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Preface to the Fourth Edition 

This book is designed to serve as a textbook for a one-semester course in biostatistics 
for students or reseachers in the biomedical field. We have also included material that 
will be useful to physicians, public health workers, and nurses who become involved 
in research projects and wish not to only understand the basic concepts of biostatistics 
but also to apply them in their research projects. 

The mathematics level has been kept deliberately low. We have provided formulas 
and examples so that the reader can see how to make the calculations, as this is useful 
in understanding what is done. References are provided for statistical programs that 
will perform the calculations and graphs for use in research projects. 

In line with the dual purpose of including teaching the basic concepts and also 
including material that is essential in performing research projects successfully, two 
types of chapters are included. One type is concentrated on basic statistical techniques 
that are widely used in biomedical and public health research. These include a new 
chapter that presents the more widely used nonparametric tests. The second type, 
which includes material useful in performing research projects, is represented in 
Chapters 1 and 3. In Chapter 1 we present the initial steps in designing a biomedical 
study and describe the common types of biomedical studies. Chapter 3 is a new 
chapter that was not in our previous editions. It gives the initial steps in planning 
a biomedical or public health study, including deciding what data to take, how to 
collect it, and how to test the data collection method. Brief introductions to data entry 

xiii 



xiv PREFACE TO THE FOURTH EDITION 

and screening are also given. The remaining chapters are concentrated on statistical 
techniques that are widely used in biomedical and public health research. 

A short list of references is included at the end of each chapter. The object here 
is to include at least one reference that would cover the material mentioned in the 
chapter and also to include references that include additional information. 

For the instructor who is concerned about covering the text in a single semester or 
quarter, note that the chapters are short. The information on tests when the population 
variance is known could be mentioned briefly, and the use of confidence limits for the 
differences between two means could be omitted. These two topics are not available 
in most computer programs. The chapter on survivor analysis may not be as relevant 
to public health students as it is to medical researchers. 

The fourth edition has benefited from the work of Amy Hendrickson 
(TeXnology.com) in checking and preparing early chapters and in final versions of 
the book. 

I am sorry to report that Jean Dunn died in January 2008. I still regard this as her 
book, as she wrote the first two editions and her clarity of thinking and thoughtful 
writing is what makes this book a good choice for readers who want to understand 
what they are doing. 

OLIVE JEAN DUNN AND VIRGINIA A .  CLARK 



CHAPTER 1 

INITIAL STEPS 

Statistical methods have been developed to help in understanding data and to assist in 
making decisions when uncertainty exists. Biostatistics is the use of statistics applied 
to biological problems and to medicine. In this book, the examples are given using 
biomedical and public health data. Bio is taken from the Greek word bios, meaning 
“life” so that biology actually includes numerous fields, such as ecology, fisheries, 
and agriculture, but examples from those fields are not included in this book. 

In Section 1.1 we discuss the two major reasons for using statistics, in Section 1.2 
we present the initial steps in the design of biomedical studies, and in Section 1.3 we 
define the common types of biomedical studies and describe how medical studies are 
rated by level of evidence and how the CONSORT guidelines for randomized clinical 
trials are referenced. 

1.1 REASONS FOR STUDYING BlOSTATlSTlCS 

Statistics has traditionally been used with two purposes in mind. The first is to 
summarize data so that it is readily comprehensible; this is called descriptive statis- 
tics. Both in the past and recently, considerable effort has gone into devising meth- 
ods of describing data that are easy to interpret. The use of computers and their 

Basic Statistics: A Primer fo r  the Biomedical Sciences, Fourth Edition. 
By Olive Jean Dunn and Virginia A. Clark 
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2 INITIAL STEPS 

accompanying graphic programs have made it possible to obtain attractive and mean- 
ingful displays of data without having to employ skilled graphic artists. 

The second purpose is to draw conclusions that can be applied to other cases; this 
is called statistical inference. For example, in studying the effects of a certain drug 
on patients with asthma, one may want to do more than describe what happened to 
the particular patients under study. One usually wishes to decide how to treat patients 
with asthma in the future. 

Biostatistical techniques are now widely used both in scientific articles and in 
articles appearing in newspapers and on television. Learning to interpret statistical 
summaries of data and statistical tests enables people to evaluate what they are reading 
or hearing and to decide for themselves whether or not it is sensible. 

Biostatistical concepts and techniques are useful for researchers who will be doing 
research in medicine or public health. Here, the researchers need to know how to 
decide what type of study to use for their research project, how to execute the study 
on patients or well people, and how to evaluate the results. In small studies, they may 
be totally responsible for the biostatistical analysis, and in large studies, they may 
work with a professional biostatistician. In either case, knowing the basic concepts 
and vocabulary of biostatistics will improve the research. 

1.2 INITIAL STEPS IN DESIGNING A BIOMEDICAL STUDY 

In this section we discuss setting study objectives and making a conceptual model of 
the disease process. We also give two measures of evaluating how common a disease 
condition is. 

1.2.1 Setting Objectives 

“If you do not know where you are going, any road will get you there” is a disparaging 
remark that applies to planning a research project as well as to traveling. Thejirst 
step in evaluating a study or in planning for one is to determine the major objective 
of the study. Time spent in writing a clear statement of purpose of the study will save 
time and energy later, especially in group projects. 

In biomedical and public health studies two general types of objectives underlie 
many of the studies that are performed. Broadly stated, these objectives are: 

1. To determine the desirability of different treatments or preventive measures to 
reduce disease. 

2. To assess the effects of causal or risk factors on the occurrence or progression 
of disease. 

Here, the word disease has been used to stand for any unwanted medical or psy- 
chological condition. A risk factor may often be a genetic predisposition, an envi- 
ronmental exposure, or a patient’s lifestyle, over which the researcher has little or no 
control. 
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The first of these objectives typically leads to what are called experimental studies 
and the second to observational studies. An experimental study is one where the 
researcher can decide on the treatment for each person or animal, and then investigate 
the effects of the assigned treatment. For example, in a clinical trial where one-half 
of the patients are assigned a new treatment for high blood pressure, their outcome 
could be compared with that of those patients assigned the current best treatment. 
Here, the objective is to compare the new treatment for lowering high blood pressure 
to the current treatment to see which treatment is more successful. 

An observational study is an investigation in which the researcher has little or no 
control over the treatment or events. The relationship between the causal or risk factors 
and the outcome is studied without intervention by the researcher. For example, the 
proportion of smokers who develop complications after reconstructive breast surgery 
following mastectomy can be compared with the proportion of nonsmokers who 
develop complications. The past history of smoking cannot be controlled by the 
surgeon; thus the objective is to assess the effects of this potential risk factor in an 
observational study. 

1.2.2 Making a Conceptual Model of the Disease Process 

The second step is to write or draw a conceptual model of the disease process under 
study. If an experimental trial is being planned, first, the beneficial effects of the 
proposed treatments should be postulated; second, the time until the effects become 
noticeable should be estimated; and third, the duration of the effects should be esti- 
mated. Possible side effects (undesirable effects) need to be anticipated, as well as 
when they may occur. For a more complete discussion of both the critical aspects of 
modeling the disease and the effects of the treatments that should be considered, see 
Pocock [1983], Wooding [1994], or Piantadosi [2005]. 

If an observational study is undertaken to determine the effects of possible risk 
factors on the occurrence of disease, a conceptual model of the disease process should 
be made. A possible framework is provided in Figure 1.1. The purpose of this diagram 
is to remind the investigator of the possible causal factors (often called risk factors) 
that could affect the disease and when they are likely to occur. For example, some 
causal events may occur genetically before birth, some at birth, and some later in life. 
There may be multiple events. Some of these events may have one-time occurrences 
(accident, major life event, exposure to a virus, etc.) and some may be chronic events 
(smoking, diet, continual stress, exposure to a low-level toxic chemical, etc.). 

The period between the occurrence of the event and the occurrence of the disease 
is called the induction or incubation period. This period could be quite short or very 
long. In general, the longer the induction period, the more difficult it is to determine 
the effect of a risk factor on the occurrence of the disease. The period between the 
occurrence of the disease and its detection is called the latent period. For a broken 
leg, this period could be very short, but for some diseases, such as multiple sclerosis, 
it could continue for years. 

Note that to be a risk factor the exposure or causal event has to occur in the proper 
time period. For example, if lung cancer was detected in a patient in October 2008 
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Periods 
Induction Latency 

Disease 

Figure 1.1 Conceptual model of the disease process. 

and the patient did not start smoking until September 2008, smoking could not count 
as a risk factor for that patient since the induction period was too short. 

Following detection, there is usually a treatment period. Following successful 
treatment, the patient may become disease-free (acute illness), continue with the 
illness but with fewer symptoms or signs (chronic illness), or the disease could go 
into remission. 

1.2.3 Estimating the Number of Persons with the Risk Factor 
or Disease 

In addition to modeling the course of the disease process, it is useful in planning a 
study to estimate the proportion of possible subjects who have been exposed to the 
risk or causal factor. For example, if the risk factor is smoking, we know that a sizable 
proportion of the adult population currently smokes or has smoked in the past. 

Finally, it helps to know the proportion of persons who already have a disease 
in the population under study-often called the prevalence of the disease. For rare 
diseases, even finding a sufficient number of cases to study can be difficult. 

Sometimes in planning a study only newly diagnosed patients are used. In these 
studies, we need to estimate the number of new cases that will occur in the time 
interval allocated for patient entry into the study. This estimate is made from the 
incidence rate for the disease being studied. The incidence rate is the number of 
new cases occurring in a fixed time interval (usually 1 year) divided by the sum of 
the length of time each person in a population is at risk in the interval (see Rothman 
[1986] for a more complete definition). If one waits for newly diagnosed patients who 
can be treated at a clinic, it is the incidence rate that is critical. For chronic diseases, 
it is possible to have a rather high prevalence without having a high incidence rate if 
the disease is not fatal. 

In Figure 1.2, the results for five hypothetical adults that have been followed for 
1 year are displayed. In this figure, D denotes a person being diagnosed with the 
disease. The vertical line indicates the time t when the prevalence study occurred. 
The last column gives the number of years at risk of the disease for each person. The 
sum of the last column is used as the denominator in computing the incidence rate. 
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Subjects Study 
Time 

2obo i 2001 
Year 

Disease-free 
Time 
0 

1 

.5 

1 

1 

3.5 = Sum 
- 

Figure 1.2 Status of five adults followed for a 1-year period. 

Person 1 enters the year with the disease already known to be present. Persons 
2, 4, and 5 neither have the disease before the year starts nor are diagnosed with the 
disease during the year. Person 3 is diagnosed with the disease one-half of the way 
through the year. In computing the incidence rate only one-half of the year will be 
counted for person 3 since he or she is not at risk to get the disease in the second 
one-half of the year. The incidence rate would be U3.5. The prevalence at study time 
t would be two-fifths. 

For rare diseases, it is common to ignore the time period that is lost due to a patient 
getting the disease within the study period. If this is done, a 1 replaces the .5 for the 
disease-free time period for person 3 and the incidence rate would be one-fourth. In 
this case, the incidence rate is the number of new cases of a disease in a given time 
period divided by the population at risk of developing the disease. 

The timing of events such as when exposure to risk factors occurs or when the 
disease is likely to be diagnosed, and the number of persons who have either the 
risk factor or the disease, limits the type of study that can be done. It is critical to 
have estimates of the timing and the numbers before designing a biomedical or public 
health study. 

1.3 COMMON TYPES OF BIOMEDICAL STUDIES 

In this section a brief introduction to some of the most common types of biomedi- 
cal studies is presented. Further discussion of these studies is given in subsequent 
chapters. Here, we are concerned with when the subjects are sampled relative to the 
course of their disease or treatment and under what circumstances this type of study 
is used. The actual sampling methods are discussed in Chapter 2. (By a sample we 
simply mean a subset of a selected population that the investigators wish to study.) 

In terms of time, we can examine data taken at an “instant in time”; we can look 
forward in time or we can look backward in time. The studies that theoretically take 
place in an instant of time are usually called surveys or cross-sectional studies. The 
types of studies that look forward in time are often called (1) experiments, (2) clinical 
trials, ( 3 )  field trials, or (4) prospective or panel or follow-up studies. Clinical trials 
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Figure 1.3 Time relationships in biomedical studies. 

and field trials are special types of experiments. Finally, biomedical studies looking 
backward in time are called casekontrol or caseheferent studies. These studies are 
displayed in Figure 1.3. The arrows denote the direction of the measurement, and 
the question marks are placed where there is uncertainty in the factor measured. The 
word cause can be either a (1) treatment or preventive measure or ( 2 )  the occurrence 
of a causal or risk factor. The effect is the outcome of the risk or causal factor or 
a treatment. 

1.3.1 Surveys 

Surveys or cross-sectional studies are used in public health and biomedical studies. 
In these studies, the participants are measured only once, so information on exposure 
or risk factors, treatments, outcomes, or other factors are all obtained at the same 
time. Surveys are used when both the disease (outcome factor) and the supposed 
risk factor (causal factor) have a high prevalence. A survey of a prevalent condition 
such as depression or osteoarthritis is appropriate. On the other hand, stomach cancer 
is a disease with a fairly low prevalence, so if a survey were taken of the general 
population, it would have to include a huge sample just to obtain a handful of cases. 
Obviously, chronic conditions are easier to study with surveys than are acute diseases. 
Sometimes, surveys are done using populations that are at high risk for a given disease, 
such as the elderly. In the public health field, surveys have been used to study the 
association of possible causal factors such as smoking and lifestyle on overall health 
status and risk factors for infectious diseases. 

One problem with surveys is that the information that can be obtained most ac- 
curately is current information on risk factors or disease conditions. It is difficult to 
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obtain reliable and unbiased information on events that happened long ago both in 
terms of the event and the timing. For example, referring back to Figure 1.1, it may 
be difficult to determine that a causal factor occurred during the relevant time period, 
particularly if the causal factor occurred in a short time period. 

Getting the general population to respond to phone surveys is getting to be an 
increasing problem, and the switch to cell phones is making it worse. Even in mail 
surveys to patients who have received medical treatment, response rates of about 50% 
are common. Obtaining a good response rate takes careful planning (see Groves et 
al. [2004]). 

However, public health surveys are used by states and counties as a means of 
assessing a wide range of information on the health status of the general public. For 
example, a survey was done in Washington State on topics such as access to health 
care and characteristics of the uninsured, use of health screening procedures such as 
mammograms and PSA tests for prostate cancer, and the use of routine dental care. 
Such surveys can provide information on where public health workers need to direct 
their efforts. 

1.3.2 Experiments 

Experiments are usually simpler to interpret than surveys. Typically, a single sample 
is obtained and then the sample is split into different groups, often called treatment 
and control groups. Treatment denotes the new treatment being tested and control 
is either no treatment, a placebo treatment, or a standard treatment that is useful for 
comparison purposes. The experimental subject or unit could be an animal, person, 
tissue culture, and so on. Random assignment of the subject to treatment or control 
is the recommended practice. How to perform a random assignment is discussed 
in Section 2.4.3. The aim is to have the only difference between the treatment and 
control groups be the treatment itself, not what or who is being treated. 

In an experiment, the causal factor is given first and there is no question as to 
what the factor is since the experimenter makes that decision. The measurement 
of the outcome follows the treatment in time so causality can be established if the 
experiment is carefully designed. This is illustrated in Figure 1.3 by the absence of a 
question mark before cause. 

1.3.3 Clinical Trials 

In clinical trials using patients, the major objectives are to test efJicacy (whether the 
treatment is better than the control in treating the disease) and toxicity (whether the 
treatment has fewer side effects or unwanted effects than the control). Decisions 
need to be made on who is eligible for the trial, what treatment will be used, and 
how the outcomes of the treatments will be assessed. These are complex studies to 
perform which involve obtaining human subject consent, decisions on entry criteria 
of the patients, under what circumstances the treatment could be modified, or if the 
clinical trial should be terminated early. Also, because the patients normally come 
for treatment singly over time, it may take several years to accumulate a sufficient 
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number of patients, or patients may have to be accepted at several medical centers in 
order to have a sufficient sample size. 

Random assignment to treatment is still the recommended procedure, and methods 
of performing the assignment have been devised to fit the needs of clinical trials. If 
possible, it is recommended that neither the patient nor the professionals who interact 
with the patient or evaluate the outcome know whether the patient is getting the new 
treatment or the control treatment. When this can be accomplished, the clinical trial is 
called a double-blind trial. The blinding of the patient and physician can be achieved 
in drug trials by having the hospital pharmacist place the two possible medications 
in identical-looking pills that are placed in bottles stacked in random order, and the 
pharmacist just hands out the next bottle. This ideal condition is not possible in all 
instances. For example, it is difficult if the treatment is surgery, where what was done 
is obvious to the patient or surgeon, or if different side effects occur in a drug trial that 
the physican can recognize. For further information on this topic, see Mould [ 19981, 
Pocock [1983], Wooding [1994], Spriet et al. [1994], or Piantadosi [200.5]. 

A multicenter study is one method of performing clinical trials when the condition 
under study is rare and no single medical center has access to a sufficient number 
of patients to reach a valid conclusion in a reasonable time period. This requires 
that a common protocol be developed where all the centers agree on what patients 
will be admitted, how they will be treated, how the measurements will be made, 
and a minimum set of data that they will all collect. Since medical centers have a 
tendency to have their own procedures for treatment and data collection, multicenter 
studies sometimes require considerable negotiation to get agreement on a single set 
of procedures. However, it can solve the problem of inadequate sample size, and if 
multiple centers with somewhat different patients and physicians reach a conclusion 
on a given treatment, it tends to increase confidence in the results. 

When a number of researchers have already performed clinical trials on the same 
topic, such as the comparison of two specific treatments for a given medical condi- 
tion, a meta-analysis can be considered. The idea behind a meta-analysis is to pool 
the results from different studies on the same topic, and by reanalyzing the combined 
results be able to reach conclusions with greater certainty. A successful meta-analysis 
requires a clear statement of the purpose of the study, rigorous identification of rel- 
evant studies with a clear statement of inclusion and exclusion criteria, collection of 
relevant data, and finally, an appropriate analysis (see Piantadosi [200.5] and Sutton et 
al. [2002]). One way of thinking of meta-analysis is that a successful meta-analysis 
may yield results from medical studies that are somewhat similar to what would be 
obtained with a multicenter study. One potential problem in meta-analysis is the non- 
retrieval of relevant information. Another concern is that some journals have what is 
called publication bias since they tend to preferentially accept manuscripts that have 
positive (significant) results over those with negative results (no differences in the 
treatments). A good analysis of poorly done studies is unlikely to yield good results. 
Statistical software for performing meta-analysis can be found by going to Google 
and typing “meta-analysis.” 
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1.3.4 Field Trials 

Field trials are performed using subjects who are not patients and hence often require 
visiting the subjects in the field, which may be a school, church, or other location 
convenient for the subjects. One example of a field trial would be a vaccine trial. 
One of the largest vaccine trials was for the Salk vaccine, developed to prevent polio. 
A vaccine or placebo was given to over 1,000,000 schoolchildren and the incidence 
of polio in the treated and untreated groups was assessed. It was necessary to make 
the sample size large because the incidence of polio was not high. Randomization 
of individuals is often difficult to do in field trials because of difficulty in obtaining 
acceptance in the field. 

1.3.5 Prospective Studies 

In a typical prospective study, no treatment is assigned. There are three general types 
of prospective studies. 

1. In prospective trend studies, repeated samples of different individuals can be 
taken at intervals over time from a dynamic population where some of the 
individuals in the population may change over time. Such studies have been 
used to study voting intentions as an election approaches. 

2. In prospective cohort studies, repeated samples of different subjects are taken 
from the same cohort (group of people). Such studies have been used to deter- 
mine how students change their attitudes as they progress in school. 

3. In prospective panel studies, repeated measures are made on the same individ- 
uals over time. This is the type of prospective study most used in biomedical 
studies. Hereafter in this book, if the term prospective study is used, it will 
be assumed that a prospective panel study is meant. Note that epidemiologists 
sometimes call panel studies cohort studies or simply prospective studies. 

In the classical epidemiological prospective (panel) study, a cohort of disease-free 
individuals are measured for exposure to the causal factor(s) at the beginning of the 
follow-up period. Then, at subsequent examinations, exposure can be remeasured 
and disease status (outcome) must be measured. In prospective panel studies, the 
subjects can be classified into two groups based on their exposure status. The critical 
point is that the measurement of exposure precedes the measurement of the outcome 
in time. There is no opportunity for the disease to have an effect on the exposure 
factor. 

To use this design, it is necessary that the disease being studied have a high in- 
cidence rate in order to accumulate enough cases (persons with the disease) in a 
reasonable follow-up period. The disease studied must be severe enough that its 
occurrence can be detected. A sufficient number of persons with exposure must be 
available at the start of the study. To obtain a sufficiently high incidence rate of the 
disease in the study group, high-risk groups are often followed. 
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The follow-up period should be long enough so that the exposure could possibly 
cause the disease. In other words, the length of the induction and latency periods must 
be considered. It is sometimes easier to make inferences from prospective studies if 
the exposures are severe and short in duration. For example, a high-level exposure to 
radiation or toxic waste that took place in a known short interval would be easier to 
study than a low-level exposure over a considerable time period. Examples of a short 
interval would be the Chernobyl accident in Russia or the 1999 nuclear accident in 
Japan. However, if the exposure is chronic, one can investigate cumulative exposure. 
For example, exposure to smoking is often measured in pack-years (number of years 
smoked times the average number of packs per day). 

1.3.6 Case/Control Studies 

In casekontrol or caseheferent studies, the investigator begins with cases who already 
have the disease diagnosed (outcome) and looks back earlier in time for possible 
causes (see Schlesselman [ 19821). Before discussing this type of study, some mention 
should be made of single-sample case studies (no controls without the disease are 
used). Here the investigator typically searches a medical record system for all the 
cases or patients who have a particular disease outcome in a fixed time period, say the 
last 2 years. Then, a search is made through the records to see if some prior exposure 
occurred, more than would be expected considering the group of patients involved. 
One difficulty with this type of study is that it is difficult to evaluate the levels of the 
exposure factor and decide what is high or low, since only cases are studied. 

If both cases and controls can be studied simultaneously, an opportunity exists to 
utilize a very efficient study design. A group of cases is taken and simultaneously a 
group of controls should be taken from the population from which the cases devel- 
oped (see Section 2.4.5 for sampling considerations). Case/control studies have the 
advantage of no risk to the patients, low cost, and feasibility even for rare diseases. 
Since most diseases are uncommon in the general population, casekontrol studies 
are often the only cost-effective approach. They are not necessarily a good choice if 
the prevalence of the exposure factor is very rare or if there is a possibility of major 
differences in ascertaining the exposure factor between cases and controls. 

For example, in Los Angeles County, the University of Southern California Cancer 
Center obtains information from hospital pathologists on essentially all newly diag- 
nosed cases of cancer in the county. Caselcontrol studies using these newly diagnosed 
cases and neighborhood controls have been successful in extending the knowledge of 
risk factors for several relatively rare types of cancer. 

1.3.7 Other Types of Studies 

Other types of studies are also used in biomedical research, such as the use of historical 
controls. For example, in surgical practice, if a surgeon decides that a new surgical 
technique should be used, often all subsequent patients are given the new treatment. 
After using the new treatment for a year or two, they may decide to compare the cases 
treated with the new treatment to controls treated with the previous surgical treatment 
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in the same hospital in a time period just before the switch to the new technique. The 
term historical controls is used because the control patients are treated earlier in time. 
Inferences are more difficult to make in historical studies because other changes in 
the treatment or the patients may occur over time. 

The topics discussed in this chapter are conceptual in nature, but they can have 
a profound effect on the final statistical analysis. The purpose of this book is to 
provide information on how to analyze data obtained from the various study designs 
so that after the analysis is completed, the data can be understood and inferences 
made from it. 

1.3.8 Rating Studies by the Level of Evidence 

Medical studies are sometimes rated by what is called the level of evidence. One 
obvious thing to rate is the type of study performed. Some medical journals favor 
publishing results from studies that have a high level of evidence. There is no universal 
rating system, but in general, level one studies tend to be either meta-analyses where 
the results of well-designed randomized control trials are combined, well-designed 
multicenter blinded randomized control studies, high-power randomized blinded con- 
trol clinical trials with sufficient follow-up, or well-designed experimental animal or 
bench studies. Somewhat lower-level studies may contain meta-analyses of well- 
designed observational studies, randomized clinical studies with adequate power, or 
well-designed observational studies with overwhelming evidence. Lower-level stud- 
ies include well-designed observational studies, case reports without control, and 
clinical examples. An even lower level could include expert opinion or reasoning 
from first principles. In general, here power refers to the requirement that the sample 
size is large enough that the conclusions reached are likely to be correct. It must 
be emphasized that there is not one master list of how to do the ratings, and what is 
written above may not coincide with how all journals or medical associations perform 
their rating. But aspects of study design have an effect on the conclusions that can be 
reached and how a study is rated. At the present time, many journals have set their 
own levels and these levels are available from the editors of the journals. 

1.3.9 CONSORT 

Proper reporting of results of clinical research so that a reader can evaluate the in- 
vestigator’s conclusions is an important issue. One set of guidelines is given by 
CONSORT (Consolidated Standards of Reporting Trials). CONSORT provides on 
their website a checklist and flow diagram to help improve the quality of randomized 
clinical trials and meta-analyses. Use of this checklist has been endorsed by several 
prominent medical journals. The checklist and flow diagram for randomized clinical 
trials can be obtained by going to their website, www,consort-statements.org/ and se- 
lecting statements to obtain the information. For meta-analysis, go to www.consort- 
statements.org/Evidence/evidence.html#quorom for similar information. For more 
information on CONSORT, see Moher et al. [2004]. 
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PROBLEMS 

1.1 

1.2 

1.3 

1.4 

1.5 

1.6 

1.7 

Write out the goals for a public health or medical study that you would like to 
do. What type of study will you use? 

List two diseases that it would be possible to study with (a) a cross-sectional 
survey, (b) a casekontrol study, (c) a prospective panel study, and (d) a clinical 
trial. 

For one of the diseases chosen in Problem 1.1 for a prospective panel study, 
try to create a figure comparable to Figure 1.1 for a typical patient, estimating 
actual years between the events. 

Which type of study requires (a) a high incidence rate? (b) a high prevalence 
proportion? (c) a high level of funding? (d) treatment under control of the 
investigator? 

What types of diseases have high prevalence proportions relative to their inci- 
dence rate? 

State why a double-blind study is difficult to accomplish when two surgical 
methods are being compared. 

What type of study is often done when there is a low incidence rate and little 
funding? 
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CHAPTER 2 

POPULATIONS AND SAMPLES 

This chapter is an introductory chapter on sampling. In Section 2.1 we present 
the basic concepts of samples and populations. In Section 2.2 we discuss the most 
commonly used methods of taking samples and the reasons for using a random sample. 
Methods of selecting a random sample are given in Section 2.3. The characteristics 
of a good sampling plan and the methods commonly used in the various types of 
biomedical studies are described in Section 2.4. 

2.1 BASIC CONCEPTS 

Before presenting methods of taking samples, we define three basic concepts: sam- 
ples, population, and target population. A brief discussion of the reasons for sampling 
is also given. 

In most research work, a set of data is not primarily interesting for its own sake, 
but rather for the way in which it may represent some other, larger set of data. For 
example, a poll is taken in which 100 adults are asked whether they favor a certain 
measure. These 100 adults live in a small communitity that has 2500 adults living 
in it. The opinions of the 100 people may be of very minor importance except as an 
indication of the opinions prevailing among the 2500 adults. In statistical terminology, 
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the group of 100 people is called a sample; the group from which the sample is taken 
is called the population (another word for the same concept is universe). 

As an example from public health, consider a epidemiologist who wishes to study 
if nonsmoking students at a certain university exercise more than students who smoke. 
Here the population is all undergraduate students; possibly there are 4000 of them. The 
epidemiologist can take a sample of 400 students from student records and interview 
these students about their smoking status and the amount of exercise they participate 
in instead of interviewing all 4000 students. The 400 students are a sample from a 
population of 4000 students. 

Each student in the sample is sometimes called an observational unit. More 
commonly, if they are people, they are referred to as individuals, cases, patients, or 
subjects. Populations are usually described in terms of their observational units, extent 
(coverage), and time. For example, for the population of students, the observational 
units are undergraduates, the extent is, say, Midwest University, and the time is fall 
2009. Careful definition of the population is essential for selection of the sample. 

The information that is measured or obtained from each undergraduate in the 
sample is referred to as the variables. In this example, smoking status and amount of 
exercise are the two variables being measured. 

In the two examples just given, the population from which the samples are taken 
is the population that the investigator wishes to learn about. But in some cases, the 
investigator expects that the results will apply to a larger population often called 
a targetpopulation. Consider a physician who wishes to evaluate a new treatment for 
a certain illness. The new treatment has been given by the physician to 100 patients 
who are a sample from the patients seen during the current year. The physician is 
not primarily interested in the effects of the treatment on these 100 patients or on the 
patients treated during the current year, but rather in how good the treatment might 
be for any patient with the same medical condition. The population of interest, then, 
consists of all patients who might have this particular illness and be given the new 
treatment. Here, the target population is a figment of the imagination; it does not exist. 
and indeed the sample of 100 patients who have been given this treatment may be the 
only ones who will ever receive it. Nevertheless, this hypothetical target population is 
actually the one of interest, since the physician wishes to evaluate the treatment as if it 
applies to patients with the same illness. We might use the following definitions: The 
target population is the set of patients or observational units that one wishes to study; 
the population is what we sample from; and the sample is a subset of the population 
and is the set of patients or observational units that one actually does study. 

Questions arise immediately. Why do we study a sample rather than the entire 
population? If we desire information concerning an entire population, why gather 
the information from just a sample? Often the population is so large that it would be 
virtually impossible to study the entire population; if possible, it may be too costly 
in time and money. If the target population consists of all possible patients suffering 
from a certain illness and given a certain treatment, then no matter how many patients 
are studied, they must still be considered to be a sample from a very much larger 
population. 
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When it is feasible to study an entire population, one may learn more about the 
population by making a careful study of a small sample than by taking limited mea- 
surements on the entire population. In the example of the population of 4000 under- 
graduates, the epidemiologist could afford the time and effort necessary to carefully 
collect smoking histories and obtain information on type and amount of exercise 
that 400 undergraduates do but not on all 4000 undergraduates. Accurate and de- 
tailed information on a sample may be more informative than inaccurate or limited 
information on the population. 

2.2 DEFINITIONS OFTYPES OF SAMPLES 

In this section we define simple random samples and two other types of random 
samples. 

2.2.1 Simple Random Samples 

There are many types of samples; here we discuss the simplest kind of sample, called 
a simple random sample. A sample is called a simple random sample if it meets two 
criteria. First, every observational unit in the population has an equal chance of being 
selected. Second, the selection of one unit has no effect on the selection of another 
unit (all the units are selected independently). If we wish, for instance, to pick a 
simple random sample of 4 cards from a deck of 5 2  cards, one way is to shuffle the 
deck very thoroughly and then pick any 4 cards from the deck without looking at the 
faces of the cards. Here, the deck of 5 2  is the population, and the 4 cards are the 
sample. 

If we look at the faces of the cards and decide to pick 4 clubs, we are not choosing 
a simple random sample from the population, for many possible samples of 4 cards 
(e.g., 2 diamonds and 2 hearts) have no chance at all of being selected. Also, if we 
make four separate piles of the cards-one all hearts, one all diamonds, one all spades, 
and one all clubs-and take 1 card from each pile at random, we still do not have a 
simple random sample from the deck of 52 cards. Each card has an equal chance of 
being selected, but once one heart is selected we cannot select another heart. Thus, 
the selection of one unit has an effect on the selection of another unit. 

2.2.2 Other Types of Random Samples 

It is possible to have random samples that are not simple random samples. Suppose 
that an investigator wishes to sample senior engineering students at a particular col- 
lege, and that in this college there are appreciably more male engineering students 
than female. If the investigator were to take a simple random sample, it would be 
possible that very few female students would be sampled, perhaps too few to draw any 
conclusions concerning female students. In cases such as this, a stratijied sampling 
is often used. First, the investigator would divide the list of engineering students 
into two subpopulations or strata, male and female. Second, separate simple random 
samples could be drawn from each stratum. The sample sizes of these samples could 
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be either the same fraction from both strata (say 10%) or different fractions. If the 
same proportion of students is taken from the male and female strata, the investigator 
has at least made sure that some female students will be drawn. The investigator may 
decide to sample a higher proportion of female students than male students in order 
to increase the number of females available for analysis. The latter type of sample is 
called a disproportionate stratGed sample. 

Another method of sampling is called systematic sampling. To obtain a systematic 
sample of size 400 from a population of 4000 undergraduates, one begins with a 
list of the undergraduates numbered from 1 to 4000. Next, the sampling interval 
k = 4000/400, or 10, is computed. Then, a random number between 1 and k (in this 
case between 1 and 10) is chosen. Note that methods for choosing random numbers 
are given in Section 2.3. Suppose that the random number turns out to be 4. Then 
the first freshman chosen is number 4. Then every kth or 10th freshman is chosen. 
In this example, number 4 is the first freshman, 4 + 10 = 14 is the second freshman 
chosen, 14 + 10 = 24 is the third freshman chosen, and so on. 

There are several advantages to using systematic samples. They are easy to carry 
out and readily acceptable to staff and investigators. They work well when there is 
a time ordering for entry of the observational units. For example, sampling every 
kth patient entering a clinic (after a random start) is a straightforward process. This 
method of sampling is also often used when sampling from production lines. Note 
that in these last two examples we did not have a list of all the observational units in 
the population. Systematic samples have the advantage of spreading the sample out 
evenly over the population and sometimes over time. 

Systematic sampling also has disadvantages. One of major disadvantages is a 
theoretical one. In Section 4.2 we define a measure of variation called the variance. 
Theoretically, there is a problem in estimating the variance from systematic samples, 
but in practice, most investigators ignore this problem and compute the variance 
as if a simple random sample had been taken. When a periodic trend exists in the 
population, it is possible to obtain a poor sample if your sampling interval corresponds 
to the periodic interval. For example, if you were sampling daily sales of prescription 
drugs at a drugstore and sales are higher on weekends than on weekdays, then if 
your sampling interval were 7days, you would either miss weekends or get only 
weekends. If it can be assumed that the population is randomly ordered, this problem 
does not exist. Another disadvantage of systematic samples in medical studies is that 
sometimes the medical personel who enter the patient into the study can learn what 
treatment the next patient who enters the study will be assigned, and if they think one 
treatment is better than another, they may try to affect the selection process. 

For a more complete discussion of these and other types of samples, see Kalton 
[1983], Barnett [1994], Levy and Lemeshow [1999], Scheaffer et al. [2006], or for 
very detailed discussions, Kish [1965]. Many types of samples are in common use; in 
this book it is always assumed that we are studying a simple random sample. That is, 
the formulas will only be given assuming that a simple random sample has been taken. 
These formulas are the ones that are in common use and are used by investigators for 
a variety of types of samples. 
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Two other questions should be considered: Why do we want a simple random 
sample, and how can we obtain one? 

2.2.3 Reasons for Using Simple Random Samples 

The main advantage of using a simple random sample is that there are mathemati- 
cal methods for these samples that enable the research worker to draw conclusions 
concerning the population. For other types of random samples, we can use simi- 
lar mathematical methods to reach conclusions, but the formulas are slightly more 
complex. For other types of samples, the formulas are more complex and these math- 
ematical tools do not apply. This means that when you want to draw conclusions from 
your sample to the population you sampled from, there will be no theoretical basis for 
your conclusions. This does not necessarily mean that the conclusions are incorrect. 
Many researchers try mainly to avoid allowing personal bias to affect their selection 
of the sample. In practice, for many medical studies simple random samples are not 
used, for a variety of practical reasons. 

2.3 METHODS OF SELECTING SIMPLE RANDOM SAMPLES 

Next, we describe how to take simple random samples simply by physically drawing 
a small sample from a population. Random numbers are discussed and it is shown 
how they can be used to obtain a simple random sample. 

2.3.1 Selection of a Small Simple Random Sample 

Table 2.1 gives a set of 98 blood cholesterol measurements of untreated men aged 
40-49. Each horizontal row in Table 2.1 contains 10 measurements except the last 
row, which contains eight measurements. For illustrative purposes, these 98 blood 
cholesterols may be considered as a population from which we wish to select a simple 
random sample of size 5 ,  say. Since the population is quite small, one way of picking 
a random sample from it would be to copy each measurement on a small tag. By 
mixing the tags well in a large container, we can draw out one tag (without looking 
at the writing on the tags in the container), write down the result, and then replace 
the tag into the container. If we follow this procedure five times, we obtain a simple 
random sample of five measurements. 

2.3.2 Tables of Random Numbers 

In larger populations, it becomes impracticable to make a tag for each member of the 
population and then stir them in a container, so one must attempt to obtain a random 
sample in some other way. Sometimes it is possible to obtain a list of the population; 
then, we can easily draw a random sample by using a table of random numbers or 
from the output of a statistical program. 

Table A.l  of Appendix A is a table of random digits. These single digits have 
been obtained by a process that is equivalent to drawing repeatedly (and immediately 
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Table 2.1 Blood Cholesterol Measurements for 98 Men Aged 40-49Years (mg/100 mL) 

289 385 306 
215 301 249 
368 291 249 
251 256 294 
327 195 305 
282 311 193 
268 251 333 
322 381 276 
280 411 195 
232 293 285 

218 
288 
300 
253 
253 
242 
300 
205 
256 
250 

251 281 241 
331 263 260 
268 283 319 
221 241 372 
251 229 250 
304 210 277 
250 234 264 
251 210 254 
387 241 245 
260 316 352 

224 
228 
284 
339 
348 
312 
29 1 
299 
325 
309 

198 
190 
205 
292 
280 
264 
21 1 
213 
289 

281 
282 
294 
294 
378 
262 
284 
252 
306 

replacing) a tag from a box containing 10 tags, one marked with 0, one marked with 
1, and so on, the last tag being marked with 9. Considerable effort goes into the 
production of such a table, although one’s first thought might be that all that would be 
necessary would be to sit down and write down digits as they entered one’s head. A 
trial of this method shows quickly that such a list cannot be called random: A person 
invariably has particular tendencies; he or she may write down many odd digits or 
repeat certain sequences too often. 

To illustrate the use of such a table of random digits, a sample of size 5 will be 
drawn from the population of 98 blood cholesterols. First, the list of the population 
is made; here it is convenient to number in rows, so that number 1 is 289, number 2 
is 385, number 50 is 378, and number 98 is 309. Since there are 98 measurements in 
the population, for a sample of size 5 we need five 2-digit numbers to designate the 5 
measurements being chosen. With 2 digits we can sample a population whose size is 
up to 99 observations. With 3 digits we could sample a population whose size is up 
to 999 observations. To obtain five 2-digit numbers, we first select a starting digit in 
Table A. 1 and from the starting digit we write down the digits as they occur in normal 
reading order. Any procedure for selecting a starting value and proceeding is correct 
as long as we choose a procedure that is completely independent of the values we see 
in Table A. 1. For an example that is easy to follow, we could select the first page from 
Table A.l  and select pairs of numbers starting with the 2-digit number in the upper 
left hand corner that has a value of 10. We proceed down the column of pairs of digits 
and take 37, 8, 99, and 12. But we have only 98 observations in our population, so 
the 99 cannot be used and the next number, 12, should be used instead for the fourth 
observation. Since we need an additional number, we take the next number down, 
66. The final list of 5 observations to be sampled are 10, 37, 8, 12, and 66. 

Referring back to Table 2.1, the cholesterol measurement corresponding to the 
tenth observation is 287 since we are numbering by rows. In order, the remaining 4 
observations are 372 for observation 37, 224 for observation 8, 301 for observation 
12, and 234 for observation 66. 

Statistical programs can also be used to generate random numbers. Here the 
numbers will often range between 0 and 1, so the decimal point should be ignored 
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to obtain random digits. Note that each program has its own way of generating the 
random numbers and displaying them. 

2.3.3 Sampling With and Without Replacement 

The first example, in which 5 tags were drawn from a box containing 98 tags marked 
with blood cholesterol measurements, illustrates simple random sampling with re- 
placement. The tags were removed from the container as they were chosen and were 
replaced, so that the same individual could be sampled again. This is called sampling 
with replacement since the tag is replaced into the container (the population). For 
theoretical purposes, sampling with replacement is usually assumed. In the blood 
cholesterol example, if we replace the tag, it is possible for the same tag to be drawn 
more than once. If we sample using numbers from a random number table, it is 
possible that the same random number will reappear, so we will be sampling with 
replacement if we simply take all the random numbers as they appear. 

If we do not replace each tag after it is drawn, we are sampling without replacement. 
If we wish to sample without replacement from a random number table or from a 
statistical program, we will not use a random number if it is a duplicate of one already 
drawn. 

The reason that sampling with replacement is sometimes discussed, whereas sam- 
pling without replacement is actually performed, is that the statistical formulas are 
simpler for sampling with replacement. A moment’s consideration should convince 
the reader that it makes little difference whether or not we replace when the sample 
size is small compared with the size of the population. Small is often taken to mean 
that the sample size is < 5 or 10% of the population size. The symbol “<” denotes 
“less than.” If the sample size is an appreciable proportion of the population, special 
formulas need to be used (see Kalton [1983], Barnett [1994], Kish [1965], or other 
textbooks devoted to sampling) for these formulas. Sampling with replacement is not 
practical in most studies. 

2.4 APPLICATION OF SAMPLING METHODS IN BIOMEDICAL 
STUDIES 

In Section 2.4.1 we discuss the characteristics of a good sample. How sampling is 
usually done for the types of biomedical studies described in Chapter 1 is described 
in Sections 2.4.2 to 2.4.5. The reasons for the use and the nonuse of simple random 
sampling can be seen from the discussion of sampling plans used in biomedical 
studies. 

2.4.1 Characteristics of a Good Sampling Plan 

What is a good sampling plan? How do we distinguish a good one from a bad one? 
Here, we briefly describe the characteristics of a good sampling plan. 

The first criterion for a good sample is feasibility. The plan should be feasible in 
terms of what is being sampled, how it occurs, what personnel are available to take 
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the sample, the number and location of observational units, the time schedule, and 
so on. Sampling schemes that are good theoretically but undesirable from a practical 
standpoint often are carried out so poorly that their superior theoretical advantages 
are outweighed by mistakes and omissions made in executing the plan. 

The second criterion for a good sampling plan is that it be done in an economical 
fashion. For example, if a statistician wishes to estimate the average out-of-pocket 
expense of households for medical care, a plan should be devised that results in an 
accurate estimate of the average expenditure for the least cost. Cost in terms of 
money or personnel time is an important consideration in sampling and is often a 
major reason for the choice of a particular sampling plan. 

A third criterion is that the plan should be such that it is possible to make inferences 
from the sample to the population from which it was taken. For example, if we take 
a sample and find that 75% of the patients in the sample are taking their medication 
properly, can we infer that -75% of the patients in the population we sample from are 
also taking their medication properly? This has been called measurability (see Kish 
[ 19651). This criterion is often in conflict with the first two. As has been discussed 
in this chapter, a simple random sample meets this criterion. Random samples, in 
general, allow us to meet this criterion, but they may result in more complicated 
formulas. But often, as we shall see in subsequent sections, it is not feasible or 
economical to take simple random samples or even random samples. 

2.4.2 Samples for Surveys 

The size and location of a population often dictates what sampling method will be used 
in surveys. For example, the population could be all English- or Spanish-speaking 
noninstitutionalized adults in Los Angeles County in the fall of 2009. Here, the 
population is very large and spread out. In contrast, a sample could be taken of all 
medical school faculty at a given medical school in the fall of 2009. This population 
will be much smaller in size and easily located. 

In the first situation, where no listing of all adult residents in Los Angeles County 
exists and the adults are widely spread out, the most cost-effective procedure is to 
subcontract to a professional survey group. Devising a good sampling plan is too 
expensive and time consuming. Simple random samples are not used in sampling 
households from a large county such as Los Angeles because of both feasibility and 
cost considerations. Samplers employed by professional surveyers are able to use 
information from past surveys and are familiar with specialized sampling techniques 
for large populations that save considerable time and effort. The resulting sampling 
plan can still be random, but it is not a simple random sampling plan. 

When a population is small and a list is already available, it is relatively easy to 
obtain a survey sample. For example, if the observational units are medical school 
physicians with full-time appointments, a list can undoubtedly be obtained. It is 
advisable to check on whether the records are up to date and accurate before beginning. 
A simple random sample can be taken, with random numbers obtained either from 
a table such as Table A. 1 or from a statistical program. Systematic samples are also 
commonly used for surveys from small populations. 
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If the persons to be sampled live in a very small area, it is possible to drive or 
walk around the area and note on a map all the places that people live. This is more 
difficult than it sounds, as people can live in unusual places such as garages or trailers 
or in locked residential areas where access to the households is virtually impossible. 
Sometimes a reverse directory, supplemented by a tax roll or aerial photographs, is 
helpful. Then a sample of households can be taken. Often, a systematic sample is the 
simplest to use. From a sample of households, a subsample of adults can be obtained. 

Another method of sampling households is to do a random-digit dialing survey by 
telephone. The first step is to obtain the area code (3 digits) and the prefix numbers 
(3 digits) in the desired area. Other information on how the last 4 digits are assigned 
by the telephone company can be obtained from the company. The next step is to dial 
4-digit random numbers with suitable prefix numbers (see Frey [1989] for a more 
detailed description of how to take a sample by telephone). Sometimes investigators 
will take random samples from telephone directories, but this procedure results in 
many households not being sampled because they have an unlisted number or a cell 
phone. Note that persons without telephones have no chance of being surveyed. 

As the population gets smaller and the eligibility restrictions for defining who is 
in the population get stricter, the usual problem is obtaining a sufficient sample size. 
In many biomedical studies, this is a real concern. For example, if you wish to study 
persons who just came down with a rare disease, you will tend to take anyone you 
can find who meets the entry criteria. This type of sample is often called a chunk or 
convenient sample. It will not make sense to a physician to go to a lot of effort to find 
suitable subjects and then decide not to use some of them. Such samples do not meet 
the criteria of measurability discussed earlier, but they may be the best available. For 
example, it is difficult to know if patients with a particular disease who are treated by 
one physician are typical of all patients with the same disease. 

In public health surveys, investigators often want to sample persons who follow 
procedures or lifestyles that are illegal or unpopular and hence hard to find. Samples 
of volunteers can be recruited using suitable newspapers, television, radio, or Internet 
websites that are aimed at the desired population. For example, a sample of heavy 
marijuana smokers cannot be recruited in the same manner as the general public is 
recruited. The resulting samples are often chunk samples, but they are the only type 
that is feasible and economical. 

Another method of doing surveys is to use the Internet. If one has the e-mail 
addresses of a group of people that they want to survey, web-based outfits like Sur- 
veyMonkey can be used (see http://www.surveymonkey.com/). 

2.4.3 Samples for Experiments 

In laboratory experiments, where animals, tissue cultures, or other observational units 
are used, the sampling method most used is chunk samples. Investigators tend to be 
careful where they purchase their animals and the type used for a given kind of 
experiment, but the focus is on how the treatment affects the outcome and how best to 
measure that outcome. An implicit assumption is made that the effects of the treatment 
are quite general and the animals or whatever is being experimented on can be thought 
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of as replicates. If animals are used, it is recommended that they be randomly assigned 
to the treatment group, and sometimes they are randomly assigned to cage location 
if there is thought to be any possibility that this location could affect the outcome. 
Random assignment can be accomplished easily using a random number table. Table 
A.l was developed by the RAND Corporation and has been tested extensively for 
randomness, It is also possible to obtain random numbers from statistical programs. 
For example, random numbers can be obtained from Minitab, SAS, SPSS, and Stata. 
Suppose that there are two treatments, A and B. Then the researcher can look in a 
random number table such as Table A. 1 and assign an animal to A if the number is 
an even number and to B if it is an odd number. When dealing with three groups, if 
the random number chosen is 1, 2, or 3, the animal can be assigned to A; a random 
number of 4,5,  or 6 results in the animal being assigned to B; and a random number 
of 7, 8, or 9 results in the animal being assigned to C. Zeros would be ignored. 

Randomized clinical trials are experiments where the observational unit is the 
patient. The purpose is to test the efficacy (does it help) and the toxicity (unwanted 
effects) of a new treatment versus a placebo or a standard treatment used currently. 
Patients who are used must meet a variety of strictly drawn criteria and sign consent 
forms. Patients tend to come in gradually over time and so are not available in a group 
as are test animals. They are a sample taken at given medical institutions within a 
given time period who meet the criteria for entry and who agree to participate. They 
are often chunk samples. 

In general, these clinical trials can be separated into two broad groups. The first 
group can be called independent trials done by individual or small groups of physi- 
cians. For example, a surgeon may decide to compare two methods of reconstructive 
breast surgery for women who have had a mastectomy. Patients who meet the criteria 
and agree to accept either operation will be randomly assigned to one of two surgical 
methods. Here, one recommended procedure is to list A and B in a random order 
where A designates one treatment and B the other. Again using oddeven numbers 
from the random number table to obtain a random order of the A and B treatments 
is advised. The A or B can be put into consecutively numbered envelopes that are 
not opened until the admission process is completed. Thus neither the patient, recep- 
tionist, nor surgeon can control which treatment the patient gets. Alternatively, the 
admission process can be done at a different location and the results communicated 
by phone or e-mail to the person delivering the treatment. If the treatments are the 
dispensing of one or two drugs, this can be done by a pharmacist. This is called 
double-blind since neither the doctor nor the patient knows what treatment is given. 
Assigning A and B to every other patient is not recommended. The personnel entering 
or evaluating them can determine the assignment procedure if they even know what 
one patient received. 

Larger more formal studies are performed before drugs are approved for use. These 
clinical trials are divided into phases. Phase I trials, which are conducted on healthy 
volunteers, are conducted first to assess safety at various doses. If a drug is deemed 
safe, a phase I1 trial is conducted to assess the optimum dose and efficacy in patients 
with the disease to be treated. If the drug passes this test it goes on to phase 111, where 
an experiment is done with patients randomly assigned to the new drug or the current 
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best treatment. Again, the treatments are given in random order. Phase IV trials are 
postmarketing surveillance trials that may be done to check for rare side effects (see 
Piantadosi [2005]). 

Special methods of assignment are sometimes used so that there is an equal number 
of patients in each treatment group over time (see Wooding [1994], Friedman and 
Furberg [ 19981, and Fleiss [1986] or Fleiss et al. [2003]). One procedure that is often 
used is to randomize the assignment of the patients to treatment A or B within a block 
of patients. The size of the block can be chosen so that patients who enter the study in 
a limited time period are equally likely to get one of the two treatments. Suppose that 
a block of eight patients is chosen; then in each block four patients will get treatment 
A and four, B. This can be done by entering the random number table, taking the 
first four distinct digits between one and eight, and assigning those patients to, say, 
treatment A and the remainder to treatment B. 

2.4.4 Samples for Prospective Studies 

Examination of prospective studies or panel studies shows that several types of sam- 
ples tend to occur. Many prospective studies have been done using a chunk sample 
of a special cohort of people who have been chosen for their high rate of cooperation 
both initially and at follow-up. For example, studies among employees in a stable 
industry such as utilities, the armed services, or religious groups such as the Seventh 
Day Adventists can be done with minimal loss to follow-up. The employer or group 
will keep track of the persons in the study and the investigator can use their records 
to find the study subjects. 

Some studies have been done using random samples from a general population 
within a geographic area. One of the most noted examples is the Framingham Heart 
Study, where the sample was a mixture of adults who were randomly sampled and 
volunteers who after hearing of the study wished to participate (see Mould [ 19981). It 
was started in 1948 to determine risk factors for heart disease. Over 10,000 adults par- 
ticipated in the Framingham study. In Los Angeles, a prospective study of depression 
was done where the sample was obtained in a random fashion by the Survey Research 
Center at UCLA (see Frerichs et al. [1981]). This type of study is more expensive 
to do and the loss to follow-up may be higher than when a cohesive and motivated 
chunk sample is taken. Nevertheless, this type of sample allows the researcher to 
make inferences as to the population being sampled. 

2.4.5 Samples for Case/Control Studies 

In case/control studies, the investigator starts with the cases after they are diagnosed 
or treated. These studies are also called retrospective since the investigator is look- 
ing backward in time. This often involves taking a chunk sample at one or more 
institutions that have medical records that the investigator can search to find cases 
that meet the eligibility criteria for a particular disease. Sometimes the study is per- 
formed solely from available records. Otherwise, the investigator must contact the 
case, obtain the person’s consent to enter the study, and interview or examine him or 
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her further. These procedures will lessen the number of usable cases and may make 
the sample less representative of patients with this disease. Most investigators try to 
use the most recent patients, as their records may be better and they are easier to find. 
Usually, a 100% sample of the most recent cases that are available to study are taken. 
Hence, the sample of cases is a chunk sample taken in a given place and time. 

The best sample of controls is more difficult to define. They will be used to contrast 
their exposure history with that of the cases. The controls should be taken from the 
same population that gave rise to the cases and the sample chosen in such a way 
that the chance of being sampled is not dependent on the level of the major exposure 
variables. They should be similar to the cases with regard to past potential exposure 
during the critical risk period. Three types of controls have been commonly used and 
each has its advocates: hospital or clinic controls, friend controls, and neighborhood 
controls. 

Typically, hospital controls are taken from the same hospital as the case, admitted 
at a similar time, are of the same gender and close in age, but have a different disease 
condition. One method of doing this is to individually find one or more matches for 
each case. Here, you are trying to find a pseudo-twin. The investigator has to be 
careful in what they choose to match, as it is not possible to analyze any factor that is 
used for matching purposes since the cases and controls have been made artificially 
equal in respect to that factor. 

The matching controls from hospitals are sometimes found by sorting a list of 
potential controls on gender, age, and time of admission (or whatever matching vari- 
ables are used) with the computer, and then finding matches from this sorted list. This 
procedure is sometimes called caliper matching because the investigator is trying to 
find a control that is close to the case on the matching variables. Alternatively, if the 
variables being matched fall into two groups, such as gender and age, and are grouped 
into three age intervals, say, <30 years old, 3 1-50 years old, and >50 years old, then 
what is called frequency matching is commonly done. The symbol “>” signifies 
“greater than.” Here, the investigator makes sure that there are an equal number of 
cases and controls in each gender and age category, or perhaps two controls for each 
case. 

Friend controls are chosen by asking the case (or a close relative if the case is 
dead) for the name and address of a friend or friends who can be contacted and used 
as a control. When obtaining friend controls is successful, it can be an inexpensive 
way of getting a matched control; it is thought to result in a control who has a lifestyle 
similar to that of the case. The three problems that have been noted with this method 
are that (1) sometimes cases lack friends or are unwilling to name them; ( 2 )  cases 
tend to name friends who are richer or have a better job or are in some way more 
prestigious than themselves; and (3) if the critical exposure time was in the distant 
past, then cases may have trouble recalling friends from that time period. 

Sometimes neighborhood controls are used either in and of themselves or to sup- 
plement unavailable friend controls. Neighborhood controls are thought of as suitable 
matches on general lifestyle. These controls are found in the neighborhood of the 
case by use of reverse directories, maps, or neighborhood searches. The general rule 
for matched controls is to exclude the homes immediately adjacent to the case for 
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privacy reasons. A list is made of 10-15 nearby houses following an agreed-upon 
pattern. The interviewer visits the first household on the list and sees if an eligible 
control lives in the house (say, of the same gender and within 5years of age). If 
the answer is no, the interviewer goes to the next house, and so on. Letters are left 
when no one is home, in an attempt to encourage a contact. Not-at-home addresses 
should be contacted repeatedly since the investigator does not want a sample solely 
of stay-at-homes. Neighborhood controls are costly and time consuming to obtain, 
but they are thought to be suitable controls. 

It is difficult to describe the sample of controls in a straightforward way since they 
are chosen to match the cases. Viewed as a single sample, they certainly lack mea- 
surability. Their value lies in their relationship to the cases. For further discussion of 
case/control studies and how to choose controls, see Rothman [ 19861 or Schlesselman 
[1982]. 

As can be seen from this introduction to sampling for medical studies, the problems 
of feasibility and economy often lead to the use of samples that are not simple random 
samples. It takes careful planning to obtain samples that, if not ideal, can still be used 
with some level of confidence. The success of a good study rests on the base of a 
good sample. 

PROBLEMS 

2.1 

2.2 

2.3 

2.4 

2.5 

2.6 

Draw three simple random samples, each of size 6, from the population of blood 
cholesterol measurements in Table 2.1. Use the table of random digits to select 
the samples, and record the page, column, and row of the starting digit you use. 
Record the six individual measurements separately for each sample in a table. 
They will be used for subsequent problems in other chapters. 

Draw one systematic sample of size 6 from the population of blood cholesterol 
measurements. Record what your starting value was. 

Suppose that you decide to use Table A. 1 to assign patients to treatment A or 
B by assigning the patient to A if an even number (e) is chosen and B if odd 
number (0) is chosen. Starting with the numbers in the upper left-hand corner 
of the first page of the table and reading across the first row, you would have 
oe eo 00 eo oo-oe oe eo 00 ee-oe eo 00 ee oe-ee 00 oe 00 00-00 eo eo 
eo eo. Does this appear to be a random allocation to you? How do you explain 
the fact that six odd numbers were chosen in a row? If you use this allocation, 
will you have an equal number of patients receiving treatments A and B? 
You are asked to take a sample of 25 students from a freshman medical class 
of 180 students in order to find out what specialty they wish to enter. Write 
out instructions for taking this sample that can be followed by a staffer with no 
sampling experience. 

Use a random number generator from a statistical computer package to assign 
20 patients to two treatments, with 10 patients receiving each treatment. 

An investigator wishes to take a sample of 160 undergraduate students from 
a university to assess the attitudes of undergraduates concerning the student 
health service. The investigator suspects that the attitudes may be different for 
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2.7 

2.8 

freshmen, sophmores, juniors, and seniors since it is thought that the attitudes 
might change as the students get more experience with the system. The inves- 
tigator would like to make estimates for each class as well as the total body of 
undergraduates. Choose a method of sampling and give the reasons for your 
choice. 

You have examined last year’s pathology records at a hospital and have found 
records of 100 women who have newly diagnosed breast cancer. You are in- 
terested in studying whether or not risk factor X, which is believed to have its 
effect on risk in women whose cancer is diagnosed when they are <50 years 
old, has had a significant effect in the population from which these women 
came. Describe how you would choose a suitable sample of controls. 

Randomize 24 patients who will receive either treatment A or B into three 
blocks of eight patients each so that in each block, four patients get treatment 
A and four patients get treatment B. 
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CHAPTER 3 

COLLECTING AND ENTERING DATA 

Regardless of what type of medical or public health study is performed, the resulting 
data are going to need to be analyzed. The data from the study will need to be entered 
into a statistical program unless the sample size is very small. This chapter will serve 
as a brief introduction to the steps in data collection in general and by the different 
types of studies will serve as a guide to what data to collect, how it is collected, 
pretesting of the collection process, entering the data, pre-screening the data, and 
making a code book. 

In Section 3.1 we discuss the initial steps in planning a study, in Section 3.2 we 
discuss data entry, in Section 3.3 we discuss screening the data, and in Section 3.4 
we describe how to make a code book. 

3.1 INITIAL STEPS 

First the investigators need to determine the purpose of the study. A clearly written 
statement of objectives of the study is essential. Some researchers find it useful to 
write out a short draft of what they expect their conclusions to be, to help ensure 
that they obtain the needed information. The study investigators should discuss these 
objectives, draft conclusions, and reach agreement on them. Then decisions need 
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to be made on a variety of topics, such as who will be eligible for the study, what 
information is needed, and how the needed data will be obtained and analyzed (see 
van Belle et al. [2004]). If the data have already been obtained and are in some type 
of computer records, it may be sensible first to transfer them to EXCEL files, since 
most statistical programs will accept EXCEL files. 

Different types of medical or public health studies tend to use mainly different types 
of data. The laboratory experiment, clinical trial, and casekontrol studies tend to use 
data that is similar to what could be found in a medical record or a laboratory report. 
This is medical-type data that can be interpreted by a professional. This information 
can either be used directly from records or special tests or can be reformated to fit 
the needs of the study. Here the study population tends to be patients, and the person 
collecting the data typically would be a physician. This type of study will simply be 
called a medical study. 

The second type of data is obtained from the respondents in surveys or prospective 
studies. This could include data such as attitudinal data, data on risky or recommended 
lifestyle behaviors, or data on access to medical care. The respondents do not have 
to be patients, and the studies may be performed by epidemiologists or other public 
health professionals. Here these studies are called simply public health studies. 

3.1.1 Decide What Data You Need 

Whether a study is a medical study or a public health study, data on characteristics 
such as age, gender, marital status, plus other characteristics of the respondent are 
usually collected. What is collected will obviously depend on what is being studied. 

The next step is to decide what specific data to collect for the study at hand. Here 
input from all the investigators is essential. It is often useful to review the available 
literature on the topic under study to see what information others have obtained and 
how they have taken it. To end up with data that could be used in a meta-analysis, 
it is important to include measurements comparable to those that have been used in 
other studies. This will also make it easier to compare results of the new study with 
previous results. For example, in measuring pain, most investigators use a pain scale 
that goes from 0 to 10, where 0 is no pain and 10 is the worst possible pain. If this scale 
is used, results can be compared with other studies and physicians are comfortable 
interpreting the scale. Decisions need to be made on a variety of topics, such as what 
information it is critical to obtain, how this needed data will be obtained, and how the 
investigators expect to analyze it (van Belle et al. [2004]). 

In collecting data it is sometimes useful to collect more detail than one currently 
expects to use. For example, collecting the age of the patients rather than just collect- 
ing which of three broad age groups they fall in may make sense. If it turns out that 
one age group has very few people in it, this could limit the analysis. On the other 
hand, collecting large amounts of data that never gets analyzed is a waste of time. 

If tests are going to be carried out on the patients using new techniques or equip- 
ment, test runs should be made. The equipment used to take the measurements should 
yield accurate results, be acceptable to patients, and yield the desired information. 
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The cost of the new equipment for taking the measurements and recording the data 
needs to be investigated. 

3.1.2 Deciding How to Collect the Data 

Data concerning patients or people in general can be collected directly using question- 
aires, interviews, direct observation, medical devices, or indirectly from electronic 
or written records (Bourque and Fielder [ 19991, and Bourque and Clark [ 19921). In- 
formation that is unavailable in records or cannot be observed can often be obtained 
from questionnaries. For example, information about past activities or conditions, at- 
titudes or anticipated behavior can be collected from questionnaires. On the negative 
side, the reliability and validity of this type of data are uncertain since they depend 
on the respondents’ memories and willingness to be truthful. Also, questionnaires 
are a good option only when the responders are available and willing to answer the 
questions. Questionnaires can be administered face to face, by telephone, using the 
Internet, mailed, or handed out. The data can be entered either by the respondent 
or by the person asking the questions. In medical studies, when the questionnare is 
administered by a medical person who is entering the responses from the patient as 
part of the treatment for an illness, high numbers and accurate response rates can 
usually be obtained. Subsequent questionnaires that are mailed out a year or more 
after the treatment commonly have lower response rates and less certain accuracy. 

There are major advantages in having the person asking the questions also record 
the responses. More complex questions can be asked since the questioner can give 
needed information to the respondent. Also, a more complex questionnaire design can 
be used. For example, if parts of the questionnaire need to be answered only by certain 
responders, such as patients with special risk factors, such as smoking or previous 
medical conditions, the questions asked can be tailored to the answers obtained in 
earlier questions. The downside to having a professional asking the questions is the 
increased cost. 

Questionnaires can also be administered in a group setting. Here the supervisory 
person can give introductory information, answer questions, and monitor completion 
of the questionnaire. This type of administration can be helpful in obtaining answers 
to all the items being questioned. Sometimes this is done in a physician’s waiting 
room by a receptionist, who distributes the questionnaire to the patients in the study. 
Completion of the questionnaire can be checked by the receptionist. 

Mail questionaires are the most commonly used that do not involve an interviewer. 
Self-administered mail questionnaires have to be short, easy to fill out, and be of some 
interest to the respondent. Sometimes a reward is offered for filling them out. Mailed 
questionnaires are much less expensive to use. However, there is no certainty as to 
who actually answered the questionnaire and their understanding of the questions. 
Often, questionnaires are not filled out completely or returned. 

Mailed questionnaires can be mailed virtually anywhere except to the homeless, 
as long as an address is known. With lower costs, a larger sample can be taken and all 
respondents will receive their questionnaires at the same time. If there is a seasonal 
effect to what is under study, this might be important. The disadvantages are that 



30 COLLECTING AND ENTERING DATA 

correct addresses are needed, response rates tend to be low, and problems of literacy 
and language may exist. 

Especially with mailed questionnaires, it is essential to make them easy to fill out. 
One suggestion is to start out with the easiest questions so that the respondent will be 
comfortable answering the questions. Some researchers will also put the questions 
that they are most interested in early in the questionnaire so that if a responder does 
not complete the questionnaire, they at least get the response to that question. Using 
short questions with a specific choice of answers and a place to put the answers makes 
it simpler for the responder. Sometimes answers such as “don’t know” or “does not 
apply” are included to encourage getting some answer from the respondent. Only 
medical terminology that is widely known or known to the respondent should be used. 

Making plans for increasing the response rate are essential. Response rates can be 
increased by having the reasons for needing the information made clear to the respon- 
dent. If possible, some type of reward can be given for answering the questionnaire. 
Note that in medical or public health studies, this does not have to be money. Plans 
for conducting a second mailing should be considered. For example, a postcard could 
first be sent out, reminding respondents to mail in their responses to the questionnaire 
and why their responses are important. After another waiting period, the questionaire 
could be sent out a second time. 

Telepnone interviews are also less costly than face-to-face interviews. The in- 
creased use of computers in computer-assisted-personnel-interviewing (CAPI) or 
audio-computer-self-interviewing (ACASI), and use of the Internet have provided 
additional options. Cell phone use has made some telephone interviews more diffi- 
cult since cell phone numbers are not in local telephone directories or in older records. 
Another disadvantage in telephone surveys is nonresponse or early hang-ups. Surveys 
can also be done online (see SurveyMonkey.com). 

In medical studies direct observation is often used to collect data. Here the major 
advantage is that the reseacher obtains the information directly and does not have to 
count on the memory or honesty of the respondent. The results can be entered directly 
into a computer. The disadvantages are the expense and the fact that it can only be 
used to collect data that can be observed directly. Also, if there are several observers, 
they may have to train together so that their observations are done in a similar manner. 

Use of medical records or other documents are common in medical studies. Med- 
ical records, birth and death certificates, and coroner’s reports can be used. Their 
advantages are that they are readily available data, are often less expensive, and have 
few missing cases. Information on people who are no longer available can still be 
found in records. The major disadvantages are that the records are often not collected 
for research purposes, and the data may have been collected by persons with varying 
levels of accuracy and completeness. It may also be difficult to access the desired 
data. 

3.1.3 Testing the Collection Process 
The next step is to test the collection process. In collecting data from medical records, 
the researchers should first examine a sample of the medical records they plan to use 
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so that they can determine what data actually is available on the medical records and 
if it is recorded in a consistent manner. This pre-screening of the data can help avoid 
problems showing up after the work of entering the data is done. Are the various 
physicians who fill out the medical records doing it in a similar manner? Does the 
form that the data are going to be recorded on match what is in the records? Are there 
numerous missing values in the records? Have the measurements been made in the 
way that the investigators expected them to be taken? 

If the data are obtained from patients, are the patients actually able and willing 
to respond to the questions the researchers want to ask them? Does the wording of 
the questions have to be altered so that it is understandable to the patient? If a post- 
operation survey is done, will the patients come into the doctor’s office to answer 
questions or be examined? What can be done to increase the number willing to come 
in? Can the visit include something that the patients would like to have, such as a 
free checkup or some reward? If the patient will not come in, can the investigators at 
least get answers to critical questions by phone? 

Nonresponse has become a major problem in mail surveys. When the subject does 
not respond at all, this is called unit nonresponse. Response rates can be increased 
if the patients are convinced that their responses are important and they feel a sense 
of obligation to the person requesting their responses. If they just refuse to respond 
to one or more questions, it is called item nonresponse. For example, some people 
will not respond to a question concerning income. Sometimes the item response rate 
for a question can be increased if answers such as “don’t know” or “does not apply” 
are included. There are statistical techniques that help reduce the biases caused by 
nonresponse, but they are beyond the scope of this book (see Groves et al. [2002]). 

Performing a pilot study where one goes through the entire study on a few cases 
is often recommended in large studies to work out potential problems. In surveys, it 
is especially important to see if people will respond to the survey and what questions 
they have difficulty with. 

3.2 DATA ENTRY 

Once the investigators know what information they want and how they are going 
to obtain it, they need to decide how they will assign names and attributes to the 
data. Each type of observation should be given a name. For example, if one is 
studying systolic blood pressure of males by age, one could have a small data set that 
contains ID, age, systolic (an abbreviation for systolic blood pressure), gender and 
smoke (smoking status). Note that abbreviated words are often used to identify the 
variables. 

Note that each row represents a new case and each column a different type of 
observation (called variables). Here 1 = male and 2 = female. Also, 1 = current 
smoker, 2 = former smoker, and 3 = nonsmoker. 

Each person or item number should be given an ID number. In medical studies 
names are often not used, for confidentality reasons. If the investigator wishes to 
compare the results for two or more groups, a variable should be entered that represents 
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group identity. In this example, one might want to compare the results for males and 
females, so gender needs to be included. 

Table 3.1 Study Results 

ID Age Systolic Gender Smoke 

1 57 123 1 1 
2 71 137 2 2 
3 35 128 1 3 
4 60 155 2 1 

The data may be taken by direct observation, by interviews, or from records. 
Taking direct observations or interviews takes longer and the observers or interviewers 
may need to be trained and monitored occasionally to ensure accurate information. 
Obtaining data from records is less expensive and can be a cut-and-paste type of 
procedure. But sometimes the investigator has little control over how or what is 
taken. The data may not have been taken for research purposes. In other cases, when 
the data are obscure, it may help to have two investigators read it separately, compare 
their results, and then reach an agreement on the results that they originally did not 
agree on. 

Before entering the data into a statistical package, the investigators have to know 
how they will name each variable, what type of variable it is, the placement of the 
decimal point, how missing values are to be identified, and so on. The identification of 
missing values depends on which statistical package one intends to use, so reading the 
data entry instructions in the manual or using the HELP statement may be necessary. 

For example, for Minitab the DATA window will display a spreadsheet form so 
the user can enter the data directly. If the value for a variable is missing for a case, 
an asterisk is entered instead of the value for that case and variable to identify the 
result as missing. In SAS, either the space where the answer goes can be left blank 
or a period can be put there. SPSS allows the reader to designate what they want as 
a missing value. Stata uses periods. 

Another common method of entering data is to use an EXCEL spreadsheet. Most 
statistical packages will allow importing EXCEL files. For more details on the data 
entry for the commonly used programs, see Afifi et al. [2004]. The statistical programs 
all provide information on entering data in their manuals. 

The data that are entered may be more complicated in surveys. Suppose that the 
questionnaire includes the question: Are you a current smoker? The answer could 
be either yes or no. For those respondents who are current smokers, there could be a 
series of questions concerning how much and for how long. For the nonsmokers these 
questions will be skipped and the respondent will then be asked a question on the 
next topic that does not pertain to smoking. SPSS, which was developed originally 
with surveys in mind, has a skip and fill option that handles this type of situation. 

Another possible type of entry is a form entry. Here an entry form similar to the 
actual form that is used to collect the data is used to enter the results (see Afifi et 
al. [2004] for a discussion of this method). 
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If the investigator already has a printed copy of the data in a spreadsheet format, the 
data can be scanned so that it can be recognized by using optical character recognition 
(OCR) software. Most of the OCR software will then let you put the results in EXCEL. 
Copy and paste can also be used with some programs. Many of the major statistical 
packages (Minitab, S-PLUS, SAS-JMP, SAS, SPSS, Stata) include the option for 
spreadsheet entry plus other less used options. 

3.3 SCREENING THE DATA 

The next step is screening the data, which is done to enable the investigator to proceed 
with confidence in performing statistical analyses. This can be as simple as scanning 
the data set visually if it is not too large. One screening that should always be done is 
to obtain the maximum and minimum value for each variable. For example, for the 
smoking question, only 1, 2, or 3 are allowable values. If a 5 is entered, a mistake 
has been made. If heights of adult males are listed, heights of less than 60 in. or more 
than 84 in. should be questioned. In this screening, what is being examined are called 
outliers. Outliers have been defined as observations that appear to be inconsistent 
with the remainder of the data. Outliers can occur in several ways: for example, as 
an error in taking the measurement, recording it, or entering it into the computer. 
Sometimes, extreme biological, psychological, or environmental variation may result 
in unusual values. It can also be a sampling problem where one takes measurements 
from, say, a patient who is not a member of the group that the investigator intended 
to study. 

Note that the removal of outliers is no guarantee that all incorrect observations 
have been identified and removed. If measurement error lowers the height of a tall 
person, it could result in a height that was in the normal range and would not be 
detected as an error. 

It is also useful to make sure that the data have been entered into the correct column. 
Additional screening procedures will be given in subsequent chapters. In data sets 
where there are concerns about the correctness of the data entry from records, the 
numerical data can be entered twice by different persons and then the results can 
be compared by subtracting the results from one person from those from the second 
person and seeing if only zeros are obtained. 

Additional screening procedures are given for various statistical analyses describd 
in this book. In general, graphic displays of the data are often the best way of 
performing initial data screening, and simple graphic displays (given later in the 
book) should always be considered. With available computer programs, they are easy 
and quick to obtain. 

After data entry and screening, the next recommended step is to make a protected 
backup of your data on an external storage device such as a CD, DVD, or flashdrive. 

3.4 CODEBOOK 

For studies that include numerous variables and many possible users, it is also useful 
to write a code book so that everyone knows what data are available in the data set 
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and how the information has been entered into the statistical package. A code book 
for the data for the four males could be written as shown in Table 3.2. 

Table 3.2 Code Book 

Variable Number Variable Name Description 

1 ID Identification number 
2 Age Age in years, last birthday 
3 Systolic Systolic blood pressure (mm Hg) 
4 Gender Male = 1 and Female = 2 

The steps listed above in getting the data into an appropriate statistical package 
sometimes take more time than the actual statistical analysis. The decisions that are 
made in measuring the data and what is entered into the statistical package can affect 
what analyses can be made. 

PROBLEMS 

3.1 For the statistical package that you intend to use, write out how data can be 
entered, how random numbers can be generated, and how missing values can 
be identified. 

3.2 Write the small data set for the four males given in this chapter into an 
EXCEL spreadsheet and then enter the data from the spreadsheet into a 
statistical program. 

If a data set has results on breast cancer that include information on age, gender, 
and use of hormones, what checks should be made on the results to ensure that 
errors in recording data have not been made? 

3.3 
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CHAPTER 4 

FREQUENCY TABLES AND THEIR 
GRAPHS 

Usually, we can obtain only a rather vague impression from looking at a set of data, 
especially with a large data set. The complexity that the mind can grasp is limited, 
and some form of summarizing the data becomes necessary. In this chapter and 
in Chapter 5, commonly used ways of depicting data are considered. The general 
purpose of Chapters 4 and 5 is to show how data can be described in a form that alerts 
the reader to the important features of the data set. We regard such descriptions as 
a first step in analyzing data; frequently, it is the only step that needs to be taken. 
With small data sets it can be done by hand, but with larger sets statistical computer 
programs should be used. 

In this chapter, a straightforward way of showing the distribution of the data is 
given. Additional methods are given in the next chapter. The methods given here are 
used mainly for what are called continuous variables. Continuous variables are not 
restricted to a particular value and can be measured to different levels of accuracy. 
For example, length could be expressed as 10 cm, 10.1 cm, or 10.13 cm. In contrast, 
discrete variables can only take on integer values. An example would be the number 
of children in a family. For additional information on classifying variables, see 
Section 5.4.3. 
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By Olive Jean Dunn and Virginia A. Clark 
Copyright @ 2009 John Wiley & Sons, Inc. 

35 



36 FREQUENCY TABLES ANDTHEIR GRAPHS 

Table 4.1 Hemoglobin Levels of 90 High-Altitude Mine Workers (g/cm3) 

18.5 16.8 23.2 19.4 19.5 20.6 22.0 17.8 16.2 
23.3 19.7 21.6 24.2 21.4 20.8 19.7 21.1 23.0 
21.7 18.4 22.7 20.9 20.5 16.1 16.9 24.8 12.2 
17.4 17.8 19.3 17.3 18.3 17.8 17.1 18.4 19.7 
17.8 19.0 19.2 15.5 26.2 19.1 20.9 18.0 21.0 
20.2 18.3 19.2 17.2 19.8 19.5 20.0 18.4 15.9 
19.9 16.4 18.4 17.8 23.0 19.4 20.3 18.2 13.1 
20.3 18.5 24.1 14.3 17.8 19.9 23.5 19.7 19.3 
20.6 18.3 20.8 17.6 18.1 19.7 19.1 19.5 23.5 
18.5 20.0 22.4 18.8 16.2 15.6 15.5 18.5 19.0 

First, methods of summarizing the data in stem and leaf and frequency tables are 
illustrated in Section 4.1. Then Section 4.2 presents ways of making histograms 
and frequency polygons from the results of the frequency tables. When statistical 
programs are used, the explanations will help in the choice of the program and also 
in choosing among the options. 

4.1 NUMERICAL METHODS OF ORGANIZING DATA 

In Table 4.1 we have an example of a moderate-sized set of raw data containing 
hemoglobin levels for 90 high-altitude miners in grams per cubic centimeter. Without 
some rearrangement of the 90 observations, the values are difficult to interpret. Here 
in Section 4.1 we discuss making an ordered array of the data, and then show how to 
make a stem and leaf table and a frequency table. 

4.1.1 An Ordered Array 

The simplest arrangement of the data is an ordered array. An ordered array is an 
arrangement of the observations according to size from smallest to largest. It can be 
done easily by hand for small sets of data. Most statistical packages include a sort 
command that will sort any variable (see Minitab, SAS, SPSS, or Stata). From an 
ordered array the maximum and minimum values can be seen. A typical value would 
be in the middle of the list. Table 4.2 is still cumbersome, however, and contains so 
much detail that we cannot easily distinguish its important properties. 

4.1.2 Stem and Leaf Tables 

The basic idea in making a stem and leaf table is to present the first digit or digits of 
each observation in the first column and the rest of the digits in the second column. 
Each line is called a called a stem and the information on the stem is called the leaf. 
In Table 4.3 we have three digits, and we call the first two the stem and the last one 
the leaf. Note that if we look at Table 4.2 for the first number, 12.2, the first two digits 
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Table 4.2 
Workers (g/cm3) 

Ordered Array of Hemoglobin Levels of 90 High-Altitude Mine 

12.2 16.4 17.8 18.4 19.0 19.5 20.0 20.9 23.0 
13.1 16.8 17.8 18.4 19.1 19.5 20.0 20.9 23.0 
14.3 16.9 17.8 18.4 19.1 19.7 20.2 21.0 23.2 
15.5 17.1 17.8 18.4 19.2 19.7 20.3 21.1 23.3 
15.5 17.2 18.0 18.5 19.2 19.7 20.3 21.4 23.5 
15.6 17.3 18.1 18.5 19.3 19.7 20.5 21.6 23.5 
15.9 17.4 18.2 18.5 19.3 19.7 20.6 21.7 24.1 
16.1 17.6 18.3 18.5 19.4 19.8 20.6 22.0 24.2 
16.2 17.8 18.3 18.8 19.4 19.9 20.8 22.4 24.8 
16.2 17.8 18.3 19.0 19.5 19.9 20.8 22.7 26.2 

Table 4.3 Stem and Leaf Table of Hemoglobin Data 

First Two Digits Third Digit Count Cumulative 

12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
26 

2 
1 
3 
5659 
842 192 
48832868818 
554353483140425 
970322458154977175730 
236089568903 
76410 
740 
320505 
128 
2 

1 
1 
1 
4 
6 

11 
15 
21 
12 
5 
3 
6 
3 
1 

1 
2 
3 
7 

13 
24 
39 
60 
72 
77 
80 
86 
89 
90 

are 12 and the leaf is 2. Note that 12, 13, and 14 occur only once but 15 occurs four 
times. 

From the stem and leaf table the investigator can look at the numerical values in 
the data and get an impression of how the data are distributed. From Table 4.3 one can 
see that the most common hemoglobin level is 19 plus and that there are more values 
< 19.0 than > 19.9. Stem and leaf tables are also useful in seeing whether the person 
who takes the data tended to round the numbers to whole numbers or halves. This 
would show up as an excess of 0’s and 5’s in the leaf column. Stem and leaf tables 
display both graphical information on the shape of the distribution and numerical 
values of the observations. 

If we had four digits, we could call the first three the stem and the last one the 
leaf, but that would result in a long table, so perhaps a better choice would to call the 
first two digits the stem and the last two the leaf. The stem and leaf table is easy to 
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make, especially if one starts with an ordered array such as that given in Table 4.2. 
Statistical packages such as Minitab, SAS, SPSS, and Stata provide stem and leaf 
tables. 

Alternatively, data may be presented in the form of a frequency table. In a frequency 
table, details are sacrificed in the hope of showing broad essentials more clearly. 
A frequency table can also be viewed as the first step in making a histogram (see 
Section 4.2.1). 

4.1.3 The Frequency Table 

To make a frequency table, we find the interval that includes the smallest and largest 
observation in the data set (here 12.2-26.2) and decide on some convenient way of 
dividing it into intervals called class intervals or classes. The number of observa- 
tions that fall in each class interval are then counted; these numbers form a column 
headed frequency. 

Table 4.4 shows a frequency table of the hemoglobin data for the 90 workers. In 
Table 4.4, the first class interval was chosen to be 12.0-12.9. Here, 12.0 was chosen 
for convenience as the starting point, and the length of each interval is 1 g/cm3. The 
table succeeds in giving the essentials of the entire set of data in a form that is compact 
and can be read quickly. 

The investigator who collected the data may find the frequency table as it stands 
quite adequate for their use, or they may for some purposes prefer using the original 
90 observations. An investigator wishing to publish printed data for others to use 
may publish a frequency table rather than the raw data unless the data set is small. It 
is important in either case that the table be properly labeled, with title, source, units, 
and so on. It is also important that the class intervals be designated in such a way that 
it is clear exactly which numbers are included in each class. 

In Table 4.4, the designation of the class intervals is done in the most usual way. We 
might wonder, however, in looking at it, what happened to workers whose hemoglobin 
measurements were between 12.9 and 13.0g/cm3. The answer is that the measure- 
ments were made originally to the nearest .1 g/cc, so there are no measurements 
listed between 12.9 and 13.0g/cm3. The class intervals were made to reflect the way 
the measurements were made; if the measurements had been made to the nearest 
0.01 g/cm3, the appropriate first interval would be 12.00-12.99. 

Table 4.4 also displays the midpoints of each interval. The midpoint for the first 
interval is the average of 11.95 and 12.95 or (11.95 + 12.95)/2 = 11.45. Note that 
all hemoglobin levels between 11.95 and 12.95 fall in the first interval because the 
measurements have been made to the nearest 0.1 g/cm3. Subsequent midpoints are 
found by adding one to the previous midpoint since the class interval is 1 g/cm3 long. 
The midpoints are used to represent a typical value in the class interval. 

There is no one “correct” frequency table such that all the rest are incorrect, but 
some are better than others in showing the important features of the set of data without 
keeping too much detail. Often, a researcher chooses a class interval based on one 
used in the past; for researchers wishing to compare their data with that of others, this 
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Table 4.4 
Mine Workers (g/cm3) 

Frequency Table for Hemoglobin Levels of 90 High-Altitude 

Class Interval Midpoint Frequency 

12.0-12.9 
13.0-13.9 
14.0- 14.9 
15 .O- 1 5.9 
16.0-16.9 
17.0-17.9 
18.0-18.9 
19.0-19.9 
20.0-20.9 
2 1 .O-2 1.9 
22.0-22.9 
23.0-23.9 
24.0-24.9 
25.0-25.9 
26.0-26.9 

12.45 
13.45 
14.45 
15.45 
16.45 
17.45 
18.45 
19.45 
20.45 
21.45 
22.45 
23.45 
24.45 
25.45 
26.45 

1 
1 
1 
4 
6 

11 
15 
21 
12 
5 
3 
6 
3 
0 
1 

Sum - 90 

choice is helpful. Comparison is simpler if the two frequency distributions have the 
same class intervals. 

Before constructing a frequency table, we examine the range of the data set in order 
to decide on the length and starting points of the class intervals. The range is defined 
to be the difference between the largest and the smallest observations, so that for the 
data in Table 4.2 the range is 26.2 - 12.2 = 14.0. Next, an approximate number of 
intervals is chosen. Usually between 6 and 20 intervals are used; too much is lost in 
grouping the data into fewer than 6 intervals, whereas tables of > 20 intervals contain 
an unnecessary amount of detail. Intervals of equal length are desirable, except in 
special cases. To obtain equal intervals, the range is divided by the number of intervals 
to obtain an interval length that is then adjusted for convenience. In the example, the 
range of the datais 26.2 - 12.2 = 14.0 g/cm3, and if we wish about 12 equal intervals, 
14.0/12 = 1.2g/cm3. We then adjust the 1.2 to 1.0, a more convenient length, for 
the class interval. 

The beginning point of the first class must still be decided upon. It must be at least 
as small as the smallest observation; otherwise, the choice is arbitrary, although 12.0 
seems most convenient. 

One problem with making frequency tables using computer programs is that some 
programs do not provide investigators with the freedom to choose the particular class 
intervals they desire. Many programs give only the frequencies of each distinct ob- 
servation; these counts can be accumulated later or the user may be able to group 
their data as a separate procedure before obtaining the frequencies. To make fre- 
quency tables in Minitab, see Evans [2005], and in Stata see the “tabulate one way for 
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Table 4.5 
Workers Illustrating Relative Frequency and Cumulative Frequency 

Hemoglobin Level (g/cm3) Frequency Relative Frequency (%) Cumulative Frequency (70) 

Frequency Table of Hemoglobin Levels for 122 Low-Altitude Mine 

11 .O-11.9 6 4.9 4.9 
12.0-12.9 21 17.2 22.1 
13.0-13.9 29 23.8 45.9 
14.0- 1 4.9 43 35.2 81.1 
1 5 .O- 1 5.9 19 15.6 96.1 
16.0-16.9 3 2.5 99.2 
17.0-17.9 1 0.8 100.0 

Sum 122 100.0 

frequency tables,” Note that the term frequency table in many computer programs 
refers to a type of table discussed in Chapter 11. 

4.1.4 Relative Frequency Tables 

If the numbers in the frequency table are expressed as proportions of the total number 
in the set, the table is often somewhat easier to interpret. These proportions are 
computed by dividing the frequencies in each class interval by the total sample size. 
Often, these proportions are converted to percentages by multiplying by 100. The 
table may then be called a table of relative frequencies, or it may still be called a 
frequency distribution or frequency table. Relative frequency tables are especially 
helpful in comparing two or more sets of data when the sample sizes in the two data 
sets are unequal. 

Table 4.5 gives a frequency table showing the hemoglobin level for 122 low-altitude 
miners. Class intervals for Table 4.5 are of length 1 .O g/cm3, as in Table 4.4. Relative 
frequencies reported in percents have been calculated for the results for low-altitude 
miners. For example, 4.9% has been calculated by dividing 6 by 122, the total sample 
size, and then multiplying by 100 to obtain percents. 

The last column in Table 4.5 gives cumulative frequency in percent; this is the 
percentage of the low-altitude miners who had hemoglobin levels below the upper 
limit of each class interval. The figures are obtained by adding the percentages in 
the relative frequency column. For example, the first two relative frequencies in the 
table for low-altitude miners are 4.9 and 17.2; these add to 22.1, the percentage found 
opposite the second class interval under cumulative frequency. This says that 22.1% 
of the mine workers had hemoglobin levels measuring < 12.95 g/cm3. 

4.2 GRAPHS 

The purpose of a graph: is the same as that of a table; to show the essentials of a 
set of data visually so that they may be understood quickly and easily. In gathering 
data into any type of table, some of the details are lost in achieving the objective of 
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showing the main features. In making a graph, we draw a picture of the situation, 
and we may lose even more of the fine details. A well-done graph is usually easier to 
read and interpret than the table. 

Two ways of grafting a sample of continuous data are given here: the histogram 
and the frequency polygon. In Section 5.5, some graphs are described that can be 
used to display measures of the center and spread of a set of observations. 

4.2.1 The Histogram: Equal Class Intervals 

When the class intervals in the frequency distribution are equal, a histogram can be 
drawn from it directly, using the frequencies, proportions, or percentages. Two lines, 
one horizontal, the other vertical, are all that is needed; one line is called the horizontal 
axis and the other, the vertical axis. A suitable scale is then marked on each axis. 
The horizontal scale must be such that all the class intervals can be marked on it; it 
need not begin at zero. The vertical scale should begin at the point where the axes 
cross. If the histogram is to be plotted with frequencies, the scale must be chosen so 
that all the frequencies can be plotted. With proportions or percentages, the vertical 
scale must be chosen so that the largest one can be plotted. 

After choosing the scale, class intervals are marked on the horizontal scale and 
a vertical bar is erected over each class interval. The height of each bar is made to 
equal the frequency, proportion, or percentage in that class. 

Figure 4.1 shows two histograms drawn from the data in Table 4.5 for low-altitude 
mine workers and relative frequencies computed for the high-altitude mine workers 
using Table 4.4. Percentages are plotted on the vertical axis. In Figure 4.1, the numer- 
ical values of the endpoints of the class intervals are marked on the horizontal axis. 
Alternatively, many programs mark the midpoints of the class intervals so as to indi- 
cate a typical value for that interval. Histograms may also be plotted using frequencies 
on the vertical axis, but percentages are preferable for purposes of comparison when 
the sample sizes are unequal. 

In this example the histograms clearly show higher hemoglobin levels for the 
high-altitude mine workers than for the low-altitude workers. Also, there is a greater 
range between the highest and lowest values for the high-altitude workers. Almost 
all statistical packages and many spreadsheet programs include procedures for mak- 
ing histograms. Minitab, SAS, SPSS, and Stata all include the option of making 
histograms. 

For small sample sizes and for histograms not for publication, investigators some- 
times draw quick histograms by placing an X in the appropriate class interval for each 
observation. The result is a histogram of X’s instead of bars. This is used only for 
actual frequencies. It is often drawn transposed with the class intervals on the vertical 
axis, thus appearing somewhat like a stem and leaf graph. 

4.2.2 The Histogram: Unequal Class Intervals 

When drawing a histogram from a set of data with unequal class intervals, we must 
first adjust for the length of the class intervals in order to avoid a graph that gives a 
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Figure 4.1 
workers. (b)  High-altitude mine workers. 

Distributions of hemoglobin levels of mine workers. (a )  Low-altitude mine 

misleading impression. Table 4.6 shows the age distribution of 302 hospital deaths 
from scarlet fever in 1905-1914. Both the frequencies and proportions are given. 

If a histogram had been plotted directly from the frequencies in the table, it would 
leave the impression that deaths from scarlet fever rise sharply from 9 to 10 years 
of age. This erroneous impression arises simply from the fact that there is a change 
in the length of the class interval. The eye seems naturally to compare the various 
areas on the graph rather than just their heights. The number of deaths from 10 up to 
15 years is 14. Fourteen deaths is larger than the number of deaths at either age 8 or 
9. If we plotted a bar 14 units high for the number of deaths from 10 up to 15 years, 
we would make it appear that the number of deaths is greater among this age group 
than among either 8- and 9-year-olds. 

To correct this, we plot the number of deaths per year of the interval rather than 
just the number of deaths. Since there are 14 deaths in the interval extending from 
10 to 15 years of age, there were 2.8 deaths per year of the interval. A single bar 2.8 
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Table 4.6 Frequency Table of Ages of 302 Deaths from Scarlet Fevera 

Age (years) Number of Deaths Relative Frequency 

0- 
1- 
2- 
3- 
4- 
5- 
1- 
8- 
9- 

10- 
15-20 
Sum 

18 
43 
50 
60 
36 
22 
21 

6 
5 

14 
3 

302 

.06 

.14 

.11 

.20 

.12 

.07 

.06 

.02 

.02 

.05 

.01 
1 .oo 

a Data are extracted with permission from A. Bradford Hill, Principles of Medical Statistics, Oxford 

University Press, New York, 1961, p. 52. 

Figure 4.2 Age of 302 deaths from scarlet fever: a histogram. 

units high is plotted above the entire class interval. The area of this bar is now 14 
square units, as it should be. Frequencies have been plotted in Figure 4.2. 

4.2.3 Areas Under the Histogram 

As mentioned earlier, the eye tends to compare the areas in a graph rather than the 
heights. In interpreting the histogram in Figure 4.l(a), for low-altitude workers, we 
might notice that the first, second, and third bars on the left side of the histogram 
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703 

Age (years) 

Figure 4.3 Age of 302 deaths from scarlet fever: a frequency polygon 

seem to be somewhat less than one-half of the area of the entire histogram. From this 
we conclude that less than one-half of the low-altitude hemoglobin levels were under 
14 g/cm3. In contrast, we see that only a very small percentage of hemoglobin levels 
in the high-altitude group was under 14 g/cm3, since the area of the bars to the left of 
14 is very small. 

4.2.4 The Frequency Polygon 

Instead of a histogram a frequency polygon is often made from a frequency distri- 
bution. It is made in the same way, except that instead of a bar of the proper height 
over each class interval, a dot is put at the same height over the midpoint of the class 
interval. The dots are connected by straight lines to form the frequency polygon. 
Sometimes the polygon is left open at each end, but usually it is closed by drawing 
a straight line from each end dot down to the horizontal axis. The points on the 
horizontal axis that are chosen to close the frequency polygon are the midpoints of 
the first class interval (on either end of the distribution) that has a zero frequency. 
Figure 4.3 gives a frequency polygon corresponding to the histogram of Figure 4.2. 

The frequency polygon differs little from the histogram. To compare two frequency 
polygons at a glance may be easier than to compare two histograms. On the other 
hand, the frequency polygon has the disadvantage that the picture it gives of areas is 
somewhat distorted. The area over a certain class interval is no longer exactly equal 
to the proportion of the observations within that interval. The difference is slight, 
however, unless the number of class intervals is small. 
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Figure 4.4 Histogram with small class intervals. 

Frequency polygons can be made using options in computer programs. If the 
midpoint of the top of the bar is entered into the computer package as a variable, a 
line plot option can be used to correct successive points. 

4.2.5 Histograms with Small Class Intervals 

If we imagine an immense set of data measured on a continuous scale, we may imagine 
what would happen if we picked a very small class interval and proceeded to make 
a frequency distribution and draw a histogram adjusting the vertical scale so that the 
area of all the bars totals 100%. With the bars of the histogram very narrow, the tops 
of the bars would get very close to a smooth curve, as shown in Figure 4.4. If the 
large set of data that we are imagining is the population being studied, the smooth 
curve will be called the frequency distribution or distribution curve of the population. 
A small or moderate-sized sample is not large enough to have its histogram well 
approximated by a smooth curve, so that the frequency distribution of such a sample 
is better represented by a histogram. 

4.2.6 Distribution Curves 

Distribution curves may differ widely in shape from one population to another. A few 
possibilities are shown in Figure 4.5. Such distribution curves have several properties 
in common: (1) The area under each of them is equal to loo%, or 1. (2) We may look 
at areas between the curves and the horizontal axis and interpret them as proportions 
of the individuals in the population. For example, if (a)  is the frequency distribution 
for heights of a population, and if we judge that 20% of the area is above the portion 
of the horizontal axis to the left of 66 in., we decide that about 20% of the heights 
of the population are < 66 in. Similarly, if the area from 66 to 70 in. is 60% of the 
entire area, then 60% of the heights are between 66 and 70 in. 

The distribution curves depicted in Figure 4.5 are often described verbally. For 
example, (a) is called a symmetric distribution, where the right side is a mirror image 
of the left side; ( b )  has what is called a long tail to the right, sometimes called skewed 
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Figure 4.5 Distribution curves. 

to the right, and is common in biomedical and other data; (c) is called bimodal since 
it has two distinct high values with a dip between them; and (d )  has a long tail to the 
left or is called skewed to the left. Forms (c)  and (d )  are less common in practice. 

The frequency distribution of the population is an important concept. Actually, we 
rarely know the exact form of the distribution of the population we wish to study. We 
have a sample from the population, and we plot a histogram (or frequency polygon) 
from the sample; this can be regarded as giving some idea of the form of the frequency 
distribution of the population. One important use of the histogram or stem and leaf 
graph is to check visually if our sample has a form that is similar to what we expected 
in the population. These plots are easy to obtain from the statistical software packages. 

There are numerous other methods of depicting data graphically. Texts on this 
subject include Cleveland [1985], Cleveland [1993], and Chambers et al. [1983]. For 
a discussion more oriented to the visual impact of the graphics, see Tufte [1990]. 

Tables are also an obvious way of presenting data, and data are often presented 
in that form. Koschat [2005] gives some suggestions for making tables. One is that 
the first decision is what variables to make rows and what variables, columns. The 
first rule is that, in general, numerical comparisons are easier to make within columns 
than within rows, so if the reader wants to compare ages of patients, the ages should 
be kept in a column. Put the rows whose entries you want to compare close together; 
the same holds true for columns. Since we tend to read from left to right and top to 
bottom, the reader will probably look first at the upper left corner of the table. 
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PROBLEMS 

4.1 

4.2 

4.3 

4.4 

4.5 

4.6 

4.7 

4.8 

4.9 

Make a stem and leaf graph of the first five rows of the blood cholesterol data 
in Table 2.1 (50 observations). Do you see an excess of 0’s or 5’s? 

Use the stem and leaf graph from Problem 4.1 to assist you in ordering the data. 
From the ordered data, make a relative frequency table such as that given in 
Table 4.5. 

Make a histogram of the percentages from Problem 4.2. Does the distribution 
appear to be symmetric? Approximately what percentage of the cholesterol 
levels lie below 240 mg/100 mL? What percent lie above 250 mg/100 mL? Does 
a cholesterol level of 280 appear to be extremely high for this sample? 

Draw a frequency polygon from Problem 4.3. 

Using the results from Problem 4.2, draw the cumulative frequency in percent. 
What percent of the observations are below 240 mg/mL using this display? 

Using an available statistical package, try to repeat what you obtained in Prob- 
lems 4.1-4.5. Compare the results and describe any problems you may have 
had. 

Measure the length of the index finger in centimeters for each person in the 
class. Using this data, repeat Problems 4.1 and 4.2 either by hand or using a 
statistical program, and answer the first question in Problem 4.3. 

Make a histogram from a sample of 50 single numbers from Table A.l  in 
Appendix A. Sketch what you would expect the histogram to look like if a very 
large sample was drawn. Use a statistical program to obtain the histogram. 

Describe a set of data that you would expect to see skewed to the right. 
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CHAPTER 5 

MEASURES OF LOCATION AND 
VARIABILITY 

In this chapter we present the commonly used numbers that help describe a population 
or a sample of observations. Such numbers are called parameters if they describe 
populations; they are called statistics if they describe a sample. The most useful 
single number or statistic for describing a set of observations is one that describes the 
center or the location of the distribution of the observations. Section 5.1 presents the 
most commonly used measures of location-the mean, median, and the mode-and 
describes how to obtain them. 

The second most useful number or statistic for describing a set of observations is 
one that gives the variability or dispersion of the distribution of observations. Several 
measures of variability are defined in Section 5.2 and formulas are given for their 
computation. 

We discuss the relationship between the results from the sample and those for the 
population for the mean and variance in Section 5.3. In Section 5.4 we discuss the 
reasoning behind the choice of the statistic to use to describe the center and variability 
of the distribution, depending on what statements the investigator wishes to make and 
the characteristics of the variables in the data set. The Stevens classification system 
for variables is given. Section 5.5 presents one method for displaying sample statistics 
graphically. 

Basic Statistics: A Primer for the Biomedical Sciences, Fourth Edition. 
By Olive Jean Dunn and Virginia A. Clark 
Copyright @ 2009 John Wiley & Sons, Inc. 
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5.1 MEASURES OF LOCATION 

The number most often used to describe the center of a distribution is called the 
average or arithmetic mean. Here, we call it the mean to avoid confusion: There are 
many types of averages. Additional measures of location are described that are useful 
in particular circumstances. 

5.1.1 The Arithmetic Mean 

The Greek letter mu, p, is used to denote the mean of a population; x (X-bar) is 
used to denote the mean of a sample. In general, Greek letters denote parameters of 
populations and Roman letters are used for sample statistics. 

The mean for a sample is defined as the sum of all the observations divided by the 
number of observations. In symbols, if n is the number of observations in a sample, 
and the first, second, third, and so on, observations are called X I .  X 2 ,  X 3 ,  . . . , X,, 
then x = ( X I  + X2 + X3 + . . . + X,) /n .  

As an example, consider the sample consisting of the nine observations 8, 1, 2, 9, 
3, 2, 8, 1, 2. Here n, the sample size, is 9; X I ,  the first observation, is 8; X z ,  the 
second observation, is 1. Similarly, X3 = 2 .  X ,  = 9, and so on, with X ,  = 2 .  Then, 

- 
X = (8 + 1 + 2 +9 + 3 +  2 + 8 +  1 + 2)/9 

= 36/9 = 4 

The formula x = (XI  + X2 + . . . + X,) /n  may be stated more concisely by 
using summation notation. In this notation, the formula is written x = C:=l X , / n .  
The symbol C means summation and C:=, X ,  may be read as “the sum of the X,’s 
from X1 to Xn,” where n is the sample size. The formula is sometimes simplified 
by not including the subscript i and writing 7 = C X / n .  Here X stands for any 
observation, and C X means “the sum of all the observations.” 

A similar formula p = C X / N  holds for p, the population mean, where N stands 
for the number of observations in the population, or the population size. We seldom 
calculate p, for we usually do not have the data from the entire population. Wishing 
to know p, we compute 

The mean has several interesting properties. Here, we mention several; others are 
given in Section 6.3. If we were to physically construct a histogram making the bars 
out of some material such as metal and not including the axes, the mean is the point 
along the bottom of the histogram where the histogram would balance on a razor 
edge. 

The total sum of the deviations around the mean will always be zero. Around any 
other value the sum of the differences will not be zero (see Weisberg [1992]). That 
is, c(X - x) = 0. Further, the sum of the squared deviations around the mean is 
smaller than the sum of the squared deviations around any other value. That is, the 
numerical value of C(X - x)2 will be smaller than if x were replaced by any other 
number. 

Since the mean is the total divided by the sample size, we can easily obtain the 
mean from the total, and vice versa. For example, if we weigh three oranges whose 

and use 7 as an approximation to p.  
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mean weight is 6 oz, then the total weight is 18 oz, a simple direct calculation. Other 
measures of location do not have this property. 

When we change the scale that we use to report our measurements, the mean 
changes in a predictable fashion. For instance, if we add a constant to each obser- 
vation, the mean is increased by the same constant. If we multiply each observation 
by a constant, as, for example, in converting from meters to centimeters, the mean in 
centimeters is 100 times the mean in meters. 

In addition, the mean is readily available from statistical software programs or 
hand calculators. It is by far the most commonly used measure of location of the 
center of a distribution. 

5.1.2 The Median 

Another measure of location that is often used is the median, the number that divides 
the total number of ordered observations in half. If we first order or rank the data from 
smallest to largest, then if the sample size is an odd number, the median is the middle 
observation of the ordered data. If the sample size is an even number, the median 
is the mean of the middle two numbers. To find the median of the same data set of 
observations used in Section 5.1.1 ( 8, 1, 2, 9, 3, 2, 8, 1, 2), we order them to obtain 
1, 1, 2, 2, 2, 3, 8, 8, 9. With nine observations, n is an odd number and the median 
is the middle or fifth observation. It has a value of 2. If n is odd, the median is the 
numerical value of the ( n  + l ) / 2  ordered observation. If the first number were not 
present in this set of data, the sample size would be even and the ordered observations 
are 1, 2, 2, 2, 3, 8, 8, 9; then the median is the mean of the fourth and fifth number 
observations, or (2 + 3)/2 = 2 . 5 .  In general, for n even, the formula for the median 
is the mean of the n/2 and (n/2) + 1 observations. 

The same definitions hold for the median of a finite population, with n replaced 
by N .  When the size of the population is so large that it must be considered infinite, 
another definition must be used for the median. For continuous distributions it can 
be defined as the number below which 50% of the population lie. For example, if 
we found the value of X that divided the area of a frequency distribution such that 
one-half of the area was to the right and one-half was to the left, we would have the 
median of an infinite population. 

The median provides the numerical value of a variable for the middle or most 
typical case. If we wish to know the typical systolic blood pressure for patients 
entering a clinic, the proper statistic is the median. 

The median (m) has the property that the sum of the absolute deviations (deviations 
that are treated as positive no matter whether they are positive or negative) of each 
observation in a sample or population from the median is smaller than the sum of the 
absolute deviations from any other number. That is, C IX, - ml is a minimum. If an 
investigator wants to find a value that minimizes the sum of the absolute deviations, 
the median is the best statistic to choose (see Weisberg [1992]). 

The median can also be found in some instances where it is impossible to compute 
a mean. For example, suppose it is known that one of the laboratory instruments 
is inaccurate for very large values. As long as the investigator knows how many 
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large values there are, the median can be obtained since it is dependent on only the 
numerical value of the middle or middle two ordered observations. 

5.1.3 Other Measures of Location 

Other measures of the center of a distribution are sometimes used. One such measure 
is the mode. The mode is the value of the variable that occurs most frequently. In 
order to contrast the numerical values of the mean, mode, and median from a sample 
that has a distribution that is skewed to the right (long right tail), let us look at a 
sample of n = 11 observations. The numerical values of the observations are 1 , 2 , 2 ,  
2 , 2 , 3 , 3 , 4 , 5 , 6 , 7 .  The mode is 2, since that is the value that occurs most frequently. 
The median is 3, since that is the value of the sixth or (n  + 1) /2  observation. The 
mean is 3.36. Although small, this sample illustrates a pattern common in samples 
that are skewed to the right. That is, the mean is greater than the median, which in 
turn is greater than the mode. 

5.2 MEASURES OF VARIABILITY 

After obtaining a measure of the center of a distribution such as a mean, we next 
wonder about the variability of the distribution and look for a number that can be 
used to measure how spread out the data are. Two distributions could have the same 
mean and look quite different if one had all the values closely clustered about the mean 
and the other distribution was widely spread out. In many instances, the dispersion 
of the data is of as much interest as is the mean. For example, when medication is 
manufactured, the patient expects that each pill not only contains the stated amounts 
of the ingredients, on average, but that each pill contains very close to the stated 
amount. The patient does not want a lot of variation. 

The concept of variation is a more difficult one to get used to than the center or 
location of the distribution. In general, one wishes a measure of variation to be large 
if many observations are far from the mean and to be small if they are close to the 
mean. 

5.2.1 

Starting with the idea of examining the deviation from the mean, X -x, for all values 
of X ,  we might first think of simply summing them. That sum has been shown to be 
zero. We could also try summing the absolute deviations from the mean, C IXi -XI.  
That is, convert all negative values of X - x to positive numbers and sum all values. 
This might seem like a promising measure of variability to use, but absolute values 
are not as easy to work with as squared deviations ( X  - X ) 2  and also lack several 
desirable properties of the squared differences. (Note that the squared deviation is 
also always positive.) 

The sample variance is defined as the sums of squares of the differences between 
each observation in the sample and the sample mean divided by 1 less than the number 

The Variance and the Standard Deviation 
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of observations. The reason for dividing by n - 1 instead of n is given in Section 5.3, 
but for now it is sufficient to remark that n - 1 is part of the definition of the variance. 

The variance of the sample is usually denoted by s2 and the formula is written as 

C ( X  - X)2 
52 = 

n - 1  

The square root of the variance is also used. It is called the standard deviation. The 
formula for the standard deviation is 

For small samples when computing the sample variance with a hand calculator, 
it is sometimes easier to use an alternative formula for the variance. The alternative 
formula can be given as 

2 C X 2 - n ( X ) 2  
s =  

n - 1  
Here each X given in Section 5.1.1 is squared and then summed to obtain 232. Since 
the mean is 4, the mean squared is 16 and 16 times the sample size of 9 is 144. Then 
232 - 144 = 88 is the numerical value in the numerator and 9 - 1 = 8 is the value 
in the denominator, so the variance is 88/8 = 11. 

The variance of a population is denoted by g2 (sigma squared) and the standard 
deviation by 0 (sigma). If we have the entire population, we use the formula o2 = 
C(X - P ) ~ / N ,  where N is the size of the population. Note that N is used rather 
than N - 1. In other words, we simply compute the average of the squared deviations 
around the population mean. The mean is relatively easy to interpret since people 
often think in terms of averages or means. But the size of the standard deviation is 
initially more difficult to understand. We will return to this subject in Section 5.3. 
For now, if two distributions have the same mean, the one that has the larger standard 
deviation (and variance) is more spread out. 

Variation is usually thought of as having two components. One is the natural 
variation in whatever is being measured. For example, with systolic blood pressure, 
we know that there is a wide variation in pressure from person to person, so we would 
not expect the standard deviation to be very small. This component is sometimes 
called the biological variation. The other component of the variation is measurement 
error. If we measure something inaccurately or with limited precision, we may have 
a large variation due simply to measurement methods. For a small standard deviation, 
both of these contributors to variation must be small. 

Changing the measurement scale of the sample data affects the standard deviation 
and the variance although not in the same way that the mean is changed. If we add 
a constant to each observation, the standard deviation does not change. All we have 
done is shift the entire distribution by the same amount. This does not change the 
standard deviation or the variance. If we multiply each observation by a constant, say 
100, the size of the standard deviation will also be multiplied by 100. The variance 
will be multiplied by 100 squared since it is the square of the standard deviation. 
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It should also be noted that knowing the mean and standard deviation does not tell 
us everything there is to know about a distribution. The figures shown in Figure 4.5 
(a )  and (c) may have the same mean and standard deviation; nevertheless, they look 
quite different. Examining numerical descriptions of a data set should always be 
accompanied by examining graphical descriptions. Note that the mean, variance, and 
standard deviation given here are used for continous data. In Section 5.4, information 
is given for statistics that should be used depending on the type of data. 

In statistical programs, the user is easily able to obtain the statistics described 
above, plus other measures. 

5.2.2 Other Measures of Variability 

Some useful measures of variation are based on starting with ordered values for the 
variable under study. The simplest of these to obtain is the range, which is computed 
by taking the largest value minus the smallest value, that is, X ,  - X I .  Unlike the 
standard deviation, the range tends to increase as the sample size increases. The more 
observations you have, the greater the chance of very small or large values. The range 
is a useful descriptive measure of variability and has been used in certain applications, 
such as quality control work in factories. It has mainly been used where repeated 
small samples of the same size are taken. It is easy to compute for a small sample, 
and if the sample sizes are equal, the problem of interpretation is less. The range is 
commonly included in the descriptive statistics output of statistical programs, so it is 
readily available. 

In many articles, the authors include the smallest and largest values in the tabled 
output along with the mean since they want to let the reader know the limits of their 
measurements. Sometimes, unfortunately, they fail to report the standard deviation. 
The range can be used to gain a rough approximation to the standard deviation. If 
the sample size is very large, say > 500, simply divide the range by 6. If the sample 
size is 100-499 observations, divide the range by 5; if it is 15-99 observations, divide 
the range by 4; if it is 8-14, divide the range by 3; if the sample size is 3-7, divide 
by 2;  and if it is a range of 2 numbers, divide the range by 1.1. (Note that more 
detailed estimates can be obtained from Table A-8b( 1) in Dixon and Massey [ 19831.) 
Such estimates assume that the data follow a particular distribution called the normal 
distribution, which is discussed in Chapter 6. 

If outliers are suspected in the data set, the range is a poor measure of the spread 
since it is computed from the largest and smallest values in the sample. Here, an outlier 
is defined as an observation that differs appreciably from other observations in the 
sample. Outliers can simply be errors of measurement or of recording data, or they 
can be the result of obtaining an observation that is not from the same population as 
the other observations. In any case, using a measure of variation that is computed 
from largest and smallest values is risky unless outliers do not exist or have been 
removed before computing the range. 

A safer procedure is to obtain a type of range that uses observations that are not the 
largest and smallest values. The interquartile range (IQR) is one that is commonly 
used. The interquartile range is defined as IQR = Q 3  - Q1. Three quartiles divide 
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the distribution into four equal parts, with 25% of the distribution in each part. We 
have already introduced one of the quartiles, Q2, which is the median. The quartile 
Q1 divides the lower half of the distribution into halves; Q3 divides the upper half of 
the distribution into halves. Quartiles are computed by first ordering the data, and the 
locationofQ1 is . 2 5 ( n + l ) , Q z i s  .50(n+l ) ,andQ3is  .75(n+1).  Theinterquartile 
range is available in many statistical programs. The Q1 and Q3 quartiles are not easy 
measures to compute by hand, as they often require interpolation. (Interpolation is 
a method of estimating an unknown value by using its position among a series of 
known values. An example of interpolation will be given in Section 6.2.2.) Since the 
quartiles are not sensitive to the numerical values of extreme observations, they are 
considered measures of location resistant to the effect of outliers. 

Note that the numerical value of the difference between the median and Q1 does 
not have to equal the difference between Q3 and the median. If the distribution is 
skewed to the right, then Q3 minus the median usually is larger than the median minus 
Q1. But the proportion of observations is the same. 

For small samples, fourths are simpler measures to compute. If n is even, we 
simply compute the median of the lower and upper halves of the ordered observations 
and call them the lower and upper fourths, respectively. If n is odd, we consider 
the middle measurement, or median, to be part of the lower half of measurements 
and compute the median of these measurements, Q1. Then assign the median to 
the upper half of the measurements and compute the median of the upper half, Q3. 

Another name for fourths is hinges. The difference between the upper and lower 
fourths (called the fourth-spread) should be close but not necessarily equal to the 
interquartile range since the quartiles are not necessarily equal to the fourths. For a 
more complete discussion of fourths, see Hoaglin et al. [1983]. 

Quartiles or fourths are often used when the distribution is skewed or outliers are 
expected. An additional reason for using them is given in Section 5.5. 

5.3 SAMPLING PROPERTIES OFTHE MEAN AND VARIANCE 

To illustrate the behavior of the means and variances of samples, a population con- 
sisting of just four numbers ( 2 ,  10, 4, 8) is considered. The population has a mean 
p = 24/4 = 6 and a variance of c ( X  - P ) ~ / N  = 40/4 = 10. All possible samples 
of size 2 from this small population are given in the first column of Table 5.2. There 
are 16 possible samples since we have sampled with replacement. The means and 
variances have been calculated from each sample and are listed in the second and last 
columns of the table. These columns are labeled x and s2. 

The 16 sample means may be considered to be a new population-a population 
of sample means for samples of size 2. The new population contains 16 numbers, 
and so has a mean and a variance. The mean and variance of this new population 
of means are denoted by p~ and 0 s, respectively. The mean of the sample means 
is calculated by summing the means in the second column and dividing by 16, the 
number of means. That is, 

p y  = 96/16 = 6 
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Table 5.1 Sampling Properties of Means and Variances 

2 2  
2,lO 

2,8 
10,2 
10,lO 
10,4 
10,8 
4 2  
4,lO 
4,4 
4 3  
8,2 
8,lO 
8,4 
8,8 
c 

2,4 

2 -4 
6 0 
3 -3 
5 -1 
6 0 

10 4 
7 1 
9 3 
3 -3 
7 1 
4 -2 
6 0 
5 -1 
9 3 
6 0 
8 2 

96 0 

16 0 
0 32 
9 2 
1 18 
0 32 

16 0 
1 18 
9 2 
9 2 
1 18 
4 0 
0 8 
1 18 
9 2 
0 8 
4 0 

80 160 

The variance of the sample means is computed from 

or by summing the next-to-last column and dividing by N = 16. 
The mean of the population is p = 6 and the mean of the sample means is px = 6. 

It is no coincidence that p y  = p ;  this example illustrates a general principle. If all 
possible samples of a certain size are drawn from any population and their sample 
means computed, the mean of the population consisting of all the sample means is 
equal to the mean of the original population. 

A second general principle is that a+ = a2/n; here a2/n = 1012 = 5 and 
a s  = 5. The variance of a population of sample means is equal to the variance of 
the population of observations divided by the sample size. 

It should be noted that 4 rather than 3 was used in the denominator in the calculation 
of 02,  Similarly, 16 was used instead of 15 in calculating 0%. This is done when the 
variance is computed from the entire population. 

The formula 05 = a2/n is perfectly general if we take all possible samples of a 
fixed size and if we sample with replacement. In practice, we usually sample without 
replacement and the formula must be modified somewhat to be exactly correct (see 
Kalton [1983]). However, for samples that are a small fraction of the population, as 
is generally the case, the modification is slight and we use the formula 0% = a2/n 
just as if we were sampling with replacement. In terms of the standard deviation, the 
formula becomes a x  = o/fi. This is called the standard error of the mean. 
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Since the mean of all the fi;’s is equal to p, the sample mean x is called an 
unbiased statistic for the parameter p. This is simply a way of saying that pft = p .  

In a research situation we do not know the values of all the members of the popu- 
lation and we take just one sample. Also, we do not know whether our sample mean 
is greater than or less than the population mean, but we do know that if we always 
sample with the same sample size, in the long run the mean of our sample means will 
equal the population mean. 

By examining the mean of all 16 variances, we can see that the mean of all the 
sample variances equals the population variance. We can say that the sample variance 
s2 is an unbiased estimate of the population variance, u2.  This is the third general 
principle. 

Our estimate of the population variance may be too high or too low or close to 
correct, but in repeated sampling, if we keep taking random samples, the estimates 
average to cr’. The reason that n - 1 is used instead of n in the denominator of s2 
is that it is desirable to have an unbiased statistic. If we had used n, we would have 
a biased estimate. The mean of s2 from all the samples would be smaller than the 
population variance. 

5.4 CONSIDERATIONS IN SELECTING APPROPRIATE STATISTICS 

Several statistics that can be used as measures of location and variability have been 
presented in this chapter. What statistic should be used? In Section 5.4.1 we consider 
such factors as the study objectives and the ease of comparison with other studies. In 
Section 5.4.2 we consider the quality of the data. In Section 5.4.3 the importance of 
matching the type of data to the statistics used is discussed in the context of Stevens’ 
system of measurements. 

5.4.1 Relating Statistics and Study Objectives 

The primary consideration in choosing statistics is that they must fit the major objec- 
tives of the study. For example, if an investigator wishes to make statements about 
the average yearly expenditures for medical care, the mean expenditure should be 
computed. But if the hope is to decide how much a typical family spends, medians 
should be considered. 

Investigators should take into account the statistics used by other investigators. 
If articles and books on a topic such as blood pressure include means and standard 
deviations, serious consideration should be given to using these statistics in order 
to simplify comparisons for the reader. Similarly, in grouping the data into class 
intervals, if 5-mmHg intervals have been used by others, it will be easier to compare 
histograms if the same intervals are used. One need not slavishly follow what others 
have done, but some consideration should be given if it is desired that the results be 
compared. 

The choice of statistics should be consistent internally in a report or article. For 
example, most investigators who report means also report standard deviations. Those 
who choose medians are also more apt to report quartiles. 
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5.4.2 

How clean is the data set? If the data set is likely to include outliers that are not from 
the intended population (either blunders, errors, or extreme observations), statistics 
that are resistant to these problems should be considered. In this chapter we have 
discussed the use of medians and quartiles, two statistics that are recommended for 
dealing with questionable data sets. Note that the mean and particularly the standard 
deviation is sensitive to observations whose numerical value is distant from the mean 
of the remaining values. 

If an observation is a known error or blunder, most investigators will remove the 
observation or attempt to retake it, but often it is difficult to detect errors unless they 
result in highly unusual values. 

Relating Statistics and Data Quality 

5.4.3 

Measurements can be classified by type and then, depending on the type, certain 
statistics are recommended. Continuous measurements were discussed in Chapter 4. 
Another commonly used system is that given by Stevens. In Stevens’ system, mea- 
surements are classified as nominal, ordinal, interval, or ratio based on what trans- 
formations would not change their classification. Here, we simply present the system 
and give the recommended graphical diagrams and statistics. We do not recommend 
that this be the sole basis for the choice of statistics or graphs, but it is an important 
factor to consider. 

In Stevens’ system, variables are called nominal if each observation belongs to one 
of several distinct categories that can be arranged in any order. The categories may or 
may not be numerical, although numbers are generally used to represent them when 
the information is entered into the computer. For example, the type of maltreatment 
of children in United States is classified into neglect, physical abuse, sexual abuse, 
emotional abuse, medical neglect, and others. These types could be entered into a 
statistical package using a word for each type or simply could be coded 1, 2,  3, 4, 5. 
or 6. But note that there is no underlying order. We could code neglect as a 1 or a 2 
or a 3, and so on; it makes no difference as long as we are consistent in what number 
we use. Other nominal variables include gender, race, or illnesses. 

If the categories have an underlying order (can be ranked), the variable is said 
to be ordinal. An example would be classification of disease condition as none, 
mild, moderate, or severe. A common ordinal measure of health status is obtained 
by asking respondents if their health status is poor, fair, good, or excellent. When 
the information for this variable is entered into the computer, it will probably be 
coded 1, 2,  3, or 4. The order of the numbers is important, but we do not know if 
the difference between poor health and fair health is equivalent in magnitude to the 
difference between fair health and good health. With ordinal data we can determine 
whether one outcome is greater than or less than another, but the magnitude of the 
difference is unknown. 

An interval data variable is not only ordered but has equal intervals between 
successive values. For example, temperature in degrees on a Fahrenheit or Celsius 

Relating Statistics to theType of Data 
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Table 5.2 Recommended Graphs and Statistics According to the Stevens System 

Scale Graph Location Variability 

Nominal Pie and bar graphs Mode p (  1 - p ) / n  
Ordinal Box plots Median Quartiledrange 
Interval Histograms Mean Standard deviation 
Ratio Histograms Mean Coefficient of variation 

scale has a fixed unit of measurement (degrees). The difference between 14" and 15" 
is the same as that between 16" and 17", or 1". Note that 0" Fahrenheit or Celsius 
does not represent no heat. Interval variables do not have natural zero points. 

If the variable not only has equal intervals but also has a natural zero point, it 
is called a ratio variable. Variables such as height, weight, and density have true 
zero points. Height has a naturally defined zero point on a ruler. We can multiply 
height in inches by a constant, say 2.54, and get height in centimeters and still have a 
ratio variable. If we reported temperature using the Kelvin scale, it would be a ratio 
variable. In addition to the mean defined in this chapter, two other types of means 
can be computed for ratio variables (see Afifi et al. [2004]). 

Recommended statistics and graphs for nominal, ordinal, interval, and ratio data 
are given in Table 5.2. It is important to note that for the statistics, the descriptive 
method is appropriate to that type of variable listed in the first column and to all 
below it. For example, the median is suitable for ordinal data and also for interval 
and ratio data. If ordinal data take on only a few values, box plots and quartiles are 
not very useful. We discuss graphics and statistics for nominal data in Chapters 10 
and 11. Box plots are discussed in Section 5.5. 

In the Stevens system, the mean and standard deviation are not recommended for 
nominal or ordinal data. This clearly makes sense for nominal data, where even if 
the data is coded with successive numbers, the ordering is artificial. For example, if 
we coded hospital A as 1, hospital B as 2, and hospital C as 3, then if we compute 
and report a mean and a standard deviation for a variable called hospital, it obviously 
lacks any rational meaning. Stevens has shown that problems exist in using means 
and standard deviations for ordinal data. Stevens recommends medians, quartiles, 
fourths, or ranges for ordinal data. 

The coescient of variation is a measure that is often used with ratio data when 
authors want to describe how variable their data are. It is computed by dividing the 
standard deviation by the mean. The coefficient of variation provides a measure of 
variation that is corrected for the size of the mean. If the coefficient of variation was 
a large value such as 1.0, most investigators would decide that the observations are 
highly variable. But if the coefficient of variation was < . lo ,  then for most work 
this would be considered a small variation (although probably not small enough for 
quality control results). The coefficient of variation should not be used unless there 
is a natural zero point. 
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Figure 5.1 Box plot of hemoglobin levels of high-altitude mine workers. 

Note that continuous variables tend to be interval or ratio data. Categorical vari- 
ables can be nominal data or ordinal data since these two types of variables often have 
discrete outcomes. 

In the SAS/JMP statistical package the user can specify what type of variables 
using the Stevens system they have. Here they are called modeling types and the three 
types that can be specified are nominal, ordinal, and continuous. This information is 
entered into a row that is above the row used for variable names. When this is done, 
the statistics that are computed are appropriate for the type of variable. SPSS also 
allows identification by the Stevens system. 

5.5 A COMMON GRAPHICAL METHOD FOR DISPLAYING 
STATISTICS 

Stem and leaf charts and histograms for displaying the observations were discussed 
in Chapter 4. Here, we present displays of one other commonly used graph, the 
box plot (originally called a box and whisker plot). Box plots were designed to 
display medians, fourths, and extreme values (see Tukey [1977]), but the various 
statistical programs do not all display the same quantities, so users should check what 
is displayed in their programs. In the box plot displayed in Figure 5.1, the horizontal 
line inside the box displays the median, the upper edge of the box is Q 3 ,  and the 
lower edge of the box is Q1. The length of the box is the IQR. The vertical lines 
above and below the box with the horizontal line at their end are the “whiskers.” 
The horizontal lines are calledfences. The upper fence is at ( Q 3  + 1.5(IQR)) or the 
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largest X ,  whichever is lower. The lower fence is at (Q1 - 1.5(IQR)) or the smallest 
X ,  whichever is higher. Values that are outside the fences are considered possible 
extreme values, or outliers. Here, we have depicted a box plot of the hemoglobin levels 
for mine workers at high elevations. Had the distribution of hemoglobin levels been 
skewed to the right, the portion of the box between the median and Q 3  would have 
been larger than the portion between the median and Q1. There is one observation 
of 26.2 that is beyond the upper fence and two observations, 12.2 and 13.1, that are 
below the lower fence. These values are possible outliers or extreme values. 

Since box plots are used frequently some statistical software programs will offer 
numerous options on how the box plots are displayed. They are often used to see 
if the data are skewed. Note in Figure 5.1 that the median is almost in the middle 
of the box and the fences are almost the same distance from the median. This is an 
indication that the data are distributed symmetrically. 

Often, several box plots are displayed side by side so that information concerning 
different groups can be compared. An example would be blood pressure for patients 
who are assigned one of three drugs. Plots of box plots are available in Minitab, 
SAS, SPSS, and Stata. Graphical methods of comparison are especially useful for a 
presentation of data to an audience since most viewers can see the results in a graph 
more easily than in searching through a table. 

PROBLEMS 

5.1 In a study of nursing home patients, the following data were obtained for each 
patient; age, gender, previous smoking status (smoker or nonsmoker), reason 
for admission, nursing wing housed in, length of stay, and four-point scale 
rating of health status. Classify each variable by whether it is nominal, ordinal, 
interval, or ratio according to Stevens’ classification. 

The following data are ordered systolic blood pressures in millimeters of mer- 
cury (mmHg) from 48 young adult males: 

5.2 

87 106 114 120 129 140 155 183 
93 107 116 122 133 141 155 194 

101 107 117 122 133 146 162 197 
104 109 118 125 134 146 167 204 
105 110 118 125 135 148 173 212 
105 114 119 128 138 152 176 230 

(a) Compute the mean and standard deviation using the formulas given in this 
book. Check your results by entering the data into a statistical package and 
obtain their results for the means and standard deviations. 

(b) Compute the median and quartiles. 
( c )  Display a histogram and a box plot of the data above using a statistical 

package. Check if your median and quartiles coincide with the box plot 
obtained from a statistical package. 

(d) State whether or not you think the data follow a symmetric distribution, and 
give the reason for your answer. 
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5.3 

5.4 

5.5 

(e )  Which observations might you check to see if they were outliers? 

Compute the mean and standard deviation from Table 4.5 for the low-altitude 
miners. 

For a population consisting of the numbers 1, 2, 3, 4, and 5, if all possible 
samples of size 4 were obtained, without performing calculations from the 
samples, what should the mean of all the sample means equal? What should 
the mean of the sample variances equal? 

The following table contains values of body mass index (BMI) for 25 patients. 
Obtain the mean and standard deviation. Use a histogram and box plot to 
display the results. 

29 22 23 31 33 
20 17 34 25 33 
25 27 28 24 28 
36 31 21 29 18 
26 26 44 25 36 
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CHAPTER 6 

THE NORMAL DISTRIBUTION 

The statement that “men’s heights are normally distributed” is meaningful to many 
who have never studied statistics. To some people it conveys the notion that most 
heights are concentrated near a middle value, with fewer heights far away from this 
middle value; others might expect that a histogram for a large set of men’s heights 
would be symmetric. Both of these ideas are correct. 

More precisely, the statement means that if we take a very large simple random 
sample of men’s heights, collect them into a frequency distribution, and print a his- 
togram of the relative frequencies, the histogram will be rather close to a curve that 
could have been plotted from a particular mathematical formula, the normal frequency 
function.‘ 

In this chapter we describe the normal distribution in Section 6.1 and in Section 6.2 
show how to obtain areas under sections of the normal distribution using the table 

‘The formula is 
y = -  1 , - ( x - p ) * / Z o *  

J2;;a 
where (a) X is plotted on the horizontal axis, (b) Y is plotted on the vertical axis, (c)  IT^ = 3.1416, and 
(d) e = 2.7183. 
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By Olive Jean Dunn and Virginia A. Clark 
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of the normal distribution. The major reasons why the normal distribution is used 
are given in Section 6.3. Three graphical methods for determining whether or not 
data are normally distributed are presented in Section 6.4. Finally, in Section 6.5 
techniques are given for finding suitable transformations to use when data are not 
normally distributed. 

6.1 PROPERTIES OFTHE NORMAL DISTRIBUTION 

The mathematical formula for the normal frequency function need not concern us. It 
is sufficient to note some of the properties of the shape of this distribution and how 
we can use the area under the distribution curve to assist us in analysis. 

First, we note that the area between a normal frequency function and the horizontal 
axis is equal to one square unit. The curve is symmetric about the point at X = p and is 
somewhat bell-shaped. The mean is at the center of the distribution, and the standard 
deviation is at the inflection point where the curve goes from curving downward 
to curving upward. It extends indefinitely far in both directions, approaching the 
horizontal axis very closely as it goes farther away from the center point. It is thus 
clear that men’s heights could not possibly be exactly normally distributed, even 
if there were infinitely many heights, since heights below zero, for example, are 
impossible, yet there is some area, however small, below zero under the normal 
curve. The most that we can expect is that a very large set of heights might be well 
approximated by a normal frequency function. 

There are many normal curves rather than just one normal curve. For every different 
value of the mean and the standard deviation, there is a different normal curve. Men’s 
heights, for example, might be approximately normally distributed with a mean height 
of 68 in., whereas the heights of 10-year-old boys could be normally distributed with 
a mean height of 60 in. If the dispersion of the two populations of heights is equal, 
the two frequency functions will be identical in shape, with one merely moved 8 
units to the right of the other (see Figure 6.1). It may very well be, however, that 
the variation among men’s heights is somewhat larger than the variation among boys’ 
heights. Suppose that the standard deviation for men’s heights is 3 in., whereas the 
standard deviation for boys’ heights is 2.5 in. Men’s heights on the average will then 
be farther from 68 in. than boys’ heights are from 60 in., so that the frequency curve 
for men will be flatter and more spread out than the other. Figure 6.2 shows two such 
normal frequency curves. 

For every pair of numbers p and cr, then, a normal frequency curve can be plotted. 
Further, only one normal frequency curve can be plotted with these particular values 
for p and cr, Thus if it is known that heights are normally distributed with a mean 
of 68 in. and a standard deviation of 3 in., the proper normal frequency distribution 
can be plotted and the entire distribution pictured. It was pointed out earlier that two 
sets of data might have the same means and the same standard deviations and still 
have frequency distributions very different from each other; obviously by knowing 
just the mean and standard deviation of a set of data, we could not draw a picture of 
the frequency distribution. However, if in addition to knowing the mean and stan- 
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Figure 6.1 Normal curves with different means. 

Height (in.) 

Figure 6.2 Normal curves with different standard deviations. 

dard deviation, we know that the data are normally distributed, the entire frequency 
distribution can be drawn. For a population with a normal distribution, the mean and 
standard deviation tell the whole story. 

6.2 AREAS UNDERTHE NORMAL CURVE 

As we discussed in Section 4.2 on constructing histograms, the proportion of obser- 
vations that fall between any two numbers, say XI and X2,  can be determined by 
measuring the area under the histogram between X I  and X z .  Similarly, if a popula- 
tion is normally distributed, the proportion of X’s  that lie between X I  and Xz is equal 
to the area above the horizontal axis and under the normal curve and lying between 
X I  and X2. 

It becomes important to measure these areas, and tables have been prepared that 
do so. Since it would be impossible to make a table for every normal curve, a 
transformation (a change in the mean and standard deviation) is made on the data so 
that a table for just one particular normal curve, called the standard normal curve, 
will suffice. 
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Figure 6.3 Proportions of men’s heights < 70.3 in. 

6.2.1 Computing the Area Under a Normal Curve 

If the X’s  are normally distributed and their population mean is p and their population 
standard deviation is 0, then if p is subtracted from every observation, the resulting 
new population (the population of X - p) is also normally distributed; its mean is 0 
and its standard deviation is cr. If, then, each X - p is divided by cr, the ( X  - p ) / o  
will again be normally distributed, with mean 0 and standard deviation 1. So, if we 
make the transformation z = ( X  - p)/cr, the z’s are normally distributed with mean 
0 and standard deviation 1. The new variable z is called the standard normal variate, 
and the areas under its distribution curve are tabulated in Table A.2. In Table A.2, 
the columns are labeled .[A] and A; A percent of the area under the standard normal 
curve lies to the left of z[A]. For example, under .[A] we read 2.00 and under X in the 
same row we read .9772; thus 97.72% of the area lies below 2.00. 

The use of Table A.2 is illustrated below, where we assume that the heights of 
a large group of adult men are approximately normally distributed; further, that the 
population mean height is 68 in. and that the population standard deviation of the 
heights is 2.3 in. 

1. What proportion of the men’s heights is < 70.3 in.? Changing scale with the 
formula z = ( X  - p)/cr, we have 

z = (70.3 - 68.0)/2.3 = 2.3/2.3 = 1 

In Table A.2 we look for z = 1 under the column heading .[A]; we then read 
across to the next column and find 3413. The column heading of this second 
column is A. Since the areas under the curve are proportions, the proportion 
of men’s heights < 70.3 in. is .8413. Or, equivalently, the percentage of men’s 
heights below 70.3 in. is 84.13% (see Figure 6.3). 

2. The proportion of men’s heights that are > 70.3 in. can be found by subtracting 
,8413 (the answer in step 1) from 1 .OOOO (the area under the entire curve). Thus 
15.87% of the men are taller than 70.3 in. (see Figure 6.4). 

3. What proportion of the heights is < 65.7 in.? From 

z = ( X  - p ) / 0  
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Figure 6.4 Proportions of men’s heights over 70.3 in. 

Figure 6.5 Proportions of men’s heights < 65.7 in. 

we have t = (65.7 - 68.0)/2.3 = -1. TableA.2 does not give negative values 
of 2, but since the curve is symmetric, the area below z = -1 is equal to the 
area above t = 1, or 15.87% (see Figure 6.5). 

4. Subtracting both the percentage of heights that are < 65.7 in. and the percentage 
of heights that are > 70.3 in. from loo%, we obtain 68.26% as the percentage of 
heights lying between 65.7 and 70.3 in. Here, we see that approximately two- 
thirds of the observations lie between one standard deviation above the mean 
and one standard deviation below the mean if the data are normally distributed 
(see Figure 6.6). 

Figure 6.6 Proportions of men’s heights between 65.7 and 70.3 in. 

5. It is sometimes of interest to know some percentiles for the distribution of 
men’s heights. Suppose we wish to find the height that exceeds 99% of the 
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men’s heights and is exceeded by just 1%. Such a number is called the 99th 
percentile, or Pgg. To find it, we look in the second column (i.e., the X c,olumn) 
of Table A.2 and find .9901; in the first column we see 2.33, the approximate 
99th percentile. Setting p = 68.0 and g = 2.3 in z = (X - p) /o ,  we can then 
solve for X, the height below which 99% of men’s heights fall. 

X - 68.0 
2.33 = 

2.3 

Multiplying both sides of this equation by 2.3 yields 

5.359 = X - 68.0 

Adding 68.0 to both sides of the equation gives us 

X = 73.4 in. 

Thus 99% of men’s heights are < 73.4 in.; that is, Pgg, the 99th percentile, 
equals 73.4 in. 

6.2.2 Linear Interpolation 

Usually, when z is computed with the formula z = ( X  - p ) / o ,  it is found to be a 
number that is not given in Table A.2 but that lies between two values in the z[X] 
column of the table. We might reasonably proceed in one of four ways: First, use the 
closest z available if we are content with an answer that is not very accurate. Second, 
we could guess at a number between the two tabled values. Third, we could enter 
the value into a statistical program that reports z values. Note that many programs 
can give either an accurate z value for a given area, or vice versa. Fourth, we can 
interpolate linearly to obtain a reasonably accurate result. Linear interpolation is 
more work, but it can be done by hand and it can be done for a variety of reasons. 

We now illustrate the various methods of linear interpolation by finding the pro- 
portion of men’s heights lying below 7 1 in. Here, 

z = (71 - 68)/2.3 = 3/2.3 = 1.304 

Note that 1.304 lies between the tabled values of z[X] of 1.30 and 1.3 1. From Table 
A.2, we write the information given in Table 6.1. 

If not much accuracy is necessary, we might give as an answer .90 or 90%. Or 
for a little more accuracy, one could take a value of X halfway between .9032 and 
.9049 since 1.304 is about one-half of the way between 1.30 and 1.3 1 ; we then choose 
.9040. 

When more accuracy is desired, and one is working by hand, linear interpolation 
can be done as follows. We note that the distance between 1.310 and 1.300 is .010. 
Also, the distance between 1.304 and 1.300 is ,004, or .4 of the distance between the 
tabled values (.004/.010 = .4). 

The distance between .9049 and .9032 is .0017. Multiplying this distance by the 
same .4 results in .4( .0017) = .0007. Thus .0007 is .4 of the distance between .9032 
and ,9049. Finally, we add .0007 to .9032 to obtain .9039, an accurate estimate. 
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Table 6.1 Numerical Example of Interpolation 

Smaller tabled .[A] value ,1.300 ,9032 
Computed z 1.304 ? 
Larger tabled .[A] value 1.310 ,9049 

Table 6.2 Symbols for Interpolation Formula 

4x1 x 
Smaller tabled .[A] value z1 = 1.300 XI = ,9032 

Larger tabled z[X] value z2 = 1.310 A2 = ,9049 
Computed z z = 1.304 x =? 

' 1.3 1.304 1.310 2 

Figure 6.7 Example of graphical interpolation 

Usually, this computation is performed with the following formula: 

Table 6.2 shows the relationship between the symbols in the formula for the interpo- 
lated X and numbers in Table 6.1. For men's heights, we have 

X = ,9032 + "04' - '9032 (1.304 - 1.300) = .9039 
1.310 - 1.300 

The percentage of men's heights < 71 in. can be rounded off to 90.4%. 
Figure 6.7 illustrates a simple graphical method of approximately the area X cor- 

responding to z = 1.304. When drawn on ordinary graph paper, X is read from the 
vertical scale and can be used either as a check on the .9039 obtained from linear 
interpolation or as an approximation when not much accuracy is needed. 
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6.2.3 Interpreting Areas as Probabilities 

In the foregoing example, areas under portions of the normal curve were interpreted 
as percentages of men whose heights fall within certain intervals. These areas may 
also be interpreted as probabilities. Where 84.13% of the area was below 70.3 in., the 
statement was made that 84.13% of men’s heights are below 70.3 in. We may also 
say that if a man’s height is picked at random from this population of men’s heights, 
the probability is .8413 that his height will be < 70.3 in. Here the term probability is 
not defined rigorously. The statement, “the probability is 3413 that a man’s height 
is < 70.3 in.” means that if we keep picking a man’s height at random from the 
population, time after time, the percentage of heights < 70.3 in. should come very 
close to 84.13%. 

Similarly, we may say that the probability that a man’s height is > 70.3 in. is 
.1587; the probability that a man’s height is between 65.7 and 70.3 in. is .6826; the 
probability that a man’s height is < 73.4 in. is .99; the probability that a man’s height 
is > 73.4 in. is .01; and so on. 

6.3 IMPORTANCE OFTHE NORMAL DISTRIBUTION 

One reason that the normal distribution is important is that many large sets of data 
are rather closely approximated by a normal curve. It is said then that the data 
are “normally distributed.” We expect men’s heights, women’s weights, the blood 
pressure of young adults, and cholesterol measurements to be approximately normally 
distributed. When they are, the normal tables of areas are useful in studying them. It 
should be realized, however, that many large sets of data are far from being normally 
distributed. Age at death cannot be expected to be normally distributed, no matter 
how large the set of data. Similarly, data on income cannot be expected to be normally 
distributed. 

Besides the fact that many sets of data are fairly well approximated by a normal 
distribution, the normal distribution is important for another reason. For any popula- 
tion, if we choose a large sample size, draw all possible samples of that particular size 
from the population, and compute the mean for each sample, the sample means them- 
selves are approximately normally distributed. We use this a great deal in Chapter 7; 
at that time it will be clearer just why this makes the normal distribution so impor- 
tant. No matter how peculiar the distribution of the population, in general (under 
restrictions so mild that they need not concern us here), the means of large samples 
are approximately normally distributed. 

From Section 5.3 we know that the mean of a population of sample means is the 
same as the mean of the original population, whereas its standard deviation is equal 
to that of the original population standard deviation of the observations divided by 
~‘6, where n is the sample size. For n reasonably large, we know that the means 
are approximately normally distributed. Because a normal distribution is completely 
specified by its mean and its standard deviation, for large samples everything is known 
about the distribution of sample means provided that p and cr are known for the 
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Figure 6.8 Distribution of means from samples of size 25. 

population. We need to know nothing about the shape of the population distribution 
of observations. 

This remarkable fact will be useful in succeeding chapters. At present, we can use 
it to answer the following question. If it is known that the mean cost of a medical 
procedure is $5000 with a standard deviation of $1000 (note that both the mean and 
standard deviation are considered population parameters), and we think of all possible 
samples of size 25 and their sample means, what proportion of these sample means 
will be between $4600 and $5400? Or, alternatively, what is the probability that a 
sample mean lies between $4600 and $5400? 

The population of x’s from samples of size 25 is approximately normally dis- 
tributed. From Chapter 5 the mean p y  is equal to $5000 (since p y  = p),  and a ~ ,  
the standard deviation of the distribution, equals $ l O O O / f l  = $1000/5 = $200 
(since a x  = a/+). Figure 6.8 shows the distribution for the population of x, and 
the area of the shaded portion is equal to the proportion of the means between $4600 
and $5400. 

As usual, we make the transformation to z in order to be able to apply the normal 
tables. Now, however, we have z = (x - p x ) / q ,  as the mean and standard 
deviation of the x distribution must be used. To find z at x = $5400, we have z = 
($5400 - $5000)/200 = 2. From Table A.2, the area to the left of z = 2 is .9772. The 
area to the right of z = 2 must, by subtraction, equal .0228, and by symmetry, the 
area below x = $4600 is .0228. Subtracting the two areas from 1,0000, we obtain 

1.0000 - 2(.0228) = 1.0000 - .0456 = .9544 

Thus 95.44% of the sample means, for samples of size 25, lie between $4600 and 
$5400, and the probability that a sample mean is between $4600 and $5400 is .9544. 

How large should a sample be to be called reasonably large? Twenty-five or larger 
is as satisfactory an answer as possible. The answer to this question must depend, 
however, on the answers to two other questions. First, how close to normality do 
we insist that the distribution of sample means be? Second, what is the shape of the 
distribution of the original population? If the original population is far from normal, 
the sample size should be larger than if it is from a population closer to normality. 
However, in assuming that samples of size 25 or greater have means that are normally 
distributed, we make such a small error that in most work it can be disregarded. 
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However, if we do not know the population standard deviation and we desire 
to perform some of the analyzes described in subsequent chapters, we will have to 
assume that the data are normally distributed. 

6.4 EXAMINING DATA FOR NORMALITY 

In this section we present four graphical methods of determining if the variables in 
a data set are normally distributed. These graphical methods have the advantage of 
not only detecting nonnormal data but also of giving us some insight on what to do 
to make the data closer to being normally distributed. 

6.4.1 

One commonly used method for examining data to see if it is at least approximately 
normally distributed is to look at a histogram of the data. Distributions that appear to 
be markedly asymmetric or have extremely high tails are not normally distributed and 
the proportion of the area between any two points cannot be accurately estimated from 
the normal distribution. Here we examine the data given in Problem 5.2, comparing 
it first with the normal distribution by means of a histogram. 

In Figure 6.9, a histogram displaying the systolic blood pressures of 48 younger 
adult males is presented. It can be noted that the distribution is skewed to the right 
(the right tail is longer than the left). The mean of the distribution is 3 = 137.3 and 
s = 32.4. A normal distribution with that mean and standard deviation is displayed 
along with the histogram. Many statistical programs allow the user to superimpose 
a normal distribution on a histogram. From Figure 6.9, the investigator may see 
whether the normal distribution should be used to estimate areas between two points. 
The fit is obviously poor, for the histogram’s bars extend much higher than the normal 
curve between 100 and 130 mmHg and do not reach the curve between 130 to 190 
mmHg. In examining histograms, the investigator must expect some discrepancies. 
This is especially true for small samples, where the plotted percents may not fit a 
normal curve well even if the data were sampled from a normal distribution. 

A box plot can be examined for the same data set (see Figure 6.10). The distance 
between the median and Q 3  appears to be about twice the distance between the median 
and &I, a clear indication that the distribution is skewed to the right. 

Using Histograms and Box Plots 

6.4.2 Using Normal Probability Plots or Quantile-Quantile Plots 

Another commonly used method to compare whether a particular variable is normally 
distributed is to examine the cumulative distribution of the data and compare it with 
that of a cumulative normal distribution. Table 4.5 illustrated the computation of 
the cumulative frequency in percent; in it, the percent cumulative frequency gave 
the percentage of miners with hemoglobin levels below the upper limit of each class 
interval. Rather than plot a histogram, the investigator can plot the upper limit of 
each class interval on the horizontal axis and the corresponding cumulative percent 
on the vertical axis. 
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Figure 6.9 Histogram of systolic blood pressures of adult males with normal curve. 

Figure 6.1 1 is a cumulative plot of the normal distribution with = 0 and o = 1. 
At p = 0, the height of the curve is 50%. This height corresponds to the area below 
or to the left of the mean. (Note that since the normal distribution is symmetric, 
one-half of the area lies to the left of the population mean.) In general, the height 
of the cumulative distribution at any point along the X axis equals the area below 
or to the left of that point under the normal curve. The cumulative plot of a normal 
distribution is often described as being S shaped. 

The simplest way to obtain normal probability plots is to use a statistical program. 
If the data are normally distributed, the plot will be a straight line. Such plots are 
usually called normal probability plots. Figure 6.12 shows a normal probability plot 
for the younger adult male systolic blood pressures from Problem 5.2. The variable 
X ,  systolic blood pressure, is shown on the horizontal axis. The expected values 
of X ,  given that the distribution follows a standard normal distribution, is on the 
vertical axis. If systolic blood pressure were normally distributed, the resulting points 
would lie approximately on a straight line. In examining these plots, the user should 
concentrate on the middle 90% and see if that portion is approximately a straight 
line. The middle points in Figure 6.12 resemble a curve that is lower at both ends (an 
upside-down saucer). 

The normal probability plots for data that are skewed to the right often show the 
curved pattern given in Figure 6.12. In contrast, when the normal probability plot 
is curved in the opposite direction, the distribution of the variable is likely to be 
skewed to the left. The latter pattern is less common in biomedical applications. If 
the variable has many extreme values (high tailed), the normal probability plot will 
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Figure 6.10 
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Figure 6.12 Normal probability plot of systolic blood pressure of adult males. 

look like an upside-down saucer for low values of X and a right-side-up saucer for 
X greater than the mean (higher than expected for low values of X and lower than 
expected for high values of X ) .  The shape of the curve is that of an inverted S. How 
the plots are made differs slightly for different statistical programs, but a straight line 
is always an indication of a normal distribution. 

Instead of plotting normal probability plots to illustrate whether or not the dis- 
tribution of a variable is likely to be normally distributed, some statistical programs 
plot normal quantile-quantile plots, often called normal 4-4 plots. Here, also, if the 
points fall on or close to a straight line, the data are likely to be normally distributed. 
A description of how normal q-q plots are made is given in Cleveland [1993] and a 
discussion of their use is given in Fox and Long [ 19901. The statistical programs men- 
tioned in this book will provide either normal probability or normal q-q plots, and Stata 
has both. These two plots are interpreted in a similar fashion. The normal q-q plot 
emphasizes the tails of the distribution more than the center of the distribution com- 
pared to normal probability plots (see Afifi et al. [2004]). 

6.5 TRANSFORMATIONS 

A researcher with a variable that is not normally distributed has several options. First, 
the researcher may decide that the distribution of the observations is close enough 
to normality and proceed as if the data were normally distributed. Second, the re- 
searcher may use some statistical methods that do not assume a normal distribution 
(see Chapter 13). A third option is to transform the data so that the resulting distribu- 
tion is closer to a normal distribution. Transforming the data can sometimes produce 
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an approximately normal distribution. In this process, the same transformation is 
applied to each observation of a given variable. Then, all analyses are performed on 
the transformed data and all results apply to the transformed data. 

6.5.1 Finding a SuitableTransformation 

Fortunately, the process of finding a suitable transformation to obtain approximately 
normal data is not a time-consuming one using typical statistical programs. Some 
programs simply provide a list of transformations to choose from. The most com- 
monly provided transformations for transforming data to normality are logarithmic 
and square-root transformations. Other statistical programs also allow users to define 
their own transformation. When this option is not available, user-defined transfor- 
mations can first be performed using spreadsheet programs, and then the data can be 
transferred to a statistical program. 

A commonly used transformation is taking the logarithm to the base 10 of each 
observation in the distribution that is skewed to the right. Note that the logarithm of 
a number X satisfies the relationship that X = loy .  Thus, the logarithm of X is the 
power Y to which 10 must be raised to produce X .  The logarithm of X is usually 
abbreviated as log(X). The log(l0) is 1 since 10 = lo1, and the log(100) is 2 since 
100 = lo2.  The log of 1 is 0 since 1 = 10'. Note that as X increases from 1 to 10, 
log(X) increases from 0 to 1, and if X goes from 10 to 100, log(X) goes from 1 to 2 .  
For larger values of X ,  it takes an even greater increase in X for log(X) to increase 
much. For a distribution that is skewed to the right, taking the logarithm of X has 
the effect of reducing the length of the upper tail of the distribution, making it more 
nearly symmetrical. 

The logarithm of any X that is 5 0 is undefined and the logarithm of any X < 1 
but > 0 is negative. Note that 5 signifies less than or equal to and 2 signifies greater 
than or equal to. When X is < 1, a small positive constant A can be added first to 
X so that the logarithm of X plus a constant A [or log(X + A)] results in a positive 
number. 

If the numbers being transformed are all quite large, a positive constant is often 
subtracted first. This has the result of increasing the effect of taking the log transfor- 
mation. 

One general strategy for finding an appropriate transformation is the use of power 
transformations (see Tukey [I9771 or Afifi et al. 120041). Consider the effects of 
taking Xp for various values of P. With P = 2 ,  large values of X become much 
larger. With P = 1, there is no change in the value of X ( X 1  = X ) .  With P = .5 we 
have the square-root transformation which has the effect of reducing the value of large 
values of X .  The square-root transformation is often used on data that are counts. 
Taking P = 0 results in the logarithm transformation (see Cleveland [I9931 for an 
explanation), which has the effect of reducing large values of X also. With P = -1 
we have 1/X, which changes large values of X into small values and reverses the 
ordering of the data. 

A general rule is that with a distribution that is skewed to the right as was systolic 
blood pressure, we should try values of P < 1; the reduction in skewness to the right 
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increases as P is decreased. That is, taking the logarithm of X reduces the amount 
of skewness to the right more than taking the square root transformation (0 is < i); 
taking the reciprocal of X or P = -1 reduces it even more. 

With a distribution skewed to the left, we should begin with a value of P > 1 and 
if necessary try larger values of P until the skewness is sufficiently reduced. After 
each attempted transformation, a normal probability plot, histogram or stem and leaf 
plot, or a box plot should be examined. 

6.5.2 Assessing the Need for a Transformation 

An awkward question is whether data that appears to be nonnormal needs to be 
transformed. Most investigators do not use a transformation for slight departures 
from normality. 

Several rules of thumb have been suggested to assist in deciding if a transforma- 
tion will be useful. Two of these rules should be used only for ratio data. If the 
standard deviation divided by the mean is < a, it is considered less necessary to use a 
transformation. For example, for the systolic blood pressure data from Problem 5.2, 
the standard deviation is 32.4 and the mean is 137.3, so the coefficient of variation 
is 32.41137.3 = .24. This would be an indication that even if the points in Figure 
6.12 do not follow a straight line, it is questionable if a transformation is needed. 
An alternative criterion is if the ratio of the largest to the smallest number is < 2, 
a transformation may not be helpful. Here the ratio is 230187 = 2.6, so perhaps a 
transformation is helpful, but it again seems borderline. 

One reason for the reluctance to use a transformation is that for many readers, 
it makes the information harder to interpret. Also, users wishing to compare their 
information with that of another researcher who has not used a transformation will 
find the comparison more difficult to make if they transform their data. For the same 
reason, researchers often try to use a transformation that has already been used on a 
particular type of data. For example, logarithms of doses are often used in biomedical 
studies. 

Finding an appropriate transformation can also provide additional information 
concerning the data. When, for instance, a logarithmic transformation results in near- 
normal data we know that our original data follows a skewed distribution called a 
lognormal distribution. 

Often, researchers find the best possible transformation for their data, and then 
perform their analyses both with and without the transformation used and see if the 
transformation affects the final results in any appreciable fashion. If it does not, the 
transformation may not be used in the final report. 

Note that the statistical programs often include the option of computing trans- 
formed data after the original data are entered into the program. Minitab, SAS, 
SPSS, and Stata all include some transformation options. 

PROBLEMS 

6.1 If data are normally distributed, what does this tell you about the magnitudes 
of the mean, median, and mean? 
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6.2 

6.3 

6.4 

6.5 

6.6 

6.7 

6.8 

6.9 

6.10 

6.11 

THE NORMAL DISTRIBUTION 

Does the stem and leaf display of the hemoglobin data given in Table 4.1 appear 
to be approximately normally distributed? Plot a histogram, box plot, and a 
normal probability or a normal q-q plot and compare the results. 

Problems 6.3-6.8 refer to the following situation: A population of women’s 
weights is approximately normally distributed with a mean of 140 lb and a 
standard deviation of 20 lb. 

What percentage of women weigh between 120 and 160 lb? 

If samples of size 16 are drawn from the population of women’s weights, what 
percentage of the sample means lie between 120 and 160 lb? 

What is the probability that a sample mean from a sample size 16 lies above 
145 lb? 

Find P95, the 95th percentile for the population of women’s weights. 

Find P95, the 95th percentile for the population of means for samples of size 
16. 

In Problems 6.4 and 6.6, what justification is there for using the tables of the 
normal distribution? 

A quality control inspector examines some bottles of a herbal medication to 
determine if the tablets are all within stated limits of potency. The results were 
that 13 bottles had 0 tablets out of limits, 26 bottles had 1 tablet, 28 bottles 
had 2 tablets, 18 bottles had 3 tablets, 9 bottles had 4 tablets, 4 bottles had 5 
tablets, and 2 bottles had 6 tablets out of limits. In all, n = 100 bottles were 
tested. Give two transformations that are suitable transformations to try that 
might achieve a distribution somewhat closer to a normal distribution for the 
number of tablets per bottle that are outside the stated limit. 

From Table A.2, read what z is for an area up to S O ,  .95. .975, and .995. 

What two values of z should be used to obtain a .025 in each of the two tails in 
Table A.2? 
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CHAPTER 7 

ESTIMATION OF POPULATION MEANS: 
CONFIDENCE INTERVALS 

We consider first a very simple research situation in which we wish to estimate a 
population mean p.  Pediatricians have included a new substance in the diet of infants. 
They give the new diet to a sample of 16 infants and measure their gains in weight 
over a 1-month period. The arithmetic mean of the 16 gains in weight is x = 311.9 g. 

These specific 16 observations are from a sample and are not the population that 
we are studying. That population consists of the infants from which the pediatricians 
took their sample in performing the study, and we wish to estimate p, the population 
mean weight gain. The target population consists of similar infants who may receive 
the new diet in the future. 

The point estimate (i.e., an estimate consisting of a single number) for the popu- 
lation mean p is the sample mean, or 3 11.9 g. By now, however, enough has been 
discussed about sampling variation to make clear that p is not exactly 3 11.9 g, and 
we wish to get some idea of what p may reasonably be expected to be. To fill this 
need, we compute a confidence interval for p;  the term confidence interval will be 
defined after the example is worked out. 

In Section 7.1 we present an example of computing a confidence interval for a 
single mean when the population standard deviation, 0, is known. We also give a 
definition of confidence intervals and discuss the choice of the confidence level. In 
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Table 7.1 Weight Gain Under Supplemented and Standard Diets 

Supplemented Diet Standard Diet 

Infant Number Gain in Weight (g) Infant Number Gain in Weight (g) 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

448 
229 
316 
105 
516 
496 
130 
242 
470 
195 
389 
97 

458 
347 
340 
212 

232 
200 
184 
75 

265 
125 
193 
373 
21 1 

- 
n1 = 16 Xi =311.9 

s: = 20: 392 

- 
722 = 9 X:! = 206.4 

S; = 7060 

Section 7.2 the sample size needed to obtain a confidence interval of a specified length 
is given. We need to know 0 in order to obtain a confidence interval using the normal 
distribution. Often, 0 is unknown. A distribution that can be used when 0 is unknown 
is introduced in Section 7.3. This distribution is called the t distribution or the Student 
t distribution. The formula for the confidence interval for a single mean using the t 
distribution is presented in Section 7.4. Confidence intervals for the differences in 
two means when the data come from independent populations is given in Section 7.5. 
The case of paired data is discussed in Section 7.6. Note that in this chapter we are 
assuming interval or ratio data or, as it is often called, continuous data. 

7.1 CONFIDENCE INTERVALS 

First, we illustrate how to compute a confidence interval for p, the population mean 
gain in weight when we assume that 0 is known. 

7.1.1 An Example 

To simplify the problem as much as possible, suppose that we have been studying 
the diet of infants for some time and that from the large amount of data accumulated, 
we have found the standard deviation of gains in weight over a 1-month period to 
be 120g. It seems rather reasonable to believe that the standard deviation of the 
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population under the new diet will be quite close to that under the old diet. We 
assume, therefore, that the population’s standard deviation, under the new diet, is 
120g. The data for this example are given in Table 7.1 in the columns labeled 
“Supplemented Diet.” 

Since the assumed population standard deviation is a = 120 g, the standard 
deviation for the population of means of samples of size 16 is ax = a/& = 

1 2 0 / m  = 120/4 = 30 g (see Section 5.3, where sampling properties of the mean 
and variance are discussed). In order to compute a 95% confidence interval for p, 
we find the distance on each side of p within which 95% of all the sample means 
lie. This is illustrated in Figure 7.1. From Table A.2 we find that 95% of all the z’s 
lie between -1.96 and t-1.96. The value of the sample mean f? corresponding to 
z = 1.96 is obtained by solving 1.96 = (x - ,LL)/~F for x. This gives 

- 
X = p + 1.96(30) 

or 
- 
X = ,LL + 58.8 

Similarly, corresponding to z = -1.96, we have = p - 1.96(30). Thus 95% of 
all the f?’s lie within a distance of 1.96(30) = 58.8 g from the mean p. The 95% 
confidence interval for p is 

X f 58.8 

where & signifies plus or minus. Substituting in the numerical value of the sample 
mean, we have 

311.9 f 58.8 

- 

or 
253.1 to 370.7 g 

The measured sample mean f?, 31 1.9 g, may or may not be close to the population 
mean p.  If it is one of the x’s falling under the shaded area in Figure 7.1 the interval 
311.9 f 58.88 includes the population p. On the other hand, if 311.9 is one of the 
sample means lying farther away from p in the unshaded area, the confidence interval 
does not include p. We do not know whether or not this particular is close to p, 
but we do know that in repeated sampling 95% of all the x’s obtained will be close 
enough to p so that the interval i 58.8 contains p. 

If we take a second sample of 16 infants, a different x will be obtained and the 
95% confidence interval will then be a different interval. The intervals obtained vary 
from one sample to the next. They are formed in such a way, however, that in the 
long run about 95% of the intervals contain 1-1. 

7.1.2 Definition of Confidence Interval 

A 95% confidence interval for a population parameter is an interval obtained from 
a sample by some specified method such that, in repeated sampling, 95% of the 
intervals thus obtained include the value of the parameter. For further discussion of 
the meaning of confidence limits, see Rothman [ 19861 or van Belle et al. [2004]. 
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Figure 7.1 Distribution of means from sample of size 16. 

The confidence level is 95%, and we say that we have 95% confidence that 1-1. 
lies within the interval. For the interval 253.1-370.7 g, 253.1 g is the lower confi- 
dence limit, and 370.7 g is the upper confidence limit. The rule for obtaining a 95% 
confidence interval in this situation is 

or 

Certain assumptions are made in obtaining this confidence interval. We assume that 
the 16 infants are a simple random sample from a population with a standard deviation 
equal to c. Each infant measured is assumed to be independent of the other infants 
measured (e.g., twins are excluded from the study). We also assume that (x- p ) / q  
is normally distributed, as is the case if X is normally distributed. With large samples 
or with a distribution close to the normal, we know that x is normally distributed 
and most investigators assume normality unless the sample is quite nonnormal in 
appearance. 

7.1.3 Choice of Confidence Level 

There was no necessary reason for choosing a 95% confidence interval; we might 
compute a 90% confidence interval or a 99% confidence interval. 

For a 90% interval, we find from Table A.2 that 90% of the z’s lie between i l . 6 4 5 ,  
so that the 90% confidence interval is 

311.9 * 1.645(30) = 311.9 & 49.4 

or 262.5 to 361.3 g. In repeated sampling, about 90% of all such intervals obtained 
cover p.  A 99% confidence interval is 

311.9 2.575(30) = 311.9 & 77.2 

or 234.7-389.1 g. 
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If a higher confidence level is chosen, we have greater confidence that the interval 
contains p;  but on the other hand, we pay for this higher level of confidence by having 
a longer interval. The confidence levels generally used are 90,95, and 99%. 

7.2 SAMPLE SIZE NEEDED FOR A DESIRED CONFIDENCE 
INTERVAL 

To obtain a short interval and at the same time to have one in which we have a high 
level of confidence, we must increase the sample size. In the simplified example 
under consideration, we can in the planning stages of the experiment calculate the 
length of a 95% confidence interval. Since the interval is xi 1.96a/&, the length 
of the entire interval is 2(1.96)a/&;. If we wish this length to be only 60 g, we can 
solve the equation 

2( 1.96)120 
GO = - 

dn 
2(1.96)(120) 

60 
= 7.84 f i=  

n = 61.47 or 62 

The required sample size is 62 since in calculating a sample size for a certain 
confidence level, one rounds up to a whole number rather than down. In general, if 
we call the desired length of the interval L, the formula for n can be written as 

where z[Xj is the tabled value from Table A.2 (1.645 for 90%, 1.96 for 95%, and 
2.575 for a 99% confidence interval). 

Calculations of this sort help us to determine in advance the size of sample needed. 
Estimating the necessary sample size is important; there is no “best” sample size 
applicable to all problems. Sample size depends on what is being estimated, on the 
population standard deviation 0, on the length of the confidence interval, and on the 
confidence level. 

7.3 THE t DISTRIBUTION 

In most research work, the value of the population variance or standard deviation is 
unknown and must be estimated from the data. In the example in Section 7.1.1, we 
assumed we knew that a equaled 120g and made use of the fact that the quantity 
z = (x - p ) / ( a / f i )  has a standard normal distribution whose areas have been 
calculated and are available in Table A.2 or from a statistical program. In a more 
usual research situation, the population standard deviation a is unknown and must 
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Figure 7.2 Normal distribution compared with t distributions. 

be estimated by computing the sample standard deviation s. This requires use of the 
quantity t = (7 - p) / (s /&) ,  which will be used instead of z = (7 - p) / (o /& ) .  

The distribution of t (often called Student’s t distribution) does not quite have 
a normal distribution. The t distribution is bell-shaped and symmetric, as is the 
normal distribution, but is somewhat more widely spread than the standard normal 
distribution. The distribution o f t  differs for different values of n, the sample size; 
if the sample size is small, the curve has more area in the “tails”; if the sample size 
is large, the curve is less spread out and is very close to the standard normal curve. 
Figure 7.2 shows the normal distribution and the t distributions for sample sizes n = 3 
and n = 5. 

The areas under the distribution curves to the left o f t  have been computed and 
put in table form; Table A.3 gives several areas from --co to t [ X ]  for some of these 
distributions. The first column of Table A.3 lists a number called the degrees of 
freedom (d.f.’s); this is the number that was used in the denominator in the calculation 
of s2 ,  or n - 1. 

We need to know the degrees of freedom whenever we do not know u2. If we knew 
the population mean p ,  the estimate of u would be c ( X  - ~ ) ~ / n  and the d.f.’s would 
be n. When the population mean is unknown, we estimate it by the sample mean 
X ,  thus limiting ourselves to samples that have 5? as their sample mean. With such 
samples, if the first n - 1 observations are chosen, the last observation is determined 
in such a way that the mean of the n observations is x. Thus we say that there are 
only n - 1 d.f. in estimating s2.  

In the column headings of Table A.3 are the areas from -m to t [X] ,  the numbers 
below which A% of the area lies. The row headings are d.f., and in the body of Table 
A.3, t [X] is given. For example, with 6 d.f. under X = .90, we read t [ .90]  = 1.440; 
90% of the area under the t distribution lies to the left of 1.440. For each row of the 
table, the values of t [ X ]  are different depending on the d.f.’s. Note that for d.f. = x 
(infinity), the t distribution is the same as the normal distribution. For example, for 
X = .975 andd.f. = cc,t [ .975] = 1.96. Also z[.975] = 1.96 fromTableA.2. 

- 
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7.4 CONFIDENCE INTERVAL FOR THE MEAN USING THE 
t DISTRIBUTION 

When the standard deviation is estimated from the sample, a confidence interval for 
p, the population mean, is formed just as when o is known, except that s now replaces 
o and the t tables replace the normal tables. With s calculated from the sample, a 
95% confidence interval is 

- _. t1.9751~ xk- 

The t[.975] denotes the value below which 97.5% of the t’s lie in the t distribution 
with n - 1 d.f. 

The quantity s l f i  is usually called the standard error of the mean in computer 
program output. Minitab, SAS, and Stata compute confidence limits, and SPSS 
provides plots of the mean and the confidence limits. One can always calculate them 
by obtaining the mean and the standard error of the mean from the computer output, 
and the appropriate t value from either Table A.3 or the computer output. The rest of 
the calculations take very little time to do. 

We return now to the example of the 16 gains in weights with x = 311.9 and 
s = 142.8 g (see Table 7.1). The standard error of the mean is 142.8/- = 35.7. 
The 95% confidence interval is then 

& 

142.8 
311.9 * t[.975]- m 

The number t[.975] is found in Table A.3 to be 2.131 for d.f. = 15. Thus, 97.5% of 
the t’s  formed from samples of size 16 lie below 2.131, so 95% of them lie between 
-2.131 and +2.131. This follows from the same reasoning as that used in discussing 
confidence intervals when o was known. The interval is then 

142.8 
311.9 * 2.131- m 

or 
311.9 i 76.1 

or 
235.8-388.0 g 

The interpretation of this confidence interval is as follows: We are “95% confident” 
that p lies between 235.8 and 388.08 because, if we keep repeating the experiment 
with samples of size 16, always using the formula x 5 t [ .975]s/f i  for forming a 
confidence interval, 95% of the intervals thus formed will succeed in containing p. 

In computing a confidence interval using the t distribution, we are assuming that we 
have a simple random sample from a normally distributed population. The methods 
given in Section 6.4 can be used to decide if the observations are normally distributed 
or if transformations should be considered before computing the confidence interval. 
Note that in practice we seldom meet all the assumptions precisely; however, the 
closer we are to meeting them, the more confidence we have in our results. 
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To find an estimate of the sample size needed for an interval of length L,  we must 
assume a value of 0 and proceed as if 0 were known. If 0 is unknown, an approximate 
estimate can be obtained from the range of likely values for the variable in question 
using the method given in Section 5.2.2. The difficulty with the use of approximate 
estimates is that the size of n varies with the square of 0, so modest inaccuracies in 
o result in larger inaccuracies in n. Sometimes all the researcher can reasonably do 
is try several likely estimates of 0 to gain some insight on the needed sample size. 

7.5 ESTIMATING THE DIFFERENCE BETWEEN TWO MEANS: 
UNPAIRED DATA 

In the example used in Section 7.1.1, we estimate the mean gain in weight of infants 
given a supplemented diet for a 1-month period. Very often, however, our purpose is 
not merely to estimate the gain in weight under the new diet, but also to find out what 
difference the new diet supplement makes in weight gained. Perhaps it makes little 
or no difference, or possibly the difference is really important. 

To compare gains in weight under the new supplemented diet with gains in weight 
under the standard, unsupplemented diet, we must plan the experiment differently. 
Instead of just giving the entire group of infants the new supplemented diet, we 
now randomly assign the infants into two groups and give one group (often called the 
treatment or experimental group) the new supplemented diet and the other group (often 
called the control group) the standard diet. These two groups are called independent 
groups; here the first group has 16 infants in it and the second group has 9 (see 
Table 7.1). Whenever possible it is recommended that a control group be included in 
an experiment. 

We compare separate populations: the population of gains in weight of infants 
who might be given the supplemented diet, and the population of gains in weight of 
infants who might be given the standard diet. A gain in weight in the first population 
is denoted by X I ,  the mean of the first population is called 1-11, and the mean of the 
first sample is 7 1 .  Similarly, a member of the second population is called X2,  the 
mean of the second population is called 1-12, and the mean of the second sample is 
X 2 .  The purpose of the experiment is to estimate p1 - p2, the difference between 
the two population means. We calculate 7, using the first group of 16 infants and 
XZ from the second group of 9 infants. If 7, = 311.9 g and x2 = 206.4 g, the 
estimate of p1 - p2 is f?l - f?2 = 105.5 g (see Table 7.1). This is the point estimate 
for p1 - p2 and indicates that the new diet may be superior to the old. 

- 

7.5.1 

After calculating x1 - 7 2  = 105.5 g, we calculate a 95% confidence interval. for 
p1- 1-12, the difference between the two population means. To calculate the confidence 
interval, the distribution of - X2 is needed. This presents no problem since 
X I  - x2 is simply a statistic that can be computed from the experiment. If the 
experiment were repeated over and over, the value of - 3 1 2  would vary from one 
experiment to another, and thus it has a sampling distribution. 

The Distribution of XI - X2 

- 
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It is usual to assume in this problem that the variances of the two original popu- 
lations are equal; the two equal variances will be called ua. If the first population 
is approximately normally distributed, we know that is approximately normally 
distributed, its mean is 1-11, and its standard deviation is a / f i  = ./a = a/4 g, 
where n1 = 16 is the size of the first group of infants. Similarly, X2 is approximately 
normally distributed with mean 1-12 and standard deviation 

u / f i 2  = u/& = u/3  g 

where n2 = 9 is the sample size of the second group of infants. 
If all possible pairs of samples were drawn from the two populations and for each 

pair - F2 is calculated, what kind of distribution would this statistic have? First, 
the distribution is approximately normal; this does not seem surprising. Second, 
the mean of the distribution is 1-11 - p 2 ;  this seems reasonable. Third, the standard 
deviation is larger than the standard deviation of the 7, distribution and is also larger 
than that of the 5?2 distribution; in fact, the variance for 5?1 - Fa is equal to the sum 
of the two variances. This may be somewhat surprising; evidence to support it can 
be obtained in a class exercise with the samples of cholesterol levels from Problem 
2.1, At any rate, it has been proven mathematically that 

ua u2 
X 1  Xz n1 n2 - 2 ($+i) 2 gr;.,-j?z - fl- + gl- = - + - = 0 2  

Note that when the sample sizes of the two groups are equal, nl = 122 or simply n, 
then CT$~ -xz = 2a2/n. Figure 7.3 illustrates the appearance of the distributions of 

X I ,  X 2 ,  and X I  - Fa. 
_ -  

0 Irl - L ( 2  1112 Irl 

Figure 7.3 
differences. 

Two distributions of sample means compared with the distribution of their 

7.5.2 

It can be shown mathematically, then, that for independent samples of size n1 and 
n2 from normal populations with means 1-11 and 1-12 and with equal variances u2, 

Confidence Intervals for p1 - p2: Known Variance 
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the statistic XI - XZ has a normal distribution with mean p1 - pz and variance 
o2(l/n1 + l /nz) .  In Section 7.1.2, when we had normally distributed with mean 
p and with variance a2/n,  and g2 was known, the 95% confidence interval for p was 
X & 1.960/&. Analogous to this, if o2 is known, a 95% confidence interval for 
- 

PI - PZ is 

( X i  - X z )  f 1.960 

For XI = 3 1 1.9 g and XZ = 206.4 g, if it is known that o = 120 g, the interval is 

(311.9 - 206.4) i 1 . 9 6 ( 1 2 0 ) d m  

105.5 i 1 . 9 6 ( 1 2 0 ) a  

105.5 i 1.96(120)(.417) 

105.5 & 98.1 

or 

or 

or 

or 
7.4-203.6 g 

Both confidence limits are positive, so we conclude that the supplemented diet does 
increase weight gains on the average in the population (i.e., we conclude that p1 - pz 
is positive and p1 > pz). It is also obvious from the length of the confidence interval 
(203.6 - 7.4 = 196.2 g) that the size of the difference covers a wide range. 

Here, we are assuming that we have simple random samples from two indepen- 
dent populations that both have a variance o2 and that the computed z is normally 
distributed. To estimate the sample size needed for a confidence interval of length L 
when n1 = n2 or simply n, we replace o with d'% in the formula for sample size 
for a single group. 

7.5.3 

Usually, the population variance o2 is unknown and must be approximated by some 
estimate that can be calculated from the samples. An estimate s: can be calculated 
from the first sample using s: = C ( X 1  - F ~ ) ~ / ( n l  - l), and similarly, an estimate 
s; can be computed from the second sample. These two estimates are then pooled to 
obtain the pooled estimate of the variance, s:. The pooled estimate of the variance is 
a weighted mean of s: and sz and its formula is 

Confidence Intervals for p1 - pa: Unknown Variance 

(n1 - 1,s: + (nz - 1)s; 
s2 = 

121 + 722 - 2 P 

When 
l/nz), the quantity 

- XZ are normally distributed with mean p1 - p2 and variance o'( l / n l +  

(Xl - X2) - (Pl - pz) 

aJl/n1+ l/nz 
z =  
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has a standard normal distribution. Substituting sp for 0 gives a quantity whose 
distribution is a t distribution. The d.f.’s for this t distribution are n1 + nz - 2, 
which is the number used in the denominator of sg. [Recall that for a single sample, 
t = (x - p) / ( s /& )  had n - 1 d.f., and that n - 1 is the number used in the 
denominator of s2 .] 

The 95% confidence interval for p1 - p2 may then be computed by substituting 
sp for 0 and by changing 1.96, the 97.5% point of the z distribution, to the 97.5% 
point of the t distribution with n1 + 122 - 2 d.f.’s. That is, the interval becomes 

(ff, - X2)  i t[.975]spJl/nl + l/nz 

with d.f. = n1 + 122 - 2. The calculation of the 95% confidence interval with o2 
unknowncanbeillustratedforpl-pz. Here,nl  = 16,nz = 9 . x 1  = 311 .9g ,xz  = 
206.4g. s: = 20.392, si = 7060, and t[.975] = 2.069 for n1 + 122 - 2 = 23 d.f. 
First, we compute the pooled variance as 

2 (16 - 1)(20,392) + (9 - 1)(7060) 362,360 
P 1 6 + 9 - 2  

= 15.755 -- - - 
23 

s =  

Taking the square root of the pooled variance yields sp = 125.5. The confidence 
interval for p1 - p2 for o unknown is 

(311.9 - 206.4) & (2.069)(125.5)d& + $ 

or 
105.5 i 2 . 0 6 9 ( 1 2 5 . 5 ) m  

or 
105.5 & 108.2 

or the interval is from -2.7 to 213.7g. Because the lower limit is negative and the 
upper limit is positive, we cannot conclude that the population mean gain in weight 
under the supplemented diet is larger than under the standard diet; the difference 
p1 - p2 may be either positive or negative, but we might be inclined to think that it 
is positive. 

In the past example, we have assumed that we have simple random samples from 
two normal populations with equal population variances. Methods for determining 
if the data are approximately normally distributed were discussed in Section 6.4. A 
method for testing if the two variances are equal is given in Section 9.2. 

7.6 ESTIMATING THE DIFFERENCE BETWEEN TWO MEANS: 
PAIRED COMPARISON 

Sometimes in studying the difference between two means it is possible to use pairs 
or matched samples advantageously. This device is often quite effective in partially 
eliminating the effects of extraneous factors. As mentioned in Chapter 2, matching 
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Table 7.2 Weight Loss (lb) Between Time 1 and Time 2 for Eight Adults 

Adult Number Time 1, XI Time 2, XZ Difference d 

278 
183 
175 
199 
210 
167 
245 
225 

27 1 
181 
175 
190 
204 
164 
239 
22 1 

- 
n = 8x1 = 210.25 xz = 205.625 d = 4.625 

~1 = 37.8 S2 = 36.2 s d  = 2.92 

is commonly used in casekontrol studies where patients are matched by gender and 
age. It is often used in surgical experiments where two surgical treatments are used on 
the opposite sides of animals such as rats to compare the outcomes. Another common 
use of paired comparisons is to contrast data gathered in two time periods. 

For example, consider data on eight adults before and after going on a diet given in 
Table 7.2. We will let X1 denote the weight before dieting (time 1) and X2 the weight 
after dieting for 2 months (time 2). The difference in the before and after weights can 
be computed for each adult as d = X1 - X2 and there are eight differences. We will 
assume that we have a simple random sample of differences and that the differences 
are normally distributed. 

We now analyze these differences instead of the 16 original weights. We reduced 
the problem from one of two sets of observations on weights to a single set of dif- 
ferences. We now treat the d’s as eight observations and first compute the mean and 
standard deviation using a statistical package. We obtain 

= 2.9246 
- 
d = -  ‘ = 4.625 and Sd = 

n 

Then, the 95% confidence interval can be computed using the formula given earlier 
for a single mean where the X’s are replaced by d’s. There are 8 differences and 
n - 1 = 7 d.f. The 95% interval is 

or 
2.9246 

4.625 h (2.365)- 
Js 

or 
4.625 i 2.445 or 2.18-7.07 lb 

The interval contains only positive numbers and we conclude that pd is positive and 
that, on average, the diet decreases weight for the adults. 
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In this example, the pairing of the weights on the same adult was a natural outcome 
of how the measurements were taken; it is obvious that the paired comparison is the 
one to use. When artificial pairs are created in clinical trials to assure that the treatment 
and control groups are similar in, say, age and gender, the reduction in the length of 
the confidence interval is often not great. Since patients usually enter the trial one 
at a time, the investigator may often be unable to find a close match for a patient 
already entered. Random assignment is strongly recommended for clinical trials. In 
casekontrol studies, since random assignment is not possible, pairing is often done 
not so much to reduce the size of the confidence interval as to ensure that the cases 
and controls are similar on some factors that might affect the outcome. The decision 
to pair or not to pair often depends on the type of research study being done and 
whether it is a simple process to find pairs. 

PROBLEMS 

7.1 

7.2 

7.3 

7.4 

The time taken for cessation of bleeding was recorded for a large number of 
persons whose fingers had been pricked. The mean time was found to be 
1.407 min and the standard deviation was .588 min. In an effort to determine 
whether pressure applied to the upper arm increases bleeding time, six persons 
had pressure equal to 20 mmHg applied to their upper arms and had their fingers 
pricked. For these six persons, the times taken for bleeding to stop were 1.15, 
1.75, 1.32, 1.28, 1.39, and 2.50min. Give a 95% confidence interval for the 
mean bleeding time under pressure for the six persons and draw some conclusion 
as to whether pressure increases bleeding time. 

Make a 95% confidence interval for the mean of the cholesterol-level population 
using each of the samples gathered in Exercise 2.1, assuming that you know 
that GT = 45.3 mg/100mL (three confidence intervals, one for each sample). 

Gather all the confidence intervals that the class constructed in Exercise 7.2, 
and make a graph plotting each interval as a vertical line. The population mean 
of the 98 cholesterol measurements is 279.5 mgA00 mL. How many intervals 
cross a horizontal line p = 279.5 mg/100 rnL? About how many would you 
expect to cross a line p = 279.5 mg/100mL? 

Mice from 12 litters were weighed when 4 months old, with one male and one 
female weighed from each litter. Weight in grams was recorded as follows: 

Litter Number Male Female 

1 26.0 16.5 
2 20.0 17.0 
3 18.0 16.0 
4 28.5 21.0 
5 23.5 23.0 
6 20.0 19.5 
7 22.5 18.0 
8 24.0 18.5 
9 24.0 20.0 

10 25.0 28.0 
11 23.5 19.5 
12 24.0 20.5 
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Give a 95% confidence interval for the difference between the mean weight of 
male mice and female mice using a statistical program. 

To study whether or not pressure exerted on the upper arm increases bleeding 
time, 39 persons had their upper arm subjected to a pressure of 40 mmHg of 
mercury and their fingers pricked. Their mean bleeding time was 2.192 min, 
and the standard deviation of their bleeding times was .765 min. Forty-three 
other persons acted as controls. No pressure was used for the controls, and 
their bleeding time was found to have a mean of 1.524 minutes and a standard 
deviation of .614min. Give a 95% confidence interval for the difference in 
bleeding times. Do you think pressure increases mean bleeding time? Why? 

7.5 

7.6 (a) A special diet was given to 16 children and their gain in weight was recorded 
over a 3-month period. Their mean gain in weight was found to be 2.49 kg. A 
control group consisting of 16 children of similar background and physique 
had normal meals during the same period and gained 2.05 kg on average. 
Assume that the standard deviation for weight gains is .8 kg. Is the evidence 
strong enough for us to assert that the special diet really promotes weight 
gain? 

(b) Answer the question in (a) if each of the two groups consisted of 50 children. 

7.7 A general physician recorded the oral and rectal temperatures of nine consecu- 
tive patients who made first visits to his office. The temperatures are given in 
degrees Celsius ("C). The following measurements were recorded: 

Patient Number Oral Temperature (deg"C) Rectal Temperature (deg"C) 

37.0 
37.4 
38.0 
37.3 
38.1 
37.1 
37.6 
37.9 
38.0 

37.3 
37.8 
39.3 
38.2 
38.4 
37.3 
37.8 
37.9 
38.3 

(a) From this data, what is your best point estimate of mean difference between 
oral and rectal temperatures? 

(b) Give a 95% confidence interval for this difference, and state what the interval 
means. 

(c) Give a 95% confidence interval for mean oral temperature. 

(d) Give a 95% confidence interval for mean rectal temperature. 
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7.8 In an experiment reported in the Lancet on the effectiveness of isoniazid as 
a treatment for leprosy in rats, the log survival times (weeks) were evaluated. 
For untreated rats, the log times were 1.40, 1.46, 1.48, 1.52, 1.53, 1.53, 1.56, 
1.58, 1.62, and 1.65. For treated rats, they were 1.71, 1.72, 1.83, 1.85, 1.85, 
1.86, 1.86, 1.90, 1.92, and 1.95. The rats were randomly assigned to the two 
groups, so the groups are independent. If log times in the untreated group are 
called X1 and in the treated group are called X z ,  the sample means and sums 
of squares of deviations are 5 1 1  = 1.533, x2 = 1.845,  XI - 5 1 1 ) ~  = .050, 
and C ( X 2  - x2)2 = ,054. Calculate (a) sp;  (b) the degrees of freedom; and 
(c) a 99% confidence interval for the true mean difference in log units: (d) On 
the basis of the interval obtained in (c), do you feel reasonably sure that the 
treatment was effective? Why? 

7.9 Bacterial colonies were counted on 12 plates. There were two observers, and 
the plate counts obtained were as follows: 

Plate Number Observer 1 Observer 2 Difference 

1 139 191 -52 
2 121 181 - 60 
3 49 67 -18 
4 163 143 20 
5 191 234 -43 
6 61 80 - 19 
7 179 250 -7 1 
8 218 239 -21 
9 297 289 8 

10 165 20 1 -36 
11 91 80 11. 
12 92 99 -7 

Give a 99% confidence interval for the difference between the mean plate counts 
of the two observers. Do you believe that there is a difference? Why? 

7.10 A physician is planning to take systolic blood pressure measurements from a 
group of office workers and a group of repair personnel working for a telephone 
company. Past results indicated that c is approximately 15 mmHg. If it is 
desired to have a 95% confidence interval of length 4 mmHg, how many workers 
should be measured in each group? 
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CHAPTER 8 

TESTS OF HYPOTHESES ON 
POPULATION MEANS 

In Chapter 7 we presented the methods used in constructing confidence intervals 
for the population mean, a widely reported parameter. Although we also consider 
population means in this chapter, here we show how to test hypotheses concerning 
them. The data being analyzed here are interval or ratio data that are also described 
as continuous data. Hypothesis testing is a commonly used method for assessing 
whether or not sample data are consistent with statements made about the population. 
In addition to this chapter, hypothesis testing is discussed in Chapters 9-14. 

In Section 8.1, hypothesis testing is introduced by presenting an example for a 
single mean. Note that this test is used less than the common test for two means. 
Tests for two means using data from independent populations are given in Section 8.2, 
and tests for paired data are given in Section 8.3. In the first two sections, we first 
present how to perform the tests when 0 is assumed to be known. This was done since 
the tests are simpler to understand when the normal distribution can be assumed. It is 
followed by tests that are generally used when 0 is not known. The general concepts 
used in testing hypotheses are listed in Section 8.4. The sample size needed for testing 
for two means is described in Section 8.5. In Sections 8.6-8.8 we discuss comparisons 
between the use of confidence intervals and hypothesis testing, correction for multiple 
testing, and reporting the results. 

Basic Statistics: A Primer for the Biomedical Sciences, Fourth Edition. 
By Olive Jean Dunn and Virginia A. Clark 
Copyright @ 2009 John Wiley & Sons, Inc. 
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Table 8.1 Age of Walking for 18 Acyanotic Children 

Child Age (months) Child Age (months) 

15.0 
11.0 
14.2 
10.0 
12.0 
14.2 
14.5 
13.8 
12.8 

10 
11 
12 
13 
14 
15 
16 
17 
18 

10.2 
14.0 
14.8 
14.2 
16.0 
13.5 
9.2 

15.0 
16.5 

- 
X = 13.38 s = 2.10 

8.1 TESTS OF HYPOTHESES FOR A SINGLE MEAN 

In this section we present tests that are used when only one mean is being tested: 
one test for when the population standard deviation u is known and one where it is 
unknown. We also discuss the usual procedures that are followed in tests concerning 
means. 

8.1.1 Test for a Single Mean When n Is Known 

In a study of children with congenital heart disease, researchers gathered data on 
age in months of walking from 18 children with acyanotic congenital heart disease; 
the data are recorded in Table 8.1. From larger studies on normal children, the 
researchers know that the mean age of walking for normal children is 12.0 months 
and that the standard deviation is 1.75 months. We wish to decide whether or not, 
on average, acyanotic children learn to walk at the same age as normal children. We 
formulate a hypothesis that we propose to test. This proposed hypothesis is called a 
null hypothesis. Our null hypothesis is as follows: The mean age of walking for a 
population of acyanotic children is 12.0 months. The null hypothesis is equivalent 
to saying that acyanotic children learn to walk at the same age on average as normal 
children. On the basis of the data, we wish either to accept the null hypothesis or 
to reject the null hypothesis. The null hypothesis should be decided upon prior to 
analysis of the data. 

The null hypothesis to be tested is often written in symbols, here HO : p = po. 
HO denotes the null hypothesis, p denotes the mean of the population being studied, 
and po denotes the hypothesized mean. In the acyanotic children example, the null 
- hypothesis is HO : p = 12.0. At this point, the student might suggest that we compute 
X from the sample and see whether or not it is equal to 12.0. But because of sampling 
variation, even if the average age of walking for the population of acyanotic children 
is 12.0 months, this particular sample of 18 children may have 7 either higher or 
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lower than 12.0 months. What must be decided is whether x is significantly different 
from 12.0. 

We reason this way: There is a whole population of acyanotic children; its mean 
age of walking is unknown and we assume that its standard deviation is known to equal 
1.75 months. (Here we assume that the variability in the age of walking is the same 
in acyanotic children as in well children.) We pretend temporarily that the population 
mean age of walking for acyanotic children is 12 months and decide whether the 
sample of size 18 could easily have been drawn from such a population. A simple 
random sample of children with acyanotic congenital heart disease is assumed. 

Under the temporary assumption, then, that 1-1 = 12.0, the means of repeated 
samples of size 18 would form a population whose mean is also 12.0 months and 
whose standard deviation is aj?- = 1.75/J18 = .412 month. The population of x’s 
is approximately normally distributed provided that the original population is not far 
from normal. 

We compute x = 13.38 months (Table 8.1). The question is: How unusual is this 
sample mean, assuming that the sampling was done from a population whose mean 
was 12.0 months? To answer this, we compute the chance that a sample will be drawn 
whose sample mean is at least as far from ,LL = 12.0 as is x = 13.38. In other words, 
we compute the probability of sample means occurring that are as unusual or more 
unusual than this one. Since the null hypothesis is Ho : p = 12.0, we reject the null 
hypothesis if the x computed is either much smaller than 12.0 or much larger. 

This probability, called P, can be obtained by finding the area lying above x = 

13.38 under the normal curve whose mean is 12.0 and whose population standard 
deviation of the mean is .412, and also the area lying below 10.62. (The point 10.62 
is as far below 12.0 as the point 13.38 is above 12.0. Since the normal curve is 
symmetric, all sample means that are at least as unusual as 13.38 lie either below 
10.62 or above 13.38.) To find the z value f o r X  = 13.38, p = 12.0, and ay = .412, 
we compute 

- 

x - Po 

a/& 
z=- 

or 
z = (13.38 - 12.0)/.412 = 1.38/.412 = 3.35 

By looking in Table A.2, we find for z = 3.35 that the probability of obtaining a 
sample mean corresponding to z < 3.35 is .9996, so that the chance of a sample 
mean > 13.38 is only .0004. The probability of obtaining a sample mean such that 
z is less than -3.35 is also equal to .0004 (see Figure 8.1). We will add these two 
probabilities to obtain .0008. So, if 12.0 is the population mean, a sample mean as 
unusual as 13.38 would be obtained on the average, in repeated sampling, only 8 
times in 10,000 (in other words, P is merely .0008 or .08%). Thus, either a very 
unusual sample has been drawn, or else the population mean is not 12.0. It is of 
course possible that the population mean is really 12.0 and that an unusual sample 
was drawn, but it seems more likely that the population mean is simply not 12.0. We 
decide to reject the null hypothesis, That is, we conclude that the mean age at walking 
for acyanotic children differs from 12.0 months, the mean for well children. 
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/ I 

/ 
I 
I 

10 62 12 0 13 38 X (months) 
- 3.35 0 3 35 z 

Figure 8.1 Two-sided test of HO : p = 12.0 when x = 13.38. 

11.6 12.0 12.4 X (months) - 0.97 0 0.97 z 

Figure 8.2 Two-sided test of Ho : p = 12.0 when x = 11.6. 

It is possible that our conclusion is incorrect, that the mean age is actually 12.0, 
and that this sample is unusual. We cannot know that p is not 12.0, since we have 
only one sample from the population on which to base the decision. However, the 
conclusion that p is not 12.0 seems more reasonable than that a highly unusual sample 
was obtained. 

Suppose that we had obtained x = 11.6 months for the sample mean instead of 
X = 13.38. We proceed exactly as we did with x = 13.38. This time z is 
- 

z = (11.6 - 12.0)/.412 = -.4/.412 = -.97 

In Table A.2, the area to the left of z = +.97 is .8340, or 83.4%. Note that even 
though the computed z = -.97, we use t = .97. This is possible because the normal 
distribution is symmetric. The chance of a sample mean’s being < 11.6 is then 
1.00 - 3340 = .1660, and the chance of a sample mean’s being < 11.6 or > 12.4 
(or .4 unit from p = 12.0) is twice as large, so that P = 2(.1660) = .3320, or 33% 
(see Figure 8.2). 

In other words, if the population mean is really 12.0, and if the experiment were 
repeated many times, and each time the mean age of walking calculated from a random 
sample of 18 acyanotic children, about 33 out of 100 of the sample means would differ 
from 12.0 by at least as much as did the sample mean actually obtained. Clearly, 11.6 
is close enough to 12.0 that it could have been obtained very easily by chance. We 
look at P = .33 and decide to accept the null hypothesis. The acceptance is a negative 
type of acceptance; we simply have failed to disprove the null hypothesis. We decide 
that as far as we can tell from the sample, the population mean may be 12.0 and that 
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acyanotic heart disease children may learn to walk at the same average age as other 
children. It should be emphasized that this conclusion may be incorrect; the mean 
may actually be something different from 12.0. But in any case, a sample mean of 
11.6 could easily have arisen from a population whose mean was 12.0, so if we still 
wish to establish that the age of walking is different for acyanotic children from that 
for normal children, we must gather more data. 

In these examples, it was fairly easily decided to reject the null hypothesis when 
P was .0008, and similarly it was easily decided to accept the null hypothesis when 
P was equal to .33. It is not so apparent which decision to make if we obtain a P 
somewhere in between, say P = .1, for example. Where should the dividing line be 
between the values of P that would lead us to reject the null hypothesis and those that 
would lead us to accept the null hypothesis? In many medical or public health studies, 
the dividing line is chosen in advance at .05. If P is < .05 and if the population mean 
is 12.0, the chance is < 1 in 20 that we will have a sample mean as unusual as that 
13.38 months occur; we therefore conclude that the mean is not 12.0. 

In statistical literature, the number picked for the dividing line is called a (alpha); 
it is seen as our chance of making the mistake of deciding that the null hypothesis is 
false when it is actually true. Alpha is sometimes called the level ofsign$cance. It 
is advisable to choose the level of a before obtaining the results of the test so that the 
choice is not dependent on the numerical results. For example, when a is chosen to be 
.05 in advance, we only have to see if the absolute value of the computed z value was 
> z[.975] = 1.96 for HO : p = po. When the null hypothesis is rejected, the results 
are said to be statistically sign$cant. If the computed z is > 1.96 or < -1.96, we 
say that the value of z lies in the rejection region and the null hypothesis is rejected. 
If the value of z lies between -1.96 and f1.96, it lies in the acceptance region, and 
the null hypothesis is not rejected. If the null hypothesis is not rejected, the results 
are often stated to be nonsign$cant. 

8.1.2 One-sided Tests When 0 Is Known 

In the previous example concerning age of walking for acyanotic children, we wished 
to find out whether or not the mean is 12.0; the test that was made is called a two-sided 
test because computing P included the chance of getting a sample mean above the 
one actually obtained (13.38) and also the chance of getting a sample mean less than 
10.625. 

Sometimes it is appropriate, instead, to make a one-sided test. We may consider 
it highly unlikely that acyanotic children learn to walk earlier on the average than 
normal children and may not be interested in rejecting the null hypothesis if this 
occurs. Then the question to be answered by the experiment is no longer whether the 
mean is 12.0 or something else. Instead, the question is whether or not the mean is 
> 12.0. We do not want to reject the null hypothesis for small values of the mean. 
Then, to calculate P we find the proportion of sample means that lie above 7. If 
from the sample, fT is calculated to be 13.38, P from Table A.2 is found to be .0004. 

The null hypothesis is stated HO : p 5 12 or, in general, HO : p 5 po. If the 
null hypothesis is rejected, we conclude that the population mean is > 12.0; that is, 
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acyanotic congenital heart disease children learn to walk at an older age than normal 
children. The entire rejection region is in the upper tail of the normal distribution. 
For a: = .05, z[.95] = 1.65, and the null hypothesis is rejected if z is > 1.65. 

Sometimes we only wish to reject the hypothesis if the population mean is too 
small. For example, suppose that we are testing the weight of a medication; the 
producers say that the bottles hold medication weighing 6 oz. We would only want 
to reject their claim if the bottles weigh too little. Here, the entire rejection region 
is in the lower tail. We would state our null hypothesis as Ho : p 2 6 and reject the 
null hypothesis if z 5 -1.65 if we wish to test at an cv = .05 level. Note that for 
z[-1.65] we have by symmetry 5% of the area in the lower or left tail of the normal 
distribution. 

8.1.3 Summary of Procedures for Test of Hypotheses 

The usual steps that are taken in testing a null hypothesis include: 

1. State the purpose of making the test. What question is to be answered? 

2. State the null hypothesis to be tested (two-sided or one-sided). 

3. Choose a level of cv that reflects the seriousness of deciding that the null hy- 
pothesis is false when actually it is true. 

4. Decide on the appropriate test statistic to use for testing the hypothesis. Here, 
since we are assuming that o is known, the test statistic is z = (x - po)/oz.  
Note that the o is usually not known, so the test statistics given in the next two 
sections are used. 

5. Check that the sample and data meet the assumptions for the test. In this 
case we are assuming a simple random sample taken from a population that 
has o equal to the assumed value. We are assuming that z follows a normal 
distribution. We should check that there are no errors or outliers in our sample 
and that the distribution is sufficiently close to normal that the sample mean is 
approximately normally distributed. 

6. Compute the value of the test statistic, in this case 

7. Either find the tabled values for a: and check the computed test statistic against 
the tabled values or obtain the P value for the numerical value of the test 
statistic. For example, in this case for a two-sided test and a: = .05, see if 
the computed z is > 1.96 or < -1.96. Otherwise, take the computed z value 
and look up the area in Table A.2 or in a computer program. Double the area 
found in one tail to obtain the P value for a two-sided test. For most tests, if 
the standard deviation is not known, the results can be obtained from computer 
programs. 
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8. State the statistical conclusion either to reject or fail to reject the null hypothesis. 
This should be followed with a statement of the results as they apply to the goals 
of the research project. 

Similar types of procedures apply to the tests given later in this chapter. 

8.1.4 Test for a Single Mean When v Is Unknown 

In the earlier example of 18 children with acyanotic heart disease, the standard de- 
viation of the original population was assumed to be 1.75 months, the same standard 
deviation as for age of walking for well children. The assumption that the variability 
of a population under study is the same as the known variability of a similar popu- 
lation is sometimes reasonable. More often, however, the standard deviation must 
be estimated from the sample data, either because one does not know the standard 
deviation of the comparable population (one does not know that 1.75 months is the 
standard deviation for age of walking for normal children) or because one is not sure 
that the variability of the population being studied is close to that of the comparable 
population (a small proportion of children with heart disease may walk very late, so 
that the age of walking for acyanotic children may be more variable than that for 
normal children). Just as in obtaining confidence intervals in Section 7.4, s must be 
calculated from the sample and used in place of 0,  and the t distribution must be 
used instead of the normal distribution. See Section 7.3 for an explanation of the t 
distribution. Here, f? = 13.38 and s = 2.10 (see Table 8.1). The standard error of 
the mean is s y  = s /&  or 2 . 1 0 / m  = 0.4944. The test statistic is then 

or 

13.38 - 12.0 
Q .4YU 

t =  = 2.79 

If the test is being made to decide whether p is > 12.0, a one-sided test is called for. 
The null hypothesis is HO : p 5 12.0, so if it is rejected, the conclusion is that the 
population mean is > 12.0. In Table A.3 we enter the table with 17 d.f. and look for 
2.79; we find 2.567 in the column headed .99 and 2.898 in the column headed .995. 
Thus the area to the left o f t  = 2.79 is between .99 and ,995, and the area to the right 
of 2.79 is between .01 and .005. Thus ,005 < P < .01. Usually, this is stated simply 
as P < .01 (see Figure 8.3). 

If we have chosen a: = .05 as the level of significance, we reject the null hypothesis 
and decide that the mean age of walking is > 12.Omonths; acyanotic children walk 
later on the average than normal children. If we wish to test the null hypothesis at the 
(Y = .05 level without computing P,  we compare the calculated t = 2.79 with the 
tabled value t[.95] = 1.74 with 17 d.f. and reject the null hypothesis because 2.79 is 
> 1.74. 
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I 

0 2.576A2.79 t 

Figure 8.3 One-sided test of HO : p 5 12.0. 

If a two-sided test is performed, the hypothesis is HO : p = 12.0 and is rejected 
if the sample mean is either too small or too large. The area to the right of 2.79 is 
doubled to include the lower tail and thus .01 < P < .02; again the test would be 
rejected. Alternatively, the computed value of t = 2.79 can be compared with the 
tabled value t[.975] = 2.11 with 17 d.f., and since 2.79 > 2.11, the null hypothesis 
of equal means would be rejected. Using a two-sided test with cr = .05 and t[.975] 
implies that one-half of the rejection region is in the upper or right tail and one-half is 
in the lower tail. In making this t test, we are assuming that we have a simple random 
sample and that the observations are normally distributed. The normality assumption 
can be checked using the methods given in Section 6.4. If the data are not normally 
distributed, transformations can be considered (see Section 6.5). Note that the t test 
is sensitive to extreme outliers so the observations should be examined for outliers. 

Computer programs generally used do not include the test using a known 0, but 
automatically use the calculated standard deviation and perform the t test. The t test 
is often called the Student t test. The programs usually provide the results only for 
two-sided tests. Minitab will provide confidence intervals and tests of hypothesis for 
a single sample using z .  

Some programs will allow the user to test for any numerical value of po such as 
po = 12.0. Some programs will only allow the user to test that ,uo = 0. When 
using one of these programs, the user should have the program create a new variable 
by subtracting the hypothesized po from each of the original observations. In the 
example, the new variable would have observations that are X - 12.0. The t test is 
then performed using the new variable and HO : p = 0. One of the advantages of 
using computer programs is that they can perform the calculations and give accurate 
P values for any d.f. In other words, the user does not have to say that the P value is 
between two limits such as .01 < P < .02 or that P < .02 but, instead, can say that 
P equals a particular value. 
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8.2 TESTS FOR EQUALITY OF TWO MEANS: UNPAIRED DATA 

As a second example of testing a hypothesis, let us suppose that we are interested in 
comparing the hemoglobin level of children with acyanotic heart disease with that of 
children with cyanotic heart disease. The question is: Is the mean hemoglobin level 
for acyanotic children different from that for cyanotic children? The null hypothesis 
is that the mean levels for acyanotic and cyanotic are the same. 

8.2.1 Testing for Equality of Means When c Is Known 

From experience with hemoglobin levels, researchers expect the population standard 
deviation to be about 1 .O g/cm3. The available data consists of two samples, one of 
19 acyanotic children, the other of 12 cyanotic children (see Table 8.2). The mean 
for each sample is computed as XI = 13.03 g/cm3 for the acyanotic children and 
as 7, = 15.74 for the cyanotic children. We calculate the difference between them, 
X1 - X2 = -2.71 g/cm3. The problem then is to decide whether there really is a 
difference between the mean hemoglobin levels of the two populations of children 
with congenital heart disease or whether the difference 5 ? 1 - 5 f 2  = -2.71 was caused 
simply by sampling variation. (One way of stating this question is to ask whether the 
difference between ;j?l and 

We have two populations: A population of hemoglobin levels of acyanotic children 
( X I ’ S ) ,  with mean P I ,  and a population of hemoglobin levels of cyanotic children 
(X~’S) ,  with mean p2, and it is assumed that the two populations have the same 
population standard deviations of 1 .O g/cm3. 

From Section 7.5, the population o f x l  -xz’s obtained taking all possible samples 
of size n1 and 122, respectively, from the two populations, has a mean 1-11 - 1-12 and a 
standard deviation 

aJ l /nl  + l/nz = 1 . O J m  = 1 . O d m  = .3687 g/cm3. 

_ _  

is signijicant.) 

The hypothesis that will be tested is Ho : 1-11 = 1-12; it may also be written as 
HO : p1- ,u2 = 0, which is equivalent to saying that P I -  1-12, the mean of the -x2 

population, is 0. If the original populations are not far from normal and simple 
random sampling can be assumed, the -fTz population is approximately normally 
distributed. Under the null hypothesis, then, we have a population of - xz’s, 
which is normally distributed, whose mean is 0 and whose standard deviation is .3687. 
This hypothesis will be rejected if the numerical value of xl - xz is either too large 
or too small. 

- xz as unusual as -2.71 g/cm3 if 
actually, 1-11 - p2 = 0, the z value corresponding to xl - xz = -2.71 is computed 
using the test statistic: 

To find P ,  the probability of obtaining an 

( 7 1  - Z z )  - (Pl - Pz) 
a J I / n l +  l/nz 

z =  

or 
-2.71 - 0 

z =  = -7.35 
.3687 
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Table 8.2 Hemoglobin Levels for Acyanotic and Cyanotic Children 

Ac yanotic C yanotic 
Number X1 (g/cm3) Number X Z  (g/cm3) 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

13.1 
14.0 
13.0 
14.2 
11.0 
12.2 
13.1 
11.6 
14.2 
12.5 
13.4 
13.5 
11.6 
12.1 
13.5 
13.0 
14.1 
14.7 
12.8 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

15.6 
16.8 
17.6 
14.8 
15.9 
14.6 
13.0 
16.5 
14.8 
15.1 
16.1 
18.1 

- - 
Xi = 13.03 X 2  = 15.74 

S: = 1.0167 S; = 1.9898 

From Table A.2, the area to the left of z = 3.99 is 1 .OOOO, so that the area to the right 
of 3.99, correct to four decimal places, is .OOOO, or in other words, < .00005. The 
area to the right of 7.35 is certainly < .00005. The probability of - xz being 
> 2.71 is < .00005, and the probability of - F2 being smaller than -2.71 is 
< .00005. Summing the area in the two tails, P < .0001. 

For any reasonable values of a,  the conclusion is that there is a real difference in 
mean hemoglobin level between acyanotic and cyanotic children. In making this test, 
we are assuming that we have two independent simple random samples and that the 
computed z has a normal distribution. 

8.2.2 Testing for Equality of Means When 0 Is Unknown 

Usually, the variances of the two populations are unknown and must therefore be 
estimated from the samples. The Student t test for determining if two population 
means are significantly different when the variances are unknown is one of the most 
commonly used statistical tests. In making this test, we assume that we have simple 
random samples chosen independently from two populations and that observations in 
each population are normally distributed with equal variances. The Student t test is 
used either when we take samples from two distinct populations or when we sample 
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a single population and randomly assign subjects to two treatment groups. This test 
has been shown to be insensitive to minor departures from the normal distribution. 

To illustrate testing for equality of population means when the population variance 
is unknown, we will use the hemoglobin data for children with cyanotic and acyanotic 
congenital heart disease given in Table 8.2. 

Just as in Section 7.5.3, when confidence intervals were found, we will use the 
pooled variance, si, as an estimate of o', the population variance for each population. 
The pooled variance is computed as 

(n1 - 1,s: + (n ,  - 1)s; 
s; = 

121 + 122 - 2 

where s: is the variance from the first sample and si is the variance from the second 
sample. From Table 8.2, we have s: = 1.0167, s; = 1.9898. n1 = 19, and n2 = 12. 
The computed pooled variance is 

= 1.3858 
18(1.0167) + ll(1.9898) - 40.1884 s =  - 

19 + 12 - 2 29 P 

Note that the pooled variance 1.3858 is between the numerical values of sf = 1.0167 
and si = 1.9898. It is somewhat closer to s: since n1 - 1 is > nz - 1. To 
obtain the pooled standard deviation, sp ,  we take the square root of 1.3858 and obtain 
sP = 1.1772. 

The standard deviation of the XI - Xz distribution is 

o J l / n l +  1/n2 

It is estimated by 

s p J l / n l  + l /nz  = 1.1772J1/19 + 1/12 = 1.1772413596 = ,4341 g/cm3 

The test statistic is 
( 7 1  - 7 2 )  - (P1 - P 2 )  

SpJl /n l+  l /nz 
t =  

or 
(XI - X,) - 0 

spJl /n1+ 1/n2 
t =  

or for the results from Table 8.2, 

13.03 - 15.74 -2.71 
= -6.24 - t =  - 

A341 .4341 

Table A.3 is then consulted to find the chance of obtaining a t value at least as small 
as t = -6.24. The d.f.'s to be used in the table are 
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(as usual the d.f.’s are the numbers used in the denominator of the estimate of the 
variance sg). Looking at the row in Table A.3 that corresponds to d.f. = 29, we 
see that t[.9995] = 3.659, so that > .9995 of the t distribution lies below 3.659 and 
< .0005 lies above 3.659. The area below -3.659 is by symmetry also < .0005. 
Summing the area in both tails we have P < .001. 

The null hypothesis of equal means is rejected; the conclusion is that the mean 
hemoglobin level for acyanotic children is different from that for cyanotic children. 
The mean level for the acyanotic children is XI = 13.03 and that of the cyanotic 
children X2 = 15.74. As before, 511 - x2 = -2.71, so if we reject the null 
hypothesis of equal means we can also say that acyanotic children have lower mean 
hemoglobin levels with P < .001. 

A one-sided test could also be used. Because acyanotic children are less severely 
handicapped than cyanotic children, we may believe that their mean hemoglobin level 
(1-11) is lower than 1-12, The question then asked is: Is the mean hemoglobin level for 
acyanotic children lower than for cyanotic children? In symbols, the question can be 
written as: Is 1-11 < 1-12? The null hypothesis is stated in the opposite direction, that 
is, the mean level for acyanotic children is greater than or equal to that of cyanotic 
children, or HO : 1-11 2 1-12. If we are able to reject this null hypothesis, we can state 
that 1-11 is < 1-12, and then from the value of P we know our chance of making an error. 

Now a one-sided test is appropriate, and we calculate the chance of obtaining an 
XI - 5 1 2  as small as -2.71 g/cm3 or smaller. From the results obtain previously, 
P < .0005, and the conclusion is that the hemoglobin level of acyanotic children is 
lower on average than that of cyanotic children. 

Note the difference in the conclusion between two-sided and one-sided tests. In 
a two-sided test, the question asked is whether 1-11 and 1-12 are different, and the 
conclusion is either that they are equal or that they are unequal; in a one-sided test 
the question asked is whether 1-11 is < p2, and the conclusion is either that 1-11 is < 1-12 

or p1 is 2 1-12. 

Sometimes the question asked is whether 1-11 is > 1-12. Then, the rejection region 
in the right side of the distribution of XI - X2 is used, and the conclusion is either 
that p1 is > 1-12 or 1-11 is 5 1-12. 

In Chapter 9 a test for equal variance is given. There the test for equal variance 
is made using the data above on the acynotic children as an example, and the null 
hypothesis of equal variances was not rejected. If the assumption for equal variances 
in the two groups cannot be made, one possible procedure is given in that chapter. An 
analysis is given for testing the equality of two means where the results are adjusted 
for the inequality of the variances. In Chapter 13, additional tests are given that do 
not assume equal variances. 

The t test for independent groups (unpaired) is one of the most commonly used 
statistical tests. It is widely available both in statistical programs and even in some 
spreadsheet programs. In most programs, the results are given for a two-sided test. 
Most programs print out t and the actual level of P instead of simply saying that it is 
less than a given value. The user then compares the computed P value to a prechosen 
LY level or simply reports the P value. Minitab, SAS, SPSS, and Stata will all perform 
a two-sample t test. 

- 
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Table 8.3 
and Their 10 Siblings 

Age at First Word in Months for 10 Children with Cyanotic Heart Disease 

Pair Number Cyanotic X I  Sibling X z  Difference d 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

11.8 
20.8 
14.5 
9.5 

13.5 
22.6 
11.1 
14.9 
16.5 
16.5 

9.8 2.0 
16.5 4.3 
14.5 0.0 
15.2 -5.7 
11.8 1.7 
12.2 10.4 
15.2 -4.1 
15.6 -0.7 
17.2 -0.7 
10.5 6.0 

- 
d = 1.32 
sz = 22.488 

In most statistical programs, one variable is used to list the hemoglobin levels 
for both groups. A second variable, often called a grouping or class variable, tells 
the computer program which group the observation comes from. In the hemoglobin 
example, the class or grouping variable could be assigned numerical values of 1 or 
2 to indicate whether the child was cyanotic or acyanotic. Alternatively, the data for 
the two groups could be placed in two columns. 

8.3 TESTING FOR EQUALITY OF MEANS: PAIRED DATA 

Often in comparing two populations, the sample data occur in pairs. Researchers 
studying congenital heart disease who wish to compare the development of cyanotic 
children with normal children might gather data on age at first word for two inde- 
pendent samples: one of cyanotic children and the other of well children. Then, we 
could test the null hypothesis that the two population means are equal as in Section 
8.2. Instead, however, available data (see Table 8.3) might consist of age at first word 
for 10 pairs of children, with each pair consisting of a cyanotic child and a normal 
sibling from the same family. Because children in the same family tend to be alike in 
many respects, the data cannot be considered as two independent samples and should 
be treated as a sample of pairs. 

Instead of analyzing the ages directly, the 10 differences are formed as in Table 8.3 
and are then treated as a single sample from a population of differences. If d represents 
a difference and pd the mean of the population of differences, then if the cyanotic 
children and siblings learn to talk at the same time, on the average, pd = 0. 

Either a one- or a two-sided test can be performed. If the question to be answered 
by the test is whether cyanotic children learn to talk later than siblings, a one-sided 
test is appropriate. Rephrased in terms of ,ud, the question becomes: Is pd > O? A 
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one-sided, upper tail test is appropriate. The null hypothesis is HO : pdso, so if it 
is rejected we can say that p d  > 0. In Table 8.3, the mean of the 10 differences is 
calculated to be 2 = 1.32 months; the variance of the differences is sz = C(d - 
d ) 2 / ( n -  1) = 22.488 and their standarddeviationis Sd = 4.74months. The variance 
of the population of sample means is estimated by 

- 

22.488 
= 2.2488 2 s2d - s - = - - -  

d n  10 

and by taking the square root of 2.2488 we have 1 S O  months as an estimate of the 
standard deviation s;i of the population. Then, 

- 
d - 0  1 .32-0  

= .880 - t = -  - 
s;i 1.50 

With Q = .05 and d.f. equal to n - 1 = 9, a t[.95] value of 1.833 would be necessary 
to reject the null hypothesis (see Table A.3). With t = .880, far less than 1.833, we 
cannot reject the null hypothesis; the mean age at first word may be the same for 
cyanotic children as for their normal siblings. Alternatively, the P value for the test 
can be obtained; fromTableA.3,75% of the area is below .703; 90% lies below 1.382. 
The proportion o f t  values below 380 is between 75 and 90%, and P, the proportion 
above .880, is between 10 and 25% or P < .25. 

In making this test, we assumed that the d’s are a simple random sample from a 
normal distribution. If we are unsure whether the differences are normally distributed, 
then either a normal probability plot, a histogram, or a box plot should be graphed. 
The differences should be at least approximately normally distributed. 

When a computer program is used, the observations for the cyanotic children and 
for their siblings are usually entered as separate variables. In some programs, the user 
first has the program make a new variable, which is the difference between the ages 
for the cyanotic children and their siblings, and then treats the problem as if it were 
a single sample of observations and performs a t test for a single sample. In other 
programs, the user tells the program which variable is the first variable and which is 
the second, and the program gives the result of the paired t test. Usually, the P value 
for a two-sided test is given. 

8.4 CONCEPTS USED IN STATISTICAL TESTING 

In this section we discuss the decision to accept or to reject a null hypotheses. The 
two types of error are defined and explained. 

8.4.1 

After testing a null hypothesis, one of two decisions is made; either HO is accepted or 
it is rejected. If we use a significance level Q = .05 and reject HO : p = 12.0, we feel 
reasonably sure that p is not 12.0 because in the long run, in repeated experimentation, 

Decision to Accept or Reject 
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if it actually is 12.0, the mistake of rejecting p = 12.0 will occur only 5% of the time. 
On the other hand, if, with a = .05; HO is accepted, it should be emphasized that we 
should not say that p is 12.0; instead, we say that p may be 12.0. 

In a sense, the decision to reject HO is a more satisfactory decision than is the 
decision to accept Ho, since if we reject Ho, we are reasonably sure that p is not 12.0, 
whereas if we accept Ho, we simply conclude that p may be 12.0. The statistical 
test is better adapted to “disproving” than to “proving.” This is not surprising. If we 
find that the available facts do not fit a certain hypothesis, we discard the hypothesis. 
If, on the other hand, the available facts seem to fit the hypothesis, we do not know 
whether the hypothesis is correct or whether some other explanation might be even 
better. 

After we test and accept Ho, we have just a little more faith in HO than we had 
before making the test. If a hypothesis has been able to stand up under many attempts 
to disprove it, we begin to believe that it is a correct hypothesis, or at least nearly 
correct. 

8.4.2 Two Kinds of Error 

In a statistical test, two types of mistake can occur in making a decision. We may 
reject HO when it is actually true, or we may accept it when it is actually false. The 
two kinds of error are analogous to the two kinds of mistake that a jury can make. 
The jury may make the mistake of deciding that the accused is guilty when he or she 
is actually innocent, or the jury may make the mistake of deciding that the accused is 
innocent when he or she is actually guilty. 

The first type of error (rejecting Ho when it is really true) is called a type Z error 
and the chance of making a type I error is called a (alpha). If we reject the null 
hypothesis and if a is selected to be .01, then if HO is true, we have a 1% chance of 
making an error and deciding that HO is false. 

Earlier in this chapter we noted that often, though not always, a is set at .05. In 
certain types of biomedical studies, the consequences of making a type I error are 
worse than in others. For example, suppose that the medical investigator is testing 
a new vaccine for a disease for which no vaccine exists at present. Normally, either 
the new vaccine or a placebo vaccine is randomly assigned to volunteers. The null 
hypothesis is that both the new vaccine and the placebo vaccine are equally protective 
against the disease. If we reject the null hypothesis and conclude that the vaccine 
has been successful in preventing the disease when actually it was not successful, the 
consequences are serious. A worthless vaccine might be given to millions of people. 
Any vaccine has some risks attached to using it, so many people could be put at risk. 
Also, a great deal of time and money would have been wasted. In this case, an a of 
.05 does not seem small enough. 

It may then seem that a type I error should always be very small. But this is not 
true because of a second type of error. The second type of error, accepting HO when 
it is really false, is called a type ZZ error. The probability of making this type of error 
is called /3 (beta). The value of B depends on the numerical value of the unknown 
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Table 8.4 Decisions and Outcomes 

Accept Ho Reject HO 

HO true Correct decision Type I error 
HO false Type I1 error Correct decision 

true population mean, and the size of p is larger if the true population mean is close 
to the null hypothesis mean than if they are far apart. 

In some texts and statistical programs a type I error is called an a-error and type 
I1 error is called a p-error. 

Decisions and outcomes are illustrated in Table 8.4. Since we either accept or 
reject the null hypothesis, we know after making our decision which type of error 
we may have made. Ideally, we would like our chance of making an error to be very 
small. 

If our decision is to reject the Ho, we made either a correct decision or a type I 
error. Note that we set the size of a. The chances of our making a correct decision is 
1 - a. 

If our decision is to accept the null hypothesis, we have made either a correct 
decision or a type I1 error. We do not set the size of p before we make a statistical test 
and do not know its size after we accept the null hypothesis. We can use a desired 
size of ,!? in estimating the needed sample size as seen in Section 8.5. 

8.4.3 An Illustration of p 

To illustrate the type I1 error, we will examine a simple hypothetical example. We 
have taken a simple random sample of n = 4 observations and we know that 0 = 1 
so that = .5. The Ho : p = 0 is to be tested and we set a = .05. First, we 
will find the values of 5?; that separate the rejection from the acceptance region. The 
value of x corresponding to z = +1.96 is obtained by solving 

- 
x-0 

1.96 = - 
.5 

f o r z ; .  Thus, x = 1.96(.5) = .98 corresponds to z = 1.96 and, similarly, x = -.98 
corresponds to z = -1.96. Any value of x between -.98 and +.98 would cause 
us to accept the null hypothesis that p = 0; thus /3 equals the probability that x 
lies between -.98 and +.98 given that we have actually taken the sample from a 
population whose p has a true value not equal to p = 0. Let us suppose that the true 
value of p is .6. 

Figure 8.4(a) represents the normal distribution of the x’s about p = 0 with the 
acceptance region in the center and the rejection regions in both tails. Figure 8.4(b) 
represents the normal distribution of x’s about the true value of p = .6. The two 
normal curves are lined up vertically so that zero on the upper curve is directly above 
zero on the lower curve. In Figure 8.4(b), the shaded area is p and the unshaded area 
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is 1 - ,O, since the total area under the curve is 1. We can see that the type 11 error is 
quite large. 

We can imagine moving the lower Figure 8.4(b) to the right. In this case, less of 
the area in Figure 8.4(b) would be within the acceptance region of Figure 8.4(a) and 
we have reduced the chance of making a type I1 error. Also, if we move the lower 
figure to the left, say make the true p = 0.1, we increase our chance of making a type 
I1 error, since more of the area of the lower curve lies within the acceptance area of 
the upper curve but the null hypothesis is not true. If we moved the lower figure very 
far to the left, the chance of making a type I1 error would be reduced. 

There are several general principles that can be drawn from examining figures 
similar to Figure 8.4(a) and ( b )  for two-sided tests. 

1. For a given size of a ,  0,  and n, the farther the hypothesized p is from the actual 
p, the smaller ,O will be if the null hypothesis is accepted. If we accept the null 
hypothesis, we are most apt to make a type I1 error if the hypothesized mean 
and the true mean are close together. 

2. If we set the value of a very small, the acceptance region is larger than it would 
otherwise be. We are then more likely to accept the null hypothesis if it is 
not true; we will have increased our chance of making a type I1 error. Refer 
to Figure 8.4(a) and imagine the rejection region being made smaller in both 
tails, thus increasing the area of ,O in Figure 8.4(b). 

3. If we increase the size of n, we will decrease the (standard error of the 
mean) and both normal curves will get narrower and higher (imagine them 
being squeezed together from both sides). Thus, the overlap between the two 
normal curves will be less. In this case, for a given preset value of Q and the 
same mean values, we will be less apt to make a type I1 error since the curves 
will not overlap so much. 

Since ,!? is the chance of making a type I1 error, 1 - ,O is the chance of not making 
a type I1 error and is called the power of the test. When making a test, we decide how 
small to make a and try to take a sufficient sample size so that the power is high. 

If we want a test to prove that the two population means are the same, a test called 
the test of equivalence would be used (see Wellek [2003]). 

8.5 SAMPLE SIZE 

When planning a study, we want our sample size to be large enough so that we 
can reach correct conclusions but we do not want to take more observations than 
necessary. We illustrate the computation of the sample size for a test of the mean 
for two independent samples. Here we assume that the estimated sample sizes for 
the two groups are equal and call the sample size simply n. The formula for sample 
size is derived by solving n for a given value of a )  ,!?, 0,  and 1-11 - p2 (the difference 
between the hypothesized two means). Here, we assume that the estimated sample 



1 12 TESTS OF HYPOTHESES ON POPULATION MEANS 

Figure 8.4 
Sampling distribution of x when true ,u = .6 with the shaded area ,B. 

(a )  Sampling distribution of x for ,u = 0 with the rejection region shaded. ( b )  

size in the two groups is equal, n1 = n2 = n, and that the u in both groups is the 
same. As shown in Chapter 7, the variance of 7, - 7 2  = 2u2/n. For a one-sided 
test, the sample size can be obtained from 

2u2(z[l - a] + z [ l  - p])2 

(1-11 - 1-1212 
n =  

and for a two-sided test the approximate formula for n is given by 

2 4 4 1  - a/2] + z [ l  - P ] ) 2  

(Pl - P2Y 
n =  

Since the two-sided test for testing the Ho : 1-11 = ~2 is such a widely used test, the 
formula for obtaining the needed sample size for this case is also widely used. From 
examining the formula, it is obvious that we have to choose a value for a and p. As 
stated previously, cy = .05 and p = .20 are commonly used values; for these values 
zjl  - a/2] = 1.96 and z[1 - p] = .84 or, more accurately, ,842. Other values of 
cy and /3 can be chosen, depending on the seriousness of making type I and type I1 
errors. 
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We next decide what diference between p1 and p2 we wish to detect. Note that 
the actual values of p1 and p2 are not needed, only the difference. For example, if 
the outcome variable was systolic blood pressure, a difference as small as 2 mmHg 
would probably not be of clinical significance, so something larger would be chosen. 
The size should depend on what is an important difference that we are able to detect. 
A clinician might say that 5 mmHg is a sizable difference to detect, so 5 would be 
used in the formula in place of p1 - p2. An estimate of cr is also needed and the 
clinician may decide from past experience that cr = 15 mmHg. Then, the desired 
sample size is 

= 141.12 
2(15)2(1.96 + .84)2 - (450)(7.84) 

- 
(5)2 25 

n =  

so that n = 142 are needed in each group. 
If cr is unknown, so that a t test will be performed using the pooled estimate sp ,  

the formula above is still used. Often, we make the best estimate of cr that we can 
either by looking up similar studies in the literature or from past results in the same 
hospital. Alternatively, the approximate method for estimating cr from the range given 
in Section 5.2.2 can be used. 

Special statistical programs are available that provide sample sizes for a wide 
range of statistical tests. See nQuery Advisor, PASS, Unify Pow, and Power and 
Precision. Formulas for computing sample sizes for numerous tests can also be 
found in Kraemer and Thiemann [1987]. 

8.6 CONFIDENCE INTERVALS VERSUS TESTS 

In the examples discussed in this chapter and in Chapter 7, we analyzed the data using 
either confidence intervals or tests of hypotheses. When are confidence intervals 
generally used, and when are tests used? What are the relative advantages of the two 
methods? 

Most investigators run tests on the variables that are used to evaluate the success 
of medical treatments and report P values. For example, if a new treatment has been 
compared to a standard treatment, the readers of the results will want to know what 
the chance of making a mistake is if the new treatment is adopted. Suppose that 
the variable being used to evaluate two treatments is length of stay in the hospital 
following treatment. Then, an investigator will probably perform a statistical test for 
that variable. 

For many studies, the investigators are not testing treatments, but instead, are 
trying to determine if two groups are different. This was the case in the example in this 
chapter when the hemoglobin levels of cyanotic and acyanotic children were analyzed. 
Here, either confidence intervals or tests could be done. In general, it is sensible to 
run tests when investigators have a rationale for the size of the P value that would lead 
them to reject the null hypothesis and when users of the results want to know their 
chance of making a type I error. For further discussion of confidence intervals and 
tests of hypotheses, see van Belle et al. [2004]. Schenker and Gentleman [2001] point 
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out that if one wants to test whether the difference between two point estimates (say, 
two population means) is statistically significant, the method of examining overlap 
of confidence limits is conservative. That is, it rejects the null hypothesis less often 
than the standard method when the null hypothesis is true and fails to reject the null 
hypothesis more frequently than the standard method when the null hypothesis is 
false. 

Confidence intervals are often used when describing the patients at their entrance 
to the study. They are useful when the main interest is in determining how different 
the population means are. The questions asked in many studies by epidemiologists 
are best answered with confidence intervals (see Rothman [ 19861). 

In practice, tests are reported more often because statistical programs tend to 
provide them and readers expect to see them. Programs do provide the means and 
standard deviations from which confidence intervals can easily be computed, but 
they do not all display the actual confidence intervals. Minitab provides confidence 
intervals using either z or t. SAS, SPSS, and Stata will give the confidence intervals 
using t .  

8.7 CORRECTING FOR MULTIPLE TESTING 

When we make multiple tests from a single data set, we know that with each test 
we reject, we have an a chance of making a type I error. This leaves us with the 
uncomfortable feeling that if we make enough tests, our chance that at least one will 
be significant is > a. For example, if we roll a die, our chances of getting a 1 is only 
1 in 6. But if we roll the die numerous times, our chance of getting a 1 at some time 
increases. 

Suppose that we know in advance that we will make m tests and perform two- 
sided tests. If we want to have an overall chance of making an type I error be 
5 a ,  we compare the computed t values we obtain from our computations or the 
computer output with t [ l  - a / 2 m ]  using the usual d.f. instead of t [ l  - a / 2 ] .  For 
example, suppose we know that we will make m = 4 tests and want a = .05. Each 
test has 20 d.f.’s. In this case, 2 m  = 8. From a computer program, we obtain 
t [ l  - .05/8] = t[.9938] = 2.748. We can see from Table A.3 that t[.9938] with 20 
d.f.’s lies between 2.528 and 2.845, so the t value of 2.748 obtained from a statistical 
program seems reasonable. Suppose our four computed t values were 1.54, 2.50, 
2.95, and 3.01. If we correct for multiple testing, only the t tests that had values of 
2.95 and 3.01 would be significant since they exceed 2.748. Without correcting for 
multiple testing, we would also reject the second test with a t  value of 2.50 (see Table 
A.3). To correct for multiple testing using one-sided tests, we compare the computed 
t’s with tabled t [ l  - a/m] instead of tabled t [ l  - a] values. 

This method of correcting for multiple testing is perfectly general and works for any 
type of test. It is called the Bonferroni correction for multiple testing. The Bonferroni 
correction also works for confidence intervals. Here, for a two-sided interval with 0 

known, we use z [ l  - a / 2 m ]  instead of z [ 1 -  a/2] when we compute the m confidence 
intervals. For CT unknown, we use t [ l  - a / 2 m ]  instead of t [ l  - a / 2 ]  in computing 
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the intervals. When using t, it may be difficult to find tabled values close to those 
you want. The simplest thing to do is to use a computer program that gives t values 
for any number between 0 and 1. As a rough approximation, the linear interpolation 
given in Section 6.2.2 may be used. Other commonly used multiple comparison tests 
for testing equality of means include the Tukey HSD (honestly significant difference), 
Scheffk’s test or Fisher’s LSD test (see Milliken and Johnson [1984]). 

8.8 REPORTING THE RESULTS 

In typical biomedical examples involving patients, numerous variables are measured. 
A few of these variables relate to the main purpose of the study and are called outcome 
variables. Here, tests of hypotheses are commonly reported. But other variables are 
collected that describe the individual patients, such as age, gender, seriousness of 
medical condition, results from a wide range of medical tests, attitudes, and previous 
treatment. These data are taken so that the patients being treated can be adequately 
described and to see if the patients in the various treatment groups were similar prior 
to treatment. In experiments using animals and in laboratory experiments, usually 
fewer variables are measured. In reporting the results, we have to decide what is of 
interest to the reader. 

When we report the results of tests of hypotheses, we should include not only the 
P value but also other information from the sample that will aid in interpreting the 
results. Simply reporting the P value is not sufficient. It is common when reporting 
the results of HO : p1 = p2 to also report the two sample means so that the reader can 
see their actual values. Usually, either the standard deviations or the standard errors 
of the means are also included. The standard deviation is given if we want the reader 
to have a measure of the variation of the observations and the standard error of the 
mean is given if it is more important to know the variation of the mean value. The 
standard deviation is sometimes easier to interpret than the standard error of the mean 
if the sample sizes in the two groups are unequal since its size does not depend on the 
sample size. Ranges are useful in warning the reader that outliers may be present. 

Often tables of means and standard deviations are given for variables that simply 
describe the patients in the study. This information is often given in a graphical form 
with bar graphs. If the shape of the distribution is of interest, then using histograms, 
box plots, or other available options are useful. These plots can be obtained directly 
from the statistical programs, and many readers find them easier to interpret than 
tables of statistics. 

PROBLEMS 

In the following problems, use the steps listed in Section 8.1.3 as a guideline when 
performing tests. Most of these test can be done using computer programs. 

8.1 In Problem 7.5, make a test to determine whether or not pressure increases 
mean bleeding time. Use cy = .05. 

In Problem 7.4, test whether male rats are heavier, on average, than female rats. 
Use cy = .05. 

8.2 
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8.3 

8.4 

8.5 

8.6 
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In Problem 7.8, make a test to determine whether or not isoniazid treatment for 
leprosy was effective. Use Q = .05. 

In Problem 7.7, test to determine (a) whether or not oral and rectal temperatures 
are the same; (b) whether mean oral temperature is 37°C. Use cy = .05 in both 
(a) and (b). 

Investigators are studying two drugs used to improve the FEVl readings (a 
measure of lung function) in asthmatic patients. Assume that r~ = .8 and the 
difference in means they wish to detect is .25. If they want to do a two-sided 
test of equal population means with a = .05 and p = .20, what sample size 
should they use? 

Test the null hypothesis of equal means for the data given in Problem 7.9 using 
cy = .01. 
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CHAPTER 9 

VARIANCES: ESTIMATION AND TESTS 

In Chapter 5 we discussed the importance of variability, and by now it should be 
apparent that one of the major problems in working with any type of data is assessing 
its variability. Even if the ultimate goal is to estimate the mean of a population, we 
need to obtain an estimate of its variance and standard deviation, and then use this 
estimate in testing hypotheses or developing confidence intervals for the mean. When 
the t test is used to test whether two population means are equal, we assume that the 
population variances are equal, so it is important to know how to perform this test. 

In Chapters 7 and 8 we presented confidence intervals and tests of hypotheses 
for population means. This chapter gives tests of hypotheses concerning population 
variances. In Section 9.1 we review how to make point estimates of a pooled variance 
from two samples and give a comparable formula for the pooled estimate from more 
than two samples. In Section 9.2 we describe how to test whether two population 
variances are equal. The test for equality of the variances is needed since we assume 
equal variances when doing a t test of equal means. Also, a treatment that gives 
consistent results may be preferred over one that has highly variable results. In 
Section 9.3 an approximate t test for the equality of two means is given that can be 
used if we find that the population variances are unequal. Finally, in Section 9.4 a 
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brief discussion is given of the use of nonparametric tests that do not require a normal 
distribution. 

9.1 POINT ESTIMATES FOR VARIANCES AND STANDARD 
DEVIATIONS 

First, a reminder as to how to estimate a population variance or standard deviation. 
From a single sample, the $ample variance s2 is calculated and used as the best point 
estimate of the population variance c2, and the sample standard deviation s is used 
as the point estimate for o. 

Sometimes, however, more than one sample is available for estimating a variance. 
In Section 7.5.3, for example, when group comparisons were made in the study of 
gains in weight under two diets, it was assumed that the variability of gains in weight 
was the same under the two diets. In other words, the population of gains in weight 
under the supplemented diet and the population of gains in weight under the standard 
diet had the same variance, 02. The two sample variances were pooled, and sg was 
used to estimate 02, with 

(nl - 1)s: + (n2 - 1)s; 

121 + n2 - 2 
s =  P 

When there are several samples rather than just two for estimating a single variance, 
the sample variances are pooled in a similar way. In general, for k samples, the pooled 
estimate of the variance is 

(n1 - 1)s: + (122 - 1)s; + . . . + ( n k  - 1 ) s t  
s2 = - 

nl + 122 + .  . .  + n k  - k P 

where the variances of the Ic samples are s:, sz,  . . . . st and the sample sizes are 
n1, n2 . .  . . , n k .  

For example, if s: = 20. sz = 30, si = 28. n1 = 12.722 = 16, and n3 = 5, then 

- = 26.07 
l l (20 )  + l5(30) + 4(28) - 782 

30 
- s =  

12 + 1 6 + 5  - 3 P 

and sp = 5.1. 

9.2 TESTING WHETHER TWO VARIANCES ARE EQUAL: FTEST 

Frequently, with two samples we wish to make a test to determine whether the popu- 
lations from which they come have equal variances. For example, with two methods 
for determining blood counts, we may wish to establish that one is less variable than 
the other. Another situation arises when we need to pool the two sample variances 
and use si  as an estimate for both population variances. In making the usual t test 
to test the equality of two means, we assume that the two populations have equal 
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I 

Figure 9.1 The F distribution. 

variances, and a preliminary test of that assumption is sometimes made. This option 
is often found in statistical programs. 

Under the assumptions given below, a test of HO : of = o; can be made using 
a distribution known as the F distribution. With two independent simple random 
samples of sizes n1 and n2, respectively, we calculate their sample variances s: and 
s:. If the two populations from which we have sampled are both normal with variances 
oy and 022, it can be shown mathematically that the quantity (sf/of)/(s;/o;) follows 
an F distribution. The exact shape of the distribution of F depends on both d.f.’s 
n1 - 1 and n2 - 1, but it looks something like the curve in Figure 9.1. The F 
distribution is available in Table A.5. 

As an example of testing the equality of two variances, we return to Table 8.2 
and wish to decide whether the variances are the same or different in the populations 
of hemoglobin levels for children with cyanotic and acyanotic heart disease. We are 
asking whether or not o! is different from o; and the null hypothesis is, Ho : o: = u;. 
A two-sided test is appropriate here. We have n1 = 19, n2 = 12. sf = 1.0167, and 
s; = 1.9898. The test statistic we use is given by 

Under the null hypothesis Ho : of = a;, the of and 02” can be canceled and the F 
statistic becomes 

F = 7 j  sf 
5 2  

Because the areas less than .95 for F are not given in many tables, the usual procedure 
is to reverse the subscripts on the populations if necessary so that sy 2 s;. Hence, we 
will make s: = 1.9898 and sz = 1.0167, and n1 = 12 and n2 = 19. The computed 
F value is 

= 1.96 
1.9898 F = -  
1.0167 
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In entering the F tables, the d.f.’s for the numerator are 721 - 1 = 11 and the d.f.’s for 
the denominator are n2 - 1 = 18. Since there is a different F distribution for every 
pair of sample sizes, F tables become quite extensive. In Table A S ,  just four areas 
under the curve have been given: ,025, .95, .975, and .99. Degrees of freedom for 
the numerator are denoted in the table by v1 , for the denominator by v2. The column 
headings of Table A S  give v1, v2 is listed by rows. 

For a = .05 and a two-sided test, we will use the area of .975 (or the 97.5 percentile) 
of the F table. We do not have to check the lower percentile since we placed the larger 
variance in the numerator. In Table A S ,  there are entries for v1 = 11, but there are 
no entries for v2 = 18. When there are no entries for a particular d.f., a conservative 
approach is to use the F value from Table A S  for the closest lower d.f. For example, 
for v2 = 18 the results tabled for v2 = 15 can be used. For v1 = 11 and vz = 15, 
the 97.5 percentile is given as F = 3.01. The correct value for F must lie between 
F = 3.01 for 15 d.f. and F = 2.72 for 20 d.f. Since our computed F = 1.96 is less 
than the correct value of F ,  we will not be able to reject the null hypothesis of equal 
variances. 

If our computed F had been equal to 2.80, we might want to find the percentile 
for v1 = 11 and v2 = 18, since by looking at Table A S  it would not be clear whether 
we could accept or reject the null hypothesis. In this case, we could either perform 
the test using a statistical program that gave the actual P value or interpolate in Table 
A S .  

As a second example of the use of the F test suppose that with the data from 
two samples in Table 7.1, we wish to prove the assertion that the observed gains in 
weight under the standard diet are less variable than under the supplemented diet. 
Now, we will make a one-sided test of the hypothesis of 5 02”. The variance for the 
supplemented diet is s: = 20,392 and the variance for the standard diet is si = 7060. 
We will reject the null hypothesis only if s: is very large compared to si. It clearly 
is larger, but without performing the test it is not clear if it is enough larger. 

Under the null hypothesis, the F statistic computed is 

s: 20,392 
si 7060 

F = - = -  = 2.89 

The two sample sizes are 721 = 16 and 722 = 9, so Table A S  is entered with v1 = 15 
d.f. for the numerator and v2 = 8 d.f. for the denominator. To test the null hypothesis 
with a = .05, we will compare the computed F to the 95th percentile in the F table 
since a one-sided test is being performed and the entire rejection region is in the 
right tail. The 95th percentile from Table A S  is 3.22, so we cannot reject the null 
hypothesis; we cannot conclude that the population variance for the supplemented 
diet is larger than that under the standard diet. 

Note that in most cases a two-sided F test is performed since often the researcher 
does not know ahead of time which population is likely to have the larger variance. 
It is important to screen the data for outliers before testing that two variances are 
equal using the F test. This test is not robust with respect to the assumption of 
normality or outliers. Outliers have a greater effect on the variance than they do 
on the mean since the difference from the mean for each observation is squared in 
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computing the variance. When unequal variances are found, the first thing that should 
be examined is why they are different. Is it the case of a few outliers, or are the two 
distributions different? The use of box plots is highly recommended, or histograms 
can be examined for each sample. Note that some computer programs do provide 
tests for equal variances and they all compute the standard deviation, so the variance 
can easily be obtained. 

9.3 APPROXIMATE t TEST 

In the first F test of the hemoglobin levels of children with cyanotic and acyanotic 
heart disease, we were not able to reject the null hypothesis of equal variances. 
Similarly, we were not able to reject the null hypothesis in the diet example. Thus, in 
both cases it was possible that the population variances were equal. In Section 7.5.3, 
when we computed the confidence interval for the difference in the mean between 
two independent groups using the t distribution, we stated that one of the assumptions 
was equal population variances in the two groups. The same assumption was made in 
Section 8.2.2 when we tested whether the means of two independent populations were 
equal. The F tests that we performed in this chapter give us additional confidence that 
the t test of Section 8.2.2 was appropriate since we did not find significant differences 
in the variances. 

But what if the variances had been significantly different? If the pooled-variance 
t test given in Chapter 8 is used when the population variances are not equal, the P 
value from the test may be untrustworthy. The amount of the error depends on how 
unequal the variances are and also on how unequal the sample sizes are. For nearly 
equal sample sizes, the error tends to be small. 

One course of action that is commonly taken when we wish to perform a test 
concerning the means of two independent groups is to use an approximate t test 
(see van Belle et al. [2004]). If the observations are independent and are simple 
random samples from populations that are normally distributed, then after making an 
adjustment to the d.f., we can use the following test statistic: 

which has an approximate t distribution. Suppose now in the hemoglobin example 
given in Table 8.2 that si = 10 and s: = 1.0167. If we perform the F test, equal 
variance would be rejected at the Q = .05 level. Then our computed approximate t 

tistic is sta 
-2.71 

= -2.88 - - 13.03 - 15.74 
t =  

J1.0167/19 + 10/12 &%% 

The d.f.’s are approximately 
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We compute $/n1 = ,0535 and s:/n2 = .8333 and enter them into the formula for 
the d.f.’s: 

(.0535 + .8333)2 
(.0535)2/(19 + 1) + (.8333)2/(12 + 1) 

d.f. = 

- 2 = 14.68 - 2 = 12.68 
.7864 

.00014 + .05342 
- - 

or, rounding up, 13 d.f. In general, the d.f.’s for the approximate test are less than for 
the usual t test. When the sample sizes are large, this makes little difference since 
the d.f.’s will be large enough so that a reduction does not appreciably affect the size 
of the tabled t value. For instance, looking at Table A.3 for the 95th percentile, if we 
reduce the d.f. by 5 for a small sample, from say 10 to 5, the tabled t value increases 
from 1.812 to 2.015. But if we reduce the d.f.’s for a larger sample by 5 ,  from 55 to 
50, the tabled t only increases from 1.673 to 1.676. 

Statistical programs commonly include an option for using the approximate t test 
(see SAS, SPSS, and Stata). The test statistic tends to be the same among the various 
programs; however, slightly differing formulas are used for estimating the d.f.’s. 
Some of these formulas are more conservative than others in that they result in fewer 
degrees of freedom. 

Other options for handling unequal variances include checking that the two dis- 
tributions from the samples appear to be from normal populations and trying trans- 
formations on the data before performing the t test. Sometimes the difference in 
variances is associated with a lack of normality, so that the transformations discussed 
in Section 6.5 should be considered. 

9.4 OTHER TESTS 

Sometimes the data are not normally distributed and finding a suitable transformation 
is impossible, so that using a test other than the usual t test should be considered. For 
example, a distribution all of whose observations are positive values and whose mode 
is zero cannot be transformed to a normal distribution using power transformations. 

Sometimes the data are not measured using an equal interval or ratio scale (see 
Section 5.4.3) so that the use of means and standard deviations is questionable. Often, 
psychological or medical data such as health status are measured using an ordinal 
scale. 

Distribution-free methods can be used with ordinal data that do not meet the 
assumptions for the tests or confidence limits described in Chapters 7, 8, and in this 
chapter. Such tests used are commonly called nonpurumetric tests. Nonparametric 
tests are available that are suitable for single-sample, independent groups or paired 
groups. For single samples or paired samples, either the sign test or the Wilcoxon 
signed ranks test is often used. For two independent samples, the Wilcoxon-Mann- 
Whitney test is commonly used. These tests are described in Chapter 13. 



PROBLEMS 123 

PROBLEMS 

9.1 

9.2 

9.3 

9.4 

In Problem 7.5, use the standard deviations for bleeding times calculated from 
43 bleeding times without pressure and from 39 bleeding times under pressure 
to decide whether bleeding time under pressure is more variable than bleeding 
time without pressure. 

From Table 8.2, test if the variance of acyanotic children is significantly dif- 
ferent from the variance for cyanotic children. 

In Problem 7.4, there was a sample of 12 litters of mice, each consisting of 1 
male and 1 female, and the data consisted of 12 pairs of weights. Why is it 
inappropriate to use Table AS,  the F table, on these data if we wish to find out 
whether or not the variability of weights is the same among male and female 
mice? 

Systolic blood pressure has been measured in two groups of older people who 
were not taking medication for high blood pressure. The first group of n1 = 21 
persons were overweight. They had a mean systolic blood pressure of = 
142 and s1 = 26. The second group of 722 = 32 was normal weight. They had 
X2 = 125 and s2 = 15. Test the null hypothesis that IT: = 02” at the Q = .05 
level. 

- 
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CHAPTER 10 

CATEG 0 R I CAL DATA: P RO PO RT I 0  N S 

In previous chapters, the data considered were in the form of continuous (interval 
or ratio) measurements; for each individual in a sample, some characteristic was 
measured: height, weight, blood cholesterol, gain in weight, temperature, or duration 
of illness. This chapter and Chapter 11 are both concerned with a somewhat different 
type of data: data consisting merely of counts. For example, the number of survey 
respondents who are male or female may be counted. Here the variable is gender 
and there are two categories: male and female. The proportion of males would be 
the count of the number of males divided by the total number of males and females. 
Some variables, such as race or religion, are commonly classified into more than two 
categories. 

According to Stevens’ system for classifying data, the data would be nominal. 
In this chapter we give methods of handling categorical data for populations whose 
individuals fall into just two categories. For example, for young patients who un- 
derwent an operation for cleft palate, the two outcomes of the operation might be no 
complications (success), and one or more complications (failure). This type of data 
is essentially “yes” or “no,” success or failure. Categorical data with more than two 
categories are discussed in Section 1 1.4. 
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In Section 10.1, methods for calculating the population mean and variance from 
a single population are presented. Here, the formulas for the population parameters 
are given before those for the sample. The relationship between the sample statistics 
and the population parameters is presented in Section 10.2. The binomial distribution 
is introduced, and we explain that in this book only the normal approximation to the 
binomial distribution is covered. Section 10.3 covers the use of the normal approxi- 
mation. Confidence limits for a single population proportion are given in Section 10.4 
and for the difference between two proportions in Section 10.5. Tests of hypotheses 
are discussed in Section 10.6, and the needed sample size for testing two proportions 
is given in Section 10.7. When either confidence intervals or tests of hypothesis are 
given, we assume that simple random samples have been taken. Section 10.8 covers 
data entry of categorical data and typical output from statistical programs. 

10.1 SINGLE POPULATION PROPORTION 

Here, we consider the young patients who underwent the cleft palate operation to be 
the entire population; we have 5 who had a complication (failures) and 15 who had no 
complications (successes). To make it simpler to count the number of successes and 
failures, we shall code a success as a 1 and a failure as a 0. We then have 15 ones and 
5 zeros and N = 20 is the total number of observations in the population. The data 
are usually reported in terms of the proportion of successes (the number of successes 
over the total number of observations in the population). Since in this example we 
are reporting the results in terms of successes, we coded the successes as a 1 and the 
failures as a 0. For our population of young patients, this proportion of successes 
is 15/20 = $75 and .75 is equivalent to the mean of the population since we have 
divided the sum of the numerical values of the observations by N .  That is, if we add 
the 15 ones and 5 zeros we get 15, and 15 divided by 20 is .75. Similarly, if we count 
the number of successes and divide by the number of observations, we get 15 over 
20, or .75. The population mean is called T. In this population, the population mean 
is .n; = .75. This is also the population proportion of successes. The proportion of 
successes and the proportion of failures must add to 1 since those are the only two 
possible outcomes. Hence, the proportion of failures is 1 - T. 

10.1.1 Graphical Displays of Proportions 

Graphically, this type of data is commonly displayed as pie charts such as that given in 
Figure 10.1 or bar charts as shown in Figure 10.2. Pie charts are readily interpretable 
when there are only two outcomes. Pie charts should be used only when there is 
a small number of categories and the sum of the categories has some meaning (see 
Cleveland [1985] or Good and Hardin [2003]). Pie charts and bar charts are widely 
available in software packages. 

In Figure 10.2 it can be seen that 15 of the patients had a successful operation. 
Bar charts have the advantage that they can be used with any number of categories. 
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Figure 10.1 Pie chart of proportion of successes and complications. 

Figure 10.2 Bar chart of counts of complications and successes. 

In pie or bar charts either counts, proportions, or percents can be displayed. Fig- 
ure 10.2 displays the outcome as counts; there were 15 successes and 5 failures. 

The population mean of the young patients was the number of successes divided 
by the number of patients in the population or 7r and is equal to 15/20 = .75. The 
population variance can be shown to be 7r(1 - T ) ,  or .75(1 - .75) = .1878. 

The number T is a population parameter, just as are p and 0;  p i s  the corresponding 
sample statistic. The parameter p and its estimate x were studied in Section 5.3 by 
computing a large number of x’s. This led to a study of the distribution of x’s. 
Then, in Chapter 7 confidence intervals were constructed for p (and also for p1 - p2 

in the case of two populations). Finally, in Chapter 8, tests of hypotheses were made 
concerning p (and concerning 1-11 = p ~ ) .  

In this chapter, the distribution of p is considered, and the same confidence intervals 
and tests of significance will be developed for T as were developed earlier for p. This 
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Figure 10.3 Frequency distributions of sample proportions. 

is done somewhat more briefly than with the measurement data, since the problems 
and the methods are analogous. 

10.2 SAMPLES FROM CATEGORICAL DATA 

The proportion of successes in the sample is given by the number of observed suc- 
cesses divided by the sample size. The proportion of successes is called p .  Here the 
frequency disributions are illustrated in Figure 10.3. This figure illustrates that the 
appearance of the frequency distributions for two different sample sizes (5  and 10) 
and for T = .2  and rr = .5. For rr = .2  the distribution tends to be skewed to the 
right. For rr = .5 the distribution does not look skewed. 

The distribution is called the binomial distribution and is computed using a math- 
ematical formula. The mathematical formula for the binomial distribution is beyond 
the scope of this book. 

The$rst statement is that the mean of all possible sample proportions p is equal to 
T ,  the population proportion. In other words, some samples give sample proportions 
that are higher than rr; some give sample proportions that are lower than 7 r ;  on the 
average, however, the sample proportions equal 7r .  In symbols, pLp = T .  In other 
words, p is an unbiased statistic. 

The second statement is that the variance of the distribution of all sample pro- 
portions equals a: = ~ ( l  - .)/.. For continuous measurements, we have shown 
in Section 5.3 that the variance of the sample mean is equal to the variance of the 
observations divided by the sample size n. It can be shown that the same statement 
applies here. 
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Figure 10.4 Proportion of p from .08 to .32. 

10.3 THE NORMAL APPROXIMATION TOTHE BINOMIAL 

When the sample size is large, one more statement can be made about the distribution 
of sample proportions: It is well approximated by a normal distribution with the 
proper mean and standard deviation. In this book no use is made of binomial tables; 
instead, the normal tables are always used in problems involving proportions. 

10.3.1 

The normal tables are used as an approximation to the binomial distribution when 
n, the sample size, is sufficiently large, and the question naturally arises as to what 
“sufficiently large” means. One rule of thumb often given is that we may use the 
normal curve in problems involving sample proportions whenever nr and n( 1 - T )  

are both as large as or larger than 5. This rule reflects the fact that when r is $, the 
distribution looks more like a normal curve than when r is close to 0 or close to 1; see 
Figure 10.3, where ( b )  looks more nearly normal than (a ) ,  and (d)  looks more nearly 
normal than (c). Note that this rule is not conservative and should be considered a 
minimum size. 

Use of the normal distribution approximation for the distribution of sample propor- 
tions may be illustrated by the following problem: A sample of size 25 is to be drawn 
from a population of adults who have been given a certain drug. In the population, 
the proportion of those who show a particular side effect is .2. What percentage of 
all sample proportions for samples of size 25 lies between .08 and .32, inclusive? 

The normal approximation may be used in solving this problem since nT = 
25(.2) = 5 and n(1 - n) = 25(.8) = 20 are both as large as 5. The mean of 
all possible p’s is .2, and an approximate answer to the problem is the shaded area in 
Figure10.4. For the normal curve approximation, we use a normal curve that has a 
mean of .2 and a standard deviation of p of 

Use of the Normal Approximation to the Binomial 

J- = Jm = J6?E = .08 

To find the area from .08 to .32, we find the z corresponding to .32. Here z = 
(.32 - .20)/.08 = .12/.08 = 1.5. Using Table A.2, we find that .9332 or 93.32% 
of the sample proportions lie below .32, so that 6.68% of the sample proportions lie 
> .32. By symmetry, 6.68% of the sample proportions lie < .08. This means that 
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about 86.64% of the sample proportions lie between .08 and .32. Thus 86.64% of 
sample proportions from samples of size 25 will be from .08 to .32 inclusive. The 
exact answer using tables of the binomial distribution is .9258; in this borderline 
situation with n~ = 5, the normal approximation is not very close. 

10.3.2 Continuity Correction 

The normal approximation may be improved by using what is called a continuity 
correction. In the transformation to z ,  for the upper tail, a continuity correction of 
1/2n is added to p. Since n = 25, the amount of the correction factor is 1/50, or .02. 
For the lower tail, the same continuity correction is subtracted fromp. In the example 
of the previous paragraphs, 

(.32 + .02) - .2  .14 
= 1.75 - - z =  - 

.08 .08 

From Table A.2, about .9599 of sample proportions lie < .34. In this example, this 
is equivalent to saying that .9599 of the sample proportions are 5 .32, inasmuch as 
it is impossible with a sample of size 25 to obtain a p between .32 and .36. Then, 
1 - .9599 = ,0401, or 4.01% of the sample proportions are > .32 and by symmetry 
4.01% of the sample proportions are < .08. So 91.98% of the sample proportions 
lie from .08 to .32 inclusive. Note that using the continuity correction factor resulted 
in an area closer to .9258, which was the exact answer from a table of the binomial 
distribution. 

In general, the formula can be written as 

(p - T) & 1/2n 

z =  d w  
If (p - T )  is positive, the plus sign is used. If (p - n) is negative, the minus sign is 
used. As n increases the size of the continuity correction decreases and it is seldom 
used for large n. For example, for n = 100, the correction factor is 1/200 or .005, 
and even for n = 50, it is only .01. 

10.4 CONFIDENCE INTERVALS FOR A SINGLE POPULATION 
PROPORTION 

Suppose that we wish to estimate the proportion of patients given a certain treatment 
who recover. If in a group of 50 patients assigned the treatment, 35 of the 50 recover, 
the best estimate for the population proportion who recover is 35/50 = .70, the 
sample proportion. We then compute a confidence interval in an attempt to show 
where the population proportion may actually lie. 

The confidence interval is constructed in much the same way as it was constructed 
for p, the population mean, in Section 7.1.2. The sample proportionp is approximately 
normally distributed, with mean T and with standard deviation op = d m ,  
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and in order to make a 95% confidence interval just as for the population mean, we 
would use p f 1.960,. Unfortunately, the standard deviation of p is unknown, so we 
must estimate it in some way. The best estimate that we have for 7r is p = .70, so as 
an estimate for o,, we use 

d 5 3 F  
or 

J.70(1 - .70)/50 = d w  = = ,065 

The 95% confidence interval is then .70 f (1.96)(.065), or .70 i .13, or .57 to 2 3 .  
We are 95% confident that the true recovery rate is somewhere between 57 and 83%. 
The formula for the 95% confidence interval is 

P f 1 . 9 6 d a T m  

If we desire to include the continuity correction of 1/2n = .01, we would add .01 to 
.13 and the 95% confidence interval is .70 f .14, or .56 to .84. The formula for the 
95% confidence interval with the correction factor included is 

P ( 1 . 9 6 d E G  + %) 1 

At this point, a question is often raised concerning the use of p in the formula for 
the standard deviation of p.  It is true that we do not know 7r and therefore do not 
know the exact value of the standard deviation of p .  Two remarks may be made in 
defending the confidence interval just constructed, in which ~'m has been 
substituted for d w .  First, it has been established mathematically that if n 
is large and if confidence intervals are constructed in this way repeatedly, then 95% of 
them actually cover the true value of 7r .  Second, even though the p that is used for 7r 

in estimating the standard deviation of 7r happens to be rather far from the true value 
of 7 r ,  the standard deviation computed differs little from the true standard deviation. 
For example, if 7r = .5, 

0, = d m  = J.25/50 = d@% = ,071 

This is not very different from the approximation of .065 that we obtained using 
p = .70. Note also that 0, is larger for p = .50 than it is for any other value of p and 
c, gets progressively smaller as p gets closer to 0 or 1. 

10.5 CONFIDENCE INTERVALS FOR THE DIFFERENCE IN TWO 
PROPORTIONS 

Often, two populations are being studied, each with its own population proportion, 
and we wish to estimate the difference between the two population proportions. For 
example, it may be of interest to compare the recovery rate of patients with a cer- 
tain illness who are treated surgically with the recovery rate of patients with this 
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illness who are treated medically. Or comparison may be made of the proportion of 
women who have a certain illness with the proportion of men with the same illness. 
Or a comparison of the proportion of diabetic amputees who succeed in walking 
with prostheses with the proportion of nondiabetic amputees who succeed may be of 
interest. 

Suppose that we wish to perform a clinical trial comparing two cold remedies. The 
first population consists of all patients who might have colds and are given the first 
treatment; let 7r1 be the proportion of the first population who recover within 10 days. 
Similarly, the second population consists of all patients who might have colds and are 
given the second treatment; n-2 is the proportion of the second population who recover 
within 10 days. We take 200 patients, divide them at random into two equal groups, 
and give 100 patients the first treatment and 100 patients the second treatment. We 
then calculate the proportion in each sample who recover within 10 days, PI and pa ,  
and compute the difference PI - p z .  

It is now necessary to consider the distribution of pl - pz. In Section 7.5, on 
the difference between two means for continuous data, we noticed that if TI is 
normally distributed with mean = p1 and with variance = 02 , and if xz is normally 

X 1 L  

distributed with mean = pz  and with variance = 02 , then XI - XZ is normally 

distributed with mean = pl - pz  and variance = ax + a? 
The situation is almost the same with the difference of two sample proportions when 

the sample sizes n1 and n2 are large. If p~ is normally distributed with mean = TI 

and variance = 7r1 (1 - 7rl)/nI, and if pz  is normally distributed with mean = 7rz and 
variance = 7rz (1 - T Z )  /nz, then PI - pz is normally distributed with mean = 7r1 - 7rz 

and variance = 7 r I ( l  - 7rl)/nl + ~ z ( l  - 7rz)/nz. That is, the difference between 
two sample proportions, for large sample sizes, is normally distributed with the mean 
equal to the difference between the two population proportions and with the variance 
equal to the sum of the variances of p~ and PZ. 

In our example, if 90 patients of the 100 patients who receive the first treatment 
recover within lodays, PI = .90; if 80 of the 100 patients who receive the second 
treatment recover within 10 days, pz  = 30. Then, pl - pz = .10 is the best estimate 
for 7r1 - 7rz. Since the standard deviation of PI - pl  is equal to 

x2 

x1 X2’ 

the usual way of forming 95% confidence intervals gives, for TI - T Z ,  

Again the standard deviation must be estimated from the sample using .90 in place of 
TI and .80 in place of 7rz; apl is estimated by 

J.90(1 - .90)/100 + .80(1 - .80)/100 = J(.9)(.1)/100 + (.8)(.2)/100 

= = .05 
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The 95% confidence interval is then 

(.90 - .80) f. 1.96(.05) = .10 k .098 

or .002 to .198. 
Since the 95% confidence interval for difference in recovery rate is between .2% 

and 19.8%, it may be practically 0, or it may be nearly 20%. Because both confidence 
limits are positive, we decide that the difference is positive, so that the population 
10-day recovery rate is higher for the first treatment than for the second. We say that 
the difference between the two recovery rates is statistically significant, or that it is 
a significant difference. In calling a sample difference such as .90 - .80 = .10 a 
significant difference, we mean that it is large enough to enable us to conclude that 
a population difference exists. Note that we are not asserting that the population 
difference is large or important; we merely believe that it exists. In symbols, the 95% 
confidence interval is 

(PI - ~ 2 )  1.96Jpi(l - pi)/ni + ~ 2 ( 1  - ~2) / .2  

The formula for the 95% confidence interval if a continuity correction factor is in- 
cluded is 

(PI - P 2 )  f (1.96dP1(1 -Pi)/ni  +P2(1 -p2)/n2 + 1/2(1/ni 4- l /n2)) 

10.6 TESTS OF HYPOTHESIS FOR POPULATION PROPORTIONS 

If the sample size is large enough to use the normal curve, hypotheses concerning 
population proportions may be tested in much the same way as were hypotheses 
concerning population means. We will first give the tests for a single population 
proportion, and then the test for the difference in two population proportions. 

10.6.1 Tests of Hypothesis for a Single Population Proportion 

Suppose, for example, based on considerable past experience, that it is known that the 
proportion of the people with a given infectious disease who recover from it within 
a specified time is .80 when treated with the standard medication. There is concern 
that the medication may not always have the same success rate, due to changes in 
the virus causing the disease. We want to test for possible changes in the patients 
who have been treated recently and to find out whether or not T = .80. The null 
hypothesis is that HO : TO = .80. We have data for 50 consecutive patients who have 
been treated within the last year for the disease, and find that 35 recovered, so that 
the sample proportion is p = 35/50 = .70. Under Ho, p is approximately normally 
distributed with mean 3 0  and with standard deviation 

cp = Z / T O ( ~  - TO)/. = Jm = dZ@G = .0566 

Since we wish to know whether T equals or does not equal 30 ,  we will use a two-sided 
test. 
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Figure 10.5 Two-sided test of Ho : ri = .80. 

We wish to calculate P,  the probability that a sample proportion p will be .70 or 
less or will be .90 or more if actually 7r = 230. We need the shaded area under the 
normal curve in Figure 10.5. First, we find the z corresponding to p = .70 using the 
following binomial formula: 

P - To 

QP 

z = -  

or 
.70- .80 - . lo 

- = -1.77 - z =  - 
.0566 .0566 

From Table A.2, we find that the area below z = +1.77 is .9616, so that the area of 
the two shaded portions is 2 ( l -  ,9616) = ,0768. That is, P = .0768, and we accept 
the null hypothesis using a significance level of cy = .05. In other words, we decide 
that the recovery rate for this disease may not have changed. 

We may prefer a one-sided test. Possibly, we may really believe that the recovery 
rate is lower now than in the past; then we are interested in finding an answer to the 
question: Is the population proportion < .80? We will test the null hypothesis that 
HO : T O  1 30. We then compute the probability in the lower side of the distribution 
only, so that we have P = .0384, and we reject the null hypothesis that T 2 .80 at 
the .05 level. Our conclusion is that the new recovery rate is lower than the recovery 
rate for the past. 

It should be noted that from the same set of data, two different tests have led to 
different conclusions. This happens occasionally. Clearly, the test to be used should 
be planned in advance; one should not subject the data to a variety of tests and then 
pick the most agreeable conclusion. In the example, we picked the test according to 
the question we wished to answer. For more accurate results the correction factor 
given in Section 10.3.2 should be used, especially if n is small. 

10.6.2 

When two sample proportions have been calculated, one from each of two populations, 
then often, instead of giving a confidence interval for the difference in population 
proportions, a test is made to determine if the difference is 0. The example of the 
doctor with 100 patients under each of two treatments will be used to illustrate the test 
procedure. In this example, the two sample proportions were p l  = .90 and p2 = .80, 
and the sample sizes were nl = nz = 100. 

Testing the Equality of Two Population Proportions 
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Figure 10.6 Two-sided test of HO : T I  = 7 r 2 .  

The null hypothesis is Ho : 7il = T Z  and we are merely asking whether or not the 
two recovery rates are the same, so a two-sided test is appropriate. We choose cy = .05. 
Using the fact that pl - p2 has a normal distribution with mean O ( r 1  - 7rz = 0) if Ho 
is true, we wish to find P ,  the shaded area in Figure 10.6, which represents the chance 
of obtaining a difference as far away from 0 as .10 is if the true mean difference is 
actually 0. 

To change to the z-scale in order to use the normal tables, we need to know the 
standard deviation of pl - p2.  This is 

which is unknown since the population proportions are unknown. It must be estimated. 
Under the null hypothesis, 7r1 and ~2 are equal, and the best estimate for each 

of them obtainable from the two samples is 170/200 = .85, since in both samples 
combined, 90 + 80 = 170 of the 200 patients recovered. This combined estimate can 
be called p .  It is a weighted average of the pl and p z .  That is, 

nlpl + nzpz p =  
n1+ 12’2 

When n l  = 71.2, p is simply the average of pl and p z .  
The estimate of the standard deviation is 

In our example, apl - p 2  is estimated by 

apl-pz = J.85(1 - .85)(1/100 + 1/100) = J2(.1275)/100 = .050 

Now, since we have an estimate of the apl - p z ,  we can calculate z :  
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In the example, 
.10 - ‘00 

.05 
= 2  

From Table A.2, the area in the upper tail is 1 - .9772 = .0228. For a two-sided test, 
we have 

P = 2(.0228) = ,0456 

With a = .05, the null hypothesis is rejected and it is decided that the two treatments 
differ in their recovery rates. 

If we wish to include a correction for continuity, then 1/2(1/n1 + 1/722) is sub- 
tracted from a positive value of (pl - p2)  or added to a negative value of (p1 - p 2 ) .  

Here,pl -p2 = +. lo  and 1/2(1/100+1/100) or .01 wouldbesubtractedfrom.10. 
Although generally a two-sided hypothesis is used, it is also possible to test a 

one-sided hypothesis. The procedure is analogous to that given in Section 8.2.2, 
where tests for the differences in two means were discussed. If the null hypothesis 
Ho : 7r1 I 7r2 is tested, the entire rejection region is in the upper tail of the z 
distribution. 

When the sample sizes are small, the normal approximation is not accurate. Ex- 
planations of how the data should be tested and the needed tables may be found in 
Dixon and Massey [1983], Fleiss et al. [2003], and van Belle et al. [2004]. 

10.7 SAMPLE SIZE FOR TESTING TWO PROPORTIONS 

The test of whether two population proportions are equal is one of the more com- 
monly used tests in biomedical applications. Hence, in planning a study finding the 
approximate sample size needed for this test is often included in proposals. To deter- 
mine the sample size, we will need to decide what levels of a and @ to use so that our 
chances of making an error are reasonably small. Often, a is chosen to be .05 and ,O 
is chosen to be .20, but other values should be taken if these values do not reflect the 
seriousness of making a type I or type I1 error. For a = .05: z [ l  - a /2 ]  = 1.96 is 
used for a two-sided test (see Section 8.5). For ,/3 = .20, z[1 - p] = .842. We will 
also have to estimate a numerical value for 7r1 and for 7r2 .  Suppose that we plan to 
compare performing an operation using endoscopy versus the conventional method. 
The proportion of complications using the conventional method is known from past 
experience to be approximately 7r1 = .12. We wish to know whether the use of 
endoscopy changes the complication rate (either raises it or lowers it), so we plan on 
performing a two-sided test. We certainly want to detect a difference if 7r2 = .20 
since that would imply that the new method is worse than the conventional method. 
Also, by taking a value of 7r2 that is closer to one-half, we will obtain a conservative 
estimate of the sample size since values of 7r2 closer to one-half result in a larger 
variance. The next step is to calculate 

7r1 + 7r2 - .12 + .20 
- = .16 - r=- 

2 2 
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An approximate estimate of the needed sample size, n, in each group is computed 
from the following formula: 

[ 2 [ 1 - c y / 2 ] p ( i = 7 i j + z [ l  - p ] J 7 h ( l - 7 r 1 ) + 7 r 2 ( 1 - 7 - r 2 ) ] 2  

(m - .2)2 
n =  

Substituting in the numbers for the example, 

[ 1 . 9 6 d w  + .8424.12(.88) + .20(.80)]* 
n =  

(.12 - .20)2 

or 

= 328.6 
[1.96- + .842-l2 - [1.01618 + .43393612 n= - 

.0064 .0064 

which is rounded up to n = 329 observations in each treatment group. For small n, 
an approximate continuity correction factor is often added so that the corrected n’ is 

2 
n’=n+ 

IT1 - 7r2I 

where 17rl - 7r2 1 denotes the positive difference between T I  and T Z .  In our example, 

2 
.08 

12’ = 329 + - = 329 + 25 = 351 

One source of confusion in estimating sample size for differences in proportions dur- 
ing the planning stage of the study is that there are several slightly different formulas 
in use as well as different correction factors. In the main, they lead to similar esti- 
mates for n, but there is not precise agreement between various tables and statistical 
programs. For a one-sided test with cy = .05, we use z [ l  - cy], or 1.645. 

10.8 DATA ENTRY AND ANALYSIS USING STATISTICAL 
PROGRAMS 

Data entry of categorical data is simplified if a consistant numbering system is used 
for coding the data. Missing values should be coded as given in the instructions for 
the particular program used: for example, if we could code success as a success = 1 
and failure as failure = 0 for each question. 

In general, most computer programs do not calculate the confidence limits or tests 
of hypothesis for a single proportion described in this chapter. They do, however, 
provide for a count of the number of observations that occur in each category of 
categorical variables, and then compute proportions or percents. They will also make 
the graphical displays described at the beginning of this chapter. 

Minitab will compute the exact value of k successes from the binomial distribution. 
Stata will compute exact confidence limits. In SAS, the PROC FREQ and TABLES 
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statement will produce tables that give you the proportions needed to test the equality 
of the two porportions. SPSS allows you to specify which variables are nonimal 
using the variable view of the data editor and the Measure option. Any question with 
numerous missing values or “do not know” responses should be examined to see if 
there was something wrong with the question. 

Note that in many computer programs a variable that has numerous missing values 
can result in the data for many patients being excluded even through that particular 
variable is not used in the current analysis. To avoid this loss of patients in the analysis, 
the variable with the missing values should be explicitly noted as not used or dropped. 

PROBLEMS 

10.1 Table A. 1 lists random digits between 0 and 9. Assume that an even number is 
a success and an odd number is a failure. Draw three samples of size 10 and 
write down the proportion of successes. Make a frequency table with all the 
sample proportions from the entire class. Compute the mean and variance of all 
the sample proportions. What do you expect the population 7r to equal? Using 
5~ what is the variance of an observation? What is the variance of the mean of 
10 observations? How does this compare with the result from the frequency 
table? 

10.2 If the proportion of people with a certain illness who recover under a given 
treatment is actually .8, what percentage of sample proportions obtained from 
repeated samples of size 64 would be between .7 and .9? 

10.3 The proportion of 200 children age 19-35 months from families in poverty 
who had inadequate polio vaccinations was found to be .21 in community A. 
Community B, which has a special program in place to increase vaccination of 
children from families in poverty, measured their vaccination proportion and 
found it to be .  12 among 150 children. Test the null hypothesis of equal propor- 
tions in the two communities using a: = .05. Also compute a 95% confidence 
limit for the difference in the two proportions. Contrast what statements can 
be made from the test and the confidence limits. 

10.4 If the proportion of patients who recover from a certain illness under a given 
treatment is actually .9, what is the probability that < 75% of a sample of 100 
patients recover? 

10.5 One hundred patients are available to participate in an experiment to compare 
two cold remedies. As in the example in the text, the physician divides them 
into two equal groups, gives each treatment to 50 patients, and finds that the 
percentages of patients who recover within 10days are 90 and 80%. Give a 
95% confidence interval for the difference between the population recovery 
rates. What can you conclude from this confidence interval? 

10.6 An experiment was performed to determine if a new educational program given 
by pharmacists could reduce the prescribing of a widely used analgesic that had 
been proven to be inferior to aspirin. The physicians were randomly assigned 
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to either control (n  = 142) or the new educational program (n  = 140), and 
their prescriptions of the analgesic were monitored from medical records. After 
the education program, 58 of the physicians in the control group prescribed the 
analgesic and 42 in the education group. Test for no difference in the proportion 
prescribing the analgesic at the o = .05 level. 

10.7 In high schools A and B, the proportion of teenagers smoking has been estimated 
to be .20. The same antismoking educational program will be used again in 
high school A but a new program is planned for high school B. There is concern 
whether the new program will be better or worse than the old one or if the 
results will be about the same. A study is planned to compare the proportion 
smoking in the two high schools in June after the programs have been run. 
The investigators want to take an adequate sample of students and ask them 
questions concerning their smoking. They want to make sure that their sample 
size is large enough so they can detect a difference of .10 in the proportion 
smoking with Q: = .05 and p = . lo.  What size sample should they take in each 
high school? 
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CHAPTER 11 

CATEGORICAL DATA: ANALYSIS OF 
TWO-WAY FREQUENCY TABLES 

In Chapter 10 we discussed the analysis of categorical or nominal data using pro- 
portions. In this chapter the analysis is presented for categorical or nominal data that 
have been summarized in the form of a two-way frequency table. By a two-way table 
we mean a table in which counts are displayed in rows and columns. The analyses 
presented here are widely used in biomedical studies. They are relatively simple to 
do and are available in many statistical programs. Because they are easy to interpret, 
they are sometimes used by researchers to divide ordinal data or even interval data 
into groups. 

This chapter is divided into five main sections. In Section 11.1 we describe dif- 
ferent types of two-way tables and how different study designs lead to different types 
of tables. In Section 11.2 we describe two commonly used descriptive measures 
that can be calculated from frequency tables: relative risk and odds ratio. In Sec- 
tion 11.3 we describe use of chi-square test for frequency tables with two rows and 
two columns. Chi-square analysis of larger tables (more row or columns or both) is 
given in Section 11.4. Section 1 1.5 concludes with some brief remarks. 

Basic Statistics: A Primer for  the Biomedical Sciences, Fourth Edition. 
By Olive Jean Dunn and Virginia A. Clark 
Copyright @ 2009 John Wiley & Sons, Inc. 
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11.1 DIFFERENT TYPES OF TABLES 

Since the analyses performed and the inferences drawn depend on the type of samples 
that were taken, we first discuss tables in terms of the type of study and the sampling 
used to obtain the counts. 

11.1.1 Tables Based on a Single Sample 

A common type of table is based on data from a single sample concerning two vari- 
ables. For example, in a hypothetical survey of respondents in their 50s, it was 
determined which respondents were current smokers (yes, no) and which had or did 
not have low vital capacity (a measure of lung function). Here, smoking could be 
considered the exposure or risk variable and low vital capacity the outcome or dis- 
ease variable. The total number of respondents is n = 120; the counts are given in 
Table 11.1A. 

In tables in which observations are from a single sample, the purpose of the analysis 
is to determine whether the distribution of results on one variable is the same regardless 
of the results on the other variable. For example, in Table 11. IA, is the outcome of 
low vital capacity in a person in his or her 50’s the same regardless of whether or 
not the person smokes? From a statistical standpoint, the question being asked is 
whether low vital capacity is independent of smoking or if there is an association 
between smoking and low vital capacity in this age group. 

In Table 11.1 A, rows provide information on vital capacity outcomes, and columns 
provide information on smoking status. The sums over the two rows are added and 
placed in the total row, showing 30 smokers and 90 nonsmokers. Likewise, the sums 
over the two columns show the number with and without low vital capacity (21 and 
99). The overall sample size can be computed either from the sum of the row totals 
or the sum of the column totals. The locations in the interior of the table that include 
the frequencies 11, 10, 19, and 80 are called cells. 

In Table 1 1. lB, symbols have been used to replace the counts given in Table 1 1.1A. 
The total sample size is n; a-tbresponders have low vital capacity and aScresponders 
smoke. Only a responders have low vital capacity and also smoke. 

In Table 11.1A there is only one sample of size 120. All the frequencies in the 
table are divided by n = 120 to obtain the proportions given in Table 11.2. We can 
see that .25 or 25% of the patients smoked and .175 or 17.5% had low vital capacity. 
About two-thirds of the patients neither smoked nor had low vital capacity. No matter 
whether counts or percentages are displayed in the table, it is difficult to see whether 
there is any association between smoking and low vital capacity. Descriptive statistics 
and tests of hypotheses are thus needed. 

Graphs such as the pie charts and bar charts introduced in Section 10.1.1 are often 
useful in displaying the frequencies. Separate pie charts for smokers and nonsmokers 
would be displayed side by side and the proportion with low vital capacity and normal 
vital capacity would be given in each pie. Similarly, bar graphs (see Figure 10.2) for 
smokers and nonsmokers could be placed in the same figure. The height of the bars 



DIFFERENTTYPES OFTABLES 143 

Table 11.1 Illustrating Counts (A) and Symbols (B): Single Sample 

A. Association Between Smoking and Low Vital Capacity: Counts 
Smoking 

Low Vital Capacity Yes No Total 

Yes 11 10 21 
No 19 80 99 

Total 30 90 120 

B. Association Between Smoking and Vital Capacity: Symbols 
Smoking 

Low Vital Capacity Yes No Total 

Yes a b a + b  
No C d c + d  

Total a + c  b + d  n 

Table 11.2 Proportions of Total Sample from Smoking and Vital Capacity Frequencies 

Smoking 
Low Vital Capacity Yes No Total 

Yes .092 ,083 .115 
No .158 ,667 22.5 

Total .250 .I50 1.000 

could be either the number or the percentage of patients with low and normal vital 
capacity. 

11 .I .2 Tables Based on Two Samples 

Alternatively, the data displayed in a two-way table can be from two samples. For 
example, the categorical data might be from a clinical trial where one group of patients 
had been randomly assigned to a new experimental treatment and the other group of 
patients had been assigned to the standard treatment. These two groups of patients will 
be considered to be two samples. The outcome of the two treatments can be classified 
as a success or a failure. Table 11.3 displays the outcome of such a trial where 105 
patients received the experimental treatment and 100 the standard treatment. 

If proportions are computed from the results in Table 11.3, they are obtained by 
treatment groups. From Table 11.3 we compute the proportion of patients who were 
successfully treated in the experimental group as 95/105 = .905 and the proportion 
treated successfully in the standard group as 80/100 = 300. The proportions that 
were failures are .095 in the experimental group and ,200 in the standard group. If the 
proportions are computed by treatment groups, they are reported as in Section 10.6.2. 
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Table 11.3 Outcomes for Experimental and Standard Treatment: Two Samples 

Treatment 
Outcome Experimental Standard Total 

Success 95 = a 8 0 = b  1 7 5 = a + b  
Failure 10 = c 2 0 = d  3 0 = c + d  

Total 105 =n1 100= n2 205 = n  

Table 11.4 Exposure to Risk Factor for a Matched Case/Control Study 

Control 
Case Yes No Total 

Yes 59 = a  23 = b 82 
NO 8 = c  1 0 = d  18 

Total 67 33 1 o o = n  

In Chapter 10 we presented statistical methods for examining differences in the 
population proportions. Confidence intervals for nl - 7r2 were given as well as a two- 
sided test of hypothesis that Ho : 7il = 7 ~ 2  and a similar one-sided test of hypothesis. 
Another method of testing the two-sided hypothesis given in Section 10.6.2 will be 
presented; it can also be used when there are more than two groups andor  more than 
two outcomes. The tests for equal population proportions are often called tests of 
homogeneity. 

11 .I .3 Tables Based on Matched or Paired Samples 

In some biomedical studies, each subject is paired with another subject. For example, 
in casekontrol studies a control subject is often paired with a case. Table 1 1.4 presents 
an example from a hypothetical matched casekontrol study. 

In Table 11.4 there are n pairs of matched cases and controls. In 59 instances, 
both the case and the control were exposed to the risk factor, and in 10 instances 
they both were not exposed. So for 69 pairs the results were a tie. For 23 pairs the 
case was exposed and the control was not, and for 8 pairs the control was exposed 
and the case was not. Thus, among the nontied pairs, the cases were exposed more 
than the controls. Note that the same symbols have been used to depict the counts in 
Table 11.1 as in Table 11.4, but what is counted is different. Here, ties and nonties 
for matched pairs are given. 

Note that the number of ties has no effect on the differences between p l ,  the 
proportion of cases exposed to risk, and p2, the proportion of controls exposed to 
risk. From Table 11.4, p l  = (59 + 23)/100 = .82 and p 2  = (59 + 8)/100 = .67, 
so that the difference in proportions is .82 - .67 = .15. As expected, ignoring ties 
23/100 - 8/100 = .15. 
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When two-way frequency tables are presented that simply give the frequencies 
without the row and column labels, one cannot possibly know how they should be 
interpreted. It is essential that tables be clearly labeled in order that readers can 
understand them. 

11.1.4 Relationship Between Type of Study Design 
and Type of Table 

In Chapter 1 we introduced the major types of studies used in the biomedical field. 
Studies were divided into those in which treatment was assigned (experiments) and 
observational studies in which exposure or risk factors were compared to outcomes 
such as disease. In performing an experiment, we want to study the effect of a treat- 
ment in a laboratory experiment, a clinical trial, or a field trial. In these experiments, 
the two-way table obtained from the results typically fits the two-sample type of ta- 
ble. We will assume that the sample size in the two treatment groups is fixed and 
we will not be interested in estimating it. In studies of surgical treatments performed 
on animals, the experimental surgical treatment is sometimes performed on one side 
of each animal and the control treatment is performed on the opposite side. Here, 
the outcome for the two sides of the animal are compared. In this case, the sample 
consists of matched pairs. 

In observational studies, the sample is often considered to be a single sample or two 
fixed samples. In surveys, we usually take a single sample and compare two variables 
measured in the survey. We assume that the row and column proportions estimate the 
proportions in the population being sampled. For example, we would assume that 
the proportion of current smokers in Table 11.1 is an estimate of the proportion in 
the population of respondents we sample from and that the proportion of respondents 
with low vital capacity is an estimate of the proportion in the population. In other 
observational studies, samples may be taken from two or more groups. 

In prospective studies, all three ways of sampling mentioned previously are possi- 
ble. Sometimes a single sample is taken and the exposure or risk variable is measured 
on all the subjects during the first time period and the disease outcome is measured 
as it occurs. In this type of prospective sample, the proportion of subjects who are 
exposed or not exposed are considered to be an estimate of the proportion in the 
population. The heart studies (e.g., the Framingham heart study) are examples of 
this type of prospective study. In other prospective studies, two samples are taken 
based on exposure status (an exposed sample and a nonexposed sample). Here, the 
proportion of subjects does not represent the proportion in the population since often 
the exposed group is oversampled. Finally, if the same measurement is taken at two 
time periods in a prospective study, the data can be considered a matched sample. 
The result of measurement at time 1 could be displayed in columns 1 and 2, and the 
results at time 2 could be displayed in rows 1 and 2 (as with the operation on two 
sides of each animal). In essence, a table similar to Table 1 1.4 is obtained. 

In casdcontrol or retrospective studies, there are usually far fewer cases available 
for study than there are controls. Almost all of the available cases are studied and 
only a small fraction of the controls are sampled. Hence, there are two samples 
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(one of cases and one of controls) and the sample sizes of the cases and controls are 
not indicative of the numbers in the population. The number of cases and controls 
is considered fixed and is not a variable to be analyzed. Casekontrol studies are 
sometimes designed with individually matched cases and controls (see Schlesselman 
[ 19821). When this is done, the results are often displayed as given in Table 1 1.4 with 
n pairs of subjects. 

Two descriptive measures are defined and their use discussed in Section 11.2. The 
use of the chi-square test is discussed in Section 11.3. 

11.2 RELATIVE RISK AND ODDS RATIO 

In this section, relative risk and odds ratios are defined and their use is discussed. 
Relative risk is somewhat easier to understand, but the odds ratio is used more in 
biomedical studies. References are given for the odds ratio for readers who desire 
more information on this topic. 

11.2.1 Relative Risk 

In Section 10.5 we examined the effect of two different treatments upon the outcome of 
a medical study or the relation of an exposure or risk factor on the outcome of disease 
by looking at the difference between two proportions. But a difference between two 
proportions may not always have the same meaning to an investigator. With p l  = .43 
and p2 = .40, the difference, or p1 - p2 = .03, may appear to be quite unimportant. 
But with p l  = .04 and pz  = .01, the same difference may seem more striking. The 
ratio of the proportions in the first instance it is .43/.40 = 1.075, and in the second 
instance it is .04/.01 = 4. This ratio is called the relative risk (RR). 

In the example shown in Table 11.3, the proportion of failures is p l  = c/nl  = 
10/105 in the experimental group and p2 = d / n 2  = 20/100 in the control group. 
The relative risk of failure for the experimental and control group is 

= ,476 
10/105 - .0952 RR=- - - 
20/1oo .20 

When the numerical value of the relative risk is < 1, the relative risk is said to be 
negative, and when the relative risk is > 1 the relative risk is said to be positive. In 
this case we would say that the relative risk shows that the experimental treatment 
may have a negative effect on the failure rate. A relative risk of 1 indicates that the 
treatment may have no effect on the outcome. 

When comparing the relative risk for an observational study, we compare the risk 
of disease for the exposed group to the risk of disease for the nonexposed group. For 
example, in the vital capacity survey (see Table 11.lA) we would compute 

= 3.30 
a / ( a + c )  - 11/30 - .3667 

- 
RR = b / ( b +  d )  10/90 .1111 
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Table 11.5 Doubling the Control Group Size in (A) and (B) 

A.  Exposure to Risk Factor for an Unmatched Case/Control Study 
Exposure 

Outcome Yes No Total 

Case 7 0 = a  3 0 = b  100 
Control 5 5 = c  4 5 = d  100 

Total 125 75 200 = n 

B. Exposure to Risk Factor When Controls Doubled 
Exuosure 

Outcome Yes No Total 

Case 7 0 = a  3 0 = b  100 
Control 1 1 0 = c  9 0 = d  200 

Total 180 120 300 = n 

The relative risk of low vital capacity for smokers is positive and 3.30 times that for 
nonsmokers. The relative risk measures how many times as likely the disease occurs 
in the exposed group as in the unexposed group. 

For prospective studies using a single sample, the resulting data would appear 
similar to that in Table 1 1.1. The difference is that the disease outcome is measured 
at a later time and we would probably start the study with disease-free participants. 
If in a prospective study, we took a sample of smokers and a sample of nonsmokers, 
the relative risk would be computed in the same way. The relative risk can be used 
for both of these types of prospective studies. 

But there are difficulties with relative risk in casekontrol studies. The following 
example illustrates the problem. Table 1 1.5A presents hypothetical data from an 
unpaired casekontrol study. Table 1 1.5B presents the same results except that we have 
doubled the size of the control group. Note that all the numbers in the control row have 
simply been multiplied by 2 .  But if we compute the relative risk from Table 1 l S A ,  
we get RR = (70/125)/(30/75) = 1.40 and RR = (70/180)/(30/120) = 1.56 
from Table 11 SB.  This unfortunate result is due to the way the sample is taken. For 
a further explanation of this problem, see Schlesselman [1982]. 

Next, we discuss the odds ratio, a measure of the strength of a relationship that 
can be used for all the types of studies discussed here for two-way tables with two 
rows and two columns. 

11.2.2 Odds Ratios 

In Table 11.1 the exposure was smoking and the disease outcome was low vital 
capacity. From Table 11.1 we can estimate from our sample the odds of getting 
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diseased. The odds are estimated as 

total diseased 
total sample - total diseased 

odds = 

or 

- .212 
21  

120-21 99 
- -  - - 21 

odds = 

If the odds are equal to .5, we say that we are equally likely to get the disease or not. 
Odds can vary between 0 and cc (i.e., infinity). 

Odds are frequently quoted by sports announcers. An announcer might say that the 
odds are 3 to 1 that team A will defeat team B. If the teams had played together 100 
times and team A had won 75 of the games, the odds would be 75/( 100 - 75) = 3, 
or 3 to 1. 

We can also compute the odds of low vital capacity separately for smokers and for 
nonsmokers. The odds for smokers are 11/(30 - 11) = 11/19 = .579. Note that 
1 1/19 is equivalent in symbols from Table 1 1.1 to d c .  For nonsmokers the odds are 
10/(90 - 10) = 10/80 = .125. Here, 10/80 is equivalent to b/d inTable 11.1B. 

From the odds for smokers and for nonsmokers, we can compute the ratio of these 
odds. The resulting statistic is call the odds ratio (OR) or cross-product ratio. From 
Table 11.1A we can divide the odds for smokers by the odds for nonsmokers to obtain 

.579 
OR = - = 4.63 

.125 

In symbols from Table 1 1.1 B , 

For the smoking and vital capacity survey results, we can say that the odds ratio of a 
smoker having a low vital capacity is 4.63 times that of a nonsmoker. When the odds 
ratio is 1, we say that being exposed has no effect on (is independent of) getting the 
disease. If the odds ratio is < 1, the exposure results may lessen the chance of getting 
the disease (negative association). If the odds ratio is > 1, we say that the exposure 
factor may increase the chance of getting the disease (positive association). In the 
smoking example, the chance of having low vital capacity appears to be positively 
associated with smoking. The odds ratio can vary from 0 to 00. 

The odds ratio is a commonly reported statistic in biomedical reports and journals 
and has several desirable properties. The magnitude of the odds ratio does not change 
if we multiply a row or a column of a table by a constant. Hence, it can be used in 
case/control studies where the sample proportion is not indicative of the proportion 
in the population. For rare diseases, the odds ratio can be used to approximate the 
relative risk (see Schlesselman [1982] or van Belle et al. [2004]). The odds ratio 
does not change if rows are switched to columns and/or columns to rows. It also 
can be computed from more complex analyses (see Afifi et al. [2004]). For further 
discussion of the odds ratio, see Rudas [1998]. 
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One difficulty in interpreting the odds ratio is that negative relationships are mea- 
sured along a scale going from 0 to l and positive relationships are measured along a 
scale going from 1 to m. This lack of symmetry on both sides of 1 can be removed 
by calculating the natural logarithm (logarithm to the base e = 2.718. . .) of the odds 
ratio [ln(OR)]. The ln(0R) varies from --x to fm, with 0 indicating independence. 

The ln(0R) is used in computing confidence intervals for the odds ratio since the 
distribution of ln(0R) is closer to a normal distribution than is the distribution of the 
odds ratio. The population odds ratio is denoted by w. To compute an approximate 
confidence interval that has a 95% chance of including the true w from the data in 
Table 1 1.1, we would first compute 

ln(0R) = ln(4.63) = 1.5326 

Second, we compute an estimate of the standard error (se) of ln(0R) as 

1 1 1 1  

or numerically, 

seln(0R) = /- 
or 

seln(0R) = d w  = .495 

Next, the confidence interval for ln(0R) is given by 

ln(0R) f z[1 - a/2]  [se ln(OR)] 

or for a 95% confidence interval 

1.5326 f 1.96(.495) = 1.5326 f .9702 

or 
.562 < ln(w) < 2.503 

The final step is to take the antilogarithm of the endpoints of the confidence limit ( S 6 2  
and 2.503) to get a confidence interval in terms of the original odds ratio rather than 
ln(0R). This is accomplished by computing e.562 and e2.503. The 95% confidence 
interval about w is 

1.755 < w < 12.219 

The odds for a smoker having low vital capacity are greater than those for a nonsmoker, 
so the ratio of the odds is > 1. Further, the lower limit of the confidence limit does 
not include 1. 

If we had a matched sample such as given in Table 11.4 for a caselcontrol study, 
the paired odds ratio is estimated as 

OR = b / c  = 23/8 = 2.875 
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Note that the ties in Table 1 1.4 (a and d )  are ignored. An approximate standard error of 
the paired odds ratio is estimated by first taking the natural logarithm of OR = 2.875 
to obtain 1.056 (see Schlesselman [1982]). Next, for paired samples we compute 

seln(0R) = /= b c  = /x = ,4105 

and 95% confidence intervals 

ln(0R) & 1.96(.4105) = 1.056 ?c 3 0 5  

or 
,251 < ln(w) < 1.86 

Taking the antilogarithm of the endpoints of the confidence interval for ln(w) yields an 
approximate 95% confidence interval of 1.28 < w < 6.42 again using e.251 and 
Here again, the lower confidence limit is > 1 and indicates a positive association. 
Other methods of computing confidence intervals for matched samples are available 
(van Belle et al. [2004]). 

11.3 CHI-SQUARE TESTS FOR FREQUENCY TABLES: 
TWO-BY-TWO TABLES 

First we present the use of chi-square tests for frequency tables with two rows and 
two columns. Then the use of chi-square tests when there are more than two rows or 
two columns is discussed. 

11.3.1 Chi-square Test for a Single Sample: Two-by-Two Tables 

In Table 1 1.1 the observed frequencies are shown from a single sample of 50-year-olds, 
and two measures of association (relative risk and the odds ratio) were presented that 
can be used in analyzing such data. We turn now to the chi-square test for association, 
a widely used test for determining whether any association exists. Results for this 
test are widely available in statistical programs. 

The question we now ask is whether or not there is a significant association between 
smoking and vital capacity in 50-year-olds. The null hypothesis that we will test is 
that smoking and vital capacity are independent (i.e., are not associated). 

To perform this test, we first calculate what is called the expected frequencies for 
each of the four cells of the table. This is done as follows: If low vital capacity is 
independent of smoking, the proportion of smokers with low vital capacity should 
equal the proportion of nonsmokers. Equivalently, it should equal the proportion 
with low vital capacity for the combined smokers and nonsmokers (21/120 = ,175). 
In the first row of Table 11.1, a = 11 and b = 10. We call A and B the expected 
frequencies for the first row, and choose them so that 

A 21 
30 120 

- - -  - (11.1) 
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and using the same reasoning, 
B 21 
90 120 

If we multiply equation (1 1.1) by 30, we have 

- - _ _  - 

- 5.25 
30(21) 

120 
A=--  

Similarly, the value of B is 

= 15.75 
90(21) 

120 
B=- 

The expected values for the two other cells (C and D )  can be obtained in a similar 
fashion 

= 24.75 
30(99) 

or C = -  
c 99 
30 120 120 

- -~ - 

and 

= 74.25 or D = -  
90(99) D 99 

90 120 120 
- -~ - 

Note that what we do to compute the expected value is multiply the row total by 
the column total for the row and column each cell is in, and then divide by the total 
sample size. For example, for the first cell (u  = 11) the row total is 21 for the first 
row and the column total is 30 for the first column, and we multiplied 21 by 30 and 
then divided by 120, the sample total. 

One should also note that the sum of the expected frequencies A and B is 21, the 
sum of C and D is 99, the sum of A and C is 30, and the sum of B and D is 90. 
That is, the sums of the expected values are the same as the sums of the observed 
frequencies. For a frequency table with two rows and columns, we can compute the 
expected value of one of the cells and we then obtain each of the three other expected 
values by subtraction. For example, if we compute A = 5.25, then we know that B = 

21-5.25 = 15.75,C = 30-5.25 = 24.75,andD = 90-B = 90-15.75 = 74.25. 
Thus, knowing the row and column totals and the expected value for one of the cells 
allows us to compute all the expected values for a table with two rows and columns. 
Also, knowing the row and column totals, if we know one observed frequency, we 
can get the other observed frequencies by subtraction. 

In Table 11.6, both the observed frequencies and the expected frequencies are 
placed in the four cells. The expected frequencies are inside the parentheses. Since 
the expected frequencies are what we might expect if HO is true, to test whether or 
not HO is true, we look at these two sets of numbers. If they seem close together, 
we decide that HO may be true; that is, there is no significant association between 
smoking and low vital capacity. If the two sets of numbers are very different, we 
decide that HO is false, since what was observed is so very different from what had 
been anticipated. 

Some method is necessary for deciding whether the observed and expected fre- 
quencies are “close together” or “very different.” To make this decision, the statistic 
called chi-square, x2, is calculated. For each cell we subtract the expected frequency 
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Table 11.6 Association between Smoking and Vital Capacity: Expected Frequencies 

Smoking 
Low Vital Capacity Yes No Total 

Yes ll(5.25) lO(15.75) 21 
No 19(24.75) gO(74.25) 99 

Total 30 90 120 

from the observed frequency, square this difference, and then divide it by the expected 
frequency. These are summed over all the cells to obtain x’. We have 

all cells (observed - expected)’ 
x 2 =  c expected 

Chi-square will serve as a measure of how different the observed frequencies are 
from the expected frequencies; a large value of x’ indicates lack of agreement, a 
small value of x’ indicates close agreement between what was expected under HO 
and what actually occurred. In the example, 

(11 - 5.25)’ (10 - 15.75)’ (19 - 24.75)’ (80 - 74.25)2 
74.24 

+ 
+ 15.75 + 24.75 

x’ = 
5.25 

or 

5.75’ (-5.75)’ (-5.75)’ 5.752 +- 
- 5.25 + 15.75 + 24.75 74.25 

= 6.298 + 2.099 + 1.336 + .445 = 10.178 

The value of chi-square computed from the particular experiment is thus 10,178, and 
on the basis of 10.178 we must decide whether or not the null hypothesis is true. 

If the experiment were repeated over and over, the chi-square calculated would vary 
from one time to the next. The values of chi-square thus have a sampling distribution, 
just as does any sample statistic. The distribution of the values of chi-square is of 
the general shape pictured in Figure 1 1.1, a skewed distribution, with, of course, no 
values of x’ below 0. A x’ value > 3.84 is expected to occur 5% of the time. 

The necessary distribution has been tabled in Table A.4, and by using this table we 
may find P approximately. (If HO is true, P is the probability of obtaining a value of 
chi-square at least as large as 10.178.) In Table A.4, the first column is headed d.f. 
(degrees of freedom). The area under the x’ curve from 0 to x’ [A] is listed across the 
top of Table A.4 and the values of x’ are given in the body of the table. The shape of 
the distribution of chi-square differs for different degrees of freedom. The d.f.’s for 
the problem may be found by counting the number of independent cell frequencies 
in Table 11.6. That is, we count the number of cells that could be filled in arbitrarily 
and still keep all the same totals as in the table. 
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1.5 .. 

0 1 2 3 4 5 6 
X* 

Figure 11.1 Chi-square distribution with 1 d.f. 

In Table 11.6 we are free to fill in frequencies in just one cell and still keep all 
the same totals, so that the d.f.’s are 1. For as soon as we know that 11 respondents 
smoked and had low vital capacity, then, to keep all the row and column totals as 
given in the table, we can fill in the rest of Table 11.6 by subtraction. For example, 
since the total number of smokers is 30, the number of smokers without a low vital 
capacity must be 30 - 11 = 19. 

In our examples, the proper d.f. to use, then, is 1, so we look for 10.178 in the first 
line of Table A.4. The 7.88 under .995 indicates that 99.5% of all the chi-squares are 
<7.88; so our x 2  = 10.178 is expected to occur < .5% of the time. 

If we wish to use Q = .05, we certainly would reject the null hypothesis. Even if 
we used an cy = .01 or .005, we would still reject the null hypothesis. We will reject 
the null hypothesis if the computed chi-square is greater than or equal to the tabled 
chi-square in Table A.4 for 1 d.f. and for our chosen value of a. Figure 1 1.1 depicts 
the value of the chi-square distribution with 1 d.f. From Figure 1 1.1 it is obvious that 
a value 210.178 is highly unlikely. That is, we will decide that there is an association 
between smoking and low vital capacity in 50-year-olds in the population. 

The chi-square test that we just made is in a sense a two-sided test. That is, we will 
reject the null hypothesis of smoking being independent of low vital capacity if the 
vital capacity of smokers was either too high or too low. The odds ratio can be used to 
give the direction of the association. Alternatively, examining the differences between 
the observed frequencies and the expected frequencies can provide information on 
how to interpret the results. In Table 1 1.6 we can see that the smokers had a higher 
observed number of respondents who had low vital capacity (1 1) than was expected 
(5.25), so the association is one of smoking being positively associated with low vital 
capacity. Examining these differences between the observed and expected is quite 
easy for tables with only two rows and columns but is sometimes more difficult when 
the table has more than two rows or columns. The analysis of tables with more than 
two rows and/or columns is explained in Section 1 1.4. 
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Table 11.7 
Frequencies" 

Outcomes for Experimental and Standard Treatment: Expected 

Treatment 
Outcome Experimental Standard Total 

Success 95(89.63) SO(85.37) 175 
Failure lO(15.37) 20(14.63) 30 

Total 105= ni l o o =  122 205 = n  

"The numbers in parentheses are the expected values under the null hypothesis. 

11.3.2 Chi-square Test for Two Samples: Two-by-Two Tables 

In Table 1 1.3 we presented data from a clinical trial where one group of patients was 
randomly assigned to receive the experimental treatment and the other the standard 
treatment. The outcome was classified as a success or a failure. Hence, the table has 
only two rows and two columns. There were n1 = 105 patients in the experimental 
treatment group and n2 = 100 patients in the standard treatment group. The question 
being asked is whether or not the treatments differ in their proportion of successes. 
The null hypothesis to be tested is that the proportion of successes is the same in both 
populations. 

The total number of observed successes was 175 and the total of the two sample 
sizes was 205. If the two treatments were equally effective (Ho is true), the expected 
proportion of successes in each group would be 175/205 = ,8537. Of the 105 
patients given the experimental treatment, we would expect .8537(105) = 89.63 to 
be successes if the null hypothesis is true. Similarly, of the patients given the standard 
treatment, we would expect .8537(100) = 85.37 to be classified as successes. The 
proportion of failures overall is 1 - .8537 = .1463 (30/205 in the total column). So 
in the second row we would expect .1463(105) = 15.37 failures in the experimental 
group and 14.63 failures in the standard treatment group. The results are summarized 
in Table 1 1.7. 

Just as in the smoking and low vital capacity case where we had a single sample, in 
this clinical trial example with two samples we have to compute the expected value for 
only one cell and the others can be obtained by subtraction from the row and column 
totals. For example, for the experimental group, if we compute the expected number 
of successes (89.63), the expected number of failures can be obtained by subtracting 
89.63 from 105. This implies that we will have 1 d.f. for testing. 

In the single-sample case, we computed the expected frequency by multiplying 
the row total by the column total, and then divided by the total sample size for any 
cell in the table (see Table 11.6). For example, we computed 

30(21) - ( a  + b) (a  + c) A = -  - 
120 n 
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For two samples, if we compute the expected frequency for A, we take 

175(105) - (a + b ) ( a  + c) 
- 

175 
205 205 n 

A = -(105) = 

Numerically, the expected frequency is computed in the same way although the null 
hypothesis and the method of sampling are different. From a numerical standpoint, 
the chi-square test for two samples is identical to that for the single-sample test. (This 
statement holds true even when there are more than two rows and/or columns.) Again 
we compute 

all cells 
(observed - expected) 

x 2 =  c expected 

in the same way as before. For the frequencies in Table 1 1.7, we have 

(95 - 89.63)’ (80 - 85.37)’ (10 - 15.37)’ (20 - 14.63)’ 
= 89.63 + 85.37 + 15.37 + 14.63 

or 
X’ = 4.50 

With Q = .05 using Table A.4, we reject the null hypothesis of equal proportions in 
the two populations since the computed chi-square is larger than the tabled chi-square 
with 1 d.f. (4.50 > 3.84). 

By comparing the observed and expected values in Table 11.7, we see a higher 
observed frequency of successes than expected in the experimental group and a lower 
observed frequency of successes than expected in the standard treatment group. This 
indicates that the experimental treatment may be better than the standard treatment. 

11.3.3 Chi-square Test for Matched Samples: Two-by-Two Tables 

In Table 11.4 there are 100 pairs of individually matched cases and controls presented 
in a table with two rows and two columns. The appropriate null hypothesis is that 
there is no association between getting the disease (being a case or a control) and 
being exposed or not exposed to the risk factor. In other words, in the populations 
from which the cases and controls were sampled, the number of pairs where the case is 
exposed and the control is not (23) is equal to the number of pairs where the control is 
exposed but the case is not (8). As described in Section 11.1.3, on tables for matched 
samples, the counts entered into Table 1 1.4 are quite different from those in the other 
tables, so a different x 2  test is used. 

To test this null hypothesis, we compute 

2 ( b -  x =--- 
bit 

or 

- = 7.26 
(23 -8)’ - 225 

2 3 + 8  31 
x 2  = - 
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The computed chi-square has a chi-square distribution with 1 d.f. If we decided to use 
a = .05, we would reject the null hypothesis since the computed value of chi-square 
(7.26) is greater than the value (3.84) in Table A.4. In the population, we appear to 
have more instances where the case was exposed to the risk factor and the control 
was not than when the control was exposed and the case was not. 

This test is commonly called McNemar’s test. Note that when computing McNe- 
mar’s test, we do not use a = 59 or d = 10 in the computation. This mirrors the 
results in Section 11.1.3, where we showed that the differences in the proportions did 
not depend on the ties for paired data. 

11.3.4 Assumptions for the Chi-square Test 

To use the chi-square distribution for testing hypotheses from two-way frequency 
table data (single sample or two sample), we need to make several assumptions. Note 
these assumptions apply to any size table. One assumption is that we have either a 
simple random sample from a single population or two simple random samples from 
two populations. Second, within each sample, the outcomes are distributed in an 
identical fashion. For example, if we have a sample of patients, we are assuming that 
the chance of a successful treatment is the same for all the patients. These assumptions 
may not be completely met in practice. 

For the matched sample chi-square test, we have to assume that a simple random 
sample of pairs has been taken. Further, the sample size must be large enough to justify 
using the chi-square distribution. This is discussed in Section 11.3.5 for two-by-two 
tables and in Section 1 1.4.4 for larger tables. 

11.3.5 Necessary Sample Size: Two-by-Two Tables 

The results given in Table A.4 for the chi-square distribution are a satisfactory approx- 
imation for testing hypotheses only when the expected frequencies are of sufficient 
size. There is some difference of opinion on the needed size of the expected values 
for the single-sample and the two-sample cases. For tables with two rows and two 
columns, many authors say that no expected frequency should be < 5. Wicken [ 19891 
says that all expected values should be > 2 or 3 and list additional conditions. Small 
expected frequencies occur either when the overall sample size is small or when one 
of the rows or columns has very few observations in one of the row or column totals. 
For example, if a disease is rare, a prospective study where patients are followed until 
they get the disease may find very few diseased subjects. 

Fortunately, there is a test that is widely available in statistical programs that can 
be used for tables with two rows and two columns when the expected frequencies are 
less than the recommended size. The test is called Fisher’s exact test. An explanation 
of this test is beyond the scope of this book (see Agresti [1996], Fleiss [1981], and 
particularly Wickens [ 19891 on the pros and cons of using this test). 

Fisher’s exact test is widely used when the expected value in any cell is small. We 
recommend using a statistical program to perform the test since it takes considerable 
effort to do it otherwise. One difference between Fisher’s exact test and the chi- 
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square test is that for Fisher’s exact test the row and column totals are considered 
fixed. Fisher’s exact test is available in SAS, SPSS, and Stata. The results are often 
given for both a one- and a two-sided test. The two-sided test should be chosen if 
one wishes to compare the results from the exact test with those from the chi-square 
test. The programs will report the P values for the test. Fisher’s exact test tends 
to be somewhat conservative compared to the chi-square test (see Wicken [1989]). 
Fisher’s test should not be used with matched samples. For McNemar’s test, it is 
recommended that the sum of b + c > 30 (see van Belle et al. [2004]). 

11.3.6 The Continuity Correction: Two-by-Two Tables 

As mentioned in Section 1 1.3.1, using Table A.4 results in approximate P values. For 
frequency tables with 1 d.f. (two rows and two columns), the approximation is poorer 
than for larger tables. To adjust for this approximation, a correction factor called the 
Yates correction fo r  continuity has been proposed. To use the correction factor, we 
subtract .5 from each of the positive differences between the observed and expected 
frequencies before the difference is squared. For example, if we examine Table 1 1.7, 
the differences between the observed and expected frequencies for all four cells are 
either +5.37 or -5.37. The positive differences are all +5.37. The corrected xz is 
given by 

= 3.71 
2 (5.37 - .5)2 (5.37 - .5)2 (5.37 - .5)2 (5.37 - .5)2 

xc  = 89.63 + 85.37 + 15.37 + 14.63 

or 

all cells (lobserved - expected1 - . 5 ) 2  
x:= c expected 

The vertical line ( 1 )  is used to denote positive or absolute values. Note that for each 
observed frequency minus the expected frequency, the value has been made smaller 
by .5, so the computed chi-square is smaller when the correction factor is used. In 
this case, the original chi-square was 4.50 and the corrected chi-square is 3.71. With 
large sample sizes the correction factor has less effect than with small samples. In 
our sample, the uncorrected chi-square had a P value of .034 and the corrected one 
has a P value of .054. Thus with Q = .05, we would reject the null hypothesis for 
the uncorrected chi-square and not reject it if we used the Yates correction. 

There is disagreement on the use of the continuity correction factor. Some authors 
advocate its use and others do not. The use of the continuity correction gives P 
values that better approximate the P values obtained from Fisher’s exact test. Using 
the continuity correction factor does not make the P values obtained closer to those 
from the tabled chi-square distribution. The result is a conservative test where the 
percentiles of the corrected chi-square tend to be smaller than the tabled values. In the 
example just given, we suggest that both corrected and uncorrected values be given 
to help the user interpret the results. 
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For matched samples, the same correction factor can be used. Here, the formula 
can be simplified so that the corrected xz is 

( Ib-cl-1)2 

b + c  x: = 

where / b  - c/ denotes the positive difference. 

11.4 CHI-SQUARE TESTS FOR LARGER TABLES 

So far in this chapter, discussion of the use of measures of association and chi-square 
tests has been restricted to frequency tables with two rows and two columns. To 
illustrate the analysis of larger tables, we now present a hypothetical example of a 
two-way table with four rows and four columns. In general, frequency tables can be 
described as having r rows and c columns. 

11.4.1 Chi-square for Larger Tables: Single Sample 

Our example is from a hypothetical health survey in which a single sample of respon- 
dents was taken from a population of adults in a county. The health survey included 
questions on health status, access to health care, and whether or not the respondents 
followed recommended preventive measures. The results from two of the questions 
are given in Table 11.8. The first question was: In general, would you say your 
health is excellent, good, fail; or poor? These four choices were coded 1, 2, 3, and 
4, respectively. The second question was: Are you able to afford the kind of medical 
care you should have? The possible answers were almost nevel; not often, often, or 
always and again were coded 1,2,3,  and 4. The data were analyzed using a statistical 
program. Here, the results are given in Table 11.8. Both observed frequencies and 
expected frequencies (in parentheses) are displayed. Note that these data are ordinal 
data. Ordinal data are sometimes analyzed using the chi-square test when the authors 
want to display the data in a two-way table. 

The expected frequencies have been computed using the same method used for 
tables with two rows and columns. In each cell, the row and column totals that the cell 
falls in are multiplied together and the product is divided by the total frequency, 600. 
For example, for respondents who reported that their health was fair and that they could 
afford medical care often, the expected frequency is computed as 105(103)/600 = 

18.025, which has been rounded off to 18.02, as reported in Table 11.8. 
To test the null hypothesis that the answers to the health status question were 

independent of the answers to the access to health care question for adults in the 
county, we compute chi-square using the same formula as the earlier examples with 
two rows and columns; now, however, there are 16 cells rather than 4. 

all cells 
(observed - expected)2 

x 2 =  c expected 
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Table 11.8 Association Between Health Status and Affording Medical Care 

Afford Medical Carea 
Health Status Almost Never Not Often Often Always Total 

Excellent 4(8.40) 20(22.32) 2 l(24.72) 99(88.56) 144 
Good 12( 18.02) 43(47.90) 59(53.04) 195(190.04) 309 
Fair ll(6.13) 21( 16.27) 15( 18.02) 58(64.57) 105 
Poor 8(2.45) 9(6.5 1) 8(7.21) 17(25.83) 42 

Total 35 93 103 369 600 

a Expected frequencies are shown in parentheses. 

or 

(4 - 8.40)’ (20 - 22.32)’ (17 - 25.83)2 
= 30.7078 

= 8.40 4- 22.32 + ’ ’ ’ + 25.83 

The d.f.’s are always given by (T - l ) ( c  - 1) or in this example by (4 - 1)(4 - 1) = 9. 
Here T is the number of rows and c is the number of columns. The formula for the 
d.f.’s can be obtained by noting that we are free to fill in T - 1 times c - 1, or in this 
case 9 of the cells, and still get the same row and column totals. For example, if we 
know that we had 4, 20, and 21 observations in the first three columns of the first 
row and that the total number in the first row was 144, we would know that the last 
observation in the first row must be 99. 

To determine if the computed value of chi-square is significant, we look in Table 
A.4 using the row with 9 d.f. Note that the tabled value of chi-square that is needed 
for a small P value gets larger as the d.f. increases. For 9 d.f. we need a computed 
chi-square 2 16.92 to reject the null hypothesis of no association at the a = .05 level; 
we need a tabled value of only 3.84 for 1 d.f. Since our computed value of 30.7078 
is larger than the tabled value of 23.59 for the column headed .995, we know that our 
P value is < .005. 

Note that in this example the data are ordinal data. The chi-square test does not 
take advantage of the data being ordinal, interval, or ratio rather than nominal. In 
medical studies, authors often group data that are interval or ratio. For example, 
body mass index (BMI) and age are often grouped into three or more groups and 
then tested using the chi-square test. This may make the explanation simpler but it 
is not using all the information available in the data set. However, two-way tables 
are a common method of presenting the results. Use of the correlation coefficient to 
measure association between interval and ratio variables is explained in Chapter 12. 
In Chapter 13, Spearman’s rho, which can be used for ordinal, interval, or ratio data 
to measure association, is described briefly. 

11.4.2 Interpreting a Significant Test 

We now know that there is a statistically significant association between health status 
and being able to afford medical care. But we are left with the problem of interpreting 
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Table 11.9 
Chi-square 

Association Between Health Status and Affording Medical Care: Cells 

Afford Medical Care 
Health Status Almost Never Not Often Often Always Total 

Excellent 2.30 .24 .56 1.23 4.34 
Good 2.01 s o  .67 .13 3.31 
Fair 3.88 1.37 .5 1 .67 6.43 
Poor 12.57 .95 .09 3.02 16.63 

Total 20.77 3.07 1.82 5.05 30.71 

that association. This can be a particular problem for tables with numerous rows 
and columns. One way this can be done is to compare the observed and expected 
frequencies in Table 11 3. For example, if we look at the results for the respondents 
who rated their health as poor, we see that we have higher observed values than 
expected if there was no association for those who almost never, not often, or often 
could afford medical care and observed frequencies lower than expected values for 
those who were always able to afford the medical care they needed. At the other 
extreme, the respondents who rated their health as excellent had lower observed values 
than expected for having problems affording medical care. This type of comparison 
of observed and expected values can provide some insight into the results. It is easier 
to do when we have considerable knowledge about the variables being studied. It 
is often easier when the results are from treatment groups (tables with two or more 
treatment groups) than for survey data from a single sample. With different treatment 
groups, we can compare the observed and expected values by examining the treatment 
groups one at a time. 

Another method of interpreting the results is to see what contributes most to the 
numerical size of the computed chi-square. Many statistical programs print out the 
individual terms, 

(observed - expected)2 
expected 

for each cell. This option may be called cells chi-square or components of chi-square. 
Table 1 1.9 gives the cells chi-square for the data given in Table 1 1.8. 

From Table 1 1.9 it can be seen that the major contribution to the overall chi-square 
comes from those who reported their health status as poor and almost never could 
afford the health care they should have. In general, the responses falling in the first 
column or last row make the largest contribution to the computed chi-square. Another 
method of interpreting the results in larger tables is to present bar graphs as mentioned 
at the end of Section 1 1.1.1. 
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11.4.3 Chi-square Test for Larger Tables; More Than Two Samples or 
Outcomes 

We can also analyze larger tables that have more than two samples or treatments 
andor more than two outcomes. The method of computing chi-square is precisely 
the same as that just given for the case of a single sample. The d.f.’s are also the 
same, namely, (T - l ) ( c  - 1). The null hypothesis is that the proportion of cases 
in the outcome categories in the population are the same regardless of which sample 
they were in (or treatment received). 

If the P value is significant, the results should be interpreted. It is often useful to 
look at the results by treatment group and examine what outcomes occur frequently 
or infrequently, depending on which group they are in. Visually, bar graphs can be 
displayed for each group. The use of bar graphs is often the simplest way to interpret 
the results, and this option is available in many statistical programs. Alternatively, 
the proportions in each group can be displayed in a two-way table. 

11.4.4 Necessary Sample Size for Large Tables 

The likelihood of having expected values too small in some cells to obtain an accurate 
estimate of the P value from Table A.4 tends to increase as the number of rows and 
columns in a table increases. Even if the overall sample size is large, it is possible 
that one or more rows or columns may contain very few individuals. For example, 
in biomedical applications some symptoms or test results can occur very rarely. If a 
row or column total is small, often at least some of the cells in that row or column 
will have small expected values. Note that in computing the expected value for a cell, 
we multiply the row total by the column total that the cell falls in and divide by the 
overall n. If, for example, a row total was only 1, the expected value would be the 
column total divided by n, which surely is < 1. 

When there are large tables (> 1 d.f.), a few cells having an expected value of 
about 1 can be tolerated. The total sample size should be at least four or five times the 
number of cells (see Wickens [1989]). The rules vary from author to author. From a 
practical standpoint it does not seem sensible to have such small numbers that shifting 
one answer from one cell to another will change the conclusion. 

When faced with too-small expected values in large tables, the most common 
practice is to combine a row or column that has a small total with another row or 
column. For example, if the survey regarding health status and access to medical 
care had been performed on college students, we would probably have very few 
students who stated that they had poor health. If that happened, we might combine 
the categories of poor and fair health to get a larger row total. The choice of what to 
combine also depends on the purpose of the study. Rows or columns should not be 
combined unless the resulting category is sensible. It is sometimes better to compute 
an inaccurate chi-square than to disregard meaningful results. Whenever this is done, 
the reader of the results should be warned that the chi-square may be quite inaccurate. 
Usually, combinations of rows and columns can be found such that the resulting 
categories are worth analyzing. 
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11.5 REMARKS 

The odds ratio and the chi-square test are frequently used in analyzing biomedical 
data. In particular, the chi-square test is widely used in data analysis since many of the 
variables measured in biomedical or public health studies are categorical or nominal 
data. The test is also widely available not only in statistical programs but also in some 
spreadsheet and other programs. The test is very easy to do but users of the test often 
do not put enough emphasis on explaining the results so that a reader can understand 
what actually happened. Simply giving a P value is usually insufficient. 

PROBLEMS 

11.1 In a study of weight loss, two educational methods were tested to see if they 
resulted in the same weight loss among the subjects. One method was called 
the standard method since it involved lectures on both eating and exercise. In 
addition to lectures, the experimental method included daily reporting of dietary 
intake by e-mail followed by return comments the same day. After a 1-month 
period, subjects were rated as to whether they met their goals for weight loss. 

11.2 

Treatment 
Goal Experimental Standard Total 

Met 28 13 41 
Not met 24 31 61 

Total 52 50 102 

Test whether the same proportion of the two treatment groups met their 
goals for weight reduction. 
Compute the relative risk of meeting their goals for the experimental and 
the control groups. 
Compute the odds ratio of meeting their goals for the two groups and give 
95% confidence intervals. 

In a casekontrol study, the investigators examined the medical records of the 
last 100 consecutive patients who had been treated for colon cancer. A control 
group of 100 patients from the same hospital who had been treated for abdominal 
hernias was used for controls. Information on current smoking status was 
obtained from the medical records. Of the 100 cases, 45 were current smokers 
and 55 were not. Of the 100 controls, 26 were current smokers and 74 were 
not. 
(a) Compute the odds ratio of having colon cancer based on smoking status. 
(b) Multiply the number of controls by 2 ,  so there are 200 controls, 52 of whom 

smoke and 148 who do not smoke. Compute the same odds ratio as in (a). 
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(c)  Compute chi-square and test that the proportion of smokers is the same 
among cases and controls for (a) and (b). Is the chi-square the same if the 
number of controls is doubled? 

11.3 A matched sample casekontrol study was performed using cases and controls 
who have been matched on age and eye color and who all worked for the 
same chemical company. The cases had been diagnosed with melanoma. The 
exposure factor being studied was exposure to a chemical. The number of pairs 
is 80. 

Cases Exposed 
Controls Exposed Yes No Total 

Yes 12 16 28 
No 23 29 52 

Total 35 45 80 

(a) Compute chi-square for this matched sample case. 
(b) Compute the odds ratio and its 95% confidence limit. Write in words what 

11.4 In a health survey, adult respondents were asked if they had ever been assaulted 
by a domestic partner or spouse. The results were obtained for those who were 
currently living with their partner or spouse and for those who were separated 
or divorced. There were 262 adults who reported that they were currently living 
with their partner or spouse and 28 of these 262 reported having been assaulted. 
Of the 105 adults who were currently separated or divorced, 33 reported having 
been assaulted. Test if there is an association between having been assaulted 
and currently living with your partner or spouse. Compute the odds ratio. 

11.5 In a casekontrol study of patients with gallstones, information on coffee con- 
sumption was obtained. Among the 80 controls, 35 reported drinking at least 4 
cups of coffee per day, whereas 22 of the 82 cases drank 4 or more cups. Test 
whether cases and controls drink the same amount of coffee. 

11.6 The following table is based on samples of patients diagnosed with gastric 
cancer, peptic ulcer, and controls from the same health maintenance operation. 
From the following table, test whether there are significant differences in blood 
type among the three groups. 

this odds ratio means and what this confidence limit implies. 

Blood Type Gastric Cancer Peptic Ulcer Controls 

0 400 1000 3000 
A 400 700 2500 
B 75 150 500 

AB 25 50 200 

Total 900 1900 6200 
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11.7 Workers were classified as having no (n  = 949), mild (n  = 44), moderate 
(n  = 13), or severe heart failure (n  = 1). Researchers want to compare these 
results with information on job history using a chi-square test. What do you 
suggest they do first before performing a chi-square test? 

11.8 In a public health survey in a rural county, information was obtained on age and 
the question: Do you have one person you think of as your personal doctor? 
The patients were grouped into three age groups. There were 99 respondents 
who were 18-34 years old, of whom 70 said yes; 506 respondents who were 
35-64 years old, of whom 430 said yes; and 220 respondents who were 65 
years old or older, of whom 204 said yes. Test whether the three groups are 
equally likely to have one person who they think of as their personal doctor. 
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CHAPTER 12 

REGRESSION AND CORRELATION 

In previous chapters, one variable was usually studied at a time. An exception to 
this was Chapter 11, in which the odds ratio and the chi-square test were introduced 
for analysis of two categorical variables. In Chapter 11 we discussed analysis of 
categorical data from a single sample, from two or more samples, and from matched 
samples. In this chapter a similar format is followed, but here the data are assumed 
to be continuous (either ratio or interval, as described in Section 5.4.3). 

First, we discuss the relationship between two variables when both variables are 
measured from a single sample. This is by far the most common use of the techniques 
described in this chapter. For example, we might take a sample of fifth graders and 
measure their height and weight. Or with a sample of adult males we might measure 
their age, height, weight, systolic blood pressure, and diastolic blood pressure. From 
this set of five variables, comparisons could be made two variables at a time. We also 
briefly mention the fixed-X case, where the values of X are fixed in advance. 

Usually, two variables are studied together in the general hope of determining 
whether there is some underlying relation between them, and if so, what kind of 
relationship it is. Sometimes, on the other hand, two variables are studied in the hope 
of being able to use one of them to predict the other. For example, we might have 
two methods of measuring a constituent of blood, one inexpensive to perform and the 
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other time consuming and expensive. It would be useful to have a regression equation 
that would allow us to predict the more expensive result from the inexpensive one. 

In Section 12.1 we discuss interpreting scatter diagrams, a widely used graphic 
method. Section 12.2 deals with linear regression analysis when the observations 
are from a single sample. Formulas for computing the regression line, confidence 
intervals, and tests of hypotheses are covered. In Section 12.3 the correlation coeffi- 
cient is defined. Confidence intervals, tests of hypotheses, and interpretation of the 
correlation coefficient are discussed. In Section 12.4 we discuss regression analysis 
for the fixed-X model: when the model is used and what can be estimated from the 
model. In Section 12.5 we discuss the use of transformations in regression analysis, 
the detection and effect of outliers, and briefly mention multiple regression. 

12.1 THE SCATTER DIAGRAM: SINGLE SAMPLE 

The simplest and yet probably the most useful graphical technique for displaying the 
relation between two variables is the scatter diagram (also called a scatterplot). The 
first step in making a scatter diagram is to decide which variable to call the outcome 
variable (also called the dependent or response variable) and which variable to call 
the predictor or independent variable. As the names imply, the predictor variable 
is the variable that we think predicts the outcome variable (the outcome variable is 
dependent on the predictor variable). For example, for children we would assume 
that age predicts height, so that age would be the predictor variable and height the 
outcome variable-not the other way around. 

The predictor variable is called the X variable and is plotted on the horizontal or 
X axis of the scatter diagram. The outcome variable is called the Y variable and is 
depicted on the vertical or Y axis. Each point on the scatter diagram must have both 
an X value and a Y value and is plotted on the diagram at the appropriate horizontal 
and vertical distances. As a small example of a scatter diagram, we will use the 
hypothetical data in Table 12.1, consisting of weights in pounds (lb) from a sample of 
10 adult men as the predictor or X variable and their systolic blood pressure (SBP) 
in millimeters of mercury (mmHg) as the outcome or Y variable. The pair of values 
for each point is written as ( X ,  Y ) .  For example, in Table 12.1 the pair of values for the 
first adult male would be written as (165,134). Statistical programs such as Minitab, 
SAS, SPSS, and Stata will all make scatter plots. 

There are 10 points in the scatter diagram, one for each male. Scales have been 
chosen for the X and Y axes that include the range of the weights and of the systolic 
blood pressure. Tic marks have been placed at intervals of 5 units of systolic blood 
pressure and every 20 lb of weight. 

The scatter diagram is extremely useful in indicating the relationship between the 
predictor and outcome variables (see Figure 12.1). One thing we note is whether the 
relationship between X and Y is positive or negative. In Figure 12.1 it can be seen 
that systolic blood pressure increases as weight increases. Adult males in this sample 
who have higher weight tend to have higher blood pressure. This is called a positive 
relationship. If we had plotted data from adults using vital capacity as the outcome 
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Number Weight (lb) SBP (rnmHg) 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

165 
243 
180 
152 
163 
210 
203 
195 
178 
218 

134 
155 
137 
124 
128 
131 
143 
136 
127 
146 

variable and age as the predictor variable, we would have a negative relationship since 
vital capacity tends to decrease with increasing age. 

If the points fall roughly within a circle, there is essentially little or no appreciable 
relationship between the predictor variable and the outcome variable. If all the points 
fall close to a straight line or curve, we say that there is a strong relationship between 
X and Y .  The points in Figure 12.1 tend to fall fairly close to a straight line; in this 
sample systolic blood pressure tends to increase linearly with weight. 

The points on many scatter diagrams seem to follow a straight line at least over 
a limited range of the X variable. However, in some examples the points appear to 
follow a curve. Additional methods for examining the relationship between X and Y 
from scatter diagrams are given by Chambers et al. [1983] and Cleveland [1985]. 

. 
120 J 

140 160 180 200 220 240 260 
Weight (Ib) 

Figure 12.1 Scatter diagram of weight versus systolic blood pressure. 
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12.2 LINEAR REGRESSION: SINGLE SAMPLE 

In this section we first show how to compute a linear regression line and then how to 
interpret it. 

12.2.1 Least-Squares Regression Line 

After plotting the scatter diagram, we would like to fit a straight line or a curve to the 
data points. Fitting curves will not be discussed here, except that later we show how 
a transformation on one of the variables will sometimes enable us to use a straight 
line in fitting data that was originally curved. 

A straight line is the simplest to fit and is commonly used. Sometimes a researcher 
simply draws a straight line by eye. The difficulty with this approach is that no two 
people would draw the same line. We would like to obtain a line that is both best in 
some sense and that also is the same line that other investigators use. The line with 
both these attributes is the least-squares regression line. 

The equation of the line is 
Y = a + b X  

Here, Y denotes the value of Y on the regression line for a given X .  The coordinates 
of any point on the line are given as (Y ,  X ) .  The slope of the line is denoted by b and 
the intercept by a. The numerical value of b can be calculated using the formula 

C ( X  - X ) ( Y  - Y) 
C(X - X)Z 

b =  

and the numerical value of a can be obtained from 

Before the interpretation of the regression line is discussed, the example given in 
Table 12.1 will be used to demonstrate the calculations. Note that almost all statistical 
programs will perform these calculations, so this is for illustration purposes. The 
calculation of a regression line for a large sample is quite tedious, as is obvious from 
Table 12.2. We first calculate the mean weight as X = 1907/10 = 190.7 and the 
mean systolic blood pressure as Y = 1361/10 = 136.1. Then, for the first row in 
Table 12.2, we obtain ( X  - x)’ by calculating ( X  - 190.7) or (165 - 190.7) and 
squaring the difference of -25.7 to obtain 660.49. A similar calculation is done for 
(Y - 136.1)’ to obtain 4.41. The value in the first row and last column is computed 
from ( X  - 190.7)(Y - 136.1) = (-25.7)(-2.1) = 53.97. The last three columns 
of Table 11.2 are filled in a similar fashion for rows numbered 2 through 10, and the 
summation is now computed. 

From the summation row, we obtain the results we need to compute 

c ( X  - X ) ( Y  - Y) - = .2903 b =  - 
2097.3 

C ( X  - X)2 7224.1 
- 
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Table 12.2 Calculations for Regression Line 

Number Weight SBP" ( X  - x)' (Y - 7)' ( X  - x)(Y - Y) 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

165 134 
243 155 
180 137 
152 124 
163 128 
210 131 
203 143 
195 136 
178 127 
218 146 

660.49 
2735.29 

114.49 
1497.69 
767.29 
372.49 
151.29 

18.49 
161.29 
745.29 

4.41 
357.21 

.81 
146.41 
65.61 
26.01 
47.61 

0.01 
82.81 
98.01 

53.49 
988.47 
-9.63 

468.27 
224.37 
-98.43 

84.87 
-.43 

115.57 
270.27 

c 1907 1361 7224.10 828.90 2097.30 

aSystolic blood pressure. 

and 

Then, Y equals 

u = 7 - bX = 136.1 - .2903(190.7) = 80.74. 

Y = 80.74 + .2903X 

or 
SBP = 80.74 + .2903 weight 

Note that if we divide c(X - z)' by n - 1, we obtain the variance of X ,  or 
s$. Similarly dividing c(Y - Y)' by n - 1, or in this example by 9, we get the 
variance of Y ,  or s$. Thus, the sum in those two columns is simply the variance 
of X multiplied by n - 1 and the variance of Y multiplied by n - 1. These sums 
are always positive since they are the sum of squared numbers. The sum of the last 
column in Table 12.2 introduces a formula that is new, c ( X  - x)(Y - Y). If we 
divide this sum by n - 1 = 9, we obtain what is called the covariance, or sZy. The 
covariance will be positive if increasing values of X result in increasing values of Y 
(a positive relationship holds). In Table 12.2 we have a positive sum of 2097.3. Note 
that only three of the values in the last column are negative, and two of those (-9.63 
and -.43) are small numbers. In other words, when X is >x, then Y also tends to 
be >Y, resulting in a positive product in this example. Whenever large values of X 
tend to occur with small values of Y, c ( X  - X )  (Y - Y) is negative. 

In the formula for the slope b, we divide c ( X  - X )  (Y - 7) by a positive number; 
thus the resulting sign of b depends solely on the sign of c ( X  - 51) (Y - Y). If it 
has a positive sign, b has a positive sign and the relationship is called positive. If it 
has a negative sign, b has a negative sign and the relationship is negative. Note that 
statistical programs will provide scatter plots with the linear regression line included 
on the plot. In these programs scatter the numerical results for the coefficients and 
information concerning the coefficients is included, usually in a table under the plot. 
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12.2.2 Interpreting the Regression Coefficients 

The quantity b = .2903 is called the slope of the straight line. In the case of the 
regression line, b is called the regression coeficient. This number is the change in Y 
for a unit change in X .  If X is increased by 1 lb, Y is increased by .2903 mmHg. 
If X is increased by 20 lb, Y is increased by .2903(20) = 5.8 mmHg. Note that the 
slope is positive, so a heavier weight tends to be associated with a higher systolic 
blood pressure. If the slope coefficient were negative, increasing values of X would 
tend to result in decreasing values of Y .  If the slope were 0, the regression line would 
be horizontal. 

One difficulty in interpreting the value of the slope coefficient b is that it changes 
if we change the units of X .  For example, if X were measured in kilograms instead 
of pounds, we would get a smaller value for the slope. Thus it is not obvious how 
to evaluate the magnitude of the slope coefficient. One way of evaluating the slope 
coefficient is to multiply b by x and to contrast this result with 7. If b y  is small 
relative to Y, the magnitude of the effect of b in predicting Y will tend to be small. 

The quantity a = 80.74 is called the intercept. It represents the value of Y when 
X = 0. The magnitude of a is often difficult to interpret since in many regression 
lines we do not have any values of X close to 0, and it is hard to know if the points 
fit a straight line outside the range of the actual X values. Since no adult male could 
have a weight of 0, the value of the intercept is not very useful in our example. 

12.2.3 Plotting the Regression Line 

The regression line may be plotted as any straight line is plotted, by calculating 
the value of Y for several values of X .  The values of X should be chosen spaced 
sufficiently far apart so that small inaccuracies in plotting will not influence the 
placement of the line too much. For example, for the regression line, 

Y = 80.74 + .2903X 

we can substitute X = 140 ,X  = the mean 190.7, and X = 260 in the equation 
for the regression line and obtain Y = 121.4, Y = 136.1, and Y = 156.2. The 10 
original points as well as the regression line are shown in Figure 12.2. Note that the 
regression line has only been drawn to include the range of the X values. We do not 
know how a straight line might fit the data outside the range of the X values that we 
have measured and plotted. 

Note also that at x = 190.7, the height of the line is Y = 136.1 = 7. This - 
is always the case. The least-squares regression line always goes through the point 
(X, Y). 

12.2.4 The Meaning of the Least-Squares Line 

If for each value of X ,  we calculate Y ,  the point on the regression line for that X 
value, it can be subtracted from the observed Y value to obtain Y - Y .  The difference 
Y - Y is called a residual. The residuals are the vertical distances of data points 
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Figure 12.2 Least-squares regression line, Y = 80.74 + .2903X. 

from the regression line. For the example with the 10 adult males, we would have 10 
residuals. Each residual indicates whether the systolic blood pressure is high or low 
considering the individual’s weight. 

If the 10 values of Y - Y are squared and added together, the sum C(Y - Y ) 2  is 
calculated to be 219.94. This sum is smaller for the line Y = 80.74 + .29X than it 
would be for any other straight line we could draw to fit the data. For this reason we 
call the line the least-squares line. The regression line is considered to be the best- 
fitting line to the data in the sense that the sum of squares in the vertical direction is 
as small as possible. 

The sum of the 10 values of Y - Y is approximately 0. If there were no rounding 
off in the calculations, it would be precisely 0. The sum of vertical distances from 
the regression line is always 0. Also, the sum of the Y ’ s  always equals the sum of 
Y’s (within rounding error). 

12.2.5 The Variance of the Residuals 

The 10 residuals Y - Y are simply a set of 10 numbers, so we can calculate their 
variance. This variance is called the residual mean square and its formula is 

C(Y - Y ) 2  

n - 2  s;.. = 

For the 10 data points, s;,. = 219.94/(10 - 2) = 27.49, and taking the square root 
we obtain = 5.24 mmHg for the standard deviation of the residuals. An obvious 
difference between the variance of the residuals and the variances of X and Y that we 
obtained earlier is that here we divided by n - 2 instead of n - 1. The n - 2 is used 
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I X 

Figure 12.3 Position of regression line for bivariate normal distribution. 

because both the slope and the intercept are used in computing the line. The square 
root of the residual mean square is often called the standard error of estimate. 

The residual mean square measures the variation of the Y observations around 
the regression line. If it is large, the vertical distances from the line are large. If it 
is small, the vertical distances are small. In the example using the 10 data points, 
s ; , ~  = 27.49. The variance of the original 10 Y values can be computed from 
Table 12.2 as 828.90/9 = 92.1, so the variance about the regression line is much 
smaller than the variance of Y in this example. This indicates that Y values tend to be 
closer to Y than they are t o y .  Thus, using the least-squares regression line to predict 
systolic blood pressure from weight gives us a closer prediction than does using the 
sample mean systolic blood pressure. 

12.2.6 Model Underlying Single-Sample Linear Regression 

Up to this point in this chapter, we have discussed computing a regression line from 
a single sample. To compute confidence limits and to make tests of hypotheses, we 
shall make the basic assumption that we have taken a simple random sample from a 
population where X and Y follow a bivariate normal distribution. In Chapter 6 we 
discussed a normal distribution for a single variable X .  For X and Y to be bivariately 
normal requires not only that both X and Y be individually normally distributed but 
also that the relationship between X and Y has a bivariate normal distribution (see 
van Belle et al. [2004]). 

One way of determining whether the data points may be from a bivariate nor- 
mal distribution is to examine the scatter diagram. If the variables have a bivariate 
normal distribution, data points should lie approximately within an ellipse. An el- 
lipse is depicted in Figure 12.3. Also, if the data points ( X ,  Y )  follow a bivariate 
normal distribution, both X and Y separately should be normally distributed. Nor- 
mal probability plots can be used to check this. The residuals should be normally 
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distributed; many computer programs will allow the user to check the distribution of 
the residuals using normal probability plots or other visual methods. 

If we enclose the points in Figure 12.1 with an ellipse, it would be a long and thin 
ellipse, thus indicating a strong relationship between X and Y .  An ellipse closer to 
a circle would be an indication of a weak relationship between X and Y .  

Figure 12.3 also shows the position of the least-squares regression line. Note that 
in Figure 12.3 the regression line is not the major (or principal) axis of the ellipse 
but tends to have a smaller slope than the major axis. This is the case whenever the 
relationship is positive. If the relationship is negative (negative slope coefficient), the 
slope of the regression line will be closer to 0 than the major axis of the ellipse. In 
both cases the regression line is more nearly horizontal than the major axis of the 
ellipse. The least-squares line goes through the center of the ellipse and touches the 
ellipse at the points where the two vertical lines touch the ellipse (are tangent to the 
ellipse). 

As an aside, the fact that the slope coefficient will be smaller than that of the 
major axis of the ellipse when the relationship is positive has special importance in 
interpreting data taken from paired samples. For example, suppose that cholesterol 
levels were taken prior to treatment and 1 month later. We could make a scatter plot 
of the data with the pretreatment cholesterol level on the X axis and the posttreatment 
level on the Y axis. If there was no change except for that due to measurement error 
and day-to-day variation in levels at the two time periods, we would expect to see 
the points in a scatter diagram falling roughly within an ellipse with the major axis 
having a 45" slope (slope of 1) and going through the origin. The pretreatment and 
posttreatment means would be roughly equal. Note that since we will fit a least- 
squares line, the regression line will probably have a slope < 1, possibly quite a 
bit less if there is a great deal of variation in the results. If all the points fall very 
close to a straight line, there is very little difference between the slope of the major 
axis and that obtained from the least-squares regression line. Note that the same 
considerations would come into play if we wished to compare the readings made by 
two different observers or to compare two different laboratory methods for measuring 
some constituent of blood. 

If the assumption of a simple random sample from a bivariate normal population 
can be made, we can use our sample statistics to estimate population parameters. 
The population parameters that can be estimated and the sample statistics used to 
estimate them are given in Table 12.3. Note from the table that cy and B are used 
in linear regression to identify the intercept and slope coefficient for the population 
regression line. This follows the convention of using Greek letters for population 
parameters. In Section 8.4, LV was used to denote the chance of making a type I error 
and was used to denote the chance of making a type I1 error. To avoid confusion in 
this chapter, we always say population intercept and population slope when referring 
to the population regression line. 

In earlier chapters we have covered the estimation of px . py , o:, and 0; when 
variables are considered one at a time. In the following sections we discuss confidence 
intervals and tests of hypotheses concerning the remaining estimators. 
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Table 12.3 Parameters and Statistics for the Single-Sample Case 

Population 
Parameters Sample Statistics Description 

X Mean of X PX 

CLY Y Mean of Y 

Variance of X 
4 4 Variance of Y 

g?/.z 2 s ; . x  Variance of the residuals 

0 b Slope of line 

0 a Intercept of line 

P r Correlation coefficient 

- 

- 

2 
g z  sf 

12.2.7 Confidence Intervals in Single-Sample Linear Regression 

If the required assumptions stated in Section 12.2.6 are made, confidence intervals 
can be made for any of the parameters given in Table 12.3. The most widely used 
confidence interval is the one for the slope of the regression line. When computing 
confidence intervals for a mean in Chapter 7, we used the sample mean plus or minus 
a t value from Table A.3 times the standard error of the mean. We follow the same 
procedure in computing confidence intervals for b, the slope of the line. The standard 
error of b is given by 

se(b) = dgF+ 
Note that in computing se(b), we divide the standard error of the estimate, s ~ . ~ ,  by 
the square root of c ( X  - F ) z .  Hence, the se(b) becomes smaller as the sample 
size increases. Further, the more spread out X’s are around their mean, the smaller 
se(b) becomes. 

The 95% confidence interval is given by 

b & t[.975][se(b)] 

For example, for the 10 males we have already computed the square root of the residual 
mean-square error, or sy = 5.24. FromTable 12.2 we have c(X -x)’ = 7224.1. 
So the se(b) is 

5.24 
= .062 

5.24 
se(b) = ~ - - 

J7ETi 84.99 
- 

The 95% confidence interval is 

.29 & 2.306(.062) = .29 =k .14 

That is, the confidence interval for the population slope is 
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Here we used a t value from Table A.3, which corresponds to the area up to .975 
in order to obtain 95% two-sided intervals. The d.f.’s are n - 2 = 10 - 2 = 8. 
Then n - 2 must be used here because it was necessary to estimate two population 
parameters of the regression line, a and 9. If we repeatedly took samples of size 10 
and calculated the 95% confidence intervals, 95% of the intervals would include 4 ,  
the population slope coefficient. 

Occasionally, we need to compute confidence intervals for the population intercept 
a. If the sample includes points that have X values close to 0 so that the regression 
line does not extend far below the smallest X value, then these confidence intervals 
can be interpreted safely. The standard error of a is given by 

and the 95% confidence interval for the population intercept is 

a & t[.975][se(a)] 

where a t value with n - 2 d.f. is used. For the example with the 10 males, we have 

se(a) = 5.24[1/10 + (190.7)2/7224.1]1/2 = 5.24(2.266) = 11.87 

and the 95% confidence interval is computed from 

80.74 & 2.306(11.87) = 80.74 f. 27.37 

or 
53.37 < a < 108.11 

Note that for this example, there is no reason to interpret the confidence limits for 
the population intercept; no weights are near 0. In general, caution should be used in 
making inferences from the regression line below the smallest X value or above the 
largest X value. 

The confidence interval for the variance about the regression line follows the 
procedure used in Chapter 9 for a single sample except that n - 1 is replaced by 
n - 2. The values for chi-squared are taken from Table A.4 for 8 d.f. The formula is 
given by 

( n  - 2+;.x (n  - 21s;,x 
x2 j.9751 < 4 . x  < x2[.025] 

17.53 < 0;.2? 2.18 

and entering the data for the 10 males, we have 

g(27.49) 8(27.49) 

or 12.55 < < 10.04 
for the 95% confidence interval of the standard deviation of the residuals about the 
regression line. 

< 100.88. Taking the square root, we have 3.54 < 
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Most computer programs furnish only limited or no confidence intervals for linear 
regression. They typically give the standard error of the regression line, the slope 
coefficient, and the intercept. The variance of X can be used to compute c ( X  -x)’. 
From these quantities the desired confidence intervals can easily be computed. Stata 
does provide confidence intervals. 

12.2.8 Tests of Hypotheses for Regression Line from a 
Single Sample 

The computation of tests of hypotheses for the population intercept and the slope are 
common options in computer programs. In Chapter 8 we presented the test to decide 
whether a population mean was a particular value. A similar test can be made for the 
slope of a regression line. The test statistic is 

b - Po 
se(b) 

t = -  

Here, PO is the hypothesized population slope and the computed t is compared with 
the t values in Table A.3 with n - 2 d.f. The se(b) is given in Section 12.2.7. For 
example, if we wish to test the null hypothesis that the population slope, PO = .20, 
for the 10 males and with o = .05, our test statistic would be 

.29 - .20 
t =  = 1.45 

.062 

From Table A.3 for n - 2 = 8 d.f., the tabled value of t is 2.306 and we would be 
unable to reject the null hypothesis of a population slope equal to .20. 

Similarly, for a test that the population intercept Q takes on some particular value, 
QO, we have the test statistic 

a - Qo t = -  

For example, to test the null hypothesis that the population intercept a0 = 100 mmHg, 
for the 10 males at the 5% level we have 

se(a) 

80.74 - 100 
t =  = -1.62 

11.87 

and we would not be able to reject the null hypothesis since for n - 2 = 8 d.f., we 
need a t value greater in magnitude than the tabled value of 2.306 in Table A.3 to 
reject at the o = .05 significance level. 

Statistical programs test the null hypotheses that the population slope PO = 0 and 
that the population intercept a0 = 0. If the test that the population slope PO = 0 is 
not rejected, we have no proof that Y changes with different values of X .  It may be 
that provides just as good an estimate of the mean of the Y distribution for different 
values of X as does Y .  Tests of other hypothesized values must be done by hand. 
However, most programs furnish the standard errors so that these other tests can be 
made with very little effort. The test that the population intercept oo = 0 is a test that 
the line goes through the origin (0,O). There is usually no reason for making this test. 
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12.3 THE CORRELATION COEFFICIENT FOR TWO VARIABLES 
FROM A SINGLE SAMPLE 

When the relation between two variables from a single sample is studied, it often seems 
desirable to have some way of measuring the degree of association or correlation 
between them. For categorical data in Section 1 1.2.2, we presented the odds ratio as 
a measure of association. Here, for continuous data interval or ratio data, the most 
widely used measure of association is the correlation coefficient r .  

12.3.1 Calculation of the Correlation Coefficient 

The definition of the correlation coefficient is 

E ( X  - X ) ( Y  - L) 
r =  

&X - X)2 C(Y - Y)2 

Before discussing the meaning of r ,  we shall illustrate its calculation from the 
calculations done for the regression line in Table 12.2. From the table, we have 
c ( X  - X ) ( Y  - 7) = 2097.3, c ( X  - x)' = 7224.1, and c(Y - Y)' = 828.9. 
Substituting these numerical values in the equation for r ,  we have 

2097.3 

J7224.1(828.9) 
r =  

or 
2097.3 

$3,988,056.5 2447.05 
~ = .857 - - 

2097.3 
r =  

Thus, the correlation between weight and systolic blood pressure for the 10 adult 
males is .857. 

12.3.2 The Meaning of the Correlation Coefficient 

As was the case for the slope coefficient b, the sign of r is determined by its numerator, 
C ( X  - x)(Y - Y), since the denominator is always positive. Thus, if values of 
X greater than x occur when values of Y are greater than and small values of 
X occur when small values of Y occur, the value of the T will be positive. We then 
have a positive relationship. In the example with the 10 males, r is positive, so that 
large values of weight are associated with large systolic blood pressure. If we had 
computed a negative r ,  high values of Y would occur with low values of X .  In the 
example of this given earlier, lower vital capacity tends to occur with older age. 

It can be shown that r always lies between -1 and +1. Indeed, if all the data 
points lie precisely on a straight line with a negative slope, the correlation coefficient 
is always exactly - 1. If all the points lie on a straight line with positive slope, r = + 1. 
Figure 12.4 illustrates these possibilities. 

A correlation coefficient of 0 is interpreted as meaning that there is no linear relation 
between the two variables. Figure 12.5 illustrates data with zero correlations. Note 
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Figure 12.4 Scatter diagrams with T = -1 and T = +1. 
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Figure 12.5 Scatter diagrams with T = 0. 

that the correlation coefficient can be 0 and still there may possibly be a nonlinear 
relation between the two variables. The correlation coefficient is a measure of the 
linear relationship between X and Y .  

Examining the magnitude of T cannot replace a look at the scatter diagram, but 
it is a useful measure of the degree of linear relationship between two variables. 
A value of T less than -.7 or greater than +.7 in a large set of data might be considered 
to indicate a high degree of relationship. It can be seen from comparing the formulas 
for T and b that they always have the same sign. A negative value of T indicates that 
the regression line slopes downward. However, the size of r does not indicate the 
size of the slope coefficient. 
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12.3.3 The Population Correlation Coefficient 

The observations are assumed to come from a single simple random sample of n 
individuals from a population with X and Y bivariately normally distributed. Each 
individual in the population has a value of X and a value of Y (weight and systolic 
blood pressure, for example). We can think of this population as having a correlation 
coefficient just like that of a sample. The population coefficient of correlation will be 
denoted by the Greek letter p, with r kept for the sample correlation coefficient. 

Just as for other population parameters such as means and slopes, it is possible to 
obtain confidence intervals for the population p and to compute tests of hypotheses. 

12.3.4 Confidence Intervals for the Correlation Coefficient 

A correlation coefficient calculated from a small sample may be quite misleading, so 
that confidence intervals for the population correlation coefficient are useful. There 
are various methods for obtaining such confidence intervals; here only one graphical 
method is given. 

Table A.6 gives a chart from which 95% confidence intervals can be read with 
accuracy sufficient for most purposes. For the weight and systolic blood pressure 
example, r = .857. To find the 95% confidence interval, the point .857 is found on 
the horizontal scale at the bottom of the chart. We then look directly upward in a 
vertical line until we find a curve labeled 10, the sample size. We then read the value 
from the vertical scale on the left or on the right of the chart corresponding to the point 
on the curve labeled 10 just above .857. This value is approximately S O ,  which is the 
lower confidence limit. For the upper confidence limit, we find .857 on the horizontal 
scale across the top of the chart and look directly down to the upper curve labeled 10. 
Reading across, the approximate point .97 is found, which is the upper confidence 
limit. Thus the 95% confidence interval for p is approximately .50 < p < .97, a 
rather wide range. Because the lower and upper confidence limits are both positive, 
we conclude that the population correlation coefficient is positive. 

If the sample size is not listed on the chart, conservative intervals can be obtained 
by using the next smaller sample size that is given on the chart. Alternatively, we can 
interpolate roughly between two of the curves. For example, if our sample size were 
11, we could either use a sample size of 10 or interpolate halfway between 10 and 
12 in Table A.6. More accurate estimates of the confidence intervals can be obtained 
using a method given by Mickey et al. [2004]. 

The confidence intervals calculated in this section can be used to test HO : p = po, 
where po is any specified value between -1 and fl. For the sample of size 10 with 
r = .857, we might wish to test HO : p = .7. Since .7 is contained in the 95% 
confidence interval +.50 to +.97, the null hypothesis is not rejected. 

12.3.5 Test of Hypothesis That p = 0 

The most commonly used test is of HO : p = 0: in other words, a test of no association 
between X and Y .  We can make this test by using the test statistic 

r 
t =  

J(1 - r 2 ) / ( n  - 2 )  
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By substituting in the values from the sample of 10 adult males, we have 

3 5 7  .857 - t =  
J(1 - .8572)/(10 - 2 )  - d m  

or 
= 4.70 

3 5 7  t = -  
.1822 

If we compare the computed t value with a t value of 2.306 with n - 2 = 8 d.f. from 
TableA.3, we would reject the HO : p = 0 at the Q = .05 significance level. Note that 
the test of p = 0 is equivalent to the test that the population slope /3 = 0. If we cannot 
say that the population slope is not 0, we cannot say that the population correlation 
is not 0. This test of HO : p = 0 is commonly included in statistical programs, but 
the test that p is some value other than 0 is not included. 

12.3.6 Interpreting the Correlation Coefficient 

An advantage held by the correlation coefficient over the slope of the regression line is 
that the correlation coefficient is unaffected by changes in the units of X or Y .  In the 
example, if weight had been in kilograms, we would still obtain the same correlation 
coefficient, .857. In fact, r is unaffected by any linear change in X and Y .  We can 
add or subtract constants from X or Y or multiply X or Y by a constant and the value 
of T remains the same. 

The correlation r has a high magnitude when the ellipse depicted in Figure 12.3 
is long and thin. All the points lie close to a straight line. A value of T close to 0 
results if the points in a scatter diagram fall in a circle or the plot is nonlinear. Scatter 
diagrams are a great help in interpreting the numerical value of r .  

When a high degree of correlation has been established between two variables, one 
is sometimes tempted to conclude that “a causal relation between the two variables 
has been statistically proved.” This is simply not true, however. There may or may 
not be a cause-and-effect relationship; all that has been shown is the existence of a 
straight-line relationship. 

An explanation of a high correlation must always be sought very carefully. If the 
correlation between X and Y is positive and high, then possibly a large X value may 
tend to make an individual’s Y value large or perhaps both X and Y are affected by 
some other variables. The interpretation must be based on knowledge of the problem, 
and various possible interpretations must be considered. 

12.4 LINEAR REGRESSION ASSUMING THE FIXED-X MODEL 

Up to this point in Chapter 12, we have been discussing the single-sample model. 
The single-sample model is suitable in analyzing survey data or when examining data 
from one of two or more groups. We will now take up the fixed-X model. This is a 
briefer section since the formulas given for the single-sample model remain the same 
and the fixed-X model is not used as much as the random-X model. 
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12.4.1 

In the fixed-X model, the values of X are selected by the investigator or occur because 
of the nature of the situation. For example, in studying the effects of pressure bandages 
on leg circumference, nurses were randomly assigned to wear a pressure bandage 
for either 30, 60, or 120min. The outcome or Y variable is the difference in leg 
circumference before and that after applying the pressure bandage. In this experiment, 
the three time periods are the X variable. The values of X are considered to be fixed 
and known without error. This example would be a case where the values of X are 
selected by the investigator. This model is useful in analyzing experiments when 
the X values (the variable whose values are set by the investigator) are continuous 
(interval or ratio data). 

Alternatively, in studies of change over time, data are obtained on some outcome 
variable such as mortality rates or expected length of life by year. The year becomes 
the fixed-X variable. Usually, the investigator does not take a random sample of years 
but instead looks at the most recent 20 years or some other time period of interest. 
Here, the nature of the situation dictates how the sample is taken. Again, the X 
variable will be assumed to be fixed and known without error. 

To make inferences to the population from confidence intervals or tests of hypothe- 
ses, different assumptions are made in this model than in the single-sample case. For 
each value of X being considered, a population of Y values exists and the following 
three assumptions must hold: 

Model Underlying the Fixed-X Linear Regression 

1. The Y values at each X are normally distributed. 

2. Their means lie on a straight line. 

3. Their variances are equal to each other. 

Figure 12.6 presents a hypothetical example where measurements have been taken 
at three values of X :  that is, X(1), X(2), and X ( 3 ) .  The Y values for each X value 
are normally distributed with the same variance, and the mean of each set of Y values 
falls on a straight line. 

12.4.2 Linear Regression Using the Fixed-X Model 

Computation of the regression line Y = a + bX proceeds in exactly the same way for 
the fixed-X model as for the bivariate normal model. The same formulas are used for 
a, b, s ~ . ~ ,  se(a), and se(b). The confidence intervals for the population intercept and 
slope, CI: and b, are precisely the same. Tests of hypotheses concerning the population 
CI: and ,!3 are also the same as those given for the single-sample bivariate normal mode. 

With the fixed-X model we cannot estimate all the parameters that we could for the 
bivariate normal model. For the fixed-X model we cannot estimate the parameters 
p x ,  p y ,  cx, o9, cxy, or p .  The sample statistics for these parameters do not provide 
valid estimates of the population parameters. Note that computer programs will print 
out X ,  Y ,  s,, sy, and r ,  but these should be ignored if this model is assumed. 

- _  
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Figure 12.6 Graph depicting assumptions for the fixed-X model. 
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Figure 12.6 Graph depicting assumptions for the fixed-X model. 

We lose the ability to estimate px and oz because X values were deliberately 
chosen. For example, if we chose values of X that are far apart, we will get a larger 
variance and standard deviation than we would if we choose them close together. 
Since we are assuming that the Y values depend on X ,  they are also affected and 
we cannot estimate py or og. The correlation T is also affected by the choice of X 
values, so we cannot estimate p .  

One advantage of the fixed-X model is that when individuals are randomly as- 
signed to, say, three treatment levels as given in the leg circumference example, we 
can make causal inferences. In the case of the mortality rates for the most recent 
years, direct causality cannot be established. If we find changes in the rates over 
time, we do not know what caused them. 

The assumptions made in using the fixed-X model should first be checked graph- 
ically by looking at a scatter diagram with a line drawn on it. The points should fall 
along a straight line with the residuals from the line approximately the same size for 
different values of X (equal variance assumption). If there are multiple Y values at 
a limited number of X values, the means of the Y values at each X value should fall 
close to the line and the range of the Y values for each X value should be similar. 
Indications of not meeting the assumptions would be to have the ranges of the Y 
values at each X value increase with increasing levels of the means of the Y variable 
or to have the means of Y for various values of X not fall close to a straight line. 
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I 
X 

Figure 12.7 Shape of a nonlinear regression curve. 

12.5 OTHER TOPICS IN LINEAR REGRESSION 

In this section, two methods of correcting potential problems that might occur in 
fitting linear regression lines are discussed briefly and references are given to more 
extensive information. Also, a very brief mention of multiple regression analysis is 
given. 

12.5.1 

Examination of the scatter diagram sometimes reveals that the points do not lie on a 
straight line. In Section 6.5 we mentioned taking transformations of the data in order 
to achieve a distribution that was approximately normally distributed. We discussed 
the use of the logarithmic and square-root transformations if the observations were 
skewed to the right. These two transformations are often used to transform a curve 
into a straight line. 

Figure 12.7 shows a hypothetical regression curve that is commonly found in 
biomedical examples. When curves such as these are found, it is possible to use 
either the logarithmic or perhaps a square-root transformation of X to achieve an 
approximate straight line. The logarithmic transformation will tend to have a greater 
effect than the square root. Both transformations have the effect of reducing large 
values more than small values, and hence tend to make either curve a straight line. In 
Figure 12.7, the arrows are drawn to show this reduction. 

With statistical programs it is a simple matter to try various transformations and 
then obtain the scatter diagram of the transformed X and original Y. If a logarithmic 
transformation of X was successful, the resulting regression equation would be 

Use of Transformations in Linear Regression 

Y = a + b(log,, X )  

It is preferable to try a transformation on X rather than Y since the resulting equation 
is easier to interpret. 

Additional information on the use of transformations in regression analysis may be 
found in Lewis-Beck [ 19801, Afifi et al. [2004], Mickey et al. [2004], and Atkinson 
[1985]. 
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12.5.2 Effect of Outliers from the Regression Line 

An outlier is an observation that deviates appreciably from the other observations in 
the sample. When a single variable X is measured, we often consider any observation 
that is a long way from the median or mean to be a possible outlier. Outliers can be 
caused by errors in measurement or in recording data or they may simply be unusual 
values. For example, a weight of 400 lb may be a typing error or may be the weight 
of an unusually heavy person. 

Concern about outliers in regression analysis arises because they may have a large 
effect on the estimate of a and b and consequently affect the fit of the line to the 
majority of the points. In linear regression, one of the best tools for finding outliers 
is to examine the scatter diagram. If one or two outliers result in a line not fitting the 
other points, it is often advisable to check each outlier and consider removing it from 
the analysis. 

Regression outliers have been classified as outliers in X ,  outliers in Y ,  and points 
that have a large effect on the slope of the line, often called injuentialpoints. Outliers 
in Y are located well above or well below the regression line. Many statistical 
programs print out the residuals from the line; outliers in Y may be detected by their 
large residuals. 

Outliers in X are values that are far away from x. Outliers in X possess the 
potential for having a large effect on the regression line. If a point is an outlier in 
X and is appreciably above or below the line, it is called an injuential value since 
it can have a major effect on the slope and intercept. In general, a point that is an 
outlier in both X and Y tends to cause more problems in the fit of the line. For further 
discussion and illustrations, see Fox and Long [1990], Fox [1991], Chatterjee and 
Hadi [1988], or Afifi et al. [2004]. 

12.5.3 Multiple Regression 

In multiple regression one has a single dependent variable Y and several independent 
X variables. For example, suppose that one wanted to measure the effect of both 
age and weight in combination on systolic blood pressure. When there are two 
or more independent X variables, multiple regression is used. Statistical packages 
are always used since the computations are more extensive. Options are available 
in these programs to assist the user in deciding which X variables to include in 
the regression analysis. Note that in general there are numerous excellent texts on 
regression analysis, so finding additional books to read is not a problem. 

PROBLEMS 

12.1 The following rates are for all deaths from firearms per 100,000 persons in the 
United States for the years 1985-1995. The information was taken from the 
National Center for Health Statistics, Health, United States 1996-97 and Injury 
Chartbook. 
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Year Death Rate from Firearms 

1985 
1986 
1987 
1988 
1989 
1990 
1991 
1992 
1993 
1994 
1995 

18.3 
19.7 
19.1 
20.5 
21.4 
23.6 
25.2 
24.9 
26.4 
26.0 
23.4 

(a) State which model (single-sample or fixed-X) this data set is. 
(b) Plot a scatter diagram and compute the regression line. 
(c)  Compute 95% confidence intervals for /3 and test the HO : P = 0. 

12.2 Use the following data on length of service in days (X)  and cost per day in 
dollars ( Y )  for 10 patients on a home health care program. 

Patient Number Length of Service, X Cost per Day, Y 

1 
2 
3 
4 
5 
6 
I 
8 
9 

10 

310 
89 
22 
9 

120 
99 
63 

170 
20 

198 

35.00 
34.60 

102.60 
136.20 
69.50 
79.60 

140.20 
45.40 
81.3 
29.50 

(a) State which model the data follow and plot the scatter diagram. 
(b) Do you expect the r to be positive or negative from looking at the scatter 

( c )  Give a 95% confidence interval for p. 
(d) Test the Ho : p = 0 and HO : 0 = 0. Did you get the same P value? 

12.3 In Problem 7.9 data are presented on counts of bacteria on 12 plates by two ob- 
servers. Both observers counted the same plate and their counts were recorded. 
In Problem 7.9, a confidence interval was computed on the difference in the 
mean counts. The confidence limits did not include 0. 
(a) Plot a scatter diagram of this data and compute r .  

diagram? Should b be positive or negative? 
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(b) Contrast what you can learn from a scatter plot and T with what you can 

12.4 The following table contains data from 17 countries. These countries are a 
systematic sample from twice this number of countries that had a population 
> 30 million people in 1998 and had complete data. The data were taken from 
the US. Bureau of the Census, Statistical Abstracts of the United States; 1998, 
118th ed., Washington, DC. It consists of the crude birth rate (CBR) or the 
total number of births divided by the total population in 1998, life expectancy 
(LifeExp) from birth in years for the overall population, and gross domestic 
product (GDP) per capita for 1995. The GDP has been adjusted and then 
converted to U.S. dollars. 

learn from a confidence limit about the differences in the means. 

Country CBR LifeExp GDP 

Argentina 
Brazil 
Canada 
Colombia 

France 
India 
Iran 
Japan 
Mexico 
Pakistan 
Poland 
S. Africa 
Tanzania 
Thailand 
United Kingdom 
United States 

Egypt 

20.0 74.5 
20.9 64.4 
12.1 79.2 
24.9 70.1 
27.3 62.1 
11.7 78.5 
25.9 62.9 
31.4 68.3 
10.3 80.0 
25.5 71.6 
34.4 59.1 
9.8 72.8 

26.4 55.7 
40.8 46.4 
16.8 69.0 
12.0 17.2 
14.4 76.1 

7,909 
4,080 

19,000 
2,107 

746 
26,290 

348 
2,449 

41,160 
2,521 

482 
5,404 
3,185 

134 
2,806 

19,020 
27,550 

State which model the data in the table follows. 
Plot the scatter diagram when X = life expectancy and Y = crude birth 
rate and fit a regression line. 
Does the data appear to follow a straight line? 
If life expectancy increased by 10 years, what do you expect to happen to 
the crude birth rate? 
Test that Ho : ,a = 0. If you test that p = 0, will you get the same P value? 

12.5 Plot a scatter diagram using GDP per capita as the X variable and life expectancy 
as the Y variable from the table in Problem 12.4. 
(a) Fit a straight line to the plot of X = GDP and Y = LifeExp. Describe how 

(b) Compute T .  

the straight line fits the data. 
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(c) Take the logarithm of X = GDP and repeat the steps in (a) and (b) using 

(d) Explain why there is an increase in T when the logarithm of X is taken. 

per capita as the X variable from the data given in Problem 12.4. 
(a) Fit a least-squares regression line and compute T .  

(b) Try a transformation on X and recompute T .  Did it increase, and if so, why? 

12.7 In Problem 12.4, a regression line was fitted using X = life expectancy and 
Y = crude birth rate. The x = 68.7years and 7 = 21.4 births per 1000 
population. Here, the effect of the three types of outliers will be explored. 
(a) Add an outlier in Y that has a value (X, Y )  of (68.7,44) and recompute the 

(b) Remove the outlier added in (a) and add an outlier in X of (85,ll). Recom- 

(c) Remove the outlier in (b) and add an outlier in X and Y (influential point) 

(d) Compare the effects of these three outliers on the slope coefficient and the 

log(GDP) as the X variable. 

12.6 Plot the scatter diagram using the crude birth rate as the Y variable and GDP 

regression line. 

pute the regression line. 

of (85,44). Recompute the regression line. 

correlation coefficient. 

REFERENCES 

Afifi, A. A,, Clark, V. A. and May, S. [2004]. Computer-Aided Multivariate Analysis, 4th ed., 

Atkinson, A. C. [ 19851. Plots, Transformations and Regressions, New York: Oxford University 

Chambers, J. M., Cleveland, W. S. ,  Kleiner, B. and Tukey, P. A. [1983]. Graphical Methods 

Chatterjee, S.  and Hadi, A. S. [1988]. Sensitivity Analysis in Linear Regression, New York: 

Cleveland, W. S. [1985]. The Elements of Graphing Data, Monterey, CA: Wadsworth, 155- 

Fox, J. and Long, J. S. [1990]. Modern Methods of Data Analysis, Newbury Park, CA: Sage, 

Fox, J. [1991]. Regression Diagnostics, Newbury Park, CA: Sage, 21-39. 
Lewis-Beck, M. S. [1980]. Applied Regression: An Introduction, Newbury Park, CA: Sage. 
Mickey, R. M., Dunn, 0. J. and Clark, V. A. [2004]. Applied Statistics: Analysis of Variance 

vanBelle, G., Fisher, L. D., Heagerty, P. J. andLumley, T. [2004]. Biostatistics: AMethodology 

Boca Raton, FL: Chapman & HaWCRC, 85-1 18. 

Press. 

for  Data Analysis, Belmont, CA: Wadsworth, 75-124. 

Wiley-Interscience, 71-1 82. 

191. 

257-29 1. 

and Regression, 3rd ed., New York: Wiley, 251-255, and 278-284. 

for  the Health Sciences, New York: Wiley-Interscience, 297-304. 



This Page Intentionally Left Blank



CHAPTER 13 

N 0 N PA RAM ET R I C STAT I ST I CS 

In Chapters 6-9 and 12, statistical analyses were given which assumed that the data 
were interval or ratio. The data were also assumed to be normally distributed. In 
Chapter 10 the binomial distribution was introduced where the data had two possible 
outcomes, called successes or failures. In this chapter we describe the three most 
widely used nonparametric tests that can be used when the data are ordinal and the 
tests given in Chapter 8 cannot be used and also present another measure of correlation 
when the correlation coefficient given in Chapter 12 is not appropriate. 

The question arises as to what we can do if the data are not from a normal dis- 
tribution or any other known distribution and are what is called distribution-free. 
Usually, we assume that we know the distribution that the data follow, such as a 
normal distribution, or we can transform the data to a normal distribution to test its 
parameters o or p, but this is not always possible. The term nonpurumetric was used 
before the term distribution free. If we do not know the distribution, we obviously do 
not know its parameters. Calling a procedure distribution free or nonparametric does 
not mean that no assumptions are made in performing the test. For example, we still 
assume that random samples are taken plus other assumptions, depending on which 
nonparametric test we use. For a more complete discussion of this terminology, see 
Sprent and Smeeton [2007]. 

Basic Statistics: A Primer for the Biomedical Sciences, Fourth Edition. 
By Olive Jean Dunn and Virginia A. Clark 
Copyright @ 2009 John Wiley & Sons, Inc. 
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In Section 13.1 the sign test for large and small samples is given. The sign test is 
often used with large samples when the user wants to make only a few assumptions. 
The sign test is used when the data are paired. In Section 13.2 the Wilcoxon signed 
ranks test is given. This test is also used for paired data. In Section 13.3 the Wilcoxon 
sum of ranks test for two independent samples is given. The Wilcoxon sum of ranks 
test and the Mann-Whitney test were developed independently. They can both be 
used for testing two independent sets of data and the results of these two tests are the 
same for large samples when there are no ties. In many texts the authors call these 
tests the Wilcoxon-Mann-Whitney (WMW) test. The Wilcoxon sum of ranks test is 
often used instead of Student’s t test when the data cannot be assumed to be normally 
distributed. The Wilcoxon test can also be used with ordinal data, which is not true 
for the t test. The data can be plotted using the graphical methods recommended 
in Section 5.4.3, and this should be considered, especially for the Wilcoxon sum of 
ranks test data. In Section 13.4, Spearman’s rank correlation, which can be used on 
data after it is ranked, is described. Spearman’s rank correlation is less sensitive to 
outliers than the usual correlation coefficient described in Section 12.3. 

The tests described in this chapter are also often used on interval and ratio data when 
the data do not follow a normal distribution and there is no obvious transformation 
to use to achieve normality. The nonparametric tests can also be used on normally 
distributed data, but in that case they will tend to be slightly less powerful than a test 
that assumes normality. 

13.1 THE SIGN TEST 

The sign test has been around for a long time and is a simple test to perform. When the 
sample size is large, say greater than 20, the normal approximation to the binomial 
given in Section 10.3.2 can be used on paired samples. In performing this test we 
assume that the pairs are independent and the measurements are at least ordinal data. 

13.1.1 Sign Test for Large Samples 

Suppose that company A introduces a health program to their 40 workers. They then 
obtain the number of days taken off work for medical reasons in 2006, which was 
prior to their health program, and also in 2008, after the program was in full swing. 
The results X i ,  Yi for the ith worker consists of paired data, where X i  is the days off 
work in 2006 and Y, is the days off work in 2008. The data are paired since the days 
off work are from the same employee. The results were that 28 workers had fewer 
days off after the health plan went into effect, four workers had the same number of 
days off work, and eight workers had more days off work in 2008 than they did in 
2006. The four workers who had the same number of days off work before and after 
the health plan are called ties and their results are not used, so the sample size is now 
36. If the health plan had no effect, we would expect the same number of workers 
among the 36 to take days off in 2008 as in 2006. 

Let the workers who had fewer days off be considered successes, and those taking 
more days off after the health plan, failures. The null hypothesis is that the proportion 
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of successes equals the proportion of failures, or 7r equals 1/2 or .5. The method used 
for testing the null hypothesis here is to use the normal approximation to the binomial 
distribution. The value of p is 28/(28 + 8) = .78. Since .78 is larger than 7r we 
will subtract the correction factor. We will use the test given in Section 10.6.1, where 
the data are paired so the test for a single sample is used, but we will include the 
correction factor 14212) and subtract the correction factor since .78 is greater than .5. 

( p  - .5) rir (1/(2 x 36) 

d w  

Jm 

z =  

- (.78 - . 5 )  - 1/72 
- 

.28 - .0139 
= 3.19 - - 

.0833 

Here a two-sided test with a = .05 is appropriate, so the null hypothesis will be 
rejected and we would conclude that the health program reduced the days off work. 
The null hypothesis being tested is Ho : P(+) = P ( - ) .  

The effect of using the correction factor can be evaluated simply by noting its size. 
If n = 100, then 1/200 is a very small number, but if n, = 5, 1/10 equals .I0 and that 
might affect the conclusion if the difference between p and .5 is small. In making 
this test we are assuming that the (Xi, Yz) for each worker are independent and that 
the data are at least ordinal. 

13.1.2 Sign Test When the Sample Size Is Small 

When the sample size is small, say less than 20 and 7r = 1/2 or S, the accuracy of 
the normal approximation may be questionable and it is recommended that an exact 
test be done. In this case the exact probabilities can be obtained using the formula for 
the binomial or from binomial tables. An example of using the formula is given here 
for a very small sample size, but the simplest thing to do is to use the results from a 
binomial table. The probability that X is equal to any particular number greater than 
or equal to zero is given by 

P ( x )  = n! px(l -p)(n-X) 
X ! ( n  - X ) !  

where X !  is called X factorial and is equal to the product of X ( X  - 1)(X - 
2) . . . (2 ) (1 )  . N o t e t h a t O ! = l a n d l ! = l .  

For example, suppose that we have five employees and only one of them suc- 
ceeds in lowering his number of days off work. So there are four cases where the 
employees fail to lower their number of days off work and one where they succeed. 
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The null hypothesis that the health plan had no effect on the number of days off work, 
7r = 1/2 = .5, can be tested by computing 

= 5(.03125) = .15625 

and the probability that X = 0 is 

The cumulative probability that X = 1 or less is .03125 + .15625 = .1875, so for 
a one-sided test with Q = .05 we would not reject the null hypothesis. For a two- 
sided test with Q = .025 on both sides, we also would not be able to reject the 
null hypothesis. Note that there is no need to perform these calculations, as the 
probabilities can be obtained from binomial tables by looking at the column that has 
p = .5 and cumulating the values found for the X values that you want. For example, 
for T = .5 and n = 5 that we just calculated, tabled values for X = 0 are given 
as .03125 and for n = 1 as .15625, so all that needs to be done is to sum these two 
values to get .1875. 

Binomial tables may be found in Conover [1999], van Belle et al. [2004], Daniel 
[1978], and many other statistic books. Dixon and Massey [1983] in their Table A. 10a 
give critical values for the sign test. 

In some texts and software programs, the null hypothesis is stated in terms of the 
median M as Ho : M = iUo. Note that the observations being tested are the number 
of plus and minus signs of the n differences of X ,  and Y,. If the number of plus and 
minus signs are equal, half are above zero and half below (see Section 5.1.2 for the 
definition of a median). For a further explanation of the interpretation of this test, see 
Conover [1999] or Gibbons [1993]. Minitab, SAS, SPSS, Stata, and StatXact will 
perform the sign test. 

13.2 THE WILCOXON SIGNED RANKS TEST 

The Wilcoxon signed ranks test is used when the data in two samples are paired. It 
is often used when the assumptions for the paired Student t test are not met. Note 
that the sign test uses only information on the sign of the differences. The Wilcoxon 
signed ranks test gives more weight to a pair with large differences between the two 
paired observations. However, the Wilcoxon signed ranks test does require more 
assumptions than the sign test. 

13.2.1 Wilcoxon Signed Ranks Test for Large Samples 

The data to be testedconsists of n paired observations (XI, Yl), (Xz,Yz),  . . . , (Xn,Yn) .  
The numerical values of D, = U, - X, are then computed and the absolute differences 

1 D, I = / X ,  - 1 ,  which are always positive, are obtained. 
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The assumptions made when performing this test include: 

1. The distribution of the Di values is symmetric. Note that when this assumption 
is true, the mean and the median are expected to be equal but the Di values do 
not have to be normally distributed. 

2. The Di all have the same median or mean. 

3. The Di are independent, 

4. The Di are measured with an interval scale (see Conover [1999]). 

Because the distribution is assumed to be symmetric, the sum of the positive ranks 
should equal the sum of the negative ranks when the two-tail null hypothesis that 
Ho : E(D) = 0 is true. 

The data set in Table 13.1 consists of hypothetical values of systolic blood pressure 
from 15 patients before and after treatment. The difference of each observation is 
computed by subtracting the before measurement from the after measurement. Then 
the absolute value of the difference is obtained and is ranked. Finally, the original 
sign of the difference is applied to the ranks. 

Table 13.1 Systolic Blood Pressures and Differences in Ranks 

Before X ,  After Y ,  Difference D, Absolute ID,I Rank ID,l Sign Differences 

135 
137 
140 
140 
145 
148 
150 
154 
155 
158 
159 
160 
162 
163 
164 

125 
136 
140 
142 
137 
151 
154 
147 
151 
153 
148 
151 
159 
157 
150 

- 10 
-1 

0 
+2 
-8 
+3 
+4 
-7 
-4 
-5 

-11 
-9 
-3 
-6 
- 14 

10 
1 
0 
2 
8 
3 
4 
7 
4 
5 

11 
9 
3 
6 

14 

12 
1 

2 
10 
.9 
.5 
9 
.5 
7 

13 
11 
3.5 
8 

14 

-12 
-1 

+2 
- 10 

+3.5 
+5.5 
-9 
-5.5 
-7 
- 13 
-11 

-3.5 
-8 
- 14 

- 

Note that there is one zero difference that is omitted, so the sample size is now 14. 
There are two threes, so the average rank is 3.5, the average of 3 and 4. Likewise, 
there are two fours, so the average rank is the average of 5 and 6 or 5.5. The sum of 
the ranks of the positive values is 

T+ = 2 + 3.5 + 5 .5  = 11 
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and the sum of the negative values T -  is 94. The sum of all the ranks is 105, Note 
that n(n+1)/2=105. So the sum of all the ranks is n(n + 1)/2 and the mean of T+ 
and T-  is one half of the sum of the ranks, or n(n + 1)/4 

For large samples, the normal approximation (see van Belle et al. [2004]) can be 
used with 

E ( T )  = n(n + 1)/4 = 52.5 

and the variance 

Var ( T )  = n(n + 1)(2n + 1)/24 

and 

z = (T - E ( T ) ) / ( d G T )  

A correction should be made for the two 3.5’s and the two 5.5’s. Let ti equal the 
number of ties. The numerator in the variance formula is reduced by 

or 

and if there are c ties, 

or Var ( T )  = (14(15)(29) - 6)/24 = 6084/24 = 253.5 and the square root of the 
variance is 15.9, so 

2 = (94 - 52.5)/15.9 = 2.61 

Since the z value of 2.61 is greater than 1.96, the null hypothesis that the differences 
between each pair of observations comes from a distribution that is symmetric with 
a zero mean or median is rejected for cy = .05. 

13.2.2 Wilcoxon Signed Ranks Test for Small Samples 

When the sample size is less than 15 it is recommended that the significance of the 
results be obtained fromTable 12 in Conover [ 19991, Table C in Gibbons [ 19931, Table 
19 in Dixon and Massey [1983], Table 3 in Daniel [1978], or the use of a software 
package that gives exact results. The use of an exact methods is especially important 
if the significance level is borderline. StatXact, SPSSX, and SAS can perform exact 
calculations. Stata and Minitab also perform the Wilcoxon signed ranks test. In some 
of the software packages, the results are given in terms of medians, as mentioned for 
the sign test. 
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13.3 THE WILCOXON-MANN-WHITNEY TEST 

Two rank tests were developed independently by Wilcoxon and Mann-Whitney to test 
the null hypothesis that two independent samples had the same distribution against 
the alternative hypothesis that one of the distributions is less than the other (one-sided 
test) or that the two populations differ from each other (two-sided test). This Wilcoxon 
is called the Wilcoxon rank sum test to distinguish it from the Wilcoxon test for paired 
data which is called the Wilcoxon signed ranks test. The Mann-Whitney test often 
called the Mann-Whitney U test, is also available, and both tests are often available in 
software packages. The two tests are often written together as the Wilcoxon-Mann- 
Whitney (WMW) test, as the results of the tests will be the same unless there are ties. 
These tests are often used instead of Student’s t test when the data are not normally 
distributed and there is uncertainty about how to choose a suitable transformation to 
achieve a normal distribution or the data are ordinal. We will only give the formulas 
for the Wilcoxon rank sum test since the computation is simpler for this test (van 
Belle et al. [2004]). Formulas for the Mann-Whitney test can be found in Connover 
[1999], Sprent and Smeeton [2007], Gibbons [1993], Daniel [1978], and numerous 
other texts. 

13.3.1 Wilcoxon Rank Sum Test for Large Samples 

The assumptions made when performing the Wilcoxon rank sum test include: 

1. The data are from a random sample from the two distributions. 

2. The samples are independent. 

3. The data being tested are at least ordinal. 

The null hypothesis that is being tested is that the two samples come from identi- 
cal distributions, and the alternative hypothesis is that one distribution has larger or 
smaller values than the other or that the population medians are different. 

First, we illustrate the large-sample approximation and then note the information 
needed to obtain results from a table when the sample sizes are small. Van Belle et 
al. [2004] recommend that the sample sizes be at least 15 for both groups to use the 
following normal approximation. In this example, we do not meet this recommenda- 
tion. 

The first step in obtaining the large-sample approximation results is to rank both 
samples together from small to large. The data in Table 13.2 are hypothetical choles- 
terol levels from two samples of patients. The first sample is n = 11 males who have 
taken part in their employer’s health promotion plan (HPP), and the second sample 
is m = 8 male employees who did not take part in the plan. Note that n is used 
for the sample with the most observations in it and m for the sample with the fewest 
observations. The results for the 11 participating employees are 126, 138, 158, 158, 
165, 171, 176, 177, 180, 188, and 195 mg/dL, and the results for the other 8 nonpar- 
ticipating employees, denoted by No, are 148, 152, 175, 189, 197,200,204, and 213 
mg/dL. 
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Table 13.2 Cholesterol Levels and Ranks for a Combined Sample 

Chol. Group Rank 

126 
138 
148 
152 
158 
158 
165 
171 
175 
176 
177 
180 
188 
189 
195 
197 
200 
204 
213 

HPP 
HPP 
No 
HHP 
HPP 
No 
HPP 
HHP 
No 
HPP 
HPP 
HPP 
HPP 
No 
HPP 
No 
No 
No 
No 

1 
2 
3 
4 
5.5 
5.5 
I 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

To compare the two independent samples, we rank the combined samples together 
from 1 to 19. The sum of the ranks in the smaller group of 8 employees is W = 101.5. 
Note that we have a tie in the HPP and No groups and the ties were given the rank of 
5.5. Here ti = 2 since two observations were tied. 

The formulas for the E ( W )  and the Var(W) are 

E ( W )  = (m(m + n + 1)) /2  

or 

E ( W )  = 8(8 + 11 + 1) /2  = 80 

If we had no ties, the variance of W would be 

Var ( W )  = mn(m + n + 1)/12 

or 

Var ( W )  = 8 x 11(8 + 11 + l ) / l 2  = 88(20)/12 = 146.67 
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With a tie the formula for the variance becomes more complicated (see van Belle et 
al. [2004]). Let c be the number of ties. In this example c = 1. 

Var (w)  = mn(m + n + 11/12 - 'j-"ti(ti - l ) ( t i  + I)] 
c 

i=l 

x[mn/( l2(m + n)(m + n - l)] 

= 146.67 - (2  x 1 x 3)[88/(12 x 19 x (19 - l)] = 146.67 - 528/4104 
= 146.47 - .13 = 146.34 

The correction for ties reduces the numerical value of the Var(W). In this case the 
effect on the size of Var(W) is very small, but if ordinal data are used that can have 
numerous ties, the correction for ties has a larger effect. When the size of Var(W) is 
reduced, the size of the computed z increases. Bergmann et al. [2000] note that the 
correction for ties is needed only when the ties are across the two groups, not within 
one group. The test statistic is 

z = ( W - E ( W ) ) / & p q  
= (101.5 - 80)/12.10 = 1.78 

so the p value for a two-sided test would be p = .08, and for a one-sided test p = .04. 
A continuity correction of plus or minus 1/2 can also be included in the numerator of 
the test statistic. The correction is made to reduce the value of the numerator. 

Van Belle et al. [2004] gives the relationship between the Wilcoxon W and the 
Mann-Whitney U ,  so the numerical value of W can be compared with the values in 
tables made for U for large samples without ties. The Mann-Whitney U statistic can 
be computed from 

U = m(m + 2n + 1) /2  - W 

or for the example given above, 8(8 + 22 + 1) /2  - 80 = 136 - 80 = 56. 
The software programs vary in how the tests are done by programs and in some 

cases within programs. Bergmann et al. [2000] reported that the SPSS large-sample 
approximation was corrected for ties only and that SPSS has an exact permutation, 
as does SAS and StatXact. The SAS large-sample permutation was corrected for 
ties and continuity. Stata was corrected for ties. Minitab has a correction for ties 
and continuity. This nonparametric test is often used in medical and public health 
analyses since it does not require a normal distribution, and even if it is used on 
normally distributed data, the results are likely to be fairly similar. 

13.3.2 Wilcoxon Rank Sum Test for Small Samples 

Tables that present p-values when the sample sizes are small do not include a correction 
for ties. Note that the null hypothesis will be rejected when there is a lot of either 
high or low ranks in the two samples. Tables for the Mann-Whitney test are included 
in van Belle et al. [2004], Conover [1999], and Daniel [1978], as well as numerous 
other texts on nonparametric statistics. The results can be converted to results for the 
Wilcoxon rank sum test by using the formula given at the end of Section 13.3.1. 
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13.4 SPEARMAN’S RANK CORRELATION 

Spearman’s rank correlation is simply, as its name implies, a correlation of data that 
has been ranked or naturally occurs as ranks. It is called Spearman’s rho (the Greek 
letter p). If we rank the data given in Table 12.2 on weight and systolic blood pressure 
(SBP), we obtain Table 13.3. 

Table 13.3 Ranks for Weight, SBP, and Square Differences in Ranks 

Weight Rank ( X )  SBP Rank(Y) (Rank X- Rank Y)’ 

165 
243 
180 
152 
163 
210 
203 
195 
178 
218 

3 
10 
5 
1 
2 
8 
7 
6 
4 
9 

134 5 
155 10 
137 7 
124 1 
128 3 
131 4 
143 8 
136 6 
127 2 
146 9 

4 
0 
4 
0 
1 

16 
1 
0 
4 
0 

The sum of (rank X - sumY)’ is 30, and this is called 0’. The correlation of 
the ranks can be computed from the formula given in Section 12.3.1 or by using the 
following formula for the sample estimate of Spearman’s rho (T,): 

T ,  = 1 - (6D2) / (n (n2  - 1)) 

= 1 - (6 x 30)/(10(100 - 1)) 

z= 1 - (180)/990 = 1 - .182 

= .818 

This formula should not be used if there are ties in the X i  or in the Y,. For example, 
in the weight column the first weight is 165 lb. If the fifth weight were also 165 lb., 
the average rank would be used for these two measurements similar to what was done 
in the Wilcoxon rank sum example. Both the first and fifth observations would have 
a rank of 3.5. In this case, the usual method of computing the correlation coefficient 
given in Section 12.3 should be used on the ranks. 

The null hypothesis that is tested is that X and Y are independent. The alternative 
hypothesis is that X and Y are positively or negatively related. The observations 
do not need to be normally distributed or interval data, but they must be capable of 
being ranked. Spearman’s rank correlation is less sensitive to outliers than the regular 
correlation coefficient. 

Obtaining the results for Spearman’s rank correlation with statistical packages is 
straightforward. For example, Minitab will give the user ranks of their data by using 
the Data and then the Rank commands, and then the usual correlation coefficient 
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can be computed on the ranks, which is Spearman’s rho. SAS, Stata, and SPSS 
will compute Spearman’s rank correlation and give the p-value for the test that the 
correlation is zero. StatXact gives exact p-values. 

PROBLEMS 

13.1 In Problem 8.2, the null hypothesis of equal weight of the male and female mice 
was tested using the t test. Use the exact sign test with Q = .05. Compare the 
results from the sign test with those from the t test. 

13.2 Repeat the results from the sign test using the normal approximation. Compare 
the results with those obtained using the exact test. 

13.3 In Table 7.2, weights for two time periods on the same adults and weight loss 
were evaluated. Note that the tests requested here and in Problem 13.5 have 
smaller than recommended sample sizes to make it simpler to do with a hand 
calculator. 

13.4 The visual analog scale is often used to measure pain. The worst possible score is 
10. Thirty patients who had the same operation were questioned about their pain 
two days post-operation. Fifteen of the patients were assigned to the standard 
analgesic and 15 received the standard analgesic plus pulsed electromagnetic 
field treatment. What statistical test would you use to test if the two treatments 
were equally effective? What statistical program would you use to obtain the 
results? 

13.5 Perform a Wilcoxon rank sum test on the following data on the length of time 
that it took to perform two types of operations. For type 1, six patients were 
operated on in 45,47,50,53,58, and 62 minutes. In the second type of operation 
it took 51, 56, 60, 63, 64, 69, and 70 minutes. Use the normal approximation. 

13.6 Compute the usual correlation and Spearman’s rho for the data in Table 12.2 
and compare the results you obtained. 
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CHAPTER 14 

INTRODUCTION TO SURVIVAL 
AN ALY S I S 

In biomedical applications, survival analysis is used to study the length of time until 
an event occurs. For example. survival analysis has been used in studying the length 
of time that cancer patients survive. Here, the event is death. For some diseases, 
such as multiple sclerosis, the length of time that the disease remains in remission has 
been analyzed. Survival analysis has also been used in studying the length of time 
that women whose partners use condoms have remained nonpregnant. 

What is called survival analysis in biomedical applications is calledfailure time or 
reliability analysis in engineering applications. In behavioral science, survival analy- 
sis has been used to analyze the length of time a person is on welfare or the time until a 
second arrest; it is called event history analysis. Here, we use the terminology survival 
analysis whether or not the outcome being studied is death. 

In Section 14.1 we discuss how the time to an event is measured and describe why 
survival data requires different statistical methods from those given in previous chap- 
ters. In Section 14.2 we present graphical methods of depicting survival data. The 
death density, cumulative death distribution function, survival function, and hazard 
function are described and graphed. In Section 14.3, methods of estimating these 
functions are given using clinical life tables and the Kaplan-Meier method. In Sec- 
tion 14.4 we compare use of the Kaplan-Meier method with clinical life tables and 
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describe when each is useful. In Section 14.5 we briefly describe other analyzes 
performed using survival analysis. 

14.1 SURVIVAL ANALYSIS DATA 

14.1.1 Describing Time to an Event 

In order to determine the time until an event, we need to define both a starting and 
an ending time. It is the starting time that usually presents more difficulties. Ideally, 
we want the starting time for all patients in the study to be the same in terms of 
their course of diseuse. If the starting time for patient A is early in the course of the 
disease due to a sensitive screening program and if, for patient B, the starting time is 
after the patient has had the disease for a long time and after treatment is in progress, 
then obviously their starting times are not comparable. With data of this type, the 
results are difficult if not impossible to evaluate. Both in planning a study and in 
reporting the results, a clear statement of starting times is essential. 

The event defining the end of the length of time is usually better known. Death 
certificates and hospital records provide clear statements of time of death. Precise 
time to an event such as remission may be more difficult to obtain, for even the patient 
may be somewhat unsure when it has occurred. Usually, however, the event is clearly 
defined and its time accurately known. 

For small samples, the time until an event occurs can be determined by counting 
the number of days or whatever unit of time is used from the starting time to the ending 
time for each patient by hand. But for large samples, especially when the time periods 
are long, computer programs are generally used. Statistical programs that compute 
the length of time from starting to ending dates and also perform the analysis are 
ideal. For example, Stata converts dates to times so that the duration between two 
dates can be obtained. When this option is not available, some of the more complete 
spreadsheet programs will compute time periods between dates and the time periods 
can then be entered into statistical programs. Alternatively, the calculations can be 
performed using the options in the spreadsheet program. 

14.1.2 Example of Measuring Time to an Event 

We begin with a small hypothetical study to show how time to an event is measured. 
In this example, the event is death. In a typical survival study, the study starts at 
a particular point in time. Here, it will be assumed that the study starts enrolling 
patients at the beginning of 1995. Baseline data are collected on each patient at the 
time of enrollment. Then, treatment and follow-up start and information is collected 
on the status of each patient. The study continues until terminated at the beginning 
of 2003. Between 1995 and 2003, the starting time when each patient enters the 
study is considered to be when his or her disease condition is diagnosed. Note that 
researchers seldom have a large enough sample of patients immediately available and 
need to enter patients over time. 
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Start of Study End of Study 

lost 4 

to follow-up 

withdrawn alive 
5 

- Year 
1995 2000 2003 

Figure 14.1 Example of measuring time to an event for five patients. 

Patients also leave the study. This can occur because the patient died or was lost 
to follow-up or perhaps because the patient deliberately left the study. Some patients 
are not followed until death because the study ends in 2003. 

Typical examples for five patients are shown in Figure 14.1 to illustrate these 
possibilities. Patient 1 started in 1995 and died 2years later. Patient 2 entered in 
1996 and died 3 years later. Patient 3 entered in 2001 and died 1 year later. Patient 
4 entered in 1999 and was lost to follow-up after 2.5 years. At the time of the end of 
the study, it was not known what happened to this patient. Patient 5 entered in 1997 
and was still alive at the end of the study. When this happens to a patient, the patient 
is said to be withdrawn alive. 

The same data are shown in Figure 14.2 using the start of observation for each 
patient as the starting point. Here the results are shown as if all the patients entered at 
the same time. In pretending that all the patients entered at the same time, we assume 
that there were no changes over time either in the treatment or in the type of patient 
enrolled that would affect the time to death. Note that in Figure 14.2 it is easier to 
compare the times to an event than in Figure 14.1. 

In this example, the known dead are three. Further, we know that patient 4 lived 
at least 2.5 years and that patient 5 lived at least 6 years. These last two patients’ 
observations are said to be censored. With censored data we know something about 
the survival time but we do not know the actual survival time. 

One reason for examining the survival data from the five patients was to see why 
survival analysis is different from the methods already covered in this book for con- 
tinuous (interval or ratio) data. If we have measurements of data such as heights, we 
do not have censored observations. Survival analysis enables us to use all the avail- 
able data, including the data on the patients who were lost to follow-up or withdrawn 
due to the study ending but whose actual time of death is unknown. If we use the 
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Start of Observation 

lost to follow-up k- 
Y r ;  alive 

Year 

Figure 14.2 Time to event with all patients starting at time 0 

methods given in previous chapters and simply ignore the lost or withdrawn patients, 
our results will be biased. These methods should not be used. 

In Section 14.2 we present definitions and graphical descriptions of survival data. 

14.2 SURVIVAL FUNCTIONS 

In Section 4.2 we discussed displaying continuous data with histograms and distri- 
bution curves. We also gave instructions for computing cumulative frequencies and 
displaying the data given in Table 4.5. An example of a cumulative percent plot for 
the normal distribution was given in Figure 6.1 1. In this section we present graphical 
displays similar to those in Sections 4.2 and 6.1 and also present two somewhat dif- 
ferent graphs commonly used in survival analysis. To simplify the presentation, we 
initially ignore the topic of censored data. 

14.2.1 The Death Density Function 

We can imagine having data from a large number of patients who have died so that 
a histogram of the time to death could be made with very narrow class intervals. A 
frequency polygon could then be constructed similar to that given in Figure 4.3. The 
vertical scale of the frequency polygon can be adjusted so that the total area under the 
distribution curve is 1. Note that the total area under other distributions such as the 
normal distribution is also 1. When we are plotting time to an event such as death, 
this curve is called the death density function. An example of a death density function 
is given in Figure 14.3, where the times until death range from 0 to approximately 
3 years. The total area under the curve is 1. The death density function is helpful in 
assessing the peak time of death. Also, the shape of the death density function is often 
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Figure 14.3 Death density function, f ( t ) .  

of interest. In most statistical books, the notation used to indicate the death density 
is f ( t ) ,  where t is used to denote time. 

Note that the death density function in Figure 14.3 is skewed to the right. This is 
a common shape for such data. Unlike other continuous data that we have analyzed 
so far, survival data are almost never assumed to be normally distributed. 

In Figure 14.3, a vertical line has been drawn at a particular time t .  For any given 
t ,  the area to the left o f t  represents the proportion of patients in the population who 
have died before time t .  This proportion has been shaded gray. This area is called 
the cumulative death distribution function and is usually denoted by F(t ) .  The area 
to the right o f t  is 1 - F ( t )  since the total area under the curve in Figure 14.3 is 1. 
The area to the right represents the proportion of patients who have not died yet or, 
in other words, the proportion surviving at least to time t .  The proportion surviving 
at least to time t is denoted by S(t) .  

14.2.2 The Cumulative Death Distribution Function 

In Figure 14.4, the cumulative death distribution function F( t )  is displayed. Note that 
at time zero it is zero and it increases up to 1 at about time 3. The height of the curve 
at time t gives the proportion of patients who have died before time t. By time t = 3, 
all the patients have died. In Figure 14.4, t is approximately .8 and a little < .5 of 
the patients have died by this time. Note that F ( t )  in Figure 14.4 looks rather similar 
to Figure 6.1 1, even though Figure 6.1 1 is the cumulative function for a symmetric 
normal curve. This illustrates the difficulty in distinguishing the shape of the death 
density function simply by looking at the cumulative death distribution function. 

Figure 14.4 also illustrates the relationship between F ( t )  and S(t) ,  the survival 
function. At any time t ,  the proportion dying before t plus the proportion surviving 
at least to t equals 1. 
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f( t )  or proportion dead 

0 t l  2 3 
Time (years) 

Figure 14.4 Cumulative death density function, F( t ) .  

Time (years) 

Figure 14.5 Survival function, S(t) .  

14.2.3 The Survival Function 

Figure 14.5 displays the survival function. Note that this is simply Figure 14.4 flipped 
over. The survival function S( t )  starts at 1 at time 0 (all the patients are alive) and 
decreases to 0 at time 3. Sometimes the results are multiplied by 100 and reported 
in percent. We would say that 100% survived at time 0. Just as it was difficult to 
decide on the shape of the death density function by looking at the cumulative death 
distribution function, it is also difficult to use the survival function for this purpose. 
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The survival function is useful in estimating the proportion of patients who will 
survive until time t .  For example, patients with a life-threatening disease might want 
to know what proportion of patients treated in a similar fashion live 1 year. From the 
survival function in Figure 14.5, we can see that about 40% survive at least 1 year. 
This can be seen by finding 1 year on the horizontal axis and drawing a vertical straight 
line that crosses the curve at a little less than 0.4 on the vertical axis. Or a physician 
might want to know how long the typical patient survives. This can be accomplished 
by finding the place on S(t)  where the height is .5 and then looking down to see the 
corresponding time. 

If one treatment resulted in an appreciably higher survival function than another, 
that would presumably be the preferred treatment. Also, the shape of the survival 
function is often examined. A heroic treatment that results in an appreciable number 
of patients dying soon, followed by a very slowly declining survival function, can be 
contrasted with a safer but ineffective treatment that does not result in many immediate 
deaths but whose survival rate keeps declining steeply over time. 

Statistical survival programs commonly include a plot of the survival function 
in their output and are used to evaluate the severity of illnesses and the efficacy of 
medical treatments. 

14.2.4 The Hazard Function 

One other function commonly used in survival analysis is the hazard function. In 
understanding the risk of death to patients over time, we want to be able to examine 
the risk of dying given that the patient has lived up to a particular time. With a severe 
treatment, there may be a high risk of dying immediately after treatment. Or, as in 
some cancers, there may be a higher risk of dying two or more years after operation 
and chemotherapy. 

The hazard function gives the conditional probability of dying between time t and 
tplus a short interval called A t  given survival at least to time t ,  all divided by A t ,  as 
At  approaches 0. The hazard function is not the chance or probability of a death but 
instead, is a rate. The hazard function must be >0, but there is no fixed upper value 
and it can be > 1. It is analogous to the concept of speed. Mathematically, the hazard 
function is equal to f ( t ) lS ( t ) ,  the death density divided by the survival function. It 
is also called the force of mortality, conditional failure rate, or instantaneous death 
rate. We denote the hazard function by h(t). 

One reason h(t) is used is that its shape can differ markedly for different diseases. 
Whereas all survival functions, S(t) ,  are decreasing over time, the hazard function 
can take on a variety of shapes. These shapes are used to describe the risk of death to 
patients over time. Figure 14.6 shows some typical hazard functions. The simplest 
shape, labeled number 1, is a horizontal straight line. Here, the hazard function is 
assumed to be constant over time. A constant hazard function occurs when having 
survived up to any time t has no effect on the chance of dying in the next instant. Some 
authors call this the no memory model. It assumes that failures occur randomly over 
time. Although this assumption may appear unrealistic, a constant hazard rate has 
been used in some biomedical applications. For example, it has been shown that the 
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0 1 2 3 
Time (years) 

Figure 14.6 Hazard functions, h(t). 

length of time from the first to the second myocardial infarction can be approximated 
by a constant hazard function. When the hazard function is constant, a distribution 
called the exponential distribution can be assumed. The exponential is the simplest 
type of theoretical distribution used in survival analysis. 

Numbers 2 and 3 in Figure 14.6 show a decreasing and an increasing hazard 
function. A decreasing hazard function is found when as time passes since entry into 
the study the patient is more apt to live (at least for a short interval). This could occur 
because an operation is successful in treating the condition and the patients who die 
due to the operation do so soon after the operation. An increasing hazardfunction 
may be found when the treatment is not successful and as time passes the patient is 
more likely to die. 

Number 4 shows a linear increasing hazard function. This is the hazard function 
from the death density and survival function given in Figures 14.3 and 14.5. That 
is, if we took a particular value of t and divided the height of f ( t )  in Figure 14.3 
by the height of S(t)  at the same value o f t ,  we would obtain a point on the linearly 
increasing line labeled 4. In interpreting h(t) and S(t) ,  it is useful to keep in mind 
that they are inversely related. That is, if S(t)  quickly drops to a low value, we would 
expect to have a high initial h(t). 

14.3 COMPUTING ESTIMATES OF f ( t ) ,  S(t), AND h(t) 

In this section we show how to estimate the death density, survival function, and 
hazard function using clinical life tables. In making life tables, the data are grouped 
in a manner somewhat similar to what was done in Section 4.1. We also present an 
estimation of the survival function using the Kaplan-Meier method. The Kaplan- 
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Meier method does not require the data to be grouped. These two descriptive methods 
are often used to obtain graphs of survival data. 

14.3.1 Clinical LifeTables 

We now demonstrate the method for computing clinical life tables using the data 
presented in Table 14.1. The data in Table 14.1 are a sample taken from the same 
distribution as that used to draw Figures 14.3-14.6; the distribution is called a Weibull 
distribution, a distribution widely used in survival analysis. 

The sample size is 40. In the first column of Table 14.1 are listed the patient 
numbers. In the second column are listed the known days the patients lived after 
entering the study. In the third column, the last known status of the patient is given. 
This same pattern is repeated in the next two sets of three columns. The last known 
status has been coded 1 if the patient died, 2 if the patient was lost to follow-up, or 3 
if the patient was withdrawn alive. For example, patient 1 died at 21 days and patient 
5 was lost to follow-up at 141 days. Patients 20 and 37 were withdrawn alive. 

In making a clinical life table, we must first decide on the number of intervals we 
want to display. With too many intervals, each has very few individuals in it, and 
with too few intervals, we lose information due to the coarse grouping. 

Here we choose intervals of .5 year, which will result in five intervals. At the start 
of the first interval, 40 patients are entered in the study. The first interval goes from 1 
to 182 days or up to .5 year and is written as .O to < .5 year. In computing clinical life 
tables no distinction is made between lost or withdrawn; their sum will be labeled c for 
censored. During the first interval eight patients die and one is censored (patient 5). 

The second interval is .5 to < 1.0 year or 183-365 days. During this time period, 
15 patients died (2 were lost and 1 was withdrawn alive or 3 censored). The next 
interval is 1 .O to < 1.5 years and has 8 patients who die and 1 who was censored. The 
next interval, 1.5 to 2.0, has 1 who died and 1 censored, and the last interval has 2 
patients who died. 

The results are summarized in Table 14.2. The first column describes the intervals; 
note that the width of the interval is w = .5 year. The second column, labeled nent, 
gives the number of patients entering each interval. The third column, labeled c, 
includes a count of the patients who are censored. The fifth column lists the number 
of patients who die in each interval and is labeled d. This set of columns displays the 
information given in Table 14.1. 

Before discussing the remaining columns of Table 14.2, we show how to compute 
the number of patients entering each interval (nent). For the first interval it is the 
sample size, here 40. For the second interval we begin with the Rent for the first 
interval and subtract from it both the number dying and the number censored during 
the first interval. That is, we take 40 - 1 - 8 = 31 starting the second interval. For 
the start of the third interval, we take 31 - 3 - 15 = 13. The numbers entering 
the fourth and fifth intervals are computed in the same fashion. In general, from the 
second interval on, the number at the outset of the interval is the number available at 
the outset of the previous interval minus the number who are censored or die during 
the previous interval. 
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Table 14.1 Patient Data for a Clinical Life Table 

Patient Days Status Patient Days Status Patient Days Status 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

21 1 
39 1 
77 1 

133 1 
141 2 
152 1 
153 1 
161 1 
179 1 
184 1 
197 1 
199 1 
214 1 
228 1 

15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 

256 
260 
26 1 
266 
269 
287 
295 
308 
311 
321 
326 
355 
361 
374 

2 29 
1 30 
1 31 
1 32 
1 33 
3 34 
1 35 
1 36 
1 37 
2 38 
1 39 
1 40 
1 
1 

398 
414 
420 
468 
483 
489 
505 
539 
5 65 
618 
193 
794 

1 
1 
1 
2 
1 
1 
1 
1 
3 
1 
1 
1 

Table 14.2 Computations for a Clinical Life Table 

Interval nent c nexp d ?j 3(t) j ( t )  L ( t )  

.O to < .5 40 1 39.5 8 ,203 .797 1.000 .406 451 

.5 to <1.0 31 3 29.5 15 .508 ,492 .797 ,810 1.364 
1.0to <1.5 13 1 12.5 8 .640 .360 .392 .502 1.882 
1.5 to < 2 . 0  1 .5 1 ,286 ,714 .141 .081 667 
2.0 to < 2 . 5  0 .O 2 1.000 ,000 .lo1 ,202 4.000 

The remaining columns in the clinical life table are obtained by performing cal- 
culations on the columns previously filled in. The column labeled nexp gives the 
number exposed to risk. It is computed as 

If there are no censored patients, the number exposed to risk is the number entering the 
interval. If there is censoring, it is assumed that the censoring occurs evenly distributed 
throughout the interval. Thus, on average, the censored patients are assumed to be 
censored from the study for one-half of the total interval. Hence, the number censored 
in each interval is divided by 2 in estimating the number exposed to risk. The number 
exposed to risk decreases in a clinical life table with successive intervals as long as at 
least one patient dies or is censored. For the first interval, nexp = 40 - 112 = 39.5 
since one patient is censored. For the second interval, neXp = 31 - 312 = 29.5, and 
so on. Note in the last row or two of Table 14.2 that very few patients are left in the 
sample. The estimates obtained from the final row may be quite variable. 

In survival analysis, the number of patients exposed to risk decreases as patients 
either die or are censored. In Table 4.5, all the percents or proportions are computed 
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using the original sample size n. Here, the following computations use the number 
actually exposed to risk, not simply the number entering the study. 

The next column is labeled q. The hat over the g is there to indicate that 4 is an 
approximation. It estimates the proportion of patients who die in an interval given 
that they are exposed to risk in that interval. It is computed from 

6 = d/nexp 

For example, for the first interval we compute 8139.5 = .203. For the second interval, 
we have 15129.5 = .508. 

The column labeled 1; is computed simply as 

f j = 1 - . q  

and is the proportion of patients who survive an interval given that they are exposed 
to risk in the interval. For the first interval, 1; = 1 - .203 = ,797. 

The survival function gives the proportion surviving up to the start of the interval. 
In some texts, it is denoted by i ) ( t )  rather than the S ( t )  used in this book. The sample 
survival function, S ( t ) ,  for the first interval is equal to 1 since all patients survive up 
to the beginning of the first interval. For the remaining intervals, it is computed by 
multiplying 1; by S ( t ) ,  both from the preceding interval. For example, for S ( t )  for 
the second interval we multiply .797 by 1.000 to obtain g ( t )  = .797 for the second 
interval. For the third interval, we multiply .492 by .797 to obtain .392. For the fourth 
interval, we compute .360(.392) = .141, and the last interval is .714(.141) = .101. 
In other words, the chance of surviving to the start of a particular interval is equal 
to the chance of surviving up to the start of the preceding interval times the chance 
of surviving though the preceding interval. In graphing S ( t )  on the vertical axis, the 
computed values are graphed above the start of the interval on the horizontal axis. 

The sample death density, f ( t ) ,  is estimated at the midpoint of each interval. For 
each interval, we compute 

where w is the width of the interval. In this example, w = .5. For example, for 
the first interval, we compute 1(.203)/.5 = .406. For the second interval, we have 
.797(.508)/.5 = 310. The other intervals proceed in a similar fashion. 

Finally, the estimate of the sample hazard function, k ( t ) ,  is also plotted at the mid- 
point of each interval. The formula for this estimate is 

d 
h(t)  = 

w b e x p  - d/21 

Since the hazard is computed at the midpoint of the interval, we subtract one-half 
of the deaths from nexp. Here, we are assuming that the deaths occur in a uniform 
fashion throughout the interval, so at the midpoint of the interval one-half of them 
will have occurred. We multiply the denominator by the width of the interval to get 
the proper rate. For example, for the first interval we have 

= .451 
8 - - 8 

h( t )  = 
.5[39.5 - 8/21 .5[35.5] 
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Table 14.3 Computations for the Kaplan-Meier Method 

Days Deaths Censored nobs (nObs - d) /nobs s ( t )  

2 1 8 ( 8 -  1)/8 = ,875 ,875 
3 1 7 ( 7 -  1 ) / 7 =  ,857 ,750 
3 1 6 
4 2 5 ( 5 - 2 ) / 5  = .600 ,450 
5 1 3 
7 1 2 (2 - 1)/2 = ,500 ,225 
9 1 1 ( 1 - l ) / l=  .ooo 0 

The numerical estimate of the hazard function for the second interval would be 
15/(.5[29.5 - 15/21) = 1.364. The remaining intervals are computed in the same 
fashion. 

If a statistical program is used to compute the life table, it will probably contain 
other output. This might include standard errors of the estimates of the death den- 
sity, survival function, and hazard function (see van Belle et al. [2004] or Gross et 
al. [1975]). Also, some programs will compute the 50% survival time from the col- 
umn labeled S ( t )  by interpolation. For example, in Table 14.2 we know that at the 
beginning of the second interval .797 have survived, and at the beginning of the third 
interval .392 have survived. Thus, at some time between .5 and l.Oyears, 0.50 or 
50% of the patients survived. This can be computed using the linear interpolation 
formula given in Section 6.2.2. Note that Stata, SPSS, and SAS provide survival 
analysis programs. 

14.3.2 Kaplan-Meier Estimate 

In Section 14.3.1 the computations for the clinical life table were presented. Note that 
in making these tables we grouped the data into .5-year intervals even though we knew 
the number of days each patient lived. The Kaplan-Meier or product limit method of 
estimating the survival function uses the actual length of time to the outcome event 
such as death, or to censoring, due to loss to follow-up or withdrawn alive from the 
study. 

As might be expected, the Kaplan-Meier method is considerably more work to 
compute by hand if the sample size is large, so statistical programs are generally 
used to perform the computations and graph the results. Here, we illustrate the 
computations with a small example. 

A study was made of 8 patients who were admitted to a hospital with a life- 
threatening condition. The outcome event is death. Two patients were transferred 
from the hospital before they died and they are considered to be censored at hospital 
discharge. The first step in analyzing the data is to order the observations from 
smallest to largest. The ordered times were 2 ,  3, 3', 4, 4, 5', 7, and 9days. The c 
indicates that the third and sixth patients were censored. 
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If the event and censoring occur at the same time as happened with day 3, Kaplan 
and Meier recommend treating the event as if it occurred slightly before the censoring, 
and the censoring is treated as if it occurred slightly after the particular event. An 
alternative method of handling censored data is given by Hosmer et al. [2008]. 

The computations are summarized in Table 14.3. The column labeled days signifies 
the day the event occurred, the column labeled death gives the number of patients 
who died on a particular day, censored signifies lost to follow-up or withdrawn alive, 
Tz&s is the number of patients observed on that day, (nabs - d)/Tz&s is a computed 
quantity, and S ( t )  is the estimated survival function. In our example, S ( t )  = 1 up to 
day 2, when the first patient died since all eight patients survived to day 2. 

On day 2, one patient died, so the chance of surviving past 2days is 718, or .875. 
(Tzobs - d)/n&s gives the proportion surviving at each particular time that a patient 
dies given that the person has survived up to then. The chance of surviving up to day 
2 is 1 and the chance of surviving past day 2 is .875 that the person has survival up to 
day 2, so the chance of surviving past day 2 is S ( 2 )  = .875(1) = .875. Here, 2 has 
been substituted for t in S ( t )  since we are giving the results for day 2. 

On day 3, one patient dies and one is censored. Note that we assume that the death 
occurs first. Thus, the patient dies from the seven remaining patients, so the chance 
of surviving on day 3 given the patient survived up to day 3 is (7 - 1)/7 = .857. 
Thus, the chance of surviving past day 3 is ,857 times the chance of surviving up to 
day 3, or the chance of surviving past day 3 is .857(.875) = .750. There is no change 
in S ( t )  when a patient is censored, so no calculations are required in the third row 
except to reduce the number of patients observed by one to account for the patient 
who is censored. Thus at the start of day 4, we have only five patients. 

On day 4, two patients die, so the chance of dying on day 4 given the patient is 
known to be alive up to day 4 is ( 5  - 2 ) / 5  = .600. The chance of surviving past day 
4 is S(4) = .600(.750) = ,450, where .750 is the chance of surviving past day 3. 

The remaining rows are computed in a similar fashion. The general formula for 
any given row can be given as (nabs - d) /n&,  times the numerical value of S( t )  for 
the preceding row. 

If we were to plot this data as a step function, we would first make a vertical axis 
that goes from 0 to 1 and a horizontal axis that goes from 0 to 10. The values of 
S ( t )  are plotted on the vertical axis and time in days is plotted on the horizontal axis. 
Between day 0 and day 2, we would plot a horizontal line that had a height of 1. From 
day 2 to day 3, another horizontal line would be plotted with a height of ,875, from 
day 3 to day 4, another horizontal line would have a height of .750, and from day 4 to 
day 7, a horizontal line with a height of .450 is plotted. On day 7 to day 9 the height 
of the horizontal line would be .225, and after day 9 the height would be 0. Figure 
14.7 illustrates the results obtained from Table 14.3. 

For actual data sets with more times to the event, statistical programs are rec- 
ommended both for the computations and for graphing the survival function, as the 
Kaplan-Meier product limit method requires considerable work to calculate and graph 
by hand. Note that SAS, SPSS, and Stata will provide plots of the results. These 
programs will also print results from two or more groups on the same graph, so visual 
comparisons can be made between groups. 
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Figure 14.7 Kaplan-Meier survival estimate. 

14.4 COMPARISON OF CLINICAL LIFE TABLES ANDTHE 
KAPLAN-MEIER METHOD 

The Kaplan-Meier method is recommended when the sample size is small. It also 
has the advantage that the user does not have to decide on the length of the inter- 
val as must be done for clinical life tables. Many statistical programs that include 
survival analysis in their output will display an estimate of the survival function us- 
ing the Kaplan-Meier method. It is also possible to compute a mean survival time 
and the variance of the survival time using methods provided by Kaplan and Meier 
(see Gross and Clark [1975]) or a median (see Miller [1981]). Note that the mean 
survival time is sometimes difficult to interpret because survival distributions can be 
highly skewed. Some statistical programs will also print out the standard error of the 
estimated survival function at each distinct time of death. 

The clinical life table method is useful for larger sample sizes. It also has the 
advantage of directly furnishing estimates of the hazard function and the death density 
function. It is possible to compute the standard errors of the estimated survival 
function, hazard function, and death density function at each interval. 

Statistical programs often give the median survival time or it can easily be estimated 
from the clinical life table. If the investigators lack access to a survival program that 
produces a clinical life table, some spreadsheet programs can be used to perform much 
of the work. The time in, say, days between dates may be obtained from spreadsheet 
programs for each patient. The times can be sorted so that it is straightforward to obtain 
the counts. Actually, it is simply necessary to know only which interval each length 
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of time falls into. The last five columns of Table 14.2 are arithmetic manipulations of 
previous columns. Spreadsheet programs often provide the capability to perform the 
calculations to obtain these columns from the previous ones. When the sample size is 
large, the intervals can be made quite small and the difference in appearance of a plot 
of the estimated survival function from a clinical life table or from the Kaplan-Meier 
method is negligible. 

14.5 ADDITIONAL ANALYSES USING SURVIVAL DATA 

In this section we briefly mention two other types of analyses that can be performed 
using survival data that include censored observations. References are given to texts 
that provide additional information. 

14.5.1 Comparing the Equality of Survival Functions 

In addition to examining survival for a single group of patients, we often wish to 
compare survival for two or more treatment groups. Visually examining the estimated 
survival function or hazard rate is often done in order to compare a standard to an 
experimental treatment. If one survival curve is appreciably above the other, the 
treatment with the higher curve is usually preferred. One difficulty in looking for 
differences in estimated survival functions is that minor differences in estimated 
survival functions sometime look larger than they are. For example, if there is a 
minor difference soon after entry to the study and if after that the survival functions 
are similar, the treatment that did better initially will tend to have a higher survival 
function throughout. This may exaggerate minor differences. It is useful to examine 
both the survival function and the hazard function to get a better idea of what happens 
over time. 

Survival statistical programs may also offer the option of several tests for the null 
hypothesis that two or more survival functions are equal. These tests were not derived 
to test for equality of the means as the tests described in Chapter 8 were. If the null 
hypothesis is rejected, we can conclude that the survival functions are not equal. 

For any of these tests, the test results should be treated with caution if the sample 
size is small. Also, the pattern of censoring should be examined to look for major 
differences between the treatment groups. For example, if the experimental group 
had a much higher rate of patients refusing treatment or being lost to follow-up, it may 
not be better than the standard treatment even though the few patients who remain on 
the experimental treatment do somewhat better than the larger proportion remaining 
on the standard treatment. It is always recommended that a plot be examined of time 
versus the number or proportion censored for both groups to see if there are major 
differences. 

Two of the more commonly used tests are the log-rank test (also called the Muntel- 
Cox test) and the Peto test (also called the Peto-Breslow test). Statistical programs are 
commonly used to perform the tests, but a description of the calculations is beyond 
the scope of this book (see Kleinbaum and Klein [2005] for a very understandable 
explanation). In considering these tests it should be kept in mind that the log-rank test 
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places more emphasis on the results in the right tail of the survival function, where the 
number at risk may be small, and the Pet0 test places more emphasis at the beginning 
of the survival curve. 

14.5.2 Regression Analysis of Survival Data 

Regression analysis is also performed with survival data. The survival time is used 
as an outcome variable that can be predicted by a predictor variable or variables. 
This has become one of the major forms of survival analysis and is available in many 
statistical programs. For further information on this topic, see Kleinbaum and Klein 
[2005], Afifi et al. [2004], van Belle et al. [2004], Allison [1984], or Hosmer et 
al. [2008]. For other general texts on survival analysis that cover both this topic and 
survival analysis in general, see Lee [1992] or Parmar and David [1995]. 

PROBLEMS 

14.1 

14.2 

14.3 

14.4 

14.5 

Plot the estimated survival function from the information given in Table 14.3. 

Plot the estimated survival function, hazard function, and death density function 
from Table 14.2. Compare the results to those in Figures 14.5, 14.6 (number 
4), and 14.3, respectively. Does it seem reasonable that the information given 
in Table 14.2 could be a sample from the population depicted in these figures? 

Compute the median survival time for the data in Table 14.2 using the linear 
interpolation formula given in Section 6.2.2. 

If we ignored the censored observations and the computed mean survival time 
using the usual formula for the mean and only the observations from those who 
died, would our estimate of the true mean be too large or too small? 

The following data are survival times in days from a life-threatening condition: 
15, 18, 18, 21, 2 l C ,  25', 26. Graph the estimated S ( t )  by the Kaplan-Meier 
method using a computer program. 
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Appendix A 

Statist i ca I Tab I es 

Table A.1 Random Numbers 

10 09 73 25 33 
37 54204805 
0842268953 
99019025 29 
1280799970 

66065747 17 
3106010805 
85 26 97 76 02 
63 57 33 21 35 
7379645753 

9852017767 
1180505431 
8345299634 
88 68 54 02 00 
9959467348 

6548 117674 
80 12 43 56 35 
74 35 09 98 17 
6991626803 
09 89 32 05 05 

76520135 86 
6489474296 
1964509303 
0937 6707 15 
80 15 73 61 47 

3407276850 
4557 182406 
0205 165692 
0532547048 
0352964778 

1490568607 
3980827732 
0628898083 
865075 8401 
8751 764969 

1746850950 
1772708015 
17402772 14 
6625229148 
14225685 14 

3467354876 
2480524037 
23 20 90 25 60 
383113 1165 
6403 23 6653 

3669736170 
3530342614 
68665748 18 
9055357548 
3580834282 

22 109405 58 
5072568248 
13 74670078 
36 76 66 79 5 1 
91 82608928 

5804776974 
4531822374 
43 236002 10 
36 93 68 72 03 
4642756188 

80959091 17 
20 63 61 04 02 
15 95 33 47 64 
88 67 67 43 97 
9895 116877 

6581339885 
8679907439 
7305385247 
2846828709 
6093520344 

6097093433 
2940524201 
18475406 10 
90 36 47 64 93 
9378561368 

7303957186 
2111578253 
4552164237 
7662113990 
9629778822 

3929274945 
0082291665 
350803 3606 
0443 627659 
1217176833 

1119929170 
2340309732 
1862388579 
8349 125624 
352738 8435 

505007 3998 
5277567851 
6871177817 
296091 1062 
23 47 83 41 13 

4021816544 
143855 3763 
9628602655 
944005 6418 
5438214598 

Source: Reproduced from Table A-1 of Wilfrid J. Dixon and Frank J. Massey, Jr., Introduction to Statisrical 
Analysis, 3rd ed., McGraw-Hill Book Co., New York, 1969, with the permission of the McGraw-Hill 
Companies. 

(Table continued on following pages) 
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Table A. l  continued 

91499145 23 
80 33 69 45 98 
44 1048 1949 
1255073742 
63 60 64 93 29 

61 19 69 04 46 
1547445266 
9455728573 
4248 1162 13 
235237 83 17 

0449352494 
00 54 99 76 54 
3596315307 
5980808391 
4605885236 

32 179005 97 
69 23 46 14 06 
1956541430 
4515514938 
94 86 43 19 94 

9808624826 
33 18516232 
8095 100406 
7975249140 
1863332537 

7402943902 
5417845611 
11664498 83 
4832477928 
6907494138 

09 18 82 00 97 
9004585497 
73 18950207 
7576876490 
5401644056 

0835 8699 10 
2830603264 
5384086233 
917575 3741 
8941592694 

77 5 1 30 38 20 
1950237174 
21818593 13 
51 47 46 64 99 
99 55 96 83 31 

33 71 34 80 07 
85 27 48 68 93 
8413389640 
5673216234 
65 13856806 

6847927686 
26 94 03 68 58 
8515747954 
1110002040 
1650534484 

2645747774 
95 27 07 99 53 
67 89 75 43 87 
9734408721 
7320889837 

75 24 63 38 24 
6405 188159 
2689809354 
4542726842 
0139092286 

8737925241 
2011745204 
0175 875379 
1947607246 
3616810851 

4524028404 
4194 150949 
9638270774 
7196128296 
98145065 71 

7755732270 
8099337143 
5207984827 
31249647 10 
8763791976 

3282539527 
5198 150654 
47 67 72 62 69 
2097 18 1749 
6628 13 1003 

7854242785 
8133310591 
8159413628 
61 61 36 22 69 
003975 8391 

8683429901 
6997920288 
93 27 88 17 57 
68 10723621 
6253524170 

9358472869 
1130329270 
4403552166 
1739596131 
8764885261 

4616283554 
7029734135 
3297926575 
1286074697 
4021952563 

5192433729 
5936783848 
5462244431 
1686848767 
6893591416 

45 8625 1025 
9611963896 
33 35 135462 
8360949700 
77 28 144077 

0556707007 
15 95 66 00 00 
40419215 85 
43 66 79 45 43 
348888 1553 

4499908896 
89435485 81 
2015 1233 87 
6986102591 
3101024674 

97790171 19 
05 33512969 
593817 1539 
0229536870 
3558404401 

0422086304 
94 93 88 19 97 
6229064464 
9042912272 
0068227398 

1366158873 
4051007893 
5121590290 
50263902 12 
12 60 71 76 46 

684148 2774 
5521029773 
05 68 67 31 56 
94 04 99 13 45 
6977712830 

5192664721 
2883434137 
73 85 27 00 91 
I012391622 
3431365861 

9475089923 
53 14 03 33 40 
57600408 81 
9664489439 
4365 177082 

65 39 45 95 93 
8239610118 
91 19042592 
0307 112059 
2625 229663 

6196279335 
5469282391 
7797450024 
1302 124892 
9391083647 

8674317157 
1874392423 
666743 6806 
5904790033 
0154035456 

3909473407 
8869541994 
2501625298 
74 85 22 05 39 
05 45 56 14 27 

5252758021 
5612719255 
0997333440 
3230757546 
1051821615 

8338987374 
9187076150 
27 12467018 
9537505871 
2071453295 

0461897553 
3260460475 
2846668795 
5578 1765 14 
4894972306 

5190813980 
7428775251 
0708285046 
4283609191 
7481978142 

5830329822 
7351590400 
61 22 26 05 61 
8549657560 
45 87 52 10 69 

3708920048 
4205082341 
22222064 13 
28707258 15 
072073 1790 

42582605 27 
3321159466 
9292745973 
2570146670 
0552282562 

6533712472 
23 28 72 95 29 
90 10 33 93 33 
7856520106 
7061742941 

8539411838 
9711896338 
8496285207 
2082669541 
050145 1176 

35 44 13 18 80 
3754873043 
9462461171 
0038759579 
7793891936 

808145 1748 
36 04 09 03 24 
88461233 56 
15 02 00 99 94 
01 84 87 69 38 

64 27 85 80 44 
6847664659 
4136182760 
93 82343178 
07 70 61 78 13 

3122308420 
9411901840 
7776220791 
8348347055 
9454137408 

72 89 35 55 07 
65 344674 15 
3185338452 
0800745449 
43 86 07 28 34 

93 17493972 
7114843643 
6232718423 
8160418880 
85 64447277 
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Table A . l  continued 

3800102176 
37 40 29 63 97 
97 12 54 03 48 
2182641134 
73 13542742 

07 63 87 79 29 
6052883441 
8359635655 
10 85 06 27 46 
3982098952 

5958006478 
3850807341 
3069270668 
6544395659 
2726750264 

91 30 70 69 91 
6843494688 
4890815877 
0691345197 
104551 6019 

1288397343 
2177830976 
19523595 I5 
6724552670 
6058447377 

5385341377 
24 63 73 87 36 
8308012451 
1644424334 
6079018157 

0399 110461 
3855595554 
17 54 67 37 04 
3264352861 
69 57 26 87 77 

2412266591 
61 19630231 
305322 1704 
0378897599 
4822863379 

6036594653 
8379942402 
3296007405 
1932253845 
I122094747 

3175 157260 
88 49 29 93 82 
30 93 44 77 44 
22 88 84 88 93 
7821216993 

81719117 11 
0130477586 
87 08 33 14 17 
47 14334072 
9571909035 

0306118072 
07954198 14 
0695 892983 
9959910507 
43 62 26 31 47 

7556978800 
23 79 34 87 63 
9468816127 
1828 827437 
13 19272294 

19072242 10 
8447313622 
5474524591 
42 67 27 86 01 
142103 37 12 

6502761184 
3880736961 
65 12259659 
3558316563 
075003 7992 

3606694850 
7438489342 
38 99 22 28 15 
3615 199073 
5717865762 

9371616894 
32886597 80 
92 05 24 62 15 
95 81906831 
3951035905 

2769906494 
9296261773 
1027412202 
75 867207 17 
8578347619 

350753 3949 
5662334442 
3640983232 
576205 2606 
0739937408 

68980053 39 
1445404504 
0748183828 
2749998748 
3590291386 

7160292937 
5627 110086 
2181539250 
6463885902 
85 79474296 

9620744156 
5917520695 
05 12 80 97 19 
13499063 19 
6442 1808 14 

88 83 55 44 86 
9082297022 
5619680091 
4963224041 
0747744606 

366995 3728 
6212698408 
3570004754 
1188309528 
9134237821 

0428501392 
3164942096 
8628368258 
7924686686 
45 13426529 

5883873859 
5262307992 
077595 1777 
2749370939 
1116178576 

6608324653 
0835560860 
55 12129281 
0091 198936 
14060406 19 

1484546672 
4183955382 
3968523309 
7441653166 
53 15267433 

4261429297 
3499441374 
9938541600 
6649768646 
4850923929 

15 47 04 83 55 
2009498977 
73788065 33 
6053045128 
4437215486 

7421964049 
4732462605 
7523762047 
49 13906441 
0878988156 

23 821995 38 
0553352139 
77433537 83 
5307571839 
4380009351 

2376806156 
1771904207 
8206763400 
0833765676 
1798548911 

2882535793 
12843825 90 
83 82452692 
6301 198901 
8832580851 

1797415077 
6328 102023 
69 57 21 37 98 
7646334222 
2676083637 

4936473331 
123691 8601 
97377275 85 
85 13032552 
45 81952979 

8460958232 
2973547162 
5907607936 
7635593779 
29549696 16 

6195 877100 
17 26 77 09 43 
1006168829 
3520833374 
3566352972 

01918283 16 
7007114736 
11133075 86 
7813866559 
2748245476 

8865 1225 96 
7484393413 
2859720405 
74022846 17 
6574114014 

6558449698 
4003037438 
1550129578 
03 85 65 45 52 
6469119202 

04 71 36 69 94 
6121206455 
9230150498 
0641019362 
3102473167 

04 I1108408 
95 95 44 99 53 
0546269200 
9629990836 
97 34 13 03 58 

2897666252 
09 81 59 31 46 
54 13055160 
14 97 44 03 44 
43 667708 83 

9071226769 
08 81647449 
16 43 59 15 29 
2665590802 
4132644344 

9624043642 
0374283873 
51 97 23 78 67 
5484654759 
65 13 00 48 60 

88 61 81 91 61 
7129923853 
27 95 45 89 09 
80 863005 14 
33564607 80 

9089975754 
78 03 87 02 67 
5598666485 
8753908823 
16818603 11 

9895373231 
0995 818065 
15 91706253 
19640994 13 
8524435159 

03 15219121 
22 10 97 85 08 
94205203 80 
8203710268 
8748137220 
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Table A.l  continued 

41 849845 47 
46 35 23 30 49 
1108796294 
5270108337 
5727536898 

2085773156 
1563384924 
9269448297 
7761319019 
3868832486 

25 16301589 
65 25 107629 
3681543625 
6439711692 
0451525624 

8376160873 
14 38 70 63 45 
5132192246 
72 47 20 00 08 
0546655306 

3952872484 
81616187 11 
0758616120 
9076704235 
40 18 82 81 93 

3441482157 
6343 9753 63 
6704909070 
7949504146 
91 70 43 05 52 

4685052326 
69 24 89 34 60 
14 01 33 17 92 
56303873 15 
8130448585 

7028424326 
9041593614 
3990402115 
88 15200080 
45 13463545 

7001415021 
37 23 93 32 95 
1863737509 
0532782162 
9509667946 

4325384145 
8085409279 
8008877074 
808901 8002 
93 12818464 

8247425593 
53 34244276 
8264122820 
1357417200 
2959388627 

8688755087 
4498916822 
9339945547 
52 16290286 
0473721031 

346775 8300 
45 30507521 
5974767277 
1652069676 
6865227376 

7937595220 
3352126665 
5958949067 
205549 1409 
5940472059 

41290673 12 
05870011 19 
8244499005 
2024781759 
4846085558 

6083325983 
43 52 90 63 18 
8872256736 
948133 1900 
7445790561 

4854535247 
75 12211724 
9290413141 
6990263742 
949721 1598 

19 15200023 
36024008 67 
94 45 87 42 84 
54 15834243 
7505 193029 

7491064345 
613183 1855 
76503345 13 
1165499893 
9285255866 

0115963267 
55  82347641 
66 82 14 15 75 
9627748257 
439475 1680 

71 85 71 59 57 
9278426340 
0492173701 
45 197253 32 
15 19118782 

0129 141349 
3838474761 
6616449431 
5415583436 
7284811834 

1861913674 
7462773707 
3239219763 
7846422501 
620953 67 87 

1230280783 
7637 841605 
05 04 14 98 07 
4697835482 
4766564382 

193258 1549 
1441370951 
3966377544 
0218 168161 
88448035 84 

1062248391 
862253 1704 
4976704037 
50816076 16 
43 85 25 96 93 

6897 11 1403 
1847765622 
1470793997 
83745225 61 
1693033361 

2036807126 
4119637480 
669193 1678 
3535254131 
7998268416 

1861 119241 
5831915997 
6119967940 
1862790872 
0044 15 8997 

3262468691 
6596173488 
2028 834060 
5936295938 
9978293478 
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Table A.2 The Standard Normal Distribution" 

.[A] x .[A] x .[A] x .[A] x 
.OO .5000 
.01 SO40 .26 .6026 .5 1 .6950 .76 .7764 
.02 ,5080 .27 .6064 .52 .6985 .77 ,7794 
.03 S120 .28 ,6103 .53 ,7019 .78 .7823 
.04 .5 160 .29 .6141 .54 ,7054 .79 ,7852 
.05 ,5199 .30 .6179 .55 .7088 .80 ,7881 

.06 .5239 .3 1 .62 17 .56 .7 123 .8 1 .79 10 

.07 .5279 .32 ,6255 .57 .7 157 .82 .7939 

.08 .53 19 .33 ,6293 .58 .7 190 .83 .7967 

.09 ,5359 .34 .633 1 .59 .7224 3 4  ,7995 

.10 S398 .35 .6368 .60 .7257 .85 ,8023 

. l  1 ,5438 .36 ,6406 .61 ,7291 .86 ,8051 

.I2 ,5478 .37 ,6443 .62 ,7324 .87 ,8078 

.13 S517 .38 ,6480 .63 .7357 .88 3106 

.14 ,5557 .39 ,6517 .64 ,7389 .89 .8133 

.15 ,5596 .40 ,6554 .65 .7422 .90 ,8159 

.16 .5636 .41 ,6591 .66 ,7454 .91 .8 186 

.17 .5675 .42 ,6628 .67 .7486 .92 .82 12 

.18 .5714 .43 ,6664 .68 ,7517 .93 3238 

.19 ,5753 .44 .6700 .69 .7549 .94 3264 

.20 ,5793 .45 ,6736 .70 ,7580 .95 ,8289 

.21 .5832 .46 ,6772 .71 .7611 .96 3315 

.22 ,587 1 .47 ,6808 .72 ,7642 .97 ,8340 

.23 .59 10 .48 ,6844 .73 ,7673 .98 ,8365 

.24 ,5948 .49 .6879 .74 .7704 .99 .8389 

.25 ,5987 .50 .6915 .75 .7734 1.00 .8413 

1.01 ,8438 1.26 ,8962 1.51 ,9345 1.76 .9608 
1.02 .8461 1.27 ,8980 1.52 ,9357 1.77 .9616 
1.03 3485 1.28 ,8997 1.53 ,9370 1.78 ,9625 
1.04 ,8508 1.29 ,9015 1.54 ,9382 1.79 ,9633 
1.05 ,8531 1.30 ,9032 1.55 .9394 1.80 ,9641 

Source: Data in the table are extracted from Owen, D. B., Handbook of Sfatistical Tables, Addison-Wesley, 
Reading, MA, 1962. Courtesy of the U.S. Atomic Energy Commission. 

a X = Area under the curve from --x to .[A]. z[ .50] = 0, and for values of X less than S O ,  .[A] is found 
by symmetry; for example, z[.05] = -z[.95]. 

(Table continued on following pages) 
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Table A.2 continued 

.[A] x .[A] x .[A] x .[A] x 
1.06 
1.07 
1.08 
1.09 
1.10 

,8554 
,8577 
,8599 
3621 
3643 

1.31 
1.32 
1.33 
1.34 
1.35 

.9049 1.56 
,9066 1.57 
,9082 1.58 
.9099 1.59 
,9115 1.60 

.9406 1.81 
,9418 1.82 
.9429 1.83 
.9441 1.84 
.9452 1.85 

.9649 

.9656 

.9664 
,967 1 
.9678 

1.11 
1.12 
1.13 
1.14 
1.15 

3665 
3686 
,8708 
,8729 
,8749 

1.36 
1.37 
1.38 
1.39 
1.40 

,9131 1.61 
,9147 1.62 
,9162 1.63 
,9177 1.64 
.9192 1.65 

.9463 1.86 
,9474 1.87 
.9484 1.88 
,9495 1.89 
.9505 1.90 

.9686 

.9693 
,9699 
.9706 
.9713 

1.16 
1.17 
1.18 
1.19 
1.20 

3770 
,8790 
,8810 
3830 
3849 

1.41 
1.42 
1.43 
1.44 
1.45 

.9207 1.66 
,9222 1.67 
,9236 1.68 
.9251 1.69 
,9265 1.70 

.9515 1.91 
,9525 1.92 
,9535 1.93 
.9545 1.94 
.9554 1.95 

.9719 

.9726 
,9732 
,9738 
,9744 

1.21 
1.22 
1.23 
1.24 
1.25 

3869 
,8888 
,8907 
,8925 
3944 

1.46 
1.47 
1.48 
1.49 
1 S O  

,9279 1.71 
.9292 1.72 
.9306 1.73 
,9319 1.74 
,9332 1.75 

.9564 1.96 
,9573 1.97 
,9582 1.98 
.9591 1.99 
.9599 2.00 

.9750 
,9756 
,9761 
.9767 
.9772 

2.01 
2.02 
2.03 
2.04 
2.05 

.9778 
,9783 
.9788 
.9793 
,9798 

2.26 
2.27 
2.28 
2.29 
2.30 

.9881 2.51 

.9884 2.52 
,9887 2.53 
.9890 2.54 
,9893 2.55 

.9940 2.76 
,9941 2.77 
.9943 2.78 
.9945 2.79 
.9946 2.80 

,997 1 
,9972 
,9973 
,9974 
.9974 

2.06 
2.07 
2.08 
2.09 
2.10 

.9803 

.9808 
,9812 
,9817 
.9821 

2.3 1 
2.32 
2.33 
2.34 
2.35 

,9896 2.56 
,9898 2.57 
.9901 2.58 
.9904 2.59 
.9906 2.60 

,9948 2.81 
,9949 2.82 
.9951 2.83 
.9952 2.84 
,9953 2.85 

,9975 
,9976 
,9977 
,9977 
,9978 

2.11 
2.12 
2.13 
2.14 
2.15 

,9826 
,9830 
.9834 
,9838 
.9842 

2.36 
2.37 
2.38 
2.39 
2.40 

,9909 2.61 
,9911 2.62 
,9913 2.63 
.9916 2.64 
,9918 2.65 

,9955 2.86 
.9956 2.87 
,9957 2.88 
,9959 2.89 
.9960 2.90 

.9979 

.9979 

.9980 
,9981 
,9981 
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Table A.2 continued 

4x1 x .[A] x 4x1 x .[A] x 
2.16 
2.17 
2.18 
2.19 
2.20 

2.21 
2.22 
2.23 
2.24 
2.25 

3.01 
3.02 
3.03 
3.04 
3.05 

3.06 
3.07 
3.08 
3.09 
3.10 

3.11 
3.12 
3.13 
3.14 
3.15 

3.16 
3.17 
3.18 
3.19 
3.20 

3.21 
3.22 
3.23 
3.24 
3.25 

,9846 2.41 
,9850 2.42 
,9854 2.43 
.9857 2.44 
.9861 2.45 

,9864 2.46 
.9868 2.47 
.9871 2.48 
,9875 2.49 
,9878 2.50 

,9987 3.26 
,9987 3.27 
,9988 3.28 
.9988 3.29 
,9989 3.30 

,9989 3.31 
.9989 3.32 
.9990 3.33 
.9990 3.34 
,9990 3.35 

.9991 3.36 
,9991 3.37 
,9991 3.38 
.9992 3.39 
.9992 3.40 

,9992 3.41 
,9992 3.42 
.9993 3.43 
.9993 3.44 
.9993 3.45 

,9993 3.46 
,9994 3.47 
,9994 3.48 
,9994 3.49 
,9994 3.50 

.9920 2.66 ,9961 2.91 
,9922 2.67 ,9962 2.92 
,9925 2.68 ,9963 2.93 
,9927 2.69 ,9964 2.94 
,9929 2.70 ,9965 2.95 

,9931 2.71 .9966 2.96 
.9932 2.72 ,9967 2.97 
,9934 2.73 ,9968 2.98 
.9936 2.74 ,9969 2.99 
,9938 2.75 ,9970 3.00 

,9994 3.51 ,9998 3.76 
,9995 3.52 .9998 3.77 
.9995 3.53 ,9998 3.78 
,9995 3.54 .9998 3.79 
,9995 3.55 ,9998 3.80 

,9995 3.56 ,9998 3.81 
,9996 3.57 ,9998 3.82 
.9996 3.58 .9998 3.83 
.9996 3.59 ,9998 3.84 
.9996 3.60 .9998 3.85 

,9996 3.61 .9998 3.86 
,9996 3.62 .9999 3.87 
,9996 3.63 ,9999 3.88 
,9997 3.64 .9999 3.89 
.9997 3.65 ,9999 3.90 

,9997 3.66 .9999 3.91 
,9997 3.67 ,9999 3.92 
.9997 3.68 ,9999 3.93 
.9997 3.69 .9999 3.94 
,9997 3.70 .9999 3.95 

.9997 3.71 ,9999 3.96 

.9997 3.72 ,9999 3.97 
,9997 3.73 .9999 3.98 
.9998 3.74 ,9999 3.99 
,9998 3.75 ,9999 

,9982 
,9982 
.9983 
,9984 
,9984 

,9985 
.9985 
.9986 
,9986 
.9986 

.9999 
,9999 
.9999 
,9999 
.9999 

,9999 
.9999 
,9999 
,9999 
,9999 

.9999 

.9999 
,9999 
1 .oooo 
1 .oooo 

1 .oooo 
1 .oooo 
1 .oooo 
1 .oooo 
1 .oooo 

1 .oooo 
1 .oooo 
1 .oooo 
1 .oooo 
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Table A.3 Student's t Distribution" 

d.f.\X .75 .90 .95 .975 ,990 ,995 .999 .9995 

1 
2 
3 
4 
5 

6 
7 
8 
9 

10 

11 
12 
13 
14 
15 

16 
17 
18 
19 
20 

21 
22 
23 
24 
25 

26 
21 
28 
29 
30 

1.000 3.078 6.314 12.706 31.821 63.657 318.309 636.619 
316 
.765 
.741 
,727 

,718 
,711 
.706 
.703 
,700 

.697 
,695 
,694 
,692 
.691 

,690 
,689 
,688 
,688 
,687 

,686 
.686 
,685 
,685 
,684 

,684 
,684 
.683 
,683 
,683 

1.886 2.920 4.303 6.965 9.925 22.327 
1.638 2.353 3.182 4.541 5.841 10.214 
1.533 2.132 2.776 3.747 4.604 7.173 
1.476 2.015 2.571 3.365 4.032 5.893 

1.440 1.943 2.447 3.143 3.707 5.208 
1.415 1.895 2.365 2.998 3.499 4.785 
1.397 1.860 2.306 2.896 3.355 4.501 
1.383 1.833 2.262 2.821 3.250 4.297 
1.372 1.812 2.228 2.764 3.169 4.144 

1.363 1.796 2.201 2.718 3.106 4.025 
1.356 1.782 2.179 2.681 3.055 3.930 
1.350 1.771 2.160 2.650 3.012 3.852 
1.345 1.761 2.145 2.624 2.977 3.787 
1.341 1.753 2.131 2.602 2.947 3.733 

1.337 1.746 2.120 2.583 2.921 3.686 
1.333 1.740 2.110 2.567 2.898 3.646 
1.330 1.734 2.101 2.552 2.818 3.610 
1.328 1.729 2.093 2.539 2.861 3.579 
1.325 1.725 2.086 2.528 2.845 3.552 

1.323 1.721 2.080 2.518 2.831 3.527 
1.321 1.717 2.074 2.508 2.819 3.505 
1.319 1.714 2.069 2.500 2.807 3.485 
1.318 1.711 2.064 2.492 2.797 3.467 
1.316 1.708 2.060 2.485 2.787 3.450 

1.315 1.706 2.056 2.479 2.779 3.435 
1.314 1.703 2.052 2.473 2.771 3.421 
1.313 1.701 2.048 2.467 2.763 3.408 
1.311 1.699 2.045 2.462 2.756 3.396 
1.310 1.697 2.042 2.457 2.750 3.385 

3 1.598 
12.924 
8.610 
6.869 

5.959 
5.408 
5.041 
4.781 
4.587 

4.437 
4.318 
4.221 
4.140 
4.073 

4.015 
3.965 
3.922 
3.883 
3.850 

3.819 
3.792 
3.768 
3.745 
3.725 

3.707 
3.690 
3.674 
3.659 
3.646 

Source: Reprinted with permission from the Journal of the American Statistical Association. Copyright 
1959 by the American Statistical Association. All rights reserved. 

" X = Area under the curve from to t [ X ] .  t[.50] = 0, and for values of X less than S O ,  t [ X ]  is found by 
symmetry: t [ X ]  = - t [ l -A] .  Forexample, t [ .025]  = -t[.975]. Notea1sothatford.f. = x. t [ X ]  = .[A]. 

(Table continued on following page) 
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Table A.3 continued 

d.f. \ A  .75 .90 .95 ,975 ,990 ,995 

35 .682 1.306 1.690 2.030 2.438 2.724 
40 .681 1.303 1.684 2.021 2.423 2.704 
45 .680 1.301 1.679 2.014 2.412 2.690 
50 ,679 1.299 1.676 2.009 2.403 2.678 
55 ,679 1.297 1.673 2.004 2.396 2.668 

.999 ,9995 

3.340 3.591 
3.307 3.551 
3.281 3.520 
3.261 3.496 
3.24.5 3.476 

60 .679 1.296 1.671 2.000 2.390 2.660 3.232 3.460 
70 ,678 1.294 1.667 1.994 2.381 2.648 3.211 3.435 
80 ,678 1.292 1.664 1.990 2.374 2.639 3.195 3.416 
90 .677 1.291 1.662 1.987 2.368 2.632 3.183 3.402 
100 .677 1.290 1.660 1.984 2.364 2.626 3.174 3.390 

120 ,677 1.289 1.657 1.980 2.351 2.618 3.153 3.373 
200 .676 1.286 1.652 1.972 2.345 2.601 3.131 3.340 
500 ,675 1.283 1.648 1.965 2.334 2.586 3.107 3.310 

00 .674 1.282 1.645 1.960 2.326 2.576 3.090 3.291 
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Table A.4 The x2 Distribution" 

d.f.'\X ,005 
- - 

1 
2 
3 
4 
5 

6 
7 
8 
9 

10 

11 
12 
13 
14 
15 

16 
18 
20 
24 
30 

40 
60 

120 

.000039 
.0100 
.07 17 
,207 
,412 

.676 

.989 
1.34 
1.73 
2.16 

2.60 
3.07 
3.57 
4.07 
4.60 

5.14 
6.26 
7.43 
9.89 
13.79 

20.71 
35.53 
83.85 

.o 1 .025 .05 .10 .90 .95 ,975 .99 .995 

00016 
.020 1 
,115 
.297 
,554 

372 
1.24 
1.65 
2.09 
2.56 

3.05 
3.57 
4.1 1 
4.66 
5.23 

5.81 
7.01 
8.26 
10.86 
14.95 

22.16 
37.48 
86.92 

,00098 .0039 ,0158 2.71 3.84 5.02 6.63 7.88 
.0506 ,1026 ,2107 4.61 5.99 7.38 9.21 10.60 
,216 ,352 ,594 6.25 7.81 9.35 11.34 12.84 
.484 ,711 1.064 7.78 9.49 11.14 13.28 14.86 
.831 1.15 1.61 9.24 11.07 12.83 15.09 16.75 

1.24 1.64 2.20 10.64 12.59 14.45 16.81 18.55 
1.69 2.17 2.83 12.02 14.07 16.01 18.48 20.28 
2.18 2.73 3.49 13.36 15.51 17.53 20.09 21.96 
2.70 3.33 4.17 14.68 16.92 19.02 21.67 23.59 
3.25 3.94 4.87 15.99 18.31 20.48 23.21 25.19 

3.82 4.57 5.58 17.28 19.68 21.92 24.73 26.76 
4.40 5.23 6.30 18.55 21.03 23.34 26.22 28.30 
5.01 5.89 7.04 19.81 22.36 24.74 27.69 29.82 
5.63 6.57 7.79 21.06 23.68 26.12 29.14 31.32 
6.26 7.26 8.55 22.31 25.00 27.49 30.58 32.80 

6.91 7.96 9.31 23.54 26.30 28.85 32.00 34.27 
8.23 9.39 10.86 25.99 28.87 31.53 34.81 37.16 
9.59 10.85 12.44 28.41 31.41 34.17 37.57 40.00 
12.40 13.85 15.66 33.20 36.42 39.36 42.98 45.56 
16.79 18.49 20.60 40.26 43.77 46.98 50.89 53.67 

24.43 26.51 29.05 51.81 55.76 59.34 63.69 66.77 
40.48 43.19 46.46 74.40 79.08 83.30 88.38 91.95 
91.58 95.70 100.62 140.23 146.57 152.21 158.95 163.64 

Source: Reproduced from Table A-6a of W. J. Dixon and F. J. Massey, Jr., Introduction to Statistical 
Analysis, 3rd ed., McGraw-Hill Book Co., New York, 1969, with the permission of the McGraw-Hill 
Companies. 

a X = Area under the curve from 0 to x2 [A]. 
For large values of d.f., the approximate formula 

x2[X] = u (1 - 2 + 
where z[X] is the normal deviate and u is the number of degrees of freedom, may be used. For example, 
x2[.99] = 60[1 - .00370+ 2.326(.06086)]3 = 130(1.1379)~ = 88.4forthe 99thpercentilefor 60 d.f. 
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Table A S  The F Distribution".b 

c u z x \ ~ i  1 2 3 4 5 6 7 8 9 10 11  12 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

.025 
.95 
,975 
.99 
,025 
.95 
,975 
.99 
.025 
.95 
,975 
.99 
.025 
.95 
.975 
.99 
.025 
.95 
,975 
.99 
,025 
.95 
,975 
.99 
.025 
.95 
.975 
.99 
.025 
.95 
,975 
.99 
.025 
.95 
,975 
.99 
,025 
.95 
.975 
.99 

.0215 ,026 
161 200 
648 800 

405l 5001 
.0213 ,026 
18.5 19.0 
38.5 39.0 
98.5 99.0 
.0212 ,026 
10.1 9.55 
17.4 16.0 
34.1 30.8 
.0211 ,026 
7.71 6.94 
12.2 10.6 
21.2 18.0 
.0211 ,025 
6.61 5.79 
10.0 8.43 
16.3 13.3 

.0211 ,025 
5.99 5.14 
8.81 7.26 
13.7 10.9 

.0210 ,025 
5.59 4.74 
8.07 6.54 
12.2 9.55 

.0210 ,025 
5.32 4.46 
7.57 6.06 
11.3 8.65 

.0210 .025 
5.12 4.26 
7.21 5.71 
10.6 8.02 

.0210 ,025 
4.96 4.10 
6.94 5.46 
10.0 7.56 

,057 
216 
864 
5401 
,062 
19.2 
39.2 
99.2 
.065 
9.28 
15.4 
29.5 
,066 
6.59 
9.98 
16.7 
.067 
5.41 
7.76 
12.1 
,068 
4.76 
6.60 
9.78 
,068 
4.35 
5.89 
8.45 
,069 
4.07 
5.42 
7.59 
.069 
3.86 
5.08 
6.99 
.069 
3.71 
4.83 
6.55 

,082 
225 
900 
562l 
.094 
19.2 
39.2 
99.2 
.loo 
9.12 
15.1 
28.7 
.lo4 
6.39 
9.60 
16.0 
,107 
5.19 
7.39 
11.4 
,109 
4.53 
6.23 
9.15 
.110 
4.12 
5.52 
7.85 
,111 
3.84 
5.05 
7.01 
.112 
3.63 
4.72 
6.42 
.113 
3.48 
4.47 
5.99 

,100 
230 
922 
576l 
,119 
19.3 
39.3 
99.3 
,129 
9.01 
14.9 
28.2 
,135 
6.26 
9.36 
15.5 
,140 
5.05 
7.15 
11.0 
,143 
4.39 
5.99 
8.75 
,146 
3.97 
5.29 
7.46 
,148 
3.69 
4.82 
6.63 
.150 
3.48 
4.48 
6.06 
,151 
3.33 
4.24 
5.64 

,113 
234 
937 
586l 
,138 
19.3 
39.3 
99.3 
.152 
8.94 
14.7 
27.9 
,161 
6.16 
9.20 
15.2 
,167 
4.95 
6.98 
10.7 
,172 
4.28 
5.82 
8.47 
,176 
3.87 
5.12 
7.19 
,179 
3.58 
4.65 
6.37 
.181 
3.37 
4.32 
5.80 
,183 
3.22 
4.07 
5.39 

,124 
237 
948 

,153 
19.4 
39.4 
99.4 
,170 
8.89 
14.6 
27.7 
,181 
6.09 
9.07 
15.0 
,189 
4.88 
6.85 
10.5 
,195 
4.21 
5.70 
8.26 
,200 
3.79 
4.99 
6.99 
,204 
3.50 
4.53 
6.18 
.207 
3.29 
4.20 
5.61 
.210 
3.14 
3.95 
5.20 

593l 

,132 
239 
957 
598l 
,165 
19.4 
39.4 
99.4 
.185 
8.85 
14.5 
27.5 
,198 
6.04 
8.98 
14.8 
,208 
4.82 
6.76 
10.3 
,215 
4.15 
5.60 
8.10 
.221 
3.73 
4.90 
6.84 
,226 
3.44 
4.43 
6.03 
.230 
3.23 
4.10 
5.47 
.233 
3.07 
3.85 
5.06 

,139 
24 1 
963 
602' 
,175 
19.4 
39.4 
99.4 
.197 
8.81 
14.5 
27.3 
,212 
6.00 
8.90 
14.7 
,223 
4.77 
6.68 
10.2 
.23 1 
4.10 
5.52 
7.98 
.238 
3.68 
4.82 
6.72 
,244 
3.39 
4.36 
5.91 
,248 
3.18 
4.03 
5.35 
.252 
3.02 
3.78 
4.94 

,144 
242 
969 
606' 
,183 
19.4 
39.4 
99.4 
.20? 
8.79 
14.4 
27.2 
,224 
5.96 
8.84 
14.5 
,236 
4.74 
6.62 
10.1 
,246 
4.06 
5.46 
7.87 
.253 
3.64 
4.76 
6.62 
,259 
3.35 
4.30 
5.81 
,265 
3.14 
3.96 
5.26 
.269 
2.98 
3.72 
4.85 

,149 
243 
973 
608' 
,190 
19.4 
39.4 
99.4 
.216 
8.76 
14.4 
27.1 
,234 
5.94 
8.79 
14.4 
.248 
4.7 1 
6.57 
9.96 
,258 
4.03 
5.41 
7.79 
,266 
3.60 
4.71 
6.54 
,273 
3.31 
4.24 
5.73 
,279 
3.10 
3.91 
5.18 
.283 
2.94 
3.66 
4.77 

,153 
244 
977 
611' 
.196 
19.4 
39.4 
99.4 
,224 
8.74 
14.3 
27.1 
.243 
5.91 
8.75 
14.4 
.257 
4.68 
6.52 
9.89 
,268 
4.00 
5.37 
7.72 
,277 
3.57 
4.67 
6.47 
.285 
3.28 
4.20 
5.67 
,291 
3.07 
3.87 
5.11 
,296 
2.91 
3.62 
4.71 

Reproduced from Wilfred J. Dixon and Frank J. Massey Jr., Introduction to Statistical Analysis, 3rd ed., 
McGraw-Hill, 1969 with permission of McGraw-Hill Book Companies. 

a X = Area under curve from 0 to F [ X ] .  To obtain F[.05] and F[.01] for degrees of freedom u1 and ~ 2 ,  

use 1/F[.95] and 1/F[.99], respectively, with degrees of freedom u2 and v1. 
Notation: 5933 = 5 9 3 ~ 1 0 ~ ;  0211 = . 1 1 ~ 1 0 - ~  
ui is the d.f. for the first variance and v2 is the d.f. for the second variance. 

(Table continued on following pages) 
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Table A.5 continued 

vz X \ V ~  15 20 24 30 40 50 60 100 120 200 500 00 

1 .025 
.95 
,975 
.99 

2 .025 
.95 
,975 
.99 

3 .025 
.95 
,975 
.99 

4 ,025 
.95 
.975 
.99 

5 ,025 
.95 
.975 
.99 

6 ,025 
.95 
,975 
.99 

7 ,025 
.95 
,975 
.99 

8 ,025 
.95 
.915 
.99 

9 ,025 
.95 
.975 
.99 

10 ,025 
.95 
,975 
.99 

.161 .170 .175 .180 .184 ,187 .189 ,193 .194 ,196 ,198 ,199 
246 248 249 250 251 252 252 253 253 254 254 254 
985 993 997 100' l o l l  lo l l  l o l l  101' l o l l  102l 102l 102' 
616l 621' 623l 626l 629l 6301 6311 633' 634l 635l 636' 637l 
,210 ,224 .232 ,239 ,247 .25 1 ,255 .261 .263 .266 ,269 .27 1 
19.4 19.4 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 
39.4 39.4 39.5 39.5 39.5 39.5 39.5 39.5 39.5 39.5 39.5 39.5 
99.4 99.4 99.5 99.5 99.5 99.5 99.5 99.5 99.5 99.5 99.5 99.5 
.241 ,259 .269 .279 ,289 .295 .299 .308 .3 10 .3 14 .3 18 .321 
8.70 8.66 8.63 8.62 8.59 8.58 8.57 8.55 8.55 8.54 8.53 8.53 
14.3 14.2 14.1 14.1 14.0 14.0 14.0 14.0 13.9 13.9 13.9 13.9 
26.9 26.7 26.6 26.5 26.4 26.4 26.3 26.2 26.2 26.2 26.1 26.1 
.263 ,284 .296 .308 .320 .327 .332 ,342 .346 .35 1 ,356 .359 
5.86 5.80 5.77 5.75 5.72 5.70 5.69 5.66 5.66 5.65 5.64 5.63 
8.66 8.56 8.51 8.46 8.41 8.38 8.36 8.32 8.31 8.29 8.27 8.26 
14.2 14.0 13.9 13.8 13.7 13.7 13.7 13.6 13.6 13.5 13.5 13.5 
,280 ,304 .3 17 .330 .344 .353 .359 .370 ,374 ,380 ,386 .390 
4.62 4.56 4.53 4.50 4.46 4.44 4.43 4.41 4.40 4.39 4.37 4.36 
6.43 6.33 6.28 6.23 6.18 6.14 6.12 6.08 6.07 6.05 6.03 6.02 
9.72 9.55 9.47 9.38 9.29 9.24 9.20 9.13 9.11 9.08 9.04 9.02 
,293 .320 ,334 ,349 .364 ,375 ,381 .394 ,398 ,405 .412 .415 
3.94 3.87 3.84 3.81 3.77 3.75 3.74 3.71 3.70 3.69 3.68 3.67 
5.27 5.17 5.12 5.07 5.01 4.98 4.96 4.92 4.90 4.88 4.86 4.85 
7.56 7.40 7.31 7.23 7.14 7.09 7.06 6.99 6.97 6.93 6.90 6.88 
.304 ,333 ,348 .364 .38 1 ,392 .399 .413 .4 18 ,426 ,433 ,437 
3.51 3.44 3.41 3.38 3.34 3.32 3.30 3.27 3.27 3.25 3.24 3.23 
4.57 4.47 4.42 4.36 4.31 4.28 4.25 4.21 4.20 4.18 4.16 4.14 
6.31 6.16 6.07 5.99 5.91 5.86 5.82 5.75 5.74 5.70 5.67 5.65 
.3 13 ,343 ,360 ,377 ,395 ,407 ,415 .43 1 ,435 .442 ,450 .456 
3.22 3.15 3.12 3.08 3.04 3.02 3.01 2.97 2.97 2.95 2.94 2.93 
4.10 4.00 3.95 3.89 3.84 3.81 3.78 3.74 3.73 3.70 3.68 3.67 
5.52 5.36 5.28 5.20 5.12 5.07 5.03 4.96 4.95 4.91 4.88 4.86 
.320 ,352 ,370 .388 .408 ,420 ,428 ,446 .450 ,459 ,467 .473 
3.01 2.94 2.90 2.86 2.83 2.80 2.79 2.76 2.75 2.73 2.72 2.71 
3.77 3.67 3.61 3.56 3.51 3.47 3.45 3.40 3.39 3.37 3.35 3.33 
4.96 4.81 4.73 4.65 4.57 4.52 4.48 4.42 4.40 4.36 4.33 4.31 
.327 .360 ,379 .398 .419 .43 1 ,441 ,459 ,464 ,474 ,483 .488 
2.85 2.77 2.74 2.70 2.66 2.64 2.62 2.59 2.58 2.56 2.55 2.54 
3.52 3.42 3.37 3.31 3.26 3.22 3.20 3.15 3.14 3.12 3.09 3.08 
4.56 4.41 4.33 4.25 4.17 4.12 4.08 4.01 4.00 3.96 3.93 3.91 
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Table A S  continued 

‘VZ x \ ~ i  1 2 3 4 5 6 7 8 9 10 11 12 

11 

12 

15 

20 

24 

30 

40 

60 

120 

33 

.025 
.95 

.975 
.99 
.025 
.95 

,975 
.99 
.025 
.95 
,975 
.99 
.025 
.95 

.975 
.99 
.025 
.95 

,975 
.99 
.025 
.95 
,975 
.99 
,025 
.95 
,975 
.99 
.025 
.95 
,975 
.99 
,025 
.95 

,975 
.99 
,025 
.95 
,975 
.99 

.0210 
4.84 
6.72 
9.65 

4.75 
6.55 
9.33 

4.54 
6.20 
8.68 

4.35 
5.87 
8.10 

4.26 
5.72 
7.82 

4.17 
5.57 
7.56 
.0399 
4.08 
5.42 
7.31 
.0399 
4.00 
5.29 
7.08 
.0399 
3.92 
5.15 
6.85 
.0398 
3.84 
5.02 
6.63 

.0210 

.0210 

.0210 

.02 10 

.0210 

,025 ,069 . 1 14 ,152 ,185 .212 ,236 ,256 .273 ,288 ,301 
3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90 2.85 2.82 2.79 
5.26 4.63 4.28 4.04 3.88 3.76 3.66 3.59 3.53 3.47 3.43 
7.21 6.22 5.67 5.32 5.07 4.89 4.74 4.63 4.54 4.46 4.40 
.025 ,070 .114 ,153 .186 ,214 ,238 .259 ,276 ,292 ,305 
3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80 2.75 2.72 2.69 
5.10 4.47 4.12 3.89 3.73 3.61 3.51 3.44 3.37 3.32 3.28 
6.93 5.95 5.41 5.06 4.82 4.64 4.50 4.39 4.30 4.22 4.16 
,025 ,070 .116 .156 ,190 .219 ,244 .265 .284 ,300 .3 15 
3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59 2.54 2.51 2.48 
4.76 4.15 3.80 3.58 3.41 3.29 3.20 3.12 3.06 3.01 2.96 
6.36 5.42 4.89 4.56 4.32 4.14 4.00 3.89 3.80 3.73 3.67 
,025 .07 1 . 1 17 ,158 ,193 .224 ,250 ,273 .292 .3 10 ,325 
3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39 2.35 2.31 2.28 
4.46 3.86 3.51 3.29 3.13 3.01 2.91 2.84 2.77 2.72 2.68 
5.85 4.94 4.43 4.10 3.87 3.70 3.56 3.46 3.37 3.29 3.23 
,025 .07 1 ,117 .159 ,195 ,227 ,253 ,277 .297 .3 15 .33 1 
3.40 3.01 2.78 2.62 2.51 2.42 2.36 2.30 2.25 2.21 2.18 
4.32 3.72 3.38 3.15 2.99 2.87 2.78 2.70 2.64 2.59 2.54 
5.61 4.72 4.22 3.90 3.67 3.50 3.36 3.26 3.17 3.09 3.03 
,025 .07 1 . 1 18 ,161 ,197 ,229 .257 .28 1 .302 ,321 .337 
3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21 2.16 2.13 2.09 
4.18 3.59 3.25 3.03 2.87 2.75 2.65 2.57 2.51 2.46 2.41 
5.39 4.51 4.02 3.70 3.47 3.30 3.17 3.07 2.98 2.91 2.84 
,025 .07 1 .119 ,162 ,199 .232 ,260 ,285 ,307 ,327 ,344 
3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12 2.08 2.04 2.00 
4.05 3.46 3.13 2.90 2.74 2.62 2.53 2.45 2.39 2.33 2.29 
5.18 4.31 3.83 3.51 3.29 3.12 2.99 2.89 2.80 2.73 2.66 
,025 ,071 ,120 ,163 ,202 ,235 ,264 ,290 ,313 ,333 ,351 
3.15 2.76 2.53 2.37 2.25 2.17 2.10 2.04 1.99 1.95 1.92 
3.93 3.34 3.01 2.79 2.63 2.51 2.41 2.33 2.27 2.22 2.17 
4.98 4.13 3.65 3.34 3.12 2.95 2.82 2.72 2.63 2.56 2.50 
.025 ,072, ,120 .165 .204 .238 ,268 ,295 ,318 ,340 ,359 
3.07 2.68 2.45 2.29 2.18 2.09 2.02 1.96 1.91 1.87 1.83 
3.80 3.23 2.89 2.67 2.52 2.39 2.30 2.22 2.16 2.10 2.05 
4.79 3.95 3.48 3.17 2.96 2.79 2.66 2.56 2.47 2.40 2.34 
,025 ,072 ,121 .166 ,206 ,241 .272 .300 ,325 ,347 ,367 
3.00 2.60 2.37 2.21 2.10 2.01 1.94 1.88 1.83 1.79 1.75 
3.69 3.12 2.79 2.57 2.41 2.29 2.19 2.11 2.05 1.99 1.94 
4.61 3.78 3.32 3.02 2.80 2.64 2.51 2.41 2.32 2.25 2.18 
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Table A S  

15 20 24 30 40 

11 ,025 
.95 
,975 
.99 

12 ,025 
.95 
.975 
.99 

15 ,025 
.95 
.975 
.99 

20 ,025 
.95 

.975 
.99 

24 ,025 
.95 
.975 
.99 

30 .025 
.95 
,975 
.99 

40 ,025 
.95 
.975 
.99 

60 ,025 
.95 
,975 
.99 

120 .025 
.95 
.975 
.99 

cc .025 
.95 
.975 
.99 

.332 ,368 ,386 .407 .429 
2.72 2.65 2.61 2.57 2.53 
3.33 3.23 3.17 3.12 3.06 
4.25 4.10 4.02 3.94 3.86 
.337 ,374 .394 ,416 .437 
2.62 2.54 2.51 2.47 2.43 
3.18 3.07 3.02 2.96 2.91 
4:Ol 3.86 3.78 3.70 3.62 
.349 ,389 ,410 .433 .458 
2.40 2.33 2.39 2.25 2.20 
2.86 2.76 2.70 2.64 2.59 
3.52 3.37 3.29 3.21 3.13 
,363 ,406 ,430 ,456 .484 
2.20 2.12 2.08 2.04 1.99 
2.57 2.46 2.41 2.35 2.29 
3.09 2.94 2.86 2.78 2.69 
,370 ,415 ,441 .468 ,498 
2.11 2.03 1.98 1.94 1.89 
2.44 2.33 2.27 2.21 2.15 
2.89 2.74 2.66 2.58 2.49 
,378 .426 ,453 ,482 ,515 
2.01 1.93 1.89 1.84 1.79 
2.31 2.20 2.14 2.07 2.01 
2.70 2.55 2.47 2.39 2.30 
,387 ,437 ,466 .498 .533 
1.92 1.84 1.79 1.74 1.69 
2.18 2.07 2.01 1.94 1.88 
2.52 2.37 2.29 2.20 2.11 
,396 ,450 ,481 .515 ,555 
1.84 1.75 1.70 1.65 1.59 
2.06 1.94 1.88 1.82 1.74 
2.35 2.20 2.12 2.03 1.94 
.406 .464 .498 ,536 .580 
1.75 1.66 1.61 1.55 1.50 
1.95 1.82 1.76 1.69 1.61 
2.19 2.03 1.95 1.86 1.76 
.418 ,480 .517 .560 .611 
1.67 1.57 1.52 1.46 1.39 
1.83 1.71 1.64 1.57 1.48 
2.04 1.88 1.79 1.70 1.59 

continued 

50 60 100 120 200 500 00 

.442 .450 .472 ,476 ,485 .495 ,503 
2.51 2.49 2.46 2.45 2.43 2.42 2.40 
3.03 3.00 2.96 2.94 2.92 2.90 2.88 
3.81 3.78 3.71 3.69 3.66 3.62 3.60 
.450 ,461 .48 1 .487 ,498 .508 .5 14 
2.40 2.38 2.35 2.34 2.32 2.31 2.30 
2.87 2.85 2.80 2.79 2.76 2.74 2.72 
3.57 3.54 3.47 3.45 3.41 3.38 3.36 
.474 .485 .508 .5 14 S26 .538 ,546 
2.18 2.16 2.12 2.11 2.10 2.08 2.07 
2.55 2.52 2.47 2.46 2.44 2.41 2.40 
3.08 3.05 2.98 2.96 2.92 2.89 2.87 
SO3 .5 14 ,541 ,548 ,562 ,575 ,585 
1.97 1.95 1.91 1.90 1.88 1.86 1.84 
2.25 2.22 2.17 2.16 2.13 2.10 2.09 
2.64 2.61 2.54 2.52 2.48 2.44 2.42 
.518 S31 S62 ,568 ,585 ,599 ,610 
1.86 1.84 1.80 1.79 1.77 1.75 1.73 
2.11 2.08 2.02 2.01 1.98 1.95 1.94 
2.44 2.40 2.33 2.31 2.27 2.24 2.21 
.535 .55 1 ,585 .592 ,610 ,625 .639 
1.76 1.74 1.70 1.68 1.66 1.64 1.62 
1.97 1.94 1.88 1.87 1.84 1.81 1.79 
2.25 2.21 2.13 2.11 2.07 2.03 2.01 
.556 .573 .610 ,620 .641 ,662 ,674 
1.66 1.64 1.59 1.58 1.55 1.53 1.51 
1.83 1.80 1.74 1.72 1.69 1.66 1.64 
2.06 2.02 1.94 1.92 1.87 1.83 1.80 
.5 8 1 .600 ,641 ,654 ,680 ,704 ,720 
1.56 1.53 1.48 1.47 1.44 1.41 1.39 
1.70 1.67 1.60 1.58 1.54 1.51 1.48 
1.88 1.84 1.75 1.73 1.68 1.63 1.60 
,611 ,633 ,684 .698 ,729 .762 ,789 
1.46 1.43 1.37 1.35 1.32 1.28 1.25 
1.56 1.53 1.45 1.43 1.39 1.34 1.31 
1.70 1.66 1.56 1.53 1.48 1.42 1.38 
.645 ,675 .741 ,763 .8 13 378 1 .OO 
1.35 1.32 1.24 1.22 1.17 1.11 1.00 
1.43 1.39 1.30 1.27 1.21 1.13 1.00 
1.52 1.47 1.36 1.32 1.25 1.15 1.00 
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Table A.6. Confidence Intervals for the Correlation Coefficient 

Source: Reproduced from Table A-6 of Wilfrid J. Dixon and Frank J. Massey, Jr., Introduction to Statistical 
Analysis, 2nd ed., McGraw-Hill Book Co., New York, 1969, with the permission of the McGraw-Hill 
Companies. 



This Page Intentionally Left Blank



Appendix B 

Answers to Selected Problems 

Chapter 1 

1.1 No answer. 

1.2 No answer. 

1.3 No answer. 

1.4 (a) High incidence rate-prospective study; (b) high prevalence-survey; (c) high 
funding-prospective study; (d) treatment under control of investigator-clinical 
trial. 

1.5 Chronic diseases. 

1.6 Since surgeons perform operations that often result in physical changes to the 
skin or function of the body, it may be obvious to another surgeon who examines 
the patient what surgery has been done. 

1.7 Casekontrol study. 
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Chapter 2 

2.1 No answer. 

2.2 No answer. 

2.3 It may not appear to be random since there are more odd numbers than even 
numbers and there were six odd numbers in a row. But the numbers in this table 
are in a random order and this table has been carefully tested. What counts is 
how the numbers were generated. No, you will not have equal numbers in the 
two groups if 50 is the total sample size. Often when random assignment is 
used, the sample size in the two treatment groups does not come out the same 
unless a method of forcing the sample size to be equal is used. 

2.4 The easiest to explain is a systematic sample. We have k = 180/25 = 7.2, so 
pick a random number between 1 and 7, say 5 .  The instructions are starting 
with the fifth student in the list; take every seventh student from there on. The 
student numbers will be 5 ,  12, 19,26, 33, and so on. Note that 12 = 5 + 7 and 
19 = 12 + 7. In other words, you keep adding 7 to the previous number. 

2.5 No answer. 

2.6 Would use a stratified sample. This would ensure having an adequate sample 
size in each class. 

2.7 First, sort the records of the cases by age and obtain the records of the women 
who were < 50 years old at the time of diagnosis. One possibility is to chose 
matched neighborhood controls. Each control would be within, say, 5 years of 
age of the case and live in the same neighborhood. Hospital or friend controls 
could also be used. 

2.8 No answer. 

Chapter 3 

3.1 No answer. 

3.2 No answer. 

3.3 Have two professionals write out their results independently and then get to- 
gether, compare results, and agree on an answer, 

Chapter 4 

4.1 The stem and leaf graph can be obtained from the following compilations: 

There was no excess of 0’s or 5’s in the leaf columns. 

4.2-4.7 No answers, 

4.8 Expect the vertical bars to be of similar height. 
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Table B.1 

Stem Leaf Stem Leaf 

19 058 29 
20 5 30 
21 1 31 
22 489 32 
23 33 
24 1199 34 
25 0 113367 35 
26 038 36 
27 58 37 
28 02347789 38 

12 444 
0 156 

9 
7 

79 
8 

8 
28 
5 

4.9 No answer. 

Chapter 5 

5.1 Age is ratio, gender is nominal, previous smoking status is nominal, length of 
stay is ratio, and the four-point scale is ordinal. 

5.2 (a) The mean is 136.98 and the standard deviation is 32.80. (b) The median is 
128.5 and Q1 = 114 and 9 3  = 154.25. (c) No answer. (d) The mean is larger 
than the median and the difference between Q1 and the median is 14.5, while 
the difference between Q 3  and the median is 25.75. The distribution appears 
to be nonsymmetnc. (e) Check 87,93,212, and 230. 

5.3 The mean is 14.0 and the standard deviation is 1.21. 

5.4 The mean of all sample means is 3 and the mean of all sample variances would 
be the population variance, or 2. 

5.5 Use a statistical program to obtain the results. 

Chapter 6 

6.1 They will be simular. 

6.2 Yes, the data appear to be symmetrically distributed and the distribution looks 
normal. The simplest way to obtain the plots is to use a statistical program. 

6.3 68.25% of the women. 

6.4 Almost 100%. 

6.5 15.87% of the women. 

6.6 PSs = 172.9 pounds. 
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6.7 Ps5 = 148.2 pounds. 

6.8 With a sample size of 16 and weights perhaps being a somewhat skewed dis- 
tribution, we would expect the sample means to be approximately normally 
distributed . 

6.9 Try a log or a square-root transformation on the data since it is skewed to the 
right. 

6.10 z = 00, 1.65, 1.96, and 2.83. 

6.11 z = 1.96. 

Chapter 7 

7.1 The 95% confidence limit is 1.04 < p < 2.09. Since 1.407 is almost in 
the middle of the confidence limit, it appears that the pressure may not have 
changed the mean bleeding time. 

7.2 No answer. 

7.3 No answer. 

7.4 The 95% confidence limit is 1.358 < p1 - p2 < 5.559. 

7.5 The 95% confidence limit is ,364 < p1-  p2 < .972. Yes, since the confidence 
limit does not cover 0. 

7.6 (a) No, the 95% confidence limit is -.11 to .99 kg. (b) If the sample size is 50, 
the 95% confidence limit is .13 to .75, so the answer is yes. 

7.7 (a) The mean difference of -.433 degrees Celsius. (b) The 95% confidence 
interval is -.7455 to -.1211. In 95% of such experiments the computed 
intervals cover the true difference. Since the confidence limit does not include 
zero, the conclusion is that the rectal temperatures are higher than the oral 
temperatures. (c) The 95% confidence limit for the mean oral temperature is 
37.3-37.9. (d) The 95% confidence limit for the mean rectal temperature is 
37.6-3 8.5. 

7.8 (a) sp  = ,0762. (b) 18 d.f. (c) The 99% confidence interval is -.410 to -.214. 
(d) Yes, since the confidence limit does not include 0. 

7.9 The 99% confidence limit is -50.12 to 2.12 with 11 d.f. A difference may exist 
but the data have failed to establish one since the interval covers 0. 

7.10 The sample size in each group should be 217. 
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Chapter 8 

8.1 t = 4.38 with 80 d.f. and P < .0005, so the null hypothesis is rejected. 
Pressure does appear to increase bleeding time. 

8.2 t = 3.62 with 11 d.f. and P = ,004, so reject the null hypothesis. The male 
rats appear to be heavier. 

8.3 t = 9.158 with 18 d.f. and P < .0005, so reject the null hypothesis. Yes, it 
was effective. 

8.4 (a) t = -3.2004 with 8 d.f. and P = .013. Conclude that the oral and rectal 
temperatures are different. (b) t = 4.30 with 8 d.f. and P < ,005, so reject the 
null hypothesis that the mean temperature is 37°C. 

8.5 The sample size should be 161 patients in each group. 

8.6 z = 1.56, so we cannot reject the null hypothesis of equal means. 

Chapter 9 

9.1 The variances are not significamtly different. F = 1.68. 

9.2 F = 1.957, so the variances are not significantly different. 

9.3 The samples are not independent since they were taken for littermates. 

9.4 F = 3.00 with q = 20 and 1/2 = 31. Reject the null hypothesis of equal 
variances. 

Chapter 10 

10.1 Expect T = .5. The variance of an observation is ~ ( 1 -  T )  = .25. The variance 
of the mean of 10 observations is .025. 

10.2 Expect 95.45%. 

10.3 z = 2.21 and P = .03, so reject the null hypothesis. The 95% confidence 
interval is .013 to .167 and thus does not cover 0. The confidence interval gives 
us an interval that we are 95% certain will cover the true difference. 

10.4 Less than .00005. 

10.5 (a) The 95% confidence for the difference is -.039 to ,239. There may be no 
difference between the remedies. (b) The sample size in the text was larger, 
and the confidence interval computed there did not cover 0. 

10.6 z = 1.903, so P > .05 and there is not a significant difference. 

10.7 We need n = 294 if do not use the correction factor and 3 14 with the correction 
factor. 
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Chapter 11 

11.1 (a) x 2  = 8.22 with 1 d.f. and P = ,004 so reject the null hypothesis. (b) RR = 
2.071. (c) OR = 3.32. The 95% confidence limits of the odds ratio go from 
1.44 to 7.65. 

11.2 (a) OR = 2.33. (b) OR = 2.33. (c) x 2  for (a) is 7.883 or P = .0050. x 2  for 
(c) is 11 .OOO or P = .0009. 

11.3 (a) The McNemar’s x 2  is 1.26 with 1 d.f., or nonsignificant. (b) The OR = 
1.438 and the confidence interval goes from .732 to 2.721. Since the confidence 
limit covers 1, it also shows that the chemical was not shown to have an effect. 
In addition, the confidence limit has an approximately 95% chance of including 
the true odds ratio. 

11.4 x 2  = 23.27 with 1 d.f. and P < .0005. OR = .26 of having been assaulted if 
currently living with spouse. 

11.5 x 2  = 5.084 with 1 d.f. and P = .0241. Reject the null hypothesis. 

11.6 x 2  = 20.8232 with 6 d.f. and P = ,002. Reject the null hypothesis of equal 
proportions. 

11.7 Combine the results for moderate and severe heart failure. 

11.8 Reject the null hypothesis with P < .001. 

Chapter 12 

12.1 (a) Fixed-X. (b) Rate = -1518.8 + ,7745year. (c) The 95% confidence 
interval goes from .4637 to 1.0854. t = 5.6360 with 9 d.f., so P = .0003. 

12.2 (a) Single sample. (b) Both negative. (c) Approximate 95% confidence limits 
are -.92 to -.15. (d) t = -3.0026 and P = .0170 in both cases. 

12.3 (a) T = ,9236. (b) From Problem 7.9 we could only conclude that the hypothesis 
of equal means could not be rejected. From the scatter diagram and T = .9236, 
we also learned that the two observers read each plate with a similar outcome. 

12.4 (a) Single sample. (b) CBR = 80.32 - .857LifeExp. (c) Yes. (d) Decrease by 
8.57. (e) t = -6.651 and P < .00005. Yes. 

12.5 (a) LifeExp = 63.48 + .0005GDP. The line does not fit the points at all well. 
(b) T = .71. (c) The line fits much better after the transformation. T = .88. 
LifeExp = 28.28 + 11.3461og(GDP). (d) The value of T is increased since T 

measures the linear association between X and Y .  

12.6 (a) T = -.7114. CBR = 26.6317 - .0005GPD. (b) If we use log(GDP), 
T = -.8788. The magnitude of T increased and the points fit a straight line 
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much better. The correlation is a measure of the linear association between two 
variables. 

12.7 (a) Originally, r = -3642 and b = -.8570. With an outlier in Y. T = -.7517 
and b = -.8676. With an outlier in X ,  r = -.8706 and b = -.8237. With an 
outlier in both X and Y.r = -.4818 and b = -.5115. (d) The outlier in X 
and Y had by far the greater effect. The outlier in Y reduced r but changed b 
hardly at all in this example. 

Chapter 13 

13.1 If the binomial test is used, P < .003, and if the t test is used, P = .004. 

13.2 If the normal approximation is used, t = 2.56, so P = .0108. For the exact 
test, P < .0031. 

13.3 If the normal approximation is used, z = 2.02 and P = .0424 for a two-sided 
test. 

13.4 The Wilcoxon rank sum test for two independent samples, 

13.5 z = 3.14, so P = .0017 for a two-sided test. 

13.6 Spearman’s rho for the data in Table 12.2 is .81 and the correlation is 357. 

Chapter 14 

14.1 No answer. 

14.2 Yes, the fit is quite good considering the small sample size. 

14.3 The estimated median is .867. 

14.4 Too small. 

14.5 No answer. 
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Appendix C 

Computer Statistical Program Resources 

The history of statistical analysis substantially predates the evolution of computer- 
based statistical program capabilities. But advances in computer hardware systems 
and software program capabilities have revolutionized our ability to perform relatively 
basic computations on small and large databases, and to comprehend and execute 
difficult analyses. 

C.l COMPUTER SYSTEMS FOR BIOMEDICAL EDUCATION AND 
RESEARCH 

Large and powerful central computer systems in academic settings provide the latest 
and broadest array of programs for specialized research and analysis. These academic 
computer resources can also advance teaching of students with hands-on access at 
individual keyboards in whole classrooms. Students can log in to these powerful 
systems to learn the programs and prepare their home work. Now, not only computer 
science students but students in fields such as public health and biomedical studies 
can quickly grasp essentials and gain experience with real-world data and concepts, 
online. 
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But away from academic settings there is a need for both students and experienced 
researchers to access and prepare computer-based statistical analyses. Students can 
explore and extend their classroom experience on individual low-cost computers using 
individual and more-limited versions of the classroom computer program resources. 
Researchers can afford stand-alone computers and statistical software programs for 
their office work on all but major databases. 

The range and capabilities of computer hardware and operating systems have 
expanded greatly. In the 1950s large computers in glass-enclosed rooms were the 
rule. By the 1960s and 1970s smaller computers were taking hold, especially in aca- 
demic and research settings. The 1980s brought the first personal desktop computers 
with raster-display screens that facilitated graphical analyses. By the mid- 1990s 
small business and personal computer users were using operating systems such as 
UNIX/Linux, Microsoft DOS/Windows, and Apple Macintosh 0s 8 and 9, and on- 
line access via the rapidly expanding Internet. In this current decade, Microsoft XP 
pro, UNIXLinux, and Apple MAC 0s X are commonly used operating systems. 

C.2 A BRIEF INDICATION OF STATISTICS COMPUTER PROGRAM 
ADVANCES AND SOME RELEVANT PUBLICATIONS SINCE 
2000 

A publication of the American Statistical Association, The American Statistician, 
has provided a wide range of materials for practicing statisticians and students for 
many years, typically in four publication issues totaling several hundred pages a 
year. Submitted papers cover a range of topics, including statistical practice, teaching 
materials, and computing and graphics resources. Reviews of published books cover a 
similar range. The Section Editor obtains and provides reviews of statistical software 
packages and provides historical background and insightful comment. The regular 
section on statistical computing software reviews provides valuable information and 
analysis of available computing software. (The Section Editor has noted that by 
November 2006 some 23 general-purpose statistical software systems were available). 

A small sampling of items is provided here from The American Statistician over 
the nine years 2000 through 2008. The items are relevant to choosing and using 
statistical computing program systems and are focused where possible on their use in 
biomedical/public health fields. The sample illustrates both the growth of computing 
capabilities and the broad scope of the field. The items selected here also attempt 
some relevance toward the “basic statistics” and “primer” contexts of this book. 

The entries below begin with the present time and progress backward to 2000. 
(Note that Joseph M. Hilbe, Section Editor, is identified as Hilbe in general discus- 
sions.) 

Items labeled as “book review” or “statistical software package review” include 
a listing of the reviewer following the author(s), publisher and date of publication. 
Those labeled as “article” represent papers for The American Statistician. 
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Issue - Nov. 2008, Vol. 62, No. 4 

Book review - Elementary Statistics: Picturing the World (4th ed.) Larson & Farber, 
Pearson Prentice Hall, 2009 Reviewed by Jessica Chapman 

Book review - Statistical Development of Quality in Medicine Per Winkel & Nien 
Fan Zhang, Wiley, 2007 
Reviewed by Gideon (K. D.) Zamba 

Section Editor’s note - Only two publications of the American Statistical Association 
have a section devoted to software reviews: this one, and the Journal of Statistical 
Software (JSS), an online journal hosted on the servers of the UCLA Department of 
Statistics and founded by Prof. Jan de Leeuw in 1996. That website is described as 
handling some 15,000 accesses per day. 

Issue - Aug. 2008, Vol. 62, No. 3 

Book review - The R Book Michael J. Crawley, Wiley, 2007 
Reviewed by Timothy J. Robinson 

Section Editor’s note - Hilbe’s recall of his first IBM AT computer in 1984 and 
comparison with changes to present day hardware, software, and statistical programs. 

Issue - May 2008, Vol. 62, No. 2 

Article - Survival Analysis: A Primer David A. Freedman 

Issue - Aug. 2007, Vol. 61, No. 3 

Statistical software review - The Little SAS Book for Enterprise Guide 3.0 Susan J. 
Slaughter & Lora D. Delwiche, SAS Institute, 2005 
Reviewed by Philip Dixon 

Book review - A  Handbook of Statistical Analyses Using R Brian S .  Everitt & Torsten 
Hothorn, Chapman & Hall/CRC, 2006 
Reviewed by Ulric J. Lund 

Book review - Statistical Reasoning in Medicine: The Intuitive P-Value Primer (2nd 
ed.), Lemuel A. Moye, Springer, 2006 
Reviewed by Peng Huang 

Book review - Visual Statistics: Seeing Data with Dynamic Interactive Graphics 
Forrest W. Young, Pedro M. Valero-Mora, & Michael Friendly. Wiley, 2006 
Reviewed by Christine M. Anderson-Cook 

Issue - Feb. 2007, Vol. 61, No. 1 

Statistical software review - A  Crash Course in SPSS for Windows: Updated for  Ver- 
sions 10, 11,12,13 (3rded.) Andrew Colman & Briony Pulford, BlackwellPublishers, 
Ltd. 2006 
Reviewed by J. Wade Davis 
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Statistical software review - Statistica 7: An Overview 
Reviewed by Joseph M. Hilbe (Section Editor) 

Issue - Nov. 2006,Vol. 60. No. 4 

Statistical software review - Statistical Analysis of Medical Data Using SAS Geoff 
Der & Brian S. Everitt, Chapman & Hall/CRC, 2006 
Reviewed by Ryan E. Wiegand 

Issue - Aug. 2006, Vol. 60, No. 3 

Book review - Analyzing Categorical Data Jeffrey S .  Simonoff. Springer-Verlag, 
2003 
Reviewed by Stanley Wasserman 

Article - Spreadsheets in Statistical Practice -Another Look J. C. Nash 

Issue - May 2006, Vol. 60, No. 2 

Statistical software review - Design of Experiments with Minitab Paul Mathews, 
American Society for Quality, Quality Press, 2005 
Reviewed by Steven F. Arnold 

Issue - Nov. 2005,Vol. 59, No. 4 

Statistical software review - A  Review of Stata 9.0 Joseph M. Hilbe (Section Editor) 

Issue - May 2005, Vol. 59, No. 4 

Statistical software review -A  Review of SPSS, Part 3: Version 13.0 Joseph M. Hilbe 
(Section Editor) 

Issue - Feb. 2005,Vol. 59, No. 1 

Statistical software review - An Introduction to Survival Analysis Using Stata (rev.) 
Mario A. Cleves, Wm W. Gould, & Roberto G. Gutierrez, Stata Press, 2004 
Reviewed by Daniel L. McGee 

Statistical software review - Using SPSS for  Windows & Macintosh; Analyzing and 
Understanding Data (4th ed.) Samuel B. Green & Neil J. Salkind, Prentice Hall, 
2005 
Reviewed by Daniel L. McGee 

Issue - Aug. 2004, Vol. 58, No. 3 

Statistical software article - An Evaluation of ActiveStats for SPSS (and Minitab & 
JMP) for  Teaching and Learning Jamie D. Mills & Elisa L. Johnson 
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Issue - May 2004, Vol. 58, No. 2 

Statistical software review - A  Review of SPSS 12.01, Part 2 
Joseph M. HiIbe (Section Editor) 

Issue - Feb. 2004, Vol. 58, No. 1 

Article - Teaching Statistical Principles Using Epidemiology: Measuring the Health 
of Populations Donna F. Stroup, Richard A. Goodman, Ralph Cordell, & Richard 
Scheaffer 

Statistical software review - Introductory Statistics with R Peter Dalgaard. Springer- 
Verlag, 2002. 
Reviewed by Samantha C. Bates 

Issue - Nov. 2003, Vol. 57, No. 4 

Statistical software review - A  Review of Current SPSS Products: SPSS 12, SigmaPlot 
8.02, SigmaStat 3.0, Part I Joseph M. Hilbe (Section Editor) 

Issue - May 2003, Vol. 57, No. 2 

Book review - Statistical Rules of Thumb Gerald van Belle, Wiley, 2002 
Reviewed by Richard J. Cleary 

Issue - May 2002, Vol. 56, No. 2 

Section Editor discussion - Review of JMP Version 4.03 by Altman, & Letter of 
Comment re Version 4.05 by Sall of SAS (parent company of JMP) Joseph M. Hilbe 
(Section Editor) 

Issue - Feb. 2002,Vol. 56, No. 1 

Statistical software article - A  Review of JMP 4.03 with Special Attention to Its Nu- 
merical Accuracy. Micah Altman 

Issue - Aug. 2001, Vol. 55, No. 3 

Article - A  Computer-Based Lab Supplement to Courses in Introductory Statistics. P. 
Cabilio & P. J. Farrell 

Issue - May 2001, Vol. 55, No. 2 
Quantitative Investigations in the Biosciences Using Minitab John Eddison, Chapman 
& Hall, 2000. 
Reviewed by Joseph M.Hilbe (Section Editor) 

Issue - Feb. 2000,Vol. 54, No. 1 

Statistical software discussion - Hilbe, Section Editor’s Notes In this issue. . . an 
overview of the Wilcoxon-Mann-Whitney test from different statistical packages. . . results 
for the test on the same data differ across packages.. . 
Statistical software article - Different Outcomes of the Wilcoxon-Mann-Whitney Test 
from Different Statistics Packages Reinhard Bergmann, John Ludbrook, & Will P. J. 
M. Spooren 
(End of excerpts from The American Statistician) 
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C.3 CHOICES OF COMPUTER STATISTICAL SOFTWARE 

In perhaps the most widespread use for academic and research work are major statis- 
tical program systems such as SAS, Stata, SPSS, S-Plus, and so on. Their extensive 
range of statistical programs over a wide range of disciplines and projects includes 
many designed for or usable for biomedical and public health problems. 

However, such major program systems may be ill-suited for individual users with 
limited statistical backgrounds, small computers, or limited budgets. For individual 
use either by students or researchers in the biomedical fields, program packages and 
associated computer platforms of more limited scope are available. 

Stata 10 is the current version of the Stata offerings. Stata’s program systems 
and appropriate computer platforms are comparable in extent to other “mainframe” 
offerings. But Stata’s current range includes two platform offerings for small or 
moderate-size systems. The limited smallstata for minor projects and moderate- 
scale Stata C are cost-effective choices for individuals and as home systems. Stata 
is available for Windows, MAC 0s X, and UNIXLinux hardware platforms. Stata 
program offerings start with core base capabilities and extend to specialized programs. 

Minitab 15 is the current version of the low-cost Minitab system available for 
many years. The Minitab range of programs is moderate, and use of the programs 
is well documented. The system is in use in some academic settings and overseas 
countries, and by individuals, both students and researchers. It is only available for 
the Windows platform. 

SAS-JMP 7 (and now JMP 8) is a distinct separate system provided by SAS. It 
is particularly suitable for researchers and students because of the simplicity and 
transparency of user commands and its extensive range of presentation modes and 
graphics. It is only available for the Windows platform. 

The R statistical program system is related to earlier S and its successor S-Plus 
statistical program systems. R is an open-source program system, a free software 
environment that can be obtained on-line via CRAN, the Comprehensive R Archive 
Network. An important advantage is its continuing development by a consortium of 
dedicated researchers; an advanced set of R routines is available for use with S-Plus, 
for example. The possible disadvantage is that it is in continuous development by the 
dedicated researchers, which can involve descriptions obscure to the casual user. 

An early book by Dalgaard, Introductory Statistics with R, Springer-Verlag, 2002, 
illustrates the language and capabilities. R is available for Windows, MAC 0s X, 
and UNIX/Linux computer platforms. 
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