponding description
is called relative.
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To see how such a description is constructed, consider the configurations of B
at the two times t and r:

=X(X,r),
x = X(X, t).

That is, is the place occupied at time r by the particle that at time t occupies x:

= XLX-`(x, t), r
X, (X, r), (1.7-2)

say. The function Xt just defined is called the relative deformation function.
Sometimes we shall wish to calculate the relative deformation function when

the motion is given to us only through the spatial description of the velocity field:

x = i(x, t). (1.7-3)

By (1)1,

a' = x(C r). (1.7-4)

Since the right-hand side is a given function, we thus have a differential equation
to integrate. The initial condition to be satisfied by the integral = X,(x, t) is

I, = X, (x, t) = X. (1.7-5)

When the motion is described by (2), we shall use a subscript t to denote
quantities derived from X,. Thus F, defined by

Ft := F1(r) := grad X,, (1.7-6)

is the relative deformation gradient.
By (1.6-5), at X,

F(r) = FI(r)F(t). (1.7-7)

As the fixed reference configuration with respect to which F(t) and F(r) are taken,
we may select the configuration occupied by the body at time t'. Then (7) yields

F1(r) = F,(r)Fr(t) (1.7-8)

Of course,

F, (t) = 1. (1.7-9)
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1.8 Boundaries and Boundary Conditions

A stationary surface YK in the reference shape K(13) is described by an equation of
the form f (X) = 0, and hence

f=0. (1.8-1)

Conversely, if (1) is satisfied by a function f (X, t), then in fact the surface f = 0
is a stationary surface in the reference shape, provided of course that X E K(13).
At the time t, the substantial points that make up YK constitute a certain surface
Y in the shape assumed by B in its motion at the time t. These surfaces are the
successive forms of a single substantial surface. In accord with the convention
we have established, we write f also for the function of x and t whose value at
xK(X, t) is f (X), so for the locus f = 0 to represent a substantial surface, we have
the necessary and sufficient condition (1), where now the operation signified by a
dot is defined by (1.5-3). Thus in the spatial description this requirement becomes
Euler's condition:

f'+(grad (1.8-2)

If n is the oriented unit normal to the surface f = 0, where of course f now stands
for the function such that f (x, t) = 0 is the locus of y, then (2) may be written
alternatively in the form

(1.8-3)

provided S,,, which is called the speed of displacement of y, is the speed at which
that surface advances in the direction normal to itself in space:

Sn -f (1.8-4)
1 grad f I

Euler's condition (2) thus asserts that the speed of displacement of y at (x, t) is
just the same as the speed at which the substantial point now occupying (x, t) is
moving in the direction normal'to Y.

EXERCISE 1.8.1
Let a surface y have parametric representation x = g(A, t), the parameter A being
an ordered pair of real parameters. If A is regarded as permanently denoting a
particular point on y as y moves, shows that its velocity u satisfies n u = 5,,.
If y is represented by some spatial equation, say h(x, t) = 0, the same field S is
obtained in this way. This fact justifies the name "speed of displacement."
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EXERCISE 1.8.2 (Lagrange)
If (2) is regarded as a partial differential equation for f in the spatial description,
show that integration by the method of characteristics yields F(XK 1, f) = 0. Thus,
the substantial points that lie upon f (x, t) = const, at any one time, lie always
upon its image under the notion.

A kinematic boundary is a surface that separates permanently two parts of B.
Thus a kinematic boundary is a substantial surface, and vice versa. The special
term "boundary" is introduced to distinguish particular surfaces, usually assigned
in advance, like a wall or a surface with a special role such as separating two parts
having different properties. The simplest example is a stationary wall, a surface
f (x) = const. In order for such a surface to be substantial and hence a possible
kinematic boundary for a given motion of B, by (3) we have the following necessary
and sufficient condition relating the unit normal n to the velocity:

n-i=0. (1.8-5)

That is, the velocity field on the wall is tangential, as is obvious. More generally,
if the places on a wall have assigned velocities u, then at those places

(1.8-6)

Sometimes a stronger kinematic condition is imposed, that of adherence. The
body is then constrained to move with the kinematic boundary. If the places on the
wall have an assigned velocity v, then on that wall

x=V.

In the case of a stationary wall, this condition becomes

x=0.

(1.8-7)

(1.8-8)

EXERCISE 1.8.3
Let the surface y whose equation is g(x, t) = 0 in X(B, t) be the image of the
surface Y, whose equation is G(X, t) = 0 in the reference shape K(1t3). (Note that
Y, in contradistinction with substantial surfaces, generally moves with respect to
ic(8).) With the conventions of notation set at the beginning of this section, show
that the oriented unit normals nK and n to these two surfaces are related by

nK
grad gI

Fr n; (1.8-9)
Grad g I

and that the speed of advance SK of the surface YK in the direction normal to itself
in K(B) is given by

SK _ - g

I Grad gi'
(1.8-10)
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and

SK
Igrad.

g



2
Kinematics and Basic Laws

2.1 Stretch and Rotation

Since the motion XK is smooth and, F is nonsingular, the polar decomposition
theorem of Cauchy enables us to write it in the two forms

F = RU = VR, (2.1-1)

where R is an orthogonal tensor and U and V are positive-definite symmetric ten-
sors. R, U, and V are unique. Cauchy's decomposition tells us that the deformation
corresponding locally to F may be obtained by effecting pure stretches of amounts,
say, v;, along three suitable mutually orthogonal directions e,, followed by a rigid
rotation of those directions, or by performing the same rotation first and then ef-
fecting the same stretches along the resulting directions. The quantities v; are the
principal stretches; corresponding unit proper vectors of U and V point along the
principal axes of strain in the reference configuration and the present configuration
X, respectively. Indeed, if

Ue; = vie;, (2.1-2)

then by (1)

V(Re;) _ (RURT)(Rej) = v;(Re;). (2.1-3)

Thus, as just asserted, U and V have common proper numbers but different principal
axes, and R is the rotation that carries the principal axes of U into the principal axes
of V. R is orthogonal but need not be proper orthogonal: RRT = 1, so det R = + 1
or -1, and det R maintains either the one value or the other for all X and t, by
continuity. Thus det U = det V = I det F I = J.

R is called the rotation tensor, U and V the right and left stretch tensors,
respectively. These tensors, like F itself, are to be interpreted as comparing aspects
of the present configuration with their counterparts in the reference configuration.
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The right and left Cauchy-Green tensors C and B are defined as follows:

C:=U2=FTF,
B := V2 = FFT. (2.1-4)

While the fundamental decomposition (1) plays the major part in the proof of
general theorems, calculation of U, V, and R in special cases may be awkward,
since operations such as taking the square root are usually required. C and B,
however, are calculated by mere multiplication of F and FT. If gkm and g"P are the
covariant and contravariant metric components in arbitrarily selected coordinate
systems in space and in the reference configuration, respectively, components of
C and B are

=FFF0gkm,

Bkm = FkFm g`O, (2.1-5)

where Fa = x,« = a . (XI, X2, X3, t). The proper numbers of C and B are the
squares of the principal stretches, v2. The principal invariants of C and B are given
by

1=

II =

2

[(tr B) 2 - tr B2] =

2

[(tr C)2 - tr C2] = v2 v2 + v2v3 + v2vi ,

III = det B = det C = J2 = v v2 v3. (2.1-6)

If we begin with the relative deformation Ft, defined by (1.7-6), and apply to
it the polar decomposition theorem, we obtain the relative rotation Rt, the relative
stretch tensors Ut and Vt, and the relative Cauchy-Green tensors Ct and Bt:

Ft = RtUt = VtRt, Ct = U! , Bt = V' . (2.1-7)

We now define what is meant by the history associated with a function. The
restriction of the function f (r) to times r not later than the present time t is called
the history off up to time t and is denoted by ft(s) or f':

ft := ft(s) := f(t - s), t fixed, s > 0. (2.1-8)

The history f t, as its name suggests, is the portion of a function of all time that
corresponds to the present and past times only. Histories turn out to be of major
importance in mechanics because it is the present and past that determine the future.

In the notation (2.1-8), for example, Cr (s) is the history of the relative right
Cauchy-Green tensor up to time t.
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2.2 Stretching and Spin

For a tensor defined from the relative motion, for example F, we introduce the
notation

Ft(t) := a,Ft(r)I , = -asF,(s)IS=o. (2.2-1)

Set

G := Ft(t),

D := Ut(t) = Vt(t),
W := Rt(t). (2.2-2)

D, which is called the stretching, is the rate of change of the stretch of the config-
uration at time t + e with respect to that at time t, in the limit ass - 0. Likewise,
W, which is called the spin, is the ultimate rate of change of the rotation from
the present configuration to one occupied just before or just afterward. Since Ut is
symmetric, so is D, being its derivative with respect to a parameter

DT = D, (2.2-3)

but, unlike U, D generally fails to be positive-definite. If we differentiate the
relation Rt(r)Rt(r)T = 1 with respect to r, put r = t, and use (2)3, we find that
W is skew:

WT+W=0. (2.2-4)

From its definition (2)1i G is the ultimate rate of change of Ft, but that is not all,
for by (1.7-7) we have

G = F(t)F(t)-1. (2.2-5)

Differentiation of (1.4-1) with respect to t yields

F = V = Vi = (grad i)F, (2.2-6)

where the last step follows by the chain rule. Substitution into (5) yields

G = grad i. (2.2-7)

We have shown that the tensor G, defined by (2)1, is in fact the spatial velocity
gradient.

EXERCISE 2.2.1
Prove that if

(n)

Gn := F t (t), (2.2-8)
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then

G = grad
(x

(2.2-9)

If we differentiate the polar decomposition (2.1-7)1 with respect to r and then
put t = t, we find that

G = D + W. (2.2-10)

This result, showing that D and W are the symmetric and skew parts of the
velocity gradient, expresses the fundamental Euler-Stokes decomposition of the
instantaneous motion into the sum of a pure stretching along three mutually or-
thogonal axes and a rigid spin of those axes.

Of course, we could have defined G by (7) as the velocity gradient and W
and D by (10) as the symmetric and skew parts of G. We should then have had
to prove (2)2,4 as theorems to interpret G, W, and D kinematically. Writers on
hydrodynamics usually prefer the argument in this order.

Motions in which W = 0 are called irrotational. They form the main subject
of study in classical hydrodynamics.

Since W is skew, it may be represented by an axial vector, denoted by
w = curl i, called the "vorticity" in hydrodynamics. Nowadays it seems more
convenient not to introduce this vector but instead to use the tensor W.

Further enlightenment of the difference between stretch and stretching and
between rotation and spin is furnished by the following exercise.

EXERCISE 2.2.2
Prove that

W = RRT + I R(UU-1 - U-liJ)RT,

D = I R(UU-1

+ U-' U)RT , (2.2-11)

where R and U have their usual meanings as the rotation and right stretch tensors
with respect to a fixed reference configuration.

Clearly the spin W is generally something quite different from R, the time
rate of the rotation tensor, and the stretching D is entirely different from U, the
time rate of the stretch tensor. If the simple equations (11) had been available to the
hydrodynamicists of the nineteenth century, a long and acrimonious controversy in
the literature could have been avoided. Helmholtz interpreted Was an instantaneous
rotation; Bertrand objected because a simple shear flow is rotational in Helmholtz's
sense even though the particles move in straight lines, while if the particles rotate
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in concentric circles with an appropriate distribution of velocities, the motion is
irrotational. Such controversy disappears by a glance at (11), which shows that the
conditions k = 0 and W = 0 are far from the same. The definitions (2.1-1) and
(2) make the different kinematic meanings of W and k clear and suggest that both
tensors will be useful.

Higher rates of change of stretch and rotation may be defined in various ways.
The most useful higher rates are the Rivlin-Ericksen tensors An :

(n)

An :=C1 (t), (2.2-12)

where the notation (1.1-2) is used.
In a steady, simple shearing, the Cartesian components of the velocity are

zl = 0, X2 = axe, x3 = 0, K = const., (2.2-13)

K is the shearing, and each material point moves ahead at constant speed along a
straight line along the x2-axis. The motion is rotational unless K = 0.

In a steady, simple vortex the contravariant components in cylindrical coordi-
nates are

r = 0, 9 = w(r), 0, (2.2-14)

and each material point rotates steadily about the polar axis on a circle r = constant,
z = constant at the angular speed m(r). If w(r) = Kr-2, the motion is irrotational,
where K is the strength of the irrotational vortex. The vorticity is given by rw
(r2w)', where prime denotes derivative with respect to r.

Let

Wa := skw grad x. (2.2-15)

EXERCISE 2.2.3 (D'Alembert, Euler, Beltrami)
Show that

Wa := W + DW + WD. (2.2-16)

EXERCISE 2.2.4 (Dupont, Rivlin, and Ericksen)
Show that

n-1
An=Gn+Gn+GjGn-j;

\1I
and

(2.2-17)

An+l = An + AnG + GTAn. (2.2-18)
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We now consider restrictions imposed upon W by boundaries. To do so, we
first appeal to Kelvin's transformation ("Stokes's theorem")' of an integral over a
surface Y into a line integral around the border of y, which we shall denote by
C. The circulation C(C) was introduced by Kelvin as a measure of the summed
tangential speeds of the substantial points lying presently upon C. Assuming that
dim E = 3, we suppose the surface y to be given by a mapping x = f(a, b) on a
domain D of the parameters a and b. Then, with the usual convention of sign and
on the assumption that the fields and the surface be sufficiently smooth,

C(C) := fi. dx fw (ax A abx)da db. (2.2-19)

For our first use of this statement, we apply it to a surface y that is normal to
the velocity field i. Then C(C) = 0, so the right-hand side of (17) vanishes. The
same holds for every subsurface of Y. If W and aQx A abx are continuous, then
everywhere on y

W.(aaXAabx)=0. (2.2-20)

We have proved the following theorem: At a point on a surface normal to the
velocity field, either W = 0 or the axis of W lies in the tangent plane.

EXERCISE 2.2.5
If n is a unit normal field to the surface, show that

W = -n ®Wn + Wn ®n. (2.2-21)

The foregoing statement holds afortiori on a stationary boundary to which a
body adheres.

EXERCISE 2.2.6 (Weatherburn, Berker, Caswell, Truesdell)
Interpretation of the gradient in terms of the directional derivative shows that if k
is any vector in the tangent plane at the place x on a stationary wall to which a
body adheres, then at x

Gk=0.

Hence show that at x

D=En ®n+n®Wn+Wn®n, (2.2-22)

'A surface is a compact, oriented, two-dimensional manifold with boundary in a three-dimensional
Euclidean space. The velocity field z is assumed to be differentiable in an open set properly containing
Y. A brief statement and a rigorous proof of Kelvin's transformation are given by M. Spivak, Calculus
on Manifolds (Benjamin: New York, 1965).
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and the principal stretchings are given by

2D1 = E + E2 + m2 > 0,

D2 = D(e) = 0,

2D3 = E - E2 + w2 < 0, (2.2-22)

where w = I curl i 1.

EXERCISE 2.2.7 (Cauchy)
If

Wa := skw G2 = skw grad z, (2.2-23)

then show that

(FTWF)' = FTWaF. (2.2-24)

Hence a necessary and sufficient condition that FT WF remain constant for
each substantial point X in the course of its motion is

Wa = 0. (2.2-25)

If (25) holds, then

FTWF = f, (2.2-26)

a function of place X in the reference shape. Because F = 1 throughout that shape,
from (26), we conclude that f = WK, the spin that X would have, were it to be at
X. In particular, (25) is satisfied by an irrotational flow.

The condition (25) is of central importance in classical fluid dynamics. There
it is applied in a region, not merely to a single substantial point. It is called the
D'Alembert-Euler condition. A convenient way to express it is

skw grad x = 0; (2.2-27)

because of (9), equivalently

skw FF-' = skw(G + G2) = 0. (2.2-28)

For the time being we remark only that according to a familiar theorem on lamellar
fields, in a simply connected region the field z satisfies (25) if and only if there is
an acceleration potential Pa:

i = - grad Pa. (2.2-29)

EXERCISE 2.2.8 (D'Alembert, Euler, Beltrami)
Show that

Wa = W + DW + WD. (2.2-30)



20 2. Kinematics and Basic Laws

EXERCISE 2.2.9 (Appell)
If dim E = 3,

(I.jwI2)
.=

J2(W W. + IWI2n Dn), (2.2-31)

where n is either unit vector in the nullspace of W. Hence w = II curl ill satisfies
the differential equation

(Jw)* = Jwn Dn (2.2-32)

if and only if

W- Wa = 0. (2.2-33)

EXERCISE 2.2.10
Show that a rigid motion has an acceleration potential if and only if its spin is
steady, and then

- P, = 2p W2p + [c + W(c - io)] . p; (2.2-34)

here p := x - x0. If to denotes the angular speed and r the distance from the axis
of spin,

p W2p = 4w2r2 = -co2r2. (2.2-35)

As we have seen earlier in this section, the condition W = 0 defines an
irrotational motion. Consequently, a motion is irrotational in a simply connected
region if and only if it has there a velocity potential PP:

i = - grad P. (2.2-36)

For that reason irrotational motions are often called potential flows. The po-
tential P, may depend upon t as well as x. The surfaces P,.(t, x) = const., t fixed,
are called equipotentials. The velocity is normal to the equipotential on which it
lies. A system of equipotentials determined by giving to P, successively equal,
constant increments, say c, divides the region of flow into laminae, and hence an
irrotational flow is sometimes called lamellar. If the constant c is very small, so
also are the values of the function d that delivers the normal distances between the
equipotentials, and IiI c/d.

If an irrotational motion is also isochoric, then, as Euler remarked, (1.4-6) 1
reduces to the linear partial differential equation later to be called "Laplace's equa-
tion":

APB, = 0. (2.2-37)
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Solutions, which are called harmonic functions, are easy to obtain. The sum of
two harmonic functions is a harmonic function, so the outcome of superposing
two isochoric, irrotational flows is likewise an isochoric, irrotational flow, and
complicated flows may be built up from simple ones in this way. In the nineteenth
century many general properties of them were discovered, and general methods
for calculating solutions of (37) such as to satisfy n x = 0 on given boundaries
were constructed. The corpus of these properties is called "potential theory." The
problem of determining an isochoric, irrotational flow within or about assigned
boundaries is purely kinematical; it can be phrased with no reference to mechanics.

A disquieting property of isochoric, irrotational flows is revealed by a theorem
in the theory ofthe "Laplacian" equation: The boundary condition n x = 0 applied
to the boundary of a closed, bounded, simply connected region determines a unique
velocity field in that region. Were the fluid to adhere to some bounding wall we
should have to prescribe x, not merely n x. A standard theorem of potential theory
may be interpreted as follows: If at a certain time a body undergoing isochoric,
irrotational flow adheres to a not void, open set on a surface, that whole body must
be at rest at that time.

Neither isochoric motion nor the condition of adherence nor the restriction to
a bounded domain is necessary to render impossible an irrotational motion other
than a state of rest, as is shown by the following, purely kinematical theorem.

Theorem of Kelvin and Helmholtz. Let an irrotational flow in a stationary,
simply connected region be such that

1. It is isochoric, or its density is steady.

2. On all finite boundaries, x n = 0.

3. In any part of the region that lies outside of a sphere of arbitrarily large
radius r, if the motion is isochoric, then

P v r P, 0
(-k)

as r oc, (2.2-38)
r

while if the density is steady,

/ \
Pear Pv = o I z I as r-+ oo. (2.2-39)

r

Then x = 0 everywhere.

Of course the two main conditions, those of isochoric motion and of steady density,
are not mutually exclusive, for it is easily possible that both (38) and (39) hold.2

2For a proof of this theorem see C. Truesdell A First Course in Rational Continuum Mechanics, vol.
1, (New York: Academic Press, 1991).
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A measure of the relative strengths of the rotation and stretching is given by
the vorticity number W- that is defined through

_W = 11W11 (2.2-40)
IIDII

If D = 0 and W 0 0, we choose to say that W = oo.

2.3 Changes of Frame

In classical mechanics we think of an observer as being a rigid body carrying a
clock. Actually we need not an observer as such but only the concept of change of
observer, or, as we shall say, change of frame. The ordered pair {x, t}, a place and
a time, is called an event. The totality of events is space-time. A change offrame is
a one-to-one mapping of space-time onto itself such that distances, time intervals,
and the sense of time are preserved. We expect that every such transformation
should be a time-dependent orthogonal transformation of space combined with a
shift of the origin of time. This is so. The most general change of frame is given
by

X* = c(t) + Q(t)(x - x0),

t* = t - a, (2.3-1)

where c(t) is a time-dependent point, Q(t) is a time-dependent orthogonal tensor,
xo is a fixed point, and a is a constant. We commonly say that c(t) represents a
change of origin (translation), since the fixed point xo is mapped into c(t). Q(t)
represents a rotation and also, possibly, a reflection. Reflections are included since,
although in most physics and engineering courses the student is taught to use a right-
handed coordinate system, there is nothing in nature to prevent two observers from
orienting themselves oppositely.

A frame need not be defined and certainly must not be confused with a co-
ordinate system. It is convenient, however, to describe (1) as a change from "the
unstarred frame to the starred frame," since this wording promotes the interpreta-
tion in terms of two different observers.

A quantity is said to be frame indifferent if it meets the following requirements:

A* = A for indifferent scalars,

v* = Qv for indifferent vectors,

S* = QSQT for indifferent tensors (of second order).

An indifferent scalar is a quantity that does not change its value. An indifferent
vector is one that is the same "arrow" in the sense that

if v = x - y, then v* = x* - y*. (2.3-2)
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By (1), then,

v* = Q(x - y) = Qv, (2.3-3)

as asserted. An indifferent tensor is one that transforms indifferent vectors into
indifferent vectors. That is,

if v = Sw and v* = Qv, w* = Qw, then v* = S*w*. (2.3-4)

By substituting the first three equations into the last, we find that

Qv = S*Qw = QSw. (2.3-5)

Since this relation is to hold for all w, we infer the rule S*Q = QS, as stated.
In mechanics, we meet some quantities that are indifferent and some that are

not. Sometimes we have a vector or tensor defined in one frame only. By using
the stated rules, we may extend the definition to all frames to obtain a frame-
indifferent quantity. Such an extension is trivial. Usually, however, we are given a
definition valid in all frames from the start. In that case, we have to find out what
transformation law is obeyed and thus determine whether or not the quantity is
frame indifferent.

Consider, for example, the motion of a body. Under the change of frame (1),
(1.1-1) becomes

x* = c(t) + Q(t)[x(X, t) - x0J = X*(X, t*). (2.3-6)

Differentiation with respect to t* yields

x* = c + Q[x - x0] + Qx, (2.3-7)

so

x* - Qx = c + A(x* - c), (2.3-8)

where

A = QQT = -AT. (2.3-9)

A is called the angular velocity or spin of the starred frame with respect to the
unstarred one. The result (8) shows that the velocity is not a frame indifferent
quantity, since if it were, the right-hand side of (8) would have to be replaced by
0. Likewise, the acceleration is not frame indifferent.

EXERCISE 2.3.1
Prove that

iz* - Qx = c + 2A(x* - c) + (A + A2)(x* - c). (2.3-10)

In (6) we may refer both the motions X and X* to the same reference con-
figuration K if we wish to. This amounts to replacing X and X * by XK and XK
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respectively, since these functions have the same values as the former. By taking
the gradient of the resulting formula, we obtain

F* = QF. (2.3-11)

From the polar decomposition (2.1-1), then,

R*U* = QRU. (2.3-12)

Since QR is orthogonal and since a polar decomposition is unique,

R* = QR, and U* = U. (2.3-13)

Hence

V* = R*U*R*T = QRU(QR)T, = QVQT. (2.3-14)

Thus we have shown that V is frame indifferent, while F, R, and U are not. It
follows from (13)2, (14) and the definitions (2.1-4) that C* = C and B* = QBQT.
If we differentiate (11) with respect to time, we find that

F* = QF + QF, (2.3-15)

but by (2.2-5), k = GF, so

G*F* = QGF + QF = QGQTF* + QQTF*. (2.3-16)

Since F* is non singular, it may be canceled from this equation, which by use of
(2.2.10) becomes

D* + W* = Q(D + W)QT + A, (2.3-17)

where A is the spin (9) of the starred frame with respect to the unstarred one. Since
a decomposition into symmetric and skew parts is unique,

D* = QDQT, W* = QWQT + A. (2.3-18)

These formulae embody the theorem ofZaremba: The stretching is frame indiffer-
ent, while the spin in the starred frame is the sum of the spin in the unstarred frame
and the spin of the starred frame with respect to the unstarred frame. The assertion
is intuitively plain, since a change of frame is a rigid motion, which does not alter
the stretchings of elements though it does rotate the directions in which they seem
to occur.

EXERCISE 2.3.2
Prove that the Rivlin-Ericksen tensors A are frame indifferent.

Most relations of interest to us shall be invariant under change of frame. To
have to demand invariance of a relation under a group of transformations is a
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sign that we have not formulated a good mathematical language for the problem
at hand, since in such a language invariance is automatic. The use of a frame in
classical mechanics is artificial in that the frame and its motion really have nothing
to do with the phenomenon being observed. An abstract formulation of space-time,
kinematics, and dynamics, in which frames play no part, has been given by Noll.
Here, we shall continue to use a formulation of mechanics close to the one taught
to freshmen.

2.4 Forces and Moments

Forces and torques are among the primitive elements of mechanics; like bodies
and motions, they are given a priori. While several kinds of forces and torques
are considered in a more general mechanics, in these lectures we shall need only
the classical ones.3 Forces act on the parts P of a body B in a configuration X (l3).
We shall require two kinds of forces: body force fb(P), which is an absolutely
continuous function of the volume of PX, and contact force fc(P), which is an
absolutely continuous function of the surface area of the boundary 8PX of PX . The
resultant force f(P) acting on P in x is given by

f(P) = fb(P) + fc(P), (2.4-1)

where

fb(P) = f bdm = f pbdv,
Px Px

QP) = f tds.
apx

(2.4-2)

The two densities b and t are called the specific body force and the traction, re-
spectively.

The resultant moment offorce L(P; xo) with respect to xo is defined by

L(P, xo) = f(x - xo) A bdm + J (x - xo) A tds. (2.4-3)

Px aPx

A moment or simple torque is only a special case of a torque, but more general
torques are not needed in an introductory course.

3See C. Truesdell, A First Course in Rational Mechanics., vol. 1, chapter 1, section 8 (Boston:
Academic Press, 1991).



26 2. Kinematics and Basic Laws

EXERCISE 2.4.1
Prove that

L(P, xo) = L(P, x0) + (xo - xo) A f(P). (2.4-4)

We assume that forces and torques are frame indifferent. That is, under a
change of frame (2.3-1),

b* = Qb and t* = Qt. (2.4-5)

2.5 Euler's Laws of Mechanics

The momentum m(P) and the moment of momentum M(P; x0) of P in the config-
uration X(13, t) are defined by

m(P) = f idm,
PX

M(P; x0) = f (x - xo) A idm. (2.5-1)
PX

As axioms relating the forces applied to the motion produced, we lay down Euler's
laws:

f(P) = m(P),
L(P; xo) = M(P; x0). (2.5-2)

(Of course, Euler's laws generalize and include much earlier ones, due in vary-
ing forms and circumstances to medieval schoolmen, Huygens, Newton, James
Bernoulli, and others. There is no justice in emphasizing our debt to any one of
these predecessors of Euler to the exclusion of the rest.) Euler's laws assert that the
resultant force equals the rate of change of momentum and the resultant moment
of force equals the rate of change of moment of momentum. Here P is a fixed part
of the body B, and x0 is a fixed point in space. The dots on the right-hand side of
(2) indicate the ordinary time derivatives. (Of course PX is not the fixed region in
space, since it is the configuration of P at time t in the motion X.)

EXERCISE 2.5.1
If (2)1 holds, then show that(2)2 holds for one x0 if and only if it holds for all x0.

It is possible to derive Euler's laws as a theorem from a single axiom proposed
by Noll: the rate of working is frame indifferent for every partP of every body 13.
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In modem mechanics the definitions of m and M are sometimes generalized,
and torques more general than (2.4-3) are often considered. Euler's laws, or an
equivalent statement, remain the fundamental axioms for all kinds of mechanics.
In particular, if the sign f is taken to mean a Lebesgue-Stieltjes integral, Euler's
laws may be shown to imply as corollaries the so-called Newtonian equations of
analytical dynamics, provided certain assumptions are made about the forces.

Since forces and torques are frame indifferent but the rates of change of mo-
mentum and moment of mometum are not, the truth of Euler's laws as stated here
is restricted to a particular class of frames. Frames of this class are called inertial.
In physics the frame of the "fixed stars" is regarded as an inertial one.

2.6 Euler-Cauchy Stress Principle

As defined, the densities b and tin (4-2) may be extremely general:

b = b(x, t, P,13), t = t(x, t, P, 5). (2.6-1)

We shall restrict attention to body force densities that are unaffected by the presence
or absence of bodies in space:

b = b(x, t), (2.6-2)

whatever P and 13 are. Such body forces are called external. (A particular kind of
more general body force called mutual, such as universal gravitation, is sometimes
included in mechanics but will not be treated here.) The particular case when
b = constant pertains to heavy bodies. If b is the gradient of a scalar field, the
body force is said to be conservative, and

b = - grad zu; (2.6-3)

the scalar function zT is the potential for b. If zw is a potential for b, then so is
n + h(t), where h is only a function of time.

We shall restrict attention also to a particular kind of contact force, namely,
one such that the traction t at given place and time has a common value for all parts
P having a common tangent plane and lying upon the same side of it:

t = t(x, t, n), (2.6-4)

where n is the outer normal to a P in the configuration X. Such tractions are called
simple. The pioneers of continuum mechanics laboriously created the assumption
(4) through abstraction from special cases. To them it seemed ultimate in generality.
The assumption embodied in (2.4-1), (2.4-2), and (4) is the Euler-Cauchy stress
principle, which is the cornerstone of classical continuum mechanics. We shall
not need to depart from it here. Noll has proved that (4) is more general than it
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might seem. He has shown that the principle of linear momentum under weak
assumptions requires the traction to be simple.

The stress principle is put to use through Cauchy's fundamental lemma: There
is a tensor T(x,t), called the stress tensor, such that

t(x, t, n) = T(x, t)n. (2.6-5)

That is, the traction t, which at the outset was allowed to depend arbitrarily on the
normal n, is in fact a linear homogeneous function of it.

EXERCISE 2.6.1
Show that Cauchy's fundamental lemma follows from (4) and either (2.5-2), or
(2.5-2)2 .

2.7 Cauchy's Laws of Continuum Mechanics

As a result of Cauchy's fundamental lemma, for continua subject to simple trac-
tions, simple torques, and external body forces we may write Euler's laws (2.5-2)
in the following special and signficant forms:

Cf±dm) = f Tnds + f bdm, (2.7-1)
Pll apx Px

[f(x - xo) A xdm] = f (x - xo) A Tnds + f (x - xo) A bdm, (2.7-2)
p apx Px

for every partP of every body B. The subscript X is omitted from P on the left-
hand side as a reminder that the time derivative is calculated for a fixed part P of
the body, not for a fixed region of space.

These equations are both of the form called an equation of balance for a tensor
field

J
Vidm =

J
Ends +

J
s*dm. (2.7-3)

P aPx Px

E*, a tensor of order greater by 1 than >!r, is called an efflux of ,r, while s,1, is called
a source of i. An equation of balance expresses the rate of growth of fp *dm as
the sum of two parts: a rate of flow -E,, inward through the boundary aPX of the
configuration PX of P and a creation s,1, in the interior of that configuration. Equa-
tions of this form occur frequently in mathematical physics. Under the assumptions
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of smoothness made at the beginning of this book, an equation of balance is always
equivalent to a differential equation.

EXERCISE 2.7.1
Prove that

(J *dm) = 1 z dm, (2.7-4)

P Px

where i%r is the derivative of * in the material description and hence may be
calculated from (1.5-3). Show that the equation of balance (2) holds for every part
P of every body B if and only if at each interior point of B

p>%r = div E* + psj. (2.7-5)

The general differential equation (4) is a consequence of the divergence the-
orem, an easy one. Textbooks for engineers and physicists still seem to prefer
proofs of each special application by means of diagrams showing boxes decorated
by many small arrows. Such proofs are regarded as "intuitive," apparently because
they include, over and over again, a bad proof of the divergence theorem itself
along with the particular application of it. "Intuition" of this kind must be bought
at the price of more time and boredom than a course on modern mechanics can
afford. We must remark that (4) holds subject to specific assumptions. Use of the
divergence theorem requires assumptions about the region and about the fields.
The assumptions about the region are satisfied here because only interior points
are considered; in fact, it would suffice to consider only those parts P whose con-
figurations are spheres about the point in question. The fields, however, must be
smooth. It suffices to assume that E* is continuously differentiable and that p, ,
and s* are continuous in a sufficiently small sphere about the interior point con-
sidered. In general, (4) does not hold at points of 8l3 or at interior points where
any of the fields p, >lr, E, s* fail to exist or are not sufficiently smooth.

If we apply (4) to (1)1, we conclude at once that Euler's first law holds if and
only if

pi = divT + pb (2.7-6)

at interior points of B5. This equation expresses Cauchy's first law of continuum
mechanics.

Like Euler's laws, Cauchy's first law as stated here holds only in inertial
frames. To obtain a frame-indifferent statement of it, we need only replace x by a,
the frame-indifferent vector that in some inertial frame reduces to x.

To apply (4) to (1)2, we let M stand for the tensor such that (x-xo)A(Tn) = Mn
and conclude that Euler's second law holds if and only if

p(x-xo)A i= divM+p(x-xo)Ab
=TT - T + (x - xo) A div T + p(x - xo) A b, (2.7-7)
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where the second form follows by an easy identity. If (5) holds, then

TT = T. (2.7-8)

The stress tensor is symmetric and vice versa. This equation expresses Cauchy's
second law of continuum mechanics.

Since this second law, in particular, has been questioned from time to time, we
pause to emphasize its special character. We began with the general laws of Euler,
but we applied them only subject to some special assumptions:

1. All torques are moments of forces.

2. The traction is simple.

We assumed also that the body force is external, but that restriction is not important
here. Under these assumptions, Euler's laws are equivalent to Cauchy s laws when
X, b, pir, and T are sufficiently smooth. Cauchy's first law expresses locally the
balance of linear momentum. Cauchy's second law, if the first is satisfied, expresses
locally the balance of moment of momentum.

2.8 Equivalent Processes

We now consider motions and forces that obey the laws of mechanics. Formally,
the motion of a body and the forces acting upon the corresponding configurations
of the body constitute a dynamical process if Cauchy's laws (2.7-5) and (2.7-7) are
satisfied. If the body and its mass distribution are given, Cauchy's first law (2.7-5)
determines a unique body force b. Here we wish to consider rather the totality of
all possible problems. There is then no reason to restrict b. Consequently, any pair
of functions {X, T}, where X is a mapping of the body B onto configurations in
space and where T is any smooth field of symmetric tensors defined at each time
t over the configuration BX, defines a dynamical process.

Under a change of frame, X becomes X* as given by (2.3-6). Our assumption
(2.4-5) asserts that body force and contact force are indifferent. Since, of course,
the normal n is indifferent, so that by (2.3-5), T* = QTQT. Two dynamical
processes { X, T} and { X *, T* } related in this way are regarded as the same motion
and associated contact forces as seen by two different observers. Thus, formally,
two dynamical processes {X, T} and {X *, T*} will be called equivalent if they are
related as follows:

X*(X, t*) = c(t) + Q(t)LX(X, t) - x0],
t* = t - a (2.8-1)

T*(X, t*) = Q(t)T(X, t)Q(t)T. (2.8-2)

We here regard the stress tensor as a function of the particle X and the time t.
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Constitutive Equations, Reduced
Constitutive Equations, and Internal
Constraints

3.1 Constitutive Equations

The general principles of mechanics apply to all bodies and motions, and the
diversity ofmaterials in nature is represented in the theory by constitutive equations.
A constitutive equation is a relation between forces and motions. In popular terms,
forces applied to a body "cause" it to undergo a motion, and the motion "caused"
differs according to the nature of the body. In continuum mechanics the forces
of interest are contact forces, which are specified by the stress tensor T. Just as
different figures are defined in geometry as idealizations of certain important natural
objects, in continuum mechanics ideal materials are defined by particular relations
between the stress tensor and the motion of the body. Some materials are important
in themselves, but most of them are of more interest as members of a class than
in detail. Thus a general theory of constitutive equations is needed. The material
presented here draws heavily from the work of Noll.
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3.2 Axioms for Constitutive Equations

3.2.1 Principle of determinism

The stress at the particle X in the body 8 at time t is determined by the history X`
of the motion of B up to time t:

T(X, t) = .E(X`; X, t). (3.2-1)

Here F is a functional in the most general sense of the term, namely a rule of
correspondence. Equation (1) asserts that the motion ofthe body up to and including
the present time determines a unique symmetric stress tensor T at each point of the
body, and the manner in which it does so may depend upon X and t. The functional
.F is called the constitutive functional, and (1) is the constitutive equation of the
ideal material defined by F. Notice that the past, as much of it as necessary, may
affect the present stress, but in general past and future are not interchangeable. The
common prejudice that mechanics concerns phenomena reversible in time is too
naive to need refuting.

3.2.2 Principle of local action

In the principle of determinism, the motions of particles Z that lie far away from
X are allowed to affect the stress at X. The notion of contact force makes it natural
to exclude action at a distance as a material property. Accordingly, we assume as
a second axiom of continuum mechanics that the motion of particles at a finite
distance from Xin some configuration may be disregarded in calculating the stress
at X. (Of course, by the smoothness assumed for X, particles once a finite distance
apart are always a finite distance apart.) Formally, if

X`(Z, s) = X`(Z, s) when s > 0 and Z E N(X), (3.2-2)

where N(X) is some neighborhood of X, then

F(x ; X, t) = JI(X'; X, t). (3.2-3)

3.2.3 Principle of material frame indifference

We have said that we shall regard two equivalent dynamical processes as being
really the same process, viewed by two different observers. We regard material
properties as likewise indifferent to the choice of observer. Since constitutive equa-
tions are designed to express idealized material properties, we require them to be
frame indifferent. That is, if (1) holds, namely,

T(X, t) = .T(X`; X, t), (3.2-4)



3.3 Simple Materials 33

then the constitutive functional F must be such that

T(X, t*)* = -F[(X*"); X, t*], (3.2-5)

where {X *, T* } is any dynamical process equivalent to { X, T}. The requirement of
local action and frame indifference impose restrictions of the functionals F to be
admitted in constitutive equations. Namely, F must be such that the constitutive
equation (1) is invariant under the transformations (2.8-1). Only those functionals
Fthat satisfy the requirements of local action and frame indifference are admissible
as constitutive functionals.

Some steps may be taken to delimit the class of functionals satisfying these
axioms, but here we shall treat only a special case, which is still general enough
to include all the older theories of continua and most of the more recent ones. The
special case is called the simple material.

3.3 Simple Materials

A motion X is homogeneous with respect to the reference configuration K if

x = X, (X, t) = F(t)(X - Xo) + xo(t), (3.3-1)

where x0(t) is a place in X, possibly moving, Xo is a fixed place in the reference
configuration K, and F(t), which is the deformation gradient, is a nonsingular tensor
that does not depend on X. A motion is homogeneous if and only if it carries
every straight line at time 0 into a straight line at time t. A motion homogeneous
with respect to one reference configuration generally fails to be so with respect to
another.

Physically minded people almost always assume that everything there is to
know about a material can be found out by performing experiments on homoge-
neous motions of a body of that material, from whatever state they happen to find
it in. The materials in the special class that conforms to their prejudices are called
simple materials. Formally, the material defined by (3.2-4) is called simple if there
exists a reference configuration K such that

T(X, t)= . (X`; X, t) = 9K[F`(X, s); X]. (3.3-2)

That is, the stress at the place x occupied by the particle X at time t is determined by
the totality of deformation gradients with respect to K experienced by that particle
up to the present time. CK is called a response functional of the simple material.
Ordinarily we shall write (2) in one of the simpler forms

T = cK[F`(s)] _ cK(F) = 9(F`), (3.3-3)

with exactly the same meaning.
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The defining equation (3) asserts that a given particle Jr depends on the motion
X t only through its deformation gradient F` with respect to some fixed reference
configuration. That is, all motions having the same gradient history at a given
particle and time give ri se to the same stress at that particle and time. Since, trivially,
a homogeneous motion with any desired gradient history may be constructed, only
homogeneous motions need be considered in determining any material properties
that the original constitutive functional F may describe.

We remark first that it is unnecessary to mention a particular reference con-
figuration in the definition. In Chapter 1 we obtained the important formula

F1 = F2P (1.6-5)

connecting the gradients with respect to two reference configurations K1 and K2.
By (3), then,

T= 9K, (Fi) = J K, (Ft P). (3.3-4)

Since P is the gradient of the transformation from K1 to K2, it is constant in time, and
the right-hand side of (4) gives T as a functional of the history FZ of the deformation
gradient with respect to K2. Thus, if we write K in (3) as K1, and if we set

9K2(F`) =9K, (FP), (3.3-5)

we see that a relation of the form (3) holds again if we take K2 as reference.
Therefore, we may speak of a simple material without mentioning any particular
reference configuration, and usually we do not write the subscript K on g. We must
recall, however, that for a given simple material with constitutive functional F
there are infinitely many different response functionals CJK, one for each choice of
reference configuration K.

Next we remark that, trivially, the simple material satisfies the principles of
determinism and local action, no matter the response functional g. It is not so for
the principle of material frame indifference, as we shall see in the next section.

The theory of simple materials includes most of the common theories of con-
tinua studied in works on engineering, physics, applied mathematics, and so on.
For example, the elastic material is defined by the special case when the functional
g reduces to a function g of the present deformation gradient F(X, t):

T = g(F, X), (3.3-6)

where g is a function. The linearly viscous material is defined by the slightly more
general case when g reduces to a function of F(t) and t(t) that is linear in F:

T = K(F, X)[F] = L(F, X)[G], (3.3-7)

where the second form follows from the first by (2.2-5). The Boltzmann accumu-
lative theory is obtained by supposing that gJ is expressible as an integral. It is
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customary to restrict these theories still further by assuming that IF - 11 is small
or imposing requirements of material symmetry, or both, as we shall see. Many
but not all the recent nonlinear theories are included as special cases in the theory
of simple materials. The simple material represents, in general, a material with
long-range memory, so stress relaxation, creep, and fatigue can occur.

EXERCISE 3.3.1
Prove that (7) satisfies the principle of material frame indifference if and only if it
is equivalent to

RTTR = L(U, X)[RTDR], (3.3-8)

where L is a linear operator.

3.4 Restriction for Material Frame Indifference

Under a change of frame, F* = QF, as we saw in Chapter 2. Let Q`(s) be the
history up to time t of any orthogonal tensor function Q(t). Then the principle
of material frame indifference states that the response functional C of a simple
material must satisfy the equation

9,[Q` (s)F` (s)] = Q(t)cK [F` (s)]Q(t )T (3.4-1)

for every orthogonal tensor history Q(s) and every nonsingular tensor history
P (s).

We can solve this equation. According to the polar decomposition theorem,
F(s) = R`(s)U`(s), so

cK[F`(s)] = Q(t)T cK[Q`(s)R`(s)U`(s)]Q(t). (3.4-2)

_Since this equation must hold for all Q', R', U', it must hold in particular if Q'
(R' )T . Therefore

gK(F`) = R(t)gK(U`)R(t)T . (3.4-3)

Conversely, suppose CJK is of this form, and consider an arbitrary orthogonal tensor
history Q'. Since the polar decomposition of Q`F` is (Q`R`)U`,

cK(QtF`) = Q(t)R(t)gK(U`)[Q(t)R(t)]T

= Q(t)gK(F`)Q(t)T, (3.4-4)
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so that (1) is satisfied. Therefore, (3) gives the general solution of the functional
equation (1). We have proved then, that the constitutive equation of a simple ma-
terial may be put into the form

T = RG,K(Ut)RT (3.4-5)

and, conversely, that any functional 9K of positive-definite symmetric tensor histo-
ries, if its values are symmetric tensors, serves to define a simple material through
(5). A constitutive equation of this kind, in which the functionals or functions
occurring are not subject to any further restriction, is called a reduced form.

The result (5) shows us that while the stretch history U` of a simple material
may influence its present stress in any way whatever, past rotations have no in-
fluence at all. The present rotation R enters (5) explicitly. Thus, the reduced form
enables us to dispense with considering rotation in determining the response of a
material. If we like, we may regard (3) as effecting an extension of 9, from the
range of positive-definite symmetric tensor histories to the full range of nonsingular
tensor histories.

The reduced form enables us also, in principle, to reduce the number of tests
needed to determine the response functional cK by observation. Indeed, consider
pure stretch histories: Rt = 1. If we know the stress T corresponding to an arbitrary
homogeneous pure stretch history Ut, we have a relation of the form T = Cc,K(Ut).
By (5) we then know T for all deformation histories. Alternatively, consider ir-
rotational histories: W = 0. Given any U`, we can determine R` by integrating
(2.2-11)1 with W set equal to 0. If we know the stress corresponding to an arbitrary
irrotational history, by putting the corresponding values of R into (5) we can again
determine cK. Thus, we may characterize simple materials in either of two more
economical ways: A material is simple if and only if its response to all deformation
is determined by its response to all homogeneous pure stretch histories or to all
homogeneous irrotational deformation histories.

In the polar decomposition (2.1-1), two measures of stretch, U and V, are
introduced. Kinematically, there is no reason to prefer one to the other. From (3)
we see that use of U to measure the stretch history leads to a simple reduced form
for the constitutive equation of a simple material. If we like, of course we may use
V instead. Since U` = (Rt)TVRt, substitution in (3) shows that by using V we do
not generally eliminate the rotation history R. That is, use of V does not lead to a
simple result. There are many other tensors that measure stretch just as well as U
and V. In the older literature one or another of these is called a "strain"tensor. We
prefer not to use the term "strain."

There are infinitely many other reduced forms for the constitutive equation of
a simple material. Since Ct = (Ut)2, one such form is

T = RUU-1g(,t)U-IURT = FG(Ct)FT, (3.4-6)

where

G(Ct) ° )U-1.
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EXERCISE 3.4.1
Using (1.7-7), derive Noll 's reduced form for the constitutive equation of a simple
material:

T(t) = A[Ct `; C(t)], (3.4-7)

where for any tensor K the tensor K is defined by

K = R(t)TKR(t). (3.4-8)

This result (7) shows that it is not possible to express the effect of the de-
formation history on the stress entirely by measuring deformation with respect to
the present configuration. While the effect of all the past history, 0 < s < oo, is
accounted for in this way, a fixed reference configuration is required, in general
to allow for the effect of the deformation at the present instant, as shown by the
appearance of C(t) as a parameter in (7). The result itself is important in that it
enables us to go as far as possible toward avoiding use of a fixed reference con-
figuration. Roughly, it shows that memory effects can be accounted entirely by
use of the relative deformation, but finite-strain effects require use of some fixed
reference configuration, any one we please. This result should not surprise anyone,
since in the theory of finite elastic strain the stress tensor is altogether independent
of the relative deformation and hence cannot be expressed in terms of it.

3.5 Internal Constraints

So far, we have been assuming that the material is capable, if subjected to appro-
priate forces, of undergoing any smooth motion. If the class of possible motions
is limited at interior points of 13, the material is said to be subject to an internal
constraint. A simple constraint is expressed by requiring the deformation gradient
F to satisfy an equation of the form

y(F) = 0, (3.5-1)

where y is a frame-indifferent scalar function.

EXERCISE 3.5.1
Prove that y (F) is frame indifferent if and only if

y(F) = y(U).

Hence a simple constraint may be written in the form

A(C) = 0,

(3.5-2)

(3.5-3)
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where A is a scalar function, and every such equation expresses a frame-indifferent
simple constraint.

If we differentiate (3) with respect to time for a fixed particle, we obtain

A = tr[acA(C)C] = 0. (3.5-4)

But by (2.1-4) and (1.7-7),

C(r) = F(r)T F(r) = F(t)T C,(r)F(t). (3.5-5)

If we differentiate this relation with respect to r and then put r = t, by (2.2-2)2
we find that

C(t) = 2F(t)T D(t)F(t). (3.5-6)

Hence (4) becomes

tr[FacA(C)FTD] = 0 (3.5-7)

for all nonsingular F and all symmetric D. Conversely, if (7) holds at each instant
for the particle in question, (4) follows from it by integration. Thus (7) may be used
alternatively as a general expression for a frame-indifferent simple constraint.

3.6 Principle of Determinism for Constrained Simple
Materials

Constraints, since they consist of the prevention of some kinds of motion, must
be maintained by forces. Since the constraints, by definition, are immutable, the
forces maintaining them cannot be determined by the motion itself or its history. In
particular, simple internal constraints must be maintained by appropriate stresses,
and the constitutive equation of a constrained simple material must allow these
stresses to operate, regardless of the deformation history.

For constrained materials, accordingly, the principle of determinism must be
relaxed. A fortiori, the necessary modification of that principle cannot be deduced
from the principle itself but must be brought in as a new axiom.

There are, presumably, many systems of forces that could bring about any
given constraint. The simplest of these are the ones that do no work in any motion
compatible with the constraint. In a constrained material these forces will therefore
be assumed to remain arbitrary in the sense that they are not determined by the
history of the motion.

Thus we have given reasons for laying down the following principle of deter-
minism for simple materials subject to constraints: The stress is determined by the



3.7 Examples of Internal Constraints 39

history of the motion only to within an arbitrary tensor that does no work in any
motion compatible with the constraint. That is,

T = N + O(P), (3.6-1)

where N does no work in any motion satisfying the constraint and where G must
be defined only for such arguments F as satisfy the constraint. T - N is called the
determinate stress.

The problem is now to find N. The rate of working of a symmetric stress tensor
T in a motion with stretching tensor D is the stress working (or stress power) w:

w := tr(TD).

Accordingly, we are to find the general solution N of the equation

tr(ND) = 0,

(3.6-2)

(3.6-3)

where D is any symmetric tensor that satisfies (3.5-7). Now Fac k(C)FT is a sym-
metric tensor, and the operation tr(AB) defines an inner product in the space of
symmetric tensors. Hence N, regarded as a vector, must be perpendicular to every
vector D that is perpendicular to FaCA.(C)FT. Thus N is parallel to the latter vector:

N = gFaC k(C)FT, (3.6-4)

where q is a scalar function of F.
If there are k constraints ,X'(C) = 0, then

k

N = giFaCX'(C)FT. 3.6-5)

Substitution into (3.6-1) yields the general constitutive equation for simple material
subject to k simple frame-indifferent internal constraints.

The determinate part of the stress, CJK (F)`, may be expressed in reduced forms
identical with those found for unconstrained materials.

3.7 Examples of Internal Constraints

3.7.1 Incompressibility

A material is said to be incompressible if it can experience only isochoric motions.
By (1.4-6)3 and (2.1-6)9, an appropriate constraint function is

;(C) detC - 1. (3.7-1)

Since

Fac ,(C)FT = FC-1F T, detC = 1, (3.7-2)
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(3.6-4) yields

N = -pl, (3.7-3)

where p is an arbitrary scalar. Thus we have verified a result due in effect to
Poincare: In an incompressible material, the stress is determinate from the motion
only to within an arbitrary hydrostatic pressure. For future reference we shall
express the constitutive relation for an incompressible material through

T = -PI + S, S = g[F`]; (3.7-4)

the response CJ need not be defined except for arguments such that I det P1 = 1.
Also, we shall define

cp := P + rel.
P

(3.7-5)

3.7.2 In extensibility

If e is a unit vector in the reference configuration, Fe is the vector into which it is
carried in a homogeneous deformation with gradient F. Accordingly, for a material
inextensible in the direction e, an appropriate constraint function is

X(C) = (Fe)2 - 1 = e Ce - 1. (3.7-6)

Since

acA(C) = e 0 e, (3.7-7)

(3.6-4) yields

N = qF(e 0 e)FT = qFe ® Fe. (3.7-8)

Since N is an arbitrary uniaxial tension in the direction of Fe, we recover a result
first found by Adkins and Rivlin: in a material inextensible in a certain direction,
the stress is determinate only to within a uniaxial tension in that direction.

3.7.3 Rigidity

A material is rigid if it is inextensible in every direction. By the result just es-
tablished, the stress in a rigid material is determinate only to within an arbitrary
tension in every direction. In other words, the stress in a rigid material is altogether
unaffected by the motion.

EXERCISE 3.7.1
Prove that the conclusions of the foregoing three examples hold for every possible
choice of the constraint function X.
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3.8 Importance of Constrained Materials

We have just made it plain that a constrained material is by no means a special
case of an unconstrained one. Rather, the reverse holds, and the unconstrained
material emerges as special. The behavior of a constrained material is not the same
as that of an unconstrained one that happens to experience a motion satisfying
the constraint. For example, if an unconstrained material happens to be subjected
to an isochoric deformation history, its stress is determined by that history. An
incompressible material, by definition, can never be subjected to anything but
isochoric deformation histories, but its stress is never completely determined by
them, because it is always indeterminate to the extent of an arbitrary hydrostatic
pressure. Hydrodynamic writers are guilty of propagating confusion when they
refer to "incompressible flows." A flow, obviously, cannot be compressed. It may
or may not be isochoric, and a fluid may or may not be incompressible; the behavior
of a compressible fluid in an isochoric flow is generally not at all the same as that
of an incompressible fluid in the same flow.

A constrained material is susceptible to a smaller class of deformations. Corre-
sponding to this restriction, arbitrary stresses arise. Their presence makes a greater
variety of response possible in those deformation that do occur. Consequently, so-
lution of problems becomes easier. This is reflected in the far fewer exact solutions
that are available for both compressible fluids and solids in comparison to their
incompressible counterparts.

The extreme case is furnished by the rigid material, where the deformations
allowed are reduced to so special a class that the stress plays no part at all in the
motion, which can be determined by solving ordinary differential equations that
express no more than the principles of momentum and moment of momentum for
the body as a whole.

The most useful case is that of the incompressible material. For a simple
material in general, substitution of (3.3-3) into Cauchy's first law (2.7-5) yields,
when b = 0,

div g(FI) = px, (3.8-1)

while for an incompressible material use of (3.6-1) and (3.7-3) in the same way
yields

- grad p + div G(F`) = pii. (3.8-2)

These equations must be satisfied by any deformation history that can be produced
by surface tractions alone. For the former, all F` are eligible to compete, and few
will be found successful. For the latter, only those F` such that det Fr = 1 are
allowed, but p may be adjusted to aid in finding a solution. The condition upon the
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motion alone, of course, is now

curl div C(F`) = curl(pi), (3.8-3)

a differential equation of higher order than (1).
Next we document "the vorticity equation" that we shall appeal to repeatedly

later. It follows from (3.7-4) and Cauchy's first law that

p(i - b) = - grad p + div Cg(F`). (3.8-4)

If a field p satisfies this equation, so also does p + h for an arbitrary function h of
t alone. This is in effect because a uniform pressure acting on the boundary of an
incompressible fluid exerts no resultant force or torque on that body.

If the body force b is conservative, then from (2.2-15), (2.2-16), and (4), we
obtain a useful form of integrability necessary and sufficient for pp to exist:

pWa = p(W + DW + WD) = skw grad div c(F`). (3.8-5)

EXERCISE 3.8.1
Show that for a motion of an incompressible body whose response is 9, to preserve
circulation, it is necessary and sufficient that

skw grad div g (F`) = 0, (3.8-6)

and hence that during the motion there is a scalar field k such that

div G(F`) = - grad JA; (3.8-7)

thus

P = p(Pa - UT) -k- (3.8-8)

EXERCISE 3.8.2 (Coleman and Truesdell)
For a homogeneous, incompressible body whose respsone is g, let a flow that
preserves circulation be possible subject to null body force. Show that the stress
can be expressed as

T = -[p(Pa - rm) - k ]l + g(F't), (3.8-9)

where Pa is the acceleration potential of the flow and ru is given by (2.6-3).

Nearly all the exact solutions found in nonlinear continuum theories are for
incompressible materials.
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Simple Fluids

4.1 Definition of a Simple Fluid

There are various physical notions concerned with fluids. One is that a fluid is
a substance that can flow. "Flow" itself is a vague term. One meaning of "flow"
is simply deformation under stress, which does not distinguish a fluid from any
other nonrigid material. Another is that steady velocity results from constant stress,
which seems to be special and to apply only with difficulty and to particular flows.
Another is inability to support shear stress when in equilibrium Formally, within
the theory of simple materials, such a definition. would yield

T = -p(p)l +,r(F`), (4.1-1)

where .F(it) = 0, V being the history whose value is always 1.

Fundamental Theorem on Fluids'. Every fluid has a constitutive relation of
the form

T = R(CI; P), (4.1-2)

and

R(QCIQ`; P) = QR(CI; p)QT (4.1-3)

for all orthogonal Q and all arguments C', p that lie in the domain of R. Every such
isotropic mapping of positive symmetric tensor histories into symmetric tensors
defines a fluid. Furthermore,

R(1`; P) = -P(P)1. (4.1-4)

'A proof of the this theorem can be found in Truesdell's First Course in Rational Continuum
Mechanics," vol. 1 (New York: Academic Press, 1991).
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This result states that all fluids obey in equilibrium the laws of Eulerian hydro-
statics, according to which the stress is a hydrostatic pressure that depends on the
density alone. In particular, a fluid exhibits the phenomenon of "flow" in one of the
common senses, namely, that it cannot support any shear stress when it has been
at rest for all times, past and present, in any placement whatever.

We may also express the foregoing result as follows: The constitutive relation
of a fluid is of the form

T = -p(p)l +C(C' - 1; p); (4.1-5)

the mapping C is isotropic, and it vanishes when its argument is the history 0`
whose value is always 0. Conversely, every relation of this form defines a fluid.

While in hydrodynamics it is customary to impose the condition that p(p) > 0
for all p, or at least the weaker requirement that p(p) > 0 for all but a discrete set of
values of p, this condition does not follow from any general principle of mechanics.
Since hydrostatic tensions of some magnitude have been produced, with extreme
pains, in certain very quiet laboratories, perhaps the condition p(p) > 0 should be
regarded as expressing stability rather than as a constitutive restriction.

A fluid may react to its entire deformation history, yet its reaction cannot be
different for different placements with the same density. A fluid reconciles these
two seemingly contradictory qualities-ability to remember all its past and inability
to regard one placement as different from another-by reacting to the past only
insofar as it may differ from the present, which may be ever changing.

An important simple fluid that occupies a central place in fluid mechanics is
the linearly viscous fluid, or Navier-Stokes fluid, whose Cauchy stress takes the
form

T = (-p + ), tr D)1 + 2µD, (4.1-6)

in which p, .l and µ are functions of p. In the case of an incompressible linearly
viscous fluid, it follows from (3.7-4) and (6) that

T = -p1 + 20, (4.1-7)

where p is indeterminate in the sense that it may be assigned any value independent
of the history of the motion.

A special subclass of fluids of the form (6) is the unconstrained elastic fluid
that has the constitutive relation

T = -p(p)l,

and the incompressible elastic fluid is defined through

T = -pl,

(4.1-8)

(4.1-9)

where p is indeterminate.
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4.2 Monotonous Motions

Continuum mechanics, even the mechanics of simple materials, covers so vast a
range of possible behavior that little can be learned from it without studying special
cases. In this complexity, continuum mechanics mirrors nature itself, for only by
specifying particular features of a phenomenon can we so much as name it, let alone
describe it. In the mechanics of simple materials, two kinds of specialization are
fruitful: specialization of the material and specialization of the motions to which
the body is subjected. We have given examples of the former in the immediately
preceding sections. The constitutive relations of fluids and isotropic solids are
simpler than the general one, and we can expect the solution of problems for
these two classes of materials to be relatively easier than for anisotropic solids
or fluid crystals. The continuum mechanics of the last century carried this kind of
specialization much further and restricted attention to materials specified by one or
two constants. As a result, the solution of wide classes of boundary-value problems
became easy-deceptively so, since only rarely can the properties of natural bodies
be condensed adequately into one or two numbers fit to be tabulated in a handbook.

Consider, for example, the constitutive equation of a simple fluid:

T = R(C,, p). (4.1-2)

In the particular case when p = const. and C`,(s) is the same function of s for
all t, the stress becomes constant in time for a given particle. The body may have
experienced deformation for all past time, but as each body point looks backward,
so to speak, it sees the entire sequence of past deformations referred to its present
placement remain unchanged.

More generally, since the principle of material frame indifference forbids past
rotations to enter the constitutive relation and renders explicit the effect of present
rotation, we should be able to simplify the constitutive relation almost as much in
the somewhat more general case when for some orthogonal tensor Q(t)

Cp(s) = Q(t)Co(s)Q(t)T, 0 < s < oc. (4.2-1)

Here, of course, Co denotes Q, when t = 0 and Q(0) = 1. In such motions an
observer situated upon the moving particle may choose his frame in such a way
as to see behind him always the same deformation history referred to the present
placement. The proper numbers of C,(s) are the same as those of Cg(s), although
the principal axes of the one tensor may rotate arbitrarily with respect to those of
the other. Thus, while the principal relative stretches v(i)i may vary with t, they do
so in such a way that their histories up to the time t remain unchanged:

U(t)k = V )k, k = 1, 2, 3, -oo < t < oo. (4.2-2)
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We turn now to the pure kinematics of motions with constant principal relative
stretch histories. All such motions are characterized by the following Theorem.

FUNDAMENTAL THEOREM (Noll). A motion is monotonous if and only if
there are an orthogonal tensor Q(t), a scalar x, and a constant tensor No such that

Fo(t) = Q(t)etKN0, Q(0) = 1, INol = 1. (4.2-3)

PROOF We begin from the hypothesis (1) and set

H(s) = Co(-s) = Q(t)T Ct(t - s)F(t). (4.2-4)

By (1.7-8), Ft(T) = Fo(t)Fo(t)-1, so

Q(t)H(s)Q(t)T = Ct(t - s)

= [Fo(t)T
]-1Co(t - s)Fo(t)-1

= [Fo(t)T]-1H(s - t)F0(t)-1. 4.2-5)

If we set

E(t) Q(t)T Fo(t), (4.2-6)

then (5) assumes the form of a difference equation:

H(s - t) = E(t)T H(s)E(t). (4.2-7)

To obtain a necessary condition for a solution H(s), we differentiate2 (7) with
respect to t and put t = 0, obtaining the first-order linear differential equation

- li(s) = MT H(s) + H(s)M; (4.2-8)

here M = E(0), and the dot denotes differentiation with respect to s. The unique
solution of (8) such that H(0) = 1 is easily seen to be

H(s) = e-sMT e-SM. (4.2-9)

Since histories are defined only when s > 0, this result has been derived only for
that domain. Nevertheless, the difference equation (7) serves to define H(s) for
negative s as well and shows that H is analytic. Since the right-hand side of (9)
is analytic, the principle of analytic continuation shows that (9) gives the unique
solution for all s, when E(t) is assigned. If we substitute (9) back into (7), by putting
s = 0 we obtain

E(t)e-IM[E(t)e-tM]T = 1.

Hence E(t)e-'m is an orthogonal tensor, say Q(t). By (6), then

Fo(t) =
Q(t)Q(t)e1M

(4.2-10)

(4.2-11)

2That the assertion of the theorem remains true even if H is merely continuous and E is completely
arbitrary has been shown by W. Noll, "The representation of monotonous processes by exponentials,"
Indiana University Mathematics Journal 25, (1976): 209-14.
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The form asserted by Noll's theorem holds trivially if M = 0; if M # 0, it follows
if we set

K := IMI, No = 1 M. (4.2-12)
K

(The proof reveals that the tensor Q(t) occurring in the result (3) is not generally
the same orthogonal tensor as that occurring in the hypothesis (1).) Conversely, if
(3) holds, an easy calculation shows that the motion is one with constant relative
principal stretch histories.

EXERCISE 4.2.1 (Noll)
Prove that in a monotonous motion

F1('r) =
Q(v)Q(t)re(r-t)KN = Q(r)e(T -t)KN°Q(t)T,

(4.2-13)

with N defined as follows:

N = Q(t)NoQ(t)T, INI = 1; (4.2-14)

conversely, if Ft(r) has the form (13), any motion to which it corresponds is a
motion with constant principal relative stretch histories. In such a motion

Cf(s) = e-5KNT a-5KN

G = KN + Q(t)Q(t)T,

Al = C,'(0) = K(N + NT ),

A2 = Ct(0) = K(NT Al + A1N) = K2(2NT N + N2 + (NT)2),

A3 K(NTA2+A2N),...,
Ak = K(NTAk-I + Ak-IN), (4.2-15)

with the notations of 2.2. A monotonous motion is isochoric if and only if

tr No = 0 (4.2-16)

and of course also tr N = 0.
With the aid of these results we are able to see easily the extremely special

nature of monotonous motions, which is expressed by the following corollary.

COROLLARY (Wang). The relative deformation history Cr of a monotonous
motion is determined uniquely by its first three Rivlin-Ericksen tensors.

That is, if three tensors A1(t), A2(t), and A3(t) are given, they can be the first
three Rivlin-Ericksen tensors corresponding to at most one relative deformation
history Cl satisfying the defining condition (1).
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The proof rests upon a simple lemma. Let S be a symmetric tensor and W a
skew tensor in three-dimensional space. Without loss of generality we can take the
matrices of these tensors as having the forms

[S] =

Then

a 0 0
0 b 0

0 0 c

[SW - WS] =

[W] =
0 x y

-x 0 z

-y -z 0

0 (a - b)x (a - c)y
(a - b)x 0 (b - c)z

(a - c)y (b - c)z 0

Hence S and W commute if and only if

(4.2-17)

(4.2-18)

(a - b)x = 0, (a - cy = 0), (b - c)z = 0. (4.2-19)

Consequently, if S has three proper numbers, it commutes with no skew tensor
other than 0. If a = b 0 c, S commutes with W if and only if y = z = 0. If
a = b = c, S commutes with all W.

Wang's corollary may now be proved in stages. If two motions with constant
principal relative stretch histories can correspond to AI and A2, then because of
(15)4,6 there are tensors M and M such that

M+MT=M+MT
MMT At + AIM = MTA, + AIM. (4.2-20)

The first of these equations asserts that M - M is skew, the second that M -
M commutes with AI. If AI has three proper numbers, the lemma shows that
M-M=0.

Suppose now that Al has two proper numbers. Then relative to a suitable
orthonormal basis,

a 0 0

[AI] _ 0 a 0 , a b. (4.2-21)
0 0 b

Case 1. Assume that, relative to this same basis

u 0 0

,

[A2] = 0 u 0 (4.2-22)

0 0 v

The most general M compatible with (15)4 and (21) is given by

K [M] =
2a x y

-x Za z (4.2-23)

-y -z 1b
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By (21) and (22)

a2 0 (a - b)y

K [MT Al + Al M] = 0 a2 (a - b)z . (4.2-24)

Since a # b, it follows from (15)6

(a - b)y (a - b

and (22) that

)z b2

u=a2, v=b2, y=0, z=0. (4.2-25)

EXERCISE 4.2.2
From (23) and (25) show that M commutes with MT, and hence by (15)1,3 conclude
that

Cf(s) = e'. (4.2-26)

Case 2. Still on the supposition that Al is of the form (21), but regardless of
whether (22) does or does not hold, we assume that two monotonous motions can
correspond to A1, A2, and A3. Then again, there are tensors M and M to satisfy
(20). Since M - M is a skew tensor that commutes with Al as given by (21), the
lemma shows that

[M - M] =
0 x 0
-x 0 0
0 0 0

(4.2-27)

But also by (15),

MTA2 + A2M = MTA2 + A2M, (4.2-28)

so M - M commutes with A2.

EXERCISE 4.2.3
If (22) does not hold, M = M in case 2. Show that, if Al = a 1, then (26) holds.

Accordingly, then, three given tensors A, (t), A2(t), and A3 (t) can be the
Rivlin-Ericksen tensors corresponding to at most one Cp(s) belonging to a
monotonous motion. In general, on the contrary, three symmetric tensors taken
arbitrarily will fail to be the first three Rivlin-Ericksen tensors of any motion at all,
let alone a monotonous motion, since they will fail to satisfy conditions of com-
patibility expressing the fact that they derive from a velocity field in a region. We
shall not take up these conditions since our interest lies in simplifying a constitutive
relation when the motion is known to be monotonous.
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While Noll's theorem clearly is independent of the dimension of the space,
Wang's corollary rests heavily on the use of the three dimensional structure of
space.

Noll's theorem (3) suggests an invariant classification of all monotonous mo-
tions into three mutually exclusive types:

1. No = 0. These motions are called viscometric flows.

2. Na = 0 but No 0.

3. No is not nilpotent. In types 1 and 2, since tr No = 0, the motion is isochoric.

There are interesting examples of all three types, but the simplest, the viscometric
flows, are used most in applications. We shall study them further in Chapter 5.

EXERCISE 4.2.4
Show that in types 1 and 2 the motion is isochoric, and also tr No = 0.

EXERCISE 4.2.5
Show that the relative local deformation Ft of a viscometric flow has the form

Ft(r) = Q(r)Q(t)T[1 + (r - t)KQ(t)NoQ(t)T ].

No = const., IN0I = 1, No, K = a scalar field. (4.2-29)

Conversely, any relative local deformation ofthis form corresponds to a viscometric
flow.

EXERCISE 4.2.6
Prove that in any monotonous motion

A2 - Ai = K2(NT N - NNT) (4.2-30)

and hence that

tr Al = tr A2 = 2K2(l + tr N2). (4.2-31)

Thus in a viscometric flow

K2 = 2 tr Ai =
1

trA2. (4.2-32)
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EXERCISE 4.2.7 (Noll, Coleman, and Noll)
Prove that the motion whose Cartesian velocity components are

xl = 0, x2 = KXI, x3 = AXI + µX2, (4.2-33)

whose A, µ and K are constant, is monotonous of type 1 if K # 0, it = 0; of type
2 if K 0, and that the motion whose Cartesian velocity components are

Xk = akxk = const., k = 1, 2, 3, (4.2-34)

belongs to Noll's third class if at least one of the ak does not vanish.

EXERCISE 4.2.8 (Berker, Rajagopal)
Show that

xl = -Q(x2 - g(x3)),
X2 = Q(xl - A X3)),
x3 = 0, Q = const.

is a monotonous motion.

(4.2-35)

For viscometric flows, it follows from its definition that there exists a basis
with respect to which

[N] =
0 0 0

1 0 0

0 0 0

(4.2-36)

Such a basis is called a viscometric basis.

4.3 Reduction of the Constitutive Relation for a Simple
Material in a Monotonous Motion

In view of Wang's corollary, any information that can be determined from C', in a
monotonous motion can be determined also from Al(t), A2(t), A3(t). Therefore,
any functional of Ct equals, in these motions, a junction of Al(t), A2(t), A3(t).
Consequently the general constitutive relation (3.4-5) may be replaced, as far as
motions with constant principal relative stretch histories are concerned, by

RTTR = f(RTA,(t)R, RTA2(t)R, RTA3(t)R, C(t)), (4.3-1)
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f being a function. A material whose constitutive relation is (1) is called a material
of differential type of complexity 3. By (1), then, we have the following theorem.

THEOREM (Wang) 4.1. In the class of monotonous motions a simple material
cannot be distinguished from some material of differential type of complexity 3.

In other words, no experiment based on interpretation of results for motions
with constant principal relative stretch histories can distinguish a general simple
material from a differential material of complexity 3. As we shall see in Chapter 5,
the special flows most commonly used to describe the properties of natural fluids
are of the kind considered here and hence are of very limited service in exploring
the physical properties of those fluids.

An isotropic material of differential type is called a Rivlin-Ericksen material.
For it, (1) becomes

T(t) = f(A1(t), A2(t), A3(t), B(t)), (4.3-2)

and when the isotropic material is a fluid,

T(t) = -p(p)l + f(Al(t), A2(t), A3(t), p). (4.3-3)

The functions f, in the two cases, are isotropic in the sense that for all symmetric
A1, A2, A3, B, and for all orthogonal Q

f(QA1QT, QA2QT, QA3QT, QBQTOr p) = Qf(A1, A2, A3, B or P)QT (4.3-4)

Moreover, for a fluid f (0, 0, 0, p) = 0.
These reductions may be interpreted in two ways. On the one hand, they

enable us to solve easily various special problems concerned with motions having
constant principal relative stretch histories. However complicated the response of
a material may be in general, in these particular motions we need consider only a
simple special constitutive equation. On the other hand, they show that observation
of this class of flows is insufficient to tell us much about a material, since most of
the complexities of material response are prevented from manifesting themselves.

In Section 6.1 we shall discuss materials of the differential type in somewhat
more detail, but in Chapter 5 we shall exploit the present results to obtain specific
solutions for viscometric flows of simple fluids.

In a viscometric flow, by definition N2 = 0, and hence

A3=A4=...=0. (4.3-5)

Therefore, in a viscometric flow, a simple fluid cannot be distinguished from some
Rivlin-Ericksen fluid of complexity 2.

For a monotonous motion we see from (4.2-15)1 that

RTC;(s)R = exp[-sK(RTNR)T] exp[-sKRTNR]. (4.3-6)

Hence any quantity determined by RTC`,R in general is determined here by
KRT NR. Referring to the constitutive relation of a simple material, we may set

f(KN, C) := R.(RT CiR, C) (4.3-7)
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and so obtain

RTTR = f(KRT NR, C) (4.3-8)

as an expression for that relation when restricted to monotonous motions. The
student will see at once the simpler forms to which (8) reduces for isotropic solids
and fluids. For an incompressible fluid the corresponding result is

T = -p1 + f(K, N), S = f(K, N), (4.3-9)

the function f being subject to the requirement that

f(K, QNQT) = Qf(K, N)QT (4.3-10)

for all orthogonal tensors Q and for all N such that INS = 0 and N2 = 0. From (6)
we see that RTC IRT is unchanged when K, N replaced by -K and -N. Hence

f(-K, -N) = f(K, N). (4.3-11)

An important monotonous flow we shall encounter often is the steady lineal
flow:

zl = 0, x2 = v(xi), X3 = 0. (4.3-12)

A special instance of this class is the simple shearing flow (2.2-13).
The relations (9) and (10) provide the starting point for the analysis in Chap-

ter 5.





5

Some Flows of Incompressible Fluids in
General

5.1 Stress of an Incompressible Fluid in Viscometric Flows

Noll's fundamental theorem on monotonous motions can be stated as

Fo(r) = Q(r)etM0, Q(O) = 1, (5.1-1)

and so we shall consider it during the first part of this section. Q is an orthogonal
tensor, and Mo is a constant tensor. In Chapter 4 the theorem was stated as

Fo(t) =
Q(t)e`N°,

Q(O) = 1, INO1 = 1. (4.2-3)

Thus

KN0 = Mo. (5.1-2)

Hence I K I = Mo1. The quantity KNo was defined as M in (4.2-12). We note that
if K = 0, then Mo = 0, but No may be an arbitrary unit tensor.

We shall find it convenient at first to express the determinate part of the stress
S in terms of M. We introduce

M(t) := Q(t)MOQT(t). (5.1-3)

The reduced constitutive equation for the determinate part of the stress of an in-
compressible fluid undergoing a monotonous motion, which has been given by
(4.3-9), can now be expressed as

S = J(M), (5.1-4)

where J is an isotropic, tensor-valued function:

J(QMQT) = QJ(M)QT (5.1-5)
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for every orthogonal tensor Q. Hence it follows that

J(0) = p1, (5.1-6)

for some constant p.
The requirements of frame indifference and material symmetry impose no

further restrictions upon the response J of the fluid. In general M will be functions
of place alone.

For a viscometric flow we may use (4.2-14), (4.2-16), (2), and (3) to conclude
that

M2 = 0, trM = 0. (5.1-7)

Accordingly, henceforth the argument M in (4) and (5) will be restricted by these
conditions.

In celebrated work of the late 1940s and early 1950s, Rivlin discovered and
interpreted solutions of the equations of motion for some important viscometric
flows of certain classes of nonlinear fluids. Here we shall follow later and more
general treatments of the problem as a whole by Coleman, Markovitz, and Noll.

First we determine the most general stress compatible with the constitutive
equation of an incompressible fluid undergoing a viscometric flow. To that end we
shall use a viscometric basis (see 4.2-36), with respect to which

0 0 0

[M] = K 1 0 0 . (5.1-8)
0 0 0

Looking back at (3), we see that the viscometric basis may change with time and
from point to point in space. Generally it is not the natural basis of any coordinate
system.

EXERCISE 5.1.1
Use (4) and (5) to show that the components of S with respect to a viscometric
basis are functions of K alone, is = 0, and K is at each instant a function of place
in the shape of the fluid body we consider.

While our conclusions follow from general calculations, it helps to visualize
them in terms of a simple example. To this end we consider steady, lineal flows,
specified as follows in suitable Cartesian coordinates:

X1 = 0, x2 = v(x1), X3 = 0.

The shearing K = v'(x 1). In this example we may speak of the "plane of flow"
when in a general argument we mean in reference to (4.2-35) the "plane of i 1 and
i2." Here the Cartesian coordinates provide the viscometric basis.
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A reflection across the plane of the flow should be expected to leave the whole
stress system invariant. For that reflection

[Q] =
1 0 0

0 1 0

0 0 -1
(5.1-9)

from whence (8) we see that QNQT = N. Therefore, according to (4) and (5),
QSQT = S. Direct calculation with (9) yields

S11 S12 - S13

[QSQT] = S12 S22 -S23 . (5.1-10)

S13 -S23 S33

Hence S13 = -513 and S23 = -523, and

S13 = S23 = 0. (5.1-11)

Therefore, there are functions r, Ql, and a2 of K alone such that the components
of S satisfy the following relations:

S12=T12=r(K),
Sl I - S33 = T1 1 - T33 = 0-1(K), (5.1-12)

S22 - S33 = T22 - T33 = 62(K)

It thus follows that

[S] =
0`1 (K) + S33 r(K) 0

T(K) Q2(K) + S33 0

0 0 S33

(5.1-13)

relative to the viscometric basis.
It follows from (4), (6), and (8) that

S=plwhen K=0. (5.1-14)

Equations (13) and (14) imply that

r(0) = 0, Q1(0) = 0, Q2(0) = 0 (5.1-15)

and

S33 = P

By choosing Q in (5) to be

we conclude that

[Q] =
1 0 0

0 -1 0

0 0 1

,

r(-K) = - r(K),
Q1(-K) = Q1(K),

Q2(-K) = Q2(K)

(5.1-16)

(5.1-17)

(5.1-18)
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Thus r is an odd function of the shearing, while Ql and Q2 are even functions.
In general the functions r, Qi, and o-2 may vary from one fluid point to another.

In this book that possibility has been set aside by our decision to consider only
homogeneous bodies of fluid.

Next, it follows from (2), (3), (4.2-14), and (8) that

0 0 0

M = KN and [N] = 1 0 0 . (5.1-19)
0 0 0

We recall that (4) can be written as

S = f(K, N) (4.3-9)

and hence (5) takes the form

f(K, QNQT) = Qf(K, N)QT (4.3-10)

for every orthogonal Q. It can also be shown that

f(-K, -N) = f(K, N). (4.3-11)

As a consequence of (6),

f(0, N) = p1. (5.1-20)

Statements (4.3-1), (4.3-11), and (20) are the only restrictions due to frame indif-
ference and material symmetry upon the response f.

We recall that in an incompressible simple fluid

T = -PI + S, (3.7-4)

in which p is undetermined. Thus, without loss of generality, we may set

T33 = -p, (5.1-21)

and consequently (compare (16))

S33 = p = 0. (5.1-22)

Henceforth in this book we shall adopt (22). If we prefer a statement that does not
mention a basis, we may write one down by combining (4) with (13), (19), and
(22):

S = f(K, N) = r(K)(N + NT) + Ql (K)NT N + Q2(K)NNT. (5.1-23)

In special theories of incompressible materials it is customary to normalize
p by the requirement p = -1 trT. For example, for the Navier-Stokes theory of
fluids this condition is a trivial consequence of incompressibility. In fact, we could
have chosen this requirement in place of (22). However, we should caution students
that they can not make both choices simultaneously. For the study of viscometric
flows we find (22) more convenient.

The following exercise presents a conclusion that was obtained before Noll
had constructed his theory of monotonous flows.
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EXERCISE 5.1.2 (Criminale, Ericksen, and Filbey)
Show that in any viscometric flows S may be expressed in terms of the Rivlin-
Ericksen tensors (2.2-12) as follows:

S = rKK)A, +
2

ai(g)K2Q2(K)
a

A2 +
0-2(K)

Al
2 (5.1-24)

EXERCISE 5.1.3
Show that if (23) is satisfied, then so are (20), (4.3-10), and (4.3-11) provided (15)
and (18) hold.

The assertion established by doing this exercise shows that when the defor-
mation history corresponds with a viscometric flow, the requirements of frame
indifference and material symmetry impose no further restrictions on the response
of a fluid.

The relation (23), although differently derived, is a purely algebraic con-
sequence of (4.3-9) and (4.3-10); to establish that fact, it is easier to use a
representation' for isotropic mappings. The details are left to the student.

The relation (23) was discovered through specializing to viscometric flows
the general response of an incompressible fluid. As it stands, however, it defines
a Rivlin-Ericksen fluid of complexity 2 (compare 4.3) such as to have arbitrarily
given functions r, o-1, and Q2, subject only to the restrictions (15) and (18).

This observation shows that the generality maintained so far is not superfluous.
No further restriction of r, or,, and 0`2 can be general in the class of incompressible
simple fluids. For them the theory of viscometric flows in general and that.for
Rivlin-Ericksen fluids of complexity 2 are equivalent.

In theories of the mechanics of fluids it is often assumed that the stress power
w,

(5.1-25)

' See pp. 215 and 393 of C.-C. Wang, "A new representation theorem for isotropic functions," Archive
for Rational Mechanics and Analysis 36 (1970): 166-223; 43 (1971): 392-95. A functional basis for
isotropic mappings of the space of tensors into the space of symmetric tensors is

1, N+, N+, NZ , N_N+N_, N_N+ - N+N_,

in which N+ and N_ are the symmetric and skew parts of N. When N2 = 0, this basis and the basis

1,N+NT,NTN,NNT

are equivalent.
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should not be negative. In the present context that adscitious inequality takes the
form

Kr(K) > O if K 0 0, (5.1-26)

as is plain from (13), (14)2, and (4.2-15)3. This inequality is invariant under require-
ment (18). If r is continuous at K = 0, then from (18) it follows that in Exercise
7.2.4 we shall see that for one common kind of fluid the stress power is not of one
sign at all times and places.

5.2 Viscometric Functions: Normal-Stress Effects in Steady
Viscometric Flows

In Section 5.1 we showed that the stresses in any incompressible fluid in any
viscometric flow are given by (5.1-12) with the functions r, or,, and o2 restricted
by (5.1-15) and (5.1-18).

The functions r, ol, and o2 are the viscometric functions of the fluid whose
constitutive equation reduces in a viscometric flow to (5.1-13) and (5.1-14). They
are determined uniquely by the response that defines the fluid in the first place.
Conversely, however, it is obvious that infinitely many different fluids share the
same three viscometric functions. Therefore, the data from experiments that pre-
sume that a viscometric flow takes place are far from sufficient to distinguish one
fluid from another in general.

Moreover, while we have deduced the existence of viscometric functions by
specializing the constitutive equation (4.3-9) for monotonous motions to visco-
metric flows, even more general theories when specialized to such flows may lead
to the existence of such functions. Viscometric behavior is not limited to simple
fluids.

The linear instance of (4.3-12) is the steady simple shearing (2.2-13). For it
v(xl) = Kx11, K = const. A fortiori, it may be produced without application of
body force in any homogeneous, incompressible simple fluid. Then the formula
(5.1-4) relating the stresses may be interpreted immediately. The shear stress that
must be supplied on a plane x1 = const. in order to produce the flow is r(K). The
normal traction on this plane is T11, and that on the plane of flow is T33. Because the
pressure p is indeterminate to within an arbitrary constant, either of these tractions
but not both may be given any constant value. If we choose to leave the plane
x3 = const. free, then T33 = 0, and (5.1-12) yields

T11 = U1 (K),

T22 = 0'2(K). (5.2-1)
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Thus a fixed normal traction on the plane x1 = const., determined by K and by
the nature of the fluid, must be supplied; so must a normal traction on the planes
x2 = const., which are normal to the flow. The necessity of these normal tractions
provides an example of what are called normal-stress effects. In particular, the
conclusion (1) shows that in general shear stress alone is insufficient to produce
simple shearing: Suitable and generally unequal normal tractions, determined by
the nature of the fluid, must be supplied in order to maintain the flow.

The functions or, and a2 are called the normal-stress difference functions, while
r is called the shear-stress function. The shear-viscosity function p. is defined as
follows:

A(K):= r(K), K 0. (5.2-2)
K

The function µ is even and positive except possibly when K = 0. In most cases of
interest the fluid will be such that r(K) = o(K) as K - 0, and µ(0) can be defined
as li o /2(K). If µ(0) exists, it is called the shear-viscosity constant or natural shear

viscosity of the fluid.
Loosely, we shall sometimes refer also to the three functions µ, a,, and a2 as

the viscometric functions. The reader is expected to bear in mind without further
remark that while the function r exists for any fluid susceptible of undergoing a
viscometric flow at all, use of the value µ(0) requires the further assumption just
stated.

5.3 Position of the Classical Theory of Viscometry

The classical theory of viscometry is based on the Navier-Stokes constitutive rela-
tion for incompressible fluids:

T = -p1 + 20, trD = 0. (5.3-1)

EXERCISE 5.3.1
Show that according to the Navier-Stokes theory, the shear-viscosity function is
constant and its value is the natural viscosity:

µ(K) - µ(0) = const. (5.3-2)

while the normal-stress differences vanish identically:

ai(K) = a2(K) - 0. (5.3-3)

Of course it should be obvious that the converse is false: If the viscometric
functions satisfy (2) and (3), the constitutive relation (1) does not follow. The
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formulae (1) and (2) define the classical or Navier-Stokes theory of viscometry.
To accept the Navier-Stokes theory of viscometry does not require us to accept
the Navier-Stokes theory of fluids for general flows, since infinitely many other
constitutive relations for fluids also lead to the particular viscometric functions (2)
and (3).

In general, if we assume that r and a1 and a2 have four continuous derivatives
at K = O, then by (5.1-18) we see that

r(K) = ttoK + /2K3 + O(K5),

a1(K) = S1K2 + O(K4),

92(K) = S2K2 + O(K4), (5.3-4)

where go, tc1, Si. and S2 are constants. Of course µo = µ(0). Thus the effects
of second order in K are normal-stress effects, while departure from the classical
proportionality of shear stress to shearing is, generally, an effect of third order in K.
Roughly speaking, noticeable departures from the classical behavior as described
by (1) may be expected for a1 and a2 at smaller shearings than for T. Still more
roughly, normal-stress effects can be expected to manifest themselves within the
range in which the response of the shear stress remains classical.

"Expected" in these remarks refers to the confidence with which experimenters
commonly assume that empirical functions are differentiable several times. The
theory by itself provides nothing for or against (4). Moreover, even if (4) is valid,
there is nothing in our analysis to prove that Si 0 and s2 0 0. There are real
fluids that show at low shearings no normal-stress effects at all. Such fluids are
said to exhibit "shear thinning" or "shear thickening."

The incompressible, elastic, Eulerian fluid defined by

T = -pl, (5.3-5)

is included formally in the Navier-Stokes theory as the instance in which g = 0.
The Eulerian fluid (5.3-5) is often called "inviscid" In referring to Navier-Stokes
fluids, we shall assume without further remark that

tc - µo = const. > 0, (5.3-6)

trusting that students will not be confused by our occasional mention, in reference
to the Euler Theory, of forms that statements about the Navier-Stokes theory take
ifa=0.

5.4 Dynamics of the Main Viscometric Flows

The field of determinate stress corresponding with any viscometric flow of an
incompressible simple fluid is given by (5.1-12) or (5.1-13). The viscometric func-
tions r, a1, and a2 are determined uniquely by the response of the fluid and hence



5.4 Dynamics of the Main Viscometric Flows 63

are the same for all viscometric flows that it may undergo. Both K and N are gen-
erally functions of place and time. The shearing K is a scalar, and N is a tensor
such that INI = 1, N2 = 0, and hence tr N = 0. The orthonormal basis with
respect to which N has the special matrix of components (4.2-36) may vary with
place and time and does not need be the natural basis of any coordinate system.
The scalar p, which equals -T33, is not determined by the deformation history. In
general, unless a suitably chosen body is supplied, the system of stresses (5.1-13)
will fail to satisfy Cauchy's first law (2.7-5), which expresses the balance of linear
momentum.

Since we consider only homogeneous fluid bodies, for the compatibility of a
flow of a homogeneous incompressible body with any lamellar field of body force
b it suffices to take b as 0, that is, to determine such particular flows as may be
effected by applying suitable boundary tractions alone.2

One such viscometric flow has already been exhibited, the rectilinear shearing
(2.2-13). Generally the velocity field that meets given dynamical requirements
depends upon the viscometric functions, as we shall see.

Many of the conclusions we shall now present are due in principle to Rivlin and
Ericksen; we shall follow the presentation of Coleman and Noll, who, influenced
by the work of Ericksen, were the first to provide a fully general treatment.

EXAMPLE 5.1 Shearing Flow
We shall now find the most general steady linear flow (4.3-12) that can be effected
by boundary tractions and lamellar body force in a homogeneous fluid body whose
viscometric functions are r, Q1, and a2. For steady flow, the basis with respect to
which N has the special form (4.2-36) is the natural basis of the coordinate system
used, and N = const. The shearing K = u'(x1).

We shall employ Cauchy's first law in the form (2.7-5), which we rewrite here
as

div S - p grad p = px; (5.4-1)

S is the determinate stress, given by (3.7-4)2i and cp is defined by (3.7-5). For steady
shearing flow, x - 0, and in view of (5.1-4) and (4.3-9) we see that S is of a function
of xi only. Hence (1) reduces to the following system of differential equations:

ax, S11 - Pax,'P = 0,

ax, S12 - P axz cP = 0,

pax,cP = 0. (5.4-2)

2 See section IV.8 of volume 1 of C. Truesdell, A First Course in Rational Continuum Mechanics
(New York: Academic Press, 1991) for a detailed discussion of homogeneous motions of a simple body.
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The last of these equations shows that rp is independent of x3. In virtue of the first
two, since S is a function of x1 only,

=0, ax, ax,rp=0, a0x'o=0. (5.4-3)

Hence, p is an affine function of x2i

pcp = -axe + k(x1) + h(t), (5.4-4)

a being an assignable constant, which is called the specific drivingforce of the flow,
and the functions k and h are arbitrary. Again using the fact that S is a function of
x1 alone, we substitute (4) into (2)2 and integrate to obtain

T12 = S12 = -axi + c, c = const. (5.4-5)

Thus, no matter what the speed profile v is, the shear stress must be anaffine function
of x1. Moreover, the shear stress corresponding to a given specific driving force is
the same in all fluids; it is unaffected by the constitutive equation. Substitution of
(4) into (2)1 followed by integration yields

S11 = k(xi) + b, b = const. (5.4-6)

Conversely, if (4), (5), and (6) hold, the conditions of compatibility (2) are satisfied.
The entire stress system may be calculated as follows. First, by use of (6), (4),

and (4.7-5) we show that

T11 =S11 - p =S11 -(p+prT)+PUT,
= axe + b + pru - h(t), (5.4-7)

in which rT, the potential ofthe body force, is defined by (2.6-3). Because axe (Ti 1 -
pru) = a, the constant a may be interpreted also as the gradient of T11 - prT in
the direction of motion. Second, by use of (7) and (5.1-4) we find that

T22 =(T22-T11)+T11,
= a2(K) - U1 (K) + axe + b + prT - h(t),

T33=(T33-TI1)+T11,
= - ol(K) + axe + b + pm - h(t). (5.4-8)

With any function v and with K = v'(xl ), the normal stresses are delivered by these
formulae. Combining (5) and (5.1-12)1 yields a differential equation to determine
the function v:

v(K) = r(v'(xi)) = -ax1 + c. (5.4-9)

The arbitrary constants a and c are to be assigned, and then v(x1) is determined
by integrating (9). Thus the speed profile v, which so far has been arbitrary, is
determined to within three arbitrary constants by the shear-stress function r. This
determination results from the balance of linear momentum, on the assumption
that only a conservative body force be brought to bear. The most important of the
three assignable constants is a, the specific driving force.
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EXERCISE 5.4.1
Show that these same conclusions follow by first using the vorticity equation and
then determining cp by inspection of (1).

If we take a = 0 and assume that r is invertible, (9) requires that K = const.,
and we recover the conclusions already derived for simple shearing. The foregoing
analysis proves that if the body force is conservative and r is invertible, then simple
shearing is the only lineal flow (4.3-12) that can be produced when a, the specific
driving force, is 0. While simple shearing is a universal transplacement,3 matters
when a # 0 are different, for them (9) shows the speed profile v will depend
upon the fluid. Thus other lineal shearings, if possible at all, fail of being universal
solutions for incompressible fluids. We shall now work out the details in a major
instance.

EXAMPLE 5.2 Channel Flow
We seek a solution that represents the flow of a body adhering to stationary infinite
plates xt = ±d, d > 0. Thus we require of the speed profile v that

v(d) = v(-d) = 0. (5.4-10)

We assume the shear-stress function r to be invertible with inverse, say
which is necessarily an odd function. Then (9) yields

K = v'(xi) _ (-axl +c). (5.4-11)

We integrate this equation and impose the conditions (10), thus obtaining

dr

J
(-ax + c)dx = 0. (5.4-12)

d

By change of the variable of integration,

d

f(ax+c)dx = 0. (5.4-13)

d

Because i; is odd, adding (12) to (13) yields

d

f[(ax + c) - i;(ax - c)]dx = 0. (5.4-14)

d

3A motion is called universal for a given class of bodies subject to a body force b if it satisfies the
equations of motion for all bodies belonging to that class when subject to the body force b. See A First
Course in Rational Continuum Mechanics, vol. 1, pp. 228-236, for a detailed discussion on universal
motions and transplacements of isotropic simple bodies.
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We now make the further assumption that r is continuous. Since it is invertible,
it is monotone, and so also is . Therefore, if c 0, the integrand in (14) is
either positive in all of (-d, d) or negative in all of it, so (14) cannot be true.
Thus, necessarily, c = 0. Consequently, on the assumption that the shear-stress
function r is continuous and invertible, a one speed profile for the given channel
is determined by r:

d

v(xl) =
J

(ay)dy. (5.4-15)

X,

Since is an odd function, v is an even function.
In contrast with what occurs in steady simple shearing, the profile is generally

not at all the same as that predicted by the Navier-Stokes theory. Indeed, if the
shear-viscosity function is constant, then (y) = (1 /µ)y, and (15) yields

fd

v(x') = µ J
aydy = (d2 - x'), (5.4-16)

X,

the classical parabolic form. Conversely, if (16)2 holds, (15) shows that is a linear
function, and the classical linear formula (5.3-1) for the shear viscosity function
results.

The discharge D, which is the volume of fluid passing through unit depth of
channel in unit time, is given by

d d d

D f v(x)dx = 2 r dx f (ay)dy,
d J0 x

ad

= (5.4-17)
az

0

Conversely, if the discharge D is known as a function of a and d, (17) yields

r-1(ad) = d(ad) = aI 8a(a2D)

Thus if for a given channel we know D in an interval of values of the driving
force a, we may determine the shear-stress function r uniquely in a corresponding
interval. In particular, the classical formula

D =
23 d3

(5.4-18)
/,t

holds if and only if the shear-viscosity function is linear and D is assumed to be a
bounded function of a.

Speed profile, discharge, and shear-stress function determine one another and
are unaffected by the normal-stress difference functions o and o'2. If (18) holds,
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there is no reason to expect the remaining classical formula (5.3-3) to hold as well.
Therefore, the classical viscometric tests, which refer to shear viscosity alone, do
not tell much about the fluid being tested. If in a particular case a classical formula
such as (18) emerges, this fact not only fails to show that the fluid tested obeys
the Navier-Stokes constitutive equation in general but also fails even to establish
the Navier-Stokes theory of viscometry. Additional measurements are necessary.
In the present case, by (7), the normal tractions on the channel walls x1 = ±d do
not differ from those predicted by the classical theory. By (8), however, those on
the flow planes (x3 = const.) and those on planes normal to the flow (x2 = const.)
may be entirely different.

Since these normal tractions are difficult to interpret, we turn to a different
class of flows, in which normal-stress effects are more striking.

EXAMPLE 5.3 Helical Flows in General
For helical flow described in cylindrical coordinates, namely

r = 0, 9 = w(r), 2 = u(r), (5.4-19)

each fluid-point remains upon a fixed cylinder r = const., on which its motion
describes a helix, whose pitch is the same for all fluid-points on any one cylinder.
We set f := (o', h := u'. Then

K2 = r2f(r)2 + h(r)2.

Let {ek(x)}, k = 1,2,3, be an orthonormal basis tangent to the coordinate curves at
x, and

i1 := e1, i2 := ae2 + flea, i3 := -3e2 + ae3,

where the functions a and fl are defined as follows:

a := r f (r), 1h(r), a2 + fl2 = 1. (5.4-20)
K K

The conclusions (5.1-12) and (5.1-16) apply to the components of T relative to the
basis i1 , i2, 13 :

T12=T(K), T13=0, T23 = 0,

T11 - T33 = 01(K),

T22 - T33 = Q2(K) (5.4-21)

The physical components of T in cylindrical coordinates are its components with
respect to the orthonormal basis e;. Denoting these components by T,,, T,9, etc.,
we find that

T,e = e1 Te2 = i1 (aTi2 - PTi3)
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= a T12 - $T13,

TBz = e2 Tea = (ail - A) . (fTi2 + aTi3),

= c (T22 - T33) +
(a2 - f2)T23,

and so on. From these statements and (21) we calculate the stress system in terms
of the viscometric functions:

Tr9 = ar(K),

Trz = fir (K),

TBz = aOU2(K),

Trr - Tzz = 01(K) - 020-2 (K),

Too - Tzz =(a2 - fl2)a2(K). (5.4-22)

It remains now to see whether the functions f and h can be chosen in such a way
as to make these stresses compatible with Cauchy's first law of motion when the
body force is conservative.

EXERCISE 5.4.2
Since the physical components of the determinate stress S are functions of r and
0, show that, Cauchy's first law as expressed by (1) assumes the form

arSrr + 1(Srr - Soo) - parcp = pr&,
r

rarSre + 2Sre - PaoW = 0,

I 4-23)(5- a c = 0a S + S
Hence

p z p .r rz rzr

ar(r2TrO) _ -rd,
ar(rTrz) _ -ra,

Trr = pru + k(r, t) + az + d9,

.

ark(r, t) +
r
(Trr - TOO) = -prw2, (5.4-24)

where a and d are arbitrary constants.

Integration of the first two of these equations yields

Cc d)To
= r2

2
,



5.4 Dynamics of the Main Viscometric Flows

b ra
Trz 2

r

where b and c are arbitrary constants. From (22)1,2 we see that

Tr8 Trz
CY = r(K), r(K)

so by (20)3 and (25),

69

(5.4-25)

(5.4-26)

c dl2 b ral2
T(K) = y :_ i - 2) + I- - 2 ] . (5.4-27)

At this point we have chosen a positive value for K, so (5.1-26) has made us take
the positive square root for r. Thus

a = I c d 1 (b
rat

y

r2-- 2) , 0 = y
r
- 2 ` (5.4-28)

Finally, from (20) and the definition off and h,

_ KU x c d

r yr r2 2

U' = h = K; =
K b ra

(5.4-29)
y r 2

When the four constants a, b, c, d are fixed, y becomes a known function of r
by (27). We shall see later how these constants are determined in specific flows
such as that between rotating cylinders and that in a circular pipe. In view of
K 2 = r2 f 2(r)+h2(r), the conclusion (29) becomes a system of functional equations
for determining f and h.

The functional system is easy to solve ifthe shear-stress function r is invertible,
say,

Then

(0_

U' _

(5.4-30)

(5.4-31)

so the two functions w and u occurring in the definition of helical flow are deter-
mined to within six arbitrary constants. Conversely, if w and u satisfy (31), the
helical flow may be produced by the aid of suitable boundary tractions in the fluid
whose shear-stress function is 'r.
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EXERCISE 5.4.3
Show that from (22), (24), and (30) it follows that

Trr - Tzz = 91 (r) -#2a2(r),

f {![a2a2(r)

T99 - = (2 - 2)a2(r),

Trr = p+ - ai(r)] - dr + az + d9 + g(t),
JJ

5.4-32)(

where the functions ar are defined as follows:

ar(r) := F = 1, 2, (5.4-33)

the functions fi(r) and r(r) being given by (30) and (27)2, respectively. We shall
now interpret these conclusions in two major special cases.

EXAMPLE 3A Flow between Rotating Cylinders
Because Trz = 0 in this flow, we set a := b, b := 0 in (27)2, then ,B = 0, and
we may take u = 0 in (19). In this flow, a simple vortex, the fluid points move in
concentric circles with angular speeds ca(r) determined from (29)1. For the radial
stress Trr to be determinate, it is necessary by (32)3 that d = 0. By (27), then,

r(r) = z . (5.4-34)r2

The one remaining arbitrary constant c is easily interpreted, since the torque F
with respect to a point on the axis, applied to unit height of the cylinder r = const.,
is given by F = (27rr)r(Tro), which by (25)1 is 27rc. That is c = F/(27r). This
torque F is to be so adjusted that the cylinders r = R1 and r = R2 move with
prescribed angular speeds S21 and 02:

w(R1) = 01, 2(R2) = 522. (5.4-35)

By (29)1, if r is invertible,

Ry

Q2 - S21 = R 1 ( F ) dr. (5.4-36)f r 27rr2 J
R,

A vortex of this kind approximates the flow within a common type of viscome-
ter named after Couette, in which the torque applied to one cylinder is measured as
a function of the difference of angular speeds. The corresponding relation from the
theory is given by (36). If (36) can be inverted, the inverse of the shear-viscosity
function r is determined as a function of F for given S22 - 521.

While according to the theory of perturbations within the Navier-Stokes theory
the surfaces z = const. sustain an almost uniform pressure when za = 0 and pco2
is negligibly small, we see from (32) that in a general fluid the normal traction
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TZZ is a function of r. If we fail to supply this traction, as for example on the top
surface of the fluid in a Couette viscometer, that surface cannot remain plane. To
determine the shape of the free surface, or even to decide whether the fluid will
tend to rise or to fall at one or the other cylindrical boundary, is a different matter.
It is not obvious that the effect is governed by the viscometric functions alone, and
even for the linearly viscous fluid the precise solution is not yet known.

EXAMPLE 3B Flow in a Circular Pipe
For a second instance of helical flow, we now consider a flow straight down a
cylindrical pipe of infinite length, and we assume that fluid adheres to the wall. On
scant historical basis a flow of this kind is often called a Poiseuille flow. In (27)
we take c := d, d := 0, so a = 0; to keep the velocity gradient finite at r = 0, we
take also b = 0. Then by (27)

1

r(r) = 2ra, (5.4-37)

where a is the specific driving force. From (29), if r is invertible, we obtain the
speed profile

R

u(r) =
J

(lay) dy. (5.4-38)

r

where R is the radius of the tube. If fi(r) = r/µ, as is true for the Navier-Stokes
theory, the speed profile is a parabola,

u(r) = 4µ (R2 - r2), (5.4-39)

and conversely, if for given R the speed profile is parabolic for all a, the shear-stress
function is linear. For a general fluid the discharge D is given by

R IR r

D(a, R) = 2ir rdr
J

(2ay) dy
rfo

frr r2(1ardr. (5.4-40)
/

If is linear, the discharge becomes

D(a, R) =
iraRa

. (5.4-41)
8µ

Here we see the famous Hagen-Poiseuille formula or law of the fourth power; we
can show easily that, conversely, this law suffices for the shear-stress function to
be linear. If (41) holds, we have no assurance that even the Navier-Stokes theory
of viscometry is justified, since the nature of the normal-stress functions has no
effect on the discharge and hence cannot be determined from its properties.

Hagen and Poiseuille obtained (41) independently in 1839 and 1840, respec-
tively, on the basis of their experiments. In his discussion Hagen assumed that the
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speed profile was triangular. Stokes, in researches leading to his great memoir of
1845 on the theory of viscous fluids, derived the correct results (39) and (41), but in
the published text he omitted (41) and included the parabolic profile only, omitting
the discharge of long straight circular pipes and rectangular channels, and com-
pared the resulting formulae with some of the experiments of Bossut and Dubuat.
However, the formulae did not at all agree with experiment. Apparently Stokes
knew as little of the work of Hagen and Poiseuille as they knew of each other's;
today we know that the experiments of Bossut and Dubuat concerned turbulent
flows. Here a remark of Dirac deserves to be subjoined:

If there is not complete agreement between the results of one's [theoretical]
work and experiment, one should not allow oneself to be too discouraged, because
the discrepancy may well be due to minor features that are not properly taken into
account and that will get cleared up with further development of the theory.

By specializing (32)1 and (33) to the flow under consideration, again if r is
invertible, we obtain the following expression for the most important difference of
normal tractions:

Trr - TZZ = a ( (ira)) -o,2 I (ira)). (5.4-42)

The fact that this difference usually fails to vanish suggests that a column of fluid
emerging after flowing through a long pipe will tend to swell or shrink in diameter.

Various relations between the viscometric functions have been put forward as
sufficient that the fluid shall swell upon emergence, but they rest upon hypotheses
concerning the flow at the exit, and all these hypotheses have been criticized.

There are further interesting special cases of helical flow.

EXAMPLE 5.4 Some Other Steady Viscometric Flows
Torsional flow, given in cylindrical coordinates by the following contravariant
components of the velocity field,

r = 0, 0 = w(z), i = 0, (5.4-43)

and the flow effected between a cone and a plate in spherical polar coordinates by
the velocity field

r = 0, 0 = 0, 0 = w(0) (5.4-44)

have both been studied. Because these flows are viscometric, the stress system
needed to effect one is easily expressed in terms of the viscometric functions. That
notwithstanding, none of these can satisfy the dynamical equations exactly unless
body forces are supplied that are not conservative. To make them agree roughly
with Cauchy's First Law when b = 0, it is customary to suppose the accelerations
negligible; even so, for a flow between a cone and a plate it is further necessary to
suppose 0 limited to a very small interval, about 0 = ZZr.



5.5 Some Unsteady Flows 73

In any steady viscometric flow, the tensor S is completely determined by
K, N, and the three viscometric functions r, a1, and a2. Thus all phenomena in
the entire class of viscometric flows are simply related to one another. The only
problem comes in adjusting K and N to make the flow dynamically possible when
the body force is lamellar. In this section we have considered the classes of steady
viscometric flows for which this adjustment can be made exactly, and we have
listed two others in which it is known that an approximate solution is possible.
In all these cases, N and K depend upon the nature of the function r but are not
affected by a1 and a2.

5.5 Some Unsteady Flows

Coleman and Noll studied the unsteady lineal flows:

XI = 0, X2 = v(X1, t), X3 = 0. (5.5-1)

They represent a stack of parallel plane sheets sheared at a rate that depends upon
time. Clearly IV = 1 always and everywhere.

EXERCISE 5.5.1 (Coleman and Noll)
Leaving the argument x1 unwritten, letting a prime denote differentiation with
respect to x1, and regarding t as a parameter, show that from (1) we obtain

Fi(s) = eg(S)N

g(S) := K(Xj, t - S) - K(X1, t)

K(t) :=
J

v'(a)da, (5.5-2)
0

and [N] has the form (4.2-36) with respect to the coordinate basis. Thus these flows
are not monotonous unless they are steady.

From (2) and by use of (4.1-2) we conclude that

T = R(eg(s)NT eg(s)N) := f(g(s), N)). (5.5-3)

Arguments that parallel step by step those applied to (5.1-12) in 5.1 then show that

T12 = r(g(s)) = -r(-9W),
T11 - T33 = al(g(s)) = al(-9W),
T22 - T33 = a2(g(S)) = a2(-g(s)), (5.5-4)
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and hence

T = (T33)1 + r(g(s))(N + NT )

+ QI (g(s))NT N + a2(g(s))NNT. (5.5-5)

EXERCISE 5.5.2 (Coleman and Noll)
To make the speed periodic with least period 20, suppose that

v(xi, t + 0) = -v(xl, t) (5.5-6)

for all x1. Use (2) to show that

0

K(XI, t +0) = -K(X1, t) + f 8X1 v(XI, a)da, (5.5-7)
0

so K is periodic with least period 20. Appeal to (2)2 and (4) then shows that the shear
stress oscillates with the same frequency as does the velocity, but the normal-stress
differences oscillate with double that frequency.

A steady rotation superposed upon a harmonic oscillation along its axis with
amplitude depending upon the distance along that axis is specified as follows in
Cartesian coordinates:

Z1 = - SZx2 - F(x3) sin(S2t),

X2 = SZx1 + F(x3) cos(Qt),

X3 = 0, SZ = const. 0. (5.5-8)

EXERCISE 5.5.3 (Rajagopal)
Show that the flow (8) is viscometric, and its viscometric basis oscillates:

0 0 - sin(Ot)

K = F'(X3), [N] = 0 0 cos(Qt) (5.5-9)

0 0 0

also -W is independent of t, and W2= 1 + 4522/F2 > 1.

Neither of these classes of unsteady flows is dynamically possible except for
particular fluids or particular body forces.
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5.6 Steady Flow between Rotating Parallel Plates

In 4.2 and, we studied the isochoric flow

xi = -52(x2 - g(x3)), i2 = 2(x1 - .f (x3)), x3 = 0, 52 = const., (4.2-35)

which represents a body confined between parallel plates rotating at constant and
equal angular speeds 0 about axes parallel to the x3-axis. We have seen that while
it is a monotonous flow of Noll's type 3, At, A2, and nJ still determine A3, A4, ...,
and thus it has much in common with a viscometric flow. In particular, for an incom-
pressible fluid undergoing this flow the relation (4.1-6) delivering the determinate
stress reduces to

S = 7Z(Ct) _: f(AI, A2; 52). (5.6-1)

Moreover, when 0 is assigned, Al and A2 are determined by f' and g', so we may
write

S = h(f', g'). (5.6-2)

In Chapter 7 the student's will see that the condition of adherence to solid
boundaries does not generally suffice to set a definite boundary-value problem for
a fluid that obeys a nonlinear constitutive equation. Here, on the contrary, from
(2) we remark that the dynamical equation must reduce to a system of ordinary
differential equations of second order for f and g, and hence the condition of
adherence may suffice to determine a solution, which in fact it does, as we shall
see in Exercise 6.1, when the fluid is of a special kind.

We return to the analysis. The components of div S are known functions of f',
g', f", g", and consequently they are also known functions of x3 alone, say,

513,3 = h1(x3),

S23,3 = h2(x3),

S33,3 = h3(x3) (5.6-3)

EXERCISE 5.6.1 (Rajagopal)
Show that the acceleration field that corresponds with (4.2-35) is

X1 = -522(x1-.f(x3)), x2 = _02 (X2-9(X3)), z3 = 0, Q = const. $ 0. (5.6-4)

The vorticity equation (3.8-5) then yields

h1 = P02.f', h'2 = PQ2g' (5.6-5)
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Hence, by integration,

hl = pS22 f + A, h2 = pS22g + B, (5.6-6)

where A and B are arbitrary functions oft alone.

EXERCISE 5.6.2 (Rajagopal)
Show that

PEG = 2 pS22(x1 + x2) + Ax1 + Bx2 + ph(x3), (5.6-7)

in which

X3

ph(x3) := f h3(s)ds. (5.6-8)

0

From (6), (3), and (2) we conclude that

S13,3(f', g',
f"g") = Pc2f + A,

S23,3(f', g', f", g") = pQ2g + B. (5.6-9)

As the functions on the left-hand sides are determined by (2), which is made specific
by the determinate response as reduced to (2), we may regard (9) as a system,
generally nonlinear, of second order that the functions f and g must satisfy for given
0; if such f and g may be found, they select from (4.2-3 5) such special instances
as are compatible with the constitutive equation of the fluid being considered.

EXERCISE 5.6.3
Let (a, 0, d) and (-a, 0, -d) be the coordinates of the centers of rotation of the
top and bottom plates, respectively. Show that the fluid adheres to the plates if and
only if

f (d) = a, f (-d) = -a, g(d) = g(-d) = 0. (5.6-10)

Whether there are solutions f, g of (9) that satisfy (10) will depend upon the
prescribed functions 513,3 and S23,3, that is, upon g in (2), and hence because of
(1) upon the determinate response R of the fluid.
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EXERCISE 5.6.4
If

.f (x3) =
d

x3, g(x3) 0, (5.6-11)
a

then show that (9) is satisfied if inertia is neglected.

The solution (11) presumably approximate, makes the locus of centers of
rotation be the straight line xl = (d/a)x3. In Section 9 of Chapter 6 we shall
see that for a particular nonlinear fluid such is far from being true of the genuine
solution. Also in that Section 9 of Chapter 6 we shall learn that for the Navier-
Stokes fluid and for another particular fluid there is no need to neglect inertia or
to resort to perturbations in order to find a unique solution corresponding to (10).
Perhaps those two fluids are typical in regard to solutions for this class of flows.

5.7 Impossibility of Steady Rectilinear Flow in Pipes

In Section 2.2 the most general form of the stress possible in a fluid undergoing
viscometric flow was determined, and in Section 5.4 certain classes of steady
viscometric flows were shown to be dynamically possible without bringing to bear
body force not conservative. In these classes the streamlines are the same as for a
Navier-Stokes fluid in the same circumstances (see Section 5.3), but the distribution
of speeds upon them, which is determined by the shear-stress function r ofthe fluid,
is different.

Up to the present, few fixed or simply moving boundaries are known to corre-
spond to flows for which the Navier-Stokes equations can be solved easily. Nearly
all of these give rise to viscometric flows. Those for which the analysis is easy are
exhausted by the cases developed, at least in outline, in Section 5.4 where we em-
phasized the Navier-Stokes theory only to contrast its special features with those
manifested by general fluids in the same circumstances. The class next easiest to
analyze is defined by flow in an infinitely long tube of constant cross-section which
is a bounded, open, simply connected region of the plane. The customary procedure
begins by assuming the motion to be a steady shearing, namely an acceleration
less lineal flow in the direction of a unit vector k normal to the cross-section

z = v(p)k and v(p) = 0 if p c aD, (5.7-1)

where p is the position of a point in D U 8D. This flow is isochoric. The fluid
points are assumed to move at constant speed down the lines parallel to the walls
of the pipe. As we shall see shortly, the assumption (1), is easily shown to be com-
patible with the Navier-Stokes equations provided that v satisfies a certain partial
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differential equation that is proved to have a unique solution corresponding to the
boundary condition (1)2. Thus a unique rectilinear solution exists. Whether it is the
only solution of the boundary-value problem of flow in a pipe is a more difficult
matter, according to the Navier-Stokes theory rarely asked and today unsettled.

We shall now approach the problem in the same spirit for an arbitrary incom-
pressible fluid. We shall show that, in general, no steady lineal flow exists. For
proof it suffices to refer to the analysis carried out for a particular fluid by Erick-
sen, who discovered this remarkable fact, for a single counterexample disproves a
general assertion; nonetheless, use of the apparatus set up in the preceding sections
makes it easier to see just why no rectilinear flow can be expected in general and
to characterize those special instances in which such a flow is possible.

EXERCISE 5.7.1
Show that the relative description (1.7-2) of the motion corresponding to the ve-
locity field (1)1 is

= x + (r - t)v(p)k. (5.7-2)

Substituting (2) into (1.7-6) yields

Ft(r) = 1 + (r - t)M, M = k ® Vv, (5.7-3)

in which expression V denotes the gradient operator in the plane containing p.
Because of (4.2-29), we know that the assumed motions (1)1 are viscometric and
that

K2 = IVv12

Substitution of (3) into (5.1-13) yields the most general stress field compatible with
the constitutive relation of an incompressible fluid in a flow of this kind,

Vv® Vv+Q2k®k, (5.7-4)ZS=+µ(k® Vv +Vv (9 k)+
Q

where p. is the shear-viscosity function (5.2-2).

EXERCISE 5.7.2 (Noll)
Show that

div S = div(µ. V v)k + div (Vv) VV +
Ql

VK. (5.7-5)
Z K

If

h
U1 (K)

dK - pip, (5.7-6)
K
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then

rad h = al (K) V rad gy- 7(5 7)g K p g p, -.

K

so Cauchy's first law as expressed by (5.4-1) assumes the form

div(g V v)k + div (Vv) + grad h = 0. (5.7-8)

Letting z be a coordinate of length along the pipe, we see from (8) that grad h
is independent of z. Therefore

h = az + g(p), a = const., (5.7-9)

and (8) splits into the following two equations:

div(µ(K)Vv) = -a (5.7-10)

and

div(al()ov)Vv+Vg=0. (5.7-11)
K2

The second equation states that g is constant along the equivels v = const. That
is, g(p) = f (v(p)), and (11) becomes

div (-2Vv) = - f'(v). (5.7-12)
K2

For any given fluid the two viscometric functions r and al are determined
by the response and hence are regarded as given. Accordingly, we have derived
two nonlinear partial differential equations, (10) and (12), to be satisfied by the
one function v. In our attempt to find a single function v subject to this double
requirement, we may choose the function f at will.

In particular cases, the suitable choice off does indeed render the two equa-
tions for v compatible. For example, if the fluid is such that

al(K) = CK2p(K), (5.7-13)

where c is some constant, then the choice f'(v) = ca renders (12) and (10) iden-
tical. The Navier-Stokes theory requires that c = 0; so do all constitutive relations
in which a1:=0. In the Navier-Stokes theory, (10) becomes µAv = -a, in which
µ is the shear viscosity and a is the specific driving force, both being assigned
constants. This elliptic partial differential equation has a unique solution satisfying
the boundary condition (1)2. Works on the Navier-Stokes theory take up in detail
the properties of the solutions for various cross-sections a, but we shall not go
further into the matter here except to remark upon an important if very easy special
case.

For the elliptical cross-section defined by the Cartesian equation

2 2X2

+ b = 1, c > b, (5.7-14)
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the Navier-Stokes solution of the problem is given by

ac2b2 xi x2v= - +--1 , (5.7-15)
2µ(c2 + b2) C2 b2 )

where we assume, of course, that µ > 0. That (15) is a solution may be verified
by substitution, and the uniqueness theorem for the Dirichlet problem for elliptic
linear differential equations with constant coefficients assures us that it is the only
solution satisfying the boundary condition.

The example of the Navier-Stokes theory shows that the two conditions (10)
and (12) may be compatible. If they are, the constant a has a simple interpretation.

EXERCISE 5.7.3
If (10) and (12) are compatible, then show that

Tzz - pzu = za + a2(K) - J a1(K)dK + g(p). (5.7-16)

Hence

az(Tzz - prr) = a. (5.7-17)

Thus a is the specific driving force.

More generally we expect, though it has not been proved, that (10) by itself,
with an assigned shear-viscosity function it, should again be sufficient to determine
a unique solution v satisfying the boundary condition. If that is so, then such a v will
generally fail to satisfy (12). Again there are exceptions. If the curves v = const.
are concentric circles or parallel straight lines, then K is a function of v, so (12)
is always satisfied. Ericksen4 proved that if µ was analytic and if (13) did not
hold, there were always solutions of (10) for which (12) failed to hold, and he
conjectured that in fluids for which (13) did not hold, the only common solutions
of (10) and (12) if a # 0 were those obtained here, namely those in which the
curves v = const. are parallel straight lines or concentric circles. Fosdick and
Serrin5 provided a complete analysis of the problem. By counterexamples, they
show that the conjecture is false, though the main consequences Ericksen deduced
from it are true. Their assumptions are as follows:

1. µ is of class C2 for all K.

4J.L. Ericksen, "Overdetermination of the speed in rectilinear motion of non-Newtonian fluids,"
Quarterly of Applied Mathematics 14 (1956): 318-21. Reprinted in Rational Mechanics of Materials,
edited by C. Truesdell, International Science Review Series (New York: Gordon and Breach, 1965).

5R.L. Fosdick and J. Serrin, "Rectilinear steady flow of simple fluids," Proceedings of the Royal
Society (London) A333 (1973): 311-33.
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2. µ and 011 /K2 are of class C3 near K = 0, and their first and third derivatives
vanish at K = 0.

3. µK is an increasing function of K for all K.

Fosdick and Serrin then assert that if (13) does not hold, the only bounded and
connected open sets D on which there is a common solution of (10) and (12)
that vanishes on aD are those for which aD is a circle or a pair of concentric
circles. They present a proof under the stronger assumption that g and 0`11K 2 are
analytic functions of /c2 near K = 0. They also provide a corresponding proof
when the condition of adherence is replaced by the requirement that the speed
at a point on aD be an assigned function of the shear stress on the wall in the
direction of flow at that point. We may state their result roughly as follows: For a
general incompressible simple fluid, the only tubes in which a steady nonvanishing
rectilinear flow can adhere to the wall are circular, with or without a concentric
circular core. Inspired by the work of Fosdick and Serrin, McLeod' studied the
problem again by relaxing some of their restrictions.

Ericksen's analysis made it natural to conjecture that if an incompressible
fluid were to be forced steadily down a tube having a cross-section for which no
steady rectilinear flow exists, some other steady flow would occur. A departure
from a classical streamline pattern is generally described as a "secondary flow."
The secondary flow in this case is given by a component of velocity normal to the
generators of the pipe, as a result of which the fluid points move along spiraliform
streamlines. Green and Rivlin, as soon as they had seen Ericksen's analysis, exhib-
ited a secondary flow down a pipe of elliptical cross-section by use of a particular
fluid.

We may see in advance that calculation of such a flow will be intricate. Indeed,
if we assume that the shear-stress function t and the normal-stress function of may
be expanded in series in K, e.g. (5.3-3), then (13) is always satisfied to the second
order as K - 0. The effect of incompatibility, then, must be of at least third order
in some parameter whose smallness keeps the shearings small. No general method
of solving the problem is now known. In Chapter 6 we shall calculate a solution for
a certain special class of fluids after assuming that it exists and can be expressed as
a power series in a certain parameter that may be interpreted as the specific driving
force. We shall see that a secondary flow does indeed result, in general, and is of
the order a4.

6J.B. McLeod, "Overdetermined systems and the rectilinear steady flows of simple fluids," Pro-
ceedings ofa Conference on Partial Differential Equations, Springer Lecture Notes in Mathematics no.
145, (1974) 193-204.
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6

Some Flows of Particular Nonlinear
Fluids

6.1 Rivlin-Ericksen Fluids

The Principle of Local Action asserts that the stress at the body pointXis unaffected
at the time t by the history of the motion at other body points except those in some
arbitrarily small neighborhood of X (X, t), but it allows influence to arbitrarily long-
past time. Thus, in general, a material point may have an arbitrarily long memory.
In viscometric flows (Chapter 5) and, more generally, in monotonous motions
(4.2-3), any such memory is given scant opportunity to make itself known, and for
this reason many special problems regarding such flows are amenable to an easy
solution. There is a second way to find tractable problems: instead of specializing
the motion, specialize the material. Because of the obvious difficulty introduced by
long-range memory, it is natural to propose for study a class of materials in which
the stress atXis affected by the history of the motion only within an arbitrarily short
interval [t - S, t] of preceeding time, where S is some positive number. Materials
of this kind have infinitesimal memory. The history of the motion before any given
past time is irrelevant in determining the stress in such a material at the present
time.

The most commonly studied materials with infinitesimal memory are simple
materials in which the stress at X is determined by the first n derivatives of the
local deformation F at the reference place X. Such a material is called a material
of the differential type, and its complexity is called n. The defining constitutive
relation for such a material is

F I. (6.1-1)
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The n + 1 tensor arguments are mapped by f onto symmetric tensors, and the
arguments X and t are not written.

The principle of material frame indifference leads to the following reduced
form for the constitutive relation of a material of the differential type of complexity
n (see Sections 2.2 and 2.3);

RTTR = g(RTAIR, RTA2R, ..., RTA,, R, C); (6.1-2)

where g maps n + 1 symmetric tensor arguments onto a symmetric tensor and R
is the rotation tensor from the reference placement adopted.

EXERCISE 6.1.1 (Noll)
Show that the reduced form (2) follows either by specializing (Sections 4.1-4.3)
appropriately or by direct appeal to the principle of material frame indifference.

When the material of differential type is isotropic, it is called aRivlin-Ericksen
solid or Rivlin-Ericksen fluid of complexity n, according to whether its peer group
is the orthogonal group 0 for some reference placement or the unimodular group
U for all reference placements, in conformity with the definitions laid down in
Chapter 2. The constitutive relations for these two instances are

T = f(A1, A2, ... , A,,, B) (6.1-3)

and

T = f(A1, A2, ... , An, p), (6.1-4)

respectively. The former holds only if the Cauchy-Green tensor B is calculated with
respect to an undistorted placement of the solid, while the latter holds in general.
In both, the function f is isotropic in the sense that

f(QA1 QT, QA2QT, ... , QAn QT , QBQTor p)

= Qf(Ai, A2, ..., An, B or p)QT (6.1-5)

for all arguments of F and for all orthogonal tensors Q. It is a routine matter to
write out corresponding conclusions for incompressible materials.

EXERCISE 6.1.2
Show that the reduced forms (3), (4), and (5) follow either by specializing (4.1-2)
and (4.1-3) or by a direct analysis of (2). Also, show that for a fluid in rigid motion,
f(0, 0, ... , 0, p) is a spherical tensor.
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The general solution f of the functional equation (5) is known,' but we shall
need only its application to a fluid of complexity 2:

T= -pl+atAl+a2A2+a3A1+a4A2+a5(A1A2+A2AI)

+ ab(A A2 + A2 A2 + A2Ai); (6.1-6)

the coefficients p, at, a2, ..., a8 are functions of the density and the following
scalar invariants of AI and A2:

trA,, trAi, trAi, trA2, trA2, trA2,

trA,A2, trA,A2, trA,A2. (6.1-7)

The coefficients aI , a2, ... , a8 are not uniquely determined, but in general there is
no relation giving any one of them as a function of the others. For an incompressible
fluid, conclusions of the same form hold, but p is then arbitrary, as are tr AI = 0
and tr Ai = tr A2, so the coefficients a I, a2, ... , a8 are functions of only 8 rather
than 10 scalar arguments.2

It follows from (4.3-5) that in a viscometric flow the response of a simple fluid
cannot be distinguished from that of an appropriately selected Rivlin-Ericksen
fluid of complexity 2. The following exercise enlarges upon this fact and shows
that the viscometric functions fail to determine a unique Rivlin-Ericksen fluid of
complexity 2. Thus the behavior of such a fluid in viscometric flows does not
determine its constitutive equation uniquely.

'There is an extensive literature on representation theorems, most of it on the assumption that f is
a polynomial. Rivlin and Ericksen proved some particular theorems without such a restriction. Fully
general algebraic representations for scalar-valued, vector-valued, and tensor-valued isotropic functions
of any finite number of vectors, symmetric tensors, and skew tensors are given by C.-C Wang, "A new
representation theorem for isotropic functions," Archive for Rational Mechanics and Analysis 36 1970:
166-223.

2The members of a set of tensors generally satisfy polynomial identities; also, as the space of
symmetric tensors over a three-dimensional vector space is six-dimensional, any set of seven or more
symmetric tensors is linearly dependent. These facts do not permit us, in general, to express any one
of such a set of tensor variables as a function of the others. A simple example, namely,

(tr A)B = A,

suffices to show that a relation between two tensors A and B does not generally imply that one is
a function of the other. First, A cannot here generally be a function of B, since if A is a solution
corresponding to B, so is CA for any number C. On the other hand, B cannot here generally be a
function of A, since any B is a solution corresponding to A = 0. In all cases, nonetheless, either
B = f(A) or A = g(B). Indeed, if trA : 0, then B = (trA)-'A; while if trA = 0, it follows that
A = 0, whatever B is. Thus, if we consider the restriction of some function f(A, B) to arguments such
that (tr A)B = A, we can always without loss of generality eliminate one or the other of the variables
A and B, but not always the same one.
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EXERCISE 6.1.3 (Rivlin, Markovitz)
In a viscometric flow the functions a, of the ten arguments (7) are equal to certain
functions of the shearing K; each ar is an even function; show that the viscometric
functions of the fluid are related as follows to the functions ar :

µ = al + 2K2LY5 + 4K4a7,

Ul = K2(2a2 + a3 + rK2a4 + 4K2 a6 + 8K4a8),

a2 = K2a3. (6.1-8)

To represent the general behavior of simple fluids in viscometric flows, it suffices
to consider just the Rivlin-Ericksen fluids of complexity 2 for which a4 = a5 =

= a8 = 0 and the coefficients a,, a2 i and a3 are functions of only tr A i .

When we come to study motions that are not viscometric flows, then, as we
remarked at the beginning ofthis section, we shall generally be forced to assume the
fluid devoid of long-range memory. Nevertheless, even the Rivlin-Ericksen fluids,
as we can see from the example (6) with its eight material functions, will give
rise to great mathematical difficulties. If we specialize the constitutive relation still
further, we run the danger of eliminating whatever phenomenon we wish to study.
Consider, for example, the particular fluid of complexity 2 mentioned at the end of
Exercise 1.3. This fluid suffices for absolute generality in response to viscometric
flows. If we go one step further and suppose that 2a2 + a3 is proportional to a,,
the condition (5.7-13) is satisfied, and rectilinear flow is possible in pipes of all
cross-sections. Such is the case, in particular, if we take the functions a1, a2i and
a3 as reducing to constants.

These considerations suggest the need for some systematic method of classi-
fying Rivlin-Ericksen fluids into categories of decreasing similarity of response.
There are many such systems. Here we shall consider one based on a formal ex-
pansion procedure. These results have a certain status in terms of a theorem of
approximation, but for the time being we shall look at it in a purely formal way.

We suppose now that one particular motion X(X, t) of a body be given, and
from it, by retarding the time scale by a positive retardation factor r, we construct
a one-parameter family of retarded motions:3

ret X(X, t) := X(X, rt). (6.1-9)

That is, if the body point X was at the place x at the time t in the motion X, in
the retarded motion retX it did not reach that same place until the time t/r. In
the interpretation, we shall think of (9) in the limit as r --* 0, so that in retX the

3Coleman and Noll's theory of retardation applied to simple materials in general provides an expan-
sion in terms of deformation histories described more and more slowly. WANG's theories of relaxations
and retardations provide expansions in terms of families of materials. For a brief description of these see
section 40, C Truesdell and W. Noll, The Non-Linear Field Theories of Mechanics, (Berlin: Springer-
Verlag, 1992).
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body point X will move along just the same path as in the motion X but at a rate
uniformly slower in the ratio r.

If we attach to functions other than X the prefix ret to denote quantities calcu-

lated from ret X, for the nth velocity (x we shall have

(n): n n (n)ret X = 8, ret x = r' X ,

and hence by (2.2-9),

(6.1-10)

retGn = r"G1. (6.1-11)

From (11) and (2.2-17), we obtain for the Rivlin-Ericksen tensors retAn of the
retarded motion:

retAn = rnA,. (6.1-12)

Returning to the constitutive equation (4) of a Rivlin-Ericksen fluid of complexity
n, we specialize it by the following further assumptions.

1. The function f is a polynomial in the arguments A1, A2, ... , An.

2. In the retarded motion retX the function f is a polynomial of degree n in the
retardation factor r. The special fluid of complexity n so defined is called
the fluid of grade n. If we think of a motion X as given and fixed, and if we
construct from it the retarded motions retX, then as r --). 0, the constitutive
equation for the fluid of grade n ultimately approximates that of the general
fluid of complexity n to within an error O(rn+1), provided we adopt in the
first place the assumption that f is a polynomial.

For example, we see from (6) that while the constitutive equation for the fluid
of complexity I is

T = -pl + alAl + a3A1, (6.1-13)

in which p, al, and a3 are arbitrary functions of tr A1, tr Ai, tr Aj, and r, the
constitutive relation for the fluid of grade 1, since it must be of degree 1 in r in the
retarded motion retX, by (12) is

T = -p+ 2AtrA) 1+µA1, (6.1-14)

in which p, A, and It are functions of p only. If the fluid is incompressible, (14) is
replaced by

T = -p1 + µA1; (6.1-15)

p is indeterminate in the sense that it is not determined by the history of the
transplacement gradient and does not determine it, and g is a constant, the former
for an unconstrained fluid and the latter for an incompressible one. These two
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formulae are the constitutive relations of the Navier-Stokes fluids. Thus the fluid
of grade 1 is the Navier-Stokes fluid, while the elastic fluid is the fluid of grade 0.

In the same way we can write down from (6) and (7) the constitutive relation
of the unconstrained fluid of grade 2:

T = (-p + zA tr A I + a 10 tr A2 + a20 tr A2 + a30 (tr A1)2) 1

+ (µ + all tr AI)AI } alA2 { a2A1, (6.1-16)

where p, A, µ, alo, a20, a30, aI I, aI, and a2 are functions of p. In an isochoric mo-
tion, the terms whose coefficients are A, a30, and aI I vanish; for an incompressible
fluid the stress is indeterminate to within an arbitrary hydrostatic pressure p, for
such a fluid the terms whose coefficients are alo and a20 can be absorbed in p, so
the constitutive relation of the incompressible fluid of grade 2 is simply

T = -pl +µA1 +aIA2 +a2A1, (6.1-17)

where µ, al, and a2 are constants.
The procedure that delivered (15) and (17) by use of the retardation (9) began

with the representation (6) of a fluid of complexity 2. For use in Section 2 we need
the constitutive equation for the determinate stress of an incompressible fluid of
grade 4. For it Rivlin obtained the following formula,

S=SI+S2+S3+ S4,

in which, after removal of a redundancy, in S4,

S1 = µ0Al,
S2 = al A2 + a2A1,

S3 = #IA3 + 02(A2Al + AIA2) + f3(trA2)AI,

S4 = y1A4 + y2(A3A1 + AIA3) + y3A2 + y4(A2A1 + AIA2)

+ y5 (tr A2 )A2 + y6(tr A2 )Al

+ [y7 trA3 + y8 tr(A2AI)]AI

(6.1-18)

(6.1-19)

where 140, al, a2, Pl, 182, P3, yl, y2, .... y8 are constants. As we shall see below
in Exercise VI.1.4., µo is the shear viscosity constant of the fluid, but it cannot
generally be identified with the shear viscosity function of a fluid of grade n if
n > 2.

In the formulae just given,

Sk = O(rk) as r -* 0 (6.1-20)

in the retarded motions retX. Thus, for example, S3 is exactly what must be added
to S1 + S2 in order to obtain from the constitutive relation of the fluid of grade 2
that of the fluid of grade 3.
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EXERCISE 6.1.4
From (4.2-15) it follows that in a monotonous flow we may use the modulus IK I of
the shearing as the retardation factor r. In a viscometric flow

S1 = µoK(N + NT ),

S2 = K2[2a1NT N +a2(N + NT)2],

S3 = 2K3(F'2 + 03)(N + NT),

S4 = K4[4(y3 + y4 + y5)NT N + 2y6(N + NT)2], (6.1-21)

while the viscometric functions are given by

l- = l2o + 2(h'2 + I'3)K2,
10'1 = (2a1 + a2)K2 + [4(y3 + Y4 + Y5) + 2y6]K4,

0-2 = a2K2 + 2Y6K4. (6.1-22)

In general, the viscometric functions of a fluid of grade n are polynomials of
degree at most n in K. Since according to the general theory of fluids the viscometric
functions need not be polynomials at all, for no n does the theory of fluid of grade
n cover all possibilities in viscometric flow. This fact should serve to distinguish
clearly the difference between "grade" and "complexity," since, as we have seen
in Exercise 5.1.1. in Chapter 5, the theory of the fluid of complexity 2 covers the
fully general theory of viscometric flows. Both "grade" and "complexity" suggest
the outcome of a process of approximation; the lower the complexity of the fluid,
the lower the order of derivatives of the velocity field needed to determine the
stress in it, while the lower the grade of the fluid, the slower the flow described
adequately by its constitutive relation. On the other hand, we must remember that
the approximative processes are merely suggestive, not proved, and that they are
not necessary in order for us to consider the fluid of grade n or of complexity n,
since such a fluid satisfies the general requirements of continuum mechanics and
may be an object of study in itself. In particular, the Navier-Stokes fluid and the
elastic fluid, which are the fluids of grades 1 and 0, respectively, do not have to
be considered as approximations to anything more general but deserve analysis as
independent objects, specimens of what a fluid might be. Classical hydrodynamics,
which usually limits attention to these two fluids, is thus an exact theory, though a
special one.

By specialization of (22) we see that the viscometric functions of the fluid of
grade 2 are given by

µo,

a1 = (2a1 + a2)K2,

2o'2=a2K . (6.1-23)

Comparison with (17) shows that if a set of three viscometric functions is compat-
ible with the theory of fluids of grade 2, it determines such a fluid uniquely. The
constitutive relations ofan incompressible fluid ofgrade 2 is thus determined by the
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behavior of that fluid in viscometric flows. This conclusion holds afortiori for the
Navier-Stokes fluid. Viscometric problems were first considered mainly because
outcomes of viscometric experiments were thought to suffice for determining all
the physical characteristics of an incompressible fluid, so that, in principle at least,
viscometric data should suffice as the basis for the subsequent prediction of all
behavior of the fluid by mathematical process alone. A glance at (22) shows that
such is not generally the case. For example, the viscometric functions of the fluid
of grade 3 reveal nothing at all about f1, and they determine nothing more about f2
and f3 than their sum. Indeed, in (19)3 the coefficient flu multiplies the tensor A3,
which vanishes in a viscometric flow, and so in principle a flow in which A3 0
has to be considered if the value of flu is to matter at all. These observations il-
lustrate the inherent limitations of the fluid of grade 2 and of its special case, the
Navier-Stokes fluid.

EXERCISE 6.1.5 (Berker)
Use of (2.2-17), (2.2-19), and (2.2-21) shows that at all points on a stationary wall
to which a body adheres,

A1n = 2En+2Wn,
A2 n = (4E2 +W2 )n + 4EWn,
A2n = (2E' + 4E2 + 2w2)n + 2EWn + 2W'n, (6.1-24)

where E is the expansion, W the spin, and w the magnitude of the vorticity defined
by w :_ I curl z1. The axis of spin needs not be steady. The traction exerted by the
wall upon an adherent body of incompressible fluid of grade 2 is given by

t = [-p + (2a1 + a2)w2]n + 2µWn + 2a1 W'n
= [-p + (2a1 + a2)w2]n - µwf - al(wf)', (6.1-25)

where f is a unit vector in the direction obtained by rotating the vorticity vector
through a right angle counterclockwise about n.

Berkers's formula (25) further illustrates the special nature of the incompress-
ible fluid of grade 2. The shear traction exerted at a place on a stationary wall
by such a fluid in steady flow is 21tWn, just the same as would be exerted by a
Navier-Stokes fluid of the same shear viscosity µ in undergoing a flow having the
same spin W at that place. Of course it does not follow that in the solution of some
boundary-value problem the shear traction really is unaffected by the values of al
and a2, for those constants enter the equations of motion, solutions of which, for
given boundary conditions, may deliver a spin field different from that provided
by the Navier-Stokes equations.

The general principles set forth in this book leave many constants and functions
arbitrary. For example, in the constitutive relation (14), that defines the Navier-
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Stokes theory of fluids, the functions a. and it are not restricted. Nevertheless, it is
natural to expect that viscosity shall be a dissipative phenomenon, in which work
may be consumed in the interior of a body but cannot be created there. Specifically,
the power of the portion of the stress that depends upon D should not be negative for
any D. This adscititious requirement, which was imposed by Duhem and Stokes,
is easily shown to be equivalent to the inequalities

µ > 0, 3,l + 21t > 0. (6.1-26)

Nowadays it is customary to derive this restriction and others of the same kind
by imposing the second law of thermodynamics as an identical requirement upon
constitutive mappings. In this textbook thermodynamic principles are not taken up.
We shall continue to leave constitutive constants and functions unrestricted except
by considerations arising in pure mechanics, and we shall not assume that the stress
power cannot ever be negative.

6.2 Boundary Conditions and Perturbation Procedures

In the applications of the Navier-Stokes theory, the fluid body is usually assumed
to adhere to rigid boundaries, and there are existence theorems that provide unique
solutions to various problems presuming that condition. Following that precedent,
most studies ofthe motions of nonlinear fluids also adopt the condition of adherence
and attempt to make it seem sufficient to deliver unique solutions. Indeed, while
that is sometimes possible, generally it is not.

Consider, for example, the incompressible fluid of grade 2, for which

S2 = a1A2 + a2A2I . (6.2-1)

From (2.2-18) we know that

A2 = Al + A1G + GTA1 = Aj + (grad Al)i + A1G + GTA1.

Thus the term (grad grad i)i appears in A2 and hence in S2, and therefore the
term div[(grad grad i)i] appears in divS2. Therefore the term in the partial differ-
ential equation of motion that arises from (grad A1)i is linear in the third spatial
derivatives of x, while the Navier-Stokes equation involves only the second spa-
tial derivatives of i, in which it is linear. This fact suggests that to obtain unique
solutions in the theory of fluids of grade 2, in general some boundary condition
in addition to adherence should generally be supplied. What that condition is,
we do not know. It should reflect some physical idea, but none appropriate has
been put forward. However for special flows, e.g., flows in bounded domains with
homogeneous boundary conditions, such results have been obtained.
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The same difficulty arises, indeed is magnified, for fluids of greater grade.
As is suggested by (4.1-19), S includes a term proportional to An; An depends
linearly on An-,; a summand in (A,-,) is (grad A _ 1 )i. The partial differential
equation of motion for a fluid of grade n, therefore, will generally be of order n + 1
in the spatial derivatives of i.

In the simplest problems, some of which we have studied and others of which
we shall study

(grad An_I)i = 0, n = 2, 3, ... , (6.2-2)

and the difficulty does not arise.
Also some progress has been made with problems concerning infinite domains

by assuming boundedness of solutions and sufficiently rapid decay of derivatives
at infinity. Although that is a common analytic device, it is something that should
be proved rather than assumed.

A device of a different kind has been used in the literature of rheology. Namely,
the constitutive equation of an incompressible fluid has been transmogrified into

S = µA1 + Eg(Ai, A2, ... , An), (6.2-3)

in which g is an isotropic tensor polynomial function and E is a "small" parameter.
Conclusions from perturbations obtained by expansions in powers of E are named
appropriate to a "nearly Newtonian" or "slightly visco-elastic fluid." Students will
see at once that if n > 2, this procedure as E 0 wipes out the spatial derivatives
beyond those appearing in the Navier-Stokes equation. To make matters worse,
inertia is neglected at every stage. The same is true of later procedures in which
by assumption i = Eu for a fixed flow u and all quantities arising in the attempt
to satisfy the equations of motion become polynomials in E, which is assumed
small. The mathematical problem is one of singular perturbation, but the procedure
applied is one of ordinary perturbation.

Sometimes correct conclusions may be obtained by such unconvincing meth-
ods. Indeed, acceptable statements about the flow of incompressible fluids down
straight pipes of noncircular cross-section were first obtained in this way, but here,
following Noll, we shall obtain them by power series of a presumed solution of
the actual problem.

6.3 Secondary Steady Flow of a Simple Fluid down a Straight
Pipe: Preliminaries

As we showed in Section 5.5, most fluids cannot flow steadily straight down a
straight pipe unless the cross-section is of a special kind; only certain special fluids
may flow steadily straight down a straight pipe of general cross-section. Both the
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Navier-Stokes fluid and the fluid of grade 2 are exceptional in this sense, since their
viscometric functions satisfy the special relation (5.7-13). If a general fluid is forced
by a steady pressure gradient down a pipe bounded by a cylindrical surface that is
neither a circular cylinder nor a pair of coaxial circular cylinders, we expect that a
steady flow shall ensue, but it cannot be rectilinear. The component of the velocity
field normal to the generators of the cylindrical boundary is called a secondary

flow. The simplest velocity fields of this kind seem to be those specified as follows
in terms of the position vector p in the plane cross-section:

x = v(p)k + u(p), div u = 0, i = 0 if p c eA. (6.3-1)

Thus a solution is sought in which the primary flow is v(p) in the direction ofthe unit
vector k normal to and the secondary flow u(p) is the same at each cross-section.
We consider (1) as expressing a semiinverse hypothesis, and we shall show that
suitable selection of v(p) leads to a formal power series in a specific, appropriate
parameter provided by the problem itself.

We assume that the flow domain A is simply connected.4 Since divu = 0,
there is a stream function q such that

u = (Vq)1, p E &4. (6.3-2)

Here and henceforth we write V for the spatial gradient in A and use the notation a1
for the vector obtained by rotating a vector a that is normal to k counterclockwise
through a right angle about k i.e., a1 = k x a. Thus (a-L)1 a. On eA the
boundary condition expressing adherence of the fluid is

q = const., 8nq = 0. (6.3-3)

where 8n is the normal derivative; without loss of generality we may and shall
replace the first formula by q = 0.

From (1) we see that

G = grad i = k ®Ov + Vu; (6.3-4)

hence

x = Gi = (u Vv)k + (Vu)u. (6.3-5)

The nth velocity
(x),

its gradient G, and the nth Rivlin Ericksen tensor An are
steady and independent of the cross-section. Hence

(VAn)k = 0, (6.3-6)

and the recurrence formula (2.2-18) for the Rivlin-Ericksen tensors reduces to

An+1 = (VAn)u +A, G +(A, G)T . (6.3-7)

Because the secondary motion is assumed to be the same at all cross-sections,
so also is the determinate stress of an incompressible fluid of any grade, and, by

4This assumption is unduly strong and can be relaxed.
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(5), so also is the acceleration z. If we write z for a coordinate in the direction of
k, then by differentiating Cauchy's first law in the form (5.4-1) with respect to z
we obtain

8Z grad cp = 0. (6.3-8)

Integration of (8) shows that

pcp = -az + f(p); (6.3-9)

here a is a constant, and the function remains to be determined. By recalling the
definition of P in (3.7-5) and assuming that w is independent of z, we see from
(9) that azp = -a, so the specific driving force a is the only agent that pushes the
fluid through the pipe.

To discuss the remaining implications of Cauchy's first law, we employ the
following decomposition of the determinate stress at x:

S=N(k®k)+t®k+k®t+H, (6.3-10)

in which N is a scalar, t is a vector normal to k, and H is a tensor over the two-
dimensional space of vectors normal to k, and all three summands are presumed
to vary smoothly with x. By use of (10) and (9) we see that

TZZ = -p + N(p) = N(p) + az - gy(p) = pw-(p), (6.3-11)

while by use of (5) Cauchy's first law (as expressed by (5.4-1)) becomes equivalent
to

div II - o = p(Vu)u. (6.3-12)

The essence of Noll's method is to use the driving force a, which arises in (12)1
as a natural parameter for the problem, as the variable of a formal power-series
expansion of a presumed solution of (12).

6.4 Calculation of the Series Determining Secondary Flow
down a Straight Pipe

We choose as the fluid to undergo the flow some Rivlin-Ericksen fluid of grade
n, n being fairly large and we assume that there are solutions for it expressible as
follows for values of the driving force a close to zero-

4

v = arvr + 0(a5),
r=1
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4

U= y arur + 0(a5), Ur = (Vqr)-,J
r=1

4

rr_ E arS' + 0(a5).
r=1

The boundary conditions on discharge follow from (6.3-3):

(6.4-1)

Vr = 0, qr = 0, angr = 0, r = 1, 2, 3, 4. (6.4-2)

Further, we assume that the derivatives with respect to p of the remainders written
as O(a5) or O(a5) are also of those same orders.

It is plausible that the actual flow will be slow when a is small. However, it
has not been proved here that the flow from a small specific driving force can be
obtained from the flow for a larger specific driving force by a mere retardation. If
there is such a solution, and if the response of that fluid is smooth, it differs from
that of a fluid of grade n by a function that is 0(a").

Proceeding with the expansion, from (6.3-4) we see that

4

G = E a'(k ® Vvr + Vur) + 0(a), (6.4-3)
r=1

but calculation of Gn for values of n greater than 1 becomes elaborate, since
repeated multiplication of series is necessary. From (1)2, (3), and (6.3-7), we see that
even the expression for A2 will be very long. For the present problem, fortunately,
we shall not need all of it, and we shall be able to show by successive calculation
that many terms vanish.

We notice first that from the result of putting (1) in general into (6.3-7) it is
obvious that

An = O(a") as a -* 0. (6.4-4)

Thus as a 0 the Rivlin-Ericksen tensors vanish to at least the same order as they
do in the family of retarded flows with retardation factor a, according to (6.1-12).
Consequently the stress as given by the constitutive relation of the fluid of grade n
differs from that of any Rivlin-Ericksen fluid by a stress that in the class of flows
we study here is 0(a"+1) or perhaps even smaller.

We now determine the coefficients in the expansions (1) by substitution of
those expansions into the constitutive relation for a fluid of grade n, substituting
the result into the equations of linear momentum (6.3-12) and then equating to
zero the coefficients of the successive powers of a. At the rth step we obtain a
system of partial differential equations and boundary conditions for determining
the functions Vr and ur.

Step 6.1 (Navier-Stokes Solution). By (3) we see that

Al = G + GT = a[k ® Vvl + Vv1 0 k + Vu1 + (Vu1)T] + O(a2); (6.4-5)
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by (6.1-19)I,

T + p1 = µoA1 + 0(a2). (6.4-6)

Comparison of (5) and (6) with (6.3-10) shows that

t = a uo Vvl + 0(a2),

II = aµo[Vu1 + (Vu1)T] + 0(a2). (6.4-7)

We assume, of course, that µo # 0. Since u Vv1 = 0(a2) and (Vu)u = 0(a2),

substitution of these statements into (6.3-12) and equating to 0 the coefficients of
a in both members yields

AoAV1 = -1,
go div[Vu1 + (Vu1)T] _ V 1, (6.4-8)

where A is the operator div V. The first of these conditions is a Poisson equation;
with the boundary condition v1(p) = 0 when pEaA, that equation determines a
unique solution v1 in A. It is the exact and entire solution of the problem for the
fluid of grade 1, namely, the Navier-Stokes solution, but we must still consider the
consequences of (8)2.

To solve (8)2, we note first that if q = q(p) and u = (Vq)1, then

div[Vu + (Vu)T] _ (VAq)l. (6.4-9)

By (1)3, u1 = (Vg1)l, so (8)2 becomes

µo(ODg1)1 = V 1. (6.4-10)

If we apply the operation 1 to this equation and take the divergence of the result,
we obtain

µoAAg1 = 0. (6.4-11)

Being the biharmonic equation, (11) has a unique solution q 1 such that both q I and
vanish upon M. That solution is q1 - 0. Hence u1 - 0, and by (10) we see

that 1 = const.
At the first stage, then, to within error 0(a2) we obtain the Navier-Stokes

solution for the problem:

z = avlk + 0(a2),
prp = - az + const. + 0(a2). (6.4-12)

Of course, had we chosen to regard the Navier-Stokes constitutive equation as
exact, we should have found the error terms identically zero. In the more general
theory of the fluid of grade n, which we consider here, it is evaluation of the error
terms that will explain the secondary flow.
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Step 6.2 (Solution for the Fluid of Grade 2).
EXERCISE 6.4.1
If

K1 := I Vv1 I, (6.4-13)

from (12)1, (6.3-4), and (6.3-7), show that

Ai = a2[(w1 ® Ov1) + Ki (k ® k)) + 0(a3),
A2 = 2a2 Vv1 ® Vvi + O(a3), (6.4-14)

and hence

AOAV2 = 0, aoAAg2 = 0, (6.4-15)

so

V2 = 0, q2 = 0, u2 = 0 (6.4-16)

and

z = av1 k + O(a3). (6.4-17)

The conclusion of this exercise shows that the Navier-Stokes velocity field
emerges to within an error O(a3). For the fluid of grade 2, as we remarked in
Section 3, a rectilinear solution is possible because (5.7-13) is satisfied; indeed,
the velocity field of the Navier-Stokes solution furnishes an exact solution also
for the fluid of grade 2, the error terms in (14) and (17) being strictly 0 in this
case. Normal tractions5 not provided by the Navier-Stokes theory are required to
produce this same flow in the fluid of grade 2.

Step 6.3 (Approximate Solution for the Fluid of Grade 3). In view of (16) we
see from (3) that

G = ak ® Ov1 + O(a3),

A1.= a[k®Ov1+Vv1®k]
+a3[k 0 Vv3 + Vu3 + Vv3 0 k + (Vu3)T] + O(a4). (6.4-18)

If we substitute these formulae, (14)2, and (16)2 into (6.3-7) and recall that v1 does
not depend on z, we find that

A3 = O(a5). (6.4-19)

Likewise, we can strengthen (14) to read

Ai = a2[(Vv1 0 Ov1) + Ki (k ® k)] + O(a4),
A2 = 2a2Vv1 ® Vv1 + O(a4). (6.4-20)

5See A.C. Pipkin and R.S. Rivlin, "Normal stresses in flow through tubes of noncircular cross-
section," Zeitschrift fur Angewandte Mathematik and Physik 14 (1963): 738-42.
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EXERCISE 6.4.2
Show that substitution of these formulae into (6.1-18) and comparing the outcome
with (6.3-10) yields

t = a,aoVv +a3[iuoVv3 + 202 + 03)K21 VV1] + O(a4),

II = a2(2a1 + a2)(Ovi ® Vvl) + a3µo[Vu3 + (Vu3)T] + O(a4). (6.4-21)

By (16) we see that u = O(a3), Vv = 0(a), so

u Vv = 0(a4), (Vu)u = O(a6). (6.4-22)

Thus, in the dynamical equations (6.3-12), the contributions of the right-hand sides
are of the order of the error when we consider only terms of order up to 3 in r.

EXERCISE 6.4.3
Show that substitution of (21) and (22) into (6.3-12) yields

+03)div(IVv112VV1),

µo div[Vu3 + (Vu3)T] = V 3. (6.4-23)

Steps parallel to those leading from (8)2 to (11) show from (23)2 that

µoLL q3 = 0. (6.4-24)

Since (23)1 is a Poisson equation, it has a unique solution v3 determined by
the boundary condition v3(p) = 0 when p E dA; since the right-hand side of
(23)1 is determined by the Navier-Stokes solution v1 and the material coefficient
(02 +,83)/µo, the solution v3 depends on those quantities. The biharmonic equation
(24) has one and only one solution q3 that satisfies the conditions q3 = 0, dq3 = 0
upon M. That solution is q3 = 0. Hence u3 = 0, and

i = [avi(p) + a3v3(p)]k + O(a4); (6.4-25)

the function v1 is determined uniquely by the cross-section and µo and the function
v3 is determined uniquely by p and by 02 + P3)/AO-

Step 6.4 (Approximate Solution For the Fluid of Grade 4). While the outcome
of the step 2, given by (17), is an exact solution of the problem for the fluid of grade
2 if we simply drop the error term, the velocity field we have just obtained is only
approximate for the general fluid of grade 3. Indeed, if we try to fit (25) with error
term omitted to the theory of the grade 3 or grade 4 fluid, we cannot do so. Since
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the shear-viscosity function of such a fluid is given by (6.1-22)1, we find that

A(K)VV
Q 03)[a_ {µo + 2(F'2 + 2Kj +Q2a4VVi VV3 +a61VV312]} (aVvi +a3Vv3)

= goaVvi + i-poa3Ov3 + 2(N2 + 03)a3K1 VVi + 0(a5) (6.4-26)

and that the error term 0(a5) vanishes if and only if #2 +,63 = 0-that is, if and
only if g = go. Taking the divergence of (26), by use of (23)2 and (8)1 we see that

div(g(K)Vv) = -a + 0(a), (6.4-27)

and again the error term vanishes only for special values of v1, which correspond
with special cross-sections or with a fluid for which 182 + 03 = 0. In order for the
speed field v of a steady rectilinear flow to be possible, (5.7-10) must be satisfied.
By (27), such is the case here, in general, only to within the error 0(a5). Thus a
steady rectilinear flow is not strictly possible for the general fluid of grade 3 in a
pipe of general cross-section. In this sense the solution (25) that our formal but
otherwise exact procedure delivers at step 3 is an approximate rather than an exact
one. Of course from the very start we might have noticed that a steady rectilinear
flow was possible for the particular fluids of grade 3 such that N2 + 163 = 0, since
for them the relation (5.7-13) is satisfied.

EXERCISE 6.4.4
Use of (23), (6.3-4), and (6.3-7) to show that

AI = a2(VVi 0 VV1 + Ki k ® k)

+ a4[VVi ® VV3 + VV3 ® VV1 + 2(Vv1 Vv3)(k (9 k)] + 0(a5),

A2 = 2a2VV1 ® VVi + 2a4(VV1 ® VV3 + VV3 (9 Vvi) + 0(a5),

Az = 4a4Ki VV1 0 Vvi + 0(a6),

trA2 = 2a2Ki +4a4Vv1 Vv3 +0(a5),
A3 = 0(a5), A4 = 0(a6). (6.4-28)

Hence

t = a(...) + a3(...) + a4go Vv4 + 0(a5),

II = a2(...) + a4 (o[Vu4 + (Vu4)T]

+ (2a1 + a2)(Vv3 ® Vv1 + Vv1 (9 Vv3)

+ YKiVvi ®Vv1 I + 0(a5), (6.4-29)

in which

1

y 4(y3 + Y4 + y5 + 2 y6). (6.4-30)
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We are now ready to find the consequences of the dynamical equations (6.3-
12) to order a4. To this end we substitute (29) into the left-hand sides. Since we
now know that u = O(a4), we see that

u Vv = O(a), (Vu)u = O(a8), (6.4-31)

so the right-hand sides of (6.3-12) vanish. Thus, even at step 4 the acceleration
is negligible; therefore, the solution we are obtaining is one for "slow flow" in
the sense that we could have neglected the acceleration from the start, had we but
known it was justifiable to do so. (For the fluids of grades 1 and 2, as we have
shown, the acceleration vanishes exactly.)

EXERCISE 6.4.5
Show that

µOAv4 = 0,

µ0 div[Vu4 + (VU4)T] + (gal + a2) div[Vv3 ® Vvl + Vvl ® Vv3]

+ a, div[Ki Vvl ® Vvl] - 0. (6.4-32)

Hence v4 = 0, and (32)2 simplifies to deliver

µo0044 = S(Vvi)1 V div[lVvl I2Vvi], (6.4-33)

in which

S := y -
2

(2ai + a2)(fl2 + 03). (6.4-34)
µo

For the fluid of grade 4 the condition S = 0 is necessary and sufficient that (15) be
satisfied with q4 replacing q2 and hence that the fluid may undergo steady rectilinear
flow for all a.

If 8 # 0, (33) is an inhomogeneous biharmonic equation for q4, so it has a
unique solution, determined by its right-hand side and hence by the Navier-Stokes
speed vi and by the constant 8, which is a particular combination of nine of the
fourteen viscosities of orders 1, 2, 3, and 4. Except for fluids such that S = 0 or for
cross-sections such that (Vvl)1 V div(f Vv1 12Vv1) = 0, the solution q4 of (33)
will not vanish identically. Therefore, in general, a secondary flow appears at the
fourth step in the formal expansion constructed here. The outcome, then, is

z = (avi + a3v3)k + a4(Vg4)1 + O(a5); (6.4-35)

the functions vi, V3, and q4 are determined uniquely by the cross-section A and by
the viscosities of orders 1 through 4, and none of them vanishes except for special
fluids or special cross-sections.
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The process we have used delivers a unique solution at each step. For certain
very special fluids, as we have seen, the process terminates after a certain finite
number of steps and thus delivers an exact solution of the problem. While the
process shows that the solution is the only one expressible as a polynomial in a, there
remains a possibility that other solutions, solutions that are not such polynomials,
may exist for the same boundary-value problem. Even for the Navier-Stokes fluid
this remark is not an idle one, since many persons, relying upon the evidence
of experiment, think that for sufficiently great values of the driving force a there
should be infinitely many unsteady solutions in addition to the classical steady one.
At present there is no mathematical proof of this conjecture. Still more difficult,
naturally, is the problem for a general fluid, since there is then no reason to expect
that the formal power series in a terminates, and we have no proof that it converges
for any interval of a or represents in any way a solution of the problem.

Mathematical difficulties of the highest order are encountered in any attempt to
study continuum mechanics precisely, and the wonder is not that so few problems
have been solved convincingly, but that any at all have been solved.

6.5 Secondary Flow down a Straight Pipe: Discussion

As we remarked at the beginning of step 4, a secondary flow results even for the
fluid of grade 3 if 02 + 03 : 0, since if yl = y2 = y6 = 0, then (6.4-34)
generally yields a nonzero value of 3 and hence, for a general cross-section, the
stream function q4 also fails to be constant. The only exceptions are provided by
fluids such that 2a1 + a2 = 0 or #2 + 03 = 0. In the former, by (6.1-22)2 we see
that Ql := 0 for a fluid of grade 2; in the latter, by (6.1-22)1,2 we see that g = go
and of is proportional to K2; in both cases the special relation (5.7-13) holds, so
a rectilinear flow is possible. In general, nonetheless, (6.4-35) with 0(a5) and y
replaced by 0 does not provide an exact solution for the fluid of grade 3.

Returning to the general conclusions in Section 4, which hold to within the
error 0(a5) in our formal series expansion, we see that despite the length of the
calculation, the conclusions are simple. The first term, v1, is the Navier-Stokes
field of speed, which is uniquely determined by the Poisson equation (6.4-8)1 and
the boundary condition v1 = 0 on 8A. Once we have v1, we easily determine v3
by the Poisson equation (6.4-23)1 with the boundary condition v3 = 0 on aA .

Nevertheless, if our interest lies in the secondary flow alone, we may pass directly
to u4, the stream function of which is obtained by solving the biharmonic equation
(6.4-33) with boundary condition q4 = 0, 0 on aA.

Let vl, v3, and 44 denote the solutions of the problem defined by (6.4-1) and
(6.4-2) for the fluid such that go = 1, #2 + #3 = 1, S = 1 in some system of units.
The corresponding solution for the fluid with 14 arbitrary viscosities go, al, a2,
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fit, 2, ,63, Y1, , Ys are given by

I - 02+_3_ 6 _
VI = -V1, V3 = V3, q4 = -q4-

ILO 4µo 5µo
(6.5-1)

The curves q4 = const. are the streamlines of the secondary flow. Since these are
the same as the curves q4 = const., the secondary flow pattern is the same for all
fluids in which µ06 0 0. As is clear from (6.4-35), the flow is generally helicoidal,
making the fluid points travel down the tube in some sort of spirals. The pitch of
these spirals, unlike the secondary pattern alone, varies from one fluid to another
and depends also upon the specific driving force a. So also do the distribution
of speeds along the streamlines and the tractions the pipe must exert in order to
contain the fluid in its flow.

In Section 5.7 we saw that a steady rectilinear flow adhering to a pipe is a
viscometric flow but generally is not dynamically possible unless some particular
body force that is not lamellar is supplied. The foregoing analysis determines, to
within specified assumptions and a remainder terms 0(a5), the flow that does occur
in a fluid body of grade n when the specific driving force a alone is applied. This flow
is not viscometric. Nevertheless, as the assertions in the following exercise show, it
is completely determined by the viscometric functions of the fluid, providing that
µ be twice differentiable and of four times differentiable.

EXERCISE 6.5.1
Show that the truncated viscometric functions (6.1-22) of the fluid of grade 4
show that the perturbation v3 of the longitudinal speed is determined for any given
cross-section by the quantity

A "(O)
(6.5-2)

2p0

while the quantity 6 determining the secondary flow is given by

6 = o -'(O) _ a' (0)µ"(0) (6.5-3)
24 4µo

These conclusions have a double importance. First, the flow pattern is more
ebullient than that predicted by the Navier-Stokes theory. Second, information
gleaned in viscometric flows suffices to predict the flow that does occur, though it
is not viscometric. Of course, for the Navier-Stokes fluid and the fluid of second
grade, all flows are determined by viscometric information, and originally the
aim of viscometry was to ascertain the nature of a particular fluid and hence to
determine, in principle, all flows that bodies of that fluid might experience. The
solution for secondary flow in pipes shows that data obtained by experiments on
viscometric flows may serve in principle to predict the nature of a phenomenon that
occurs in a flow that is not viscometric. We notice that the function a, which has
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no effect on the possibility or impossibility of rectilinear flow, also has no effect
on the approximate flow according to the theory of the fluid of grade 3 or more.

Since the theory of the partial differential equations found to occur at the
successive stages is standard, we may (with some reservation) regard the problem
of calculating secondary flows according to the theory of the fluid of grade n as
solved to within an error O(a5) by the foregoing analysis. The conclusions may
be illustrated by the example of the elliptical pipe. The Navier-Stokes solution has
been obtained already as (5.7-15), whence it follows that

_ czb2 (x2 x2 \
vl

2µo(c2 + b2) \ c2 + b2 - 1 I . (6.5-4)

EXERCISE 6.5.2 (Green and Rivlin)
Show that for the elliptical pipe (6.4-33) becomes

6c2b2(c2 - b2)5
= S (6 5 5)µ0 g4 (c2 +

b2)3
x1x2. . -

Hence the stream function of the secondary flow is given by

8 x x2
(14 = A

(C2
+ b2 - 1) xix2,

c6b6(c2 - b2)_A
4(c2 + b2)(5c4 + 6c2b2 + 5b4)

(6.5-6)

Here we have discussed the presence of secondary flows due to a small driving
force. However, it is possible to study the possibility of secondary flows when the
driving force is not small, but the departure from the circularity of the cross-section
is small. The recent study of Mollica and Rajagopal6 discusses this problem in great
detail.

It is often said that the first few terms of a power series rarely enlighten because,
since their sum does not stray far from what was known before, they are fit to
describe only situations essentially classical. The problem of secondary flow in a
straight pipe affords one of the rare cases in which a power series delivers something
not routine. As a - 0, the resulting velocity field approaches the classical one,
it is true. Nonetheless, the. presence of any steady component, however small, of
velocity normal to the main flow yields helicoidal streamlines. Therefore, the fluid
points are not caused to remain arbitrarily close to their classical positions by

6F. Mollica and K.R. Rajagopal, "Secondary flows due to axial shearing of a third grade fluid between
two eccentrically placed cylinders," International Journal of Engineering Science 37, 411-419 (1999).
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making a arbitrarily small. True, the smaller a is, the longer the pipe will have
to be in order to reveal the difference from the classical prediction. But should
we peer down the infinite pipe, we should see (with eyesight of infinite range) the
projections of the streamlines as closed curves whose forms are independent of a.

6.6 Universal Flows of Fluids of Grades 1, 2, and 3

Here we shall consider only fluids subject to lamellar body force. A flow universal
for fluids of grade n may be universal for fluids of grade n + 1, but it need not be.
Of course a flow universal for fluids of grade n is universal for fluids of grade less
than n. For example, all flows of an Eulerian fluid are universal; they are those that
preserve circulation. Therefore, since Eulerian fluids are particular fluids of grade
n for every n, all universal flows of fluids of grade n preserve circulation:

skw grad z = 0, (2.2-2)

z = - grad PQ. (2.2-9)

For a fluid whose determinate response is 9 to undergo a flow that preserves
circulation, it is necessary and sufficient that if F` gives rise to that flow, then

skw grad div G(F`) = 0,

and hence there is a scalar field A such that

div g(F`) = - grad),

and the pressure is given by

P=P(Pa-zu)-A.

(3.8-6)

(3.8-7)

(3.8-8)

Taking zu as 0 reminds us that universal flows can be produced by applying surface
tractions alone. Conversely, nonetheless, surface tractions do not suffice to make
an arbitrary fluid undergo an arbitrary flow that preserves circulation. Moreover,
(3.8-8) shows us that once a flow is known to be universal for a certain fluid, the
pressure required to effect it is a linear combination of three potentials.

We now address the problem of finding flows of fluids of grades 1, 2, and 3
that are universal for them but are not universal for all fluids.

6.6.1 Navier-Stokes fluid

For the Navier-Stokes theory, n = 1, and the constitutive equation for the determi-
nate stress is

9(F`) = µA1, g > 0, (6.6-1)
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so (3.8-6) reduces to

skw grad div Al = 0, (6.6-2)

Thus there must be a potential Pf such that

div Al - 2 grad Pf, (6.6-3)

and in (3.8-8), ? = 2µPf for the Navier-Stokes fluid. Application of (3.8-6) gives
the required pressure field:

cp=Pa-2µPf (6.6-4)

The condition (3) is familiar in classical studies of the kinematics of fluids.
Because div Al = 2 div W in an isochoric flow, (3) states that div W = - grad Pf,
so Pf is called afiexion potential. Because div div W = 0, necessarily APf = 0,
and various interesting consequences follow.'

In summary, we may obtain all Navier-Stokes universal flows as follows.

1. Determine every Euler flow that satisfies (2).

2. Exhibit, by use of (4), the pressures required to effect them.

Steady universal solutions of Navier-Stokes equation are particularly suited
to determining µ by experiment. We assign z7 to within an arbitrary constant h,
determine h from boundary conditions, and calculate both P. and Pr from the given
flow x, known to be universal. We then measure p at some one point. Since p is
a constant, that amount of data allows us to calculate it from (4). Examination of
some procedures used to determine µ by experiment shows that in principle they
rest upon this idea. An example is provided by the steady shearings,

x = v(p)k, (5.7-1)

where p is a position vector in a plane normal to the unit vector k. These flows are
isochoric and steady; in Section 5.7 we saw that they are viscometric and that they
satisfy the dynamical equation if and only if

Lv = -C = const. (6.6-5)

(see the text following (5.7-13)).

EXERCISE 6.6.1
The condition (5) is necessary and sufficient for (3) to be satisfied, and if so

2Pf = Cz, (6.6-6)

where z is a coordinate on a line parallel to k.

7These and other developments are due to Thomas Craig. See pp. 44 and 48 of C. Truesdell, The
Kinematics of Vorticity (Bloomington: Indiana University Press, 1954).
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There are further universal flows, as can easily be verified by specializing
suitably the viscometric flows analyzed in Section 5.4. To delimit and display the
whole class of universal solutions is quite another problem. It has resisted the
efforts of expert hydrodynamicists for more than a century. Recently Marris, Yin,
and others have had noteworthy success in finding some universal solutions and
excluding some putative classes.

A screw flow is a rotational flow in which values of the velocity field and the
spin field are parallel at each point and time. For a steady flow of this kind, (2.2-29)
delivers an acceleration potential: z = grad(2 z2). To be a universal Navier-Stokes
flow, the velocity field would have to satisfy (2). In a difficult, complicated analysis
Marris8 has proved that in three dimensions the system

div i = 0, (1.4-6)

Wi = 0, (6.6-7)

skw grad div W = 0 (6.6-8)

has no solution except W = 0; no steady screw flow is a Navier-Stokes flow. Many
studies of steady screw flows are rendered vacuous by this theorem.

A complex-lamellar flow is a rotational flow in which the axis of spin at
each point is normal to the velocity there. Every plane rotational flow is complex-
lamellar; so is every rotational axisymmetric flow. Marris and Ames9 have de-
termined and classified the vorticities of all steady, rotational, universal complex-
lamellar Navier-Stokes flows:

1. Plane or axisymmetric flows

2. Flows whose streamlines are parallel straight lines

3. Flows obtained by superposing a steady, irrotational flow on the circular
helical flow of Strakhovitch, namely, in cylindrical physical components

d kar r . d kr2
(6.6-9)xr = 0, X9 = r +

2
, xZ = - a xB = _ a -

2

where d, k, and a are constants. An example belonging to Marris and Ames's
third class is seen in the following exerciselo

8A.W. Marris, "The impossibility of steady screw motions of a Navier-Stokes fluid," Archive for
Rational Mechanics and Analysis 70 (1979): 47-66.

9A.W. Mains and W.F. Ames, "Addendum: on complex-lamellar motions," Archive for Rational
Mechanics and Analysis 64 (1977): 371-79. The conclusions in this paper rest in part on an earlier
work by Marris, "On complex-lamellar motions," ibid. 59 (1975): 131-38. See also A.W. Marris and
M.P. Stallybrass, "A class of fluid motions obtained by superposition," Atti della Accademia di Scienze
di Torino 113 (1979): 53-60.

10A general representation of the velocity fields is given by M.P. Stallybrass and A.W. Marris, "Some
new exact solutions of the Navier-Stokes equations associated with steady vortex flows," Letters in
Applied Engineering Science 5 (1977): 359-66.
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EXERCISE 6.6.2
Show that the isochoric flow

c z-a bxr = - - . .+. -1
a r r

XB _ c log r + d +
(6.6-10)

r . C d kr2xZ=--xe=--logr----,
a a a 2

where a, b, c, d, and k are constants, is a complex-lamellar, universal Navier-Stokes
flow.

Even plane flows are troublesome. By (2.5-11) they may be described in terms
of a stream function q, which here must solve the system

8r /.q + (V q)T VAq = 0, / Aq = 0, (6.6-11)

where V and A are the gradient operator and the Laplacian operator in the plane.
The first of these equations makes the flow have an acceleration potential, the
second, a flexion potential. (If we look back at (6.4-8) and (6.4-11), we see that
in the series expansion presented in Section 6.4 the first term is provided by a
universal Navier-Stokes flow.)

W.-L Yin," broadly extending and completing an earlier analysis by Kampe
De Feriet and others, has determined and classified all plane, universal Navier-
Stokes flows, steady or not. His analysis, which employs functions of a complex
variable, is ingenious and difficult.

For axisymmetric isochoric flows to preserve circulation, it is necessary and
sufficient that the ratio of vorticity to the distance from the axis remain constant
for each fluid point: 12:

w/r=K, K=0. (6.6-12)

Marris and Aswani13 have proved that all steady universal Navier-Stokes flows that
are axisymmetric, other than those whose streamlines are parallel straight lines,
must satisfy (13) with K constant in space.

From all the foregoing we may conclude that even the relatively few universal
Navier-Stokes flows are too numerous to survey succinctly. Formally, the general
solution of the system constituted by (2.2-27) and (2) remains unknown.

"W.-L. Yin, "Circulation-preserving plane flows of incompressible viscous fluids," Archive for
Rational Mechanics and Analysis 83 (1983): 169-84.

'2Svanberg's theorem, CFT 133 C. Truesdell and R. Toupin, Classical Field Theory, Handbuch der
Physik, 3 (Springer-Verlag: Berlin, Gottingen, and Heidelberg, 1960).

3A.W. Marris and M.G. Aswani, "On the general impossibility of controllable axisymmetric Navier-
Stokes motions," Archive for Rational Mechanics and Analysis 63 (1977): 107-53.
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6.6.2 Fluids of Grade 2

To study universal flows of fluids of grades greater than 1, we follow the treatment
of Fosdick and Truesdell. We should expect the universal flows of fluids of grade
2 to make up a proper subclass of the universal Navier-Stokes flows. A glance at
(6.1-17) shows that now

C(Ft) = µA1 +aIA2 +a2AI, (6.6-13)

in which p, al, and a2 are constants. Universal flows must make the right-hand
side equal to a gradient. Because of (3), div(aiA2 + a2A2,) must equal a gradient.
Giesekus showed that if (3) holds, then for isochoric flows

div(A2 - Ai) _ -grad (2Pf - 4 trAl) . (6.6-14)

We shall establish this identity a little fu

- a grad (21f_ 4 trAi

rther on. Use of it shows that

= (al + a2) divA2, (6.6-15)

so Navier's

-grad {

rrdynamical equation reduces to

l
Pa-tp-vPf+a2(Pf-4trAl I

l
I =(a1+a2)divA2. (6.6-16)

Thence follows the necessary and sufficient condition

(a l + a2) div A2 = -(a, + a2) grad P2, (6.6-17)

in which P2 is a scalar field. Conversely, if this condition as well as (2.11-47) and
(3) are satisfied, then Navier's dynamical equation is satisfied, and the pressure
required to effect the corresponding universal flow is given by

tP = Pa - 2µ Pf + a2 (2If -
4

tr A' _ (a l + CO div A2. (6.6-18)

Hence the fluids ofgrade 2 such that al +a2 = 0 have just the same universalflows
as the Navier-Stokes fluids; those for which al + a2 0 0 have as their universal
flows only those that satisfy the additional condition

div A2 = - grad P2. (6.6-19)

For an example we return to the steady shearings (5.7-1).

EXERCISE 6.6.3
Show that the steady shearings satisfy (19) if they satisfy (5), and

P2 = 2Cv - IVvI2,
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Pf=Cv,
trAi = 2IVvI2, (6.6-20)

gp= -µCx-(2a1+a2) Cv-2IVv12).

Thus the steady universal flows for a Navier-Stokes fluid are universal for fluids of
grade 2, but a pressure proportional to Cv -11 VvI2 must be added to or subtracted
from the Navier-Stokes pressure in order to effect them.

As the second example we turn to plane flows and show that the class ofplane
universal flows for fluids of grade 2 is the same as that for Navier-Stokes fluids.

EXERCISE 6.6.4
Show that

div A? = V [2I V Vq I2 - (Aq)2] = Z V tr A?. (6.6-21)

Thus (15) and (12) imply that (19) holds,

P2 = 2Pf - 2[21VOq12 - (Aq)2], (6.6-22)

and

cp = -2Pf - 2a1 Pf + I (3a1 + 2cr2)[2I V Vq 12 - (Aq)2]. (6.6-23)

6.6.3 Fluids of Grade 3

A glance at (6.1-19)2 shows that now

CQ(F`) = ... P1A3 + 02(A1A2 + A2A1) + $3[(trA2)Al], (6.6-24)

in which the dots stand for the right-hand side of (14). Following the pattern of
the treatment of the fluid of grade 2, we now see that for a universal flow, the
divergence of the right-hand side of (24) must equal a gradient. A little further on
we shall prove an identity that delivers as a special instance not only (15) but also
the following:

div[(trA2)A1 - (A1A2 + A2A1)]

= -grad(2Pf - P2 - 1 trA2 +6 trA3), (6.6-25)
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on the assumption that divi = 0 and that (3) and (19) hold. Therefore Navier's
equation reduces to

-grad p(Pa-ru)-p-211 Pf+a2(2Pf-4trA1)-(al+a2)P2

+ fl2 (2Pf_ P2 - 4 trAi +5trAi - P/p]

_ flu div A3 + (fl2 + fl3) div[(tr A2)Al ]. (6.6-26)

Thus for the universal flows of fluids of grade 3, not only z, µA 1, and (a 1 + a2 )A2
must equal gradients but so also must

Nt div A3 and (fl2 + 03) div[(tr A2)Al ]. (6.6-27)

To complete the arguments given in treating fluids of grades 2 and 3, we
need to establish the identities (25) and (15). Both of these are consequences of
the following Fundamental identity (Fosdick and Truesdell.14 Let v be a velocity
field, from which A 1 derives; let A be any symmetric tensor field deriving from a
potential,

di A d 6 6 28v = - gra cp, . - )(

and let B be defined as follows:

B : = A + A grad v + (A grad v)T. (6.6-29)

Then

grad cp = - div B +
1

2 (grad Al) + div(AA1 ). (6.6-30)

This identity deserves to be called fundamental because it can be used to reduce
conditions of integrability for fluids of grade higher than 3.

PROOF First we differentiate (28) substantially :

grad c = - div A + div[(gradA)v] - grad[(div A) v]. (6.6-31)

Insertion of (29) here yields

grad c = - div B + div[A grad v + (grad v)T A + (grad A)v]

- grad[(div A) v], (6.6-32)

14R.L. Fosdick and C. Truesdell, "Universal flows in the simplest theories of fluids," Annali della
Scuola Normale Superiore di Pisa 4 (1977): 323-4 1.
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EXERCISE 6.6.5
Show that for a field v and a symmetric tensor A, sufficiently differentiable,

grad[(div A) v] = (grad div A)T V + (grad v)T div A,

div[(grad v)TA] = (grad v)T div A + A A. [grad(grad v)T], (6.6-33)

div[(grad A)v] = (grad div A)v + div[A(grad v)T]. (6.6-34)

Application of these identities to (32) completes the proof.
To establish (15), we take Al for A in (30) and recall that (grad Al )Al =

z grad tr A2 l. Then (29) shows that B = A2, and thence c = 2 Pf by comparison of
(26) with (3).

To establish (25), we take Ai for A in (30). Then (28) is satisfied, since by
(15) and (18)

div A, grad (P3 - 2Pf + 4 tr Al ) . (6.6-35)

Thus in (28) cp = P3 - 2Pf + a tr A?, so (30) delivers

grad P3 - 2Pf + 4 tr A _ - div(B - Ai) + 6 grad(tr Al ). (6.6-36)

Here B is given by (29) as

B =A +A, grad v + (A, grad v)T, (6.6-37)

or, equivalently,

B =Ai +Ai + Ai W - WAi. (6.6-38)

The second Rivlin-Ericksen tensor may also be written in the form

A2 = Al +A3 + Al W - WA1, (6.6-39)

so

B - Ai = A1A2 + A2A1 - 2Ai. (6.6-40)

From the Hamilton-Cayley equation we know that

1A = 1(tr I (tr A')1. (6.6-41)

Recalling that tr A2 = tr A2, by use of (39) we obtain

B - AI = A1A2 + A2A1 - (trA2)A1 - 3(trAi)1. (6.6-42)

Applying this formula to (35) yields (25), which led to the necessary and sufficient
conditions for universal solutions of a fluid of grade 2, namely

1 skw grad div A3 = 0,
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(0B2 + 03) skw grad div[(tr A2)A I] = 0. (6.6-43)

6.6.4 Formal summary

If we set aside special values for the coefficients al +a2i 01, and,62+fi3, necessary
and sufficient conditions for universal solutions of grades 0, 1, 2, and 3 are

x grades 0, 1, 2, .. .
div A, grades 1, 2, ...

0 = skw grad div A2 grades 2, 3.... (6.6-44)
div[(tr A2 )A 1 ] grades 3, 4, .. .
div A3 grades 3, 4, ... .

These suggest the beginnings of an iterative scheme for obtaining the classes of
universal flows for fluids of grade n. The system might suggest that for a fluid of
sufficiently high grade there would be no universal solutions, but we know that
is not true, for, as we have seen, there are flows universal for the whole class of
simple fluids-indeed, there are even universal viscometric flows.

6.6.5 An approach to determining all universal flows

The larger the constitutive class considered, the fewer the universal solutions. To
show that a certain flow is not universal for all simple fluids, we need only show
that it is not universal in some particular subclass. At present the determination
of all universal flows for homoegenous, incompressible simple fluids is an open
problem. We could attempt to solve it by determining the entire class of universal
flows for fluids of some low grade, such as 3 or 4. If we could exhibit these flows,
it would then be a simple matter to see if they were indeed universal for all simple
fluids. For discovery, this approach is more systematic than the method of trial and
error, which has been used to find such universal solutions as are now known, and
it is mathematically easier than would be a frontal attack upon the equations of
motion of a simple fluid in general. Maybe at grade 3 or grade 4 all universal flows
will be found.

This approach has been illustrated by carrying it through for the steady shear-
ings (5.7-1) 1. It is known that a shearing is universal for homegenous simple fluids
if and only if v reduces to an affine function of two Cartesian coordinates y and
z or of Arc tan (y/z). In fact these shearings constitute also the complete set of
universal steady shearings for the fluid of grade 3.

The steady shearings are viscometric flows, so for them A3 = 0. Thus (44)5
is satisfied, and (44)4 becomes

V. (IVvI2Vv) = K = const. (6.6-45)
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By complicated analysis, Fosdick and Truesdell proved that the only solutions to
this equation are the simple shearings and the shearings of fanned planes. Thus
the fluid of grade 3 has as its universal steady shearings precisely those that are
universal for all fluids, no more. In other words, as far as steady shearings are
concerned, in order to exhibit all universal flows it suffices to find the universal
flows for a fluid of grade 3.

General Reference

[1.] Truesdell, C. and Noll, W., "The Non-Linear Field Theories of Mechanics,
Handbuch der Physik 33." Berlin, Heidelberg, and New York: Springer-Verlag,
1965.





Some Flows of Fluids of Grade 2

7.1 Fluids of Grade 2

The incompressible fluid of grade 2 is defined by the constitutive relation (6.1-17),
in which µ, al, and a2 are constants, and A, the shear viscosity, is positive. The
sign of the coefficient a 1 has important effects on the nature of the solutions. If the
constitutive relation is taken as defining a particular fluid, just as the Navier-Stokes
fluid is almost always regarded, other restrictions (for example, those implied by
thermodynamics) lead to the conclusion that a1 > 0, al +a2 = 0. However, strong
sentiments have been espoused for assuming that al < 0 when this constitutive
relation is regarded as a second-order approximation in the sense of retarded mo-
tions (6.1-9). A critical discussion of the relevant issues can be found in the recent
review article by Dunn and Rajagopal.l In the following purely mechanical treat-
ment we do not impose any of these adscititious inequalities. We instead emphasize
the effects that the sign of oil has upon the phenomena associated with fluids of
grade 2.

We note that Al Jul I has the dimension of time. Thus the fluid of grade 2 may
be expected to show evidence of having a time scale proper to itself. The special
flows we study now will reveal some effects of the existence of this proper time.
Of course these effects must vanish when a 1 = a2 = 0, for then the fluid of grade
2 reduces to the Navier-Stokes fluid, with which no constitutive parameter bearing
the dimension of time can be associated.

11E. Dunn and K.R. Rajagopal, "Fluids of differential type: critical review and thermodynamic
analysis," International Journal of Engneering Science 33 (1995): 689-729.
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7.2 Unsteady Lineal Flows

We consider again the velocity field of a time-dependent shearing:

X1 = 0, x2 = v(xi, t), x3 = 0. (5.5-1)

In Section 5.5 we obtained the general form of the components of stress for this
flow, but here we shall solve directly the dynamical equation that arises when the
fluid undergoing the flow is of the second grade. Substituting this velocity field
into (6.1-17) and then substituting the outcome into Cauchy's first law (5.4-1), we
obtain the following linear differential equation for v, in which we write x for xl :

jt v+ala,aXv+c(t)=paty. (7.2-1)

EXERCISE 7.2.1 (Coleman and Noll, Ting)
Verify that the value of c(t) of c is the specific driving force.

The coefficient a2 does not appear in (1). If al = 0, (1) reduces to the heat
equation with source c, just as it does for the Navier-Stokes fluid, in the theory
of which the lineal flow (5.5-1) occupies a prominent position as one of the few
flows for which explicit solutions are easy to get. These solutions are important
for illustrating the birth, growth, and decay of plane boundary layers. For a fluid
of grade 2 such that al # 0, the field of speeds v differs from that appropriate to
the Navier-Stokes equations. More than that, the partial differential equation to be
solved is of third order rather than second. As might be expected, there is a greater
range of possible solutions. The following text and exercises illustrate that fact.
We shall suppose always that c := 0.

Markovitz and Coleman remarked that a particular solution of (1) is given by

v(x, t) = Ve-' cos(wt - bx), (7.2-2)

in which V and w are assigned positive constants and

P(O
0 (7 2-3)a

2µ 1 + 2 + 1 + 42
> , .

b
P(D

(
- >+ 0 2-4)(7

2 1z 1 + 2
1

2

. .

Here 4 := al w/µ, so sgn = sgn al; if al 54 0, equations (3) and (4) can be given
the equivalent forms

a = p 1 +
tai 1+1 2 1+ 2
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(7.2-5)

gal ( 1 +2 1 + 2 I

This solution may be regarded as representing a standing harmonic wave that an
infinite oscillating plate x = 0 induces upon a fluid body adhering to it and filling
the half-space x > 0. For the Navier-Stokes fluid aI = 0, so

a = b = l2µ ; (7.2-6)

the absorption coefficient a and the phase shift bare equal, and both are proportional
to ,fio-), so for a given fluid the higher the frequency of the oscillation, the more the
waves are absorbed at great distances from the driving plate. If al 0 0, the nature
of the shearing and the spin is quite different.

EXERCISE 7.2.2 (Truesdell)
When V and (o are assigned, show that the maximum shearing and vorticity are
given by

Kmax(w) = wmax(w) = V ,/a-2 + b2

p(D

µ (1 +ajw2/µ2)
(7.2-7)

Consequently a value of al other than 0, whichever its sign, makes the capacity
of the fluid body to be sheared and spun less than it is for the corresponding body
of Navier-Stokes fluid but lets propagate more easily to great distances whatever
shearing and spin there are. The quantity of the effect is governed by the time lapse
Ice i I /µ, which is a constitutive property of a fluid of grade 2. A Navier-Stokes fluid
has no characteristic time lapse.

EXERCISE 7.2.3 (Truesdell)
Show that if al > 0, then monotonically

a2 -+ p
as Oc ,

al

while if a l < 0, then a2 reaches a maximum when s _ -1 / /,

2 p
amax -- - gal

(7.2-8)

(7.2-9)
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after which it falls off to zero. The frequency coc,;t corresponding with _ 1

is related to amax as follows:

amax_-/3P
wait 8 µ

(7.2-10)

Thus, in a body of fluid of grade 2 for which a> > 0, the oscillations of high
frequency are attenuated less than in the corresponding Navier-Stokes fluid but
not so little as in any fluid of grade 2 for which eel < 0. In contrast, a negative
value of al gives rise to a critical frequency, namely µ/(-'13al), which has no
counterpart in the Navier-Stokes theory. Oscillations of very high frequency are
damped scarcely at all.

In contrast with the Navier-Stokes fluid, the fluid of grade 2 may produce
negative stress power, as is illustrated in the following exercise.

EXERCISE 7.2.4 (Rajagopal)
Show that for the fluid of grade 2 the stress power is given by

a2a' At22 + I2 +Aw = 2 IA 2-11)(7rl t i.4 .

In the flow (2), therefore,

w = µp2 + a l pq,
p := Ve-°x [b sin(cot - bx) - a cos((ot - bx)],

q := Vwe-°x [b cos(wt - bx) + a sin(wt - bx)]. 7.2-12)

If p andco/it are fixed positive values, and if a 1 is given a fixed value either positive
or negative, there are values of x and t such that w < 0.

It would be wrong to discard the fluid of grade 2 because of the behavior just
demonstrated, for there is no general principle or law of physics that requires the
stress power to be positive always and everywhere in all motions of all fluids.

EXERCISE 7.2.5
Verify that the velocity field

v =a sin ndxect, (7.2-13)

with a constant and n an integer, is a solution of (1) satisfying the boundary
conditions

v(0, t) = v(d, t) = 0 for all t, (7.2-14)
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provided that a is a root of the equation

n27r2 pa
'

(7.2-15)
d2 µ - ala

The solution (13) represents an oscillation of a fluid confined by the two parallel,
stationary walls x = 0 and x = d. If al > 0, there is precisely one root of (15),
and it falls in the interval (0, µ/a1). Then (13) is bounded as t --* oc. If a1 < 0,
there is again one root ao of (15) unless d = n7r -al/p, in which case there is
none. If d > n7r -al/p, then ao > 0; if d < n7r -al/p, then ao < it/al.
When d < 7r -al /p, (13) is unbounded as t -> oo, regardless of the value of
n. If al = 0, the root of (15) is again unique; it is positive and proportional to n2.
Thus, for n sufficiently large, the rate of decay of (13) when a 1 > 0 is slower than
for the corresponding Navier-Stokes solution.

Now we seek solutions of (1) in separated variables:

v = V(x)T(t). (7.2-16)

Substituting this assumption into (1) yields

TV" +
al T'V" - P VT' = 0, (7.2-17)
IL A

in which again we put c = 0. Effecting the separation delivers

T' _ V"
= K = const., (7.2-18)

T
_

1(pV - a1 V")

so

T' - KT =0,
I + Kal V" - KpV = 0. (7.2-19)

From the first member it follows that

T = AeKt,

and if solutions are to be bounded as t oo, we require that

K = -a2, a > 0,

where a is a constant. Equations (20) and (21) imply that

2

V"+ pa V =0.
it - a2a1

(7.2-20)

(7.2-21)

(7.2-22)
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If a 1 < 0, then

V = B1 cos ),x + B2 sin Xx,

pat z

}( 2a1µ - a

where B1 and B2 are constants. If 0 < a1 < µ/a2, then

V = B3eV ' + B4eV ,

Y .
pa 2

aza µ)

(7.2-23)

(7.2-24)

Solutions of the form (16) can be generalized to provide such combinations as

V = Re Ane'"eo` (7.2-25)
n

when the sum is finite and An, A,2, and fi are arbitrary complex constants.
A more general solution is valid if t > to:

+°° -µ,B2 cos ox 1
}dfi, (7.2-26)v=AJ exp

P+aifi2
00 r (t - t0)I {n

fix
JJJ

sil

in which A is a constant and either cos fix or sin fix appears in the integrand.
Further formal solutions can be generated by using techniques from the theory of
conduction of heat.2

So far, we have not considered any initial-value problem for equation (1). Such
problems arise when we wish to describe the way a prescribed flow decays due to
internal damping as time goes on.

THEOREM 7.1 (Coleman, Duffin, and Mize1)
If a1 < 0, every solution of (1) satisfying (14) is unbounded of exponential order
as t -+ oo, except for a finite-dimensional family. If d < n -a 1 1p, then the only
bounded solution of (1) satisfying (14) is v = 0.

THEOREM (Coleman, Duffin, and Mizel). Let a function v such that

v(0) = v(d) = 0 (7.2-27)

2H.S. Carslaw and J.C. Jaeger, Conduction of Heat in Solids, (London: Oxford University Press,
1959), and E.T. Copson, Partial Differential Equations London: Cambridge University Press, 1975.

3B.D. Coleman, R.J. Duffin, and V.J. Mizel, "Instability, uniqueness, and non-existence theorems
for the equation u1 = ux, - u, t, on a strip," Archive for Rational Mechanics and Analysis 19 (1965),
100-116.
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be given. If al < 0 and d = nn -al /p for some integer n, the condition
d

J
v(x) sin ( - p

/
dx = 0,

0

(7.2-28)

is necessary for the existence of a solution of (1) satisfying (14) and the initial
condition

v(x, 0) = v(x) for all x E [0, d]. (7.2-29)

Thus, if a1 < 0 the class of flows (5.5-1), again when c = 0, includes no solutions
that vanish upon x = 0 and x = nn -al/p and satisfy the initial condition
(29). Indeed, a solution of the equation of motion that satisfies (5.5-1) when t = 0
generally fails to satisfy it at later instants.4

Also in other lineal flows the behavior of the fluid of grade 2 depends strongly
on the sign of a1. Considering only fluids for which al > 0, Ting5 in an elegant
and exhaustive memoir examined several classes of solutions of (1) and of the
corresponding equation for flows within circular pipes. In all circumstances he
considered he proved that the problems specified by initial values and boundary
values were well set, and he constructed their solutions explicitly. They differ
greatly from their counterparts for the Navier-Stokes fluid both mathematically
and physically. All solutions satisfy the partial differential equations up to the
boundaries and upon them, with all partial derivatives continuous even at the very
instant when motion or decay begins, so the "Lamb paradox" is avoided. All rates
of decay and dissipation are greater than for the Navier-Stokes fluid with the same
viscosity.

It is a very different matter for fluids such that al < 0; Ting remarked that for
them, none of the problems he considered had a bounded general solution. That
the solutions of (1) for a, < 0 are rather peculiar is illuminated by an example of
instability due to Coleman, Duffin, and Mizel. Let vi be any unbounded solution
of (1) satisfying (14) as in Exercise 2.5., and let v(x, t) be a bounded solution of
(1) in the channel 0 < x < d for all time. Set

v* := v + svl.

Then v* also is a solution of (1), and

Iv*(x, 0) - v(x, 0)I < E.

(7.2-30)

(7.2-31)

Moreover, v*(x, t) is unbounded as t --* oo. Consequently, if for the fluid between
the two stationary plates x = 0 and x = d some particular initial speed field
v(x, 0) gives rise to unbounded solution v(x, t), there are infinitely many initial

4B.D. Coleman and V.J. Mizel, "Breakdown of laminar shearing flows for second-order fluids in
channels of critical width," Zeitschrift fiir Mathematik and Physik 46 (1966): 445-448.

5 T. W. Ting, "Certain nonsteady flows of second-order fluids," Archive for Rational Mechanics and
Analysis 14 (1963): 1-26.
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speed fields v*(x, 0) that differ by an arbitrarily small amount from v(x, 0) and give
rise to unbounded solutions. In this sense the kind of internal damping represented
by the fluid of grade 2 when a I < 0 may amplify rather than attenuate disturbances.

The class of bounded solutions of (1) satisfying inhomogeneous boundary
conditions is made clear by the following example:

) x (7.2-32)v(x,t =A(1-d)forall t,

which satisfies

v(0, t) = A, v(d, t) = 0 for all t. (7.2-33)

EXERCISE 7.2.6 (Rajagopal)
When c=0, show that the velocity field is given by

00

v(x,t)=A(1-a)-Zn _n -exp( n

n=l

O
µ

P+n d2

(7.2-34)

is a solution of (1) if al > 0.
This behavior makes it plain that the fluid of grade 2 when al < 0 does not

afford a good model for general flows of fluids in nature. Nevertheless, we gave
reasons for regarding the fluid of grade 2 as an improvement upon the Navier-
Stokes fluid, in the sense of successive approximation, even if aj < 0. How can
this be?

In fact, there is no contradiction. The Navier-Stokes theory emerges at the
first stage of approximation for the retarded flows. Moreover, it has been found
for over a century to provide solutions, usually called approximate, that conform
excellently with many flows of many real fluids, though by no means all that occur
in nature. In retarded flows, ultimately, the fluid of grade 2 may provide a better
approximation to a general fluid than does the Navier-Stokes fluid. This fact does
not give any grounds for expecting it to be a better theory for general flows.

First, it is possible that, for some particular physical fluid, the Navier-Stokes
theory is really the correct one. Then al = a2 = 0, and the objection against
the fluid of second-grade breaks down. This kind of explanation, however, rests
on conjectured outcomes of future experiments and thus is to be regarded with
suspicion. Second, the formal approximation does not provide models for general
flows and gives no status to the differential equations of motion resulting from
it. If a(x) - b(x) is small, that does not make a'(x) - b(x) small (if it did, we
could conclude that when a son reached his father's height he would necessarily
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stop growing rapidly). Conversely, a small term in a differential equation does not
necessarily have a small effect on the solution.6

Third, a process of approximation by series expansion often yields successive
terms that afford better approximation in ever narrower ranges at the expense of
worse approximation overall.

For example, the graph of an affine function whose tangent at some point
coincides with the tangent of the graph of a differentiable, monotone function at
the same point shares with that function its main property, namely, being monotone
and differentiable, although at distant points the error in using it as an approximation
may be great. The second approximation to that same function by Taylor's theorem
is a parabola, which near the point where it is made is certainly better than the
tangent but far away is far worse, being in fact in error by an infinite amount
at either +oo or -oo or both. Likewise, the function y = sin x is fairly well
approximated by any of the lines y = k provided that IkI < 1; although only
two of these are even tangent anywhere to the curve, they all preserve two of its
main properties, namely, being periodic with the same period (among others) and
bounded by the same bounds. No polynomial approximation, and hence no finite
number of terms in any Taylor approximation, has either of these properties. These
examples show that in unbounded regions, a crude first approximation may give
a better overall picture than does any higher polynomial approximation, however
refined, near a single point.

The behavior of fluids of grade 2 undergoing unsteady helical flow has been
determined' on the assumption that cl < 0. A variety of unidirectional flows8 have
also been studied.

6The following remarks of Truesdell (Annual Review of Fluid Mechanics (eds. M. Van Dyke and
W.G. Vincenti), vol. 6, pp 111-146, Annual Reviews, California, (1974)) are particularly relevant.

In the experimental literature the result of Coleman and Noll is sometimes given a
vastly exaggerated statement such as: "For sufficiently slow flows the second-order
fluid is a valid approximation to any simple fluid." Coleman and Noll neither stated
nor proved any such thing. In particular, they never claimed that all simple fluids have
fading memory in the sense of Coleman and Noll for it is easy to provide examples of
fluids that do not. Second, while their general theory concerns many different kinds of
approximation, their only application of it to "slow" flows refers to those obtained by
retardation of a given flow. Other definitions of "slow" flow lead to somewhat different
results. Finally, they neither claimed nor proved any relation at all between the solu-
tions of the differential equations of motion for the fluid of grade 2 and the solutions of
the equations of motion of the general simple fluid that the particular fluid of grade 2
approximates. An example known from the kinetic theory of gases shows it is risky to
jump to conclusions in matters of this kind.

The approximation procedure of Coleman and Noll does not provide general models for fluids; they
provide approximate expression for the stress in a simple fluid in retarded motions.

7H. Markovitz and B.D. Coleman, "Nonsteady helical flows of second-order fluids," The Physics
of Fluids 7 (1964): 833-841.

8K.R. Rajagopal, "A Note on Unsteady unidirectional flows of a non-Newtonian Fluid," Interna-
tional Journal of Non-Linear Mechanics 17, 369-373, (1982).
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7.3 Unsteady Plane Flows

A flow is plane if its velocity field is parallel to a certain plane and constant along
each perpendicular to that plane; the plane used to define it is called the plane of
flow. A plane isochoric flow u, steady or not, has a stream function q :

u = Vq1. (6.3-2)

Any function of q alone is constant along each streamline at every fixed time, so

f(q) = f'(q).
It follows that

(7.3-1)

w = -Aq, (7.3-2)

where A is the harmonic operator in the plane of flow and co is the magnitude of
the vorticity. The vorticity equation (3.8-5) collapses to a single scalar equation
because the only components of its left-hand side that are not null are ±pw. For
an incompressible fluid of grade 2, that equation is

pw = p w + a l (Aw), (7.3-3)

from which a partial differential equation for q follows by use of (2).
Cauchy's first law when specialized to plane flow of homogeneous incom-

pressible fluid may be written down by inspection from the statement about steady
flow at the beginning of Section 6.3. We need only put a = 0 there, note that qO
becomes a function of p and t, and restore the local acceleration in (6.3-5), so
obtaining from (6.3-12)

p(u' + (Vu)u) = -V(p + div II, (7.3-4)

in which H, the plane tensor of determinate stress, is to be expressed by means of the
constitutive relation of the fluid. The meaning of (3) as a condition of integrability
assures us that given a solution w, we may integrate the appropriate special instance
of (4) and so determine the corresponding cp. In preceding sections we have seen
examples of such a procedure for other classes of flows.

For some purposes it is enough to know the tractions on surfaces to which the
fluid adheres. For a fluid of grade 2 those are determined explicitly by w, w', and
the constitutive constants through (6.1-25).

While (3) is generally a nonlinear partial differential equation, there are kine-
matical assumptions under which it reduces to a linear one. Namely, if both w and
Aw are constant along each streamline at every fixed time, we may apply (1) and
so obtain

pw' = µuw + a1w'. (7.3-5)
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Equivalently, a function q such that

Aq = .f (q), LAq = g(q), pL q' = AAAq +aliAq' (7.3-6)

is the stream function of a plane flow of an incompressible fluid of grade 2. So-
lutions of this kind are unusual in that while merely a linear equation needs to be
solved in order to obtain them, they may correspond with nonlinear dynamics: their
convective accelerations need not vanish. Thus they offer examples of the com-
bined effects of inertia and viscosity that are precise yet not trivial; nevertheless,
they are not typical of such interactions in more general flows.

EXERCISE 7.3.1
Show that a solution of (6)1,2 is given by

eX2 e).1q = Re > Cn er^X'6^

n

(7.3-7)

in which x1 and x2 are Cartesian coordinates, the sum is finite, and Cn, rn, fin, and
A are arbitrary constants.

The following exercises take up several solutions of (6)3 which have the form
(7).

EXERCISE 7.3.2 (Rajagopal and Gupta)
For arbitrary A, m, and n, show that

q = A cos mxI cos (7.3-8)

satisfies (6)3 if

1 al c

a
+ µ(m2 + n2) (7.3-9)

This flow presents a regular array of vortices within contiguous rectangular cells
whose boundaries remain at rest. The directions of the flows are opposite on the
two sides; the fluid is at rest not only on the boundaries of the cells but also at their
centers. The lengths ofthe cells in the xl -direction are n/m; in the x2-direction 7r/n;
while A determines whether the vortices decay or grow. When al = 0, this solution
reduces to one found by G.I. Taylor in the Navier-Stokes theory. Then A > 0, so
the vortices decay. For the fluid of grade 2 they decay if a> > -p/(m2 + n2); they
grow if the inequality is reversed; if equality holds, the solution reduces to a state
of rest.
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EXERCISE 7.3.3 (Rajagopal and Gupta)
For arbitrary constants A, a, and b, verify that

q = A sinh axl sinh bx2eAt (7.3-10)

satisfies (6)3 if

= µ(a2 + b2) (7.3-11)
p - al(a2 + b2)

For interpretation of (10) we take the constants A, a, and b as positive. The flow then
corresponds to two oppositely directed streams coming from xl = ±00 to impinge
upon the plane xl = 0, which turns them at right angles and directs them toward
x2 = ±oc. The dividing streamlines are the straight lines xl = 0 and x2 = 0; on
the latter, the fluid travels straight toward the origin; on the former, straight away
from the origin, in opposite directions. When al = 0, this flow reduces to a flow
of the Navier-Stokes fluid, as noticed by C.Y. Wang; then ,l > 0, and hence the
speed on all streamlines tends monotonically to infinity. If al < p/(a2 + b2), and
in particular if al < 0, again;, > 0, so the speed again increases with time. If, on
the contrary, al > p/(a2 + b2), then ;l < 0, and the flow tends with time to a state
of rest.

EXERCISE 7.3.4 (Rajagopal and Gupta)
Show that if

q = A cosh axl cos bx2ext (7.3-12)

is to satisfy (6)3, any of the following three conditions is sufficient:

(i) a2 = b2 with arbitrary .l, µ, al;

(ii) µ = 0, p = al (a2 - b2) > 0, A arbitrary;

(iii) it 0, a2 0 b2,

µ(a2 - b2)

p - ai(a2
- b2)'

(7.3-13)

and that collectively they provide a necessary condition for (12) to satisfy
(6)3

The first of the alternatives derived in this exercise is the only one possible in
an inviscid fluid. In that context it was noticed and studied by Kelvin9 that they

9William Thompson, later Lord Kelvin (Baron and Kelvin of Lanrgs) Mathematical and Physical
Papers, vol. 4 (Cambridge: Cambridge University Press, 1910), 186.
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were divided by "a cat's-eye border pattern of elliptic whirls." For inviscid and
linearly viscous fluids, (12) remains a solution even if ) 0, but the fact that it
may increase or decrease exponentially in time makes it seem odd and suggests that
it might be unstable. The third alternative, in which a. is determined by parameters
characteristic of the fluid and of the flow, was noticed by C.Y. Wang for a Navier-
Stokes fluid. The lines x2 = 1 pr/b are steady streamlines, the speeds of flow along
which tend to infinity as x1 -* ±oo at any fixed t. For a Navier-Stokes fluid, the
speeds grow to infinity with time if a2 > b2, decay to 0 if a2 < b2. Those solutions
may provide a class of perturbations of a parallel flow. For a fluid of grade 2 the
behavior of the solution in time depends also on the sign and magnitude of a1, as
is plain from (13). The alternatives of growth and decay may be contrary to those
that the Navier-Stokes theory requires.

7.4 Steady Plane Flows

Most ofthe particular precise flows adduced as examples in books on the mechanics
of fluids are monotonous; many of them are viscometric. Next common are steady
instances of the two kinds we studied in the preceding sections. For them the stream
function satisfies the following differential equation:

pVLq Vq1 = µ/Lq +a1VDOq Vq1. (7.4-1)

EXERCISE 7.4.1
Verify that substituting (63-2) into (5.4-1) yields (1). For the Navier-Stokes theory,
i.e., when al = 0 and µ > 0, (1) has been studied in great detail.

Jeffery and Hamel sought rotational flows having the same streamlines as does
some irrotational flow. Hamel proved that such streamlines had to be logarithmic
spirals, which may degenerate into concentric circles. A theorem of this kind is
far from being a mere rediscovery of a trivial solution. Its objective is different:
to illuminate the meaning of an observed flow pattern. The theorem of Jeffery
and Hamel shows that if the streamlines determined by an experiment are not
logarithmic spirals yet do correspond with some isochoric irrotational flow, then
the observed flow if interpreted as belonging to a solution of the Navier-Stokes
theory must be not only universal but also exempt from the effects of viscosity.
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Kaloni and Huschilt have analyzed the corresponding problem when a1 0.

Following them, we seek solution of (1) such that

q = F(a), Act = 0, Aq # 0. (7.4-2)

Denoting differentiation with respect to the argument of F by a prime, we conclude
that

F"(a) # 0. (7.4-3)

Let 7B denote the conjugate harmonic of a; the trajectories of a and ,B then provide
an orthogonal coordinate system. Substituting (2) into (1) yields

(p + 2a1 JbF) [F'v + 2aF"' + (a2 + b2)F"] - pF'F" = 0, (7.4-4)

where J is the Jacobian of a and ,B with respect to x1 and x2. Kaloni and Huschilt
show that the streamlines determined by the solution of (4) when a1 0 coincide
with the curves

log r = constant, r2 :=X
i

+ x2 (7.4-5)

and hence are concentric circles.
Next, again following Kaloni and Huschilt, we consider solutions of (1) of the

form

q = x2F(xl) + G(xl). (7.4-6)

Substituting (6) into (1), we obtain the following differential equations for F and
G:

AF'"- a1[F'F' FF"]+p[F'F"-FF"] = 0, (7.4-7)

AG'" - al [G'F" - FG°] + p [G'F" - FG`] = 0.

These equations can be integrated once to give

(7.4-8)

µF,111 -al A,

(7.4-9)

µG'11 - al [-GG`° + F,G" - F"G" + F"'G'] + p [F'G' - FG"] = B,
(7.4-10)

where A and B are constants. Kaloni and Huschilt show that if the body force field
is lamellar and the pressure remains bounded, necessarily A = B = 0. Then

µF"' - a1 [-FF1° + 2F'F" - F"2] + p [Fi2 - FF"] = 0,
(7.4-11)

µG"' - a1 [-GG'" + F'G` - F"G" + F"'G'] + p [F'G' - FG"] = 0.
(7.4-12)

These equations have been studied at length by Berker for the Navier-Stokes theory,
for which al = 0. For the fluid of grade 2, the presence of fourth derivatives
suggests that some condition beyond those that Berker used may be prescribed.
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The nonlinear equation (7) admits the solution

_ a -F(p - ala2)(1
+ke°x

),

in which k and a are constants.

EXERCISE 7.4.2 (Kaloni and Huschilt)
When G := 0, show that the solution is

129

(7.4-13)

q = x2
a

(1 + ke°X1)I (7 4-14)

Ifk = -1,

l =

.

(P ala2)

µa ax,
(e 1

.

(7.4-15)( 2)p - ala ,

and

X2 = µa2 e°x' x2. (7.4-16)
(p - ala2)

If a < 0 and p > a1a2, streams of fluid come toward the plane x2 = 0 from
opposite directions; if, on the contrary, p < ala2, the direction of the flow is
reversed. When a = 0, only the former flow, which corresponds to the two streams
impinging on the x2 = 0 plane, is possible.

We now consider some solutions of (6) when G := 0. Substituting (14) into
(8), we find that

G'v - aia
2

[G'a4keax, + (1 + keax' )G`']
p - ala

(7.4-17)
+

a
2 [G'a2ke°xi - (1 + ke°Xj )G"'] = 0.

p - ala

Kaloni and Huschilt show that when a = 1, this equation can be reduced after one
integration to a hypergeometric equation by means of the substitution

R(xl) = e-x'(G" - G'), (7.4-18)

provided the constant of integration is taken as zero. In this case it is easy to write
down the appropriate expression for q. It does not seem easy to find the general
solution of (17). Nevertheless, the inferences we have drawn about solutions of the
form (6) illustrate what can be learned by investigating hypotheses that reduce the
equations of motion for a Navier-Stokes fluid and its counterpart fluids of grade 2
to a system of ordinary differential equations, as well as what remains to be learned
about this particular class of solutions.
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To conclude this section, we analyze a simple flow that illustrates the difficulty
of specifying boundary conditions for fluids of grade 2. The problem also provides
another example of the intricate effects of the sign of al upon the existence of
solutions in the theory of fluids of grade 2.

Following Rajagopal and Gupta, we consider the shearing of a fluid of grade 2
by an infinite porous plate that provides suction or injection. To this end we study
the following class of isochoric velocity fields:

xl = u(x2), x2 = v = const.:0, x3 = 0, (7.4-19)

and we take the plane x2 = 0 as representing the plate. The condition of adherence
to that plate is

u(0) = 0, (7.4-20)

and

v > 0 1 re resents
injection.

4-21)(7
V <0 JJ

p
suction.

.

Plainly

q = -
J

xz

u(x)dx + vxl, (7.4-22)

so from (1) we obtain an equation for u which when integrated twice yields

,au' + al vu" - pvu = -Kpvx + p K - pvL, (7.4-23)

where K and L are arbitrary constants. Here and henceforth in this section, a prime
denotes differentiation with respect to x2, which we abbreviate to x.

EXERCISE 7.4.3
Proceeding as at the beginning of Section 5.4 show that

pcp = (2al + a2)u 2 - Kpvxl + const. (7.4-24)

For the Navier-Stokes theory, which obtains when al = 0, the solution of (23)
is given as follows in terms of three arbitrary constants C, K, L:

u = Cep-lit + Kx + L; (7.4-25)

if al 0, in contrast, a fourth arbitrary constant appears:

u = C l em'x + C2em2X + Kx + L,
2 4

2ml, 2m2 = - µ f f µ + p , (7.4-26)
011 v alv al
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except that if ml = m2 = m, say, then necessarily a1 < 0, m = 2pv/µ, and

u = Clemx + C2xemx + Kx + L. (7.4-27)

Here the notation is appropriate to values of µ, al, and v such as to make the square
root real, but we shall easily read off a corresponding statement when ml and m2
are complex conjugates.

The boundary condition (20) reduces (25), (26)1, and (27) to

u = C (1 - e°vx/µ) + Kx,

U = Cl (I - em'x) + C2 (1 - emzx) + Kx,

u = C1 (1 - emx) + C2xemx + Kx, (7.4-28)

respectively.

EXERCISE 7.4.4
Considering the signs of the terms in (26)2 and (27) show that the following alter-
natives are exhaustive if al =,4 0.

1. If a1 > 0, then ml > 0, m2 < 0-

2. If a1 < 0 and v > 0, then Re m1 > 0, Re m2 > 0-

3. If al < 0 and v < 0, and if -al µ2/(4pv2), then Re m1 < 0, Re m2 < 0-

4. If -a1 = µ2/(4pv2), then sgn m = sgn v.

We wish to consider only solutions that correspond with a uniform stream at infinity.
That is,

u(x) -k u,,,, say, as x oo. (7.4-29)

For this condition to hold, it is necessary that the coefficient of each exponential
in (25), (26), and (27) be 0 if the real part of the exponent is positive; if that is so,
then (29) requires that K = 0, and from (24) we see that ax1 = 0, so

p + p&r = (gal + a2)ui2 + const. (7.4-30)

First we consider the Navier-Stokes theory, to which (28)1 corresponds. If
v > 0, no choice of the constants in (28) can satisfy (29), so there is no solution
corresponding with injection. If v < 0,

u = u00 (1 - eP-11-) (7.4-31)

The vorticity w = -u' = -uoo(pv/µ) exp(pvx/µ); hence w is greatest upon the
plate x = 0, namely -uO,,(pv/µ), and it decays rapidly with the distance from the
plate. The flow is not only irrotational at oo but also virtually irrotational in the
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part of the fluid beyond a boundary layer, the thickness of which may be taken
conveniently as the logarithmic decrement µ/(-pv). The statements preceding
(31) are used in boundary-layer theory to represent the flow downstream from the
leading edge of a semiinfinite flat plate. There they are taken to mean that suction
subdues the growth of the boundary layer while injection so destabilizes the flow
that no solution exists.

The fluid of grade 2 allows broader possibilities; in particular, it provides
well-behaved solutions corresponding to injection. We can read off the solutions
by applying to (28)2,3 the statements in Exercise 4.4, at the same time imposing
the limiting requirement (29).

If al > 0, we conclude from the first alternative in Exercise 4.4 that m2 < 0
hence both if v > 0 and if v < 0:

u = u00 (1 - em2x) . (7.4-32)

Thus, if a1 > 0, the fluid of grade 2 provides solutions, both for suction and for
injection, and they are of the boundary-layer kind; the thickness may be taken as
-1 /m2. If al < 0 and v > 0, there is no solution of the form (19) corresponding
to the conditions (2) and (29). If a1 < 0 and v < 0, there are infinitely many solu-
tions. These decay monotonically if 4pv2 < µ2/(-a1) but are damped sinusoidal
oscillations in x if 4pv2 > µ2/(-a1)

Differences such as these often fail to be revealed by procedures of perturba-
tion.

EXERCISE 7.4.5
If 4pv2 = µ2/(-a1), show that there is no solution if v < 0, while there are
infinitely many if v > 0.

The student will notice from (28) that if the conditions (20) and (29) are
satisfied, then

u'(x), u"(x), u"'(x), ... -' 0 as x -' oo. (7.4-33)

In other words, all solutions of the problem are very smooth at oo; in particular,
both the shearing and the shearing stress tend to 0. It follows from (30) that for
these solutions

p + pru cont. as x oc. (7.4-34)

In all the foregoing treatment of the flows (19), the explicit integration that the
constitutive equation of the fluid of grade 2 allows have delivered the conclusions. In
particular, the ordinary differential equation (23) is linear. If a more general kind of
fluid is considered, the counterpart of (23) will usually be nonlinear, yet sometimes
similar conclusions may be obtained by appeal to general arguments about ordinary
differential equations. A relatively simple example treated by Rajagopal, Szeri,
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and Troy10 illustrates the great difficulties that impede proof of such conclusions,
even when more smoothness than seems physically reasonable is assumed of the
solutions of the differential equations.

EXERCISE 7.4.6 (Steady Axisymmetric Flows)
In cylindrical coordinates, the flow represented by

r = vl(r, z), 0 = 0, Z = v3(r, z) (7.4-35)

axisymmetric. Show that a stream function q can be defined such that

1 1

r= Iazq, Z=-rarq
If

(7.4-36)

E2 a2r - r2 ar + aZ , (7.4-37)

show that for an irrotational flow E2q = 0. Show that, in general

p
[arqaz (f-2q) - azar ()] + µE44 - al {arqaz (E44q)

- azgar '2/J

+
2(al,

a2 l

[azqE2 (q) + 2 [aqaZ ( ) + 8 arq ar (EZq 1 I } = 0-r2

(7.4-38)

7.5 Steady Flow between Rotating Parallel Plates

Following the work of Berker and Rajagopal, we now apply the apparatus set up
in Section 5.5 for a body of fluid confined between parallel plates that rotate with
constant and equal angular speeds co about a common axis or about distinct parallel
axes. Components of the velocity field are

Xl = -Q(X2 - g(X3)), X2 = 52(X1 - f (X3)), X3 = 0, 0 = const. (4.2-35)

The functions h 1 and h2 defined following (5.6-3) are determined as follows from
the constitutive relation (6.1-17):

h1 =Apg,,-a1Q2f,,,
h2 = - AS2f" - a1 02g", (7.5-1)

10K.R. Rajagopal, A.Z. Szeri, and W. Troy, "An existence theorem for the flow of a non-Newtonian
fluid past an infinite porous plate," International Journal of Non-Linear Mechanics 21 (1986): 279-89.
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so the coefficient a2 has no effect upon the velocity field. Comparison of (1) with
(5.6-6) yields

-ItQg" +
a1

Q2 fl, + Pc2f + A = 0,
Aof" + a1 Q2g" + pc 2g + B = 0, (7.5-2)

where A and B are assignable functions of t.
We first consider only the instance in which the axes of rotation coincide, so

in (5.6-10) we may set a = 0:

f(d) = f(-d) = g(d) = g(-d) = 0. (7.5-3)

Of course boundary conditions do not suffice to determine a unique solution of (2)
because that system expresses only the vorticity equation and hence corresponds
to infinitely many flows. In our starting point, the velocity field (4.2-35), the two
centers of rotation are made to lie in the loci x2 = g(x3) and x1 = f (x3), respec-
tively. Here we consider a single axis only, and there is no loss in generality if we
assume that it intersects the plane x3 = 0 at (e, 0, 0). Then

f(0) = £, g(0) = 0. (7.5-4)

Under the assumptions A = 0, B = 0, the following exercises provide a solution
of the linear differential system of (2) that satisfies the six conditions (3) and (4).

EXERCISE 7.5.1
Show that

P X3) = f 1(coshmd cos nd - cosh mx3 cos nx3)(cosh and cos nd - 1)

+(sinhmd sin nd - sinhmx3 sin nx3)(sinhmd sin nd)J,

g(x3) = 8 [(sinhmd sin nd - sin nx3 sinh mx3)(cosh nd cos nd - 1)

- (cosh and cos nd - cosh mx3 cos nx3)(sinh and sin nd)]

m2 _ P{[(/-a/Q)2+ai]1,2-a1} 2 _ p{[(/L/2)2+a1]1/2+a1}
2[(A l Q)2 + al ]

, n
2[(i-L/ Q)2 + a?]

8 = (cosh and cos nd - 1)2 + (sin and sin nd)2. (7.5-5)

Next we consider a particular solution for which the axes of rotation of the
two plates may be distinct. This time we shall prejudice the problem by studying
only solutions that are symmetric about the plane halfway between the two plates.
Then f and g are both even functions.
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EXERCISE 7.5.2
Under the foregoing assumptions, show that

f"(o) _ (µ1p)
2

Sta

(p /p)2 + (al
2/p)2'

!aic22a
8'(0)

(Al
p)2

2 + (a Q/p)2
. (7.5-6)

A solution of (2) subject to the conditions (3), (4), and (6) is

f (x3) = Q {sin nd cosh and [cos nx3 sinh mx3

+ cos n(x3 - d) sinh m(x3 - d)]

- cos nd sinh md[sin nx3 cosh mx3

+ sin(x3 - d) cosh m(x3 - d)]},

g(x3) _ a {cos nd sin md[cos nx3 sinh mx3

+cosn(x3 -d)sinhm(x3 -d)]
+ sin nd cosh md[sin n3 cosh mx3

+ sin n(x3 - d) cosh m(x3 - d)]},

A = 4(sinh2 and + sin2 nd), (7.5-7)

while m and n are given by (5)3,4.

EXERCISE 7.5.3

h3 = (tai + a2)Q2(fi2 + gi2),

and the components of the traction vector on the upper plate x3 = d are

tx, = - gQg'(d) + ai 02 f'(d),
tX, = p.S2f'(d) + a1S22g'(d).

Thus

A =
;

[txz f'(d) + tx, g'(d )]
K2Q

C11 =
1- [tx, f'(d) - txz g'(d)]

K2Q

K2 = f'(d)2 + g'(d)2.

(7.5-8)

(7.5-9)

(7.5-10)

The locus of the centers of rotation, x1 = f (X3) and x2 = g(x3) has been calculated
numerically for values that seem to be of physical interest. Instead of the straight
line given by the "approximate" formula (5.6-11), it has the form of an S stretched
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to left and right. The central part is nearly a line perpendicular to the plates; it
represents a core in nearly rigid rotation. To either side of this line lie the stretched
top and bottom parts of the S, which represent narrow boundary layers next to the
plate.

As 0 is made to increase, the boundary layers grow thinner.
The foregoing problem can be solved easily even if A # 0 and B 0. The

only change is a slight modification of (6).
Also, the problem can be modified to allow the plates to be porous and to

represent suction or injection through the plates x3 = ±d, we may suppose a
uniform velocity field .z = const.

7.6 Stability and Instability of Flows in a Closed Vessel

In Section 6.6 we established or described some stabilities and instabilities of lineal
flows of a fluid of grade 2, the former on the assumption that a 1 > 0 and the latter on
the assumption that a1 < 0. Further examples of stabilities and instabilities were
determined in some of the preceding sections of this chapter. Here we consider
stability of some flows in a three-dimensional region V, supposing that there is no
power supplied to the body." This allows us to conclude that

(2/p)K + fT AIdV = 0, (7.6-1)

V

where K is the kinetic energy of the body in the region V. Giving T its determination
for a homogeneous incompressible fluid of grade 2, namely (6.1-17), from (1) we
easily derive the equation of energy:

2K+1/2a1
J

IAiI2dV +it IAII2dV+(al+a2)J trAid V = 0. (7.6-2)
V v v

ence if
r

E 2K + 1/2a1
J

IAI I2dV, (7.6-3)

V

t 'The reader is referred to I.14 of C. Truesdell, A First Course in Rational Continuum Mechanics
(New York, Academic Press, 1991) for a detailed discussion on power, kinetic energy, and potential
energy.
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then

E _ -t<
J

IA1I2dV -(a, +a2) J trAidV. (7.6-4)

V V

To obtain (4), we have assumed that the power supplied is zero. An instance
is provided by the flow in the closure of a simply connected, fit region to which
the fluid adheres:

i = 0 on W, (1.8-8)

0 < t < oo. Assuming the body force to be lamellar, we can easily show that the
power supplied is zero.

The special instance of (2) in which al = a2 = 0, which corresponds with the
Navier-Stokes theory, was studied by T.Y. Thomas and E. Hopf in the first attempts
to establish rigorously the stability of flows of Navier-Stokes fluids; Serrin made it
the basis of his classic and definitive analysis, which we outline below in Section
8.13. Here we present two extensions of Serrin's work, one on the assumption that
al < 0, the other that a1 > 0, with very different conclusions for the different
signs.

EXERCISE 7.6.1 (Fosdick and Rajagopal)
Let A be any traceless, symmetric tensor, and let a be any real number. Then, show
that

Ial IAI3 < a tr A3 - I JAI3. (7.6-5)

EXERCISE 7.6.2
Let v be a solenoidal, twice continuously differentiable vector field in V that
vanishes on 8V. Then, show that

f JVvI2dV = 2 J I sym VvI2dV = 2 f I skw VvI2dV. (7.6-6)

V V V

EXERCISE 7.6.3 (Poincare inequality)
Let v be as in the preceding exercise. Then, show that there is a positive constant
Cp, depending only on V, such that

r

f
v2dV < Cp

J
IVvI2dV. (7.6-7)

V V

Also Cp -), 0 as V --k 0. Henceforth we assume that (1.8-8) holds.
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THEOREM (Fosdick and Rajagopal). Leta homogeneous incompressiblefluid
of grade 2 for which µ > 0, al < 0, undergo a flow in a stationary vessel as
specified. Then for any given positive constant M there is a time at which

f IAi13dV > M, (7.6-8)

v

provided that both V and -al al + ai 11µ are sufficiently small.

This theorem complements the statements of Ting and Coleman and Mizel
for lineal flows by showing that a body of this kind, when flowing in a closed,
stationary container that it fills, will exhibit arbitrarily large stretching as time goes
on. The quantity -a l la t + a21 /µ is the reciprocal of a characteristic time of the
fluid.

PROOF From (4), (5), and (6)a it follows that

E < -2µ f JGI2dV + Iat 2l fAt 3dV, (7.6-9)

V V

and hence for any positive number t

rE - E < rla1+a21 f
IAi 13dV - (29t +al) f IGI2dV, (7.6-10)

V V

while applying (5) to (7) shows that

E < (a] + PCP) f IGI2dV. (7.6-11)

v

Thus far, we have not prejudiced the sign of al . If at < 0, we can choose r
as the reciprocal of a positive characterisitic time of the fluid,

t=
-al
2µ' (7.6-12)

and so obtain

-al-E - E < -ai lal + a21
IAl I'd V. (7.6-13)

21
v

If the asserted conclusion (8) is false, then

-al-allal +a21
E - E < M, (7.6-14)

2µ 2J
integration of which yields

-allai +az1E(t) < [E(o) 2'/ M e (7.6-15)
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Now turning back to (11), we see that if pCP < -al, then E(t) < 0 for all t
such that IG12 does not vanish almost everywhere, and in particular E(0) < 0.
Since Cp can be made arbitrarily small by taking V small enough, E(O) < 0
for a region of sufficiently small volume in which IG12 does not vanish almost
everywhere initially. Consequently for a sufficiently small volume of fluid such
that -al Iai + a21 /µ is sufficiently small, the quantity in square brackets in (15)
is negative, and E(t) -+ -oo as t -* oo. From (3), then

f IAA I2dV -* oc. (7.6-16)

v

EXERCISE 7.6.4
From (16) it follows that

f IAi 13dV -* oo. (7.6-17)

v

In order to obtain (17), we assumed that (8) was false. Because (17) contradicts
the negation of (8), (9) itself is true.

Experimenters who correlate their measurements on fluids with mathematical
conclusions from the theory of the incompressible fluid of grade 2 claim that to get
agreement they must assign negative values to a 1. On the other hand, experimenters
usually regard an unstable flow as something that does not occur in nature. In view
of the instabilities displayed here and in preceding sections of this chapter, it would
seem that the fluids tested by experimenters cannot be modeled by the fluid of grade
2 at all, and therefore data adduced in support of the conclusion aI < 0 should be
interpreted by means of some other theory.

THEOREM (Serrin, Dunn, and Fosdick). Let a homogeneous incompressible
fluid of grade 2 for which µ > 0, al > 0, al + a2 = 0 undergo a flow filling a
vessel, to the walls of which it adheres. Then

al + PCP-`lrp < E < E p 6-18)(7(t) ( )e , t =
Zµ

.

If al > 0, then

E(0)e-`/T' < E(t), r' = 2. (7.6-19)

PROOF From (9) to (1) we conclude that for any number r,

rE + E < (-2µr + a, + pCP)
J

IGI2dV. (7.6-20)

V
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From (3) and (4) we see that for any number r',

r'E + E > (-µr' + (1/2)al) J CAI I2dV. (7.6-21)

V

The choices of r and r' given by (18)4 and (19)2 annul the respective right-hand
sides.

If al = 0, (18) reduces to one of Serrin's estimates for flows of Navier-Stokes
fluids, which we shall encounter in Section 8.13. There is a difference. For the
Navier-Stokes theory, the time r for a given fluid is determined by the shape of the
vessel. For the fluid of grade 2, that time is the sum of the Navier-Stokes time and a
time characteristic of the fluid and independent of the vessel. If a1 > 0, (19) shows
that K and the mean values of I A,12 and I G 12 tend to 0 as t -+ oo. As a 1 0,
(19) reduces to the trivial statement E(t) > 0. Both the presence of a nonconstant,
decreasing lower bound when al > 0 and the corresponding increase of r in the
upper bound given by (19) indicate that the corresponding nonlinear response has
a stabilizing, regularizing effect such as Ting observed in his study of lineal flows.

The marked contrast in behavior effected by the two possible signs of a1 may
perhaps merely illustrate the difference between quadratic and linear approxima-
tions over a large interval. By taking s small enough, we can approximate x(1 + E
sin x) with arbitrarily large accuaracy on (-oo, +oo) by x, but the quadratic ap-
proximation x(1 + ex) becomes very bad for large lxi, no matter how small E
is, the sign of which dominates its behavior at oo. Perhaps the fluid of grade 2
affords a possible model of real fluids only for short periods of time-not exactly
the character of a good model. That, indeed, is all that the position established for
it by the theory of retardation suggests.

Further theorems of stability and instability for fluids of grade 2 have been
found.12

Recently, there have been several papers concerning the uniqueness of the
solution to the equations governing the flow of fluids of grade two. Cioranescu
and El Hacene13 proved that there is a unique weak solution, for all time, for the
initial-boundary value problem, if attention is restricted to plane flows in bounded
domains. They also proved local existence (in time) of solutions for the full three-
dimensional problem. Galdi, Grobbelaar and Sauer14 showed that there is a unique

12J.E. Dunn and R.L. Fosdick, "Thermodynamics, stability, and boundedness of fluids of complexity
2 and fluids of second grade," Archive for Rational Mechanics and Analysis 56 (1974): 191-252; R.L.
Fosdick and K.R. Rajagopal, "Anomalous features in the model of second-order fluids," Archive for
Rational Mechanics and Analysis 70 (1979): 145-52.

13Cioranescu, D. and El Hacene, 0., "Existence and uniqueness for fluids of second grade," in
Research Notes in Mathematics, vol. 109 (Boston: Pitman, 1984), 178-197.

14Galdi, G.P., Grobbelaar-Van Dalsen, M., and Sauer, N., "Existence and uniqueness of classical
solutions for the equations of motion of second grade fluids," Arch. Rational Mech. Anal. 124 (1993):
221.217.
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classical solution (smooth solution), for short times to the initial-boundary value
problem, in bounded domains. However, if the initial data are sufficiently small
and the coefficient al is a sufficiently large positive number, they showed that there
is a unique classical solution for all time in bounded domains, irrespective of the
value of (al + a2). When a1 = 0, the model reduces to the Reiner-Rivlin model
and the problem is mathematically more daunting than that for a fluid of grade two.
Amaanls has recently proved that there is a unique solution to the initial-boundary
value problem.
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8

Navier-Stokes Fluids

8.1 Purpose and Plan of Chapters 8 and 9

Classical hydrodynamics and aerodynamics concern fluids having linear viscosity
or none at all. We defined these fluids in Chapter 4; in Chapters 5 and 7 we referred
to them many times as special instances. Thus, in one sense, we have studied them
already, but now we consider some of their properties that seem, as yet at least,
peculiar to them, not to be understood easily as being merely the most special
examples of more general ideas and flows.

For convenience we recall here the basic equations and conditions set forth
in Chapter 4. Using the equation numbers provided, students should review the
appropriate parts of Chapter 4 before reading this chapter.

1. Eulerian compressible fluid, also called constrained elastic fluid, inviscid
compressible fluid, ideal compressible fluid:

T = -p(p)l. (4.4-4)

2 Eulerian incompressible fluid, also called incompressible elastic fluid, invis-
cid incompressible fluid, ideal incompressible fluid:

T = -pl. (4.4-13)

3. Incompressible Navier-Stokes fluid, also called incompressible linearly vis-
cous fluid:

T = -p1 + 2µD. (4.4-14)

The corresponding theories are called loosely the "Ruler theory" and the
"Navier-Stokes theory." In the last two equations the field p is not a given function
of p and D but rather must be determined, as we see in examples, by the principle
of linear momentum and suitable initial conditions and boundary conditions.
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EXERCISE 8.1.1
Show that the condition p > 0 is equivalent to the statement that in a nonrigid
simple shearing (2.2-13) the shear stress always drags the sheared planes. It is also
equivalent to the statement that the stress power T G is nonnegative in all nonrigid
motions subject to stress that is not hydrostatic.

In Chapter 8 we study flows of incompressible Navier-Stokes fluids. Chapter 9
is devoted to Euler fluids. In conformity with what is stated at the end of Chapter 4
and in Section 5.3, the bodies of Navier-Stokes fluid we consider in this chapter are
always incompressible and homogeneous; further, we always assume that µ > 0
except for occasional references to statements that remain valid when µ = 0 and
hence provide information about a corresponding Euler fluid.

Substituting the constitutive relation (4.1-7)i into (3.8-4), we obtain the fol-
lowing equation of motion:

x = vex = - grad cp + 2v div W;

the constant v, called the kinematic viscosity, is defined as follows:

Av:=-

(8.1-1)

(8.1-2)

P

If v > 0, (1) is called Navier's dynamical equation for viscous, incompressible
fluids; if v = 0, (1) is Euler's dynamical equation for ideal, incompressible fluids.

We see at once that if div W = 0, then, whatever the value of v, (1) reduces to
Euler's dynamical equation. In particular, if an isochoric flow of uniform spin (e.g.,
an irrotational flow or a rigid motion) is compatible with a certain body force b
according to the Euler theory, it is compatible with b according to the Navier- Stokes
theory, as well, and with the same pressure field to within an arbitrary function of t
only. This fact is not of much use, since in the Navier-Stokes theory it is customary
to suppose that the fluid body adheres to the boundaries it touches. In particular, at
a stationary boundary we apply the condition

i = 0. (1.8-8)

This condition is generally incompatible with isochoric, irrotational flow. Indeed,
an objective of the Navier-Stokes theory is to render the spin field of a fluid motion
determinate from the dynamical equation and the conditions on boundaries and
at oo and thus to account for the creation, diffusion, and destruction of vorticity
and for the lift and drag that a body of incompressible fluid in steady flow may
exert upon obstacles submerged in it. In many applications, a Navier-Stokes flow
corresponding to a stationary boundary differs from a corresponding isochoric
irrotational flow only in an adjacent, slender domain, which is called a boundary
layer. In Section 7.4 we saw an example of this phenomenon for a fluid of grade
2. Below we shall study further examples for the Navier-Stokes fluid.

At this point students would do well to familiarize themselves with the mag-
isterial treatise of Berker, cited at the end of this chapter. In it will be found many
and various solutions according to the Navier-Stokes theory, explained in detail,
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provided with full and accurate references upon some of which the following text
will draw, and often illustrated by diagrams. In this chapter and the following one
we shall consider solutions of particular clarity and interest; some of these are
to be found in Berker's treatise, while others were discovered after that treatise
appeared. Students will learn that the Navier-Stokes equations, spiny though they
are, do have some explicit, precise solutions of interest and value; will taste and
feel some of the most famous of these and also some of the most recent; and will
encounter some of the qualitative theorems that can be proved with a beginner's
mathematical tools.

8.2 Condition of Compatibility

Flows of the Navier-Stokes fluid have to meet certain compatability requirements.
To desire them we shall start with the equation of motion.

x = - grad rp + 2v div W. (8.2-1)

We can consider, with no loss of generality, only flows that are affected by surface
tractions alone in addition to kinematic boundary conditions. That we can do so is
a consequence of a result due to Euler.' While in an Eulerian fluid those tractions
are normal pressures, a body of Navier-Stokes fluid exerts tangential forces upon
bounding surfaces. A stationary wall balances the drag exerted on it and in doing
so forces the fluid at each point on the wall to spin about some tangential axis.
The traction may be read off from Berker's theorem (6.1-25)' : t = -pn + 2µWn;
that is, the normal pressure on a wall equals the mean pressure, and the tangential
traction equals the product µ and the vorticity vector rotated through a right angle
counterclockwise about the outer normal vector of the wall.

A glance at (1) shows that flows of a viscous fluid cannot generally be de-
termined from kinematical considerations alone. A solution will generally depend
upon v as a parameter, and the velocity fields possible for a fluid whose kinematic
viscosity is v1 will not generally be possible for a fluid whose kinematic viscosity
is v2. Indeed, the vorticity equation (3.8-5)2 now reduces to

W + DW + WD = 2v skw grad div W; (8.2-2)

students will recall that

W. = W + DW + WD. (2.2-30)

1C. Truesdell, A First Course in Rational Continuum Mechanics, (New York, Academic Press:
1991).
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The condition of compatibility (2) is necessary and sufficient that the velocity field
i whence W and D are possible for a fluid of kinematic viscosity v. If it is satisfied,
a function p such as to satisfy (1) exists locally and is unique to within a function
oft only. With p determined and nr prescribed, (3.7-5) determines pv to within a
function oft only.

8.3 Some Bernoullian Theorems

A Bernoullian theorem is an explicit determination of the pressure from a velocity
field known to be compatible with an equation of motion. We now consider some
Bernoullian theorems. The determination (6.6-4) for universal solutions is itself a
Bernoullian theorem, and we shall first note its application to irrotational flows.
For them, div Al = 0, so Pf = 0; hence

P. = cp. (8.3-1)

EXERCISE 8.3.1 (Euler)
Show that in an irrotational flow,

Pa=P, -2iXI2=P, --I gradPvl2. (8.3-2)

Eliminating P. from (1) and (2) yields

cp
+ 2 I x 12 = (8.3-3)

This statement, due to Euler, is often called Bernoulli's theorem for irrotational
flow. The name comes from its resemblance to theorems ofhydraulics discovered by
Daniel Bernoulli and John Bernoulli. The fluid undergoing the flow may be viscous
or inviscid. As we mentioned earlier, irrotational flows are generally incompatible
with the condition of adherence to a stationary wall and thus, while possible for
viscous fluids, are rarely appropriate to them except in regions far from boundaries.

There is a Bernoullian theorem for a solution of Navier's dynamical equation
(8.1-1) that need not be universal, though for it the spin of W must be steady:
W' = 0. To obtain it, we need to use the kinematical theorem stated in the following
exercise.
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EXERCISE 8.3.2
If W' = 0 in a region, show that the local acceleration has a potential there, say
z' = grad Q, and hence

/
1

x = grad l Q+ 21iI2 + Wi. (8.3-4)

The Bemoullian theorem we now present by using (4) is associated with the vector
lines of the normals, assumed Lipschitz-continuous, of the planes defined by the
vectors Wi and div W. These curves are independent of v; to obtain them we need
only integrate the ordinary differential equation d=Wi x div W.

s

EXERCISE 8.3.3 (Truesdell)
Let i have a steady field of spin and be a solution of Navier's equation, and let C
be a curve that is normal to both Wi and div W. Show that there is a function kc
of time alone such that on C

+ Q + 2 IiIZ = ke. (8.3-5)

Simpler conclusions hold for flows in two degenerate classes:

1. Wi 0 and v div W II Wi. (8.3-6)

2. WX = 0.

For steady flow, all the foregoing theorems become simpler. In steady irrotational
flow we may put 0 for PP in (3), so obtaining

(P + 2 il2 = const. (throughout), (8.3-7)

an equation having just the same form as the Bernoullian theorem of steady hy-
draulics. Likewise, for steady flow, the curves C are stationary, and we may put 0
for Q in (5) to obtain

1

p + 21X12 = const. on each curve C. (8.3-8)

These exercises tell us that rp must decrease when the speed increases, and vice
versa; also the constants may be regarded as maximum values of cp, appropriate
to stagnation points. The only difference is that while for an irrotational flow the
increases and decreases refer to the whole region on which the flow is defined, for a
rotational flow they refer in general only to the several curves C. In both conclusions
cp is determined by the velocity field alone, to within arbitrary constants. Thus, if
we have a steady solution i of the compatibility condition (8.2-2) for some value
of v, and if w is prescribed, the Bernoullian theorem delivers the pressure field p



148 8. Navier-Stokes Fluids

that provides the solution of the dynamical equation corresponding with the known
velocity field x. In this sense we may regard the compatibility condition as the only
equation that needs to be solved to find steady flows of linearly viscous fluids.

In a formal sense, solution of the Navier-Stokes equations is reduced to a
purely kinematical problem for each value of v. On the other hand, it is not easy
to take account of boundary conditions and initial conditions, since these must be
expressed in terms of the vorticity alone if we are to determine W from (8.2-2).

8.4 Dynamical Similarity

The name "kinematic viscosity" is motivated by the condition of compatibility (8.2-
2), for v is a factor of proportionality between two kinematic fields. The physical
dimensions of µ are those of mass divided by the product of length and time; the
physical dimensions of v, which are those of squared length divided by time, are
purely kinematical.

The appearance of a dimension-bearing modulus suggests that by recourse
to dimensionless variables we may remove from any given problem its apparent
dependence upon the choice of units, which are always arbitrary. If we let some
particular length and speed be L and V, respectively, we can introduce as follows
dimensionless fields z° and p° corresponding with i and p : i° := V1*, p°

L-1 p. Then in an obvious notation W = L-1 VW°, W,, = L-ZW', grad =
L-1 grad, and so on, so (8.2-2) becomes the dimensionless statement

W; = 2 skw grad° div° W°, (8.4-1)

in which

R := V L
(8.4-2)

V

The dimensionless number 7Z is called "the" Reynolds number, although, as the
definition indicates, for the same fluid there are infinitely many such numbers, one
for each choice of the product VL. We have shown that a single velocity field
satisfying the compatibility condition (8.2-2) gives rise to infinitely many others,
which are obtained from it by multiplying all lengths by a constant L and all
velocities by a constant V, provided the kinematic viscosity is such that R has the
same value as for the original flow. R-1 is often called the Ekman number.

In this way are compared not only flows of one and the same fluid, but also flows
of fluids different from each other in that they have different kinematic viscosities.
Such comparison is of manifold use in experiments using models.
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A transformation of this kind is called a similitude; the rule specifying the
similitudes is called a law of scaling or a law of dynamical similarity. Only the
simplest theories of materials allow a nontrivial law of scaling. The example pro-
vided by the Navier-Stokes theory is the best known and most useful of these
laws.

In any particular configuration, the constants V and L are suggested naturally.
For example, in a flow of a fluid body that surrounds a sphere and has a uniform
velocity at infinity, we take V as the magnitude of that velocity, L as the radius
of that sphere. The scaling law then permits us to compare flows of fluids of
different kinematic viscosities past spheres of different radii and with different
speeds at infinity. The boundary condition of adherence, which is the most usual
in applications of the Navier-Stokes theory, is preserved under a similitude; if the
initial velocity field is prescribed, it is simply multiplied by V in the similitude.

Even the phrasing of the last statement suggests a common and usually not
justified converse to what has been proved. We have shown only that a transfor-
mation such as to leave R invariant transforms one solution of (8.3-4) into another
one. Indeed, (1) shows that a velocity field compatible with the Navier-Stokes the-
ory depends upon R as a parameter; nonetheless, it does not show that only one
velocity field satisfying certain boundary conditions corresponds to each value of
R. Without such a uniqueness theorem, the common interpretation of the scaling
law is uncertain.

The theory of scaling just discussed is incomplete in that it considers only (8.2-
2), the condition of compatibility. If we refer to the dynamical equation (8.1-1), we
see that further conditions must be satisfied. Under a transformation that preserves
compatibility, the function cp associated with a solution of (8.1-1) is divided by V2.
Since rp := pU + w, this fact is easiest to interpret if we regard pU and rT as
being individually divided by V2. If r is assigned rather than disposable and if
zT 0 const., this rule amounts to a restriction upon L, V, and a scaling constant
for the time. For example, if rT = gh, where g is a constant acceleration such as
that of gravity and h is the height above some horizontal plane, then the statement
is most easily expressed in terms of the Reech number, often called the Froude
number:

_ VL2.
(8.4-3)

For one solution to generate another through the simple transformations described,
it is necessary that F have the same value for both. For example, for an experi-
ment upon a flow of a Navier-Stokes fluid past a ship model to be able through
mere multiplication of velocities and lengths by constant factors to provide results
appropriate to the flow of a ship of similar form, the ratio L/ V2 must be the same
for both flows. This statement is Reech's law of similitude. It presumes that g is
fixed. A broader class of similitudes is obtained by allowing different values of g,
as do occur at different altitudes or through the action of fields of force other than
uniform gravity.
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Likewise, the ratio pU/V2 must have the same value for both flows, and
here p is not a constant but a function of place and time. The natural way to
interpret the rule of similitude here is to regard it as delivering the pressure field
of the transformed flow. Namely, at corresponding points the ratio pU for the
similar flow is obtained by multiplying that ratio for the original flow by V/Iz12.
Even more simply, we may say that the pressure field for the similar flow may be
obtained from it just as the given pressure field was obtained from the given flow.
When a particular pressure po is singled out by the statement of the problem, we
can express this same rule by saying that the similar flows must have a common
"Euler number" pov/ W.

8.5 Viscometry

Students should already have mastered the Navier-Stokes theory of viscometry,
which was explained in Section 5.4 and illustrated several times thereafter, and the
simpler aspects of the Navier-Stokes theory of flow through straight pipes, which
was presented in step 1 in Section 6.4. It is an easy and instructive exercise to define
a Reynolds number for each of the flows exhibited and to discuss the effect of that
number upon the nature of the flow. For example, if in a channel flow we take V
as the average speed and L as the breadth of the channel, we find that D = V L,
so we can write the conclusion (5.4-19) in the form (D/v) = 7Z, while if in flow
through a pipe we take V as the average speed and L as the radius R of the pipe,
we can write (5.4-41) as D/7r R v = R.

8.6 Flow against and along a Plate

In Chapter 7 we presented several flows of fluids of grade 2, and we discussed the
Navier-Stokes flows to which they reduce when a 1 = a2 = 0. We now discuss some
other flows that can be undergone by an incompressible Navier- Stokes fluid. There
are many more. For a plane Navier-Stokes fluid the partial differential equation
satisfied by the stream function can be read off from (7.3-3) and (7.3-2):

VAq (Aq)1 = vAAq. (8.6-1)

In this section we shall use Cartesian coordinates x1, x2, x3, the last to lie in a
direction normal to the plane considered. An evident solution of (1) is q = Ax1x2,
which corresponds with the velocity field x1 = Ax1, x2 = -Ax2, an isochoric,
irrotational flow of fourfold symmetry with stagnational points on the line through
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the origin and perpendicular to the plane of flow. Valid for all values of v, this
solution does not show any effect of viscosity. Solutions that do so may be sought
in the following broader class of plane isochoric flows, set up as a basis for a
semiinverse approach:

-xi = x1 f'(x2), x2 = -f(x2), x3 = 0. (8.6-2)

According to Schlichting,2 Hiemenz was the first to analyze these fields. For them,
(1) simplifies greatly and after one integration delivers the statement

f'2 - f f" - of"' = A2 = const. (8.6-3)

The solution f = Axe is obvious; it is independent of v and is the only irrotational
solution.

EXERCISE 8.6.1
Show that

p = -1 /2 p(f 2 + g f" + const. (8.6-4)

If f = Axe, this statement reduces to the Bernoulli equation for irrotational flow.
Henceforth, assuming that v > 0 and A > 0, we shall use dimensionless

variables defined as follows:

Axe, F(n) := f(A
)

V

in terms of which (3) becomes

F"'+FF"- F'2+1 =0.

(8.6-5)

(8.6-6)

The solution F = q now represents the irrotational flow. Adherence to the plane
x2 = 0 is expressed by the requirements

F(0) = 0, F'(0) = 0; (8.6-7)

the first of these is satisfied by the irrotational flow, while the second is violated
by it. When both are satisfied, the line of stagnation points is replaced by a plane
of them. There is a solution of (6) that approximates the irrotational flow at great
distances from the stagnation plane:

F' l as q - oo. (8.6-8)

For such a solution we see from (6) that

F"' + FF" 0 as oo. (8.6-9)

2H. Schlichting summarizes and cites researches on this subject in vol. 9 of his Boundary Layer
Theory (New York: McGraw-Hill, 1979). He reproduces there a table of values of F, f', and F"
calculated numerically by Howarth as functions of ri. Also see K. Hiemenz, "Die Grenzschicht an
einem in den gleichformingen Flussigkeitsstorm in eintauchten gerader Kreiszylinder."
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EXERCISE 8.6.2
Verify that the conclusion (9) is equivalent to the statement that the pressure gradient
in the direction normal to the plane approaches at infinity that of the corresponding
irrotational flow.

From (2) it is easy to conclude that

(x1)ir, - x1 = 1 - F', x2 - (x2ir = vii - F
(8.6-10)

(xl)ia (1 )ir A x1

in which subscript in designates components of the corresponding irrotational flow.
The assigned condition (8) makes x1 tend to (x)ii as 17 -+ oo; for a fixed i7, from
(6) we see that the ratio on the left-hand side of (10) 1 tends to 0 also if v -. 0 while
A and ij are held fixed. The ratio on the left-hand side of (10)2 tends to 0 if v - 0
while A, ri, and x1 are held fixed. Numerical calculation by Howarth indicates that
as ri -+ oo, F' -+ 1 monotonically from below, and F' > 0.99 when ij > 2.4.
Thus

(x1)in - x1
< 0.01 if x2 > 2-44

(xt)irr VV A

This statement indicates that there is a boundary layer whose "shearing thickness" is
of order v/A, independent of the distance along the plate. Numerical calculations
suggest also that F n - 0.65 as n oo, the sign - indicating "asymptotic
to"; thus .z2 ' - Av(rl - 0.65). It seems also that the left-hand side of (10) is
bounded by 0.65 v/A/x1 as oc. In other words, if we define as follows a
"displacement thickness" 3x2;

8X2 := 0.65 v/A, (8.6-12)

then x2 -A(x2 - 8x2); that is, the irrotational flow is pushed away from the
stagnation plane by approximately the distance 3X2 .

8.7 Flow about a Rotating Circular Cylinder with Suction

An elegant plane solution due to Hamel corresponds to an infinite mass of fluid
driven by an infinitely long circular cylinder of radius r0, rotating at constant angular
speed and providing radial suction upon its surface.

Again appealing to a semiinverse approach, we assume that the flow is obtained
by superposing a simple vortex (2.2-14) and a line sink located upon the axis of
the vortex. In contravariant cylindrical components

r = u(r), 6 = w(r), z = 0. (8.7-1)
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The condition (2.5-8)1 for isochoric motion becomes

Id-(ru) = 0.
r dr

Hence, ru = const.; equivalently

(8.7-2)

u = - V ro, (8.7-3)
r

in which V denotes the speed at which fluid is sucked into the surface of the
cylinder r = ro. The streamlines are spiral: 9 = -r2w(r)/(Vro) + const. The
vorticity is that of a simple vortex; hence its magnitude w is given by rw = (r2(0)',
in which, as henceforth in this subsection, the prime denotes differentiation with
respect to r; it follows that the circulation of the circle r = const. is 27rr2[e(r).
A straightforward calculations delivers the 9-component of the vorticity equation
(8.2-2) for this flow: W + DW - WD = 2v skw grad div W,

- Rw' = (rw')', 7Z := Vro/v, (8.7-4)

in which the choice of the Reynolds number R is a natural instance of the general
idea expressed by (8.4-2). The solution of (4) is

)R
, (8.7-5)w - 2Q = (wo - 2Q) (r-1

where wo is the spin of the fluid on the cylinder r = ro, and Q is the angular speed
of the fluid mass at oc : w -+ 2Q as r -+ oe. If R is large, the vorticity induced by
the rotation of the cylinder is confined to a narrow boundary layer whose thickness
decreases in proportion to (ro / r)R as r --* oo. The thickness S of the layer in which
(w - 20)/(wo - 2S2) > s is given by S/ro = e-11R.

EXERCISE 8.7.1
By integrating the relation rw = (r2(o)' show that the circulation of the cylinder
r = const. is given by:

2 2R(2 c)r2 (`o )R + 2irro(wo + R2 rz °) if R > 2,
27rr (w - 0) _

2.7r(wo - 2f )ro log ro + 27rro(wo - Q) if 1Z < 2,
(8.7-6)

in which wo := cw(ro). In particular, the circulation at r = ro is 27rro(wo - S2).
Here we see a great difference between the outcomes for large R and small R. If
R < 2, then the circulation 27rr2((0 - Q) induced by the rotating cylinder tends
in general to 0o as r - oo. The only solution having finite circulation at oo is the
rigid motion w = wo = S2, w = wo = 252. If 7Z > 2, then 2.7rr2(co - 0) tends to
the limit Cam:

RS2 - WO
C00 = 27r

r02
wo +

R -
2 (8.7-7)
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The unique solution is thus determined by the assigned constants R, wo, 0, and
C,,, in terms of which we may calculate wo, the spin of the fluid adhering to the
cylinder:

wo - 20 = (7Z - 2) [ " - ((00-0)I (8.7-8)
ro,

While, as we saw, the decay of vorticity at oo is proportional to (r/ro),R, that
for circulation is proportional to (r/ro)7?-2.

8.8 Flow between Intersecting Planes

Jeffreys and Hamel analyzed flows of a Navier-Stokes fluid within an infinite
wedge, to whose sides the fluid adheres and whose vortex is a line source or a line
sink. They showed that radial flow, either outflow or inflow, was possible for all
angles of the wedge.

We suppose the source or sink to be the axis of a cylindrical coordinate system
r, 0, z, so the radial planes are represented by 0 = const. We shall locate the
bounding planes as 0 = ± - 1/2a, so the angle of the wedge is a; we shall
suppose that 0 < a < 27r. A stream function of the form

q = F(0) (8.8-1)

corresponds to radial flow; the discharge D through the part of a right cylinder
r = const. of unit height that is cut off by the planes 0 = 01 and 0 = 02 is given
by F(02) - F(01). Thus for the discharge D through the entire wedge we have

D=F(-a)-F(-Ia). (8.8-2)

The velocity field corresponding to (1) is

F'(0) -

r = , 0 = 0, i = 0. (8.8-3)
r

Consequently a positive F' provides outflow, a negative F', inflow. Because the
fluid adheres to the planes 0 = z

F' (± 2) = 0. (8.8-4)

With the conventions and notations we have adopted, D > 0 if the axial line is a
source, while D < 0 if that line is a sink.
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Substituting (1) into (8.6-1) yields the following differential equation for F:

v(F'" + 4F") + 2F'F" = 0, (8.8-5)

the integral of which is

F"'+4F'+ IFi2=C,
V

(8.8-6)

where C is an arbitrary constant.
We now introduce dimensionless variables,

R= iDi, U= DI (8.8-7)
V

the former of which we take for the Reynolds number of the flow. In terms of them,
(6), (4), and (2) become, respectively,

U" + 4U' + RU2 - E = 0, (8.8-8)

U (±a) = 0, (8.8-9)

J U(O)dO = e, (8.8-10)

in which E - C / I D I and E = + 1 for a source, E l for a sink. The differential
equation (8) is easily integrated once:

u'2 = 3 RP(U),
(8.8-11)

P(U)= -U3- -U2+E1U+E2,

where E1 and E2 are constants.
While the solution of (11) may be expressed in terms of elliptic functions, a

direct, qualitative analysis is more enlightening. The outcome depends upon a and
the three parameters R, El, and E2, and equivalently upon the three zeros of the
polynomial P. For the details, consult Chapter 7 Section 11 of Berker's treatise
cited at the end of the chapter. The nature of the solutions can be described roughly
as follows. The possibility of a purely convergent or purely divergent flow depends
upon both R and a. If R is small and z is small, unique inflow and unique outflow
exist and have much the same character. If a is large and is precisely the period of
U, then a flow partly convergent and partly divergent is possible. Then 0
for some P in (-1 a, za). The fluid is then at rest on the plane 0 on one side
of which it flows outward, on the other, inward. To ensure unique inflow or unique
outflow we must add the requirement that F', shall not vanish in (- i , i ). The
distribution of speeds is like that in a flow in a straight channel (see (5.4-16)). For
an inflow corresponding to large R the speeds, except in two layers adjacent to the
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bounding planes, are nearly uniform, as they would be for an Eulerian fluid. The
layers are contained in wedges whose angles are of the order of 1/R; in each wedge
the speed increases rapidly with the angle 0. In contrast, for a given opening a there
is a limit such that no outflow exists if R > R > Rult,
the flow corresponding to a source must exhibit not only outflow but also one or
more wedges of inflow.

8.9 Flow in a Round Jet

A three-dimensional analogue of the flow considered in the preceding subsection
is a round jet produced by a point source. We approach flows of this kind by a
semiinverse method, laying down for study the following covariant components of
an axisymmetric, isochoric velocity field in a spherical coordinate system r, 0, 0:

r r s n9
F'(9), 0 =

r2 sin B
F(0), = 0. (8.9-1)

We attempt to determine the dimensionless function F to satisfy the vorticity
equation (8.2-2). Setting q := cos 0 and f (ri) := F(9), we find that

2(1-112)f'+4rif _ f2=C112+C2ri+C3, (8.9-2)

in which the prime now denotes differentiation with respect to n, while C1, C2,
and C3 are arbitrary constants. Berker states that this Riccati equation (2) is due
to Slezkin and Landau: the latter associated to flow in a round jet, but there are
difficulties in finding instances that satisfy the condition of adherence to a stationary
boundary.

EXERCISE 8.9.1
The flow (1) is isochoric, and the streamlines in a plane through the polar axis are
the curves f = const. Visualize and sketch the streamlines corresponding to some
instances of (1). Substituting (1) into (8.2-2) and integrating the outcome three
times delivers (2).

EXERCISE 8.9.2
The substitution

f=
-2(1 - ri2)G'

(8.9-3)
G

in (2) delivers a hypergeometric differential equation for G.
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Some particular solutions of (2) are easy to get. We first suppose that C1 =
C2 = C3 = 0. Then the solution of (2) is

f = 2(1 - nz)
(8.9-4)a = const.

a - n

EXERCISE 8.9.3 (Squire)
If a > 1, show that the streamlines f = const. experience minima as they cross
the line n = 1/a. The velocity does not vanish anywhere.

While Squire interpreted this solution as representing a round jet bounded by
one of the cylindrical streamsheets up to its minimum cross-section, the condition
of adherence is not satisfied on any such sheet; Squire stated that "a special frictional
boundary condition" is satisfied on the walls of the nozzle. If the jet is free or to
emerge into another body of fluid, a special boundary condition must be satisfied
there, too.

Another instance is obtained by putting C2 = -2C1, C3 = C1. There are then
two particular solutions of (2):

f =K(1-n), K=-l+ 1 -C1. (8.9-5)

Squire assumed that C1 > 0; then C1 = 1 + 4b2, b > 0, and (4)2 takes the form
K- z = (1 /2) ± i b. The theory of the Riccati equation then delivers the general

solution of (2) for the conditions C3 = C1 > 0, C2 = -2C1:

f = -(- n1 - 2b sin cp - D cos (p
q := log(1 + 17)b (8.9-6)

cos p + D sin cp

The constant of integration D may be determined by making the equatorial plane
a streamsheet: f (0) = 0. Then D = -(1/2)/b, so

f = (4b2 +
1)

1

n
(8.9-7)

2b cot cp - 1

Squire interpreted this solution as appropriate to a round jet emerging from the
point of intersection of the polar axis and the equatorial plane, but the velocity
does not vanish on the equatorial plane. The streamsheets corresponding to motion
up the polar axis do not have conical or cylindrical asymptotes.

Squire studied also the instance in which C1 = C2 = 0, C3 < 0 so that
C3 = 4(1 - b2), b > 1. There are then two particular solutions of (2), namely,

f = 2(n ± b), (8.9-8)

and from the theory of Ricatti equations, the general solution of (2) under the
assumption laid down:

f = -2 (1 +
1)b(b - n) - D(1 - 17)b (b + n)

(8.9-9)
(1+n)b+D(1-n)b
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in which D is a constant of integration. D may be determined by making the cone
n = no a streamsheet: f (no) = 0. Then

D= (1+no)b b - no. (8.9-10)
1-no b+no

This class of solutions, if generously interpreted, includes various jets. For the
details, which are interesting, and for other special solutions of (2), consult section
21 of Berker's treatise.

8.10 Swirling Flow between Rotating Plates

In a famous memoir, Von Karman introduced and studied axially symmetric flow
induced in a body of Navier-Stokes fluid confined by a rotating plane and a station-
ary plate. Mathematicians subsequently have given more scrutiny to flows of this
kind than to any other special class of solutions of the Navier-Stokes equations.
Even so, some questions regarding the existence, uniqueness, and stability of the
solutions remain unanswered. Recently Berker opened a new avenue by exhibiting
a one-parameter family of flows induced by two parallel plates rotating with the
same constant angular speed about a common axis. Although this class is defined
by an axially symmetric statement, only one member of it is axially symmetric,
and that one is a rigid motion. This discovery bears upon the stability of axially
symmetric solutions in general. For details of the vast analytical and numerical
study of these problems, consult the surveys by Parter3 and Rajagopal.4

Here we shall merely set up the equations and notice some of their properties.

8.10.1 Axially symmetric solutions

The axially symmetric solutions are instances of the isochoric velocity fields whose
contravariant components in cylindrical coordinates r, 0, z are

r = (1/2)rh'(z), 0 = (1/2)g(z), i = h(z). (8.10-1)

The functions g and h are to be determined to provide a solution of the Navier-
Stokes equations. The rotating plates are represented by the planes z = ±d. If

3 S. V. Parter, "On the swirling flow between rotating coaxial disks: A survey," in Theory andApplica-
tions of Singular Perturbations, edited by W. Eckhaus and E.M. de Jager, Lecture Notes in Mathematics
no. 942, (Berlin, Heidelberg, and New York: Springer-Verlag: 1982), 258-80.

4K.R. Rajagopal, "Flow of viscoelastic fluids between rotating disks," Theoretical and Computa-
tional Fluid Dynamics (1992): 185-206.
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we substitute (1) into (8.2-2), we obtain the following differential system in the
interval -d < z < d:

vh`° + hh"' + gg' = 0,
(8.10-2)

vg`°+hg'-h'g0.
Adherence of the fluid to the rotating plates requires that

h(-d) = h(d) = h'(-d) = h(d) = 0,
(8.10-3)

g(-d) = 2S2-d, g(d) = 20d,

in which the constants Std and cZ_d are the angular speeds of the plates z = d and
z = -d in their rotation about the axis r = 0. The statements (2) and (3) set the "V.
Karman problem." While Von Karman used the semiinverse representation (1) to
study the flow due to a single rotating plate, the same representation also suffices
for flow between two plates rotating about a common axis. We shall bear in mind
that solutions g and h will usually depend upon v, d, Std, and Q-d as well as z.

If the two plates rotate at the same angular speed, then S2_d = Std, and we
notice at once the solution

h(z) = 0, g(z) = 20-d, (8.10-4)

which is a rigid motion, unaffected by viscosity. It is well known that this solution
is "stable" and "isolated" with respect to the system (2), (3). "Isolated" means that
in a neighborhood of (4), defined by a suitable topology, there is no other solution
of (2) and (3). The solution is also "stable" because for no value of v can a family of
other solutions branch off from it, and also the linearized problem corresponding
to (2) and (3) has no singularity at this solution.

We shall now show that the axially symmetric solutions are never isolated
when a more general class of solutions is allowed from the start.

8.10.2 Solutions that are not axially symmetric

In the course of our study of the fluid of grade 2 we exhibited the flow (4.2-
35), which represents a body of fluid confined by two parallel plates rotating with
constant and equal angular speeds about an axis parallel to the z-axis and a distance
t from it. The corresponding Navier-Stokes flow is obtained by taking al as 0,
whence we conclude that m2 = n2 = (1/2) Q/v. The outcome is Berker's family
of solutions depending on the parameter f, none of which is axially symmetric
except the rigid motion obtained by putting £ = 0. That rigid motion is the unique
solution of (2) and (3) when Std = S2-d. The same solution is the outcome of taking
the limit in (4.2-35) as f --* 0 when m and n are fixed. Thus the rigid solution,
while isolated in the class of axially symmetric solutions, is not isolated in the
broader class considered by Berker.

This fact suggested to Rajagopal that also when Std = S2-d, an axially sym-
metric solution of the kind long studied by analysts might be imbedded in a family
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of solutions that do not exhibit such symmetry. To that end he introduced a broader
class of isochoric flows for application of the semiinverse method:

r = (1 /2)rh'(z) + k(z) cos 0 - f (z) sin 0,

9 = (1/2)g(z) - 1k(z) sin 0 - 1 f (z) cos 0,
r r

= h(z). (8.10-5)

If h := 0 and g := 20 = const., (5) reduces to the velocity field studied by Berker
and considered here in Section 5.6 and Section 7.5, while if f := 0 and k := 0,
we recover Von Karman's velocity field (1). Substitution of (5) into (8.2-2) yields
the following system of differential equations defined on [-d, d]:

vh1D + hh"' + gg' = 0,
vg')+hg'_h'g=0,

of"' + (hf')' - 1/2(h' f)' + 1/2(gk)' = 0, (8.10-6)

vk" + (hk')' - 1/2(h'k)' + 1/2(gf )' = 0.

The requirement that the fluid adhere to the plates implies that

h(-d) = h(d) = h'(-d) = h'(d) = 0,
g(-d) = 20-d, g(d) = 20d,
f (-d) = f (d) = k(-d) = k(d) = 0. (8.10-7)

The structure of this system is most remarkable. The first two members of (6) and
the first six of the boundary conditions (7) are precisely the conditions (2) and (3)
that define the Von Karman problem. Any solution g, h of that problem may be
substituted into (6)3,4, which then become linear differential equations for f and
k. The order of the linear system is 6; their solutions are to satisfy the last four
of the boundary conditions (7). Thus further conditions remain to be imposed if a
unique solution is to be determined.

Whenever a solution of the axially symmetric problem exists, we can ask
whether it is embedded in a broader class of solutions, generally not axially sym-
metric. Since the linear system for f and k is homogeneous and underdetemined,
the answer is obviously yes. We need only consider the additional conditions

f'(-d) = k(-d) = 0. (8.10-8)

If for given g and h the augmented system (6)3,4 has a nontrivial solution f, k, then
£f, 2k is also a solution for every real number f. If the augmented system does not
have a nontrivial solution, then replacing (8) by

f'(-d) = £ # 0, k'(-d) = 0 (8.10-9)

yields a unique solution of (6)3,4. Therefore the axially symmetric solution is
embedded in a one-parameter family of solutions of the full system of equations.

We next ask whether we can find a family of solutions for general S2_d and
Std that depend continuously on v and a and reduce when S2_d = Std to Berker's
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solution. Parter and Rajagopal5 have proved that if g and h satisfy (6)1,2 with given
S2-d and Std, then (6)3,4 have solutions f, k that satisfy the boundary conditions
(7)7,8,9, 1o as well as

f(0) = f, k(0) = 0, (8.10-10)

depend continuously on v and f, and reduce when S2-d = Std to Berker's solutions.
To discuss the nature of the solutions of these problems, it is best to intro-

duce dimensionless statements corresponding to (6) and (7). Appropriate scaling
parameters are S2-d/ S2d and a Reynolds number defined as follows:

R :=
dzQd

(8.10-11)
V

If := z/d and

vOdd
f (z)

then (6) becomes

Odd'

Stdd

d, (8.10-12)

R-1/2 H'v + HH' + 4E1GG' = 0,
R-1/2G'v+HG'-H'G=0,

R-1/2F" + HF" + (1/2)H'F' - (1/2)H"F + R1/2(GK)' = 0,
R-1/2K"' + HK" - (1/2)H"K + (1/2)H'K' - R112(GK)' = 0, (8.10-13)

while (7) becomes

H(-1) = H(1) = H'(-1) = H'(1) = 0,
G(-1) = S2-dl Od, G(1) = 1,

F(-1) = F(1) - K(-1) = K(1) = 0, (8.10-14)

and (8.10-11) becomes

F(0) = a := e/(S2dd), K(0) = 0. (8.10-15)

For very small values of R, Hastings6 and Elcrat 7 have proved that (10)1,2 has
a unique axially symmetric solution subject to the boundary conditions (11)1-6.
For sufficiently large values of R, Kreiss and Parter8 have proved that the system

5S.V. Parter and K.R. Rajagopal, "Swirling flow between rotating plates," Archive for Rational
Mechanics and Analysis 86 (1985): 305-15.

6 S.P. Hastings, "On the existence theorems for some problems from boundary layer theory," Archive
for Rational Mechanics and Analysis 38 (1970): 308-16.

7A.R. Elcrat, "On the swirling flow between rotating coaxial disks," Journal ofD ferential Equations
18 (1975): 423-30.

8H.O. Kreiss and S.V. Parter, "On the swirling flow between rotating coaxial disks," Communications
of Pure and Applied Mathematics 36 (1983): 55-84.
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(10)1,2 subject to the conditions (11)1_6 has several axially symmetric solutions.
Parter and Rajagopal have proved that the system (10) subject to the conditions
(11) has infinitely many solutions that are not axially symmetric. For small values
of R the axially symmetric solution has a core that rotates at an angular speed equal
to the average of the speeds of the two discs. On either side of the core there are
narrow boundary layers. As R increases, the boundary layers become narrower.
Numerical work suggests that as certain values of R there are as many as seven
solutions, most of which exhibit no boundary layers.

Thus far we have restricted the discussion to flows induced by plates rotating
about a common axis, but that is not necessary.

EXERCISE 8.10.1
If the axes of rotation are at (a,0,d) and (a,0,-d), the condition of adherence to the
plates z = :Ed replaces (7)9,10 by k(-d) = (1/2)Q-da, k(d) = 1/2S2da. Show
that

K(-1) = (1/2)QS2dd , K(l) = -(1/2)a. (8.10-16)

Parter and Rajagopal find that each particular solution of the system (10)1,2
gives rise to a one-parameter family of solutions of the system (10)1_4. Therefore,
if we are to discover the nature of the solutions of (10)1-4, we must first determine
the solutions of (10)1, 2.On that matter there is much conjecture and a bewildering
array of numerical work.9

Some rigorous work has been done on the system (10)1,2. For counter-rotating
plates, namely, when Std = -0-d, McLeod and Parter10 have proved the existence
of a solution odd with respect to the plane z = 0. They have proved that G is
monotone in the interval ]-1, 1 [ and is exponentially small in a core region and that
the shape of H in that interval is qualitatively like the negative of a sine function.
They did not prove uniqueness, and later Kreiss and Parter showed that there are
several other solutions when R is very large. Still less is known about the flow
between disks rotating in the same sense. 11

Steady flow between two infinite, rotating plates would seem to afford a rather
simple problem, since it leads to no more than a solution of the system of four

9The interested students may consult the survey articles by S.V. Parter, "On the swirling flow
between co-axial disks: A survey" in Theory and Applications of Singular Perturbation, edited by
W. Eckhaus and E. M. De Jager, Lecture Notes in Mathematics No. 942, (New York: Springer-Verlag,
Berlin, Heidelberg, 1982), 258-80; K.R. Rajagopal, "Flow ofviscoelastic fluids between rotating disks,"
Theoretical and Computational Fluid Dynamics, 3, (1992): 185-206.

10J.B. McLeod and S.V. Parter, "On the flow between two counter-rotating infinite plane disks,"
Archive for Rational Mechanics and Analysis 54 (1974): 301-27.

11 J.B. McLeod and S.V. Parter, "The non-monotonicity of solutions in swirling flow," Proceedings
of the Royal Society of Edinburgh 74 (1977): 161-82.
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ordinary differential equations (10) subject to the conditions (11), but the foregoing
pages show it to be far simple and far from settled.

8.11 Flow Driven by Coriolis Force

Ekman in his investigations of the influence of the earth's rotation upon ocean
currents introduced the velocity field

xl = U(x3), X2 = V(x3), x3 = 0. (8.11-1)

To study the problem, the Cartesian coordinate system (x1, x2, x3) should be re-
garded as having its origin on the free surface of the sea, with the x3-axis directed
vertically upward; the sea is taken as plane and infinitely deep.

The field (1) would be accelerationless in an inertial frame; here it is taken
in a frame rotating with the earth. The components of the earth's angular velocity
with respect to an inertial frame may be taken as cw1i w2, w3, assumed constant.
After using (2.3-10) to calculate the Coriolis acceleration, from (7.2-1) we get the
following equations of motion:

2w3v+vu"= 1a.",cp,
P

-20v3u + vv" = 1 aXZcp

P

1

2(c02u - colt') =

From (2) we conclude that

(8.11-2)

1P = Ax1 + Bx2 + g(x3), (8.11-3)

in which A and B are arbitrary constants. This field is compatible with the assump-
tion that cp depends only upon the depth. Here and henceforth we write x for x3;
then

= g(x), (8.11-4)

and (2)1,2 reduce to

2c03v+vu"=0,
-2c03U + Vv" = 0. (8.11-5)

We write f = u + i v and so express this system compactly as

f" - 2i 13 f = 0. (8.11-6)
V
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Hence

f = Ce(1+')Ox + De-(1+'),ex,
w-3

. (8.11-7)
V

If a uniform tangential stress, representing for example the effect of the wind,
acts upon the free surface, then

µu'(0) = T, µv'(0) = 0. (8.11-8)

If we suppose also that the fluid is at rest at x = -oo, then

u-*Oandv-+Oasx-+ -oo. (8.11-9)

The conditions (8) and (9) reduce (7) to

=
T

ox ( - 1 4u e cos ox ( / )ir),
,/2- µP

i (v = T fix - 1 4 11 10(8oxe s n ( / )ir).
-

- ).

-12AP

Since x < 0, the velocity dies away exponentially from the surface, the flow being
confined in the main to a boundary layer whose thickness may be taken as #-'.
The velocity at the surface subtends half a right angle upon the direction in which
the flow is driven by the tangential stress T.

8.12 Serrin's Swirling Vortex

We consider a viscous fluid in motion about an infinite, straight vortex line normal
to a plane boundary, to which the fluid adheres. The domain of flow is r > 0,
0 < 0 < fir, 0 < < 2n. We assume also that were the plane absent, the fluid
would spin in an irrotational vortex centered upon the vortex line at angular speed
inversely proportional to the square of the distance from it. Using a semiinverse
method, we set up for study a class of flows described as follows in the physical
components of a spherical coordinate system r, 0, 0:

G(x) F(x) S2(x)
xr= , x9= , xR R ,= R , (8.12-1)

in which R := r sin 0, the distance from the vortex line, and x := cos 0. Because
(1) must be isochoric,

G = F' sin O, (8.12-2)

the prime denoting differentiation with respect to x. If F = 0 and 0 = C = const.,
the flow (1) reduces to the irrotational vortex of strength C.

Our problem is to choose F and S2 to make (1) a solution of Navier's dynamical
equation and to interpret the resulting flow if such exists. We follow in outline a
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classic paper by Serrin.12 Several of the early steps will be listed as exercises.
Students who have difficulty in solving them should consult Serrin's paper, as they
must do if they wish to follow the later parts of the analysis, only some outcomes
of which are presented here.

EXERCISE 8.12.1
The spherical components of Navier's dynamical equation for this problem are

-FF" - (F')2 - (F2+02) cosec2 0 = - r38"cp + v(F"' sine 0 - 2F" cos 0),
-FF' - (F2 + S22) cot 0 cosec 0 = - r2 sinOdacp - vF"' sine 0, (8.12-3)

-FS2' = - r28,cp + vS2" sine 0.

From (3)3 we see that 8ocp is independent of 0. Hence cp is a linear function of
but since it must be periodic with period 27r in 0, it cannot depend upon 0 at all.
It follows from (3)1 that there are functions of A and B such that

cp =
A(x)

+ B(x). (8.12-4)

From (3)2 we see that B = const. Thus (4) can be written as

cP =
RZ) + const. (8.12-5)

and substitution into (3)1 yields

-27r = F2+02+ { F F" + F'2 + v(F"' sin2 a - 2F" cos a)} sin2 a. (8.12-6)

EXERCISE 8.12.2 (LONG)
Eliminations of qp from (3) yield

v(1 - x2)F'v - 4vxF"' + FF"' + 3F'F" _ - 2S2Q'/(1 - x2),
v(1 - x2)Q" + FQ' = 0. (8.12-7)

Students will have seen that these manipulations can be shortened, had we disposed
of the spherical components of the condition of compatibility (8.2-2).

Our problem has been reduced to solution of the ordinary differential system
(7) in the variable x, subject to appropriate boundary conditions. The condition
of adherence z = 0 must be satisfied when 0 = fir, and zo must approach C/R

12J. Serrin, "The swirling vortex," Philosophical Transactions of the Royal Society of London 271A
(1972): 325-60.
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as 0 0, C being the rotational momentum m per unit volume of the vortex
described by (1)3 alone. These conditions take the forms

S2=F=F'=0when x=0,
Q -). C as x --* 1. (8.12-8)

Also it is necessary to add the condition

F --> 0 as x -- 1, (8.12-9)

which stipulates that the vortex line 0 = 0 is neither a source nor a sink. Also the
reduced pressure 11(x) = oR2 approaches the value -z C2 as 0 approaches zero,
in keeping with the result for a line vortex.

EXERCISE 8.12.3
Let S be a surface of revolution obtained by revolving a meridian curve C about
the vortex line 0 = 0. If rF(x), then show that

Xr
r2 s n 8

ae *' xg r sin 8
ar (8.12-10)

and the flux through S is 2ir 1 *2 - *11, in which *1 and *2 are the values of f at
the endpoints of the curve C. If C joins two distinct points on the vortex line, then
*1 = *2, so (9) follows. The streamlines lie on the surfaces r = const.

We have reduced our problem on the sixth-order differential system (7) subject
to the five conditions (8) and (9). The constants v and C are assigned. We expect
to find a one-parameter family of solutions. We shall now reduce the problem to a
statement in terms of integro-differential equations.

First, integrating (7)1 three times yields

2v(l - x2)F' + 4vxF + F2 = -
J

x dy f y dz J Z QW2dw + Px2 + Qx;
0 0 0

(8.12-11)
P and Q are constants of integration, and a third one has been annulled by use of
(8)2,3

EXERCISE 8.12.4
Show that the triple integral in (11) can be rewritten as

2
J

x (x - t)2 SS'dt; (8.12-12)1-t2
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integration by parts and using the boundary condition Q(O) = 0 yields

2 x (x - t)(1 - xt) 22dt.
(8.12-13)

0 - t2)2

Since 0 is bounded on [0,1], this integral converges as x ---> 1 to

c1 Q2
dt.

2
(8.12-14)

J0 (l + t)2
By use of (7) and (9) we find that

(1 - x)F' const. as x (8.12-15)

use of (9) again shows that the constant is naught. Thus (11) yields

1

S22
dtP+ Q= 2 12-16)(8.

2J
.

0 0
(1 + t)

Following Serrin, we first choose P as a basic parameter and use (16) to
eliminate Q from (11), so we obtain

2v(1 - x2)F' + 4vxF + F2 = G,
/'x f

1 2
G(x) := 2(1 - x)2 J t2)2 dt + 2x (1 + t)2 - (x - x2)P.

(8.12-17)

Withthe change of variables F := 2v(1 - x2) f, we obtain the final system:
,2 2= C-2G,f + f

S2"+2fS2' = 0 (8.12-18)

in [0,1 ], and the additional conditions are

f = uT = 0 when x = 0, S2 Casx--±1. (8.12-19)

We notice that both the angular momentum C and the viscosity v have dimension
of L2/ T, and thus a natural choice for the Reynolds number of these flows is

1Z := 2 (8.12-20)

Serrin shows by means of a change of variable that there is no loss in generality in
setting C = 1. He also provides some motivation for generalizing the analysis to
turbulent flow wherein v is to be interpreted as the kinematic eddy viscosity.

EXERCISE 8.12.5
The rotational momentum S2 increases monotonically from 0 to C as x increases
from 0 to 1. The statement of this exercise is drawn directly from (18)2 and the fact
that 0' is always of one sign.
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THEOREM 8.1
Let f and zu satisfy (18) and the additional condition (19). Then F is a solution
of (7) subject to the additional conditions (8) and (9); moreover,

rr(0) _ -2 PC2, 7r(1) _ -2C2. (8.12-21)

Also

2

q - - PC + const as 0 = 0,

C2 1

R2 + const. when 8 = 2 jr. (8.12-22)

This conclusion shows, among other things, that the solution of (18) subject to (19)
leads to a solution of (7) subject to (8) and (9).

Before getting into a discussion of the existence of solutions of the above
equations, we shall discuss some of their qualitative properties.

EXERCISE 8.12.6
Show that the function G(x) satisfies

G(O) = 0, G'(0) = 2 f 1 2) - P, (8.12-23)

G(1) = 0, G'(1) = P - 1, (8.12-24)

and G"(x) <0for0 <x < 1.

EXERCISE 8.12.7
Show that the function G(x) is such that

G'(0)(x - x2) < G(x) < (1 - P)(x - x2), 0 < x < 1. (8.12-25)

As a consequence, we conclude that for 0 < x < 1

G(x) > O when G'(0) > 0,

G(x) < 0 when P > 1, (8.12-26)

and when G'(0) < 0 and P < 1, G is first negative, has a single zero in the interval
0 < x < 1, and is positive thereafter. We thus conclude that G is either concave,
convex, or initially convex and then concave.
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EXERCISE 8.12.8
IfP < 1, then f < 4(1-P)2log(1 -1X)-

Also if Q > 0, then f is positive, whilst if Q < 0, then f is either everywhere
negative or else first negative and positive thereafter. Finally, verify that if P > 1,
then f is negative and decreasing.

With the aid of Exercises 6, 7, and 8 we can establish the following theorems
that describe the behavior of the function f.

THEOREM 8.2
Let f and Q make up a solution of (18) subject to (19).

(i) Suppose that P < 1. If G'(0) > 0, then f > 0 and S2 increases and is
concave. If G'(0) < 0, then f is first negative, then has a single zero in [0,11,
and is positive thereafter.

Correspondingly, 0 is first convex and then concave.

(ii) Suppose that P > 1. Then f is negative and decreases, while ru increases
and is convex.

(iii) When P = 1, f tends to a finite limit as x -* 0.

In other cases,

f 4(1 - P)RZ log
1 l x

(8.12-28)

Serrin illustrates the streamlines of these cases for particular values of P. In some
instances fluid flows down near the vortex line and along the plate until the two
streams meet and are turned upward to form a tight funnel pointing straight ahead.
In another instance the fluid sweeps in along the plate and is turned upward to form
a vertical spout.

Serrin's conclusions can be summarized as follows:
Let f be a solution of (18) subject to (10). Then f is either everywhere positive,

everywhere negative, or first negative and then positive.

A. For positive solutions the radial velocity is outward near the plane and
downward near the vortex line.

B. For solutions at first negative and then positive, the radial velocity is inward
near the plane and downward near the vortex line. This general motion
toward the origin is balanced by a compensating outflow near the streamcone
of angle cos-1 a, a being the zero off.
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C. For negative solutions the radial velocity is inward near the plane and up-
ward near the vortex line. Later Semn proves that such solutions exist only
for small values of R. For positive f , solutions of (18) subject to (19) have
a boundary layer in which as R becomes large the function Q uniformly ap-
proaches 1 on compact subsets of ]0, 1 ]. The component Xw is then arbitrarily
near that of an irrotational vortex except for a thin layer near the plane. The
radial component of velocity is quite large.

Serrin shows that there are ranges of parameters for which no solution of ( 18)
subject to (19) exists.

1. If P > 1 and PRZ > 2µi, where µl is the smallest zero of the Bessel
function J3 , then the system (18) subject to (19) has no solution.

2. Let a be a fixed number in ]0,1 [. There is no solution f such that f (a) = 0
unless

P < a { 1 + 1 a2a log(, - a2)} . (8.12-29)

3. There is no positive solution unless

P < K(7Z), (8.12-30)

where K is a positive function that increases monotonically from 3 - 4 log 2
to 1 as R increases from 0 to oo.

The existence theory for (18) subject to (19) is difficult. Let the parameters R
and P be fixed at the values R and P, and let f and Q be such that f (O) = S2(0) = 0
and

f = O I\z 0 < S2 < 1. (8.12-31)(log
1

1-

Then f and Q will be called a subsolution of (18) subject to (19) if on [0,1 [

f + f2<R2 G(:

S2"+2fc2>0, (8.12-32)

in which G is the function G given by (17)2 with 0 and P given by S2 and P,
respectively.

THEOREM 8.3
For given R and P, let f and S2 be a subsolution. Then there is a solution f and
Q of (18) subject to (19) for the same R and all values of P not exceeding P.
Moreover,

f > f, S2 > 0. (8.12-33)
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The proof employs an intricate procedure of successive approximation.
Some corollaries deliver ranges of the parameters for which solutions do exist

and others for which they do not. For example, if P < 3 - 4 log 2, there are
positive solutions. Also there is a constant A, pretty near 2.85, such that the system
is solvable if PR2 < X2 but is not solvable if (P - 1)722 > X. If P < 3 - 41og 2,
there is a solution with positive f, while if P > 1 and P7Z2 < 8.2, there is
a decreasing solution with negative f. The type of solution in which f is at first
negative, then has a single zero, and thereafter is positive, remains to be established,
as follows.

From a step in his proof of Theorem 2, Serrin remarks that solutions of the
kind he now seeks must satisfy the condition

G'(0) = 2 1

S22 dt - P <0. (8.12-34)
(1+t)2

He next writes Q for G'(0) and takes Q as the basic parameter. Thus

P = 2 1

02
dt - Q. (8.12-35)f

(l + t)2

The system to be solved is (18) subject to the conditions (29) and (30). Eliminating
P from (29) by use of (30), we obtain

r
G(x) = -2 f x (x - t)(1 - tx)

S22dt + 2x2
J

1 S22 dt + (x - x2) Q.I (1 - t2)2 o o (I + t)2
(8.12-36)

By using a fixed-point theorem, Serrin proves the following theorem.

THEOREM 8.4
The system (18) subject to the conditions (19) is solvable, with the solution given
by (31), provided that

QR2 > 2 (8.12-37)

(the constant A was introduced in the first corollary following Theorem 3).

A corollary states that for each R there are solutions f of (18) subject to (19)
such that f is first negative, then has a zero in ]0, 1 [, and is positive thereafter.

This theorem guarantees that there is a solution provided G'(0) < 0, which
corresponds to P < 1. These solutions are positive. Serrin goes on to prove that,
given a fixed R, there is a positive solution provided;

P > 1 - 12(R.)-1/2[1 + I logRI]. (8.12-38)

On the basis of numerical calculations, Serrin provides a plot (R)-2 versus P
in which he delineates the domains in which the different types of solutions are
possible. It is seen that if P is sufficiently small and R is sufficiently large, then we
always have a positive solution. On the other hand, if both P and R are sufficiently
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large, no solution is possible. In fact, for any fixed value of R, if P is sufficiently
large, there will be no solution. For intermediate values of R and P, solutions that
are initially negative and then positive and solutions that are everywhere negative
are possible.

Consideration of uniqueness is notably absent in Serrin's study of the swirling
vortex. The paper concludes with diagrams obtained by numerical calculation and
with photographs of waterspouts and tornados, to which the analysis may apply.

Theorems of general existence and uniqueness of solutions for boundary-value
and initial-value problems apart, in the theory of the Navier-Stokes equations all
problems solved precisely so far rest upon particular reductions to systems of
ordinary differential equations. As in Serrin's treatment of the swirling vortex,
these differential equations are usually nonlinear and very hard to solve.

8.13 Stability and Uniqueness

Recent years have seen great strides in the study of hydrodynamic stability based
upon the Navier-Stokes theory. 13 In former times nearly all of the effort was put into
analysis of linearized theories, which provide sufficient conditions for instability. I4

Bifurcation theory, in contrast, obtains properties of all solutions that can arise
from the instability of a particular, given solution. Between these extremes lies the
rigorous theory of stability in norm. We shall now consider some examples.

We consider first a body of Navier-Stokes fluid undergoing a given, basic
flow in a fixed, bounded, closed domain V in space and subjected to arbitrary
disturbance. In general, fluid will enter and leave V through 8V. The shape of V
may change in time, but its volume V will remain constant. The arguments concern
certain integral norms of the squared speed of a disturbance; such a norm is often
called an energy E, and stability defined in terms of it is called stability in energy.

First we state and prove three classic theorems of Serrin, who based his analy-
sis in part on the pioneering work of Reynolds and Orr as well as the early rigorous
studies by E. Hopf and T.Y. Thomas. In following the proofs of the first theorems,
the student will notice similarities to the work presented Section 7.6. The proce-
dures there were influenced by the prior studies of Serrin, some of which we now
set forth.

We write x for the basic flow, to which tp is associated as usual, and we suppose
that these satisfy Navier's dynamical equation (8.2-1). To prove Serrin's theorems
we presume x and cp smooth in the following senses:

13The survey by D.D. Joseph, Stability of Fluid Motions, Springer Tracts in Natural Philosophy,
vol. 27 and 28, (Berlin, Heidelberg, and New York: Springer-Verlag, 1976), presents and interrelates
developments in all kinds of hydrodynamic stability by him and others through 1975.

14C. C. Lin, The Theory of Hydrodynamic Stability, (Cambridge: Cambridge University Press, 1955).
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(i) z and its first derivatives are continuous in V x [0, T], T > 0, and i has
continuous spatial second derivatives in V.

(ii) p and grad p are continuous in V x [0, T].

We suppose that i* and o*, perhaps different from x and gyp, in v x [0, T] satisfy
Navier's equations (8.2-1) with the same value of v and that i* and q0* enjoy the
smoothness specified earlier for z and gyp. The initial conditions for i* and p* will
generally be different from those prescribed for z and cp. We call the differences
the perturbances:

Si := i* - i, Sip := cp* - cp. (8.13-1)

Hence, if t c [0, T],

Si=0on8V, (8.13-2)

while if t = 0, then

8x = 8xo, (8.13-3)

a prescribed function of x in V.
We use the asterisk and the S to denote also the values of linear operations on

i* and Si. Thus the velocity gradients, stretching, and spins of i* and Si are G*,
D*, W* and 8G, SD, SW, respectively.

Subtracting the Navier-Stokes equation satisfied by i and q from that for i*
and V* yields

Si + GSi + (SG)i = - grad 4 + 2v div SW. (8.13-4)

The prime denotes at in the spatial description. The scalar product of this equation
and 8i is

1

(IS2zl2), + Si GA + (8i) (SG)i*
-8i grad &p + 2v(6i) div SW. (8.13-5)

Recalling that i and i* are both solenoidal, we can rewrite (5) as

I (ISXI2)' 8i DSi - vI8G12 + divz,

z := 46i + 1

2 l8*I2x* - SGTSi. (8.13-6)

Noting that z = 0 on a V, we integrate (6) over V, use the divergence theorem, and
so obtain Serrin's basic balance, which, he stated, "may be traced" to the work of
Reynolds and Orr:

E _ - f(8x DSi + vISGI2)dV, E := 2 J ISiI2dV. (8.13-7)

V V
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The foregoing derivation of (7) presumes V bounded. That balance holds also
for unbounded domains if the perturbance is assumed spatially periodic at each
instant. For unbounded domains it holds also if i, i*, c o, and (p* are presumed to
satisfy appropriate conditions of decay as x -+ oo. Theorem 5 delivers uniqueness
under rather weak assumptions.

The first term in (7) is independent of viscosity; it delivers the change of norm
due to interaction of the perturbance and the stretching of the basic flow, the same
as for an Eulerian fluid. The second term, proportional to v, delivers the change
due to the difference of the gradients of the two flows, moderated by the viscosity.

Since the flow is divergence free and i = 0 on the boundary we can replace
18G12 by 21SD12 in (7)1. Thus we can say that all change of E is governed by the
interior stretching of the two flows. Alternatively, we may replace 1SG12 by 218W 12,
and the statement produced by solving the next exercise allows us also to replace
the integrand 8i DSi by one proportional to SW.

EXERCISE 8.13.1

f Si. DSidV = -2 f i SWSidV. (8.13-8)

V
v

Thus we may say equally well that all change of E is governed by the difference
of the interior spins of the two flows and again that change is the sum of the two:
one independent of viscosity and one expressing the effects of viscosity.

While up to now in this section we have considered only solutions of Navier's
dynamical equation, we here state and prove a lemma concerning a broader class
of continuously differentiable, time-dependent vector fields v such that div v = 0
in a region V and v = 0 on a V. Of course Si is an instance of v, so our conclusions
will apply to it afortiori. We presume that v satisfies the requirements laid down
for i.

LEMMA 8.5
Let D be afield of symmetric tensors, and let m be a lower bound of the proper
numbers of D in V x [0, T]. Let v be a vector field, let C be an upper bound for
the Poincare coefficients of V in [0, T], and let k be any positive constant. Then

- Dv + kIVvI2)dV < (m - k I

J
Iv12 dV. (8.13-9)

V v

PROOF At each point in V and at each time, u Du > -cu2, c = const. > 0,
u arbitrary. Thus for m and v satisfying the hypothesis of the Lemma throughout
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[0,T]

f v DvdV > -m
J

IvI2dV. (8.13-10)

V v

At each instant

f Iv12 < CP
J

VvI2d V. (7.6-7)

v v

Consequently, for the interval of time [0,T] there is a positive constant C such that

fv.Dv > C J IovI2dV. (8.13-11)

v
v

From the negative of (10) we subtract k/ C times (11) and so obtain (9).

LEMMA 8.6
If t E [0, T ], then

E(t) < E(0)e2(m-v/c)r (8.13-12)

PROOF In (9) we may take 8z for u and v for k. Recalling (7)1i we obtain

E <aE,a:=2(m- E). (8.13-13)

If t E [0, T], from (13)1 we see that

f(E0 > - aE)e-°wdw,
0

=f
J dw (Ee-a-)dw,

0

= E(t)e-at - E(0). (8.13-14)

THEOREM 8.7 (Foa, Serrin)
Uniqueness of the initial-value problem. If the initial perturbance, 8x = 0, then
E(0) = 0, and for all tin [O,T] it follows that E(t) = 0. Hence Si = 0 at each t
in [0, T].

The proof is immediate because we have assumed that E(0) = 0 in (12)
and (14). It makes no use of (13)2. Thus Theorem I applies to all incompressible
Navier-Stokes fluids regardless of v.
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THEOREM 8.8 Decay (Serrin). If t e [O, T],

vm<C, (8.13-15)

then E(t) decreases exponentially. If T = oc, then

E(t) -+ 0 monotonically as t - oo. (8.13-16)

PROOF Immediate from (12).

When v and V are assigned, (15) provides a criterion of distortion: If the
fluid undergoing the basic flow does not at any time contract too rapidly in some
direction, it is stable in energy. Serrin expresses (15) in terms of a Reynolds number
(8.4-2), taking V as the maximum speed of the basic flow and L as the maximum
diameter of V. By calculation he found the criterion R < 5.71 sufficient for
universal stability. For particular classes of flows, similar and sharper bounds had
been established before Serrin's, notably by Leray, Kampe de Feriet, and Berker.

THEOREM 8.9 Uniqueness of steady flows (Serrin). If (15) holds, at most
one steady flow satisfies Navier's equation and the boundary conditions (2).

PROOF E(t) = E(0). If (15) holds, from (12) we see that E(t) < E(0), which is
not possible. Hence E(O) = 0.

The proofs of these three theorems rest heavily upon Lemma 1, which follows
from vector analysis and tensor analysis alone, unaffected by the Navier-Stokes
theory. Consequently conditions sufficient for uniqueness or decay established
by use of (9) or other bounds similarly obtained are unnecessarily weak. They
allow for an enormous class of disturbances that cannot exist. Serrin's discovery
provoked much effort, at the cost of much mathematical difficulty, to obtain a
condition weaker than (15), and Joseph obtained such a condition.15 This method
has the advantage of leaving the proofs essentially unchanged while sharpening
conclusions through replacement of (15) by some weaker condition. Later research
has delivered still stronger estimates.

Serrin's theorems estimate the behavior of E, a kind of mean. Much of Hopf's
pioneering effort was directed toward proof that stability in norm required the
disturbance to vanish. This difficult matter has been cleared by Rosso.16

We turn now to solutions of Navier's dynamical equation that describe what
has occurred in the past, before the start of the forward flow. It was long known that
not all backward solutions depend continuously upon their defining initial data but

15 D.D. Joseph, Stability of Fluid Motions, 14-15.
16F. Rosso, "Variational methods for pointwise stability of viscous fluid motions," Archive for Ra-

tional Mechanics and Analysis 86 (1984): 181-95, and "Pointwise unconditional attractivity of solu-
tions of the Navier-Stokes equations with respect to perturbations of Hopf type," Revue Roumain des
Mathematiques Pures etAppliquees 31 (1986): 51-64.
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that such solutions belonging to some particular classes do. Knops and Paynet7
constructed one such class. In it the speed, spin, and acceleration of the basic flow
and the speed of the perturbed flow are uniformly bounded in the domain of their
definition, which is V x [-T, 0], T being a positive constant. Neither the basic
flow (i, cp) nor the perturbed flow (i*, tp*) is assumed to exist, but if they do, they
are assumed to satisfy identical initial conditions and the boundary conditions (2)
and (3). The student will recall the definition of the perturbance 8i and its initial
value Si and its initial value 8io in V. Knops and Payne's bounds are defined as
follows in terms of supremum over V x [-T, 0] and of arbitrary constants N and
M:

sup(I XI2 + 1W121i,12) < N2,

supli*I2 < M2. (8.13-17)

THEOREM 8.10 (Continuous dependence on data for solutions backward in
time)

Let the stated conditions be satisfied for all t in [0, T]. Then there are a positive
constant K and a function ?, oft with values in [0,1] such that

r
2E < K

J
I8zol2dV (8.13-18)

v

PROOF From (7)2 we

f(6xo)

see that

E = (bi)'dV,
v

E _ f(6*' 8x' + Si - Si")dV,

vp

r
_ ((8i' 8x')dV +

J
Si[vAS* - grad

v v
- (SG)i* - GSi]'dV; (8.13-19)

'7R.J. Knops and L.E. Payne, "On the stability of solutions of the Navier-Stokes equations backward
in time," Archive for Rational Mechanics and Analysis 29 (1968): 331-35. A treatment starting from
a different set of conditions is given by G.P. Galdi and B. Straughan, "Stability of solutions to the
Navier-Stokes equations backward in time," Archive for Rational Mechanics and Analysis 101 (1988):
107-14. This paper includes a brief history of the problem.
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the last step follows by use of (4). From the boundary conditions and use of the
divergence theorem we obtain

r
E= 2

J
I8i' I2d V+ 2

J
[(SG)x* - Sic'] d V (8.13-20)

V/ v
r

+ J (WSi) 5i dV + J [(SG)S*] - idV. (8.13-21)

V V

Next, by virtue of the boundary

[(SG)x*

conditions and the divergence theorem, we see that

J 8z . + I WSA] dV = 0, (8.13-22)

V

so (19)1 can be expressed as follows:

[(SG)x*E = (8i)'dV + f Si + 2'W8*] dV = 0. (8.13-23)

V
v

To help students understand the following analysis, we discuss briefly the essential
idea underlying the proof entering into the details. The argument rests upon loga-
rithmic convexity. A differential inequality that can be integrated leads to a bound
on an appropriate Liapunov function, which in the present instance is E. For the
moment, let us suppose E does not vanish at any t. Thus, if we can show that there
are positive constants K1 and K2 such that

k2
E - Z > K1 E - K2, (8.13-24)

rearrangement yields

(et.) < K2e-K't. (8.13-25)

With the change of variable a = eK2t , (24) becomes

d (I_i) > _K2(K1o)-2.
(8.13-26)dQ Eda

This inequality can be integrated twice to obtain a bound for E in terms of the
initial perturbance Sx0. First we establish the differential inequality (25).

EXERCISE 8.13.2 (Knops and Payne)
The relations (7)2, (19)3, and (22) imply that

EE - E2 = I f I8il2dV
J

I8x' + 2(5G)x* + I W8*I2dV
J v
V
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- (J Sz [6*'+(6G)**+W6i]dV)2}
r

r\ v
( r-

4 J
18zlzdV

J
J(8G)z- + 12 WSi12dV +

2

J ISzlzdV
J

[(SG)Sx] x'dV.
v v v v

(8.13-27)

Taking the scalar product of (4) and SX and using the initial conditions and boundary
conditions (3) and the divergence theorem, we obtain

v
J

1SGI2dV = - f Sz' SzdV + f [(8G)3i] zdV. (8.13-28)

V v v

Using the arithmetic-geometric inequality, the Schwarz inequality, and the bound
(17)1, we arrive at the statement

f z

ISGI2dV < _? E + 2N
E (8 13-29).

2J
.

v v

V

Substituting (28) into (27) and using (17) yields

EE - E2 >
2(M2

+ 1)EE - N2[2(M2 + 1)1 + 1]E2. (8.13-30)

If

K1 := v(M2 + 1), K2 := N2 [.?(M2 + 1)1 , (8.13-31)

it f ll th to ows a

EE - E2 > KIEE - K2E2. (8.13-32)

A theorem of uniqueness established by Serrin18 states that if E vanishes at
any time, it has to vanish for all times. If E vanishes, there is nothing to prove. If
E never vanishes, we may divide (31) by E, obtaining (23).

To complete the proof, we observe that (25) can be integrated twice to yield a
bound for E.

EXERCISE 8.13.3 (Knops and Payne)

E < e(K2/Ki)Z[t + T(1 - .)][E(-T)]1-a[E(0)]'`,
eKit -e-KIT

1-e-KIT (8.13-33)

18J. Serrin, "The initial value problem for the Navier-Stokes equations," in Proceedings of the Sym-
posium on Non-Linear Problems, (University of Wisconsin, 1963), 69-98



180 8. Navier-Stokes Fluids

Observing that the term within braces on the right-hand side of (26) is nonnegative,
applying the Schwarz inequality and the arithmetic-geometric mean inequality, and
using the bounds (17), we show that

EE - E2 > - 8 { 4M2 f 8*I2dV f jSGi2dV + N2(f 18*I2dV)2 - 4 f I8iIzdV
I v v v v

{ ZN2 fv I8ii2dV + 2 f 18G12dV } (8.13-34)
t v JJJ

Finally, we observe that by virtue of the bounds (17)

E(-T) < 2(M2 + N2) Vol(V), (8.13-35)

in which Vol(V) is an upper bound for the volume in [-T, 0] and

2E(0) =
J

i8io 2dV. (8.13-36)

V

The theorem follows from (33), (34), and (35).
The four preceding theorems rest upon the properties of E as defined by (7).

We now exemplify a more general definition of E, namely,

E := f gu2dV, (8.13-37)

V

in which g is positive weight function and u is some kind of perturbance that need
not be Sz and u2 denotes Iu12. The method, or the class of methods, is called the
weighted energy method,19 rather confusing because, while energy has a definite
meaning in mechanics, here "energy" is a mere word, not even defined. Such
techniques are often applied to unbounded domains, especially in regard to flows
past obstacles. These offer great mathematical difficulty.

To conclude this section, we state a theorem of uniqueness for such flows and
outline its proof by the method of weighed energy. In contrast with many earlier
theorems, it does not presume much regularity at oo. In particular, G need not be
bounded, and co may approach its limit at oc rather slowly. We shall use r to denote
the distance of x from some fixed point. A suitable choice of g and u2, combined
with development of the attributes of the particular problem considered, may lead
to a bound for k:

E < kE + F, (8.13-38)

where k is a positive constant and F a function of t that is in some sense small. We
then integrate (38) to yield a bound for E in terms of E(0).

19Expositions of the method are found in the notes of G.P. Galdi and S. Rionero, Weighted Energy
Methods in Fluid Dynamics and Elasticity, Lecture Notes in Mathematics, (Berlin: Springer-Verlag,
1985).
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THEOREM 8.11

Forward uniqueness, initial-value problem in unbounded domains (Rionero and
Galdi).20 In the time interval [O,T], let x and 0 satisfy Navier's equation in a
domain V exterior to a fixed region Vo containing a unit ball. Let the following
regularities be assumed in V x [0, T] :

(i) i is bounded uniformly in t; it and its first derivatives are continuous, it has
continuous spatial second derivatives,

(ii) cp and grad p are continuous.

(iii) There are positive constants k, M, and ro such that

IGI < Mrk wherever r > ro. (8.13-39)

(iv) There are constant cpo and positive constants C and m, 0 < m < 1/2, such
that

(logr)' wherever r > ro. (8.13-40)0 - cpoI < r112

Then i is unique.

Note that (iii) allows G to be unbounded.

PROOF Considering as before a velocity field i* and a corresponding pressure
field tp* that satisfy the Navier-Stokes equation in V x [0, T], we continue to employ
(1) and (2) and the notations defined just after them, except that for conciseness we
write u forthe perturbance 8i and u for J u l . Then selecting some twice differentiable
function g and x alone, we take the scalar product of gu and (3), obtaining

2 (gu2), 2 i - grad(gu2) + 2 u2(i - grad g)

- 1 gu grad u2 - gu [(grad i)u]

- u + vgu - div Sw. (8.13-41)

Further steps in the proof employ the following transformations and inequal-
ities for solenoidal fields u and v and scalars g and f assumed smooth enough for
the operations indicated in writing them to be valid:

2(u grad g)u2 - z div(gu2u) + Zgu grad u2 = 0, (8.13-42)

g[(grad u)v] u + (u - v)u - grad g + g[(grad v)u] - u - div[g(u v)u] = 0,
(8.13-43)

20For greater detail, see the paper by S. Rionero and G.P. Galdi, "On the uniqueness of viscous fluid
motions," Archive for Rational Mechanics and Analysis 62 (1976): 295-301.
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gu [(grad v)u] < g (°Zv2 + Z) I grad UI2 if > 0, (8.13-44)

gAu u + gI grad u12 - Zu2Ag -
z

div(g grad u2 - u2 grad g) = 0,
(8.13-45)

(6f ) grad g u - div[(Sf )u] + g [grad (S f )] u = 0. (8.13-46)

In the last statement, f is a sufficiently smooth scalar field.
We now denote by SR a ball of radius R containing Vo, and VR := V n SR.

Integrating (40) over the domain VR and the relations (41)-(45), we obtain for all
positive

VOt gu2d

< f{u2(u grad g) + (u v)u grad g
2

VR

1 2 u2V2 1 2
+

2
u (v grad g) + g 2t+

f{v+ (- v) gI grad u2I }dV + grad (gut) - vu2 grad g
1JJ1 VR

l

- I gu2u - g(u - v)u - 2gu2v } n dA. (8.13-47)

Choosing

g = e-"', = 2v, m > 4, aE(0, 1), (8.13-48)

Rionero and Galdi show that as R -* oo, the inequality (46) reduces to

kE +ma
r
J r"-1 gj8cpjj8ijdV, (8.13-49)

V

( V2 v
k := sup {mlul, 3mlvl,

2v
, 2m(m + 2)j .

(8.13-50)

It follows from the Cauchy inequality that

ar"-1I&PIu < 2I a2r2("-1)13c0I2 + I u2, (8.13-51)

and thus
z

E < k1 E +
ma

r2("-')gI ScpI2dV, kl := k + m . (8.13-52)
P P

V
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By (50),

E <k E+ p2 f 8pzdV + 2pz J rz(a 1)8ISPI2dV
VR V-VR

00
z zkl E

+
k2a2

+
;, ma 2rr /' r2a-le-mr°(logr)2adr,

(8.13-53)p J

in which

1

k2 :=
m

2p
sup ISpl2dV. (8.13-54)

VR

Since m > 4, we find that

E < k1E + F(a), F(a) := k2a2 +at-2a n(42A2m)(2a)2ae_2a
. (8. 13-5 5)

Integrating (53) from 0 to r, and observing that E(0)=0, we obtain

E(r) < F1(a)rek'T < F1(a)Tek'T, (T > r). (8.13-56)

It follows from (36) that

E(r) >
J

U2e-' dV > e-m I u2dV, (8.13-57)

Va VS

where

and hence, since a c= (0,1),

f
V6

Since lim em8 F1(a)T e k ' T = 0, it immediately follows that the solution is unique,
a- o

for if it were otherwise, continuity of u would imply the existence of a positive
number E such that

f u2dV < E, (8.13-60)

VS

which is a contradiction.
Galdi and Padula21 have recently constructed a broad extension of Serrin's

analysis of stability. Not only do they obtain by an energy method weaker sufficient

v, := SS n v, (8.13-58)

u2dV > emd F1(a)T ekT' . (8.13-59)

21G.P. Galdi and M. Padula, "A new approach to energy theory in the stability of fluid motion,"
Archive for Rational Mechanics and Analysis 110 (1990): 187-286.
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conditions for stability, but they carry through their analysis within a frame more
general than that of the Navier-Stokes theory.

8.14 Instability

For a long time that theory was thought able to deliver only sufficient conditions
for stability, but, as students who persevere to the end of this section will learn, a
suitable approach within the rigorous theory also yields conditions sufficient for
instability.

Galdi and Padula set up equations of the form

But = Lu + Nu, u(0) = uo, (8.14-1)

in which u belongs to an appropriate Hilbert space with some specificable structure
of regularity. B is a positive diagonal, linear transformation; L is a linear operator
that may be unbounded; and N is an operator, perhaps nonlinear, that satisfies the
condition

N(O) = 0. (8.14-2)

We observe that if

u := Si, B := 1,

LSi := 2v div Sw - grad Sco, (8.14-3)

NSi GSi + (SG)i*,

then (1) reduces to the equation that governs the perturbance of a basic solution of
Navier'S dynamical equation. The null solution u = 0 satisfies (1) if uo = 0.

The stability or instability of the flow depends upon the properties of L and
N. We call L essentially dissipative if

a. (Lw, w) < 0 for all w in the specified Hilbert space,

b. (Lw,w)=0=w=0.

Here (.,.) is the inner product in the Hilbert space selected. Galdi and Padula prove
that if L is symmetric and essentially dissipative, and if N is suitable in the sense
that II Nu II is bounded in an appropriate manner, where II

11
is the norm induced

by the inner product, then the null solution is monotonically stable in the energy
(Bu, u). They show also that if there is a perturbance w that belongs to the Hilbert
space and is such that (Lw, w,) > 0, and if II Nu II is bounded appropriately, then
the null solution is unstable.
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The stability theorem extends Serrin's method within the framework of
Sobolev spaces. While intricate inequalities are used, the method is much like
Serrin's.

On the other hand, the theorem of instability is altogether new, and we shall
sketch a proof of it, making a special choice of N.

Replacing u by 81, from (1) we see that

Si' = B-'LSz + B-'NA, (8.14-4)

and thus

(8x', LSx) = (B-1LSZ, LA) + (B-'N8z, LSz). (8.14-5)

In the special case N - 0, which satisfies (2), (4) reduces to

(Sac', LSz) _ (B-'LSz, LSz), (8.14-6)

and thus

2(6x, LA)' = (B- LA, LA) > 0, (8.14-7)

in which the last inequality is true because B is positive. Next, forming the scalar
product of (1) and Sac, we obtain

2(BSi, Si)' = (LSz, Sac) + (N81, 8x), (8.14-8)

which if N - 0 reduces to

2(B3x, 8z)' = (LA, A). (8.14-9)

Suppose there is a perturbance such that (Lw, w) > 0, and we make the choice
81(0) = w. Then (6) implies that

(LSx, ft) > (L61(0), 81(0)) > 0, (8.14-10)

which, when used in conjunction with (10), yields

(BSx, 8z) > (BS 1(0), 8x(0)) + 2(L61(0), Sx(0))t. (8.14-11)

It follows immediately that

(BA, Sac) -* oo as t > 0. (8.14-12)

Thus, finally we have shown that if there is a w such that (Lw, w) > 0, then the
flow is unstable.

If N = 0, the proof of instability is very involved.
More definite conclusions regarding stability can be obtained if we have more

information about the structure of L and N. In many applications,

L=LS+AIM +A2P,1\2>0,
(Lsu, v) _ (u, L, v), (8.14-13)

(Mu, v) = -(u, Mv),
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and P is a bounded operator that reduces to the null operator if the basic flow is
the null state. Because M is skew, it follows from (7) that

(B81, 8i)' = (LsSi, Si) + (N8i, Si). (8.14-14)

If N - 0, the evolution of (BSi, Si) is completely determined by the symmetric,
linear operator L. Galdi and Padula present examples that show that here lies the
root of the extremely low estimates of stability limits delivered by the classical
analysis of Serrin and others who used (B8i, Si) as their measure of energy. To get
better estimates for the onset of instability requires a more general functional that
incorporates information about the skew operator M. Much of the paper of Galdi
and Padula is devoted to showing how such functionals can be constructed.

8.15 Some Unsteady Flows

The simplest unsteady flows of Navier-Stokes fluids were obtained for instances
in which the vorticity equation (8.2-2) reduces to

W' = 2v skw grad div W, (8.15-1)

each Cartesian component of which has the form of the equation that governs
diffusion of heat in a rigid, isotropic conductor. An example is provided by plane
flows such that W is constant on each streamline at every time; for such a flow we
may put ai = 0 in (7.3-3) and so obtain the scalar equation

w'=vAw+i grad i=0. (8.15-2)

Also in flows such that i grad i = 0 and b - v grad p is perpendicular to the
plane x = 0, (7.2-1) reduces essentially to

z' = vAx, (8.15-3)

again the equation governing flow of heat in one dimension. Equations of this
kind are the simplest of linear parabolic partial differential equations, and a great
corpus of mathematical theory regarding them is available. We shall discuss some
instances that offer interest in the context of Navier-Stokes flows. Student's must
take care not to presume that the properties of any linear partial differential equation
can reveal much about the Navier-Stokes theory.
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8.16 Some Oscillatory Flows

In Section 7.2, we studied several flows induced in bodies of fluid of grade 2 by the
oscillation of a plate or by the relative motion of two parallel plates. As the special
instances in which a1 = a2 = 0, we may obtain solutions for the Navier-Stokes
theory, and some of these we have already remarked and discussed.

We now derive a solution due to Stokes that delivers azimuthal oscillations
in a body of Navier-Stokes fluid surrounding an infinitely long cylindrical rod of
radius ro that is compelled to oscillate at the assigned frequency a. To that end we
introduce the following contravariant components of velocity in cylindrical polar
coordinates:

r = 0, co(r, t), i = 0, (8.16-1)

and we assume that b - grad p/p lies in the plane 0 = constant at each point.
Putting (1) into (8.15-2) gives us

a'm = v I arrm + 1 arm -
(0).

(8.16-2)
\\ r r2

We seek a solution such that

w(ro, t) = V cos (at), V = const.,

w(r, t) --* 0 as r -* oc when t = const. (8.16-3)

For a separable solution

w(r, t) = W(r)T(t), (8.16-4)

it is necessary that

,l=cont.,T'-,1T=0,G

2
W (8.16-5)W"+1W'-1 +

r 2

In terms of the new variables defined by
1/2

s
)

, Y(s) =- W(r), (8.16-6)
V

(5)2 takes the form

s2Y"+Y'-(1+s2)Y=0.
It follows from (3)-{7) that

(8.16-7)

K1
[()h!2 r]

K1

Veiat (8.16-8)w(r, t) = Re )1/z
ro[(-V I
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in which Kl denotes a Bessel function in standard notation and Re means "real
part of."

EXERCISE 8.16.1
Show that the only solution of (2) that satisfies (3) and (4) is given by (8). As (8.6-2)
is linear, solutions may be superposed. An example follows.

EXERCISE 8.16.2 (Casarella and Laura)
Assuming that b - grad p/p is radial, consider the velocity field

r = 0, 9 = w(r, t), u(r, t) (8.16-9)

with the boundary conditions (3) and

u(rp, t) = U cos(f t), u(r, t) --> 0 as r -k oo when t = const. (8.16-10)

Show that (8) holds and also

Kp LI r'
u = Re \ v 1/2

Ue`01

Ko [(i$
) roj

where KO is a Bessel function in standard notation.

(8.16-11)

8.17 Flow Due to a Plane Boundary Moved Suddenly from
Rest

Consider a plane at rest, above which rests a semi-infinite region of Navier-Stokes
fluid, made to move suddenly with speed U in its own plane. We shall assume
that the velocity field has the following form in a rectangular Cartesian coordinate
system

.ii = U(X2, t), X2 = 0, X3 = 0. (8.17-1)

Substituting (1) into (8.1-1) and writing x for x2, we obtain

a2uU =v-. (8.17-2)
ax2
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In deriving (2) we have assumed that the pressure and the body force field are
independent of x1. The appropriate initial and boundary conditions that govern the
problem are

u(x, 0) = 0, Vx > 0, (8.17-3)

u(0, t) = U, Vt > 0. (8.17-4)

An analogous problem governs the conduction of heat and has been studied
in detail. The solution is given by

u(x> t) = U { 1 -erf [2(vt x
)i/2] } ,

where

2 zerf a := 2--2 ea- da.
-,,/7r o

(8.17-5)

(8.17-6)

EXERCISE 8.17.1
Verity that the statement (5) is the solution of (2) subject to (3) and (4).

Rayleigh recognized that the foregoing solution provides a very simple and
elegant analogy by means of which we can understand the boundary-layer devel-
opment due to the steady flow past an infinite flate plate. If one assumes that the
disturbance due to the presence of the plate diffuses at the rate given by the unsteady
problem while simultaneously moving downstream with the velocity U, then at
a distance d from the leading edge of the plate, the boundary-layer thickness, by
analogy, will be vd/ U.

Detailed solutions for the equation (2) for a variety of initial and boundary
conditions can be found in the article by Berker cited at the end of the chapter. The
following exercises provide a few important examples.

EXERCISE 8.17.2
Determine the general solution of (2) subject to

u(x)2,0) = f(x2) V 0 < x2 < oo, u(O,t) = 0

where f (x2) is an assignable function.

EXERCISE 8.17.3
Determine the general solution to (15) subject to

V 0 < t < oo (8.17-7)

u(x2, 0) = 0, V 0 < x2 < oo, u(0, t) = g(t), V O < t < oo (8.17-8)

where g(t) is an assignable function.
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8.18 Flow Due to the Sudden Application of a Pressure
Gradient

We shall now consider the flow of a Navier-Stokes fluid within a pipe of circular
cross-section by suddenly applying a constant pressure gradient along the axis of
the pipe. We assume that the contravariant components of the velocity field in a
cylindrical coordinate system are given by

r =O,6 =O and z = u(r, t).

Substituting (2) into (8.1-1) yields

(8.18-1)

u' = C + V (urr +
fur/

p r /
, (8.18-2)

in which the constant C is the value of the pressure gradient that is maintained in
the axial direction. The appropriate boundary condition is

u(ro,t)=0, 0<t<oo,
where ro is the radius of the pipe. The initial condition is

u(r,t)=0, 0<r<ro.
Use of a new variable v(r, t)

gives (2) the form

with

v =
C

41t
(r02 - r2) - u

V = V (arrv+.-arv) ,

(8.18-3)

(8.18-4)

(8.18-5)

(8.18-6)

v(ro, t) = 0, 0 < t < oo, (8.18-7)

v(r, 0) = C (r0 -- r2), 0 < r < ro. (8.18-8)
41t

EXERCISE 8.18.1
Use separation of variables to show that the solution of (6) subject to (7) and (8) is
given by

v(r, t)
µ

Cn Jo (An o exp - vt (8.18-9)
n-1 r r
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Jo being a Bessel function the positive zeroes of which are An, n = 1, 2, 3, ... ,

and

8 ro
Cn= ,n=1,2,3,...,

n Jl (An )

where Jl is a Bessel function.
It follows from (5) and (9) that the speed u is given by

(8.18-10)

c(ro - r2) 2cr2 oc A 1)1n r 2
A[_ (_u(r,t) exp n vt . (8.18-11)

4µ u n=1 ,\nJI(An) ro

A detailed discussion of how the velocity profile is affected by the material param-
eters can be found in the article by Berker.22 Initially, the retarding effect of the
wall is felt in a narrow region adjacent to the wall; the effect spreads further inward
with time and after a critical time tc, the effect of the wall is felt everywhere and
the velocity approaches the steady value.

8.19 Unsteady Flow Impinging on a Flat Plate

In Section 6, we studied the steady flow of a Navier-Stokes fluid that impinges on
an infinite flat plate. Guided by the work there, we shall now study an unsteady
contribution to (8.6-2), using as a starting point for semiinverse consideration for
the class of isochoric velocity fields

.zl = x1.f'(X2) + eg(x2),

X2 = - f (X2), x3 = 0, (8.19-1)

under the assumption that p is steady. The velocity field (1) could, for instance,
describe the situation of the fluid impinging on a flat surface that is stretching
unsteadily. The case z3 = 0 corresponds to the problem wherein the flat boundary
is stretched steadily and has been studied in detail by Danberg and Fansler.

22 R. Berker, "Integration des equations du mouvement dun fluide visqueux incompressible," in
Handbuch der Physik, 82, edited by S. Fliigge and C. Truesdell (Berlin, Gottingen, and Heidelberg:
Springer-Verlag, 1963).
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EXERCISE 8.19.1
Show that the differential equations of motion deliver the same conditions on f as
in Section 6 and on g simply

vg" + fg' - f'g + icog = 0. (8.19-2)

If the infinite plate is impervious and stretches periodically with frequency rs,
then (2) can be appropriately nondimensionalized so that g(0) = 1, and for the
flow to approach its irrotational counterpart at oo, it is necessary that

g' -* 0 as x2 -a 00- (8.19-3)

We note that the conditions applied to g are linear in g. Thus, if f has been
determined as a solution of the problem discussed in Section 6; we can then deter-
mine g with relative ease. For the case w = 0, Danberg and Fansler determine an
explicitly exact solution for g by using the method of variation of parameters.

For the flow field (1), the full Navier-Stokes equations and the boundary-
layer approximations yield the same equations. The velocity field (1) allows us to
consider flows that at x2 = oo move unsteadily along the x, direction. Such flows
have relevance to important practical problems in aerodynamics and have been
studied numerically in great detail by Rott and Glaubert.

8.20 Linearly Polarized Waves

We next consider the possibility of propagation of linearly polarized waves in a
Navier-Stokes fluid. Let us consider the velocity field

X1 = 0, x2 = 0, X3 = w(x1, x2, t)- (8.20-1)

Clearly, this above velocity field is isochoric.

EXERCISE 8.20.1 (Boulanger, Hayes, and Rajagopa123)
Verify that

W(XI, x2, t) = A cos{Kmxi cos a(i - Kx2 sin Sgt sin 2*}

exp{-Kmxl sin* - Kx2 COs* Qt21/i1,
= constant, (8.20-2)

23p Boulanger, M. Hayes, and K.R. Rajagopal, "Some unsteady exact solutions in the Navier-Stokes
and second-grade fluid theories," Stability and Applied Analysis of Continua 1 (1991): 185-204.
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satisfy the Navier-Stokes equation, where A, 0, *, and m are arbitrary constants,
m 1, and

K2 :- µ(m 1). (8.20-3)

The flow field (1) represents an unhomogeneous finite amplitude wave linearly
polarized along the x3 axis. The phase is propagated unchanged along the direction
m cos Bpi - sin pj, its velocity vp being given by

VP =
S2 sin cos 7i - sin

°
(8.20-4)

The amplitude is propagated unchanged along -m cos cpi - sin cpj with velocity va
given by

S2 cos 2t/i(m sin 1/ii - cos,*ij)
va = (8.20-5)

K(m2 sin2 ,/i - cos2 *)

The angle 0 between the planes of equal phase and the planes of equal amplitude
is given by

tan 0 = 2m (8.20-6)
(m2 - 1) sin *

The case 0 is of special interest, for we have a nonpropagating solution,

.zl = 0, z2 = 0, z3 = A cos kmxl exp{-(kx2 + Qt)}, (8.20-7)

where

k = PQ (8.20-8)
µ(m2 -

1).

The angle between the planes of equal phase and the planes of equal magnitude
in this case is 27r.

Similarly, when 1n we have another elegant nonpropagating solution

zl = 0, x2 = 0, z3 = A cos k x2 exp{-kmxl + Sgt}. (8.20-9)

The possibility of circular polarized waves and other unsteady flows of the
form (1) in both the Navier-Stokes fluid and the fluids of grade 2 are discussed at
length by Boulanger, Hayes, and Rajagopal.

8.21 Further Unsteady Plane Flows

We shall now study a class of unsteady flows that includes as special cases flows that
Berker classified as "Jeffrey motions" and "Taylor flows." Consider the isochoric
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velocity field

af
x2 = X1

ax
, X2 = -.f(x2, t), x3 = 0. (8.21-1)

2

EXERCISE 8.21.1
Show that the differential equations governing the vorticity lead to

a4 f a3 f a of 2
a2 f

axe axz 8t
= P ; ( axe) - f axe .

(8.21-2)

Before discussing any specific initial boundary value problem, we observe that
for flows in which the vorticity is constant along the streamlines, the right-hand
side of (2) is zero.

We notice that

f (X2, t) = [a(t)]x2 + b(t), (8.21-3)

where a(t) and b(t) are continuously differentiable but otherwise arbitrary functions
of time, satisfies (2). The flow corresponding to (3) is irrotational and belongs to
the class of flows classified as "Jeffrey motions" by Berker.

EXERCISE 8.21.2
Consider the flow of a Navier-Stokes fluid between two infinite parallel elastic
sheets coinciding with the planes x2 = and x2 = -(nk2+d), where d and
k are nonzero constants. Suppose the stretching motions of the elastic sheet are
given by

X1
x1,

n - 2d
,
t = kCxl exp{-Qt},

2k )

(
-(rr - 2d), t)x 1 x

2k
- kCx1 exp{-S2t}, (8.21-4)

where C is a constant. Show that the solution to (2) that meets (4) is

f (X2, t) = -C exp{-M) cos(kx2 + d), Q := µk2. (8.21-5)
P

The flow given by (5) falls under the category that Berker calls "Taylor flows."
Several special solutions to (2) that correspond to different physical problems have
been discussed by Boulanger, Hayes and Rajagopal.
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9
Incompressible Euler Fluids

9.1 Preliminaries

While students would do well to reread Section 8.1, here for convenience some
generalities regarding inviscid fluids are repeated. Many can be obtained formally
by simply annulling µ and v in statements made in Section 8.1-8.4, but because
Eulerian hydrodynamics is not only the prototype of continuum mechanics but also
its most perfect example, we prefer to repeat its basic qualities here.

An unconstrained elastic fluid is defined by the constitutive equation

T = -p(p)l, (4.1-8)

in which p is the pressure field. Such a fluid is called compressible; in this chapter
"compressible fluid" will always refer to an elastic fluid. For an incompressible
elastic fluid the determinate stress is null, so the constitutive equation is

T = -pl, (4.1-9)

in which p is a scalar field not determined by the motion of the fluid, which must
be isochoric: div ac = 0. If we substitute either of these two constitutive equations
into Cauchy's first law of motion (2.7-5), we obtain Euler's dynamical equation
for elastic fluids:

px=-gradp+pb. (9.1-1)

Although this equation governs the motion of elastic fluids in general, the student
must remember that the symbol p means one thing for a compressible fluid and
quite another for an incompressible one. For the former, it is a given function of the
density; for the latter, it is a scalar field whose value at a time and place is determined
by the history of the motion of the part of the fluid body near that place. Unless
the contrary is stated, we continue to suppose the fluid body be homogeneous
in that for a compressible fluid the function p in (8) is independent of X, while
for an incompressible fluid p is an assigned constant, likewise independent of X.
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The distinction is important, for in classical hydrodynamics there is an extensive
literature on flows of incompressible elastic fluids of nonuniform density. These are
often called inhomogeneous flows. In Section 9, we shall consider two particular
flows of this kind.

Flows of elastic fluids have an energy integral; here we shall obtain it for flows
of compressible fluids as a consequence of a general theorem of hyperelasticity.

Euler noticed that if

f P dP dp for a compressible fluid,
R for an incompressible fluid,

P

then (1) assumes the form

(9.1-2)

x = - grad R + b, (9.1-3)

and he drew a number of simple conclusions from this fact. First, b - x is lamel-
lar. Hence the acceleration field is lamellar if and only if the body force field is
lamellar. In particular, accelerationless flow is impossible if the body force is not
lamellar. A fortiori, only when subject to a lamellar body force can a fluid remain
in equilibrium.

The boundary condition

(1.8-5)

weaker than the condition of adherence (1.8-7), is appropriate to an Eulerian fluid
at a stationary wall. At a free boundary the pressure may be assigned, perhaps as
a constant, perhaps as given by a surface tension.1

9.2 Compatibility: General Solution of Euler's Dynamical
Equation

Henceforth we shall assume that b is lamellar:

b = - grad w. (9.2-1)

So also, (9.1-3) shows us, is i. Such is the case if and only if the D'Alembert-
Euler condition (2.2-25) is satisfied. Works on hydrodynamics usually present that
condition in the equivalent form furnished by (2.2-30):

W + DW + WD = 0. (9.2-2)

1 See section 3.8 of C. Truesdell, A First Course in Rational Continuum Mechanics, vol 1. (New
York: Academic Press, 1991), for a discussion of this topic.
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Equivalently, in a simply connected region there is an acceleration potential Pa:

i = - grad Pa. (9.2-3)

Comparison with (1) and (9.1-3) shows that

R = P. - u7. (9.2-4)

The potential uT is usually regarded as an assigned field.
The foregoing statements express Euler's general solution of his dynamical

equation (9.1-3) when b is assumed lamellar. It illustrates Leibniz's program: By
these few considerations the whole matter is reduced to pure geometry, the one
thing to be desired in physics and mechanics." The partial differential equation
(2) is both general and purely kinematical. It is a condition of integrability for the
scalar field P. in (2.2-29). A velocity field a that satisfies it delivers z by routine
calculation, and from x the acceleration potential P. is easy to determine. Then R is
given explicitly by (4). The relation (9.1-2) would seem then to deliver the pressure
field p. Indeed, if the fluid is homogeneous and incompressible, then (9.1-2) does
indeed deliver p.

This ideal program is difficult to carry through in practice, for we generally
think of flows as arising from initial conditions and conforming with boundary
conditions. Of the latter, the most commonly used in hydrodynamics represent a
stationary wall, as follows:

frictionless : n i = 0
adherent: %1 = 0

(1.8-8)

To illustrate the interplay between these and Eulerian hydrodynamics, let us
consider the classic rectilinear shearing, used again and again as an example of the
effects of friction or the consequences of its absence:

.zi = 0, .X2 = v(xt), x3 = 0. (4.3-12)

The plane xl = const. is material and moves rigidly at the constant speed v(xi)
in the direction of the x2-axis. The condition (1.8-5) is satisfied on each of these
planes. Thus we may think of this flow as representing an infinite body of fluid
confined between the two parallel planes xi = ±d, d = const. The velocity field
is isochoric and accelerationless: div i = 0, z = 0. If we suppose that b = 0, the
dynamical equation (9.1-3) is satisfied if and only if R is a function of t alone. For
a homogeneous incompressible fluid, therefore, any constant pressure p suffices
to maintain the flow (4.3-12) indefinitely, with any profile v. A rigid and hence
irrotational transplacement in the direction of x2 is one possibility. In Section 5.4
we saw that for incompressible viscous fluids of a very large class the profile v is
determined by the dynamical equation and the boundary condition (1.8-8), which
represents adherence of the fluid body to its bounding walls. That is not true of
a body of Eulerian fluid, for it cannot support or effect shear traction upon any
surface, exterior or interior. In the shearing flow presently under consideration, the
planes xl = const. may slide freely upon each other in any way, like a stack of
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smooth cards. Any profile v such that v(fd) = 0 satisfies (1.8-8). Thus the problem
as set for an Eulerian fluid has many solutions, too many for useful interpretation.

On the other hand, we might try to determine a good solution by imposing a
kinematical constraint, for example irrotational flow W = 0. This condition makes
the profile v in (4.3-12) a linear function, which cannot satisfy the condition (1.8-8)
expressing adherence unless the flow reduces to a state of rest: x = 0 everywhere.
Thus the irrotational solution, while unique, does not correspond with what we see
in nature when a fluid body moves down a straight, deep canal. Such a flow of a
real fluid is generally rotational, at least in portions near the confining walls; the
spin varies with distance from the walls and is at least roughly determinate.

The simple, even trivial, class of flows we have just considered illustrates a
rough, general idea: the Euler fluid is unsuited to describe the motions of natural
fluids except, possibly, at places distant from confining walls. A deeper analysis
of the concepts of Eulerian hydrodynamics is required. As a start, we turn again to
general properties of Eulerian fluids.

First we take up some simple aspects of Euler's solution when it is applied
to homogeneous incompressible fluids. From (2) and (9.1-2)2 we read off the fol-
lowing theorem of Euler: An isochoric velocity field provides a solution of Euler's
dynamical equation for an incompressible fluid subject to lamellar body force if
and only if its acceleration field is lamellar; its pressure field is then determined
as follows:

pv = P. - zu. (9.2-5)

This result can be expressed a little differently as all flows of the kind specified
are universal for homogeneous incompressible Eulerian fluids.2 The indeterminate
function of time understood in (5) maybe interpreted as the value of pv at all places
where P. = zu; often these places constitute surfaces that may be interpreted as
boundaries, possibly at oo.

For a compressible fluid the condition (2.2-29) is merely necessary, not suf-
ficient, for a given velocity field to correspond to a solution of Euler's dynamical
equation (9.1-1). The constitutive equation (4.1-8) prescribes the pressure as a func-
tion of p. The pressure function p is usually assumed to be such that dp/dp > 0.
(This adscititious inequality ensures that weak waves may propagate throughout a
body of the fluid; see Exercise 9-1 Then (9.1-2)1 makes an increasing function of
p, so (2) requires that

p = R-1(Pa - a). (9.2-6)

On the other hand, (1.1-8) determines p from the given velocity field when p, is
prescribed. Thus we have two different determinations of p. The given velocity
field is a solution of Euler's dynamical equation if and only if suitable choices
of p,, and the constant understood in P. - w make these two determinations

2 See section 4.10 of C. Truesdell, A First Course in Rational Continuum Mechanics.
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agree. "Universal solution" here would mean a flow that preserves circulation
and renders the two determinations of p consistent for all invertible functions R.
While it is known that certain homogeneous transplacements are universal when ru
is suitably specialized, the problem of determining all universal flows of Eulerian
compressible fluids seems not to have been studied as yet. A particular, very special
family of universal solutions will be exhibited at the end of Section 3.

9.3 Accelerationless Flows: Hydrostatics

Directly from (9.1-1) we can read off Clairaut's theorem: In a body of elastic fluid
at rest the surfaces of constant pressure are normal to b. The same holds under
the weaker condition ii = 0; such a flow is called accelerationless.3 The foregoing
statements do not require the fluid body to be homogeneous.

For homogeneous bodies we may use (9.1-3) and so conclude that when i = 0,
then b is normal to the surfaces R = const. By assuming that b has the potential Eu,
we derived (9.2-1); on the further assumption that dp/dp > 0, we derived (9.2-6).
Thence we see that in an accelerationless flow, to within an arbitrary function oft,

p = -pw for incompressible fluids (9.3-1)

and

p = T-'(-zu), p = f (R-' (-zw)) for compressible fluids such that dp/dp > 0.
(9.3-2)

These statements include Euler's general solution of the problem of hydrostatics.
In Section 16 of Chapter 4 we remarked that all fluids obey in permanent

equilibrium the laws ofEulerian hydrostatics. For those, of course, the conclusions
(1) and (2) apply at any instant when i = 0.

From (9.1-3) we see that i = b if and only if R is a function oft alone. If we
consider only compressible fluids such that dp/dp > 0, from (1.1-8) we see that
R is a function oft alone if and only if J is. Consequently, for homogeneous fluid
bodies subject to surface pressures alone, an accelerationless flow is universal if
and only if the corresponding field J is a function oft alone.

3Accelerationless flows can be quite complicated. A kinematical analysis of them may be found on
pages 100, 102, and 141 of C. Truesdell and R. Toupin, Classical Field Theory, Handbuch der Physik
3 1, (Berlin, Gottingen, and Heidelberg: Springer-Verlag, 1960).
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9.4 Irrotational Flows: General Aspects

Irrotational flows were defined in Section 2.2 by the condition W = 0.
Since the beginnings of mathematical hydrodynamics these flows have been

studied intensively. Long before the kinematics of continua had been much devel-
oped, D'Alembert and Euler noticed that the formal statement W = 0 in a region
easily provides a solution of (9.2-1). Evolution of formal aspects preceded under-
standing of the concepts. In later times the status of irrotational flows as a special
subclass of the flows satisfying Euler's dynamical equation (9.1-1) was clarified
somewhat, though elements of uncertainty remain even now.

Before reading further, students would do well to review the pure kinematics
of stretching and spin, presented above in Section 2.2. Recall the term "potential
flow," which refers to the existence of a velocity potential P, in a simply connected
region:

z = - grad P1,. (2.2-36)

Bear in mind the discussion at the end of the section, for they exclude potential
flow other than a state of rest in many circumstances, roughly as follows:

1. An isochoric flow of a body of fluid that adheres to any stationary surface,
however small.

2. A flow that is isochoric or has steady density, whose finite boundaries are
stationary and for which p P, a, PP vanishes faster than 1 /r2 at 00.

We proceed now to develop mathematically some dynamic aspects of potential
flows, postponing until Sections 6 and 7 our consideration of rotational flows of
Eulerian fluids.

First, the velocity potential P, determines the acceleration potential P. as
follows:

P. = PP - (1/2)1 grad P,,12. (7.3-2)

Thus from (8.2-2) we learn that

R = P , - (1/2)1 grad p ,1 2 - nr. (9.4-1)

The function R, defined by (9.1-2), is determined from the constitutive specification
of the fluid and hence is a known function of p for a compressible fluid, while for
a homogeneous incompressible fluid it is p/p. We think of rr as assigned. Thus
(1), which expresses the Bernoullian theorem for potential flows, determines the
pressure once PP and p are known:

dPd .

P,' -(1/2)Igrad
P
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as usual, the function of time to within which rJ is determined is not written, and
the upper determination refers to compressible fluids, the lower, to incompressible
ones. To obtain a second condition connecting P,, and p, we substitute - grad P,
for z in (1.5-6)2 and so obtain

p' - div(p grad P,,) = 0. (9.4-2)

The simplest problems of hydrodynamics prescribe the initial value of grad P,, and
p throughout a fixed region V and on 8 V assign the normal component of velocity.
For irrotational flow, (1.8-1) becomes

n - x = - Vin" = a prescribed function of x and t on aV. (9.4-3)

If b is lamellar, the partial differential equations (1) and (3) provide a purely
kinematical statement of Euler's dynamical equation (9.1-3) when irrotational flow
is presumed. The two scalar variables P,, and p are to be determined by solving
the system, which is of first order in t and of second order in x. The boundary
condition (4) is also kinematical. This reduction to pure kinematics, which because
of its explicitly stated boundary condition (4) is plainer and more direct than the
more general one we set forth in Section 2, could seem "to reduce the whole matter
to pure geometry," but for compressible fluids great difficulties remain. Even good
illustrative examples are rare.

It is otherwise if we descend to irrotational flows of homogeneous incom-
pressible fluids. For them, as we saw in Section 2.2, the statement (3) reduces
to

AP, = 0. (2.2-37)

The problem of solving this partial differential equation subject to the boundary
condition (4) is called the Neumann problem. A vast literature is devoted to it. When
the Neumann problem has been solved for a particular boundary, the corresponding
potential P,, may be put into the Bernoullian theorem (2), which then determines
p/p to within an arbitrary function of t. Thus the solution of the kinematical
problem delivers at once the solution of the dynamical problem.

9.5 Irrotational Flows: Reactions on Submerged Obstacles
and Cavitites

In Section 2.2 we found conditions sufficient to make an irrotational flow past an
obstacle impossible. We shall now calculate that reaction when the deforming body
consists of homogeneous incompressible Eulerian fluid and undergoes irrotational
flow.
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Each Cartesian component of x is a harmonic function, and a function har-
monic in a region outside every sphere has a power-series expansion at oo. Hence
if x -> v as r - oo, it follows that

v+Ya+r Ap+YA(p®p)+OI - (9.5-1)

In this formula p denotes a position vector field, r - Ipl,\a is a constant vector
field, A is a constant second-order tensor field, and A is a constant third-order
tensor field; A and A are so chosen as to render each component of Ap and of
A(p (& p) a spherical harmonic of first or second order, respectively. The expansion
(1) is subject to the further requirement that div x = 0, Ai = 0; as students will
verify by a simple calculation, followed by passage to the limit as r -+ oo, this
requirement entails the conditions a = 0, A = Al. If we require also that the flux
of mass through every sufficiently large sphere be null, it follows that A = 0, so

x=v+rA(p®p)+Or

21. (9.5-2)rJ
We recall the condition (2.2-38), which would imply that P, = const.; it is not
satisfied unless v = 0. In fact, it is easy to see that there are infinitely many
nonconstant harmonic potentials PP that represent nontrivial flows of the kind we
are considering. Applying (2)2 to (9.4-1) when rs = 0 and PP = 0 shows that

p=cont.+0(-k).
r

And hence the "Euler-D'Alembert paradox" holds.4

(9.5-3)

THEOREM 9.1
Let an obstacle be submerged in a body of homogeneous incompressible elastic
fluid undergoing steady irrotational flow If the body force is null, and if no fluid is
supplied or removed at oo, the fluid exerts no force on the obstacle.

The student should note that the shape of the obstacle need not be connected.
For example, it may be two disjoint spheres. In that case the fluid body generally
exerts a non-null force on each sphere, but the sum of these forces must be null.
None of the conditions stated as sufficient for the truth of the result is inessential.
For example, in order to derive (3) it is necessary to assume that the flow is steady.
Of course a fluid in unsteady flow generally exerts forces on an obstacle, as the

4See Section 2 of C. Truesdell, A First Course in Rational Continuum Mechanics, vol. 1, for a
detailed discussion of reactions upon obstacles.
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axioms of inertia suggest. Moreover, if the density of the fluid is not uniform, (9.4-
1) generally does not hold, again (3) does not follow, and the proof fails. Supply
or withdrawal of fluid at oo may result in forces, finite or infinite, upon submerged
bodies. Finally, if the body force is not null, the obstacle and the fluid body generally
exert non-null forces upon one another, as is illustrated by Archimedes' principle.

For irrotational flows of compressible fluids the "Euler-D'Alembert paradox"
holds if the flow is everywhere subsonic: I±I2 < p'(p), but the proof is much
more difficulty In a supersonic part of a flow, shock waves may occur, and then a
submerged body generally experiences a force in the direction of v. These matters
go beyond the scope of this book.

Unless A(p (9 p) = 0, the decay estimates of velocity, density, and pressure
that ensure the boundedness of certain integrals do not hold. Consequently, while
the fluid body in isochoric irrotational flow exerts no resultant force on an obstacle,
it may exert upon the obstacle a torque, even an infinite torque.

There are various ways to outflank the Euler-D'Alembert paradox. One ofthese
rests upon the simple fact that while in a 3-dimensional space a bounded obstacle
may be enclosed in a sphere, the region exterior to which is simply connected, in a
plane flow the exterior of a circle is doubly connected. A plane flow past an obstacle,
necessarily plane, is interpreted as a three-dimensional flow past one or more
infinite cylinders, the exterior of which is multiply connected. A plane isochoric
irrotational flow around a two-dimensional obstacle corresponds, in general, to a
cyclic potential. Those very considerations that in a three-dimensional space lead
to (2) deliver for a plane flow the expansions

x-v+2n Zpl+O1 r I,

C-0+0 (rz);
(9.5-4)

here the constant C is the circulation about any circuit embracing the origin once
and described counterclockwise, p' is a two-dimensional position vector rotated
counterclockwise through a right angle, and 9 is the azimuth of p. The term whose
coefficient is C in (4) corresponds to the irrotational simple vortex and C is circu-
lation of that vortex. Thus the flow past the obstacle is obtained by superposing an
irrotational vortex upon a flow with null circulation.

5R. Finn and D. Gilbarg, "Three-dimensional subsonic flows, and asymptotic estimates for elliptic
partial differential equations," Acta Mathematica 98 (1957): 265-296. L, Bers, "Existence and unique-
ness of a subsonic flow past a given profile," Comm. Pure and Applied Mathematics 4 (1954): 441-504.
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EXERCISE 9.5.1 Joukowski9"O)
Let an infinitely long cylindrical obstacle be immersed in a steady irrotational
flow of a body of incompressible elastic fluid such that the velocity v at oo is
perpendicular to the generators of the cylinder, and suppose that no fluid be supplied
or withdrawn at oc. Show that the force fobs exerted upon a portion of that cylinder
having the length L is given by

fobs/L = -pCV1. (9.5-5)

The torque exerted by the fluid body upon a finite portion of the obstacle is finite
and is independent of C.

The result of this exercise shows that a section of the submerged obstacle
suffers no drag but experiences a definite lift, determined by the circulation C. In
principle C may be assigned at will, so the problem remains indeterminate. If the
contour has corners or cusps, thus generally are singularities at which the veloc-
ity does not exist; as they are approached, generally the speed becomes infinite.
Joukowski gave reasons to impose the requirement that the speed should remain
finite at such a singularity. Using the Riemann mapping theorem, one may show
that if the contour is a simple closed curve with a single sharp trailing edge that is
not a cusp, then there is exactly one circulation C in (4), renders the given cylinder
a boundary on which Joukowski's condition is satisfied." Thus a determinate lift
results. Certain conceptual difficulties remain. However closely the profile with the
sharp trailing edge is approximated by a smooth one, the circulation and hence the
lift remain arbitrary; a profile with two sharp edges does not have a determinate
lift; and for a cylinder that is merely very long but not infinitely long, we cannot
escape the conclusion of the three-dimensional theory of potential flow about a
submerged obstacle. The fact remains that circulation, however it may be gener-
ated or explained, does give rise to a force on a submerged object, and, if that object
is an infinitely long cylinder, the force per unit length is finite and perpendicular to
the direction of the stream. This fact has been used to explain the "Magnus effect,"
on the basis of which the rotor ship, and the lift produced by the wing of an airplane
was projected.

6W.M. Kutta, "Auftriebskrafte in stromenden Flussigkeiten," Illustrierte Aeronautische Mitteilungen
6 (1902): 133-135; "Uber eine mit den Grundlagen des Flugproblems in Beziehung stehende zweidi-
mensionale Stromung," Sitzungberichte der Bayerische Akademie der Wissenschaften, Mathematisch-
PhysikalischeKlasse, (1910), pp 1-58.

7 W.M. Kutta, Sitzb cricut bay nistito Akad, eno Wissensinatie (Munich) 40. 1910.
8 W.M. Kutta, "Uber ebene Zirkulationstromungen nebst flugtechnischen Anwendungen," Sitzungs-

berichte der Bayerische Akademie der Wssenchaften, Mathematisch-Physikalische Klasse, (1911):
65-128.

9N.E. Joukowski, "De la chute dans fair de corps legers de forme allongee, animes d'un mouvement
rotatoire," Bulletin de 1' Institut Aerodynamique de Koutchino, 1 (1912): 51-66.

1°N.E. Joukowski, "Uber die Kontouren der Tragflachen der Drachanflieger," Zeitschriftfur Flugtech-
nik and Motorluftschiffahrt 1 (1910): 281-84.

11 In fact the velocity must vanish at the trailing edge.
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The foregoing discussion presumes that the fluid body fills all of space except
that occupied by the obstacle. If the fluid in passing the obstacle separates from it
and streams on unhindered, the conclusions are different. The Euler-D'Alembert
paradox does not reflect absence of pressures upon an object submerged in a stream
but rather the equality of total front pressure and total back pressure. If a jet of fluid
strikes a plate bluff onward, after having been deflected radially in all directions
parallel to the plate the fluid mass generally will not close in again behind it but
rather will stream on past, leaving a cavity. The plate, then being subject to pressure
on its forward side only, will obviously suffer a drag. Flows of this kind can be
idealized by supposing the cavity vacuous or filled with vapor or stagnant fluid so
that the pressure on the free boundary is uniform. For a steady irrotational flow
of a homogeneous incompressible fluid subject to no body force, we can appeal
to (9.4-2)2 and so conclude that the speed is constant along each free stream-
line. The partial differential equation (2.2-37) still governs the problem, and the
boundary condition on the wetted part of the obstacle is still a Plan = 0, but
a solution is sought to satisfy this condition only as long as p remains greater
than some given pressure, while the remaining boundary is determined by the
conditions I grad P I = const. Flows of this kind do exert forces and torques upon
obstacles, and, in addition, the shapes of the free surfaces are of great interest.
The mathematical theory is difficult.12 Similar difficulties arise in the theory of
surface waves. For this reason a large part of the vast literature of hydrodynamics
is devoted to linearizations and other truncations in the interest of cutting down the
problem to the range of the mathematical tools at the disposal of the investigator.
The results of some of these simplified studies have been proved to have definite
status as approximations.

EXERCISE 9.5.2 (Borda)
A jet of incompressible fluid in a steady irrotational flow issues from an infinite
container into a semi-infinite straight tube of cross-sectional area A. Assume that
z = 0(r-2) as x -> oo within the container, while as x -). oo within the jet z -- a,
which is a constant vector parallel to the axis of the jet. As a first approximation,
suppose that the pressure at the attachment of the tube to the container has the same
value as that when the tube was not present, and show that the cross-sectional area
at the vena contracts is

z
A.

Next, let a E denote a cross-section of the container far above the opening of
the tube. Let a zu denote the boundary of the container below the lateral boundaries
of the tube aE, azzr and the jet cross-section ao. Use Gauss' theorem, the facts

12 See D. Gilbarg, "Jets and cavities," pp. 311-445 of Encyclopedia of Physics 9, edited by S. Fliigge
and C. Truesdell, (Berlin, Gottingen, and Heidelberg: Springer-Verlag), 1960; G. Birkhoff and E.H.
Zarantonello, Jets, Wakes and Cavities, New York: Academic Press, (1957).



208 9. Incompressible Euler Fluids

that the fluid is incompressible and that the flow is irrotational, to show that

1A fn(U2)da
A, as

A 2-Arnj nE
(9.5-6)

where n is the unit outward normal, nE and n3 being the outward normals to the
boundaries aE and the jet cross-section, both of which are assumed to be planar.
A j and v3 denote the cross-sectional area and the velocity of the jet, respectively.

If a E is a plane whose normal is in a direction perpendicular to the axis of
the jet, then nE - nj = 0. Thus, for the flow through a hole in an infinite plane,

we have A = z + 2A of ()da > z . Next, use (6) to show that when a vertical
1

cylindrical tube is fitted to the horizontal bottom of a container, then A > z
However, when a horizontal cylindrical tube is fitted to a container so that the
nozzle projects inwards, then the ratio of the cross-section Aj to A is nearly 2.
Such an apparatus is called Borda's mouthpiece.13

9.6 Rotational Flows: Vorticity, Bernoullian Theorems

This section concerns compressible elastic fluids as well as incompressible ones.
We might think we could evade the objectionable features of potential flows

by resorting to rotational flows of elastic fluids. If we do so, we find that boundary-
value problems that for irrotational flow have no solutions have possibly infinitely
many solutions for rotational flows. For example, if we consider steady rectilinear
flow of a homogeneous incompressible fluid sheared between two parallel planes,
we could refer to (5.4-1), which expresses the principle of balance of linear momen-
tum, reduces to p = -pzu + const. and imposes no restriction upon the velocity
profile v. Alternatively, we can see from (5.4-5) that a = 0 and c = 0, so (5.4-9)
reduces to 0 = 0 and thus is satisfied by any v. If the velocities of the plates xl = a
and x2 = b are v,, and vb, any function v such that v(a) = v,, and v(b) = Vb solves
the problem for the incompressible elastic fluid. Unless va = vb, all these flows
are rotational.

These conclusions are obvious from the constitutive equations (4.1-8) and (4.1-
9). An elastic fluid cannot exert shearing stress. Therefore it slides along walls
without dragging them. Nor can a plane wall impede or promote the tangential

13A discussion of a two dimensional form of the mouthpiece using conformal mapping techniques
can be found in L.M. Milne-Thomson, Theoretical Hydrodynamics (London: Macmillan, 1949).



9.6 Rotational Flows: Vorticity, Bernoullian Theorems 209

flow of an elastic fluid. Thus we cannot expect the elastic fluid to provide any
information about the "frictional drag" exerted by real fluids on real walls. This
drag is associated with viscosity, which is the subject of study in Chapters 5-7.

Rotational flows of elastic fluids, compressible or incompressible, are of in-
terest in themselves. Their great variety, which leads to indeterminacy, lessens the
value of particular cases, but their general nature can be grasped through several
glorious theorems discovered by the great hydrodynamicists of the nineteenth cen-
tury. As we stated and proved generalizations of those theorems in kinematical
terms in Chapter 2, here we need only bring together their applications of elastic
fluids subject to lamellar body force. The D'Alembert-Euler condition (9.2-2) then
holds. Some of the consequent conclusions we may phrase in colloquial terms as
follows:

1. The circulation of every material circuit in a simply connected region is
preserved (Kelvin's theorem, sometimes called the fundamental theorem of
classical hydrodynamics).

2. At a given time, the flux of vorticity through each and every cross-section
of a vortex tube is the same (Helmholtz's first theorem, an immediate con-
sequence of the fact that the vorticity field is solenoidal).

3. A material line once a vortex line is always a vortex line (Helmholtz's second
theorem).

4. The flux of vorticity through each material surface is constant in time
(Helmholtz's third theorem).

5. For each finite material curve C that is a vortex line,

r ds
I JW

= const. in time (9.5-7)

C

(Appell's theorem).

6. Cauchy's vorticity formula:

FTWF = WK. (2.2-26)

Thus vorticity is only transported, never created or destroyed. A correspond-
ing differential statement is the D'Alembert-Euler condition:

W + DW + WD = 0. (9.2-1)

7. If a velocity potential exists on the shape of a body of elastic fluid at one time,
it exists on the shape of that body at every other time (Cauchy's velocity-
potential theorem).
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EXERCISE 9.6.1 (Hankel, Kirchoff)
Helmholtz's vorticity theorems follow at once from Cauchy's vorticity formula.

EXERCISE 9.6.2 (Hankel, Appell)
(2.2-25) and (2.2-29) may be expressed as follows

skw Grad(Fii) = 0, (9.6-1)

Fz = - Grad Ps. (9.6-2)

The notation used in (1), traditional in hydrodynamics, denotes by the symbols
introduced for certain functions of the spatial variables the results of transforming
those functions to referential variables; for example, the P. in (2) would be denoted
by P. o XK in a modern notation.

The foregoing theorems make rotational flows "approachable in concept," as
Helmholtz said. The spin has a certain permanence, and sometimes (2.2-24) is said
to describe the "convection of vorticity." Indeed, the present local deformation
alone determines the present spin from the spin of the same fluid point at any other
time, regardless of the motion of that point at intermediate times. These theorems
have been much used to explain phenomena in real fluids in regions far from solid
boundaries.

There is a simple Bernoullian theorem for rotational flows, provided the spin
field is steady: W' = 0, because then we may use the purely kinematical theorem

x = grad (Q + 2liI2 ` + Wz, (7.4-3)

where Q is a scalar field. For lamellar body force with potential nr, Euler's dy-
namical equation (9.1-3) takes the form

Wi = - grad(R + zu + Q + (1/2) jilt), (9.6-3)

when R is defined by (9.1-2). If Wi = 0, (3) yields

R + rrr + Q + (1/2) IiI2 = k, (9.6-4)

in which k is a function of time alone. If W = 0, (4) reduces to (9.4-1), for then
Q = -P'. If W 0, the condition Wz = 0 requires the axis of spin to contain
the velocity vector, so the fluid points may be said to spin about their paths; a
flow in which this condition is satisfied is called a screw flow, and (4) expresses a
Bernoullian theorem for motions of this kind. Finally we consider the typical case,
in which Wi 0 0. Then the axis of spin and the direction of the velocity span a
plane at each point. This plane is theLambplane, and Wi is normal to it. According
to (3), the field of Lamb vectors has a normal congruence of surfaces; equivalently,
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the Lamb planes are the tangent planes of these surfaces, which are called Lamb
surfaces. A Lamb surface may be regarded as swept out by streamlines and vortex
lines. Interpretation of (3) now yields Lamb's superficial Bernoullian theorem: If
a flow of an elastic fluid, whether compressible or incompressible, is subject to
lamellar body force and has a steady spin field and if it is neither an irrotational

flow nor a screw flow, it has a congruence of Lamb surfaces L. Moreover on each
L there is a junction kn of time alone such that

R+w+Q-(1/2)1112=kL. (9.6-5)

Since the vortex lines are steady, the motion of the Lamb surfaces is of a restricted
kind. For example, in a plane flow the Lamb surfaces are cylinders perpendicular to
the plane of flow and tangent to the velocity field. If the flow is not steady, the cross-
sections of those cylinders are generally bent and stretched as the motion proceeds.
Of course, if the flow is steady, so are the Lamb surfaces, and we may take Q as
zero. For incompressible fluids, (5) implies that a kinematically determined curve
is replaced by L, which denotes a kinematically determined surface. In particular,
in a steady flow

p + 1/2 1112 = const. (9.6-6)

in each streamline and each vortex line on L, and the constant is the same for all
those streamlines and vortex lines.

9.7 Rotational Flows: Gerstner Waves

A beautiful plane rotational flow discovered by Gerstner has become classic. Com-
ponents of the transplacement that defines it are given as follows in terms of two
parameters a and 0:

x = f(a, J3, t):=a+ Ie-kOsink(a+ct),

z = g(a, 0, t) + k e-kfl cos k(a + ct), (9.7-1)

where k and c are positive constants. We interpret x as a horizontal distance and z
as a vertical distance taken positive downward. We note that z - 0 as kf - oo;
thus large values of k,8 correspond with great depths. The coordinates of the initial
position x of a fluid point are given as follows in terms of the variables introduced
in writing (1):

X = f (a, ,B, 0) = a +
1

k
e-kfi sin ka,

1Z=g(a,0,0)= +ke-kficoska. (9.7-2)
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EXERCISE 9.7.1
Verify that

a(x, z) a(X, Z)
= 1 - e-2kp. (9.7-3)

a(a, P) - a(a, 0)

We shall suppose henceforth that ,6 > 0. Then (3) shows that the motion is isochoric
and that both (1) and (2) are locally invertible; in fact they are invertible over the
whole range of X and Z consistent with the condition $ > 0. Thus we may regard
a and 6 as specifying points in a reference placement. The relations (1) with a
and $ interpreted as referential variables serves as an example of an isochoric
motion specified in terms of a reference placement that is not an isochoric image
of any placement occupied by the body in the course of its motion. The referential
variables a and fi are more convenient for the analysis than would be X and Z, as
will be shown.

The transplacement (1) represents an undulation. If we replace a by a +27r/ k,
we increase x by 21r/ k and leave z unchanged. Thus, if

(9.7-4)

we may call A the wavelength of the disturbance. A fluid point on the material
surface 0 = const. occupies places with the same depth at all times such that
a + ct = const. and hence such that x + ct = const. Thus the shape of the surface

= const. at all times may be obtained by causing its shape at some one time to
move in the direction of decreasing x at the speed c. Therefore, the transplacement
(1) represents a train of parallel, periodic surface waves of wavelength A, which
propagate unchanged in form at the speed c upon an infinitely deep and broad
basin. The frequency of the waves is c/A. If we agree to mean by the amplitude a
of the vibration at the surface
trough, then

= const. one half the height of the crest above the

and

a = ke-kfl
(9.7-5)

27r a -k#
= 7-6)(9e .

The path of the fluid point at (X, Z) initially is a circle about a, P having the
radius a; the linear speed of the fluid point is ce-0. In these statements the values
of a and 0 are determined from X and Z through (2). The whole train of waves is
the result of rotations of the fluid points in circular orbits, each counterclockwise
and at constant speed. Because Z P as kj -+ oo, at great depths the amplitude
of the waves becomes arbitrarily small. Thus (1) represents surface waves traveling
straight across a basin of infinite extent and depth.
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EXERCISE 9.7.2 (Gerstner)
Show that the profile of the surface ,B = fio > 0 is a trochoid obtained by rolling a
circle of radius 1 /k on the underside of the line Z = 00 - I/ k, the distance of the
tracing point from the center being a-k&

/ k. If ,B = 0 in (1), the resulting shape
V 0 is a cycloid, and negative values of fi are excluded because they would make
two distinct fluid points occupy the same place. The maximum amplitude A of
Gerstner's waves is bounded as follows:

A
A <

2n
. (9.7-7)

EXERCISE 9.7.3
Show that the vorticity, taken as positive when it corresponds to a positive clockwise
circulation, is given by

2kce-2k,6w= ; (9.7-8)

also

1 - e-2k

_kfi 2 ra
MK 1 7 99

= e =
< . - )( .

From (8) we see that Gerstner's waves are rotational, that their spin is the same
at all points on the surface # = const., and that the sense of the spin of the flow
is the opposite of the sense of rotation of the fluid points in their orbits. Also the
rotationality of the flow decreases with k,B; and equivalently with the ratio a/A.

Next, using the notations 8,,,x := a, ,,f (a, P, t), 8X := 8, f (a, , 0), and so
on we find that

Iaax + i8,,z = - kc2e-k# sin k(a + ct),
(9.7-10)

z8px + zapz = kc2e-k,8 cos k(a + ct) + Kc2e-21' .

It is easily seen by inspection that (9.6-1) and (9.6-2) hold for all reference place-
ments if they hold for any. From (10) it is easy to see that (9.6-1) holds and to
conclude that

- Pa = c2e-kO cos k(a + ct) - 112C2 e -2kO. (9.7-11)

Thus Gerstner's waves preserve circulation and hence solve Euler's dynamical
equation if the body force is lamellar.

To consider the effect of gravity, we take zr as -gz, g being the gravitational
acceleration, assumed constant. Then Euler's general solution shows that (4.8-15)

pv=gz+Pa

= g[f + ke-kfi cos k(fi + ct)] - c2e-k cos k(a + ct) + 1/c2e-2kP. (9.7-12)
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As usual, an arbitrary function of time is understood on the right-hand side. To
make the solution represent waves upon a free surface, we require that p = const.
there. For the material surfaces P = const. to be surfaces of constant pressure, it
is necessary and sufficient to relate as follows the constants k and c:

c2 = g (9.7-13)

From (4) we see that

k

2nc2 = Ag, (9.7-14)

(12) reduces to

PV=9 ,B -I-
1

e-2kfi + const.

= g,8 + 1/2 z2 + const. (9.7-15)

Thus the wave length A, which is an arbitrary constant, determines the speed of
propagation. The pressure is determined to within assignment of an arbitrary value
of the topmost surface.

Although ce-kO is the magnitude of the velocity at points on the surface _
const., we must resist the temptation to regard (15) as "Bernoulli's theorem"; if the
vorticity were steady, which it is not, (8.6-5) would hold, but there the term (1 /2)z2
would have the opposite sign, and g$ is not the potential energy due to gravity.
Certainly, however, (15) is an equation of Bernoullian type in that it determines p
explicitly from the known velocity field.

To consider the behavior of Gerstner's wave at great depth, we let x tend to 00
while the arbitrarily assigned wavelength A is held fixed. Then from (1) and (2) we
see that (z - Z) 0, (x - X) -- 0; and from (5) and (8) that a -+ 0 and w -+ 0.
The relation (14), which determines the speed of propagation c from an arbitrarily
assigned wavelength k, is unaffected. Thus, if we consider Gerstner's solution only
for values of # greater than some large constant, it represents irrotational surface
waves of arbitrary wavelength and very small amplitude upon an infinitely deep
and broad basin.

The statement (14), which was first inferred by Newton but with an incorrect
numerical coefficient, is celebrated; Lagrange obtained a wholly wrong substitute
for it, and, as far as we can learn, it was first obtained correctly in the way we
have developed here not through the common and facile device of linearizing the
problem itself but through a solution of it. The solution of this problem is a classic
achievement of Levi-Civita14 According to his conclusion, the ratio 2ncZ/(Xg)
depends upon the amplitude of the waves.

14A short proof is given by H. Berckert, "Existenzbeweise in der Theorie permanenter Schwerewellen
einer inkompressiblen Flussigkeit langs eines Kanals," Archive for Rational Mechanics and Analysis 9
(1962):379-394.
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In Gerstner's solution the pressure remains constant at each fluid point. Ac-
cording to a theorem of Burnside, no nonconstant plane irrotational flow has this
property. Thus a single irrotational solution, unlike Gerstner's, cannot be cut off at
different depths to provide infinitely many solutions having different amplitudes
at the free surface.' 5

9.8 Stokes' Conjecture for the Height of Irrotational Waves

In his celebrated paper on the motion of irrotational waves, Stokes' 16 inquired into
the shape of the wave of greatest height in an Euler fluid, taking into consideration
the effects of gravity but ignoring those of surface tension. On the basis of his
calculations he conjectured that the boundary of the crest loses its differentiability
and is made up of two convex functions whose tangents at the apex make an angle
of 23

. The conjecture was finally verified by Amick, Fraenkel, and Toland, 17, more
than a century later. Some knowledge of functional analysis is required to follow
the arguments that led to the resolution of Stokes' conjecture, students unfamiliar
with functional analysis will find the requisite material in the Appendix.

In order to formulate the mathematical problem, we shall start by defining the
domain in which the flow takes place. We shall assume that the flow is steady and
plane and that x2 = Y(xl) defines the location of the free surface of the body of
fluid. Let

0 := {(XI, x2)I - oo < x1 < oo, -oo < x2 < Y(xl)} (9.8-1)

denote the domain in which the flow takes place, and let the free surface F be
defined through

F := {(x,, Y(xl))I - oo < xl < oo}. (9.8-2)

We shall assume that Y(x1) is periodic in x1 with period X > 0 and that the free
surface F has only one crest per wave length. We shall also assume that the free

'tThe little exact knowledge of surface waves there was up to 1960 is summarized in Chapter F of
the article by J.V. Wehausen and E.F. Laitone, "Surface Waves," Handbuch der Physics vol. 9, edited
by S. FlOgge and C. Truesdell, (Berlin, Gottingen, and Heidelberg: Springer-Verlag, 1963), 446-778.

t6G.G. Stokes, "Considerations relative to the greatest height of oscillatory waves which can be
propagated without change of form," Mathematical and Physical Papers, vol. 1 (Cambridge University,
1880), 225-28.

"C.J. Amick, L.E. Fraenkel, and J.F. Toland, "On the Stokes conjecture for the wave of extreme
form," Acta Mathematica 148 (1982): 193-214.
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surface 1' is symmetric around the crest of the wave. Then

H := max Y(xl) - min Y(x1) (9.8-3)
-00<x1<oo -oo<X1<00

is a measure of the amplitude of the wave. Stokes made several formal calculations
under the assumption that (H/A) is small in his quest to determine the form of the
wave of greatest height.

Since the flow is planar, we can introduce the stream function q through

u = (Vq)1, (6.3-2)

and, as the free surface is periodic, we shall seek a solution in which the stream
function is also assumed to be periodic, i.e.,

q(xi + X, X2) = q(xl,x2). (9.8-4)

Because the free surface is a streamline, we shall set

q(xi, x2) = 0 on F, (9.8-5)

and it also immediately follows that

2 J Vq 12 + gx2 = const on 17, (9.8-6)

where g is the acceleration due to gravity. In order to complete the formulation of
the problem, we shall have to specify the conditions as x2 -oo. To do this, let
us introduce a coordinate system that is moving with the crest of the wave whose
speed is -c along the xl direction with respect to the quiescent fluid at infinity.
Then, with respect to this moving frame,

aq aq - (c, 0) as x2 - oo. (9.8-7)
axi' ax2)

The Stokes conjecture was resolved by converting the problem defined by
the equations of motion for an Euler fluid and (4)-(7) into an equivalent integral
equation and by studying the properties of the integral operator that is usually
called Nekrasov's integral.

We now proceed to outline the method for obtaining the equivalent integral
equation from (4)-(7) and the equations of motion for an Euler fluid.

Let

I(x',x2)I - Z < x1 < 2 , -00 < x2 < Y(xl) . (9.8-8)

Then D denotes the region occupied by a single wave. Let us first map D confor-
mally onto a unit disk A centered at the origin. Let A and C stand for the troughs
and B stand for the crest of the wave. Let z denote the complex number

z = xi + ix2, (9.8-9)
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where i = and i; is the image of z under the mapping given by

= a1 + ia2. (9.8-10)

The part of the free surface {(x1, Y(xl)) I - 2 < x1 < z } is mapped onto the
perimeter of the disk A, while the boundary at x2 -oo is mapped into the center
of the disk A. The part of the imaginary axis given by {(0, x2)l - oo < x2 < B}
is mapped into the part of the real axis, {(al, 0)10 < al < 1}. It is necessary to
introduce a branch cut, {(a1, 0)1 - 1 < al < 0}, to accommodate the images of
the line segments, { (- i , x2) I - 00 < x2 < A } and { (Z , x2) I - oc < x2 < B }.
It should be clear from the description of the conformal mapping that it should
have a pole = 0 and a branch cut on the negative real axis. With this in mind we
seek a conformal mapping of the form

(9.8-11)d (
I

so that a1 passes through 2ir radians around theWe choose the constant k =
27r

perimeter of A, then xl transverses one wavelength A. It follows from (11) that

z = ix (log i; + alf; + ....), (9.8-12)

and a simple calculation shows that all the a;'s have to be real if the wave is to be
symmetric about the x2-axis.

Let

O(t;)
k dz :=

on the surface. (9.8-13)

We shall see later that 0(l;) denotes the angle that the velocity u of material
points on the free surface makes with the xl-axis. If the free surface F is parame-
terized by { = e`Y I - it < y < Zr } in the l; -plane, then

o(y) = R(y)ete(r) (9.8-14)

EXERCISE 9.8.1
Using the Taylor series for the logarithm function, show that 0 and R are related
through

0(t;) = 1
J

: d log R(t)
s i n sin

dt. (9.8-15)
7r n dt n_1 n

We shall show later that this integral for leads to the integral equation of
Nekrasov.

The boundary conditions (5} (7) on the stream function reduce to

q = 0 on the unit disk,

q = oo at the center of the disk,
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aq t th di0 aq t f th k 169 8= = - c a er o, e cen e s .
ax, ax2

It can be shown that on the surface of the wave

-ce-ie(v)-c

( . - )

_
z + ix = (9 8-17). l 2

p(Y) R(y)
.

and thus (c/R(y)) denotes the magnitude of the velocity and 0(y) describes the
angle the velocity vector makes with the xI -axis. Substituting (7) into (6), we obtain

c2
(9.8-18)+ 2gz2(y) = const .,

RZ(Y)

where i(y) = XI (y) + i2 (Y), with F being parameterized by y. On differentiating
(18) with respect to y, we obtain

c2 dR dx2

R3(Y) dY = g dY
(9.8-19)

When = ere(Y), the chain rule yields

dz"
d2 d

O(Y) _ -? R(y)eie(Y) (9.8-20)
dy - d4 dy 2n 27r

where we have used (13). Thus,

dx2 - 2R(y)sin0(y). (9.8-21)
Y

It immediately follows from (20) and (21) that

c2 dR = Xg
R(y)sin0(y), (9.8-22)

R3(Y) dy 2n

which can be integrated to yield

/Y
R-3(y) = C D + J sin0(r)dr , (9.8-23)

0

where D is a constant of integration and C = 2n gg is also a constant. Taking the
logarithm of both sides of (23), differentiating with respect to y and using (15),
we obtain

s) = 3 K(s, t)
sm0(t)

dt, 0 < s <ir, (9.8-24)fr0(
[D + fo sin0(t)dr]

where

1 sin 1(s + t) sin kt sinks
K(s, t) - log = (9.8-25)

IT sin 2(s - t) k=I k
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Integral (24) with the kernel given by (25) is called Nekrasov's integral. Nekrasov'8
studied solutions to the integral that represented waves of small amplitude. The first
investigator to study solutions to Nekrasov's integral equation that correspond to
waves of finite amplitude was Krasovskii. He proved that for each value 0 < a < 6 ,
where

a := sup 0(s),
se[0,n]

there is a finite value of D such that there is a continuous solution 0(s) to the
Nekrasov integral. Krasovskii'9 conjectured that if the class of wave forms are
restricted to those with smooth differentiable boundaries (Stokes' conjecture con-
cerns nondifferentiable boundaries), then the angle between the surface of the wave
and the horizontal exceeds 6 for all finite values of D. This conjecture was proved
to be false by McLeod.20 The proof is quite involved and we shall not discuss it
here.

Within the context of the integral equation (24), Stokes' conjecture reduces to
the existence of a solution 0(s) such that

l 00(s) limo(s)
6

, (9.8-26)

where D = 0. Toland21 proved that there is a solution 0(s) when D = 0 that
is continuous in the interval [-7r, r] except at the point s = 0, where it suffers
a discontinuity. While the nature of the discontinuity was not determined, it was
shown that (9.8-26) would hold if the discontinuity were a jump discontinuity.
Amick, Fraenkel, and Toland proved that the only possible discontinuity for 0(s)
is the jump discontinuity, thereby verifying Stokes' conjecture.

We now proceed to sketch the existence proof. The interested student should
read the relevant papers that have been cited for details regarding the proof.

The idea behind the proof is to obtain a solution OD(S), when D 0, and then
show that 0(s) = lim OD(s) is a solution. Keady and Norbury22 proved that there

D-0
are solutions to Nekrasov's equation when D 0.

18A.I. Nekrasov, "The exact theory of steady-state waves on the surface of a heavy liquid," Technical
Summary Report No. 813, Mathematics Research Center, University of Wisconsin 1967 (D. V. Thapuran,
ed. C.W. Cryer).

19Yu.P. Krasovskii, "On the theory of steady waves of finite amplitude:' U.S.S.R. Computational
Mathematics and Mathematical Physics 1 (1962): 996-1018.

20J.B.McLeod, "The Stokes and Krasovskii conjectures for the wave of greatest height;' Technical
Summary Report No. 2041, Mathematics Research Center, University of Wisconsin, 1980.

21 J.F. Toland, "On the existence of a wave of greatest height and Stokes' conjecture," Philosophical
Transactions of the Royal Society of London, Series A 363 (1978) 469-485.

22G. Keady and J. Norbury, "On the existence theory for irrotational water waves," Transactions of
the Royal Society, Series A 83 (1978), 137-157.
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THEOREM 9.2
For D > 0, but sufficiently small, there is a solution OD (S) of (24) that is continuous
on [-n, ir], is odd, with OD(S) > 0 when s E (0, n), OD(n) = 0, and 19D(s)l < z
when s E [-7r, n].

Since this sequence of functions 9D is continuous and bounded pointwise by
2 , the sequence is also bounded in L2[-n, n]. Similarly, the sequence sin(9D) is
bounded in the same space. We can then extract a subsequence of 9D, again denoted
by 9D, so that

BD -> 0 weakly in L2,
(9.8-27)

sin(9D) -* y weakly in L .

First, we need to prove that 6 is not the trivial solution. Second, the function y
must be the sine of 0. Finally, 0 must satisfy (24) with D = 0. These issues will
be resolved by a series of lemmas. We begin by stating a technical lemma.

LEMMA 9.3
Let 0D be any solution of (24). If D is sufficiently small and 0 < OD(S) < it/2 for
all s E [0, n], then there is a constant $ > 0 such that for all s E [0, 2n]

OD(S) > f,

and

(9.8-28)

D + J 'sin
0

The proof of this lemma appears on page 474 of the article by Toland and will not
be reproduced here. The two estimates (28) and (29) show that the solution OD is
not the trivial function. The next lemma shows that this property is shared by the
weak limit 9 in (27) as well.

LEMMA 9.4
The function 9 in (27) satisfies

I':
9(s)ds > 0, (9.8-30)

Jr

so that 0 is not the trivial function.

PROOF We have two sequences 9D and sin 9D that have weak limits 9 and y as
D -* 0. If we let g - 1 (A.6), then

D+ f R sin9D(s)ds - f n y(s)ds, (9.8-31)
0 o
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but (29) implies that
n

y(s)ds > 3 . (9.8-32)

On the other hand, the sequence OD converges weakly to 0 so that (again taking
g = 1 in (A.6))

r IT

f
n

9(s)ds = lim
I

n

sin 9D(s)ds
J

A(s)ds > 3 , (9.8-33)

0

where we have used the fact that on the interval [0, 7r ] the inequality sin x < x
holds. This completes the proof of the lemma.

The next lemma gives a very useful reinterpretation of the Nekrasov integral
equation.

LEMMA 9.5
Let the function 1' be defined by

*(t) = log ID +
J

r sin9D(s)ds1 . (9.8-34)
o

Let Ce stand for the conjugate of+/* (see the Appendix). Then the Nekrasov integral
equation is equivalent to

- 39 = Ci/r. (9.8-35)

The function 0 is odd and is in L2. Therefore it has a Fourier series of the form

0(s) = E ak sinks. (9.8-36)
k=1

Comparing this result with the Nekrasov integral equation and the explicit series
form of the kernel (25), we see that the coefficients ak must be

a k
1 n sinkt sin0(t)

dt. (9.8-37)k
3ir -n k D + f sin 0(s)ds

We next integrate (37) by parts to get
n

ak cos kt log D + sin B(s) dsdt f cos kt'ir(t)dt.
37r fr Jo 3n f

Therefore -30 = Cf. This completes the proof of the lemma.
(9.8-38)

LEMMA 9.6
Let BD and sin 6D be as in (27). Then 6D and sin OD converge strongly in L2 to 0
and y, and sin 0 = y.
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PROOF First we show that the sequence *D converges to * pointwise. To see this
note that sin OD converges weakly in L2 to y so that f o sin OD(s)ds -+ f o' y (s)ds for
each t e [0, n J. Then, by the Lebesgue Dominated Convergence Theorem, i/ID -> Vf
strongly in L2. Since, by (35), -30D = ClID and since C*D -+ strongly in
L2, we conclude that the sequence OD converges to 0 strongly in L2. The strong
convergence of OD in L2 implies that there is a subsequence of OD (still denoted
by OD) that converges pointwise almost everywhere to 0. In that case sinOD(t)
converges to sin 0(t) for almost all t, which in turn implies that the convergence is
strong in L2 by the Lebesgue Dominated Convergence Theorem. This proves that
y = sin 0 and completes the proof of the lemma.

It remains to show that the function 0 actually satisfies (24) when D = 0. We
summarize this result in the following lemma, whose proof follows in a fashion
similar to those just outlined. The interested reader should refer to Nekrasov's
paper for details.

LEMMA 9.7
(a) The function 0 defined in (27) satisfies the Nekrasov integral equation with
D = 0. (b) 0 is discontinuous at s = 0 with sup l0(s)l > 6. When it is known

SE[-E,E]

that the discontinuity at 0 is a simple jump discontinuity, then lim 0(s) =
S-0 6

This lemma provides an affirmative answer to Stokes' conjecture if it can be
proved that the discontinuity at s = 0 is a simple jump discontinuity. This will be
taken up next.

Amick, Fraenkel, and Toland compared the solutions of (24) with the solutions
of the integral equation

1 fk(x si n0(y)
B(x) = , y)fo sinO(s)dsdy,

0 < < oo, (9.8-39)

where

1 x- y
k(x,y) =

n log x -Y) (9.8-40)

Although the Nekrasov integral equation is not equivalent to (8-39) and (8-40), we
can see the connection between them by making the following change of variables
and identification in (24). Let l; = tan z and z/i() = cp(2 tan-1 cp(s). Then
the Nekrasov integral equation becomes

>/i( ) _ 1

J
k(t;, ri) dri, 0 < < oo, (9.8-41)

3 0 fo g(s) sin l/i(s)ds

where g(i7) = 1+nz . It is the closeness of (41) and (34) that is taken advantage of
in the next lemma.
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LEMMA 9.8
If

6
is the only solution of (I) and (2) satisfying

inf 6(x) > 0,
XE(0,00)

sup 9(x) < 3 (9.8-42)
X E (o, 00)

then any solution of the Nekrasov integral equation that satisfies

1 o inf cp(s) > 0, 0 < cp(s) < 3 for s E (0, 7r)

also satisfies

cp(s) --*
Jr

s

ass-0.

(9.8-43)

The proof of this lemma is quite involved and requires estimating the kernel
(40) for values of near zero. More importantly a detailed verification of the
assumption that is the unique solution to (39), (40) is provided. Most of the
paper is dedicated to the proof of uniqueness.

When D = 0 in (3.6), the Nekrasov integral operator is noncompact, and this
causes the study of solutions when D = 0 to be quite daunting. We shall not get
into a discussion of the subtle mathematical issues here but leave it to the reader
to refer to the paper by Amick, Fraenkel, and Toland.

9.9 Ring Vortices23

In this section we will study the formation of steady vortex rings in an Euler fluid.
By a vortex ring we mean a body that is homeomorphic to a solid torus. Even
a casual glance at smoke rings that emanate from chimneys and winds confirm
that they can be modeled as vortex rings, and by and large they are not axially
symmetric. Here we shall confine our discussions to axially symmetric vortex
rings. A thorough discussion of the relevant studies of vortex rings can be found
in the article by Fraenkel and Berger.24

The first systematic study of vortex rings can be found in the famous paper
of Helmholtz25 in 1858 on the dynamics of vortex motion. He studied the motion
of vortex rings of small cross-section in infinite space, with the fluid quiescent at

23 We thank Reza Malek-Madani for his help in writing this section.
24L.E. Fraenkel and M.S. Berger, "A global study of steady vortex rings in an ideal fluid," Acta

Mathematica 132 (1974): 13-51.
25H. Helmholtz, "Uber Integrale der hydrodynamischen Gleichungen, welche den Wirbelbeweg-

ungen entsprechen," J. Reine Angew. Math. 55 (1958): 25-55.
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infinity. On the basis of an approximate analysis, he showed that the ring moved,
with a constant speed that was large. Kelvin26 continued the investigation of the
motion of vortex rings of small cross-sections and found an explicit expression
for the speed of the ring based on an approximation. Hicks27 and Dyson28 also
calculated the speed of vortex rings of small cross-section based on a perturbation
approach.

Kelvin also formulated a variational principle concerning the motion of vortex
rings. The works of Fraenkel and Berger, and Friedman and Turkington also appeal
to a variational approach of the problem. We shall discuss the study of Fraenkel
and Berger later.

The first study of vortex rings of arbitrarily large cross-sections was by Hill,29
who found an exact solution. His solution corresponds to a sphere rather than a
ring.

Solutions that correspond to vortex rings have been constructed by Maruhn,
Norbury, Ni, Fraenkel, Friedman and Turkington, and Fraenkel and Berger. Amick
and Fraenkel studied the uniqueness of Hill's vortex. Other than his study, there
have been few proofs of uniqueness for vortex rings.

The problem of vortex rings shares two features with Stokes' conjecture: we
have to contend with an operator that is not compact, and the nonlinearity arises due
to the presence of the free surface that forms the boundary of the vortex ring. The
problem lends itself to the context of the calculus of variations. We shall follow
the analysis of Fraenkel and Berger in deriving the governing equations for the
motion of axially symmetric vortex rings. We shall find it convenient to work in a
cylindrical coordinate system.

Let us consider the axially symmetric isochoric motion of an Euler fluid. As

divu = 0

and we are interested in axially symmetric solutions, we can introduce the stream
function q so that

and a vector potential fi so that

u = (Vq)1 (6.3-2)

1 q(r, z)e9.r
(9.9-1)

26 W. Thompson, Mathematical and Physical Papers, vol. 4, (Cambridge University, 1910).
27W.M. Hicks, "Researches on the theory of vortex rings-part 1I." Philosphical Trans. Roy Soc.

London, Series A 185 (1885): 213-245.
28F.W. Dyson, "The potential of an anchor ring-part II," Philosphical Transactions of The Royal

Society London, Series A 184 (1893): 1041-1106.
29M.3.M. Hill, "On a spherical vortex," Philosophical Transactions Royal Society of London, Series

A 185 (1985): 213-45.
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EXERCISE 9.9.1
Let q(r, z) be a sufficiently smooth function that meets (1). Show that

(i) curl' = u = -1 ag e + i aq e (9.9-2)r az r r ar z'

(ii) div 4b = 0, (9.9-3)

(iii) A-li = .e Lq, (9.9-4)

where

a

\
1 aq \ azq

Lq r ar r ar /) + az2

and

(iv) u Vq = 0.

Let P denote a half-plane

(9.9-5)

(9.9-6)

P := {(r, z)Ir > 0). (9.9-7)

We shall consider a vortex ring of finite and constant cross-section A C P.
The equations of motion for the steady axially symmetric flow of an Euler

fluid require that the vorticity remains a constant along each stream surface, and
thus following Fraenkel and Berger we introduce a function f (q) through

cog = Arf(q), (9.9-8)

where cue denotes the 9-component of the vorticity and ) is the strength of the
vortex. It follows from (3) and (8) that

Lq Are f (q) in A,
0 in P - A. (9.9-9)

As grad q must be continuous across the boundary of A, this constitutes one
of the boundary conditions that will have to be met. Moreover, the boundary of A
and the axis of symmetry must be streamlines, and thus we set

and

q =0 (9.9-10)

q

aA

= -k, (9.9-11)
Ir=O

where k > 0 determines the flux 2irk between the axis of symmetry and the
boundary of the vortex ring. We shall assume that the ring moves relative to the
quiescent fluid at infinity with a velocity (0,0, W). If an axis is fixed to the ring,
then this implies that

a 0, 1 aq --+ Was (r2 + Z2) -a oo. (9.9-12)
r y
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As with the problem associated with Stokes's conjecture, we transform the
governing partial differential equation into an integral equation, using the funda-
mental solution for the elliptic operator in (9). The fundamental solution is given
by

n

F(ro, zo, r, z) =
ro ror cos 9d9

r2 + ro - 2rro cos 0 + (z - zo)2-Jr

which satisfies

(9.9-13)

AF = 8(r - ro, z - zo) (9.9-14)

in the sense of distributions, where 8 is the Dirac measure.
Thus we seek a solution q and a boundary 8A of A such that

q(ro, zo)
1

2
W ro - k +,k f F(ro, zo, r, z) f (q)rdrdz, q IaA = 0. (9.9-15)

AA

EXERCISE 9.9.2
Show that

qo(r) =
1

2
Wr2 - k (9.9-16)

is the stream function of a uniform flow with velocity u = -Wee and L(qo) = 0.
Hill was able to construct an exact solution of (9) and (10), (11) and (12) when

the function f was linear and k was zero. In this special case we can guess that
the solution corresponds to a sphere rather than a ring. As we are dealing with a
sphere it is more convenient to use spherical coordinates (R, 0, cp).

EXERCISE 9.9.3
Show that the problem given in (9){12), in the spherical coordinate system leads
to the solution

I -AR2 sin 2 O(a2 - R2), R < a
q(R,0)= 2WR2sin29(I-q-),R>a, (9.9-17)

where a is the radius of the sphere.
Notice that the solution for R > a corresponds to the classical irrotational

flow past a sphere of radius a.
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The values of a., a, and W in (11) cannot be arbitrary. Since we also need to
ensure that grad q is continuous across 8A, we find that we need to satisfy the
condition Aa2 = z W.

Hill's solution is one of the few solutions known for the problem of vortex
rings. This solution corresponds to a vortex function f that is linear and for k = 0.
It is possible to construct other solutions for k 0 0 by using the implicit function
theorem. However, it is far more difficult to construct solutions when f is not
linear. We will address this issue next.

The main mathematical difficulty stems from the discontinuity in the right-
hand side of (9) when f (q) is nonlinear and the unboundedness of the domain that
leads to the operator is noncompact. Fraenkel and Berger overcome this difficulty
by looking at a sequence of approximations for f in bounded domains and showing
by means of a very intricate analysis that a limit process leads to the solution of the
original problem. This requires us to obtain estimates that are independent of the
approximation process and to verify the regularity of the approximate solutions.

Fraenkel and Berger assume that the vorticity function f (q) satisfies

f(q) 0, q < 0
1>0, q>0 (9.9-18)

and furthermore that f is Holder continuous, i.e.,

If(gt)-f(g2)I <MIgl-q21µ, (9.9-19)

where µ E (0, 1). The domain is assumed to be the bounded cylinder C of radius
a and length 2b, so P is approximated by the domain

Pa := {(r, z)I0 < r < a, IzI < b}. (9.9-20)

Let us now define

1q:=q+2Wr2+k. (9.9-21)

Then it follows from (9) that

L4 = -Ar2 f (q) in PQ. (9.9-22)

Also, instead of prescribing the strength of the vortex A, we shall prescribe the
kinetic energy n of the vortex, i.e.,

[4)2
2

fY
drdz=n>0. (9.9-23)

PQ

The condition q > 0 excludes the possibility of the trivial solution.
We shall show next that the problem (22) and (23) subject to the approxi-

mate boundary conditions reduces to maximizing a nonlinear functional over an
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appropriate space. Let Co (Pa) denote the set of all functions that are infinitely
differentiable with compact support in Pa. We define the inner product through

(u, u) := J r2 (ur, Vr + uZVZ)rdrdz. (9.9-24)

PQ

Let H(Pa) denote the completion of Co (Pa) in the norm induced by the foregoing
above inner product. It then follows that H(Pa) is a Hilbert space with the additional
property that functions in this space have derivatives in the generalized sense and
that the gradients of these functions belong to L2. These functions also satisfy the
Dirichlet boundary condition on a Pa in a generalized sense because each of these
functions is a limit of a sequence of functions in Co (Pa). Let

S(n) : _ {uEH(Pa)

fG(q) = f (s)ds,

0

IlulI'=n}, (9.9-25)

(9.9-26)

(9.9-27)

and define the functional

J(u) = J G [u - 2 WR2 - k] rdrdz. (9.9-28)

Pa
L

Fraenkel and Berger prove the following theorem.

THEOREM 9.9
The variational problem max J(u) is equivalent to the differential formulation of

ue(, )

governing vortex rings. Moreover, the variational problem has a solution 4 such
that J(q) > 0 and 4 > 0 almost everywhere in Pa.

The proof is too complicated to be discussed here, and we refer readers to the
paper by Fraenkel and Berger for details.

This theorem in turn guarantees a global maximizer and the existence of at
least one vortex ring that satisfies the differential formulation. The question of
uniqueness is an even more difficult issue. Amick and Fraenkel have carried out a
meticulous study in which they prove that the solution of the spherical vortex due
to Hill is unique. General uniqueness results are not available for vortex rings.
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9.10 Baroclinic Flow: Theorem of V. Bjerknes

The compressible elastic fluid often fails to model well the motions of natural gases
and liquids. A body of real gas at rest must be confined by a pressure that is not
determined by its density alone but by its temperature and density conjointly. Such
a "thermal equation of state" can be written as follows:

p = f (v, a), (9.10-1)

in which a is a parameter such as the temperature on some assigned scale.
Other or additional parameters may enter such an equation: the specific entropy

for convenience in gas dynamics, the concentrations of the constituents of mixture,
the body point X to allow for inhomogeneities or stratification. We shall not take
up those possibilities.

The definition of material used heretofore and hereafter in this book, because
it is purely mechanical, is not broad enough for the present purpose. In this one
section we shall stretch it a little and speak of a "fluid" such that T = -p1 with p
given by (1). Such a fluid is not simple and hence not elastic in the sense used in this
book, but there are circumstances in which the theory of the elastic fluid applies
to it. Obviously one such circumstance arises when the parameter a is assigned
a constant value, as for example in a motion at constant temperature or constant
specific entropy. Different such constant values produce different functions f,,(v)
to replace f (v, a) and thus in general make one and the same substance behave
in different circumstances like different elastic fluids. This conclusion holds more
generally in circumstances where a = g(v). The importance of these possibilities
in the atmosphere and the sea led Bjerknes to give such flows a name: barotropic.
The theory of the elastic fluids applies to barotropic flows.

In this book we follow Bjerknes in distinguishing scrupulously the terms
"flow" and "fluid" The latter is constitutive, referring to a material; the former
refers to conditions in which a material body may find itself. A compressible mate-
rial body may undergo an isochoric motion; all motions of an incompressible body
are isochoric. All flows of an elastic fluid are barotropic, for the relation p = f (v)
is constitutive. The flows of the fluid defined by (1) may be barotropic but generally
are not; the functions fa(v) delivering barotropic flows vary with the choice of g
in the restriction a = g(v) and hence are not constitutive.

A flow that is neither isochoric nor barotropic is called baroclinic; the term
refers to the fact that the isochoric and isobaric surfaces decussate at each time,
cutting the shape of the fluid body into a bundle of segments of unit tubes defined
by the surfaces v = 0, 1, 2, ... , p = 0, 1, 2, ... , with some particular choice of
units.
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In his celebrated meterological studies V. Bjerknes observed that while
barotropic flow is governed by the classical theorems on the permanence of vor-
ticity (8.6), baroclinic flow may create and destroy circulation.

EXERCISE 9.10.1
Show that the rate of change of the circulation C(C) of a simple material circuit C
bounding a simply connected (surface a, say x = f(a, b), is given by

C(C) = J skw grad x aa f A abf da db, (9.10-2)

a

while Euler's dynamical equation (8.1-1) when b is lamellar yields

skw grad z = (1 /2) grad v A grad p. (9.10-3)

We now suppose that for the independent parameters a and b in terms of which
a is expressed we may choose p and v; while never possible in barotropic flow,
such is the case in a sufficiently small region of baroclinic flow. Then putting (3)
into (2) reduces the integrand to 1 and hence delivers the circulation theorem of V.
Bjerknes for flows described in an inertial framing:

C(C) = J dpdv = (9.10-4)

apu

in which ap denotes the projection of a onto its support in the p - v plane,
while is the signed area of ap,,. Bjerknes expressed this statement much
as follows: The rate of increase of the circulation of C induced by baroclinic flow
is the number of unit p-v tubes that C embraces. The portions of a in which the
smaller angle between grad p and grad v is less than a right angle increase the
circulation counterclockwise in the p-v plane; if the samller angle is greater than
a right angle, the circulation increases clockwise.

The most interesting applications of this theorem were noticed by Bjerknes
himself, and his papers still make excellent reading.30 Consider first the seashore,
and suppose that, as usual, grad v points upward or nearly so. A quiet sea may be
regarded as a body that preserves its temperature unchanged, day and night; the
sun warms the surface of the shore by day, while by night the sun's absence lets
the surface of the shore cool off through its contact with a layer of earth beneath,
the temperature of which remains little affected by the cycle of night and day. By
day then, grad 0 points from sea toward land, while by night its sense is opposite.

30The two applications described and several more may be found in V. Bjerknes, "Das dynamische
Prinzip der Zirkulationsbewegungen in der Atmosphere," Meterologische Zeitschrift 17 (1900):97-106,
145-156.
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Thus grad p has a component (8B f) grad 0 that points toward land by day, toward
sea by night. According to Bjerknes's theorem, should the atmosphere be still in
the daytime a cool breeze would begin to flow landward near the surface, turning
back from land to sea at higher altitudes. At night just the reverse would happen,
and a warm breeze would blow out to sea. The rate of increase in circulation at
each instant may be calculated from (3).

The same observations may be applied to the global winds. The poles act as
reservoirs of cold, while the sun's continual warmth heats the equatorial regions.
Bjerknes's theorem provides continual increase in the circulation from the poles
toward the equator at low altitudes. Thus the prevailing winds should be north winds
in the northern hemisphere, south winds in the southern hemisphere. The resulting
global circulation would be confined, subject to disturbances, to meridional planes.
Because such is not the case in reality, Bjerknes considered the effects of the earth's
spin, assumed steady, upon the circulation of a material curve in the atmosphere.31
In the general theorem we regard a circuit C in terms both of an inertial framing
and of a terrestrial framing, the two instantaneously coinciding; that is, Q = 1
in (2.3-8). Using w to denote the angular speed of the earthbound framing with
respect to the inertial framing, we obtain (in an obvious notation)

Ciner(C) - Cterr(C) = 2wAeq(C), (9.10-5)

in which Aeq(C) stands for the area bounded by the projection of C onto the earth's
equatorial plane. Now assuming that w = const., by differentiating (5) and com-
bining it with (4) we conclude that

Cterr(C) = A(ap,) - 2wAeq(C). (9.10-6)

This statement is Bjerknes's general circulation theorem expressed for use in a
framing in which the earth is at rest. The first quantity on the right-hand side shows
how baroclinic flow creates circulation; the second, how decrease or increase of
Aeq(C) contributes to augment or diminish the circulation, regardless of how that
circulation is produced.

We now return to the prevailing winds induced by the difference of temper-
atures at the poles and the equator and recall that the effect of baroclinic flow by
itself is to produce circulation around material curves lying in meridional planes.
The circulation in a quadrilateral bounded by meridians and parallels could then be
null and would remain null if the speeds in the two meridianal parts were equal at
each parallel. The second term in (6) shows that a non-null circulation would then
arise. Thus a mechanism for creating non-null components of winds in east-west
directions is provided.

Interpretations of Bjerknes's theorem are necessarily cautious. It does not
provide solutions of Euler's dynamical equation. Referring only to tendencies,
the interpretations exhibit circumstances in which a change of circulation must

31v. Bjerknes, "Zirkulation relativ zu der Erde," Meteorologische Zeitschrift 19 (1902): 97-108.
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result. Much as Helmholtz's theorems on the preservation of vorticity make the
convective aspects of rotational flows "approachable in concept," Bjerknes's the-
orem makes approachable in concept also the creation and destruction of vorticity
in dissipationless fluid bodies.
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Compressible Euler Fluids

10.1 Barotropic Fluids

Thus far, we have mainly confined our attention to incompressible fluids. While
the assumption of incompressibility is reasonable when we restrict our attention
to liquids, it is inappropriate when dealing with gases. In this section, we shall
discuss briefly some interesting features that are a consequence of compressibility.
The main results presented in this section pertain to the Munk-Prim substitution
principle and the uniqueness of the flow of a compressible fluid. A detailed treat-
ment of various aspects of the mechanics of compressible fluids can be found in
Prandtl and Tietjens,1 Von Mises and Friedrichs,2 Courant and Friedrichs3 and
Landau and Lifshitz.4

Recall that the constitutive equation for an Euler fluid is

T = -p(p)1. (4.1-8)

We shall find it convenient to write Euler's dynamical equation (9.1-1) in the
modified form

pii= ap(grad p)+pb. (10.1-1)

In this book we have considered only the mechanical response of fluids and
diligently avoided discussions from a thermodynamical standpoint. This becomes
particularly onerous when we deal with a compressible fluid, as the pressure de-
pends on both the density and the temperature of the fluid. However, in keeping

'L. Prandtl and O.G. Tietjens, Fundamentals of Hydro- and Aero-mechanics and Applied Hydro-
and Aero-mechanics (New York: McGraw-Hill, 1934).

2R. Von Mises and K.O. Friedrichs, Fluid Dynamics, (New York: Springer-Verlag 1971).
3R. Courant and K.O. Friedrichs, Supersonic Flow and Shock Waves (New York: Interscience, 1948).
4L.D. Landau and E.M. Lifshitz, Fluid Mechanics (Oxford and New York: Pergamon Press, 1987).



234 10. Compressible Euler Fluids

with the intent and spirit of the book, we shall refrain from discussing the response
of compressible fluids from a thermodynamical point of view.

We shall call a compressible fluid barotropic if the pressure is related to the
density through

p = kpl, (10.1-2)

where k is a constant and y > 1, y being a constant. Air at room temperature can
be approximately described by a relation of the form (2) with y = 1.4. An ideal
gas, within the context of a purely mechanical point of view corresponds to (2)
with y = 1.

For barotropic gases, (1) reduces to

- kyp''-2(grad p) = x - b. (10.1-3)

Also, from (7.1-2) and (2), we find that

R ky pY`1. (10.1-4)
/Y-1

We shall see later that the quantity
dp

l
1/2

C :_ ( - (10 1-5)
d

.

denotes the speed of sound in a compressible fluid, and it follows from (4) and (5)
that

c

2

R = (10.1-6)y-1
In defining (5) we have of course presumed that

d p
> 0, (10.1-7)

dp

the implications of which will be discussed in more detail later. By (6), (9.6-4)
reduces to

C2 1

y-1+2_I x12+zu+Q=k.

10.2 Irrotational Motion

(10.1-8)

Let us consider the irrotational motion of a compressible Euler fluid subject to a
conservative body-force field. In this case, we can introduce the velocity potential
P, through

z = - grad P, (2.2-36)
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and Euler's Dynamical equation yields

a p, 1 2d P R 0 4 29' I - - rT = .at - 2 I gra ( - ).

Taking the material time derivative of (8.4-1) and using the chain rule, we
obtain

1 d d

p d + dr (aatV) dt
(llgradpl2\lI - day =0. (10.2-1)

Next, we observe that by virtue of (10.1-5)

1 dp_c2 dp
p dt p dt

c2 rap

= P I at + grad p - grad Pv

_ - c2APV, (10.2-2)

Where the last equality is a consequence of the conservation of mass. It follows
from (1) and (2) that

2 auT
C OPT + at- (grad rT - grad

2
a [I grad P,, 12] - grad

1I2

I grad p,121 [grad P,.]

a2 Pv
[grad- + [grad Pv] (at P'11 = 0. (10.2-3)

In this equation, wT is given and c2 is a known function of p. Since R is a known
function of p by (10.1-7), c2 can be expressed as a function of aP/at, I grad PP12
and ru. Thus, (3) is a partial differential equation in P. In the case of an incom-
pressible fluid, c = oc and (3) reduces to

A P, = 0. (2.2-37)

In the case of steady flow, in the absence of the body-force, we have

c20P,, - grad[I grad P,.I2] [grad P-,] = 0. (10.2-4)

A special case of this equation was first given by Lagrange.
Next, we observe from (10.1-7) that, in the case of steady flows in the absence

of body-forces, the pressure must decrease for velocity to increase. This leads to
an upper bound for the velocity of a particle along a streamline, namely that which
corresponds to the value ofthe velocity when the particle is discharged into vacuum.
We also observe that the density is also a decreasing function of the velocity since

d(logp) _ -1X12 (10.2-5)
d(log I grad c2
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We define the Mach number M at any point in the fluid through

M :=
IXI-,
c

(10.2-6)

and thus when M < 1 the flow is subsonic, while if M > 1 the flow is supersonic.

10.3 Munk-Prim Substitution

We now inquire into the possibility of more than one flow having the same stream-
line, Mach number, and pressure distribution but different density distribution and
magnitude of velocity. This problem was solved by Prim.

Let us introduce a vector field s, parallel to the velocity field, of the form

s = Viz. (10.3-1)

We shall consider steady flows. Then, the conservation of mass (1.5-6) can be
written in terms of s as

div s + 2(s grad(log p)) = 0, (10.3-2)

while the modified Euler's dynamical equation (10.1-1) becomes

grad p + 2 [s grad(log p)]s + [grad s]s = 0. (10.3-3)

Eliminating the density from (2) and (3), we have

[grad s]s + (div s) + grad p = 0. (10.3-4)

Forming the scalar product of (4) with s, we obtain

(divs)Is12 + 2s . grad(Is12)+s gradp = 0. (10.3-5)

An elementary application of the chain rule and the use of (10.2-6) yields

-M2
s grad(log p) = I I2 s - grad p. (10.3-6)

s

It then follows from (5) and (6) that

z

s grad(log p) _ -M2(div s) -
M2

s grad(Is12). (10.3-7)

Combining (5) and (7), we obtain

M2
divs + (M2 - 2)Jsl2s grad(IsI2) = 0. (10.3-8)
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Now, (4) and (8) are completely equivalent to the conservation of mass and
the balance of linear momentum. Here we have managed to eliminate the density
p from the equations, and as long asp, s, and M are the same, we have a solution
regardless of the value of p. However, if the full thermodynamic problem is con-
sidered, we have to satisfy the energy equation in which the density p appears, and
in this case it can be shown that if p, s, and M is a solution, then p, s, mp and M
is also a solution, where m is a constant along the streamline. If in two flows the
densities are p and mp, then the velocities in the two flows would be i and
respectively. Since in may be any function that is a constant along a streamline, it
can be chosen in such a fashion that any other flow variable is constant throughout
the flow. Our analysis shows that there is a multiplicity of solutions possible for the
equations governing the flow of a compressible Euler fluid. In the next section we
show that given specific boundary and initial conditions and certain assumptions
regarding the uniformity of the flow variables and their gradients in time and the
boundedness of the flow variables, we can prove uniqueness of the solutions.

10.4 Uniqueness

We now proceed to discuss the simple but ingenious analysis of Graffi5 regarding
the uniqueness of flows of a compressible fluid. In recent years, there have been
numerous sophisticated studies devoted to proving existence and uniqueness of
solutions, under far weaker assumptions. Uniqueness, for small data for the steady
flow of a compressible Euler fluid, has been proved under very weak assumptions
by Beirao Da Veiga.6

Following Graffi we shall consider a slightly more general form of the Euler's
dynamical equation (10.1-1), namely

px = dp (grad p) + F(p). (10.4-1)

In fact, Graffi considers the case of a compressible Navier-Stokes fluid, while here
we shall consider only the Euler fluid. We recall that the boundary condition that
is appropriate to an Euler fluid at a stationary wall is

=0. (1.8-5)

5D. Graffi, "II teorema di unicita nella dinamica dei fluidi compressibili," Journal of Rational
Mechanics Analysis 2 (1953): 99-106.

6H. Beirao da Veiga, "An LP theory for n-dimensional stationary, compressible Navier-Stokes equa-
tions and the incompressible limit for compressible fluids: The equilibrium solution," Computational
Mathematics and Mathematical Physics 109 (1987): 229-248.
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We shall assume that the flow domain is bounded by a rigid wall so that we do
not have a free boundary. The results presented here hold even under the weaker
condition that

n is the unit outward normal to the boundary. We shall not consider the
weaker case here, though the results can be extended with no difficulty.

Let (v, p) and (v, p) denote two velocity-density pairs that satisfy the conser-
vation of mass and the balance of linear momentum. Let

u := v - v, (10.4-2)

It is straightforward to show that

p:=p-p (10.4-3)

ap + div(pv) + div[(p + p)u] = 0, (10.4-4)

8(u + v) 8u
d(v + u)

[++ grapp atat

+ p[grad u]](v + u) + p[grad flu

_ -p'(P + p)[grad p] - [p'(p + p) - pi(p)] grad p

+F(, +p)-F(p), (10.4-5)

where p' = dp . The boundary condition (1.8-5) becomes

n x [0,oo) (10.4-6)

On forming the scalar product of (4) with u and integrating over the flow
domain V, we obtain

z f

fV pa(va u) udv + Jv 2 aaU- dv + Jv p[grad(v + u)](v + u) udv

+
J

p[grad(u)](v + u) udv + J p[grad()]u udv (10.4-7)

f
v/' v

+ p'(p+p)gradpudv+ J
v

- f
v

Suppose I ar (v + u)I is bounded by Nl for all time and at all points in the flow
domain. Then

f pa(v-a u) udv < Nl fV pluldv < 2' f [pz + Iul2ldv, (10.4-8)
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the last inequality holding by virtue of ab < 1 (a2 +b2). Similarly, if N2 represents
the least upper bound for I [grad(v + u)](v + u) I in V x [0, oo), then

Iv
p[grad(v + u)](v + u) udv <

22 J
[p2 + Iu12]dv. (10.4-9)

v

Next, itris quite straightforward to show that

f p[grad u](v + u) - udv = - a

+
1

2
1u12 div[p(v + u)]dv. (10.4-10)

v

Applying the divergence theorem and appealing to (6), we obtain

flu2div+u)]dv.f[gradu](+u).udv =
2

(10.4-11)

If N3 denotes the least upper bound of div[p(v + u)] in V x [0, oc), we have

l p[grad u](v + u) . udv <
23 J

Iu12dv. (10.4-12)
v

Since v has bounded derivatives and we have assumed that the density is bounded,
there exists an N4 such that

J
p[grad v]u udv < N4

J
Iu12dv. (10.4-13)

v v

Next, a simple computation yields

p'(5 + p) grad p u = div[(p'(p + p))pu] - p grad[p'(p + p)] - u
- p'(p + p)p div u. (10.4-14)

Substituting for divu from (4) and simplifying, we obtain

p'(P + p) grad p u = div[(P'(P + p))pu] + 1 p/(P
+ p) a(P)2

2 (p + p) at

P grad p'(P + p) -
PV + P) grad(p + p) u
(p + P)

+ PV- + P) p2 div v + PV- + P) grad p v.
(P + P) (P + P)

(10.4-15)

A lengthy but straightforward calculation gives

P'(P + P) grad p u = 1 a P'(P + P) pz _ PZ + P)1
2at [ (p+p) ] 2 at

[P/Co
(p+p) J

+ div[(P'(P + p))pu] - p[grad p'(P + P) -
PV + P) grad(P + p)] - u
(p + P)
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+ P2 PV + P) div v + -I div
PV + P) p2v - PZ

grad P'(P + P)- - -
2 (p + p) 2 (A + P) 2 (A + P) V*

(10.4-16)

If N5 and N6 denote the least upper bounds for

grad P'(P + P) -
P'(p + P) grad(P + P)I
(P + P)

and

1 a P'(P + P) I+ P'(P + P)
div I grad PV + P)- v - - v

2 at (P + p) 2 (p + p) 2 (P + P)
respectively in V x [0, oo), then on integrating (15) over V, using the divergence
theorem and appealing to the boundary condition (6), we obtain

- f P'(P - P) grad p udv
v

1 [P'Co - P) P 2 ] d,
2 v

a

at (p - p)

+ 25
J

Iu12dv + \ 25 + N6)
p2dv.

v v

(10.4-17)

If N7 denotes the least upper bound for I p I for the density varations between
its extreme values, then appealing to the mean value theorem we have

I[F(p + p) - F(p)] ul < N7(P2 + 1u12), (10.4-18)

and thus

f[F(15 + p) - F(p)] udv Nf(p2 + Iu12)dv. (10.4-19)

Next, suppose I LP I is bounded above by a constant N8. Then

f aP Iu12dv < N8 f Iu12dv. (10.4-20)

Finally, if I p"(p) I and I grad p I are bounded above, then there exists a constant Nq
such that

1 [p'(P + p) - p '(p)] grad p udv < Nq f(p2 + I u 12)dv. (10.4-21)

It then follows from (7)-(21) that there are constants Ml and M2 such that
f

1 f a (SIu12)dv+ f P (p + P) P2 dv < Ml f Iu12dv+M2
J

p2dv.
2 v at 2 v at (p + p) v v

(10.4-22)
Suppose that initially at t = 0, the velocities v and v and the densities p and

are the same. Then

u(x, 0) = 0, dx E V, (10.4-23)
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and

p(x, 0) = 0, Vx E V. (10.4-24)

Integrating (22) between 0 and t, and using (23) and (24), we obtain
r t

p r

2
f PIu12dv+2 J P (P + P) p2dv < f M, f IU12dvdt+J M2

J p2dudt.
v (p + P) J v

0 0

(10.4-25)
If we suppose that p is bounded from below by a positive constant m, i.e.,

p > m > 0, (10.4-26)

and p' > 0, then there is a greatest lower bound n for °'(p+') in V x [0, oo) such
that

0+0

2
PIuI2dv + 2

J
p2dv < M

J
J (Iu12 + p2)dvdt, (10.4-27)

v v v
0

where M is the larger of the two numbers Ml and M2. It immediately follows from
(27) that there is a positive constant M such that

f f(lu2
J

(lull + p2)dv M + p2)dvdt. (10.4-28)
v

0

Since (28) is true for arbitrary values oft, it immediately follows that

j(1u12 + p2)dv = 0, (10.4-29)

and thus we conclude that u = 0 and p = 0, implying uniqueness of solutions.
The results we have obtained presumes that the gradients of the velocity field

and the density and its time derivative are bounded for all times, as well as several
other boundedness assumptions. Uniqueness of solutions has been obtained under
far weaker assumptions.

10.5 Linear Waves

We now proceed to linearize (10.1-1), which leads to a wave equation and allows
us to discuss the significance of the wave speed c defined in (10.1-5). Let pe and
pe denote the static equilibrium values of the pressure and density, respectively.
Let us consider a perturbance to the static equilibrium of the compressible fluid,
of the form

p = pe +Ep, p = pe +EP, i = EV, (10.5-1)
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where s <<1. Now equations (8.1-1) and (1.4-5) at O(e) lead to

a
a +pedivv=0,

and

Pe at
= - grad(p)

(10.5-2)

(10.5-3)

Notice that (2) and (3) are linear.
If p depends smoothly on p, then, expanding p about pe in a Taylor's series,

we have

P(P)
=P(Pe)+[dddpe)](P-Pe)+O(P-Pe)2

= Pe +
Cd (e)1

Ip + O(82),

and thus by (1), neglecting terms of order s2, we get

r dP(Pe)P = L dp p.

If the flow is irrotational and the region simply connected, then

z = - grad P,

Next, it follows from (10.2-3) and (2.2-36) that

P = -Pe a(PI).

Using (5) and (6), we get

p=
1 ( aPvI

rdP(Pdp

]
)l I Pe at

L

Next, substituting (2.2-36) and (7) into (2), we obtain

82Pv-rdP(Pe)IAPv=0.
ate LL dp

(10.5-4)

(10.5-5)

(2.2-36)

(10.5-6)

(10.5-7)

(10.5-8)

Thus the perturbance of the form (1) leads to a wave equation, whose speed is

given by [&] 2, thereby justifying our definition (5) for c. We observe that by

virtue of (6) and (8), p also obeys a wave equation, and consequently by (10.1-2),
p also obeys a wave equation.
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10.6 Steady Flow in an Axially Symmetric Tube

We shall consider the steady flow of a compressible Euler fluid in an axially sym-
metric straight tube with its axis along the x1 direction. Let the cross-sectional area
of the tube be denoted by A(x1). We shall suppose that

i = v(xl)i, p = p(xl), (10.6-1)

and once again we shall denote x, by x.
Conservation of mass (1.4-5) immediately yields

pvA = K1 = const., (10.6-2)

where K, is the mass flux. Equation (2) implies that

dv_dp_dA
(10.6-3)

v p A

Euler's dynamical equation (10.1-1) leads to

dv

p dt - grad(p + tu). (10.6-4)

For a barotropic fluid, a simple calculation using (10.1-5) and (4) shows that

vdv = -c2
d

. (10.6-5)
p

On comparing (3) and (5), we obtain

v2 dv dA
c2 - 1) v A

(10.6-6)

It follows from (6) that if A(x) does not have a local extremum, then v cannot
have a local extremum, and thus v increases or decreases monotonically. Suppose
A(x) is such that it attains a minimum at x = i. Then by (6) either

dv =0orv=catx=x. (10.6-7)
dx

If the flow is subsonic for x < z and the velocity v has not attained the value c
by x = x, then it remains subsonic throughout. However, if at x = x, v = c, then
there are two possibilities: the flow becomes subsonic again for x > x or the flow
becomes supersonic for x < x.

It can be shown that continuous solutions for v and p are not possible for all
values of the mass flux K1. Solutions that are discontinuous at x = z correspond
to shocks at x = x. Let us consider a portion of the tube a < x < b. Suppose
Pa = p(a) and Pb = p(b) denote the pressures at a and b. For abarotropic fluid,
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since the flow is steady and irrotational, it follows from (10.1-4) and (8.6-4), that

(r
v(x)=1/ L {

L

1 v2(a) + Ky (p''-(a) - pY-') + (x))
z

2 y-1 ] }
Y z

_/2- 2v2(a}+ - l
C K /

Y - \pKx)/
Y

+(a(a)- U(x))

(10.6-8)

It follows from (2) and (8) that the mass flux Ki is fixed by the pressure p and Pb.
Equation (9), with the mass flux K1 being given, can be viewed as an equation for
the cross-sectional area A in terms of p, i.e., A = A(p). It is easy to show that the
function A(p) has a minimum. However, if the cross-sectional area of the given
tube is such that its minimum is less than that achieved by A(p), then continuous
solutions are not possible and we have a shock.'

10.7 One Dimensional Flows

We shall consider flows of a compressible fluid in Cartesian coordinates of the
form

xj = v(xi,t), x2 = 0, x3 = 0, (10.7-1)

with the density of the form

p = p(x1, t). (10.7-2)

Henceforth, we shall denote xI by x.
In the following analysis we shall neglect the effect of body-forces, but they

can be included with little difficulty. On entering (2) into (1.4-5) we obtain

at + ax
(pv) = 0, (10.7-3)

while substitution of (1) into (10.1-1) yields

p + pv x ap .
(10.7-4)

at a

We shall investigate the possibility of traveling wave solutions to (3) and (4)
and hence seek solutions of the form

v = v(x + ct) and p = p(x + ct). (10.7-5)

7A detailed treatment of shocks can be found in Von Mises and Friedrichs, Fluid Dynamics, chap-
ter 5 (New York, Heidelberg, and Berlin: Springer-Verlag, 1971). R. Courant, and K.O. Friedrichs,
Supersonic Flow and Shock Waves, (New York: Intersicence, 1948).
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While the linearized equation (10.5-8) admits particular solutions that are functions
of x + ct, here we are seeking such solutions to the system of nonlinear equations
(3) and (4). We note that by virtue of (10.1-2), the pressure p is also a function of
x + ct. If the relations (5) are invertible then v, p, and p can be expressed in terms
of one another.

We shall find it convenient to rewrite (3) and (4) as

ap a(PV) ap _
at + ap ax 0

and

av 1 dp av _
+ Cv +

dv ax
0.

at p
P

Using the chain rule, (7) can be expressed as

Car+\v+pA
\

axjdp=0,

and if dp # 0, then we immediately obtain

ap + (v
+ l dp) ax = 0.P ///

On comparing (6) and (9), we obtain

dp p2'
Cdv/2

c2

Integration yields

(10.7-6)

(10.7-7)

(10.7-8)

(10.7-9)

(10.7-10)

V= f C dpdv =+ r dpdv. (10.7-11)fP vPC

Equation (11) gives a relationship between v, p, and p.
Invertibility of (5) allows us to write

x = z(v, t),

and it follows from (7), (10) and (12) that

az 1 dp

(10.7-12)

=v+ - =vfc(v), (10.7-13)
at Pdv

which can be integrated to yield

x = t[v + c(v)] + g(v), (10.7-14)

where g is some arbitrary function of v. Equation (14) implies that the point at
which the velocity is some fixed value moves with a constant velocity.
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10.8 Equilibrium of a Gaseous Mass under Self-gravitation

We shall investigate whether a compressible barotropic fluid under the action of a
self-gravitational body-force field can maintain itself in static equilibrium. Such a
problem has relevance to the equilibrium states of gaseous stellar structures.

As we seek static solutions in a self-gravitating field, Euler's dynamical equa-
tion (9.1-1) reduces to

- grad p - p grad zrr = 0, (10.8-1)

with

,Lay = 4irp g, (10.8-2)

where u is the potential for the self-gravitational body-force field and g is the
gravitational constant.

We shall find it convenient to study this problem within the context of a spheri-
cal coordinate system. We first notice that by virtue of (9.1-2), equations (1) and (2)
can be effectively replaced by an equation in ar. On assuming a radially symmetric
solution of the form

ru := rrr(r), (10.8-3)

by virtue of (1) and (2) we obtain

d2wr 2 dzu
(YL.) = 0.

drz + r dr + ` (10.8-4)

We shall seek a solution that assumes that the static state of the gaseous mass is
a sphere of radius R, the radius of which is not known a priori, and outside the
sphere there is no gas, i.e.,

p=0, r>R.
The potential zJ can be appropriately normalized so that

wr(R) = 1.

Also, as there is no gag outside the sphere, we shall assume that

dzu(R) = 0.
dr

(10.8-5)

(10.8-6)

(10.8-7)

Equation (4) has to be solved subject to the boundary conditions (6) and (7).
If the barotropic fluid is such that s < y < 2, then it can be shown that

zu(r)=C(R-r)Y-T I1+P(R-r,(R-r)((10.8-8)
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where C is a constant and P is a double series with a finite radius of convergence.
It immediately follows from (2) and (8) that

p = (const)(R - r)Y- i . (10.8-9)

Thus we see that ifs < y < 2, then the density is a continuously differentiable
function. However, when y = 1, we do not have a solution of the form (6) as we
can see that the expression blows up.

10.9 Equilibrium of a Gaseous Mass under a Constant
Body-Force Field

Let us consider a one-dimensional body of a compressible barotropic fluid occu-
pying the domain ]0, d[ along the x-axis, under the action of a constant specific
body-force field b = gi. Then it can be shown that8 the state of rest is characterized
by

Ay - 1) (Y' 1)
p(x) _ [C +

ky
x] (10.9-1)

where the constant C is determined by knowing the mass m of the gaseous body,
i. e.,

fo
p(x)dx = m. (10.9-2)

d

It follows from (1) that if 1 < y < 2, then it is possible that for sufficiently
large values of g the density could vanish or even become negative for some
x E ]0, d [. However, this depends on the value of the index y and the value of
the specific body-force. In an interesting treatment of this problem,9 the regions
of zero and negative densities have been associated with regions of cavitation, the
density being positive elsewhere.

8H. Beirao da Veiga, "An LP theory for n-dimensional stationary, compressible Navier-Stokes equa-
tions and the incompressible limit for compressible fluids: The equilibrium solution," Computational
Mathematics and Mathematical Physics, 109 (1987): 229-248.

9V. Lovicar, I. Straskraba, Remark on cavitation solutions of stationary compressible Navier-Stokes
equations in one dimension, Czech Math. J. 41 (1991): 653-92.
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11

Singular Surfaces and Waves

11.1 Introductory Remarks

Thus far we have considered "smooth" fields. When the hypothesis of smoothness
is relaxed, any sort of singularity is possible. When we confine our attention to
potential theory of classical hydrodynamics, the singularities of interest are point
sources, dipoles, vortex lines, double layers, and the like. In gas dynamics, we are
interested in another kind of singularity, the singular surface. We shall now study
the kinematical properties of singular surfaces.

We shall assume that these surfaces have a continuously turning tangent plane.
Let CS be a part of the boundary of a region, which we shall denote by R+, and
let x be a point on Cs. Let 1 denote a scalar, vector, or tensor field. The field P
is said to be smooth in R+ if it is continuously differentiable in R+, if for every
point x on C8 the fields ma(y) and ayW(y) approach the limits +(x) and
as y -+ x and if '+(x) is differentiable on any path P lying on Cs. Hadamard's
lemma asserts that for a smooth field 'Y, the theorem of the total differential holds
for the limit functions xP+ and That is, if the path P is described by the
parametric equation x = x(f), then

+(e) = [a=w+(x)][x'(t)], (11.1-1)

where the prime denotes the derivative with respect to the argument. The term on
the right-hand side of (1) takes on the appropriate form based on whether is a
scalar, vector or tensor. For instance, if is a scalar, the operation on the right-hand
side is a scalar product.

EXERCISE 11.1.1
Show that Hadamard's lemma holds for a scalar field 41, by letting C8 denote an
orientable surface that is a common boundary separating two regions R+ and R_
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in each of which W is smooth. Thus, at a point x on Ca, the limits W+ and '-, and
likewise a,e41+ and 8 'I'- exist but need not be equal. The jumps of and axW are
defined as the differences of these values, that is

[41](x) :_ [4k] :_ T+ - XP, [axe] := ax,p+ - ax41-. (11.1-2)

If both of these jumps are not zero, C3 is said to be singular with respect to %P. It is
important to recognize that ' is required to be smooth on each side of the surface.
The jumps possible across a singular surface are restricted in kind. Since [q1] is a
differentiable function of x on Cs, applying Hadamard's lemma to 41+ and W - and
subtracting yields

[41]' _ [axp] x'(e) (11.1-3)

This is Hadamard's condition of compatibility, which relates the jump in 1P to that
in axe. Equation (3) states that the jump of the tangential derivative is the tangential
derivative of the jump. The jump of the normal derivative is unrestricted.

An important consequence of (3) follows where 41 is continuous. Then [4J] _
0 and (3) delivers

[axW] x'(() = 0 (11.1-4)

for all paths on Ca. Since x'(f) may be any vector tangent to Ca, (3) requires that
there is a quantity a(x) such that

[ax4'] = an, a = [grad 41 n], (11.1-5)

where n is a vector normal to C3. This result is known as Maxwell's theorem,
and it asserts that the jump of the gradient of a continuous field is normal to the
singular surface. We shall adopt the sign convention that n denotes a unit normal
vector pointing from R_ towards R. The quantity a is called the amplitude of the
discontinuity and is uniquely determined.

If 41 is a vector field, Hadamard's condition of compatibility implies that

[axq'][x'(e)] = 0. (11.1-6)

As before, since x(f) can be any vector tangent to C3, equation (6) implies that
there is a vector a such that the tensor [axw] can be expressed as

[axw] = a ®n. (11.1-7)

If the vector a is parallel to n, the singularity is called longitudinal and if a is
perpendicular to n it is called transversal.

It follows from (7) that for a vector field

(11.1-8)

and thus the jump is longitudinal, while

[curl %P] = a A n, (11.1-9)
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and thus the jump is transversal. The identities (8) and (9) constitute Weingarten's
theorem.

Since any vector a can be expressed as a = n(a n) - n A (n A a), the jump
in div ' is the normal component of the jump in the gradient of ', and the jump
in curl %P is the tangential component of the jump in the gradient of XP. It follows
immediately that the jump of a continuous lamellar field is longitudinal and the
jump of a solenoidal field is transversal.

Finally, the jump in an mth gradient of a scalar 41 is given by

(m -1)times

®....®n. (11.1-10)

11.2 Motion of Singular Surfaces

Let us consider the motion with respect to the reference configuration K:

X = XK(X, t). (1.2-3)

The surface Ca in the reference configuration K is said to be a singular surface ofnth
order if it is singular with respect to some n`1' derivative of XK but all lower-order
derivatives are continuous in a region containing Cs in its interior. The surface CS
is allowed to move in the reference configuration. We shall consider only singular
surfaces that persist for a finite interval of time. Thus they may be regarded as
surfaces in a four-dimensional space whose points are pairs (x,t). Alternatively, the
surface can be expressed in the form

f(x,t)=0.

Then the speed of the displacement of the surface CS in a direction normal to itself'
is given by

so = -f
'

(2.6-16)
Igrad fI

We next appeal to Hadamard's lemma to arrive at the kinematical equations of
compatibility in the (x,t) space. Let us consider a tangent path that is always normal
to the current configuration of CS, and let a denote the derivative with respect to

'At this juncture, students will profit by reviewing section 2.6 of volume 1 of C. Truesdell, A First
Course in Rational Continuum Mechanics (New York: Academic Press, 1991).
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time along that path. The rate of change of a function cp with respect to an observer
moving along with the surface Cs is given by

+((gradgyp)-n)S.. (11.2-1)
st at

Then, on applying Hadamard's lemma, we obtain the kinematical compatibility
condition

Ls J
= [a'(P]+[(gradcp)-n]Sp. (11.2-2)

Therefore, if cp is continuous,

atp _
at = [(grad (p) n] Sn, (11.2-3)

and thus the jump in the spatial derivative determines the jump in the time derivative
as a function of the speed of displacement of the surface, and vice versa.

Singular surfaces that are associated with the motion are of particular impor-
tance in continuum mechanics. By virtue of the invertibility of xK, the surface
f (x, t) = 0 can be expressed as j (X, t) = 0. The first representation is called the
spatial surface, the second, the material diagram. We are interested in two kinds
of surfaces:

(i) material surfaces where f is independent of time,

(ii) propagating surfaces, called waves.

Let N denote the normal to the surface Ca in the reference configuration. Then the
speed of propagation SN is defined through

of _ft
atSN

1 grad f I I grad f l
(11.2-4)

The quantity SN does not have a simple geometric significance. In fact, the value
of SN depends on which instant of time is assigned the value zero. If the present
instant of time is assigned the value zero, then

fS := SNIt=O = I grad f I
(11.2-5)

is called the intrinsic speed of propagation, and this is the speed of the normal
advance of a wave front relative to particles instantaneously situated upon it.

EXERCISE 11.2.1
If a point x on a surface CS is moving with a velocity v, and if the velocity of a
particle instanteously at x is i, then show that

S+=(v-i+)n,
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S- = (v - i-) n. (11.2-6)

If S # 0, the singular surface Ca propagates through the material and hence is
called a wave.

11.3 Classification of Singular Surfaces

A singular surface of order 0 is one in which the motion XK is itself discontinuous.
Such singular surfaces can be used to describe discontinuities such as fractures,
tears, and welds in solids and the breakup or coalescence of droplets in fluids.
However, practically nothing is known about singular surfaces of order 0.2

A singular surface of order 1 is called a shock wave. Ifthe tangential component
of the velocity is continuous but [i n] 0, it is called a longitudinal shock wave.
If [i n] = 0 but [i] 0, the singular surface is called a vortex sheet. In general,
a singular surface of order 1 is a surface at which i is continuous but some first
derivative of x fails to be continuous.

Singular surfaces of order 0 and 1 are called strong singularities. Singular
surfaces of order 2 are called acceleration waves. At such a surface, x and i are
continuous but some second derivative of x fails to be continuous. Singular sur-
faces of order 2 or greater are called weak singularities. A singular surface of
infinite order, according to Hadamard, is one such that on each side of the sur-
face, the relevant quantities are different analytic functions, yet all their derivatives
are continuous across the surface. While they offer interesting possibilities, such
singularities have not been studied.

For a singular surface of order 1, when we set w = x in (11.1-7) and use
material variables, we get

[F] = s ®N, s = [F/N] (11.3-1)

and

[i] = -SNS, (11.3-2)

where s is the singularity vector of the discontinuity in i that is parallel to the jump
of the velocity. However, its magnitude varies with the choice of the initial state
and thus does not provide a measure of the strength of the singularity. Denoting

2A more detailed description of singularities of order n can be found in C. Truesdell and R. Toupin,
The Classical Field Theories, Handbuch der Physik 3 (Berlin, Gi ttingen, and Heidelberg: Springer-
Verlag, 1960).
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by s+ and s- the singularity vectors associated with S+ and S- in the regions R+
and R_, from (16) we have

[z] = -S+s+ = -s-s-, (11.3-3)

and thus

[Ss] = 0. (11.3-4)

It follows from (11.2-6) that

Sn[s] _ [(x - n)s], (11.3-5)

and thus in the case of a vortex sheet we obtain

S. _ (i n), (11.3-6)

in the case of a stationary shock,

[(z n)s] = 0. (11.3-7)

EXERCISE 11.3.1
If F+ and F- denote the deformation gradients in R+ and R_, show that

det F+ _ x+ n - S _ S+
11.3-8)

det F- x- n - S S-

Thus, the passage of a shock wave of order 1 causes an abrupt change in
volume, the ratio being the intrinsic speeds of propagation.

By the conservation of mass (1.4-5), equation (24) can be expressed as

[pS]=0, (11.3-9)

which is known as the Stokes-Christoffel condition. Thus in isochoric motions
shock waves of order 1 are impossible, and the passage of a vortex sheet of order
1 leaves the volume unchanged.

11.4 Singular Surfaces of Order 2: Acceleration Waves

Application of Maxwell's theorem to a singular surface of order 2 yields a formally
simple relation in the reference configuration.
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EXERCISE 11.4.1
Show that the jumps in VF, F and x are given by

[VF] = a ® (FTn) ® (FTn),
[F] _ - Sa ® (FTn),
[x]=S2a (11.4-1)

where n is the unit normal to the present configuration of CS. In the above expres-
sions, a is called the vector amplitude, and S is the intrinsic speed of propagation.
If a is parallel to the normal to the singular surface CS, we say that the accelera-
tion wave is longitudinal, and when a is perpendicular to the normal we call the
acceleration wave transversal.

Equation (11.3-1) is called Hugoniot's geometrical condition of compatibility
and reflects the assumption that the discontinuity is spread out over a surface at
the instant of question. The equations (1)23 are called Hadamard's kinematical
conditions of compatibility and reflect the assumption that the singular surface CS
persists instantaneously.

EXERCISE 11.4.2
Show that the jump in the velocity gradient G satisfies

[G]=-Sa®n (11.4-2)

and hence derive the jump in the vorticity w as

[w] = -S(a n n) (11.4-3)

and the jump in the div x as

[diva] = -S(a n). (11.4-4)

It follows from (3) and (4) that a longitudinal acceleration wave carries a jump
in the expansion but leaves the vorticity unchanged, while a transversal acceleration
wave carries a jump in the vorticity but does not allow for an expansion.

Singular surfaces of higher order are discussed in Truesdell and Toupin, The
Classical Field Theories, but not much is known about them.
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[ 1.] Truesdell, C. and Toupin, R.A. The Classical Field Theories, Handbuch der
Physik 3. Berlin, Gottingen, and Heidelberg: Springer-Verlag, 1960.



A
Some Elementary Results from Real
Analysis

In analogy with geometry in a finite-dimensional setting, we need the concepts of
distance and convergence for functions defined on an interval [a, b]. In general,
given an abstract set C with elements {x, y, ... .}, we say that a function p
C x C -+ R defines a metric on C if the following properties hold:

a. p(x, x) = O for all x E C,

b. p(x, y) = p(y, x) for all x, y c C, (A.1)

c. p(x, y) < p(x, z) + p(y, z) for all x, y, z E C.

If C is a vector space, then a function II II : C --). R defines a norm on C if the
following conditions are satisfied:

a. llx11=0 x=O,

b. lix - y11 = Ily - x11 for all x, y E C, (A.2)

c. Ilx - yll <_ IIx - zll+llz - yll forallx,y,z E C.

It is easy to see that a set with a norm also has a metric defined by p(x, y) = I I x- y I l
The converse is not true.

Let C be a set equipped with a metric p. We say that a sequence x, of elements
of C converges to an element x E C if p(xn, x) -+ 0. The concept of convergence
is now used to introduce the idea of continuity of a function T defined between
two sets Cl and C2 equipped with metrics pt and p2. We say that T is continuous if
for every sequence x, E C1 that converges to x E Cl the sequence T (xn) converges
to T(x) in C2. Finally, we need the concept of completeness of a metric space.
Let C be a metric space equipped with a metric p. A sequence xn of C is called
a Cauchy sequence if for every e > 0 there is an N, a positive integer, such that
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p(xn, xm) < e whenever m, n > N. We say that a pair (C, p) is complete if every
Cauchy sequence converges to an element in C.

In our discussion concerning the Nekrasov integral equation, we deal with the
vector space C[a, b] of continuous functions defined on the interval [a, b]. The
usual pointwise addition of two functions and the scalar multiplication of a real
number by a function renders C[a,b] a vector space. Next, we define the sup-norm
on C by

11P ll = sup I f (x)I. (A.3)
a<x<b

It is a simple exercise to show that all of the properties listed in (2) hold for the
sup-norm. More important, C [a, b] is a complete metric space under this norm.
Although this fact is not as easily verified as the previous assertion, its proof is a
standard theorem of real analysis.'

The proof of the existence of a wave of greatest height requires two other
concepts of convergences, known as weak and strong convergence. The vector
space in which these types of convergences become relevant for our discussion is
the space L2[a, b]. To define this vector space, let f E C[a, b]. Define a norm for
f by

b

IIfII2 = I f(x)2dx . (A.4)

a

It is not difficult to show that II 112 satisfies the definition (A.2) of a norm. The
space L2 [a, b] is defined to be the completion of C[a, b] in this norm (2), in other
words, a function f E L2[a, b] if and only if there is a sequence of continuous
functions f, such that

rb

lim J [f0(x) - f (x)]2dx = 0. (A.5)
n +oc

a

A sequence fn of functions in L2[a, b] is said to converge to f E L2[a, b] in
the strong topology if (5) holds. A sequence f, E L2[a, b] is said to converge to
f in the weak topology if

rb

lim
J

[fn(x) - f (x)]g(x)dx = 0, for every g E L2[a, b]. (A.6)
n-*oo

a

The relationship between weak and strong convergence is rather simple. Any se-
quencethat converges strongly will converge weakly. This fact follows from an

'The proof can be found in A.E. Taylor, Introduction to Functional Analysis (New York: John Wiley
and Sons, 1961).
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application of the Cauchy-Schwartz inequality: Given any two functions f, g E
L2[a, b], the Cauchy-Schwartz inequality states that

b

f f (x)g(x)dx < II f 112119112 . (A.7)

a

Then, if fn converges strongly to f we have

f[fn(X) - f (x)]g(x)dx < II fn - f 112119112 -' 0 (A.8)

a

by the Cauchy-Schwartz inequality. A sequence that converges weakly, however,
does not generally converge strongly. A simple example is the sequence f ,(x) =
sin(n7rx) which converges weakly to f = 0 in L2[0, 1] (this result is the well-
known Riemann-Lebesgue lemma) while 11 sin(n7rx)112 = z so that fn does not
converge strongly to the zero function.

Weak convergence has played a crucial role as a tool in establishing the well-
posedness of the mathematical models of continuum mechanics because of the
following fact: A sequence of functions fn that is bounded (i.e., 11 fn 112 < M, where
M is independent of n) has a subsequence that converges weakly. In other words,
the analog of the Bolzano-Weierstrass theorem of finite dimensional analysis holds
true if one uses the notion of weak convergence. In applications, as will be the case
of the problem at hand, it is possible to come up with a sequence of approximate
solutions to one's problem whose total energy, say, is bounded. The foregoing
result enables one to extract a subsequence that converges weakly to a function f
that will be a candidate for the solution of the problem.

The next phase of the analysis is to show that this candidate indeed satisfies
all the requirements of being a solution. For linear problems this approach has
had a fabulous success. For nonlinear problems, however, a major difficulty arises
since a function of a weakly convergent sequence does not necessarily converge
to the function of the limit. For instance, in the example of the sine functions, fn
converges weakly to zero while f2 converges weakly to 1 (because sin2(nrrx) _
i - 2 cos(2nirx) and the cosine terms converge weakly to zero as before) not zero.
One then has to work considerably harder to establish the strong convergence of
the sequence of approximations and thus pass to the limit. How this is done for the
equation that arises from Stokes conjecture is outlined in Chapter 9.

Another analytical tool used in Chapter 9 has to do with the relationship
between the Fourier series of a function 0 E L2[-Ir, 7[] and its conjugate. Let 0
have the Fourier series

ao + >(ak cos ks + bk sin ks), (A.9)
k=1
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with the usual formulae for the coefficients ak and bk as the inner products of 0
with the appropriate base functions. The trigonometric series

00

E(ak sinks - bk cos ks) (A.10)
k=1

is called the conjugate Fourier series of 0 and is denoted by CO. The following
lemma shows that the map between a Fourier series and its conjugate Fourier series
is well defined and continuous when one confines the domain of C to L2.

LEMMA A.12. Let 0 E L2. Then CO E L2 and there is a constant A such that
n Jr

f ICO(s)I2ds < AJ I0(s)I2ds. (A.11)

2The proof of this result can be found in chapter 7 of A. Zygmund, Trigonometric Series, vol 1.
(Cambridge University Press, 1959).
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Chapter 5

5.1.1: In a viscometric flow (4.2-15) reduces to A2 = 2K2NTN.

To complete the exercise, use (4.2-30).

5.1.2: Obviously (5.1-24) is an instance of (5.1-23). Calculate f(K, QNQT) using
(5.1-5) and verify that (4.22-10) is satisfied.

5.3.1: With respect to a viscometric basis, N has the representation (4.21-39) and
Al is given by (4.2-15). Substitute the expression into (4.4-25) and use (5.1-
4) to obtain (5.3-1) and (5.3-2).

5.4.1: With respect to the natural basis, the shearing flow is given by u = v(xl)e2i
and N = e2 ®el. Thus (5.1-5) leads to

S = f(el ®e2+e2 ®el)+&i(ei 0 el)+&2(e2(9 e2),
t(xi) := t(u'(xi)), &1 a1(U'(xt)), &2 Q2(v'(xt))-

Hence

divS= re2+61el, (A.12)

so the vorticity equation (5.8-10) is satisfied if and only if t" = 0. Thus
(5.4-5) holds. Using (*) and (5.4-1), we obtain

-ae2 + &'et = p grad V.

Integration yields

pcp = -axe + &i(xi) + h(t),
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which is the result of eliminating k(x1) from (5.4-4) and (5.4-6).

5.4.2: Formulate div T in physical coordinates. It follows that 8e¢ and a,0 are
constants, and this in turn leads to (5.4-24).

5.4.3: (5.4-32) follows directly from (5.4-22), (5.4-24) and (5.4-30).

5.5.1: Following from integration (5.5-1) set in the form (1.7-4) subject to the
initial condition (1.7-5).

5.5.2: (5.5-7) follows trivially from the assumption (5.5-6) and (5.5-2).

5.5.3: Use (1.7-4) to rewrite (5.5-8) as

1 = - F(x3) sin Sgt,

2 = Q 1 + F(x3) cos Sgt.

To solve this system it is best to use complex variables. Multiply the second
equation by i = and add the outcome of the first equation to obtain

( 1 + F(x3)[sin Sgt - i cos Sgt]

The above is subject to the condition (i4l + i0(t) = x1 + ix2. Then

t;1 = x1 cos Sts - X2 sin Sts - F(x3) sin Or,

2 = x1 sin Sts - x2 cos Sts + F(x3) cos Or,

3 = X3,

where s := r - t. Thus

[FF(r)] =
cosSts -sinQs KssinS2r
sin Sts cos Sts Ks cos Or

0 0 1

where K := F'(x3). For a rotation of angle Or about the x3-axis, we find
that

Fa(r) = Q(1+ KTNO),

No being given by (4.2-36).

5.6.1: Substituting (4.2-35) into (1.3-3) we obtain (5.6-4).

5.6.2: Substitute for h1 and h2 in (5.6-3)1 and (5.6-3)2 from (5.6-6) and integrate
the equations (5.4-1) by use of (5.6-3) and (5.6-4).
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5.6.3: The condition that the fluid adheres to the plates implies that

z1 -
2

S2a = - S2x2, X2 = Qx1, X3 = 0 on the plane x3 = d,

zl +
1

2 S2a = - S2x2, -i2 = Qx1, z3 = 0 on the plane x3 = 0,

now using (4.2-35).

5.6.4: If (5.6-11) holds, then f' = d , f " = g' = g" = 0, so both sides of (5.6-9)
with w-2 neglected are constant.

5.7.1: Beginning with (1.7-4) and with the initial conditions (1.7-5) results in the
expression for the transplacement.

5.7.2: Bearing in mind that g, a1, U2i and Vv are functions of p alone, use the
identity

div(u ® v) = [grad u]v + (div v)u

to show that

div(g(k (9 Vv + Vv 0 k)] = div(gV v)k, (A.13)

div[v2(k (9 k)] = 0, (A.14)

div [(Vv (9 Vv)] _ [div (K Vv)] Vv +
Kz

[VVv]Vv. (A.15)

Then, since V V v is symmetric,

1z
[VVV]VV = [VVV]TVV = V (2VV I = KVK.

These above relations obtain (5.7-5).

5.7.3: Use (5.7-4) to calculate T(Zz), and then use (5.7-6) and (5.7-9) to obtain
(5.7-16). (5.7-17) follows trivially from (5.7-16).

Chapter 6

6.1.1: Trivially follows from specializing (4.1-3) and recognizing the definition
for A given in (2.2-12). The dependence on CI is to be replaced by the
dependence on the derivatives 8' C,(A)IA-,, for m = 1, 2, ... , n.

6.1.2: In a rigid motion, A = 0 for every n, so (6.1-5) requires that f(0,0, . . . ,0)
commute with every orthogonal tensor. The fact that it is spherical follows
from Exercise 4.1 in Chapter 4.
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6.1.3: It suffices to consider the case of simple shearing (2.2-13). Then

0 K 0

[A1]= K 0 0

0 0 0,

2K2 0 0

[A2] = 0 0 0

0 0 0

and the array of scalars listed as (6.1-7) becomes 0, 2K2, 0, 2K2, 4K2, 4K4,
8K6, 0, 2K4, 0, 4K6. These calculations are straightforward.

6.1.4: Bearing in mind (4.2-15), because KN = (-K)(-N) we may use either K or
-K as r in (6.1-1), whichever is positive. Use (4.2-15) also in (6.1-19) to get
(6.1-21). Calculate S from (6.1-18) and compare the outcome with (5.1-24)
to obtain (6.1-22).

6.1.5: Use of (2.11-32) and (2.11-39) yield (6.1-24). Then use (2.11-33), (2.11-
8), (6.1-24), (2.11-37), (2.11-39), and (2.11-33) to get (6.1-24). (6.1-17)
evaluates the traction; then simplify outcomes using (6.1-24).

6.4.1: Use (6.4-5) and the fact that u1 = 0 to calculate A2. Then (6.3-7), (6.4-5),
(6.4-3), and u1 = 0 give the indicated expression for A2. Evaluate Al using
(6.4-3) to O(a3), and find t and -7r by comparing (6.3-10) and (6.1-18). Use
(6.3-12) to arrive at (6.4-15), and conclude (6.4-16) and (6.4-17) in just the
same manner as step 1.

6.4.2: Substitute (6.4-18)-(6.4-20) into (6.1-18), using (6.1-19), and comparing
with (6.3-10) yields (6.4-21) and (6.4-22).

6.4.3: Substitution of (6.4-21) and (6.4-22) into (6.3-12) yields the result.

6.4.4: The desired results follow from (6.4-23), (6.3-4), and (6.3-7).

6.4.5: To derive (6.4-32) and (6.4-33), use essentially the same procedure as in the
previous exercises.

6.6.1: Substitution trivially from (6.6-3) and (6.6-5).

6.6.2: Direct substitution of (6.6-10) into (6.6-2) verifies that the flow is universal.

6.6.3: Use (6.6-5), (6.6-20), (6.6-17), and (6.6-18) in (6.6-16) to verify that (6.6-
19) is satisfied.

6.6.4: A simple rearrangement of the terms on the left-hand side of (6.6-21) shows
that it can be expressed for plane flows as the gradient of trAi.

6.6.5: The identities (6.6-33) follow from an elementary rearrangement of the
terms on the left-hand side.
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Chapter 7

7.2.1: Use of (5.5-1) and (6.1-17) in Cauchy's First Law (5.4-1) defines

p - (2a1 a2)
(ay)2

and c(t) := LP to verify (7.2-1).

7.2.2: For v given by (7.2-2) compute aX and its maximum for a fixed value of V
and wt.

7.2.3: Find a2 from (7.2-5), and use a1 > 0 while taking the limit -+ 0 to
establish (7.2-8). When a1 < 0, the maximum for a2 is at = - , and its

value is given by (7.2-9).Next use (7.2-6) to compute wc,;t corresponding to
f and thereby establish (7.2-10).

7.2.4: Use (6.1-17) and (3.6-2) to get (7.2-11). Substitute (7.2-2) into (7.2-11) to
verify (7.2-12).

7.2.5: Substitute (7.2-13) into (7.2-1); verify that the identity is met if and only if
(7.2-15) holds. Verify that (7.2-13) satisfies (7.2-14) by inspection.

7.2.6: Set v = u1(x) + u2(x, t) and substitute this expression into (7.2-1) after
setting c = 0. Use separation of variables to express u2(x, t) = f (t)g(x).
Finally, use the boundary condition (7.2-33) for u2(x, t). Equation (7.2-34)
follows from a straightforward calculation.

7.3.1: Verify that (7.3-7) is a solution to (7.3-6) by direct substitution.

7.3.2: Substitute (7.3-8) into (7.3-6) and see that the equation holds if (7.3-9) is
met.

7.3.3: Substitute (7.3-10) into (7.3-6) and observe that the equation is met if (7.3-
11) holds.

7.3.4: Substitute (7.3-12) into (7.3-6) and observe that (7.3-13) provides a neces-
sary condition for (7.3-6) to hold.

7.4.1: (7.4-1) follows from substituting (6.3-2) into (5.4-1) and using (7.3-2) and
(7.3-3).

7.4.2: Substitute (7.4-14) into (7.4-6) and the outcome into (7.4-11). Set k = -1
in the resulting expression to (7.4-15) and (7.4-16).

7.4.3: Substitute (7.4-19) into (6.1-17), to obtain Cauchy's first law (5.4-1), and
conclude that (7.4-24) has to hold.

7.4.4: Results (1)--(4) follow trivially from (7.4-26) and (7.4-27)
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7.4.5: The result follows from (7.4-27), (7.4-20), and (7.4-29).

7.5.1: A complex function F(x) := f (z) + ig(z), where i = /--I. Multiply
(7.5-2), by i and add (7.5-2)2 to the outcome. Solve the resulting complex
differential equation subject to F(d) = 0, F(-d) = 0 and F(0) = 1. Then
(7.5-5) are the real and imaginary parts of F(z), with m, n and S as defined
in the exercise.

7.5.2: Use the method outlined for the previous problem, subject to appropriate
boundary conditions.

7.5.3: (7.5-7), (4.21-53), and (6.1-17), so (3.4-1) finds that the components of the
traction vector are given by (7.5-19).

7.6.1: Extremize trAi subject to the constraint trA1 = 0. A simple procedure
would be to use the method of Lagrange multipliers.

7.6.2: The first of the equalities in (7.6-6) follows from the fact the v is solenoidal
and the application of the divergence theorem to the term tr[(w)(V v)T ],
which can be expressed as the div[[Vv]v], and then using the fact that v = 0
on the boundary. The second equality follows in a like manner.

7.6.3: The Poincare inequality (7.6-7) can be found in most standard books on par-
tial differential equations. The difficulty rests in obtaining optimal Poincare
constants Cn .

7.6.4: (7.6-17) follows from (7.6-16), Holder's inequality, and the fact that the
domain V is compact.

Chapter 8

8.1.1: (4.7-14) computes the stress power defined through (3.6-2). It immediately
follows that µ > 0 if and only if the stress power is nonnegative.

8.3.1: First show that the identity (2.11-9) can be expressed as

x =z'+w x z+grad( I i.i).

For an irrotational flow, in a simply connected domain i = - grad Pa. Thus
2

x = grad
C-

PI + 2 1 = - grad Pa .

(8.3-3) immediately follows from (8.3-1).
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8.3.2: If W' is zero, then x = grad Q if the region is simply connected. (2.11-9)

immediately implies that ii = grad (Q + ' + 2 W z.

8.3.3: It follows from (8.3-4) that

x2
x =grad Q+_ 2) + 2 Wi = -grad o+ 2 v div W;

the second equality holds in because of (8.2-1). Since the curve C
parametrized as x(s) is normal to both Wx and div W, we obtain
grad (Q + z + ds) = 0, which implies that d (Q + i + ) = 0
and thence (8.3-5).

8.6.1: Substitute (8.6-2) into (8.1-1) to obtain

ap

ax,

ax2

ap ,2

= vff' - µf"

= pxi[vf + ff -J I.

It immediately follows that

P = -2p[f2 + A2xi] + const.,

where A is as defined in (8.1-3).

8.6.2: It follows from Exercise 6.1 and the definition (8.6-5) that

ap

ax,
= pxiA2[F"' + FF" - Fi2].

Next, as ri oo, as F' - 1 and F"' + FF" -a 0, we find that ap -->

-pxlA2, the pressure gradient that corresponds to the irrotational flow.

8.7.1: Substitute (8.7-5) into rw = (r2w)' and integrate.

8.9.1: It is straightforward to verify that (8.9-1) represents an isochoric flow.

8.9.2: Substituting (8.9-3) into (8.9-2) delivers an ordinary differential equation
in G that can be easily written in the form of a hypergeometirc differential
equation. (See E.L. Ince, Ordinary Differential Equations, Dover, New York,
1956.)

8.9.3: Plot the streamlines. Also use (8.9-4) to conclude that the streamlines ex-
perience a minimum when a = 1 /a.

8.10.1: The result follows from the assumed form for the flow field (8.10-1), the
fact that the axes of rotation are located at (a, 0, d) and (-a, 0, -d), and the
condition of adherence.
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8.12.1: Substitute (8.12-2) into (8.12-1) and the outcome into (8.1-1).

8.12.2: Equation (8.12-7) follows trivially from (8.12-3).

8.12.3: Equation (8.12-10)1 follows from substituting (8.12-2) into (8.12-1)1, mak-
ing use of the definition of i/c := rF(x), R := r sin 0 and x := cos 0.
Similarly (8.12-10)2 follows from (8.12-1)2 and the definitions of R, and
X.

8.12.4: That (8.12-11) and (8.12-12) are equivalent can be verified by direct cal-
culation. The rest of the exercise follows straightforwardly.

8.12.5: Equation (8.12-18)2 can be integrated to yield

x

S2' = A exp (_2f f dx

0

where A is a constant. It immediately follows that 0 increases monotonically
from 0 to C, as S2' has the same sign.

8.13.1: Use integration by parts, the divergence theorem, the boundary condition
(8.13-2), and the fact that div 6z = 0 to show that

f J
x GoidV.

V V

Next, show that

fox. GTSXdV =0
V

by appealing to integration by parts, the divergence theorem, and the fact
that div dx = 0. The result immediately follows from these identities.

8.13.3: Equation (8.13-33) follows trivially from integrating (8.13-25) twice.

8.16.1: The uniqueness follows from the fact that Navier's dynamical equations
reduce to a linear equation subject to the boundary conditions (8.16-3).

8.16.2: (8.16-11) is a solution to the appropriate dynamical equations and the
boundary conditions (8.16-10). Once again the uniqueness of the solution
follows for the special subclass of flows of the form sought, as the equations
are linear.

8.17.1: Use the statement by direct substitution.
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8.17.2: Equation (8.17-2) is a linear partial differential equation, and its solution
subject to (8.17-7) and (8.17-8) can be determined in a variety of ways and
can be found in an introductory text in partial differential equations. Also
see the Handbuch article by Berker for a discussion of solutions relevant to
problems in fluid mechanics.

8.17.3: The foregoing comments apply here as well.

8.18.1: It follows from a straightforward application of separation of variables to
(8.18-6) subject to the boundary condition (8.18-7) and the initial condition
(8.18-8).

8.19.1: Substitute, (8.19-1) into (8.1-1) to find that f and g are governed by (8.6-3)
and (8.19-2).

8.20.1: Use direct substitution.

8.21.1: Substitute (8.21-1) into (8.1-1), and take the curl of the outcome to obtain
(8.21-2).

8.21.2: (8.21-5) meets (8.1-1) subject to the boundary conditions (8.21-4)1,2.

Chapter 9

9.6.1: First show that Wa = 0 is both necessary and sufficient for Helmholtz's
second vorticity theorem to hold. Next, Cauchy's vorticity formula implies
that Wa = 0, and thus Helmholtz's second vorticity theorem follows from
Cauchy's vorticity formula.

Next show that the D'Alembert-Euler condition (2.11-43) is a necessary
and sufficient condition for Helmholtz's third vorticity theorem. However,
the D'Alembert-Euler formula is a consequence of the Cauchy vorticity
formula, and thus the third vorticity theorem of Helmholtz follows from the
Cauchy vorticity formula.

Finally, Helmholtz's first theorem follows from Cauchy's vorticity formula
in virtue of the latter implying the D'Alembert-Euler formula (2.11-43) (also
see the solution to Exercise 13-7 of Chapter 2).

9.6.2: (9.6-1) and (9.6-2) follow from (2.11-45) and (2.11-47) and the chain rule,
respectively. Show that (2.11-45) follows from (2.11-43) and thus (9.6-1)
follows from (2.11-43).
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9.7.1: It follows from (9.7-1)1,2 that

a(x, z)
= det

1 + e-kO cos K(a + ct) -e-kfl sin K(a + Ct)
-e-0 sin K(a + Ct) 1 - e-0 cos K(a + Ct)a(a, 0)

= 1 - e-2KP .

9.7.2: (9.7-7) follows from (9.7-6) and the fact that K > 0, 0 > 0, which imply
that e-' < 1.

9.7.3: A straightforward calculation using (9.7-1)1,2 leads to

X = KC(Z - 0), Z = KC(X - a),

and the vorticity vector w := curl x is given by

w = J{2KC -
a# - as
az ex

}.

It then follows from (9.7-1)1,2 and (9.7-3) that

w-IwI 2Kce-2Kfl
(1 - e-2KP)'

Chapter 11

11: Let xo be any point on the surface S. We parametrize a sufficiently small
neighborhood of x0 through {A, t, nr}, where A is an ordered pair, f is the
parameter along the path P, and zu = zu(x) is a smooth function such that
rr(x) = 0 represents the equation for S near x0. In particular, th (xo) = 0. In
terms of these parameters, we can express any y through y = 9(A, f, or),
with xo = 9(0, 0, 0) and x(t) = 9(0, f, 0). Thus, x'(f) _ (0, f, 0). Now
given any 41 = V(y), Hadamard's lemma follows from the chain rule for
ae by taking the limits A 0 and w --). 0.

11.3.1: For a substantial surface given by f (x, t) = 0, we have by (1.8-2)

f'+(grad

where v is the velocity of the surface. Next, by the definition of S+, we have

-f l- f' - ( rad "VI
S+

y.F Rlxf J I grad f I )f R+mf S I grad f



Solutions to Exercises 271

Since f, f', and grad f are continuous, we have

S+
- f'(x, t) - (grad f) i+

_ v - i+ grad f = v - i+ n.
Igrad f I ( ) I grad f I

( )

The other two identities follow in a similar fashion.

11.3.1: It follows from (11.3-1) that

det F+ = det(F- + s (9 N) = (det F-) det(1 + s 0 (((F-)-' )T )N).

Use the Cayley-Hamilton theorem and the preceeding expression to find that

detF+ `1+s
det

Use (2.6-2 1) to express this as

det F+ I+ I grad f -I
=

det V I Grad f l

Use (11.2-6) and (11.3-2) in conjunction with the foregoing expression to
obtain the result.

11.4.1: (a) Use (11.1-10) to obtain

[Grad F]=a®N®N.

Use (2.6-21) in this expression to find

[Grad F]=i®FTn®FTn,

where

_ Igrad f12a -
a I Grad f 12

(b) Use (11.2.3), the result in (a) and (2.6-21) to get

[F] = -[Grad f ]NSN _ -SN[a ® FTn]
I Grad f I

I grad f

Next, use (2.6-25) to show that

[F] = -Sa ® FTn.

(c) Use (11.2-3) to find

[x] = [Grad i]NSN = [F]NSN.

Then use the result in (b), (2.6-2 1), and (2.6-25) to conclude that [i] _
S2a.

11.4.2: Follows in a manner identical to that used for exercise 4.1.
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Acceleration, 1, 5
potential, 19
wave, 254

accelerationless, 201
accelerationless flow, 201
angular velocity, 23

Baroclinic flow, 229
barotropic fluid, 233
Berker's formula, 90
Bernoullian theorem, 146, 208
body force

conservative, 27
external, 27

boundary, 10
kinematic, 11

boundary condition, 10
adherence, 11

boundary layer, 132, 144

Cauchy's first law of continuum
mechanics, 29

Cauchy's fundamental lemma, 28
Cauchy's laws of continuum mechanics,

28
Cauchy's second law of continuum

mechanics, 30
Cauchy's vorticity formula, 209
change of frame, 22
circulation, 18
compatibility, 198

complex-lamellar flow, 106
compressible Euler fluid, 233
condition

D'Alembert-Euler, 19
condition of compatibility, 145, 146
condition of integrability, 199
configuration, 1

actual, 3
reference, 2, 3

constitutive equation, 31, 32
Noll's reduced form, 37
reduced form, 36

constitutive functional, 32
current configuration as reference, 8

Decomposition
Euler-Stokes, 16

deformation function
relative, 9

deformation gradient
relative, 9

description
relative, 8

description of motion
material, 3
referential, 4
spatial, 4

displacement
speed of, 10

dynamical equation
Euler's, 144
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Navier's, 144
dynamical process, 30

equivalent, 30
dynamical similarity, 148

Ekman number, 148
elastic fluid, 88
elastic material, 34
equation

constitutive, 31, 32
of balance, 28

equation for the density
d'Alembert's spatial, 6
Euler's referential, 5
Euler's spatial, 6

equation of energy, 136
equation of motion

of Navier-Stokes fluid, 144
equilibrium of a gaseous mass

under a constant body-force field, 247
under self-gravitation, 246

equipotential, 20
Euler's dynamical equation, 197
Euler's general solution, 199
Euler's law, 26
Euler-Cauchy stress principle, 27
Euler-D'Alembert paradox, 204
Eulerian compressible fluid, 143
Eulerian incompressible fluid, 143
event, 22

Flow
accelerationless, 201
axisymmetric, 106, 133
baroclinic, 229
channel, 65
complex-lamellar, 106
Navier-Stokes, 106
one dimensional, 244
oscillatory, 187
plane, 106, 124
potential, 20
rotational, 106, 208
screw, 210
secondary, 93-95, 97, 98
shearing, 63
steady, 60, 72, 75, 106, 127, 133, 243
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torsional, 72
universal, 104, 106, 108, 109
unsteady, 73, 116, 124, 186, 191
viscometric, 50, 72

flow about a rotating circular cylinder
with suction, 152

flow against a plain, 150
flow along a plain, 150
flow between intersecting planes, 154
flow between rotating cylinders, 70
flow driven by Coriolis force, 163
flow due to the sudden application of a

pressure gradient, 190
flow in a circular pipe, 71
flow in around jet, 156
fluid

barotropic, 233
compressible, 143, 197, 233
elastic, 44, 62, 88, 143
Euler, 233
Eulerian, 62, 143
ideal, 143
Incompressible, 143
incompressible, 44, 62, 88, 143
inviscid, 62, 143
linearly viscous, 44, 143
Navier-Stokes, 44, 88, 143
nonlinear, 83
of complexity n, 87
of complexity 2, 85, 89
of grade n, 87
of grade 0, 88
of grade 1, 87, 88
of grade 2, 88, 89
Rivlin-Ericksen, 83
shear thickening, 62
shear thinning, 62
simple, 43
unconstrained, 44, 143

fluid of grade 2, 115
force, 25

body, 25
contact, 25
resultant, 25
specific body, 25

frame
inertial, 27
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frame-indifferent, 22
Froude number, 149
function

harmonic, 21

General solution of Euler's dynamical
equation, 198

Gerstner wave, 211

Hadamard's condition of compatibility,
250

Hadamard's lemma, 249
Hagen-Poiseuille formula, 71
helical flows in general, 67
hydrostatics, 201

Ideal compressible fluid, 143
ideal incompressible fluid, 143
ideal material, 31
incompressible elastic fluid, 143, 197
incompressible fluid of grade 2, 88
incompressible linearly viscous fluid,

143

Incompressible Navier-Stokes fluid, 143
inextensibility, 40
instability, 184
internal constraint, 37
inviscid compressible fluid, 143
inviscid incompressible fluid, 143
irrotational flow, 202
irrotational motion, 234
irrotational simple vortex, 205
irrotational surface wave, 214

Kinematic viscosity, 144

Lamb surface, 211
law of dynamical similarity, 149
law of scaling, 149
law of the fourth power, 71
linearly polarized wave, 192
linearly viscous material, 34

Mass density, 2
material

complexity, 83
differential type, 83
elastic, 34
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ideal, 31
incompressible, 39
inextensible, 40
linearly viscous, 34
of differential type, 52
rigid, 40
Rivlin-Ericksen, 52
simple, 33, 36

metric component
contravariant, 14
covariant, 14

moment of force
resultant, 25

moment of momentum, 26
momentum, 25, 26
motion, 1, 3

homogeneous, 33
irrotational, 16, 234
isochoric, 39
monotonous, 46
retarded, 86
with constant principal relative stretch

histories, 46
Munk-Prim substitution, 236

Natural shear viscosity, 61
Navier-Stokes fluid, 88
normal-stress difference function, 61
normal-stress effect, 61
number

Ekman, 148
Froude, 149
Reech, 149
Reynolds, 148
vorticity, 22

One dimensional flow, 244
operator

essentially dissipative, 184
oscillatory flow, 187

Periodic surface wave, 212
plane of flow, 124
plane rotational flow, 106
positive retardation factor, 86
potential

flexion, 105
potential flow, 202
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principal invariants, 14
principle of determinism, 32
principle of local action, 32
principle of material frame indifference,

32

Reactions on submerged obstacle,
cavity, 203

reduced form, 84
Reech number, 149
Reech's law of similitude, 149
reference configuration

change of, 8
retarded motion, 86
Reynolds number, 148
rigidity, 40
ring vortex, 223
Rivlin-Ericksen fluid, 84
Rivlin-Ericksen solid, 84
rotation, 13

relative, 14
rotational axisymmetric flow, 106
rotational flow, 208, 211

Screw flow, 210
secondary flow, 93
secondary flow down a straight pipe, 94

approximate solution for the fluid of
grade 3, 97

approximate solution for the fluid of
grade 4, 98

Navier-Stokes solution, 95
solution for the fluid of grade 2, 97

shear-stress function, 61, 64
shear-viscosity, 61
shear-viscosity constant, 61
shearing flow, 63
similitude, 149
simple material, 33, 36

responce functional of, 33
singular surface, 249

classification of, 253
motion of, 251
of order 2, 254

space-time, 22
spin, 15, 23
stability, 172
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stability and instability of flows in a
closed vessel, 136

steady axisymmetric flow, 133
steady flow between rotating parallel

plates, 75, 133
steady flow in an axially symmetric

tube, 243
steady plane flow, 127
steady screw flow, 106
steady shearing, 77, 108
steady simple shearing, 60
steady viscometric flow, 72
Stokes conjecture for the height of

irrotational waves, 215
strain

principal axes of, 13
stress

determinate, 39
stress power, 39, 59
stress tensor, 28
stress working, 39
stretch, 13

principal, 13
stretching, 15
surface

Lamb, 211
stationary, 10

swirling flow between rotating plates,
158

axially symmetric solutions, 158
solutions that are not axially

symmetric, 159
swirling vortex

Serrin's, 164

Tensor
isotropic, 84
left Cauchy-Green, 14
left stretch, 13
relative Cauchy-Green, 14
relative stretch, 14
right Cauchy-Green, 14
right strech, 13
Rivlin-Ericksen, 17
rotation, 13

theorem
Appell's, 209
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Bemoullian, 208
Bjerknes, 229
Bjerknes circulation, 230
Cauchy's velocity potential, 209
fundamental(Noll), 46
Helmholtz's first, 209
Helmholtz's second, 209
Helmholtz's third, 209
Kelvin and Helmholtz, 21
Kelvin's, 209
polar decomposition, 13
superficial Bernoullian, 211
Zaremba, 24

theory of viscometry
classical, 62
Navier-Stokes, 62

torque
simple, 25

torsional flow, 72
traction, 25

simple, 27

Unconstrained elastic fluid, 143, 197
uniqueness, 172
universal flow

fluid of grade 2, 108
fluid of grade 3, 109
Navier-Stokes fluid, 104
of fluids of grades 1, 2 and 3, 104

unsteady flow, 186
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unsteady flow impinging on a flat plate,
191

unsteady lineal flow, 73
unsteady linear flow

of the fluid of grade 2, 116
unsteady plane flow, 124

Velocity, 1, 5
velocity gradient, 15
velocity potential, 20
viscometric function, 60, 61
viscometric functions, 89
viscometry, 150
viscosity

natural shear, 61
shear, 61

vorticity, 16, 208
vorticity number, 22

Wave, 249
acceleration, 254
amplitude of, 212
frequency of, 212
Gerstner's, 211
linear, 241
linearly polarized, 192
surface, 212
surface, irrotational, 214

weight function, 180
weighted energy method, 180
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