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Preface

Man has the faculty of becoming completely absorbed in one subject,

no matter how trivial and no subject is so trivial that it will not assume

infinite proportions if one’s entire attention is devoted to it.

— TOLSTOY, War and Peace

or over two thousand years, number theory has fascinated and inspired bothF amateurs and mathematicians alike. A sound and fundamental body of knowl-
edge, it has been developed by the untiring pursuits of mathematicians all

over the world. Today, number theorists continue to develop some of the most so-
phisticated mathematical tools ever devised and advance the frontiers of knowl-
edge.

Many number theorists, including the eminent nineteenth-century English num-
ber theorist Godfrey H. Hardy, once believed that number theory, although beautiful,
had no practical relevance. However, the advent of modern technology has brought
a new dimension to the power of number theory: constant practical use. Once con-
sidered the purest of pure mathematics, it is used increasingly in the rapid develop-
ment of technology in a number of areas, such as art, coding theory, cryptology, and
computer science. The various fascinating applications have confirmed that human
ingenuity and creativity are boundless, although many years of hard work may be
needed to produce more meaningful and delightful applications.

The Pursuit of a Dream

This book is the fruit of years of dreams and the author’s fascination for the subject,
its beauty, elegance, and historical development; the opportunities it provides for
both experimentation and exploration; and, of course, its marvelous applications.

This new edition, building on the strengths of its predecessor, incorporates a
number of constructive suggestions made by students, reviewers, and well-wishers. It
is logically conceived, self-contained, well-organized, nonintimidating, and written
with students and amateurs in mind. In clear, readable language, this book offers an
overview of the historical development of the field, including major figures, as well
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as step-by-step development of the basic concepts and properties, leading to the more
advanced exercises and discoveries.

Audience and Prerequisites

The book is designed for an undergraduate course in number theory for students
majoring in mathematics and/or computer science at the sophomore/junior level and
for students minoring in mathematics. No formal prerequisites are required to study
the material or to enjoy its beauty except a strong background in college algebra.
The main prerequisite is mathematical maturity: lots of patience, logical thinking,
and the ability for symbolic manipulation. This book should enable students and
number theory enthusiasts to enjoy the material with great ease.

Coverage

The text includes a detailed discussion of the traditional topics in an undergradu-
ate number theory course, emphasizing problem-solving techniques, applications,
pattern recognition, conjecturing, recursion, proof techniques, and numeric compu-
tations. It also covers figurate numbers and their geometric representations, Catalan
numbers, Fibonacci and Lucas numbers, Fermat numbers, an up-to-date discussion
of the various classes of prime numbers, and factoring techniques. Starred (�) op-
tional sections and optional puzzles can be omitted without losing continuity of de-
velopment.

Included in this edition are new sections on Catalan numbers and the Pollard
rho factoring method, a subsection on the Pollard p − 1 factoring method, and a
short chapter on continued fractions. The section on linear diophantine equations
now appears in Chapter 3 to provide full prominence to congruences.

A number of well-known conjectures have been added to challenge the more am-
bitious students. Identified by the conjecture symbol ? in the margin, they should
provide wonderful opportunities for group discussion, experimentation, and explo-
ration.

Examples and Exercises

Each section contains a wealth of carefully prepared and well-graded examples and
exercises to enhance student skills. Examples are developed in detail for easy un-
derstanding. Many exercise sets contain thought-provoking true/false problems, nu-
meric problems to develop computational skills, and proofs to master facts and the
various proof techniques. Extensive chapter-end review exercise sets provide com-
prehensive reviews, while chapter-end supplementary exercises provide challenging
opportunities for the curious-minded to pursue.
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Starred (�) exercises are, in general, difficult, and doubly starred (��) ones are
more difficult. Both can be omitted without losing overall understanding of the con-
cepts under discussion. Exercises identified with a c in the margin require a knowl-
edge of elementary calculus; they can be omitted by students with no calculus back-
ground.

Historical Comments and Biographies

Historical information, including biographical sketches of about 50 mathematicians,
is woven throughout the text to enhance a historical perspective on the develop-
ment of number theory. This historical dimension provides a meaningful context for
prospective and in-service high school and middle school teachers in mathematics.
An index of the biographies, keyed to pages in the text, can be found inside the back
cover.

Applications

This book has several unique features. They include the numerous relevant and
thought-provoking applications spread throughout, establishing a strong and mean-
ingful bridge with geometry and computer science. These applications increase stu-
dent interest and understanding and generate student interaction. In addition, the
book shows how modular systems can be used to create beautiful designs, link-
ing number theory with both geometry and art. The book also deals with barcodes,
zip codes, International Serial Book Numbers, European Article Numbers, vehicle
identification numbers, and German bank notes, emphasizing the closeness of num-
ber theory to our everyday life. Furthermore, it features Friday-the-thirteenth, the
p-queens puzzle, round-robin tournaments, a perpetual calendar, the Pollard rho fac-
toring method, and the Pollard p − 1 factoring method.

Flexibility

The order and selection of topics offer maximum flexibility for instructors to select
chapters and sections that are appropriate for student needs and course lengths. For
example, Chapter 1 can be omitted or assigned as optional reading, as can the op-
tional sections 6.2, 6.3, 7.3, 8.5, 10.4, and 11.5, without jeopardizing the core of
development. Sections 2.2, 2.3, and 5.4–5.6 also can be omitted if necessary.

Foundations

All proof methods are explained and illustrated in detail in the Appendix. They pro-
vide a strong foundation in problem-solving techniques, algorithmic approach, and
proof techniques.
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Proofs

Most concepts, definitions, and theorems are illustrated through thoughtfully selected
examples. Most of the theorems are proven, with the exception of some simple ones
left as routine exercises. The proofs shed additional light on the understanding of the
topic and enable students to develop their problem-solving skills. The various proof
techniques are illustrated throughout the text.

Proofs Without Words

Several geometric proofs of formulas are presented without explanation. This unique
feature should generate class discussion and provide opportunities for further explo-
ration.

Pattern Recognition

An important problem-solving technique used by mathematicians is pattern recogni-
tion. Throughout the book, there are ample opportunities for experimentation and ex-
ploration: collecting data, arranging them systematically, recognizing patterns, mak-
ing conjectures, and then establishing or disproving these conjectures.

Recursion

By drawing on well-selected examples, the text explains in detail this powerful strat-
egy, which is used heavily in both mathematics and computer science. Many exam-
ples are provided to ensure that students are comfortable with this powerful problem-
solving technique.

Numeric Puzzles

Several fascinating, optional number-theoretic puzzles are presented for discussion
and digression. It would be a good exercise to justify each. These puzzles are useful
for prospective and in-service high school and middle school teachers in mathemat-
ics.

Algorithms

A number of algorithms are given as a problem-solving technique in a straightfor-
ward fashion. They can easily be translated into computer programs in a language
of your choice. These algorithms are good candidates for class discussion and are
boxed in for easy identification.
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Computer Assignments

Relevant and thought-provoking computer assignments are provided at the end of
each chapter. They provide hands-on experience with concepts and enhance the op-
portunity for computational exploration and experimentation. A computer algebra
system, such as Maple or Mathematica, or a language of your choice can be used.

Chapter Summary

At the end of each chapter, you will find a summary that is keyed to pages in the text.
This provides a quick review and easy reference. Summaries contain the various
definitions, symbols, and properties.

Enrichment Readings

Each chapter ends with a carefully prepared list of readings from various sources for
further exploration of the topics and for additional enrichment.

Web Links

Relevant annotated web sites are listed in the Appendix. For instance, up-to-date
information on the discovery of Mersenne primes and twin primes is available on
the Internet. This enables both amateurs and professionals to access the most recent
discoveries and research.

Special Symbols

The square � denotes the end of a proof and an example. The conjecture symbol ?
indicates an unresolved problem.

Index of Symbols

Inside the front cover, you will find, for quick reference, a list of symbols and the
page numbers on which they first occur.

Odd-Numbered Solutions

The solutions to all odd-numbered exercises are given at the end of the text.

Solutions Manual for Students

The Student’s Solutions Manual contains detailed solutions to all even-numbered ex-
ercises. It also contains valuable tips for studying mathematics, as well as for prepar-
ing and taking examinations.
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Instructor’s Manual

The Instructor’s Manual contains detailed solutions to all even-numbered exercises,
sample tests for each chapter, and the keys for each test. It also contains two sample
final examinations and their keys.

Highlights of this Edition

They include:

• Catalan numbers (Sections 1.8, 2.5, and 8.4)
• Linear diophantine equations with Fibonacci coefficients (Section 3.5)
• Pollard rho factoring method (Section 4.3)
• Vehicle identification numbers (Section 5.3)
• German bank notes (Section 5.3)
• Factors of 2n + 1 (Section 7.2)
• Pollard p − 1 factoring method (Section 7.2)
• Pascal’s binary triangle and even perfect numbers (Section 8.4)
• Continued fractions (Chapter 12)
• Well-known conjectures
• Expanded exercise sets
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A Word to the Student

Mathematics is music for the mind;

music is mathematics for the soul.

— ANONYMOUS

The Language of Mathematics

To learn a language, you have to know its alphabet, grammar, and syntax, and you
have to develop a decent vocabulary. Likewise, mathematics is a language with its
own symbols, rules, terms, definitions, and theorems. To be successful in mathe-
matics, you must know them and be able to apply them; you must develop a work-
ing vocabulary, use it as often as you can, and speak and write in the language of
math.

This book was written with you in mind, to create an introduction to number
theory that is easy to understand. Each chapter is divided into short sections of ap-
proximately the same length.

Problem-Solving Techniques

Throughout, the book emphasizes problem-solving techniques such as doing ex-
periments, collecting data, organizing them in an orderly fashion, recognizing pat-
terns, and making conjectures. It also emphasizes recursion, an extremely powerful
problem-solving strategy used heavily in both mathematics and computer science.
Although you may need some practice to get used to recursion, once you know how
to approach problems recursively, you will appreciate its power and beauty. So do
not be turned off, even if you have to struggle a bit with it initially.

The book stresses proof techniques as well. Theorems are the bones of math-
ematics. So, for your convenience, the various proof methods are explained and il-
lustrated in the Appendix. It is strongly recommended that you master them; do the
worked-out examples, and then do the exercises. Keep reviewing the techniques as
often as needed.

Many of the exercises use the theorems and the techniques employed in their
proofs. Try to develop your own proofs. This will test your logical thinking and
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analytical skills. In order to fully enjoy this beautiful and elegant subject, you must
feel at home with the various proof methods.

Getting Involved

Basketball players such as Michael Jordan and Larry Bird did not become super-
stars by reading about basketball or watching others play. Besides knowing the rules
and the objects needed to play, they needed countless hours of practice, hard work,
and determination to achieve their goal. Likewise, you cannot learn mathematics by
simply watching your professor do it in class or by reading about it; you have to
do it yourself every day, just as skill is acquired in a sport. You can learn mathe-
matics in small, progressive steps only, building on skills you already have devel-
oped.

Suggestions for Learning

Here are a few suggestions you should find useful in your pursuit:

• Read a few sections before each class. You might not fully understand the ma-
terial, but you will certainly follow it far better when your professor discusses
it in class. Besides, you will be able to ask more questions in class and answer
more questions.

• Always go to class well prepared. Be prepared to answer and ask questions.
• Whenever you study from the book, make sure you have a pencil and enough

scrap paper next to you for writing the definitions, theorems, and proofs and
for doing the exercises.

• Study the material taught in class on the same day. Do not just read it as if you
were reading a novel or a newspaper. Write down the definitions, theorems,
and properties in your own words without looking in your notes or the book.
Rewrite the examples, proofs, and exercises done in class, all in your own
words. If you cannot do them on your own, study them again and try again;
continue until you succeed.

• Always study the relevant section in the text and do the examples there, then
do the exercises at the end of the section. Since the exercises are graded in
order of difficulty, do them in order. Do not skip steps or write over previous
steps; this way you will be able to progress logically, locate your errors, and
correct your mistakes. If you cannot solve a problem because it involves a
new term, formula, or some property, then re-study the relevant portion of
the section and try again. Do not assume that you will be able to do every
problem the first time you try it. Remember, practice is the best shortcut to
success.
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Solutions Manual

The Student’s Solutions Manual contains additional tips for studying mathematics,
preparing for an examination in mathematics, and taking an examination in mathe-
matics. It also contains detailed solutions to all even-numbered exercises.

A Final Word

Mathematics, especially number theory, is no more difficult than any other subject.
If you have the willingness, patience, and time to sit down and do the work, then you
will find number theory worth studying and this book worth studying from; you will
find that number theory can be fun, and fun can be number theory. Remember that
learning mathematics is a step-by-step matter. Do your work regularly and system-
atically; review earlier chapters every week, since things must be fresh in your mind
to apply them and to build on them. In this way, you will enjoy the subject and feel
confident to explore more. I look forward to hearing from you with your comments
and suggestions. In the meantime, enjoy the book.

Thomas Koshy





1 Fundamentals

Tell me and I will forget.

Show me and I will remember.

Involve me and I will understand.

— CONFUCIUS

he outstanding German mathematician Karl Friedrich Gauss (1777–1855)Tonce said, “Mathematics is the queen of the sciences and arithmetic the queen
of mathematics.” “Arithmetic,” in the sense Gauss uses it, is number theory,

which, along with geometry, is one of the two oldest branches of mathematics. Num-
ber theory, as a fundamental body of knowledge, has played a pivotal role in the
development of mathematics. And as we will see in the chapters ahead, the study of
number theory is elegant, beautiful, and delightful.

A remarkable feature of number theory is that many of its results are within the
reach of amateurs. These results can be studied, understood, and appreciated with-
out much mathematical sophistication. Number theory provides a fertile ground for
both professionals and amateurs. We can also find throughout number theory many
fascinating conjectures whose proofs have eluded some of the most brilliant mathe-
maticians. We find a great number of unsolved problems as well as many intriguing
results.

Another interesting characteristic of number theory is that although many of its
results can be stated in simple and elegant terms, their proofs are sometimes long
and complicated.

Generally speaking, we can define “number theory” as the study of the properties
of numbers, where by “numbers” we mean integers and, more specifically, positive
integers.

Studying number theory is a rewarding experience for several reasons. First, it
has historic significance. Second, integers, more specifically, positive integers, are

1
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A Greek Stamp
Honoring
Pythagoras

The Island of Samos

Pythagoras (ca. 572–ca. 500 B.C.), a Greek philoso-

pher and mathematician, was born on the Aegean is-

land of Samos. After extensive travel and studies, he

returned home around 529 B.C. only to find that Samos

was under tyranny, so he migrated to the Greek port

of Crontona, now in southern Italy. There he founded

the famous Pythagorean school among the aristo-

crats of the city. Besides being an academy for phi-

losophy, mathematics, and natural science, the school

became the center of a closely knit brotherhood shar-

ing arcane rites and observances. The brotherhood

ascribed all its discoveries to the master.
A philosopher, Pythagoras taught that number was the essence of everything, and

he associated numbers with mystical powers. He also believed in the transmigration of the

soul, an idea he might have borrowed from the Hindus.

Suspicions arose about the brotherhood, leading to the murder of most of its members. The school was

destroyed in a political uprising. It is not known whether Pythagoras escaped death or was killed.

the building blocks of the real number system, so they merit special recognition.
Third, the subject yields great beauty and offers both fun and excitement. Finally,
the many unsolved problems that have been daunting mathematicians for centuries
provide unlimited opportunities to expand the frontiers of mathematical knowledge.
Goldbach’s conjecture (Section 2.5) and the existence of odd perfect numbers (Sec-
tion 8.3) are two cases in point. Modern high-speed computers have become a pow-
erful tool in proving or disproving such conjectures.

Although number theory was originally studied for its own sake, today it has
intriguing applications to such diverse fields as computer science and cryptography
(the art of creating and breaking codes).

The foundations for number theory as a discipline were laid out by the Greek
mathematician Pythagoras and his disciples (known as the Pythagoreans). The
Pythagorean brotherhood believed that “everything is number” and that the central
explanation of the universe lies in number. They also believed some numbers have
mystical powers. The Pythagoreans have been credited with the invention of am-
icable numbers, perfect numbers, figurate numbers, and Pythagorean triples. They
classified integers into odd and even integers, and into primes and composites.

Another Greek mathematician, Euclid (ca. 330–275 B.C.), also made significant
contributions to number theory. We will find many of his results in the chapters to
follow.

We begin our study of number theory with a few fundamental properties of in-
tegers.
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Little is known about Euclid’s life. He was on the faculty at the University of Alexan-

dria and founded the Alexandrian School of Mathematics. When the Egyptian ruler

King Ptolemy I asked Euclid, the father of geometry, if there were an easier way to

learn geometry than by studying The Elements, he replied, “There is no royal road

to geometry.”

1.1 Fundamental Properties

The German mathematician Hermann Minkowski (1864–1909) once remarked, “In-
tegral numbers are the fountainhead of all mathematics.” We will come to appreciate
how important his statement is. In fact, number theory is concerned solely with inte-
gers. The set of integers is denoted by the letter Z:†

Z = {. . . ,−3,−2,−1,0,1,2,3, . . .}

Whenever it is convenient, we write “x ∈ S” to mean “x belongs to the set S”;
“x /∈ S” means “x does not belong to S.” For example, 3 ∈ Z, but

√
3 /∈ Z.

We can represent integers geometrically on the number line, as in Figure 1.1.

Figure 1.1

The integers 1,2,3, . . . are positive integers. They are also called natural num-
bers or counting numbers; they lie to the right of the origin on the number line. We
denote the set of positive integers by Z+ or N:

Z+ = N = {1,2,3, . . .}

† The letter Z comes from the German word Zahlen for numbers.
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Leopold Kronecker (1823–1891) was born in 1823 into a well-to-do family in Liegnitz,

Prussia (now Poland). After being tutored privately at home during his early years and

then attending a preparatory school, he went on to the local gymnasium, where he

excelled in Greek, Latin, Hebrew, mathematics, and philosophy. There he was fortu-

nate to have the brilliant German mathematician Ernst Eduard Kummer (1810–1893)

as his teacher. Recognizing Kronecker’s mathematical talents, Kummer encouraged

him to pursue independent scientific work. Kummer later became his professor at the

universities of Breslau and Berlin.

In 1841, Kronecker entered the University of Berlin and also spent time at the

University of Breslau. He attended lectures by Dirichlet, Jacobi, Steiner, and Kummer.

Four years later he received his Ph.D. in mathematics.

Kronecker’s academic life was interrupted for the next 10 years when he ran his uncle’s business. Nonethe-

less, he managed to correspond regularly with Kummer. After becoming a member of the Berlin Academy of

Sciences in 1861, Kronecker began his academic career at the University of Berlin, where he taught unpaid until

1883; he became a salaried professor when Kummer retired.

In 1891, his wife died in a fatal mountain climbing accident, and Kronecker, devastated by the loss, suc-

cumbed to bronchitis and died four months later.

Kronecker was a great lover of the arts, literature, and music, and also made profound contributions to num-

ber theory, the theory of equations, elliptic functions, algebra, and the theory of determinants. The vertical bar

notation for determinants is his creation.

The German mathematician Leopold Kronecker wrote, “God created the natural
numbers and all else is the work of man.” The set of positive integers, together with 0,
forms the set of whole numbers W:

W = {0,1,2,3, . . .}

Negative integers, namely, . . . ,−3,−2,−1, lie to the left of the origin. Notice
that 0 is neither positive nor negative.

We can employ positive integers to compare integers, as the following definition
shows.

The Order Relation
Let a and b be any two integers. Then a is less than b, denoted by a < b, if there
exists a positive integer x such that a + x = b, that is, if b − a is a positive integer.
When a < b, we also say that b is greater than a, and we write b > a.†

† The symbols < and > were introduced in 1631 by the English mathematician Thomas Harriet
(1560–1621).
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If a is not less than b, we write a ≮ b; similarly, a ≯ b indicates a is not greater
than b.

It follows from this definition that an integer a is positive if and only if a > 0.
Given any two integers a and b, there are three possibilities: either a < b, a = b,

or a > b. This is the law of trichotomy. Geometrically, this means if a and b are any
two points on the number line, then either point a lies to the left of point b, the two
points are the same, or point a lies to the right of point b.

We can combine the less than and equality relations to define the less than or
equal to relation. If a < b or a = b, we write a ≤ b.† Similarly, a ≥ b means either
a > b or a = b. Notice that a �< b if and only if a ≥ b.

We will find the next result useful in Section 3.4. Its proof is fairly simple and is
an application of the law of trichotomy.

THEOREM ‡ 1.1 Let min{x, y} denote the minimum of the integers x and y, and max{x, y} their maxi-
mum. Then min{x, y} + max{x, y} = x + y.§

PROOF (by cases)
case 1 Let x ≤ y. Then min{x, y} = x and max{x, y} = y, so min{x, y}+max{x, y} =
x + y.
case 2 Let x > y. Then min{x, y} = y and max{x, y} = x, so min{x, y}+max{x, y} =
y + x = x + y. �

The law of trichotomy helps us to define the absolute value of an integer.

Absolute Value
The absolute value of a real number x, denoted by |x|, is defined by

|x| =
{

x if x ≥ 0

−x otherwise

For example, |5| = 5, |−3| = −(−3) = 3, |π | = π , and |0| = 0.
Geometrically, the absolute value of a number indicates its distance from the

origin on the number line.
Although we are interested only in properties of integers, we often need to

deal with rational and real numbers also. Floor and ceiling functions are two such
number-theoretic functions. They have nice applications to discrete mathematics and
computer science.

† The symbols ≤ and ≥ were introduced in 1734 by the French mathematician P. Bouguer.
‡ A theorem is a (major) result that can be proven from axioms or previously known results.
§ Theorem 1.1 is true even if x and y are real numbers.
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Floor and Ceiling Functions
The floor of a real number x, denoted by �x�, is the greatest integer ≤ x. The ceiling
of x, denoted by 	x
, is the least integer ≥ x.† The floor of x rounds down x, whereas
the ceiling of x rounds up. Accordingly, if x /∈ Z, the floor of x is the nearest integer to
the left of x on the number line, and the ceiling of x is the nearest integer to the right
of x, as Figure 1.2 shows. The floor function f (x) = �x� and the ceiling function
g(x) = 	x
 are also known as the greatest integer function and the least integer
function, respectively.

Figure 1.2

For example, �π� = 3, �log10 3� = 0, �−3.5� = −4, �−2.7� = −3, 	π
 = 4,
	log10 3
 = 1, 	−3.5
 = −3, and 	−2.7
 = −2.

The floor function comes in handy when real numbers are to be truncated or
rounded off to a desired number of decimal places. For example, the real number π =
3.1415926535 . . . truncated to three decimal places is given by �1000π�/1000 =
3141/1000 = 3.141; on the other hand, π rounded to three decimal places is
�1000π + 0.5�/1000 = 3.142.

There is yet another simple application of the floor function. Suppose we divide
the unit interval [0,1) into 50 subintervals of equal length 0.02 and then seek to
determine the subinterval that contains the number 0.4567. Since �0.4567/0.02� +
1 = 23, it lies in the 23rd subinterval. More generally, let 0 ≤ x < 1. Then x lies in
the subinterval �x/0.02� + 1 = �50x� + 1.

The following example presents an application of the ceiling function to every-
day life.

EXAMPLE 1.1 (The post-office function) In 2006, the postage rate in the United States for a first-
class letter of weight x, not more than one ounce, was 39¢; the rate for each additional
ounce or a fraction thereof up to 11 ounces was an additional 24¢. Thus, the postage
p(x) for a first-class letter can be defined as p(x) = 0.39 + 0.24	x − 1
, 0 < x ≤ 11.

For instance, the postage for a letter weighing 7.8 ounces is p(7.8) = 0.39 +
0.24	7.8 − 1
 = $2.07. �

† These two notations and the names, floor and ceiling, were introduced by Kenneth E. Iverson in the
early 1960s. Both notations are variations of the original greatest integer notation [x].
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Some properties of the floor and ceiling functions are listed in the next theorem.
We shall prove one of them; the others can be proved as routine exercises.

THEOREM 1.2 Let x be any real number and n any integer. Then

1. �n� = n = 	n

2. 	x
 = �x� + 1 (x /∈ Z)

3. �x + n� = �x� + n
4. 	x + n
 = 	x
 + n

5.

⌊
n

2

⌋

= n − 1

2
if n is odd.

6.

⌈
n

2

⌉

= n + 1

2
if n is odd.

PROOF

Every real number x can be written as x = k + x′, where k = �x� and 0 ≤ x′ < 1. See
Figure 1.3. Then

Figure 1.3

x + n = k + n + x′ = (k + n) + x′

�x + n� = k + n, since 0 ≤ x′ < 1

= �x� + n �

E X E R C I S E S 1.1

1. The English mathematician Augustus DeMorgan,
who lived in the 19th century, once remarked that he
was x years old in the year x2. When was he born?

Evaluate each, where x is a real number.
2. f (x) = x

|x| (x �= 0)

3. g(x) = �x� + �−x�
4. h(x) = 	x
 + 	−x


Determine whether:
5. −�−x� = �x�
6. −	−x
 = 	x

7. There are four integers between 100 and 1000 that are

each equal to the sum of the cubes of its digits. Three
of them are 153, 371, and 407. Find the fourth num-
ber. (Source unknown.)

8. An n-digit positive integer N is a Kaprekar number
if the sum of the number formed by the last n digits
in N2, and the number formed by the first n (or n − 1)
digits in N2 equals N. For example, 297 is a Kaprekar
number since 2972 = 88209 and 88 + 209 = 297.
There are five Kaprekar numbers < 100. Find them.

9. Find the flaw in the following “proof”:
Let a and b be real numbers such that a = b. Then

ab = b2

a2 − ab = a2 − b2

Factoring, a(a − b) = (a + b)(a − b). Canceling

a − b from both sides, a = a + b. Since a = b,

this yields a = 2a. Canceling a from both sides,

we get 1 = 2.
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D. R. Kaprekar (1905–1986) was born in Dahanu, India, near Bombay. After losing his mother at the age of

eight, he built a close relationship with his astrologer-father, who passed on his knowledge to his son. He at-

tended Ferguson College in Pune, and then graduated from the University of Bombay in 1929. He was awarded

the Wrangler R. P. Paranjpe prize in 1927 in recognition of his mathematical contributions. A prolific writer in

recreational number theory, he worked as a schoolteacher in Devlali, India, from 1930 until his retirement in

1962.

Kaprekar is best known for his 1946 discovery of the Kaprekar constant 6174. It took him about three

years to discover the number: Take a four-digit number a, not all digits being the same; let a′ denote the number

obtained by rearranging its digits in nondecreasing order and a′′ denote the number obtained by rearranging its

digits in nonincreasing order. Repeat these steps with b = a′ −a′′ and its successors. Within a maximum of eight

steps, this process will terminate in 6174. It is the only integer with this property.

10. Express 635,318,657 as the sum of two fourth powers
in two different ways. (It is the smallest number with
this property.)

11. The integer 1105 can be expressed as the sum of two
squares in four different ways. Find them.

12. There is exactly one integer between 2 and 2 × 1014

that is a perfect square, a cube, and a fifth power. Find
it. (A. J. Friedland, 1970)

13. The five-digit number 2xy89 is the square of an in-
teger. Find the two-digit number xy. (Source: Mathe-
matics Teacher)

14. How many perfect squares can be displayed on a 15-
digit calculator?

15. The number sequence 2,3,5,6,7,10,11, . . . consists
of positive integers that are neither squares nor cubes.
Find the 500th term of this sequence. (Source: Math-
ematics Teacher)

Prove each, where a, b, and n are any integers, and x is a
real number.
16. |ab| = |a| · |b|
17. |a + b| ≤ |a| + |b|
18.

⌊
n

2

⌋

= n − 1

2
if n is odd.

19.

⌈
n

2

⌉

= n + 1

2
if n is odd.

20.

⌊
n2

4

⌋

= n2 − 1

4
if n is odd.

21.

⌈
n2

4

⌉

= n2 + 3

4
if n is odd.

22.

⌊
n

2

⌋

+
⌈

n

2

⌉

= n

23. 	x
 = �x� + 1 (x /∈ Z)

24. 	x
 = −�−x�
25. 	x + n
 = 	x
 + n
26. �x� + �x + 1/2� = �2x�
27. ��x�/n� = �x/n�
The distance from x to y on the number line, denoted by
d(x, y), is defined by d(x, y) = |y − x|. Prove each, where
x, y, and z are any integers.
28. d(x, y) ≥ 0
29. d(0, x) = |x|
30. d(x, y) = 0 if and only if x = y
31. d(x, y) = d(y, x)
32. d(x, y) ≤ d(x, z) + d(z, y)
33. Let max{x, y} denote the maximum of x and y, and

min{x, y} their minimum, where x and y are any inte-
gers. Prove that max{x, y} − min{x, y} = |x − y|.

34. A round-robin tournament has n teams, and each team
plays at most once in a round. Determine the mini-
mum number of rounds f (n) needed to complete the
tournament. (Romanian Olympiad, 1978)

� �
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Joseph Louis Lagrange (1736–1813), who ranks with Leonhard Euler as one of the

greatest mathematicians of the 18th century, was the eldest of eleven children in a

wealthy family in Turin, Italy. His father, an influential cabinet official, became bank-

rupt due to unsuccessful financial speculations, which forced Lagrange to pursue a

profession.

As a young man studying the classics at the College of Turin, his interest in math-

ematics was kindled by an essay by astronomer Edmund Halley on the superiority of

the analytical methods of calculus over geometry in the solution of optical problems.

In 1754 he began corresponding with several outstanding mathematicians in Europe.

The following year, Lagrange was appointed professor of mathematics at the Royal

Artillery School in Turin. Three years later, he helped to found a society that later

became the Turin Academy of Sciences. While at Turin, Lagrange developed revolu-

tionary results in the calculus of variations, mechanics, sound, and probability, winning the prestigious Grand Prix

of the Paris Academy of Sciences in 1764 and 1766.

In 1766, when Euler left the Berlin Academy of Sciences, Frederick the Great wrote to Lagrange that “the

greatest king in Europe” would like to have “the greatest mathematician of Europe” at his court. Accepting the

invitation, Lagrange moved to Berlin to head the Academy and remained there for 20 years. When Frederick died

in 1786, Lagrange moved to Paris at the invitation of Louis XVI. Lagrange was appointed professor at the École

Normale and then at the École Polytechnique, where he taught until 1799.

Lagrange made significant contributions to analysis, analytical mechanics, calculus, probability, and number

theory, as well as helping to set up the French metric system.

1.2 The Summation and Product Notations

We will find both the summation and the product notations very useful throughout
the remainder of this book. First, we turn to the summation notation.

The Summation Notation
Sums, such as ak + ak+1 + · · · + am, can be written in a compact form using the
summation symbol

∑
(the Greek uppercase letter sigma), which denotes the word

sum. The summation notation was introduced in 1772 by the French mathematician
Joseph Louis Lagrange.

A typical term in the sum above can be denoted by ai, so the above sum is the

sum of the numbers ai as i runs from k to m and is denoted by
i=m∑

i=k
ai. Thus

i=m∑

i=k

ai = ak + ak+1 + · · · + am
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The variable i is the summation index. The values k and m are the lower and upper
limits of the index i. The “i =” above the

∑
is usually omitted:

i=m∑

i=k

ai =
m∑

i=k

ai

For example,

2∑

i=−1

i(i − 1) = (−1)(−1 − 1) + 0(0 − 1) + 1(1 − 1) + 2(2 − 1) = 4

The index i is a dummy variable; we can use any variable as the index without
affecting the value of the sum, so

m∑

i=�

ai =
m∑

j=�

aj =
m∑

k=�

ak

EXAMPLE 1.2 Evaluate
3∑

j=−2
j2.

SOLUTION

3∑

j=−2

j2 = (−2)2 +(−1)2 +02 +12 +22 +32 = 19 �

The following results are extremely useful in evaluating finite sums. They can
be proven using mathematical induction, presented in Section 1.3.

THEOREM 1.3 Let n be any positive integer and c any real number, and a1,a2, . . . ,an and b1,
b2, . . . ,bn any two number sequences. Then

n∑

i=1

c = nc (1.1)
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n∑

i=1

(cai) = c

(
n∑

i=1

ai

)

(1.2)

n∑

i=1

(ai + bi) =
n∑

i=1

ai +
n∑

i=1

bi (1.3)

(These results can be extended to any lower limit k ∈ Z.) �

The following example illustrates this theorem.

EXAMPLE 1.3 Evaluate
2∑

j=−1
[(5j)3 − 2j].

SOLUTION

2∑

j=−1

[(5j)3 − 2j] =
2∑

j=−1

(5j)3 − 2

(
2∑

j=−1

j

)

= 125

(
2∑

j=−1

j3
)

− 2
2∑

j=−1

j

= 125[(−1)3 + 03 + 13 + 23] − 2(−1 + 0 + 1 + 2)

= 996 �

Indexed Summation

The summation notation can be extended to sequences with index sets I as their
domains. For instance,

∑

i∈I
ai denotes the sum of the values of ai as i runs over the

various values in I.
As an example, let I = {0,1,3,5}. Then

∑

i∈I
(2i + 1) represents the sum of the

values of 2i + 1 with i ∈ I, so

∑

i∈I

(2i + 1) = (2 · 0 + 1) + (2 · 1 + 1) + (2 · 3 + 1) + (2 · 5 + 1) = 22

Often we need to evaluate sums of the form
∑

P
aij, where the subscripts i and j

satisfy certain properties P. (Such summations are used in Chapter 8.)
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For example, let I = {1,2,3,4}. Then
∑

1≤i<j≤4
(2i + 3j) denotes the sum of the

values of 2i + 3j, where 1 ≤ i < j ≤ 4. This can be abbreviated as
∑

i<j
(2i + 3j) pro-

vided the index set is obvious from the context. To find this sum, we must consider
every possible pair (i, j), where i, j ∈ I and i < j. Thus,

∑

i<j

(2i + 3j) = (2 · 1 + 3 · 2) + (2 · 1 + 3 · 3) + (2 · 1 + 3 · 4) + (2 · 2 + 3 · 3)

+ (2 · 2 + 3 · 4) + (2 · 3 + 3 · 4)

= 80

EXAMPLE 1.4 Evaluate
∑

d≥1
d|6

d, where d|6 means d is a factor of 6.

SOLUTION

∑

d≥1
d|6

d = sum of positive integers d, where d is a factor of 6

= sum of positive factors of 6

= 1 + 2 + 3 + 6 = 12 �

Multiple summations arise often in mathematics. They are evaluated in a
right-to-left fashion. For example, the double summation

∑

i

∑

j
aij is evaluated as

∑

i

(∑

j
aij

)
, as demonstrated below.

EXAMPLE 1.5 Evaluate
1∑

i=−1

2∑

j=0
(2i + 3j).

SOLUTION

1∑

i=−1

2∑

j=0

(2i + 3j) =
1∑

i=−1

[
2∑

j=0

(2i + 3j)

]

=
1∑

i=−1

[
(2i + 3 · 0) + (2i + 3 · 1) + (2i + 3 · 2)

]
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=
1∑

i=−1

(6i + 9)

= [
6 · (−1) + 9

] + (6 · 0 + 9) + (6 · 1 + 9)

= 27 �

We now turn to the product notation.

The Product Notation

Just as
∑

is used to denote sums, the product akak+1 · · ·am is denoted by
i=m∏

i=k
ai. The

product symbol
∏

is the Greek capital letter pi. As in the case of the summation
notation, the “i =” above the product symbol is often dropped:

i=m∏

i=k

ai =
m∏

i=k

ai = akak+1 · · ·am

Again, i is just a dummy variable.
The following three examples illustrate this notation.
The factorial function, which often arises in number theory, can be defined

using the product symbol, as the following example shows.

EXAMPLE 1.6 The factorial function f (n) = n! (read n factorial) is defined by n! = n(n−1) · · ·2 ·1,

where 0! = 1. Using the product notation, f (n) = n! =
n∏

k=1
k. �

EXAMPLE 1.7 Evaluate
5∏

i=2
(i2 − 3).

SOLUTION

5∏

i=2

(i2 − 3) = (22 − 3)(32 − 3)(42 − 3)(52 − 3)

= 1 · 6 · 13 · 22 = 1716 �
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Just as we can have indexed summation, we can also have indexed multiplica-
tion, as the following example shows.

EXAMPLE 1.8 Evaluate
∏

i,j∈I
i<j

(i + j), where I = {2,3,5,7}.

SOLUTION

Given product = product of all numbers i + j, where i, j ∈ {2,3,5,7} and i < j

= (2 + 3)(2 + 5)(2 + 7)(3 + 5)(3 + 7)(5 + 7)

= 5 · 7 · 9 · 8 · 10 · 12 = 302,400 �

The following exercises provide ample practice in both notations.

E X E R C I S E S 1.2

Evaluate each sum.

1.
6∑

i=1
i 2.

4∑

k=0
(3 + k)

3.
4∑

j=0
(j − 1) 4.

4∑

i=−1
3

5.
4∑

n=0
(3n − 2) 6.

2∑

j=−2
j(j − 2)

7.
4∑

k=−2
3k 8.

3∑

k=−2
3(k2)

9.
3∑

k=−1
(3k)2 10.

5∑

k=1
(3 − 2k)k

Rewrite each sum using the summation notation.

11. 1 + 3 + 5 + · · · + 23

12. 31 + 32 + · · · + 310

13. 1 · 2 + 2 · 3 + · · · + 11 · 12
14. 1(1 + 2) + 2(2 + 2) + · · · + 5(5 + 2)

Determine whether each is true.

15.
n∑

i=m
i =

n∑

i=m
(n + m − i)

16.
n∑

i=m
xi =

n∑

i=m
xn+m−i

17. Sums of the form S =
n∑

i=m+1
(ai − ai−1) are called

telescoping sums. Show that S = an − am.

18. Using Exercise 17 and the identity
1

i(i + 1)
=

1

i
− 1

i + 1
, derive a formula for

n∑

i=1

1

i(i + 1)
.

19. Using Exercise 17 and the identity (i + 1)2 − i2 =
2i + 1, derive a formula for

n∑

i=1
i.

20. Using Exercise 17 and the identity (i + 1)3 − i3 =
3i2 + 3i + 1, derive a formula for the sum

n∑

i=1
i2.

21. Using the ideas in Exercises 19 and 20, derive a for-

mula for
n∑

i=1
i3.

Evaluate each.

22.
5∑

i=1

6∑

j=1
(2i + 3j) 23.

3∑

i=1

i∑

j=1
(i + 3)

24.
5∑

i=1

6∑

j=1
(i2 − j + 1) 25.

6∑

j=1

5∑

i=1
(i2 − j + 1)

26.
3∏

i=0
(i + 1) 27.

5∏

j=3
(j2 + 1)
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28.
50∏

k=0
(−1)k

Evaluate each, where p ∈ {2,3,5,7,11,13} and
I = {1,2,3,5}.
29.

3∑

k=0
k! 30.

∑

p≤10
p

31.
∏

p≤10
p 32.

∏

i∈I
(3i − 1)

33.
∑

d≥1
d|12

d 34.
∑

d≥1
d|12

(
12

d

)

35.
∑

d≥1
d|18

1 36.
∑

p≤10
1

37.
∏

i,j∈I
i<j

(i + 2j) 38.
∏

i,j∈I
i≤j

i j

39.
∑

i,j∈I
i|j

(2i + 3j) 40.
4∑

j=1
(3j − 3j−1)

Expand each.

41.
3∑

i=1

2∑

j=1
aij

42.
2∑

j=1

3∑

i=1
aij

43.
∑

1≤i<j≤3
(ai + aj)

44.
∑

1≤i<j<k≤3
(ai + aj + ak)

Evaluate each, where lg x = log2 x.

45.
1023∑

n=1
lg(1 + 1/n)

46.
1023∏

n=1
(1 + 1/n)

47.
1024∑

n=1
�lg(1 + 1/n)�

48.
n∑

k=1
k · k! (Hint: Use Exercise 17.)

49. Find the tens digit in the sum
999∑

k=1
k!.

50. Find the hundreds digit in the sum
999∑

k=1
k · k!.

(Hint: Use Exercise 48.)
�51. Compute

∞∑
n=0

⌊
10000 + 2n

2n+1

⌋

.

(Hint: �x + 1/2� = �2x� − �x�; Source: Mathematics
Teacher, 1993.)

� �

1.3 Mathematical Induction

The principle of mathematical induction† (PMI) is a powerful proof technique that
we will use often in later chapters.

Many interesting results in mathematics hold true for all positive integers. For
example, the following statements are true for every positive integer n and all real
numbers x, y, and xi:

• (x · y)n = xn · yn

• log(x1 · · · xn) =
n∑

i=1
log xi

† The term mathematical induction was coined by Augustus DeMorgan (1806–1871), although the
Venetian scientist Francesco Maurocylus (1491–1575) applied it much earlier, in proofs in a book
he wrote in 1575.



16 CHAPTER 1 Fundamentals

•
n∑

i=1
i = n(n + 1)

2

•
n−1∑

i=0
ri = rn − 1

r − 1
(r �= 1)

How do we prove that these results hold for every positive integer n? Obviously,
it is impossible to substitute each positive integer for n and verify that the formula
holds. The principle of induction can establish the validity of such formulas.

Before we plunge into induction, we need the well-ordering principle, which we
accept as an axiom. (An axiom is a statement that is accepted as true; it is consistent
with known facts; often it is a self-evident statement.)

The Well-Ordering Principle

Every nonempty set of positive integers has a least element.
For example, the set {17,23,5,18,13} has a least element, namely, 5. The ele-

ments of the set can be ordered as 5, 13, 17, 18, and 23.
By virtue of the well-ordering principle, the set of positive integers is well or-

dered. You may notice that the set of negative integers is not well ordered.
The following example is a simple application of the well-ordering principle.

EXAMPLE 1.9 Prove that there is no positive integer between 0 and 1.

PROOF (by contradiction)
Suppose there is a positive integer a between 0 and 1. Let S = {n ∈ Z+ | 0 < n < 1}.
Since 0 < a < 1,a ∈ S, so S is nonempty. Therefore, by the well-ordering principle,
S has a least element �, where 0 < � < 1. Then 0 < �2 < �, so �2 ∈ S. But �2 < �,
which contradicts our assumption that � is a least element of S. Thus, there are no
positive integers between 0 and 1. �

The well-ordering principle can be extended to whole numbers also, as the fol-
lowing example shows.

EXAMPLE 1.10 Prove that every nonempty set of nonnegative integers has a least element.

PROOF (by cases)
Let S be a set of nonnegative integers.

case 1 Suppose 0 ∈ S. Since 0 is less than every positive integer, 0 is less than
every nonzero element in S, so 0 is a least element in S.



1.3 Mathematical Induction 17

case 2 Suppose 0 /∈ S. Then S contains only positive integers. So, by the well-
ordering principle, S contains a least element.

Thus, in both cases, S contains a least element. �

Weak Version of Induction
The following theorem is the cornerstone of the principle of induction.

THEOREM 1.4 Let S be a set of positive integers satisfying the following properties:

1. 1 ∈ S.
2. If k is an arbitrary positive integer in S, then k + 1 ∈ S.

Then S = N.

PROOF (by contradiction)
Suppose S �= N. Let S′ = {n ∈ N | n /∈ S}. Since S′ �= ∅, by the well-ordering prin-
ciple, S′ contains a least element �′. Then �′ > 1 by condition (1). Since �′ is the
least element in S′, �′ − 1 /∈ S′. Therefore, �′ − 1 ∈ S. Consequently, by condition (2),
(�′ − 1) + 1 = �′ ∈ S. This contradiction establishes the theorem. �

This result can be generalized, as the following theorem shows. We leave its
proof as an exercise.

THEOREM 1.5 Let n0 be a fixed integer. Let S be a set of integers satisfying the following conditions:

• n0 ∈ S.
• If k is an arbitrary integer ≥ n0 such that k ∈ S, then k + 1 ∈ S.

Then S contains all integers n ≥ n0.

Before we formalize the principle of induction, let’s look at a trivial example.
Consider an infinite number of identical dominoes arranged in a row at varying dis-
tances from each other, as in Figure 1.4(a). Suppose we knock down the first domino.
What happens to the rest of the dominoes? Do they all fall? Not necessarily. See Fig-
ures 1.4(b) and 1.4(c).

So let us assume the following: The dominoes are placed in such a way that the
distance between two adjacent dominoes is less than the length of a domino; the first
domino falls; and if the kth domino falls, then the (k + 1)st domino also falls. Then
they all would fall. See Figure 1.4(d).

This illustration can be expressed symbolically. Let P(n) denote the statement
that the nth domino falls. Assume the following statements are true:
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Figure 1.4

• P(1).
• P(k) implies P(k + 1) for an arbitrary positive integer k.

Then P(n) is true for every positive integer n; that is, every domino would fall. This
is the essence of the following weak version of the principle.

THEOREM 1.6 (The Principle of Mathematical Induction) Let P(n) be a statement satisfying
the following conditions, where n ∈ Z:

1. P(n0) is true for some integer n0.
2. If P(k) is true for an arbitrary integer k ≥ n0, then P(k + 1) is also true.

Then P(n) is true for every integer n ≥ n0.

PROOF

Let S denote the set of integers ≥ n0 for which P(n) is true. Since P(n0) is true,
n0 ∈ S. By condition (2), whenever k ∈ S, k + 1 ∈ S, so, by Theorem 1.5, S contains
all integers ≥ n0. Consequently, P(n) is true for every integer n ≥ n0. �

Condition (1) in Theorem 1.6 assumes the proposition P(n) is true when n = n0.
Look at condition (2): If P(n) is true for an arbitrary integer k ≥ n0, it is also true for
n = k + 1. Then, by repeated application of condition (2), it follows that P(n0 + 1),
P(n0 + 2), . . . hold true. In other words, P(n) holds for every n ≥ n0.

Theorem 1.6 can be established directly from the well-ordering principle. See
Exercise 44.
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Proving a result by induction involves two key steps:

• basis step Verify that P(n0) is true.
• induction step Assume P(k) is true for an arbitrary integer k ≥ n0

(inductive hypothesis).
Then verify that P(k + 1) is also true.

A word of caution: A question frequently asked is, “Isn’t this circular reasoning?
Aren’t we assuming what we are asked to prove?” In fact, no. The confusion stems
from misinterpreting step 2 for the conclusion. The induction step involves showing
that P(k) implies P(k + 1); that is, if P(k) is true, then so is P(k + 1). The conclusion
is “P(n) is true for every n ≥ n0.” So be careful.

Interestingly, there were television commercials for Crest toothpaste based on
induction involving toothpastes and penguins.

Some examples will show how useful this important proof technique is.

EXAMPLE 1.11 Prove that

1 + 2 + 3 + · · · + n = n(n + 1)

2
(1.4)

for every positive integer n.

PROOF (by induction)

Let P(n) be the statement that
n∑

i=1
i = [n(n + 1)]/2.

basis step To verify that P(1) is true (note: Here n0 = 1):

When n = 1, RHS = [1(1 + 1)]/2 = 1 =
1∑

i=1

i = LHS.† Thus, P(1) is true.

† LHS and RHS are abbreviations of left-hand side and right-hand side, respectively.
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induction step Let k be an arbitrary positive integer. We would like to show that
P(k) implies P(k + 1). Assume P(k) is true; that is,

k∑

i=1

i = k(k + 1)

2
← inductive hypothesis

To show that P(k) implies P(k + 1), that is,
k+1∑

i=1
i = [(k + 1)(k + 2)]/2, we start with

the LHS of this equation:

LHS =
k+1∑

i=1

i =
k∑

i=1

i + (k + 1)

[

Note:
k+1∑

i=1

xi =
(

k∑

i=1

xi

)

+ xk+1.

]

= k(k + 1)

2
+ (k + 1), by the inductive hypothesis

= (k + 1)(k + 2)

2
= RHS

So, if P(k) is true, then P(k + 1) is also true.
Thus, by induction, P(n) is true for every integer n ≥ 1; that is, the formula holds

for every positive integer. �

Figure 1.5 demonstrates formula (1.4) without words.

Figure 1.5

Often we arrive at a formula by studying patterns, then making a conjecture, and
then establishing the formula by induction, as the following example shows.

EXAMPLE 1.12 Conjecture a formula for the sum of the first n odd positive integers and then use
induction to establish the conjecture.
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SOLUTION

First, we study the first five such sums, and then look for a pattern, to predict a
formula for the sum of the first n odd positive integers.

The first five such sums are

1 = 12

1 + 3 = 22

1 + 3 + 5 = 32

1 + 3 + 5 + 7 = 42

1 + 3 + 5 + 7 + 9 = 52

There is a clear pattern here, so we conjecture that the sum of the first n odd positive
integers is n2; that is,

n∑

i=1

(2i − 1) = n2 (1.5)

We shall now prove it by the principle of induction.

PROOF

When n = 1,
n∑

i=1
(2i − 1) =

1∑

i=1
(2i − 1) = 1 = 12, so the result holds when n = 1.

Now, assume the formula holds when n = k:
k∑

i=1
(2i − 1) = k2. To show that it

holds when n = k + 1, consider the sum
k+1∑

i=1
(2i − 1). We have

k+1∑

i=1

(2i − 1) =
k∑

i=1

(2i − 1) + [2(k + 1) − 1]

= k2 + (2k + 1) by the inductive hypothesis

= (k + 1)2

Consequently, if the formula holds when n = k, it is also true when n = k + 1.
Thus, by induction, the formula holds for every positive integer n. �

Figure 1.6 provides a visual illustration of formula (1.5).

Figure 1.6
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Returning to induction, we find that both the basis and the induction steps are essen-
tial in the induction proof, as the following two examples demonstrate.

EXAMPLE 1.13 Consider the “formula” 1 + 3 + 5 +· · ·+ (2n − 1) = (n − 2)2. Clearly it is true when
n = 1. But it is not true when n = 2.

Conclusion? That the truth of the basis step does not ensure that the statement
1 + 3 + 5 + · · · + (2n − 1) = (n − 2)2 is true for every n.

The following example shows that the validity of the induction step is necessary,
but not sufficient, to guarantee that P(n) is true for all desired integers.

EXAMPLE 1.14 Consider the “formula” P(n): 1 + 3 + 5 + · · · + (2n − 1) = n2 + 1. Suppose P(k) is

true:
k∑

i=1
(2i − 1) = k2 + 1. Then

k+1∑

i=1

(2i − 1) =
k∑

i=1

(2i − 1) + [2(k + 1) − 1]

= (k2 + 1) + (2k + 1)

= (k + 1)2 + 1

So if P(k) is true, P(k + 1) is true. Nevertheless, the formula does not hold for any
positive integer n. Try P(1). �

An interesting digression: Using induction, we “prove” in the following example
that every person is of the same sex.

EXAMPLE 1.15 “Prove” that every person in a set of n people is of the same sex.

PROOF

Let P(n): Everyone in a set of n people is of the same sex. Clearly, P(1) is true. Let
k be a positive integer such that P(k) is true; that is, everyone in a set of k people is
of the same sex.

To show that P(k + 1) is true, consider a set A = {a1,a2, . . . ,ak+1} of k + 1
people. Partition A into two overlapping sets, B = {a1, a2, . . . , ak} and C =
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{a2, . . . ,ak+1}, as in Figure 1.7. Since B and C contain k elements, by the induc-
tive hypothesis, everyone in B is of the same sex and everyone in C is of the same
sex. Since B and C overlap, everyone in B ∪ C† must be of the same sex; that is,
everyone in A is of the same sex.

Figure 1.7

Therefore, by induction, P(n) is true for every positive integer n. �

Note: Clearly the assertion that everyone is of the same sex is false. Can you find the
flaw in the “proof?” See Exercise 35.

Strong Version of Induction

We now present the stronger version of induction.
Sometimes the truth of P(k) might not be enough to establish that of P(k + 1).

In other words, the truth of P(k + 1) may require more than that of P(k). In such
cases, we assume a stronger inductive hypothesis that P(n0),P(n0 + 1), . . . ,P(k) are
all true; then verify that P(k + 1) is also true. This strong version, which can be
proven using the weak version (see Exercise 43), is stated as follows.

THEOREM 1.7 (The Second Principle of Mathematical Induction) Let P(n) be a statement sat-
isfying the following conditions, where n ∈ Z:

1. P(n0) is true for some integer n0.

† B ∪ C denotes the union of the sets B and C; it contains the elements in B together with those in C.
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2. If k is an arbitrary integer ≥ n0 such that P(n0), P(n0 + 1), . . ., and P(k) are
true, then P(k + 1) is also true.

Then P(n) is true for every integer n ≥ n0.

PROOF

Let S = {n ∈ Z | P(n) is true}. Since P(n0) is true by condition (1), n0 ∈ S.
Now, assume P(n0),P(n0 + 1), . . . ,P(k) are true for an arbitrary integer k. Then

n0,n0 +1, . . . , k belong to S. So, by condition (2), k +1 also belongs to S. Therefore,
by Theorem 1.5, S contains all integers n ≥ n0. In other words, P(n) is true for every
integer n ≥ n0. �

The following example illustrates this proof technique.

EXAMPLE 1.16 Prove that any postage of n (≥ 2) cents can be made with two- and three-cent stamps.

PROOF (by strong induction)
Let P(n) denote the statement that any postage of n cents can be made with two- and
three-cent stamps.

basis step (Notice that here n0 = 2.) Since a postage of two cents can be made
with one two-cent stamp, P(2) is true. Likewise, P(3) is also true.

induction step Assume P(2),P(3),P(4), . . . ,P(k) are true; that is, any postage of
two through k cents can be made with two- and three-cent stamps.

To show that P(k + 1) is true, consider a postage of k + 1 cents. Since k + 1 =
(k −1)+2, a postage of k +1 cents can be formed with two- and three-cent stamps if
a postage of k −1 cents can be made with two- and three-cent stamps. Since P(k −1)

is true by the inductive hypothesis, this implies P(k + 1) is also true.
Thus, by the strong version of induction, P(n) is true for every n ≥ 2; that is, any

postage of n (≥ 2) cents can be made with two- and three-cent stamps. �

The following exercises and subsequent chapters offer ample practice in both
versions of induction.

E X E R C I S E S 1.3

Determine whether each set is well ordered. If it is not,
explain why.

1. Set of negative integers.
2. Set of integers.

3. {n ∈ N | n ≥ 5}
4. {n ∈ Z | n ≥ −3}

Prove each.
5. Let a ∈ Z. There are no integers between a and a + 1.
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6. Let n0 ∈ Z, S a nonempty subset of the set T = {n ∈
Z | n ≥ n0}, and �∗ be a least element of the set
T∗ = {n − n0 + 1 | n ∈ S}. Then n0 + �� − 1 is a least
element of S.

7. (Archimedean property) Let a and b be any pos-
itive integers. Then there is a positive integer n such
that na ≥ b.

(Hint: Use the well-ordering principle and contradic-
tion.)

8. Every nonempty set of negative integers has a largest
element.

9. Every nonempty set of integers ≤ a fixed integer n0
has a largest element.

(Twelve Days of Christmas) Suppose you sent your
love 1 gift on the first day of Christmas, 1 + 2 gifts on the
second day, 1 + 2 + 3 gifts on the third day, and so on.
10. How many gifts did you send on the 12th day of

Christmas?
11. How many gifts did your love receive in the 12 days

of Christmas?
12. Prove that 1 + 2 + · · · + n = [n(n + 1)]/2 by con-

sidering the sum in the reverse order.† (Do not use
mathematical induction.)

Using mathematical induction, prove each for every inte-
ger n ≥ 1.

13.
n∑

i=1
(2i − 1) = n2

14.
n∑

i=1
i2 = n(n + 1)(2n + 1)

6

† An interesting personal anecdote is told about Gauss. When

Gauss was a fourth grader, he and his classmates were asked

by his teacher to compute the sum of the first 100 positive inte-

gers. Supposedly, the teacher did so to get some time to grade

papers. To the teacher’s dismay, Gauss found the answer in a

few moments by pairing the numbers from both ends:

The sum of each pair is 101 and there are 50 pairs. So the total

sum is 50 · 101 = 5050.

15.
n∑

i=1
i3 =

[
n(n + 1)

2

]2

16.
n∑

i=1
ari−1 = a(rn − 1)

r − 1
, r �= 1

Evaluate each sum.

17.
30∑

k=1
(3k2 − 1) 18.

50∑

k=1
(k3 + 2)

19.
n∑

i=1
�i/2� 20.

n∑

i=1
	i/2


Find the value of x resulting from executing each algo-
rithm fragment, where

variable ← expression

means the value of expression is assigned to variable.

21. x ← 0
for i = 1 to n do

x ← x + (2i − 1)

22. x ← 0
for i = 1 to n do

x ← x + i(i + 1)

23. x ← 0
for i = 1 to n do

for j = 1 to i do
x ← x + 1

Evaluate each.

24.
n∑

i=1

i∑

j=1
i 25.

n∑

i=1

i∑

j=1
j

26.
n∑

i=1

i∑

j=1
j2 27.

n∑

i=1

i∑

j=1
(2j − 1)

28.
n∏

i=1
22i 29.

n∏

i=1
i2

30.
n∏

i=1

n∏

j=1
i j 31.

n∏

i=1

n∏

j=1
2i+j

32. A magic square of order n is a square arrangement
of the positive integers 1 through n2 such that the sum
of the integers along each row, column, and diagonal
is a constant k, called the magic constant. Figure 1.8
shows two magic squares, one of order 3 and the other
of order 4. Prove that the magic constant of a magic

square of order n is
n(n2 + 1)

2
.
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Figure 1.8
According to legend, King Shirham of India was so
pleased by the invention of chess that he offered
to give Sissa Ben Dahir, its inventor, anything he
wished. Dahir’s request was a seemingly modest one:
one grain of wheat on the first square of a chessboard,
two on the second, four on the third, and so on. The
king was delighted with this simple request but soon
realized he could never fulfill it. The last square alone
would take 263 = 9,223,372,036,854,775,808 grains
of wheat. Find the following for an n × n chessboard.

33. The number of grains on the last square.
34. The total number of grains on the chessboard.
35. Find the flaw in the “proof” in Example 1.15.
Find the number of times the assignment statement
x ← x + 1 is executed by each loop.
36. for i = 1 to n do

for j = 1 to i do
x ← x + 1

37. for i = 1 to n do
for j = 1 to i do

for k = 1 to i do
x ← x + 1

38. for i = 1 to n do
for j = 1 to i do

for k = 1 to j do
x ← x + 1

39. for i = 1 to n do
for j = 1 to i do

for k = 1 to i do
for l = 1 to i do

x ← x + 1
40. Let an denote the number of times the statement

x ← x + 1 is executed in the following loop:

for i = 1 to n do
for j = 1 to �i/2� do

x ← x + 1

Show that an =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

n2

4
if n is even

n2 − 1

4
otherwise.

Evaluate each.

41.
1024∑

n=1
�lg n� 42.

1024∑

n=1
	lg n


�43. Prove the strong version of induction, using the
weak version.

�44. Prove the weak version of induction, using the
well-ordering principle.

��45. Let Sn denote the sum of the elements in the nth
set of the sequence of sets of squares {1}, {4,9},
{16,25,36}, . . .. Find a formula for Sn. (J. M. How-
ell, 1989)

� �

1.4 Recursion

Recursion is one of the most elegant problem-solving techniques. It is so powerful
a tool that most programming languages support it.

We begin with the well-known handshake problem:

There are n guests at a party. Each person shakes hands with everybody else exactly once. How many
handshakes are made?
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If we decide to solve a problem such as this, the solution may not be obvious.
However, it is possible that the problem could be defined in terms of a simpler ver-
sion of itself. Such a definition is an inductive definition. Consequently, the given
problem can be solved provided the simpler version can be solved. This idea is pic-
torially represented in Figure 1.9.

Figure 1.9

Recursive Definition of a Function

Let a ∈ W and X = {a,a + 1,a + 2, . . .}. An inductive definition of a function f
with domain X consists of three parts:

• Basis step A few initial values f (a), f (a+1), . . . , f (a+k −1) are specified.
Equations that specify such initial values are initial conditions.

• Recursive step A formula to compute f (n) from the k preceding functional
values f (n−1), f (n−2), . . . , f (n−k) is made. Such a formula is a recurrence
relation (or recursive formula).

• Terminal step Only values thus obtained are valid functional values. (For
convenience, we drop this clause from the recursive definition.)

In a recursive definition of f , f (n) may be defined using the values f (k), where
k �= n, so not all recursively defined functions can be defined inductively; see Exer-
cises 25–31.

Thus, the recursive definition of f consists of a finite number of initial conditions
and a recurrence relation.

Recursion can be employed to find the minimum and maximum of three
or more real numbers. For instance, min{w, x, y, z} = min{w, {min{x,min{y, z}}}};
max{w, x, y, z} can be evaluated similarly. For example,

min{23,5,−6,47,31} = min{23,min{5,min{−6,min{47,31}}}} = −6

and

max{23,5,−6,47,31} = max{23,max{5,max{−6,max{47,31}}}} = 47

The next three examples illustrate the recursive definition.
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EXAMPLE 1.17 Define recursively the factorial function f .

SOLUTION

Recall that the factorial function f is defined by f (n) = n!, where f (0) = 1. Since
n! = n(n − 1)!, it can be defined recursively as follows:

f (0) = 1 ← initial condition
f (n) = n · f (n − 1), n ≥ 1 ← recurrence relation �

Suppose we would like to compute f (3) recursively. We must continue to apply
the recurrence relation until the initial condition is reached, as shown below:

Since f (0) = 1,1 is substituted for f (0) in equation (1.8) and f (1) is computed:
f (1) = 1 · f (0) = 1 · 1 = 1. This value is substituted for f (1) in equation (1.7) and
f (2) is computed: f (2) = 2 · f (1) = 2 · 1 = 2. This value is now returned to equa-
tion (1.6) to compute f (3): f (3) = 3 · f (2) = 3 · 2 = 6, as expected.

We now return to the handshake problem.

EXAMPLE 1.18 (The handshake problem) There are n guests at a party. Each person shakes hands
with everybody else exactly once. Define recursively the number of handshakes h(n)

made.

SOLUTION

Clearly, h(1) = 0, so let n ≥ 2. Let x be one of the guests. The number of handshakes
made by the remaining n − 1 guests among themselves, by definition, is h(n − 1).
Now person x shakes hands with each of these n − 1 guests, yielding n − 1 hand-
shakes. So the total number of handshakes made equals h(n − 1) + (n − 1), where
n ≥ 2.

Thus, h(n) can be defined recursively as follows:

h(1) = 0 ← initial condition

h(n) = h(n − 1) + (n − 1), n ≥ 2 ← recurrence relation �
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EXAMPLE 1.19 (Tower of Brahma†) According to a legend, at the beginning of creation, God
stacked 64 golden disks on one of three diamond pegs on a brass platform in the
temple of Brahma at Benares,‡ India (see Figure 1.10). The priests on duty were
asked to move the disks from peg X to peg Z, using Y as an auxiliary peg, under the
following conditions:

Figure 1.10

• Only one disk can be moved at a time.
• No disk can be placed on the top of a smaller disk.

The priests were told the world would end when the job was completed.
Suppose there are n disks on peg X. Let bn denote the number of moves needed

to move them from peg X to peg Z, using peg Y as an intermediary. Define bn recur-
sively.

SOLUTION

Clearly b1 = 1. Assume n ≥ 2. Consider the top n − 1 disks at peg X. By definition,
it takes bn−1 moves to transfer them from X to Y using Z as an auxiliary. That leaves
the largest disk at peg X; it takes one move to transfer it from X to Z. See Figure 1.11.

Figure 1.11

† A puzzle based on the Tower of Brahma was marketed by the French mathematician François-
Edouard-Anatole Lucas in 1883 under the name Tower of Hanoi.

‡ Benares is now known as Varanasi.
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Now the n − 1 disks at Y can be moved from Y to Z using X as an intermediary
in bn−1 moves, so the total number of moves needed is bn−1 +1+bn−1 = 2bn−1 +1.
Thus bn can be defined recursively as follows:

bn =
{

1 if n = 1 ← initial condition

2bn−1 + 1 if n ≥ 2 ← recurrence relation �

For example,

b4 = 2b3 + 1 = 2[2b2 + 1] + 1
= 4b2 + 2 + 1 = 4[2b1 + 1] + 2 + 1
= 8b1 + 4 + 2 + 1 = 8(1) + 4 + 2 + 1 = 15,

so it takes 15 moves to transfer 4 disks from X to Z.
Notice that the recursive definition of a function f does not provide us with

an explicit formula for f (n) but establishes a systematic procedure for finding it.
The iterative method of finding a formula for f (n) involves two steps: 1) apply the
recurrence formula iteratively and look for a pattern to predict an explicit formula;
2) use induction to prove that the formula does indeed hold for every possible value
of the integer n.

The following example illustrates this method.

EXAMPLE 1.20 Solve the recurrence relation in Example 1.18.

SOLUTION

Using iteration, we have:

h(n) = h(n − 1) + (n − 1)

= h(n − 2) + (n − 2) + (n − 1)

= h(n − 3) + (n − 3) + (n − 2) + (n − 1)

...

= h(1) + 1 + 2 + 3 + · · · + (n − 2) + (n − 1)

= 0 + 1 + 2 + 3 + · · · + (n − 1)

= n(n − 1)

2
, by Example 1.11

(We can verify this using induction.) �
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E X E R C I S E S 1.4

In Exercises 1–6, compute the first four terms of the se-
quence defined recursively.

1. a1 = 1
an = an−1 + 3, n ≥ 2

2. a0 = 1
an = an−1 + n, n ≥ 1

3. a1 = 1

an = n

n − 1
an−1, n ≥ 2

4. a1 = 1, a2 = 2
an = an−1 + an−2, n ≥ 3

5. a1 = 1, a2 = 1, a3 = 2
an = an−1 + an−2 + an−3, n ≥ 4

6. a1 = 1, a2 = 2, a3 = 3
an = an−1 + an−2 + an−3, n ≥ 4

Define recursively each number sequence.
(Hint: Look for a pattern and define the nth term
an recursively.)
7. 1,4,7,10,13, . . .

8. 3,8,13,18,23, . . .

9. 0,3,9,21,45, . . .

10. 1,2,5,26,677, . . .

An arithmetic sequence is a number sequence in which
every term except the first is obtained by adding a fixed
number, called the common difference, to the preceding
term. For example, 1,3,5,7, . . . is an arithmetic sequence
with common difference 2. Let an denote the nth term of
the arithmetic sequence with first term a and common dif-
ference d.
11. Define an recursively.
12. Find an explicit formula for an.
13. Let Sn denote the sum of the first n terms of the se-

quence. Prove that

Sn = n

2

[
2a + (n − 1)d

]

A geometric sequence is a number sequence in which
every term, except the first, is obtained by multiplying the
previous term by a constant, called the common ratio.
For example, 2,6,18,54, . . . is a geometric sequence with
common ratio 3. Let an denote the nth term of the geomet-
ric sequence with first term a and common ratio r.
14. Define an recursively.

15. Find an explicit formula for an.
16. Let Sn denote the sum of the first n terms of the se-

quence. Prove that Sn = [a(rn − 1)]/(r − 1), where
r �= 1. Do not use induction.

Use the following triangular array of positive integers to
answer Exercises 17–20.

1
2 3

4 5 6
7 8 9 10

...

17. Let an denote the first term in row n, where n ≥ 1.
Define an recursively.

18. Find an explicit formula for an.
19. Find the sum of the numbers in row n.
20. Which row contains the number 2076?
Let an denote the number of times the assignment state-
ment x ← x + 1 is executed by each nested for loop. De-
fine an recursively.
21. for i = 1 to n do

for j = 1 to i do
x ← x + 1

22. for i = 1 to n do
for j = 1 to i do

for k = 1 to i do
x ← x + 1

23. Using Example 1.19, predict an explicit formula
for bn.

24. Using induction, prove the explicit formula for bn in
Exercise 23.

The 91-function f , invented by John McCarthy, is defined
recursively on W as follows:

f (x) =
{

x − 10 if x > 100

f (f (x + 11)) if 0 ≤ x ≤ 100

Compute each:
25. f (99)

26. f (98)

27. f ( f (99))
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John McCarthy (1927– ), one of the fathers of artificial intelligence (AI), was born

in Boston. He graduated in mathematics from Caltech and received his Ph.D. from

Princeton in 1951. After teaching at Princeton, Stanford, Dartmouth, and MIT, he re-

turned to Stanford as full professor. While at Princeton, he was named a Proctor

Fellow and later Higgins Research Instructor in mathematics. At Stanford, he headed

its Artificial Intelligence Laboratory.

McCarthy coined the term artificial intelligence while at Dartmouth. He developed

LISP (LISt Programming), one of the most widely used programming languages in Al.

In addition, he helped develop ALGOL 58 and ALGOL 60. In 1971, he received the

prestigious Alan M. Turing Award for his outstanding contributions to data processing.

28. f ( f (91))

29. Show that f (99) = 91.
30. Prove that f (x) = 91 for 90 ≤ x ≤ 100.
31. Prove that f (x) = 91 for 0 ≤ x < 90.
A function of theoretical importance in the study of al-
gorithms is Ackermann’s function, named after the Ger-
man mathematician and logician Wilhelm Ackermann
(1896–1962). It is defined recursively as follows, where
m, n ∈ W:

A(m,n) =

⎧
⎪⎪⎨

⎪⎪⎩

n + 1 if m = 0

A(m − 1,1) if n = 0

A(m − 1,A(m,n − 1)) otherwise

Compute each.
32. A(0,7)

33. A(1,1)

�34. A(5,0)

35. A(2,2)

Prove each for every integer n ≥ 0.
36. A(1,n) = n + 2
37. A(2,n) = 2n + 3

�38. Predict a formula for A(3,n).
�39. Prove the formula in Exercise 38 for every integer

n ≥ 0.
�40. Let {un} be a number sequence with u0 = 4 and

un = f (un−1), where f is a function defined by the
following table and n ≥ 1. Compute u9999. (Source:
Mathematics Teacher, 2004)

x 1 2 3 4 5
f (x) 4 1 3 5 2

� �

1.5 The Binomial Theorem

Binomials are sums of two terms, and they occur often in mathematics. This section
shows how to expand positive integral powers of binomials in a systematic way. The
coefficients in binomial expansions have several interesting properties.

Let us begin with a discussion of binomial coefficients.
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Binomial Coefficients
Let n and r be nonnegative integers. The binomial coefficient†

(
n

r

)

is defined by
(

n

r

)

= n!
r!(n − r)! if r ≤ n, and is 0 otherwise; it is also denoted by C(n, r) and nCr.

For example,
(

5

3

)

= 5!
3!(5 − 3)!

= 5 · 4 · 3 · 2 · 1

3 · 2 · 1 · 2 · 1
= 10

It follows from the definition that

(
n

0

)

= 1 =
(

n

n

)

.

There are many instances when we need to compute the binomial coefficients(
n

r

)

and

(
n

n − r

)

. Since

(
n

n − r

)

= n!
(n − r)![n − (n − r)]!

= n!
(n − r)!r! = n!

r!(n − r)! =
(

n

r

)

there is no need to evaluate both; this significantly reduces our workload. For exam-

ple,

(
25

20

)

=
(

25

25 − 20

)

=
(

25

5

)

= 53,130.

The following theorem shows an important recurrence relation satisfied by bi-
nomial coefficients. It is called Pascal’s identity, after the outstanding French math-
ematician and philosopher Blaise Pascal.

† The term binomial coefficient was introduced by the German algebraist Michel Stifel (1486–1567).
In his best-known work, Arithmetica Integra (1544), Stifel gives the binomial coefficients for n ≤ 17.

The bilevel parentheses notation for binomial coefficient was introduced by the German math-
ematician and physicist Baron Andreas von Ettinghausen (1796–1878). Von Ettinghausen, born in
Heidelberg, attended the University of Vienna in Austria. For two years he worked as an assistant
in mathematics and physics at the University. In 1821 he became professor of mathematics, and in
1835, professor of physics and director of the Physics Institute. Thirteen years later, he became the
director of the Mathematical Studies and Engineering Academy in Vienna.

A pioneer in mathematical physics, von Ettinghausen worked in analysis, algebra, differential
geometry, mechanics, optics, and electromagnetism.
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Blaise Pascal (1623–1662) was born in Clermont-Ferrand, France. Although he

showed astounding mathematical ability at an early age, he was encouraged by his

father to pursue other subjects, such as ancient languages. His father even refused to

teach him any sciences and relented only when he found that Pascal by age 12 had

discovered many theorems in elementary geometry. At 14, Blaise attended weekly

meetings of a group of French mathematicians which later became the French Acad-

emy. At 16, he developed important results in conic sections and wrote a book on

them.

Observing that his father would spend countless hours auditing government ac-

counts, and feeling that intelligent people should not waste their time doing mundane

things, Pascal, at the age of 19, invented the first mechanical calculating machine.

THEOREM 1.8 (Pascal’s Identity) Let n and r be positive integers, where r ≤ n. Then

(
n

r

)

=
(

n − 1

r − 1

)

+
(

n − 1

r

)

.

PROOF

We shall simplify the RHS and show that it is equal to the LHS:
(

n − 1

r − 1

)

+
(

n − 1

r

)

= (n − 1)!
(r − 1)!(n − r)! + (n − 1)!

r!(n − r − 1)!
= r(n − 1)!

r(r − 1)!(n − r)! + (n − r)(n − 1)!
r!(n − r)(n − r − 1)!

= r(n − 1)!
r!(n − r)! + (n − r)(n − 1)!

r!(n − r)!
= (n − 1)![r + (n − r)]

r!(n − r)! = (n − 1)!n
r!(n − r)! = n!

r!(n − r)!

=
(

n

r

)

�

Pascal’s Triangle

The various binomial coefficients

(
n

r

)

, where 0 ≤ r ≤ n, can be arranged in the form

of a triangle, called Pascal’s triangle,† as in Figures 1.12 and 1.13.

† Although Pascal’s triangle is named after Pascal, it actually appeared as early as 1303 in a work by
the Chinese mathematician Chu Shi-Kie.
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Figure 1.12

Figure 1.13

Figure 1.14

Figure 1.14 shows the Chinese and Japanese versions of Pascal’s triangle.
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Pascal’s triangle has many intriguing properties:

• Every row begins with and ends in 1.
• Pascal’s triangle is symmetric about a vertical line through the middle. This

is so by Theorem 1.8.
• Any interior number in each row is the sum of the numbers immediately to its

left and to its right in the preceding row; see Figure 1.13. This is so by virtue
of Pascal’s identity.

• The sum of the numbers in any row is a power of 2. Corollary 1.1 will verify
this.

• The nth row can be used to determine 11n. For example, 113 = 1331 and
114 = 14,641. To compute higher powers of 11, you should be careful since
some of the numbers involve two or more digits. For instance, to compute 115

list row 5:

From right to left, list the single-digit numbers. When we come to a two-digit
number, write the ones digit and carry the tens digit to the number on the left.
Add the carry to the number to its left. Continue this process to the left. The
resulting number, 161,051, is 115.

• Form a regular hexagon with vertices on three adjacent rows (see Figure 1.15).
Find the products of numbers at alternate vertices. The two products are
equal. For example, 10 · 15 · 4 = 6 · 20 · 5. Surprised? Supplementary Ex-
ercise 10 confirms this property, known as Hoggatt–Hansell identity, named
after V. E. Hoggatt, Jr., and W. Hansell, who discovered it in 1971; so the
product of the six numbers is a square.

Figure 1.15
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The following theorem shows how the binomial coefficients can be used to find
the binomial expansion of (x + y)n.

THEOREM 1.9 (The Binomial Theorem)† Let x and y be any real numbers, and n any nonnega-

tive integer. Then (x + y)n =
n∑

r=0

(
n

r

)

xn−ryr .

PROOF (by weak induction)

When n = 0, LHS = (x + y)0 = 1 and RHS =
0∑

r=0

(
r

0

)

x0−ryr = x0y0 = 1, so LHS =
RHS.

Assume P(k) is true for some k ≥ 0:

(x + y)k =
k∑

r=0

(
k

r

)

xk−ryr (1.10)

Then

(x + y)k+1

= (x + y)k(x + y)

=
[

k∑

r=0

(
k

r

)

xk−ryr

]

(x + y), by equation (1.10)

=
k∑

r=0

(
k

r

)

xk+1−ryr +
k∑

r=0

(
k

r

)

xk−ryr+1

=
[(

k

0

)

xk+1 +
k∑

r=1

(
k

r

)

xk+1−ryr

]

+
[

k−1∑

r=0

(
k

r

)

xk−ryr+1 +
(

k

k

)

yk+1

]

=
(

k + 1

0

)

xk+1 +
k∑

r=1

(
k

r

)

xk+1−ryr+
k∑

r=1

(
k

r − 1

)

xk+1−ryr +
(

k + 1

k + 1

)

yk+1

=
(

k + 1

0

)

xk+1 +
k∑

r=1

[(
k

r

)

+
(

k

r − 1

)]

xk+1−ryr +
(

k + 1

k + 1

)

yk+1

=
(

k + 1

0

)

xk+1 +
k∑

r=1

(
k + 1

r

)

xk+1−ryr+
(

k + 1

k + 1

)

xk+1, by Theorem 1.8

=
k+1∑

r=0

(
k + 1

r

)

xk+1−ryr

Thus, by induction, the formula is true for every integer n ≥ 0. �

† The binomial theorem for n = 2 can be found in Euclid’s work (ca. 300 B.C.).
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It follows from the binomial theorem that the binomial coefficients in the expan-
sion of (x + y)n are the various numbers in row n of Pascal’s triangle.

The binomial theorem can be used to establish several interesting identities in-
volving binomial coefficients, as the following corollary shows.

COROLLARY † 1.1 n∑

r=0

(
n

r

)

= 2n

That is, the sum of the binomial coefficients is 2n. �

This follows by letting x = 1 = y in the binomial theorem.
The following exercises provide opportunities to explore additional relation-

ships.

E X E R C I S E S 1.5

(Twelve Days of Christmas) Suppose that on the first day
of Christmas you sent your love 1 gift, 1 + 2 gifts on the
second day, 1 + 2 + 3 gifts on the third day, and so on.

1. Show that the number of gifts sent on the nth day is(
n + 1

2

)

, where 1 ≤ n ≤ 12.

2. Show that the total number of gifts sent by the nth

day is

(
n + 2

3

)

, where 1 ≤ n ≤ 12.

Find the coefficient of each.

3. x2y6 in the expansion of (2x + y)8.
4. x4y5 in the expansion of (2x − 3y)9.

Using the binomial theorem, expand each.

5. (2x − 1)5 6. (x + 2y)6

Find the middle term in the binomial expansion of each.

7.

(

2x + 2

x

)8
8.

(

x2 + 1

x2

)10

Find the largest binomial coefficient in the expansion of
each.

9. (x + y)5 10. (x + y)6

11. (x + y)7 12. (x + y)8

13. Using Exercises 9–12, predict the largest binomial
coefficient in the binomial expansion of (x + y)n.

The Bell numbers Bn are named after the Scottish Amer-
ican mathematician Eric T. Bell (1883–1960). They are
used in combinatorics and are defined recursively as fol-
lows: B0 = 1

Bn =
n−1∑

i=0

(
n − 1

i

)

Bi, n ≥ 1

Compute each Bell number.

14. B2 15. B3
16. B4 17. B5

18. Verify that

(
n

r

)

= n

r

(
n − 1

r − 1

)

.

19. Prove that

(
2n

n

)

is an even integer. (L. Moser, 1962)

Prove each.

20. (n + 1)|
(

2n

n

)

, where a|b means a is a factor of b and

n ≥ 0.

21.
n∑

r=0

(
2n

2r

)

=
n∑

r=1

(
2n

2r − 1

)

(Hint: Use Corollary 1.1.)

† A corollary is a result that follows from the previous theorem.
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22.
n∑

r=0
2r

(
n

r

)

= 3n

23.
n∑

r=0

(
n

r

)(
n

n − r

)

=
(

2n

n

)

(Hint: Consider (1 + x)2n = (1 + x)n(1 + x)n.)

24.
n∑

i=1

(
n

i − 1

)(
n

i

)

=
(

2n

n + 1

)

(Hint: Consider (1 + x)2n = (x + 1)n(1 + x)n.)

Evaluate each sum.

25. 1

(
n

1

)

+ 2

(
n

2

)

+ 3

(
n

3

)

+ · · · + n

(
n

n

)

(Hint: Let S denote the sum. Use S and the sum in the
reverse order to compute 2S.)

26. a

(
n

0

)

+ (a + d)

(
n

1

)

+ (a + 2d)

(
n

2

)

+ · · · +

(a + nd)

(
n

n

)

(Hint: Use the same hint as in Exercise 25.)
27. Show that C(n, r − 1) < C(n, r) if and only if r <

n + 1

2
, where 0 ≤ r < n.

28. Using Exercise 27, prove that the largest binomial co-
efficient C(n, r) occurs when r = �n/2�.

Using induction, prove each.

29.

(
n

0

)

+
(

n + 1

1

)

+
(

n + 2

2

)

+ · · · +
(

n + r

r

)

=
(

n + r + 1

r

)

(Hint: Use Pascal’s identity.)

30. 1

(
n

1

)

+ 2

(
n

2

)

+ · · · + n

(
n

n

)

= n2n−1

31.

(
n

0

)2
+

(
n

1

)2
+

(
n

2

)2
+ · · · +

(
n

n

)2
=

(
2n

n

)

(Lagrange’s identity)

From the binomial expansion (1+x)n =
n∑

r=0

(
n

r

)

xr , it can

be shown that n(1 + x)n−1 =
n∑

r=1

(
n

r

)

rxr−1.

Using this result, prove each.

32. 1

(
n

1

)

+ 2

(
n

2

)

+ 3

(
n

3

)

+ · · · + n

(
n

n

)

= n2n−1

33. 1

(
n

1

)

+ 3

(
n

3

)

+ 5

(
n

5

)

+ · · · = 2

(
n

2

)

+ 4

(
n

4

)

+

6

(
n

6

)

+ · · · = n2n−2

34. Conjecture a formula for
n∑

i=2

(
i

2

)

.

35. Prove the formula guessed in Exercise 34.

36. Conjecture a formula for
n∑

i=3

(
i

3

)

.

37. Prove the formula guessed in Exercise 36.
38. Using Exercises 34–37, predict a formula for

n∑

i=k

(
i

k

)

.

� �

1.6 Polygonal Numbers

Figurate numbers are positive integers that can be represented by geometric pat-
terns. They provide a fascinating link between number theory and geometry. Not
surprisingly, figurate numbers are of ancient origin, and, in fact, it is believed that
they were invented by the Pythagoreans. In 1665, Pascal published a book on them,
Treatise on Figurate Numbers.

Polygonal numbers, also known as plane figurate numbers, are positive in-
tegers that can be represented by regular polygons in a systematic fashion. We will
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use four types of such numbers: triangular numbers, square numbers, pentagonal
numbers, and hexagonal numbers.

If you have been to a bowling alley, you know that there are ten pins in bowling,
and they are arranged initially in a triangular array. Likewise, the 15 balls in the
game of pool are also initially stored in a triangular form. Both numbers, 10 and 15,
are triangular numbers; likewise, the number of dots on a die is a triangular number.
Accordingly, we make the following definition.

Triangular Numbers

A triangular number is a positive integer that can be represented in an equilateral
triangular array. The nth triangular number is denoted by tn,n ≥ 1.

The first four triangular numbers are 1, 3, 6, and 10, and they are pictorially
represented in Figure 1.16.

Figure 1.16

Since the ith row contains i dots, tn equals the sum of the first n positive integers;
that is,

tn =
n∑

i=1

i = n(n + 1)

2
by Example 1.11

For example, t4 = (4 · 5)/2 = 10 and t36 = (36 · 37)/2 = 666.

Since tn =
(

n + 1

2

)

, triangular numbers can be read from Pascal’s triangle.

Since each row in the triangular array contains one dot more than the previous
row, tn can be defined recursively. See Figure 1.17 and Table 1.1.

Figure 1.17
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Table 1.1

A Recursive Definition of tn

t1 = 1

tn = tn−1 + n, n ≥ 2

As an example, since t3 = 6, t4 = t3 + 4 = 6 + 4 = 10 (see Figure 1.17).
We can solve the recurrence relation and obtain the explicit formula for tn found

earlier (see Exercise 1).
Now, let us take another look at The Twelve Days of Christmas, the traditional

carol, and see how it is related to triangular numbers.

The Twelve Days of Christmas
On the first day of Christmas, my true love sent me a partridge in a pear tree. On the
second day of Christmas, my true love sent me two turtle doves and a partridge in a
pear tree. On the third day, my true love sent me three French hens, two turtle doves,
and a partridge in a pear tree. The pattern continues until the twelfth day, on which
my true love sent me twelve drummers drumming, eleven pipers piping, ten lords
a-leaping, nine ladies dancing, eight maids a-milking, seven swans a-swimming, six
geese a-laying, five gold rings, four calling birds, three French hens, two turtle doves,
and a partridge in a pear tree.

Two interesting questions we would like to pursue:

• If the pattern in the carol continues for n days, how many gifts gn would be
sent on the nth day?

• What is the total number of gifts sn sent in n days?

First, notice that the number of gifts sent on the nth day equals n more than the
number of gifts sent on the previous day, so gn = gn−1 + n, where g1 = 1. Therefore,
gn = tn, the nth triangular number. For instance, the number of gifts sent on the
twelfth day is given by t12 = (12 · 13)/2 = 78.

It now follows that

sn =
n∑

i=1

ti

=
n∑

i=1

i(i + 1)

2
= 1

2

(
n∑

i=1

i2 +
n∑

i=1

i

)
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= 1

2

[
n(n + 1)(2n + 1)

6
+ n(n + 1)

2

]

= n(n + 1)

12
[(2n + 1) + 3] = n(n + 1)(n + 2)

6

=
(

n + 2

3

)

Figure 1.18 provides a geometric proof of this formula, developed in 1990 by
M. J. Zerger of Adams State College, Alamosa, Colorado.

Figure 1.18

It now follows that the total number of gifts sent in 12 days is given by s12 =
(12 · 13 · 14)/6 = 364.

The cubes 1,8,27,64,125, . . . ,n3 are related to triangular numbers. To see this,

let cn denote the nth cube n3. Since
n∑

k=1
k3 = [n(n + 1)/2]2, it follows by Exercise 15

in Section 1.3 that
n∑

k=1
ck = t2n; that is, the sum of the first n cubes equals the square

of the nth triangular number.
The following example shows that triangular numbers can occur in quite unex-

pected places. It also illustrates, step-by-step, a powerful problem-solving technique:
collecting data, organizing data, conjecturing a desired formula, and then establish-
ing the formula.

EXAMPLE 1.21 Find the number of 1 × k rectangles f (n) that can be formed using an array of n
squares, where 1 ≤ k ≤ n. See Figure 1.19.

Figure 1.19
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SOLUTION

step 1 Collect data by conducting a series of experiments for small values of n.
When n = 1, the array looks like this: . So only one rectangle can be

formed. When n = 2, the array looks like this: . We can form two 1 × 1 rec-
tangles and one 1 × 2 rectangle, a total of 2 + 1 = 3 rectangles. When n = 3, the
array consists of three squares: . We then can form three 1 × 1 rectangles, two
1 × 2 rectangles, and one 1 × 3 rectangle, as summarized in Table 1.2.

Size of the Rectangle Number of Such Rectangles
1 × 1 3
1 × 2 2
1 × 3 1

Total No. of Rectangles 6

Table 1.2

Continuing like this, we can find the total number of rectangles that can be
formed when n = 4 and n = 5, as Tables 1.3 and 1.4 demonstrate respectively.

Size of Number of
Rectangle Rectangles

1 × 1 4
1 × 2 3
1 × 3 2
1 × 4 1
Total 10

Table 1.3

Size of Number of
Rectangle Rectangles

1 × 1 5
1 × 2 4
1 × 3 3
1 × 4 2
1 × 5 1
Total 15

Table 1.4

step 2 Organize the data in a table.

Table 1.5

step 3 Look for a pattern and conjecture a formula for f (n).
Clearly, row 2 of Table 1.5 consists of triangular numbers. (See Table 1.1 also.) So
we conjecture that f (n) = n(n + 1)/2.
step 4 This formula can be established using recursion and induction.
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We now introduce the next simplest class of polygonal numbers.

Square Numbers
Positive integers that can be represented by square arrays (of dots) are square num-
bers. The nth square number is denoted by sn. Figure 1.20 shows the first four square
numbers, 1, 4, 9, and 16. In general, sn = n2, n ≥ 1.

Figure 1.20

As before, sn also can be defined recursively. To see how this can be done,
consider Figure 1.21. Can we see a pattern? The number of dots in each array (except
the first one) equals the number of dots in the previous array plus twice the number
of dots in a row of the previous array plus one; that is,

sn = sn−1 + 2(n − 1) + 1

= sn−1 + 2n − 1

Figure 1.21

Thus, we have the following recursive definition of sn:

A Recursive Definition of sn

s1 = 1

sn = sn−1 + 2n − 1, n ≥ 2
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We now demonstrate a close relationship between tn and sn. To see this, it fol-
lows from Figure 1.22 that s5 = t5 + t4. Similarly, sn = tn + tn−1. The following
theorem, known to the Greek mathematicians Theon of Smyrna (ca. A.D. 100) and
Nicomachus, establishes this algebraically.

Figure 1.22

THEOREM 1.10 The sum of any two consecutive triangular numbers is a square.

PROOF

tn + tn−1 = n(n + 1)

2
+ n(n − 1)

2

= n

2
(n + 1 + n − 1) = n

2
(2n)

= n2 = sn �

Figures 1.23 and 1.24 provide a nonverbal, geometric proof of this theorem.

Figure 1.23 Figure 1.24

Theorem 1.10 has a companion result, which can be established algebraically.
See Exercise 11.

THEOREM 1.11 t2n−1 + t2n = tn2
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Figure 1.25 provides a nonverbal, geometric proof of this result; it was devel-
oped in 1997 by R. B. Nelsen of Lewis and Clark College in Portland, Oregon.

Figure 1.25

The following theorem gives two additional results. Their proofs are also simple
and straightforward and can be done as routine exercises.

THEOREM 1.12

• 8tn + 1 = (2n + 1)2 (Diophantus)
• 8tn−1 + 4n = (2n)2

Figure 1.26 gives a pictorial, nonverbal proof of both results. Both were devel-
oped in 1985 by E. G. Landauer of General Physics Corporation.

Next we turn to pentagonal† numbers pn.

Pentagonal Numbers

The first four pentagonal numbers 1, 5, 12, and 22 are pictured in Figure 1.27. We

may notice that pn = n(3n − 1)

2
(see Exercise 6).

† The Greek prefix penta means five.
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Figure 1.26

Figure 1.27

There is an interesting relationship connecting triangular numbers, square num-
bers, and pentagonal numbers. It follows from Figure 1.28 that t1 + s2 = p2 and
t2 + s3 = p3. More generally, tn−1 + sn = pn, where n ≥ 2. We can verify this alge-
braically (see Exercise 8).

Figure 1.28

Next, we discuss hexagonal† numbers hn.

† The Greek prefix hexa means six.
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Hexagonal Numbers

Figure 1.29 shows the pictorial representations of the first four hexagonal numbers
1, 6, 15, and 28. We can verify that hn = n(2n − 1), n ≥ 1 also (see Exercise 20).

The triangular numbers, pentagonal numbers, and hexagonal numbers satisfy
the relationship pn + tn−1 = hn. We can verify this (see Exercise 10).

Figure 1.29

E X E R C I S E S 1.6
1. Solve the recurrence relation satisfied by tn.
2. Find the value of n such that tn = 666. (The number

666 is called the beastly number.)
3. Solve the recurrence relation satisfied by sn.
4. Show that 8tn + 1 = s2n+1. (Diophantus)
5. Define recursively the nth pentagonal number pn.
6. Using the recurrence relation in Exercise 5, find an

explicit formula for pn.

Prove each, where n ≥ 2.

7. pn = n + 3tn−1 8. tn−1 + sn = pn

9. hn = 4tn−1 + n 10. pn + tn−1 = hn

11. t2n−1 + t2n = tn2 12. 8tn−1 + 4n = (2n)2

13. t2n−1 − 2tn−1 = n2 14. t2n − 2tn = n2

15. ttn = ttn−1 + tn 16. ttn + ttn−1 = tn2

17. In 1775, Euler proved that if n is a triangular number,
then so are 9n + 1,25n + 3, and 49n + 6. Verify this.

18. Let n be a triangular number. Prove that (2k + 1)2n+
tk is also a triangular number. (Euler, 1775) (Note:
Exercise 17 is a special case of this.)

19. Define recursively the nth hexagonal number hn.
20. Using the recurrence relation in Exercise 19, find an

explicit formula for hn.

21. Find the first four heptagonal† numbers.
22. Define recursively the nth heptagonal number en.
23. Using the recurrence relation in Exercise 22, find an

explicit formula for en.
24. Find the first four octagonal‡ numbers.
25. Define recursively the nth octagonal number on.
26. Using the recurrence relation in Exercise 25, find an

explicit formula for on.
27. Find two pairs of triangular numbers whose sums and

differences are also triangular.
28. Show that there are triangular numbers whose squares

are also triangular.
29. There are three triangular numbers < 1000 and made

up of a repeated single digit. Find them.
30. Verify that the numbers 1225, 41616, and 1413721

are both triangular and square.
31. The nth number an that is both triangular and square

can be defined recursively as an = 34an−1 −an−2 +
2, where a1 = 1 and a2 = 36. Using this definition,
compute a4 and a5.

† The Greek prefix hepta means seven.
‡ The Greek prefix octa means eight.
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32. The nth number an that is both triangular and square
can be computed using the formula an = [(17 +
12

√
2)n + (17 − 12

√
2)n − 2]/32, n ≥ 1. Using this

formula, compute a2 and a3.
33. Prove that there are infinitely many triangular num-

bers that are squares.

Evaluate each.

34.
n∑

k=1

1

tk

c 35.
∞∑

k=1

1

tk
(This problem, proposed by Christiaan Huy-

gens to Baron Gottfried Wilhelm Leibniz, led to the
development of the latter’s harmonic triangle.)

� �

1.7 Pyramidal Numbers

Now we pursue solid figurate numbers, which are positive integers that can be rep-
resented by pyramidal shapes. They are obtained by taking successive sums of the
corresponding polygonal numbers. The number of sides in the base of a pyramid
increases from three, so the various pyramidal numbers are triangular, square, pen-
tagonal, hexagonal, and so on.

We begin with the simplest pyramidal numbers, triangular pyramidal num-
bers, also known as tetrahedral numbers.

Triangular Pyramidal Numbers

The nth triangular pyramidal number Tn is the sum of the first n triangular num-
bers tn. The first four such numbers are: T1 = 1; T2 = t1 + t2 = 1 + 3 = 4; T3 =
t1 + t2 + t3 = 1 + 3 + 6 = 10; and T4 = t1 + t2 + t3 + t4 = 1 + 3 + 6 + 10 = 20. See
Figure 1.30.

Figure 1.30

The various triangular pyramidal numbers can be constructed using Table 1.6.
Just add up the numbers along the bent arrows. It follows from the table that Tn =
Tn−1 + tn; that is, Tn = Tn−1 + [n(n + 1)]/2.
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Table 1.6

Since Tn =
n∑

i=1
ti, it follows from the previous section that

Tn =
n∑

i=1

i(i + 1)

2
= n(n + 1)(n + 2)

6

=
(

n + 2

3

)

Consequently, Tn also can be read from Pascal’s triangle.
Next, we pursue square pyramidal numbers.

Square Pyramidal Numbers

The base of the pyramid is a square, and each layer contains sn dots. So the first
four square pyramidal numbers are 1, 5, 14, and 30, and they are represented in
Figure 1.31.

Figure 1.31

The square pyramidal numbers Sn can easily be constructed using Table 1.7, by
adding the numbers along the bent arrows.
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Table 1.7

It follows from Figure 1.31 and Table 1.7 that the nth square pyramidal number
is given by

Sn =
n∑

k=1

sk =
n∑

k=1

k2

= n(n + 1)(2n + 1)

6

We now study pentagonal pyramidal numbers Pn.

Pentagonal Pyramidal Numbers
The nth row of a pentagonal pyramid represents the nth pentagonal number pn, so
the first five pentagonal pyramidal numbers are 1, 6, 18, 40, and 75. Once again,
a table such as Table 1.8 comes in handy for computing them. It would be a good
exercise to find an explicit formula for Pn.

Table 1.8

Finally, we consider the hexagonal pyramidal numbers Hn.

Hexagonal Pyramidal Numbers

The nth row of a hexagonal pyramid represents the nth hexagonal number hn, so the
first five hexagonal pyramidal numbers are 1, 7, 22, 50, and 95 (see Table 1.9). We
can find an explicit formula for Hn as an exercise.
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Table 1.9

E X E R C I S E S 1.7
1. Find the first four triangular numbers that are squares.

2. Using the recurrence relation Tn = Tn−1 + n(n + 1)

2
,

where T1 = 1, find an explicit formula for the nth tri-
angular pyramidal number Tn.

3. Define recursively the nth square pyramidal number
Sn.

4. Using Exercise 3, find an explicit formula for Sn.
5. Find a formula for the nth pentagonal pyramidal num-

ber Pn.
6. Define recursively the nth pentagonal pyramidal

number Pn.

7. Using Exercise 6, find an explicit formula for Pn.
8. Find a formula for the nth hexagonal pyramidal num-

ber Hn.
9. Define recursively the nth hexagonal pyramidal num-

ber Hn.
10. Using Exercise 9, find an explicit formula for Hn.
11. Find the first five heptagonal pyramidal numbers.
12. Find a formula for the nth heptagonal pyramidal num-

ber En.

� �

1.8 Catalan Numbers

Catalan numbers are both fascinating and ubiquitous. They are excellent candi-
dates for exploration, experimentation, and conjecturing. Like Fibonacci and Lucas
numbers (see Section 2.6), they have, as Martin Gardner wrote in Scientific Amer-
ican, “the same delightful propensity for popping up unexpectedly, particularly in
combinatorial problems” (1976). Those unexpected places include abstract algebra,
combinatorics, computer science, graph theory, and geometry.

Catalan numbers are named after the Belgian mathematician Eugene C. Cata-
lan, who discovered them in 1838, while he was studying well-formed sequences
of parentheses. Earlier, around 1751, the outstanding Swiss mathematician Leon-
hard Euler (see Section 7.4) found them while studying the triangulations of convex
polygons. In fact, they were discussed by the Chinese mathematician Antu Ming
(1692?–1763?) in 1730 through his geometric models. Since his work was available
only in Chinese, his discovery was not known in the western world.
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Eugene Charles Catalan (1814–1894) was born in Bruges, Belgium. He studied at École Polytechnique, Paris,

and received his Doctor of Science in 1841. After resigning his position with the Department of Bridges and High-

ways, he became professor of mathematics at Collège de Chalons-sur Marne, and then at Collège Charlemagne.

Catalan then taught at Lycée Saint Louis and in 1865 became professor of analysis at the University of Liège

in Belgium. Besides authoring Élements de Geometriè (1843) and Notions d’astronomie (1860), he published

numerous articles on multiple integrals, the theory of surfaces, mathematical analysis, calculus of probability, and

geometry. He did extensive research on spherical harmonics, analysis of differential equations, transformation of

variables in multiple integrals, continued fractions, series, and infinite products.

Antu Ming (1692?–1763?), according to Luo, was a Zhengxianbai tribesman of Inner Mongolia and a famous

scientist during the Qing Dynasty. His childhood mathematical education, specializing in astronomy and math-

ematics, was carefully directed by the Emperor. After mastering the scientific knowledge of the period, Ming

became a mandarin, a high-ranking government official, at the national astronomical center. In 1759, he became

director of the center. His work included problem solving in astronomy, meteorology, geography, surveying, and

mathematics.

Around 1730, he began to write Efficient Methods for the Precise Values of Circular Functions, a book that

clearly demonstrates his understanding of Catalan numbers. The book was completed by Ming’s students before

1774, but was not published until 1839.

Euler’s Triangulation Problem

We begin our study of Catalan numbers Cn with an investigation of Euler’s triangu-
lation problem:

Find the number of ways An the interior of a convex n-gon† can be partitioned into
nonoverlapping triangular areas by drawing nonintersecting diagonals, where n ≥ 3.

There is only one way of triangulating a triangle, two different ways of trian-
gulating a square, five different ways of triangulating a pentagon, and 14 different
ways of triangulating a hexagon, as shown in Figure 1.32. Thus, we have the Catalan
numbers 1, 2, 5, and 14.

† A convex n-gon is a polygon with n sides such that every diagonal lies entirely in the interior.
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Figure 1.32 Triangulations of an n-gon, where 3 ≤ n ≤ 6.

Euler used an inductive argument, which he called “quite laborious,” to establish
the formula

An = 2 · 6 · 10 · · · (4n − 10)

(n − 1)! , n ≥ 3

Although Euler’s formula, published in 1761, makes sense only for n ≥ 3, we can
extend it to include the cases n = 0, 1, and 2. To this end, let k = n − 3. Then

Ak+3 = 2 · 6 · 10 · · · (4k + 2)

(k + 2)! , k ≥ 0

Then A3 = 1, A4 = 2, and A5 = 5. These are the Catalan numbers C1, C2, and C3,
respectively, shifted by two spaces to the right. So we define Cn = Ak+2. Thus,

Cn = 2 · 6 · 10 · · · (4n − 2)

(n + 1)! , n ≥ 1

This can be rewritten as
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Cn = 4n − 2

n + 1
· 2 · 6 · 10 · · · (4n − 6)

n!

= 4n − 2

n + 1
Cn−1

When n = 1, this yields C1 = C0. But C1 = 1. So we can define C0 = 1. Conse-
quently, Cn can be defined recursively.

A Recursive Definition of Cn

C0 = 1

Cn = 4n − 2

n + 1
Cn−1, n ≥ 1 (1.11)

For example,

C4 = 4 · 4 − 2

4 + 1
C3

= 14

5
· 5 = 14

An Explicit Formula for Cn

The recursive formula (1.11) can be employed to derive an explicit formula for Cn:

Cn = 4n − 2

n + 1
Cn−1

= (4n − 2)(4n − 6)

(n + 1)n
Cn−2

= (4n − 2)(4n − 6)(4n − 10)

(n + 1)n(n − 1)
Cn−3

...

= (4n − 2)(4n − 6)(4n − 10) · · ·6 · 2

(n + 1)n · · ·3 · 2
C0

= (2n − 1)(2n − 3)(2n − 5) · · ·3 · 1

(n + 1)! · 2n

= 2n(2n)!
2n(n + 1)!n! = (2n)!

(n + 1)!n!

= 1

n + 1

(
2n

n

)
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Since (n+1)|
(

2n

n

)
† (see Exercise 20 in Section 1.5), it follows that every Cata-

lan number is a positive integer. The various Catalan numbers are

1,1,2,5,14,42,132,429,1430,4862,16796,58786,208012, . . .

It follows from the explicit formula that every Catalan number Cn can be read

from Pascal’s triangle: Divide each central binomial coefficient
(

2n

n

)

by n + 1; see

Figure 1.33.

Figure 1.33 Pascal’s Triangle.

There are several ways of reading Cn from the triangle; see Exercises 1–9.

Segner’s Recursive Formula

In 1761, Johann Andreas von Segner (1704–1777), a Hungarian mathematician,
physicist, and physician, developed a recursive formula for Cn using the triangu-
lation problem:

Cn = C0Cn−1 + C1Cn−2 + · · · + Cn−2C1 + Cn−1C0

where n ≥ 1.
For example,

C5 = C0C4 + C1C3 + C2C2 + C3C1 + C4C0

= 1 · 14 + 1 · 5 + 2 · 2 + 5 · 1 + 14 · 1 = 42

† a|b means that a is a factor of b.
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In passing, we note that by using generating functions, Segner’s formula can be em-
ployed to derive the explicit formula for Cn; see Exercises 10–13.

E X E R C I S E S 1.8

Prove each.

1. Cn = 1

n

(
2n

n − 1

)

2. Cn =
(

2n

n

)

−
(

2n

n − 1

)

3. Cn+1 =
(

2n

n

)

−
(

2n

n − 2

)

4. Cn = 1

2n + 1

(
2n + 1

n

)

5. Cn =
(

2n − 1

n − 1

)

−
(

2n − 1

n − 2

)

6. Cn = 2

(
2n

n

)

−
(

2n + 1

n

)

7. Cn =
(

2n + 1

n + 1

)

− 2

(
2n

n + 1

)

Using the recursive formula

Cn =
�(n−1)/2�∑

r=0

(
n − 1

2r

)

2n−2r−1Cr

(J. Touchard, 1928)

compute Cn for each value of n.
8. n = 5 9. n = 6

Prove each, where C(x) =
∞∑

n=0
Cnxn.

�10. [C(x)]2 = C(x) − C0

x
�11. C(x) = 1 − √

1 − 4x

2
�12. Cn = 1

n + 1

(
2n

n

)

(Hint:
√

1 − 4x = 1 − 2
∞∑

n=1
Cn−1xn)

� �

X CHAPTER SUMMARY

This chapter presented several properties governing integers and two classes of figu-
rate numbers—polygonal and pyramidal. The principle of induction is an extremely
useful proof technique, which we will be using frequently in later chapters. Recur-
sion is another powerful problem-solving tool.

The Order Relation
• An integer a is less than an integer b, denoted by a < b, if b − a is a positive

integer. We then also write b > a. If a < b or a = b, we write a ≤ b or b ≥ a.
(p. 4)

• law of trichotomy: Given any two integers a and b, either a < b, a = b, or
a > b. (p. 5)
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Absolute Value
• The absolute value of an integer x, denoted by |x|, is x if x ≥ 0 and −x other-

wise. (p. 5)

Floor and Ceiling Functions
• The floor of a real number x, denoted by �x�, is the greatest integer ≤ x; the

ceiling of x, denoted by 	x
, is the least integer ≥ x. (p. 6)

The Summation Notation

•
i=m∑

i=k
ai =

m∑

i=k
ai = ak + ak+1 + · · · + am (p. 9)

• The summation notation satisfies the following properties:
n∑

i=1

c = nc (p. 10)

n∑

i=1

(cai) = c

(
n∑

i=1

ai

)

(p. 11)

n∑

i=1

(ai + bi) =
(

n∑

i=1

ai

)

+
(

n∑

i=1

bi

)

(p. 11)

Indexed Summation
• ∑

i∈I
ai = sum of the values of ai as i takes on values from the set I. (p. 11)

• ∑

P
ai = sum of the values of ai, where i has the properties P. (p. 11)

The Product Notation

•
i=m∏

i=k
ai =

m∏

i=k
ai = akak+1 · · ·am (p. 13)

The Factorial Function

• n! =
{

n(n − 1) · · ·3 · 2 · 1 if n ≥ 1 (p. 13)
1 if n = 0

The Well-Ordering Principle
Every nonempty set of positive integers has a least element. (p. 16)

Mathematical Induction
• weak version Let P(n) be a statement such that

• P(n0) is true; and
• P(k) implies P(k + 1) for any k ≥ n0.
Then P(n) is true for every n ≥ n0. (p. 18)
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• strong version Let P(n) be a statement such that
• P(n0) is true; and
• if P(n0), P(n0 + 1), . . . , P(k) are true for any k ≥ n0, then P(k + 1) is

also true.
Then P(n) is true for every n ≥ n0. (p. 23)

Recursion
• The recursive definition of a function consists of a recurrence relation, and

one or more initial conditions. (p. 27)
• A simple class of recurrence relations can be solved using iteration. (p. 30)

Binomial Coefficients

•
(

n

r

)

= n!
r!(n − r)! (p. 33)

•
(

n

0

)

= 1 =
(

n

n

)

,

(
n

r

)

=
(

n

n − r

)

(p. 33)

•
(

n

r

)

=
(

n − 1

r − 1

)

+
(

n − 1

r

)

(Pascal’s identity) (p. 34)

Binomial Theorem

• (x + y)n =
n∑

r=0

(
n

r

)

xn−ryr (p. 37)

Polygonal Numbers
• Triangular numbers

tn = n(n + 1)

2
(p. 40)

= tn−1 + n, where t1 = 1 (p. 41)

• Square numbers

sn = n2 (p. 44)

= sn−1 + 2n − 1, where s1 = 1 (p. 44)

• The sum of any two consecutive triangular numbers is a square. (p. 45)
• t2n−1 + t2n = tn2 (p. 45)
• 8tn + 1 = (2n + 1)2 (p. 46)
• 8tn−1 + 4n = (2n)2 (p. 46)

• Pentagonal numbers pn = n(3n − 1)

2
(p. 46)

• tn−1 + sn = pn (p. 47)
• Hexagonal numbers hn = n(2n − 1) (p. 48)
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• pn + tn−1 = hn (p. 48)

Pyramidal Numbers
• Triangular pyramidal numbers

Tn = Tn−1 + n(n + 1)

2
(p. 49)

= n(n + 1)(n + 2)

6
(p. 50)

• Square pyramidal number Sn = [n(n + 1)(2n + 1)]/6 (p. 51)
• Pentagonal pyramidal numbers Pn (p. 51)
• Hexagonal pyramidal numbers Hn (p. 51)

Catalan Numbers

Cn = 1

n + 1

(
2n

n

)

(p. 55)

= C0Cn−1 + C1Cn−2 + · · · + Cn−1C0 (Segner′s formula) (p. 56)

X REVIEW EXERCISES

Evaluate each.

1.
n∑

i=1
i(i + 1) 2.

n∑

i=1

n∑

j=1
(2i + 3j) 3.

n∑

i=1

n∑

j=1
2i3j

4.
n∑

i=1

i∑

j=1
2j 5.

n∏

i=1

n∏

j=1
2i3j 6.

n∏

i=1

i∏

j=1
32j

7.
n∏

i=1

i∏

j=1
2i �8.

n∑

i=1

i∏

j=1
ij 9.

n∏

r=0
2(n

r)

10.
n∏

r=0
2tr

Find the value of x resulting from the execution of each algorithm fragment.

11. x ← 0 12. x ← 0
for i = 1 to n do for i = 1 to n do

for j = 1 to n do for j = 1 to i do
x ← x + 1 for k = 1 to j do

x ← x + 1
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In Exercises 13 and 14, the nth term an of a number sequence is defined recursively.
Compute a5.

13. a1 = a2 = 1, a3 = 2 14. a1 = 0, a2 = a3 = 1
an = an−1 +an−2 +an−3, n ≥ 4 an = an−1 + 2an−2 + 3an−3, n ≥ 4

(A modified handshake problem) Mrs. and Mr. Matrix host a party for n married
couples. At the party, each person shakes hands with everyone else, except his/her
spouse. Let h(n) denote the total number of handshakes made.

15. Define h(n) recursively.
16. Predict an explicit formula for h(n).
17. Prove the formula obtained in Exercise 16 for every integer n ≥ 1.

Using the iterative method, predict an explicit formula satisfied by each recurrence
relation.

18. a1 = 1 · 2 19. a1 = 2 · 3
an = an−1 + n(n + 1), n ≥ 2 an = 3an−1, n ≥ 2

20. a1 = 1 21. a0 = 0
an = an−1 + 2n−1, n ≥ 2 an = an−1 + (3n − 1), n ≥ 1

�22. Find a formula for the number an of times the statement x ← x+1 is executed
by the following loop.

for i = 1 to n do

for j = 1 to 	i/2
 do

x ← x + 1

23. Prove that one more than four times the product of any two consecutive inte-
gers is a perfect square.

24. Prove that the arithmetic mean
a + b

2
of any two real numbers a and b is

greater than or equal to their geometric mean
√

ab.
(Hint: Consider (

√
a − √

b)2.)

25. Prove that the equation x2 + y2 = z2 has infinitely many integral solutions.

Using induction, prove each.

26.
n∑

i=1
(2i − 1)2 = n(4n2 − 1)

3
27.

n∑

i=1

1

(2i − 1)(2i + 1)
= n

2n + 1

28–31. Using induction, prove the formulas obtained in Exercises 18–21.

32. Prove that

(
2n

n

)

= 2

(
2n − 1

n

)

.

33. Prove by induction that
n∑

i=r
C(i, r) = C(n + 1, r + 1).
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34. Add two lines to the following number pattern.

t1 + t2 + t3 = t4

t5 + t6 + t7 + t8 = t9 + t10

t11 + t12 + t13 + t14 + t15 = t16 + t17 + t18 (M. N. Khatri)

35. Verify that t2n − t2n−1 = n3.

36. Using Exercise 35, show that
n∑

k=1
k3 = [n(n + 1)/2]2.

37. A palindrome is a positive integer that reads the same backwards and for-
wards. Find the eight palindromic triangular numbers < 1000.

Prove each.

38.

(
n∑

k=1
k

)2

=
n∑

k=1
k3.

39. t2n = tn + tn−1tn+1

40. 2tntn−1 = tn2−1
41. tn−k = tn + tk − (n + 1)k (Casinelli, 1836)
42. tntk + tn−1tk−1 = tnk (R. B. Nelsen, 1997)
43. tn−1tk + tntk−1 = tnk−1 (R. B. Nelsen, 1997)
44. (2k + 1)2tn + tk = t(2k+1)n+k (Euler, 1775)

45.
(nr)!
(r!)n

is an integer. (Young, 1902)

46.
(nr)!

n!(r!)n
is an integer. (Feemster, 1910)

Let an denote the number of ways a 2 × n rectangular board can be covered with
2 × 1 dominoes.

47. Define an recursively. 48. Find an explicit formula for an.
(Hint: Consider 2 × (n − 1) and
2 × (n − 2) boards.)

X SUPPLEMENTARY EXERCISES

1. Show that (2mn,m2 − n2,m2 + n2) is a solution of the equation x2 + y2 = z2.
2. Prove that (a2 + b2)(c2 + d2) = (ac + bd)2 + (ad − bc)2, where a,b, c, and d

are any integers.
Using the number pattern in Figure 1.34, answer Exercises 3–5. (Euclides, 1949)
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12 = 1

32 = 2 + 3 + 4

52 = 3 + 4 + 5 + 6 + 7

72 = 4 + 5 + 6 + 7 + 8 + 9 + 10

...

Figure 1.34

3. Add the next two lines.
4. Conjecture a formula for the nth line.
5. Establish the formula in Exercise 4.
6. The array in Figure 1.35 has the property that the sum of the numbers in each

band formed by two successive squares is a cube. For example, 3 + 6 + 9 +
6 + 3 = 33. Using this array, establish that

n∑

i=1
i3 =

(
n∑

i=1
i

)2

. (M. Kraitchik,

1930)

Figure 1.35

7. In 1934, the French mathematician V. Thébault studied the array in Fig-
ure 1.36. It consists of rows of arithmetic sequences and possesses several

Figure 1.36
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interesting properties. For example, the sum of the numbers in the nth band
equals n3 and the main diagonal consists of squares. Using this array, prove

that
n∑

i=1
i3 = [n(n + 1)/2]2.

A side of the equilateral triangle in Figure 1.37 is n units long. Let an denote the
number of triangles pointing up.

Figure 1.37

8. Define an recursively.
9. Solve the recurrence relation.

10. Prove the Hoggat–Hansell identity

(
n − i

r − i

)(
n

r + i

)(
n + i

r

)

=
(

n − i

r

)(
n + i

r + i

)(
n

r − i

)

Evaluate each.

11.
n∑

k=0

(
n

k

)

k2

�12.
n∑

k=0

(
n

k

)

k3 (Kuenzi and Prielipp, 1985)

13. In 1950, P. A. Piza discovered the following formula about sums of powers

of triangular numbers ti: 3

(
n∑

i=1
ti

)3

=
n∑

i=1
t3i + 2

n∑

i=1
t4i . Verify it for n = 3 and

n = 4.
�14. Prove that one more than the product of four consecutive integers is a per-

fect square, and the square root of the resulting number is the average of the
product of the smaller and larger numbers, and the product of the two middle
integers. (W. M. Waters, 1990)

�15. Find a positive integer that can be expressed as the sum of two cubes in two
different ways.

�16. Find three consecutive positive integers such that the sum of their cubes is also
a cube.

�17. Find four consecutive positive integers such that the sum of their cubes is also
a cube.
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��18. Let Sn denote the sum of the elements in the nth set in the sequence of sets of
positive integers {1}, {3,5}, {7,9,11}, {13,15,17,19}, . . . . Find a formula for
Sn. (R. Euler, 1988)

��19. Let S denote the sum of the elements in the nth set in the sequence of
positive integers {1}, {2,3, . . . ,8}, {9,10, . . . ,21}, {22,23, . . . ,40}, . . . . Find
a formula for S. (C. W. Trigg, 1980)

��20. Let S denote the sum of the numbers in the nth set of the sequence of triangu-
lar numbers {1}, {3,6}, {10,15,21}, . . . . Find a formula for S. (J. M. Howell,
1988)

��21. Redo Exercise 20 with the sets of pentagonal numbers {1}, {5,12}, {22,35,51},
{70,92,117,145}, . . . .

��22. Three schools in each state, Alabama, Georgia, and Florida, enter one person
in each of the events in a track meet. The number of events and the scoring
system are unknown, but the number of points for the third place is less than
that for the second place which in turn is less than the number of points for
the first place. Georgia scored 22 points, and Alabama and Florida tie with
9 each. Florida wins the high jump. Who won the mile run? (M. vos Savant,
1993)

X COMPUTER EXERCISES

Write a program to do each task.

1. Read in n positive integers. Find their maximum and minimum using both
iteration and recursion.

2. Read in a positive integer n ≤ 20, and compute the nth Catalan number
using recursion.

3. Read in a whole number n, and print Pascal’s triangle with n + 1 rows.
4. Print the following triangular arrays.

(a) 1
1 2
1 2 3
...

1 2 3 4 5 6 7 8 9

(b) 1
2 1

3 2 1
...

9 8 7 6 5 4 3 2 1

5. Find the five Kaprekar numbers < 100.
6. Read in a square array of positive integers, and determine if it is a magic

square. If yes, find its magic constant.
7. There are four integers between 100 and 1000, each equal to the sum of its

digits. Find them.
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8. The integer 1105 can be expressed as the sum of two squares in four differ-
ent ways. Find them.

9. Find the smallest positive integer that can be expressed as the sum of two
cubes in two different ways.

10. Find the smallest positive integer that can be expressed as the sum of two
fourth powers in two different ways.

11. Read in a positive integer n ≤ 20. Using the rules in Example 1.19, print
the various moves and the number of moves needed to transfer n disks from
peg X to peg Y .

12. Using Exercises 33 and 34 in Section 1.3, compute the total number of
grains of wheat needed for the 8 × 8 chessboard.
(Hint: The answer is 18,446,744,073,709,551,615 grains, which may be too
large for an integer variable to hold; so think of a suitable data structure.)

13. Using recursion, print the first n:

a) Triangular numbers. b) Square numbers.
c) Pentagonal numbers. d) Hexagonal numbers.

14. Print the triangular numbers ≤ 104 that are perfect squares.
15. Print the triangular numbers ≤ 104 that are prime.
16. There are 40 palindromic triangular numbers < 107. Find them.
17. Search for two triangular numbers tn such that both tn and n are palindromic,

where 9 ≤ n ≤ 100.
18. Find the first three triangular numbers consisting of the same repeated digit.
19. There are 19 palindromic pentagonal numbers < 107. Find them.
20. Find the largest three-digit integer n whose square is palindromic.
21. Find the least positive integer n such that n3 is palindromic, but n is not.
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2 Divisibility

The grandest achievement of the Hindus and the one which, of all

mathematical investigations, has contributed to the general progress

of intelligence, is the invention of the principle of position in writing numbers.

— F. CAJORI

his chapter continues the study of properties of integers and explores fiveT classes of positive integers: prime numbers, which are the building blocks of
integers, composite numbers, Fibonacci numbers, Lucas numbers, and Fer-

mat numbers.

2.1 The Division Algorithm

The division algorithm is a fine application of the well-ordering principle and is often
employed to check the correctness of a division problem.

Suppose an integer a is divided by a positive integer b. Then we get a unique
quotient q and a unique remainder r, where the remainder satisfies the condition
0 ≤ r < b; a is the dividend and b the divisor. This is formally stated as follows.

THEOREM 2.1 (The Division Algorithm) Let a be any integer and b a positive integer. Then there
exist unique integers q and r such that

69
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where 0 ≤ r < b.

PROOF

The proof consists of two parts. First, we must establish the existence of the integers
q and r, and then we must show they are indeed unique.

1) EXISTENCE PROOF

Consider the set S = {a − bn | (n ∈ Z) and (a − bn ≥ 0)}. Clearly, S ⊆ W. We shall
show that S contains a least element. To this end, first we will show that S is a
nonempty subset of W:

case 1 Suppose a ≥ 0. Then a = a − b · 0 ∈ S, so S contains an element.

case 2 Suppose a < 0. Since b ∈ Z+, b ≥ 1. Then −ba ≥ −a; that is, a − ba ≥ 0.
Consequently, a − ba ∈ S.

In both cases, S contains at least one element, so S is a nonempty subset of W.
Therefore, by the well-ordering principle, S contains a least element r.

Since r ∈ S, an integer q exists such that r = a − bq, where r ≥ 0.

To show that r < b:
We will prove this by contradiction. Assume r ≥ b. Then r − b ≥ 0. But r − b =

(a − bq) − b = a − b(q + 1). Since a − b(q + 1) is of the form a − bn and is ≥ 0,
a − b(q + 1) ∈ S; that is, r − b ∈ S. Since b > 0, r − b < r. Thus, r − b is smaller than
r and is in S. This contradicts our choice of r, so r < b.

Thus, there are integers q and r such that a = bq + r, where 0 ≤ r < b.

2) UNIQUENESS PROOF

We would like to show that the integers q and r are unique. Assume there are integers
q, q′, r, and r′ such that a = bq + r and a = bq′ + r′, where 0 ≤ r < b and 0 ≤ r′ < b.

Assume, for convenience, that q ≥ q′. Then r′ − r = b(q − q′). Because q ≥ q′,
q − q′ ≥ 0 and hence r′ − r ≥ 0. But, because r′ < b and r < b, r′ − r < b.

Suppose q > q′; that is, q−q′ ≥ 1. Then b(q−q′) ≥ b; that is, r′ − r ≥ b. This is
a contradiction because r′ − r < b. Therefore, q ≯ q′; thus, q = q′, and hence, r = r′.
Thus, the integers q and r are unique, completing the uniqueness proof. �

Although this theorem has been traditionally called the division algorithm, it
does not present an algorithm for finding q and r. They can be found using the fa-
miliar long division method.
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EXAMPLE 2.1 Find the quotient q and the remainder r when

1. 207 is divided by 15.
2. −23 is divided by 5.

SOLUTION

1. 207 = 15 · 13 + 12; so q = 13 and r = 12.
2. Since −23 = 5 · (−4) + (−3), you might be tempted to say that q = −4 and

r = −3. The remainder, however, can never be negative. But −23 can be
written as −23 = 5 · (−5) + 2, where 0 ≤ r (= 2) < 5 (see the number line
in Figure 2.1). Thus, q = −5 and r = 2.

Figure 2.1 �

You may notice that the equation a = bq + r can be written as

a

b
= q + r

b
,

where 0 ≤ r/b < 1. Consequently, q = �a/b� and r = a − bq = a − b · �a/b�.

Div and Mod Operators

The binary operators, div and mod, are often used in discrete mathematics and com-
puter science to find quotients and remainders. They are defined as follows:

a div b = quotient when a is divided by b

a mod b = remainder when a is divided by b

For example, 23 div 5 = 4, and 23 mod 5 = 3; −23 div 5 = −5, and −23 mod
5 = 2 (why?).

It now follows from these definitions that q = a div b = �a/b� and r =
a mod b = a − bq = a − b · �a/b�.

The following example is a simple application of both div and mod operators.
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Card Dealing (optional)

Consider a standard deck of 52 playing cards. They are originally assigned the num-
bers 0 through 51 in order. Use the suit labels 0 = clubs, 1 = diamonds, 2 = hearts,
and 3 = spades to identify each suit, and the card labels 0 = ace, 1 = deuce, 2 =
three, . . . , and 12 = king to identify the cards in each suit. Suppose card x is drawn at
random from a well-shuffled deck, where 0 ≤ x ≤ 51. How do we identify the card?

First, we need to determine the suit to which the card belongs. It is given
by x div 13. Next, we need to determine the card within the suit; this is given by
x mod 13. Thus, card x is card (x mod 13) in suit (x div 13).

For example, let x = 50. Since 50 div 13 = 3, the card is a spade. Now
50 mod 13 = 11, so it is a queen. Thus, card 50 is the queen of spades. �

Next, we pursue an intriguing application of the floor function and the mod
operator to the game of chess.

The Two Queens Puzzle (optional)

There are two queens on an 8 × 8 chessboard. One can capture the other if they are
on the same row, column, or diagonal. The 64 squares on the board are numbered
0 through 63. Suppose one queen is in square x and the other in square y, where
0 ≤ x, y ≤ 63. Can one queen capture the other?

Because the squares are labeled 0 through 63, we can label each row with the
numbers 0 through 7 and each column with the same numbers 0 through 7. In fact,
each row label = �r/8� and each column label = c mod 8, where 0 ≤ r, c ≤ 63 (see
Figure 2.2). Thus, the queen in square x lies in row �x/8� and column x mod 8, and

Figure 2.2
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Gustav Peter Lejeune Dirichlet (1805–1859) was born in Duren, Germany.

The son of a postmaster, he attended a public school and then a private school

that emphasized Latin. After attending the Gymnasium in Bonn for two years,

Dirichlet entered a Jesuit college in Cologne, where he received a strong back-

ground in theoretical physics under the physicist Georg Simon Ohm. In 1822,

he moved to the University of Paris.

In 1826, Dirichlet returned to Germany and taught at the University of

Breslau. Three years later, he moved to the University of Berlin, where he spent

the next 27 years.

Dirichlet’s greatest interest in mathematics was number theory, and he

was inspired by Gauss’ masterpiece, Disquisitiones Arithmeticae (1801). He

established Fermat’s Last Theorem for n = 14. Among the many results he

discovered are the proof of a theorem presented to the Paris Academy of Sciences on algebraic number theory

in 1837: The sequence {an + b} contains infinitely many primes, where a and b are relatively prime.

When Gauss died in 1855, Dirichlet moved to the University of Göttingen. Three years later, he went to

Montreaux, Switzerland, to deliver a speech in honor of Gauss. While there, he suffered a heart attack and was

barely able to return home. During his illness his wife succumbed to a stroke, and Dirichlet died soon after.

that in square y lies in row �y/8� and column y mod 8. Consequently, the two queens
will be in the same row if and only if �x/8� = �y/8�, and in the same column if and
only if x mod 8 = y mod 8. For example, if x = 41 and y = 47, the two queens lie on
the same row.

How do we determine if they lie on the same diagonal? There are 15 northeast
diagonals and 15 southeast diagonals. With a bit of patience, we can show that the
queens lie on the same diagonal if and only if the absolute value of the difference
of their row labels equals that of the difference of their column labels; that is, if and
only if |�x/8� − �y/8�| = |x mod 8 − y mod 8|.

For example, let x = 51 and y = 23 (see Figure 2.2). Then |�51/8� − �23/8�| =
|6 − 2| = 4 = |3 − 7| = |51 mod 8 − 23 mod 8|, so one queen captures the other.
On the other hand, if x = 49 and y = 13, then |�49/8� − �13/8�| 	= |49 mod 8 −
13 mod 8|; so one queen cannot capture the other. �

The Pigeonhole Principle and the Division Algorithm

The pigeonhole principle is also known as the Dirichlet box principle after the
German mathematician Gustav Peter Lejeune Dirichlet who used it extensively in
his work on number theory. It can be applied to a variety of situations.

Suppose m pigeons fly into n pigeonholes to roost, where m > n. What is your
conclusion? Because there are more pigeons than pigeonholes, at least two pigeons
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must roost in the same pigeonhole; in other words, there must be a pigeonhole con-
taining two or more pigeons (see Figure 2.3).

Figure 2.3

We now state and prove the simple version of the pigeonhole principle.

THEOREM 2.2 (The Pigeonhole Principle) If m pigeons are assigned to n pigeonholes, where
m > n, then at least two pigeons must occupy the same pigeonhole.

PROOF (by contradiction)
Suppose the given conclusion is false; that is, no two pigeons occupy the same pi-
geonhole. Then every pigeon must occupy a distinct pigeonhole, so n ≥ m, which is
a contradiction. Thus, two or more pigeons must occupy some pigeonhole. �

Next, we move on to the divisibility relation.

The Divisibility Relation

Suppose we let r = 0 in the division algorithm. Then a = bq + 0 = bq. We then say
that b divides a, b is a factor of a, a is divisible by b, or a is a multiple of b, and
write b|a. If b is not a factor of a, we write b � a.

For instance, 3|12, 5|30, but 6 � 15.
The following example illustrates the pigeonhole principle.

EXAMPLE 2.2 Let b be an integer ≥ 2. Suppose b + 1 integers are randomly selected. Prove that the
difference of two of them is divisible by b.

PROOF

Let q be the quotient and r the remainder when an integer a is divided by b. Then,
by the division algorithm, a = bq + r, where 0 ≤ r < b. The b + 1 integers yield
b + 1 remainders (pigeons), but there are only b possible remainders (pigeonholes).
Therefore, by the pigeonhole principle, two of the remainders must be equal.

Let x and y be the corresponding integers. Then x = bq1 + r and y = bq2 + r for
some quotients q1 and q2. Therefore,
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x − y = (bq1 + r) − (bq2 + r)

= b(q1 − q2)

Thus, x − y is divisible by b. �

Before we pursue divisibility properties, let us digress for a while with an inter-
esting puzzle.

An Intriguing Puzzle (optional)

Think of a three-digit number abc. Multiply abc and the successive answers by 7,
11, and 13, respectively. Your answer is abcabc. Surprised? Can you explain why it
works this way?

Next, we study several useful divisibility properties. We leave them as routine
exercises.

THEOREM 2.3 Let a and b be positive integers such that a|b and b|a. Then a = b. �

THEOREM 2.4 Let a, b, c, α, and β be any integers.† Then

1. If a|b and b|c, then a|c. (transitive property)
2. If a|b and a|c, then a|(αb + βc).
3. If a|b, then a|bc. �

The expression αb + βc is called a linear combination of b and c. Thus, by part 2,
if a is a factor of b and c, then a is also a factor of any linear combination of b and c.
In particular, a|(b + c) and a|(b − c) (why?).

The floor function can be used to determine the number of positive integers less
than or equal to a positive integer a and divisible by a positive integer b, as the next
theorem shows.

THEOREM 2.5 Let a and b be any positive integers. Then the number of positive integers ≤ a and
divisible by b is �a/b�.

† α and β are the Greek letters alpha and beta.
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PROOF

Suppose there are k positive integers ≤ a and divisible by b. We need to show that k =
�a/b�. The positive multiples of b less than or equal to a are b, 2b, . . . , kb. Clearly,
kb ≤ a, that is, k ≤ a/b. Further, (k + 1)b > a. Thus, k + 1 > a/b or a/b − 1 < k.
Therefore,

a

b
− 1 < k ≤ a

b

Thus, k is the largest integer less than or equal to a/b, so k = �a/b�. �

For example, the number of positive integers ≤ 2076 and divisible by 19 is
�2076/19� = �109.26316� = 109.

Next, we consider some aspects of sets and the inclusion–exclusion principle.

Union, Intersection, and Complement

Let A be a finite set and |A| the number of elements in A. For example, if A =
{3,5,8,17}, then |A| = 4. (In Chapter 1, we used vertical bars to denote the ab-
solute value of a number, but here it denotes the number of elements in a set. The
meaning of the notation should be clear from the context, so be a bit careful.)

Let A and B be any two sets. Their union A ∪ B is the set of elements belonging
to A or B; their intersection A ∩ B consists of the common elements; A′ denotes
the complement of A, that is, the set of elements in the universal set that are not
in A.

We now move on to the inclusion–exclusion principle. Let A and B be finite
sets. Let |A ∩ B| = n, |A| = n + r, and |B| = n + s for some integers n, r, s ≥ 0.
Then |A ∪ B| = n + r + s = (n + r) + (n + s) − n = |A| + |B| − |A ∩ B|. Likewise,
|A ∪ B ∪ C| = |A| + |B| + |C| − |A ∩ B| − |B ∩ C| − |C ∩ A| + |A ∩ B ∩ C|.

More generally, we have the following result.

THEOREM 2.6 (The Inclusion–Exclusion Principle) Let A1,A2, . . . ,An be n finite sets. Then

∣
∣
∣
∣
∣

n⋃

i=1

Ai

∣
∣
∣
∣
∣
=

∑

1≤i≤n

|Ai| −
∑

1≤i<j≤n

|Ai ∩ Aj|

+
∑

1≤i<j<k≤n

|Ai ∩ Aj ∩ Ak| − · · · + (−1)n+1

∣
∣
∣
∣
∣

n⋂

i=1

Ai

∣
∣
∣
∣
∣

�

The next two examples are simple applications of this theorem.
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EXAMPLE 2.3 Find the number of positive integers ≤ 2076 and divisible by neither 4 nor 5.

SOLUTION

Let A = {x ∈ N | x ≤ 2076 and divisible by 4} and B = {x ∈ N | x ≤ 2076 and divisi-
ble by 5}. Then

|A ∪ B| = |A| + |B| − |A ∩ B|
= �2076/4� + �2076/5� − �2076/20�
= 519 + 415 − 103 = 831

Thus, among the first 2076 positive integers, there are 2076 − 831 = 1245 integers
not divisible by 4 or 5. �

EXAMPLE 2.4 Find the number of positive integers ≤ 3000 and divisible by 3, 5, or 7.

SOLUTION

Let A, B, and C denote the sets of positive integers ≤ 3000 and divisible by 3, 5, or 7.
By the inclusion–exclusion principle,

|A ∪ B ∪ C| = |A| + |B| + |C| − |A ∩ B| − |B ∩ C| − |C ∩ A| + |A ∩ B ∩ C|
= �3000/3� + �3000/5� + �3000/7� − �3000/15� − �3000/35�

−�3000/21� + �3000/105�
= 1000 + 600 + 428 − 200 − 85 − 142 + 28 = 1629 �

In October 1582, at the request of Pope Gregory XIII, Fr. Christopher Clavius
and Aloysius Giglio introduced the Gregorian calendar to rectify the errors of the
Julian calendar. In the Gregorian calendar, which is now universally used, a nonleap
year contains 365 days and a leap year contains 366 days. (A year is a leap year if it
is a century divisible by 400 or if it is a noncentury and divisible by 4. For example,
1600 and 1976 were leap years, whereas 1778 and 1900 were not.) The following
example shows how to derive a formula to compute the number of leap years beyond
1600 and not exceeding a given year y. (See Section 5.6 also.)

EXAMPLE 2.5 Show that the number of leap years � after 1600 and not exceeding a given year y is
given by � = �y/4� − �y/100� + �y/400� − 388.
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PROOF

Let n be a year such that 1600 < n ≤ y. To derive the formula for �, we proceed step
by step:

step 1 Find the number of years n in the range divisible by 4.
Let 4n1 be such a year. Then 1600 < 4n1 ≤ y; that is, 400 < n1 ≤ y/4. Therefore,

there are n1 = �y/4� − 400 such years.

step 2 Find the number of centuries in the range 1600 < n ≤ y.
Let 100n2 be a century such that 1600 < 100n2 ≤ y. Then 16 < n2 ≤ y/100.

Therefore, there are n2 = �y/100� − 16 centuries beyond 1600 and ≤ y.

step 3 Find the number of centuries in the range divisible by 400.
Since they are of the form 400n3, we have 1600 < 400n3 ≤ y. Then 4 < n3 ≤

y/400, so n3 = �y/400� − 4.

step 4 Therefore,

� = n1 − n2 + n3

= �y/4� − 400 − �y/100� + 16 + �y/400� − 4

= �y/4� − �y/100� + �y/400� − 388 �

We now return to the division algorithm and discuss some divisibility properties
involving even and odd integers.

Even and Odd Integers

Suppose we let b = 2 in the division algorithm. Then a = 2q + r, where 0 ≤ r < 2.
So r = 0 or 1. When r = 0, a = 2q; such integers are even integers. When r = 1,
a = 2q + 1; such integers are odd integers. It follows from this definition that every
integer is either even or odd, but not both.

The Pythagoreans considered odd numbers male and good, and even numbers
female and bad. The number 1 was considered neither male nor female. The num-
ber 5, being the sum of the first masculine and feminine numbers, was considered a
symbol of marriage. Some philosophers, supported by early Christian theologians,
identified the number with God.

The following properties were also known to the Pythagoreans. We shall leave
them as exercises; see Exercises 40–46.

• The sum of any two even integers is even.
• The product of any two even integers is even.
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• The sum of any two odd integers is even.
• The product of any two odd integers is odd.
• The sum of an even integer and an odd integer is odd.
• The product of an even integer and an odd integer is even.
• If the square of an integer is even, then the integer is even.
• If the square of an integer is odd, then the integer is odd.

E X E R C I S E S 2.1

Find the quotient and the remainder when the first integer
is divided by the second.

1. 78, 11 2. 57, 75 3. −325, 13 4. −23, 25

Let f (n) denote the number of positive factors of a posi-
tive integer n. Evaluate each.

5. f (16) 6. f (12) 7. f (15) 8. f (17)

Find the number of positive integers ≤ 3076 and

9. Divisible by 19 10. Divisible by 23
11. Not divisible by 17 12. Not divisible by 24

Find the number of positive integers in the range 1976
through 3776 that are

13. Divisible by 13 14. Divisible by 15
15. Not divisible by 17 16. Not divisible by 19

Mark true or false, where a, b, and c are arbitrary integers.

17. 1|a
18. If a|b, then a| − b.
19. a|0
20. If a|b and b|a, then a = b.
21. If a|b, then a < b.
22. If a < b, then a|b.
23. If a|b and b|c, then a|c.
24. If a � b, then b � a.
25. Zero is neither even nor odd.
26. There is no remainder when an even integer is divided

by 2.

Prove or disprove each statement, where a, b, and c are
arbitrary integers.

27. If a2 = b2, then a = b.

28. If a|b and b|a, then a = b.
29. If a|(b + c), then a|b and a|c.
30. If a|bc, then a|b and a|c.

Evaluate each, where d is a positive integer.

31.
∑

d|12

d 32.
∑

d|12

1

33.
∑

d|18

(
1

d

)

34.
∑

d|18

(
18

d

)

35. A nude number is a natural number n such that each
of its digits is a factor of n. Find all three-digit odd
nude numbers containing no repeated digits.

Let f be a function defined recursively by

f (n) =
{

1 if 3|n
f (n + 1) otherwise

36. Find f (16)

37. Find an explicit formula for f (n).

Prove each, where a and b are positive integers.

38. If a|b and b|a, then a = b.
39. If a|b and c|d, then ac|bd.
40. The sum and the product of any two even integers are

even.
41. The sum of any two odd integers is even.
42. The product of any two odd integers is odd.
43. The sum of an even integer and an odd integer is odd.
44. If the square of an integer is even, then the integer

must be even.
45. If the square of an integer is odd, then the integer must

be odd.
46. The product of any two consecutive integers is even.
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47. The sum of any two integers of the form 4k + 1 is
even.

48. Every odd integer is of the form 4k + 1 or 4k + 3.
49. The product of any two integers of the form 3k + 1 is

also of the same form.
50. The product of any two integers of the form 4k + 1 is

also of the same form.
51. If the product of two integers is even, then at least one

of them must be even.
52. If the product of two integers is odd, then both must

be odd.

Prove each by cases, where n is an arbitrary integer.

53. n2 + n is an even integer.
54. 2n3 + 3n2 + n is an even integer.
55. n3 − n is divisible by 2.
56. 30|(n5 − n)

57. Derive the inclusion–exclusion principle for three fi-
nite sets A, B, and C.

58. Prove that the difference of the squares of two posi-
tive integers cannot be 1.

59. Prove that the product of any four consecutive posi-
tive integers cannot be a perfect square.
(Hint: Use Exercise 58.)

60. Prove that if the sum of the cubes of three consecutive
integers is a cube k3, then 3|k.

61. Show that the equation n3 + (n + 1)3 + (n + 2)3 =
(n + 3)3 has a unique solution.
(Hint: Use Exercise 60.)

Using induction prove each, where n is a nonnegative in-
teger. (Hint: Use the binomial theorem for Exercises 64
and 65.)

62. 2n3 + 3n2 + n is divisible by 6.
63. n4 + 2n3 + n2 is divisible by 4.
64. 24n + 3n − 1 divisible by 9.
65. 42n + 10n − 1 divisible by 25.
66. Find the largest nontrivial factor of 230 − 1.

� �

�2.2 Base-b Representations (optional)

The division algorithm can be used to convert a decimal integer to any other base.
Furthermore, additions and multiplications can be carried out in any base, and sub-
traction can be accomplished using addition, as in base ten.

In everyday life, we use the decimal notation, base 10, to represent any real num-
ber. For example, 234 = 2(102) + 3(101) + 4(100), which is the decimal expansion
of 234. Likewise, 23.45 = 2(101) + 3(100) + 4(10−1) + 5(10−2). Computers use
base two (binary); very long binary numbers are often handled by human beings
using base eight (octal) and base sixteen (hexadecimal).

Actually, any positive integer b ≥ 2 is a valid choice for a base. This is a con-
sequence of the following fundamental result, the proof of which is a bit long but
straightforward.

THEOREM 2.7 Let b be a positive integer ≥ 2. Then every positive integer N can be expressed
uniquely in the form N = akbk +ak−1bk−1 +· · ·+a1b+a0, where a0,a1, . . . ,ak are
nonnegative integers less than b, ak 	= 0, and k ≥ 0.
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PROOF

The proof consists of two parts: the existence half and the uniqueness half. The ex-
istence half, applying the division algorithm, establishes the existence of such an
expansion for N using powers of b; the uniqueness half shows that such an expan-
sion is unique.

To show that N has the desired expansion:
Apply the division algorithm with N as the dividend and b as the divisor:

N = bq0 + a0, 0 ≤ a0 < b

If q0 	= 0, apply the division algorithm again with q0 as the new dividend:

q0 = bq1 + a1, 0 ≤ a1 < b

Continuing like this, we get a sequence of equations:

q1 = bq2 + a2, 0 ≤ a2 < b
q2 = bq3 + a3, 0 ≤ a3 < b

...

qk−2 = bqk−1 + ak−1, 0 ≤ ak−1 < b

where N > q0 > q1 > q2 > · · · . Because q0,q1,q2, . . . is a decreasing sequence of
nonnegative integers, this procedure must eventually terminate with the last step:

qk−1 = b · 0 + ak, 0 ≤ ak < b

To get the desired form, we begin substituting for each qi, beginning with the first
equation:

N = bq0 + a0

Substitute for q0:

N = b(bq1 + a1) + a0 = q1b2 + a1b + a0

Now substitute for q1 and continue the procedure:

N = q2b3 + a2b2 + a1b + a0

...

= qk−1bk + ak−1bk−1 + · · · + a2b2 + a1b + a0

= akbk + ak−1bk−1 + · · · + a2b2 + a1b + a0
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where 0 ≤ ai < b for every i. Also, ak 	= 0, since ak = qk−1 is the last nonzero quo-
tient. Thus, N has the desired expansion.

To show that the expansion of N is unique:
Suppose N has two expansions:

N =
k∑

i=0

aib
i =

k∑

i=0

cib
i

where 0 ≤ ai, ci < b. (We can assume both expansions contain the same number of
terms, since we can always add enough zero coefficients to yield the same number

of terms.) Subtracting one expansion from the other yields
k∑

i=0
(ai − ci)bi = 0. Let

di = ai − ci. Then
k∑

i=0
dibi = 0. If every di = 0, then ai = ci for every i, so the two

expansions are the same.
If the expansions are distinct, there must be a smallest integer j, where 0 ≤ j ≤ k,

such that dj 	= 0. Then

k∑

i=j

dib
i = 0

Factor out bj:

bj

(
k∑

i=j

dib
i−j

)

= 0

Cancel bj:

k∑

i=j

dib
i−j = 0

This yields

dj + b

(
k∑

i=j+1

dib
i−j−1

)

= 0

b

(
k∑

i=j+1

dib
i−j−1

)

= −dj

Thus, b|dj. But, since 0 ≤ ai, ci < b, −b ≤ ai − ci < b; that is, −b ≤ dj < b. There-
fore, since b|dj, dj = 0, which contradicts our assumption that dj 	= 0.
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Thus, the two expansions are the same, establishing the uniqueness of the ex-
pansion. This concludes the proof. �

This theorem leads us to the following definition.

Base-b Representation

The expression akbk + ak−1bk−1 + · · · + a1b + a0 is the base-b expansion of the
integer N. Accordingly, we write N = (akak−1 . . .a1a0)b in base b.

When the base is two, the expansion is called the binary expansion. When
b = 2, each coefficient is 0 or 1; these two digits are called binary digits (or bits).

The number system with base ten is the decimal system, from the Latin word
decem, meaning ten.† It was invented in India around the third century B.C., and
carried to Spain in A.D. 711 by Arabs who traded with India.

The decimal system employs the ten digits 0 through 9 to represent any number.
The principal reason for this choice is undoubtedly that in earlier times men and
women used their fingers for counting and computing, as some still do today.

The base is omitted when it is ten. For example, 234ten = 234 and (10110)two =
22 (see Example 2.6).

When the base is greater than ten, we use the letters A,B,C, . . . to represent the
digits ten, eleven, twelve, . . . respectively, to avoid any possible confusion. It is easy
to find the decimal value of an integer from its base-b representation, as the next two
examples illustrate.

EXAMPLE 2.6 Express 10110two in base ten.

SOLUTION

10110two = 1(24) + 0(23) + 1(22) + 1(21) + 0(20) ← binary expansion

= 16 + 0 + 4 + 2 + 0 = 22 �

EXAMPLE 2.7 Express 3ABCsixteen in base ten.

SOLUTION

Recall that A = 10, B = 11, and C = 12. Therefore,

† December was the tenth month of the ancient Roman year. Decemvir was a member of a council of
ten magistrates in ancient Rome.
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3ABCsixteen = 3(163) + 10(162) + 11(161) + 12(160)

= 12,288 + 2560 + 176 + 12 = 15,036 �

Conversely, suppose we are given a decimal integer. How do we express it in
another base b? By Theorem 2.9, all we have to do is express it as a sum of powers
of b, then simply collect the coefficients in the correct order. Always remember to
account for missing coefficients.

This method is illustrated in the following example.

EXAMPLE 2.8 Express 3014 in base eight.

SOLUTION

The largest power of 8 that is contained in 3014 is 512. Apply the division algorithm
with 3014 as the dividend and 512 as the divisor:

3014 = 5 · 512 + 454

Now look at 454. It lies between 64 and 512. The largest power of 8 we can now use
is 64:

454 = 7 · 64 + 6

Continue like this until the remainder becomes less than 8:

6 = 6 · 1 + 0

Thus, we have

3014 = 5(512) + 7(64) + 6

= 5(83) + 7(82) + 0(81) + 6(80)

= 5706eight �

A simple algorithm expresses an integer a in any nondecimal base b: divide a and its
successive quotients by b until a zero quotient is reached, then pick the remainders
in the reverse order. These steps can be translated into the elegant algorithm given in
Algorithm 2.1.
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Algorithm nondecimal base (n, b)
(* This algorithm finds the base-b representation (amam−1 . . .a1a0)b of a positive inte-

ger n. The variables q and r denote the quotient and the remainder of the division algo-
rithm, and i is a subscript. *)
Begin (* algorithm *)

(* initialize the variables q, r, and i *)
q ← n
r ← n
i ← 0
while q > 0 do
begin (* while *)

r ← q mod b
aj ← r
q ← q div b
i ← i + 1

endwhile
End (* algorithm *)

Algorithm 2.1

The following example demonstrates this algorithm.

EXAMPLE 2.9 Represent 15,036 in the hexadecimal system, that is, in base sixteen.

SOLUTION

Applying Algorithm 2.1, we have

Thus, 15,036 = 3ABCsixteen. �

The Egyptian Method of Multiplication

An algorithm based on Theorem 2.9 was used by the ancient Egyptians for multiply-
ing two positive integers, say, 23 and 45. First, express one of the factors, say, 23, as
a sum of powers of 2:

23 = 1 + 2 + 4 + 16
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Then

23 · 45 = 1 · 45 + 2 · 45 + 4 · 45 + 16 · 45

Next construct a table (Table 2.1) consisting of two rows, one headed by 1 and
the other by 45; each successive column is obtained by doubling the preceding col-
umn.

1 2 4 8 16
45� 90� 180� 360 720�

Table 2.1

To find the desired result, add the starred numbers in the second row. These
correspond to the terms in the binary expansion of 23:

23 · 45 = 45 + 90 + 180 + 720

= 1035

We can use yet another algorithm for multiplication, which is a delightful appli-
cation of the floor function.

The Russian Peasant Algorithm

The Russian peasant algorithm for multiplication resembles the Egyptian method.
To illustrate it, suppose we want to compute 24 · 43. As before, construct a table
(Table 2.2) of two rows, one headed by 24 and the other by 43. Each succeeding
number in row 1 is the quotient when the number is divided by 2; continue this
procedure until the quotient becomes 1. At each step, double the previous entry in
row 2.

24 12 6 3 1
43 86 172 344� 688�

Table 2.2

To compute the product, just add the starred numbers that correspond to the odd
numbers in row 1:

24 · 43 = 688 + 344 = 1032

[Can you explain why this algorithm works? Hint: ab = (a/2)(2b).]



�2.2 Base-b Representations (optional) 87

The Egyptian Method of Division

The Egyptians developed a method for dividing integers that was similar to their mul-
tiplication algorithm. Suppose we would like to find the quotient and the remainder
when 256 is divided by 23, by this method. Once again, build a table (Table 2.3), the
first row headed by 1 and the other by the divisor 23; double each successive column
until the number in the second row exceeds 256, the dividend.

1 2 4 8 16
23� 46� 92 184� 368

↑
256

Table 2.3

Now express 256 as a sum of the starred numbers from the second row:

256 = 184 + 72

= 184 + 46 + 26

= 184 + 46 + 23 + 3 ← remainder

Then the quotient is the sum of the numbers in row 1 that correspond to the
starred numbers, namely, 1 + 2 + 8 = 11; the remainder is the leftover, 3.

E X E R C I S E S 2.2

Express each number in base ten.

1. 1101two 2. 11011two

3. 1776eight 4. 1976sixteen

Express each decimal number as required.

5. 1076 = ( )two 6. 676 = ( )eight
7. 1776 = ( )eight 8. 2076 = ( )sixteen

The binary representation of an integer can conveniently
be used to find its octal representation. Group the bits
in threes from right to left and replace each group
with the corresponding octal digit. For example, 243 =
11110011two = 011 110 011two = 363eight. Using this
shortcut, rewrite each binary number as an octal integer.

9. 1101two 10. 11011two

11. 111010two 12. 10110101two

The binary representation of an integer can also be used
to find its hexadecimal representation. Group the bits in
fours from right to left and then replace each group with
the equivalent hexadecimal digit. For instance, 243 =
11110011two = 1111 0011two = F3sixteen. Using this
method, express each binary number in base sixteen.

13. 11101two 14. 110111two

15. 1110101two 16. 10110101two

The techniques explained in Exercises 9–12 are re-
versible, that is, the octal and hexadecimal representations
of integers can be used to find their binary representations.
For example, 345eight = 011 100 101two = 11100101two.
Using this technique, rewrite each number in base two.

17. 36sixteen 18. 237eight
19. 237sixteen 20. 3ADsixteen
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Using the Egyptian method, compute each product.

21. 19 · 31 22. 30 · 43
23. 29 · 49 24. 36 · 59

25–28. Using the Russian method, evaluate the products
in Exercises 21–24.

Using the Egyptian method of division, find the quotient
and the remainder when the first integer is divided by the
second.

29. 243, 19 30. 1076, 31
31. 1776, 35 32. 2076, 43

33. Arrange the binary numbers 1011, 110, 11011,
10110, and 101010 in order of increasing magnitude.

34. Arrange the hexadecimal numbers 1076, 3056,
3CAB, 5ABC, and CACB in order of increasing mag-
nitude.

35. What can you say about the ones bit in the binary rep-
resentation of an even integer? An odd integer?

Find the value of the base b in each case.

36. 54b = 64 37. 1001b = 9
38. 1001b = 126 39. 144b = 49

40. Find the base b if 7642 = 1234b. (A. Dunn, 1980)
41. Find the positive integer n if the decimal values of

n3 and n4 together contain all the digits exactly once.
(A. Dunn, 1980)

Find the number of ones in the binary representations of
each number.

42. 23 − 1 43. 24 − 1 44. 25 − 1 45. 2n − 1

46. Suppose a space team investigating Venus sends back
the picture of an addition problem scratched on a
wall, as shown in Figure 2.4. The Venusian numer-
ation system is a place value system, just like ours.

The base of the system is the same as the number of
fingers on a Venusian hand. Determine the base of
the Venusian numeration system. (This puzzle is due
to H. L. Nelson.†)

Figure 2.4

Polynomials can be evaluated efficiently using the tech-
nique of nested multiplication, called Horner’s method.
(This method is named after the English schoolmaster
William G. Horner [1786–1837], who published it in
1819.) For instance, the polynomial f (x) = 4x3 + 5x2 +
6x + 7 can be evaluated as f (x) = ((4x + 5)x + 6)x + 7.
Using this method, express each as a decimal integer.

47. 245eight 48. 101101two

49. 1100101two 50. 43BCsixteen

Find the ones digit in the decimal value of each.

51. 2100 52. 3247

�53. Let x be a three-digit number with distinct digits in
base twelve. Reverse the digits. Subtract the smaller
number from the other number (save all the digits
in your answer). Reverse the digits in the difference.
Add this number to x. Find the sum.

�54. Redo Exercise 53 in base sixteen.

� �

† M. Gardner, “Mathematical Games,” Scientific American, 219 (Sept. 1968), 218–230.
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�2.3 Operations in Nondecimal Bases (optional)

Before exploring how to add nondecimal numbers, let us take a close look at the
familiar addition algorithm in base ten.

To find the sum of any two decimal digits a and b, first find the remainder r =
(a + b) mod 10 and the quotient q = (a + b) div 10. Then a + b = (qr)ten; q is the
carry resulting from the addition of a and b. Using this concept, it is possible to add
any two decimal integers.

Addition in Base b

Fortunately, the addition algorithm can be extended to any nondecimal base b. For
example, let x = (xm . . . x0)b and y = (yn . . . y0)b, where m ≥ n. If m > n, we could
assume that yn+1 = · · · = ym = 0. We add the corresponding digits in x and y in a
right-to-left fashion. Let si = (xi + yi + ci) mod b and ci+1 = (xi + yi + ci) div b,
where c0 = 0. Then x + y = (sm+1sm . . . s0)b, where sm+1 may be 0 or 1. (Leading
zeros are deleted from the answer.)

These steps translate into a straightforward algorithm, as in Algorithm 2.2.

Algorithm addition (x, y, s, b)
(* This algorithm computes the sum s = (sm+1sm . . . s0)b of the integers x =

(xmxm−1 . . . x0)b and y = (ynym−1 . . . y0)b, where m ≤ n. *)

Begin (* algorithm *)
carry ← 0 (* initialize carry *)
for i = 0 to n do
begin (* for *)

si ← (xi + yi + carry) mod b
carry ← (xi + yi + carry) div b

endfor
for i = n + 1 to m do
begin (* for *)

si ← (xi + carry) div b
carry ← (xi + carry) div b

endfor
if carry > 0 then

sm+1 ← carry
End (* algorithm *)

Algorithm 2.2

The following two examples illustrate this algorithm.
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EXAMPLE 2.10 Add the binary integers 10110two and 1011two.

SOLUTION

First, write the integers one below the other in such a way that the corresponding bits
are vertically aligned (Figure 2.5). (For convenience, the base two is not shown.)

Add the corresponding bits from right to left, beginning with the ones column:
0+1 = 1. Because 1 mod 2 = 1, enter 1 as the ones bit in the sum. Since 1 div 2 = 0,
the resulting carry is 0, shown circled in Figure 2.6. (In practice when the carry is 0,
it is simply ignored.) Now add the bits 0, 1, and 1 in the twos column: 0 + 1 + 1 = 2.
Because 2 mod 2 = 0 and 2 div 2 = 1, enter 0 in the twos column and the new carry
is 1 (Figure 2.7). Continuing like this, we get the sum 100001two (Figure 2.8).

Figure 2.5 Figure 2.6

Figure 2.7 Figure 2.8 �

The addition of binary numbers can be made easy by observing that 0 + 0 = 0,
0 + 1 = 1 = 1 + 0, and 1 + 1 = 10, all in base two.

The following example illustrates addition in base twelve and base sixteen.
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EXAMPLE 2.11

Notice that in base twelve, B+3 = 12, 1+8+A = 17, 1+5+9 = 13, and 1+A = B;
and in base sixteen, C + A = 16, 1 + B + B = 17, and 1 + A + C = 17. �

Subtraction in Base b

The following two examples illustrate nondecimal subtraction using the familiar con-
cept of borrowing, when needed.

EXAMPLE 2.12 Evaluate 2354seven − 463seven.

SOLUTION

As usual, write the numbers one below the other in such a way that the corresponding
digits match vertically:

Beginning with the ones column, 4 − 3 = 1, so the ones digit in the answer is 1
(Figure 2.9).

Figure 2.9 Figure 2.10

Now proceed to the sevens column. Since 5 < 6, go to the forty-nines column
and borrow a 1, leaving a 2 there. When that 1 comes to the sevens column, it be-
comes a 10. This yields 10+5 = 15 in the sevens column. Since 15−6 = 6, we get 6
as the sevens digit in the answer. (Remember, we are in base seven.) See Figure 2.10.
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In the forty-nines column, 2 < 4. So borrow a 1 from the next column, leaving a
1 there. The 1 borrowed yields 10+2 = 12 in the forty-nines column. Since 12−4 =
5, the forty-nines digit in the answer is 5 (Figure 2.11).

Since there are no nonzero digits left in the subtrahend, simply bring down the
1 from the minuend. This gives the final answer: 1561seven (Figure 2.12).

Figure 2.11 Figure 2.12

We can verify this subtraction by converting it into an addition problem:
463seven + 1561seven = 2354seven. �

The following example demonstrates subtraction in bases twelve and sixteen.

EXAMPLE 2.13 Evaluate A74twelve − 39Btwelve and 2076sixteen − 1777sixteen.

SOLUTION

See Figures 2.13 and 2.14. We can verify both answers as an exercise.

Figure 2.13 Figure 2.14
�

Next, we present a numeric puzzle that will test your mastery of both nondecimal
addition and subtraction.
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A Nondecimal Puzzle (optional)

Write down a three-digit number in base twelve, with no repetitions. Reverse its
digits. Subtract the smaller number from the other (in base twelve); save all leading
zeros. Reverse its digits. Add the last two numbers. Is your answer 10ABtwelve? Now
redo this puzzle in base sixteen. Your answer should be 10EFsixteen.

Binary Subtraction

We can subtract binary numbers without the bother of “borrows,” using ones com-
plement and addition. The ones complement x′ of a binary number x is obtained by
replacing each 0 in x with a 1 and vice versa. For example, the ones complement of
1011two is 0100two and that of 1001two is 0110two. The twos complement of x is
x′ + 1. For instance, the twos complement of 1011two is 0100two + 1 = 0101two.

The following example illustrates this new technique.

EXAMPLE 2.14 Subtract 1011two from 100001two.

SOLUTION

(For convenience, we shall drop the base two.)

step 1 Find the ones complement of the subtrahend 1011.
Since the minuend 100001 contains six bits, keep the same number of bits in the
subtrahend by padding it with two 0s at the beginning. The ones complement of
1011 = 001011 is 110100.

step 2 Find the twos complement by adding 1 to the ones complement: 110100 +
1 = 110101.

step 3 Add the twos complement in step 2 to the minuend 100001:

step 4 Delete the leading carry 1.
The resulting number 010110 = 10110 is the desired answer.

Thus, 100001two − 1011two = 10110two. (To check this, you may verify that
1011two + 10110two = 100001two.) �

Now we illustrate the multiplication algorithm in base b.
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Multiplication in Base b

The traditional algorithm for multiplying two decimal integers x and y works for any
base in an obvious way: multiply every digit in x by every digit in y as in base b and
add up the partial products, as the next example shows.

EXAMPLE 2.15 Multiply 1011two and 101two.

SOLUTION

The various steps unfold in Figures 2.15–2.17. The product is 110111two.

Figure 2.15 Figure 2.16

Figure 2.17 �

Shifting and Binary Multiplication

If you were confused by this example, don’t be dismayed; there is an alternative
method. Most computers do binary multiplications using a technique called shifting,
as discussed below.

Consider the binary number x = (xmxm−1 . . . x1x0)two =
m∑

i=0
xi2i. What is the ef-

fect of multiplying x by 2j? Since

x2j =
m∑

i=0

xi2
i+j = xm . . . x1x0 00 . . .0︸ ︷︷ ︸

j zeros

two

every bit in x is shifted to the left by j columns.
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More generally, let a be any bit. Then

x(a2j) =
m∑

i=0

(axi)2
i+j = (axm) . . . (ax0)00 . . .0︸ ︷︷ ︸

j zeros

two

The bit axi equals xi if a = 1, and equals 0 if a = 0. Thus, the effect of multiplying
the number x = (xm . . . x0)two by the bit yj in the multiplicand y = (yn . . . yj . . . y0)two

is the same as multiplying each bit xi by yj and shifting the result to the left by j
columns. Then add the partial products to get the desired product, as the following
example illustrates.

EXAMPLE 2.16 Evaluate 1011two × 101two.

SOLUTION

The various steps are displayed in Figures 2.18–2.21. It follows from Figure 2.21
that the resulting product is 110111two.

Figure 2.18 Figure 2.19

Figure 2.20

Figure 2.21 �
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The shifting method of multiplication leads to Algorithm 2.3 for multiplying
two binary numbers.

Algorithm binary multiplication (x, y, p)
(* This algorithm computes the product p = (pm+npm+n−1 . . .p0)two of the binary num-

bers x = (xmxm−1 . . . x0)two and y = (ynym−1 . . . y0)two, using shifting. *)

Begin (* algorithm *)
for j = 0 to n do
begin (* for *)

multiply each bit xi by yi
shift the resulting binary word to the left by j columns
wj ← resulting binary word

endfor
add the partial products wj
p ← resulting sum

End (* algorithm *)

Algorithm 2.3

Repunits

A repunit (repeated unit)† is a positive integer whose decimal expansion consists
of 1s. A repunit with n ones is denoted by Rn. For example, R2 = 11 and R3 = 111.

The following interesting problem on repunits was proposed in 1982 by
L. Kuipers of Switzerland.

EXAMPLE 2.17 Show that 111 cannot be a square in any base.

PROOF (by contradiction)
Suppose 111 is a perfect square a2 in some base b, so a2 = b2 + b + 1 < (b + 1)2.
Then

(b + 1/2)2 = b2 + b + 1/4 < b2 + b + 1

That is,

(b + 1/2)2 < a2 < (b + 1)2

This yields (b + 1/2) < a < b + 1; that is, a lies between b + 1/2 and b + 1, which
is impossible. Thus, 111 cannot be a square in any base. �

† The term repunit was coined by Albert H. Beiler of Brooklyn, New York.
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A Brainteaser (optional)

Look at the numbers on cards A, B, C, D, and E in Figure 2.22. Assuming you are
under 32 years old, if you identify the cards on which your age appears, we can easily
tell your age. For example, if your age appears on cards A, B, C, and E, then you
must be 23. Can you explain how this puzzle works?

Figure 2.22

E X E R C I S E S 2.3

Construct an addition table for each base.

1. Five 2. Seven

Compute x + 1 for each value of x.

3. 101two 4. 344five

5. 666seven 6. 2ABtwelve

7. Let b be a base such that 120b + 211b = 331b, where
b < 8. Find the possible values(s) of b.

Perform the indicated operations.

8. 1111two

+1011two

9. 1076eight
+2076eight

10. 89Btwelve
+ 5A6twelve

11. 3076sixteen
+ 5776sixteen

Compute x − 1 for each value of x.

12. 100two 13. 210seven

14. 37Btwelve 15. ABCsixteen

Perform the indicated operations.

16. 101101two

− 10011two

17. 11000two

− 100two

18. 2000seven

− 1336seven

19. A89Btwelve
− 65A6twelve

Construct a multiplication table for each base.

20. Five 21. Seven

Compute x(x + 1) for each value of x.

22. 110two 23. 243five

24. 345seven 25. ABtwelve

Compute x(x − 1) for each value of x.

26. 101two 27. 243five

28. 343seven 29. BAtwelve

Perform the indicated operations.

30. 10111two

× 1101two

31. 1024eight
× 2776eight

32. 1976twelve
× 1776twelve

33. CBAsixteen
× ABCsixteen

� �
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2.4 Number Patterns

Number patterns are fun for both amateurs and professionals. Often we would like
to add one or two rows to the pattern, so we must be good at pattern recognition to
succeed in the art of inductive reasoning. It takes both skill and ingenuity. In two of
the following examples, mathematical proofs establish the validity of the patterns.

The following fascinating number pattern† was published in 1882 by the French
mathematician François-Edouard-Anatole Lucas.

EXAMPLE 2.18 Study the following number pattern and add two more lines.

1 · 9 + 2 = 11

12 · 9 + 3 = 111

123 · 9 + 4 = 1111

1234 · 9 + 5 = 11111

12345 · 9 + 6 = 111111

123456 · 9 + 7 = 1111111
...

SOLUTION

Although the pattern here is very obvious, let us make a few observations, study
them, look for a similar behavior, and apply the pattern to add two more lines:

• The LHS of each equation is a sum of two numbers. The first number is a
product of the number 123 . . .n and 9.

• The value of n in the first equation is 1, in the second it is 2, in the third it is
3, and so on.

• Take a look at the second addends on the LHS: 2, 3, 4, 5, . . . . It is an increasing
sequence beginning with 2, so the second addend in the nth equation is n + 1.

• The RHS of each equation is a number made up of 1s, the nth equation con-
taining n + 1 ones.

Thus, a pattern emerges and we are ready to state it explicitly: The first number
in the nth line is 123 . . .n; the second number is always 9; the second addend is n+1;
and the RHS is made up of n + 1 ones.

† This curious number pattern appeared in Mathematical Recreations by Lucas.
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So the next two lines are

1234567 · 9 + 8 = 11111111

12345678 · 9 + 9 = 111111111 �

The following pattern is equally charming.

EXAMPLE 2.19 Study the number pattern and add two more rows:

1 · 8 + 1 = 9

12 · 8 + 2 = 98

123 · 8 + 3 = 987

1234 · 8 + 4 = 9876

12345 · 8 + 5 = 98765

123456 · 8 + 6 = 987654
...

SOLUTION

A close look at the various rows reveals the following pattern: The first factor of the
product on the LHS of the nth equation has the form 123 . . .n; the second factor is
always 8. The second addend in the equation is n. The number on the RHS of the nth
equation contains n digits, each begins with the digit 9, and the digits decrease by 1.

Thus the next two lines of the pattern are

1234567 · 8 + 7 = 9876543

12345678 · 8 + 8 = 98765432 �

What guarantees that these two patterns will hold? In general, conclusions
reached after observing patterns do not have to be true. In other words, inductive
reasoning does not necessarily lead us to true conclusions.

For instance, consider the sequence 0, 1, 2, 3, 4, 5, 6, . . . . Clearly, there is a
pattern. So what is the next number in the sequence? Is it 7? This is certainly a
possibility, but the next number could also be 0 to yield the pattern 0, 1, 2, 3, 4, 5, 6,
0, 1, 2, . . . .
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Fortunately, it is possible to establish the validity of each pattern using mathe-
matical proofs, as the following two examples demonstrate.

EXAMPLE 2.20 Establish the validity of the number pattern in Example 2.18.

PROOF

We would like to prove that 123 . . .n × 9 + (n + 1) = 11 . . .11︸ ︷︷ ︸
n+1 ones

LHS = 123 . . .n × 9 + (n + 1)

= 9(1 · 10n−1 + 2 · 10n−2 + 3 · 10n−3 + · · · + n) + (n + 1)

= (10 − 1)(1 · 10n−1 + 2 · 10n−2 + 3 · 10n−3 + · · · + n) + (n + 1)

= (10n + 2 · 10n−1 + · · · + n · 10) − (10n−1 + 2 · 10n−2 + · · · + n) + (n + 1)

= 10n + 10n−1 + 10n−2 + · · · + 10 + 1

= 11 . . .11︸ ︷︷ ︸
n+1 ones

= RHS

(It would be interesting to see if this result holds for any positive integer n; try it.) �

We will study one more example.

EXAMPLE 2.21 Add two more rows to the following pattern, conjecture a formula for the nth row,
and prove it:

9 · 9 + 7 = 88

98 · 9 + 6 = 888

987 · 9 + 5 = 8888

9876 · 9 + 4 = 88888

98765 · 9 + 3 = 888888
...

SOLUTION

• The next two rows of the pattern are

987654 · 9 + 2 = 8888888

9876543 · 9 + 1 = 88888888
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• The general pattern seems to be

987 . . . (10 − n) · 9 + (8 − n) = 888 . . .888︸ ︷︷ ︸
n+1 eights

, 1 ≤ n ≤ 8

• To prove the conjecture:

LHS = 987 . . . (10 − n) · 9 + (8 − n)

= (10 − 1)[9 · 10n−1 + 8 · 10n−2 + 7 · 10n−3 + · · · + (11 − n)10

+ (10 − n)] + (8 − n)

= [9 · 10n + 8 · 10n−1 + · · · + (11 − n)102 + (10 − n)10] −
[9 · 10n−1 + 8 · 10n−2 + 7 · 10n−3 + · · · + (11 − n)10 + (10 − n)]
+ (8 − n)

= 9 · 10n − (10n−1 + 10n−2 + · · · + 10) − (10 − n) + (8 − n)

= 9 · 10n − (10n−1 + 10n−2 + · · · + 10 + 1) − 1

= 10 · 10n − (10n + 10n−1 + · · · + 10 + 1) − 1

= 10n+1 − 10n+1 − 1

9
− 1, since

k∑

i=0

ri = rk+1 − 1

r − 1
(r 	= 1)

= 8(10n+1 − 1)

9

But

10n+1 − 1 = 99 . . .99︸ ︷︷ ︸
n+1 nines

,

so

10n+1 − 1

9
= 11 . . .11︸ ︷︷ ︸

n+1 ones

Therefore,

LHS = 8(10n+1 − 1)

9
= 88 . . .88︸ ︷︷ ︸

n+1 eights

= RHS �
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E X E R C I S E S 2.4

Find the next two elements of each sequence.

1. 1, 3, 6, 10, 15, . . . 2. 1, 4, 7, 10, 13, . . .
3. 1, 5, 12, 22, 35, . . . 4. 1, 6, 15, 28, 45, . . .
5. 1, 4, 10, 20, 35, . . . 6. 1, 5, 14, 30, 55, . . .
7. 1, 1, 2, 3, 5, 8, . . . �8. o, t, t, f , f , s, s, . . .

Add two more rows to each number pattern.†

9. 0 + 1 = 1
1 + 3 = 4
4 + 5 = 9
9 + 7 = 16

10. 1 = 1
1 + 2 = 3

1 + 2 + 3 = 6
1 + 2 + 3 + 4 = 10

11. 1 = 1
1 + 4 = 5

1 + 4 + 9 = 14
1 + 4 + 9 + 16 = 30

12. 1 + 2 = 3
1 + 2 + 4 = 7

1 + 2 + 4 + 8 = 15
1 + 2 + 4 + 8 + 16 = 31

13. 1 + 0 · 1 = 1
1 + 1 · 3 = 4
1 + 2 · 4 = 9
1 + 3 · 5 = 16

14. 23 − 2 = 1 · 2 · 3
33 − 3 = 2 · 3 · 4
43 − 4 = 3 · 4 · 5
53 − 5 = 4 · 5 · 6

† Exercises 15–18 are based on F. B. Selkin, “Number Games

Bordering on Arithmetic and Algebra,” Teachers College

Record, 13 (1912), 68. Exercise 20 is based on A. H. Beiler,

Recreations in Theory of Numbers, Dover, New York (1966),

85.

15. 1 · 1 = 1
11 · 11 = 121

111 · 111 = 12321
1111 · 1111 = 1234321

11111 · 11111 = 123454321

16. 7 · 7 = 49
67 · 67 = 4489

667 · 667 = 444889
6667 · 6667 = 44448889

66667 · 66667 = 4444488889

17. 12345679 · 9 = 111111111
12345679 · 18 = 222222222
12345679 · 27 = 333333333
12345679 · 36 = 444444444
12345679 · 45 = 555555555

18. 4 · 4 = 16
34 · 34 = 1156

334 · 334 = 111556
3334 · 3334 = 11115556

33334 · 33334 = 1111155556

19. 0
1 1

1 0 1
1 1 1 1

1 0 0 0 1

20. 102 − 10 + 1 = 91
104 − 102 + 1 = 9901
106 − 103 + 1 = 999001
108 − 104 + 1 = 99990001

1010 − 105 + 1 = 9999900001

21–31. Conjecture a formula for the nth row of each pat-
tern in Exercises 10–20.

32–38. Establish the validity of your formula in Exercises
21–26 and 31.

39. Show that the formula in Example 2.18 does not hold
for every integer n.

In Exercises 40–43, Rn denotes a repunit.
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40. Compute R2
1, R2

2, R2
3, and R2

4.

41. Using Exercise 40, predict the values of R2
5 and R2

6.

42. Conjecture the value of R2
n.

43. Does the conjecture hold for R2
10?

Use the following number pattern to answer Exercises
44–46.

1 = 12 − 02

3 = 22 − 12

5 = 32 − 22

7 = 42 − 32

9 = 52 − 42

44. Add two more lines.
45. Make a conjecture about row n.
46. Prove the conjecture in Exercise 45.
47. Add two more rows to the pattern in Figure 2.23.

Figure 2.23

48. Find the first and the last numbers in the nth row in
Figure 2.23.

49. Conjecture a formula for the sum of the numbers in
row n in Figure 2.23.

50–52. Redo Exercises 47–49 with the triangular array in
Figure 2.24.

Figure 2.24

53. Show that
10n − 9n − 1

81
= 123 . . . (n − 1)

︸ ︷︷ ︸
n−1 digits

, where

2 ≤ n ≤ 9.

54. Find the value of 10n − 10n − 9n − 1

81
− 1, where

1 ≤ n ≤ 9.
55. Establish the validity of the pattern in Example 2.19.

(Hint: Use Exercises 53 and 54.)
56. Prove that the numbers 49, 4489, 444889, . . . , where

each number, except the first, is obtained by insert-
ing 48 in the middle, are all squares. (S. R. Conrad,
1976)

� �

2.5 Prime and Composite Numbers

Prime numbers are the building blocks of positive integers. Two algorithms are often
used to determine whether a given positive integer is a prime.

Some positive integers have exactly two positive factors and some have more
than two. For example, 3 has exactly two positive factors: namely, 1 and 3; whereas
6 has four: 1, 2, 3, and 6. Accordingly, we make the following definition.
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Prime and Composite Numbers

A positive integer > 1 is a prime number (or simply a prime) if its only positive
factors are 1 and itself. A positive integer > 1 that is not a prime is a composite
number (or simply a composite).

Notice that, by definition, 1 is neither a prime nor a composite. It is just the
multiplicative identity or the unit.

The first ten primes are 2, 3, 5, 7, 11, 13, 17, 19, 23, and 29; the first ten com-
posite numbers are 4, 6, 8, 9, 10, 12, 14, 15, 16, and 18.

It follows from the definition that the set of positive integers can be partitioned
into three disjoint classes: the set of primes, the set of composites, and {1}.

How many primes are there? Is there a systematic way to determine whether a
positive integer is a prime?

To answer the first question, we need the following lemma,† which we shall
prove by induction. It can also be proved by contradiction (see Exercise 59).

LEMMA 2.1 Every integer n ≥ 2 has a prime factor.

PROOF (by strong induction)
The given statement is clearly true when n = 2. Now assume it is true for every
positive integer n ≤ k, where k ≥ 2. Consider the integer k + 1.

case 1 If k + 1 is a prime, then k + 1 is a prime factor of itself.

case 2 If k + 1 is not a prime, k + 1 must be a composite, so it must have a factor
d ≤ k. Then, by the inductive hypothesis, d has a prime factor p. So p is a factor of
k + 1, by Theorem 2.4.

Thus, by the strong version of induction, the statement is true for every integer
≥ 2; that is, every integer ≥ 2 has a prime factor. �

We can now prove that there is an infinite number of primes. This result, devised
by Euclid, is one of the elegant results in number theory. We use essentially his
technique from Book IX of Elements to prove it. See Theorem 3.4 and Corollary 3.8
for alternative proofs.

THEOREM 2.8 (Euclid) There are infinitely many primes.

PROOF (by contradiction)
Assume there is only a finite number of primes, p1,p2, . . . ,pn. Consider the integer
N = p1p2 · · ·pn + 1. Since N ≥ 2, by Lemma 2.1, N is divisible by some prime pi,

† A lemma is a minor result used to prove a theorem.
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where 1 ≤ i ≤ n. Since pi|N and pi|p1p2 · · ·pn, pi|(N − p1p2 · · ·pn), by Theorem 2.4;
that is, pi|1, which is impossible.

Thus, our assumption is false, so there are infinitely many primes. �

The proof of this theorem hinges on the choice of the number En = p1p2 · · ·pn +
1, where pi denotes the ith prime and i ≥ 1. The first five values of En are E1 = 3,
E2 = 7, E3 = 31, E4 = 211, and E5 = 2311, all primes. Unfortunately, not all values
of En are primes; see Exercise 70.

In 1996, A. A. K. Majumdar of Jahangirnagar University, Bangladesh, estab-
lished an upper bound for En, when n ≥ 6: En < (pn+1)

n−2. We can establish this
using induction. See Exercise 71.

�Primes and Pi (optional)

We now make an interesting digression. In 1734, the outstanding Swiss mathemati-

cian Leonhard Euler showed that the sum of the reciprocals of primes
∑

p

1

p
di-

verges. The infinitude of primes follows from this also. However, the infinite product
∏

p
(1 − 1/p2) converges to a limit ν.† In fact, it can be shown‡ that

1

ν
=

∞∑
n=1

1

n2
=

1

12
+ 1

22
+ 1

32
+ · · ·. In 1734, Euler also showed that

∞∑
n=1

1

n2
= π2

6
, so ν = 6

π2
.

Thus,
∏

p

(

1 − 1

p2

)

= 6

π2
≈ 0.6079271018.

Now that we know there is an infinite number of primes, can we find an al-
gorithm for determining the primality of integers ≥ 2? The great German mathe-
matician Karl Friedrich Gauss wrote in 1801 in Disquisitiones Arithmeticae: “The
problem of distinguishing prime numbers from composite numbers . . . is known to
be one of the most important and useful in arithmetic . . . . Further, the dignity of sci-
ence itself seems to require that every possible means be explored for the solution of
a problem so elegant and so celebrated.” Fortunately, there is an algorithm, which is
based on the following result.

THEOREM 2.9 Every composite number n has a prime factor ≤ �√n�.

PROOF (by contradiction)
Because n is composite, there are positive integers a and b such that n = ab, where
1 < a < n and 1 < b < n. Suppose a >

√
n and b >

√
n. Then n = ab >

√
n ·√n = n,

† ν is the Greek letter nu.
‡ See Ogilvy and Anderson.
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which is impossible. Therefore, either a ≤ √
n or b ≤ √

n. Since both a and b are
integers, it follows that either a ≤ �√n� or b ≤ �√n�.

By Lemma 2.1, every positive integer ≥ 2 has a prime factor. Any such factor of
a or b is also a factor of a · b = n, so n must have a prime factor ≤ �√n�. �

It follows from Theorem 2.11 that if n has no prime factors ≤ �√n�, then n is a
prime; otherwise, it is a composite number.

This fact can be used to determine whether an integer n ≥ 2 is a prime, as the
next example illustrates.

EXAMPLE 2.22 Determine whether 1601 is a prime number.

SOLUTION

First list all primes ≤ �√1601�. They are 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, and 37.
Since none of them is a factor of 1601 (verify), 1601 is a prime. �

An algorithm for determining the primality of a positive integer n ≥ 2 is given
in Algorithm 2.4.

Algorithm prime number (n)
(* This algorithm using Theorem 2.9 determines whether an integer n ≤ 2 is prime or

not. *)
Begin (* algorithm *)

list all primes ≤ �√n�
if any of them is a factor of n, then n is not a prime
else

n is a prime
End (* algorithm *)

Algorithm 2.4

The Sieve of Eratosthenes

Theorem 2.9 is also the basis of an ancient algorithm, the sieve of Eratosthenes,
used for finding all primes ≤ a positive integer n. It is an efficient algorithm for
n < 106. We illustrate the sieving mechanism for n = 100 in Figure 2.25.
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Eratosthenes (ca. 276–ca. 194 B.C.), a Greek mathematician, was born in the an-

cient town of Cyrene, in present-day Libya. After spending many years at Plato’s

school in Athens, he went to Alexandria at the invitation of Ptolemy III to tutor

his son and to serve as the chief librarian at the University. A gifted mathemati-

cian, astronomer, geographer, historian, philosopher, poet, and athlete, he was

called pentathlus (the champion of five sports) by his students. His most impor-

tant scientific achievement was the determination of the size of the earth. Around

194 B.C., he became blind and committed suicide by starvation.

Figure 2.25

To find all primes ≤ 100, first list the positive integers 1 through 100. Then we
eliminate 1 and all composite numbers ≤ 100 as follows. By Theorem 2.9, every
composite number ≤ 100 must have a prime factor ≤ �√100�, that is, ≤ 10. But the
primes ≤ 10 are 2, 3, 5, and 7, so the composite numbers ≤ 100 are those positive
integers divisible by one of them.

To eliminate the nonprimes from the list, first cross out 1 with a slash, since it
is not a prime. Now cross out all multiples of 2, 3, 5, and 7, but not 2, 3, 5, or 7.
(Why?) Numbers already eliminated need not be crossed out again. What remains
are the primes ≤ 100.

There are 25 such primes: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47,
53, 59, 61, 67, 71, 73, 79, 83, 89, and 97.

Although the sieve looks fine, as n gets larger it becomes less efficient; the sieve
is not a practical method. In fact, no simple, practical method exists for testing the
primality of large numbers; see Theorem 8.14 for an efficient algorithm.
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Outsider Math

Clive Thompson
Prime numbers have baffled scientists for millennia. Primes
do not occur in any easily discernible order—which makes
it very difficult to figure out whether a really huge number is
prime or not. (And by “really huge,” we’re talking thousands
of digits long.) Ever since the time of the ancient Greeks,
finding a simple way to prove a number is prime has been
the holy grail of mathematics, and the hunt has nearly driven
several scientists mad. As the mathematician Karl Friedrich
Gauss wrote in 1801, “The dignity of the science itself seems
to require that every possible means be explored for the so-
lution of a problem so elegant and so celebrated.”

This year, it finally arrived. On Aug. 6, the Indian math-
ematician Manindra Agrawal distributed a nine-page paper
that rocked the scientific world. He had hit upon an inge-
nious algorithm to prove whether a number is prime, no mat-
ter how enormous. Within weeks, stunned mathematicians
had kicked the tires and pronounced it sound. Security ex-
perts were just as shocked. Encryption programs used by
banks and governments rely on increasingly large primes—
up to 600 digits, these days—to keep criminals and terrorists

at bay. This new algorithm could guarantee primes so mas-
sive they would afford almost perfect online security.

But most astonishing of all was the simplicity of the
algorithm. You can scrawl it on a single sheet of paper—
double-spaced. It had been staring everyone in the face for
years, like the Purloined Letter of mathematics. “When you
read the paper, you slapped yourself on the forehead and
asked, Why didn’t I think of this?” says Carl Pomerance, a
mathematician at Bell Labs.

Here’s why. Math, like every other science, has become
increasingly specialized. Prime-number theorists had been
hacking away with number theory so complex and weird that
barely 100 people worldwide could understand their calcu-
lations. But the new proof from India was created by a pro-
fessor who isn’t known as a number theorist—and his two
co-authors were still undergraduates. What’s more, they em-
ployed a branch of math with which any high-school student
would be familiar: polynomials, like the simple expression
(A+B)2. “It’s not really difficult at all,” Agrawal says. “When
you show it, it’s like, Is that it?”

It is a fresh reminder of why history is riddled with inno-
vations that came out of left field, delivered by amateurs toil-
ing in their basements. Primes don’t occur in any pattern—
and sometimes, neither do discoveries.

Figure 2.26

In August 2002, M. Agrawal of the Indian Institute of Technology, Kanpur, In-
dia, and two of his undergraduate students, N. Kayal and N. Saxena, developed an
efficient algorithm that is of theoretical significance. Their discovery surprised num-
ber theorists everywhere, since it runs in polynomial time; that is, “the number of
steps (needed) is bounded by a polynomial function of the length of the input data.”
Two years later, H. Lenstra and C. Pomerance refined their algorithm to a theoreti-
cally more efficient one.

Number theorists often dream of finding formulas that generate primes for con-
secutive values of the integral variable n. Euler found one such formula in 1772:
E(n) = n2 −n+41 yields a prime for every positive integer n ≤ 40. But when n = 41,
E(41) = 412 − 41 + 41 = 412 is not a prime.

In 1798, the eminent French mathematician Adrien-Marie Legendre (1752–
1833) discovered that the formula L(n) = n2 + n + 41 yields distinct primes for
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1 ≤ n ≤ 40, but L(41) is a composite. Notice that L(n) = E(−n). (Several exercises
based on similar formulas are included in the exercise set.)

However, no one has ever been successful in constructing a polynomial f (n)

that generates primes for all integers n. The reason becomes clear in the following
example.

EXAMPLE 2.23 Prove that there is no polynomial f (n) with integral coefficients that will produce
primes for all integers n.

PROOF (by contradiction)
Suppose there is such a polynomial f (n) = aknk + ak−1nk−1 + · · · + a1n + a0, where
ak 	= 0. Let b be some integer. Since f (n) is always a prime, f (b) must be a prime p;
that is,

f (b) = akbk + ak−1bk−1 + · · · + a1b + a0 = p (2.1)

Let t be an arbitrary integer. Then

f (b + tp) = ak(b + tp)k + ak−1(b + tp)k−1 + · · · + a1(b + tp) + a0

= (akbk + ak−1bk−1 + · · · + a1b + a0) + p · g(t)

where g(t) is a polynomial in t. Thus,

f (b + tp) = p + pg(t), by equation (2.1)

= p[1 + g(t)]

So p| f (b + tp). But every value of f is a prime, so f (b + tp) must be a prime and
hence f (b + tp) = p. Thus, f (b) = p = f (b + tp). This implies f takes on the same
value infinitely many times, since t is an arbitrary integer.

But f (n) is a polynomial of degree k, so it cannot assume the same value more
than k times, yielding a contradiction.

Thus, no polynomial with integral coefficients exists that will generate only
primes. �

Returning to Theorem 2.8, can we discover a way to find (or even estimate)
the number of primes ≤ a positive integer n (or a positive real number x)? This is
possible, as the following theorem shows, but first we present a function.
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A Number-Theoretic Function

Let x be a positive real number. Then π(x)† denotes the number of primes ≤ x.
For example, π(10) = 4, π(28.75) = 9, and π(100) = 25 (see Figure 2.25).

Using the summation notation, π(x) can be defined as

π(x) =
∑

p≤x

1, where p denotes a prime.

The following formula for π(n), where n is a positive integer, can be established
using the inclusion–exclusion principle. Its proof is a bit complicated, so we omit it.

THEOREM 2.10 Let p1,p2, . . . ,pt be the primes ≤ √
n. Then

π(n) = n − 1 + π(
√

n) −
∑

i

⌊
n

pi

⌋

+
∑

i<j

⌊
n

pipj

⌋

−
∑

i<j<k

⌊
n

pipjpk

⌋

+ · · · + (−1)t
⌊

n

p1p2 . . .pt

⌋

�

The following example illustrates this result.

EXAMPLE 2.24 Using Theorem 2.10, find the number of primes ≤ 100.

SOLUTION

Here n = 100. Then π(
√

n) = π(
√

100) = π(10) = 4, by Figure 2.25. The four
primes ≤ 10 are 2, 3, 5, and 7; call them p1, p2, p3, and p4, respectively. Then,
by Theorem 2.10,

π(100) = 100 − 1 + 4 −
(⌊

100

2

⌋

+
⌊

100

3

⌋

+
⌊

100

5

⌋

+
⌊

100

7

⌋)

+
(⌊

100

2 · 3

⌋

+
⌊

100

2 · 5

⌋

+
⌊

100

2 · 7

⌋

+
⌊

100

3 · 5

⌋

+
⌊

100

3 · 7

⌋

+
⌊

100

5 · 7

⌋)

−
(⌊

100

2 · 3 · 5

⌋

+
⌊

100

2 · 3 · 7

⌋

+
⌊

100

2 · 5 · 7

⌋

+
⌊

100

3 · 5 · 7

⌋)

+
⌊

100

2 · 3 · 5 · 7

⌋

† π is the lower case Greek letter pi.
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= 103 − (50 + 33 + 20 + 14) + (16 + 10 + 7 + 6 + 4 + 2)

− (3 + 2 + 1 + 0) + 0

= 25

This is consistent with the sieve of Eratosthenes in Figure 2.25. �

Although the formula for π(n) in Theorem 2.10 is elegant in the sense that it
gives the exact value of π(n), it is not very practical when n is fairly large. This is
where the prime number theorem, one of the celebrated results in number theory, be-
comes extremely useful. It gives an approximate value of π(n), when n is sufficiently
large.

THEOREM 2.11 (The Prime Number Theorem)

lim
x→∞

π(x)

x/ ln x
= 1

That is, as x gets larger and larger, π(x) approaches x/ ln x.† �

Gauss noticed the similarity between the values of π(x) and x/ ln x, as x gets
larger and conjectured the theorem in 1793, but did not provide a proof. In 1850,
the Russian mathematician Pafnuty Lvovich Chebychev made significant progress
toward a proof; he proved that there are positive constants a and b, such that

a
x

ln x
< π(x) < b

x

ln x

where x ≥ 2.
In 1870, the German mathematician Ernest Meissel (1826–1895) showed

that there are 5,761,455 primes less than 108. In 1893, one hundred years after
Gauss’ conjecture, the Danish mathematician N. P. Bertelsen claimed that there
are 50,847,478 primes less than 109. In 1959, however, the American mathemati-
cian Derrick H. Lehmer (1905–1991) showed that Bertelsen’s answer was incor-
rect and that the correct number is 50,847,534. Lehmer also showed that there are
455,052,512 primes less than 1010 (Table 2.4).

In 1896, the French mathematician Jacques Hadamard (1865–1963) and the
Belgian mathematician Charles-Jean-Gustave-Nicholas de la Valleé-Poussin (1866–
1962), working independently, proved the theorem using advanced mathematics.

† ln x denotes the natural logarithm of x.
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Pafnuty Lvovich Chebychev (1821–1894), the son of an army officer, was born

in Okatavo, Russia. In 1832 the family moved to Moscow, where he completed his

secondary education at home. Five years later, he entered Moscow University, grad-

uating in mathematics in 1841. As a student he published his first paper on a new

method of approximating real roots of equations, for which he was awarded a sil-

ver medal, although many believed he deserved a gold one. He joined the faculty

of St. Petersburg University in 1843, where he remained until 1882. His doctoral

thesis, Theory of Congruences, submitted to Petersburg University in 1849, earned

him an award from the Academy of Sciences and served as a text on number theory

at Russian universities; it also dealt with the distribution of primes. With this work

and a second memoir published in 1852, he became widely known in the scientific

community. Besides number theory, he made significant contributions to real and

numerical analysis, approximation theory, probability, and mechanics.

Chebychev received numerous honors, and invented a calculating machine that could add and subtract and

later multiply and divide; he also founded the prestigious Petersburg Mathematical School.

Jacques Hadamard (1865–1963) was born in Versailles, France. His father

was a Latin teacher and his mother a distinguished piano teacher. After study-

ing at the École Normale Superieure he taught at the Lycée Buffon in Paris.

After receiving his doctorate in 1892 he became a lecturer at the Faculté des

Sciences of Bordeaux and then at the Sorbonne. In 1909, he became professor

at the Collège de France, École Polytechnique, and then at the École Centrale

des Arts et Manufactures. A recipient of many honorary doctorates, in 1892 he

earned the Grand Prix of the Academy of Sciences for his outstanding work in

complex analysis; this in turn led to his proof of the prime number theorem in

1896.

Nearly every branch of mathematics was influenced by the creative mind

of Hadamard, especially complex analysis, functional analysis, probability, and

mathematical physics.

This proof was a milestone in the development of number theory. But in 1950, the
Hungarian mathematician Paul Erdös (1913–1996) and the Norwegian mathemati-
cian Alte Selberg (1917–) proved the theorem using elementary calculus.

According to the prime number theorem, when x is sufficiently large, π(x) can
be approximated by x/ ln x (see columns 2 and 3 in Table 2.4). But a better approxi-
mation is the function li(x), defined by Gauss in 1792 at the age of 15,
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Charles-Jean-Gustave-Nicholas de la Valleé-Poussin (1866–1962), the son

of a geology professor, was born in Louvain, Belgium. He attended the Jesuit

College in Mons, switching his major from philosophy to engineering. After re-

ceiving his degree, however, he devoted himself to mathematics. In 1892 he

joined the faculty at the University of Louvain, where he remained all his life.

As the outstanding Belgian mathematician of his generation, he received many

honors, including the rank of baron in 1928.

Valleé-Poussin’s most significant contribution was his proof of the prime

number theorem using complex analysis. He extended his work to the distribu-

tion of primes in arithmetic progressions and primes represented by quadratic

forms. He also made important contributions to approximation theory, analysis,

and calculus.

Paul Erdös (1913–1996) was born in Budapest. Both his parents

were high school teachers of mathematics and physics; his father

had spent six years in a Siberian prison. Young Erdös (pronounced

air-dish) was home-taught, mostly by his father, except for about

three years in school.

A child prodigy, Erdös at age three discovered negative num-

bers for himself. In 1930, he entered Eötvös University. Three years

later, he discovered a beautiful proof of Chebychev’s theorem that

there is a prime between a positive integer n and 2n. In 1934, he

received his Ph.D.

Erdös was one of the most prolific writers in mathematics,

authoring about 1500 articles and coauthoring about 500. Ernest

Straus, in a tribute in 1983, described Erdös as “the prince of problem-solvers and the absolute monarch of

problem-posers.” As “the Euler of our time,” Erdös wrote extensively in number theory, combinatorics, function

theory, complex analysis, set theory, group theory, and probability; number theory and combinatorics were his

favorites.

Regarding worldly possessions “as a nuisance,” he never owned a home, car, or checkbook, and never had

a family or an address. “Always searching for mathematical truths,” he traveled from meeting to meeting carrying

a half-empty suitcase. He stayed with mathematicians wherever he went and donated the honorariums received

as prizes for students.

Erdös received numerous honors. He died of a massive heart attack while attending a mathematics meeting

in Warsaw, Poland.
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li(x) =
∫ x

2

dt

ln t

You may notice from the table that
π(x)

li(x)
approaches 1 more rapidly than

π(x)

x/ ln x
. In

fact, li(x) is a superior approximation for small x.

x π(x)
π(x)

x/ ln x

π(x)

li(x)
103 168 1.160 0.9438202
104 1229 1.132 0.9863563
105 9592 1.104 0.9960540
106 78498 1.085 0.9983466
107 664579 1.071 0.9998944
108 5761455 1.061 0.9998691
109 50847534 1.054 0.9999665
1010 455052512 1.048 0.9999932

Table 2.4

In 1985, however, R. H. Hudson of the University of South Carolina showed
that it is not true for arbitrary x. Four years later, C. Bays of the University of South
Carolina and Hudson showed that π(x) > li(x) in the vicinity of 1.39822 × 10316.

Although we have established the infinitude of primes, what can we say about
the distribution of primes? How are they distributed among the positive integers? Are
there consecutive integers that are primes? Are there consecutive odd integers that
are primes?

First, there is no pattern that fits the distribution of primes. For example, 2 and
3 are the only two consecutive integers that are primes (see Exercise 45). It is also
known that 3, 5, and 7 are the only three consecutive odd integers that are primes
(see Exercise 46).

Although there are only two consecutive integers that are primes, we can find
any number of consecutive integers that are composite numbers, as the next theorem
reveals. It shows that primes occur at unpredictable intervals. Its proof is an existence
proof, so we need to provide n such composite numbers.

THEOREM 2.12 For every positive integer n, there are n consecutive integers that are composite num-
bers.

PROOF

Consider the n consecutive integers (n + 1)! + 2, (n + 1)! + 3, . . . , (n + 1)! +
(n + 1), where n ≥ 1. Suppose 2 ≤ k ≤ n + 1, then k|(n + 1)!, so k|[(n + 1)! + k], by
Theorem 2.4, for every k. Therefore, each of them is a composite number.
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Thus, the n consecutive integers (n+1)!+2, (n+1)!+3, . . . , (n+1)!+ (n+1)

are composites. �

The following example illustrates the theorem.

EXAMPLE 2.25 Find six consecutive integers that are composites.

SOLUTION

By Theorem 2.12, there are six consecutive integers beginning with (n + 1)! + 2 =
(6 + 1)! + 2 = 5042, namely, 5042, 5043, 5044, 5045, 5046, and 5047. (You may
notice from Figure 2.25 that the smallest consecutive chain of six composite numbers
is 90, 91, 92, 93, 94, and 95.) �

According to Theorem 2.12, we can always find arbitrarily long chains of con-
secutive integers that are composites. Note that the n composite numbers provided
by the proof need not be the smallest consecutive composite integers that form a
chain of length n. (See Supplementary Exercise 5 in Chapter 3 for constructing a
considerably smaller string.)

Next we turn to some interesting classes of primes.

Cunningham Chains

A Cunningham chain of primes, named after the British Army officer Lt. Col. Al-
lan J. C. Cunningham (1842–1928), is a sequence of primes 2p + 1 in which each
element is one more than twice its predecessor.

The smallest five-element chain is 2–5–11–23–47 and the smallest six-element
chain is 89–179–359–719–1439–2879. Lehmer discovered three chains of seven
primes with the least element less than 10 million:

1122659–2245319–4490639–8981279–17962559–35925119–71850239;
2164229–4328459–8656919–17313839–34627679–69255359–138510719;
2329469–4658939–9317879–18635759–37271519–74543039–149086079

In 1965, Lehmer also found chains of length 7 of primes of the form 2p − 1.
Two such chains begin with 16651 and 165901.

In 1980, Claude Lalout and Jean Meeus discovered chains of length 8 of each
kind. They begin with 19099919 and 15514861, respectively.

Nine years later, Gunter Loh found many new such chains: The least elements of
length 9 start with 85864769 and 857095381; those of length 10 with 26089808579
and 205528443121; those of length 11 with 665043081119 and 138912693971; and
those of length 12 with 554688278429 and 216857744866621.
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Until 1952, the largest known prime was the 39-digit number 2127 − 1 =
170,141,183,460,469,231,731,687,303,715,884,105,727, found in 1876 by Lucas.
With the advent of computers, mathematicians have been able to find larger and
larger primes. In 1952, mathematicians at Cambridge University, England, using
EDSAC (Electronic Delay Storage Arithmetic Calculator), found a 79-digit prime
given by 180(2127 − 1)2 + 1. Since then many larger primes have been found.

In 1971, a very large prime, 211213 − 1, was found at the University of Illinois,
Urbana-Champaign. It contains 3376 digits. A few years later, a still larger prime,
219937 − 1, was found by Bryant Tuckerman of Thomas J. Watson Research Center,
International Business Machines.

The search for larger primes continues. In 1978 Noll and Nickel, two high school
students from California found two still larger primes, 221701 − 1 and 223209 − 1.
Eleven years later, an even larger prime, 244497 − 1, was found by D. Slowinski of
Livermore Laboratory at Livermore, California; it contains 13,395 digits.

Modern high-speed computers have certainly facilitated the pursuit of larger
and larger primes. The largest known prime as of 1994 was 2859433 − 1, it has “only”
258,716 digits, and according to The Boston Globe, it “would take eight newspaper
pages to print.” Two years later, a still larger prime, 21257787 − 1, was found by a
supercomputer at Cray Research, Inc. It contains 378,632 digits.

The largest known prime in 2000 was 26972593 − 1. Discovered a year earlier
by the team of Nayan Hajrawala, George Woltman, and Scott Kurowski, it contains
2,098,960 digits. Hajrawala’s home computer, a 350-MHz Aptiva, took 111 days of
idle time to find it; the researchers estimated that it would have taken three weeks to
locate it if the computer had been running full time. In 2005, two larger primes were
found: 225964951 − 1 with 7,816,230 digits and 230402457 − 1 with 9,152,052 digits.
The former was discovered on February 18 by Martin Nowak, an eye surgeon and
a mathematics hobbyist in Germany, and the latter on December 15 by C. Cooper
and S. R. Boone of Central Missouri State University. Table 2.5 lists the ten largest
known primes. Needless to say that the hot pursuit of larger primes still continues.

For the curious minded, the largest known prime, all of whose digits are also

prime, is 72323252323272325252 × 103120 − 1

1020 − 1
. Discovered in 1992 by Harvey

Dubner of New Jersey, it has 3120 digits.

Palindromic Primes

Interestingly, there are primes that are palindromic†; they are palindromic primes.
In 1950, L. Moser of the University of North Carolina discovered 107 such primes

† A palindrome is a number that reads the same backward and forward, such as 23432.
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Rank Prime No. of Digits Discoverer(s) Year
Discovered

1 230402457 − 1 9,152,052 C. Cooper & S. R. Boone 2005
2 225964951 − 1 7,816,230 M. Nowak 2005
3 224036583 − 1 7,235,733 J. Findley 2004
4 220996011 − 1 6,320,430 M. Shafer 2003
5 213466917 − 1 4,053,946 M. Cameron 2001
6 27653 · 29167433 + 1 2,759,677 D. Gordon 2005
7 28433 · 27830457 + 1 2,357,207 S. Yates 2004
8 26972593 − 1 2,098,960 N. Hajrawala et al. 1999
9 5359 · 25054502 + 1 1,521,561 R. Sundquist 2003

10 4847 · 23321063 + 1 999,744 R. Hassler 2005

Table 2.5 The ten largest known primes.

≤ 100,000; 19 of them are ≤ 1000: 2, 3, 5, 7, 11, 101, 131, 151, 181, 313, 353, 373,
383, 727, 757, 787, 797, 919, and 929. The palindromic prime 16661 not only con-
tains the embedded beast but also is the 1928th prime; it has the additional property
that 1 + 6 + 6 + 6 + 1 = 1 + 9 + 2 + 8, first observed by G. J. Honaker, Jr. The
palindromic prime 1011310 + 4661644 · 1056752 + 1, found in 1991 by Dubner, con-
tains 11,311 digits; it is doubly palindromic in the sense that the number of digits is
also a palindromic prime. The largest known palindromic prime, 1039026 +4538354 ·
1019510 + 1, discovered in 2001 by Dubner, contains 39,027 digits.

Repunit Primes

The largest known repunit prime is R1031, discovered in 1985 by Hugh C. Williams
of the University of Manitoba. Repunit primes appear to be scarce, since there are
only five such repunits Rn for n < 10,000. The known repunits and their discoverers
are listed in Table 2.6.

n Discoverer Year Discovered
2 Unknown ancient

19 O. Hoppe 1918
23 D. H. Lehmer 1929

317 H. C. Williams 1978
1031 H. C. Williams 1985

Table 2.6 The known repunit primes.
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Twin Primes

Recall that 2 and 3 are the only two consecutive integers that are primes. Are there
any primes that differ by 2? Clearly, 3 and 5, and 5 and 7 are two such pairs. Such
pairs are called twin primes. The next two pairs are 11 and 13, and 17 and 19. (Can
you find the next two pairs?)

Discovering twin primes involves essentially finding two primes; therefore, the
largest known twin primes are substantially smaller than the largest known primes.
Table 2.7 lists the ten largest known twin primes.

Rank Twin Primes No. of Digits Discoverer(s) Year
Discovered

1,2 16869987339975 · 2171960 ± 1 51,779 Z. Járail et al. 2005
3,4 33218925 · 2169690 ± 1 51,090 D. Papp 2002
5,6 60194061 · 2114689 ± 1 34,533 D. Underbakke 2002
7,8 1765199373 · 2107520 ± 1 32,376 J. McElhatton 2002

9,10 318032361 · 2107001 ± 1 32,220 D. Underbakke &
P. Carmody

2001

Table 2.7 Ten largest known twin primes.

Although more than 100,000 twin primes are known, no one knows how many
such pairs there are. This is still one of the leading mysteries in number theory.

A related conjecture is the number of pairs z(N) of twin primes n ± 1 that
?are ≤ N:

z(N) ≈ 1.3203236
∫ N

2

dn

(log n)2

where 5 ≤ n + 1 ≤ N.
Lehmer studied pairs of twin primes, such as 11–13–17–19 and 101–103–107–

109, all lying within a decade. In his Table of Primes, Lehmer lists 9933611–
9933613–9933617–9933619 as the largest known such quadruplet.

In 1999, B. J. Hulbert of Reading, England, investigated such quadruplets and
found 1220 of them. Three of them are 22271–22273–22277–22279, 72221–72223–
72227–72229, and 15222371–15222373–15222377–15222379, again all strikingly
similar and lying within a decade; the latter is the largest known prime quadruplet.

Brun’s Constant

In 1919, the Norwegian mathematician Viggo Brun (1885–1978) proved that the sum
of the reciprocals of the twin primes (1/3+1/5)+(1/5+1/7)+(1/11+1/13)+· · ·
converges to a limit, called Brun’s constant. In 1974, the American mathematicians
Daniel Shanks and John Wrench, Jr., estimated Brun’s constant using twin primes
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among the first 2 million primes. Two years later, Richard Brent of the Australian
National University refined the estimate to 1.90216054 using the twin primes up to
100 billion.

Twin Primes and the Pentium Chip

When Intel Corporation, the world’s largest chip manufacturer, shipped the Pentium
chip to various computer manufacturers in early 1994, the chip was found to have a
flaw in division involving more than five significant digits. Intel, claiming that only
one in nine billion users would be affected by the error, chose not to recall the chip.
Simultaneously, Thomas Nicely, a computational number theorist at Lynchburg Col-
lege, Virginia, was trying to improve previous estimates of Brun’s constant. Using a
Pentium computer in June, he computed the constant twice, employing two different
methods. One used a computer’s floating point unit and the other used an extended
precision arithmetic; they yielded different results. Nicely found that the Pentium
was giving incorrect floating point reciprocals for the twin primes 824,633,702,441
and 824,633,702,443. After the error was made public in November, Intel offered to
replace chips with the flaw (see Figure 2.27). On receiving a flurry of international

How Number Theory Got the Best
of the Pentium Chip

Barry Cipra
Chalk one up for number theory. With lurid accounts of the
flaw in Intel’s Pentium processor making front-page and net-
work news, users of the personal computer chip in fields
ranging from science to banking are finding cases where its
faulty logic sends their computations awry. But the problem
might have gone undetected for much longer if the chip had
not slipped up months ago during a long series of calcula-
tions in number theory, raising the suspicions of a dogged
mathematics professor.

To other mathematicians, the discovery of the flaw by
Thomas Nicely of Lynchburg College in Virginia emphasizes
the value of number theory—the study of subtle properties of
ordinary counting numbers—for providing quality control for
new computer systems. By forcing a computer to perform
simple operations repeatedly on many different numbers,

number-theory calculations “push machines to their limits,”
says Peter Borwein of Simon Fraser University in Burn-
aby, British Columbia. Many computer makers have adopted
these calculations as a shakedown test for systems intended
for heavy-duty scientific computation, and although the prac-
tice has yet to spread to personal computers, Borwein and
some other mathematicians think that might be a good idea.

Intel had actually found the flaw by other means after
the chip had gone into production, but had decided that it was
not likely to affect ordinary users. But the company hadn’t
counted on the use that Nicely had in mind. When he fired
up a Pentium computer last March, Nicely was adding its
number-crunching power to a project in computational num-
ber theory he had begun the year before. He was trying to im-
prove on previous estimates of a number called Brun’s sum,
which is related to the distribution of prime numbers.

The sequence of prime numbers—2, 3, 5, 7, 11, 13,
17, 19, etc.—is a continuing source of fascination to math-
ematicians. Since the time of Euclid, they have known that

(continued)

Figure 2.27
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there are infinitely many primes, but although primes are rel-
atively abundant early on, they become scarce among larger
numbers. For example, roughly 23% of two-digit numbers
are prime (21 of 90), but the figure for ten-digit numbers is
just 4%, and among hundred-digit numbers, the fraction of
primes is less than half a percent. As a consequence, the
gap between consecutive prime numbers tends to increase.
However, every so often two odd numbers in a row turn out
to be prime: 3 and 5, 41 and 43, 101 and 103, and 10,007
and 10,009, for example.

Mathematicians conjecture that such “twin primes” pop
up infinitely often. But in 1919, the Norwegian mathematician
Viggo Brun proved that even if there are infinitely many twin
primes, the sum obtained by adding their reciprocals—the
sum (1/3 + 1/5) + (1/5 + 1/7) + (1/11 + 1/13) + · · ·—
converges to a finite value, much as the sum 1/2 + 1/4 +
1/8 + 1/16 + · · · converges to 1. Brun’s sum is known only
to the first few digits, however—and even there, the accu-
racy is based on conjectures about the frequency with which
twin primes occur. Number theorists think it’s unlikely that
clumps of twin primes are lurking among very large numbers,
but they have been unable to prove it. One way to check up
on this assumption is to compute better estimates for Brun’s
sum.

In 1974, two mathematicians working for the Navy,
Daniel Shanks and John Wrench Jr., reported the first com-
putationally intensive estimate of Brun’s sum, based on the
occurrence of twin primes among the first two million prime
numbers.

Two years later, Richard Brent at the Australian Na-
tional University calculated all twin primes up to a hundred
billion (224,376,048 pairs), from which he computed an esti-
mate of 1.90216054 for Brun’s sum.

And there it sat—until Nicely entered the picture. The
Lynchburg math professor decided to push Brent’s work into
the trillions. To be on the safe side, he computed Brun’s sum
twice, using two different methods: the “easy” way using a
computer’s built-in floating point unit, which is supposed to
be accurate to 19 decimal places, and the “hard” way us-
ing an extended precision arithmetic, which he set to give
26 (and later 53) digits of accuracy. (The difference can be
likened to the difference between computing 1/3 + 1/7 as
0.33+0.14 = 0.47 and computing it as 1/3+1/7−10/21 =
0.48. The latter calculation gains accuracy by doing some
exact arithmetic first.)

The comparison between the two methods is what
got Intel into trouble. After Nicely added the new Pentium
to his stable of computers, he found that the gap between
the two results was much larger than it should have been.
By trial and error and a process of elimination, he pin-
pointed the source of the problem: The Pentium was giv-
ing incorrect floating point reciprocals for the twin primes
824,633,702,441 and 824,633,702,443—they were wrong
from the 10th digit on. Nicely still didn’t know whether the er-
ror was caused by his hardware or software, in part because
he’d caught an earlier error in a compiler program. “Finally,
in desperation, I ran this portion of the calculation on one
of the 486 [computers], rather than the Pentium,” he recalls.
“The error disappeared.”

Even that didn’t prove conclusively that it was the Pen-
tium chip’s fault; other hardware in the computer could have
been responsible. But in October (4 months after he first no-
ticed his calculations were off), Nicely nailed the culprit when
he got hold of two other machines with Pentium chips and
was able to reproduce the error. He notified Intel and, after
getting no satisfactory answer by the end of the month, sent
e-mail asking others to double-check his discovery. “I believe
you are aware of events from that point on,” he concludes
dryly.

The Pentium’s problem, as others have abundantly
confirmed, lies in the way the chip does division. Although
it works fine for most numbers, the chip’s built-in algo-
rithm makes mistakes in certain cases, rather like a grade-
schooler who mismemorized part of a multiplication table.
Nicely estimates that the chip gets roughly one in a billion
reciprocals wrong. But because the work in number theory
required him to compute billions of reciprocals over a wide
range, he was almost bound to run into the mistake.

“We’ve known for a long time that number theory com-
putations are very helpful” for turning up computer errors,
notes computational number theorist Arjen Lenstra of Bell-
core, in Morristown, New Jersey. “It is useful to run number
theory stuff on your processor before you sell it.”

Intel hasn’t decided whether to make such computa-
tions a routine part of its testing procedure, says Stephen
Smith, engineering manager for the Pentium processor di-
vision. But Intel was so impressed with Nicely work that it
asked him to run further computations on a corrected chip.
“We looked at him as the most thorough tester,” says Smith.

Figure 2.27
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Sophie Germain (1776–1831), France’s great woman mathematician, was born in

Paris, and educated herself at home, using her father’s extensive library. At the age

of thirteen, she read in J. F. Montucla’s Historie des Mathematiques of the murder of

the Greek mathematician and inventor Archimedes (ca. 287–212 B.C.) by a Roman

soldier. Archimedes became her hero, and she decided to become a mathematician

despite her parents’ serious objections. After mastering both Latin and Greek, she

studied the works of Newton and Euler.

Because of her gender, Sophie was not allowed to attend the newly established

École Central des Travaux Publics (later the École Polytechnique), but she managed

to obtain the lecture notes of Lagrange and other scholars. She sent Lagrange a

paper on analysis, under the pseudonym M. Leblanc. He was so impressed with the

paper that he became her mathematical mentor. Germain corresponded with many

mathematicians, including Legendre and Gauss.

Germain made a significant contribution toward establishing Fermat’s last theorem (see Section 12.2) that

the equation xn + yn = zn has no positive integral solutions, where n ≥ 3. In 1825, she showed that if p is a

Sophie Germain prime, then the equation xp + yp = zp has no positive integral solutions, where xyz 	= 0 and

p � xyz. She also made important contributions to the theories of acoustics and elasticity.

attention, Nicely said,† “Usually mathematicians have to shoot somebody to get this
much publicity.”

Sophie Germain Primes

Another class of primes, called Sophie Germain primes, played an important role
in establishing Fermat’s last theorem, which is discussed in Section 13.2.

Named in 1825 in honor of the French mathematician Sophie Germain, these
primes have the form 2p + 1, where p is an odd prime. The first three such primes
are 7, 11, and 23. Clearly, each Sophie Germain prime belongs to a Cunningham
chain. The ten largest known Sophie Germain primes are listed in Table 2.8.

?It has been conjectured that there are infinitely many Sophie Germain primes.

Goldbach’s Conjecture
?

The Prussian mathematician Christian Goldbach noticed a pattern in the following

† Cincinnati Enquirer, December 18, 1994.
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Rank Prime No. of Digits Discoverer(s) Year
Discovered

1 7068555 · 2121301 − 1 36,523 P. Minovic 2005
2 2540041185 · 2114729 − 1 34,547 D. Underbakke 2003
3 18912879 · 298395 − 1 29,628 M. Angel et al. 2002
4 1213822389 · 281131 − 1 24,432 M. Angel et al. 2002
5 109433307 · 266452 − 1 20,013 D. Underbakke 2001
6 984798015 · 266444 − 1 20,011 D. Underbakke 2001
7 3714089895285 · 260000 − 1 18,075 K. Indlekofer et al. 2000
8 909004827 · 256789 − 1 17,105 B. Tornberg 2005
9 1162665081 · 255649 − 1 16,762 B. Xiao 2004

10 671383317 · 248345 − 1 14,563 J. Sun 2004

Table 2.8 The ten largest known Sophie Germain primes.

sums:

4 = 2 + 2 6 = 3 + 3 8 = 3 + 5
10 = 3 + 7 12 = 5 + 7 14 = 3 + 11
16 = 5 + 11 18 = 7 + 11 20 = 7 + 13

...

(Do you see a pattern here?) Based on his observations, Goldbach, in a letter to Euler
in 1742, conjectured that every even integer > 2 can be expressed as the sum of
two primes. Euler could not prove it, and his conjecture still remains an unsolved
problem. However, Goldbach’s conjecture has been shown to be true for all even
integers less than 1010.

The famous English mathematician Godfrey H. Hardy (1877–1947) character-
ized Goldbach’s conjecture as one of the most difficult unsolved problems in mathe-
matics.

In May 2000, Bloomsbury Publishing (United States) and Faber and Faber
(United Kingdom) announced a million dollar prize to anyone who could provide

Christian Goldbach (1690–1764) was born in Königsberg, Prussia. He studied medicine and mathematics at

the University of Königsberg and became professor of mathematics at the Imperial Academy of Sciences in

St. Petersburg in 1725. In 1728 he moved to Moscow to tutor Tsarevich Peter II and his cousin Anna of Courland.

During 1729–1963, he corresponded with Euler on number theory. He returned to the Imperial Academy in 1732

when Peter’s successor Anna moved the imperial court to St. Petersburg.

In 1742 Goldbach joined the Russian Ministry of Foreign Affairs, and later became privy councilor and

established guidelines for the education of royal children.

He is also noted for his conjectures in number theory and work in analysis. Goldbach died in Moscow.
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Publishers Offer Prize for Proof of Goldbach’s Conjec-
ture

Bloomsbury Publishing (USA) and Faber and Faber (UK)
have announced that they are offering a one million dollar
prize to any person who can prove Goldbach’s Conjecture
within the next two years. The prize is being offered to help
promote the book Uncle Petros and Goldbach’s Conjecture,
by Apostolos Doxiadis (see the review by Keith Devlin on

MAA Online’s Read This! section, which can be found on
the web at http://www.maa.org/reviews/reviews.html). To be
eligible for the prize, the proof must be submitted to a jour-
nal indexed by Mathematical Reviews by March 15, 2002,
must be published by that journal by March 15, 2004, and
must be judged to be correct by a six-member judging panel
whose members will be mathematicians chosen by the pub-
lisher. See Faber’s web site at http://www.faber.co.uk/ (click
on “Book News”) for more information on the prize.

Figure 2.28

a proof of Goldbach’s conjecture by March 15, 2002. See Figure 2.28. To date, it
still remains a conjecture.

Bertrand’s Conjecture

In 1845, Joseph Bertrand conjectured that there is a prime between n and 2n for every
integer n ≥ 2. For example,

3 is a prime between 2 and 4;
5 is a prime between 3 and 6;
7 is a prime between 4 and 8; and so on.

Although Bertrand could not establish the validity of his conjecture, he was able
to verify it for all integers ≤ 3 million! Seven years later, Chebychev provided a
successful proof. In 1944, the Indian number theorist S. S. Pillai (1901–1950) gave
a simpler proof.

Using Bertrand’s conjecture and induction, it can be shown that pn+1 ≤ 2pn

and hence pn ≤ 2n, where pn denotes the nth prime (see Exercise 58). For instance,
p5 = 11 from Figure 2.25, so clearly p5 ≤ 25.

It is worth noting that 2n is an extremely large upper bound for pn when n is
fairly large. For instance, p11 = 31 is much smaller than 211 = 2048; nevertheless, it
is true.

It is well known that p1p2p3 · · ·pn > pn+1, where n ≥ 2. In 1907, H. Bonse de-
veloped a stronger inequality, now called Bonse’s inequality: p1p2p3 · · ·pn > p2

n+1,
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Joseph Louis François Bertrand (1822–1900), the son of a writer of popular

scientific articles and books, was born in Paris. At the age of 11, he unofficially

began attending classes at the École Polytechnique. In 1838, at 16, he earned

two degrees, one in the arts and the other in science. A year later, he received

his doctorate for his work in thermomechanics and published his first paper. In

1841 he became professor at the Collège Saint-Louis. Subsequently, he taught at

the Lycée Henry IV, the École Normale Supérieure, the École Polytechnique, and

finally at the Collège de France until his death.

An author of many popular textbooks, Bertrand made important contributions

to applied mathematics, analysis, differential geometry, probability, and theoretical

physics.

where n ≥ 4. In 2000, M. Dalezman of Yeshiva University strengthened it even fur-
ther: p1p2p3 · · ·pn > pn+1pn+2, where n ≥ 4.

An interesting application of Bertrand’s conjecture was proposed in 1989 by the
Romanian mathematician Florentin Smarandache.† In addition to the conjecture, it
uses two results: Suppose n ≥ 4. Then n! > 2n and 1 · 3 · 5 · · · (2n − 1) > 2n+2. Verify
both.

EXAMPLE 2.26 Prove that there are at least 3�n/2� primes in the range n through n!, where n ≥ 4.

PROOF

Notice that the statement is true for 4 ≤ n ≤ 9. So assume n ≥ 10.

case 1 Suppose n is even, say, n = 2k, where k ≥ 5. Then

n! = 1 · 2 · 3 · · · (2k − 2)(2k − 1)n

= 2k−1[1 · 2 · 3 · · · (k − 1)][1 · 3 · 5 · · · (2k − 1)]n
> 2k−1(k − 1)!2k+2n

≥ 2k−1 · 2k−1 · 2k+2n, since k ≥ 5

= 23kn

A repeated application of Bertrand’s conjecture shows there are at least 3k =
3(n/2) = 3�n/2� primes in the range n through 23kn, that is, between n and n!.

† In 1988, Smarandache escaped from the Ceausescu dictatorship, spent 2 years in a political refugee
camp in Turkey, and then emigrated to the United States.
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case 2 Suppose n is odd, say, n = 2k + 1, where k ≥ 5. Then

n! = 1 · 2 · 3 · · · (2k − 1)(2k)n

= 2kk![1 · 3 · 5 · · · (2k − 1)]n
> 2k · 2k · 2k+2n, since k ≥ 5

> 23kn

Thus, as before, there are at least 3k = 3[(n − 1)/2)] = 3�n/2� primes in the range n
through 23kn, that is, between n and n!.

Thus, in both cases, the result is true. �

Additional Conjectures

Are there primes of the form n2 + 1? Clearly, 2 = 12 + 1 and 5 = 22 + 1 are two
such primes. There are two more such primes ≤ 100. No one knows how many such

?primes exist.
The number of primes p(N) of the form n2 + 1 has been conjectured to be given

?by

p(N) ≈ 0.6864067
∫ N

n=2

dn

log n

where 2 ≤ n ≤ N.
Legendre’s conjecture: Is there a prime between n2 and (n+1)2? For example,

?

3 is a prime between 1 and 4; 5 is a prime between 4 and 9;
11 is a prime between 9 and 16; 19 is a prime between 16 and 25;
29 is a prime between 25 and 36.

Does this pattern hold for any positive integer n? That, too, still remains unan-
swered.

Bocard’s conjecture: There are at least four primes between the squares of
?consecutive odd primes; for example, there are five primes between 32 and 52.

The following example singles out a unique prime.

EXAMPLE 2.27 Find the primes such that the digits in their decimal values alternate between 0s and
1s, beginning with and ending in 1.
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SOLUTION

Suppose N is a prime of the desired form and it contains n ones. Then

N = 102n−2 + 102n−4 + · · · + 102 + 1

= 102n − 1

102 − 1
since

n−1∑

i=0

ri = rn − 1

r − 1
, r 	= 1

= (10n − 1)(10n + 1)

99

If n = 2, then N = (102 − 1)(102 + 1)

99
= 101 is a prime. If n > 2, 10n − 1 > 99 and

10n +1 > 99. Then N has nontrivial factors, so N is composite. Thus, 101 is the only
prime with the desired properties. �

Primality of Catalan Numbers

Recall from Section 1.8 that the Catalan numbers C2 and C3 are prime. The next the-
orem confirms that there are no other such primes. We leave the proof as an exercise;
see Exercise 75.

THEOREM 2.13 (Koshy and Salmassi, 2004) The only prime Catalan numbers are C2 and C3. �

E X E R C I S E S 2.5

Mark true or false, where a, b, d, and n are arbitrary pos-
itive integers.

1. A nonprime positive integer is a composite.
2. A noncomposite positive integer is a prime.
3. Every prime is odd.
4. There are no primes greater than googolplex.
5. If p is a prime, then p + 2 is a prime.
6. If p is a prime, then p2 + 1 is a prime.
7. There is an infinite number of primes.
8. There is an infinite number of composite numbers.
9. If p is a prime such that p|ab, then p|a or p|b.

10. There are primes of the form n! + 1.

Determine whether each is prime or composite.

11. 129 12. 217 13. 1001 14. 1729

Using Theorem 2.10, compute the number of primes ≤ n
for each value of n.

15. 47 16. 61 17. 96 18. 131
19. Find five consecutive integers < 100 that are compos-

ite numbers.

Find n consecutive integers that are composites for each
value of n.

20. seven 21. eight
22. nine 23. ten
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24. List all twin primes ≤ 100.
25. Find all twin primes whose arithmetic mean is a tri-

angular number.
26. List all primes of the form n2 + 1 and < 100.

Find the smallest prime between n and 2n for each value
of n.

27. 5 28. 6 29. 20 30. 47

Find the smallest prime between n2 and (n + 1)2 for each
value of n.

31. 6 32. 7 33. 10 34. 11
35. Prove or Disprove: n! + 1 is a prime for every non-

negative integer n.
36. In 1775, Lagrange conjectured that every odd integer

> 5 can be written in the form p + 2q, where p and
q are primes. Verify his conjecture for 7, 11, 15, and
23.

37. Find the flaw in the following “proof” that there are
no primes greater than 101.

Let n > 101. Clearly, n has to be odd. When n is
odd, both (n + 1)/2 and (n − 1)/2 are integers. Let
x = (n + 1)/2 and y = (n − 1)/2. Then n = x2 − y2 =
(x − y)(x + y), so n is not a prime. Thus, there are no
primes > 101.

Find the positive factors of each, where p and q are dis-
tinct primes.

38. pq 39. p2q
40. pq2 41. p2q2

Let q1 = 2 and qn = q1q2 . . .qn−1 + 1, where n ≥ 2.

42. Find the first four primes of the form qn.
43. Find the smallest composite number of the form qn.
44. Define qn recursively.

Prove each.

45. 2 and 3 are the only two consecutive integers that are
primes.

46. 3, 5, and 7 are the only three consecutive odd integers
that are primes.

47. If p and p2 + 8 are primes, the p3 + 4 is also a prime.
(D. L. Silverman, 1968)

48. If p is a prime and 1 ≤ k < p, then p|
(

p
k

)

.

49. Let p and q be successive odd primes and p + q = 2r.
Then r is composite. (J. D. Baum, 1966)

50. The sum of two successive odd primes is the product
of at least three (not necessarily distinct) prime fac-
tors. (J. D. Baum, 1967)

51. If p and p2 +2 are primes, then p3 +2 is also a prime.
52. The integral lengths of the legs of a right triangle can-

not be twin primes. (J. H. Tiner, 1968)
53. If p and p + 2 are twin primes, then p must be odd.
54. Suppose p and q are primes such that p−q = 3. Then

p = 5.
55. Every odd prime is of the form 4n + 1 or 4n + 3.
56. One more than the product of twin primes is a perfect

square.
57. If n is composite, then 2n − 1 is a composite.
58. Let pn denote the nth prime. Then pn < 2n, where

n ≥ 2.
59. Prove by contradiction that every integer ≥ 2 has a

prime factor.
(Hint: Use the well-ordering principle.)

60. Rewrite the proof of Euclid’s theorem using p as the
largest prime and n = p! + 1.

Let pn denote the nth prime. Determine whether pn+1 ≤
p1p2 · · ·pn + 1 for each value of n.

61. 5 62. 7
63. 8 64. 10
65. Show that the repunits R4 and R5 are composite.
66. Find an explicit formula for Rn.
67. Prove or disprove: If n is a prime, then Rn is a prime.

68. Let f (x) =
n∑

i=0
aixi, where ai is an integer and an 	= 0.

Suppose f (n0) = p is a prime. Prove that f (n0 + kp)

is composite for any integer k.
69. The simplest consecutive prime triplet pn–pn+1–

pn+2 such that pn|(pn+1pn+2 + 1) is 2–3–5. Find
two other such consecutive prime triplets. (G. L.
Honaker, 1990) (Note: In 1991, L. Hodges of Iowa
showed that there are only three such solutions below
7.263 × 1013.)

Let En = p1p2 · · ·pn + 1, where pi denotes the ith prime
and i ≥ 1.

70. Find the least composite value of En.
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71. Prove that En < (pn+1)n−2, n ≥ 6. (A. A. K. Majum-
dar, 1996)

�72. Establish the formula for π(n) in Theorem 2.10.
�73. Let pk denote the kth prime. Prove that pn+1 ≤

p1p2 · · ·pn + 1, where n ≥ 1.

�74. Let pi denote the ith prime, where i ≥ 1. Prove
that pnpn+1pn+2 > p2

n+3, where n ≥ 3. (S. Bulman-
Flemming and E. T. H. Wang, 1989)

�75. Establish Theorem 2.13.

� �

2.6 Fibonacci and Lucas Numbers

Fibonacci numbers are one of the most intriguing number sequences, which contin-
ues to provide ample opportunities for both professional mathematicians and ama-
teurs to make conjectures and to expand the limits of mathematical knowledge.

The Fibonacci sequence is named after Leonardo Fibonacci, the most outstand-
ing Italian mathematician of the Middle Ages. It is so important and fascinating
that there is an association of Fibonacci enthusiasts, The Fibonacci Association, de-
voted to the study of the sequence. The association, founded in 1963 by Verner E.
Hoggatt, Jr. (1921–1980) of San Jose State College and Brother Alfred Brousseau
(1907–1988) of St. Mary’s College in California, publishes The Fibonacci Quarterly
devoted to articles related to the Fibonacci sequence.

The following problem, proposed by Fibonacci in 1202 in his classic book, Liber
Abaci, gave birth to the Fibonacci sequence.

The Fibonacci Problem

Suppose there are two newborn rabbits, one male and the other female. Find the
number of rabbits produced in a year if

• Each pair takes one month to become mature;
• Each pair produces a mixed pair every month, from the second month; and
• All rabbits are immortal.

Suppose, for convenience, that the original pair of rabbits was born on January 1.
They take a month to become mature, so there is still only one pair on February 1.
On March 1, they are two months old and produce a new mixed pair, a total of two
pairs. Continuing like this, there will be three pairs on April 1, five pairs on May 1,
and so on. See the last row of Table 2.9.
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Leonardo Fibonacci (1170?–1250?), also known as Leonardo of Pisa,

was born in the commercial city of Pisa, Italy, into the Bonacci family. His

father, a customs manager, expecting Leonardo to become a merchant,

took him to Bougie, Algeria, to receive advanced training in arithmetic us-

ing Indo-Arabic numerals. Leonardo’s own business trips to Egypt, Syria,

Greece, and Sicily gave him extensive experience with Indo-Arabic mathe-

matics.

In 1202, shortly after his return to Pisa, Fibonacci published his fa-

mous work, Liber Abaci, extolling the superiority of the Indo-Arabic meth-

ods of computation. (The word abaci in the title does not refer to the old

abacus, but to computation in general.) This book, devoted to arithmetic

and elementary algebra, introduced the Hindu-Arabic notation and arithmetic algorithms to Europe.

Fibonacci wrote three additional books: Practice Geometriae, a collection of results in geometry and

trigonometry; Liber Quadratorum, a major work on number theory; and Flos, also on number theory.

Fibonacci’s importance and usefulness to Pisa and its citizenry through his teaching and services were

recognized by Emperor Frederick II.

No. of Pairs Jan. Feb. March April May June July Aug.
Adults 0 1 1 2 3 5 8 13
Babies 1 0 1 1 2 3 5 8
Total 1 1 2 3 5 8 13 21

Table 2.9

Fibonacci Numbers

The numbers 1, 1, 2, 3, 5, 8, . . . in the bottom row are Fibonacci numbers. They
have a fascinating property: Any Fibonacci number, except the first two, is the sum
of the two immediately preceding Fibonacci numbers. (At the given rate, there will
be 144 pairs of rabbits on December 1.)

This yields the following recursive definition of the nth Fibonacci number Fn:

F1 = F2 = 1 ← initial conditions
Fn = Fn−1 + Fn−2, n ≥ 3 ← recurrence relation

Interestingly enough, Fibonacci numbers appear in quite unexpected places.
They occur in nature, music, geography, and geometry. They can be found in the spi-
ral arrangements of seeds in sunflowers, the scale patterns of pine cones, the number
of petals in flowers, and the arrangement of leaves on trees. See Figure 2.29.
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(a) (b)

Figure 2.29

Fibonacci and Pascal’s Triangle

It is surprising that Fibonacci numbers can be extracted from Pascal’s triangle. Add
the numbers along the northeast diagonals, as Figure 2.30 shows. Curiously enough,
the sums appear to be the various Fibonacci numbers.

Figure 2.30

This observation is confirmed by the following theorem, discovered in 1876 by
Lucas. It can be established using induction.

THEOREM 2.14 (Lucas, 1876)

Fn =
�(n−1)/2�∑

i=0

(
n − i − 1

i

)

, n ≥ 1 �

The recursive definition of Fn yields a straightforward method for computing it,
as Algorithm 2.5 shows.
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François-Edouard-Anatole Lucas (1842–1891) was born in Amiens,

France. After completing his studies at the École Normale in Amiens, he

worked as an assistant at the Paris Observatory. He served as an artillery

officer in the Franco-Prussian war and then became professor of mathemat-

ics at the Lycée Saint-Louis and Lycée Charlemagne, both in Paris. A gifted

and entertaining teacher, Lucas died of a freak accident at a banquet; his

cheek was gashed by a piece of a plate that was accidentally dropped; he

died from infection within a few days.

Lucas loved computing and developed plans for a computer that never

materialized. Besides his contributions to number theory, he is known for

his four-volume classic on recreational mathematics. Best known among

the problems he developed is the Tower of Brahma.

Algorithm Fibonacci(n)
(* This algorithm computes the nth Fibonacci number using recursion. *)

Begin (* algorithm *)
if n = 1 or n = 2 then (* base cases *)

Fibonacci ← 1
else

Fibonacci ← Fibonacci(n − 1) + Fibonacci(n − 2)

End (* algorithm *)

Algorithm 2.5

The tree diagram in Figure 2.31 illustrates the recursive computing of F5, where
each dot represents an addition.

Figure 2.31
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Next we pursue two interesting properties of Fibonacci numbers by way of ex-
perimentation and conjectures.

EXAMPLE 2.28 Find a formula for
n∑

i=1
Fi.

SOLUTION

step 1 Collect sufficient data.

F1 = 1 = 1

F1 + F2 = 1 + 1 = 2

F1 + F2 + F3 = 1 + 1 + 2 = 4

F1 + F2 + F3 + F4 = 1 + 1 + 2 + 3 = 7

F1 + F2 + F3 + F4 + F5 = 1 + 1 + 2 + 3 + 5 = 12

step 2 Look for a pattern.
These equations do not seem to manifest any pattern. So we rewrite them in such a
way that a pattern emerges:

F1 = 1 = F3 − 1

F1 + F2 = 2 = F4 − 1

F1 + F2 + F3 = 4 = F5 − 1

F1 + F2 + F3 + F4 = 7 = F6 − 1

F1 + F2 + F3 + F4 + F5 = 12 = F7 − 1

When we look at the subscripts on both sides, a clear pattern arises.

step 3 Make a conjecture.

n∑

i=1

Fi = Fn+2 − 1

step 4 Establish the formula using induction.
Since F1 = F3 − 1, the formula works for n = 1.
Now assume it is true for an arbitrary positive integer k ≥ 1:

k∑

i=1

Fi = Fk+2 − 1
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Then

k+1∑

i=1

Fi =
k∑

i=1

Fi + Fk+1

= (Fk+2 − 1) + Fk+1

= (Fk+1 + Fk+2) − 1

= Fk+3 − 1

Thus, by induction, the formula is true for every positive integer n. (This formula
was derived in 1876 by Lucas.) �

For example,
10∑

i=1
Fi = F12 − 1 = 144 − 1 = 143. You may verify this by direct

computation.
We now mention a Fibonacci puzzle based on this formula.

A Fibonacci Puzzle (optional)

Think of two positive integers a1 and a2. Add them to get a3. Add the last two to
get the next number a4. Continue like this until you get ten numbers: a1,a2, . . . ,a10.

Compute their sum s =
n∑

i=1
ai. Write down all ten numbers. Without adding them, we

can accurately give you the sum. How does it work?

Next, we study the following Fibonacci pattern:

F1F3 − F2
2 = 1 · 2 − 12 = (−1)2

F2F4 − F2
3 = 1 · 3 − 22 = (−1)3

F3F5 − F2
4 = 2 · 5 − 32 = (−1)4

F4F6 − F2
5 = 3 · 8 − 52 = (−1)5

...

Clearly, a pattern emerges. (Look at the subscripts and the power of −1 on the RHS.)
Accordingly, we conjecture that Fn−1Fn+1 − F2

n = (−1)n, where n ≥ 1. We can con-
firm it as an exercise.

THEOREM 2.15 (Cassini’s Formula)

Fn−1Fn+1 − F2
n = (−1)n, n ≥ 1 �
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Giovanni Domenico Cassini (1625–1712) was born in a family of as-

tronomers in Perinaldo, Imperia, Italy. He studied at Vallebone, the Jesuit Col-

lege at Genoa, and then at the abbey of San Fructuoso. He manifested great

enthusiasm in poetry, mathematics, and astronomy. Working at the observa-

tory at Panzano, near Bologna, he completed his education under the tutelage

of the great scientists Giovan Battista Riccioli and Francesco Maria Grimaldi,

whose work influenced him a great deal. In 1650, Cassini became the princi-

pal chair of astronomy at the University of Bologna.

Cassini left for Paris in 1669 to continue his brilliant career in planetary

astronomy at the Académie Royal des Sciences. He assumed responsibility

for the Academy and became a French citizen. Cassini died in Paris.

Robert Simson (1687–1768), son of a successful merchant, was born in West Kilbridge, Ayrshire, Scotland. Af-

ter attending the University of Glasgow, he studied theology to follow the family tradition of serving in the Church

of Scotland. At Glasgow he received no formal training in mathematics, but reading of George Sinclair’s Tyrocinia

Mathematica in Novem Tractatus (1661) he became interested in mathematics, and moved on to Euclid’s Ele-

ments.

During the academic year 1710–1711, he attended a mathematics school and met several prominent mathe-

maticians, including Edmund Halley (1656–1742), the well-known astronomer and Savilian professor of geometry

at Oxford. In 1711, Simson was appointed professor of mathematics at Glasgow.

He devoted most of his life to restoring the works of Greek geometers. Simson wrote on conic sections,

logarithms, and the theory of limits, but by far his most influential work was the 1756 edition of Euclid’s Elements,

which served as the basis of every subsequent edition of Elements until the beginning of the twentieth century.

This formula was first discovered in 1680 by the Italian-born French astronomer
and mathematician Giovanni Domenico Cassini, and discovered independently in
1753 by Robert Simson (1687–1768) of the University of Glasgow.

A Fibonacci Paradox (optional)

Cassini’s formula is the basis of a delightful geometric paradox. This puzzle was
a favorite of the famous English logician Charles Lutwidge Dodgson (1832–1898),
better known as Lewis Carroll, who first published it in a mathematical periodical in
Leipzig, Germany, in 1866 (666 years after Fibonacci published his rabbit problem).
The brilliant American puzzlist Sam Loyd claimed that he had presented it to the
American Chess Congress in 1858. Although we may never know the exact origin of
the puzzle, it is nevertheless an intriguing one.
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Figure 2.32 Figure 2.33

Figure 2.34

Consider an 8 × 8 square; cut it up into four pieces, A, B, C, and D, as in
Figure 2.32. Now rearrange them to form a 5 × 13 rectangle, as Figure 2.33 shows.
The area of the square is 64 square units, whereas that of the rectangle is 65 square
units. In other words, by reassembling the four pieces of the original square, we have
gained one unit. This appears to be paradoxical.

However, appearances can be deceiving. Although it appears in Figure 2.33 that
the “diagonal” PQRS is a line segment, that is not in fact the case. The points P,
Q, R, and S are in fact the vertices of a very narrow parallelogram, as Figure 2.34
demonstrates. The area of the parallelogram = area of the rectangle − area of the
square = 5 · 13 − 82 = 1 = F5F7 − F2

6.
Its sides are

√
29 and

√
73 units long, and the diagonal is

√
194 units long. Let

θ be the acute angle between the adjacent sides of the parallelogram. Then, by the
law of cosines in trigonometry:

cos θ/2 = 194 + 29 − 73

2
√

29 · 194

θ/2 ≈ 0.763898460833◦

θ ≈ 1◦31′40′′

This explains why it is a very narrow parallelogram.
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Jacques Philippe Marie Binet (1788–1865), a French mathematician and as-

tronomer, was born at Rennes, Brittany. In 1804, he entered the École Polytech-

nique in Paris, graduated two years later, and took a job in the Department of

Bridges and Roads of the French government. In 1807, Binet became a teacher

at the École Polytechnique, and the following year became assistant to the pro-

fessor of applied analysis and descriptive geometry. In 1814, he was appointed

examiner of descriptive geometry, and professor of mechanics (1815) and then

inspector general of studies (1816). In 1821, he was awarded the Chevalier de la

Legion d’Honneur. Two years later, Binet was appointed chair of astronomy at the

Collège de France.

But the July 1830 revolution was not kind to him. A strong supporter of

Charles X, Binet became a victim of Charles’ abdication; he was dismissed from

École Polytechnique by King Louis-Phillipe in November, 1830.

Binet made many contributions to mathematics, physics, and astronomy. In 1812, he discovered the rule for

matrix multiplication, and in 1840, discovered the explicit formula for the nth Fibonacci number. In 1843, he was

elected to the Academy of Sciences and later became its president. A devout and modest Catholic, Binet died in

Paris.

In fact, there is nothing sacred about the choice of the size of the square. By
virtue of Cassini’s formula, the puzzle will work for any F2n × F2n square.

Lucas Numbers

Closely related to Fibonacci numbers are the Lucas numbers 1, 3, 4, 7, 11, . . . ,
named after Lucas. Lucas numbers Ln are defined recursively as follows:

L1 = 1, L2 = 3

Ln = Ln−1 + Ln−2, n ≥ 3

Binet’s Formulas

Both Fibonacci numbers and Lucas numbers can be defined explicitly using Binet’s
formulas:

Fn = αn − βn

α − β
and Ln = αn + βn

where α = (1 + √
5)/2 and β = (1 − √

5)/2 are the solutions of the quadratic equa-
tion x2 = x + 1. See Exercises 32–37.

The explicit formula for Fn was discovered by the French mathematician
Jacques-Phillipe-Marie Binet in 1843. In fact, it was first discovered in 1718 by
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Gabriel Lamé (1795–1870) was born in Tours, France. After graduating from the

École Polytechnique in 1817, he continued his studies at the École des Mines from

which he graduated in 1820.

The same year, Lamé was appointed director of the School of Highways and

Transportation in St. Petersburg, Russia. There he taught mathematics, physics,

and chemistry, and planned roads and bridges in and around the city. In 1832 he

returned to Paris to form an engineering firm. Within a few months, however, he

left it to become the chair of physics at the École Polytechnique, where he re-

mained until 1844. While teaching, he served as a consulting engineer, becoming

the chief engineer of mines in 1836. He helped build the railroads from Paris to

Versailles and to St. Germain.

In 1844 Lamé became graduate examiner for the University of Paris in math-

ematical physics and probability, and professor seven years later. In 1862 he became deaf and resigned his

positions. He died in Paris in 1870.

Although Lamé made discoveries in number theory and mathematical physics, his greatest contribution was

the development of the curvilinear coordinates and their applications. His work on curvilinear systems led him to

number theory. In 1840 he proved Fermat’s last theorem for n = 7.

Gauss considered Lamé the foremost French mathematician of his time. Ironically, most French mathemati-

cians considered him too practical, and most French scientists thought him too theoretical.

the French mathematician Abraham De Moivre (1667–1754) using generating func-
tions and arrived at independently in 1844 by the French engineer and mathematician
Gabriel Lamé.

Using the recursive definitions and Binet’s formulas, we can develop an array of
properties of both numbers.

E X E R C I S E S 2.6

1. Using the fact that Fn = Fn+1 − Fn−1, derive a for-

mula for
n∑

i=1
Fi.

Let an denote the number of additions needed to compute
Fn using recursion. Compute each.

2. a8 3. a9 4. a10 5. a13

6. Using Exercises 2–5, conjecture a formula for an.
7. Prove the formula in Exercise 6.
8. Define an recursively.

9. Prove that
n∑

i=1
ai = an+2 − n.

10. An n-bit word containing no two consecutive ones
can be constructed recursively as follows: Append a
0 to such (n − 1)-bit words or append a 01 to such
(n − 2)-bit words. Using this procedure, construct
all 5-bit words containing no two consecutive ones.
There are 13 such words.

11. Compute Fn+1/Fn correct to eight decimal places
for 1 ≤ n ≤ 10. Compare each value to the value of
(1 + √

5)/2 places to eight decimal places.
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? 12. Using Exercise 11, predict lim
n→∞

Fn+1

Fn
.

Conjecture a formula for each.

13.
n∑

i=1
F2i−1 14.

n∑

i=1
F2i

15.
n∑

i=1
Li 16.

n∑

i=1
L2i−1

17.
n∑

i=1
L2i 18.

n∑

i=1
F2

i

19.
n∑

i=1
L2

i

Prove each.

20. Fn = 2Fn−2 + Fn−3, n ≥ 4
21. Fn−1Fn+1 − F2

n = (−1)n, n ≥ 2
22. F5n is divisible by 5, n ≥ 1

23.
n∑

i=1
F2i−1 = F2n (E. Lucas)

24.
n∑

i=1
F2i = F2n+1 − 1 (E. Lucas)

25.
n∑

i=1
Li = Ln+2 − 3 26.

n∑

i=1
L2i−1 = L2n − 2

27.
n∑

i=1
L2i = L2n+1 − 1

28.
n∑

i=1
F2

i = FnFn+1 (E. Lucas)

29.
n∑

i=1
L2

i = LnLn+1 − 2

30. Let A =
[

1 1
1 0

]

. Then An =
[

Fn+1 Fn

Fn Fn−1

]

,

n ≥ 1. Assume F0 = 0.
31. Using Exercise 30, deduce that Fn−1Fn+1 − F2

n =
(−1)n.
(Hint: Let A be a square matrix. Then |An| = |A|n,
where |A| denotes the determinant of A.)

The nth term bn of a number sequence is defined by
bn = (αn − βn)/(α − β), where α = (1 + √

5)/2 and

β = (1 − √
5)/2 are solutions of the equation x2 = x + 1.

Verify each.

32. b1 = 1
33. b2 = 1
34. bn = bn−1 + bn−2, n ≥ 3

With α and β as above, let un = αn + βn, n ≥ 1. Verify
each.

35. u1 = 1
36. u2 = 3
37. un = un−1 + un−2, n ≥ 3

(These exercises indicate that un = Ln, the nth Lucas
number.)
Using Binet’s formulas, prove each.

38. F2n = FnLn

39. Fn−1 + Fn+1 = Ln

40. Fn+2 − Fn−2 = Ln

41. Ln−1 + Ln+1 = 5Fn

42. F2
n+1 + F2

n = F2n+1 (E. Lucas)

43. F2
n+1 − F2

n−1 = F2n (E. Lucas)

44. Let an denote the number of rectangles that can be
formed on a 1×n rectangular board. Find the recur-
rence relation satisfied by an.
(Hint: Look for a pattern. Every square is also a rec-
tangle.)

A subset of the set S = {1,2, . . . ,n} is said to be alter-
nating if its elements, when arranged in increasing order,
follow the pattern odd, even, odd, even, etc. For example,
{1,2,5} and {3,4} are alternating subsets of {1,2,3,4,5},
whereas {1,3,4} and {2,3,4,5} are not; ∅ is considered
alternating. Let an denote the number of alternating sub-
sets of S. [Olry Terquem (1782–1862)]

45. Define an recursively.
46. Prove that an = Fn+2.

� �



2.7 Fermat Numbers 139

Pierre de Fermat (1601–1665), born near Toulouse, was the son of a leather mer-

chant. A lawyer by profession, he devoted his leisure time to the pursuit of mathe-

matics as a hobby. Although he published almost none of his brilliant discoveries, he

did correspond with contemporary mathematicians.

Fermat has contributed to several branches of mathematics, but he is best

known for his work in number theory. Many of his results appear in margins of his

copy of the works of the Greek mathematician Diophantus (ca. 250 A.D.). He wrote

about his own famous conjecture: “I have discovered a truly wonderful proof, but the

margin is too small to contain it.”

2.7 Fermat Numbers

Numbers of the form fn = 22n + 1 were studied by the outstanding French math-
ematician Pierre de Fermat and are called Fermat numbers. The first five Fermat
numbers are f0 = 3, f1 = 5, f2 = 17, f3 = 257, and f4 = 65537.

The following theorem presents an interesting recurrence relation satisfied by fn.

THEOREM 2.16 Let fn denote the nth Fermat number. Then fn = f 2
n−1 − 2fn−1 + 2, where n ≥ 1.

PROOF

We shall substitute for fn−1 in the expression f 2
n−1 − 2fn−1 + 2, simplify it, and show

that it equals fn:

f 2
n−1 − 2fn−1 + 2 = (

22n−1 + 1
)2 − 2

(
22n−1 + 1

) + 2

= (
22n + 2 · 22n−1 + 1

) − 2 · 22n−1 − 2 + 2

= 22n + 1

= fn

This completes the proof. �

This theorem leads to a recursive definition of fn.
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A Recursive Definition of fn

f0 = 3

fn = f 2
n−1 − 2fn−1 + 2, n ≥ 1

For example,

f1 = f 2
0 − 2f0 + 2 = 9 − 2 · 3 + 2 = 5

and

f2 = f 2
1 − 2f1 + 2 = 25 − 2 · 5 + 2 = 17

We can make an interesting observation about Fermat numbers. Notice that the
numbers f2 = 17, f3 = 257, f4 = 65537, f5 = 4294967297, and f6 =
18446644033331951617 all end in the same decimal digit, 7. Amazing! So what can
you conjecture about Fermat numbers? Can you prove it? (See Exercises 2 and 3.)

Here is another interesting observation: The first five Fermat numbers 3, 5, 17,
257, and 65537 are primes. So Fermat conjectured that every Fermat number is a
prime.

In 1732, however, Euler established the falsity of his conjecture by produc-
ing a counterexample. He showed that f5 is divisible by 641: f5 = 4294967297 =
641 · 6700417. An alternate proof was given in 1926 by the Belgian mathematician
M. Kraitchik (1882–1957) in his Théorie des nombres.

The following example furnishes a clever, elementary proof by G. T. Bennett of
this result. The beauty of its proof lies in the fact that it does not involve any division.

EXAMPLE 2.29 Show that 641|f5.

SOLUTION

First notice that

641 = 5 · 27 + 1 (2.2)

So 225 + 1 = 232 + 1 = 24 · 228 + 1

= 16 · 228 + 1 = (641 − 625)228 + 1

= (641 − 54)228 + 1 = 641 · 228 − (5 · 27)4 + 1

= 641 · 228 − (641 − 1)4 + 1, by equation (2.2)

= 641 · 228 − (6414 − 4 · 6413 + 6 · 6412 − 4 · 641 + 1) + 1

= 641(228 − 6413 + 4 · 6412 − 6 · 641 + 4)

Thus, 641| f5. �
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An Alternate Proof

In 1995, Stanley Peterburgsky, while studying at the New England Academy of

Torah, Rhode Island, proved that f5 is composite by showing that
f5

641
can be

expressed as the sum of two squares. To see this, recall from Chapter 1 that
(a2 + b2)(c2 + d2) = (ac + bd)2 + (ad − bc)2 for any integers a, b, c, and d. Then

a2 + b2

c2 + d2
= (ac + bd)2 + (ad − bc)2

(c2 + d2)2

Now let a = 216, b = 1, c = 4, and d = 25. Then

f5
641

= 232 + 1

641

= (216 · 4 + 25)2 + (25 · 216 − 4)2

6412

= 4092 + 25562 �

?Unfortunately, nothing is known about the infinitude of Fermat primes. It still
remains an unsolved problem. In fact, no Fermat primes beyond f4 have been found;
the largest known Fermat prime continues to be f4. The largest known Fermat com-
posite number is f2478782, discovered in 2003.

?Is every Fermat number square-free, that is, free of square factors? It has been
conjectured by both Lehmer and A. Schinzel that there are infinitely many square-
free Fermat numbers.

The following result, derived by Lucas, is an extremely useful tool in the prime
factorization of fn. In 1747, Euler proved that every prime factor of fn must be of the
form A · 2n+1 + 1. In 1879, Lucas refined Euler’s work by showing that A must be an
even integer 2k. This leads us to the following theorem.

THEOREM 2.17 Every prime factor of fn is of the form k · 2n+2 + 1, where n ≥ 2. �

It follows by this theorem that if fn has no prime factors of the form k · 2n+2 + 1,
then fn must be a prime. The following example takes advantage of this fact.

EXAMPLE 2.30 Show that f4 = 65537 is prime.

PROOF

It suffices to show that f4 has no proper prime factors. By Theorem 2.17, every prime
factor of f4 is of the form 26k + 1 = 64k + 1. By Theorem 2.9, if f4 is composite, it
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must have a prime factor ≤ �√65537�, that is, ≤ 256. The only prime of the form
64k + 1 and ≤ 256 is 193, but 193 � 65537; so f4 is a prime. �

For the curious minded, we add a bonus: In 1963, S. W. Golomb of the California
Institute of Technology established that the sum of the reciprocals of Fermat numbers
is an irrational number.

Finally, there is a remarkable link between Fermat primes and the ruler-and-
compass construction of regular polygons, where a ruler is used as a straight edge just
to draw lines, and a compass just to draw arcs. In 1796, Gauss proved the following
celebrated theorem.

THEOREM 2.18 A regular polygon of n sides is constructible with a ruler and compass if and only if
n is of the form f1 f2 · · · fk or 2kf1 f2 · · · fk, where k ≥ 0 and f1, f2, . . . , fk are distinct
Fermat primes. �

The early Greeks knew the construction of regular polygons of sides 2k, 3 · 2k,
5 · 2k, and 15 · 2k. (Notice that 3 and 5 are Fermat primes.) They also knew the
construction of polygons of 3, 4, 5, 6, 8, 10, 12, 15, and 16 sides, but not the con-
struction of the 17-sided regular polygon. When Gauss, at the age of 19, proved that
the 17-sided regular polygon is constructible, he became so elated with his discov-
ery that he decided to devote the rest of his life to mathematics. He also requested
that a 17-sided regular polygon be engraved on his tombstone. Although his wish
was never fulfilled, such a polygon can be found on a monument to Gauss at his
birthplace in Brunswick, Germany.

(A thorough discussion of such geometric constructions requires advanced tech-
niques from abstract algebra, namely, Galois theory.)

E X E R C I S E S 2.7

1. Using recursion, compute the Fermat numbers f3 and
f4.

2. Make a conjecture about the ones digit in the decimal
value of fn.

3. Establish your conjecture in Exercise 2. (Hint: Use
induction.)

Prove each.

4. If 2m + 1 is a prime, then m must be a power of 2.

5. If 2m − 1 is a prime, then m must be a prime.
6. Prove or disprove: If m is a prime, then 2m − 1 is a

prime.
7. Prove that 3 is the only Fermat number that is also a

triangular number. (S. Asadulla, 1987)
(Hint: Use Exercises 2 and 3.)

8. Redo Exercise 7 using the fact that the product of two
integers is a power of 2 if and only if both integers are
powers of 2.
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9. Does f5 have a prime factor of the form k · 2n+2 + 1?
If yes, find such a factor.

Determine if a regular polygon of n sides is constructible
with a straightedge and compass for each value of n.

10. 257 11. 36 12. 60 13. 17,476

� �

X CHAPTER SUMMARY

This chapter presented the division algorithm, one of the fundamental results in num-
ber theory. In addition, it established several divisibility properties, the pigeonhole
principle, the inclusion–exclusion principle, the uniqueness of the base-b representa-
tion of a positive integer, several number patterns, and prime and composite numbers,
Fibonacci and Lucas numbers, and Fermat numbers.

The Division Algorithm
• Given any integer a and any positive integer b, there exist a unique quotient q

and a unique reminder r such that a = bq + r, where 0 ≤ r < b. (p. 69)

q = �a/b� = a div b (p. 71)

r = a − bq = a mod b (p. 71)

The Pigeonhole Principle
• If m pigeons are assigned to n pigeonholes, where m > n, then at least two

pigeons must occupy the same pigeonhole. (p. 74)

Divisibility Properties
• If a|b and b|c, then a|c. (p. 75)
• If a|b, then a|mb. (p. 75)
• If a|b and a|c, then a|(αb + βc). (p. 75)
• There are �a/b� positive integers ≤ a and divisible by b. (p. 75)

The Inclusion–Exclusion Principle
• Let A1,A2, . . . ,An be n finite sets. Then

∣
∣
∣
∣
∣

n⋃

i=1

Ai

∣
∣
∣
∣
∣
=

∑

1≤i≤n

|Ai| −
∑

1≤i<j≤n

|Ai ∩ Aj|

+
∑

1≤i<j<k≤n

|Ai ∩ Aj ∩ Ak| − · · · + (−1)n+1|
n⋂

i=1

Ai| (p. 76)
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Odd and Even Integers
• Every even integer is of the form 2m and every odd integer is of the form

2n + 1. (p. 78)

Base-b Representation
• Every integer has a unique base-b representation. (p. 80)

Prime and Composite Numbers
• A prime number is a positive integer with exactly two positive factors. A pos-

itive integer ≥ 2 that is not a prime is a composite. (p. 104)
• Every positive integer ≥ 2 has a prime factor. (p. 104)
• There are infinitely many primes. (p. 104)
• Every composite number n has a prime factor ≤ �√n�. (p. 105)
• π(x) is the number of primes ≤ the real number x. (p. 110)
• Let p1,p2, . . . ,pt be the primes ≤ n. Then

π(n) = n − 1 + π(
√

n) −
∑

i

⌊
n

pi

⌋

+
∑

i<j

⌊
n

pipj

⌋

−
∑

i<j<k

⌊
n

pipjpk

⌋

+ · · · + (−1)t
⌊

n

p1p2 · · ·pt

⌋

(p. 110)

Prime Number Theorem

• lim
x→∞

π(x)

x/ ln x
= 1 (p. 111)

• For any positive integer n, there are n consecutive integers that are composites.
(p. 114)

Cunningham Chains
• A Cunningham chain is a chain of primes 2p + 1. (p. 115)

Palindromic Primes
• A prime that is palindromic is a palindromic prime. (p. 116)

Repunit Primes
• A repunit that is prime is a repunit prime. (p. 117)

Twin Primes
• Two primes that differ by 2 are twin primes. (p. 118)

Sophie Germain Primes
• Primes of the form 2p + 1. (p. 121)
• A chain of such primes is a Cunningham chain. (p. 121)
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Goldbach’s Conjecture
• Every even integer > 2 can be expressed as the sum of two primes. (p. 121)

Bertrand’s Conjecture
• There is a prime between n and 2n, where n ≥ 2. (p. 123)

Fibonacci Numbers Fn

F1 = 1 = F2

Fn = Fn−1 + Fn−2, n ≥ 3 (p. 129)

Fn =
�(n−1)/2�∑

i=0

(
n − i − 1

i

)

, n ≥ 1 (p. 130)

Lucas Numbers Ln

L1 = 1, L2 = 3

Ln = Ln−1 + Ln−2, n ≥ 3 (p. 136)

Binet’s Formulas

Fn = αn − βn

α − β
and Ln = αn + βn

where α = (1 + √
5)/2 and β = (1 − √

5)/2. (p. 136)

Fermat Numbers fn

fn = 22n + 1 (p. 139)

= f 2
n−1 − 2fn−1 + 2, where f0 = 3 (p. 139)

• f5 is a composite number. (p. 141)
• Every prime factor of fn is of the form k · 2n+2 + 1, where n ≥ 2. (p. 141)
• A regular polygon of n sides is constructible with a ruler and compass if and

only if n is of the form f1f2 · · · fk or 2kf1f2 · · · fk, where k ≥ 0 and f1, f2, . . . ,
and fk are distinct Fermat primes. (p. 142)
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X REVIEW EXERCISES

Find the number of positive integers ≤ 2776 and

1. Divisible by 2 or 5. 2. Not divisible by 2 or 3.
3. Divisible by 2, 3, or 5. 4. Not divisible by 2, 5, or 7.

Express each number in base ten.

5. 2000eight 6. 2345sixteen

7. BADsixteen
�8. BAD.CAsixteen

Rewrite each number in the indicated base b.

9. 245, b = 2 10. 348, b = 8
11. 1221, b = 8 12. 1976, b = 16

In Exercises 13–16, perform the indicated operation.

13. 11010two

+ 111two

14. 5768sixteen

+ 78CBsixteen

15. 5AB8sixteen

× BADsixteen

16. 110110two

− 11011two

Rewrite each binary integer in base eight.

17. 10110101 18. 1101101101
19. 100110011 20. 10011011001
21–24. Rewrite each integer in Exercises 17–20 in base sixteen.

Find the value of x resulting from the execution of each algorithm fragment.

25. x ← 0
for i = 1 to n do

for j = 1 to n do
x ← x + 1

26. x ← 0
for i = 1 to n do

for j = 1 to i do
for k = 1 to j do

x ← x + 1

27. Find a formula for the number an of times the statement x ← x + 1 is executed
by the following loops.

for i = 1 to n do
for j = 1 to �i/2� do

x ← x + 1

Using induction, prove each for every positive integer n.
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28. n2 − n is divisible by 2. 29. n3 − n is divisible by 3.

30.
n∑

i=1

(2i − 1)2 = n(4n2 − 1)

3
31.

n∑

i=1

1

(2i − 1)(2i + 1)
= n

2n + 1

32. The product of any two consecutive positive integers is even.
33. Suppose you have an unlimited supply of identical black and white socks. Using

induction and the pigeonhole principle, show that you must select at least 2n + 1
socks in order to ensure n matching pairs. (C. T. Long)

Add two more lines to each number pattern. (F. B. Selkin)

34. 9 · 9 = 81
99 · 99 = 9801

999 · 999 = 998001
9999 · 9999 = 99980001

99999 · 99999 = 9999800001

35. 7 · 9 = 63
77 · 99 = 7623

777 · 999 = 776223
7777 · 9999 = 77762223

77777 · 99999 = 7777622223

Determine if each is prime or composite.

36. 237 37. 327 38. 1229 39. 1997
Using Theorem 2.10, find the number of primes ≤ n for each value of n.

40. 129 41. 135 42. 140 43. 149

Find n consecutive integers that are composite numbers for each value of n.

44. 4 45. 6 46. 11 47. 13

48. Find all twin primes whose arithmetic mean is a square.
49. The introduction to L. Poletti’s Tavole diNumeri Primi (Milan, 1920) contains

the following statements by H. J. Scherk, where pn denotes the nth prime,
p0 = 1, and n ≥ 1:

• p2n may be expressed as the algebraic sum of all its preceding primes and
p0 each taken exactly once.

• p2n−1 may be expressed in the same way, except that the last addend is to
be taken twice, where n ≥ 2.

Verify Scherk’s statement for 1 ≤ n ≤ 8.

50. Euler’s formula E(n) = n2 − n + 41 yields a prime for 0 ≤ n ≤ 40. Find 41
consecutive values of n for which E(n) is composite. (S. Kravitz, 1963)
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51. In 1953, J. E. Foster of Evanston, Illinois, conjectured that 2p + 1 = 3q, where p
and q are odd primes. Show that his conjecture is false.

Prove each, where n is an arbitrary positive integer.

52. n3 + n is divisible by 2.
53. n4 − n2 is divisible by 3.
54. Hm|R6m, where Hm = 102m − 10m + 1. (Chico Problem Group, 1990)
55. The square of every odd integer is of the form 8m + 1.
56. Thomas Greenwood claimed that if n is a prime, then one more than an even

triangular number tn or two less than an odd triangular number is a prime.
57. b3n ± 1 is composite, where b ≥ 2 and n ≥ 1.
58. 1 + 5n + 52n + 53n + 54n is composite. (LSU Problem-Solving Group, 2002)
59. 346|(365n + 1848n − 2021n − 3482n) (R. S. Luthar, 1970)
60. Find all triplets (a,b, c) of consecutive integers a,b, c such that abc|(a3 + b3 +

c3). (M. J. Zerger, 2003)
61. Prove or disprove: If n is a prime, then Fn is a prime.

Determine if a regular polygon of n sides can be constructed with a straightedge and
compass for each value of n.

62. 16 63. 408 64. 1275 65. 3855

Let α and β be the solutions of the equation x2 = x + 1. Prove each.

66. xn = Fnx + Fn−1, n ≥ 2

67. Fn = αn − βn

α − β
, n ≥ 1

68. F1F2 + F2F3 + · · · + F2n−1F2n = F2
2n

69. Fn is even if and only if 3|n.

X SUPPLEMENTARY EXERCISES

1. In 1981, O. Higgins discovered that the formula h(x) = 9x2 − 471x + 6203
generates a prime for 40 consecutive values of x. Give a counterexample to
show that not every value of h(x) is a prime.

2. The formula g(x) = x2 − 2999x + 2248541 yields a prime for 80 consecutive
values of x. Give a counterexample to disprove that every value of g(x) is a
prime.

Let n be a four-digit decimal integer, with not all digits the same. Let n′ and n′′ be
the integers obtained by arranging the digits of n in nondecreasing and nonincreasing
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orders, respectively. Define K(n) = n′ −n′′. For example, K(1995) = 9951−1599 =
8352.

3. Find K(K(1995)).
4. Show that K(6174) = 6174. (The integer 6174 is the only four-digit integer

that has this property. It is called Kaprekar’s constant.)
5. Charles W. Trigg of California, who has written extensively on recreational

mathematics, showed in 1968 (the year the Journal of Recreational Mathemat-
ics was first published) that K6(1968) = 6174, where Kn(m) = K(Kn−1(m))

and K1 = K. Verify this.

An absolute prime is a prime such that every permutation of its digits yields a prime.
For example, 2, 3, and 5 are absolute primes. Every repunit prime is an absolute
prime.

6. There are eight two-digit absolute primes with distinct digits. Find them.
7. There are nine three-digit absolute primes with two distinct digits. Find them.
8. Show that an absolute prime with two or more digits may contain only the

digits 1, 3, 7, and 9.

A cyclic prime is a prime such that every cyclic permutation of its digits yields a
prime. For example, 79 and 97 are cyclic primes. Every absolute prime is also a
cyclic prime.

9. Find the cyclic primes that can be obtained from the cyclic prime 3779.
10. There are three three-digit cyclic primes that are not absolute primes; each

consists of distinct digits. Find them.
11. Show that a cyclic prime with two or more digits may contain only the digits

1, 3, 7, and 9.
12. A reversible prime is a prime that yields a prime when read from right to left.

For instance, 113 is a reversible prime. Determine if 199 and 733 are reversible
primes.

13. Find all reversible primes < 100.

Give a reversible prime that is not:

14. An absolute prime.
15. A palindromic prime.

A sieving algorithm similar to Eratosthenes’ can be employed to generate lucky
numbers. From the list of positive integers, first strike out every other integer, leav-
ing all odd positive integers. The smallest odd integer left after 1 is 3, so counting
with 1 strike out every third integer in the new list. The next integer left is 7, so again
starting at 1 cross out every seventh integer in the resulting list. Continuing like this,
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in step i strike out every ith integer left from step (i − 1), where i > 1. The numbers
that remain are lucky numbers.

16. Find all lucky numbers < 50. (There are 13 such lucky numbers.)
17. Show that there are infinitely many lucky numbers.

Let a,b ∈ W, a = (anan−1 . . .a0)two, and b = (bnbn−1 . . .b0)two. If ai ≥ bi for
every i, we say a implies b and write a ⇒ b; otherwise a 	⇒ b.

18. Determine if 43 ⇒ 25 and 47 ⇒ 29.
19. The binomial coefficient C(n, r) is odd if and only if n ⇒ r. Using this fact,

determine the parity (oddness or evenness) of C(25,18) and C(29,19).
20. Justify the Russian peasant algorithm.

Let b and n be integers ≥ 2. Numbers of the form Sn = bn − 1

b − 1
are called Sylvester

numbers, after the English mathematician James Joseph Sylvester (1814–1897),
who investigated them in 1888.

21. Define Sn recursively.
22. If n is a composite number, prove that Sn is composite.
23. If n > 2 and b is a square, prove that Sn is composite.

Prove each, where n is an arbitrary positive integer.

�24. 12|n(3n4 + 7n2 + 2)
�25. 24|n(3n4 + 13n2 + 8)
�26. Guess the number of odd binomial coefficients in row n of Pascal’s triangle.

(Hint: Compare the number of odd binomial coefficients in row n and the
binary expansion of n.)

�27. Find two distinct positive integers A and B such that A + n is a factor of B + n
for every integer n, where 0 ≤ n ≤ 10. (A. Friedland, 1970)

�28. Characterize all positive integers n such that k + 1|
(

n
k

)

, where 0 ≤ k < n.

(E. T. H. Wang, 1994)

A set of integers A is fat if each of its elements is ≥ the number of elements in A.
For example, {5,7,91} is a fat set, but {3,7,36,41} is not. ∅ is considered a fat set.
Let gn denote the number of fat subsets of the set {1,2, . . . ,n}. (G. F. Andrews)

�29. Define gn recursively.
�30. Find an explicit formula for gn.

Let f (n, k) denote the number of k-element subsets of the set S = {1,2, . . . ,n} that
do not contain consecutive integers. Let gn denote the total number of subsets of S
that do not contain consecutive integers. (I. Kaplansky)

�31. Define f (n, k) recursively.
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�32. Find an explicit formula for gn.

Suppose we introduce a mixed pair of 1-month-old rabbits into a large enclosure
on the first day of a certain month. By the end of each month, the rabbits become
mature and each pair produces k − 1 mixed pairs of offspring at the beginning of
the following month. (Note: k ≥ 2.) For instance, at the beginning of the second
month, there is one pair of 2-month-old rabbits and k − 1 pairs of 0-month-olds; at
the beginning of the third month, there is one pair of 3-month-olds, k − 1 pairs of
1-month-olds, and k(k − 1) pairs of 0-month-olds. Assume the rabbits are immortal.
Let an denote the average age of the rabbit-pairs at the beginning of the nth month.
(P. Filipponi, 1990)

��33. Define an recursively.
��34. Predict an explicit formula for an.
��35. Prove the formula in Exercise 34.

36. Find lim
n→∞ an.

�37. Find the sum of the numbers in the nth row of the following triangular array
of Fibonacci numbers.

1
1 2

3 5 8
13 21 34 55

89 144 233 377 610
...

X COMPUTER EXERCISES

Write a program to do each task.

1. Read in an integer b ≥ 2 and select b + 1 integers at random. Find two integers
in the list such that their difference is divisible by b.

2. Read in an integer n ≥ 2 and select n positive integers at random. Find a se-
quence of integers from the list whose sum is divisible by n.

3. Assign the numbers 0–51 in order to the 52 playing cards in a standard deck.
Read in a number x, where 0 ≤ x ≤ 51. Identify the card numbered x. Use the
suit labels 0 = clubs, 1 = diamonds, 2 = hearts, and 3 = spades, and the card
labels 0 = ace, l = deuce, 2 = three, . . . , in each suit.
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4. Assign the numbers 0–63, row by row, to the various squares on an 8 × 8 chess-
board. Read in two numbers x and y, where 0 ≤ x, y ≤ 63. Determine if the queen
at square x can capture the queen at square y.

5. Read in a sequence of pairs of integers n and b. For each integer n, determine
its base-b representation and use this representation to compute the correspond-
ing decimal value. Print each integer n, base-b, base-b representation, and its
decimal value in a tabular form.

6. Print the first eight rows of the number patterns in Examples 2.18, 2.19, and
2.21.

7. Read in a positive integer n and determine if it is a prime.
8. Construct a table of values of the function E(n) = n2 −n+41, where 0 ≤ n ≤ 41,

and identify each value as prime or composite.
9. Redo program 8 with L(n) = n2 + n + 41, where 0 ≤ n ≤ 41, and identify each

value as prime or composite.
10. Redo program 8 with H(n) = 9n2 −471n+6203, where 0 ≤ n ≤ 39, and identify

each value as prime or composite.
11. Redo program 8 with G(n) = n2 − 2999n + 2248541, where 1460 ≤ n ≤ 1539,

and identify each value as prime or composite.
12. Read in a positive integer n, and list all primes ≤ n and of the form k2 + 1.
13. Read in a positive integer n and find a prime between:

a) n and 2n
b) n2 and n2 + 1.

14. Verify Goldbach’s conjecture for all even integers ≤ 100.
15. List all twin primes ≤ 100.
16. Find all palindromic primes < 100.
17. Find all cyclic primes < 100.
18. Find all reversible primes < 100.
19. There are nine positive integers ≤ 100 for which n! + 1 is a prime. Find them.
20. Make a list of 12 pairs of odd primes p and q such that 2p + 1 = 3q.
21. Find a counterexample to show that the statement 2p + 1 = 3q is false, where p

and q are odd primes.
22. (Bocard’s problem) Only three positive integers n are known for which n! + 1

is a square and they are < 100. Find them.
23. There are exactly two primes p for which the Fermat quotient (2p−1 − 1)/p is a

square and they are < 100. Find them.
24. Verify that R19 and R23 are primes.
25. Find all three-digit cyclic primes, each with distinct digits.
26. List all five-digit cyclic primes that can be generated from cyclic primes 11,939

and 19,937.
27. Compute the value of

∏

p
(1 − 1/p2), where p is a prime < 1000.
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28. Compute the sum of the reciprocals of twin primes correct to four decimal
places.

29. Read in a positive integer n, and compute the first n Fibonacci numbers using
recursion and iteration.

30. Verify that Fermat numbers f0 through f4 are primes.
31. Compute f5 and verify that 641|f5.
32. Verify that both 7 and 1913 are factors of f6.
33. Read in a positive integer n, and compute the first n Lucas numbers Ln.
34. Compute the values of Fn+1/Fn and Ln+1/Ln correct to 10 decimal places for

1 ≤ n ≤ 100.
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3 Greatest Common
Divisors

What science can there be more noble, more excellent,

more useful for men, more admirably high and

demonstrative than this of the Mathematics.

— BENJAMIN FRANKLIN

his chapter continues to deal with the divisibility theory. We begin by explor-T ing the common factors of two or more positive integers. We establish the
fundamental theorem of arithmetic, the cornerstone of number theory, and

then turn to the common multiples of two or more positive integers. Finally, we in-
vestigate the important class of linear diophantine equations.

3.1 Greatest Common Divisor
A positive integer can be a factor of two positive integers, a and b. Such factors are
common divisors, or common factors, of a and b.

For example, 12 and 18 have four common divisors, namely, 1, 2, 3, and 6;
whereas 12 and 25 have exactly one common factor, namely, 1.

Often we are not interested in all common divisors of a and b, but in the largest
common divisor, so we make the following definition.

Greatest Common Divisor
The greatest common divisor (gcd) of two integers a and b, not both zero, is the
largest positive integer that divides both a and b; it is denoted by (a,b).

For example, (12,18) = 6, (12,25) = 1, (11,19) = 1, (−15,25) = 5, and
(3,0) = 3.

155
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Because (a,−b) = (−a,b) = (−a,−b) = (a,b), we confine our discussion of gcds
to positive integers.

How do we know that the gcd of a and b always exists? Since 1|a and 1|b, 1 is
a common divisor of a and b, so they have a least common divisor, namely, 1. If d is
a common divisor, then d ≤ a and d ≤ b, so d ≤ min{a,b}. Thus, the set of common
factors is finite, so (a,b) exists.

A second important question is uniqueness: Is the gcd of a and b unique? It is,
so we can talk about the gcd of a and b (see Exercise 46).

The preceding verbal definition of gcd, although simple and clear, is not a prac-
tical one, so we rewrite it symbolically.

A Symbolic Definition of gcd
A positive integer d is the gcd of two positive integers a and b if

• d|a and d|b; and
• if d′|a and d′|b, then d′ ≤ d, where d′ is also a positive integer.

Thus, d = (a,b) if two conditions are satisfied:

• d must be a common factor of a and b.
• d must be the largest common factor of a and b; in other words, any other

common factor d′ must be ≤ d.

In the next section, we develop an efficient method for finding the gcd of two
positive integers.

There are positive integers whose gcd is 1. For example, (6,35) = 1. Accord-
ingly, we make the following definition.

Relatively Prime Integers
Two positive integers a and b are relatively prime if their gcd is 1; that is, if
(a,b) = 1.

Thus, 6 and 35 are relatively prime; so are 11 and 24.
This possible relationship between integers will be useful in our later discus-

sions.
Cassini’s formula now yields the following fascinating byproduct.

THEOREM 3.1 Any two consecutive Fibonacci numbers are relatively prime.

PROOF (by contradiction)
Let p be a prime factor of both Fn and Fn+1. Then, by Theorems 2.4 and 2.15, p|±1,
which is a contradiction. Thus, (Fn+1,Fn) = 1. �
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Interestingly, we can use Fermat numbers to reconfirm the infinitude of primes.
To this end, we need the following two results.

LEMMA 3.1 Let fi denote the ith Fermat number. Then f0 f1 · · · fn−1 = fn − 2, where n ≥ 1.

PROOF (by weak induction)
When n = 1, LHS = f0 = 3 = 5 − 2 = f1 − 2 = RHS. Thus, the result holds when
n = 1.

Now assume the given result is true when n = k:

f0 f1 · · · fk−1 = fk − 2

Then

f0 f1 · · · fk−1fk = ( f0 f1 · · · fk−1)fk

= ( fk − 2)fk, by the inductive hypothesis

= (
22k − 1

)(
22k + 1

)

= 22k+1 − 1 = (
22k+1 + 1

) − 2

= fk+1 − 2

So, if the result is true when n = k, it is also true when n = k + 1. Thus, by induction,
the result holds for every integer n ≥ 1. �

The formula in this lemma, known as Duncan’s identity, was discovered in
1964 by D. C. Duncan.

Using this result, we now show that any two distinct Fermat numbers are rel-
atively prime; it was established in 1925 by G. Polya of Stanford University. (See
Exercises 69 and 70 for an alternate proof of the lemma.)

THEOREM 3.2 (Polya, 1925) Let m and n be distinct nonnegative integers. Then fm and fn are
relatively prime.

PROOF

Assume, for convenience, that m < n. Let d = ( fm, fn). Then d| fm and d| fn. But fn −
2 = f0 f1 · · · fm · · · fn−1, by Lemma 3.1. Since d| fm, d| f0 f1 · · · fm · · · fn. So d|( fn − 2),
but d| fn; therefore, d|2, by Theorem 2.4. Consequently, d must be 1 or 2. But Fermat
numbers are all odd, so d �= 2. Therefore, d = 1; that is, ( fm, fn) = 1. �

Polya’s result can be generalized: Let gn = (2k)2n + 1, where k > 0. Then
(gm,gn) = 1, where m �= n; see Exercise 66.
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Using these two results, we can now prove again that there are infinitely many
primes.

THEOREM 3.3 There is an infinitude of primes.

PROOF

By Lemma 2.1, every Fermat number has a prime factor. Therefore, by Polya’s theo-
rem, no two distinct Fermat numbers have common prime factors, meaning each has
a distinct prime factor. So, since there are infinitely many Fermat numbers, there are
also infinitely many primes. �

This result can be established more formally using induction. See Exercise 71.
Next, we present an amazing confluence of number theory, probability, and

analysis.

Relatively Prime Numbers and Pi (optional)
In Section 2.5, we found a close link between prime numbers and π , given by the
formula

∏

p∈P
(1 − 1/p2) = π2/6. Using advanced techniques, it can be shown that the

infinite product represents the reciprocal of the probability that two positive integers
selected at random are relatively prime.† Thus, the probability that two positive inte-
gers selected at random are relatively prime is given by

∏

p∈P
1/(1 − 1/p2) = 6/π2.

We now turn our attention to some interesting and useful properties of gcds.

THEOREM 3.4 Let (a,b) = d. Then

1. (a/d,b/d) = 1
2. (a,a − b) = d.

PROOF
1. Let d′ = (a/d,b/d). To show that d′ = 1:

Since d′ is a common factor of a/d and b/d, a/d = �d′ and b/d = md′ for
some integers � and m. Then a = �dd′ and b = mdd′, so dd′ is a common
factor of both a and b. Then, by definition, dd′ ≤ d, so d′ ≤ 1. Thus, d′ is a
positive integer such that d′ ≤ 1, so d′ = 1. Thus, if (a,b) = d, then a/d and
b/d are relatively prime.

2. Let d′ = (a,a−b). To show that d = d′, we shall show that d ≤ d′ and d′ ≤ d.
To show that d ≤ d′:
Since d is a common divisor of a and b, a = md and b = nd for some integers
m and n. Then a − b = (m − n)d. Thus d|a and d|(a − b); so d is a common

† See Ogilvy and Anderson.
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divisor of a and a − b. Then, by definition, d must be less than or equal to
(a,a − b); that is, d ≤ d′.
To show that d′ ≤ d:
Since d′ is a common factor of a and a − b, a = αd′ and a − b = βd′ for
some integers α and β . Then a − (a − b) = αd′ −βd′; that is, b = (α −β)d′.
Thus, d′ is a common divisor of a and b, so d′ ≤ d.

Thus, d ≤ d′ and d′ ≤ d, so d = d′. �

It follows by part (2) of this theorem that (a,a + b) = (a,b). (See Exercise 50.)
Next, we prove that the gcd(a,b) can be expressed as a sum of multiples of a

and b, but first we must make a definition.

Linear Combination
A linear combination of the integers a and b is a sum of multiples of a and b, that
is, a sum of the form αa + βb, where α and β are integers.

For example, 2 · 3 + 5 · 7 is a linear combination of 3 and 7; so is (−4) · 3 + 0 · 7.
We now state and prove the result mentioned in the preceding paragraph. Its

proof is an elegant application of the well-ordering principle.

THEOREM 3.5 (Euler) The gcd of the positive integers a and b is a linear combination of a and b.

PROOF

Let S be the set of positive linear combinations of a and b; that is, S = {ma+nb|ma+
nb > 0,m,n ∈ Z}.
To show that S has a least element:

Since a > 0,a = 1 · a + 0 · b ∈ S, so S is nonempty. So, by the well-ordering
principle, S has a least positive element d.
To show that d = (a,b):

Since d belongs to S, d = αa + βb for some integers α and β .

1. First we will show that d|a and d|b:
By the division algorithm, there exist integers q and r such that a = dq + r,
where 0 ≤ r < d. Substituting for d,

r = a − dq

= a − (αa + βb)q

= (1 − αq)a + (−βq)b

This shows r is a linear combination of a and b.
If r > 0, then r ∈ S. Since r < d, r is less than the smallest element in S,
which is a contradiction. So r = 0; thus, a = dq, so d|a.
Similarly, d|b. Thus d is a common divisor of a and b.
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2. To show that any positive common divisor d′ of a and b is ≤ d:
Since d′|a and d′|b, d′|(αa + βb), by Theorem 2.4; that is, d′|d. So d′ ≤ d.
Thus, by parts (1) and (2), d = (a,b). �

It follows by this theorem that the gcd (a,b) can always be expressed as a linear
combination αa + βb. In fact, it is the smallest positive such linear combination.

One way to find such a linear combination is by trial and error, especially when
a and b are small, as the following example shows.

EXAMPLE 3.1 Express (28,12) as a linear combination of 28 and 12.

SOLUTION

First, notice that (28,12) = 4. Next, we need to find integers α and β such that
α · 28 + β · 12 = 4. By trial and error, α = 1 and β = −2 works: 1 · 28 + (−2) ·
12 = 4. �

Note that the values of α and β in the linear combination need not be unique. For
instance, in this example, you may notice that (−5) · 28 + 12 · 12 = 4.

A second way to find α and β is by using a table of multiples of a and b and
then picking a right combination, as Table 3.1 shows.

Table 3.1

The next section presents a systematic method for finding α and β .
Theorem 3.5 can be used to refine the definition of gcd and to derive several

useful results about gcds.

THEOREM 3.6 If d = (a,b) and d′ is any common divisor of a and b, then d′|d.
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PROOF

Since d = (a,b), by Theorem 3.5, there exist α and β such that d = αa + βb. Since
d′|a and d′|b, by Theorem 2.4, d′|(αa + βb); so d′|d. �

Thus, every common divisor d′ of a and b is a factor of their gcd d, and d′ ≤ d.
Conversely, suppose that

• d|a and d|b; and
• if d′|a and d′|b, then d′|d. Then d′ ≤ d, so d = (a,b).

Thus, the symbolic definition of gcd can be modified as follows.

An Alternate Definition of gcd

A positive integer d is the gcd of a and b if

• d|a and d|b; and
• if d′|a and d′|b, then d′|d, where d′ is a positive integer.

THEOREM 3.7 Let a, b, and c be any positive integers. Then (ac,bc) = c(a,b).

The proof of this is fairly straightforward, so we leave it as an exercise (see
Exercise 51).

THEOREM 3.8 Two positive integers, a and b, are relatively prime if and only if there are integers α

and β such that αa + βb = 1.

PROOF

If a and b are relatively prime, then (a,b) = 1. Therefore, by Theorem 3.5, there are
integers α and β such that αa + βb = 1.

Conversely, suppose αa+βb = 1. To demonstrate that (a,b) = 1, let d = (a,b).
Then, by Theorem 2.4, d|(αa+βb); that is, d|1, so d = 1. Thus, a and b are relatively
prime. �

We can deduce part (1) of Theorem 3.4 from this theorem, and it is useful to do
so as an exercise (see Exercise 54).

COROLLARY 3.1 If d = (a,b), then (a/d,b/d) = 1.

The next corollary follows by Theorem 3.5 (see Exercise 59).

COROLLARY 3.2 If (a,b) = 1 = (a, c), then (a,bc) = 1.
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Suppose a|c and b|c. Does this mean ab|c? No. For example, 3|12 and 6|12, but
3 · 6 � 12. The next corollary provides a criterion under which ab|c.

COROLLARY 3.3 If a|c and b|c, and (a,b) = 1, then ab|c.

PROOF

Because a|c, c = ma for some integer m. Similarly, c = nb for some integer n. Be-
cause (a, b) = 1, by Theorem 3.8, αa + βb = 1 for some integers α and β . Then
αac + βbc = c. Now substitute nb for the first c and ma for the second:

αa(nb) + βb(ma) = c

That is, ab(nα + mβ) = c, so ab|c. �

Remember that a|bc does not mean a|b or a|c, although under some conditions
it does. The following corollary explains when it is true.

COROLLARY 3.4 (Euclid) If a and b are relatively prime, and if a|bc, then a|c.

PROOF

Since a and b are relatively prime, by Theorem 3.8, there exist integers α and β such
that αa + βb = 1. Then αac + βbc = c. Since a|αac and a|βbc, a|αac + βbc by
Theorem 2.4; that is, a|c. �

The definition of gcd can be extended to three or more positive integers, as the
following definition shows.

The gcd of n Positive Integers
The gcd of n (≥ 2) positive integers a1,a2, . . . ,an is the largest positive integer that
divides each ai. It is denoted by (a1,a2, . . .an).

The following example illustrates this definition.

EXAMPLE 3.2 Find (12,18,28), (12,36,60,108), and (15,28,50).

SOLUTION

a) The largest positive integer that divides 12, 18, and 28 is 2, so (12,18,28) =
2.

b) 12 is the largest factor of 12, and 12 is a factor of 12, 36, 60, and 108; so
(12,36,60,108) = 12.

c) Since (15,28) = 1, the largest common factor of 15, 28, and 50 is 1; that is,
(15,28,50) = 1. �
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Theorem 3.5 can be extended to n integers. But first, we will extend the defini-
tion of a linear combination to n positive integers.

A Linear Combination of n Positive Integers

A linear combination of n positive integers a1,a2, . . . ,an is a sum of the form
α1a1 + α2a2 + · · · + αnan, where α1, α2, . . . , αn are integers.

For instance, (−1) · 12 + 1 · 15 + 0 · 21 is a linear combination of 12, 15, and
21; so is 3 · 12 + (−2) · 15 + (−5) · 21.

We now state the extension of Theorem 3.5 and leave its proof as an exercise.

THEOREM 3.9 The gcd of the positive integers a1,a2, . . . ,an is the least positive integer that is a
linear combination of a1,a2, . . . ,an. �

The following example illustrates this theorem.

EXAMPLE 3.3 Express (12,15,21) as a linear combination of 12, 15, and 21.

SOLUTION

First, you may notice that (12,15,21) = 3. Next, find integers α, β , and γ , by trial
and error, such that α · 12 + β · 15 + γ · 21 = 3; α = −1, β = 1, and γ = 0 is such a
combination: (−1) · 12 + 1 · 15 + 0 · 21 = 3. �

The following theorem shows how nicely recursion can be used to find the gcd
of three or more integers.

THEOREM 3.10 Let a1,a2, . . . ,an be n (≥ 3) positive integers. Then (a1,a2, . . . ,an) = ((a1,a2,

. . . ,an−1),an).

PROOF

Let d = (a1,a2, . . . ,an), d′ = (a1,a2, . . . ,an−1), and d′′ = (d′,an). We will show
that d = d′′:

• To show that d|d′′.
Since d = (a1,a2, . . . ,an), d|ai for every i. So d|d′ and d|an. Then

d|(d′,an); that is, d|d′′.
• To show that d′′|d:

Since d′′ = (d′,an), d′′|d′ and d′′|an. But d′′|d′ implies d′′|ai for 1 ≤ i ≤
n − 1. Thus, d′′|ai for 1 ≤ i ≤ n, so d′′|d.

Thus, d|d′′ and d′′|d, so d = d′′, by Theorem 2.3. �
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The following example illustrates this theorem.

EXAMPLE 3.4 Using recursion, evaluate (18,30,60,75,132).

SOLUTION

(18,30,60,75,132) = ((18,30,60,75),132) = (((18,30,60),75),132)

= ((((18,30),60),75),132) = (((6,60),75),132)

= ((6,75),132) = (3,132)

= 3 �

The following corollary follows by induction and Theorem 3.10. You can pro-
vide a proof (see Exercise 55).

COROLLARY 3.5 If d = (a1,a2, . . . ,an), then d|ai for every integer i, where 1 ≤ i ≤ n. �

The following corollary is an extension of Corollary 3.4.

COROLLARY 3.6 If d|a1a2 · · ·an and (d,ai) = 1 for 1 ≤ i ≤ n − 1, then d|an. �

Before we move on to another corollary, we make the following definition.

Pairwise Relatively Prime Integers
The positive integers a1,a2, . . . ,an are pairwise relatively prime if every pair of
integers is relatively prime; that is, (ai,aj) = 1, whenever i �= j.

For example, the integers 8, 15, and 49 are pairwise relatively prime, whereas
the integers 6, 25, 77, and 91 are not pairwise relatively prime.

The following result follows from Theorem 3.8.

COROLLARY 3.7 If the positive integers a1,a2, . . . ,an are pairwise relatively prime, then (a1,a2,

. . . ,an) = 1. �

For instance, since the integers 8, 15, and 49 are pairwise relatively prime,
(8,15,49) = 1.

Be aware that the converse of this corollary is not true; that is, if (a1,a2, . . . ,an) = 1,
then the integers a1,a2, . . . ,an need not be pairwise relatively prime. For example,
(6,15,49) = 1, but 6, 15, and 49 are not pairwise relatively prime. (Why?)
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Theorem 3.1 now yields an intriguing byproduct. In 1965, M. Wunderlich of the
University of Colorado employed the theorem to provide a beautiful proof that there
are infinitely many primes, as the next corollary shows; it is based on the fact that
(Fm,Fn) = F(m,n).†

COROLLARY 3.8 There are infinitely many primes.

PROOF

Suppose there is only a finite number of primes, p1,p2, . . . ,pk. Consider the Fi-
bonacci numbers Fp1 ,Fp2 , . . . ,Fpk . Clearly, they are pairwise relatively prime. Since
there are only k primes, each of these Fibonacci numbers has exactly one prime
factor; that is, each is a prime. This is a contradiction, since F19 = 4181 = 37 · 113.
Thus, our assumption that there are only finitely many primes is false. In other words,
there are infinitely many prime numbers. �

E X E R C I S E S 3.1

Mark true or false, where a, b, and c are any positive in-
tegers, and p is an arbitrary prime.

1. (a,b) = (b,a) 2. (a,b) = (a,a − b)

3. (a,b) = (a,a − 2b) 4. (a,a + 2) = 1
5. (p,p + 2) = 1 6. (ac,bc) = c(a,b)

7. If (a,b) = 1, then a and b are relatively prime.
8. If a and b are relatively prime, then (a,b) = 1.
9. If (a,b) = 1 = (b, c), then (a, c) = 1.

10. If (a,b) = 2 = (b, c), then (a, c) = 2.
11. If (a,b) = d, then (a + b,a − b) = d.

Express the gcd of each pair as a linear combination
of the numbers.

12. 18, 28 13. 24, 28
14. 15, 28 15. 21, 26

Let f (n) denote the number of positive integers ≤ n and
relatively prime to it. For example, f (1) = 1, f (2) = 1,
f (3) = 2, and f (4) = 2. Find each.

16. f (10) 17. f (13)

18. f (18) 19. f (24)

20. Evaluate
∑

d|n
f (d) for n = 12, 18, 19, and 25.

21. Using Exercise 20, predict a formula for
∑

d|n
f (d).

22. Find the least possible value of (a,b).

Find (a,b) if

23. b = 1 24. b = a
25. b = a + 1 26. b|a
27. b = a2 28. b = an

29. b = na 30. b = (b, a)

Find the gcd of each pair, where a > b.

31. a + b, a2 − b2

32. a2 − b2, a3 − b3

33. a2 − b2, a4 − b4

Express the gcd of the given numbers as a linear combi-
nation of the numbers.

34. 12, 15, 18 35. 15, 18, 24
36. 12, 18, 20, 24 37. 15, 18, 20, 28

† See author’s Fibonacci and Lucas Numbers with Applications.
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Using recursion, evaluate each.

38. (12, 18, 28, 38, 44)
39. (15, 24, 28, 45)
40. (14, 18, 21, 36, 48)
41. (18, 24, 36, 63)
42. (a2b, ab3, a2b2, a3b4, ab4)

43. (a2b2, ab3, a2b3, a3b4, a4b4)

Disprove each statement.
44. If (a, b) = 1 = (b, c), then (a, c) = 1.
45. If (a, b) = 2 = (b, c), then (a, c) = 2.
Prove each, where a, b, c, d, k, m, and n are arbitrary
positive integers, p any prime, Fn the nth Fibonacci num-
ber, fn the nth Fermat number, and tn the nth triangular
number.
46. The gcd of any two positive integers is unique.

47. (a,−b) = (a,b) 48. (−a,b) = (a,b)

49. (−a,−b) = (a,b) 50. (a,a + b) = (a,b)

51. (ac,bc) = c(a,b)

52. Any two consecutive integers are relatively prime.
53. If p � a, then p and a are relatively prime.
54. Using Theorem 3.8, prove that if d = (a, b), then

(a/d,b/d) = 1.
55. If d = (a1,a2, . . . ,an), then d|ai for every integer i,

where 1 ≤ i ≤ n.
56. (a, (a, b)) = (a, b)

57. (a, a − b) = 1 if and only if (a, b) = 1.
58. If (a, b) = 1, then (a + b, a − b) = 1 or 2.
59. If (a,b) = 1 = (a, c), then (a,bc) = 1.
60. Let (a,b) = 1. Then (a2 + b2,a + 2ab) = 1 or 5.

(V. E. Hoggatt, Jr., 1972)
61. Let (a2 + b2,a + 2ab) = 1 or 5. Then (a,b) = 1

(V. E. Hoggatt, Jr., 1972)
62. (n + 1,n2 + 1) = 1, where n is even. (N. Schaum-

berger and J. Soriano, 1967)
63. (an − 1,am + 1) = 1 or 2. (E. Just, 1972)
64. (tn−1, tn) · (tn, tn+1) = tn (T. E. Moore, 2004)
65. a!b!|(a,b)(a + b − 1)! (J. H. Conway, 1988)
66. Let gn = (2k)2n +1, where n ≥ 0. Then (gm,gn) = 1,

where m �= n.
67. Fm|Fn if and only if m|n. [Hint: (Fm,Fn) = F(m,n).]
68. 3|Fn if and only if 4|n.
69. Let n > m ≥ 0. Show that fm|(fn − 2).
70. Using Exercise 69, show that (fm, fn) = 1, where

m �= n.
71. Using Theorem 3.2 and induction, prove that there are

infinitely many primes.
�72. If (a,b) = 1, then (a2,b2) = 1.
�73. Let m,n ≥ 1. Prove that

m

(m,n)
|
(

m

n

)

(C. Hermite)

�74. Let m,n ≥ 1. Prove that
m − n + 1

(m,n)
|
(

m

n

)

(C. Her-

mite)

� �

3.2 The Euclidean Algorithm

Several procedures exist for finding the gcd of two positive integers. One efficient
algorithm is the euclidean algorithm, named after Euclid, who included it in Book
VII of his extraordinary work, The Elements. The algorithm, however, was most
likely known before him. It is a fundamental tool in algorithmic number theory.

The following theorem lays the groundwork for the euclidean algorithm.

THEOREM 3.11 Let a and b be any positive integers, and r the remainder, when a is divided by b.
Then (a,b) = (b, r).
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PROOF

Let d = (a,b) and d′ = (b, r). To prove that d = d′, it suffices to show that d|d′ and
d′|d. By the division algorithm, a unique quotient q exists such that

a = bq + r (3.1)

To show that d|d′:
Since d = (a,b), d|a and d|b, so d|bq, by Theorem 2.4. Then d|(a − bq),

again by Theorem 2.4. In other words, d|r, by equation (3.1). Thus, d|b and d|r, so
d|(b, r); that is, d|d′.

Similarly, it can be shown that d′|d (see Exercise 17). Thus, by Theorem 2.3,
d = d′, that is, (a,b) = (b, r). �

The following example illustrates this theorem.

EXAMPLE 3.5 Illustrate Theorem 3.11 with a = 120 and b = 28.

SOLUTION

First, you may verify that (120,28) = 4.
Now, by the division algorithm, 120 = 4 · 28 + 8, so, by Theorem 3.11,

(120,28) = (28,8). But (28,8) = 4. Therefore, (120,28) = 4. �

The following example illustrates how Theorem 3.11 can be used to find (a,b).

EXAMPLE 3.6 Using Theorem 3.11, evaluate (2076,1776).

SOLUTION

Apply the division algorithm with 2076 (the larger of the two numbers) as the divi-
dend and 1776 as the divisor:

2076 = 1 · 1776 + 300

Apply the division algorithm with 1776 as the dividend and 300 as the divisor:

1776 = 5 · 300 + 276
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Continue this procedure until a zero remainder is reached:

By the repeated application of Theorem 3.11, we have:

(2076,1776) = (1776,300) = (300,276)

= (276,24) = (24,12)

= 12

Thus, the last nonzero remainder in this procedure is the gcd. �

We now justify this algorithm, although it is somewhat obvious.

The Euclidean Algorithm
Let a and b be any two positive integers with a ≥ b. If a = b, then (a,b) = a, so
assume a > b. (If this is not true, simply switch them.) Let r0 = b. Then by successive
application of the division algorithm, we get a sequence of equations:

a = q0r0 + r1, 0 ≤ r1 < r0

r0 = q1r1 + r2, 0 ≤ r2 < r1

r1 = q2r2 + r3, 0 ≤ r3 < r2

...

Continuing like this, we get the following sequence of remainders:

b = r0 > r1 > r2 > r3 > · · · ≥ 0

Since the remainders are nonnegative and are getting smaller and smaller, this se-
quence should eventually terminate with remainder rn+1 = 0. Thus, the last two
equations in the above procedure are

rn−2 = qn−1rn−1 + rn, 0 ≤ rn < rn−1

and

rn−1 = qnrn
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It follows by induction that (a,b) = (a, r0) = (r0, r1) = (r1, r2) = · · · = (rn−1, rn) =
rn, the last nonzero remainder (see Exercise 18).

The following example also demonstrates the euclidean algorithm.

EXAMPLE 3.7 Apply the euclidean algorithm to find (4076, 1024).
SOLUTION

By the successive application of the division algorithm, we get:

Since the last nonzero remainder is 4, (4076,1024) = 4. �

The euclidean algorithm is purely mechanical. All we need to do is make our
divisor the new dividend, and the remainder the new divisor. That is, just follow the
southwest arrows in the example.

The euclidean algorithm is formally presented in Algorithm 3.1.

Algorithm Euclid (x, y,divisor)
(* This algorithm returns the gcd (x, y) in divisor, where x ≥ y > 0 *)

Begin (* algorithm *)
dividend ← x
divisor ← y
remainder ← dividend mod divisor
while reminder > 0 do

(* update dividend, divisor, and remainder *)
begin (* while *)

dividend ← divisor
divisor ← dividend mod divisor

endwhile
End (* algorithm *)

Algorithm 3.1

A Jigsaw Puzzle (optional)
The euclidean algorithm has a delightful application to geometry. To this end, sup-
pose we would like to find (23,13). By the euclidean algorithm, we have
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23 = 1 · 13 + 10

13 = 1 · 10 + 3

10 = 3 · 3 + 1

3 = 3 · 1

So (23,13) = 1.
Now consider a 23 × 13 rectangle; see Figure 3.1. The largest square we can

place inside it is a 13 × 13 square, and only one such square will fit it. Now we can
use one 10 × 10 square, three 3 × 3 squares, and three 1 × 1 squares to fit the rest of
the rectangle; see Figure 3.2.

Figure 3.1 Figure 3.2

Each divisor d in the algorithm represents the length of the side of a d×d square,
and the length of a side of the smallest square gives the gcd.

We shall revisit this jigsaw-puzzle application in Section 12.1.
As a byproduct, the euclidean algorithm provides a procedure for expressing the

gcd (a,b) as a linear combination of a and b, as the following example shows.

EXAMPLE 3.8 Using the euclidean algorithm, express (4076, 1024) as a linear combination of 4076
and 1024.

SOLUTION

All we need to do is use the equations in Example 3.7 in the reverse order, each time
substituting for the remainder from the previous equation:

(4076,1024) = 4 = last nonzero remainder

= 1004 − 50 · 20

= 1004 − 50(1024 − 1 · 1004) (substitute for 20)

= 51 · 1004 − 50 · 1024

= 51(4076 − 3 · 1024) − 50 · 1024 (substitute for 1004)

= 51 · 4076 + (−203) · 1024

(We can confirm this by direct computation.) �
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Next, we shall derive an upper bound for the number of divisions needed to eval-
uate (a,b) by the euclidean algorithm. However, first we need to lay some ground-
work in the form of a lemma that investigates yet another property of Fibonacci
numbers.

LEMMA 3.2 Let α = (1 + √
5)/2. Then αn−2 < Fn < αn−1, where n ≥ 3.

PROOF (by strong induction)
(We shall prove that αn−2 < Fn and leave the other half as an exercise.) You can
verify that α is a solution of the equation x2 = x + 1, so α2 = α + 1. Let

P(n): αn−2 < Fn, where n ≥ 3

basis step Since the induction step below uses the recurrence relation Fk+1 = Fk +
Fk−1, the basis step involves verifying that both P(3) and P(4) are true.

1. To show that P(3) is true: When n = 3,

αn−2 = α = 1 + √
5

2
<

1 + 3

2
= 2 = F3,

so P(3) is true.
2. To show that P(4) is true:

α2 =
(

1 + √
5

2

)2

= 3 + √
5

2

<
3 + 3

2
= 3 = F4

Therefore, P(4) is also true.

induction step Assume P(3),P(4), . . . ,P(k) are true; that is, assume αi−2 < Fi for
5 ≤ i ≤ K. We must show that P(k + 1) is true; that is, αk−1 < Fk+1. We have

α2 = α + 1

Multiplying both sides by αk−3, we get

αk−1 = αk−2 + αk−3 (Note: k − 3 ≥ 2)

< Fk + Fk−1, by the inductive hypothesis

= Fk+1, by the recurrence relation

So P(k + 1) is true.
Thus, by induction, αn−2 < Fn for every integer n ≥ 3. �
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The irrational number α is called the golden ratio. It has many intriguing appli-
cations.

The following theorem, established in 1844 by Lamé, employs this result to
estimate the number of divisions required by the euclidean algorithm for computing
the gcd.

THEOREM 3.12 (Lamé’s Theorem) The number of divisions needed to compute (a,b) by the
euclidean algorithm is no more than five times the number of decimal digits in b,
where a ≥ b ≥ 2.

PROOF

Let Fn denote the nth Fibonacci number, a = r0 and b = r1. By the repeated applica-
tion of the division algorithm we have

r0 = r1q1 + r2, 0 ≤ r2 < r1

r1 = r2q2 + r3, 0 ≤ r3 < r2
...

rn−2 = rn−1qn−1 + rn, 0 ≤ rn < rn−1

rn−1 = rnqn

Clearly, it takes n divisions to evaluate gcd (a,b) = rn. Since ri < ri−1, qi ≥ 1
for 1 ≤ i ≤ n. In particular, since rn < rn−1, qn ≥ 2, so rn ≥ 1 and rn−1 ≥ 2 = F3.
Consequently, we have

rn−2 = rn−1qn−1 + rn

≥ rn−1 + rn

≥ F3 + 1

= F3 + F2 = F4

rn−3 = rn−2qn−2 + rn−1

≥ rn−2 + rn−1

≥ F4 + F3 = F5

...

Continuing like this,

r1 = r2q2 + r3

≥ r2 + r3

≥ Fn + Fn−1 = Fn+1

That is, b ≥ Fn+1.
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By Lemma 3.2, Fn+1 > αn−1, where α = (1 + √
5)/2 and n ≥ 3. Therefore,

b > αn−1

log b > (n − 1) logα

Since α = (1 + √
5)/2 ≈ 1.618033989, logα ≈ 0.2089876403 > 1/5. Therefore,

log b >
n − 1

5

Suppose b contains k decimal digits. Then b < 10k. Therefore, log b < k and hence
k > (n − 1)/5. Thus, n < 5k + 1 or n ≤ 5k. Thus, the number of divisions needed by
the algorithm is no more than five times the number of decimal digits in n. �

E X E R C I S E S 3.2

Using the euclidean algorithm, find the gcd of the given
integers.

1. 1024, 1000 2. 2024, 1024

3. 2076, 1076 4. 2076, 1776

5. 1976, 1776 6. 3076, 1776

7. 3076, 1976 8. 4076, 2076

9–16. Using the euclidean algorithm, express the gcd of
each pair in Exercises 1–8 as a linear combination
of the given numbers.

17. Let a and b be any two positive integers, and let
r be the remainder when a is divided by b. Let
d = (a,b) and d′ = (b, r). Prove that d′|d.

18. Let a and b be any two positive integers with
a ≥ b. Using the sequence of equations in
the euclidean algorithm, prove that (a,b) =
(rn−1, rn), where n ≥ 1.

Prove each, where α = (1 + √
5)/2.

19. Fn < αn−1, n ≥ 2
20. Fn ≤ 2n, n ≥ 1

� �

3.3 The Fundamental Theorem of Arithmetic

We now continue our study of primes. We can establish unequivocally the asser-
tion that prime numbers are the building blocks of all integers. In other words, inte-
gers ≥ 2 are made up of primes; that is, every integer ≥ 2 can be decomposed into
primes. This result, called the fundamental theorem of arithmetic, is certainly the
cornerstone of number theory and one of its cardinal results. It appears in Euclid’s
Elements.

Before we state it formally and prove it, we need to lay some groundwork in the
form of two lemmas. Throughout, assume all letters denote positive integers.
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LEMMA 3.3 (Euclid) If p is a prime and p|ab, then p|a or p|b.

PROOF

Suppose p � a. Then p and a are relatively prime, so by Theorem 3.8, there are inte-
gers α and β such that αp+βa = 1. Multiply both sides of this equation by b; we get
αpb + βab = b. Since p|p and p|ab, p|(αpb + βab) by Theorem 2.4; that is, p|b. �

The following lemma extends this result to three or more factors, using induc-
tion.

LEMMA 3.4 Let p be a prime and p|a1a2 · · ·an, where a1,a2, . . . ,an are positive integers, then
p|ai for some i, where 1 ≤ i ≤ n.

PROOF (by weak induction)
When n = 1, the result follows clearly. So assume it is true for an arbitrary posi-
tive integer k: If p|a1a2 · · ·ak, then p|ai for some i. Suppose p|a1a2 · · ·ak+1, that is,
p|(a1a2 · · ·ak)ak+1. Then, by Lemma 3.3, p|a1a2 · · ·ak or p|ak+1. If p|a1a2 · · ·ak,
then p|ai, for some i, where 1 ≤ i ≤ k. Thus, p|ai, where 1 ≤ i ≤ k, or p|ak+1. In any
event, p|ai for some i, where 1 ≤ i ≤ k + 1.

Thus, by induction, the result holds for every positive integer n. �

The following result follows nicely from this lemma.

COROLLARY 3.9 If p,q1,q2, . . . ,qn are primes such that p|q1q2 · · ·qn, then p = qi for some i, where
1 ≤ i ≤ n.

PROOF

Since p|q1q2 · · ·qn, by Lemma 3.4, p|qi for some i. But p and qi are primes, so
p = qi. �

We can now state and establish the fundamental theorem of arithmetic, the most
fundamental result in number theory. The proof consists of two parts and is a bit
long, so we need to follow it carefully.

THEOREM 3.13 (The Fundamental Theorem of Arithmetic) Every integer n ≥ 2 either is a prime
or can be expressed as a product of primes. The factorization into primes is unique
except for the order of the factors.

PROOF

First, we will show by strong induction that n either is a prime or can be expressed
as a product of primes. Then we will establish the uniqueness of such a factorization.
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1. Let P(n) denote the statement that n is a prime or can be expressed as a
product of primes.

To show that P(n) is true for every integer n ≥ 2:
Since 2 is a prime, clearly P(2) is true.
Now assume P(2),P(3), . . . ,P(k) are true; that is, every integer 2 through k

either is a prime or can be expressed as a product of primes.
If k + 1 is a prime, then P(k + 1) is true. So suppose k + 1 is composite. Then

k + 1 = ab for some integers a and b, where 1 < a, b < k + 1. By the inductive
hypothesis, a and b either are primes or can be expressed as products of primes; in
any event, k + 1 = ab can be expressed as a product of primes. Thus, P(k + 1) is also
true.

Thus, by strong induction, the result holds for every integer n ≥ 2.

2. To establish the uniqueness of the factorization:

Let n be a composite number with two factorizations into primes: n =
p1p2 · · ·pr = q1q2 · · ·qS. We will show that r = s and every pi equals some qj,
where 1 ≤ i, j ≤ r; that is, the primes q1,q2, . . . ,qs are a permutation of the primes
p1,p2, . . . ,pr .

Assume, for convenience, that r ≤ s. Since p1p2 · · ·pr = q1q2 · · ·qs,

p1|q1q2 · · ·qs, by Corollary 3.9, p1 = qi for some i. Dividing both sides by p1, we
get:

p2 · · ·pr = q1q2 · · ·qi−1 � qiqi+1 · · ·qs

Now p2 divides the RHS, so again by Corollary 3.9, p2 = qj for some j. Cancel p2

from both sides:

p3 · · ·pr = q1q2 · · ·qi−1 � qiqi+1 · · ·qj−1 � qjqj+1qs

Since r ≤ s, continuing like this, we can cancel every pt with some qk. This yields
a 1 on the LHS at the end. Then the RHS cannot be left with any primes, since
a product of primes can never yield a 1; thus, we must have exhausted all qks by
now. Therefore, r = s and hence the primes q1,q2, . . . ,qs are the same as the primes
p1,p2, . . . ,pr in some order. Thus, the factorization of n is unique, except for the
order in which the primes are written. �

It follows from this theorem that every composite number n can be factored into
primes. Such a factorization is called a prime factorization of n.

For example, 5544 = 2 · 2 · 3 · 7 · 2 · 11 · 3 is a prime factorization of 5544. Using
the exponential notation, this product is often written as 5544 = 23 · 32 · 7 · 11. Such
a product is the prime-power decomposition of n; if the primes occur in increasing
order, then it is the canonical decomposition.
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Canonical Decomposition

The canonical decomposition of a positive integer n is of the form n = pa1
1 pa2

2 · · ·pak
k ,

where p1,p2, . . . ,pk are distinct primes with p1 < p2 < · · · < pr and each exponent
ai is a positive integer.

There are two commonly used techniques for finding the canonical decompo-
sition of a composite number. The first method involves finding all prime factors,
beginning with the smallest prime, as the following example demonstrates.

EXAMPLE 3.9 Find the canonical decomposition of 2520.

SOLUTION

Beginning with the smallest prime 2, since 2|2520, 2520 = 2 ·1260. Now 2 is a factor
of 1260, so 2520 = 2 ·2 ·630; 2|630 again, so 2520 = 2 ·2 ·2 ·315. Now 2 � 315, but 3
does, so 2520 = 2 · 2 · 2 · 3 · 105; 3 is a factor of 105 also, so 2520 = 2 · 2 · 2 · 3 · 3 · 35.
Continuing like this we get

2520 = 2 · 2 · 2 · 3 · 3 · 5 · 7 = 23 · 32 · 5 · 7

which is the desired canonical decomposition. �

This method can be quite time consuming if the number n is fairly large. The
second method, which is generally more efficient, involves splitting n as the product
of two positive integers, not necessarily prime numbers, and continuing to split each
factor into further factors until all factors are primes. To make this method short, look
for large factors; as you will soon see, the larger the factors, the fewer the steps. The
following example clarifies this fairly straightforward method.

EXAMPLE 3.10 Find the canonical decomposition of 2520 by the second method.

SOLUTION

Notice that 2520 = 40 · 63. Since none of the factors are primes, split them again:
40 = 4 ·10 and 63 = 7 ·9, so 2520 = (4 ·10) ·(7 ·9). Since 4, 10, and 9 are composites,
split each of them: 2520 = (2 · 2)(2 · 5)(7)(3 · 3). Now all the factors are primes, so
the procedure stops. Rearranging them yields the canonical decomposition: 2520 =
23 · 32 · 5 · 7. �

Factor Tree
This method can be illustrated in a tree diagram, called a factor tree. In such a
diagram, if a|b, we connect them by a line segment. Figure 3.3 shows the factor tree
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Figure 3.3

for 2520 using the above decomposition steps. To find the canonical decomposition,
simply take the product of all primes at the “leaves”: 2520 = 2 · 2 · 2 · 5 · 7 · 3 · 3 =
23 · 32 · 5 · 7.

The canonical decomposition of a composite number can be used to find its
positive factors, as the following example shows. (It can also be used to find the
number of positive factors without listing them; we will discuss this in Section 8.2.)

EXAMPLE 3.11 Find the positive factors of 60.

SOLUTION

First, notice that 60 = 22 · 3 · 5. By the fundamental theorem of arithmetic, every
factor of 60 is of the form 2a · 3b · 5c, where 0 ≤ a ≤ 2, and 0 ≤ b, c ≤ 1. Thus, the
various factors are

20 · 30 · 50 = 1 20 · 30 · 51 = 5 20 · 31 · 50 = 3 20 · 31 · 51 = 15
21 · 30 · 50 = 2 21 · 30 · 51 = 10 21 · 31 · 50 = 6 21 · 31 · 51 = 30
22 · 30 · 50 = 4 22 · 30 · 51 = 20 22 · 31 · 50 = 12 22 · 31 · 51 = 60

(Thus, 60 has 12 factors. Can you think of a better way to find the number of positive
factors without listing them?) �

The following example presents a beautiful application of the fundamental the-
orem of arithmetic and the floor function. It shows how nicely we can determine
the number of trailing zeros in the decimal value of n!, without computing it. (For
instance, 11! = 39,916,800 has two trailing zeros.)
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EXAMPLE 3.12 Find the number of trailing zeros in 234!.

SOLUTION

By the fundamental theorem of arithmetic, 234! can be factored as 2a · 5b · c, where
a and b are positive integers (why?) and c denotes the product of primes other than
2 and 5. Clearly, a > b (why?). Each trailing zero in 234! corresponds to a 10 in a
factorization and vice versa; each 10 is the product of a 2 and a 5.

(
No. of trailing
zeros in 234!

)

=
⎛

⎝
No. of products of the
form 2 · 5 in a prime
factorization of 234!

⎞

⎠

= minimum of a and b (why?)

= b

To find b, we proceed as follows:
No. of positive integers ≤ 234 and divisible by 5 = 
234/5� = 46.
Each of them contributes a 5 to the prime factorization of 234!.
No. of positive integers ≤ 234 and divisible by 25 = 
234/25� = 9.
Each of them contributes an additional 5 to the prime factorization of 234!.
No. of positive integers ≤ 234 and divisible by 125 = 
234/125� = 1.
It contributes a still additional 5 to the prime factorization.

No higher power of 5 contributes a 5 to the prime factorization of 234!, so the
total number of 5s in the prime factorization equals 46 + 9 + 1 = 56. Thus, 234! has
56 trailing zeros. (This example is pursued further in Example 4.25.) �

It follows from this example that the highest power e of a prime p that divides
n! is given by

e = 
n/p� + 
n/p2� + 
n/p3� + · · ·
Let k be the smallest integer such that pk > n. Then 
n/pk� = 0, so the sum is a finite
one.

For example, the largest power of 2 that divides 97! is

e = 
97/2� + 
97/22� + 
97/23� + 
97/24� + 
97/25� + 
97/26�
= 48 + 24 + 12 + 6 + 3 + 1 = 94

Interestingly enough, there is a close relationship between the number of ones in
the binary representation of 97 and the highest power of 2 that divides 97!. To see
this, notice that 97 = 1100001two, so the binary representation contains three 1s and
97 = 94 + 3.
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More generally, we have the following result due to the French mathematician
Adrien-Mari Legendre.

THEOREM 3.14 Let e denote the highest power of 2 that divides n! and b the number of 1s in the
binary representation of n. Then n = e + b.

PROOF

Let n = (akak−1 . . .a1a0)two = a0 + a1 · 2 + · · · + ak · 2k. Let 1 ≤ i ≤ k. Then
⌊

n

2i

⌋

=
⌊

a0 + a1 · 2 + · · · + ai−1 · 2i−1

2i

⌋

+ ai + ai+1 · 2 + · · · + ak · 2k−i

But

a0 + a1 · 2 + · · · + ai−1 · 2i−1 ≤ 1 + 2 + 22 + · · · + 2i−1

= 2i − 1

< 2i,

so
⌊

a0 + a1 · 2 + · · · + ai−1 · 2i−1

2i

⌋

= 0

Therefore,
⌊

n

2i

⌋

= ai + ai+1 · 2 + · · · + ak · 2k−i

Thus,

k∑

i=1

⌊
n

2i

⌋

= a1 + a2 · 2 + a3 · 22 + · · · + ak · 2k−1

+ a2 · 1 + a3 · 2 + · · · + ak · 2k−2

+ a3 · 1 + · · · + ak · 2k−3

...

+ ak · 1

That is,

e = a1 + a2(1 + 2) + a3(1 + 2 + 22) + · · · + ak(1 + 22 + · · · + 2k−1)

= a1(2 − 1) + a2(2
2 − 1) + a3(2

3 − 1) + · · · + ak(2
k − 1)

= (a0 + a1 · 2 + a2 · 22 + · · · + ak · 2k) − (a0 + a1 + · · · + ak)

= n − b

Thus, n = e + b. �
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The canonical decompositions of positive integers provide a new method for
finding their gcds, as the following example illustrates.

EXAMPLE 3.13 Using the canonical decompositions of 168 and 180, find their gcd.

SOLUTION

You can verify that 168 = 23 · 3 · 7 and 180 = 22 · 32 · 5. The only common prime
factors are 2 and 3, so 5 or 7 cannot appear in their gcd. Since 2 appears thrice in the
canonical decomposition of 168, but only twice in the canonical decomposition of
180, 22 is a factor in the gcd. Similarly, 3 is also a common factor, so (168,180) =
22 · 3 = 12. �

An important observation:

(168,180) = 22 · 3 = 22 · 31 · 50 · 70 = 2min{3,2} · 3min{1,2} · 5min{1,0} · 7min{1,0}

This technique can be generalized as follows. Let a and b be positive integers
with the following canonical decompositions:

a = pa1
1 pa2

2 · · ·pan
n and b = pb1

1 pb2
2 · · ·pbn

n ,

where ai,bi ≥ 0. (By letting exponents zero, we can always assume that both decom-
positions contain exactly the same prime bases pi.) Then

(a,b) = pmin{a1,b1}
1 pmin{a2,b2}

2 · · ·pmin{an,bn}
n

Let us look again at the distribution of primes, which we studied in the preceding
chapter.

Distribution of Primes Revisited

By the division algorithm, every integer is of the form 4n+ r, where r = 0,1,2, or 3;
so every odd integer is of the form 4n + 1 or 4n + 3. For instance, 13 and 25 are of
the form 4n + 1 : 13 = 4 · 3 + 1 and 25 = 4 · 6 + 1, whereas 11 and 31 are of the form
4n + 3 : 11 = 4 · 2 + 3 and 31 = 4 · 7 + 3.
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Look at positive integers of the form 4n + 3. The first eleven such numbers
are 3, 7, 11, 15, 19, 23, 27, 31, 35, 39, and 43, of which seven (about 64%) are
primes.

What can we reasonably conjecture from this observation? If you guessed there
are infinitely many primes of the form 4n + 3, you are correct. Before we establish
the validity of this educated guess, we need to lay its groundwork in the form of the
following lemma.

LEMMA 3.5 The product of any two integers of the form 4n + 1 is also of the same form.

PROOF

Let a and b be any two integers of the form 4n + 1, say, a = 4� + 1 and b = 4m + 1
for some integers � and m. Then

ab = (4� + 1)(4m + 1)

= 16�m + 4� + 4m + 1

= 4(4�m + � + m) + 1

= 4k + 1 where k = 4�m + � + m is an integer

Thus, ab is also of the same form. �

This result can be extended to any finite number of such integers (see Review
Exercise 60).

We are now ready to prove our conjecture. The proof looks similar to Euclid’s
proof, which established the infinitude of primes. See Example 11.7 also.

THEOREM 3.15 There are infinitely many primes of the form 4n + 3.

PROOF (by contradiction)

Suppose there are only finitely many primes of the form 4n+3, say, p0,p1,p2, . . . ,pk,
where p0 = 3. Consider the positive integer N = 4p1p2 · · ·pk + 3. Clearly, N > pk

and is also of the same form.

case 1 If N itself is a prime, then N would be larger than the largest prime pk of
the form 4n + 3, which is a contradiction.

case 2 Suppose N is composite. Since N is odd, every factor of N is of the form
4n + 1 or 4n + 3. If every factor is of the form 4n + 1, then, by Lemma 3.5, N would
be of the same form. But, since N is of the form 4n + 3, at least one of the prime
factors, say, p, must be of the form 4n + 3.
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subcase 1 Let p = p0 = 3. Then 3|N, so 3|(N − 3) by Theorem 2.4; that is,
3|4p1p2 · · ·pk. So, by Lemma 3.4, 3|2 or 3|pi, where 1 ≤ i ≤ k, but both are im-
possible.

subcase 2 Let p = pi, where 1 ≤ i ≤ k. Then p|N and p|4p1p2 · · ·pk, so p|(N −
4p1p2 · · ·pk), that is, p|3, again a contradiction.

Both cases lead us to a contradiction, so our assumption must be false. Thus, there is
an infinite number of primes of the given form. �

Now that we have established the infiniteness of the number of primes of the
form 4n + 3, we ask the next logical question: Are there infinitely many primes of
the form 4n + 1? Fortunately, the answer is again yes (see Example 11.7).

In fact, both results are special cases of the following remarkable result, proved
by Dirichlet in 1837, but stated originally by Legendre in 1785. Its proof is extremely
complicated, so we omit it.

THEOREM 3.16 (Dirichlet’s Theorem) If a and b are relatively prime, then the arithmetic sequence
a, a + b, a + 2b, a + 3b, . . . contains infinitely many primes. �

For example, let a = 3 and b = 4; then the sequence 3, 4 · 1 + 3,4 · 2 + 3,

4 ·3+3, . . . contains an infinite number of primes, namely, primes of the form 4n+3.
Likewise, choosing a = 1 and b = 4, it follows there is an infinite number of primes
of the form 4n + 1.

For yet another example, choose a = 7 and b = 100. Then a+nb = 100n+7, so
the sequence 7,107,207,307, . . . contains an infinite number of primes, all ending
in 7.

Note the crucial condition in Dirichlet’s theorem that a and b be relatively prime.
If they are not, then the sequence need not contain any primes at all. To verify this,
choose a = 6 and b = 9; then the sequence 6,15,24,33,42,51, . . . contains only
composite numbers.

E X E R C I S E S 3.3

Find the canonical decomposition of each composite num-
ber.

1. 1947 2. 1661
3. 1863 4. 1976
5. 227 + 1 6. 248 − 1

7. 10,510,100,501 8. 1,004,006,004,001

Find the positive factors of each, where p and q are dis-
tinct primes.

9. p 10. p2 11. pq 12. pq2
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Find the positive factors of each composite number.

13. 48 14. 90 15. 210 16. 1040
Find the number of trailing zeros in the decimal value of
each.

17. 100! 18. 376! 19. 609! 20. 1010!
Find the values of n for which n! contains the given num-
ber of trailing zeros.

21. 58 22. 93
Find the gcd of each pair, where p, q, and r are distinct
primes.

23. 23 · 3 · 5,2 · 32 · 53 · 72

24. 24 · 32 · 75,34 · 5 · 112

25. p2q3, pq2r
26. p3qr3, p3q4r5

Using canonical decompositions, find the gcd of each pair.

27. 48, 162 28. 72, 108
29. 175, 192 30. 294, 450
Find the number of trailing zeros in the binary represen-
tation of each integer.

31. 28 32. 32 33. 208 34. 235

35. Using Exercises 31–34, predict the number of trailing
zeros in the binary representation of a positive inte-
ger n.

Find the highest power of each that divides 1001!

36. 2 37. 3 38. 5 39. 7
Using Theorem 3.14, find the number of ones in the bi-
nary representation of each integer.

40. 234 41. 1001 42. 1976 43. 3076

44. Using Example 3.12, conjecture the number of trail-
ing zeros in the decimal value of n!

Prove each, where p is a prime, and a, b, and n are posi-
tive integers.

45. If p|a2, then p|a.
46. If p|an, then p|a.
47. The product of any n integers of the form 4k + 1 is

also of the same form.

48. If (a,b) = 1, then (an,bn) = 1.
49. If (an,bn) = 1, then (a,b) = 1.
50. There are infinitely many primes of the form 2n + 3.
51. There are infinitely many primes of the form 8n + 5.
52. Every positive integer n can be written as n = 2em,

where e ≥ 0 and m is an odd integer.
53. Every positive integer n can be written as n = 2a5bc,

where c is not divisible by 2 or 5.
54. A positive integer is a square if and only if every ex-

ponent in its canonical decomposition is an even inte-
ger.

�Find the number of positive factors of each, where p, q,
and r are distinct primes.

55. pq 56. pq2 57. p2q2 58. pq2r3

�Find the sum of the positive factors of each, where p, q,
and r are distinct primes.

59. pi 60. pqj 61. piqj 62. piqjrk

A positive integer is square-free if it is not divisible
by the square of any positive integer > 1. For instance,
105 = 3 · 5 · 7 is square-free.

63. An integer > 1 is square-free if and only if its prime
factorization consists of distinct primes.

64. Any integer n > 1 can be written as the product of a
square and a square-free integer.

A positive integer is said to be powerful if whenever a
prime p is a factor of n, p2 is also a factor. For example,
72 is a powerful number since both 3 and 32 are factors
of 72.

65. Find the first three powerful numbers.
66. Show that every powerful number can be written in

the form a2b3, where a and b are positive integers.

Let p be a prime, and n and a positive integers. Then pa

exactly divides n if pa|n, but pa+1 � n; we then write
pa‖n. Thus, pa‖n if a is the largest exponent of p such
that pa|a. Prove each.

67. If pa‖m and pb‖n, then pa+b|mn.
68. If pa‖m, then pka‖mk , where k is a positive integer.
69. If pa‖m and pb‖n, then pmin(a,b)‖(m + n).

� �



184 CHAPTER 3 Greatest Common Divisors

3.4 Least Common Multiple

The least common multiple (lcm) of two positive integers a and b is closely related
to their gcd. In fact, we use the lcm every time we add and subtract fractions. Now
we will explore two methods for finding the lcm of a and b. The first method em-
ploys canonical decompositions, and the second employs their gcd. We begin with a
definition.

Least Common Multiple

The least common multiple of two positive integers a and b is the least positive
integer divisible by both a and b; it is denoted by [a,b].

For example, suppose we want to evaluate [18,24]. The positive multiples of
18 are 18,36,54,72,90, . . . and those of 24 are 24,48,72,96, . . . . So their common
multiples are 72,144,216, . . . . Thus, [18,24] = their lcm = 72.

How do we know that [a,b] always exists? Since ab is a multiple of both a
and b, the set of common multiples is always nonempty; so, by the well-ordering
principle, the set contains a least element; thus, [a,b] always exists.

Is it unique? The answer is again yes (see Exercise 32).
Next, we rewrite the previous definition of lcm symbolically.

A Symbolic Definition of lcm

The lcm of two positive integers a and b is the positive integer m such that

• a|m and b|m; and
• if a|m′ and b|m′, then m ≤ m′, where m′ is a positive integer.

Canonical decompositions of a and b can be employed to find their lcm. Suppose
we want to find [90,168]. Notice that 90 = 2 · 32 · 5 and 168 = 23 · 3 · 7. Looking at
the prime powers, it follows that their lcm must be a multiple of 23,32,5, and 7; so
their lcm is 23 · 32 · 5 · 7 = 2520.

An important observation:

[90,168] = 23 · 32 · 5 · 7

= 2max{1,3} · 3max{2,1} · 5max{1,0} · 7max{0,1}
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This leads us to the following generalization.
Let a and b be two positive integers with the following canonical decomposi-

tions:

a = pa1
1 pa2

2 · · ·pan
n and b = pb1

1 pb2
2 · · ·pbn

n , where ai,bi ≥ 0.

(Again, we assume that both decompositions contain exactly the same prime
bases pi.) Then

[a,b] = pmax{a1,b1}
1 pmax{a2,b2}

2 . . .pmax{an,bn}
n

The following example illustrates this technique.

EXAMPLE 3.14 Using the canonical decompositions of 1050 and 2574, find their lcm.

SOLUTION

Notice that 1050 = 2 · 3 · 52 · 7 and 2574 = 2 · 32 · 11 · 13. Therefore,

[1050,574] = 2max{1,1} · 3max{1,2} · 5max{2,0} · 7max{1,0} · 11max{0,1} · 13max{0,1}

= 21 · 32 · 52 · 71 · 111 · 131 = 450,450 �

Next, we derive a close relationship between the gcd and the lcm of two positive
integers. But first, let us study an example and make an observation.

Notice that (18,24) = 6 and [18,24] = 72. Also, 6 ·72 = 18 ·24; in other words,

[18,24] = 18 · 24

(18,24)
.

The following theorem shows this is not a sheer coincidence but is always the
case. It is a direct application of Theorem 1.1 and canonical decompositions.

THEOREM 3.17 Let a and b be positive integers. Then [a,b] = ab

(a,b)
.

PROOF

Let a = pa1
1 pa2

2 · · ·pan
n and b = pb1

1 pb2
2 · · ·pbn

n be the canonical decompositions of a
and b, respectively. Then

(a,b) = pmin{a1,b1}
1 pmin{a2,b2}

2 · · ·pmin{an,bn}
n
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and
[a,b] = pmax{a1,b1}

1 pmax{a2,b2}
2 · · ·pmax{an,bn}

n

Therefore,

(a,b) · [a,b] = pmin{a1,b1}
1 · · ·pmin{an,bn}

n ,pmax{a1,b1}
1 · · ·pmax{an,bn}

n

= pmin{a1,b1}+max{a1,b1}
1 · · ·pmin{an,bn}+max{an,bn}

n

= pa1+b1
1 pa2+b2

2 · · ·pan+bn
n

= (
pa1

1 pa2
2 · · ·pan

n

)(
pb1

1 pb2
2 · · ·pbn

n

)

= ab

Thus,

[a,b] = ab

(a,b)
�

This theorem provides a second way of computing [a,b], provided (a,b) is
known, as the following example illustrates.

EXAMPLE 3.15 Using (252,360), compute [252,360].

SOLUTION

You may notice that 252 = 22 ·32 ·7 and 360 = 23 ·32 ·5, so (252,360) = 22 ·32 = 36.
Therefore, by Theorem 3.17,

[252,360] = 252 · 360

36
= 2520 �

Returning to Theorem 3.17, suppose (a,b) = 1. Then [a,b] = ab. Accordingly,
we have the following corollary.

COROLLARY 3.10 Two positive integers a and b are relatively prime if and only if [a,b] = ab. �

For instance, since 15 and 28 are relatively prime, [15,28] = 15 · 28 = 420.
As in the case of gcd, the idea of lcm can be extended to three or more positive

integers. For example, 24 = 23 · 3,28 = 22 · 7, and 36 = 22 · 32. Therefore,

[24,28,36] = 2max{3,2,2} · 3max{1,0,2} · 7max{0,1,0}

= 23 · 32 · 71 = 504
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Again, as in the case of gcd, recursion can be applied to evaluate the lcm of
three or more positive integers, as the following result shows. We leave its proof as
an exercise (see Exercise 36).

THEOREM 3.18 Let a1,a2, . . . ,an be n (≥ 3) positive integers. Then [a1,a2, . . . ,an] = [[a1,a2, . . . ,

an−1],an]. �

The following example illustrates this result.

EXAMPLE 3.16 Using recursion, evaluate [24,28,36,40].

SOLUTION

[24,28,36,40] = [[24,28,36],40] = [[[24,28],36],40]
= [[168,36],40] = [504,40]
= 2520

(You can verify this using the canonical decompositions of 24, 28, 36, and 40.) �

The following two results follow from Theorem 3.18.

COROLLARY 3.11 If the positive integers a1,a2, . . . ,an are pairwise relatively prime, then [a1,a2,

. . . ,an] = a1a2 · · ·an−1an. �

For instance, 12, 25, and 77 are pairwise relatively prime, so [12,25,77] = 12 ·
25 · 77 = 23,100.

Is the converse of this corollary true? You can determine this in Exercise 38.

COROLLARY 3.12 Let m1,m2, . . . ,mk and a be positive integers such that mi|a for 1 ≤ i ≤ k. Then
[m1,m2, . . . ,mk]|a.

PROOF (by strong induction on k)
The statement is clearly true when k = 1 and k = 2. So assume it is true for integers
1 through t. Now let mi|a for 1 ≤ i ≤ t + 1. Then [m1,m2, . . . ,mt]|a by the inductive
hypothesis and mt+1|a; so, again by the hypothesis, [[m1,m2, . . . ,mt],mt+1]|a; that
is, [m1,m2, . . . ,mt+1]|a by Theorem 3.18. Thus, by induction, the result is true for
every positive integer k. �
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E X E R C I S E S 3.4

Mark true or false, where a, b, and c are arbitrary positive
integers and p is any prime.

1. The lcm of two primes is their product.
2. The lcm of two consecutive positive integers is their

product.
3. The lcm of two distinct primes is their product.
4. If (a,b) = 1, then [a,b] = ab.
5. If p � a, then [p,a] = pa.
6. If [a,b] = 1, then a = 1 = b.
7. If [a,b] = b, then a = 1.
8. If [a,b] = b, then a|b.
9. If [a,b] = ab, then a = b.

10. If [a,b] = ab and [b, c] = bc, then [a, c] = ac.

Find the lcm of each pair of integers.

11. 110, 210 12. 65, 66

Find [a,b] if

13. a|b 14. b|a
15. a = 1 16. a = b

17. a and b are distinct primes.
18. b = a + 1

Find [a,b] if

19. (a,b) = 3 and ab = 693.
20. ab = 156 and a and b are relatively prime.
21. Find the positive integer a if [a,a + 1] = 132.
22. Find the twin primes p and q such that [p,q] = 323.

Find the positive integers a and b such that

23. (a,b) = 20 and [a,b] = 840
24. (a,b) = 18 and [a,b] = 3780
25. What is your conclusion if (a,b) = [a,b]? Why?

Using recursion, find the lcm of the given integers.

26. 12, 18, 20, 28 27. 15, 18, 24, 30
28. 10, 16, 18, 24, 28 29. 12, 15, 18, 25, 30

30. Prove or disprove: [a,b, c] = abc/(a,b, c).
31. Find the smallest positive integer ≥ 2 that is a square,

a cube, and a fifth power. (A. Dunn, 1983)

Prove each, where a,b, c, k,m,a1,a2, . . . ,an, x, y, and z
are positive integers.

32. The lcm of any two integers is unique.
33. (a,b)|[a,b]
34. [ka, kb] = k[a,b]
35. Let m be any multiple of a and b. Then [a,b]|m.
36. Let a1,a2, . . . ,an be n (≥ 3) positive integers. Then

[a1,a2, . . . ,an] = [[a1,a2, . . . ,an−1],an].
37. [ka1, ka2, . . . , kan] = k[a1,a2, . . . ,an−1,an].
38. If [a1,a2, . . . ,an] = a1a2 · · ·an−1an, then a1,a2,

. . . ,an are pairwise relatively prime.
39. max{x, y, z} − min{x, y, z} + min{x, y} + min{y, z} +

min{z, x} = x + y + z
40. The sum of the twin primes p and p + 2 is divisible

by 12, where p > 3. (C. Ziegenfus, 1963)
41. (a, [b, c]) = [(a,b), (a, c)]
42. [a, (b, c)] = ([a,b], [a, c])

� �

3.5 Linear Diophantine Equations

Often we are interested in integral solutions of equations with integral coefficients.
Such equations are called diophantine equations, after Diophantus, who wrote ex-
tensively on them. For example, when we restrict the solutions to integers, the equa-
tions 2x + 3y = 4, x2 + y2 = 1, and x2 + y2 = z2 are diophantine equations.
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Diophantus lived in Alexandria around A.D. 250. Not much is known about his life or nationality, except what is

found in an epigram in the Greek Anthology: “Diophantus passed one-sixth of his life in childhood, one-twentieth

in youth, and one-seventh more as a bachelor. Five years after his marriage was born a son who died four years

before his father, at half his father’s age (at the time of the father’s death).”

Diophantus wrote three books, all in Greek: Arithmetica, On Polygonal Numbers, and Porisms. Arithmetica,

considered the earliest book on algebra, contains the first systematic use of mathematical notation for unknowns

in equations. He had a symbol for subtraction and for equality.

Six out of the thirteen copies of Arithmetica and a portion of On Polygonal Numbers are still in existence;

Porisms is lost.

The Bishop of Laodicea, a friend of Diophantus who assumed his episcopacy around A.D. 270, dedicated a

book on Egyptian computation in his honor.

Geometrically, such solutions of the equation 2x + 3y = 4 are points on the line
2x + 3y = 4 with integral coordinates. Points with integral coordinates are called
lattice points. For example, (−1,2) is such a solution; in fact, it has infinitely many
solutions (2 + 3t,−2t), where t is an arbitrary integer.

The diophantine equation x2 + y2 = 1 has exactly four solutions: (±1,0) and
(0,±1), the points where the unit circle x2 + y2 = 1 intersects the axes.

The solutions of the diophantine equation x2 + y2 = z2 represent the lengths of
the sides of a right triangle; (3,4,5) is one solution. This equation also has an infinite
number of solutions, as we shall see in Section 13.1.

Linear Diophantine Equations

The simplest class of diophantine equations is the class of linear diophantine equa-
tions (LDEs). A linear diophantine equation in two variables x and y is a diophan-
tine equation of the form ax + by = c. Solving such a LDE systematically involves
the euclidean algorithm, as you will see shortly. First, we study LDEs in two vari-
ables.

LDEs were known in ancient China and India as applications to astronomy and
riddles, so we begin our discussion with two interesting puzzles.

The first puzzle is due to the Indian mathematician Mahavira (ca. A.D. 850).

EXAMPLE 3.17 Twenty-three weary travelers entered the outskirts of a lush and beautiful forest. They
found 63 equal heaps of plantains and seven single fruits, and divided them equally.
Find the number of fruits in each heap.
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Mahavira, an astronomer and mathematician at the court of King Amoghavardana Vripatunga (814–877), was

born in Mysore, India. Only little is known about his life. A staunch Jain by religion, he is known for his Ganita-Sara-

Sangraha, the most scholarly treatise of the time on Indian mathematics. Written in nine chapters, it summarizes

the body of knowledge then known in India, in arithmetic, including zero, fractions, and the decimal system, and

geometry. It was translated from Sanskrit into English in 1912.

SOLUTION

Let x denote the number of plantains in a heap and y the number of plantains received
by a traveler. Then we get the LDE

63x + 7 = 23y (3.2)

Since both x and y must be positive, we are interested in finding only the positive
integral solutions of the LDE (3.2). Solving it for y,

y = 63x + 7

23

When x > 0, clearly y > 0. So try the values 1, 2, 3, and so on for x until the
value of y becomes an integer (Table 3.2). It follows from the table that x = 5, y = 14
is a solution. We can verify that x = 28, y = 77 is yet another solution. In fact, the
LDE has infinitely many solutions. See Example 3.20. �

x 1 2 3 4 5 . . . 28 . . .

y
70

23

133

23

196

23

252

23
14 . . . 77 . . .

Table 3.2

Another ancient riddle, called the hundred fowls puzzle, is found in the Math-
ematical Classic, a book by the sixth-century Chinese mathematician Chang Chiu-
chien.

EXAMPLE 3.18 If a cock is worth five coins, a hen three coins, and three chicks together one coin,
how many cocks, hens, and chicks, totaling 100, can be bought for 100 coins?
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SOLUTION

Let x, y, and z denote the number of cocks, the number of hens, and the number of
chicks respectively. Clearly, x, y, z ≥ 0. Then the given data yield two LDEs:

x + y + z = 100 (3.3)

5x + 3y + z

3
= 100 (3.4)

Substituting for z [= 100 − x − y from equation (3.3)] in equation (3.4) yields

5x + 3y + 1

3
(100 − x − y) = 100

That is,

7x + 4y = 100

y = 100 − 7x

4
= 25 − 7

4
x (3.5)

So, for y to be an integer, 7x/4 must be an integer; but 4 � 7, so x must be a multiple
of 4: x = 4t, where t is an integer. Then,

y = 25 − 7

4
x = 25 − 7(4t)

4
= 25 − 7t

and

z = 100 − x − y = 100 − 4t − (25 − 7t) = 75 + 3t

Thus, every solution to the puzzle is of the form x = 4t, y = 25 − 7t, z = 75 + 3t,
where t is an arbitrary integer.

Now, to find the possible actual solutions of the puzzle, we take the following
steps: Since x ≥ 0, t ≥ 0. Since y ≥ 0,25 − 7t ≥ 0; that is, t ≤ 25/7, so t ≤ 3. Since
z ≥ 0,75 + 3t ≥ 0; that is, t ≥ −25; but this does not give us any additional informa-
tion, so 0 ≤ t ≤ 3.

Thus, the riddle has four possible solutions, corresponding to t = 0, 1, 2, and
3: x = 0, y = 25, z = 75; x = 4, y = 18, z = 78; x = 8, y = 11, z = 81; and x = 12,
y = 4, z = 84. �

Although we were able to solve successfully the LDEs in both examples, we
should ask three questions:
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Aryabhata (ca. 476–ca. 550), the first prominent Indian mathematician-astronomer, was born in Kusumapura,

near Patna on the Ganges. He studied at Nalanda University, Kusumapura, and later became its head. Although

he used mathematics to solve astronomical problems, he was very much interested in Diophantus’ work on inde-

terminate equations and on the Indian astronomer Parasara’s work on comets and planetary motion. Aryabhata

described the earth as spherical and computed its diameter as 7980 miles. He understood the nature of eclipses

and that the sun was the source of moonlight, both ideas unknown to the West until the observations of Coperni-

cus and Galileo a thousand years later. Aryabhata’s accurate astronomical calculations contributed to the devel-

opment of a calendar in India. He also devised the expansions of (x+y)2 and (x+y)3, and formulas for extracting

square roots and cube roots. Around 500, he calculated an accurate value of π as 62832/20000 = 3.1416, more

accurately than previously known.

His masterpiece, The Aryabhatiya, written in A.D. 499, deals with astronomy, plane and spherical trigonom-

etry, algebra, quadratic equations, sums of powers of the first n natural numbers, and a table of sines. It was

translated into Arabic around 800 and into Latin in the thirteenth century.

In recognition of his outstanding contributions to astronomy and mathematics, India’s first satellite was

named Aryabhata.

• Does every LDE have a solution?
• If not, under what conditions does an LDE have a solution?
• If an LDE is solvable, what is the maximum number of solutions it can have?

The first question can be answered easily. Consider the LDE 2x + 4y = 5. No
matter what the integers x and y are, the LHS 2x + 4y is always even, whereas the
RHS is always odd, so the LDE has no solution. Thus, not every LDE has a solution.

Next, we establish a necessary and sufficient condition for the LDE ax + by = c
to be solvable. Its proof, in fact, provides a formula for an arbitrary solution, when it
is solvable.

The Indian mathematician Aryabhata provided a complete solution of the LDE
in two variables. A portion of the proof of Theorem 3.19, which is long, but fairly
straightforward, is a variation of his method.

THEOREM 3.19 The LDE ax + by = c is solvable if and only if d|c, where d = (a,b). If x0, y0 is a
particular solution of the LDE, then all its solutions are given by

x = x0 +
(

b

d

)

t and y = y0 −
(

a

d

)

t

where t is an arbitrary integer.

PROOF

The proof consists of four parts:

• If the LDE is solvable, then d|c.
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• Conversely, if d|c, then the LDE is solvable.

• x = x0 +
(

b

d

)

t and y = y0 −
(

a

d

)

t is a solution of the LDE.

• Every solution of the LDE is of this form.

We shall prove each part one by one in that order.

• To prove that if the LDE is solvable, then d|c:
Suppose x = α, y = β is a solution. Then

aα + bβ = c (3.6)

Since d = (a,b),d|a and d|b, so d|(aα + bβ) by Theorem 2.4; that is, d|c.
• To prove that if d|c, then the LDE is solvable:

Suppose d|c. Then c = de for some integer e. Since d = (a,b), by Theo-
rem 3.5, there exist integers r and s such that ra + sb = d. Multiplying both
sides of this equation by e yields

rae + sbe = de

That is,

a(re) + b(se) = c

Thus, x0 = re and y0 = se is a solution of the LDE; that is, it is solvable.

• To show that x = x0 +
(

b

d

)

t and y = y0 −
(

a

d

)

t is a solution: We have

ax + by = a

[

x0 +
(

b

d

)

t

]

+ b

[

y0 −
(

a

d

)

t

]

= (ax0 + by0) + abt

d
− abt

d

= ax0 + by0

= c

Thus, x = x0 +
(

b

d

)

t and y = y0 −
(

a

d

)

t is a solution for any integer t.

• To show that every solution x′, y′ is of the desired form:
Since x0, y0 and x′, y′ are solutions of the LDE, we have:

ax0 + by0 = c and ax′ + by′ = c

ax0 + by0 = ax′ + by′

Therefore,

a(x′ − x0) = b(y0 − y′) (3.7)
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Divide both sides of this equation by d:
(

a

d

)

(x′ − x0) =
(

b

d

)

(y0 − y′)

By Theorem 3.4, (a/d,b/d) = 1, so, by Corollary 3.4,
b

d
|(x′ − x0) and hence

x′ − x0 =
(

b

d

)

t for some integer t.

That is,

x′ = x0 +
(

b

d

)

t

Now substituting for x′ − x0 in equation (3.7), we have

a

(
b

d

)

t = b(y0 − y′)
(

a

d

)

t = y0 − y′

y′ = y0 −
(

a

d

)

t

Thus, every solution of the LDE is of the desired form. �

It follows by this theorem that if the LDE ax+by = c is solvable, then it has infinitely

many solutions. They are given by the general solution x = x0 +
(

b

d

)

t and y =

y0 −
(

a

d

)

t, t being an arbitrary integer. By giving different values to t, we can find

any number of particular solutions.

This theorem has an interesting and useful corollary.

COROLLARY 3.13 If (a,b) = 1, then the LDE ax + by = c is solvable and the general solution is given
by x = x0 + bt, y = y0 − at, where x0, y0 is a particular solution. �

The following three examples demonstrate Theorem 3.19.

EXAMPLE 3.19 Determine whether the LDEs 12x + 18y = 30,2x + 3y = 4, and 6x + 8y = 25 are
solvable.
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SOLUTION

• (12,18) = 6 and 6|30, so the LDE 12x + 18y = 30 has a solution.
• (2,3) = 1, so by Corollary 3.13, the LDE has a solution.
• (6,8) = 2, but 2 � 25, so the LDE 6x + 8y = 25 is not solvable. �

The following two examples illustrate in detail how to find the general solution
of an LDE in two variables.

EXAMPLE 3.20 Find the general solution to Mahavira’s puzzle in Example 3.17.

SOLUTION

The LDE in Mahavira’s puzzle is 63x − 23y = −7. Since (63,23) = 1, by Corol-
lary 3.13, the LDE has a solution.

To find a particular solution x0, y0, first we express the gcd 1 as a linear combi-
nation of 63 and 23. To accomplish this, we apply the euclidean algorithm:

63 = 2 · 23 + 17

23 = 1 · 17 + 6

17 = 2 · 6 + 5

6 = 1 · 5 + 1

5 = 5 · 1 + 0

Now, use the first four equations in reverse order:

1 = 6 − 1 · 5

= 6 − 1(17 − 2 · 6)

= 3 · 6 − 1 · 17

= 3(23 − 1 · 17) − 1 · 17

= 3 · 23 − 4 · 17

= 3 · 23 − 4(63 − 2 · 23)

= (−4) · 63 + 11 · 23

Multiply both sides of this equation by −7 (why?):

−7 = (−7)(−4) · 63 + (−7) · 11 · 23

= 63 · 28 − 23 · 77
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which shows x0 = 28, y0 = 77 is a particular solution of the LDE. [See part (2) of
the proof of the theorem. Also, note that we obtained this solution in Example 3.17.]

Therefore, by Corollary 3.13, the general solution is given by x = x0 + bt =
28 − 23t and y = y0 − at = 77 − 63t, where t is an arbitrary integer. �

EXAMPLE 3.21 Using Theorem 3.19, find the general solution of the hundred fowls puzzle in Exam-
ple 3.18.

SOLUTION

By Example 3.18, we have

x + y + z = 100 (3.8)

5x + 3y + z

3
= 100 (3.9)

Eliminating z between these two equations, we obtain the LDE

7x + 4y = 100 (3.10)

Notice that (7,4) = 1 and by trial and error,

1 = (−1) · 7 + 2 · 4

Now multiply both sides of this equation by 100:

100 = (−100) · 7 + 200 · 4

Therefore, x0 = −100, y0 = 200 is a particular solution of the LDE (3.10). Thus,
by Corollary 3.13, the general solution of the LDE (3.10) is x = −100 + 4t′, y =
200 − 7t′. Then

z = 100 − x − y

= 100 − (−100 + 4t′) − (200 − 7t′)

= 3t′

Thus, the general solution of the puzzle is x = −100 + 4t′, y = 200 − 7t′, z = 3t′,
where t′ is an arbitrary integer.

This solution can be rewritten in such a way that we can recover the general
solution obtained earlier. We have

x = −100 + 4t′ = 4(−25 + t′)

= 4t, where t = t′ − 25
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Then

y = 200 − 7(t + 25) = 25 − 7t

and

z = 3(t + 25) = 75 + 3t

Thus, the general solution is also given by x = 4t, y = 25−7t, and z = 75+3t, where
t is an arbitrary integer. �

EXAMPLE 3.22 Solve, if possible, Mahavira’s puzzle if there were 24 travelers.

SOLUTION

With 24 travelers, the diophantine equation becomes 63x − 24y = −7. Since
(63,24) = 3 and 3 � 7, the diophantine equation has no integral solutions, so the
puzzle has no solutions. �

We now pursue a fascinating puzzle.

The Monkey and Coconuts Puzzle

The October 9, 1926, issue of The Saturday Evening Post carried a fascinating puzzle
by Ben Ames Williams, titled Coconuts. It concerned a building contractor desperate
to prevent a tough competitor from getting a lucrative contract. A shrewd employee
of the contractor, knowing their competitor’s love for recreational mathematics, gave
him a problem so intriguing that he became obsessed with solving it and forgot to
enter his bid before the deadline.

Williams’ problem is actually a slightly modified version of the ancient prob-
lem described in the following example. We leave his version as an exercise (see
Exercise 40).

EXAMPLE 3.23 Five sailors and a monkey are marooned on a desert island. During the day they
gather coconuts for food. They decide to divide them up in the morning, but first
they retire for the night. While the others sleep, one sailor gets up and divides them
into five equal piles, with one left over, which he throws out for the monkey. He
hides his share, puts the remaining coconuts together, and goes back to sleep. Later
a second sailor gets up, divides the pile into five equal shares with one coconut left
over, which he discards for the monkey. One by one the remaining sailors repeat the
process. In the morning, they divide the pile equally among them with one coconut
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left over, which they throw out for the monkey. Find the smallest possible number of
coconuts in the original pile.

SOLUTION

Let n denote the number of coconuts in the original pile. Let u, v,w, x, and y denote
the number of coconuts each sailor took after each division, and let z be the number
of coconuts each received after the final division. Then

n = 5u + 1

4u = 5v + 1

4v = 5w + 1

4w = 5x + 1

4x = 5y + 1

4y = 5z + 1

These equations yield the LDE

15625z − 1024n = −11529 (3.11)

Because (15625,1024) = 1, the LDE has a solution. Using the euclidean algorithm,
we can verify that 1 = 313 · 15625 − 4776 · 1024, so

15625 · [(−11529) · 313] − 1024 · [4776 · (−11529)] = −11529

That is,

15625 · (−3608577) − 1024 · (−55062504) = −11529

So z0 = −3608577 and n0 = −55062504 is a particular solution, and the general
solution is z = −3608577 − 1024t, n = −55062504 − 15625t, t being an arbitrary
integer.

Because n > 0, −55062504 − 15625t > 0, so t < −55062504

15625
; that is, t <

−3524. Because n is a minimum when t is a maximum, t = −3525. Then n =
−55062504 − 15625 · (−3525) = 15621. Thus, the least number of coconuts in the
original pile is 15,621. �

We shall return to this puzzle in the next section.
Now, we make a geometric interpretation of the general solution in Theo-

rem 3.20.
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Figure 3.4

Recall that the solutions of the LDE ax + by = c are the lattice points that lie on
the line ax + by = c. (Assume a, t > 0 for convenience.) The slope of this line is

−a

b
= −a/d

b/d
where d = (a,b). Locate the point P(x0, y0), on the line. Then move

b

d
t units to the

right and
a

d
t units down if b > 0 (see Figure 3.4a), and

|b|
d

t units to the left and
a

d
t units down if b < 0 (see Figure 3.4b). In either case, the procedure determines a

lattice point on the line. The cases a < 0 and t < 0 can be interpreted similarly.

Euler’s Method for Solving LDEs

Euler devised a method for solving LDEs that employs the division algorithm, but
not the euclidean algorithm.

EXAMPLE 3.24 Solve the LDE 1076x + 2076y = 3076 by Euler’s method.

SOLUTION

Since (1076,2076) = 4 and 4|3076, the LDE has infinitely many solutions. Euler’s
method involves solving the LDE for the variable with the smaller coefficient, x in
this case:

x = −2076y + 3076

1076

= −y + 2 + −1000y + 924

1076
, by the division algorithm (3.12)
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Let u = −1000y + 924

1076
. (Notice that u is an integer. Why?) This yields the LDE

1076u + 1000y = 924. (This LDE has smaller coefficients than the original one.)
Solve for y:

y = −1076u + 924

1000

= −u + −76u + 924

1000
, by the division algorithm (3.13)

Let v = −76u + 924

1000
, so 76u + 1000v = 924; solve for u:

u = −1000v + 924

76

= −13v + 12 + −12v + 12

76
, by the division algorithm (3.14)

Let w = −12v + 12

76
, so 12v + 76w = 12; solve for v:

v = −76w + 12

12
= −6w + 1 − w

3

Because v is an integer, w/3 must be an integer, so we let w/3 = t.
To obtain a particular solution, we let t = 0; then w = 0 and work through the

chain of equations (3.12), (3.13), and (3.14) in the reverse order:

v = −6w + 1 − w

3
= −6(0) + 1 − 0 = 1

u = −1000v + 924

76
= −1000 + 924

76
= −1

y = −1076u + 924

1000
= 1076 + 924

1000
= 2

x = −2076y + 3076

1076
= −4152 + 3076

1076
= −1

You can verify that x0 = −1, y0 = 2 is in fact a solution of the LDE.
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To find the general solution, with t as an arbitrary integer, use successive substi-
tution, again in the reverse order:

w = 3t

v = −6w + 1 − w

3
= −19t + 1

u = −13v + 12 + w = 250t − 1

y = −u + v = −269t + 2

x = −y + 2 + u = 519t − 1

Thus, the general solution is x = 519t−1, y = −269t+2. (We can confirm this using
Theorem 3.20.) �

Next, we investigate LDEs with Fibonacci coefficients.

Fibonacci Numbers and LDEs

Consider the LDE Fn+1x + Fny = c. By Theorem 3.1, (Fn+1,Fn) = 1, so the LDE is
solvable.

By Cassini’s formula, Fn+1Fn−1 − F2
n = (−1)n. Suppose n is even. Then

Fn+1Fn−1 −F2
n = 1; so Fn+1(cFn−1)+Fn(−cFn) = c. Thus, x0 = cFn−1, y0 = −cFn

is a particular solution of the LDE Fn+1x + Fny = c.
On the other hand, let n be odd. Then Fn+1(−Fn−1)+F2

n = 1; so Fn+1(−cFn−1)

+ Fn(cFn) = c. Thus, x0 = −cFn−1, y0 = cFn is a particular solution of the LDE
Fn+1x + Fny = c.

For example, consider the LDE 34x + 21y = 17. Since F9F7 − F2
8 = 34 · 13 −

212 = (−1)8 and c = 17, it follows that x0 = cF7 = 17 · 13 = 221, y0 = −cF8 =
−17 · 21 = −357 is a particular solution. So the general solution is x = x0 + bt =
221 + 21t, y = y0 − at = −357 − 34t.

We now study an intriguing puzzle† whose solution involves solving LDEs.

EXAMPLE 3.25 A six-digit positive integer is cut up in the middle into two three-digit numbers. If
the square of their sum yields the original number, find the number.

SOLUTION

Let N be the six-digit number, and let a and b be the two three-digit numbers. Then
N = 1000a + b and N = (a + b)2.

† Based on A. Dunn (ed.), Mathematical Bafflers, Dover, New York, 1980, p. 183.
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Let a + b = c. Then

(1000a + b) − (a + b) = c2 − c

999a = c(c − 1)

If c = 999, then 999a = 999 · 998, so a = 998 and b = 1. Then N = 998,001 works:
998001 = (998 + 001)2.

If c �= 999, then 999|c(c − 1), where 999 = 27 · 37, (27,37) = 1 = (c, c − 1).
Therefore, 27|c and 37|(c − 1), or 27|(c − 1) and 37|c.
case 1 Suppose 27|c and 37|(c − 1). Then c = 27x and c − 1 = 37y for some
integers x and y. These two equations yield the LDE 27x − 37y = 1. Solving this,
we get x = 11 − 37t and y = 8 − 27t. Therefore, c = 27(11 − 37t) = 297 − 999t.
Unfortunately, no t yields a value for c such that c2 has the desired property.

case 2 Suppose 27|(c − 1) and 37|c. Then 37y − 27x = 1. Solving this we get y =
−8−27t′ and x = −11−37t′; so c = 37(−8−27t′) = −296−999t′ = 703+999t′′,
t′′ being arbitrary; t′′ = 0 yields c = 703. Then 999a = 703 · 702, so a = 494 and
b = 209. Then N = 494,209 has the desired property: 494209 = (494 + 209)2. No
other value of t′′ produces such a number.

Thus, there are two six-digit positive integers satisfying the required property:
998,001 and 494,209. �

The following theorem shows that Theorem 3.19 can be extended to LDEs con-
taining three or more unknowns. Its proof depends on induction. See Exercises 41
and 42.

THEOREM 3.20 The LDE a1x1 + a2x2 + · · · + anxn = c is solvable if and only if (a1,a2, . . . ,an)|c.
When it is solvable, it has infinitely many solutions. �

The following two examples illustrate this theorem.

EXAMPLE 3.26 Determine whether the LDEs 6x + 8y + 12z = 10 and 6x + 12y + 15z = 10 are
solvable.

SOLUTION

• Since (6,8,12) = 2 and 2|10, the LDE 6x + 8y + 12z = 10 is solvable.
• (6,12,15) = 3, but 3 � 10, so the 6x + 12y + 15z = 10 has no integral solu-

tions. �
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We conclude this section with an example that demonstrates solving a LDE in
three variables.

EXAMPLE 3.27 Find the general solution of the LDE 6x + 8y + 12z = 10.

SOLUTION

By the preceding example, the LDE has infinitely many solutions. Since 8y + 12z is
a linear combination of 8 and 12, it must be a multiple of (8,12) = 4; so we let

8y + 12z = 4u (3.15)

This leads to a LDE in two variables: 6x + 4u = 10. Solving this, we get x = 5 + 2t
and u = −5 − 3t, with t as an arbitrary integer (verify this).

Now substitute for u in equation (3.15):

8y + 12z = 4(−5 − 3t)

Notice that (8,12) = 4 and 4 = 2 · 8 + (−1) · 12. Therefore,

4(−5 − 3t) = (−10 − 6t) · 8 + (5 − 3t) · 12

So, by Theorem 3.19, the general solution of equation (3.15) is y = −10 − 6t + 3t′,
z = 5 + 3t − 2t′. Thus, the general solution of the given linear diophantine equation
is

x = 5 + 2t

y = −10 − 6t + 3t′

z = 5 + 3t − 2t′

where t and t′ are arbitrary integers. �

Obviously, this method of reducing the number of unknowns can be extended
to LDEs with any finite number of unknowns. See Exercises 33–36 for additional
practice.

E X E R C I S E S 3.5

1. Using the biographical sketch of Diophantus on
p. 189, determine his age at the time of his death.

Using Theorem 3.19, determine whether each LDE is
solvable.
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2. 12x + 16y = 18 3. 14x + 16y = 15

4. 12x + 13y = 14 5. 28x + 91y = 119

6. 1776x + 1976y = 4152
7. 1076x + 2076y = 1155

Find the general solution of each LDE using Theo-
rem 3.19.

8. 2x + 3y = 4 9. 12x + 16y = 20
10. 12x + 13y = 14 11. 15x + 21y = 39
12. 28x + 91y = 119 13. 1776x + 1976y = 4152

14. Verify the general solution of the LDE in Exam-
ple 3.24 using Theorem 3.19.

15–20. Using Euler’s method, solve the LDEs in Exer-
cises 8–13.

21. A pile of mangoes was collected. The king took one-
sixth, the queen one-fifth of the remainder, the three
princes one-fourth, one-third, and one-half of the suc-
cessive remainders, and the youngest child took the
three remaining mangoes. Find the number of man-
goes in the pile. (Mahavira)

22. The total cost of nine citrons and seven fragrant wood
apples is 107 coins; the cost of seven citrons and nine
fragrant wood apples is 101 coins. Find the cost of a
citron and a wood apple. (Mahavira)

23. A person bought some 12-cent stamps and some 15-
cent stamps. The postal clerk told her the total cost
was $5.50. Is that possible?

24. A piggy bank contains nickels and dimes for a total
value of $3.15. Find the possible number of nickels
and dimes.

25. A fruit basket contains apples and oranges. Each ap-
ple costs 65¢ and each orange 45¢, for a total of
$8.10. Find the minimum possible number of apples
in the basket.

Solve each Fibonacci LDE.

26. 144x + 89y = 23 27. 233x − 144y = 19

28. Verify that x = 5 − 4t, y = −10 + 12t + 3t′, z = 5 −
6t − 2t′ is a solution of the LDE 6x + 8y + 12z = 10
for any integers t and t′.

Determine whether each LDE is solvable.
29. 2x + 3y + 4z = 5
30. 8x + 10y + 16z = 25
31. 12x + 30y − 42z = 66
32. 76w + 176x + 276y + 376z = 476
Solve the following LDEs.
33. x + 2y + 3z = 6
34. 2x − 3y + 4z = 5
35. 6x + 12y − 15z = 33
36. 12x + 30y − 42z = 66
37. A collection plate contains nickels, dimes, and quar-

ters. The total value is $4, and there are twice as many
quarters as there are dimes. Find the possible number
of combinations of each kind, if there are more quar-
ters than nickels.

Mrs. Hall bought 10 hot dogs, 15 cheeseburgers, and 20
sandwiches for a pool party. The total bill was $73.50.
38. Find the general solution.
39. Find the possible combinations of the numbers of hot

dogs, cheeseburgers, and sandwiches she could have
bought if a cheeseburger cost 65¢ more than a hot
dog.

40. (Williams’ version) Five sailors and a monkey are
marooned on a desert island. During the day they
gather coconuts for food. They decide to divide them
up in the morning and retire for the night. While the
others are asleep, one sailor gets up and divides them
into equal piles, with one left over, which he throws
out for the monkey. He hides his share, puts the re-
maining coconuts together, and goes back to sleep.
Later a second sailor gets up, divides the pile into five
equal shares with one coconut left over which he dis-
cards for the monkey. Later the remaining sailors re-
peat the process. Find the smallest possible number
of coconuts in the original pile.

Prove each.

41. The LDE
n∑

i=1
aixi = c is solvable if and only if

(a1,a2, . . . ,an)|c.

42. If the LDE
n∑

i=1
aixi = c is solvable, then it has infi-

nitely many solutions.
(Hint: Use induction.)

� �
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X CHAPTER SUMMARY

One of the most celebrated results in number theory is the fundamental theorem
of arithmetic, which is indeed the cornerstone of the subject. Two concepts indis-
pensable to its development are the gcd and the lcm. We developed a necessary and
sufficient condition for an LDE to be solvable, and the general solution when it is
solvable.

Greatest Common Divisor (gcd)

• The gcd (a,b) of two positive integers a and b is the largest positive integer
that divides both. (p. 155)

• A positive integer d is the gcd of a and b if:
• d|a and d|b; and
• if d′|a and d′|b, then d′ ≤ d, where d′ is a positive integer. (p. 156)

• Two positive integers a and b are relatively prime if (a,b) = 1. (p. 156)
• f0 f1 · · · fn−1 = fn − 2, where n ≥ 1. (p. 157)
• Let m and n be distinct nonnegative integers. Then ( fm, fn) = 1. (p. 157)
• If (a,b) = d, then (a/d,b/d) = 1 and (a,a − b) = d. (p. 158)
• d = (a,b) is the least positive linear combination of a and b. (p. 159)
• If d′ is a common divisor of a and b, then d′|(a,b). (p. 160)
• A positive integer d is the gcd of a and b if:

• d|a and d|b; and
• if d′|a and d′|b, then d′|d, where d′ is a positive integer. (p. 161)

• (ac,bc) = c(a,b) (p. 161)
• The positive integers a and b are relatively prime if and only if αa + βb = 1

for some integers α and β . (p. 161)
• If (a,b) = 1 and a|bc, then a|c. (p. 162)
• If a|c,b|c, and (a,b) = 1, then ab|c. (p. 162)
• (a1,a2, . . . ,an) = ((a1,a2, . . . ,an−1),an) (p. 163)

Euclidean Algorithm

The euclidean algorithm for finding (a,b) is a successive application of the division
algorithm and is based on the following result, where a ≥ b:

• Let r = a mod b. Then (a,b) = (b, r). (p. 166)
• The algorithm provides a systematic method for expressing (a,b) as a linear

combination of a and b. (p. 170)
• The number of divisions needed to compute (a,b) by the euclidean algorithm

is no more than five times the number of decimal digits in b, where a ≥ b ≥ 2.
(Lamé’s theorem) (p. 172)
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Fundamental Theorem of Arithmetic

• If p is a prime and p|ab, then p|a or p|b. (p. 174)
• If p is a prime such that p|a1a2 · · ·an, where a1,a2, . . . ,an are positive inte-

gers, then p|ai for some i, where 1 ≤ i ≤ n. (p. 174)
• If p,q1,q2, . . . ,qn are primes such that p|q1q2 · · ·qn, then p = qi for some i,

where 1 ≤ i ≤ n. (p. 174)
• Every positive integer n ≥ 2 either is a prime or can be expressed as a product

of primes. The factorization into primes is unique except for the order of the
factors. (p. 174)

Canonical Decomposition of a Positive Integer N

• N = pa1
1 pa2

2 · · ·pak
k , where p1,p2, . . . ,pk are distinct primes, p1 < p2 < · · · <

pk and ai ≥ 0. (p. 176)

Dirichlet’s Theorem

If a and b are relatively prime, then the arithmetic sequence a,a + b,a + 2b,a +
3b, . . . contains infinitely many primes. (p. 182)

Least Common Multiple (lcm)

• The lcm [a,b] of two positive integers a and b is the least positive integer
divisible by both. (p. 184)

• A positive integer m = [a,b] if
• a|m and b|m; and
• if a|m′ and b|m′, then m ≤ m′, where m′ is a positive integer. (p. 184)

• [a,b] = ab/(a,b) (p. 185)
• [a1,a2, . . . ,an] = [[a1,a2, . . . ,an−1],an] (p. 187)
• If a1,a2, . . . ,an are pairwise relatively prime, then [a1,a2, . . . ,an] =

a1a2 · · ·an−1an. (p. 187)

Linear Diophantine Equations (LDEs)

• An LDE in two variables x and y is of the form ax + by = c, where a, b, and
c are integers. (p. 189)

• It is solvable if and only if d|c, where d = (a,b). (p. 192)
• If d|c, the general solution of the LDE is x = x0 + (b/d)t, y = y0 − (a/d)t,

where x0, y0 is a particular solution. (p. 192)
• LDEs can be solved by Euler’s method. (p. 199)
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X REVIEW EXERCISES

Find the gcd of each pair of integers.

1. 2 · 32 · 53,25 · 33 · 5 2. 2 · 32 · 5 · 73,23 · 3 · 52 · 113

3. 32, 48 4. 56, 260

Using the euclidean algorithm, find the gcd of each pair of integers.

5. 28, 12 6. 784, 48
7. 1947, 63 8. 5076, 1076

Using recursion, find the gcd of the given integers.

9. 16, 20, 36, 48 10. 20, 32, 56, 68
11. 28, 48, 68, 78 12. 24, 36, 40, 60, 88

Express the gcd of the given numbers as a linear combination of the numbers.

13. 14, 18 14. 12, 20
15. 12, 18, 20 16. 10, 12, 14, 18

Find the positive factors of each, where p and q are distinct primes.

17. 98 18. 1575 19. piq 20. piqj

Find the canonical decomposition of each.

21. 2000 22. 3230 23. 1771 24. 4076

Find the number of trailing zeros in the decimal value of each integer.

25. 260! 26. 345! 27. 1400! 28. 1947!

Find the number of trailing zeros in the binary representation of each integer.

29. 39 30. 191 31. 243 32. 576

Find the number of trailing zeros in the ternary (base three) representation of each
integer.

33. 45 34. 61 35. 118 36. 343

Find the lcm of each pair of integers.

37. 2 · 32 · 5, 2 · 3 · 7 38. 3 · 72 · 11, 22 · 5 · 7
39. 48, 66 40. 42, 78

41. The lcm of two consecutive positive integers is 812. Find them.
42. The lcm of twin primes is 899. Find them.
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Using Theorem 3.17, find the lcm of the given integers.

43. 48, 64 44. 56, 76 45. 70, 90 46. 123, 243

47–50. Find the lcm of the integers in Exercises 9–12.

Prove each, where a, b, c, d, m, and n are positive integers.

51. Let p be a prime such that p|an. Then pn|an.
52. If a|m and b|m, then [a,b]|m.
53. The product of three consecutive integers is divisible by 6.
54. The gcd of two consecutive integers is 1.
55. The gcd of twin primes is 1.
56. If d|ab, d|ac, and (b, c) = 1, then d|a.
57. If a|b and c|d, then (a, c)|(b,d).
58. If a|b and c|d, then [a, c]|[b,d].
59. The product of two integers of the form 4n + 3 is of the form 4n + 1.
60. The product of n integers of the form 4k + 1 is also of the same form.
61. A positive integer is a cube if and only if each exponent in its canonical decom-

position is divisible by 3.
62. There is an infinite number of primes of the form 6n + 1.
63. There is an infinite number of primes of the form 7n + 4.
64. (ca1, ca2, . . . , can) = c(a1,a2, . . . ,an)

65. Let p be a prime such that p|n!. Then the exponent of p in the canonical decom-
position of n! is 
n/p� + 
n/p2� + 
n/p3� + · · ·. (Note: This sum is finite since

n/pm� = 0 when pm > n.)

66. Let b = a + 2, where a is odd and 3 � ab. Then 12|(a + b). (M. Beiler, 1967)
67. ([a,b], [b, c], [c,a]) = [(a,b), (b, c), (c,a)]
68. [a,b, c] = abc(a,b, c)

(a,b), (b, c), (c,a)

�69. 6nn!|(3n)!, where n ≥ 0. (C. W. Trigg, 1968)

Using Exercise 65, find the canonical decomposition of each.

70. 12! 71. 15!
72. 18! 73. 23!

Determine whether each LDE is solvable.

74. 24x + 52y = 102 75. 76x + 176y = 276

Find the general solution of each LDE.

76. 12x + 20y = 28 77. 76x + 176y = 276

78–79. Solve the LDEs in Exercises 76 and 77 by Euler’s method.
80. Solve the LDE in Example 3.23 by Euler’s method.
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81. Solve the LDE in Exercise 40 in Section 3.5 by Euler’s method.
82. A farmer bought some calves and sheep for $39,500, at $475 a calf and $275 a

sheep. If she bought more calves than sheep, find the minimum number of calves
she must have bought.

83. A shopper bought some apples, oranges, and pears, a total of a dozen fruits. They
cost 75¢, 30¢, and 60¢ apiece respectively, for a total of $6.30. If he bought at
least one fruit of each kind, how many apples, oranges, and pears did he buy?

X SUPPLEMENTARY EXERCISES

In Exercises 1–10, n is a positive integer and n� = [1,2,3, . . . ,n].
1. Find n� for n = 5, 6, 7, and 8.
2. Let n = pk, where p is a prime and k is a positive integer. Prove that n� =

p(n − 1)�.
3. Using Exercise 2, compute 9�.
4. Using the fact that n� = ∏

p≤n
pe, where pe denotes the largest prime-power ≤ n,

compute 9�, 10�, and 11�.
5. Show that (n + 1)� + 2, (n + 1)� + 3, . . . , (n + 1)� + (n + 1) are consecutive

composite numbers.
6. Using Exercise 5, find six consecutive composite numbers.
7. Compute n� + 1 for 1 ≤ n ≤ 7 and make a conjecture.
8. Is 8� + 1 a prime?
9. Compute n� − 1 for 3 ≤ n ≤ 8 and make a conjecture.

10. Is 9� − 1 a prime?
11. Let a, b, and c be positive integers such that a + b = c. Let m = [a,b]. Prove

that (c,m) = (a,b). (H. H. Berry, 1951)
Let a, b, m, and n be any positive integers, where a > b. Prove each.

�12. (am − 1,an − 1) = a(m,n) − 1
��13.

(
an − bn

a − b
,a − b

)

= (n(a,b)n−1,a − b). (T. M. Apostol, 1980)

14. Use Exercise 13 to deduce that if p is a prime and (a,b) = 1, then(
ap − bp

a − b
,a − b

)

= 1 or p. (T. M. Apostol, 1980)

��15. Let m and n be any positive integers, and let a and b be relatively prime inte-
gers with a > b. Prove that (am − bm,an − bn) = a(m,n) − b(m,n). (T. M. Apos-
tol, 1981)



210 CHAPTER 3 Greatest Common Divisors

X COMPUTER EXERCISES

Write a program to do each task.

1. Read in a positive integer n and determine the number of trailing zeros in each.

(a) The decimal value of n!.
(b) The binary representation of n.
(c) The ternary expansion of n.

2. Read in two positive integers a and b, and find their gcd using the euclidean
algorithm.

3. Read in an integer n (≥ 0) and a positive integer k, and find the first k primes of
the form 4n + 1.

4. Read in an integer n (≥ 0) and a positive integer k, and find the first k primes of
the form 4n + 3.

5. Read in a positive integer n (≥ 2) and n positive integers. Using recursion and the
euclidean algorithm, find their gcd.

6. Read in a positive integer n, and print all powerful numbers ≤ n.
7. Read in integers a,b, and c, and check if the LDE ax + by = c is solvable.
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4 Congruences

The invention of the symbol ≡ by Gauss affords a striking example

of the advantage which may be derived from an appropriate notation,

and marks an epoch in the development of the science of arithmetic.

— G. B. MATHEWS

his chapter investigates the congruence relation, an extremely useful and pow-T erful number-theoretic relation used throughout number theory, and its fun-
damental properties. LDEs and the congruence relation are closely related, as

you will see in Section 4.2. Furthermore, we discuss a practical factoring algorithm
based on gcd and congruence.

4.1 Congruences

One of the most remarkable relations in number theory is the congruence relation,
introduced and developed by the German mathematician Karl Friedrich Gauss, who
is ranked with Archimedes (287–212 B.C.) and Isaac Newton (1642–1727) as one
of the greatest mathematicians of all time. Gauss, known as the “prince of math-
ematics,” presented the theory of congruences, a beautiful arm of divisibility the-
ory, in his outstanding work Disquistiones Arithmeticae, published in 1801 when he
was only 24. Gauss is believed to have submitted a major portion of the book to
the French Academy for publication, but they rejected it. “It is really astonishing,”
writes the German mathematician Leopold Kronecker, “to think that a single man of

211
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Karl Friedrich Gauss (1777–1855), the son of a laborer, was born in

Brunswick, Germany. A child prodigy, he detected an error in his father’s book-

keeping at the age of three. Recognizing his remarkable talents, the Duke of

Brunswick sponsored his education. Gauss received his doctorate in 1799

from the University of Göttingen. In his doctoral dissertation, he gave the first

rigorous proof of the fundamental theorem of algebra, which states, “Every

polynomial of degree n (≥ 1) with real coefficients has at least one zero.” New-

ton and Euler, among others, had attempted unsuccessfully to prove this.

Gauss made significant contributions to algebra, geometry, analysis,

physics, and astronomy. His Disquisitiones Arithmeticae laid the foundation

for modern number theory.

From 1807 until his death, he was the director of the Observatory and professor of mathematics at the

University of Göttingen.

such young years was able to bring to light such a wealth of results, and above all to
present such a profound and well-organized treatment of an entirely new discipline.”

The congruence relation, as we will see shortly, shares many interesting proper-
ties with the equality relation, so it is no accident that the congruence symbol ≡, in-
vented by Gauss around 1800, parallels the equality symbol =. The congruence sym-
bol facilitates the study of divisibility theory and has many fascinating applications.

Let us begin our discussion with a definition.

Congruence Modulo m

Let m be a positive integer. Then an integer a is congruent to an integer b modulo
m if m|(a − b). In symbols, we then write a ≡ b (mod m); m is the modulus of the
congruence relation.

If a is not congruent to b modulo m, then a is incongruent to b modulo m; we
then write a �≡ b (mod m).

The following example illustrates these definitions.

EXAMPLE 4.1 Since 5|(23 − 3),23 ≡ 3 (mod 5); likewise, 6|(48 − 12), so 48 ≡ 12 (mod 6); also
28 ≡ −4 (mod 16). But 20 �≡ 3 (mod 4), since 4 � (20 − 3); likewise, 18 �≡ −6
(mod 7). �

Note that we use congruences in everyday life, often without realizing it. We use
congruences modulo 12 to tell the time of the day and congruence modulo 7 to tell
the day of the week. Odometers in automobiles use 1,000,000 as the modulus.
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The following result is simple, but useful. It translates congruence into equality
and enables us to characterize congruences in a different way. Throughout our dis-
cussion of congruences, assume that all letters denote integers and all moduli (plural
of modulus) are positive integers.

THEOREM 4.1 a ≡ b (mod m) if and only if a = b + km for some integer k.

PROOF

Suppose a ≡ b (mod m). Then m|(a − b), so a − b = km for some integer k; that is,
a = b + km. Conversely, suppose a = b + km for some integer k. Then a − b = km,
so m|(a − b) and consequently, a ≡ b (mod m). �

For example, 23 ≡ 3 (mod 5) and 23 = 3 + 4 · 5; on the other hand, 49 = −5 +
9 · 6, so 49 ≡ −5 (mod 6).

A useful observation: It follows from the definition (also from Theorem 4.1) that
a ≡ 0 (mod m) if and only if m|a; that is, an integer is congruent to 0 if and only if
it is divisible by m. Thus, a ≡ 0 (mod m) and m|a mean exactly the same thing. For
instance, 28 ≡ 0 (mod 4) and 4|28.

Using the congruence relation, Dirichlet’s theorem (Theorem 3.16) can be re-
stated as follows: There are infinitely many primes p such that p ≡ a (mod b), where
(a,b) = 1.

The following theorem presents three additional properties of congruence.

THEOREM 4.2

• a ≡ a (mod m). (Reflexive property)
• If a ≡ b (mod m), then b ≡ a (mod m). (Symmetric property)
• If a ≡ b (mod m) and b ≡ c (mod m), then a ≡ c (mod m). (Transitive

property)

PROOF

• Since m|(a − a), a ≡ a (mod m).
• Suppose a ≡ b (mod m). Then m|(a − b); that is, m|−(b − a). So m|(b − a);

that is, b ≡ a (mod m).
• Suppose a ≡ b (mod m) and b ≡ c (mod m). Then m|(a − b) and m|(b − c),

so, by Theorem 2.4, m|[(a − b) + (b − c)]; that is, m|(a − c); consequently,
a ≡ c (mod m). �
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For example, 6 ≡ 6 (mod 5); since 3 ≡ 5 (mod 2), 5 ≡ 3 (mod 2); also, since
7 ≡ −5 (mod 4) and −5 ≡ 15 (mod 4), 7 ≡ 15 (mod 4). (You may verify these
congruences.)

It follows by Theorem 4.2 that the congruence relation is an equivalence rela-
tion.†

The following theorem also characterizes congruences.

THEOREM 4.3 a ≡ b (mod m) if and only if a and b leave the same remainder when divided by m.

PROOF

Suppose a ≡ b (mod m). Then, by Theorem 4.1, a = b + km for some integer k. By
the division algorithm, b = mq + r, where 0 ≤ r < m. Then a = b + km = (mq + r)+
km = m(q+ k)+ r; therefore, by the division algorithm, a leaves the same remainder
r when divided by m.

Conversely, suppose both a and b leave the same remainder r when divided
by m. Then, again by the division algorithm, a = mq + r and b = mq′ + r, where
0 ≤ r < m. Then a − b = (mq + r) − (mq′ + r) = m(q − q′), so a ≡ b (mod m). �

For example, 48 ≡ 28 (mod 5); both 48 and 28, when divided by 5, leave the
same remainder 3. On the other hand, when 29 and −3 are divided by 8, the remain-
ders are the same, 5, so 29 ≡ −3 (mod 8).

The next corollary follows from Theorem 4.3.

COROLLARY 4.1 The integer r is the remainder when a is divided by m if and only if a ≡ r (mod m),
where 0 ≤ r < m. �

By this corollary, every integer a is congruent to its remainder r modulo m;
r is called the least residue of a modulo m. For example, the least residues of 23,
4, and −3 modulo 5 are 3, 4, and 2, respectively. Since r has exactly m choices
0,1,2, . . . , (m − 1), a is congruent to exactly one of them, modulo m. Accordingly,
we have the following result.

COROLLARY 4.2 Every integer is congruent to exactly one of the least residues 0,1,2, . . . , (m − 1)

modulo m. �

The next example uses this result.

† An equivalence relation is a relation that is reflexive, symmetric, and transitive.
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EXAMPLE 4.2 Prove that no prime of the form 4n + 3 can be expressed as the sum of two squares.

PROOF (by contradiction)
Let N be a prime of the form 4n + 3. Then N ≡ 3 (mod 4).

Suppose N = A2 + B2 for some integers A and B. Since N is odd, one of the
squares, say, A2, must be odd and hence B2 must be even. Then A must be odd and
B even. Let A = 2a + 1 and B = 2b for some integers a and b. Then

N = (2a + 1)2 + (2b)2

= 4(a2 + b2 + a) + 1

≡ 1 (mod 4)

which is a contradiction, since N ≡ 3 (mod 4). �

Returning to Corollary 4.1, we find that it justifies the definition of the mod
operator in Section 2.1. Thus, if a ≡ r (mod m) and 0 ≤ r < m, then a mod m = r;
conversely, if a mod m = r, then a ≡ r (mod m) and 0 ≤ r < m.

We now digress briefly with an unusual application of congruence.

Friday-the-Thirteenth (optional)

Congruences can be employed to find the number of Friday-the-Thirteenths in a
given year. Whether or not Friday-the-Thirteenth occurs in a given month depends
on two factors: the day on which the thirteenth fell in the previous month and the
number of days in the previous month.

Suppose that this is a nonleap year and that we would like to find the number of
Friday-the-Thirteenths in this year. Suppose also that we know the day the thirteenth
occurred in December of last year. Let Mi denote each of the months December
through November in that order and Di the number of days in month Mi. The various
values of Di are 31, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, and 30, respectively.

We label the days Sunday through Saturday by 0 through 6, respectively; so day
5 is a Friday.

Let Di ≡ di (mod 7), where 0 ≤ di < 7. The corresponding values of di are 3,
3, 0, 3, 2, 3, 2, 3, 3, 2, 3, and 2, respectively. Each value of di indicates the number
of days the day of the thirteenth in month Mi must be advanced to find the day the
thirteenth falls in month Mi+1.

For example, December 13, 2000, was a Wednesday. So January 13, 2001, fell
on day (3 + 3) = day 6, which was a Saturday.
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Let ti ≡
i∑

j=1
dj (mod 7), where 1 ≤ i ≤ 12. Then ti represents the total number

of days the day of December 13 must be moved forward to determine the day of the
thirteenth in month Mi.

For example, t3 ≡ d1 + d2 + d3 = 3 + 3 + 0 ≡ 6 (mod 7). So, the day of De-
cember 13, 2000 (Wednesday), must be advanced by six days to determine the day
of March 13, 2001; it is given by day (3 + 6) = day 2 = Tuesday.

Notice that the various values of ti modulo 7 are 3, 6, 6, 2, 4, 0, 2, 5, 1, 3, 6,
and 1, respectively; they include all the least residues modulo 7. Knowing the day of
December 13, we can use these least residues to determine the day of the thirteenth
of each month Mi in a nonleap year.

Table 4.1 summarizes the day of the thirteenth of each month in a nonleap year,
corresponding to every choice of the day of December 13 of the previous year. You
can verify this. Notice from the table that there can be at most three Friday-the-
Thirteenths in a nonleap year.

ti Jan. Feb. March April May June July Aug. Sept. Oct. Nov. Dec.
3 6 6 2 4 0 2 5 1 3 6 1

Dec. 13
Sun 3 6 6 2 4 0 2 5 1 3 6 1
Mon 4 0 0 3 5 1 3 6 2 4 0 2
Tue 5 1 1 4 6 2 4 0 3 5 1 3
Wed 6 2 2 5 0 3 5 1 4 6 2 4
Thu 0 3 3 6 1 4 6 2 5 0 3 5
Fri 1 4 4 0 2 5 0 3 6 1 4 6
Sat 2 5 5 1 3 6 1 4 0 2 5 0

Table 4.1 Day of the thirteenth in each month in a nonleap year.

For a leap year, the various values of di are 3, 3, 1, 3, 2, 3, 2, 3, 3, 2, 3, and 2;
and the corresponding values of ti are 3, 6, 0, 3, 5, 1, 3, 6, 2, 4, 0, and 2. Using these,
we can construct a similar table for a leap year.

We now return to additional properties of congruence.

Congruence Classes

Using least residues, the set of integers Z can be partitioned into m nonempty pair-
wise disjoint classes, called congruence classes modulo m. To elucidate this, let [r]
denote the set of integers that have r as their least residue modulo m. For example,
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the various congruence classes modulo 5 are

[0] = {. . . ,−10,−5,0,5,10, . . .}
[1] = {. . . ,−9,−4,1,6,11, . . .}
[2] = {. . . ,−8,−3,2,7,12, . . .}
[3] = {. . . ,−7,−2,3,8,13, . . .}
[4] = {. . . ,−6,−1,4,9,14, . . .}

Clearly, these classes are nonempty, pairwise disjoint, and their union is the set
of integers. Accordingly, these classes form a partitioning of the set of integers, as
Figure 4.1 shows. The least residues 0, 1, 2, 3, and 4 serve as representatives (or
goodwill ambassadors) of the classes [0], [1], [2], [3], and [4], respectively.

Figure 4.1

In general, we do not need to select the least residues to represent the congruence
classes. By Theorem 4.3, two integers belong to the same class if and only if they
leave the same remainder when divided by m; therefore, any element of the class
[r] can serve as a valid representative. For example, 5, 6, −3, 8, and −6 can serve
as ambassadors of the classes [0], [1], [2], [3], and [4], respectively. Such a set of
integers is a complete set of residues modulo 5.

A Complete Set of Residues Modulo m

A set of m integers is a complete set of residues modulo m if every integer is con-
gruent modulo m to exactly one of them.

Thus, the set of integers {a1,a2, . . . ,am} is a complete set of residues modulo
m, if they are congruent modulo m to the least residues 0,1,2, . . . , (m − 1) in some
order. For instance, the set {−12,9,6,23} is a complete set of residues modulo 4
since −12 ≡ 0 (mod 4), 9 ≡ 1 (mod 4), 6 ≡ 2 (mod 4), and 23 ≡ 3 (mod 4).
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The following theorem shows that two congruences with the same modulus can
be added and multiplied, just as with equality.

THEOREM 4.4 Let a ≡ b (mod m) and c ≡ d (mod m). Then (1) a+c ≡ b+d (mod m) and (2) ac ≡
bd (mod m).

PROOF

Since a ≡ b (mod m) and c ≡ d (mod m), a = b + �m and c = d + km for some
integers � and m. Then

(1) a + c = (b + �m) + (d + km)

= (b + d) + (� + k)m

≡ b + d (mod m)

(2) ac − bd = (ac − bc) + (bc − bd)

= c(a − b) + b(c − d)

= c�m + bkm

= (c� + bk)m

So ac ≡ bd (mod m). �

EXAMPLE 4.3 We have 17 ≡ −4 (mod 3) and 28 ≡ 7 (mod 3). So, by Theorem 4.4, 17 + 28 ≡
−4 + 7 (mod 3); that is, 45 ≡ 3 (mod 3). Also, 17 · 28 ≡ (−4) · 7 (mod 3); that is,
476 ≡ −28 (mod 3). �

The following two examples are interesting applications of Corollary 4.1 and
Theorem 4.4.

EXAMPLE 4.4 Find the remainder when 1! + 2! + · · · + 100! is divided by 15.

SOLUTION

Notice that when k ≥ 5, k! ≡ 0 (mod 15) (why?). Therefore,

1! + 2! + · · · + 100! ≡ 1! + 2! + 3! + 4! + 0 + · · · + 0 (mod 15)

≡ 1 + 2 + 6 + 24 (mod 15)

≡ 1 + 2 + 0 (mod 15)

≡ 3 (mod 15)

Thus, when the given sum is divided by 15, the remainder is 3. �
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EXAMPLE 4.5 Find the positive integers n for which
n∑

k=1
k! is a square.

SOLUTION

Notice that when k ≥ 5, k! ≡ 0 (mod 10) (why?), so let n ≥ 5. Let S denote the given
sum. Then

S ≡ ones digit in
n∑

k=1

k! (mod 10)

≡ (1! + 2! + 3! + 4!) (mod 10)

≡ (1 + 2 + 6 + 24) (mod 10)

≡ 3 (mod 10)

Thus, the ones digit in S is 3, if n ≥ 5.
But 02 ≡ 0 (mod 10), 12 ≡ 1 (mod 10), 22 ≡ 4 (mod 10), 32 ≡ 9 (mod 10),

42 ≡ 6 (mod 10), 52 ≡ 5 (mod 10), 62 ≡ 6 (mod 10), 72 ≡ 9 (mod 10), 82 ≡ 4
(mod 10), and 92 ≡ 1 (mod 10).

Consequently, the square of every integer must end in 0, 1, 4, 5, 6, or 9. Thus, if
n ≥ 5, S cannot be a square.

When n = 1, S = 1, and when n = 3, S = 9, both squares; but S is not a square
when n = 2 or 4.

Thus, there are exactly two positive integers n for which S is a square, namely,
1 and 3. (See Example 11.19 also.) �

It follows from Theorem 4.4 that one congruence can be subtracted from an-
other, provided they have the same modulus, as the following corollary states. We
leave its proof as an exercise. See Exercise 70.

COROLLARY 4.3 If a ≡ b (mod m) and c ≡ d (mod m), then a − c ≡ b − d (mod m). �

For example, 23 ≡ 13 (mod 5) and 30 ≡ −5 (mod 5); so 23 − 30 ≡ 13 − (−5)

(mod 5); that is, −7 ≡ 18 (mod 5), which is true.
The following corollary also follows from Theorem 4.4. Again, we leave its

proof as an exercise. See Exercises 69–72.

COROLLARY 4.4 If a ≡ b (mod m) and c is any integer, then

• a + c ≡ b + c (mod m)

• a − c ≡ b − c (mod m)

• ac ≡ bc (mod m)

• a2 ≡ b2 (mod m) �
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For example, notice that 19 ≡ 5 (mod 7). So 19 + 11 ≡ 5 + 11 (mod 7), 19 −
11 ≡ 5 − 11 (mod 7), and 19 · 11 ≡ 5 · 11 (mod 7).

Part (4) of Corollary 4.4 can be generalized to any positive integral exponent n,
as the following theorem shows.

THEOREM 4.5 If a ≡ b (mod m), then an ≡ bn (mod m) for any positive integer n.

PROOF (by weak induction)
The statement is clearly true when n = 1, so assume it is true for an arbitrary positive
integer k: ak ≡ bk (mod m). Then, by Theorem 4.4, a · ak ≡ b · bk (mod m); that is,
ak+1 ≡ bk+1 (mod m). Thus, the result follows by induction. �

The following two examples are nice applications of Corollaries 4.3 and 4.4,
and Theorem 4.5. They show how congruence can be applied to a wide variety of
situations.

EXAMPLE 4.6 Show that 1919 cannot be expressed as the sum of the cube of an integer and the
fourth power of another integer.†

PROOF (by contradiction)
Notice that 1919 ≡ 619 (mod 13). But 62 ≡ −3 (mod 13) and 64 ≡ −4 (mod 13),
so 66 ≡ −1 (mod 13). Therefore, 1919 ≡ 619 ≡ (66)3 · 6 ≡ (−1)3 · 6 ≡ −6 ≡ 7
(mod 13).

Suppose 1919 can be expressed as x3 + y4 for some integers x and y. With a bit
of patience, we can see that x3 ≡ 0, 1, 5, 8, or 12 modulo 13, and y4 ≡ 0, 1, 3, or 9
modulo 13. Thus, x3 + y4 can be congruent to any least residue modulo 13, except 7.
This is a contradiction since 1919 ≡ 7 (mod 13).

Thus, 1919 cannot be expressed as the sum of the cube of an integer and the
fourth power of another integer. �

EXAMPLE 4.7 Prove that no integer of the form 8n + 7 can be expressed as a sum of three squares.

PROOF (by contradiction)
Suppose there is an integer N of the form 8n + 7 that can be expressed as the sum
x2 + y2 + z2 of three integers x, y, and z. Then N ≡ 7 (mod 8), so x2 + y2 + z2 ≡ 7
(mod 8). By Corollary 4.2, x must be congruent modulo 8 to 0, 1, 2, 3, 4, 5, 6,
or 7; but 5 ≡ −3 (mod 8), 6 ≡ −2 (mod 8), 7 ≡ −1 (mod 8); so, by Corollary 4.4,

† Based on A. Dunn (ed.), Mathematical Bafflers, Dover, New York, 1980, p. 187.
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x2 must be congruent modulo 8 to 02, 12, 22, 32, 42, (−3)2, (−2)2, (−1)2, that
is, to 0, 1, or 4. Likewise, both y2 and z2 must be congruent to 0, 1, or 4 mod-
ulo 8.

Therefore, by Theorem 4.4, x2 + y2 + z2 must be congruent modulo 8 to
exactly one of the sums 0 + 0 + 0, 0 + 0 + 1, 0 + 0 + 4, 0 + 1 + 0, . . . ,
4 + 4 + 4, but none of them is congruent to 7 modulo 8, which is a contradic-
tion.

Thus, no integer of the form 8n + 7 can be expressed as the sum of three
squares. �

Theorems 4.4 and 4.5 can effectively be used to compute the remainder when
an integer bn is divided by m, as the following two examples illustrate.

EXAMPLE 4.8 Find the remainder when 1653 is divided by 7.

SOLUTION

First, reduce the base to its least residue: 16 ≡ 2 (mod 7). So, by Theorem 4.5,
1653 ≡ 253 (mod 7). Now express a suitable power of 2 congruent modulo 7 to a
number less than 7: 23 ≡ 1 (mod 7). Therefore,

253 = 23·17+2 = (23)17 · 22

≡ 117 · 4 (mod 7)

≡ 4 (mod 7)

So 1653 ≡ 4 (mod 7), by the transitive property. Thus, when 1653 is divided by 7, the
remainder is 4. �

Notice the tremendous power of congruences in finding the remainder quickly
and easily when a very large number bn is divided by m.

EXAMPLE 4.9 Find the remainder when 3247 is divided by 17.

SOLUTION

Once again, we let the congruence do the job for us. We have

33 = 27 ≡ 10 (mod 17)
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Squaring both sides,

36 ≡ 100 (mod 17)

≡ −2 (mod 17)

Raise both sides to the fourth power:

324 ≡ (−2)4 (mod 17)

≡ −1 (mod 17)

Now apply the division algorithm with 24 as the divisor:

3247 = 324·10+7 = (324)10 · 36 · 3

≡ (−1)10 · (−2) · 3 (mod 17)

≡ −6 (mod 17)

Change −6 to its least residue:

≡ 11 (mod 17)

Thus, the remainder is 11. (Once again, appreciate the power of congruences.) �

Modular Exponentiation

Modular exponentiation is a less efficient method for determining the remain-
der when bn is divided by m. It is based on the binary representation of n =
(nknk−1 . . .n1n0)two, successive squaring, the least residue of bni , where 0 ≤ i ≤ k,
and Theorems 4.4 and 4.5:

bn = bnk2k+nk−12k−1+···+n0 ≡ bnk2k · bnk−12k−1 · · ·bn0 (mod m)

The following example illustrates this method.

EXAMPLE 4.10 Compute the remainder when 3247 is divided by 25.

SOLUTION

First, notice that 247 = 11110111two. Now find the least residues of 32 and its suc-
cessive squares modulo 25:
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32 ≡ 9 (mod 25) 34 = 92 ≡ 6 (mod 25)

38 ≡ 62 ≡ 11 (mod 25) 316 ≡ 112 ≡ 21 (mod 25)

332 ≡ 212 ≡ 16 (mod 25) 364 ≡ 162 ≡ 6 (mod 25)

3128 ≡ 62 ≡ 11 (mod 25)

(128 is the largest power of 2 contained in 247.)
Then

3247 = 3128+64+32+16+4+2+1

= 3128 · 364 · 332 · 316 · 34 · 32 · 31

≡ 11 · 6 · 16 · 21 · 6 · 9 · 3 (mod 25)

≡ 11 · (6 · 16) · 21 · (6 · 9) · 3 (mod 25)

≡ [11 · (−4)] · [(−4) · 4] · 3 ≡ 6 · 9 · 3 ≡ (6 · 9) · 3 (mod 25)

≡ 4 · 3 ≡ 12 (mod 25)

Thus, 12 is the desired remainder. �

The amount of work in such a problem can be greatly reduced if we introduce
negative residues, as the following example shows.

EXAMPLE 4.11 Find the remainder when 3181 is divided by 17.

SOLUTION

We have

32 ≡ 9 (mod 17) 34 ≡ −4 (mod 17) 38 ≡ −1 (mod 17)

316 ≡ 1 (mod 17) 332 ≡ 1 (mod 17) 364 ≡ 1 (mod 17)

3128 ≡ 1 (mod 17)

Therefore:

3181 = 3128 · 332 · 316 · 34 · 31

≡ 1 · 1 · 1 · 13 · 3 (mod 17)

≡ 5 (mod 17)

Thus, the desired remainder is 5. �
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Towers of Powers Modulo m

The technique of finding remainders using congruences can be extended to numbers
with exponents, which are towers of powers, as the following example demonstrates.

EXAMPLE 4.12 Find the last digit in the decimal value of 199719981999
.

SOLUTION

First, notice that abc = a(bc). Let N denote the given number. The last digit in N
equals the least residue of N modulo 10.

Since 1997 ≡ 7 (mod 10), let us study the various powers of 7: 71 ≡ 7 (mod 10),
72 ≡ 9 (mod 10), 73 ≡ 3 (mod 10), 74 ≡ 1 (mod 10), 75 ≡ 7 (mod 10) and clearly a
pattern emerges:

7a ≡

⎧
⎪⎪⎨

⎪⎪⎩

1 (mod 10) if a ≡ 0 (mod 4)

7 (mod 10) if a ≡ 1 (mod 4)

9 (mod 10) if a ≡ 2 (mod 4)

3 (mod 10) if a ≡ 3 (mod 4)

Now let us look at 1998. Since 1998 ≡ 2 (mod 4), 1998n ≡ 2n (mod 4), so if n ≥ 2,
then 1998n ≡ 0 (mod 4). Thus, since 1999 ≥ 2, 19981999 ≡ 0 (mod 4), so N ≡ 1
(mod 10). In other words, the last digit in the decimal value of N is 1. �

The following two examples also demonstrate the power of congruences.

EXAMPLE 4.13 Show that 11 · 14n + 1 is a composite number.†

PROOF

Let N = 11 · 14n + 1. We shall show that p|N for some prime p.
Suppose n is even. Since 14 ≡ −1 (mod 3), 14n ≡ 1 (mod 3). Then N ≡ 2 · 1 +

1 ≡ 0 (mod 3), so 3|N.
On the other hand, let n be odd. Since 14 ≡ −1 (mod 5), 14n ≡ −1 (mod 5).

Then N ≡ 1 · (−1) + 1 ≡ 0 (mod 5), so 5|N.
Thus, in both cases, N is composite. �

It is well known that N = n2 + n + 41 is a prime for 0 ≤ n < 41. The following
example shows how to compute the remainder when N2 is divided by 12, for every
integer n.

† Based on A. Dunn (ed.), Mathematical Bafflers, Dover, New York, 1980, p. 192. The elegant proof
given here is due to J. N. A. Hawkins of Pacific Palisades, California.
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EXAMPLE 4.14 Find the remainder when (n2 + n + 41)2 is divided by 12.

PROOF

First, notice that the product of four consecutive integers is divisible by 12; that is,
(n − 1)n(n + 1)(n + 2) ≡ 0 (mod 12).

We have

(n2 + n + 41)2 ≡ (n2 + n + 5)2 (mod 12)

≡ (n4 + 2n3 + 11n2 + 10n + 25) (mod 12)

≡ (n4 + 2n3 − n2 − 2n) + 1 (mod 12)

≡ n(n3 + 2n2 − n − 2) + 1 (mod 12)

≡ n[n2(n + 2) − (n + 2)] + 1 (mod 12)

≡ n(n + 2)(n2 − 1) + 1 (mod 12)

≡ (n − 1)n(n + 1)(n + 2) + 1 (mod 12)

≡ 1 (mod 12)

Thus when (n2 + n + 41)2 is divided by 12, the remainder is 1. �

In Example 2.29 we found that the Fermat number f5 = 225 + 1 is divisible
by 641. The next example furnishes an elegant alternate proof of this fact, using
congruences.

EXAMPLE 4.15 Show that f5 = 225 + 1 is divisible by 641.

PROOF

First, notice that 640 ≡ −1 (mod 641); that is, 5 · 27 ≡ −1 (mod 641). Therefore,

54 · 228 ≡ 1 (mod 641) (4.1)

But 54 = 625 ≡ −16 ≡ −24 (mod 641), so congruence (4.1) can be rewritten as
(−24)(228) ≡ 1 (mod 641); that is, 232 ≡ −1 (mod 641). Thus, 641| f5. �

We now examine some additional properties of congruences.
The cancellation property of multiplication says, if ac = bc and c �= 0, then

a = b.
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Does this have an analogous result for congruences? In other words, if ac ≡ bc
(mod m) and c �≡ 0 (mod m), is a ≡ b (mod m)? To answer this, notice that 3 ·8 ≡ 3 ·4
(mod 6), but 8 �≡ 4 (mod 6), so the answer is a definite no.

But under some circumstances, the answer is yes, as the following theorem
shows.

THEOREM 4.6 If ac ≡ bc (mod m) and (c,m) = 1, then a ≡ b (mod m).

PROOF

Suppose ac ≡ bc (mod m), where (c,m) = 1. Then m|(ac − bc); that is, m|c(a − b).
But (m, c) = 1, so, by Corollary 3.4, m|(a − b); that is, a ≡ b (mod m). �

Thus, we can cancel the same number c from both sides of a congruence, pro-
vided c and m are relatively prime, as the following example demonstrates.

EXAMPLE 4.16 Notice that 78 ≡ 48 (mod 5); that is, 6 · 13 ≡ 6 · 8 (mod 5). Since (6,5) = 1, we can
cancel 6 from both sides:

� 6 · 13 ≡� 6 · 8 (mod 5)

That is,

13 ≡ 8 (mod 5)

which is clearly true. �

The following example, an application of Theorem 4.6, revisits the monkey and
coconuts riddle we solved earlier.

The Monkey and Coconuts Puzzle Revisited

EXAMPLE 4.17 Using congruences, solve the monkey and coconuts riddle in Example 3.23.

SOLUTION

Once again, let n denote the least possible number of coconuts in the original puzzle
and z each sailor’s share after the final division. Then

1

5

(
4

5

(
4

5

(
4

5

(
4

5

(
4

5
(n − 1) − 1

)

− 1

)

− 1

)

− 1

)

− 1

)

= z
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With a bit of patience, we can rewrite this equation as

n

(
4

5

)5

−
[

1 + 4

5
+

(
4

5

)2

+
(

4

5

)3

+
(

4

5

)4

+
(

4

5

)5
]

= 5z

n

(
4

5

)5

− 1 − (4/5)6

1 − 4/5
= 5z

n

(
4

5

)5

− 56 − 46

55
= 5z

45n + 46 − 56 = 56z

(n + 4)45 = (z + 1)56

≡ 0 (mod 56)

But (45,56) = 1, so n + 4 ≡ 0 (mod 56). Thus, for n to be a minimum, n + 4 = 56 =
15,625; so n = 15,621, as found earlier. �

Returning to Theorem 4.6, we can generalize it as follows.

THEOREM 4.7 If ac ≡ bc (mod m) and (c,m) = d, then a ≡ b (mod m/d).

PROOF

Suppose ac ≡ bc (mod m), where (c,m) = d. Then m|(ac − bc), so ac − bc = km for
some integer k; that is, c(a − b) = km. Divide both sides by d:

(
c

d

)

(a − b) = k

(
m

d

)

By Theorem 3.4, (c/d,m/d) = 1, so
m

d
|(a − b); that is, a ≡ b (mod m/d). �

EXAMPLE 4.18 You can verify that 8 · 37 ≡ 8 · 7 (mod 12). Since (8,12) = 4, by Theorem 4.7, we
can cancel 8 from both sides:

� 8 · 37 ≡� 8 · 7 (mod 12/4)

That is,

37 ≡ 7 (mod 3) �
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Now we will see how congruences of two numbers with different moduli can be
combined into a single congruence.

THEOREM 4.8 If a ≡ b (mod m1), a ≡ b (mod m2), . . . , a ≡ b (mod mk), then a ≡ b (mod [m1,m2,

. . . ,mk]).

PROOF

By the given hypotheses, m1|(a − b), m2|(a − b), . . . ,mk|(a − b), so, by Corol-
lary 3.12, [m1,m2, . . . ,mk]|(a − b); that is, a ≡ b (mod [m1,m2, . . . ,mk]). �

The following example illustrates this result.

EXAMPLE 4.19 You can verify that 197 ≡ 77 (mod 6), 197 ≡ 77 (mod 10), and 197 ≡ 77 (mod 15);
so by Theorem 4.8, 197 ≡ 77 (mod [6,10,15]); that is, 197 ≡ 77 (mod 30). �

The following corollary follows easily from this theorem.

COROLLARY 4.5 If a ≡ b (mod m1), a ≡ b (mod m2), . . . , a ≡ b (mod mk), where the moduli are
pairwise relatively prime, then a ≡ b (mod m1m2 · · ·mk). �

E X E R C I S E S 4.1

Mark True or False, where a, b, c, and d are arbitrary
integers, m a positive integer, and p a prime.

1. 12 ≡ −3 (mod 5) 2. 18 �≡ −2 (mod 4)

3. 10 ≡ 1 (mod 9) 4. 10 ≡ −1 (mod 11)

5. a ≡ a (mod m)

6. If a ≡ b (mod m), then b ≡ a (mod m).

7. If a ≡ b (mod m) and b ≡ c (mod m), then a ≡ c
(mod m).

8. If a ≡ b (mod m), then −a ≡ −b (mod m).
9. If a ≡ b (mod m) and c ≡ d (mod m), then a + c ≡

b + d (mod m).
10. If a + c ≡ b + c (mod m), then a ≡ b (mod m).
11. If a ≡ b (mod m) and c ≡ d (mod m), then ac ≡ bd

(mod m).
12. If ac ≡ bc (mod m), then a ≡ b (mod m).
13. If a ≡ b (mod m), then a2 ≡ b2 (mod m).
14. If a2 ≡ b2 (mod m), then a ≡ b (mod m).

15. If a ≡ b (mod m) and a ≡ b (mod n), then a ≡ b
(mod m + n).

16. If a ≡ b (mod m) and a ≡ b (mod n), then a ≡ b
(mod mn).

17. If ab ≡ 0 (mod m), then a ≡ 0 (mod m) and b ≡ 0
(mod m).

18. If a �≡ b (mod m), then m � (a − b).
19. If a �≡ b (mod m), then b �≡ a (mod m).
20. If a �≡ b (mod m) and b �≡ c (mod m), then a �≡ c

(mod m).
21. If a �≡ 0 (mod m) and b �≡ 0 (mod m), then ab �≡ 0

(mod m).
22. If ac ≡ bc (mod p) and p � c, then a ≡ b (mod p).
23. 9100 − 1 is divisible by 10.
24. 102001 + 1 is divisible by 11.

Rewrite each sentence in Exercises 25–28, using the con-
gruence symbol.
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25. n is an odd integer.
26. n is an even integer.
27. n is divisible by 5.
28. The product of any three consecutive integers is di-

visible by 6.
29. If today is Tuesday, what day will it be in 129 days?
30. If today is Friday, what day will it be in 1976 days?
31. If it is 9 A.M. now, what time will it be in 1900 hours?
32. If it is 3 P.M. now, what time will it be in 4334 hours?

Give a counterexample to disprove each statement.

33. If a2 ≡ b2 (mod m), then a ≡ b (mod m).
34. If a �≡ 0 (mod m) and b �≡ 0 (mod m), then ab �≡ 0

(mod m).

Find the remainder when 1! + 2! + 3! + · · · + 1000! is di-
vided by each integer.

35. 10 36. 11 37. 12 38. 13

Find the remainder when the first integer is divided by the
second.

39. 235,7 40. 531,12
41. 231001,17 42. 191976,23

Using modular exponentiation, find the remainder when
the first integer is divided by the second.

43. 297,13 44. 4117,15
45. 13218,17 46. 19343,23

Find the units digit in the decimal value of each.

47. 177617771778

48. 194316421053

49. 1077117712771377

50. 1089208930894089

Find the last two digits in the decimal value of each.

51. 17761976 52. 18291829

53. Let n ≡ r (mod 10), where 0 ≤ r < 10. Identify the
units digit in the decimal expansion of n.

Find the least residues x such that x2 ≡ 1 (mod m) for
each value of m.

54. 5 55. 6 56. 7 57. 8

Using Exercises 54–57, conjecture the number of least
residues x such that

58. x2 ≡ 1 (mod p), where p is a prime.
59. x2 ≡ 1 (mod m), where m is a positive integer.
60. Let a be a least residue modulo 5. Compute the least

residue of a5 for each a.
61. Let a be a least residue modulo 7. Compute the least

residue of a7 for each a.
62. Using Exercises 60 and 61, predict the least residue

of ap modulo p, where p is a prime.

Compute the least residue of (p − 1)! modulo p for each
prime.

63. 3 64. 5 65. 7 66. 11

67. Using Exercises 63–65, conjecture the least residue
of (p − 1)! modulo p.

Prove each, where a, b, c, d, and n are any integers, m is
a positive integer, and p is a prime.

68. If a ≡ b (mod m) and c ≡ d (mod m), then a − c ≡
b − d (mod m).

If a ≡ b (mod m) and c is any integer, then:

69. a + c ≡ b + c (mod m)

70. a − c ≡ b − c (mod m)

71. ac ≡ bc (mod m)

72. a2 ≡ b2 (mod m)

73. If ac ≡ bc (mod p) and p � c, then a ≡ b (mod p).
74. If a2 ≡ 1, then a ≡ ±1 (mod p).
75. Let f (x) be a polynomial with integral coefficients

and a ≡ b (mod m). Then f (a) ≡ f (b) (mod m).
76. The square of every even integer is congruent to 0

modulo 4.
77. Every odd integer is congruent to 1 or 3 modulo 4.
78. If ab ≡ 0 (mod p), then a ≡ 0 (mod p) or b ≡ 0

(mod p).
79. The square of every odd integer is congruent to 1

modulo 4.
80. Every prime > 3 is congruent to ±1 modulo 6.
81. If 2a ≡ 0 (mod p) and p is an odd prime, then a ≡ 0

(mod p).
82. n2 + n ≡ 0 (mod 2)

83. n4 + 2n3 + n2 ≡ 0 (mod 4)

84. 2n3 + 3n2 + n ≡ 0 (mod 6)
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85. Using congruences, show that the only Fermat num-
ber that is also triangular is 3. (S. Asadulla, 1987)

86. 1155 � n7777 +7777n+1, where n is a square. (A. Ku-
mar, 2003)

87. The last n + 1 digits of 52n
are the same as those of

52n−1
, where n ≥ 3. (P. A. Lindstrom, 2005)

88.

(
2p
p

)

≡ 2 (mod p), where p > 2. (J. M. Gandhi,

1959)

89. p|
(

2p
r

)

, where 0 < r < p.

90. By Theorem 3.18, every prime factor of fn is of the
form k · 2n+2 + 1, where n ≥ 2. Then k2n ≡ (−1)n

(mod p).
91. Find all primes p such that p,p + 2d, and p + 4d are

primes, where 3 � d. (M. S. Klamkin, 1967)
92. Find the number of entries in row 2p of Pascal’s tri-

angle that are divisible by p, where p is an odd prime.
93. Find the remainder when googolplex is divided by 7.

(H. W. Kickey, 1966)

� �

4.2 Linear Congruences

In the previous section we studied the language of congruences and some fundamen-
tal properties of congruences. Now we look at congruences containing variables,
such as 3x ≡ 4 (mod 5), x2 ≡ 1 (mod 8), and x2 + 2 ≡ 3x (mod 5). The simplest
such congruence is the linear congruence ax ≡ b (mod m). We will now see that
linear congruences and LDEs are interlinked. We will also learn a necessary and
sufficient condition for a linear congruence to be solvable.

By a solution of the linear congruence, we mean an integer x0 such that ax0 ≡ b
(mod m). For example, 3 · 3 ≡ 4 (mod 5), so 3 is a solution of the congruence 3x ≡ 4
(mod 5). But the congruence 4x ≡ 1 (mod 2) has no solutions, since 2 � (4x − 1) for
any integer x.

To see the link between linear congruences and LDEs, consider ax ≡ b (mod m).
Then, by Theorem 4.1, ax = b + my for some integer y. Consequently, ax ≡ b
(mod m) is solvable if and only if the LDE ax − my = b is solvable.

Suppose x0 is a solution of the congruence ax ≡ b (mod m); then ax0 ≡ b
(mod m). Suppose, in addition, x1 ≡ x0 (mod m). Then, by Corollary 4.4, ax1 ≡ ax0

(mod m), so, by transitivity, ax1 ≡ b (mod m); thus, x1 is also a solution of the con-
gruence. But x1 and x0 belong to the same congruence class; so if x0 is a solution,
then every member of its class is also a solution.

For instance, since 3 is a solution of the linear congruence 3x ≡ 4 (mod 5), every
member of the congruence class [3] = {. . . ,−7,−2,3,8,13, . . .} is also a solution;
they are given by x = 3 + 5t:

3(3 + 5t) = 9 + 15t
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≡ 4 + 0 (mod 5)

≡ 4 (mod 5)

Thus, if the congruence ax ≡ b (mod m) is solvable, it has infinitely many solu-
tions. Consequently, we are interested in its incongruent solutions only. For example,
the congruence 9x ≡ 6 (mod 12) has three incongruent solutions, namely, 2, 6, and
10: 9 · 2 ≡ 6 (mod 12), 9 · 6 ≡ 6 (mod 12), and 9 · 10 ≡ 6 (mod 12).

The following theorem provides a necessary and sufficient condition for a lin-
ear congruence to be solvable. This theorem also gives the number of incongruent
solutions, and a formula for finding them when the congruence is solvable.

THEOREM 4.9 The linear congruence ax ≡ b (mod m) is solvable if and only if d|b, where d =
(a,m). If d|b, then it has d incongruent solutions.

PROOF

The linear congruence ax ≡ b (mod m) is equivalent to the LDE ax − my = b; so the
congruence is solvable if and only if the LDE is solvable. But, by Theorem 3.19, the
LDE is solvable if and only if d|b. Thus ax ≡ b (mod m) is solvable if and only if
d|b.

When d|b, the LDE has infinitely many solutions, given by

x = x0 +
(

m

d

)

t, y = y0 +
(

a

d

)

t

so the congruence has infinitely many solutions x = x0 +
(

m

d

)

t, where x0 is a par-

ticular solution.
To find the number of incongruent solutions when the congruence is solvable,

suppose x1 = x0 +
(

m

d

)

t1, x2 = x0 +
(

m

d

)

t2, are two congruence solutions:

x0 +
(

m

d

)

t1 ≡ x0 +
(

m

d

)

t2 (mod m)

Subtracting x0 from both sides,

(
m

d

)

t1 ≡
(

m

d

)

t2 (mod m)

Since
m

d

∣
∣
∣
∣m, by Theorem 4.7, t1 ≡ t2 (mod d). Thus, the solutions x1 and x2 are

congruent if and only if t1 ≡ t2 (mod d); that is, if and only if t1 and t2 belong to the
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same congruence class modulo d. In other words, they are incongruent solutions if
and only if they belong to distinct congruence classes.

By Corollary 4.2, there are exactly d incongruent classes modulo d. Therefore,
the linear congruence, when solvable, has exactly d incongruent solutions, given by

x = x0 +
(

m

d

)

t, where 0 ≤ t < d. �

Note: x = x0 +
(

m

d

)

t, where 0 ≤ t < d, is the general solution of the linear

congruence.
This theorem has a useful corollary.

COROLLARY 4.6 The linear congruence ax ≡ b (mod m) has a unique solution if and only if
(a,m) = 1. �

The following two examples illustrate these fundamental results.

EXAMPLE 4.20 Determine if the congruences 8x ≡ 10 (mod 6), 2x ≡ 3 (mod 4), and 4x ≡ 7 (mod 5)

are solvable. Find the number of incongruent solutions when a congruence is solv-
able.

SOLUTION

• (8,6) = 2 and 2|10, so the congruence 8x ≡ 10 (mod 6) is solvable and it has
two incongruent solutions modulo 6.

• (2,4) = 2, but 2 � 3, so the congruence 2x ≡ 3 (mod 4) has no solutions.
• (4,7) = 1, so by Corollary 4.6, the congruence 4x ≡ 7 (mod 5) has a unique

solution modulo 5. �

The following example illustrates how to find the incongruent solutions of a
linear congruence.

EXAMPLE 4.21 Solve the congruence 12x ≡ 48 (mod 18).

SOLUTION

Since (12,18) = 6 and 6|48, the congruence has six incongruent solutions modu-

lo 6. They are given by x = x0 +
(

m

d

)

t = x0 + (18/6)t = x0 + 3t, where x0 is a

particular solution and 0 ≤ t < 6. By trial and error, x0 = 1 is a solution. Thus, the
six incongruent solutions modulo 18 are 1 + 3t, where 0 ≤ t < 6, that is, 1, 4, 7, 10,
13, and 16. �
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The same congruence can be solved in a slightly different way. Using Theo-
rem 4.7, divide the congruence by 6:

2x ≡ 8 (mod 3)

Now multiply both sides by 2 (to yield one x on the LHS):

2(2x) ≡ 2 · 8 (mod 3)

x ≡ 1 (mod 3)

So the solutions of this congruence are of the form x = 1 + 3t. Now, proceeding as
before, we get all the desired solutions.

The following example shows how congruences are useful in solving LDEs.

EXAMPLE 4.22 Using congruences, solve Mahavira’s puzzle in Example 3.20.

SOLUTION

From Example 3.20, we have 63x − 23y = −7. This LDE creates two linear congru-
ences: 63x ≡ −7 (mod 23) and −23y ≡ −7 (mod 63). The first one yields −6x ≡ −7
(mod 23); that is, 6x ≡ 7 (mod 23), where (6,23) = 1. Multiply both sides by 4,

4(6x) ≡ 4 · 7 (mod 23)

x ≡ 5 (mod 23)

So the general solution of the congruence 63x ≡ −7 (mod 23) is x = 5 + 23t.
Substitute for x in the LDE and solve for y:

63(5 + 23t) − 23y = −7

315 + 1449t − 23y = −7

y = 14 + 63t

Thus, the general solution of the LDE is x = 5+23t, y = 14+63t, with t an arbitrary
integer. (Notice that this agrees with the solution obtained earlier.) �

In this example, we could have solved the second congruence −23y ≡ −7
(mod 63) and obtained the same solution. Try this and convince yourself, in Ex-
ercise 20.
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Modular Inverses

Consider the special case b = 1 in Corollary 4.6. The linear congruence ax ≡ 1
(mod m) has a unique solution if and only if (a,m) = 1; in other words, when
(a,m) = 1, there is a unique least residue x such that ax ≡ 1 (mod m). Then a is
said to be invertible and x is called an inverse of a modulo m, denoted by a−1:
aa−1 ≡ 1 (mod m). If a−1 = a, then a is self-invertible.

EXAMPLE 4.23 Since 7 · 8 ≡ 1 (mod 11), 7 is invertible and 8 is an inverse of 7 modulo 11; that is,
7−1 is 8 modulo 11; 10 is its own inverse modulo 11, since 10 · 10 ≡ 1 (mod 11). �

Inverses are useful in solving linear congruences. To see this, let us return to the
congruence ax ≡ b (mod m), where (a,m) = 1. Since (a,m) = 1, a has an inverse
a−1 modulo m. Multiplying both sides of the congruence by a−1, we get

a−1(ax) ≡ a−1b (mod m)

(a−1a)x ≡ a−1b (mod m)

1x ≡ a−1b (mod m)

That is,

x ≡ a−1b (mod m)

Accordingly, we have the following result.

THEOREM 4.10 The unique solution of the linear congruence ax ≡ b (mod m), where (a,m) = 1, is
the least residue of a−1b (mod m). �

The following example employs this result.

EXAMPLE 4.24 Using Theorem 4.10, solve the hundreds fowls riddle in Example 3.18.

SOLUTION

From Example 3.21, we have

x + y + z = 100 (4.2)

5x + 3y + z

3
= 100 (4.3)

Eliminating z between these equations, we get

7x + 4y = 100 (4.4)
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This yields

7x ≡ 100 (mod 4)

3x ≡ 0 (mod 4)

Therefore,

3(3x) ≡ 3 · 0 (mod 4) [Note: 3−1 ≡ 3 (mod 4)]
x ≡ 0 (mod 4)

So x = 4t. Substituting for x in equation (4.4), we get

7(4t) + 4y = 100

y = 25 − 7t

Now substitute for x and y in equation (4.2):

4t + (25 − 7t) + z = 100

z = 3t + 75

Thus, the general solution is x = 4t, y = 25 − 7t, z = 75 + 3t, exactly the same as
the one obtained in Example 3.21. �

The following example is an interesting application of Theorems 3.13 and 4.10,
and is a continuation of Example 3.12.

EXAMPLE 4.25 Find the last nonzero digit (from the left) in the decimal value of 234!.

SOLUTION

First, notice that the product of the four integers between any two consecutive
multiples of 5 is congruent to −1 modulo 5; that is, if n ≡ 0 (mod 5), then
(n + 1)(n + 2)(n + 3)(n + 4) ≡ 1 · 2 · 3 · 4 ≡ −1 (mod 5).

In Example 3.12, we found that 234! has 46 + 9 + 1 = 56 trailing zeros. Con-
sequently, the desired digit d is the ones digit in 234!/1056. Since the canonical
decomposition of 234! contains more 2s than 5s, d must be even. Thus, d = 2,4,6,
or 8. To extract the correct value of d, we compute 234!/1056 (mod 5) in seven steps:
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231 · 232 · 233 · 234 ≡ −1 (mod 5)

230!
546 · 46! = 230!

5 · 10 · 15 · · ·230
≡ (−1)46 ≡ 1 (mod 5)

46!
59 · 9! = 46!

5 · 10 · 15 · · ·45
≡ (−1)9 ≡ −1 (mod 5)

9!
5

≡ (−1)2 ≡ 1 (mod 5)

230!
546 · 46! · 46!

59 · 9! · 9!
5

≡ 1 · (−1) · 1 ≡ 4 (mod 5)

234!
556

= 230!(231 · 232 · 233 · 234)

556
≡ (−1) · 4 ≡ −4 ≡ 1 (mod 5)

Since 256 = 428 ≡ (−1)28 ≡ 1 (mod 5) and (2,5) = 1, this implies

234!
1056

= 234!
256556

≡ 1 (mod 5)

that is, d ≡ 1 (mod 5), so d = 6. Thus, the 56 zeros in 234! follow the digit 6. (See
Example 7.2 also.) �

We now redo this example differently, using a clever notation introduced by
P. M. Dunson in 1980.

Let n� denote the product of the integers 1 through n, omitting all multiples of 5.
For example, 9� = 1 · 2 · 3 · 4 · 6 · 7 · 8 · 9. Clearly, 230� ≡ 9� ≡ 6 (mod 10), 45� ≡ 4
(mod 10) and, 231 · 232 · 233 · 234 ≡ 4 (mod 10).

Notice that

234! = 234 · 233 · 232 · 231 · 230� · 546 · 46!
= 234 · 233 · 232 · 231 · 230� · 546 · 46 · 45� · 59 · 9!
= 234 · 233 · 232 · 231 · 46 · 230� · 45� · 555 · 5 · 9�

= 234 · 233 · 232 · 231 · 46 · 230� · 45� · 9� · 556

Therefore,
234!
556

= (234 · 233 · 232 · 231) · 46 · 230� · 45� · 9�

≡ 4 · 6 · 6 · 4 · 6 (mod 10)

≡ 6 (mod 10)

Since 234! contains exactly 56 trailing zeros,
234!
556

(mod 10) yields its last nonzero

digit. Thus, the last nonzero digit in 234! is 6.
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E X E R C I S E S 4.2

Using Theorem 4.9, determine whether each linear con-
gruence is solvable.

1. 12x ≡ 18 (mod 15)

2. 16y ≡ 18 (mod 12)

3. 12x ≡ 14 (mod 13)

4. 28u ≡ 119 (mod 91)

5. 76v ≡ 50 (mod 176)

6. 2076y ≡ 3076 (mod 1076)

Determine the number of incongruent solutions of each
linear congruence.

7. 12x ≡ 18 (mod 15)

8. 28u ≡ 119 (mod 91)

9. 49x ≡ 94 (mod 36)

10. 91y ≡ 119 (mod 28)

11. 48v ≡ 144 (mod 84)

12. 2076x ≡ 3076 (mod 1076)

13. Suppose x0 is a solution of the congruence ax ≡ b

(mod m). Show that x = x0 +
(

m

d

)

t is also a solu-

tion of the congruence, where d = (a,m).
14–19. Find the incongruent solutions of each congru-

ence in Exercises 7–12.
20. Using the congruence −23y ≡ −7 (mod 63), solve

the LDE 63x − 23y = −7.

Using congruences, solve each LDE.

21. 3x + 4y = 5 22. 6x + 9y = 15
23. 15x + 21y = 39 24. 28x + 91y = 119

25. 48x + 84y = 144
26. 1776x + 1976y = 4152

Find the least residues modulo m that are invertible for
each value of m.

27. five 28. six

Find the least residues modulo m that are self-invertible
for each value of m.

29. seven 30. twelve

Using inverses, find the incongruent solutions of each lin-
ear congruence.

31. 5x ≡ 3 (mod 6) 32. 4x ≡ 11 (mod 13)

33. 19x ≡ 29 (mod 16) 34. 48x ≡ 39 (mod 17)

35. Suppose b is an inverse of a modulo m. Show that a
is an inverse of b modulo m.

36. Let f (n) denote the number of positive integers ≤ n
and relatively prime to n. Using the function f , give
the number of least residues modulo m that are invert-
ible.

37. Let p be a prime. Prove that a least residue modulo p
is self-invertible if and only if a ≡ ±1 (mod p).

Find the last two digits of each number.

�38. 7777 �39. 191991

Find the last three digits of each number.

�40. 42076 �41. 171776

Find the last nonzero digit in the decimal value of each.
(Hint: Use Exercises 17–20 in Section 3.3.)

�42. 100! �43. 376!
�44. 609! �45. 1010!

The linear congruence ax ≡ c (mod b) is solvable if and
only if rn|c, and the solutions are given by x = x0 +
(−1)nb

rn
t, where rn = (a,b). Using this fact, solve each

linear congruence.

�46. 1024x ≡ 376 (mod 1000)
�47. 2076x ≡ 564 (mod 1776)

� �
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4.3 The Pollard Rho Factoring Method

Over the years, number theorists have expended considerable time and effort to de-
velop efficient algorithms for primality and factorization. In this section, we pursue
a factorization technique developed in 1974 by John M. Pollard. Although Pollard
called it the Monte Carlo method to reflect the seemingly random nature of the num-
bers generated in the factorization process, it is now called the Pollard rho method for
reasons that will become clear later. This method works remarkably well for factors
with no more than 20 digits.

The composite nature of the Fermat number f8 had been known since 1909.
However, no factors were discovered until 1980, when R. P. Brent and Pollard suc-
cessfully employed the rho method to find one of its two prime factors.

To describe the algorithm, consider a large odd integer n known to be composite.
Choose some seed value x0 and a diophantine polynomial f (x) of degree ≥ 2, say,

f (x) = x2 + a

where a �= 0,−2. We then generate a “random” sequence {xk} of distinct least non-
negative residues modulo n using the recursive formula

xk+1 ≡ f (xk) (mod n)

where k ≥ 0.
Our goal is to find a nontrivial factor d of n. Assume it is very small compared

to n. Since there are exactly d congruent classes modulo d and d < n, the integers
xk modulo d must become periodic; that is, there must exist residues xi and xj such
that xi ≡ xj (mod d), where i < j. Thus, the choice of x0 and f (x) must be such that
xi ≡ xj (mod d), but xi �≡ xj (mod n). Since d|(xj − xi) and n � (xj − xi), it follows that
the gcd (xj − xi,n) is a nontrivial factor of n, which can be found using the euclidean
algorithm. Notice that the knowledge of d does not occur in the computation of
(xj − xi,n).

Thus, to find a nontrivial factor of n, we continue computing (xj − xi,n) for
every distinct pair xj, xi until we encounter a nontrivial gcd. Such a gcd need not be
a prime or the smallest factor of n.

The following example illustrates this sophisticated algorithm.

EXAMPLE 4.26 Let n = 7943, x0 = 2, and f (x) = x2 + 1. Then

x1 = 5, x2 = 26, x3 = 677, x4 = 5579, x5 = 4568, x6 = 364,

x7 = 5409, . . .
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We now compute the gcd (xj − xi,n) for every distinct pair xj, xi until a non-
trivial gcd emerges. Since (x6 − x2,n) = (364 − 26,7943) = (338,7943) = 169,
169|7943. �

The above algorithm has the disadvantage that we need to compute (xj − xi,n)

for every distinct pair xj, xi until a nontrivial gcd occurs. This can be time consuming.
Fortunately, we can do better.

A Refined Version

Since xi ≡ xj (mod d),

xi+1 ≡ f (xi) ≡ f (xj) ≡ xj+1 (mod d)

where i < j. Consequently, the elements of the sequence {xk} reduced modulo d re-
peat in every block of j− i elements; that is, xr ≡ xs (mod d), where r ≡ s (mod j− i),
and r, s ≥ i. In fact, {xk} reduced modulo d is periodic with period that is a factor of
j − i.

In particular, let t be the smallest multiple of j − i that is greater than i. Then
t ≡ 0 (mod j − i); so 2t ≡ t (mod j − i). Consequently, xt ≡ x2t (mod d). Thus, to
find a nontrivial factor of n, we compute the gcd’s (x2k − xk,n), where k ≥ 1, as the
next example demonstrates.

EXAMPLE 4.27 Using the Pollard rho method, factor the integer 3893.

SOLUTION

We have n = 3893. Choosing x0 = 2 and f (x) = x2 + 1, we generate the sequence
{xk}:

5,26,677,2849,3790,2824,2113,3392,1850,554,3263,3708, . . .

Next, we compute (x2k − xk,n) for each value of k ≥ 1 until a nontrivial gcd
appears:

(x2 − x1,n) = (21,3893) = 1 (x4 − x2,n) = (2823,3893) = 1
(x6 − x3,n) = (2147,3893) = 1 (x8 − x4,n) = (543,3893) = 1
(x10 − x5,n) = (3236,3893) = 1 (x12 − x6,n) = (884,3893) = 17

Thus, 17|3893 and 3893 = 17 · 229. �
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The sequence {xk} in Example 4.26

2,5,26,677,5579,4568,364,5409, . . .

when reduced modulo 13, yields the periodic sequence

2,5,0,1,2
︸ ︷︷ ︸

,5,0,1,2
︸ ︷︷ ︸

,5,0,1,2
︸ ︷︷ ︸

,5,0, . . .

with period 4.
This periodic behavior can be displayed pictorially, as in Figure 4.2. Since it

resembles the Greek letter ρ (rho), the factoring method is now known as the rho
method.

Figure 4.2

In Section 7.2, we shall describe another factoring technique developed by Pol-
lard.

E X E R C I S E S 4.3

Using the Pollard rho method with x0 = 2 and f (x) =
x2 + 1, find the canonical decomposition of each integer.

1. 377 2. 3199 3. 5567 4. 9773

Find a factor of 39,997 using the Pollard rho method, the
given seed x0, and the given polynomial f (x).
5. x0 = 1, f (x) = x2 + 1 6. x0 = 2, f (x) = x2 + 1
7. x0 = 2, f (x) = x2 − 1 8. x0 = 3, f (x) = x2 − 1

� �

X CHAPTER SUMMARY

We developed the language of congruences, some fundamental properties, and some
simple applications, including a practical factoring technique.
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Congruences

• a ≡ b (mod m) if and only if m|(a − b). (p. 212)
• a ≡ b (mod m) if and only if a = b + km for some integer k. (p. 213)
• a ≡ a (mod m) (reflexive property) (p. 213)
• If a ≡ b (mod m), then b ≡ a (mod m) (symmetric property). (p. 213)
• If a ≡ b (mod m) and b ≡ c (mod m), then a ≡ c (mod m) (transitive prop-

erty). (p. 213)
• If a ≡ b (mod m), then

• a + c ≡ b + c (mod m) (p. 219)
• ac ≡ bc (mod m) (p. 219)
• an ≡ bn (mod m) (p. 220)

• If ac ≡ bc (mod m) and (c, m) = 1, then a ≡ b (mod m). (p. 226)
• If ac ≡ bc (mod m) and (c, m) = d, then a ≡ b (mod m/d). (p. 227)
• If a ≡ b (mod mi), where 1 ≤ i ≤ k, then a ≡ b (mod [m1,m2, . . . ,mk]).

(p. 228)

Linear Congruences

• A congruence of the form ax ≡ b (mod m) is a linear congruence. (p. 230)
• The linear congruence ax ≡ b (mod m) is solvable if and only if d|b, where

d = (a,m); when solvable, it has d incongruent solutions. (p. 231)
• The unique solution of ax ≡ b (mod m), where (a,m) = 1, is the least residue

of a−1b modulo m. (p. 234)

The Pollard Rho Factoring Method

• Let x0 be a starting value and f (x) = x2 +a, where a �= 0, −2. Then (xj −xi,n)

is a nontrivial factor of n. (p. 238)

X REVIEW EXERCISES

1. If today is Thursday, what day will it be in 1001 days?
2. If today is Wednesday, what day will it be in 4567 days?
3. If it is 11:30 A.M. now, what time will it be in 1770 hours?
4. If it is 11:30 P.M. now, what time will it be in 4455 hours?
5. Give a counterexample to show that (a,m) = (b,m) does not imply that a ≡ b

(mod m).

Let p be a prime. What is your conclusion if
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6. p ≡ 2 (mod 10)? 7. p ≡ 5 (mod 10)?

Determine whether each linear congruence is solvable.

8. 7x ≡ 10 (mod 13) 9. 15x ≡ 24 (mod 20)

Determine the number of incongruent solutions of each linear congruence.

10. 13x ≡ 14 (mod 15) 11. 15x ≡ 40 (mod 25)

Find the incongruent solutions of each linear congruence.

12. 5x ≡ 7 (mod 8) 13. 13x ≡ 14 (mod 15)

14. 15x ≡ 40 (mod 25) 15. 36x ≡ 96 (mod 156)

Using congruences, solve each LDE.

16. 15x + 25y = 40 17. 36x + 156y = 96
18. Find the least residues modulo 15 that are invertible.
19. Find the least residues modulo 18 that are self-invertible.

Find the remainder when

20. 1! + 2! + · · · + 100! is divided by 11.
21. 1! + 2! + · · · + 300! is divided by 13.
22. Find the ones digit in the sum 1! + 2! + · · · + 100!.
23. Find the ones digit in the ternary representation of a triangular number tn.
24. Find the ones digit in the base-four representation of a square number sn.

Using modular exponentiation, find the remainder when

25. 5103 is divided by 13. 26. 131001 is divided by 17.

Find the remainder when

27. 3100 is divided by 91. 28. 23243 is divided by 17.
29. 2100 + 3123 is divided by 11. 30. 72002 − 131024 is divided by 19.
31. 1313! is divided by 17. 32. 2318! is divided by 19.

Find the last two digits in each number.

33. 33434 34. 44444

Find the last three digits in each number.

35. 33003 36. 191776

Find the units digit in the decimal value of each.

37. 1024102510261027

38. 1773
177617792002

39. Find the remainder when
100∑

k=1
k! is divided by 12.
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40. Find the ones digit when
100∑

k=1
k! is represented in base fifteen.

It is 3 P.M. now. What time will it be in

41.
100∑

k=1
k! hours?

42.
1000∑

k=1
k! hours?

43. Let p and q be twin primes such that pq − 2 is also a prime. Find the possible
values of p. (J. D. Baum, 1977)

�44. Find the ones digit in

⌊
1020000

10100 + 3

⌋

. (Putnam Mathematics Competition, 1986)

Using the Pollard rho method, find the canonical decomposition of each integer.

45. 7429 46. 12121

Prove each, where p and q are distinct primes.

47. If a2 ≡ b2 (mod p), a ≡ ±b (mod p).
48. n2 ≡ n (mod 2)

49. n3 ≡ n (mod 3)

50. 24n + 3n ≡ 1 (mod 9)

51. 42n + 10n ≡ 1 (mod 25)

52. If a ≡ b (mod m), then (a,m) = (b,m).
53. Let a ≡ b (mod p) and a ≡ b (mod q). Then a ≡ b (mod pq).
54. Let pn denote the nth prime. Then p1p2 · · ·pn + 1 is not a square. (L. Moser,

1951)
55. If 12 · 900n + 1 is a prime, then it is a twin prime. (L. Marvin, 1970)
56. 99991|{1 + [1 + (1010 − 1)99989](10999890 − 1)} (F. J. Durante, 1955)
57. 2p + 3p is never a perfect power, where p > 2. (E. Just, 1973)
58. Let p2 �≡ p (mod p). Then p2n−1 +p2n−3 +· · ·+p+n ≡ 0 (mod 3) (R. S. Luthar

and S. Wurzel, 1966)

X SUPPLEMENTARY EXERCISES

1. The integer 1287xy6 is a multiple of 72. Find the number xy. (Mathematics
Teacher, 1986)

2. Solve: 1! + 2! + 3! + · · · + n! = m2. (E. T. H. Wang, 1979)
3. Find the largest factor of An = 2801n − 2696n − 2269n + 169n, for all n ≥ 1.

(The Mathematica Gazette, 1995)
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4. The year 1456 was the only recorded perihelion year of Halley’s comet that
was a multiple of 7. The most recent Halley years were 1835, 1910, and
1986, and the next one is 2061. Show that 18351910 + 19862061 is a multiple
of 7.

5. Show that 11999 + 21999 + · · · + 20001999 is a multiple of 2001.

An n-digit positive integer a is an automorphic number if the last n digits of a2

equals a. Clearly, 0 and 1 are automorphic.

6. Find four nontrivial automorphic numbers.
7. Prove: Every automorphic number must end in 0, 1, 5, or 6.
8. Prove: If a is automorphic, then a2 ≡ a (mod 10n).
9. Find all integer triplets (x, y, z) such that xy ≡ 1 (mod z), yz ≡ 1 (mod x), and

zx ≡ 1 (mod y), where 2 ≤ x ≤ y ≤ z. (G. Gilbert, 1991)

10. Let n ≥ 2. Prove that n is a prime if and only if

(
n − 1

k

)

≡ (−1)k (mod n),

where 0 ≤ k < n. (E. Deutsch and I. M. Gessel, 1997)
�11. Find all integer solutions (x, y, z) of the equations xy mod z = yz mod x =

zx mod y = 2. (D. Knuth, 2003)
�12. Find all positive integers m and n such that 2m + 3n is a square. (E. Just, 1973)

X COMPUTER EXERCISES

Write a program to perform each task.

1. Read in a positive integer n. Suppose today is day d, where 0 ≤ d < 7. Determine
the day in n days.

2. Read in a certain time of the day and a positive integer n. Determine the time of
the day in n hours.

3. Read in integers a,b, and m, and determine if the congruence ax ≡ b (mod m)

is solvable. Find the number of incongruent solutions when it is solvable.
4. Read in a positive integer n. Find the least residues modulo n that are

(a) invertible.
(b) self-invertible.

5. Verify that the sum of no combination of the integers 0, 1, and 4 is congruent to
7 modulo 8.

6. Using modular exponentiation, find the remainder when

(a) 3181 is divided by 17.
(b) 3247 is divided by 25.
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7. Solve the original monkey and coconuts puzzle.
8. Solve Williams’ version of the monkey and coconuts puzzle.
9. Construct a table of values of the function K(n) = [(n+8d)/9]2 −[(n+8d)/9]+

41, where −167 ≤ n ≤ 168 and d is the least residue of n modulo 9. Identify each
value as prime or composite. (T. Koshy, 1994)

10. Redo Program 9 with K(n) = [(n + 8d)/9]2 − 79[(n + 8d)/9] + 1601, where
0 ≤ n ≤ 367 and d is the least residue of n modulo 9. Identify each value as
prime or composite. (T. Koshy, 1994)

11. Using the Pollard rho method, factor 232 + 1 and 264 + 1.

X ENRICHMENT READINGS

1. I. G. Bashmakova, Diophantus and Diophantine Equations, Mathematical Asso-
ciation of America, Washington, DC, 1997.

2. A. H. Beiler, Recreations in the Theory of Numbers, Dover, New York, 1966,
pp. 31–38.

3. M. Gardner, Mathematical Puzzles and Diversions, University of Chicago Press,
Chicago, 1987.

4. T. Koshy, “Linear Diophantine Equations, Linear Congruences, and Matrices,”
The Mathematics Gazette, 82 (July 1998), 274–277.

5. C. S. Ogilvy and J. T. Anderson, Excursions in Number Theory, Dover, New York,
1966.

6. F. Sajdak, “The Rosberry Conjecture,” Mathematical Spectrum, 28 (1995–1996),
33.

7. S. Singh and D. Bhattacharya, “On Dividing Coconuts,” The College Mathematics
Journal, 28 (May 1987), 203–204.





5 Congruence Applications

Mighty are numbers, joined with art resistless.

— EURIPIDES

ongruence applications, as we will see shortly, are part of everyday life. TheC applications include the standard divisibility tests, interesting puzzles, mod-
ular designs, product identification codes, German bank notes, round-robin

tournaments, and a perpetual calendar.

5.1 Divisibility Tests

The theory of congruences can be used to develop simple tests for checking whether
a given integer n is divisible by an integer m. This section presents a few of them.

Let n = (nknk−1 . . .n1n0)ten be the decimal representation of n; that is, n =
nk10k + nk−110k−1 + · · · + n110 + n0. We shall use this expansion to develop di-
visibility tests for 10, 5, 2i, 3,9, and 11. We begin with the test for 10.

Divisibility Test for 10

Because 10 ≡ 0 (mod 10), by Theorems 4.4 and 4.5, n ≡ n0 (mod 10). So n is divis-
ible by 10 if and only if n0 is divisible by 10; that is, if and only if n0 = 0. Thus, an
integer is divisible by 10 if and only if its units digit is zero.

247
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Divisibility Test for 5

Because n ≡ n0 (mod 10), n is divisible by 5 if and only if n0 is divisible by 5. But
the only single-digit numbers divisible by 5 are 0 and 5, so an integer is divisible by
5 if and only if it ends in a 0 or 5.

Divisibility Test for 2i

Because 10 ≡ 0 (mod 2), 10i ≡ 0 (mod 2i) for all positive integers i. Therefore, by
Theorems 4.4 and 4.5, we have

n ≡ n0 (mod 2)

≡ n1n0 (mod 22) (Note: n1n0 denotes a two-digit number.)

≡ n2n1n0 (mod 23)
...

≡ ni−1ni−2 . . .n1n0 (mod 2i)

Thus, an integer n is divisible by 2i if and only if the number formed by the last i
digits in n is divisible by 2i.

In particular, n is divisible by 2 if and only if the ones digit n0 is divisible by 2;
it is divisible by 4 if the two-digit number n1n0 is divisible by 4; it is divisible by 8
if the three-digit number n2n1n0 is divisible by 8, and so on.

For example, let n = 343,506,076. Since 2|6, 2|n; 4|76, so 4|n; but 8 � 076, so
8 � n.

Divisibility Tests for 3 and 9

Because 10 ≡ 1 (mod 3), 10i ≡ 1 (mod 3), by Theorem 4.5. So by Theorem 4.4,
n ≡ nk + nk−1 + · · · + n1 + n0 (mod 3). Thus, an integer is divisible by 3 if and only
if the sum of its digits is divisible by 3.

Likewise, since n ≡ nk + nk−1 + · · · + n1 + n0 (mod 9), an integer is divisible
by 9 if and only if the sum of its digits is divisible by 9.

For example, let n = 243,506,076. The sum of its digits is 2 + 4 + 3 + 5 + 0 +
6 + 0 + 7 + 6 = 33. Since 3|33, 3|n; but 9 � 33, so 9 � n.

Next we turn to the divisibility test for 11.

Divisibility Test for 11

Notice that 10 ≡ −1 (mod 11), 10i ≡ (−1)i (mod 11), by Theorem 4.5. So again by
Theorem 4.5,

n ≡ (−1)knk + · · · − n3 + n2 − n1 + n0 (mod 11)
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Thus, 11|n if and only if (n0 + n2 + · · ·) − (n1 + n3 + · · ·) is divisible by 11; that is,
if and only if the sum of the digits in the “even” positions minus that in the “odd”
positions is divisible by 11.

For example, let n = 243,506,076.

Desired difference = (6 + 0 + 0 + 3 + 2) − (7 + 6 + 5 + 4)

= 11 − 22 = −11

Because 11|−11, 11|n also.
The following theorem identifies a class of integers that are divisible by 11.

THEOREM 5.1 A palindrome with an even number of digits is divisible by 11.

PROOF

Let n = n2k−1n2k−2 . . .n1n0 be a palindrome with an even number of digits. Then

n ≡ (n0 + n2 + · · · + n2k−2) − (n1 + n3 + · · · + n2k−1) (mod 11)

≡ 0 (mod 11)

because n is a palindrome with an even number of digits. Thus, 11|n. �

For example, both palindromes 1331 and 60,588,506 contain an even number of
digits, so both are divisible by 11.

You should be aware, however, that this theorem does not apply to palindromes with
an odd number of digits. For instance, the palindrome 131 contains an odd number
of digits. However, it is not divisible by 11.

Note that these divisibility tests can be extended to nondecimal bases. See Sup-
plementary Exercises 4 and 5.

Casting Out Nines

Next we can demonstrate a technique called casting out nines (in other words, can-
celing numbers that add up to 9). This technique can be used to detect computational
errors, as the following two examples show. Casting out nines is based on the fact
that every integer is congruent to the sum of its digits modulo 9.
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EXAMPLE 5.1 Using casting out nines, check if the sum of the numbers 3569, 24,387, and 49,508
is 78,464.

SOLUTION

We have

3569 ≡ 3 + 5 + 6 + 9 ≡ 5 (mod 9)

24387 ≡ 2 + 4 + 3 + 8 + 7 ≡ 6 (mod 9)

49508 ≡ 4 + 9 + 5 + 0 + 8 ≡ 8 (mod 9)

Their sum ≡ 5 + 6 + 8 (mod 9)

≡ 1 (mod 9)

Given answer = 78464 ≡ 7 + 8 + 4 + 6 + 4 (mod 9)

≡ 2 (mod 9)

Thus, the given answer is not congruent to the actual sum modulo 9; consequently,
the given sum is definitely wrong. (The correct sum is 77,464.) �

EXAMPLE 5.2 Using casting out nines, determine whether the product of 1976 and 3458 is
6,833,080.

SOLUTION

1976 ≡ 1 + 9 + 7 + 6 ≡ 5 (mod 9)

3458 ≡ 3 + 4 + 5 + 8 ≡ 2 (mod 9)

Their product ≡ 1 (mod 9)

Given answer = 6,833,080 ≡ 6 + 8 + 3 + 3 + 0 + 8 + 0 (mod 9)

≡ 1 (mod 9)

Because the given answer is congruent to the actual product modulo 9, we might be
tempted to say that the given answer is correct. In fact, all we can say is, it is probably
correct. This is so because any rearrangement of the digits of an integer yields the
same least residue modulo 9, an idea used by today’s accountants. (The given answer
is in fact wrong. The correct answer is 6,833,008.) �

As these two examples indicate, the only answer we can provide by using casting
out nines is that the given solution is either definitely wrong or probably correct.

Digital Root

Closely related to casting out nines is the concept of the digital root of a positive
integer N. It is computed by iteration: Find the sum s of its digits; then find the sum
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of the digits in s; continue this procedure until a single digit d emerges; then d is the
digital root of N.

For example, to find the digital root of 1976, add its digits: 1 + 9 + 7 + 6 = 23;
now add its digits: 2 + 3 = 5; so the digital root of 1976 is 5.

Notice that 1976 ≡ 5 (mod 9). More generally, let N = (an . . .a1a0)ten and let d be
its digital root. Then d ≡ (an + · · · + a1 + a0) (mod 9). Thus, the digital root of N
is the remainder when N is divided by 9, with one exception: It is 9 if the remainder
is 0.

The following example identifies the possible digital roots of perfect squares.

EXAMPLE 5.3 Find the digital roots of square numbers.

SOLUTION

By the division algorithm, every integer n is of the form 9k + r, where 0 ≤ r < 9.
So n ≡ r (mod 9) and hence n2 ≡ r2 (mod 9). Since r ≡ r − 9 (mod 9), 02 ≡ 0
(mod 9), (±1)2 ≡ 1 (mod 9), (±2)2 ≡ 4 (mod 9), (±3)2 ≡ 0 (mod 9), and (±4)2 ≡
7 (mod 9). Thus, n2 is congruent to 0, 1, 4, or 7, so its digital root is 1, 4, 7, or 9. �

This example can serve as a test to determine whether a positive integer can be a
square: If an integer is a square, then its digital root must be 1, 4, 7, or 9.

EXAMPLE 5.4 Determine whether N = 16,151,613,924 can be a square.

SOLUTION

Digital root of N ≡ (1 + 6 + 1 + 5 + 1 + 6 + 1 + 3 + 9 + 2 + 4) (mod 9)

≡ 3 (mod 9)

Because the digital root is 3, N is not a square. �
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Note that the converse of the preceding statement is false; that is, if the digital root
of N is 1, 4, 7, or 9, then N need not be a square. For instance, the digital root of 43
is 7, but 43 is not a square.

The following example identifies the digital root of the product of twin primes,
except for the pair 3 and 5.

EXAMPLE 5.5 Prove that the digital root of the product of twin primes, other than 3 and 5, is 8.

PROOF

Every prime > 3 is of the form 6k−1 or 6k+1 (see Exercise 80 in Section 4.1), so we
can take the twin primes to be 6k −1 and 6k +1. Their product = (6k −1)(6k +1) =
36k2 − 1 ≡ 0 − 1 ≡ 8 (mod 9). So the digital root of the product is 8. (Notice that
the digital root of 3 · 5 is 6 and not 8.) �

E X E R C I S E S 5.1

Mark True or False.

1. Every integer divisible by 5 is odd.
2. Every integer divisible by 11 is odd.
3. 11 is a palindrome.
4. Every palindrome is divisible by 9.
5. 101000 − 1 is divisible by 9.
6. 101000 − 1 is divisible by 11.

Which of the following numbers are divisible by 2? By 4?
By 8?

7. 427,364 8. 30,587,648
9. 800,358,816 10. 398,008,576

Which of the following numbers are divisible by 3? By 9?

11. 205,876 12. 31,876,203
13. 5,588,610,911 14. 767,767,767

Determine whether each number is divisible by 6.

15. 87,654 16. 327,723
17. 639,576 18. 2,197,584

Determine whether each number is divisible by 11.

19. 43,979 20. 548,152
21. 502,458 22. 1,928,388

Using casting out nines, identify each computation as
probably correct or definitely wrong.

23. 35897
750971

+ 908085
1684953

24. 58807
83291

+ 601756
748354

25. 7958036
− 2309859

5948177

26. 8314302
− 3708594

4605798

27. 2076
× 1076
223766

28. 4556
× 3443

15745034

Using casting out nines, find the missing nonzero digit d
in each computation.
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29. 7961 − 1976 = 59d5 30. 7167 − 1776 = 53d1
31. 253 · 86 = 2d758 32. 123 · 98 = 120d4
33. Find all four-digit integers of the form 4ab8 that are

divisible by 2, 3, 4, 6, 8, and 9. (Mathematics Teacher,
1992)

34. The seven-digit number 21358ab is divisible by 99.
Find a and b. (Mathematics Teacher, 1992)

35. Find the smallest number that leaves a remainder i
when divided by i + 1, where 1 ≤ i ≤ 9. (Mathemat-
ics Teacher, 1993)

36. Show that every six-digit number of the form abcabc
is divisible by 7, 11, and 13.

37. Develop a divisibility test for 37.
[Hint: 103 ≡ 1 (mod 37).]

A procedure similar to casting out nines, called casting
out twos, can be applied to check the accuracy of numeric
computations of binary numbers. In this process, we can-
cel pairs of bits that add up to 0 modulo 2. Using casting
out twos, determine whether each computation is proba-
bly correct or definitely wrong.

38. 10110110
1011111

+ 1110011
110001100

39. 110110111
− 11001101

11101010

40. 1011101
× 1011

1111110011

Find the digital root of each.

41. 16,429,058 42. 1776

43. 17761776 44. 20209999

45. Suppose the digital root of an integer n is 9. Show that
the digital root of any multiple of n is also 9.

Determine whether each can be a square.

46. 54,893,534,046 47. 61,194,858,376

48. Find the possible values of the digital root of a cube.

Prove each.

49. The units digit of a triangular number is 0, 1, 3, 5, 6,
or 8.

50. If a three-digit integer abc is divisible by 37, then its
cyclic permutations are also divisible by 37.

51. Let d|Rn, where Rn is a repunit. If d|anan−1 . . .a0,
then d divides every cyclic permutation of
anan−1 . . .a0.

52. The digital root ρ(fn) of the nth Fermat number fn is
given by

ρ(fn) =
{

5 if n is odd
8 otherwise

53. 22000 + 22001 + 22003 + 22007 is not a square.
54. Every integer n in base b is congruent to the sum of

its digits modulo b − 1.

� �

5.2 Modular Designs

Modular arithmetic can be used to create beautiful designs. We will now explore
three such designs: an m-pointed star, an (m, n) residue design, and quilt designs.
They are really fun, so enjoy them.

m-Pointed Stars

To construct an m-pointed star, mark m equally spaced points on a large circle, and
label them with the least residues 0 through (m−1) modulo m. Choose a least residue
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i modulo m, where (i,m) = 1. Join each point x with the point x + i modulo m. Now
color in the various regions inside the circle with some solid colors. You should get a
nice m-pointed star. Figure 5.1 shows a seven-pointed star and a twelve-pointed star.

Figure 5.1

(m,n) Residue Designs

To construct an (m,n) residue design, where 1 ≤ n < m and (m,n) = 1, select m − 1
equally spaced points on a large circle, label them 1 through m − 1, and join each
point x to point nx modulo m. Then color in the various regions formed in a system-
atic way to create exciting designs.

For example, to construct a (19,9) residue, divide a large circle into 18 equal
arcs and label the points 1 through 18. Multiply each nonzero residue modulo 19
by 9:

Then join the points 1 and 9, 2 and 18, 3 and 8, . . . , and 18 and 10. Color the re-
sulting regions systematically to obtain the beautiful design in Figure 5.2. Additional
designs are shown in Figures 5.3 through 5.6.
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Figure 5.2

Figure 5.3 Figure 5.4

Quilt Designs

We can use addition and multiplication tables for least residues modulo m to gener-
ate other artistic and interesting designs. For example, choose m = 9. Construct the
addition table for the set of least residues 0 through 8 modulo 9, as Table 5.1 shows.
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Figure 5.5 Figure 5.6

+ 0 1 2 3 4 5 6 7 8
0 0 1 2 3 4 5 6 7 8
1 1 2 3 4 5 6 7 8 0
2 2 3 4 5 6 7 8 0 1
3 3 4 5 6 7© 8 0 1 2
4 4 5 6 7 8 0 1 2 3
5 5 6 7 8 0 1 2 3 4
6 6 7 8 0 1 2 3 4 5
7 7 8 0 1 2 3 4 5 6
8 8 0 1 2 3 4 5 6 7

Table 5.1

In this example, the circled number 7 in row 3 and column 4 is 3 + 4 modulo 9.
Devise nine basic design elements to represent each of the numbers 0 through 8, as
Figure 5.7 shows. (This design translation uses additive inverses and complements.)

Now replace each entry in the main body of Table 5.1 with the corresponding
design element. Figure 5.8 shows the resulting beautiful design. This basic design
can be used to generate new designs. For example, flip this design about its right-side
edge and then flip the ensuing design about the bottom edge. The two flips produce
the fascinating design in Figure 5.9.

Instead of a square grid, we could use a rectangular grid, like the one in Fig-
ure 5.10. Use the design elements in Figure 5.11 to develop the basic design for
modulo 5. Make the two flips to produce the sensational design in Figure 5.12.
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Figure 5.7 Design elements in mod 9.

Figure 5.8 Basic design.

We can develop designs using different grids, design elements, and multiplica-
tion tables.

E X E R C I S E S 5.2

Construct a seven-pointed star by joining

1. Point x to x + 4 modulo 7.
2. Point x to x + 6 modulo 7.

Construct a 12-pointed star by joining

3. Point x to x + 7 modulo 12.
4. Point x to x + 11 modulo 12.

5. Construct an 11-pointed star by joining every point x
to x + 4 modulo 11.
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Figure 5.9 Figure 5.10

Figure 5.11 Design
elements in mod 5. Figure 5.12



5.3 Check Digits 259

6. Construct a 11-pointed star by joining point x to x+7
modulo 11.

7. Construct a 13-pointed star by joining point x to x+4
modulo 13.

Construct each residue design.

8. (17,2) 9. (17,9)

10. (23,11) 11. (23,5)

12. (23,10)

13. Using the design elements in Figure 5.13 and the ad-
dition table in modulo 3, create the basic design in
modulo 3.

Figure 5.13
14. Flip the basic design in Exercise 13 about its right

edge and the resulting design about its bottom edge.
15. Create a 12-pointed star joining point x to point 5x+3

modulo 12.

� �

5.3 Check Digits

Coding theory is a branch of mathematics devoted to the detection and correction
of errors in codes. We will now see how congruences are used to detect and correct
errors in transmitted messages.

Binary Codes

First, we turn to binary codes, which are messages converted (encoded) into bits
and transmitted over a channel such as a telephone line. The receiver tries to recover
the original message by decoding the received message. Any errors in the received
message must be detected and then corrected.

The process of casting out twos plays a significant role in detecting and correct-
ing errors in binary codes. Before transmission, we append a parity check bit xn+1

to each binary string x1x2 . . . xn, defined by xn+1 ≡ x1 + x2 + · · · + xn (mod 2). That
is, append a 1 if the number of 1s is odd and a 0 otherwise. This procedure keeps the
number of 1s in the string always even.

The following example illustrates this technique.

EXAMPLE 5.6 Consider the ten-bit string 1101011101. Then x11 ≡ 1 + 1 + 0 + 1 + 0 + 1 + 1 + 1 +
0+1 ≡ 1 (mod 2), so the check bit is 1 and the transmitted message is 11010111011.
Suppose we receive the string 11010111001; since it contains an odd number of ones,
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an odd number of errors has occurred during transmission. If there is a single error
and its location is known, by changing the bit in that location, we can recover the
original message. �

Check digits are often used to detect errors in strings of decimal digits. Banks,
book publishers, libraries, and companies, such as United Parcel Service, that track
large numbers of items use check digits to detect errors in their identification num-
bers, as the next two examples demonstrate. But first, a simple definition.

Dot Product

The dot product of the vectors (x1, x2, . . . , xn) and (y1, y2, . . . , yn), is defined by

(x1, x2, . . . , xn) · (y1, y2, . . . , yn) =
n∑

i=1
xiyi.

The following two examples employ dot products.

EXAMPLE 5.7 Every bank check has an eight-digit identification number d1d2 . . .d8 followed by a
check digit d, defined by d ≡ (d1,d2, . . . ,d8) · (7,3,9,7,3,9,7,3) (mod 10). Com-
pute the check digit for the identification number 17,761,976.

SOLUTION

Check digit ≡ (1,7,7,6,1,9,7,6) · (7,3,9,7,3,9,7,3) (mod 10)

≡ 1 · 7 + 7 · 3 + 7 · 9 + 6 · 7 + 1 · 3 + 9 · 9 + 7 · 7 + 6 · 3 (mod 10)

≡ 4 (mod 10)

So the nine-digit check number is 177,619,764. �

The universal product code (UPC) found on grocery items in a supermarket
contains a check digit. A UPC number consists of 12 digits d1, d2, . . . , d12, of which
the first six digits identify the country and the manufacturer, the next five identify the
product, and the last digit d12 is the check digit.

For example, the UPC number for Maxwell House Instant Coffee made by Kraft
General Foods, Inc., in the United States is 043000794708. The codes for country,
manufacturer, and the product are 0, 43000, and 79470, respectively:

0 3000 79470 −
↑ ↑ ↑ ↑

country manu. product check digit
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The check digit d12 in the UPC number must satisfy the condition (d1,d2,

. . . ,d12) · (3,1,3,1,3,1,3,1,3,1,3,1) ≡ 0 (mod 10); that is,

d12 ≡ −(d1,d2, . . . ,d11) · (3,1,3,1,3,1,3,1,3,1,3) (mod 10)

The following example illustrates this method.

EXAMPLE 5.8 Compute the check digit d12 in the UPC number for Maxwell House Instant Coffee.

SOLUTION

d12 ≡ −(d1,d2, . . . ,d11) · (3,1,3,1,3,1,3,1,3,1,3) (mod 10)

≡ −(0,4,3,0,0,0,7,9,4,7,0) · (3,1,3,1,3,1,3,1,3,1,3) (mod 10)

≡ −(0 + 4 + 9 + 0 + 0 + 0 + 21 + 9 + 12 + 7 + 0) (mod 10)

≡ −62 ≡ 8 (mod 10)

So the check digit is 8 and the UPC identification number is 0-43000-79470-8. �

Zip Codes

The United States Postal Service† uses bar codes to encode zip code information on
mail, which can be readily and rapidly read by inexpensive bar code readers. The
POSTNET (POSTal Numeric Encoding Technique) bar code may represent a five-
digit zip code (32 bars), a nine-digit zip + 4 code (52 bars), or an 11-digit delivery
point code (62 bars). It employs both binary numbers and check digits. Some bars
are long and the others are short. See Figure 5.14.

Figure 5.14

A long bar (or full bar) represents a 1, and a short one (a half bar) a 0. The two
extreme bars are always long and can be ignored. The remaining bars are grouped
into blocks of five bars each, indicating that the last block represents a check digit.

† Based on Designing Business Letter Mail, United States Postal Service.
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The scheme for converting decimal digits into binary is based on the coding scheme
used by the Bell Telephone Labs (now Lucent Technologies) in the early 1940s.

There are exactly
5!

2!3! = 10 arrangements of two long bars and three short bars,

and they represent the 10 digits, as Table 5.2 shows.
With the exception of 0, the numeric value of each combination of five bars is

found by adding the weights of the two long bars. From right to left, the bar positions
are assigned the weights 0, 1, 2, 4, and 7. For example, the value of the code in
Figure 5.15 is 5; and the value of the code in Figure 5.16 is 9. (A weight of 8 is not
used, because then the weight of the group would be 10.)

The only exception to this rule is the combination , which has a total weight
of 11 but has been assigned the value 0.

Bar Position Weights
Numeric Binary Bar code

Value 74210 74210

1 00011

2 00101

3 00110

4 01001

5 01010

6 01100

7 10001

8 10010

9 10100

0 11000

Table 5.2

Figure 5.15 Figure 5.16

Consider the five-digit zip code z1z2 . . . z5. A check digit d is appended to it to
detect errors:

d ≡ −
5∑

i=1

zi (mod 10)
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For example, the check digit for the zip code 12345 is

d ≡ −(1 + 2 + 3 + 4 + 5) (mod 10)

≡ −5 ≡ 5 (mod 10)

So d = 5. The bar code for the zip code is shown in Figure 5.17.

Figure 5.17

A check digit is also appended to every zip + 4 code, which was introduced
by the Postal Service in 1983. For instance, consider the nine-digit zip code 12345-
6789; its check digit d is given by

d ≡ −(1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9) (mod 10)

≡ −5 ≡ 5 (mod 10)

So d = 5 and the corresponding bar code is shown in Figure 5.18.

Figure 5.18

The delivery point bar code (DPBC) was introduced in 1993 by the Postal
Service to uniquely identify each of the 115 million delivery points in the United
States. It eliminates the need for carriers to sort mail prior to delivery. The delivery
point bar code is formed by adding 10 bars to an existing zip + 4 code. The 10
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bars represent two additional numbers (normally, the last two numbers of the street
address, P.O. box, rural route box, or highway contract route box). See Figure 5.19.

Figure 5.19

An example of the DPBC number is 12345-6789-014, where 01 is the delivery
point and 4 is the check digit. See Figure 5.19.

ISBN

Since 1972, virtually every book published anywhere in the world has an Interna-
tional Standard Book Number (ISBN), a 10-digit identification number. The ISBN
enables computerized transmission and storage of book data. It grew out of the book
numbering system introduced into the United Kingdom in 1967 by F. G. Foster of
the London School of Economics. In 1968, R. R. Bowker Company introduced it
into the United States.

An ISBN consists of four parts: a group code (one digit), a publisher code (two
digits), a book code (six digits), and a check digit. For instance, the ISBN of a text
by the author is 0-07-035471-5. The group code 0 or 1 indicates the book was pub-
lished in an English-speaking country†; the publisher code 07 identifies the pub-
lisher, McGraw-Hill; and the book code 035471 is assigned by the publisher to the
book. The check digit d, where 0 ≤ d ≤ 10, and 10 is denoted by X, is defined by
d ≡ −(x1, x2, . . . , x9) · (10,9,8,7,6,5,4,3,2) (mod 11), where x1, x2, . . . , x9 de-
note the first nine digits in the ISBN.

The following example demonstrates this coding scheme.

EXAMPLE 5.9 Using the ISBN coding scheme, compute the check digit d if the first nine digits are
0-07-035472.

† Australia, English-speaking Canada, New Zealand, South Africa, the United Kingdom, the United
States, and Zimbabwe.
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SOLUTION

d ≡ −(x1, x2, . . . , x9) · (10,9,8,7,6,5,4,3,2) (mod 11)

≡ −(0,0,7,0,3,5,4,7,2) · (10,9,8,7,6,5,4,3,2) (mod 11)

≡ −(0 + 0 + 56 + 0 + 18 + 25 + 16 + 21 + 4) (mod 11)

≡ −140 ≡ 3 (mod 11)

Thus, the check digit is 3 and the ISBN is 0-07-035472-3. �

EAN Bar Codes

In 1980, the International Article Numbering Association (formerly, the European
Article Numbering Association, EAN) and the International ISBN Agency reached
an agreement by which the ISBN can be translated into an EAN bar code.

All EAN bar codes begin with a national identifier (00-09 for the United States)
with one exception: For books and periodicals, the national identifier is replaced
with a “bookland” identifier: 978 for books and 977 for periodicals. The 978 book-
land/EAN prefix is followed by the first nine ISBN digits; the ISBN check digit is
dropped and replaced with a check digit computed according to the EAN rules. See
Figure 5.20.

Figure 5.20

Five-Digit Add-On Code

In the United States and a few other countries, a five-digit add-on code is used to
provide additional information. This code is often used for price information. The
lead digit in the five-digit add-on code designates the national currency; for example,
a 5 indicates the U.S. dollar and a 6 the Canadian dollar.
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Figure 5.21

Publishers who do not want to indicate the price in the add-on code print the
code 90090. See Figure 5.21.

Driver’s License Numbers

In the United States, the method used to assign driver’s license numbers varies widely
from state to state. Some states use check digits when assigning driver’s license num-
bers, in order to detect forgery or errors.

For example, Utah assigns an eight-digit number d1d2 . . .d8 in sequential or-

der and then appends a check digit d9 defined by d9 ≡
8∑

i=1
(10 − i)di (mod 10). The

American Chemical Society uses this same system for registering chemicals, while
the Canadian Province of Newfoundland uses a nearly identical scheme for driver’s
licenses. The following example illustrates this coding scheme.

EXAMPLE 5.10 Compute the check digit d9 in a driver’s license in Utah if the eight-digit number is
24923056.

SOLUTION

d9 ≡ (9,8,7,6,5,4,3,2) · (2,4,9,2,3,0,5,6) (mod 10)

≡ (18 + 32 + 63 + 12 + 15 + 0 + 15 + 12) (mod 10)

≡ 7 (mod 10)

So the full license number is 249230567. �

Some states use even more complicated coding schemes in assigning driver’s
license numbers. Arkansas, New Mexico, and Tennessee append a check digit d8 to
the seven-digit number d1d2 . . .d7, determined as follows:
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Let

x ≡ −(d1,d2, . . . ,d7) · (2,7,6,5,4,3,2) (mod 11)

Then

d8 =
{1 if x = 0

0 if x = 10
x otherwise

Vermont uses the same scheme, except that when x = 0, the letter A is used as the
check symbol.

The following example illustrates this system.

EXAMPLE 5.11 Determine the check digit d8 in a driver’s license number assigned by the state of
New Mexico, if the seven-digit number identification number in it is 0354729.

SOLUTION

First we compute x:

x ≡ −(0,3,5,4,7,2,9) · (2,7,6,5,4,3,2) (mod 11)

≡ −(0 + 21 + 30 + 20 + 28 + 6 + 18) (mod 11)

≡ −123 ≡ 9 (mod 11)

So, by definition, d8 = 9 and the full license number is 03547299. �

Exotic coding schemes are sometimes used to construct identification numbers.
Norway, for instance, uses a two-check-digit scheme to assign registration numbers
to its citizens. The last two digits of an eleven-digit registration number d1d2 . . .d11

are check digits, defined as follows:

d10 ≡ −(d1,d2, . . . ,d9) · (3,7,6,1,8,9,4,5,2) (mod 11)

d11 ≡ −(d1,d2, . . . ,d10) · (5,4,3,2,7,6,5,4,3,2) (mod 11)

Numbers for which d10 or d11 is “10” are not assigned.
The following example illustrates this scheme.

EXAMPLE 5.12 A registration number in Norway begins with the nine-digit number 065463334.
Compute the two check digits in the identification number.
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SOLUTION

We have

d10 ≡ −(d1,d2, . . . ,d9) · (3,7,6,1,8,9,4,5,2) (mod 11)

≡ −(0,6,5,4,6,3,3,3,4) · (3,7,6,1,8,9,4,5,2) (mod 11)

≡ −(0 + 42 + 30 + 4 + 48 + 27 + 12 + 15 + 8) (mod 11)

≡ −186 ≡ 1 (mod 11)

d11 ≡ −(d1,d2, . . . ,d10) · (5,4,3,2,7,6,5,4,3,2) (mod 11)

≡ −(0,6,5,4,6,3,3,3,4,1) · (5,4,3,2,7,6,5,4,3,2) (mod 11)

≡ −(0 + 24 + 15 + 8 + 42 + 18 + 15 + 12 + 12 + 2) (mod 11)

≡ −148 ≡ 6 (mod 11)

So the two check digits are 1 and 6, and hence the registration number is
06546333416. �

Vehicle Identification Numbers

Automobiles and trucks built since the early 1980s have been assigned a unique
vehicle identification number (VIN) by the manufacturer. A typical VIN consists of
17 alphanumeric symbols; it contains coded information for the country where the
vehicle was built, manufacturer, vehicle type, body type, engine type, series, restraint
system, car line, check digit, model year, plant code, and plant sequential number.
See Figure 5.22.

The Vehicle Identification Number for a 1991 Toyota Camry

Figure 5.22

Unlike check-digit schemes discussed earlier, the check digit in a VIN is not
appended at the end, but placed in the middle.

To compute the check digit d9, we employ the following algorithm:
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• Convert the letters A through Z into the numbers 1–9, 1–9, and 2–9, respec-
tively. This yields a 16-digit number d1d2 . . . /d9 . . .d17.

• Assign the weights 8,7, . . . ,2,10,9, . . . ,2 to the positions d1, . . . , /d9, . . . ,

d17, respectively.
• Compute the least nonnegative residue r ≡ (d1,d2, . . . , /d9, . . . ,d17) · (8,7,

. . . ,2,10,8, . . . ,2) (mod 11).

• Check digit = d9 =
{ r if 0 ≤ r < 10

X otherwise
The following example illustrates this algorithm.

EXAMPLE 5.13 Compute the check digit in the vehicle identification number in Figure 5.22.

SOLUTION

Replacing the letters in the VIN with their numeric codes yields the following nu-
meric equivalents:

VIN: J T 2 V V 2 2 W – M 0 1 4 4 8 8 2

Numeric code: 1 3 2 5 5 2 2 6 – 4 0 1 4 4 8 8 2

Vertically align each numeric code by the corresponding weight:

Numeric code: 1 3 2 5 5 2 2 6 – 4 0 1 4 4 8 8 2

Weight: 8 7 6 5 4 3 2 10 – 9 8 7 6 5 4 3 2

Now compute the weighted sum modulo 11:

Weighted sum = 8 · 1 + 7 · 3 + 6 · 2 + 5 · 5 + 4 · 5 + 3 · 2 + 2 · 2 + 10 · 6 + 9 · 4

+ 8 · 0 + 7 · 1 + 6 · 4 + 5 · 4 + 4 · 8 + 3 · 8 + 2 · 2

≡ 6 (mod 11)

Since 0 ≤ 6 < 10, the check digit is 6, as desired. �

German Bank Notes (optional)†

In 1990, the German Bundesbank adopted a mathematically sophisticated scheme
based on group theory from abstract algebra to compute the check digit in the serial

† Although Germany has switched to Euro, this is still a delightful application.
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number of a bank note. A typical serial number consists of ten alphanumeric symbols
s1, s2, . . . , s10, and a check digit s11. For example, the alphanumeric serial number
of the bank note in Figure 5.23 is DD4170295U7 and the check digit is 7; the bank
note features Gauss and his celebrated normal curve.

Figure 5.23 A German bank note with serial number DD4170295U7 and check
digit 7.

To compute the check digit, we apply the following algorithm:

• Convert the letters into their numeric codes, using Table 5.3:

A D G K L N S U Y Z
0 1 2 3 4 5 6 7 8 9

Table 5.3

• Let f : S → S, defined as follows, where S = {0,1, . . . ,9}:

f (0) = 1 f (1) = 5 f (2) = 7 f (3) = 6 f (4) = 2
f (5) = 8 f (6) = 3 f (7) = 0 f (8) = 9 f (9) = 4

( f is a permutation of the elements of S.) Let f n = f ◦ f n−1, where ◦ denotes
the composition of functions, f 0 is the identity function, and n ≥ 1. [For ex-
ample, f 3(5) = f ( f ( f (5))) = f ( f (8)) = f (9) = 4.]
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• Define an operation ∗ on S using Table 5.4.

∗ 0 1 2 3 4 5 6 7 8 9
0 0 1 2 3 4 5 6 7 8 9
1 1 2 3 4 0 6 7 8 9 5
2 2 3 4 0 1 7 8 9 5 6
3 3 4 0 1 2 8 9 5 6 7
4 4 0 1 2 3 9 5 6 7 8
5 5 9 8 7 6 0 4 3 2 1
6 6 5 9 8 7 1 0 4 3 2
7 7 6 5 9 8 2 1 0 4 3
8 8 7 6 5 9 3 2 1 0 4
9 9 8 7 6 5 4 3 2 1 0

Table 5.4

(For those familiar with group theory, Table 5.4 represents the multiplication
table for the dihedral group D10 of symmetries of a regular 5-gon. Notice that
∗ is a noncommutative operation; for example, 4 ∗ 5 = 9 
= 6 = 5 ∗ 4.)

• Select the check digit s11 such that

f (s1) ∗ f 2(s2) ∗ f 3(s3) ∗ · · · ∗ f 9(s9) ∗ f 10(s10) ∗ s11 = 0 (5.1)

(These steps can be stated more efficiently using group-theoretic language.)
The following example illustrates this fancy algorithm.

EXAMPLE 5.14 Compute the missing check digit in the German bank note serial number
DD4170295U–.

SOLUTION

Using Table 5.3, first we convert the letters into numbers:

Serial number: DD4170295U
Numeric code: 1 1 4 1702957

Since s1 = 1 = s2 = s5, s3 = 4, s4 = 7 = s10, s6 = 0, s7 = 2, s8 = 9, and s9 = 5,
f (s1) = 5, f 2(s2) = 8, f 3(s3) = 0, f 4(s4) = 4, f 5(s5) = 9, f 6(s6) = 2, f 7(s7) = 4,
f 8(s8) = 9, f 9(s9) = 8, and f 10(s10) = 1 (verify these).

By equation (5.1), the check digit must satisfy the equation

5 ∗ 8 ∗ 0 ∗ 4 ∗ 9 ∗ 2 ∗ 4 ∗ 9 ∗ 8 ∗ 1 ∗ s11 = 0
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Using Table 5.4, this yields:

(5 ∗ 8) ∗ (0 ∗ 4) ∗ (9 ∗ 2) ∗ (4 ∗ 9) ∗ (8 ∗ 1) ∗ s11 = 0

2 ∗ 4 ∗ 7 ∗ 8 ∗ 7 ∗ s11 = 0

(2 ∗ 4) ∗ (7 ∗ 8) ∗ 7 ∗ s11 = 0

1 ∗ 4 ∗ 7 ∗ s11 = 0

(1 ∗ 4) ∗ 7 ∗ s11 = 0

0 ∗ 7 ∗ s11 = 0

7 ∗ s11 = 0

s11 = 7

Thus, the check digit in the bank note is 7, as expected. �

E X E R C I S E S 5.3

Find the parity check bit that must be appended to each
bit string for even parity.

1. 101101 2. 110110111
3. 10111011 4. 11011101

An n-bit string containing an even parity check bit is
transmitted. What is your conclusion if the received string

5. Agrees for even parity?
6. Does not agree for even parity?

Airlines assign a check digit d to their 11-digit ticket num-
bers d1d2 . . .d11, defined by d ≡ d1d2 . . .d11 (mod 7). (In
fact, the ticket number contains 14 digits and the check
digit, but the three-digit airline code is not entered into the
calculation of the check digit.) Compute the check digit if
the 11-digit ticket number is

7. 20754376405 8. 17330207806

VISA traveler’s checks use the negative of the least
residue modulo 9 as a check digit. For instance, the check
digit for the check number 1967633314327 is 8 since

1967633314327 ≡ 1 (mod 9) and −1 ≡ 8 (mod 9). Com-
pute the check digit for each check number.

9. 300706202013 10. 1942300317768

Using Example 5.7, compute the check digit if the eight-
digit identification number is

11. 79002966 12. 88049338

Using Example 5.7, determine the missing digit d in each
identification number.

13. 3313d4473 14. 78d035442

Using the ISBN coding scheme, compute the check digit
if the first nine digits are

15. 0-87-620321 16. 0-201-57889

Determine whether each is a valid ISBN.

17. 0-201-57603-1 18. 0-07-095831-2

Compute the check digit in the UPC number for
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19. Cheerios by General Mills, Inc., if the 11-digit iden-
tification number is 0-16000-66610.

20. Kellogg’s Product 19, if the 11-digit identification
number is 0-38000-01912.

Determine whether each is a valid UPC number for a gro-
cery item.

21. 0-70734-06310-8 22. 0-16000-42080-9

Determine whether each is a valid Norway registration
number.

23. 06546330708 24. 34040455642

The International Standard Serial Number (ISSN) is an
internationally accepted code for identifying serial publi-
cations. It consists of two four-digit groups. The eighth
digit d8, which can be an X (for 10), is a check digit,
defined by d8 ≡ −(d1,d2, . . . ,d7) · (8,7,6,5,4,3,2)

(mod 11). Compute the check digit for each seven-digit
identification number.

25. 1234-567 26. 0593-303

Many European countries use check digits to detect er-
rors in passport numbers. The check digit d8 of the
identification number d1d2 . . .d7 is defined by d8 ≡
(d1,d2, . . . ,d7) · (7,3,1,7,3,1,7) (mod 10). Determine
the check digit in each case.

27. 3157406 28. 4005372

Using the Utah scheme, find the check digit in a driver’s
license number if the eight-digit identification number is

29. 14921994 30. 30435167

Determine the check digit d8 in a Tennessee driver’s li-
cense number if the seven-digit identification number is

31. 0243579 32. 2730373

33–34. Redo Exercises 31 and 32 using the Vermont li-
cense number scheme.

Both South Dakota and Saskatchewan employ a complex
scheme developed by IBM to compute the check digit
d7 that is appended to the six-digit identification number
d1d2 . . .d6 in a driver’s license number. It is computed as
follows: Multiply d2, d4, and d6 by 2; add the digits in the
products; add the resulting sum to d1 + d3 + d5 to yield
s; then d7 ≡ −s (mod 10). (This scheme is used by credit
card companies, libraries, and drug stores in the United
States, and by banks in Germany.)

35. Develop an algebraic formula for d7.

Compute the check digit d7 for each six-digit identifica-
tion number.

36. 204817 37. 764076

Compute the missing check digit in each vehicle identifi-
cation number.

38. 2T1BB02E–VC194572
39. 2HGES165–1H541873

Determine if each is a valid alphanumeric serial number
for a German bank note.

40. GD2414993L0 41. GD3994142L0

� �

�5.4 The p-Queens Puzzle (optional)

The n-queens puzzle, a well-known problem used in undergraduate programming
courses, gives us an excellent example of backtracking. The goal of the puzzle is to
place n queens on an n × n chessboard in such a way that no two queens can attack
each other. It follows by observation that the puzzle has no solution if n = 2 or 3.
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We can develop a formula for successfully placing p queens on a p × p chess-
board, where p is a prime > 3. The following section shows how the solution yields
an algorithm for constructing a schedule for a round-robin tournament with p teams.

The p-Queens Puzzle

To present a formula for solving the p-queens problem, we place the queens row by
row. Let f (i) denote the location (column index) of the ith queen, where 1 ≤ i ≤ p;
then f (i) can be defined recursively.

A Recursive Definition of f

f (0) = 0

f (i) ≡ f (i − 1) + p + 1

2
(mod p), 1 ≤ i ≤ p − 1

f (p) = p

(5.2)

Using iteration, we can use this definition to find the following explicit formula
for f (i).

An Explicit Formula for f (i)

f (i) ≡
(

p + 1

2

)

i (mod p) if 1 ≤ i ≤ p (5.3)

Here f (i) is the least residue of (p+1)i/2 modulo p, where the residue 0 is interpreted
as p.

The following theorem singles out a property of f .

THEOREM 5.2 The function f is injective.

PROOF

Let i and j be least residues modulo p such that

f (i) = f (j)

Then
(

p + 1

2

)

i ≡
(

p + 1

2

)

j (mod p)

Since ((p + 1)/2,p) = 1, this implies i ≡ j (mod p). But i and j are least residues
modulo p, so i = j. �
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This theorem shows f assigns exactly one queen to each row and each column,
as Table 5.5 shows for p = 7.

j
i

1 2 3 4 5 6 7

1 . . . Q . . .
2 Q . . . . . .
3 . . . . Q . .
4 . Q . . . . .
5 . . . . . Q .
6 . . Q . . . .
7 . . . . . . Q

Table 5.5

Next we show that no two queens placed by the preceding assignment can attack
each other.

THEOREM 5.3 No two queens placed on a p × p chessboard by the assignment f can attack each
other.

PROOF

Since every row and every column contains exactly one queen, no two queens can
attack each other along a row or column. So it suffices to show that they cannot attack
along any southeast or northeast diagonal.

For each northeast diagonal, the sum i + j of the row index i and the column
index j is a constant k, where 2 ≤ k ≤ 2p. Clearly, we need only look at the diagonals,
where 3 ≤ k ≤ 2p − 1.

Suppose there are two such queens in positions (i1, j1) and (i2, j2). Then

f (i1) ≡
(

p + 1

2

)

i1 (mod p)

f (i2) ≡
(

p + 1

2

)

i2 (mod p)

That is,

j1 ≡
(

p + 1

2

)

i1 (mod p) and j2 ≡
(

p + 1

2

)

i2 (mod p) (5.4)
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where i1 + j1 = k = i2 + j2. Then

i1 + j1 ≡
(

p + 3

2

)

i1 (mod p)

That is,

k ≡
(

p + 3

2

)

i1 (mod p)

Similarly,

k ≡
(

p + 3

2

)

i2 (mod p)

These two congruences imply that (p + 3)i1/2 ≡ (p + 3)i2/2 (mod p), so i1 ≡ i2
(mod p) since (p, (p + 3)/2) = 1. Thus, i1 = i2, since they are least residues mod-
ulo p. Then, by congruences (5.4), j1 = j2. Thus, no northeast diagonal contains two
queens.

To show that no southeast diagonal contains two queens, notice that for each
such diagonal, i − j is a constant �, where 1 − p ≤ � ≤ p − 1. Clearly we can assume
� 
= 1 − p and � 
= p − 1.

Suppose a southeast diagonal contains two queens in positions (i1, j1) and
(i2, j2). Then

f (i1) ≡
(

p + 1

2

)

i1 (mod p)

f (i2) ≡
(

p + 1

2

)

i2 (mod p)

That is,

j1 ≡
(

p + 1

2

)

i1 (mod p) and j2 ≡
(

p + 1

2

)

i2 (mod p) (5.5)

where i1 − j1 = � = i2 − j2. Then

i1 − j1 ≡ i1 −
(

p + 1

2

)

i1 (mod p)

� ≡
(

1 − p

2

)

i1 (mod p)

� ≡
(

p + 1

2

)

i1 (mod p)
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Similarly,

� ≡
(

p + 1

2

)

i2 (mod p)

These two congruences yield i1 = i2, since ((p + 1)/2,p) = 1, and i1 and i2 are least
residues modulo p. Thus, by congruences (5.5), j1 = j2, so no southeast diagonal
contains two queens.

Thus, no two queens on the p × p chessboard can attack each other. �

An Algorithm for Placing p Queens on a p × p Chessboard

The recursive definition of f provides an algorithm for placing the queens row by
row on the p × p chessboard:

• Place the first queen in column (p + 1)/2. In each successive row, cyclically
advance to the right by (p + 1)/2 cells and place a queen in the resulting cell,
and continue like this until a queen is placed in every row.

�5.5 Round-Robin Tournaments (optional)

In round-robin tournaments, every team plays every other team exactly once. Sup-
pose there are n teams, labeled 1 through n. Then the tournament can be represented
by a polygon with n vertices with every pair of vertices connected; every vertex
represents a team and every line segment with endpoints i and j represents a game
between teams i and j. (Such a figure is called a complete graph with n vertices.)
For example, Figure 5.24 shows a round-robin tournament with five teams.

Figure 5.24 A round-robin tournament with five teams.

Let gn denote the number of games by n teams in a round-robin tournament. It
can be defined recursively:
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g1 = 0

gn = gn−1 + (n − 1), n ≥ 2

Solving this recurrence relation, we get

gn = n(n − 1)

2
=

(
n
2

)

.

For example, five teams will play 10 games.
Congruences can be applied nicely to schedule round-robin tournaments. If n is

even, then every team can be paired with another team; but if n is odd, not all teams
can be paired, so one team gets a bye in that round. So, whenever n is odd, we add a
dummy team X, so that if a team is paired with X in a certain round, it gets a bye in
that round. Consequently, we assume n is even.

Solving the p-queens puzzle is closely related to constructing a schedule for a
round-robin tournament with p teams.

Let g(i, j) denote the team played in round i by team j. If g(i, j) = j, team j gets
a bye in round i. We define g as

g(i, j) ≡ i − j (mod p) (5.6)

where the least residue 0 modulo p is interpreted as p.
For example, let p = 7. Then g(1,1) = 0 (mod 7), so g(1,1) = 7; similarly,

g(1,2) ≡ −1 (mod 7), so g(1,2) = 6, and so on. Table 5.6 shows a schedule for a
round-robin tournament with seven teams.

Team j
Round i

1 2 3 4 5 6 7

1 7 6 5 bye 3 2 1

2 bye 7 6 5 4 3 2

3 2 1 7 6 bye 4 3

4 3 bye 1 7 6 5 4

5 4 3 2 1 7 bye 5

6 5 4 bye 2 1 7 6

7 6 5 4 3 2 1 bye

Table 5.6 A round-robin tournament for seven teams.

We will now show that g constructs a round-robin tournament schedule for p
teams. First, we must prove the following three theorems.
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THEOREM 5.4 Exactly one team draws a bye in each round.

PROOF

Suppose teams j1 and j2 draw byes in round i. Then

g(i, j1) ≡ j1 (mod p) and g(i, j2) ≡ j2 (mod p)

case 1 If i = j1, then i = j1 = p. Because g(i, j2) ≡ j2 (mod p), i − j2 ≡ j2 (mod p);
that is,

p − j2 ≡ j2 (mod p)

2j2 ≡ 0 (mod p)

j2 ≡ 0 (mod p)

So j2 = p. Thus, j1 = j2.

case 2 If i 
= j1, then g(i, j1) ≡ i − j1 ≡ j1 (mod p), so i ≡ 2j1 (mod p).
If i = j2,g(i, j2) ≡ i ≡ p (mod p). Then p ≡ 2j1 (mod p), so 2j1 ≡ 0 (mod p);

that is, j1 ≡ 0 (mod p) or j1 = p. Then i ≡ 2p ≡ 0 (mod p), so i = p. Thus, i = j1, a
contradiction.

So i 
= j2. Therefore, g(i, j2) ≡ i − j2 ≡ j2 (mod p). This yields i ≡ 2j2 (mod p),
so

2j1 ≡ 2j2 (mod p)

j1 ≡ j2 (mod p)

Therefore, j1 = j2, since they are least residues modulo p.
Thus, in both cases, j1 = j2, so exactly one team gets a bye in each round. �

The following theorem identifies the team that draws a bye in each round.

THEOREM 5.5 g(i, j) ≡ j (mod p) if and only if j ≡
(

p + 1

2

)

i (mod p).

PROOF

Assume g(i, j) ≡ j (mod p). If i = j, then g(i, j) ≡ p (mod p), so i ≡ j ≡ p ≡ 0
(mod p). Therefore, j ≡ (p + 1)i/2 (mod p).

If i 
= j, then g(i, j) ≡ i − j (mod p). Then

i − j ≡ j (mod p)
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That is,

i ≡ 2j (mod p)

Therefore, (p + 1)i/2 ≡ (p + 1)2j/2 ≡ pj + j ≡ j (mod p).
Thus, in both cases, team j draws a bye in round i if j ≡ (p + 1)i/2 (mod p).
Conversely, suppose j ≡ (p + 1)i/2 (mod p). Then

g(i, j) ≡ i − j (mod p)

≡ i − (p + 1)i/2 ≡ (1 − p)i/2 (mod p)

≡ (p + 1)i/2 ≡ j (mod p)

Thus, team j draws a bye in round i. �

The following theorem shows that g schedules every team exactly once in each
round; that is, g outputs every value 1 through p exactly once.

THEOREM 5.6 The function g is injective for each i.

PROOF

Suppose g(i, j1) = g(i, j2). Then i − j1 ≡ i − j2 (mod p), so j1 ≡ j2 (mod p); thus,
j1 = j2 and g is injective. �

It follows by Theorems 5.4 through 5.6 that the function g determines uniquely
the opponent of team j in every round i, where 1 ≤ i, j ≤ p; in round i, team j draws
a bye, where j ≡ (p + 1)i/2 (mod p). Interestingly enough, this is exactly the same
value (5.3) obtained earlier for placing the ith queen, where 1 ≤ i ≤ p. Thus, a bye
occurs in round i in the round-robin schedule in exactly the same cell as the one in
which a Q occurs in row i of the p × p chessboard.

With this result, we can use the function g to modify the p-queens algorithm to
develop an algorithm for a round-robin schedule for p teams, where p ≥ 3.

An Algorithm for Constructing a Round-Robin Schedule for p
Teams

• Place the first bye in column (p + 1)/2; in each successive row, cyclically
advance to the right by (p + 1)/2 cells, and place a bye in the resulting cell;
continue like this until a bye is placed in every row.

• Beginning with the first cell in row 1, count down the numbers p through 1
and enter them in empty cells (i.e., skip over the cell occupied by a bye), to
obtain the permutation p,p − 1, . . . , bye, . . . , 2, 1; to obtain each remaining
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row, cyclically permute to the right the numbers in the preceding row. (Always
skip over the byes. See Table 5.6.)

Suppose the number of teams n is not a prime. We pair the teams in round k
as follows†: Team i(
= n) plays team j(
= n) if i + j ≡ k (mod n − 1), where i 
= j.
This schedules all teams except teams n and i, where 2i ≡ k (mod n − 1). The linear
congruence 2i ≡ k (mod n − 1), where 1 ≤ i < n, has a unique solution i exactly
when (2,n − 1) = 1 (by Corollary 4.6); so pair team i with team n in round k.

We can now show that this procedure pairs every team with every other team
in each round. Consider team i, where 1 ≤ i < n. Since the congruence 2i ≡ k
(mod n − 1) has a unique solution i and team n is paired with team i, team n plays
n−1 distinct games. Also, suppose teams i and j play in two distinct rounds k and k′;
then i+ j ≡ k (mod n−1) and i+ j ≡ k′ (mod n−1); this implies k ≡ k′ (mod n−1),
a contradiction; in other words, teams i and j do not meet in two distinct rounds. Thus,
each of the first n − 1 teams plays n − 1 games and no two teams play twice, so each
plays exactly n − 1 games. Team n also plays exactly n − 1 games.

The following example illustrates this algorithm.

EXAMPLE 5.15 Develop a schedule for a round-robin tournament with seven teams.

SOLUTION

First, label the teams 1 through 7. Since the number of teams is odd, we add a dummy
team X. We now prepare the schedule round by round.

To develop the schedule for round 1:
Team 1 plays team j, where 1 + j ≡ 1 (mod 7); then j = 7, so team 1 plays team 7.
Team 2 plays team j, where 2 + j ≡ 1 (mod 7); this yields j = 6, so team 2 plays
team 6. Similarly, team 3 plays team 5.

Because i = 4 is the solution of the congruence 2i ≡ 1 (mod 7), team 4 plays
team 8; that is, team 4 gets a bye in round 1.

To develop the schedule for round 2:
Because 2i ≡ 2 (mod 7) implies i = 1, team 1 plays team 8; that is, team 1 enjoys a
bye in round 2.

Team 2 plays team j, where 2 + j ≡ 2 (mod 7), so j = 7; thus, team 2 plays
team 7. Similarly, team 3 plays team 6 and team 4 plays team 5.

Continuing like this, we can find the pairings in other rounds. The resulting
schedule is given in Table 5.7.

† This method was developed in 1956 by J. E. Freund.
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Team
Round

1 2 3 4 5 6 7

1 7 6 5 bye 3 2 1

2 bye 7 6 5 4 3 2

3 2 1 7 6 bye 4 3

4 3 bye 1 7 6 5 4

5 4 3 2 1 7 bye 5

6 5 4 bye 2 1 7 6

7 6 5 4 3 2 1 bye

Table 5.7 A schedule for a round-robin tournament for seven teams. �

E X E R C I S E S 5.5

1. Solve the recurrence relation gn = gn−1 + (n − 1),
where g1 = 0.

Develop a round-robin tournament schedule with

2. Five teams
3. Six teams
4. Eight teams
5. Nine teams
6. We would like to schedule a round-robin tournament

with seven teams, 1 through 7. Pair team i with team j
in round k, where j ≡ i + 1 + k (mod 7). Will this pair-

ing provide a conflict-free and duplication-free sched-
ule? If not, explain why.

7. Redo Exercise 6 if team i is paired with team j, where
j ≡ k(i + 1) (mod 7).

8. A company wants to schedule 1-hour meetings be-
tween every two of its six regional managers—A, B,
C, D, E, and F—so each can spend an hour with each
of the other five to get better acquainted. The meetings
begin at 7 A.M. Find the various possible schedule-
pairings. (S. W. Golomb, 1993)

� �

�5.6 The Perpetual Calendar (optional)

In this section, we develop an interesting formula to determine the day of the week
for any date in any year. Since the same day occurs every seventh day, we shall em-
ploy congruence modulo 7 to accomplish this goal, but first a few words of historical
background.

Around 738 B.C., Romulus, the legendary founder of Rome, is said to have
introduced a calendar consisting of 10 months, comprising a year of 304 days. His
successor, Nauma, is credited with adding two months to the calendar. This new
calendar was followed until Julius Caesar introduced the Julian calendar in 46 B.C.,
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to minimize the distortions between the solar calendar and the Roman year. The
Julian calendar consisted of 12 months of 30 and 31 days, except for February, which
had 29 days, and every fourth year 30 days.

The first Julian year began on January 1, 45 B.C. It contained 365.25 days, was
11 minutes 14 seconds longer than the solar year, and made every fourth year a leap
year of 366 days. By 1580, the Julian calendar, although the primary calendar in use,
was 10 days off. It was, however, widely used until 1582.

In October 1582, astronomers Fr. Christopher Clavius and Aloysius Giglio in-
troduced the Gregorian calendar at the request of Pope Gregory XIII, to rectify the
errors of the Julian calendar. The accumulated error of 10 days was compensated by
dropping 10 days in October, 1582. (October 5 became October 15.) The Gregorian
calendar designates those century years divisible by 400 as leap years; all noncen-
tury years divisible by 4 are also leap years. For example, 1776 and 2000 were leap
years, but 1900 and 1974 were not.

The Gregorian calendar, now used throughout the world, is so accurate that it
differs from the solar year only by about 24.5376 seconds. This discrepancy exists
because a Gregorian year contains about 365.2425 days, whereas a solar year con-
tains about 365.242216 days. The result is an error of 3 days every 10,000 years.

With this in mind, we can now return to our goal: Determine the day d of the
week for the rth day in a given month m of any given year y in the Gregorian cal-
endar. The first century leap year occurred in 1600 (18 years after the introduction
of the Gregorian calendar); so we will develop the formula to hold for years beyond
1600. Also, since a leap year adds a day to February, we will count the new year be-
ginning with March 1. For example, January 3000 is considered the eleventh month
of 2999, whereas April 3000 is the second month of year 3000; also February 29 of
1976 is the last day of the 12th month of 1975.

So we assign the numbers 1 through 12 for March through February, and 0
through 6 for Sunday through Saturday, so 1 ≤ m ≤ 12, 1 ≤ r ≤ 31, and 0 ≤ d ≤ 6.
For example, m = 3 denotes May and d = 5 indicates Friday.

The derivation is lengthy and complicated, so we shall develop the formula in
small steps.

Let dy denote the day of the week of March 1 (the first day of the year) in year y,
where y ≥ 1600.

To Compute d from d1600:

Because 365 ≡ 1 (mod 7), dy is advanced from dy−1 by 1 if y is not a leap year and
by 2 if y is a leap year:

dy =
{

dy−1 + 1 if y is not a leap year
dy−1 + 2 otherwise
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To compute dy from d1600, we need to know the number of leap years � since
1600. By Example 2.5,

� = �y/4 − �y/100 + �y/400 − 388 (5.7)

By the division algorithm, y = 100C + D, where 0 ≤ D < 100, so C denotes the
number of centuries in y and D the leftover:

C = �y/100 and D = y (mod 100)

(For example, if y = 2345, then C = 23 and D = 45.) Then

� = �(100C + D)/4 − �(100C + D)/100 + �(100C + D)/400 − 388

= �25C + D/4 − �C + D/100 + �C/4 + D/400 − 388

= 25C + �D/4 − C + �C/4 − 388, since D < 100

= 24C + �D/4 + �C/4 − 388

≡ 3C + �C/4 + �D/4 − 3 (mod 7) (5.8)

Therefore,

dy ≡ d1600 +
(

one day for each
year since 1600

)

+
(

one extra day for each
leap year since 1600

)

(mod 7)

≡ d1600 + (y − 1600) + � (mod 7)

Substituting for y and �,

dy ≡ d1600 + (100C + D − 1600) + 3C + �C/4 + �D/4 − 3 (mod 7)

≡ d1600 + (2C + D − 4 + 3C − 3) + �C/4 + �D/4 (mod 7)

≡ d1600 + 5C + D + �C/4 + �D/4 (mod 7)

≡ d1600 − 2C + D + �C/4 + �D/4 (mod 7) (5.9)

We can use this formula to identify dy, the day of March 1 in year y, provided
we know d1600. In fact, we can also use it to find d1600 from some known value of dy.

To Determine d1600:

Because March 1, 1994, fell on a Tuesday, d1994 = 2. For y = 1994,C = 19, and
D = 94, so, by formula (5.9),
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d1600 ≡ 2 + 2 · 19 − 94 − �19/4 − �94/4 (mod 7)

≡ 2 + 3 − 3 − 4 − 2 (mod 7)

≡ −4 ≡ 3 (mod 7)

Thus, d1600 was a Wednesday.
Substituting for d1600 in formula (5.9),

dy ≡ 3 − 2C + D + �C/4 + �D/4 (mod 7) (5.10)

This formula enables us to determine the day on which March 1 of any year falls.
Now we extend this formula for an arbitrary day of a given month of the year.

To Extend Formula (5.10) to the rth Day of Month m in Year y:

To generalize formula (5.10), we need to know the number of days the first of the
month is moved up from that of the previous month modulo 7. For this, notice that
30 ≡ 2 (mod 7) and 31 ≡ 3 (mod 7). So the day of the first of the month following a
month with 30 days is advanced by 2 days, whereas that following a month with 31
days is advanced by 3 days.

For example, December 1, 1992, was a Tuesday. So January 1, 1993, fell on day
(2 + 3) = day 5, a Friday.

Thus, we have the following eleven monthly increments:

March 1 to April 1: 3 days
April 1 to May 1: 2 days
May 1 to June 1: 3 days
June 1 to July 1: 2 days

July 1 to August 1: 3 days
August 1 to September 1: 3 days

September 1 to October 1: 2 days
October 1 to November 1: 3 days

November 1 to December 1: 2 days
December 1 to January 1: 3 days
January 1 to February 1: 3 days

Next, we look for a function that yields these incremental values.

To Find a Function f That Produces These Increments:
First, notice that the sum of the increments = 29 days. So, the average number of
increments = 29/11 ≈ 2.6 days, so it was observed by Christian Zeller that the func-
tion f (m) = �2.6m − 0.2 − 2 can be employed to yield the above increments as m
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Christian Julius Johannes Zeller (1824–1899) was born at Mühlhausen on the Neckar. After studying theology,

he became a priest at Schöckingen in 1854. From 1874 to 1898 he was the principal of Women’s Elementary

School Teachers’ College at Markgröningen. Zeller spent his spare time studying mathematics, especially number

theory. He published on remainders, Bernoulli numbers, and arithmetic progressions. His article on the calendar

problem was published in a bulletin of the French Mathematical Society. Zeller died in Cannstadt.

varies from 2 to 12. For example,

f (3) − f (2) = (�7.8 − 0.2 − 2) − (�5.2 − 0.2 − 2)

= (7 − 2) − (5 − 2) = 2

so there is an increment of 2 days from month 2 (April 1) to month 3 (May 1).
Therefore, by formula (5.10), the first day d′ of month m is given by dy +

�2.6m − 0.2 − 2 (mod 7); that is,

d′ ≡ 3 − 2C + D + �C/4 + �D/4 + �2.6m − 0.2 − 2 (mod 7)

≡ 1 + �2.6m − 0.2 − 2C + D + �C/4 + �D/4 (mod 7)

To Find the Formula for the rth Day of Month m:
The day d of the week for the rth day of month m is given by d′ + (r − 1) (mod 7);
that is,

d ≡ r + �2.6m − 0.2 − 2C + D + �C/4 + �D/4 (mod 7) (5.11)

This formula enables us to determine the day of the week of any given day in
the Gregorian calendar, as the next example demonstrates.

EXAMPLE 5.16 Determine the day of the week on which January 13, 2020, falls.

SOLUTION

Notice that January 2020 is the eleventh month of year 2019, so here y = 2019,
C = 20, D = 19, m = 11, and r = 13. Therefore, by formula (5.11),
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d ≡ 13 + �2.6 × 11 − 0.2 − 2 × 20 + 19 + �20/4 + �19/4 (mod 7)

≡ 13 + 28 − 40 + 19 + 5 + 4 (mod 7)

≡ 1 (mod 7)

Thus, January 13, 2020, falls on a Monday. �

E X E R C I S E S 5.6

Find the day of the week in each case.

1. 234 days from Monday.
2. 365 days from Friday.
3. 1776 days from Wednesday.
4. 2076 days from Saturday.

Let S = {true, false}. Define a boolean function f : N →
S by f (n) = true if year n is a leap year and false other-
wise. Find f (n) for each year n.

5. 1996 6. 2020
7. 2076 8. 3000

9. January 1, 2000, falls on a Saturday. What day of the
week will January 1, 2020, be?
(Hint: Look for leap years.)

10. January 1, 1990, was a Monday. What day of the
week was January 1, 1976?
(Hint: Again, look for leap years.)

Determine the day of the week of each historical date.

11. January 17, 1706 (Benjamin Franklin’s date of birth)
12. February 22, 1732 (George Washington’s date of

birth)
13. July 4, 1776 (U.S. Declaration of Independence)
14. November 19, 1863 (Gettysburg Address)
15. March 7, 1876 (first telephone patent issued to

Alexander Graham Bell)
16. December 17, 1903 (world’s first flight)
17. July 16, 1945 (first atomic bomb detonation)
18. October 24, 1945 (United Nations established)
19. April 12, 1961 (first human travel in space)
20. July 20, 1969 (first lunar landing)

The day of January 1 of any year y can be determined
using the formula

x ≡ y + �(y − 1)/4 − �(y − 1)/100
+ �(y − 1)/400 (mod 7) (5.12)

where 0 ≤ x ≤ 6. (G. L. Ritter, 1977) Using this formula,
determine the first day in each year.

21. 2000 22. 2020
23. 2076 24. 3000

The number of Friday-the-thirteenths in a given year y
can be computed using formula (5.12) and Table 5.8.
For example, suppose that January 1 of a year falls on
a Sunday (0). If it is not a leap year, there will be two
Friday-the-thirteenths: January 13 and October 13; if it is
a leap year, there will be three: January 13, April 13, and
July 13. Compute the number of Friday-the-thirteenths in
each year.

Code, x January 1 Nonleap Year, y Leap Year, y
0 Sunday January, January, April,

October July
1 Monday April, July September,

December
2 Tuesday September, June

December
3 Wednesday June March,

November
4 Thursday February, March, February,

November August
5 Friday August May
6 Saturday May October

Table 5.8
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25. 2000 26. 2020
27. 2076 28. 3076

(Easter Sunday) The date for Easter Sunday in any
year y can be computed as follows. Let a = y mod 19,
b = y mod 4, c = y mod 7, d = (19a + 24) mod 30, e =
(2b + 4c + 6d + 5) mod 7, and r = 22 + d + e. If r ≤ 31,
then Easter Sunday is March r; otherwise, it is April
[r (mod 31)]. Compute the date for Easter Sunday in each
year.

29. 1996 30. 2000
31. 2076 32. 3000

We can calculate the day of the week for the rth day of an

arbitrary month m in year y in the Gregorian calendar by
a different formula

d ≡ �23m/9 + r + 4 + y + �z/4 − �z/100 + �z/400
− k (mod 7)

where z = y − 1 and k = 0 if m < 3; and z = y and k = 2
if m ≥ 3. (M. Keith, 1990)

33–42. Using this formula, compute the days of each date
in Exercises 11–20.

43. Show that �C/4 + D/400 = �C/4, where 0 ≤ D <

100.

� �

X CHAPTER SUMMARY

This chapter explored the power of congruences in several applications.

Divisibility Tests
• An integer is divisible by 10 if and only if it ends in 0. (p. 247)
• An integer is divisible by 5 if and only if it ends in 0 or 5. (p. 248)
• An integer is divisible by 2i if and only if the number formed by the last i

digits is divisible by 2i. (p. 248)
• An integer is divisible by 3 if and only if the sum of its digits is divisible by 3.

(p. 248)
• An integer is divisible by 9 if and only if the sum of its digits is divisible by 9.

(p. 248)
• An integer is divisible by 11 if and only if the sum of its digits in the even po-

sitions minus that of its digits in the odd positions is divisible by 11. (p. 249)
• Every palindrome with an even number of digits is divisible by 11. (p. 249)

Casting Out Nines
• This technique can detect computational errors. (p. 249)
• The digital root of a positive integer is its least residue modulo 9; if it is zero,

the digital root is 9. (p. 251)
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Dot Product

• The dot product of two vectors (x1, x2, . . . , xn) and (y1, y2, . . . , yn) is
n∑

i=1
xiyi.

(p. 260)

X REVIEW EXERCISES

Find the largest exponent i such that 2i divides each integer.

1. 24,050,856 2. 300,472,336

Determine whether each number is divisible by 6.

3. 140,736 4. 3,041,079

Determine whether each number is divisible by 11.

5. 9,240,622 6. 85,140,643

Find the missing nonzero digit d in each case.

7. 645d56 ≡ 4 (mod 8) 8. 29d224 ≡ 3 (mod 3)

9. 889d849 ≡ 2 (mod 11) 10. 29992d5 ≡ 4 (mod 11)

Using casting out nines, identify each computation as probably correct or definitely
wrong.

11. 53467
498773

+ 877008
1439248

12. 8700579
− 4099247

4610332

13. 780086
× 27753

21549726758

Find the parity check bit that must be appended to each bit string for even parity.

14. 110110110 15. 11101101101
16. 10101011011 17. 101011011111

Find the digital root of each.

18. 999,000,555 19. 888,777,666
20. 23233232 21. 55551122

Determine whether each can be a square.

22. 1,161,310,084 23. 3,656,973,729

Determine whether each can be a cube.

24. 15,064,223 25. 95,506,664,111
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Determine whether each is a valid UPC number.

26. 0-49200-05100-9 27. 0-13130-03622-4

28. Prego spaghetti sauce, made by Campbell Soup Company, has a country code,
manufacturer code, and product code of 0, 51000, and 02549, respectively. Com-
pute its UPC number.

29. Compute the UPC number for Classic Ovaltine by Sandoz Nutrition Corpora-
tion if the country code, manufacturer code, and product code are 7, 51746, and
03361, respectively.

30. The United Parcel Service assigns to each parcel an identification number of
nine digits and a check digit. The check digit is the least residue modulo 9 of the
nine-digit number. Find the check digit for 038575447.

31. Libraries use a sophisticated code-a-bar system to assign each book a 13-
digit identification number d1d2 . . .d13 and a check digit d14. The check digit
is computed as d14 ≡ [−(d1,d2, . . . ,d13) · (2,1,2,1,2,1,2,1,2,1,2,1,2) − k]
(mod 10), where k denotes the number of digits among d1, d3, d5, d7, d9, d11,
and d13 greater than or equal to 5. Compute the check digit for 3-3014-00099-
073.

A MasterCard number contains 16 digits d1 through d16, with d16 being the check
digit. It is computed as

d16 ≡ −
[

8∑

i=1

ρ(2d2i−1) +
7∑

i=1

d2i

]

(mod 10)

where ρ(m) denotes the digital root of m. (ρ is the Greek letter rho.) Compute the
check digit if the 15-digit identification number is

32. 5300-7402-4001-638 33. 5329-0419-4253-736

Determine the day of the week of each historical date.

34. December 21, 1620 (the Pilgrims landed at Plymouth, Massachusetts)
35. February 1, 1790 (the first meeting of the U.S. Supreme Court)

Compute the missing check digit in each VIN.

36. JT2DB02T–T0049506 37. 1B4GP44R–XB582510

Compute the missing check digit in each German bank note serial number.

38. YA8174491A– 39. DG6244129Y–
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X SUPPLEMENTARY EXERCISES

Let ρ(n) denote the digital root of a positive integer n. Prove each, where m and n
are positive integers.

1. ρ(ρ(n)) = ρ(n)

2. ρ(m + n) = ρ(ρ(m) + ρ(n))

3. ρ(mn) = ρ(ρ(m)ρ(n))

Prove each.

4. An integer n = (nknk−1 . . .n1n0)b is divisible by di if and only if the integer
(ni−1 . . .n1n0)b is divisible by di, where d|b and i > 0.

5. An integer n = (nknk−1 . . .n1n0)b is divisible by d if and only if the integer
nk + · · · + n1 + n0 is divisible by d, where d|(b − 1).

6. Let a and d be positive integers such that d|(10a − 1). Then d|10q + r if and
only if d|q + ar. (C. F. Liljevalch, 1838)

Using Liljevalch’s theorem in Exercise 6, deduce a divisibility test for each number.

7. 3 8. 7 9. 9 10. 11
11. 13 12. 17 13. 19

Using the divisibility tests in Exercises 7–13, determine whether each integer is di-
visible by the corresponding second integer.

14. 1953, 7 15. 28303, 11 16. 51814, 17 17. 61731, 19
18. Suppose a two-digit number N is divisible by 7. Reverse its digits; add the

tens digit of N to it. Prove that the resulting number N′ is also divisible by 7.
(A. P. Stevens, 1951)

19. Suppose a three-digit number N is divisible by 7. Reverse its digits; subtract the
difference of its end digits from the reverse. Prove that the resulting number N′
is also divisible by 7. (A. P. Stevens, 1951)

�20. Find the least positive integer that equals eleven times the sum of its digits.
�21. Find the digital root of the integer n = 2p−1(2p − 1), where p and 2p − 1 are

primes.
[Hint: 2 ≡ −1 (mod 3).]

X COMPUTER EXERCISES

Write a program to perform each task.

1. Read in a positive integer n and find the largest exponent i such that 2i|n.
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2. Read in a positive integer n. Using divisibility tests, determine if it is divisible
by 3, 5, 6, 9, or 11.

3. Read in a bit string and append a bit for even parity.
4. Read in the first nine digits of an ISBN and print the corresponding ISBN.
5. Read in the first eight digits in a Utah driver’s license number and print the nine-

digit license number.
6. Read in the first seven digits in a New Mexico driver’s license number and print

the eight-digit license number.
7. Redo program 6 if the driver lives in Vermont.
8. Read in a 12-digit number and determine whether is a valid UPC number.
9. Read in the country code, manufacturer code, and the product code of a grocery

item. Compute its UPC number.
10. Read in an 11-digit number and determine if it is a valid Norwegian registration

number.
11. Read in the nine-digit identification number in a Norwegian registration number

and determine the 11-digit registration number.
12. Read in a prime p > 3 and place p queens on a p × p chessboard.
13. Read in a positive integer n > 2 and print a schedule for a round-robin tourna-

ment with n teams.
14. Read in a date in the form month/date/year in the Gregorian calendar. Print the

day of the week corresponding to the date using

(a) Formula (5.11) in Section 5.6.
(b) Formula in problems 33–42 of Exercises 5.6.
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6 Systems of Linear
Congruences

Time as he grows old teaches many lessons.

— AESCHYLUS

e have studied linear congruences and seen how to solve such congru-W ences when they are solvable. We now turn to solving a set of two or
more linear congruences in the same number of variables. Such a set is

called a system of linear congruences.
To begin with, we shall study systems of linear congruences in a single variable

x with pairwise relatively prime moduli. We then turn to systems in x with moduli
that are not necessarily relatively prime, and finally to systems in two variables x and
y with the same modulus.

6.1 The Chinese Remainder Theorem

Systems of linear congruences in a single variable were known in ancient China,
India, and Greece; originally, they were used by astronomers for calendar making.
The following puzzle, for example, is due to the Chinese mathematician Sun-Tsu,
and appears in Master Sun’s Mathematical Manual, written between 287 A.D. and
473 A.D.:

Find a number that leaves a remainder of 1 when divided by 3, a remainder of 2
when divided by 5, and a remainder of 3 when divided by 7.

Using the congruence language, the riddle is to find an integer x such that
x ≡ 1 (mod 3), x ≡ 2 (mod 5), and x ≡ 3 (mod 7).

295
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A solution of a linear system is a number that satisfies every member of the
system. For example, since 52 ≡ 1 (mod 3), 52 ≡ 2 (mod 5), and 52 ≡ 3 (mod 7),
52 is a solution of the above Chinese riddle; so are −53 and 157; in fact, the system
has infinitely many solutions (see Example 6.1). You may verify that 22 is not a
solution of the system.

A straightforward method for solving such a linear system is iteration: succes-
sive substitution for x until the last congruence is used, as the following example
demonstrates.

EXAMPLE 6.1 Solve Sun-Tsu’s puzzle by iteration.

SOLUTION

We have x ≡ 1 (mod 3), x ≡ 2 (mod 5), and x ≡ 3 (mod 7). Since x ≡ 1 (mod 3), by
Theorem 4.3, x = 1 + 3t1, where t1 is an arbitrary integer.

Substitute for x in the second congruence x ≡ 2 (mod 5):

1 + 3t1 ≡ 2 (mod 5)

3t1 ≡ 1 (mod 5)

t1 ≡ 2 (mod 5)

That is, t1 = 2 + 5t2, with t2 being an arbitrary integer. Therefore,

x = 1 + 3t1 = 1 + 3(2 + 5t2)

= 7 + 15t2

Now substitute this value of x in the third congruence x ≡ 3 (mod 7):

7 + 15t2 ≡ 3 (mod 7)

15t2 ≡ 3 (mod 7)

t2 ≡ 3 (mod 7)

So t2 = 3 + 7t, with t being arbitrary. Therefore,

x = 7 + 15t2 = 7 + 15(3 + 7t)

= 52 + 105t

Thus, any integer of the form x = 52 + 105t is a solution of the linear system; it is
the general solution of the system. (Note: 105 = 3 · 5 · 7.) �
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In this example, 52 is the unique solution to the puzzle modulo 105, where the
moduli are pairwise relatively prime. The following theorem is called the Chinese
Remainder Theorem (CRT) in honor of early contributions by Chinese mathemati-
cians to the theory of congruences. It shows that every linear system in the same
single variable with pairwise relatively prime moduli has a unique solution. Sun-
Tsu’s puzzle is the earliest known instance of the CRT. A general method for solving
such linear systems can be found in Mathematical Treatise in Nine Sections, written
by Ch’in Chiu-Shao (1202–1261) in 1247.

THEOREM 6.1 (The Chinese Remainder Theorem) The linear system of congruences x ≡
ai (mod mi), where the moduli are pairwise relatively prime and 1 ≤ i ≤ k, has a
unique solution modulo m1m2 · · ·mk.

PROOF

The proof consists of two parts. First, we will construct a solution and then show that
it is unique modulo m1m2 · · ·mk.

Let M = m1m2 · · ·mk and Mi = M/mi, 1 ≤ i ≤ k. Since the moduli are pairwise
relatively prime, (Mi,mi) = 1 for every i. Also, Mi ≡ 0 (mod mj) whenever i �= j.

To construct a solution to the linear system:
Since (Mi, mi) = 1, by Corollary 4.6, the congruence Miyi ≡ 1 (mod mi) has a unique
solution yi. (yi is in fact the inverse of Mi modulo mi.) Let x = a1M1y1 + a2M2y2 +
· · · + akMkyk.

To show that x is a solution of the linear system, we have

x =
k∑

i=1
i�=j

aiMiyi + ajMjyj

≡
∑

i�=j

ai · 0 · yi + aj · 1 (mod mj)

≡ 0 + aj (mod mj)

≡ aj (mod mj), 1 ≤ j ≤ k

Thus, x satisfies every congruence in the system, so x is a solution of the linear
system.

To show that the solution is unique modulo M:
Let x0 and x1 be two solutions of the system. We shall show that x0 ≡ x1 (mod M).

Since x0 ≡ aj (mod mj) and x1 ≡ aj (mod mj) for 1 ≤ j ≤ k, x1 −x0 ≡ 0 (mod mj);
that is, mj|(x1 − x0) for every j. By Corollary 3.12, [m1,m2, . . . ,mk]|(x1 − x0). But,
by Corollary 3.11, [m1,m2, . . . ,mk] = M. Therefore, M|(x1 − x0), so x1 − x0 ≡
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0 (mod M); that is, x1 ≡ x0 (mod M). Thus, any two solutions of the linear system
are congruent modulo M, so the solution is unique modulo M. �

The following examples illustrate this theorem.

EXAMPLE 6.2 Using the CRT, solve Sun-Tsu’s puzzle:

x ≡ 1 (mod 3), x ≡ 2 (mod 5), and x ≡ 3 (mod 7)

SOLUTION

Since the moduli m1 = 3, m2 = 5, and m3 = 7 are pairwise relatively prime, by the
CRT, the linear system has a unique solution. To find it, first we find the M1, M2,

M3, y1, y2, and y3 in the proof of the theorem.

To find M1, M2, and M3:

M1 = M

m1
= 3 · 5 · 7

3
= 35

M2 = M

m2
= 3 · 5 · 7

5
= 21

M3 = M

m3
= 3 · 5 · 7

7
= 15

To find y1, y2, and y3:
y1 is the solution of the congruence M1y1 ≡ 1 (mod m1); that is,

35y1 ≡ 1 (mod 3)

(−1)y1 ≡ 1 (mod 3)

y1 ≡ 2 (mod 3)

Similarly, M2y2 ≡ 1 (mod m2) implies

21y2 ≡ 1 (mod 5)

y2 ≡ 1 (mod 5)

Finally, M3y3 ≡ 1 (mod m3) yields

15y3 ≡ 1 (mod 7)

y3 ≡ 1 (mod 7)
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Thus, by the CRT,

x ≡
3∑

i=1

aiMiyi (mod M)

≡ 1 · 35 · 2 + 2 · 21 · 1 + 3 · 15 · 1 (mod 105)

≡ 52 (mod 105)

Therefore, 52 is the unique solution of the linear system modulo 105. Thus, the
general solution is x = 52 + 105t. �

The following example also demonstrates the CRT, but we leave the details for
you to fill in, so follow the steps carefully.

EXAMPLE 6.3 Solve the linear system

x ≡ 1 (mod 3), x ≡ 2 (mod 4), and x ≡ 3 (mod 5)

SOLUTION

Here M = 3 · 4 · 5 = 60, M1 = M/3 = 20, M2 = M/4 = 15, and M3 = M/5 = 12.
The unique solutions of the congruences M1y1 ≡ 1 (mod m1), M2y2 ≡ 1 (mod m2),
and M3y3 ≡ 1 (mod m3), that is, 20y1 ≡ 1 (mod 3), 15y2 ≡ 1 (mod 4), and 12y3 ≡
1 (mod 5) are 2, 3, and 3, respectively.

Thus, by the CRT,

x ≡
3∑

i=1

aiMiyi (mod M)

≡ 1 · 20 · 2 + 2 · 15 · 3 + 3 · 12 · 3 (mod 60)

≡ 58 (mod 60) �

We close this section with the following example, which presents an interesting
application of the CRT.

EXAMPLE 6.4 The largest integer the scientific calculator Casio fx 330A can handle is the eight-
digit number 99,999,999. Compute the exact value of 231 using this calculator and
the CRT.

SOLUTION

To compute the value of x = 231, we select k pairwise relatively prime numbers
m1,m2, . . . ,mk, where M = m1m2 · · ·mk > x, and then compute the least residue r
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of x modulo M. Since x ≡ r (mod M) and 0 < r < M, r would be the exact value
of x.

The largest power of 2 the eight-digit calculator can handle is 226 = 67,108,864,
whereas 231 ≈ 2.1474836 × 109. So we select four pairwise relatively prime num-
bers m1 = 300, m2 = 301, m3 = 307, and m4 = 311 such that M = m1m2m3m4 =
300 · 301 · 307 · 311 > x; to check this, we have

M > 34 × 108

= 81 × 108

> 8 × 109

so M > x. (We do not need to know the exact value of M.)
Notice that

210 = 1024

≡ 124 (mod 300)

≡ 121 (mod 301)

≡ 103 (mod 307)

≡ 91 (mod 311)

Since 231 = 2 · 210 · 210 · 210,

231 ≡ 2 · 124 · 124 · 124 (mod 300)

≡ −52 (mod 300)

Similarly, 231 ≡ 51 (mod 301), 231 ≡ 228 (mod 307), and 231 ≡ 36 (mod 311). (Ver-
ify these.)

Thus, x = 231 satisfies the linear system:

x ≡ −52 (mod 300)

x ≡ 51 (mod 301)

x ≡ 228 (mod 307)

x ≡ 36 (mod 311)

To apply the CRT, we have

M1 = M/m1 = 301 · 307 · 311, M2 = M/m2 = 300 · 307 · 311

M3 = M/m3 = 300 · 301 · 311, and M4 = M/m4 = 300 · 301 · 307
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To find the values of y1, y2, y3, and y4 in the CRT:

The congruence M1y1 ≡ 1 (mod m1) yields

301 · 307 · 311y1 ≡ 1 (mod 300)

1 · 7 · 11y1 ≡ 1 (mod 300)

77y1 ≡ 1 (mod 300)

y1 ≡ 113 (mod 300)

The congruence M2y2 ≡ 1 (mod m2) yields

300 · 307 · 311y2 ≡ 1 (mod 301)

(−1) · 6 · 10y2 ≡ 1 (mod 301)

60y2 ≡ −1 (mod 301)

y2 ≡ 5 (mod 301)

Similarly, y3 ≡ 53 (mod 307) and y4 ≡ 135 (mod 311) (verify these).
Therefore, by the CRT,

x ≡ a1M1y1 + a2M2y2 + a3M3y3 + a4M4y4 (mod M)

≡ (−52) · 301 · 307 · 311 · 113 + 51 · 300 · 307 · 311 · 5

+ 228 · 300 · 301 · 311 · 53 + 36 · 300 · 301 · 307 · 135 (mod M)

Each individual term in this sum contains 12 digits, so we reduce each modulo M as
follows.

(−52) · 113 ≡ 124 (mod 300)

(−52) · 301 · 307 · 311 · 113 ≡ 124 · 301 · 307 · 311 (mod M)

51 · 5 ≡ −46 (mod 301)

51 · 300 · 307 · 311 · 5 ≡ −46 · 300 · 307 · 311 (mod M)

Similarly,

228 · 300 · 301 · 311 · 53 ≡ 111 · 300 · 301 · 311 (mod M)

and

36 · 300 · 301 · 307 · 135 ≡ −116 · 300 · 301 · 307 (mod M)



302 CHAPTER 6 Systems of Linear Congruences

Therefore,

x ≡ 124 · 301 · 307 · 311 − 46 · 300 · 307 · 311 + 111 · 300 · 301 · 311

− 116 · 300 · 301 · 307 (mod M)

≡ (124 · 301 − 46 · 300) · 307 · 311 + (111 · 311 − 116 · 307) · 300 · 301 (mod M)

≡ 23524 · 307 · 311 − 1091 · 300 · 301 (mod M)

≡ 23000 · 307 · 311 + 524 · 307 · 311 − 1091 · 300 · 301 (mod M)

≡ 2,195,971,000 + 50,029,948 − 98,517,300 (mod M)

≡ 2,147,483,648 (mod M)

Thus, 231 = 2,147,483,648.
(Fortunately, a calculator such as the TI-86 will find this answer in seconds.

Nevertheless, the solution exemplifies the power of the CRT.) �

E X E R C I S E S 6.1

Determine whether the given number is a solution of the
corresponding system of linear congruences.

1. 52; x ≡ 2 (mod 5) 2. 43; x ≡ 1 (mod 2)

x ≡ 3 (mod 7) x ≡ 2 (mod 3)

x ≡ 3 (mod 5)

3. 14; x ≡ 2 (mod 3) 4. 67; x ≡ 1 (mod 3)

x ≡ 4 (mod 5) x ≡ 5 (mod 4)

x ≡ 5 (mod 7) x ≡ 4 (mod 7)

x ≡ 7 (mod 11)

Solve the following linear systems using iteration.

5. x ≡ 2 (mod 5) 6. x ≡ 3 (mod 4)

x ≡ 3 (mod 7) x ≡ 5 (mod 9)

7. x ≡ 1 (mod 2) 8. x ≡ 2 (mod 3)

x ≡ 2 (mod 3) x ≡ 4 (mod 5)

x ≡ 3 (mod 5) x ≡ 5 (mod 7)

9. x ≡ 1 (mod 3) 10. x ≡ 2 (mod 4)

x ≡ 3 (mod 4) x ≡ 3 (mod 5)

x ≡ 4 (mod 7) x ≡ 4 (mod 9)

x ≡ 7 (mod 11) x ≡ 5 (mod 13)

11–16. Using the CRT, solve the linear systems in Exer-
cises 5–10.

Show that the following linear systems are not solvable.

17. x ≡ 2 (mod 4) 18. x ≡ 3 (mod 4)

x ≡ 3 (mod 6) x ≡ 4 (mod 5)

x ≡ 4 (mod 6)

Find the least positive integer that leaves

19. The remainder 3 when divided by 7, 4 when divided
by 9, and 8 when divided by 11.

20. The remainder 2 when divided by 5, 4 when divided
by 6, and 5 when divided by 11, and 6 when divided
by 13.

21. Find the least positive multiple of 7 that leaves the re-
mainder 2 when divided by 5, 3 when divided by 6,
and 5 when divided by 11.

22. Find the least positive multiple of 12 that leaves the
remainder 4 when divided by 8, 6 when divided by 9,
and 8 when divided by 14.

23. Find the smallest positive integer n such that 2|n,
3|n + 1, 5|n + 2, 7|n + 3, and 11|n + 4.

24. Find the smallest integer > 10000 such that 3|n,

4|n + 3, 5|n + 4, 7|n + 5, and 11|n + 7.
25. Find the smallest positive integer n such that 32|n,

42|n + 1, and 52|n + 2.
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26. A child has some marbles in a box. If the marbles are
grouped in sevens, there will be five left over; if they
are grouped in elevens, there will be six left over; if
they are grouped in thirteens, eight will be left over.
Determine the least number of marbles in the box.

27. Find the largest integer < 6000 that leaves the re-
mainders 0, 2, 3, and 5 when divided by 3, 5, 7, and
13, respectively.

28. Find the largest integer < 4000 that leaves the re-
mainders 1, 2, 3, and 4 when divided by 5, 6, 7, and
11, respectively.

29. Find the smallest positive integer n, if it exists, such
that 23|n, 33|n + 1, and 43|n + 2.

30. Find the smallest positive integer n such that 33|n and
53|n + 1.

� �

�6.2 General Linear Systems (optional)

The proof of the CRT establishes a solution to a linear system with pairwise rela-
tively prime moduli and shows the solution is unique. It does not, however, indicate
anything about a system where the moduli are not necessarily pairwise relatively
prime. We will establish a necessary and sufficient condition for such a system to be
solvable.

We begin with the following theorem for a system consisting of two linear con-
gruences.

THEOREM 6.2 The linear system

x ≡ a (mod m)

x ≡ b (mod n)

is solvable if and only if (m, n)|(a − b). When it is solvable, the solution is unique
modulo [m,n].

PROOF

The proof consists of two parts. We will show that the linear system is solvable if
and only if (m,n)|(a − b); and when the system is solvable, the solution is unique
modulo [m,n].
• To show that the linear system is solvable if and only if (m,n)|(a − b):

Suppose x0 is a solution of the linear system. Then x0 ≡ a (mod m) and x0 ≡
b (mod n). The first congruence implies x0 = a + km for some integer k. So,
a + km ≡ b (mod n); that is, mk ≡ b − a (mod n). This congruence, by Theorem 4.9,
has a solution (for k) if and only if (m,n)|(b−a); that is, if and only if (m,n)|(a−b).
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• To show that the linear system has a unique solution when the system is solv-
able:

Suppose (m,n)|(a−b) and x0 is a solution of the linear system. Let x1 be an arbitrary
solution of the system. We will show that x1 ≡ x0 (mod[m,n]).

Because x1 and x0 are solutions of the linear system, x1 ≡ a (mod m), x1 ≡
b (mod n), x0 ≡ a (mod m), and x0 ≡ b (mod n).

Therefore, by symmetry and transitivity, x1 ≡ x0 (mod m) and x1 ≡ x0 (mod n).
Then m|(x1 − x0) and n|(x1 − x0), so by Corollary 3.11, [m,n]|(x1 − x0); that is,
x1 ≡ x0 (mod[m,n]).

Thus, every solution is congruent to x0 mod[m,n]; that is, the solution is unique
modulo [m,n]. �

Unlike the CRT, this theorem does not supply a formula for the solution to the
system. However, if we can find one solution x0, then the general solution is x =
x0 + [m,n]t, with t being an arbitrary integer.

The following example illustrates the theorem.

EXAMPLE 6.5 Determine whether the following linear systems are solvable.

1. x ≡ 3 (mod 6) 2. x ≡ 7 (mod 9)

x ≡ 5 (mod 8) x ≡ 11 (mod 12)

SOLUTION

1. Since (6,8) = 2 and 2|(3 − 5), the first linear system has a solution.
2. We have (9,12) = 3, but 3 � (7 − 11), so the second system is not solvable. �

The following example illustrates once again how we can employ iteration to
solve linear systems of congruences.

EXAMPLE 6.6 Solve the linear system

x ≡ 3 (mod 6)

x ≡ 5 (mod 8)

SOLUTION

By the preceding example, the system has a unique solution. Because x ≡ 3 (mod 6),
x = 3 + 6t′, with t′ being an arbitrary integer. Now substitute for x in the second
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congruence:

3 + 6t′ ≡ 5 (mod 8)

6t′ ≡ 2 (mod 8)

Dividing both sides by 2, using Theorem 4.9,

3t′ ≡ 1 (mod 4)

t′ ≡ 3 (mod 4)

so t′ = 3 + 4t, with t being an arbitrary integer. Then x = 3 + 6(3 + 4t) = 21 + 24t.
Thus, x = 21 is the unique solution modulo [6,8] = 24. �

Theorem 6.2 can be generalized to any system of linear congruences, as the
following theorem shows. We leave its proof as an exercise.

THEOREM 6.3 The linear system x ≡ ai (mod mi) is solvable if and only if (mi,mj)|(ai − aj) for
every i and j, where 1 ≤ i < j ≤ k. When it is solvable, the solution is unique modulo
[m1,m2, . . . ,mk]. �

The following two examples demonstrate this theorem.

EXAMPLE 6.7 Determine whether the following linear systems are solvable:

1. x ≡ 4 (mod 6) 2. x ≡ 3 (mod 4)

x ≡ 2 (mod 8) x ≡ 5 (mod 9)

x ≡ 1 (mod 9) x ≡ 7 (mod 12)

SOLUTION

1. Since (6,8)|(4 − 2), (8,9)|(2 − 1), and (6,9)|(4 − 1), the first linear system
has a solution.

2. For the second congruence, (4,9)|(3−5), and (9,12)|(5−8), but (4,12) = 4
and 4 � (3 − 8); so the second system is not solvable. �

The following example shows how to solve a linear system using iteration.

EXAMPLE 6.8 Solve the linear system (1) in Example 6.7.

SOLUTION

By the preceding example, we know the system has a unique solution. To find it, the
first congruence implies x = 4 + 6w, with w being arbitrary.
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Now substitute for x in the second congruence:

4 + 6w ≡ 2 (mod 8)

6w ≡ −2 (mod 8)

3w ≡ −1 (mod 4), by Theorem 4.7

w ≡ 1 (mod 4)

that is, w = 1 + 4v, so x = 4 + 6w = 10 + 24v.
Substitute for x in the third congruence:

10 + 24v ≡ 1 (mod 9)

6v ≡ 0 (mod 9)

2v ≡ 0 (mod 3)

v ≡ 0 (mod 3)

that is, v = 3t. Therefore, x = 10 + 24v = 10 + 72t, where 72 = [6,8,9]. So the
unique solution is 10 modulo 72. �

Suppose the moduli of the linear system in Theorem 6.3 are pairwise relatively
prime. Then (mi,mj) = 1 for every pair of i and j, so (mi,mj)|(ai −aj) for i �= j. Thus,
the system is solvable; further, since [m1,m2, . . . ,mk] = m1m2 · · ·mk, the solution is
unique modulo m1m2 · · ·mk. Thus, the CRT follows from Theorem 6.3 in the form
of the following corollary.

COROLLARY 6.1 (The Chinese Remainder Theorem) The linear system x ≡ ai (mod mi), where
1 ≤ i ≤ k and the moduli are pairwise relatively prime, is solvable and has a unique
solution modulo m1m2 · · ·mk. �

E X E R C I S E S 6.2

Determine whether each linear system is solvable.

1. x ≡ 2 (mod 10) 2. x ≡ 5 (mod 9)

x ≡ 7 (mod 15) x ≡ 8 (mod 12)

3. x ≡ 4 (mod 9) 4. x ≡ 7 (mod 8)

x ≡ 10 (mod 12) x ≡ 3 (mod 10)

x ≡ −2 (mod 18) x ≡ 2 (mod 15)

Check whether the given value is a solution of the corre-
sponding linear system.

5. 22 + 30t; x ≡ 2 (mod 10)

x ≡ 7 (mod 15)

6. 7 + 24t; x ≡ −1 (mod 8)

x ≡ 7 (mod 12)
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7. 426; x ≡ 2 (mod 8)

x ≡ 3 (mod 9)

x ≡ 6 (mod 10)

8. 170; x ≡ 3 (mod 12)

x ≡ 6 (mod 15)

x ≡ 11 (mod 20)

Using the given solution, find the general solution of each
linear system.

9. 66; x ≡ 2 (mod 8)

x ≡ 3 (mod 9)

x ≡ 6 (mod 10)

10. 51; x ≡ 3 (mod 12)

x ≡ 6 (mod 15)

x ≡ 11 (mod 20)

Solve each linear system using iteration.

11. x ≡ 10 (mod 12) 12. x ≡ 17 (mod 20)

x ≡ 4 (mod 15) x ≡ 5 (mod 28)

13. x ≡ 1 (mod 10) 14. x ≡ 7 (mod 12)

x ≡ 5 (mod 12) x ≡ 7 (mod 15)

x ≡ −4 (mod 15) x ≡ 7 (mod 18)

15. x ≡ 2 (mod 6) 16. x ≡ 2 (mod 6)

x ≡ 5 (mod 9) x ≡ 5 (mod 7)

x ≡ 8 (mod 11) x ≡ 6 (mod 8)

x ≡ 11 (mod 15) x ≡ 8 (mod 9)

17. Assuming the linear system x ≡ a (mod mi), where
1 ≤ i ≤ k, is solvable, find a formula for its general
solution.

18. A piggy bank contains no more than 300 coins. When
the coins are grouped in stacks of sixes, three coins
are left; when they are grouped in eights, five are left;
when they are grouped in twelves, nine are left. Find
the maximum number of coins possible in the piggy
bank.

19. A person has more than 500 fruits. If they are
arranged in piles of 12, 16, and 18, then 5, 9, and 11
fruits are left over. Find the least number of fruits he
has.

20. Find the smallest integer n ≥ 3 such that 2|n,3|n + 1,
4|n + 2, 5|n + 3, and 6|n + 4.

21. Find the smallest integer n ≥ 4 such that 3|n, 4|n + 1,
5|n + 2, 6|n + 3, and 7|n + 4.

22. Find an integer n, if it exists, such that 22|n, 32|n+1,
and 42|n + 2.

23. When eggs in a basket are removed 2, 3, 4, 5, or 6 at a
time, there remain 1, 2, 3, 4, and 5 eggs, respectively.
However, when 7 eggs are removed at a time, no eggs
are left. Find the least number of eggs that could have
been in the basket.†

24. Determine if there is an integer n such that 22|n,
32|n + 1, 42|n + 2, and 52|n + 3.

25. Find the smallest integer n such that 32|n, 42|n + 1,
52|n + 2, and 72|n + 3.

† This problem was proposed by Brahmagupta (ca. 628), the

most prominent Indian mathematician of the seventh century.

� �

�6.3 2 × 2 Linear Systems (optional)

In the two preceding sections, we demonstrated in detail how to solve systems of
linear congruences involving a single variable. Now we turn to systems of two linear
congruences in two variables with the same modulus m. Such a linear system is a
2 × 2 linear system.
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2 × 2 Linear Systems

A 2 × 2 linear system is a system of linear congruences of the form

ax + by ≡ e (mod m)

cx + dy ≡ f (mod m)

A solution of the linear system is a pair x ≡ x0 (mod m), y ≡ y0 (mod m) that satisfies
both congruences.

EXAMPLE 6.9 Show that x ≡ 12 (mod 13) and y ≡ 2 (mod 13) is a solution of the 2×2 linear system

2x + 3y ≡ 4 (mod 13)

3x + 4y ≡ 5 (mod 13)

SOLUTION

When x ≡ 12 (mod 13) and y ≡ 2 (mod 13),

2x + 3y ≡ 2(12) + 3(2) ≡ 4 (mod 13)

3x + 4y ≡ 3(12) + 4(2) ≡ 5 (mod 13)

Therefore, every pair x ≡ 12 (mod 13), y ≡ 2 (mod 13) is a solution of the system.
(The general solution of the system is x = 12 + 13t, y = 2 + 13t, with t being an
arbitrary integer.) �

We will now study two methods for solving 2 × 2 linear systems. One is
the method of elimination and the other is a rule that resembles the well-known
Cramer’s rule for solving linear systems of equations.

The following example illustrates the method of elimination, which involves
eliminating one of the variables and solving the resulting linear congruences.

EXAMPLE 6.10 Using the method of elimination, solve the linear system

2x + 3y ≡ 4 (mod 13) (6.1)

3x + 4y ≡ 5 (mod 13) (6.2)



�6.3 2 × 2 Linear Systems (optional) 309

SOLUTION

To eliminate y, multiply congruence (6.1) by 4 and congruence (6.2) by 3:

8x + 12y ≡ 3 (mod 13)

9x + 12y ≡ 2 (mod 13)

Subtracting,

−x ≡ 1 (mod 13)

x ≡ 12 (mod 13)

To find y, substitute for x in congruence (6.1):

2 · 12 + 3y ≡ 4 (mod 13)

3y ≡ −7 (mod 13)

y ≡ 2 (mod 13)

Thus, the solution is given by x ≡ 12 (mod 13), y ≡ 2 (mod 13). (Notice that this
agrees with Example 6.9.) �

The following theorem provides a necessary and sufficient condition for a 2 × 2
linear system to have a unique solution.

THEOREM 6.4 The linear system

ax + by ≡ e (mod m)

cx + dy ≡ f (mod m)

has a unique solution if and only if (�,m) = 1, where � ≡ ad − bc (mod m).

PROOF

Suppose the system has a solution x ≡ x0 (mod m) and y ≡ y0 (mod m):

ax0 + by0 ≡ e (mod m) (6.3)

cx0 + dy0 ≡ f (mod m) (6.4)

Multiply congruence (6.3) by d and congruence (6.4) by b:

adx0 + bdy0 ≡ ed (mod m)

bcx0 + bdy0 ≡ bf (mod m)
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Subtracting,

(ad − bc)x0 ≡ (ed − bf ) (mod m)

By Corollary 4.6, x0 has a unique value modulo m if and only if (�,m) = 1. Simi-
larly, y0 has a unique value modulo m if and only if (�,m) = 1.

Thus, the system has a unique solution modulo m if and only if (�,m) = 1. �

The following example demonstrates this theorem.

EXAMPLE 6.11 Verify that the linear system

2x + 3y ≡ 4 (mod 13)

3x + 4y ≡ 5 (mod 13)

has a unique solution modulo 13.

SOLUTION

By Theorem 6.4, all we need to check is whether (�,13) = 1 for the linear system:
� ≡ ad −bc ≡ 2 ·4−3 ·3 ≡ −1 ≡ 12 (mod 13). Since (12,13) = 1, by Theorem 6.4,
the system has a unique solution modulo 13. �

Although Theorem 6.4 can be used to determine whether a system has a unique
solution, it does not furnish us with the solution when it is solvable. However, the
following theorem does.

THEOREM 6.5 When the linear system

ax + by ≡ e (mod m)

cx + dy ≡ f (mod m)

has a unique solution modulo m, it is given by x0 ≡ �−1(ed − bf ) (mod m) and
y0 ≡ �−1(af − ce) (mod m), where � ≡ ad − bc (mod m) and �−1 is an inverse of
� modulo m.

PROOF

By Theorem 6.4, since the system has a unique solution modulo m, (�,m) = 1; so,
by Corollary 4.6, � is invertible.
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Because the linear system has a unique solution, it suffices to show that x0, y0

satisfies the system:

ax0 + by0 ≡ a�−1(de − bf ) + b�−1(af − ce) (mod m)

≡ (ad − bc)�−1e + �−1(abf − abf ) (mod m)

≡ ��−1e + 0 (mod m)

≡ e (mod m), since ��−1 ≡ 1 (mod m)

Also,

cx0 + dy0 ≡ c�−1(de − bf ) + d�−1(af − ce) (mod m)

≡ (ad − bc)�−1f + �−1(cde − cde) (mod m)

≡ ��−1f + 0 (mod m)

≡ f (mod m), because ��−1 ≡ 1 (mod m)

Thus, x ≡ x0 (mod m), y ≡ y0 (mod m) is the unique solution of the linear system. �

The formulas for x0 (mod m) and y0 (mod m) closely resemble those for x and
y in Cramer’s rule for a linear system of equations. To see this, we can rewrite the
values of �, x0, and y0 in terms of determinants:

� ≡ ad − bc ≡
∣
∣
∣
∣
a b
c d

∣
∣
∣
∣ (mod m)

x0 ≡ �−1(ed − bf ) ≡ �−1
∣
∣
∣
∣
e b
f d

∣
∣
∣
∣ (mod m)

y0 ≡ �−1(af − ce) ≡ �−1
∣
∣
∣
∣
a e
c f

∣
∣
∣
∣ (mod m)

The following example illustrates Theorem 6.5.

EXAMPLE 6.12 Solve the linear system

3x + 13y ≡ 8 (mod 55)

5x + 21y ≡ 34 (mod 55)

SOLUTION

First notice that � ≡ 3 · 21 − 13 · 5 ≡ 53 (mod 55) and (53,55) = 1, so the system
has a unique solution modulo 55. Also, �−1 ≡ 27 (mod 55). Therefore,
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x0 ≡ �−1(de − bf ) ≡ 27(21 · 8 − 13 · 34) ≡ 27 (mod 55)

y0 ≡ �−1(af − ce) ≡ 27(3 · 34 − 5 · 8) ≡ 24 (mod 55)

Thus, x ≡ 27 (mod 55) and y ≡ 24 (mod 55) is the unique solution to the given sys-
tem. �

Note that the techniques employed to solve linear systems of equations using
matrices and determinants can be adapted nicely to solve higher order linear systems
of congruences. Some are explored in the following exercises.

E X E R C I S E S 6.3

Determine whether each linear system is solvable.

1. 3x + 4y ≡ 5 (mod 7)

4x + 5y ≡ 6 (mod 7)

2. 4x + 5y ≡ 5 (mod 8)

3x − 6y ≡ 3 (mod 8)

3. 5x + 6y ≡ 10 (mod 13)

6x − 7y ≡ 2 (mod 13)

4. 7x + 8y ≡ 10 (mod 15)

5x − 9y ≡ 10 (mod 15)

5. x + 3y ≡ 3 (mod 11)

5x + y ≡ 5 (mod 11)

6. 6x − 7y ≡ 15 (mod 17)

11x − 9y ≡ 13 (mod 17)

Solve the following linear systems using elimination.

7. 3x + 4y ≡ 5 (mod 7)

4x + 5y ≡ 6 (mod 7)

8. 4x + 5y ≡ 5 (mod 8)

3x − 6y ≡ 3 (mod 8)

9. 5x + 6y ≡ 10 (mod 13)

6x − 7y ≡ 2 (mod 13)

10. 7x + 8y ≡ 11 (mod 15)

5x − 9y ≡ 10 (mod 15)

11. x + 3y ≡ 3 (mod 11)

5x + y ≡ 5 (mod 11)

12. 6x + 11y ≡ 9 (mod 16)

7x + 8y ≡ 9 (mod 16)

13–18. Solve the linear systems in Exercises 7–12 using
Theorem 6.5.

Solve each linear system using Theorem 6.5.

19. 5x + 11y ≡ 8 (mod 13)

11x + 5y ≡ 9 (mod 13)

20. 4x − 6y ≡ 2 (mod 14)

7x + 11y ≡ 11 (mod 14)

21. 7x − 11y ≡ 12 (mod 18)

11x − 12y ≡ 2 (mod 18)

Solve each 3 × 3 linear system using elimination.

22. x + y + z ≡ 6 (mod 7)

x + 2y + 3z ≡ 6 (mod 7)

2x + 3y + 4z ≡ 5 (mod 7)

23. x − 2y − z ≡ 6 (mod 11)

2x + 3y + z ≡ 5 (mod 11)

3x + y + 2z ≡ 2 (mod 11)

The 3 × 3 linear system

a1x + b1y + c1z ≡ d1 (mod m)

a2x + b2y + c2z ≡ d2 (mod m) (6.5)
a3x + b3y + c3z ≡ d3 (mod m)
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has a unique solution modulo m if and only if (�,m) = 1,
where

� ≡

∣
∣
∣
∣
∣
∣
∣

a1 b1 c1
a2 b2 c2
a3 b3 c3

∣
∣
∣
∣
∣
∣
∣

(mod m)

Using this fact, determine whether each system has a
unique solution.

24. x + y + z ≡ 6 (mod 7)

x + 2y + 3z ≡ 6 (mod 7)

2x + 3y + 4z ≡ 5 (mod 7)

25. x − 2y − z ≡ 6 (mod 11)

2x + 3y + z ≡ 5 (mod 11)

3x + y + 2z ≡ 2 (mod 11)

26. x − y + 2z ≡ 7 (mod 8)

2x + y − z ≡ 7 (mod 8)

3x + 2y + z ≡ 2 (mod 8)

27. 2x − 3y + z ≡ 12 (mod 13)

x + 2y − z ≡ 6 (mod 13)

3x − y + 2z ≡ 2 (mod 13)

28–31. When the linear system (6.5) has a unique solu-
tion, it is given by

x ≡ �−1

∣
∣
∣
∣
∣
∣
∣

d1 b1 c1
d2 b2 c2
d3 b3 c3

∣
∣
∣
∣
∣
∣
∣

(mod m)

y ≡ �−1

∣
∣
∣
∣
∣
∣
∣

a1 d1 c1
a2 d2 c2
a3 d3 c3

∣
∣
∣
∣
∣
∣
∣

(mod m)

z ≡ �−1

∣
∣
∣
∣
∣
∣
∣

a1 b1 d1
a2 b2 d2
a3 b3 d3

∣
∣
∣
∣
∣
∣
∣

(mod m)

Using this result, solve linear systems in Exer-
cises 24–27.

� �

X CHAPTER SUMMARY

We have established the solvability of systems of linear congruences x ≡ ai (mod mi),
where 1 ≤ i ≤ k and the moduli mi are pairwise relatively prime. Also, we have
shown that the solution is unique modulo m1m2 · · ·mk. We have obtained necessary
and sufficient conditions for the solvability of such systems when the moduli are
not necessarily pairwise relatively prime and have proved that the solution is unique
modulo [m1,m2, . . . ,mk]. We have solved linear systems in a single variable using
iteration and the CRT, and 2 × 2 linear systems using elimination and determinants.

The Chinese Remainder Theorem
• The linear system x ≡ ai (mod mi), where 1 ≤ i ≤ k and the moduli are pair-

wise relatively prime, has a unique solution modulo m1m2 · · ·mk. (p. 297)
• The solution of the linear system is given by x ≡ a1M1y1 + a2M2y2 + · · · +

akMkyk (mod M), where M = m1m2 · · ·mk, Mi = M/mi, and yi is an inverse
of Mi modulo mi. (p. 297)
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• The linear system x ≡ ai (mod mi) is solvable if and only if (mi, mj)|(ai − aj)

for every i and j, where 1 ≤ i < j ≤ k; when it is solvable, the system has a
unique solution modulo [m1,m2, . . . ,mk]. (p. 305)

2 × 2 Linear Systems
• The 2 × 2 linear system

ax + by ≡ e (mod m)

cx + dy ≡ f (mod m)

has a unique solution modulo m if and only if (�,m) = 1, where � ≡ ad −
bc (mod m). (p. 309)

• The solution is given by x0 ≡ �−1(de − bf ) (mod m), y0 ≡ �−1(af −
ce) (mod m), where �−1 denotes an inverse of � modulo m. (p. 310)

X REVIEW EXERCISES

Solve each linear system using iteration.

1. x ≡ 3 (mod 7)

x ≡ 5 (mod 10)

2. x ≡ 6 (mod 8)

x ≡ −2 (mod 12)

3. x ≡ 2 (mod 5)

x ≡ 3 (mod 7)

x ≡ 5 (mod 8)

4. x ≡ 4 (mod 6)

x ≡ −2 (mod 10)

x ≡ −2 (mod 15)

Using the CRT, solve each linear system.

5. x ≡ 3 (mod 7)

x ≡ 5 (mod 10)

6. x ≡ 5 (mod 9)

x ≡ 8 (mod 16)

7. x ≡ 2 (mod 5)

x ≡ 3 (mod 7)

x ≡ 5 (mod 8)

8. x ≡ 3 (mod 5)

x ≡ 5 (mod 7)

x ≡ 8 (mod 12)

Find the smallest positive integer that leaves
9. The remainders 8, 7, and 11 when divided by 7, 11, and 15, respectively.

10. The remainders 8, 5, and 14 when divided by 11, 12, and 15, respectively.

Find the largest integer < 15,000 that leaves:
11. The remainders 2, 5, 0, and 1 when divided by 5, 11, 12, and 13, respectively.
12. The remainders 3, 7, 9, and 11 when divided by 8, 12, 14, and 17, respectively.
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13. Find the smallest positive integer n such that 3|n, 4|n + 1, 5|n + 2, 7|n + 3, and
11|n + 4.

14. Find the smallest positive integer n such that 22|n, 32|n + 2, 52|n + 3, and
112|n + 5.

15. A jar contains at least 300 pennies. If they are grouped in fives, sixes, sevens,
and elevens, there will be three, five, four, and eight pennies left over. Find the
least possible number of coins in the jar.

16. A fruit basket contains not more than 3000 plums. When they are grouped in
piles of sixes, nines, elevens, and fifteens, there will be two, eight, seven, and
fourteen plums left over, respectively. Find the maximum possible number of
plums in the basket.

Determine whether each linear system is solvable.

17. 5x + 7y ≡ 3 (mod 9)

6x + 5y ≡ 4 (mod 9)

18. 6x + 5y ≡ 7 (mod 12)

3x + 11y ≡ 8 (mod 12)

19. 8x + 11y ≡ 5 (mod 13)

7x + 9y ≡ 10 (mod 13)

20. 3x + 8y ≡ 11 (mod 15)

7x + 12y ≡ 13 (mod 15)

Solve each linear system using elimination.

21. 5x + 7y ≡ 3 (mod 9)

6x + 5y ≡ 4 (mod 9)

22. 8x + 11y ≡ 5 (mod 13)

7x + 9y ≡ 10 (mod 13)

23. 8x + 5y ≡ 4 (mod 15)

3x + 11y ≡ 7 (mod 15)

24. x + y − z ≡ 8 (mod 11)

x − y + z ≡ 5 (mod 11)

x − y − z ≡ 10 (mod 11)

25. x − y − z ≡ 5 (mod 17)

x + 2y + z ≡ 2 (mod 17)

2x − 3y − z ≡ 0 (mod 17)

26. x + 2y − 3z ≡ 3 (mod 19)

2x − y + 4z ≡ 10 (mod 19)

3x + 4y + 5z ≡ 9 (mod 19)

27–32. Using determinants, solve the linear systems in Exercises 21–26.

33. An apartment complex contains one- and two-bedroom apartments. They are
rented for $675 and $975 a month, respectively. If all apartments are rented, the
total monthly revenue would leave a remainder of $54 when it is divided by 101.
But if the rents are lowered by $100 apiece, and if all apartments are rented, then
the total monthly revenue would leave a remainder of $53 when it is divided by
101. Find the number of one- and two-bedroom apartments if the total income
does not exceed $100,000.

34. Judy bought some 29-cent and 35-cent stamps. The total value of the stamps (in
cents) leaves a remainder 1 when it is divided by 23. But when the stamps’ costs
are increased by 10¢ each, the total value leaves a remainder of 6 when divided
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by 23. Find the number of 29-cent and 35-cent stamps she bought if the total
cost is no more than $18.

X SUPPLEMENTARY EXERCISES

To do these exercises, you will need knowledge of matrices and the following defini-
tions:

Let A = (aij)k×l and B = (bij)k×l be two matrices with integral entries. Then A
is congruent to B modulo m if aij ≡ bij (mod m) for every i and j, and we then write
A ≡ B (mod m).

For example,

[
8 −5

17 6

]

≡
[

2 1
−1 0

]

(mod 6)

The matrix A = (aij)n×n is the identity matrix of order n if aij = 1 when i = j
and 0 otherwise; it is denoted by In or simply I. For instance, the identity matrix of
order 2 is

[
1 0
0 1

]

A matrix A−1 is an inverse of matrix A modulo m if AA−1 ≡ I ≡
A−1A (mod m). For example, let

A =
[

2 3
4 5

]

Then

A−1 ≡
[

1 5
2 6

]

(mod 7),

because

AA−1 ≡
[

2 3
4 5

][
1 5
2 6

]

≡
[

1 0
0 1

]

≡ I (mod 7);

similarly, A−1A ≡ I (mod 7).
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Verify that the given matrices are inverses of each other for the indicated modu-
lus.

1.

[
3 5
4 7

]

,

[
7 6
7 3

]

; m = 11 2.

[
6 8

−7 4

]

,

[
2 9

10 3

]

; m = 13

The 2 × 2 linear system
ax + by ≡ e (mod m)

cx + dy ≡ f (mod m)

can be written as the matrix congruence AX ≡ B (mod m), where

A =
[

a b
c d

]

, X =
[

x
y

]

, and B =
[

e
f

]

Rewrite the following linear systems as matrix congruences.

3. 3x + 5y ≡ 7 (mod 11)

4x + 7y ≡ 9 (mod 11)

4. 6x + 8y ≡ 5 (mod 13)

−7x + 4y ≡ 8 (mod 13)

5–6. The coefficient matrix A in the congruence AX ≡ B (mod m) has an inverse
A−1 modulo m if and only if (�,m) = 1, where � ≡ ad − bc (mod m). Then
X ≡ A−1B (mod m). Using these facts, and Exercises 1 and 2, solve the linear
systems in Exercises 3 and 4.

7. Let A =
[

a b
c d

]

, where a, b, c, and d are integers. Let (�,m) = 1, where

� ≡ ad − bc (mod m). Prove that

A−1 ≡ �−1
[

d −b
−c a

]

(mod m).

Using Exercise 7, find an inverse of each matrix for the indicated modulus m.

8.

[
3 4
5 6

]

, m = 7

9.

[
5 8
3 7

]

, m = 13

10.

[
8 13

10 11

]

, m = 17

Solve each linear system using matrices.

11. 3x + 4y ≡ 2 (mod 7)

5x + 6y ≡ 3 (mod 7)

12. 5x + 8y ≡ 3 (mod 13)

3x + 7y ≡ 5 (mod 13)

13. 8x + 13y ≡ 9 (mod 17)

10x + 11y ≡ 8 (mod 17)

14. 4x + 7y ≡ 3 (mod 16)

11x + 8y ≡ 7 (mod 16)
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X COMPUTER EXERCISES

Write a program to perform each task.

1. Solve Sun-Tsu’s puzzle using the CRT.
2. Find the smallest integer n ≥ 3 such that 2|n, 3|n + 1,4|n + 2,5|n + 3, and

6|n + 4.
3. Find the smallest integer n ≥ 4 such that 3|n, 4|n + 1,5|n + 2,6|n + 3, and

7|n + 4.
4. Find the smallest positive integer n such that 32|n, 42|n + 1, and 52|n + 2.
5. Find the smallest positive integer n such that 32|n, 42|n + 1, 52|n + 2, and

72|n + 3.

Determine whether each linear system is solvable.

6. x ≡ 4 (mod 6)

x ≡ 2 (mod 8)

x ≡ 1 (mod 9)

7. x ≡ 3 (mod 4)

x ≡ 5 (mod 9)

x ≡ 8 (mod 12)

Solve each linear system.

8. x ≡ 7 (mod 12)

x ≡ 7 (mod 15)

x ≡ 7 (mod 18)

9. x ≡ 2 (mod 6)

x ≡ 5 (mod 9)

x ≡ 8 (mod 11)

x ≡ 11 (mod 15)

10. x ≡ 2 (mod 6)

x ≡ 5 (mod 7)

x ≡ 6 (mod 8)

x ≡ 8 (mod 9)

11. Let m1 = 400, m2 = 401, m3 = 403, M = m1m2m3, and Mi = M/mi, where
1 ≤ i ≤ 3. Solve each congruence Miyi ≡ 1 (mod mi); give the least residue in
each case.

12. Let m1 = 300, m2 = 301, m3 = 307, m4 = 311, M = m1m2m3m4, and Mi =
M/mi, where 1 ≤ i ≤ 4. Solve each congruence Miyi ≡ 1 (mod mi); give the
least residue in each case.

13. Read in a 2 × 2 matrix with integral elements and a modulus m. Determine if it
is invertible; if it is, find an inverse modulo m.

14. Read in a 2×2 linear system of congruences. Solve it using matrix congruences.
15. Read in a 3 × 3 matrix with integral elements and a modulus m. Determine if it

is invertible.
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7 Three Classical
Milestones

Euler calculated without effort, as men breathe,

or as eagles sustain themselves in the wind.

— FRANÇOIS ARAGO

hree classical results—Wilson’s theorem, Fermat’s little theorem, and Euler’sT theorem—have played a significant role in the development of the theory of
congruences. All three theorems illustrate the power of congruences and the

congruence notation.
We begin our discussion with Wilson’s theorem, which involves the factorial

function.

7.1 Wilson’s Theorem

In 1770, the English mathematician Edward Waring described in his Meditationes
Algebraicae the following conjecture by John Wilson, one of his former students: “If
p is a prime, then p|[(p − 1)! + 1].” Wilson is likely to have guessed this by using
some pattern recognition. In any case, neither he nor Waring could furnish a proof of
the result.

Three years after the conjecture was announced, Lagrange provided the first
proof. He observed that its converse is also true.

Wilson, in fact, was not the first mathematician to discover the theorem, although
it bears his name. There is evidence that the outstanding German mathematician

321
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Edward Waring (1734–1798) was born in Shrewsbury, England. Little is known

about his early life. In 1753 he entered Magdalene College, Cambridge, where

his mathematical talent blossomed. He graduated four years later, received his

masters in 1760, and then became the sixth Lucasian professor of mathematics

at Cambridge University, although some opposed his appointment because of his

young age. His Miscellanea Analytics, published in 1762, silenced his critics and

proved him a first-rate mathematician. He wrote five more treatises, the most im-

portant of them being Meditationes Algebraicae. A fellow of the Royal Society, he

received the Copley Medal in 1784.

Not all his activities, however, were mathematical. Concurrent with the writ-

ing of books, he pursued medicine and received his M.D. from Cambridge in

1767. He gave up his practice in 1770, but continued to serve as the Lucasian

professor until his death.

John Wilson (1741–1793) was born in Applethwaite, Westmoreland, England. After completing undergraduate

work at Cambridge University and being a private tutor there for a brief period, he was called to the bar in 1766

and acquired considerable practice on the northern circuit. In 1786 he was elevated to the bench of the Court of

Common Pleas. A fellow of the Royal Society, Wilson died in Kendal.

Baron Gottfried Wilhelm Leibniz (1646–1716) knew it as early as 1682, although he
did not publish it.

Recall from Corollary 4.6 that the congruence ax ≡ 1 (mod m) has a unique so-
lution if and only if (a,m) = 1. Further, the solution is an inverse a−1 of a modulo m.
In particular, suppose the modulus is a prime p. Then positive least residues mod-
ulo p, that is, integers 1 through p − 1, are invertible. For example, let p = 7. Then
the positive least residues 1 through 6 are invertible: 1 · 1 ≡ 2 · 4 ≡ 3 · 5 ≡ 6 ≡ 6 ≡
1 (mod 7).

The following lemma shows that exactly two of them are self-invertible.

LEMMA 7.1 A positive integer a is self-invertible modulo p if and only if a ≡ ±1 (mod p).

PROOF

Suppose a is self-invertible. Then a2 ≡ 1 (mod p); that is, p|(a2 − 1); so
p|(a − 1)(a + 1). Then, by Lemma 3.3, p|a − 1 or p|a + 1; thus, either a ≡ 1
(mod p) or a ≡ −1 (mod p).

Conversely, suppose a ≡ 1 (mod p) or a ≡ −1 (mod p). In either case, a2 ≡ 1
(mod p), so a is self-invertible modulo p. �
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It follows by this lemma that exactly two least residues modulo p are self-
invertible; they are 1 and p − 1. Thus, the congruence x2 ≡ 1 (mod p) has exactly
two solutions, 1 and p − 1 modulo p.

For example, the self-invertible least residues modulo 13 are 1 and 12: 12 ≡ 1
(mod 13) and 122 ≡ 1 (mod 13). In other words, the solutions of the congruence
x2 ≡ 1 (mod 13) are 1 and 12 modulo 13.

Before formally stating Wilson’s theorem, we study an example that will facili-
tate its proof.

EXAMPLE 7.1 Let p = 11. Then (p − 1)! = 10! = 1 · 2 · 3 · 4 · 5 · 6 · 7 · 8 · 9 · 10. The least residues
modulo 11 that are self-invertible are 1 and 10; rearrange the remaining factors into
pairs in such a way that the residues in each pair are inverses of each other modulo 11:

10! = 1 · (2 · 6) · (3 · 4) · (5 · 9) · (7 · 8) · 10

≡ 1 · 1 · 1 · 1 · 1 · 10 (mod 11)

≡ 10 (mod 11)

≡ −1 (mod 11)

Thus, (p − 1)! ≡ −1 (mod 11), illustrating Wilson’s theorem. �

The technique used in this example is essentially the same one employed in the
proof of the theorem: Arrange into (p−3)/2 = (11−3)/2 = 4 pairs the positive least
residues modulo p (= 11) that are not self-invertible. We can now state and prove the
first feature theorem.

THEOREM 7.1 (Wilson’s Theorem) If p is a prime, then (p − 1)! ≡ −1 (mod p).

PROOF

When p = 2, (p − 1)! = 1 ≡ −1 (mod 2); thus, the theorem is true when p = 2.
So, let p > 2. By Corollary 4.6, the least positive residues 1 through p − 1 are

invertible modulo p. But, by Lemma 7.1, two of them, 1 and p − 1, are their own in-
verses. So we can group the remaining p−3 residues, 2 through p−2, into (p−3)/2
pairs of inverses a and b = a−1 such that ab ≡ 1 (mod p) for every pair a and b. Thus,

2 · 3 · · · (p − 2) ≡ 1 (mod p)

(p − 1)! = 1 · [2 · 3 · · · (p − 2)] · (p − 1)

≡ 1 · 1 · (p − 1) (mod p)

≡ −1 (mod p) �
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The following example shows an interesting application of Wilson’s theorem.

EXAMPLE 7.2 Let p be a prime and n any positive integer. Prove that

(np)!
n!pn

≡ (−1)n (mod p)

SOLUTION

First, we can make an observation. Let a be any positive integer congruent to 1
modulo p. Then, by Wilson’s theorem,

a(a + 1) · · · [a + (p − 2)] ≡ (p − 1)! ≡ −1 (mod p).

In other words, the product of the p − 1 integers between any two consecutive mul-
tiples of p is congruent to −1 modulo p. Then

(np)!
n!pn

= (np)!
p · 2p · 3p · · · (np)

=
n∏

r=1

[(r − 1)p + 1] · · · [(r − 1)p + (p − 1)]

≡
n∏

r=1

(p − 1)! (mod p)

≡
n∏

r=1

(−1) (mod p)

≡ (−1)n (mod p) �

In particular, let p = 5 and n = 46. Then

(np)!
n!pn

= 230!
46!546

≡ (−1)46 ≡ 1 (mod 5).

In 1957, F. G. Elston of New York generalized Wilson’s theorem: Let p be a
prime and 0 ≤ r ≤ p − 1. Then r!(p − 1 − r)! + (−1)r ≡ 0 (mod p). See Exercise 17.

We now turn to the converse of Wilson’s theorem.

THEOREM 7.2 If n is a positive integer such that (n − 1)! ≡ −1 (mod n), then n is a prime.

PROOF (by contradiction)
Suppose n is composite, say, n = ab, where 1 < a,b < n. Since a|n and n|[(n − 1)!+
1], a|[(n − 1)! + 1]. Since 1 < a < n, a is one of the integers 2 through n − 1, so
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a|(n − 1)!. Therefore, by Theorem 2.4, a|[(n − 1)! + 1 − (n − 1)!]; that is, a|1. So
a = 1, a contradiction. Thus, n must be a prime. �

Theorems 7.1 and 7.2 together furnish a necessary and sufficient condition for
a positive integer to be a prime: A positive integer n ≥ 2 is a prime if and only if
(n−1)! ≡ −1 (mod n). This condition provides a seemingly simple test for primality.
To check if n is a prime, all we need is to determine whether (n − 1)! ≡ −1 (mod n).

For example, (7 − 1)! = 720 ≡ −1 (mod 7), so 7 is a prime. On the other hand,
(12 − 1)! = 39,916,800 ≡ 0 (mod 12), so (12 − 1)! �≡ −1 (mod 12), showing that
12 is not a prime.

Unfortunately, this test has no practical significance, because (n − 1)! becomes
extremely large as n gets large.

Factorial, Multifactorial, and Primorial Primes

Theorem 7.2 naturally prompts several questions in the minds of the curious: Are
?there primes of the form m! + 1? If yes, how many such primes are there?

Since 1! + 1 = 2,2! + 1 = 3,3! + 1 = 7 are primes, there do exist primes of
the form m! + 1. There are in fact nine such primes for m ≤ 100. The largest known
such prime, as of 2005, was 32659! + 1, discovered by Steven L. Harvey; it contains
44,416 digits.

On the other hand, n! − 1 is a prime for n = 3, 4, and 6. The largest known such
prime is 974! − 1, discovered by Harvey Dubner of New Jersey; n! − 1 is composite
for 975 ≤ n ≤ 1155. It remains unresolved as to whether there is an infinitude of

?primes of the form n! ± 1; such primes are factorial primes.
In 1930, S. S. Pillai asked if every prime factor of n! + 1 is congruent to 1

modulo n. For example, 11|(5!+1) and 11 ≡ 1 (mod 5). In the same year, the Indian
number theorist S. Chowla discovered two exceptions: 14! + 1 ≡ 0 (mod 23) and
18! + 1 ≡ 0 (mod 23), where 23 �≡ 1 (mod 14) and 23 �≡ 1 (mod 18). In fact, the
smallest such counterexample is 8! + 1 ≡ 0 (mod 61), where 61 �≡ 1 (mod 8).

In 1993, Erdös and M. V. Subbarao of the University of Alberta independently
proved that there are infinitely many primes p for which there is an integer n such
that n! + 1 ≡ 0 (mod p), where p �≡ 1 (mod n).

Primes of the form n!k ± 1 are multifactorial primes, where n!k = n(n − k)(n −
2k)(n−3k) · · · (n−rk), k is a positive integer, and r is the largest positive integer such
that n − rk ≥ 1. (Notice that n!1 = n!.) For example, 7!3 + 1 = 7(7 − 3)(7 − 6)+ 1 =
29 and 7!5 − 1 = 7(7 − 5) − 1 = 13 are multifactorial primes.

Primes of the form n# ± 1 are primorial primes, where n# denotes the product
of all primes ≤ n; for example, 10# + 1 = 2 · 3 · 5 · 7 + 1 = 211 is a primorial prime.

?Establishing the infinitude of primorial primes remains unresolved.
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E X E R C I S E S 7.1

Find the self-invertible least residues modulo each
prime p.

1. 7 2. 13 3. 19 4. 23

Solve the congruence x2 ≡ 1 (mod m) for each modu-
lus m.

5. 6 6. 8 7. 12 8. 15
9. Prove or disprove: If the congruence x2 ≡ 1 (mod m)

has exactly two solutions, then m is a prime.
10. If x2 ≡ 1 (mod p) and x2 ≡ 1 (mod q), does it fol-

low that x2 ≡ 1 (mod pq), where p and q are distinct
primes?

11. Let a be a solution of the congruence x2 ≡ 1
(mod m). Show that m − a is also a solution.

Without using Wilson’s theorem, verify that (p−1)! ≡ −1
(mod p) for each p.

12. 3 13. 5 14. 7 15. 13

Prove each, where p is a prime.

16. Let p be odd. Then 2(p − 3)! ≡ −1 (mod p).
17. (p − 1)(p − 2) · · · (p − k) ≡ (−1)kk! (mod p), where

1 ≤ k < p.
18. Let p be odd. Then 12 · 32 · · · (p − 2)2 ≡ (−1)(p+1)/2

(mod p).
19. Let p be odd. Then 22 · 42 · · · (p − 1)2 ≡ (−1)(p+1)/2

(mod p).
20. A positive integer n ≥ 2 is a prime if and only if

(n − 2)! ≡ 1 (mod n).

21. Let r be a positive integer < p such that r! ≡ (−1)r

(mod p). Then (p − r − 1)! ≡ −1 (mod p).

22.
1 · 3 · 5 · · · (p − 2)

2 · 4 · 6 · · · (p − 1)
≡ (−1)(p−1)/2 (mod p), where

p > 2. (P. S. Bruckman, 1975)
23. Let 0 ≤ r ≤ p − 1. Then r!(p − 1 − r)! + (−1)r ≡ 0

(mod p) (F. G. Elston, 1957)

24.

(
np
p

)

≡ n (mod p) (J. H. Hodges, 1959)

25.

(
np − 1
p − 1

)

≡ −1 (mod p), where p � n. (This result,

true even if p|n, was established in 1874 by Catalan.)

26.

(
p − 1

r

)

≡ (−1)r (mod p), where 0 ≤ r < p.

�27. Let p = m + n + 3, where m,n ≥ 0. Then [m! + (m +
1)!][n! + (n + 1)!] ≡ (−1)m (mod p) (A. Cusumano,
2005)

28. Using Exercise 21, show that 63! ≡ −1 (mod 71).

Verify that [((p − 1)/2)!]2 ≡ −1 (mod p) for each
prime p.

29. 5 30. 13 31. 17 32. 29
33. Make a conjecture using Exercises 29–32.
34. Does your conjecture hold for p = 2, 3, or 7?

�35. Establish the conjecture in Exercise 33.

�36. Prove that
p−1∏

n=1
(1 + p/n) ≡ 1 (mod p). (L. Talbot,

1995)

� �

7.2 Fermat’s Little Theorem

On October 18, 1640, Fermat wrote a letter to Bernhard Frenicle de Bessy (1605–
1675), an official at the French mint who was a gifted student of number theory.
In his letter, Fermat communicated the following result: If p is a prime and p � a,
then p|ap−1 − 1. Fermat did not provide a proof of this result but enclosed a note
promising that he would send along a proof, provided it was not too long. This result
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is known as Fermat’s little theorem or simply Fermat’s theorem, to distinguish
it from Fermat’s last theorem, which is presented in Chapter 13. Incidentally, the
special case of Fermat’s little theorem for a = 2 was known to the Chinese as early
as 500 B.C.

The first proof of Fermat’s little theorem was given by Euler in 1736, almost
a century after Fermat’s announcement. Leibniz had given an identical proof in an
unpublished work about 50 years prior to Euler’s, but once again Leibniz did not
receive his share of credit.

We need the following lemma for the proof of Fermat’s little theorem, but before
we turn to the lemma, let us study a special case.

EXAMPLE 7.3 Let p = 7 and a = 12. Clearly, p � a. Then,

1 · 12 ≡ 5 (mod 7) 2 · 12 ≡ 3 (mod 7) 3 · 12 ≡ 1 (mod 7)

4 · 12 ≡ 6 (mod 7) 5 · 12 ≡ 4 (mod 7) 6 · 12 ≡ 2 (mod 7)

Thus, the least residues of 1 · 12, 2 · 12, 3 · 12, 4 · 12, 5 · 12, and 6 · 12 are the same
as the integers 1, 2, 3, 4, 5, and 6 in some order. �

More generally, we have the following result.

LEMMA 7.2 Let p be a prime and a any integer such that p � a. Then the least residues of
the integers a,2a,3a, . . . , (p − 1)a modulo p are a permutation of the integers
1,2,3, . . . , (p − 1).

PROOF

The proof consists of two parts. [First, we will show that ia �≡ 0 (mod p), where
1 ≤ i ≤ p − 1. Then we will show that the least residues of ia and ja modulo p are
distinct if i �= j, where 1 ≤ j ≤ p − 1.]

To show that ia �≡ 0 (mod p), where 1 ≤ i ≤ p − 1:
Suppose ia ≡ 0 (mod p). Then p|ia. But (p,a) = 1, so p|i, which is impossible

since i < p. Therefore, ia �≡ 0 (mod p).

To show that if ia ≡ ja (mod p), where 1 ≤ i, j ≤ p − 1 then i = j:
Suppose ia ≡ ja (mod p), where 1 ≤ i, j ≤ p − 1. Since (p,a) = 1, by Theorem

4.6, i ≡ j (mod p). But both i and j are least residues modulo p, so i = j. Thus, if
ia ≡ ja (mod p), where 1 ≤ i, j ≤ p − 1, then i = j. In other words, no two least
residues of a,2a,3a, . . . , (p − 1)a are congruent modulo p. �

We are now ready to present Fermat’s little theorem formally and to prove it.
Using the preceding lemma, we will find that the proof is short and clear.
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THEOREM 7.3 (Fermat’s Little Theorem) Let p be a prime and a any integer such that p � a.
Then ap−1 ≡ 1 (mod p).

PROOF

By Lemma 7.2, the least residues of the integers a,2a,3a, . . . , (p−1)a modulo p are
the same as the integers 1,2,3, . . . , (p − 1) in some order, so their products are con-
gruent modulo p; that is, a · 2a · 3a · · · (p − 1)a ≡ 1 · 2 · 3 · · · (p − 1) (mod p). In other
words, (p − 1)!ap−1 ≡ (p − 1)! (mod p). But ((p − 1)!,p) = 1, so by Theorem 4.6,
ap−1 ≡ 1 (mod p), as desired. �

The following example illustrates this proof.

EXAMPLE 7.4 Let p = 7 and a = 12. By Lemma 7.2, the least residues of 1 · 12, 2 · 12, 3 · 12,
4 · 12, 5 · 12, 6 · 12 modulo 7 are a permutation of the integers 1 through 6, so
(1 · 12)(2 · 12)(3 · 12)(4 · 12)(5 · 12)(6 · 12) ≡ 1 · 2 · 3 · 4 · 5 · 6 (mod 7). That is,
6!126 ≡ 6! (mod 7). Since (6!,7) = 1, this yields 126 ≡ 1 (mod 7). �

Fermat’s little theorem, coupled with the congruence properties we studied in
Chapter 4, provides an efficient recipe to evaluate the remainder when an is divided
by p, where p � a and n ≥ p − 1, as the following example demonstrates.

EXAMPLE 7.5 Find the remainder when 241947 is divided by 17.

SOLUTION

24 ≡ 7 (mod 17)

Therefore,

241947 ≡ 71947 (mod 17)

But, by Fermat’s little theorem, 716 ≡ 1 (mod 17). So

71947 = 716·121+11 = (716)121 · 711

≡ 1121 · 711 ≡ 711 (mod 17)

But 72 ≡ −2 (mod 17), so 711 ≡ (72)5 · 7 ≡ (−2)5 · 7 ≡ −32 · 7 ≡ 2 · 7 ≡ 14
(mod 17).

Thus, when 241947 is divided by 17, the remainder is 14. �
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By Fermat’s little theorem, p|ap−1 − 1, so (ap−1 − 1)/p is an integer. The fol-
lowing example, a delightful application of the theorem, identifies the primes p for
which (2p−1 − 1)/p is a square.

EXAMPLE 7.6 Find the primes p for which
2p−1 − 1

p
is a square.

SOLUTION

Suppose
2p−1 − 1

p
= n2 for some positive integer n. Then 2p−1 − 1 = pn2. Clearly,

both p and n must be odd. Let p = 2k +1 for some positive integer k. Then 22k −1 =
pn2; that is, (2k − 1)(2k + 1) = pn2. Since 2k − 1 and 2k + 1 are consecutive odd
integers, they are relatively prime. Consequently, either 2k − 1 or 2k + 1 must be a
perfect square.

Suppose 2k − 1 is a perfect square r2:

2k − 1 = r2

2k = r2 + 1

That is,

2p−1 = (
r2 + 1

)2

Since r ≥ 1 and is odd, r = 2i + 1 for some integer ≥ 0. Then 2k = (2i + 1)2 =
2(2i2 +2i+1); this is possible if and only if i = 0. Then r = 1, so 2p−1 = (12 +1)2 =
4, and hence p = 3.

Suppose 2k + 1 is a perfect square s2:

2k + 1 = s2

2k = s2 − 1

That is,

2p−1 = (s − 1)2(s + 1)2

Since s ≥ 3 and is odd, s = 2i+1 for some i ≥ 1. Then 2k = (2i+1)2 −1 = 4i(i+1);
that is, 2k−2 = i(i + 1). This is possible if and only if i = 1. Then s = 3 and hence
2p−1 = 22 · 42 = 26; so p = 7.

Thus, p must be 3 or 7. �
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An Alternate Proof of Wilson’s Theorem (optional)

Lagrange developed a delightful proof of Wilson’s theorem as an application of Fer-
mat’s little theorem and Euler’s formula in Theorem 7.4. In the interest of brevity,
we omit the proof of Theorem 7.4, which can be proved by induction. In 1996,
S. M. Ruiz of Spain rediscovered the same proof.

THEOREM 7.4 (Euler’s formula) Let n ≥ 0 and x any real number. Then

n∑

i=0

(−1)i
(

n

i

)

(x− i)n = n! �

COROLLARY 7.1 (Wilson’s Theorem) Let p be a prime. Then (p − 1)! ≡ −1 (mod p).

PROOF

Since the result is true when p = 2, assume that p > 2. Letting n = p − 1 and x = 0,
Euler’s formula yields

p−1∑

i=0

(−1)i
(

p − 1

i

)

(−i)p−1 = (p − 1)!

Since p is odd, by Fermat’s little theorem, this implies

(p − 1)! ≡
p−1∑

i=1

(−1)i
(

p − 1

i

)

(mod p)

≡
p−1∑

i=0

(−1)i
(

p − 1

i

)

− 1 (mod p)

≡ (1 − 1)p−1 − 1 (mod p)

≡ 0 − 1 (mod p)

≡ −1 (mod p)

as desired. �

The following theorem, another useful application of Fermat’s little theorem,
identifies an inverse of a modulo p, when p � a.

THEOREM 7.5 Let p be a prime and a any integer such that p � a. Then ap−2 is an inverse of a
modulo p.
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PROOF

By Fermat’s little theorem, ap−1 ≡ 1 (mod p). That is, a · ap−2 ≡ 1 (mod p), so ap−2

is an inverse of a modulo p. �

The following example illustrates this theorem.

EXAMPLE 7.7 Let p = 7 and a = 12. Then, by Theorem 7.5 (see Example 7.4 also), 125 is an inverse
of 12 modulo 7. Since 12 ≡ −2 (mod 7), 125 ≡ (−2)5 ≡ −22 · 23 ≡ −4 · 1 ≡ 3
(mod 7). Thus, 3 is an inverse of 12 modulo 7: 12 · 3 ≡ 1 (mod 7), as expected! �

Theorem 7.5 can be used to derive a formula for solving linear congruences with
prime moduli.

THEOREM 7.6 Let p be a prime and a any integer such that p � a. Then the solution of the linear
congruence ax ≡ b (mod p) is given by x ≡ ap−2b (mod p).

PROOF

Since p � a, by Corollary 4.6, the congruence ax ≡ b (mod p) has a unique solution.
Since, by Theorem 7.5, ap−2 is an inverse of a modulo p, multiplying both sides of
the congruence by ap−2, we have

ap−2(ax) ≡ ap−2b (mod p)

ap−1x ≡ ap−2b (mod p)

x ≡ ap−2b (mod p), by Fermat’s little theorem �

The following two examples employ this theorem.

EXAMPLE 7.8 Solve the linear congruence 12x ≡ 6 (mod 7).

SOLUTION

By Example 7.7, 125 ≡ 3 (mod 7) is an inverse of 12 modulo 7. Multiply both sides
of the congruence by 3:

3(12x) ≡ 3 · 6 (mod 7)

x ≡ 4 (mod 7) �
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EXAMPLE 7.9 Solve the congruence 24x ≡ 11 (mod 17).

SOLUTION

24x ≡ 11 (mod 17)

7x ≡ 11 (mod 17)

So, by Theorem 7.6, x ≡ 715 · 11 (mod 17).
Now, we need to find the least residue of 715 · 11 (mod 17). To this end, notice

that 72 ≡ −2 (mod 17), 74 ≡ 4 (mod 17), and 78 ≡ −1 (mod 17). Therefore, 715 ≡
78 · 74 · 72 · 7 ≡ (−1) · 4 · (−2) · 7 ≡ 5 (mod 17). Thus, x ≡ 5 · 11 ≡ 4 (mod 17). �

We now discuss an interesting application of Fermat’s little theorem, the pigeon-
hole principle, and the well-ordering principle.

Factors of 2n + 1 (optional)

Consider the prime factorization of N = 2n + 1 for various values of n. It appears
from Table 7.1 that when a prime p makes its debut in the prime factorization of
N, p ≡ 1 (mod n). This phenomenon was first observed in 2001 by J. E. Parkes
of Staffordshire, England, and then pursued by K. R. McLean of the University of
Liverpool, where n > 1. For example, p = 43 occurs first when n = 7 and 43 ≡ 1
(mod 7).

n 2n + 1 n 2n + 1 n 2n + 1 n 2n + 1
1 3 5 3 · 11 9 33 · 19 13 3 · 2731
2 5 6 5 · 13 10 52 · 41 14 5 · 29 · 113
3 32 7 3 · 43 11 3 · 683 15 32 · 11 · 331
4 17 8 257 12 17 · 241 16 65537

Table 7.1

To confirm this observation, notice that p first appears in the prime factorization
of N corresponding to the least exponent n, 2n ≡ −1 (mod p). By the pigeonhole
principle, the least residues of 21,22,23, . . . ,2p+1 modulo p cannot all be distinct.
Therefore, there exist positive integers a and b such that 2a ≡ 2b (mod p), where
a < b. Then 2b−a ≡ 1 (mod p). Consequently, by the well-ordering principle, there
is a least positive integer d such that 2d ≡ 1 (mod p).
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Let t be any positive integer such that 2t ≡ 1 (mod p). By the division algorithm,
t = qd + r, where 0 ≤ r < d. Then

1 ≡ 2t ≡ 2qd+r ≡ (
2d)q · 2r ≡ 1q · 2r ≡ 2r (mod p)

Since r < d, this implies that r = 0. Then t = qd and d|t.
Since 2n ≡ −1 (mod p), 22n ≡ 1 (mod p). Consequently, d|2n. Since 2n ≡ −1

(mod p) and 2d ≡ 1 (mod p), it follows that d �= n. Suppose d < n. Then 2n−d ≡ −1
(mod p), which contradicts the choice of n. Thus, d > n and d|2n; so d = 2n.

By Fermat’s little theorem, 2p−1 ≡ 1 (mod p). So d|p − 1; thus, p ≡ 1 (mod d)

and hence p ≡ 1 (mod n), as desired.
The following theorem shows Fermat’s little theorem can be extended to all

positive integers a.

THEOREM 7.7 Let p be a prime and a any positive integer. Then ap ≡ a (mod p).

PROOF (by cases)

case 1 Suppose p � a. Then, by Fermat’s little theorem, ap−1 ≡ 1 (mod p), so ap ≡
a (mod p).

case 2 Suppose p|a. Then p ≡ a ≡ 0 (mod p), so ap ≡ 0 (mod p), by Theorem 4.5.
Therefore, by Theorem 4.2, ap ≡ a (mod p).

Thus, in both cases, ap ≡ a (mod p). �

The following example illustrates this theorem.

EXAMPLE 7.10 Let p = 7. If a = 12, then by Example 7.4, 126 ≡ 1 (mod 7), so 127 ≡ 12 (mod 7).
On the other hand, if a = 28, then 28 ≡ 0 (mod 7), so 287 ≡ 0 (mod 7). But 0 ≡ 8
(mod 7), so 287 ≡ 28 (mod 7). �

Next, we present an alternate and elegant proof of Theorem 7.7, based on the
binomial theorem and induction, developed in 1989 by R. J. Hendel of Dowling
College, New York.

An Alternate Proof of Theorem 7.7 (optional)

Let x be any integer. Because p|
(

p
k

)

, where 0 < k < p, by the binomial theorem, it

can be shown that (x + 1)p ≡ xp + 1 (mod p). (See Exercise 33.)
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Let g(t) = tp − t. Then

g(x + 1) − g(x) = (x + 1)p − (x + 1) − xp + x

= (x + 1)p − xp − 1

≡ 0 (mod p)

Therefore, g(x + 1) ≡ g(x) (mod p). Replacing x with x + 1, this yields g(x + 2) ≡
g(x + 1) ≡ g(x) (mod p).

More generally, it can be shown that g(x+a) ≡ g(x) for every positive integer a.
(See Exercise 36.)

Letting x = 0 in this result yields g(a) ≡ g(0) (mod p); that is, ap − a ≡ 0
(mod p). In other words, ap ≡ a (mod p). �

In 1970, J. E. Phythian of Tanzania extended Theorem 7.7 to a finite number of
distinct primes, as the following theorem shows.

THEOREM 7.8 Let p1,p2, . . . ,pk be any distinct primes, a any positive integer, and � = [p1 − 1,

p2 − 1, . . . ,pk − 1]. Then a�+1 ≡ a (mod p1p2 · · ·pk).

PROOF

By Fermat’s little theorem, api−1 ≡ 1 (mod pi), where 1 ≤ i ≤ k. Since pi − 1|�,
this implies (api − 1)�/(pi−1) ≡ 1 (mod pi); that is, a� ≡ 1 (mod pi). Thus, a�+1 ≡
a (mod pi). Consequently, a�+1 ≡ a (mod [p1,p2, . . . ,pk]); that is, a�+1 ≡ a
(mod p1p2 · · ·pk). �

For example, let p1 = 3, p2 = 7, and p3 = 11. Then � = [2,6,10] = 30 and
p1p2p3 = 3 · 7 · 11 = 231. So, by Theorem 7.8, a31 ≡ a (mod 231) for any positive
integer a. In particular, 4331 ≡ 43 (mod 231).

Theorem 7.8 yields an interesting byproduct. This observation was made inde-
pendently in 1985 by G. Duckworth of England and J. Suck of Germany.

COROLLARY 7.2 Let a be any integer and p any prime > 3. Then ap ≡ a (mod 6p).

PROOF

Let p1 = 2, p2 = 3, and p3 = p in Theorem 7.8. Since 2 · 3 · p = 6p and [p1 − 1,

p2 − 1,p3 − 1] = [1,2,p − 1] = p − 1, the result follows by the theorem. �

For example, let a = 20 and p = 13. Then 2013 = (202)6 · 20 ≡ 106 · 20 =
(103)2 · 20 ≡ (−14)2 · 20 ≡ 20 (mod 78), as expected by this corollary.

This corollary can be proved without using Theorem 7.8. See Exercise 31.
We now present an application of Fermat’s little theorem to the factoring of large

composite numbers.
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The Pollard p − 1 Factoring Method

In 1974, Pollard developed a factoring method based on Fermat’s little theorem,
called the Pollard p − 1 method. Suppose n is an odd integer known to be composite.
Let p be a prime factor of n such that the prime factors of p − 1 are relatively small.
Let k be a large enough positive integer such that (p − 1)|k!. For example, let p =
2393. Then p − 1 = 2392 = 23 · 13 · 23 and (p − 1)|23!.

Let k! = m(p − 1) for some integer m. Since 2 � p, by Fermat’s little theorem,
2p−1 ≡ 1 (mod p). Then

2k! = 2m(p−1) = (
2p−1)m ≡ 1m ≡ 1 (mod p)

So p|(2k! − 1).
Let r be the least positive residue of 2k! modulo n; so r − 1 ≡ 2k! − 1 (mod n).

Since p|n and p|(2k! − 1), p|(r − 1). So the gcd (r − 1,n) is a nontrivial factor of n.
Notice that, as in the case of the rho method, the choice of p does not occur in the
computation of (r − 1,n).

To implement this technique, first notice that 2k! = ((((21)2)3) · · ·)k; then com-
pute the least residue r of 2k! modulo n; and at each step, compute (r − 1,n) until a
nontrivial factor emerges, as the following example illustrates.

EXAMPLE 7.11 Using the Pollard p − 1 method, find a nontrivial factor of n = 2813.

SOLUTION

Using the fact that 2k! = (2(k−1)!)k, we continue computing the least positive residue
r ≡ 2k! (mod 2813) and the gcd (r−1,n) until a nontrivial factor of n appears, where
k ≥ 1:

21! = 2 ≡ 2 (mod 2813) (1,2813) = 1

22! = 22 ≡ 4 (mod 2813) (3,2813) = 1

23! = 43 ≡ 64 (mod 2813) (63,2813) = 1

24! ≡ 644 ≡ 484 (mod 2813) (483,2813) = 1
25! ≡ 4845 ≡ 1648 (mod 2813) (1647,2813) = 1
26! ≡ 16486 ≡ 777 (mod 2813) (776,2813) = 97

Thus, 97|2813. �

The p − 1 method fails if 2k! ≡ 1 (mod n). For example, when n = 3277, 27! ≡ 1
(mod 3277) and (0,3277) = 3277. Interestingly, we can use any base b in lieu of 2
in the algorithm, where 1 < b < p.
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Returning to Fermat’s little theorem, we would like to examine its converse: If
an−1 ≡ (mod n) and n � a, then n is a prime. Is this true or false? If it is true, can
we prove it? If it is not, can we produce a counterexample? We will continue this
discussion in the next section.

E X E R C I S E S 7.2

Compute the remainder when the first integer is divided
by the second.

1. 71001, 17 2. 302020, 19
3. 151976, 23 4. 435555, 31

Find the ones digit in the base-seven expansion of each
decimal number.

5. 5101 6. 121111

7. 292076 8. 373434

Solve each linear congruence.

9. 8x ≡ 3 (mod 11) 10. 15x ≡ 7 (mod 13)

11. 26x ≡ 12 (mod 17) 12. 43x ≡ 17 (mod 23)

Compute the least residue of each.

13. 2340 (mod 341)

14. 1116 + 1710 (mod 187)

15. 1318 + 1912 (mod 247)

Verify each.

16. (12 + 15)17 ≡ 1217 + 1517 (mod 17)

17. (16 + 21)23 ≡ 1623 + 2123 (mod 23)

18. Find the primes p such that (2p−1 − 1)/p is a perfect
cube.

Let p and q be distinct primes, and a,b, and n arbitrary
positive integers. Prove each.

19. Let ap ≡ a (mod q) and aq ≡ a (mod p). Then apq ≡
a (mod pq).

20. apq − ap − aq + a ≡ 0 (mod pq)

21. If ap ≡ bp (mod p), then a ≡ b (mod p).
22. If ap ≡ bp (mod p), then ap ≡ bp (mod p2).
23. pq−1 + qp−1 ≡ 1 (mod pq)

24. pq + qp ≡ p + q (mod pq)

25. 30|(n5 − n) (R. S. Hatcher, 1970)

26. There are infinitely many values of n such that
p|2n+1 + 3n − 17. (E. Just, 1976)

Let p be any odd prime and a any nonnegative integer.
Prove the following.

27. 1p−1 + 2p−1 + · · · + (p − 1)p−1 ≡ −1 (mod p)

28. 1p + 2p + · · · + (p − 1)p ≡ 0 (mod p)

29. (a+1)p +(a+2)p +· · ·+(a+p−1)p ≡ −a (mod p)

Let p be any prime, a any positive integer, and x an arbi-
trary integer ≥ 0. Prove each.

30.

(
p
k

)

≡ 0 (mod p), where 0 < k < p.

31. Let p > 3. Then ap ≡ a (mod 6p). Do not use Theo-
rem 7.8. (G. Duckworth, 1985)

32. Using induction, prove that ap ≡ a (mod p).
33. Using the binomial theorem, prove that (a + b)p ≡

ap + bp (mod p).
34. Using Fermat’s little theorem, prove that (a + b)p ≡

ap + bp (mod p).
35. Using induction, prove that (x + 1)p ≡ xp + 1

(mod p).
36. Let g(t) = tp − t. Then g(x + a) ≡ g(x) (mod p) for

every positive integer a.
37. Let p be a prime, and a and b be any integers such

that a ≥ b ≥ 0. Prove that

(
pa
pb

)

≡
(

a
b

)

(mod p).

(Putnam Mathematics Competition, 1977)

Using the Pollard p − 1 method, find a nontrivial factor of
each.

38. 2323 39. 7967

� �
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�7.3 Pseudoprimes (optional)

In Theorem 7.7, we found that if n is a prime, then an ≡ a (mod n) for every integer
a. As a result, if this congruence fails for some integer b, that is, if bn �≡ b (mod n) for
some integer n, then n cannot be a prime. Thus, in order to show that n is composite,
it suffices to produce an integer b such that bn �≡ b (mod n). This provides a test for
compositeness, as the following example shows.

EXAMPLE 7.12 Verify that 33 is a composite number.

PROOF

If 33 were a prime, then 233 ≡ 2 (mod 33). But

233 = (25)6 · 23 ≡ (−1)6 · 8 ≡ 8 (mod 33)

�≡ 2 (mod 33)

Therefore, 33 is not a prime, as expected. �

We still have not answered whether the converse of Theorem 7.7 is true: If
an ≡ a (mod n), then n is a prime. Interestingly, the ancient Chinese mathematicians
claimed that if 2n ≡ 2 (mod n), then n must be a prime. In support of this conjecture,
we find that the claim holds for all positive integers n ≤ 340. Unfortunately, however,
it fails when n = 341 = 11 · 31, a composite number discovered by Sarrus in 1819.
The following example confirms this.

EXAMPLE 7.13 Show that 2341 ≡ 2 (mod 341).

PROOF

By Fermat’s little theorem, 210 ≡ 1 (mod 11), so 2341 = (210)34 · 2 ≡ 134 · 2 ≡ 2
(mod 11). Also, 25 ≡ 1 (mod 31), so 2341 = (25)68 ·2 ≡ 168 ·2 ≡ 2 (mod 31). There-
fore, by Theorem 4.8, 2341 ≡ 2 (mod [11,31]); that is, 2341 ≡ 2 (mod 341), although
341 is a composite number. �

This example voids the Chinese claim and thus disproves the converse of Fer-
mat’s little theorem.

It follows from the preceding discussion that n = 341 is the smallest composite
number such that 2n ≡ 2 (mod n). The next three are 561, 645, and 1105 (see Ex-
ercises 5–8). Such numbers, although not as important as primes, have been given a
name of their own, so we make the following definition.
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Pseudoprimes

A composite number n is called a pseudoprime if 2n ≡ 2 (mod n). Thus, the first
four pseudoprimes are 341, 561, 645, and 1105; they are all odd. The smallest even
pseudoprime is 161,038, found in 1950.

Pseudoprimes appear to be rare and sparsely spaced. For example, there are
455,052,512 primes less than 10 billion, but only 14,884 pseudoprimes less than
10 billion. But this should not lead us to draw any false conclusions, since the next
theorem establishes categorically the infinitude of pseudoprimes. First, we pave the
way for its proof by introducing two lemmas.

LEMMA 7.3 Let m and n be positive integers such that m|n. Then 2m − 1|2n − 1.

PROOF

Since m|n, n = km for some positive integer k. Then

2n − 1 = 2km − 1

= (2m − 1)
[
2(k−1)m + 2(k−2)m + · · · + 2m + 1

]

Therefore, 2m − 1|2n − 1. �

LEMMA 7.4 If n is an odd pseudoprime, then N = 2n − 1 is also an odd pseudoprime.

PROOF

Let n be an odd pseudoprime. Then n is composite and 2n ≡ 2 (mod n). But n is odd,
so 2n−1 ≡ 1 (mod n).

Since n is composite, let n = rs, where 1 < r, s < n. Since r|n, by Lemma 7.3,
2r − 1|2n − 1; that is, 2r − 1|N, so N is a composite.

It remains to show that 2N ≡ 2 (mod N). To this end, since 2n ≡ 2 (mod n),
n|2n −2, so 2n −2 = kn for some integer k; that is, N −1 = kn. Therefore, 2N−1 −1 =
2kn − 1.

Again, by Lemma 7.3, N = 2n − 1|2kn − 1, so 2N−1 − 1 ≡ 0 (mod N); that is,
2N−1 ≡ 1 (mod N). So 2N ≡ 2 (mod N).

Thus, if n is an odd pseudoprime, then 2n − 1 is a larger odd pseudoprime. �

This lemma gives us a recipe for constructing a larger odd pseudoprime from a
given odd pseudoprime. For example, since 341 is an odd pseudoprime, 2341 − 1 is
a larger odd pseudoprime.

We can now establish the existence of infinitely many pseudoprimes.

THEOREM 7.9 There are infinitely many pseudoprimes.



�7.3 Pseudoprimes (optional) 339

Robert Daniel Carmichael (1879–1967) was born in Goodwater, Alabama. He re-

ceived his B.A. from Lineville College in 1898 and Ph.D. from Princeton three years later

under the guidance of George D. Birkhoff. His dissertation was a significant contribution

to difference equations. He taught at Alabama Presbyterian College, Indiana University,

and the University of Illinois, where he later served as the dean of the graduate school

for 15 years. Carmichael was president of the Mathematical Association of America,

editor-in-chief of The American Mathematical Monthly, and a significant contributor to

difference equations, number theory, relativity theory, group theory, and mathematical

philosophy.

PROOF

By Lemma 7.4, we can construct an infinite number of odd pseudoprimes ni+1 =
2ni − 1 for i = 0,1,2, . . . from a given odd pseudoprime ni. Since 341 is such a
pseudoprime, by choosing n0 = 341, we obtain the odd pseudoprimes n0 < n1 <

n2 < · · · . Thus, there is an infinite number of pseudoprimes. �

The following two questions about pseudoprimes remain unresolved:
?

• Are there infinitely many square pseudoprimes?
• Are there infinitely many primes p such that 2p−1 ≡ 1 (mod p2)?

The smallest pseudoprimes that are not square-free are 1,194,649 = 10932;
12,327,121 = 35112; and 3,914,864,773 = 29 · 113 · 10932.

Carmichael Numbers

Besides base 2, there are other bases a and composite numbers n such that an−1 ≡ 1
(mod n). For example, 390 ≡ 1 (mod 91) and 414 ≡ 1 (mod 15). (See Exercises 10
and 11.)

In 1907, the American mathematician Robert D. Carmichael established the ex-
istence of composite numbers n such that an−1 ≡ 1 (mod n) for all positive integers
a relatively prime to n. Such composite numbers are called Carmichael numbers.
One such number is 561, as the following example shows.

EXAMPLE 7.14 Show that 561 is a Carmichael number.

PROOF

Since 561 = 3 · 11 · 17, 561 is a composite number. So it remains to show that a560 ≡
1 (mod 561) for all positive integers a relatively prime to 561.
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By Fermat’s little theorem, a2 ≡ 1 (mod 3), a10 ≡ 1 (mod 11), a16 ≡ 1
(mod 17). Therefore, a560 = (a2)280 ≡ 1 (mod 3), a560 = (a10)56 ≡ 1 (mod 11),
and a560 = (a16)35 ≡ 1 (mod 17). So, by Theorem 4.8, a560 ≡ 1 (mod [3,11,17]);
that is, a560 ≡ 1 (mod 561), as desired. �

In fact, 561 is the smallest Carmichael number. The next two are 1105 = 5 · 13 ·
17 and 1729 = 7 · 13 · 19. There are four more numbers below 10,000, and 1547 less
than 10 billion. In 1992, using high-powered computers, Richard G. E. Pinch (1954–)
at Cambridge University found that there are 105,212 less than one quadrillion. And
the search continues.

As we saw, Carmichael numbers are sparsely spaced and appear to be rare. In
1992, however, Andrew Granville, Carl Pomerance, and Red Alford of the University
of Georgia established the existence of infinitely many Carmichael numbers.

Interestingly, it has been found that one Carmichael number can be a factor of
another; for instance, 1729 and 63,973 = 7 · 13 · 19 · 37 are Carmichael numbers,
and 1729|63,973. It was also established in 1948 that the product of two Carmichael
numbers can also be a Carmichael number; for example, 1729, 294,409 = 37 · 73 ·
109 and 509,033,161 = 1729 · 294,409 are Carmichael numbers.

In 1990, H. Dubner and H. Nelson discovered two Carmichael numbers that are
products of three Carmichael numbers; one is 97 digits long and the other 124 digits
long.

E X E R C I S E S 7.3

Using Lemma 7.3, factor each.

1. 210 − 1 2. 214 − 1
3. 215 − 1 4. 221 − 1

Verify that 2n ≡ 2 (mod n) for each value of n.

5. 561 6. 645
7. 1105 8. 161,038

Verify each.

9. 2340 �≡ 2 (mod 340) 10. 390 ≡ 1 (mod 91)

11. 414 ≡ 1 (mod 15) 12. 5123 ≡ 1 (mod 124)

13. 634 ≡ 1 (mod 35) 14. 1264 ≡ 1 (mod 65)

Determine whether each is true.

15. 290 ≡ 1 (mod 91) 16. 3340 ≡ 1 (mod 341)

Verify that each is a Carmichael number.

17. 1105 = 5 · 13 · 17 18. 1729 = 7 · 13 · 19
19. 2465 = 5 · 17 · 29 20. 2821 = 7 · 13 · 31

There can exist positive integers a and n, and a prime p
with p � a such that ap−1 ≡ 1 (mod pn). Exercises 21–26
present six such instances. Verify each.

21. 74 ≡ 1 (mod 52) 22. 310 ≡ 1 (mod 112)

23. 196 ≡ 1 (mod 73) 24. 1912 ≡ 1 (mod 132)

25. 23912 ≡ 1 (mod 134) 26. 3816 ≡ 1 (mod 172)

� �
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7.4 Euler’s Theorem

Fermat’s little theorem enables us to work with congruences involving only prime
moduli. It tells us that there is a positive integer f (p) such that af (p) ≡ 1 (mod p),
where f (p) = p − 1. So an obvious question arises: Can we extend Fermat’s little
theorem to congruences with arbitrary moduli m? In other words, is there an expo-
nent f (m) such that af (m) ≡ 1 (mod m), where (a,m) = 1? Before we answer this,
we will find it helpful to study the following example.

EXAMPLE 7.15 Determine if there exists a positive integer f (m) such that af (m) ≡ 1 (mod m) for
m = 4, 9, and 12, where a is a positive integer ≤ m and relatively prime to it.

SOLUTION

1. With m = 4, there are two positive integers a ≤ m and relatively prime to
it, namely, 1 and 3: 12 ≡ 1 (mod 4) and 32 ≡ 1 (mod 4). So when m = 4,
f (m) = 2 works.

2. For m = 9, there are six residues ≤ 9 and relatively prime to it: 1, 2, 4, 5, 7,
and 8. After computing their first sixth powers, we find that

16 ≡ 1 (mod 9) 26 ≡ 1 (mod 9) 46 ≡ 1 (mod 9)

56 ≡ 1 (mod 9) 76 ≡ 1 (mod 9) 86 ≡ 1 (mod 9)

(See Table 7.2.) Thus, when m = 9, f (m) = 6 does the job.

Table 7.2 Table 7.3

3. There are four positive integers ≤ 12 and relatively prime to 12; namely,
1, 5, 7, and 11. Let us compute the first four powers of each modulo 12.
It follows from Table 7.3 that 14 ≡ 1 (mod 12), 54 ≡ 1 (mod 12), 74 ≡ 1
(mod 12), and 114 ≡ 1 (mod 12). Once again, we have a candidate for f (12),
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Leonhard Euler (1707–1783) was born in Basel, Switzerland. His father, a

mathematician and a Calvinist pastor, wanted him also to become a pastor.

Although Euler had different ideas, he followed his father’s wishes, and studied

Hebrew and theology at the University of Basel. His hard work at the university

and remarkable ability brought him to the attention of the well-known mathe-

matician Johann Bernoulli (1667–1748). Realizing the young Euler’s talents,

Bernoulli persuaded the boy’s father to change his mind, and Euler pursued

his studies in mathematics.

At the age of 19, Euler brought out his first paper. His paper failed to win

the Paris Academy Prize in 1727; however, he won it 72 times in later years.

Euler was the most prolific mathematician, making significant contribu-

tions to every branch of mathematics. With his phenomenal memory, he had every formula at his fingertips.

A genius, he could work anywhere and under any conditions. Euler belongs to a class by himself.

namely, 4. [Notice that 2 also works: 12 ≡ 1 (mod 12), 52 ≡ 1 (mod 12),
72 ≡ 1 (mod 12), and 112 ≡ 1 (mod 12).] �

From the three cases presented in this example, we can make an educated guess
about the exponent f (m): It is the number of positive integers ≤ m and relatively
prime to m. Accordingly, we now turn to an important number-theoretic function,
named after the great Swiss mathematician Leonhard Euler.

Euler’s Phi Function

Let m be a positive integer. Then Euler’s phi function ϕ(m) denotes the number of
positive integers ≤ m and relatively prime to m.

It follows by Example 7.15 that ϕ(4) = 2, ϕ(9) = 6, and ϕ(12) = 4. Since 1 ≤ 1
and relatively prime to 1, ϕ(1) = 1.

EXAMPLE 7.16 Compute ϕ(11) and ϕ(18).

SOLUTION

Since 11 is a prime, every positive integer < 11 is relatively prime to 11, so
ϕ(11) = 10.

There are six positive integers ≤ 18 and relatively prime to it, namely, 1, 5, 7,
11, 13, and 17. Therefore, ϕ(18) = 6. (We can verify that each raised to the sixth
power is congruent to 1 modulo 18.) �
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The following lemma, which we will use again later, shows the value of ϕ(m) if
m is a prime.

LEMMA 7.5 A positive integer p is a prime if and only if ϕ(p) = p − 1.

PROOF

Let p be a prime. Then there are p − 1 positive integers ≤ p and relatively prime to p,
so ϕ(p) = p − 1.

Conversely, let p be a positive integer such that ϕ(p) = p − 1. Let d|p, where
1 < d < p. Since there are exactly p − 1 positive integers < p,d is one of them, and
(d,p) �= 1; so ϕ(p) < p − 1, a contradiction. Thus, p must be a prime. �

We can now examine Euler’s theorem, the next milestone in the development
of number theory and one of its most celebrated results. Proved by Euler in 1760, it
extends Fermat’s little theorem to arbitrary moduli. But before we study the theorem,
we need to lay some groundwork in the form of a lemma.

In Lemma 7.2, we found that the least residues of the integers a,2a, . . . , (p−1)a
modulo p are a rearrangement of the integers 1,2, . . . , (p−1), where a is any integer
with p �= a. The following lemma extends this result to an arbitrary modulus. Its proof
resembles quite closely that of Lemma 7.2, but first an example to shed some light
on its proof.

EXAMPLE 7.17 Let m = 12 and a = 35, so (a,m) = (35,12) = 1. By Example 7.15, the least residues
modulo 12 that are relatively prime to 12 are 1, 5, 7, and 11. Multiply each by 35:
35 · 1 ≡ 11 (mod 12), 35 · 5 ≡ 7 (mod 12), 35 · 7 ≡ 5 (mod 12), and 35 · 11 ≡ 1
(mod 12). Thus, the least residues of 35 · 1, 35 · 5, 35 · 7, and 35 · 11 modulo 12 are
a rearrangement of the least residues 1, 5, 7, and 11 modulo 12. �

LEMMA 7.6 Let m be a positive integer and a any integer with (a,m) = 1. Let r1, r2, . . . , rϕ(m)

be the positive integers ≤ m and relatively prime to m. Then the least residues
of the integers ar1,ar2, . . . ,arϕ(m) modulo m are a permutation of the integers
r1, r2, . . . , rϕ(m).

PROOF

Again, the proof consists of two parts. First, we will show that (ari,m) = 1 for
every i. Then we will show that no two numbers ari and arj can be congruent modulo
m if i �= j, where 1 ≤ i < j ≤ ϕ(m).

To show that each ari is relatively prime to m:
Suppose (ari,m) > 1. Let p be a prime factor of (ari,m). Then p|ari and p|m.

Since p|ari, p|a or p|ri. If p|ri, then p|ri and p|m, so (ri,m) �= 1, a contradiction. So



344 CHAPTER 7 Three Classical Milestones

p|a. This coupled with p|m implies p|(a,m), again a contradiction. Thus, (ari,m) =
1; that is, the integers ar1,ar2, . . . ,arϕ(m) are relatively prime to m.

To show that no two of the integers ari can be congruent modulo m; that is, ari �≡ arj,
where 1 ≤ i < j ≤ ϕ(m):

To this end, suppose ari ≡ arj (mod m). Since (a,m) = 1, by Theorem 4.6, ri ≡
rj (mod m). But ri and rj are least residues modulo m, so ri = rj. Thus, if i �= j, then
ari �≡ arj (mod m).

Thus, the least residues of ar1,ar2, . . . ,arϕ(m) modulo m are distinct and are
ϕ(m) in number. So they are a permutation of the least residues r1, r2, . . . , rϕ(m)

modulo m. �

The following example demonstrates the technique used to prove Euler’s theo-
rem.

EXAMPLE 7.18 Let m = 12 and a = 35. The least residues modulo 12 that are relatively prime to 12
are 1, 5, 7, and 11, so ϕ(12) = 4. By Example 7.17, the least residues of 35 · 1, 35 · 5,
35 · 7, and 35 · 11 modulo 12 are a rearrangement of the least residues 1, 5, 7, and 11.
Therefore,

(35 · 1)(35 · 5)(35 · 7)(35 · 11) ≡ 1 · 5 · 7 · 11 (mod 12)

That is,

354 · (1 · 5 · 7 · 11) ≡ 1 · 5 · 7 · 11 (mod 12)

But (1 · 5 · 7 · 11,12) = 1, so by Theorem 4.6, 354 ≡ 1 (mod 12); that is, 35ϕ(12) ≡ 1
(mod 12). �

We are now ready to present Euler’s theorem. With Lemma 7.6 in hand, the
proof is very short, but still elegant.

THEOREM 7.10 (Euler’s Theorem) Let m be a positive integer and a any integer with (a,m) = 1.
Then aϕ(m) ≡ 1 (mod m).

PROOF

Let r1, r2, . . . , rϕ(m) be the least residues modulo m that are relatively prime to m.
Then, by Lemma 7.6, the integers ar1,ar2, . . . ,arϕ(m) are congruent modulo m to
r1, r2, . . . , rϕ(m) in some order. Consequently,

(ar1)(ar2) · · · (arϕ(m)) ≡ r1r2 · · · rϕ(m) (mod m)
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That is,

aϕ(m)r1r2 · · · rϕ(m) ≡ r1r2 · · · rϕ(m) (mod m)

Since each ri is relatively prime to m, (r1r2 · · · rϕ(m),m) = 1; so, by Theorem 4.6,
aϕ(m) ≡ 1 (mod m). �

The following example illustrates Euler’s theorem.

EXAMPLE 7.19 Let m = 24 and a any integer relatively prime to 24. There are eight positive in-
tegers ≤ 24 and relatively prime to 24, namely, 1, 5, 7, 11, 13, 17, 19, and 23; so
ϕ(24) = 8. Thus, by Euler’s theorem, a8 ≡ 1 (mod 24). In particular, let a = 77.
Since 77 = 7 · 11, (77,24) = 1, so 778 ≡ 1 (mod 24).

We can confirm this using the fundamental properties of congruence:

77 ≡ 5 (mod 24)

Therefore,

778 ≡ 58 (mod 24)

Since 52 ≡ 1 (mod 24), 778 ≡ 58 ≡ (52)4 ≡ 14 ≡ 1 (mod 24), as expected. �

Euler’s theorem is useful for finding remainders of numbers involving large ex-
ponents even if the divisor is composite, provided the divisor is relatively prime to
the base. The following example illustrates this.

EXAMPLE 7.20 Find the remainder when 2451040 is divided by 18.

SOLUTION

Since 245 ≡ 11 (mod 18), 2451040 ≡ 111040 (mod 18). Since (11,18) = 1, by
Euler’s theorem, 11ϕ(18) ≡ 116 ≡ 1 (mod 18). Therefore, 111040 = (116)173 · 112 ≡
1173 · 13 ≡ 13 (mod 18). Thus, the desired remainder is 13. �

Using Lemma 7.5, the following corollary deduces Fermat’s little theorem from
Euler’s theorem.

COROLLARY 7.3 (Fermat’s Little Theorem) Let p be a prime and a any integer such that p � a.
Then ap−1 ≡ 1 (mod p).
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PROOF

By Euler’s theorem, aϕ(p) ≡ 1 (mod p). But ϕ(p) = p − 1, by Lemma 7.5, so ap−1 ≡
1 (mod p). �

Using Euler’s theorem, we can extend Theorems 7.5 and 7.6 to an arbitrary
modulus m in an obvious way, as the following two theorems show. We leave their
proofs as exercises.

THEOREM 7.11 Let m be a positive integer and a any integer with (a,m) = 1. Then aϕ(m)−1 is an
inverse of a modulo m.

THEOREM 7.12 Let m be a positive integer and a any integer with (a,m) = 1. Then the solution of
the linear congruence ax ≡ b (mod m) is given by x ≡ aϕ(m)−1b (mod m).

The following example uses this result.

EXAMPLE 7.21 Solve the linear congruence 35x ≡ 47 (mod 24).

SOLUTION

The congruence can be simplified as 11x ≡ −1 (mod 24). Since (11,24) = 1, by
Theorem 7.12,

x ≡ 11ϕ(24)−1 · (−1) ≡ 117 · (−1) (mod 24)

≡ (112)3 · 11 · (−1) ≡ 13 · (−11) (mod 24)

≡ 13 (mod 24) �

In order to find an inverse of a modulo m in Theorem 7.11 and hence to solve the
congruence ax ≡ b (mod m), we need to compute ϕ(m). Lemma 7.5 gives its value
if m is a prime. Suppose m is composite. It is not practical to list all positive integers
≤ m and relatively prime to it, and then count them. In Section 8.1 we will return to
this issue and derive a formula for ϕ(m) for every positive integer m.

Additionally, Euler’s theorem can be used to develop a formula to solve a system
of linear congruences with pairwise relatively prime moduli. (See Exercises 62–67.)

Next, we give a generalization of Euler’s theorem. Its proof is fairly straightfor-
ward, so we leave its proof as an exercise. See Exercises 59 and 60.

THEOREM 7.13 (Koshy, 1996) Let m1,m2, . . . ,mk be any positive integers and a any integer such
that (a,mi) = 1 for 1 ≤ i ≤ k. Then

a[ϕ(m1),ϕ(m2),...,ϕ(mk)] ≡ 1 (mod [m1,m2, . . . ,mk]) �
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The next result follows from Theorem 7.10.

COROLLARY 7.4 Let m1,m2, . . . ,mk be pairwise relatively prime integers and a any integer such that
(a, mi) = 1 for 1 ≤ i ≤ k. Then

a[ϕ(m1),ϕ(m2),...,ϕ(mk)] ≡ 1 (mod m1m2 · · ·mk) �

E X E R C I S E S 7.4

Compute ϕ(m) for each integer m.

1. 8 2. 15 3. 21 4. 28

Use the modulus m = 15 and a = 28 for Exercises 5–6.

5. List the positive integers ≤ m and relatively prime to
it.

6. Multiply each by a and find their least residues mod-
ulo m.

7–8. Redo Exercises 5 and 6 with m = 28 and a = 15.

9. Verify that a6 ≡ 1 (mod 18) for a = 1, 5, 7, 11, 13,
and 17.

10. Using the values of ϕ(m) for m ≤ 15, make a conjec-
ture on the evenness of ϕ(m).

Let m be a positive integer and a any positive integer ≤ m
and relatively prime to it. Verify Euler’s theorem for each
modulus.

11. 6 12. 10 13. 15 14. 28

Find the remainder when the first integer is divided by the
second.

15. 71020, 15 16. 252550, 18
17. 791776, 24 18. 1992020, 28

Using Euler’s theorem, find the ones digit in the decimal
value of each.

19. 176666 20. 237777

Using Euler’s theorem, find the ones digit in the hexadec-
imal value of each.

21. 71030 22. 134444

Solve each linear congruence.

23. 7x ≡ 8 (mod 10) 24. 23x ≡ 17 (mod 12)

25. 25x ≡ 13 (mod 18) 26. 17x ≡ 20 (mod 24)

27. 143x ≡ 47 (mod 20) 28. 79x ≡ 17 (mod 25)

If m and n are relatively prime, then ϕ(mn) = ϕ(m) ·ϕ(n).
Using this fact, compute each.

29. ϕ(15) 30. ϕ(35)

31. ϕ(105) 32. ϕ(462)

Compute
∑

d|n
ϕ(d) for each n.

33. 7 34. 10 35. 12 36. 17

37. Conjecture a formula for
∑

d|n
ϕ(d) using Exercises

33–36.

38–41. Compute the value of
∑

d|n
(−1)n/dϕ(d) for each n

in Exercises 33–36.

42. Conjecture a formula using Exercises 38–41.

Verify each.

43. 1 + 9 + 92 + · · · + 923 ≡ 0 (mod 35).
44. 1 + 11 + 112 + · · · + 1131 ≡ 0 (mod 51).

Prove or disprove each.

45. ϕ((a,b)) = (ϕ(a), ϕ(b))

46. ϕ([a,b]) = [ϕ(a), ϕ(b)]
Prove each.

47. Let m be a positive integer and a any integer with
(a,m) = 1. Then aϕ(m)−1 is an inverse of a mod-
ulo m.
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48. Let m be a positive integer and a any integer with
(a,m) = 1. Then the solution of the linear congruence
ax ≡ b (mod m) is given by x ≡ aϕ(m)−1b (mod m).

49. If a and b are relatively prime, then aϕ(b) +bϕ(a) ≡ 1
(mod ab). (M. Charosh, 1982)

50. If p and q are distinct primes, then pq−1 + qp−1 ≡ 1
(mod pq).

51. Let a and m be positive integers such that (a,m) =
1 = (a − 1,m). Then 1 + a + a2 + · · · + aϕ(m)−1 ≡ 0
(mod m).

52. Every integer n with (n,10) = 1 divides some integer
N consisting of all 1s. For example, 3|111.
(Hint: Use Euler’s theorem.)

Compute ϕ(pn) for the given values of p and n.

53. p = 2, n = 3 54. p = 2, n = 4
55. p = 3, n = 3 56. p = 5, n = 2
57. Using Exercises 53–56, predict the value of ϕ(pn).

�58. Prove that ϕ(pn) = pn − pn−1, where n ≥ 1.

Prove Theorem 7.13 using

59. Theorem 4.8.
60. Induction.

�61. Show that the solutions of the linear system x ≡ ai
(mod mi), where 1 ≤ i ≤ k, and (mi,mj) = 1 if i �= j,
are given by

x ≡ a1Mϕ(m1)
1 + a2Mϕ(m2)

2 + · · · + akMϕ(mk)
k

(mod M)

where M = m1m2 · · ·mk and Mi = M/mi.
62–67. Using Exercise 61, solve the linear systems 5–10

in Exercises 6.1.
68. Let an = 2n + 1 and m = n + kϕ(n), where k is a pos-

itive integer. Prove that am|an. (J. Linkovskiǐ-Condé,
1980)

� �

X CHAPTER SUMMARY

We have studied three celebrated results that have played a significant role in the de-
velopment of number theory: Wilson’s theorem, Fermat’s little theorem, and Euler’s
theorem.

Wilson’s Theorem
• A positive integer a is self-invertible modulo p if and only if a ≡ ±1 (mod p).

(p. 322)
• If p is prime, then (p − 1)! ≡ −1 (mod p). (Wilson’s theorem) (p. 323)
• If n is a positive integer such that (n − 1)! ≡ −1 (mod n), then n is a prime.

(p. 324)

Fermat’s Little Theorem
• If a is an integer such that p � a, then the integers 1a,2a,3a, . . . , (p − 1)a

modulo p are a permutation of the integers 1,2,3, . . . , (p − 1). (p. 327)
• If a is an integer such that p � a, then ap−1 ≡ 1 (mod p). (Fermat’s little

theorem) (p. 328)
• If a is an integer such that p � a, then ap−2 is an inverse of a modulo p.

(p. 330)
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• If a is an integer such that p � a, then the solution of the congruence ax ≡ b
(mod p) is given by x ≡ ap−2b (mod p). (p. 331)

• If a is an integer such that p � a, then ap ≡ a (mod p). (p. 333)
• Let p1,p2, . . . ,pk be any distinct primes, a any positive integer, and � = [p1 −

1,p2 −1, . . . ,pk −1]. Then a�+1 ≡ a (mod p1p2 · · ·pk). (J. E. Phythian, 1970)
(p. 334)

The Pollard p − 1 Factoring Method
• Let r = 2k! (mod n). Then (r − 1,n) is a nontrivial factor of n, provided r �≡ 1

(mod n). (p. 335)

Pseudoprimes
• A composite number n such that 2n ≡ 2 (mod n) is a pseudoprime. (p. 338)
• The smallest pseudoprime is 341. (p. 338)
• If m and n are positive integers such that m|n, then 2m − 1|2n − 1. (p. 338)
• If n is an odd pseudoprime, then so is 2n − 1. (p. 338)
• There is an infinite number of odd pseudoprimes. (p. 338)
• A composite number n such that an−1 ≡ 1 (mod n) for all positive integers a

relatively prime to n is a Carmichael number. (p. 339)
• The smallest Carmichael number is 561. (p. 340)
• There are infinitely many Carmichael numbers. (p. 340)

Euler’s Theorem
• Euler’s phi function ϕ(m) denotes the number of positive integers ≤ m and

relatively prime to m. (p. 342)
• ϕ(p) = p − 1. (p. 343)
• Let a be any integer with (a, m) = 1. Let r1, r2, . . . , rϕ(m) be the positive

integers ≤ m and relatively prime to m. Then the integers ar1,ar2, . . . ,arϕ(m)

modulo m are the same as r1, r2, . . . , rϕ(m) in some order. (p. 343)
• Let a be any integer with (a,m) = 1. Then aϕ(m) ≡ 1 (mod m). (Euler’s the-

orem) (p. 344)
• Let a be any integer with (a,m) = 1. Then aϕ(m)−1 is an inverse of a (mod m).

(p. 346)
• Let a be any integer with (a,m) = 1. Then the solution of the congruence

ax ≡ b (mod m) is given by x ≡ aϕ(m)−1b (mod m). (p. 346)
• Let m1,m2, . . . ,mk be any positive integers and a any integer such that

(a,mi) = 1 for 1 ≤ i ≤ k. Then a[ϕ(m1),ϕ(m2),...,ϕ(mk)] ≡ 1 (mod [m1,m2,

. . . ,mk]). (Koshy, 1996) (p. 346)
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X REVIEW EXERCISES

Verify Wilson’s theorem for each prime p.

1. 19 2. 23

Verify each.

3. (12 − 1)! �≡ −1 (mod 12) 4. (15 − 1)! �≡ −1 (mod 15)

Verify Fermat’s little theorem for each integer a and the corresponding prime p.

5. a = 19, p = 23 6. a = 20, p = 31

Compute the remainder when the first integer is divided by the second.

7. 184567, 13 8. 311706,23
9. 551876, 12 10. 7151863, 28

11. 1316 + 1712, 221 12. 2342 + 4322, 989
13. 1119 + 1911, 209 14. 2329 + 2923, 667
15. 1820 + 256, 450 16. 3532 + 5124, 1785

Find the ones digit in the base-eleven representation of each integer.

17. 151942 18. 241010

Using the Pollard p − 1 method, find a nontrivial factor of each.

19. 5899 20. 9353

Compute ϕ(m) for each m.

21. 16 22. 17 23. 200 24. 3675

Determine the number of least residues that are invertible modulo m for each m.

25. 17 26. 20 27. 25 28. 28

Verify Euler’s theorem for each m.

29. 16 30. 20

Find the last two digits in the decimal value of each.

31. 2731961 32. 13091732

Solve each linear congruence.

33. 33x ≡ 23 (mod 13) 34. 94x ≡ 32 (mod 19)

35. 65x ≡ 27 (mod 18) 36. 255x ≡ 63 (mod 28)

Verify that each is a pseudoprime.
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37. 2047 38. 18705

Verify each.

39. 1 + 7 + 72 + · · · + 717 ≡ 0 (mod 19)

40. 1 + 14 + 142 + · · · + 1410 ≡ 0 (mod 27)

41. 1265 ≡ 12 (mod 65) 42. 15341 ≡ 15 (mod 341)

43. 2887 ≡ 28 (mod 87) 44. 3551 ≡ 35 (mod 51)

45. 3816 ≡ 1 (mod 172) 46. 1170 ≡ 1 (mod 712)

Compute
∑

d|n
ϕ(d) for each n.

47. 8 48. 11 49. 18 50. 28
51–54. Compute

∑

d|n
(−1)n/dϕ(d) for each n in Exercises 47–50.

Verify that each is a Carmichael number.

55. 8911 = 7 · 19 · 67 56. 6601 = 7 · 23 · 41

Prove each, where p is an odd prime.

57. Let a be any integer such that p � a. Then
p−1∑

i=1
ai ≡ 0 (mod p).

58. The least nonzero residues 1,2, . . . , (p − 1)/2 modulo p are congruent to
−(p − 1)/2, . . . ,−2,−1, in some order.

59. If p ≡ 3 (mod 4), then ((p − 1)/2)! ≡ ±1 (mod p).

X SUPPLEMENTARY EXERCISES

By Wilson’s theorem, (p − 1)! ≡ −1 (mod p), so W(p) = (p − 1)! + 1

p
is an integer.

If W(p) ≡ 0 (mod p), then p is a Wilson prime.

1. Show that 5 and 13 are Wilson primes. (They were found in 1953 by Goldberg
by an exhaustive computer search; the next larger Wilson prime is 563. In spite
of continued searches, no other Wilson prime has been found less than 4 million.
Also, nothing is known about the infinitude of Wilson primes.)

2. Prove that p is a Wilson prime if and only if (p − 1)! ≡ −1 (mod p2).

In 1982, Albert Wilansky of Lehigh University reported that his brother-in-law
Harold Smith had a telephone number 493-7775 with the property that the sum
of its digits equals the sum of the digits of its prime factors. Since 4,937,775 =
3 · 5 · 5 · 65,837, 4 + 9 + 3 + 7 + 7 + 7 + 5 = 3 + 5 + 5 + 6 + 5 + 8 + 3 + 7, so it



352 CHAPTER 7 Three Classical Milestones

has the said property. Such a number is a Smith number. The smallest Smith num-
ber is 4. In 1987, W. L. McDaniel showed that there are infinitely many palindromic
Smith numbers.

3. Show that 202, 265, 666, and 1111 are Smith numbers.
4. There are six Smith numbers < 100. Find them.
5. In 1917, R. Ratat gave four solutions to the equation ϕ(n) = ϕ(n+1), namely, 1,

3, 15, and 104. A year later, R. Goormaghtigh added four more to the list: 164,
194, 255, and 495. In 1974, T. E. Moore found a new solution, namely, 65535.
Verify that they are indeed solutions of the equation.

Let f (n) = ϕ(n) + ϕ2(n) + ϕ3(n) + · · · + ϕ(1), where ϕi(n) = ϕ(ϕi−1(n))

and ϕ1(n) = ϕ(n). (D. L. Silverman, 1982)

6. Compute f (5) and f (8). 7. Prove that f (2k) = 2k.

Prove each, where p is any prime, and m and n are any positive integers.

8. Every positive integer n is a factor of some integer N consisting of 0s and 1s.

9.
(np − 1)!

(n − 1)!pn−1
≡ (−1)n (mod p). (H. Sazegar, 1993)

10. Let m ≥ 2 such that
(nm − 1)!

(n − 1)!mn−1
≡ (−1)n (mod m). Then m is a prime.

(Hint: Use contradiction to prove this converse of Sazegar’s result.)

X COMPUTER EXERCISES

Write a program to perform each task, where p is a prime ≤ 100.

1. Read in a prime p and list all least residues modulo p that are self-invertible.
2. Read in a prime p and verify Wilson’s theorem.
3. Find all Wilson primes ≤ 1000.
4. Read in a positive integer n ≤ 100 and list all primes of the form n! + 1.
5. Verify that 2n ≡ 2 (mod n) for all primes ≤ 340.
6. Verify that 2341 ≡ 2 (mod 341).
7. List all positive integers n ≤ 341 such that 2n ≡ 2 (mod n). Identify those that

are composite numbers.

Verify each.

8. a23 ≡ a (mod 23) for 0 ≤ a ≤ 22. 9. a31 ≡ a (mod 31) for 0 ≤ a ≤ 30.

10. Find all primes p ≤ 1000 such that 2p−1 ≡ 1 (mod p2).
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8 Multiplicative Functions

It is the man, not the method, that solves the problem.

— H. MASCHKE

n the preceding chapter, we explored Euler’s phi function, one of the most im-Iportant number-theoretic functions (also known as arithmetic functions). Arith-
metic functions are defined for all positive integers. Euler’s phi function belongs

to a large class of arithmetic functions called multiplicative functions.
In addition to revisiting the phi function, we will learn three new multiplicative

functions, τ (tau), σ (sigma), and μ (mu)† and study some of their fascinating prop-
erties. We will also investigate two classes of positive integers, perfect numbers and
Mersenne primes, and see how they are related.

8.1 Euler’s Phi Function Revisited

Recall from Section 7.4 that ϕ(n) denotes the number of positive integers ≤ n and
relatively prime to it. We found in Lemma 7.5 that if n is a prime, then ϕ(n) = n − 1.
Suppose n is not a prime; is there a way to compute ϕ(n)?

We will now develop a formula to compute ϕ(n) for any positive integer n using
its prime-power decomposition. To this end, first we derive a formula for ϕ(pe) and
then develop a mechanism for computing ϕ(mn) when (m, n) = 1.

To achieve this goal, we first introduce multiplicative functions.

† τ , σ , and μ are lowercase Greek symbols.

355
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Multiplicative Function

A number-theoretic function f is multiplicative if f (mn) = f (m)f (n) whenever m
and n are relatively prime.

EXAMPLE 8.1 The constant function f (n) = 1 is multiplicative, since f (mn) = 1 = 1 · 1 = f (m)f (n).
So is the function g(n) = nk, k being a fixed integer, since g(mn) = (mn)k = mknk =
g(m)g(n). �

Notice that in both cases, we did not have to assume that (m,n) = 1; nevertheless
they have the desired property. (We shall use a special case of g in Corollary 8.1.)

The following theorem, called the fundamental theorem for multiplicative
functions, enables us to compute the value of a multiplicative function f for any
positive integer, provided we know its values for prime powers in n. For example,
suppose we know the values of f (pa) and f (qb), where p and q are distinct primes
and a and b positive integers. Then f (paqb) = f (pa)f (qb), since f is multiplicative.
More generally, we have the following result.

THEOREM 8.1 Let f be a multiplicative function and n a positive integer with canonical decompo-
sition n = pe1

1 pe2
2 · · ·pek

k . Then f (n) = f (pe1
1 )f (pe2

2 ) · · · f (pek
k ).

PROOF (by induction on the number of distinct primes in n)
If k = 1, that is, if n = pe1

1 , then f (n) = f (pe1
1 ), so the theorem is trivially true.

Assume it is true for any integer with canonical decomposition consisting of k
distinct primes: f (n) = f (pe1

1 )f (pe2
2 ) · · · f (pek

k ).
Let n be any integer with k + 1 distinct primes in its canonical decomposi-

tion, say, n = pe1
1 pe2

2 · · ·pek+1
k+1 . Since (pe1

1 · · ·pek
k , pek+1

k+1 ) = 1 and f is multiplicative,
f (pe1

1 · · ·pek
k pek+1

k+1 ) = f (pe1
1 · · ·pe

kk)f (p
ek+1
k+1 ) = f (pe1

1 ) · · · f (pek
k )f (pek+1

k+1 ), by the induc-
tive hypothesis. Therefore, by induction, the result is true for any positive integer n. �

This theorem is invaluable in our quest for finding a formula for ϕ(n). If we
know ϕ is multiplicative, and if we know the value of ϕ(pe), then we can use the
theorem to derive the formula. We now take up these issues one by one in the next
two theorems.

THEOREM 8.2 Let p be a prime and e any positive integer. Then ϕ(pe) = pe − pe−1.

PROOF

ϕ(pe) = number of positive integers ≤ pe and relatively prime to it

=
(

number of positive
integers ≤ pe

)

−
(

number of positive integers ≤ pe

and not relatively prime to it

)
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The positive integers ≤ pe and not relatively prime to it are the various multiples
of p, namely, p,2p,3p, . . . , (pe−1)p, and they are pe−1 in number. Thus, ϕ(pe) =
pe − pe−1. �

The following example demonstrates this theorem.

EXAMPLE 8.2 Compute ϕ(8), ϕ(81), and ϕ(15,625).

SOLUTION

ϕ(8) = ϕ(23) = 23 − 22 = 8 − 4 = 4

ϕ(81) = ϕ(34) = 34 − 33 = 54

ϕ(15,625) = ϕ(56) = 56 − 55 = 12,500

Thus, there are four positive integers ≤ 8 and relatively prime to it; they are 1, 3, 5,
and 7. �

Notice that the value of ϕ(pe) can also be written as ϕ(pe) = pe
(

1 − 1

p

)

. You

will find this version useful in Theorem 8.4.

The Monkey and Coconuts Puzzle Revisited Once Again

Next, we revisit the monkey and coconuts riddle, as an application of Theorems 7.10
and 8.2.

EXAMPLE 8.3 Using Theorems 7.10 and 8.2, solve the monkey and coconuts riddle.

SOLUTION

Let n denote the least possible number of coconuts in the original pile and z each
sailor’s share after the final division. Then, by Example 3.23,

1024n − 15625z = 11529

That is,

1024n ≡ 11529 (mod 15625)

n ≡ 1024−1 · 11529 (mod 15625)

≡ 1024ϕ(15625)−1 · (−4096) (mod 15625)
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But ϕ(15625) = 12500, by Example 8.2. Therefore,

n ≡ 102412499 · (−4096) (mod 15625) (8.1)

We can evaluate this using a scientific calculator, but it is time consuming. The key
steps are listed below, and the details can be filled in as an exercise:

10242 ≡ 1701 (mod 15625) 102416 ≡ −3899 (mod 15625)

102432 ≡ −924 (mod 15625)

Therefore,

102412499 = (102432)390 · 102416 · 10242 · 1024

≡ (−924)390 · (−3899) · 1701 · 1024 (mod 15625) (8.2)

9246 ≡ 701 (mod 15265) 92418 ≡ 3351 (mod 15265)

92472 ≡ 4651 (mod 15265) 924216 ≡ 6451 (mod 15265)

Therefore,

924390 = 924216 · (92472)2 · 92418 · (9246)2

≡ 6451 · 46512 · 3351 · 7012 ≡ 6451 · 6801 · 3351 · 7012 (mod 15625)

≡ 6451 · (6801 · 701) · (3351 · 701) ≡ 6451 · 1876 · 5301 (mod 15625)

≡ 6451 · 7176 (mod 15625)

So, by congruence (8.2), 102412499 ≡ 6451 · 7176 · 3224 (mod 15625). Therefore,
by congruence (8.1),

n ≡ (6451 · 3224) · 7176 · (−4096) ≡ (1149 · 7176) · (−4096) (mod 15625)

≡ (−4776)(−4096) ≡ 4776 · 4096 (mod 15625)

≡ 15621 (mod 15625)

Thus, the minimum number of coconuts in the original pile is 15,621. �

Before we tackle the second issue directly, we will study an example, which sug-
gests a method for showing that ϕ is multiplicative. Suppose we would like to com-
pute ϕ(28). If we know that ϕ is multiplicative, then ϕ(28) = ϕ(4 · 7) = ϕ(4)ϕ(7) =
2 · 6 = 12. The following example confirms this result.
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EXAMPLE 8.4 Let m = 4 and n = 7. Then (m,n) = 1 and mn = 28. To find ϕ(mn) = ϕ(28), we list
the positive integers ≤ 28 in four rows of 7 each and then ignore the ones that are not
relatively prime to 28 (see Table 8.1):

1 5 9 13 17 21 25
2 6 10 14 18 22 26
3 7 11 15 19 23 27
4 8 12 16 20 24 28

Table 8.1

Clearly, the first element in the second and fourth rows is not relatively prime
to m; in fact, no element in either row is relatively prime to m. So none of them is
relatively prime to mn.

Consequently, the positive integers ≤ 28 and relatively prime to it must come
from the 2 = ϕ(4) remaining rows:

1 5 9 13 17 21 25
3 7 11 15 19 23 27

Each of them is relatively prime to m. Each row contains 6 = ϕ(7) elements relatively
prime to 7:

1 5 9 13 17 25
3 11 15 19 23 27

The resulting array contains 12 elements and they are indeed relatively prime to 28.
Thus, ϕ(28) = 12 = 2 · 6 = ϕ(4)ϕ(7). �

This example contains the essence of the proof of the next theorem, which con-
firms what you probably have been guessing all along. First, we need the following
lemma.

LEMMA 8.1 Let m and n be relatively prime positive integers, and r any integer. Then the integers
r,m + r,2m + r, . . . , (n − 1)m + r are congruent modulo n to 0,1,2, . . . , (n − 1) in
some order.

PROOF

It suffices to show that no two elements in the list are congruent modulo n. To this
end, suppose km + r ≡ �m + r (mod n), where 0 ≤ k, � < n. Then km ≡ �m (mod n).
But (m,n) = 1, so k ≡ � (mod n). Since k and � are least residues modulo n, this
implies k = �.
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Thus, if k �= �, then km + r �≡ �m + r (mod n); that is, no two elements in
the given list yield the same least residue. But it contains n elements, so their least
residues modulo n are a rearrangement to the integers 0 through n − 1. �

The following example illustrates this lemma.

EXAMPLE 8.5 Let m = 4 and n = 7, so (m,n) = (4,7) = 1. Choose r = 3. Then the list r,m +
r,2m + r, . . . , (n − 1)m + r becomes 3, 7, 11, 15, 19, 23, and 27. Their least residues
modulo 7 are 3, 0, 4, 1, 5, 2, and 6, which are a permutation of 0, 1, 2, 3, 4, 5, and 6. �

Now, we are prepared to present the theorem.

THEOREM 8.3 The function ϕ is multiplicative.

PROOF

(The argument mirrors Example 8.4, so look for parallels if or when the proof gets
confusing.) Let m and n be positive integers such that (m,n) = 1. We would like to
show that ϕ(mn) = ϕ(m)ϕ(n).

Arrange the integers 1 through mn in m rows of n each:

1 m + 1 2m + 1 . . . (n − 1)m + 1
2 m + 2 2m + 2 . . . (n − 1)m + 2
3 m + 3 2m + 3 . . . (n − 1)m + 3

...

r m + r 2m + r . . . (n − 1)m + r ← rth row
...

m 2m 3m . . . nm

Let r be a positive integer ≤ m such that (r,m) > 1. We will show that no element of
the rth row in the array is relatively prime to mn. Let d = (r,m). Then d|r and d|m,
so d|km + r for any integer k; that is, d is a factor of every element in the rth row.

Thus, no element in the rth row is relatively prime to m and hence to mn if
(r,m) > 1; in other words, the elements in the array relatively prime to mn come
from the rth row only if (r,m) = 1. By definition, there are ϕ(m) such integers r and
hence ϕ(m) such rows.

Now let us concentrate on the rth row, where (r,m) = 1:

r,m + r,2m + r, . . . , (n − 1)m + r
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By Lemma 8.1, their least residues modulo n are a permutation of 0,1,2, . . . , (n−1)

of which ϕ(n) are relatively prime to n. Therefore, exactly ϕ(n) elements in the rth
row are relatively prime to n and hence to mn.

Thus, there are ϕ(m) rows containing positive integers relatively prime to mn,
and each row contains ϕ(n) elements relatively prime to it. So the array contains
ϕ(m)ϕ(n) positive integers ≤ mn and relatively prime to mn; that is, ϕ(mn) =
ϕ(m)ϕ(n). �

Using Lemma 7.5 and Theorems 8.2 and 8.3, we can compute ϕ(n) for any
positive integer n, as the following example demonstrates.

EXAMPLE 8.6 Evaluate ϕ(221) and ϕ(6125).

SOLUTION

• ϕ(221) = ϕ(13 · 17) = ϕ(13) · ϕ(17), by Theorem 8.3
= 12 · 16, by Lemma 7.5

= 192

• ϕ(6125) = ϕ(53 · 72) = ϕ(53)ϕ(72), by Theorem 8.3

= (53 − 52)(72 − 7), by Theorem 8.2

= 4200 �

Theorems 8.2 and 8.3 can now be effectively applied to derive an explicit formula
for ϕ(n) using its canonical decomposition.

THEOREM 8.4 Let n = pe1
1 pe2

2 · · ·pek
k be the canonical decomposition of a positive integer n. Then

ϕ(n) = n

(

1 − 1

p1

)(

1 − 1

p2

)

· · ·
(

1 − 1

pk

)

PROOF

Since ϕ is multiplicative, by Theorem 8.1,

ϕ(n) = ϕ
(
pe1

1

)
ϕ
(
pe2

2

) · · ·ϕ(
pek

k

)

= pe1
1

(

1 − 1

p1

)

pe2
2

(

1 − 1

p2

)

· · ·pek
k

(

1 − 1

pk

)

, by Theorem 8.2
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= pe1
1 pe2

2 · · ·pek
k

(

1 − 1

p1

)(

1 − 1

p2

)

· · ·
(

1 − 1

pk

)

= n

(

1 − 1

p1

)(

1 − 1

p2

)

· · ·
(

1 − 1

pk

)

�

The following example illustrates this theorem.

EXAMPLE 8.7 Compute ϕ(666) and ϕ(1976).

SOLUTION

• 666 = 2 · 32 · 37

ϕ(666) = 666

(

1 − 1

2

)(

1 − 1

3

)(

1 − 1

37

)

= 216

[An interesting observation: ϕ(666) = 6 · 6 · 6]

• 1976 = 23 · 13 · 19

ϕ(1976) = 1976

(

1 − 1

2

)(

1 − 1

13

)(

1 − 1

19

)

= 864 �

You must have observed in Exercise 10 in Section 7.4, and in Examples 8.6 and
8.7, that ϕ(n) is nearly always even. In fact, it is odd only if n = 1 or 2. We leave the
proof as an exercise.

Before pursuing another result involving ϕ, we investigate
∑

d|n
ϕ(d)n in an exam-

ple.

EXAMPLE 8.8 Let n = 28 and d|28. Let Cd denote the class of those positive integers m ≤ n, where
(m,n) = d. Since 28 has six positive factors 1, 2, 4, 7, 14, and 28, there are six such
classes:

C1 = {1,3,5,9,11,13,15,17,19,23,25,27} C2 = {2,6,10,18,22,26}
C4 = {4,8,12,16,20,24} C7 = {7,21}

C14 = {14} C28 = {28}
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Figure 8.1

They contain 12 = ϕ(28) = ϕ(28/1), 6 = ϕ(14) = ϕ(28/2), 6 = ϕ(7) = ϕ(28/4),

2 = ϕ(4) = ϕ(28/7), 1 = ϕ(2) = ϕ(28/14), and 1 = ϕ(1) = ϕ(28/28) elements,
respectively. Also, they form a partitioning of the set of positive integers ≤ 28, as
Figure 8.1 shows.

Therefore, the sum of the numbers of elements in the various classes must
equal 28; that is, 12 + 6 + 6 + 2 + 1 + 1 = 28. In other words, ϕ(28) + ϕ(14) +
ϕ(7) + ϕ(4) + ϕ(2) + ϕ(1) = 28; that is,

∑

d|28
ϕ(d) = 28. �

More generally, we have the following result. The technique behind its proof,
illustrated in the preceding example, was originally conceived by Gauss.

THEOREM 8.5 Let n be a positive integer. Then
∑

d|n
ϕ(d) = n.

PROOF

We partition the set of positive integers 1 through n into various classes Cd as follows,
where d|n. Let m be a positive integer ≤ n. Then m belongs to class Cd if and only
if (m,n) = d; that is, if and only if (m/d,n/d) = 1. The number of elements in
Cd equals the number of positive integers ≤ n/d and relatively prime to it, namely,
ϕ(n/d); thus, each class Cd contains ϕ(n/d) elements.

Since there is a class corresponding to every factor d of n and every integer m
belongs to exactly one class, the sum of the elements in the various classes must
yield the total number of elements. That is,

∑

d|n
ϕ(n/d) = n

But as d runs over the divisors of n, so does n/d. Consequently,

∑

d|n
ϕ(n/d) =

∑

d|n
ϕ(d), thus

∑

d|n
ϕ(d) = n

�
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The following example illustrates this theorem.

EXAMPLE 8.9 Verify that
∑

d|18
ϕ(d) = 18.

PROOF

The positive divisors of 18 are 1, 2, 3, 6, 9, and 18. So

∑

d|18

ϕ(d) = ϕ(1) + ϕ(2) + ϕ(3) + ϕ(6) + ϕ(9) + ϕ(18)

= 1 + 1 + 2 + 2 + 6 + 6 = 18 �

E X E R C I S E S 8.1

1. Let f be the number-theoretic function such that
f (n) = 0 for every positive integer n. Show that f is
multiplicative.

Compute ϕ(n) for each n.

2. 56 3. 341

4. 561 5. 1105

6. 2047 7. 6860

8. 98,865 9. 183,920
10. Show that ϕ(5186) = ϕ(5187) = ϕ(5188).

(These are the only three known consecutive integers
with this property.)

Compute ϕ(p!) for each prime p.

11. 3 12. 5 13. 7 14. 11

Find the positive integers n such that

15. ϕ(n) = n 16. ϕ(n) = 4

17. ϕ(n) = 6 18. ϕ(n) = 12
19. Derive a formula for ϕ(pq), where p and q are twin

primes.

Find the twin primes p and q if

20. ϕ(pq) = 120 21. ϕ(pq) = 288

22. If p and q are twin primes with p < q, show that
ϕ(q) = ϕ(p) + 2.

23. Can ϕ(n) = 2n for any positive integer? If yes, find
such an integer.

Prove each, where m, n, and e are arbitrary positive inte-
gers and p is any prime.

24. Let f be a multiplicative function. Then f (1) = 1.
25. If n = 2k , then ϕ(n) = n/2.
26. Let fn denote a Fermat prime. Then ϕ(fn) = fn − 1.
27. ϕ(4n) = 2ϕ(n), where n is odd.

28. ϕ(2n) =
{

ϕ(n) if n is odd

2ϕ(n) if n is even

29. If n = 2j, where j ≥ 1, then n = 2ϕ(n).
30. If n = 2ϕ(n), then n = 2j, where j ≥ 1.
31. If n = 2j3k , where j, k ≥ 1, n = 3ϕ(n).
32. If n = 3ϕ(n), then n = 2j3k , where j, k ≥ 1.
33. ϕ(22k+1) is a square.
34. If ϕ(pe) is a square, then p − 1 must be a square and

e must be odd.
35. If p � n, then ϕ(pn) = (p − 1)ϕ(n).
36. If ϕ(pn) = (p − 1)ϕ(n), then p � n.
37. ϕ(ϕ(pe)) = pe−2ϕ(p(p − 1)), where e ≥ 2.
38. If m|n, then ϕ(m)|ϕ(n).
39. Let (m, n) = p. Then ϕ(mn) = p

p − 1
ϕ(m)ϕ(n).

40. Deduce from Exercise 39 that ϕ(p2) = p(p − 1).

41. Let (m, n) = d. Prove that ϕ(mn) = d

ϕ(d)
ϕ(m)ϕ(n).
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42. Deduce from Exercise 41 that ϕ is multiplicative.

Prove each, where n and e are positive integers.

43. ϕ(n2) = nϕ(n)

44. ϕ(n3) = n2ϕ(n)

45. ϕ(ne) = ne−1ϕ(n)

46. Using Exercise 29, compute ϕ(256) and ϕ(4096).

Evaluate each using Exercise 41.

47. ϕ(48) 48. ϕ(90)

49. ϕ(375) 50. ϕ(1690)

Evaluate each using Exercise 45.

51. ϕ(16) 52. ϕ(81)

53. ϕ(2401) 54. ϕ(1728)

Let S(n) denote the sum of the positive integers ≤ n
and relatively prime to it. Compute S(n) for each value
of n.

55. 6 56. 8 57. 9 58. 12
59. Using Exercises 55–58, predict a formula for S(n).

Let m and n be positive integers and p a prime. Prove each.

60. Let n ≡ 0 (mod 4). Then ϕ(n/2) = ϕ(n)/2.
61. If n − 1 and n + 1 are twin primes, then ϕ(n/2) ≤ n.

(H. Demir, 1960)

62. ϕ

(
m

n

)

= ϕ(m)

ϕ(n)
if and only if m = nk, where

(n, k) = 1. (L. Marvin, 1975)
63. There are infinitely many positive integers n such that

ϕ(n) = n/3, but none such that ϕ(n) = n/4.

� �

8.2 The Tau and Sigma Functions

We now turn to two additional number-theoretic functions: τ (tau) and σ (sigma).
We will show that both are multiplicative and will derive formulas for τ(n) and σ(n)

using the canonical decomposition of n. Both functions are employed in the study of
perfect numbers, as you will see in the next section.

Let us begin with the definition of the tau function.

The Tau Function

Let n be a positive integer. Then τ(n) denotes the number of positive factors of n;
that is,

τ(n) =
∑

d|n
1

The following example illustrates this simple definition.

EXAMPLE 8.10 Evaluate τ(18) and τ(23).

SOLUTION

• The positive divisors of 18 are 1, 2, 3, 6, 9, and 18, so τ(18) = 6.
• 23, being a prime, has exactly two positive divisors, so τ(23) = 2. �
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It follows by definition that if n is a prime, then τ(n) = 2; conversely, if τ(n) = 2,
then n is a prime.

Next we define the sigma function.

The Sigma Function

Let n be a positive integer. Then σ(n) denotes the sum of the positive factors of n;
that is,

σ(n) =
∑

d|n
d

The following example illustrates this definition.

EXAMPLE 8.11 Evaluate σ(12) and σ(28).

SOLUTION

• The positive divisors of 12 are 1, 2, 3, 4, 6, and 12; so

σ(12) = 1 + 2 + 3 + 4 + 6 + 12 = 28

• The positive divisors of 28 are 1, 2, 4, 7, 14, and 28; so

σ(28) = 1 + 2 + 4 + 7 + 14 + 28 = 56 �

Again, if n is a prime, then it has exactly two positive factors, 1 and n, so σ(n) =
n + 1; on the other hand, if σ(n) = n + 1, then n must be a prime.

To derive formulas for τ(n) and σ(n), we need to show that both functions are
multiplicative. To this end, we introduce a new function F.

Let f be a multiplicative function. Then F is defined by

F(n) =
∑

d|n
f (d)

For example,

F(12) =
∑

d|12

f (d)

= f (1) + f (2) + f (3) + f (4) + f (6) + f (12)

What properties does F possess? For example, is it multiplicative? The following
example shows we can compute the value of F(28) provided we know the values of
F(4) and F(7). Follow the steps carefully; we will need them soon.
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EXAMPLE 8.12 Determine if F(mn) = F(m)F(n), where m = 4 and n = 7.

SOLUTION

Clearly, (m, n) = (4,7) = 1. Then

F(4 · 7) =
∑

d|28

f (d)

= f (1) + f (2) + f (4) + f (7) + f (14) + f (28)

= f (1 · 1) + f (1 · 2) + f (1 · 4) + f (1 · 7) + f (2 · 7) + f (4 · 7)

= f (1)f (1) + f (1)f (2) + f (1)f (4) + f (1)f (7)

+ f (2)f (7) + f (4)f (7), since f is multiplicative

= [
f (1) + f (2) + f (4)

]
f (1) + [

f (1) + f (2) + f (4)
]

f (7)

= [
f (1) + f (2) + f (4)

][
f (1) + f (7)

]

=
∑

d|4
f (d) ·

∑

d|7
f (d)

= F(4)F(7) �

More generally, we have the following result, which is the cornerstone of this
section; it shows that F is indeed multiplicative.

THEOREM 8.6 If f is a multiplicative function, then F(n) = ∑

d|n
f (d) is also multiplicative.

PROOF

Let m and n be relatively prime positive integers. We would like to show that
F(mn) = F(m)F(n).

By definition,

F(mn) =
∑

d|mn

f (d)

Since (m, n) = 1, every positive divisor d of mn is the product of a unique pair of
positive divisors d1 of m and d2 of n, where (d1, d2) = 1. Therefore,

F(mn) =
∑

d1|m
d2|n

f (d1d2)
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But since f is multiplicative, f (d1d2) = f (d1)f (d2). So

F(mn) =
∑

d1|m
d2|n

f (d1d2) =
∑

d2|n

[∑

d1|m
f (d1)

]

f (d2)

=
∑

d2|n
F(m)f (d2), by the definition of F

= F(m)
∑

d2|n
f (d2)

= F(m)F(n)

Thus, F is multiplicative. �

With this theorem at our disposal, we can easily conclude that both τ and σ are
multiplicative, as the following corollary shows.

COROLLARY 8.1 The tau and sigma functions are multiplicative.

PROOF

In Example 8.1 we found that the constant function f (n) = 1 and the identity function
g(n) = n are multiplicative. Therefore, by Theorem 8.6, the functions

∑

d|n
f (d) =

∑

d|n
1 = τ(n) and

∑

d|n
g(d) =

∑

d|n
d = σ(n)

are multiplicative; that is, if (m, n) = 1, then τ(mn) = τ(m)τ (n) and σ(mn) =
σ(m)σ (n). �

The following example demonstrates these results.

EXAMPLE 8.13 Compute τ(36) and σ(36).

SOLUTION

Because 36 = 4 · 9, where (4, 9) = 1, by Corollary 8.1,

τ(36) = τ(4) · τ(9) = 3 · 3 = 9

and

σ(36) = σ(4) · σ(9) = (1 + 2 + 4)(1 + 3 + 9) = 91 �
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Corollary 8.1 certainly takes us a step closer to the derivation of the formulas
for τ(n) and σ(n), but first we need to develop the formulas for τ(pe) and σ(pe).

THEOREM 8.7 Let p be any prime and e any positive integer. Then τ(pe) = e + 1 and σ(pe) =
pe+1 − 1

p − 1
.

PROOF

The positive factors of pe are of the form pi, where 0 ≤ i ≤ e; there are e+1 of them,
so τ(pe) = e + 1. Also,

σ(pe) =
e∑

i=0

pi = pe+1 − 1

p − 1 �

For example, τ(81) = τ(34) = 5; that is, 81 has five positive factors, namely, 1,

3, 9, 27, and 81; and σ(81) = σ(34) = 35 − 1

3 − 1
= 121.

The following theorem gives the two formulas promised earlier. They are a con-
sequence of Corollary 8.1 and Theorem 8.7.

THEOREM 8.8 Let n be a positive integer with canonical decomposition n = pe1
1 pe2

2 · · ·pek
k . Then

τ(n) = (e1 + 1)(e2 + 1) · · · (ek + 1) and

σ(n) = pe1+1
1 − 1

p1 − 1
· pe2+1

2 − 1

p2 − 1
· · · pek+1

k − 1

pk − 1

PROOF

Since τ is multiplicative, by Corollary 8.1,

τ(n) = τ
(
pe1

1

) · τ(
pe2

2

) · · · τ(
pek

k

)

= (e1 + 1)(e2 + 1) · · · (ek + 1), by Theorem 8.7

Since σ is multiplicative,

σ(n) = σ(pe1
1 ) · σ(pe2

2 ) · · ·σ(pek
k )

= pe1+1
1 − 1

p1 − 1
· pe2+1

2 − 1

p2 − 1
· · · pek+1

k − 1

pk − 1
, by Theorem 8.7 �

Notice that the formulas for τ(n) and σ(n) can be rewritten as follows:

τ(n) =
k∏

i=1

(ei + 1) and σ(n) =
k∏

i=1

pei+1
i − 1

pi − 1
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The following example demonstrates this theorem.

EXAMPLE 8.14 Compute τ(6120) and σ(6120).

SOLUTION

First, we find the canonical decomposition of 6120: 6120 = 23 ·32 ·5 ·17. Therefore,

τ(6120) = (3 + 1)(2 + 1)(1 + 1)(1 + 1) = 48

and

σ(6120) = 23+1 − 1

2 − 1
· 32+1 − 1

3 − 1
· 51+1 − 1

5 − 1
· 171+1 − 1

17 − 1

= 15 · 13 · 6 · 18

= 21,060 �

A Brainteaser (optional)

We now turn to a fascinating brainteaser.
Marilyn vos Savant, who is listed in The Guinness Book of World Records as

having the highest IQ ever recorded, writes a regular column on puzzles in Parade
Magazine. The following is from the book Ask Marilyn (1992), a collection of puz-
zles from her column:

There are 1000 tenants and 1000 apartments. The first tenant opens all the doors. The second tenant
closes every other door. The third tenant goes to every third door, opens it if it is closed and closes
it if it is open. The fourth tenant goes to every fourth door, closes it if it is open and opens it if it
is closed. This continues with each tenant until the 1000th tenant closes the 1000th door. How many
doors remain open?

The solution employs three simple properties from number theory:

• Every non-square integer has an even number of positive factors.

Assume N is not a square. Then, by the Fundamental Theorem of Arithmetic,

N = pe1
1 pe2

2 · · ·pet
t

where p1,p2, . . . ,pt are distinct prime numbers and not all exponents ei are even.
(If all exponents are even, then N would be a square.) By Theorem 8.8, τ(N) =
(e1 + 1)(e2 + 1) · · · (et + 1). Since at least one of the exponents ei is odd, et + 1 is
even, so the product (e1 + 1)(e2 + 1) · · · (et + 1) is an even integer.

• Every square has an odd number of positive factors.
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To establish this result, let M be a square. Then

M = (
pf1

1 pf2
2 · · ·pfk

k

)2 = p2f1
1 p2f2

2 · · ·p2fk
k

Then τ(M) = (2f1 +1)(2f2 +1) · · · (2fk +1). This, being the product of odd integers,
is clearly an odd integer.

• There are �√n	 squares ≤ n.

To see this, suppose there are k squares ≤ n. Then k is the largest positive integer
such that k2 ≤ n < (k + 1)2, so k ≤ √

n < k + 1; thus, k = �√n	.
Before we apply these results to solve the puzzle, we study a miniversion with

10 tenants and 10 apartments. The first tenant opens all 10 doors; the second tenant
closes the 2nd, 4th, 6th, 8th, and 10th doors; the third closes the 3rd door, opens
the 6th door, and closes the 9th door; the fourth tenant opens the 4th and 8th doors.
Continuing like this, the 10th tenant closes the 10th door. These data are summarized
in Table 8.2, where O indicates the door is open and C indicates the door is closed.

Door

Tenant 1 2 3 4 5 6 7 8 9 10
1 O O O O O O O O O O
2 . C . C . C . C . C
3 . . C . . O . . C .
4 . . . O . . . O . .
5 . . . . C . . . . O
6 . . . . . C . . . .
7 . . . . . . C . . .
8 . . . . . . . C . .
9 . . . . . . . . O .

10 . . . . . . . . . C

Table 8.2

It follows from the table that doors 1, 4, and 9 remain open at the end, so the
number of such doors is three. (Notice that 3 = �√10	; can you predict the answer to
the given problem? Construct tables like Table 8.2 for 13 tenants and 13 apartments,
18 tenants and 18 apartments, and 25 tenants and 25 apartments, and look for a
pattern.)

Returning to the original problem, recall that the first tenant opens all doors.
Consider the nth tenant, where 2 ≤ n ≤ 1000.

case 1 Let n be a square, where n2 ≤ 1000. Since n has an odd number of positive
factors, the last person to touch an open door will close it. Thus, every nth door will
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remain open if n is a square. The number of such doors equals the number of squares
≤ 1000, namely, �√1000	 = 31.

case 2 Suppose n is not a square, where n2 ≤ 1000. Since n has an even number
of positive factors, the last person to touch an open door will close it. In other words,
every nth door will remain closed if n is not a square.

Thus, since the two cases are disjoint, 31+0 = 31 doors will remain open. They
are doors numbered 1,4,9,16,25, . . . ,900, and 961.

Can you generalize this puzzle? Suppose there are m tenants and m apartments,
and the first tenant opens all doors. The jth tenant closes every jth door if it is open
and opens it otherwise, where 2 ≤ j ≤ m. How many doors will remain open at the
end?

E X E R C I S E S 8.2

Compute τ (n) for each n.

1. 43 2. 1560
3. 2187 4. 44,982

5–8. Compute σ(n) for each n in Exercises 1–4.

List the positive factors of each, where p and q are distinct
primes.

9. pq 10. pq2 11. p2q 12. p2q3

13–16. Find the sum of the positive divisors of each num-
ber in Exercises 9–12.

Let p and q be distinct primes in Exercises 17 and 18.

17. List the positive factors of piqj.
18. Find the sum of the positive factors of piqj.
19. Identify the positive integers with exactly two posi-

tive divisors.
20. Identify the positive integers with exactly three posi-

tive divisors.

21. Let n = p1p2 · · ·pk be a product of k distinct primes.
Find τ (n) and σ(n).

Use n = 22e
for Exercises 22 and 23.

22. Find τ (n) and σ(n).
23. Find the product of the positive divisors of n.
24. Find the product of the positive divisors of pe.
25. Find the product of the positive divisors of paqb.

26. In 1638, the French mathematician and philosopher
René Descartes (1596–1650) showed that σ(pe) −
pe = pe − 1

p − 1
. Verify this.

Let n = 2p−1(2p − 1), where p and 2p − 1 are primes.
Find each.

27. τ (n) 28. σ(n)

Compute σ(n) for each n.

29. 6 30. 28 31. 496 32. 8128

33. Predict the pattern observed in Exercises 29–32.

Let n be the product of a pair of twin primes, p being the
smaller of the two.

34. Find τ (n).
35. Show that σ(p + 2) = σ(p) + 2.
36. Show that σ(n) = (p + 1)(p + 3).
37. Find p for which σ(p) is odd.

Verify each. (D. E. Iannucci, 2002)

38. ϕ(σ(666)) = 2ϕ(666)

39. σ(668) = 2σ(ϕ(668))

40. σ(ϕ(667)) = 2σ(667)

41. ϕ(665) = 2ϕ(666)

Prove each, where m, n, and e are positive integers and p
is a prime.
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42.
∑

d|n
1

d
= σ(n)

n
43. ϕ(p) + σ(p) = 2p
44. If ϕ(pe) + σ(pe) = 2pe, then e = 1.
45. If τ (n) is odd, then n is a square.
46. If n is a square, then τ (n) is odd.
47. If τ (n) is a prime, then n is of the form p or p2e.
48. If n is a power of 2, then σ(n) is odd.
49. If p is odd, then 1 + p + p2 + · · · + pk is odd if and

only if k is even.
50. If n is a square, then σ(n) is odd.
51. If σ(n) is odd, then n is a square or twice a square.
52. Let n and σ(n) be odd. Then n must be a square.

53. If m|n, then
σ(m)

m
≤ σ(n)

n
.

54.
σ(pe)

pe <
p

p − 1
(P. A. Weiner, 2000)

55.
σ(n)

n
<

∏

p|n

p

p − 1
, where n ≥ 2. (P. A. Weiner, 2000)

Let σk(n) denote the sum of the kth powers of the
positive factors of n; that is, σk(n) = ∑

d>0
d|n

dk . Clearly

σ1(n) = σ(n). Compute each.

56. σ2(12) 57. σ2(18)

58. σ3(23) 59. σ3(28)

Find a formula for σk(n) for each n.

60. p 61. pe 62. paqb

63. Prove that σk(n) is multiplicative.
64. Derive a formula for σk(p

aqb).

(Hint: Use Exercise 65.)

65. Derive a formula for σk(n), where n =
k∏

i=1
pei

i .

(Hint: Use Exercises 65 and 66.)

Compute each using Exercise 66.

66. σ2(16) 67. σ3(18) 68. σ3(36) 69. σ4(84)

�70. Prove that the product of the positive divisors of a
positive integer n is nτ(n)/2.

� �

8.3 Perfect Numbers

We can use the sigma function to study a marvelous class of numbers, called perfect
numbers. The term perfect numbers was coined by the Pythagoreans. The ancient
Greeks thought these numbers had mystical powers and held them to be “good”
numbers. They were also studied by the early Hebrews; Rabbi Josef ben Jehuda in
the twelfth century recommended their study in his book, Healing of Souls.

Historically, some biblical scholars considered 6 a perfect number, because they
believed God created the world in six days and God’s work is perfect. St. Augustine,
on the other hand, believed God’s work to be perfect because 6 is a perfect number.
He writes, “Six is a number perfect in itself, and not because God created all things
in six days; rather the inverse is true; God created all things in six days because this
number is perfect. And it would remain perfect even if the work of the six days did
not exist.”
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The Pythagoreans regarded 6 as the symbol of “marriage and health and beauty
on account of the integrity of its parts and the agreement existing in it.”

What is mystical about 6? The Pythagoreans observed that 6 equals the sum of
its proper factors: 6 = 1 + 2 + 3. The next two perfect numbers are 28 and 496:

28 = 1 + 2 + 4 + 7 + 14

496 = 1 + 2 + 4 + 8 + 16 + 31 + 62 + 124 + 248

Their discovery is sometimes attributed to the Greek mathematician Nichoma-
chus (ca. A.D. 100). Notice that the moon orbits the earth every 28 days, the second
perfect number.

We can now formalize the definition of a perfect number.

Perfect Number

A positive integer n is a perfect number if the sum of its proper factors equals n.
Thus, n is perfect if σ(n) − n = n, that is, if σ(n) = 2n.

The first eight perfect numbers are

6 = 2(22 − 1)

28 = 22(23 − 1)

496 = 24(25 − 1)

8128 = 26(27 − 1)

33,550,336 = 212(213 − 1)

8,589,869,056 = 216(217 − 1)

137,438,691,328 = 218(219 − 1)

2,305,843,008,139,952,128 = 230(231 − 1)

of which only the first four were known to the ancient Greeks; they are listed in
Nichomachus’ Introductio Arithmeticae. The next perfect number was discovered
by the Greek mathematician Hudalrichus Regius around 1536. The Italian mathe-
matician Pietro Antonio Cataldi (1548–1626) discovered the next two in 1588. Euler
discovered the eighth perfect number in 1750.

Interestingly, a medieval German nun, Hrotsvit, a Benedictine in the Abbey of
Gandersheim in Saxony and the first known woman German poet, listed the first four
perfect numbers in her tenth-century play, Sapientia.
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Mathematicians of the Middle Ages, basing their assumptions on the first four
perfect numbers, conjectured that

• There is a perfect number between any two consecutive powers of 10; that is,
there is a perfect number of n digits long for every positive integer n; and

• Perfect numbers end alternately in 6 and 8.

Unfortunately, both conjectures are false. There are no perfect numbers that are
five digits long. Even perfect numbers do end in 6 or 8, but not alternately; for in-
stance, the fifth and sixth even perfect numbers end in 6; the next four end in 8.

Notice that every perfect number in the preceding list is even and is of the form
2p−1(2p − 1), where p and 2p − 1 are primes. We should be doubly impressed that
Euclid proved that every such number is a perfect number, as the following theorem
confirms.

THEOREM 8.9 (Euclid) If n is an integer ≥ 2 such that 2n − 1 is a prime, then N = 2n−1(2n − 1)

is a perfect number.

PROOF

Since 2n − 1 is a prime, σ(2n − 1) = 1 + (2n − 1) = 2n. Because σ is multiplicative,

σ(N) = σ(2n−1)σ (2n − 1) = (2n − 1)(2n)

= 2 · 2n−1(2n − 1) = 2N

Thus, N is a perfect number, as anticipated. �

About 2000 years after Euclid’s discovery, Euler proved that the converse of
this theorem is also true: If N = 2n−1(2n − 1) is an even perfect number, then
2n − 1 is a prime. Theorems 8.9 and 8.10 categorically characterize even perfect
numbers.

THEOREM 8.10 (Euler) If N = 2n−1(2n − 1) is an even perfect number, then 2n − 1 is a prime.

PROOF

Let N be of the form 2es, where s is odd and e ≥ 1. Since N is perfect,

σ(N) = 2N = 2e+1s

Clearly, (2e, s) = 1, so

σ(N) = σ(2es) = σ(2e)σ (s)

= (2e+1 − 1)σ (s)
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Thus,

2e+1s = (2e+1 − 1)σ (s) (8.3)

Since (2e+1, 2e+1 − 1) = 1, it follows by Corollary 3.4 that 2e+1|σ(s), so σ(s) =
2e+1t for some positive integer t. Substituting for σ(s) in equation (8.3),

2e+1s = (2e+1 − 1)2e+1t (8.4)

s = (2e+1 − 1)t (8.5)

This implies t|s and t < s, since t = s implies e = 0, a contradiction.
We will now show that t = 1. To this end, equation (8.5) can be rewritten as

s + t = 2e+1t

s + t = σ(s) (8.6)

This shows t is the sum of the proper factors of s, but, by equation (8.5), t is itself a
proper factor of s. So, for the relationship (8.6) to hold, t must be 1.

Thus, s + 1 = σ(s), so s has exactly two positive factors 1 and s. Consequently,
s = 2e+1 − 1 must be a prime.

Thus, N = 2e(2e+1 − 1), where 2e+1 − 1 is a prime. �

Although this theorem furnishes a remarkable formula for constructing even per-
fect numbers, it is not known whether there are infinitely many even perfect numbers;?
the answer has eluded number theorists all over the world in spite of their relentless
pursuit.

We now present a fascinating problem proposed in 1990 by Peter L. Mont-
gomery of the University of California at Los Angeles and John L. Selfridge of
Northern Illinois University at DeKalb. It explicitly identifies a very special class
of even perfect numbers. The solution† is a bit lengthy and needs to be followed
carefully.

EXAMPLE 8.15 Find all perfect numbers of the form nn + 1.

SOLUTION

Let N = nn + 1.

† The solution presented here is based on the one by D. E. Iannucci and G. L. Cohen of Temple
University. Selfridge raised the problem for odd N at the 1990 Western Number Theory Conference
after solving it for N even. Montgomery solved it during the conference; this is why both are credited
with proposing the problem.
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case 1 Let n be odd. Since N is an even perfect number, so N must be of the form
N = 2m−1(2m − 1), where 2m − 1 is a prime.

Clearly, N can be factored as N = nn + 1 = (n + 1)r, where r = nn−1 − nn−2 +
· · · − n + 1. We now claim that (n + 1, r) = 1. To show this, notice that since n is
odd, r is odd and n + 1 is even. Let n + 1 = 2st, where t is an odd integer ≥ 1. Then
N = 2str, where both t and r are odd. Since N is an even perfect number, this is
possible only if t = 1; so n + 1 = 2s and hence (n + 1, r) = 1. (Notice that if r = 1,
then N = nn + 1 = n + 1; so n = 1. Then N = 2, which is not a perfect number.)

Since N = 2m−1(2m − 1) = (n + 1)r = 2sr, where 2m − 1 is a prime and r is
odd, 2s = 2m−1 = n + 1 and r = 2m − 1 = 2 · 2m−1 − 1 = 2(n + 1) − 1 = 2n + 1.
Therefore,

N = nn + 1 = (n + 1)(2n + 1) = 2n2 + 3n + 1

This yields

nn = 2n2 + 3n

nn−1 = 2n + 3

Since n is an integer, this equation has a unique solution 3. (See Figure 8.2. It can be
verified algebraically also; see Exercise 9.) Then N = 33 + 1 = 28. Thus, 28 is the
only even perfect number of the desired form.

Figure 8.2

case 2 Let n be even, say, n = 2k. Then N is odd, nn is a square, and nn ≡
−1 (mod N).
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We claim that 3 � N, for suppose 3|N. Then nn ≡ −1 (mod 3); that is,

(2k)2k ≡ −1 (mod 3)

4k · k2k ≡ 2 (mod 3)

1 · k2k ≡ 2 (mod 3)

k2k ≡ 2 (mod 3) (8.7)

Clearly, k �≡ 0 or 1 modulo 3. If k ≡ 2 (mod 3), then congruence (8.7) yields

22k ≡ 2 (mod 3)

4k ≡ 2 (mod 3)

1 ≡ 2 (mod 3), a contradiction

So k cannot be congruent to 0, 1, or 2, which is absurd. Thus, 3 � N.
By Touchard’s theorem,† N = 12m + 1 or 36m + 9 for some integer m. If N =

36m+9, then 3|N, a contradiction. So N = 12m+1; that is, nn = 12m. Since 3|12m,

3|nn, so 3|n. Thus, 2|n and 3|n, so 6|n.
Let N = a6 + 1, where a = nn/6 > 1. Then N can be factored as

N = (a2 + 1)(a4 − a2 + 1) (8.8)

We will now see that these factors of N are relatively prime. To this end, let p be a
common prime factor of the two factors a2 + 1 and a4 − a2 + 1. Since

a4 − a2 + 1 = (a4 + 2a2 + 1) − 3a2

= (a2 + 1)2 − 3a2

= (a2 + 1)2 − 3(a2 + 1) + 3

p|3; that is, p = 3. This implies 3|N, a contradiction; so the factors a2 + 1 and a4 −
a2 + 1 are relatively prime. Besides, since N is odd, both factors are also odd.

Since N is perfect and σ is multiplicative, equation (8.8)

σ(N) = σ(a2 + 1) · σ(a4 − a2 + 1)

That is,

2N = σ(a2 + 1) · σ(a4 − a2 + 1)

Since N is odd, one of the factors on the RHS must be odd. But, if m and σ(m) are
both odd, then m is a square. This implies that either a2 +1 or a4 −a2 +1 is a square.

† Every odd perfect number is of the form 12m + 1 or 36m + 9.
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But a2 < a2 + 1 < (a + 1)2 and (a2 − 1)2 < a4 − a2 + 1 < (a2)2, so neither can be a
square, a contradiction.

Consequently, there are no odd perfect numbers of the form nn + 1.
Thus, 28 is the only perfect number of the desired form. �

Odd Perfect Numbers

The question remains unanswered as to whether there are any odd perfect num-
?bers N. Although a host of conditions that N must satisfy have been established,

no one has been successful in finding one, in spite of large computer searches with
modern supercomputers. For example, in 1953, J. Touchard of France established
that N must be of the form 12k + 1 or 36k + 9. Fifty years later, W. Chau of Soft
Techies Corporation, E. Brunswick, New Jersey, showed that if N is of the form
36k + 9, then it must be of the form 108k + 9,108k + 35, or 324k + 81; it must have
at least eight different prime factors (E. Z. Chein, 1979; P. Hagis, 1980); if N has
exactly eight distinct prime factors, then the smallest prime factor must be 3, 5, or 7;
N must be of the form p4a+1n2, where p is a prime of the form 4m + 1,a ≥ 0, and
p � n; and in 1991 R. P. Brent, G. L. Cohen, and H. J. J. te Riele showed that it must
be greater than 10300. In 1998, G. L. Cohen of the University of Technology, Syd-
ney, and P. Hagis, Jr., of Temple University proved that the largest prime factor of
an odd perfect number exceeds 106; and three years earlier, D. E. Iannucci showed
that the second prime factor exceeds 104 and the third prime factor exceeds 100.
In 2000, Paul A. Weiner of St. Mary’s University of Minnesota established that if
3σ(n) = 5n for some integer n, then 5n is an odd perfect number. There is, however,
a strong belief in the mathematical community that there may not be any odd perfect
numbers.

By Theorem 8.10, the search for even perfect numbers boils down to finding
primes of the form 2m − 1, so we need to examine them closely. By Lemma 7.3, if m
is composite, then 2m −1 is also composite. Therefore, m must be a prime for 2m −1
to be a prime. We will analyze such numbers in the following section.

E X E R C I S E S 8.3

1. If 2p is a perfect number, show that p = 3. Assume p
is a prime.

Let n = 2p−1(2p − 1) be an even perfect number, where p
is a prime. Show that

2. ϕ(n) = 2p−1(2p−1 − 1)

3. ϕ(n) = n − 22p−2

4. Show that n = 210(211 − 1) is not a perfect number.
5. Show that every even perfect number is a triangular

number. (J. Broscius, 1652)
6. Show that the sum of the first 2p − 1 positive integers

is an even perfect number, where p and 2p − 1 are
primes.
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7. Show that pq is not a perfect number, where p and q
are distinct primes.

8. Show that pe is not a perfect number, where p is a
prime.

9. Solve the equation nn−1 = 2n + 3, where n is a posi-
tive integer.

Prove each.

10. The sum of the cubes of the first n odd positive inte-
gers is n2(2n2 − 1).

11. Every even perfect number 2p−1(2p − 1) is the sum
of the cubes of the first 2(p−1)/2 odd positive integers.

12. The digital root of every even perfect number > 6 is
one.

13. The product of two even perfect numbers cannot be a
perfect number.

14. Let n be a perfect number. Then
∑

0<d<n
d|n

(d/n) = 1.

15. Let n = 2p−1(2p − 1) be an even perfect number.
Then

∏

d|n
d = np. (P. A. Lindstrom, 2004)

16. Suppose
σ(n)

n
= 5

3
. Then 5n is an odd perfect num-

ber. (P. A. Weiner, 2000)

Every odd perfect number n, if it exists, is of the form
n = pem2, where p is an odd prime and m is odd. Using
this fact, prove each.

17. p ≡ e ≡ 1 (mod 4)
18. n ≡ p (mod 8)
19. n ≡ 1 (mod 4)

A positive integer n is deficient if σ(n) < 2n and abun-
dant if σ(n) > 2n. Such numbers were also originally
studied by the Pythagoreans. For example, σ(9) = 1 +
3 + 9 = 13 < 2 · 9, so 9 is a deficient number, whereas
σ(12) = 1 + 2 + 3 + 4 + 6 + 12 = 28 > 2 · 12, so 12 is an
abundant number. Determine if each number is deficient
or abundant, where Mp = 2p − 1.

20. 23 21. 88 22. 24
23. 315 24. 210M11 25. 222M23

26. 2p(2p − 1), where p and 2p − 1 are primes.
27. 2k−1(2k − 1), where 2k − 1 is a composite.

A positive integer n is k-perfect if σ(n) = kn, where
k ≥ 2. (A perfect number is 2-perfect.) Verify the follow-
ing.

28. 672 is 3-perfect. 29. 30,240 is 4-perfect.

Two positive integers m and n are amicable (or friendly)
if σ(m) − m = n and σ(n) − n = m, that is, if σ(m) =
m + n = σ(n). For example, σ(220) − 220 = 1 + 2 +
4 + 5 + 10 + 11 + 20 + 22 + 44 + 55 + 110 = 284 and
σ(284) − 284 = 1 + 2 + 4 + 71 + 142 = 220, so 220 and
284 are an amicable pair, found by Pythagoras around
540 B.C. Interestingly enough, this pair is mentioned in
the Bible in Genesis 32:14. The next smallest pair, 1184
and 1210, was discovered in 1866 by a 16-year-old Ital-
ian student, B. N. I. Paganini. It is not known if there are
infinitely many amicable pairs. Verify that each is an am- ?
icable pair. (The pairs 2620 and 2924, and 6232 and 6368
were discovered during 1747–1750 by Euler.)

30. 1184, 1210 31. 2620, 2924 32. 6232, 6368

The Arabian mathematician Thabit ben Korrah developed
an algorithm for constructing amicable numbers: If a =
3 · 2n − 1, b = 3 · 2n−1 − 1, and c = 9 · 22n−1 − 1 are all
primes, then 2nab and 2nc are amicable, where n ≥ 2.

33. Find two amicable pairs using Korrah’s method.
34. Verify that 2nab and 2nc are amicable numbers.
35. In 1978, Elvin J. Lee made an interesting observa-

tion about the numbers 220 and 284: The sum of the
first 17 primes is 2 · 220 and that of their squares is
59 · 284. Verify this.

36. A positive integer n is superperfect if σ(σ (n)) = 2n.
Verify that 16 is superperfect.

Let ν(n) = ∏

d|n
d<n

d, the product of the proper divisors of n.

Some positive integers have the property that ν(n) = nk

for some positive integer k. For example, ν(12) = 1 ·2 ·3 ·
4 · 6 = 122. Verify that ν(n) = nk for each integer n.

37. 20 38. 45 39. 24 40. 48

41. Verify that ν(pq) = pq, where p and q are distinct
primes.

42. Find a formula for v(paqb).
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Prove each, where p is a prime and n any positive integer.

43. Every prime is deficient.
44. The product of two distinct odd primes is deficient.
45. Any positive power of a prime is deficient.
46. If 2 � p and 2p is deficient, then p ≥ 5.
47. A number of the form 2ep, where 2 � p, is abundant if

e ≥ �lg(p + 1)	 − 1.
48. If n is p-perfect and p � n, then pn is (p + 1)-perfect.
49. Every number of the form 2k , where 2k+1 − 1 is a

prime, is superperfect.
50. Let n = 2k−1(2k − 1) be an even perfect number.

Then σ(σ (n)) = 2k(2k+1−1).
51. If m and n are amicable, then

(∑

d|m

1

d

)−1
+

(∑

d|n

1

d

)−1
= 1

52. If n is 3-perfect, and 3 � n, then 3n is 4-perfect.

53. ν(pe) is a power of pe if and only if e is an odd integer
≥ 3.

54. ν(paqb) is a power of paqb if and only if (a + 1)(b +
1) is an even integer ≥ 4.

55. ν(n) is a power of n if and only if τ (n) is an even
integer ≥ 4.

56. ν(n) = nτ(n)/2−1

The harmonic mean m of the numbers a1,a2, . . . ,an is
the reciprocal of the arithmetic mean of their reciprocals;
that is,

1

m
= 1

n

( n∑

i=1

1

ai

)

57. Show that the harmonic mean h(n) of the positive
factors of a positive integer n is given by h(n) =
nτ (n)/σ (n).

58. Find the harmonic mean of the positive factors of a
perfect number n.

� �

8.4 Mersenne Primes

It was originally thought that if m is a prime, then 2m −1 is also a prime. However, in
1536, Hudalrichus Regius found that it fails when m = 11: 211 − 1 = 2047 = 23 · 89.

Mersenne Primes

Numbers of the form 2m − 1 were studied extensively by the French mathemati-
cian and Franciscan monk Marin Mersenne. Accordingly, they are called Mersenne
numbers, a name given to them by W. W. Rouse Ball of Trinity College, Cambridge,
England. Primes of the form Mp = 2p − 1 are Mersenne primes.

In 1644, Mersenne wrote in his Cogitata Physica-Mathematica that Mp is a
prime for p = 2, 3, 5, 7, 13, 17, 19, 31, 67, 127, and 257 and composite for other
primes < 257. No one knew how he arrived at this claim. His statement contains
some omissions and errors. In any case, it took over three centuries to settle his
claim.

In 1814, Peter Barlow wrote in A New Mathematical and Philosophical Dictio-
nary: “Euler ascertained that 231 − 1 = 2,147,483,647 is a prime number; and this
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Marin Mersenne (1588–1648), “best known as the priest-scientist who facilitated

the cross-fertilization of the most eminent minds of his time,” was born in Soultière,

France. He was baptized on the same day and christened as Marin since it was

the feast of the Nativity of Mary. After attending the College de Mans and the Je-

suit College at La Flêche, he went to Paris to study theology and became a Minim

friar in 1611. Science began to dominate his religious thought, and in 1624 he ac-

cepted the Copernican theory that the sun, and not the earth, was the center of the

universe. Mersenne corresponded with many scientists and philosophers, including

René Descartes; his residence became a meeting place for such eminent thinkers as

Fermat, Girard Desargues, and Fr. Pierre Gassendi. He even came to the defense of

Descartes and Galileo when their works were attacked by the Church. He also made

important contributions to music and acoustics.

is the greatest at present known to be such, and, consequently, the last of the above
perfect numbers, which depends upon this, is the greatest perfect number known at
present, and probably the greatest that ever will be discovered; for, as they are merely
curious without being useful, it is not likely that any person will attempt to find one
beyond it.”† As it turns out, Barlow underestimated human curiosity, and he could
not have foreseen the power of computers.

In 1876, Lucas proved that M67 is composite, although he did not provide any
factors; but in October 1903, the American mathematician Frank Nelson Cole pro-
vided a factorization:

267 − 1 = 193,707,721 × 761,838,257,287

It is said that Cole spent his Sunday afternoons for 20 years trying to find the two
factors.

In 1883, I. M. Pervushin showed that M61 = 261 −1 is a prime, which Mersenne
missed. R. E. Powers discovered that 289 − 1 and 2107 − 1 are primes, in 1911 and
1914, respectively. In 1922, M. Kraitchik showed that M257 = 2257 − 1 is composite.
Ironically, on March 27, 1936, the New York Herald Tribune erroneously reported
that 2257 − 1 was discovered to be a prime by Samuel I. Krieger of Chicago; it was
shown in 1931, and then in 1947 using a desk calculator, and then reconfirmed in
1952 using computers, that 2257 − 1 is actually a composite.

The question of whether there are infinitely many Mersenne primes is still unan-
swered. If there are, then there would be an infinitude of even perfect numbers and

? hence of perfect numbers.

† D. Shanks, Solved and Unsolved Problems in Number Theory, Vol. 1, Spartan Books (1962).
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?It is also not known if every Mp is square-free; it also remains unresolved.
Mersenne primes Mp appear to be scarce as p increases. In 1963, Donald B.

Gillies of the University of Illinois conjectured that there are about two such primes
p in the interval [n, 2n]. Interestingly enough, his conjecture is consistent with the
observed frequency of primes p. It also agrees well with the Eberhart conjecture that
for the ith Mersenne prime Mp, p ≈ 1.5i. For example, when i = 23, p ≈ 1.523 ≈
11223, which is not that far from the actual value of p = 11213.

Modern computers have become a powerful tool for finding larger Mersenne
primes. For instance, the next five larger Mersenne primes corresponding to p =
521,607,1279,2203, and 2281 were discovered in 1952; the next one corresponding
to p = 3217 in 1957; the next two with p = 4253 and 4423 in 1961; the next three
were found in 1963 at the University of Illinois at Urbana-Champaign (see the meter
stamp in Figure 8.3). In 1971, a still larger prime was found by Bryant Tuckerman of
International Business Machines (IBM); see Figure 8.4, which shows the top portion
of IBM’s office envelope spreading its news.

Figure 8.3

Figure 8.4

As of 1994, 33 Mersenne primes had been discovered; the 33rd largest known
Mersenne prime, M859433, was discovered in 1993 by David Slowinski of Harwell
Laboratory, England; it took 7.2 hours on a Cray C90 supercomputer to determine
its primality; its decimal value is 258,716 digits long (see Figure 8.5). The next two
larger ones were also discovered by Slowinski.

The largest known prime by the year 1999, M6972593, was discovered by N.
Hajrawala, G. Woltman, and S. Kurowski; its decimal value is 2,098,960 digits long.
So the largest known even perfect number in 1999 was 26972592(26972593 − 1); its
decimal value is 4,197,919 digits long.
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Worldwide Number Search Inspires Prime Competition

Baltimore Sun
BALTIMORE – It just didn’t add up.

Technicians at US West, the Denver-based tele-
phone company, couldn’t understand last May why directory-
assistance computers were grinding away for minutes to find
the numbers when they normally needed seconds. At one
point, the slowdown threatened to shutter the company’s
Phoenix service center.

Alarmed that hackers were afoot, US West scrambled
its Intrusion Response Team. The squad of computer spe-
cialists combed through the company’s computer network
and found a mysterious software program running on more
than 2,500 machines.

The case has brought to light a mathematical treasure
hunt taking place around the globe. It’s called the Great Inter-
net Mersenne Prime Search—GIMPS for short—and it has
captured the imagination of everyone from PhD’s to grade-
schoolers. Their goal is to hunt down world-record prime
numbers.

Most record-seekers now focus their attention on
Mersenne primes. These special prime numbers are the
Hope Diamonds of the mathematical world, as large as they
are rare. Named after the 17th-century French mathemati-
cian Marin Mersenne, they are primes generated by the for-
mula 2 to the nth power minus 1, where n is also a prime.

Just 37 have been found in all of human history. The
most recent was unearthed in January by a 19-year-old stu-
dent using PCs in the computer lab at California State Uni-
versity, Dominguez Hills, in Los Angeles County. It had a
whopping 909,526 digits, making it the largest Mersenne
prime yet found.

Until recently it took a supercomputer to flush out these
elephantine numbers. But in 1996 a retired Orlando, Fla.,
computer programmer and a California engineer devised a
way to use home computers to find them. The idea was to
link PCs through the Internet, turning them into a single,
massively parallel supercomputer. They wrote the software,
and the Great Internet Mersenne Prime Search was born.

Today more than 4,000 number lovers around the world
are using GIMPS software to hunt for Mersenne primes,
each vying for 15 minutes of fame and a $1,100 cash prize.
Collectively, the group churns through 280 billion calcula-
tions per second, a computing punch roughly equivalent to
five of the world’s most powerful supercomputers working
full-steam.

The GIMPS software is designed to look for primes
when its host PC isn’t occupied with other tasks. On a Web
site (www.mersenne.org), it gets an untested number and
then grinds through a formula to determine whether it is
prime. The calculations can take days or weeks to complete.
If the number turns out to be a dud, the process is repeated.
But if it turns out to be prime, it should mean fame and for-
tune.

Figure 8.5

The Mersenne prime M25964951 was discovered in 2005 by Martin Nowak, an
eye surgeon in Germany (see Figure 8.6). It is 7,816,230 digits long and took 50
days of computations on his 1 GHz Pentium 4 computer. Today, the largest known
such prime is 230402457 − 1 with 9,152,052 digits; it was discovered on Decem-
ber 15, 2005, by C. Cooper and S. R. Boone of Central Missouri State Univer-
sity.

Table 8.3 lists the 43 known Mersenne primes Mp, the number of decimal digits
in each, the number of decimal digits in the corresponding perfect numbers 2p−1Mp,
the years of discovery of Mp, and their discoverers.
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No. of Digits No. of Digits Year of
Rank Prime, p in Mp in 2p − 1Mp Discovery Discoverer(s)

1 2 1 1 unknown Pythagoreans
2 3 1 2 unknown Pythagoreans
3 5 2 3 unknown Pythagoreans
4 7 3 4 unknown Pythagoreans
5 13 4 8 15th century H. Regius
6 17 6 10 1588 P. A. Cataldi
7 19 6 12 1588 P. A. Cataldi
8 31 10 19 1772 L. Euler
9 61 19 37 1883 I. M. Pervushin

10 89 27 54 1911 R. E. Powers
11 107 33 65 1914 R. E. Powers &

E. Fauquembergue
12 127 39 77 1876 E. Lucas
13 521 157 314 1952 D. H. Lehmer
14 607 183 366 1952 D. H. Lehmer
15 1279 386 770 1952 D. H. Lehmer
16 2203 664 1327 1952 D. H. Lehmer
17 2281 687 1373 1952 D. H. Lehmer
18 3217 969 1937 1957 H. Riesel
19 4253 1281 2561 1961 A. Hurwitz
20 4423 1332 2663 1961 A. Hurwitz
21 9689 2917 5834 1963 D. B. Gillies
22 9941 2993 5985 1963 D. B. Gillies
23 11,213 3376 6751 1963 D. B. Gillies
24 19,937 6002 12,003 1971 B. Tuckerman
25 21,701 6533 13,066 1978 L. Nickel & C. Noll
26 23,209 6987 13,973 1979 C. Noll
27 44,497 13,395 26,790 1979 D. Slowinski &

H. Nelson
28 86,243 25,962 51,924 1983 D. Slowinski
29 110,503 33,265 66,530 1988 W. N. Colquitt &

L. Welch, Jr.
30 132,049 39,751 79,502 1983 D. Slowinski
31 216,091 65,050 130,100 1985 D. Slowinski
32 756,839 227,832 455,663 1992 D. Slowinski & P. Gage
33 859,433 258,716 517,430 1993 D. Slowinski & P. Gage
34 1,257,787 378,632 757,263 1996 D. Slowinski & P. Gage
35 1,398,269 420,921 841,842 1996 J. Armengaud &

G. Woltman
36 2,976,221 895,932 1,791,864 1997 G. Spence &

G. Woltman
37 3,021,377 900,526 1,819,050 1998 R. Clarkson et al.
38 6,972,593 2,098,960 4,197,919 1999 N. Hajrawala et al.
39 13,466,917 4,053,946 8,107,892 2001 M. Cameron
40 20,996,011 6,320,430 12,640,858 2003 M. Shafer
41 24,036,583 7,235,733 14,471,465 2004 J. Findley
42 25,964,951 7,816,230 15,632,458 2005 M. Novak
43 30,402,457 9,152,052 18,304,103 2005 C. Cooper & S. R. Boone
44 32,582,657 9,808,358 19,616,715 2006 C. Cooper & S. R. Boone

Table 8.3 The 44 known Mersenne primes.
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Prime Number Is Largest Ever
Reuters
EAGAN, Minn. – Scientists announced yesterday that they
have discovered the largest prime number found to date—
a 258,716-digit behemoth that would take eight newspaper
pages to print.

Prime numbers are those that can be divided only by
themselves or 1. Simple examples are 2, 3, 5, 7 and 11.

There are an infinite number of them, but they do not oc-
cur in a regular sequence, meaning that supercomputers are
needed to hunt for them.

Cray Research Inc. said its supercomputer had chased
down the new number—two multiplied by itself 859,433
times, minus 1.

The previous largest such number, tracked down in
1992, had 227,832 digits.

Figure 8.6

Their discoveries often generated considerable media publicity. In October
1978, for instance, the discovery of the 25th Mersenne prime, M21701, was carried
by every news agency in the United States and announced by Walter Cronkite on
the CBS Evening News. The discovery of M20,996,011 by 26-year-old Michigan State
University chemical engineering student M. Shafer was announced by Peter Jennings
on ABC World News Tonight on December 11, 2003. The discovery of M25,964,951

made The New York Times on March 29, 2005 (see Figure 8.7).
The discovery of M21701 by L. Nickell and C. Noll was reported erroneously

in The Times of London on November 17, 1978: “Two 18-year-old American stu-
dents have discovered with the help of a computer at California State University the
biggest known prime number, the number two to the 21,701st power.” Fortunately, a
correction was soon published by The Times.

The Great Internet Mersenne Prime Search

The Great Internet Mersenne Prime Search (GIMPS), based in Orlando, Florida,
was formed in 1996 by George Woltman for discovering record Mersenne primes.
Like the recent discoverers, with a powerful personal computer, you can join the
global search by downloading the necessary software for free at www.Mersenne.org.
You can share the thrill of discovering larger primes and make history in the
process.

The Electronic Frontier Foundation has announced a $100,000 cash award for
the discovery of the first 10-million-digit prime. The GIMPS participant who discov-
ers it will receive $50,000; charity will receive $25,000; and the rest will fund new
discoveries. So join the fun.



8.4 Mersenne Primes 387

Now, Can You Find Its Square Root?

Kenneth Chang
An eye surgeon in Germany has discovered the world’s
largest known prime number—or at least his computer did.

The surgeon, Dr. Martin Nowak of Michelfeld, is among
thousands of participants in the Great Internet Mersenne
Prime Search, one of several big projects that tap idle com-
puters worldwide.

Last month, Dr. Nowak’s Pentium 4 computer con-
cluded that a number it had been crunching on for more
than 50 days was indeed prime with only two integer divi-
sors, 1 and itself.

A different computer using different software verified
the result.

The number, rendered in exponential shorthand, is
225,964,951 − 1. It has 7,816,230 digits, and if printed in its
entirety, would fill 235 pages of this newspaper.

In addition, it falls in a rare category of primes known
as Mersenne primes, which can be written as 2n − 1, where
n is also prime.

The first few Mersenne primes are easily verifiable—
inserting 2, 3 and 5 for n produces 3, 7, and 31, all prime—

but the math quickly becomes overwhelming for larger val-
ues.

In 1644, Marin Mersenne a French monk, published a
list of 11 prime numbers—the highest being 257—for which
he asserted that 2n − 1 was also prime.

That list was not fully checked until 1947, three cen-
turies later. Mersenne turned out to be wrong about two num-
bers on his list and had missed three others, but his name
still remains attached to the concept. Even with computers
to speed up the search, Dr. Nowak’s number is still only the
42nd Mersenne prime to be found.

The announcement did not, however, cause much of a
stir because what mathematicians really want to know is: Are
there an infinite number of such numbers? “Finding an addi-
tional prime doesn’t enlighten us very much,” said Dr. Andrew
M. Odlyzko, a mathematician at the University Minnesota.

The search nevertheless goes on, on about 75,000
computers. Begun in 1996 by George Woltman, a computer
scientist, the project has discovered eight Mersenne primes.

For those who want to join, to the free software is avail-
able at www.mersenne.org. The Web site informs would-be
volunteers, “Your chance of finding a new Mersenne prime is
about 1 in 150,000.”

Figure 8.7

A New Mersenne Conjecture

In 1989, P. T. Bateman and J. L. Selfridge of Northern Illinois University and S. S.
Wagstaff, Jr., of Purdue University made an interesting conjecture about Mersenne
primes:

?If two of the following statements about an odd prime p are true, then the third
one is also true:

• p = 2k ± 1 or p = 4k ± 3.
• Mp is prime.
• (2p + 1)/3 is prime.
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For example, let p = 7. Then 7 = 23 − 1 and (27 + 1)/3 = 43 is prime. As we
already know, M7 is a prime. Thus, the conjecture holds when p = 7. In fact, it has
been verified that the conjecture holds for all p < 100,000.

Number of Digits in Mp

We can easily pre-determine the number of digits in the Mersenne number Mp. First,
recall that every odd prime p is of the form 4k + 1 or 4k + 3. If p = 4k + 1, then
2p = 24k+1 = (24)k · 2 ≡ 6k · 2 ≡ 6 · 2 ≡ 2 (mod 10); likewise, if p = 4k + 3, then
2p ≡ 8 (mod 10). Thus, 2p = Mp + 1 ends in 2 or 8. Consequently, Mp ends in 1 or 7
and hence has the same number of digits as 2p.

To compute the number of digits in 2p, notice that log 2p = p · log 2. Therefore,

Number of digits in 2p = 1 + characteristic of p log 2 = �p log 2�

For example, M25964951 contains �25964951 log 2� = �0.301029995664 ×
25964951� = 7,816,230 digits, as expected.

Interestingly, the largest known composite Mersenne number is Mp with p =
39051 × 26001 − 1, discovered by W. Keller in 1987.

It follows from Supplementary Exercise 14 in Chapter 3 that any two distinct
Mersenne numbers are relatively prime; that is, if p and q are distinct primes, then
(Mp, Mq) = 1.

Primality of Mersenne Numbers

A host of conditions exist for testing the primality of Mersenne numbers. The follow-
ing theorem presents a possible prime factor of the Mersenne number Mp. Its proof
involves quadratic residues, developed in Chapter 11, so we omit it. A simple proof
is given in the classic book An Introduction to the Theory of Numbers by G. H. Hardy
and E. M. Wright.

THEOREM 8.11 (Euler) Let p = 4k + 3 be a prime, where k > 1. Then 2p + 1 is a prime if and only
if 2p ≡ 1 (mod 2p + 1). �

It follows by this theorem that if p = 4k + 3 and 2p + 1 are primes, where k > 1,
then 2p + 1|Mp and Mp is composite.

The following example demonstrates an interesting application of this theo-
rem. It was proposed as a problem in 1988 by David Grannis of Vancouver, British
Columbia.
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EXAMPLE 8.16 Find a factor of the Mersenne number M1000151.

SOLUTION

Both p = 1,000,151 = 4 ·250,037+3 and 2p+1 = 2,000,303 are primes. Therefore,
by Theorem 8.11, 2,000,303|M1000151. (This simple solution was provided in 1991
by Warut Roonguthai of Bangkok, Thailand.) �

Before presenting a primality test for Mersenne primes in Theorem 8.12, we
prepare the way with Lemma 8.2. But first, let us look at an example.

Let a and n be relatively prime positive integers. Then, by Euler’s theorem,
aϕ(n) ≡ 1 (mod n). Often, however, there can be exponents k smaller than ϕ(n) such
that ak ≡ 1 (mod n), as the following example illustrates.

EXAMPLE 8.17 Let n = 12; then ϕ(n) = ϕ(12) = 4. The least residues a modulo 12 that are relatively
prime to 12 are 1, 5, 7, and 11; by Euler’s theorem aϕ(n) = a4 ≡ 1 (mod 12). But
12 ≡ 1 (mod 12), 52 ≡ 1 (mod 12), 72 ≡ 1 (mod 12), and 112 ≡ 1 (mod 12); so k = 2
is the least positive exponent such that ak ≡ 1 (mod 12). [Notice that k|ϕ(n).] �

More generally, we have the following result.

LEMMA 8.2 Let a, m, and n be positive integers with (a,n) = 1, and k the smallest positive integer
such that ak ≡ 1 (mod n). Then am ≡ 1 (mod n) if and only if k|m.

PROOF

Suppose am ≡ 1 (mod n). By the division algorithm, m = kq + r for some integers q
and r, where 0 ≤ r < k. Then

am = akq+r = (ak)q · ar

Since ak ≡ 1 (mod n) and am ≡ 1 (mod n), this yields

1 ≡ 1q · ar (mod n)

1 ≡ ar (mod n)

That is,

ar ≡ 1 (mod n), where 0 ≤ r < k

If r > 0, this would contradict the minimality of k. So r = 0 and hence m = kq. Thus,
k|m.
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Conversely, let k|m, so let m = kq for some integer q. Then

am = akq = (ak)q

≡ 1q ≡ 1 (mod n)

Thus, am ≡ 1 (mod n) if and only if k|m. �

This lemma has an immediate corollary, and we will revisit it in Section 10.1.

COROLLARY 8.2 Let a and n be relatively prime positive integers, and k the smallest positive integer
such that ak ≡ 1 (mod n). Then k|ϕ(n). �

We can now undertake a primality test for Mersenne primes.

THEOREM 8.12 (Fermat, 1640) If p is an odd prime, every prime factor of Mp is of the form
2kp + 1, where k is a positive integer.

PROOF

Let q be a prime factor of Mp. (Clearly, q is odd.) Then q|Mp, so 2p ≡ 1 (mod q).
Let k be the smallest positive integer such that 2k ≡ 1 (mod q). Then, by Lemma 8.2,
k|p. But k �= 1, for if k = 1, then 21 ≡ 1 (mod q); that is, q = 1, a contradiction.
Therefore, k = p; that is, p is the smallest positive integer such that 2p ≡ 1 (mod q).

By Fermat’s little theorem, 2q−1 ≡ 1 (mod q), so by Lemma 8.2, p|q − 1. Let
q − 1 = pm for some positive integer m. Since q − 1 is even and p is odd, m must
also be even, say, m = 2k for some positive integer k. Then q − 1 = 2pk; that is,
q = 2kp + 1.

Thus, if p is odd, every prime factor of Mp is of the form 2kp + 1. �

The following two examples illustrate this test.

EXAMPLE 8.18 Verify that M11 is a composite number.

PROOF

M11 = 211 − 1 = 2047. By Theorem 8.12, every prime factor of M11 is of the
form 22k + 1. If M11 is composite, by Theorem 2.11, it must have a prime factor
≤ �√M11	, that is, ≤ 45. There is exactly one prime of the form 22k + 1 and ≤ 45,
namely, 23. Since 23|M11, M11 is composite. �

EXAMPLE 8.19 Determine whether M19 is a prime.
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PROOF

M19 = 219 −1 = 524287. If M19 is composite, it must have a prime factor ≤ �√M19	,
that is, ≤ 724. By Theorem 8.12, every prime factor of M19 is of the form 38k + 1
and ≤ 725; such primes are 191, 229, 419, 457, 571, and 647. None of them divides
M19, so M19 is a prime. �

Lucas–Lehmer Test

Next, we turn to the Lucas–Lehmer test, an extremely efficient primality test for
Mersenne primes, developed in 1877 by Lucas and then refined in 1930 by the Amer-
ican mathematician Derrick H. Lehmer. Lucas used his version to establish the pri-
mality of M127, the largest Mersenne number ever to be checked without the help of
a computing device.

The Lucas–Lehmer test, used since 1930 to prove the primality of Mersenne
primes, is based on the number sequence 4,14,194,37634,1416317954, . . . ; it is
defined recursively as follows:

S1 = 4

Sk = S2
k−1 − 2, k ≥ 2

According to the test, Mp is a prime if and only if Sp−1 ≡ 0 (mod Mp), where p is an
odd prime. Lehmer used this test to prove the primality of M521, M607, M1279, M2203,
and M2281 using the National Bureau of Standard’s Western Automatic Computer
(SWAC). He also reconfirmed, using SWAC for 48 seconds, that M257 is composite,
a task that had taken 700 work-hours 20 years earlier.

The test is formally presented in the following theorem.

THEOREM 8.13 (Lucas–Lehmer Test)† Let p ≥ 3. Then the Mersenne number Mp is prime if and
only if Sp−1 ≡ 0 (mod Mp), where Sk is the least residue modulo Mp defined recur-
sively as

S1 = 4

Sk ≡ S2
k−1 − 2 (mod Mp), k ≥ 2 �

The next two examples illustrate this test.

† A proof of the test can be found in W. Sierpinski, Elementary Theory of Numbers, 2nd edition,
North-Holland, Amsterdam, 1988.
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Derrick Henry Lehmer (1905–1991) was born in Berkeley, California. (His fa-

ther, Derrick Norman Lehmer, was a professor at Berkeley.) After graduating

from Berkeley in physics in 1927, he received his Ph.D. in mathematics from

Brown three years later. During the Great Depression, he worked at the Califor-

nia Institute of Technology, the Institute of Advanced Study, and Lehigh; and in

1940 he joined the faculty at Berkeley and remained there until his retirement

in 1972.

Lehmer, known as the father of computational number theory, shared with

his wife, Emma, a life-long fascination with number theory. A prolific writer,

he published extensively on Lucas functions, primality testing, factoring, power

residues, continued fractions, Bernoulli numbers and polynomials, Diophantine

equations, cyclotomy, and combinatorics. The Lucas–Lehmer primality test for Mersenne numbers is the result

of his investigations into what are now called Lehmer functions, which he discussed in his dissertation.

Lehmer was a founding father of the journal Mathematical Tables and Aids to Computation, which became

Mathematics of Computation in 1960.

EXAMPLE 8.20 Using the Lucas–Lehmer test, verify that M13 is a prime.

PROOF

Here p = 13 and M13 = 213 − 1 = 8191. Compute S2 through S12 modulo M13:

S2 ≡ 42 − 2 ≡ 14 (mod M13) S3 ≡ 142 − 2 ≡ 194 (mod M13)

S4 ≡ 1942 − 2 ≡ 4870 (mod M13) S5 ≡ 48702 − 2 ≡ 3953 (mod M13)

S6 ≡ 39532 − 2 ≡ −2221 (mod M13) S7 ≡ 22212 − 2 ≡ 1857 (mod M13)

S8 ≡ 18572 − 2 ≡ 36 (mod M13) S9 ≡ 362 − 2 ≡ 1294 (mod M13)

S10 ≡ 12942 − 2 ≡ 3470 (mod M13) S11 ≡ 34702 − 2 ≡ 128 (mod M13)

S12 ≡ 1282 − 2 ≡ 0 (mod M13)

Since S12 ≡ 0 (mod M13), M13 is a prime as expected. �

EXAMPLE 8.21 Using the Lucas–Lehmer test, verify that M11 is not a prime.

PROOF

As in the preceding example, we compute S2 through S10 modulo M11. You may
verify each:
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S2 ≡ 14 (mod M11) S3 ≡ 194 (mod M11) S4 ≡ 788 (mod M11)

S5 ≡ 701 (mod M11) S6 ≡ 119 (mod M11) S7 ≡ −170 (mod M11)

S8 ≡ 240 (mod M11) S9 ≡ 282 (mod M11) S10 ≡ 1736 (mod M11)

Since S10 �≡ 0 (mod M11), M11 is not a prime, as we already knew. �

To date, the largest known prime that is not a Mersenne prime is 27653 ·
29167433 + 1, discovered by Samuel Yates in 2005; it is 2,759,677 digits long.

The following problem was proposed in 1989 by Jeffrey Shallit of Dartmouth
College, New Hampshire.

EXAMPLE 8.22 Prove that σ(n) is a power of 2 if and only if n is the product of distinct Mersenne
primes.

PROOF

Let n = pe1
1 pe2

2 · · ·pek
k be the canonical decomposition of n. Then σ(n) =

k∏

i=1

pi
ei+1 − 1

pi − 1
. Assume it is a power of 2. Let pe be an arbitrary prime-power in

the canonical decomposition of n. Then σ(pe) = pe+1 − 1

p − 1
= pe + · · · + p + 1 must

be a power of 2, so both p and e must be odd.
Let e = 2s + 1. Then

σ(pe) = p2s+1 + · · · + p + 1

= (p + 1)(p2s + p2s−2 + · · · + p2 + 1) (8.9)

Since (p + 1)|σ(pe) and σ(pe) is a power of 2, p + 1 must be a power of 2, so p is a
Mersenne prime.

It remains to show that e = 1; that is, s = 0. Suppose s > 0. From equation (8.9),
since p2s + p2s−2 + · · · + p2 + 1 is a power of 2 and p is odd, s must be odd, so let
s = 2t + 1. Then

p2s + p2s−2 + · · · + p2 + 1 = p4t+2 + p4t + · · · + p2 + 1

= (p2 + 1)(p4t + p4t−4 + · · · + p4 + 1)

is a power of 2, so p2 + 1 must be a power of 2. Therefore, 4|(p2 + 1); that is,
p2 ≡ −1 (mod 4), a contradiction. Thus, s = 0 and hence e = 1. Consequently, n is
the product of distinct Mersenne primes.
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Conversely, let n = ∏

i
pi be the product of Mersenne primes pi = 2mi − 1. Then

σ(n) = ∏

i
σ(pi) = ∏

i
(pi + 1) = ∏

i
2mi = 2

∑

i
mi

is a power of 2. �

Pascal’s Triangle and Mersenne Numbers

There is an intriguing relationship between Mersenne numbers and Pascal’s trian-
gle. The numbers in rows 1,3,7,15,31,63, . . . , which are Mersenne numbers, are
all odd and each of the other rows contains at least one even entry. The following
theorem shows this is always the case; that is, every entry in row n, where n is a
Mersenne number, is odd; the proof given below is due to Rade M. Dacic of Bel-
grade, Serbia.

THEOREM 8.14 A positive integer n is a Mersenne number if and only if every binomial coefficient(
n

r

)

is odd, where 0 ≤ r ≤ n.

PROOF

Let n = 2s − 1, where s ≥ 0. Then

(
n

r

)

=
(

2s − 1

r

)

= 2s − 1

1
· 2s − 2

2
· · · 2s − r

r
(8.10)

Let 1 ≤ i ≤ r and i = 2ab, where 0 ≤ a ≤ s and b is odd. Then

2s − i

i
= 2s − 2ab

2ab
= 2s−a − b

b

which is a quotient of odd integers. Thus, every factor on the RHS of equation (8.10)

is a quotient of odd integers, so the product is an odd integer; that is, every entry

(
n

r

)

in row n is odd.

Conversely, suppose every binomial coefficient

(
n

r

)

in row n is odd. Let n be

odd, but not a Mersenne number. Then 2m−1 < n < 2m for some positive integer m.
So n = 2m−1 + 2k + 1, where 0 ≤ k ≤ 2m−2 − 1. Let r = 2k + 2. Then
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(
n

r

)

=
(

n

r − 1

)

· n − r + 1

r

= s · 2m−1

2k + 2

= s · 2m−2

k + 1

where s is an integer. If k +1 < 2m−2, not all 2s on the RHS can be canceled; so

(
n

r

)

is even. If k + 1 = 2m−2, then

(
n

r

)

= 0, still an even integer. Both cases contradict

the hypothesis, so n must be a Mersenne number. �

Pascal’s Triangle and Even Perfect Numbers

Suppose we replace each even number in Pascal’s triangle by a white dot (0) and
each odd number by a blue dot (1). Figure 8.8 shows the resulting delightful binary
pattern, Pascal’s binary triangle.

Figure 8.8 Pascal’s binary triangle.
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It follows by Theorem 8.14 that if n is Mersenne prime, then row n consists of
blue dots only. There are exactly four such rows n, where 1 ≤ n ≤ 100, namely, rows
1, 3, 7, and 31.

In addition to the aesthetic beauty of the binary triangle, it contains a fascinating
treasure. To see it, consider the centrally located triangles ∇n pointing downward
and having their bases in row 2n, where n ≥ 1. Since the base of ∇n contains 2n − 1
zeros, the number of zeros inside ∇n equals

N = (2n − 1)(2n − 1 + 1)

2

= 2n−1(2n − 1)

which is a perfect number if 2n − 1 is a Mersenne prime.
For example, the base of ∇4 lies in row 32 and it contains 25 − 1 = 31 zeros. So

the number of zeros inside ∇4 equals

31 + 30 + · · · + 2 + 1 = 31 · 32

2
= 496

which is the third perfect number.
More generally, every number N = 2n−1(2n − 1) is represented by ∇n. Conse-

quently, every even perfect number N = 2p−1(2p − 1) is represented by ∇p, where
2p −1 is a prime; in other words, even perfect numbers are represented geometrically
by a subsequence of the sequence {∇n}, as observed in 1956 by Alan L. Brown of
South Orange, New Jersey.

Parity of Catalan Numbers

Mersenne numbers play a pivotal role in the parity of Catalan numbers, as the next
theorem shows. We omit the proof for brevity; see Exercise 47.

THEOREM 8.15 (Koshy and Salmassi, 2004) The Catalan number Cn is odd if and only if n is a
Mersenne number, where n ≥ 1.

Suppose Mp is prime. What can we say about the primality of MMp ? In 1954,
D. J. Wheeler of the University of Illinois showed that MM13 = 2M13 − 1 = 28191 − 1
is composite; it has 2466 digits and 338,193,759,479|MM13 .

A related problem was observed in 1876 by Catalan. To this end, notice that the
numbers

c1 = 22 − 1 = M2 c2 = 2c1 − 1 = M3

c3 = 2c2 − 1 = M7 c4 = 2c3 − 1 = M127
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?are all primes. The primality of cn remains unresolved, as is the infinitude of
such primes.

E X E R C I S E S 8.4

1. Find the binary representations of the first five
Mersenne numbers Mn.

2. Find the binary representations of the reciprocals of
the first five Mersenne numbers.

Compute the number of digits in each Mersenne number
Mp for the given prime p.

3. 2281 4. 19,937
5. 110,503 6. 756,839

Compute the last digit in each Mersenne number Mp for
the given prime p.

7. 127 8. 2281
9. 11,213 10. 132,049

Compute the last two digits in each Mersenne number Mp

for the given prime p.

11. 127 12. 1279
13. 9941 14. 110,503

Compute the last three digits in each Mersenne number
Mp for the given prime p.

15. 1279 16. 9941
17. 110,503 18. 756,839

19. Show that every Fermat number fn ends in 7, where
n ≥ 2.

20. Find the number of digits in the Fermat number fn.

Find the number of digits in the Fermat number fn for the
given value of n.

21. 13 22. 19
23. 23 24. 31

Find the binary expansion of each.

25. fn 26. Mp 27. 2p−1Mp

Let a be an arbitrary least residue relatively prime to a

modulus m. Find the least positive exponent k such that
ak ≡ 1 (mod m) for each m.

28. 7 29. 10 30. 15 31. 18

Verify that each Mersenne number Mp is a prime for the
given prime p.

32. 5 33. 7 34. 13 35. 17

Verify that each Mersenne number Mp is composite for
the given prime p. Provide a factor in each case.

36. 23 37. 29 38. 37 39. 43
40. Add the next line to the following number pattern.

28 = 13 + 33

496 = 13 + 33 + 53 + 73

8128 = 13 + 33 + 53 + 73 + 93 + 113 + 133 + 153

...

41. Beiler states in his book Recreations in the Theory of
Numbers that every even perfect number 2n(2n+1 −
1) is the sum of the cubes of the first 2n/2 odd posi-
tive integers, where n is an even integer > 2. Confirm
this.

42. Is
∑

(2i − 1)3 always an even perfect number, where
1 ≤ i ≤ 2n/2? If not, give a counterexample.

43. Prove that the sum S =
m∑

i=1
(2i − 1)3 ends in 6 or 28,

where m = 2n/2 and n is even.
44. Find the number of digits in the perfect number N =

2p−1Mp.

Compute the digital root of each.

45. Mp 46. 2p−1Mp

�47. The Catalan number Cn is odd if and only if n is a
Mersenne number, where n ≥ 1.

� �
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August Ferdinand Möbius (1790–1868) was born in Schulfpforta near Ham-

burg, Germany. His father was a dance teacher and his mother a descendant of

Martin Luther. He was home-taught until he was 13; by then he had shown an in-

terest in mathematics. After receiving formal education in Schulfpforta, in 1809 he

entered Leipzig University, where he intended to study law, but instead decided

to pursue mathematics, physics, and astronomy. In 1813 he went to Göttingen to

study with Gauss and then to Halle to study mathematics with Johann F. Pfaff.

In the following year, he received his doctorate from Leipzig, where he became

professor of astronomy and remained until his death.

Möbius made contributions to astronomy, mechanics, affine and projective

geometry, statics, optics, and number theory. He is well known for his discovery

of the one-sided surface, the Möbius strip, formed by joining the ends of a rectangular strip of paper after giving

it a half-twist.

�8.5 The Möbius Function (optional)

The Möbius function μ† is an important number-theoretic function discovered by
the German mathematician August Ferdinand Möbius. It plays an important role in
the study of the distribution of primes. The Möbius function is defined as follows.

The Möbius Function μ

Let n be a positive integer. Then

μ(n) =
⎧
⎨

⎩

1 if n = 1
0 if p2|n for some prime p
(−1)k if n = p1p2 · · ·pk, where the pi’s are distinct primes

For example, μ(2) = −1, μ(3) = −1, μ(4) = 0, μ(12) = 0, μ(35) = μ(5 ·7) =
(−1)2 = 1, and μ(672) = μ(25 · 3 · 7) = 0.

† μ is the Greek letter mu.
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In words, μ assigns −1, 0, or 1 to each positive integer; μ(n) = 0 if the canonical
decomposition of n contains a square, that is, if n is not square-free; it is (−1)k if it
consists of k distinct prime factors.

Before we determine whether μ is multiplicative, let us study the next example.

EXAMPLE 8.23 Determine whether μ(mn) = μ(m)μ(n), where m = 15 and n = 28.

SOLUTION

m = 15 = 3 · 5, so μ(m) = 1, by definition; n = 28 = 22 · 7, so μ(n) = 0, again by
definition. Then mn = 28 · 15 = 22 · 3 · 5 · 7.

Since mn is not square-free, μ(mn) = 0. Thus, μ(mn) = 0 = 1 ·0 = μ(m)μ(n). �

More generally, we have the following result, which confirms what we already
suspected.

THEOREM 8.16 The function μ is multiplicative.

PROOF

Let m and n be relatively prime positive integers. If m = 1 or n = 1, then clearly
μ(mn) = μ(m)μ(n). Suppose m or n (but not both) is divisible by p2 for some
prime p. Then μ(m)μ(n) = 0. Since p2|m or p2|n, then p2|mn, so μ(mn) = 0. Thus,
μ(mn) = μ(m)μ(n).

Finally, suppose both m and n are square-free, so let m = p1p2 . . .pr and n =
q1q2 . . .qs, where the pis and the qjs are distinct primes, since (m, n) = 1. So μ(m) =
(−1)r and μ(n) = (−1)s.

Then mn = p1p2 · · ·prq1q2 · · ·qS, a product of distinct primes. Therefore,

μ(mn) = (−1)r+s = (−1)r · (−1)s = μ(m)μ(n)

Thus, in every case, μ(mn) = μ(m)μ(n), so μ is multiplicative. �

Next, we develop a formula for
∑

d|n
μ(d). When n = 1,

∑

d|1
μ(d) = μ(1) = 1. If

n > 1, we can compute the sum using the canonical decomposition of n and Theo-
rem 8.6, provided we know the sum when n is a prime-power pe. For this we need to
introduce a new function, as the following lemma shows.
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LEMMA 8.3 Let F(n) = ∑

d|n
μ(d). Then F(pe) = 0, where e > 1.

PROOF

F(pe) =
∑

d|pe

μ(d)

=
e∑

i=0

μ(pi)

= μ(1) + μ(p) + μ(p2) + · · · + μ(pe)

= 1 + (−1) + 0 + · · · + 0 = 0 �

EXAMPLE 8.24 Illustrate Lemma 8.3 for n = 81.

SOLUTION

∑

d|81

μ(d) =
∑

d|34

μ(d)

= μ(1) + μ(3) + μ(32) + μ(33) + μ(34)

= 1 + (−1) + 0 + 0 + 0 = 0 �

We are now ready to display and prove the desired formula in the following
theorem.

THEOREM 8.17 Let n be a positive integer. Then

∑

d|n
μ(d) =

{
1 if n = 1
0 otherwise

PROOF

If n = 1,
∑

d|1
μ(d) = μ(1) = 1. So let n > 1 and let n = pe1

1 pe
22 · · ·pek

k be the canon-

ical decomposition of n. Let F(n) = ∑

d|n
μ(d). Since μ is multiplicative, so is F by

Theorem 8.6. Therefore,

F(n) =
k∏

i=1

F(pei)

=
k∏

i=1

(0) = 0, by Lemma 8.3 �
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The following example illustrates this theorem.

EXAMPLE 8.25 Compute
∑

d|18
μ(d).

SOLUTION

∑

d|18

μ(d) = μ(1) + μ(2) + μ(3) + μ(6) + μ(9) + μ(18)

= 1 + (−1) + (−1) + (−1)2 + 0 + 0 = 0

which agrees with the theorem. �

Theorem 8.17 plays a crucial role in the derivation of the Möbius inversion for-
mula. Its derivation involves double summations over positive divisors, which can be
confusing, so we use the following example to clarify it.

EXAMPLE 8.26 Let f be a number-theoretic function. Show that

∑

d|6

∑

d′|(6/d)

μ(d)f (d′) =
∑

d′|6

∑

d|(6/d′)
f (d′)μ(d)

PROOF

∑

d|6

∑

d′|(6/d)

μ(d)f (d′)

=
∑

d′|6
μ(1)f (d′) +

∑

d′|3
μ(2)f (d′) +

∑

d′|2
μ(3)f (d′) +

∑

d′|1
μ(6)f (d′)

= μ(1)
∑

d′|6
f (d′) + μ(2)

∑

d′|3
f (d′) + μ(3)

∑

d′|2
f (d′) + μ(6)

∑

d′|1
f (d′)

= μ(1)[f (1) + f (2) + f (3) + f (6)] + μ(2)[f (1) + f (3)]
+ μ(3)[f (1) + f (2)] + μ(6)f (1)

= f (1)[μ(1) + μ(2) + μ(3) + μ(6)] + f (2)[μ(1) + μ(3)]
+ f (3)[μ(1) + μ(2)] + f (6)[μ(1)]

= f (1)
∑

d|6
μ(d) + f (2)

∑

d|3
μ(d) + f (3)

∑

d|2
μ(d) + f (6)

∑

d|1
μ(d)

=
∑

d′|6
f (d′)

∑

d|(6/d′)
μ(d)

=
∑

d′|6

∑

d|(6/d′)
f (d′)μ(d)
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(Notice that as d′ runs over the positive divisors 1, 2, 3, and 6, 6/d′ runs over them
in the reverse order. We can also rewrite the double sum as

∑

dd′|6
∑

f (d′)μ(d).) �

We can now turn to the next major result.

THEOREM 8.18 (Möbius Inversion Formula) Let f be a number-theoretic function and let F(n) =
∑

d|n
f (d). Then

f (n) =
∑

d|n
μ(d)F(n/d) (8.11)

PROOF

F(n) = ∑

d|n
f (d). Then F(n/d) = ∑

d′|(n/d)

f (d′). So

μ(d)F(n/d) = μ(d)
∑

d′|(n/d)

f (d′) =
∑

d′|(n/d)

μ(d)f (d′)

∑

d|n
μ(d)F(n/d) =

∑

d|n

∑

d′|(n/d)

μ(d)f (d′)

As d runs over the positive divisors of n, so does d′; also dd′|n. Therefore, the sum
on the RHS is the sum of all values of μ(d)f (d′) as dd′ runs over the positive factors
of n; that is, the sum of all its values for all pairs d and d′ such that d′|n and d|(n/d′).
That is, ∑

d|n

∑

d′|(n/d)

μ(d)f (d′) =
∑

d′|n

∑

d|(n/d′)
μ(d)f (d′)

Thus,
∑

d|n
μ(d)F(n/d) =

∑

dl|n
f (d′)

[ ∑

d|(n/d′)
μ(d)

]

But, by Theorem 8.17,
∑

d|(n/d′)
μ(d) equals 1 if n/d′ = 1; that is, if n = d′, and 0

otherwise. Thus
∑

d|n
μ(d)F(n/d) = f (d′) · 1, where d′ = n

= f (n)

In other words, f (n) = ∑

d|n
μ(d)F(n/d). �
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As d runs over the positive factors of n, so does n/d. Therefore, the inversion
formula (8.11) can also be written as

f (n) =
∑

d|n
μ(n/d)F(d)

Notice that the definition F(n) = ∑

d|n
f (d) expresses F in terms of f , whereas the

inversion formula (8.11) expresses f in terms of F.
To illustrate the inversion formula, recall that

τ(n) =
∑

d|n
1 and σ(n) =

∑

d|n
d

Because both the constant function f (n) = 1 and the identity function g(n) = n are
multiplicative, it follows by Theorem 8.18 that

1 =
∑

d|n
μ(d)τ (n/d) =

∑

d|n
μ(n/d)τ (d) (8.12)

and

n =
∑

d|n
μ(d)σ (n/d) =

∑

d|n
μ(n/d)σ (d) (8.13)

The following example illustrates these results.

EXAMPLE 8.27 Verify formulas (8.12) and (8.13) for n = 6.

PROOF

• ∑
d|6 μ(d)τ (6/d) = μ(1)τ (6) + μ(2)τ (3) + μ(3)τ (2) + μ(6)τ (1)

= 1 · 4 + (−1) · 2 + (−1) · 2 + (−1)2 · 1

= 1

• ∑
d|6 μ(d)σ (6/d) = μ(1)σ (6) + μ(2)σ (3) + μ(3)σ (2) + μ(6)σ (1)

= 1 · 12 + (−1) · 4 + (−1) · 3 + (−1)2 · 1

= 6 �
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Using the inversion formula, the following theorem derives an explicit formula
for ϕ(n). We leave its proof as an exercise (see Exercise 43).

THEOREM 8.19 ϕ(n) = n
∑

d|n
μ(d)

d
. �

The following example illustrates this result.

EXAMPLE 8.28 Verify the formula in Theorem 8.19 for n = 12.

PROOF

By Theorem 8.4, ϕ(12) = ϕ(22 · 3) = 4. Let us now compute the RHS:

12
∑

d|12

μ(d)

d
=

∑

d|12

(12/d)μ(d)

= 12μ(1) + 6μ(2) + 4μ(3) + 3μ(4) + 2μ(6) + 1μ(12)

= 12 · 1 + 6 · (−1) + 4(−1) + 3 · 0 + 2 · (−1)2 + 1 · 0

= 4 = ϕ(12) �

We conclude this section with the following theorem; it shows that the converse
of Theorem 8.18 is also true. Once again, the proof contains double sums, so we need
to proceed carefully.

THEOREM 8.20 Let F and f be number-theoretic functions such that f (n) = ∑

d|n
μ(d)F(n/d). Then

F(n) = ∑

d|n
f (d).

PROOF

By the definition of f ,

f (d) =
∑

d′|d
μ(d′)F(d/d′)

∑

d|n
f (d) =

∑

d|n

∑

d′|d
μ(d′)F(d/d′)

Letting d/d′ = k, this equation yields
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∑

d|n
f (d) =

∑

d|n

∑

kd′=d

μ(d′)F(k)

=
∑

kd′|n
μ(d′)F(k)

=
∑

k|n
F(k)

[ ∑

d′|(n/k)

μ(d′)
]

By Theorem 8.17,
∑

d′|(n/k)
μ(d′) equals 1 if n = k, and 0 otherwise. So the equation

becomes

∑

d|n
f (d) = F(k) · (1), where n = k

= F(n)

That is, F(n) = ∑

d|n
f (d), the desired result. �

E X E R C I S E S 8.5

Compute μ(n) for each n, where p is an odd prime.

1. 101 2. 496
3. 2047 4. 11,319
5. p 6. p13

7. 2p−1(2p − 1) 8. ϕ(ϕ(M11))

Verify formula (8.12) for each n.

9. 5 10. 6 11. 10 12. 13

13–16. Verify formula (8.13) for each n in Exercises 9–
12.

Using Theorem 8.19, compute ϕ(n) for each n.

17. 23 18. 28 19. 36 20. 1352

Using the definition of μ, verify Theorem 8.16 for each
canonical factorization of n.

21. pq 22. pqr 23. p2qr 24. p1p2 · · ·pk

25–28. Evaluate
∑

d|n
μ(d)τ (d) for each canonical decom-

position of each n in Exercises 21–24.

Evaluate
∑

d|n
μ(d)σ (d) for each canonical decomposition

of the given integer n.

29. p 30. pq 31. p2q 32. pqr

33. Using Exercises 29–32, predict the value of
∑

d|n
μ(d)σ (d), where n =

k∏

i=1
pi.

Another useful number-theoretic function that resembles
the μ function is the Liouville function λ (lambda), in-
troduced by the French mathematician Joseph Liouville
(1809–1882). It is defined by

λ(1) = 1

λ(n) = (−1)e1+e2+···+ek

where n = pe1
1 pe2

2 · · ·pek
k . Compute λ(n) for each n.

34. 17 35. 104 36. 990 37. 3024

Compute
∑

d|n
λ(d) for each n.

38. 9 39. 12 40. 16 41. 28
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Prove each.

42.
μ(n)

n
is multiplicative.

43. ϕ(n) = n
∑

d|n
μ(d)

d

44.
∑

d|n
μ(d)

d
= 1 − 1

p
, where n = pe.

45.
∑

d|n
μ(d)

d
=

(

1 − 1

p

)(

1 − 1

q

)

, where n = paqb.

46.
∑

d|n
μ(d)

d
=

k∏

i=1

(

1 − 1

pi

)

, where n =
k∏

i=1
pei

i .

47. Using Theorem 8.19, prove that ϕ(pe) = pe − pe−1.
48. Using Theorem 8.19, prove that ϕ is multiplicative.
49. λ is multiplicative.
50. λ(n) = 1 if n is a square.

51.
∑

d|n
λ(d) =

{
1 if n is a perfect square
0 otherwise.

52. Using Exercise 46, derive a formula for ϕ(n).
�53. Let F be a multiplicative function and f a number-

theoretic function such that F(n) = ∑

d|n
f (d). Prove

that f is also multiplicative.

� �

X CHAPTER SUMMARY

Five important multiplicative functions have played a significant role in the develop-
ment of number theory: ϕ, τ, σ, μ, and λ. The first three play a pivotal role in the
study of perfect numbers, Mersenne primes, amicable numbers, abundant numbers,
and deficient numbers. They satisfy a variety of useful and beautifully appealing
properties.

Multiplicative Functions
• A number-theoretic function f is multiplicative if f (mn) = f (m)f (n) when-

ever (m, n) = 1. (p. 356)
• If f is multiplicative and n = ∏

i
pei

i , then f (n) = ∏

i
f (pei

i ). (p. 356)

Euler’s Phi Function ϕ

• ϕ(n) = number of positive integers ≤ n and relatively prime to it. (p. 342)
• ϕ(pe) = pe − pe−1 = pe(1 − 1/p) (p. 356)
• If (m, n) = 1, then the integers r, m + r, 2m + r, . . . , (n − 1)m + r are

congruent modulo n to 0, 1, 2, . . . , (n − 1) in some order. (p. 359)
• ϕ is multiplicative. (p. 360)
• If n = ∏

i
pei

i , then ϕ(n) = n
∏

i
(1 − 1/pi). (p. 361)

• If n ≥ 3, then ϕ(n) is even. (p. 362)
• ∑

d|n
ϕ(d) = n (p. 363)
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The Tau and Sigma Functions τ and σ

• τ(n) = ∑

d|n
1 = number of positive factors of n. (p. 365)

• σ(n) = ∑

d|n
d = sum of positive factors of n. (p. 366)

• If f is multiplicative, so is F(n) = ∑

d|n
f (d). (p. 367)

• Both τ and σ are multiplicative. (p. 368)
• τ(pe) = e + 1 and σ(pe) = (pe+1 − 1)/(p − 1) (p. 369)

• If n = ∏

i
pei

i , then τ(n) = ∏

i
(ei + 1) and σ(n) = ∏

i

pei+1
i − 1

pi − 1
. (p. 369)

Perfect Numbers
• A positive integer n is perfect if σ(n) = 2n. (p. 374)
• (Euclid’s theorem) Every integer N = 2n−1(2n −1), where 2n −1 is a prime,

is a perfect number. (p. 375)
• (Euler’s theorem) Every even perfect number is of the form 2n−1(2n − 1),

where 2n − 1 is a prime. (p. 375)
• Even perfect numbers end in 6 or 8. (p. 375)
• The infinitude of even perfect numbers is unresolved. (p. 376)
• The existence of odd perfect numbers is unsettled. (p. 379)

Mersenne Numbers
• Numbers of the form 2m − 1 are Mersenne numbers. Such numbers that are

primes are Mersenne primes Mp. For 2m − 1 to be a prime, m must be a
prime. (p. 381)

• (Euler’s theorem) Let p = 4k + 3 be a prime, where k > 1. Then 2p + 1 is a
prime if and only if 2p ≡ 1 (mod 2p + 1). (p. 388)

• Let (a, n) = 1 and k the least positive integer such that ak ≡ 1 (mod n). Then
k|n. In particular, k|ϕ(n). (p. 389)

• Every prime factor of Mp is of the form 2kp + 1, where p is an odd
prime. (p. 390)

• (Lucas–Lehmer test) Mp is a prime if and only if Sp−1 ≡ 0 (mod Mp), where
S1 = 4 and Sk ≡ S2

k−1 − 2 (mod Mp). (p. 391)
• A positive integer n is a Mersenne number if and only if every binomial coef-

ficient

(
n

r

)

is odd. (p. 394)

• The Catalan number Cn is odd if and only if n = 0 or n is a Mersenne number,
where n ≥ 1. (p. 396)
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The Möbius Function μ

• μ(n) =
⎧
⎨

⎩

1 if n = 1
0 if p2|n for some prime p
(−1)k if n is the product of k distinct primes.

(p. 398)

• μ is multiplicative. (p. 399)

• ∑

d|n
μ(d) =

{
1 if n = 1
0 otherwise.

(p. 400)

• (Möbius Inversion Formula) Let f be a number-theoretic function and let
F(n) = ∑

d|n
f (d). Then f (n) = ∑

d|n
μ(d)F(n/d). (p. 402)

• ϕ(n) = n
∑

d|n
μ(d)

d
(p. 404)

• Let F and f be number-theoretic functions such that f (n) = ∑

d|n
μ(d)F(n/d).

Then F(n) = ∑

d|n
f (d). (p. 404)

X REVIEW EXERCISES

Evaluate each.

1.
∑

1≤n≤2020
(n,2020)=1

1 2.
∑

1≤n≤5850
(n,5850)=1

1

3. Until 1509, mathematicians believed that odd abundant numbers did not exist.
Then Charles de Bouvelles (1470–1553) showed that 45,045 = 32 · 5 · 7 · 11 · 13
and that its odd multiples are odd abundant numbers. Nearly 400 years later, in
1891, Lucas showed that 945 = 33 · 5 · 7 is the smallest odd abundant number.
Show that 945 and 45,045 are abundant numbers.

4. Verify that 17,296 = 24 · 23 · 47 and 18,416 = 24 · 1151 are amicable numbers.
(This pair, discovered by Fermat in 1636, was the second to be found; the origi-
nal pair was found by the Pythagoreans in 540 B.C.)

5. Verify that 12,285 = 33 · 5 · 7 · 13 and 14,595 = 3 · 5 · 7 · 139 are amicable
numbers. (This smallest odd amicable pair was discovered in 1939 by B. H.
Brown.)

Verify that each Mersenne number Mp is composite for the indicated prime p. Furnish
a factor in each case.

6. 47 7. 53

8. Verify that 64 is superperfect.
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Evaluate each.

9.
n∑

i=0
σ(2i) 10.

n∑

i=0
ϕ(pi)

11. Show that the sum of two multiplicative functions need not be multiplicative.
12. Find the product of the positive factors of the even perfect number n =

2p−1(2p − 1).

Prove each, where f and g are multiplicative functions and p is any prime.

13. fg is multiplicative.
14. f /g is multiplicative.
15. Every even perfect number is a hexagonal number.
16. No twin primes can be an amicable pair.
17. Let n be the product of distinct Mersenne primes. Then σ(n) is a power of 2.
18. Let fn be a Fermat prime. Then σ(fn) is even.
19. Let fn be a Fermat prime. Then σ(fn) − ϕ(fn) = 2.

20. If n ≥ 4, then
n∑

k=1
μ(k!) = −1.

�21. Let (a, p) = 1. Then aϕ(pe) ≡ 1 (mod pe).

(Hint: Use the binomial theorem.)
22. Prove Euler’s theorem using Exercise 21.

�23. Every even perfect number ends in 6 or 8.
(Hint: Consider p (mod 10).)

�24. Every even perfect number ends in 6 or 28.
�25. The only 3-perfect numbers of the form 2k · 3 · p, where p is odd, are 120 and

672.
�26. Find all even perfect numbers that are superperfect.

X SUPPLEMENTARY EXERCISES

1. Find two consecutive abundant numbers.
2. Find three consecutive abundant numbers. (S. Kravitz, 1994)

Korrah’s formula for an amicable pair M, N can be developed as follows. Suppose
M = dab and N = dc, where d = (M, N) and a, b, and c are distinct odd primes.
3. Using the conditions σ(M) = σ(N) = M + N, show that

(a + 1)(b + 1) = c + 1 (8.14)
and

σ(d)(a + 1)(b + 1) = d(ab + c) (8.15)
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4. Using equations (8.14) and (8.15), show that

σ(d)(a + 1)(b + 1) = d(2ab + a + b) (8.16)

5. Let d = 2n. Show that equation (8.16) can be written as

[a − (2n − 1)][b − (2n − 1)] = 22n (8.17)

6. By equation (8.17), a − (2n − 1) = 2n+m and b − (2n − 1) = 2n−m for some
integer m. Solve for a, b, and c using these equations.

7. Deduce Korrah’s formula from the solutions in Exercise 4.
8. Using equation (8.16), show that σ(d)/d = 2 − 1/g, where

g = (p + 1)(q + 1)/[(p + 1) + (q + 1)].
9. Let g = 9/2 and d = 32 · 7 · 13. Show that

(2a − 7)(2b − 7) = 81 (8.18)

(Hint: Use Exercise 8.)
10. Find the possible values of a, b, and c using equation (8.18).
11. Using the values of a, b, and c, find the corresponding amicable pair.
12. In 1951, the Dutch electrical engineer Balthazar van der Pol (1889–1959) estab-

lished the recurrence relation

n2(n − 1)

6
σ(n) =

n−1∑

k=1

(
3n2 − 10k2)σ(k)σ (n − k)

Using this formula, find a recurrence relation for σ(n) for n = 2, 3, 4, and 5.

13. Let m = m1m2 · · ·mn, where (mi, mj) = 1 for i �= j. Prove that
n∑

i=1
mϕ(m)/ϕ(mi)

i ≡
n − 1 (mod m). (J. O. Silva, 1996)

14. Show that every even perfect number > 6 is one more than nine times a triangu-
lar number. (C. F. Eaton, 1995)

15. Using the formulas in Exercise 10, compute σ(n) for n = 2,3,4, and 5.
16. Let sk(n) = s(sk−1(n)), where k ≥ 2 and s1(n) = s(n) = σ(n) − n. A number n

such that sk(n) = n for some integer k is a sociable number. Show that 12496
is a sociable number. (The sociable numbers 12496, 14288, 15472, 14536, and
14264 were discovered in 1918 by P. Poulet.)

Let n =
k∏

i=1
pei

i be the canonical decomposition of n. Prove each.

17.
∑

d|n
μ(d)τ (d) = (−1)k
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18.
∑

d|n
μ(d)σ (d) = (−1)k

k∏

i=1
pi

19.
∑

d|n
μ(d)ϕ(d) =

k∏

i=1
(2 − pi)

20. Let f be a multiplicative function. Prove that
∑

d|n
μ(d)f (d) =

k∏

i=1
[1 − f (pi)].

Using the formula in Exercise 20, deduce the formula in

21. Exercise 17. 22. Exercise 18. 23. Exercise 19.

Using the formula in Exercise 20, deduce a formula for each.

24.
∑

d|n
dμ(d) 25.

∑

d|n
μ(d)

d

26. Derive a formula for
n∑

d=1
μ(d)λ(d).

A positive integer n is near-perfect if the sum of its proper factors is n − 1; that is,
if σ(n) = 2n − 1. It is not known if odd near-perfect numbers exist.

27. Show that 16 is near-perfect.
28. Prove that every power of 2 is near-perfect.

X COMPUTER EXERCISES

Write a program to perform each task.

1. Read in a positive integer n ≤ 1000. Compute ϕ(n) and list all positive integers
≤ n and relatively prime to it.

2. Solve the monkey and coconuts riddle in Example 8.3 by solving congru-
ence (8.1) in Section 8.1.

3. Read in a positive integer n ≤ 1000. Compute τ(n) and σ(n).
4. Read in a Mersenne number 2m − 1 and determine whether it is a prime; if it is

not, find a factor.
5. Using the Lucas–Lehmer test, determine whether a Mersenne number is a prime.
6. Read in an integer of the form 2n−1(2n −1), and determine whether it is a perfect

number.
7. Read in a positive integer and determine whether it is deficient, perfect, or abun-

dant.
8. Read in an even perfect number of the form 2p−1(2p − 1) and compute its ones

digit.
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9. Read in two positive integers m and n, and determine if they are amicable.
10. Read in a positive integer n and determine if it is

(a) k-perfect; if yes, find k.
(b) Superperfect.

11. Construct Pascal’s binary triangle through row 50.
12. Find all positive integers 3 ≤ n ≤ 104 such that

(a) σ(n) = σ(n − 1) + σ(n − 2)

(b) τ(n) = τ(n − 1) + τ(n − 2)

13. Read in a positive integer n, and determine μ(n) and λ(n).
14. Read in a positive integer n and a least residue a modulo n, where (a, n) = 1.

Find the least positive integer k such that ak ≡ 1 (mod n).
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9 Cryptology

Mathematicians are like Frenchmen: whatever you

say to them they translate into their own language

and forthwith it is something entirely different.

— GOETHE

he great English number theorist Godfrey H. Hardy apparently believed thatTnumber theory had no practical applications. In his book A Mathematician’s
Apology, Hardy wrote that Theorem 2.10, which established the infinitude of

primes, had only the slightest practical importance. Despite his opinion, ingenious
mathematicians over the years, as we saw in Chapter 5, have discovered many prac-
tical and interesting applications of number theory.

We will now study several useful and charming applications that show that de-
spite Hardy’s conservative judgment, human creativity can turn virtually every aspect
of mathematical knowledge to some practical use.

One exciting application of number theory is cryptology, the study of secrecy
systems, which can be traced back to the early Egyptians. For centuries, a power-
ful tool in military and diplomatic circles, cryptology has become indispensable in
commerce as well. Governments often want to keep policy decisions secret until an
appropriate time; multinational corporations protect proprietary research and devel-
opment, and marketing strategies.

In 1917, at the height of World War I, Germany cabled the Mexican government
that it would commence submarine warfare and promised Arizona, New Mexico, and
Texas to Mexico if it would join the Axis against the United States, in the event that
the United States entered the war. The cable was intercepted, the code broken by
British intelligence, the message passed on to President Woodrow Wilson, and the
rest is history.

413
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Godfrey Harold Hardy (1877–1947), an eminent English number theorist, was

born in Cranleigh, England. Even as a child, he showed a precocious interest in

mathematics. At the age of thirteen, he left Cranleigh School, where his father

was a master, and moved to Winchester College. In 1896, he entered Trinity

College, Cambridge, and was elected a fellow four years later. Ten years later,

Hardy became a lecturer at Cambridge University, a position he held until 1919.

He plunged into research, wrote many papers in analysis, and completed his

well-known book, A Course of Pure Mathematics (1908). The text, designed for

undergraduates, provided the first rigorous exposition of analysis, and trans-

formed mathematics teaching forever.

In 1919, Hardy left Cambridge to become Savilian professor of geometry

at Oxford University, where he also was an active researcher. He was suc-

ceeded at Cambridge by John E. Littlewood (1885–1977). Eleven years later,

Hardy returned to Cambridge, where he remained until his retirement in 1942.

They had the most remarkable and productive partnership in the history of mathematics; they coauthored about

100 papers.

Hardy’s most spectacular contribution to the mathematical community is generally considered to be his 1913

discovery of the unsophisticated Indian mathematical genius Srinivasa Ramanujan (1887–1920), whom Hardy

brought to England in April 1914. Their relentless collaboration produced many spectacular discoveries.

Today, electronic banking and computer data banks commonly use encryption
for secrecy and security. In 1984, R. Sedgewick of the University of Illinois noted
that “a computer user wants to keep his computer files just as private as papers in his
file cabinet, and a bank wants electronic funds transfer to be just as secure as funds
transfer by armored car.”

Recent developments in computer technology and sophisticated techniques in
cryptology have revolutionized information security, protecting secret communica-
tions over insecure channels such as telephone lines and microwaves from being
accessed by unauthorized users. See Figure 9.1.

Cryptography and Cryptanalysis

Cryptology consists of cryptography and cryptanalysis. The word cryptography is
derived from the Greek words kryptos, meaning hidden, and graphein, meaning to
write. Cryptography is the art and science of concealing the meaning of confiden-
tial communications from all except the intended recipients. Cryptanalysis deals
with breaking secret messages. During World War II, 30,000 people were engaged
in cryptographic work. The breaking of Japan’s Purple machine code by U.S. crypt-
analysts shortly before the attack on Pearl Harbor led to the Allied victory in the
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A New Encryption System Would Protect a Coveted
Digital Data Stream—Music on the Web

Sabra Chartrand
As the Internet continues to influence the evolution of intel-
lectual property law and policy, an issue currently generating
tremendous controversy is the free and anonymous swap-
ping of digital music files.

Various companies have proposed terms of encryption
as solutions to the problem. Now add another candidate:
three mathematicians at Brown University have capped six
years of research with a patent for an encryption code they
say will make it impractical—if not impossible—to infringe
copyrighted data like digital music.

The mathematicians, Jeffrey Hoffmein and Jill Pipher,
both of Pawtucket, R.I., and Joseph Silverman of Needham,
Mass., patented a system they said could quickly encode
every second of a data stream with a different encryption

key. That means that a typical three-minute song could be
scrambled into 180 different codes; anyone taking the time
to break a single code would be rewarded with only one sec-
ond of music.

Like other encryption systems, the new invention grew
out of advanced mathematical formulas. NTRU’s technology
differs from other encryption processes, Mr. Crenshaw said,
because it relies on a mathematical system called a “convo-
lution product” to make it faster and more efficient. With that
kind of math, he said, encoding requires only one step, while
decoding requires only two. Some other encryption systems
need more than 1,000, he said.

The invention uses what is called “public key” encryp-
tion, which does not require the sender and receiver to pri-
vately exchange code keys to complete a transaction. Mr.
Crenshaw said that when a person ordered music online, his
computer or music player would provide the encoding key to
the server computer of a Web site dispensing the music.

Figure 9.1

Pacific. Today the U.S. government and business employ tens of thousands of people
and spend billions of dollars annually on cryptology.

Cryptography is by no means the exclusive domain of professionals. Franklin
Delano Roosevelt, when he was 21, used a simple code in his diary. American poet
Edgar Allan Poe, who was a skilled cryptanalyst, wrote that human ingenuity could
invent no code that human ingenuity could not crack. Section 9.4, however, will
prove otherwise.

Before we turn to some number-theoretic secrecy systems, we must define our
terminology. Plaintext is the original message that is to be transmitted in secret form.
Ciphertext is its secret version. A cipher is a method of translating plaintext to ci-
phertext. The key is an explicit formulation of the cipher, so the job of the crypt-
analyst is to discover the key and then break the code. The process of converting
plaintext to ciphertext is enciphering (or encrypting) and the converting device the
encryptor. The reverse process by the intended recipient who knows the key is deci-
phering (or decrypting) and it is accomplished by a decryptor. The encryptor and
decryptor may be algorithms executed by people or computers. Thus, the method
used by an unintended receiver to recover the original message is cryptanalysis.
A cryptosystem is a system for encrypting a plaintext to a ciphertext using a key.
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This chapter presents five cryptosystems—affine, Hill, exponentiation, RSA,
and knapsack—based on modular arithmetic. The first three are conventional and
the last two are public-key. In a conventional cryptosystem, pictured in Figure 9.2,
the encryption key, from which the decryption key can be found fairly quickly, is kept
secret from unintended users of the system. In a public-key system, the enciphering
key is made public while only the intended receiver knows the deciphering key.

Figure 9.2

We now turn to our first cryptosystem.

9.1 Affine Ciphers

We will restrict our discussion to plaintext messages written in capital letters of the
English alphabet and ignore blank spaces and punctuation marks. In all cryptosys-
tems we first translate each letter to a number. A convenient way of doing this is
by numbering the letters A through Z by their ordinal numbers 00 through 25, re-
spectively, as Table 9.1 shows. Using this scheme, we translate the plaintext into a
numeric message which is then enciphered into a numeric ciphertext. Each number is
then replaced by a letter. The recipient of the ciphertext substitutes the ordinal num-
ber for each letter and uses the key to decipher the numeric message by substituting
letters for the various numbers.

Letter A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Ordinal Number 00 01 01 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Table 9.1

Substitution Ciphers

In a substitution cipher, we substitute a letter of the alphabet for each letter of the
plaintext. It is, in fact, a permutation cipher, since each substitution is a permutation
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of the letters of the alphabet. Since there are 26! permutations of the letters, there is
a total of 26! possible substitution ciphers; one of them is the trivial one, where each
letter is substituted for itself.

Caesar Cipher

Around 50 B.C. the Roman emperor Julius Caesar (100–44 B.C.) sent encoded mes-
sages to his general, Marcus T. Cicero (106–43 B.C.), during the Gallic Wars, using
a substitution cipher based on modular arithmetic. A Caesar cipher shifts each letter
by three places to the right, with the last three letters X, Y, and Z shifted to A, B, and
C respectively, in a cyclic fashion:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
� � � � � � � � � � � � � � � � � � � � � � � � � �
D E F G H I J K L M N O P Q R S T U V W X Y Z A B C

Let P denote the ordinal number of a plaintext letter and C that of the corre-
sponding ciphertext letter. Then the Caesar cipher can be described by the congru-
ence

C ≡ P + 3 (mod 26) (9.1)

where 0 ≤ P,C ≤ 25.
Ciphertext is often grouped into blocks of five letters to prevent short words

from being quickly recognized by cryptanalysts. The following example illustrates
the Caesar enciphering algorithm.

EXAMPLE 9.1 Encipher the message HAVE A NICE DAY using the Caesar key.

SOLUTION

step 1 Using Table 9.1 replace each letter by its ordinal number.

07 00 21 04 00 13 08 02 04 03 00 24

step 2 Apply the Caesar transformation C ≡ P + 3 (mod 26).
The resulting numbers are 10 03 24 07 03 16 11 05 07 06 03 01. For example, when
P = 24, C ≡ 24 + 3 ≡ 01 (mod 26).

step 3 Substitute the letter corresponding to each ordinal number and group them
in blocks of five.
The resulting ciphertext message is KDYHD QLFHG DB. �
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To decipher such a ciphertext, the recipient simply reverses the steps. From
the congruence C ≡ P + 3 (mod 26), we have the deciphering formula P ≡ C − 3
(mod 26), which enables us to recover the original plaintext, as the following exam-
ple demonstrates.

EXAMPLE 9.2 Decipher the ciphertext KDYHD QLFHG DB in Example 9.1.

SOLUTION

step 1 Using Table 9.1, replace each number with its ordinal number.

10 03 24 07 03 16 11 05 07 06 03 01

step 2 Using the deciphering formula P ≡ C − 3 (mod 26), retrieve the numeric
plaintext.
The resulting numeric string is

07 00 21 04 00 13 08 02 04 03 00 24

step 3 Translate these numbers back to the alphabetic format.
This yields HAVEA NICED AY.

step 4 Regroup the letters to recover the original message: HAVE A NICE DAY. �

Shift Ciphers

Clearly there is nothing sacred about the choice of the shift factor 3 in the Caesar
cipher. It is one possible choice out of all the shift ciphers C ≡ P+k (mod 26), where
k is the shift factor and 0 ≤ k ≤ 25. There are 26 possible shift ciphers, one of which
is C ≡ P (mod 26); that is, C = P.

A shift cipher is a substitution cipher. By substituting one letter for another, a
cryptanalyst can crack a code by using the universally available knowledge of the
relative frequency distribution of letters in ordinary text. The most frequently occur-
ring letters in the ciphertext correspond to those in the plaintext. For example, E is
the most frequently occurring letter in an arbitrary text, occurring about 12.5% of the
time; the next three letters are T, A, and O, occurring about 9%, 8%, and 8% of the
time, respectively. Table 9.2 shows the relative frequencies of the various letters in
the English alphabet.

Letter A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Relative Frequency in % 8 1.5 3 4 12.5 2 2 5.5 7 0.1 0.7 4 2.5 7 8 2 0.1 6 6.5 9 3 1 2 0.2 2 0.1

Table 9.2
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The following example illustrates how this table can be used in cryptanalysis.
However, for short and selective messages, the percentages might not be helpful.
Consider, for instance, the following well-known passage from President John F.
Kennedy’s inaugural address in 1961: ASK NOT WHAT YOUR COUNTRY CAN
DO FOR YOU, ASK WHAT YOU CAN DO FOR YOUR COUNTRY. This sentence
does not contain a single E, and the most frequent letter in it is O.

EXAMPLE 9.3 Assuming that the following ciphertext was created by the shift cipher C ≡ P + k
(mod 26), decipher it:

SLABZ ULCLY ULNVA PHALV BAVMM LHYIB

ASLAB ZULCL YMLHY AVULN VAPHA L

SOLUTION

The given ciphertext can be cracked if we can determine the value of k. To this end,
first we construct a frequency table for the letters in the ciphertext, as in Table 9.3.

Letter A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Frequency 9 4 2 0 0 0 0 4 1 0 0 12 3 2 0 2 0 0 2 0 4 5 0 0 4 2

Table 9.3

The most frequently occurring letter in the ciphertext is L, so our best guess is
that it must correspond to the plaintext letter E. Since their ordinal numbers are 11
and 4, this implies 11 ≡ 4 + k (mod 26); that is, k = 7. Then C ≡ P + 7 (mod 26),
so P ≡ C − 7 (mod 26). Using this congruence, we can now determine the ordinal
number of each letter in the plaintext, as Table 9.4 shows. It follows from the table
that the plaintext, after regrouping the blocks, is LET US NEVER NEGOTIATE
OUT OF FEAR BUT LET US NEVER FEAR TO NEGOTIATE, another passage
from President Kennedy’s inaugural address.

Ciphertext Letter A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Plaintext Letter 19 20 21 22 23 24 25 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18
T U V W X Y Z A B C D E F G H I J K L M N O P Q R S

Table 9.4 �
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In Example 9.3, our initial guess did in fact produce an intelligible message.
On the other hand, if it had resulted in gobbledygook, then we would continue
the preceding procedure with the next frequently occurring letters until we suc-
ceeded.

Affine Ciphers

Shift ciphers belong to a large family of affine ciphers defined by the formula

C ≡ aP + k (mod 26) (9.2)

where a is a positive integer ≤ 25 and (a,26) = 1.
The condition that (a,26) = 1 guarantees that as P runs through the least

residues modulo 26, so does C; it ensures that congruence (9.2) has a unique so-
lution for P, by Corollary 4.6:

P ≡ a−1(C − k) (mod 26) (9.3)

Since (a,26) = 1, there are ϕ(26) = 12 choices for a, so there are 12 · 26 = 312
affine ciphers. One of them is the identity transformation C ≡ P (mod 26), corre-
sponding to a = 1 and k = 0.

When a = 5 and k = 11, C ≡ 5P + 11 (mod 26). If P = 8, then C ≡ 5 · 8 +
11 ≡ 25 (mod 26), so under the affine cipher C ≡ 5P + 11 (mod 26), the letter I is
transformed into Z and the letter Q into N. Table 9.5 shows the plaintext letters and
the corresponding ciphertext letters created by this affine cipher, which shifts A to L,
and in which each successive letter is paired with every fifth letter.

Plaintext Letter A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Ciphertext Letter 11 16 21 00 05 10 15 20 25 04 09 14 19 24 03 08 13 18 23 02 07 12 17 22 01 06
L Q V A F K P U Z E J O T Y D I N S X C H M R W B G

Table 9.5

The following example illustrates the encrypting procedure for this affine cipher.

EXAMPLE 9.4 Using the affine cipher C ≡ 5P + 11 (mod 26), encipher the message THE MOON
IS MADE OF CREAM CHEESE.
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SOLUTION

Since most of the work has been done in Table 9.5, we group the letters into blocks
of length five:

THEMO ONISM ADEOF CREAM CHEES E

Then replace each letter by the corresponding ciphertext letter in the table. The re-
sulting encrypted message is CUFTD DYZXT LAFDK VSFLT VUFFX F. �

The following example demonstrates how to decrypt a message generated by an
affine cipher.

EXAMPLE 9.5 Decipher the ciphertext message OZKFZ XPDDA created by the affine cipher
C ≡ 5P + 11 (mod 26).

SOLUTION

Since C ≡ 5P + 11 (mod 26), P ≡ 5−1(C − 11) ≡ 21(C − 11) ≡ 21C + 3 (mod 26).
For example, when C = 14, P ≡ 21 · 14 + 3 ≡ 11 (mod 26). Thus, the ciphertext
letter O is decrypted as L. The other letters can be deciphered in a similar fashion.
(We could also use Table 9.5 in the reverse order.) This yields the message LIFEI
SGOOD. Reassembling the blocks, we find that the original plaintext is LIFE IS
GOOD. �

If a cryptanalyst knows that the enciphered message was generated by an affine
cipher, then he or she will be able to break the cipher using the frequency counts of
letters in Table 9.2, as the following example shows.

EXAMPLE 9.6 Cryptanalyze the ciphertext BYTUH NCGKN DUBIH UVNYX HUTYP QNGYV
IVROH GSU that was generated by an affine cipher.

SOLUTION

Assume the cipher we are searching for is C ≡ aP + k (mod 26). To make an ed-
ucated guess as to which are the most frequently occurring letters in the plaintext,
construct a frequency table of letters in the ciphertext, as Table 9.6 shows. Accord-
ing to the table, the most commonly occurring letter in the ciphertext is U, so it is
reasonable to assume that it corresponds to the plaintext letter E; that is, 20 ≡ 4a + k
(mod 26). Now there are three choices for the next most commonly occurring letter,
namely, H, N, and Y. If we assume H corresponds to T, then 7 ≡ 19a + k (mod 26).
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Ciphertext Letter A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Frequency 0 2 1 1 0 0 3 4 2 0 1 0 0 4 1 1 1 1 1 2 5 3 0 1 4 0

Table 9.6

Thus, we have

4a + k ≡ 20 (mod 26)

19a + k ≡ 7 (mod 26)

Solving this linear system, we get a ≡ 13 (mod 26) and k ≡ 20 (mod 26), so
C ≡ 13P + 20 (mod 26). But (13,26) �= 1, so this is not a valid cipher. Thus, our
guess that H corresponds to T was not a valid one.

So let us assume that N corresponds to T. This yields the linear system

4a + k ≡ 20 (mod 26)

19a + k ≡ 13 (mod 26)

Solving this system, a ≡ 3 (mod 26) and k ≡ 8 (mod 26). Since (3,26) = 1, this
yields a valid cipher C ≡ 3P + 8 (mod 26). Then P ≡ 3−1(C − 8) ≡ 9(C − 8) ≡
9C + 6 (mod 26).

Using this deciphering formula, next we construct Table 9.7, which displays
the plaintext letters corresponding to the ciphertext ones. Using the table, we can
translate the given encryptic message as POVER TYIST HEPAR ENTOF REVOL
UTION ANDCR IME, that is, POVERTY IS THE PARENT OF REVOLUTION
AND CRIME, a statement made by the Greek philosopher Aristotle. (It would be
interesting to check if the third choice leads to an intelligent plaintext message.)

Table 9.7 �

An interesting bonus: It follows from Table 9.7 that the plaintext letters J and W
are not affected by the transformation C ≡ 3P + 8 (mod 26). They are said to be left
fixed by the cipher. See Exercises 15–18 also.
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By and large, a ciphertext generated by an affine cipher does not provide ade-
quate security. One way to make breaking complicated is by using a finite sequence
of affine ciphers C ≡ aiP + ki (mod 26), as Figure 9.3 shows, where 1 ≤ i ≤ n. Such
a cipher is the product (or composition) of the n ciphers. Exercises 22–25 further
explore such ciphers.

Figure 9.3

Vigenère Ciphers

Another option is to use the enciphering scheme developed by the French cryp-
tographer B. de Vigenère in 1586. The Vigenère cryptosystem employs a keyword
w1w2 . . .wn of length n and n shift ciphers C ≡ Pi + ki (mod 26) to each plaintext
block of length n, where ki is the ordinal number of the letter wi and 1 ≤ i ≤ n.

The following example illustrates Vigenère encrypting.

EXAMPLE 9.7 Using the keyword CIPHER and a Vigenère cipher, encrypt the message CRYPTOG-
RAPHY IS FUN.

SOLUTION

Since the ordinal numbers of the letters C, I, P, H, E, and R in the word CIPHER are
02, 08, 15, 07, 04, and 17, respectively, they serve as the shift factors for each shift
cipher for every block. So the six shift ciphers are C ≡ P + k (mod 26), where k = 2,
8, 15, 7, 4, and 17.

Since the keyword is a six-letter word, first we group the letters of the plaintext
into blocks of length six: CRYPTO GRAPHY ISFUN.

Now apply the ith cipher to the letter wi in each block, where 1 ≤ i ≤ n. For in-
stance, consider the first block CRYPTO. Since the ordinary numbers of its letters are
02, 17, 24, 15, 19, and 14, respectively, add to them the key values 2, 8, 15, 7, 4, and
17 in that order modulo 26. The resulting numbers are 4, 25, 13, 22, 23, and 5, and
the corresponding letters are E, Z, N, W, X, and F, respectively, so the first ciphertext
block is EZNWXF. The other two blocks are similarly transformed to IZPWLP and
KAUBR, as Table 9.8 shows. Thus, the resulting ciphertext is EZNWXF IZPWLP
KAUBR.

It is important to remember that an affine cipher substitutes the very same letter
C for each occurrence of the plaintext letter P, whereas a Vigenère cipher need not.
A Vigenère cipher may substitute the same letter C for different plaintext letters.
For instance, in the preceding example the plaintext letters A and Y are enciphered
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Plaintext Block C R Y P T O G R A P H Y I S F U N

02 17 24 15 19 14 06 17 00 15 07 24 08 18 05 20 13

Ciphertext Block 04 25 13 22 23 05 08 25 15 22 11 15 10 00 20 01 17

E Z N W X F I Z P W L P K A U B R

Table 9.8

into P. This makes both encrypting and decrypting in Vigenère more difficult. The
two Rs are transformed into Z because they occupy the same spot in their respective
blocks. �

E X E R C I S E S 9.1

Using the Caesar cipher, encipher each proverb.

1. ALL IS WELL THAT ENDS WELL.
2. ALL THAT GLITTERS IS NOT GOLD.

Decipher each ciphertext created by the Caesar cipher.

3. QHFHV VLWBL VWKHP RWKHU RILQY
HQWLR Q

4. PDWKH PDWLF VLVWK HTXHH QRIWK
HVFLH QFHV

Encipher each quotation using the shift cipher C ≡ P+11
(mod 26).

5. NO LEGACY IS SO GREAT AS HONESTY.
(W. Shakespeare)

6. THERE IS NO ROYAL ROAD TO GEOMETRY.
(Euclid)

Decrypt each quotation below encrypted by the shift ci-
pher C ≡ P + k (mod 26).

7. GVZRV FGURO RFGZR QVPVA R
8. NSOZX YNHJF SDBMJ WJNXF YMWJF

YYTOZ XYNHJ JAJWD BMJWJ

Encipher each using the affine cipher C ≡ 3P + 7
(mod 26).

9. A THING OF BEAUTY IS A JOY FOR EVER.
(John Keats)

10. A JOURNEY OF A THOUSAND MILES MUST
BEGIN WITH A SINGLE STEP. (Lao-Tzu)

11–12. Encrypt the messages in Exercises 9 and 10 using
the cipher C ≡ 7P + 10 (mod 26).

The enciphered messages in Exercises 13 and 14 were
generated by the affine cipher C ≡ 5P + 3 (mod 26). De-
cipher each.

13. UMXIZ NBPUV APMXK X

14. XEXKT IVSTP IZPRQ XPPRP QVIVS TPIZP
RQXPP

A plaintext letter is left fixed by a cipher if it remains the
same in the ciphertext generated by the cipher. Find the
letters left fixed by each affine cipher.

15. C ≡ 5P + 11 (mod 26) 16. C ≡ 7P + 13 (mod 26)

17. C ≡ 5P + 14 (mod 26) 18. C ≡ 9P + 18 (mod 26)

Cryptanalyze each ciphertext created by an affine cipher
C ≡ aP + k (mod 26).

19. IRCCH EKKEV CLLFK EIOKL XKKLF ILIGM
EKOIV EKKE

20. KARRH HRSLR VUXER FKSRH HDHKA
RYREL RYKDV SKAFK QDEKN RDHRS
VNXA
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21. Find the total number of affine ciphers possible.

Encipher the message, SEND MORE MONEY, using the
product of the given affine ciphers.

22. C ≡ 3P + 7 (mod 26), C ≡ 5P + 8 (mod 26)

23. C ≡ 5P + 7 (mod 26), C ≡ 7P + 5 (mod 26)

Cryptanalyze each ciphertext generated by the product of
two affine ciphers.
(Hint: The product of two affine ciphers is also an affine
cipher.)

24. GIPJU QDHQG PCUHG XKPGJ LJPOX RGPUL
PXRLJ APRGC VLGXJ U

25. ZLFYL FCZFP TBLOO RSBYL FQPON CRELA
JOSLE LYCRE RSB

Encrypt each message using the keyword CIPHER for a
Vigenère cipher.

26. SEND MORE MONEY.
27. MATHEMATICS IS THE DOOR AND THE KEY

TO THE SCIENCES.

Decrypt each ciphertext generated by a Vigenère cipher
using the keyword MATH.

28. TETS FHBZ IETS FH
29. XIYL IOGA IABA

� �

9.2 Hill Ciphers

The ciphers we just studied do not provide adequate protection from the cryptana-
lysts. For this we turn to a new class of ciphers called block ciphers (or polygraphic
ciphers), developed by Lester S. Hill of Hunter College in 1929. In a block cryp-
tosystem, we substitute for each block of plaintext letters of length n a ciphertext
block of the same length n, where n ≥ 2.

Block ciphers with n = 2 are called digraphic ciphers. In such a system, we
group the letters of the plaintext into blocks of length two, adding a dummy letter
X at the end, if necessary, to make all blocks of the same length, and then replace
each letter with its ordinal number. Each plaintext block P1P2 is then replaced by a
numeric ciphertext block C1C2, where C1 and C2 are different linear combinations
of P1 and P2 modulo 26:

C1 ≡ aP1 + bP2 (mod 26)

C2 ≡ cP1 + dP2 (mod 26) (9.4)

where (ad −bc,26) = 1. (This condition is needed by Theorem 6.4 to uniquely solve
the linear system for P1 and P2.) Then we translate each number into a ciphertext
letter; the resulting text is the ciphertext.

The following example illustrates this algorithm.
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EXAMPLE 9.8 Using the 2 × 2 linear system

C1 ≡ 5P1 + 13P2 (mod 26)

C2 ≡ 3P1 + 18P2 (mod 26), (9.5)

encipher the message SLOW AND STEADY WINS THE RACE. (Aesop, The Hare
and the Tortoise)

SOLUTION

step 1 Assemble the plaintext into blocks of length two:

SL OW AN DS TE AD YW IN ST HE RA CE

step 2 Replace each letter by its cardinal number:

18 11 14 22 00 13 03 18 19 04 00 03
24 22 08 13 18 19 07 04 17 00 02 04

step 3 Using the linear system (9.5), convert each block into a ciphertext numeric
block:
When P1 = 18 and P2 = 11, we have

C1 ≡ 5 · 18 + 13 · 11 ≡ 25 (mod 26)

C2 ≡ 3 · 18 + 18 · 11 ≡ 18 (mod 26)

so the first block 18 11 is converted into 25 18. Transforming the other blocks in a
similar fashion yields the numeric string

25 18 18 22 13 00 15 21 17 25 13 02
16 00 01 24 25 06 09 15 07 25 10 00

step 4 Translate the numbers into letters.
The resulting ciphertext is ZS SW NA PV RZ NC QA BY ZG JP HZ KA. �

Matrices are useful in the study of Hill cryptosystems. For example, that the
linear system (9.5) can be written as

[
C1

C2

]

≡
[

5 13
3 18

][
P1

P2

]

(mod 26)
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Since � =
∣
∣
∣
∣
5 13
3 18

∣
∣
∣
∣ = 51 and (51,26) = 1, the matrix

[
5 13
3 18

]

is invertible modulo

26, with inverse

[
8 13
3 21

]

modulo 26. So the deciphering procedure can be effected

using the congruence

[
P1

P2

]

≡
[

8 13
3 21

][
C1

C2

]

(mod 26) (9.6)

as the following example demonstrates. (A scientific calculator, such as TI-86, can
facilitate the computations.)

EXAMPLE 9.9 Using congruence (9.6), decipher the ciphertext

ZS SW NA PV RZ NC QA BY ZG JP HZ KA.

SOLUTION

Translating the ciphertext letters into numbers, we get

25 18 18 22 13 00 15 21 17 25 13 02
16 00 01 24 25 06 09 15 07 25 10 00

The plaintext numbers corresponding to the block 25 18 are given by

[
P1

P2

]

≡
[

8 13
3 21

][
25
18

]

≡
[

18
11

]

(mod 26)

so P1 = 18 and P2 = 11. The other blocks can be converted similarly. The ensuing
plaintext numeric string is

18 11 14 22 00 13 03 18 19 04 00 03
24 22 08 13 18 19 07 04 17 00 02 04

which yields the plaintext SL OW AN DS TE AD YW IN ST HE RA CE, that is,
SLOW AND STEADY WINS THE RACE. �

It is obvious from the preceding two examples that the size of a block can be
any size n ≥ 2, and that the enciphering and deciphering tasks can be accomplished
by choosing an n × n enciphering matrix A modulo 26 such that (|A|, 26) = 1, where
|A| denotes the determinant of A. Let P1,P2, . . . ,Pn be the ordinal numbers of an
arbitrary plaintext block and C1,C2, . . . ,Cn the corresponding ciphertext numbers.
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Let

P =

⎡

⎢
⎢
⎢
⎣

P1

P2
...

Pn

⎤

⎥
⎥
⎥
⎦

and C =

⎡

⎢
⎢
⎢
⎣

C1

C2
...

Cn

⎤

⎥
⎥
⎥
⎦

The congruence C ≡ AP (mod 26) provides the enciphering recipe, as the following
example shows for n = 3. (Once again, a scientific calculator can speed up your
computations and minimize the number of errors.)

EXAMPLE 9.10 Using the matrix

A =
⎡

⎣
3 2 6
5 7 11

13 4 1

⎤

⎦

encrypt the English proverb A PROVERB IS THE CHILD OF EXPERIENCE.

SOLUTION

First, notice that |A| = −261 ≡ 25 (mod 26), so (|A|,26) = 1. Since A is a 3 × 3
matrix, split the plaintext into blocks of length three:

APR OVE RBI STH ECH ILD OFE XPE RIE NCE

The corresponding numeric string is

00 15 17 14 21 04 17 01 08 18 19 07 04 02 07
08 11 03 14 05 04 23 15 04 17 08 04 13 02 04

The first numeric ciphertext block is given by

⎡

⎣
C1

C2

C3

⎤

⎦ ≡
⎡

⎣
3 2 6
5 7 11

13 4 1

⎤

⎦

⎡

⎣
00
15
17

⎤

⎦ ≡
⎡

⎣
2
6

25

⎤

⎦ (mod 26)

that is, 02 06 25. Continuing in this fashion, we get the numeric string

02 06 25 04 01 10 23 24 25 04 14 05 06 07 15
12 20 21 24 19 24 19 04 25 13 03 23 15 19 25

Convening this into the alphabetic form, we get the desired ciphertext CGZ EBK
XYZ EOF GHP MUV YTY TEZ NDX PTZ. �
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To decipher such an encrypted message, we use the fact P ≡ A−1C (mod 26), as
the following example demonstrates.

EXAMPLE 9.11 Using the enciphering matrix A in the preceding example, decrypt the ciphertext
CGZ EBK XYZ EOF GHP MUV YTY TEZ HVL PTZ.

SOLUTION

Since (|A|,26) = 1, A−1 exists and

A−1 ≡
⎡

⎣
11 4 −6
−8 −3 3
−7 12 −11

⎤

⎦ (mod 26)

(We could use any method, such as Gaussian elimination or adjoints, to find A−1,
keeping in mind that we are using modular arithmetic. In any case, we can verify
that AA−1 ≡ I3 (mod 26), where I3 is the 3 × 3 identity matrix.)

Substituting the numeric equivalents for the ciphertext letters yields the string

02 06 25 04 01 10 23 24 25 04 14 05 06 07 15
12 20 21 24 19 24 19 04 25 07 21 11 15 19 25

To decrypt each block, we employ the formula P ≡ A−1C (mod 26); that is,

⎡

⎣
P1

P2

P3

⎤

⎦ ≡
⎡

⎣
11 4 −6
−8 −3 3
−7 12 −11

⎤

⎦

⎡

⎣
02
06
25

⎤

⎦ ≡
⎡

⎣
00
15
17

⎤

⎦ (mod 26)

so the first numeric plaintext block is 00 15 17. Continuing in this fashion, we get all
blocks:

00 15 17 14 21 04 17 01 08 18 19 07 04 02 07

08 11 03 14 05 04 23 15 04 17 08 04 13 02 04

The corresponding plaintext is APR OVE RBI STH ECH ILD OFE XPE RIE NCE,
that is, A PROVERB IS THE CHILD OF EXPERIENCE. �

Because Hill ciphers deal with blocks, they are more difficult to break. A crypt-
analyst could, however, employ the publicly known data about the relative frequency
distribution of words of length n to crack the cipher, similar to the case of affine
ciphers. When n = 2, for instance, there are 26 · 26 = 676 possible words of length
two. So using their frequency counts in an arbitrary plaintext with those of two-letter
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words in the ciphertext, a cryptanalyst might be able to guess the enciphering matrix
A and hence A−1. Obviously, as n gets larger, this task becomes infeasible.

In the next three sections, we will study ciphers that are more difficult to break
than Hill ciphers.

E X E R C I S E S 9.2

Using the enciphering matrix A in Example 9.8, encrypt
each message.

1. HAVE A NICE DAY.
2. ENJOY THE WEEKEND.

Using the deciphering matrix A−1 in Example 9.9, de-
crypt each.

3. MW AP IC HT IC NH DS
4. NF XT BY ZC SU AO NZ

Using the enciphering key

⎡

⎢
⎣

1 25 25
25 1 24

2 9 5

⎤

⎥
⎦, encipher

each plaintext.

5. TIME AND TIDE WAIT FOR NO MAN. (Proverb)
6. THE PEN IS MIGHTIER THAN THE SWORD.

(E. G. Bulwer-Lytton)

Using the deciphering key

⎡

⎢
⎣

7 18 19
15 1 19
17 17 0

⎤

⎥
⎦, decipher

each ciphertext.

7. ZTH QLJ MOA NLG GPN EXA OCA QTY
8. IGR LDX LRR CIU DIH YVM DYF NBT

Find the blocks of letters left fixed by each enciphering
matrix in a block cipher.

9.

[
5 13
3 18

]

10.

⎡

⎢
⎣

3 2 6
5 7 11

13 4 1

⎤

⎥
⎦

Let A be the n × n enciphering matrix of a Hill cipher
and B that of another with the same size, so C ≡ AP
(mod 26) and C ≡ BP (mod 26), where (|A|,26) = 1 =
(|B|,26). Then C ≡ B(AP) ≡ (BA)P (mod 26) is the en-
ciphering formula for the product of the two ciphers. En-
cipher each message using the product cipher formed by

the Hill cipher with A =
[

2 11
5 13

]

followed by that with

B =
[

7 15
3 4

]

.

11. VANITY FAIR 12. PRIDE AND PREJUDICE

13. Find the blocks of letters left fixed by the product
of the block ciphers with the enciphering matrices

A =
[

2 11
5 13

]

and B =
[

7 15
3 4

]

.

The following messages were generated by the product of
the block ciphers with the enciphering matrices in Exer-
cise 13. Decrypt each.

14. RA XU PV CM EC IS SN XF
15. CZ MH UP GJ DU TC KN DC CX

� �

9.3 Exponentiation Ciphers

The class of exponentiation ciphers was developed by Stephen C. Pohlig and Mar-
tin E. Hellman of Stanford University in 1978. Exponentiation ciphers provide an
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interesting confluence of the euclidean algorithm, modular exponentiation, and Fer-
mat’s little theorem.

Let p, the exponentiation modulus, be an odd prime and let e be a positive
integer such that (e,p−1) = 1. Since we use the numbers 00 through 25 to represent
the letters of the alphabet, clearly p > 25; thus, p ≥ 29. (In fact, we will observe later
that the security of the exponentiation cryptosystem is directly related to the size of p,
so in practice we choose p to be extremely large.) As we will see shortly, e uniquely
determines the ciphertext numeric string corresponding to a given plaintext numeric
string, so e serves as the enciphering exponent.

To encrypt a plaintext, first translate it into a numeric string using the two-digit
ordinal representations in Table 9.1. Then assemble the numbers into blocks of length
2m such that the numeric face value of every block is < p; in other words, choose
m as the largest integer such that the number formed by the concatenation of m
25s is < p; that is, 2525 . . .25︸ ︷︷ ︸

m 25s

< p. For example, if p = 3037, then m = 2, since

2525 < 3037 < 252525. This makes sense since p is the modulus.
Now, convert each plaintext numeric block P of length 2m into a ciphertext

numeric block of the same length using the enciphering congruence

C ≡ Pe (mod p) (9.7)

where 0 ≤ P,C ≤ p − 1.
The following example illustrates this encrypting procedure.

EXAMPLE 9.12 Using p = 3037 as the exponentiation modulus and e = 31 as the enciphering expo-
nent, encrypt the message SILENCE IS GOLDEN.

SOLUTION

Using Table 9.1, the plaintext yields the numeric sequence

18 08 11 04 13 02 04 08 18 06 14 11 03 04 13

Since 2525 < p < 252525, choose m = 2 and group the numbers in blocks of length
four:

1808 1104 1302 0408 1806 1411 0304 1323

(The last block has been padded with a 23 for X at the end to make all blocks of the
same length.)

Now translate each block into a ciphertext block using the enciphering congru-
ence C ≡ P31 (mod 3037). For instance, when P = 1808, by modular exponentiation,

C ≡ 180816+8+4+2+1 (mod 3037)

≡ 1151 · 85 · 1236 · 1052 · 1808 ≡ 1450 (mod 3037)
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so C = 1450. The remaining blocks can be computed similarly. The resulting cipher-
text is 1450 0186 1435 0523 1894 2531 2340 0990. �

To decipher a ciphertext generated by the enciphering formula (9.7), notice that
(e,p − 1) = 1; so e has an inverse d modulo p − 1; that is, e · d ≡ 1 (mod p − 1).
Then ed = 1 + q(p − 1) for some integer q. Thus, to recover the plaintext P from the
ciphertext block C, we raise C to the power d and reduce it modulo p:

Cd ≡ (Pe)d = Ped = P1+q(p−1) = P(Pp−1)q ≡ P · 1q ≡ P (mod p)

using Fermat’s little theorem. Since the enciphering key uniquely determines d mod-
ulo p − 1, the congruence Cd ≡ P (mod p) provides the deciphering algorithm, as
the following example demonstrates.

EXAMPLE 9.13 Using the exponentiation modulus p = 3037 and the enciphering key e = 31, deci-
pher the ciphertext 1450 0186 1435 0523 1894 2531 2340 0990.

SOLUTION

First, notice that (e,p−1) = (31,3036) = 1. We need to compute the inverse d of 31
modulo p − 1 = 3036. Using the euclidean algorithm, we can verify that 15 · 3036 −
1469 · 31 = 1, so (−1469) · 31 ≡ 1567 · 31 ≡ 1 (mod 3036). Thus, the deciphering
key is 1567 modulo 3036.

Since P ≡ C1567 (mod 3037), to decipher a block we raise it to the power 1567
and reduce it modulo 3037 using modular exponentiation. For instance,

14501567 ≡ 14501024+512+16+8+4+2+1 (mod 3037)

≡ 2777 · 2304 · 633 · 1947 · 1048 · 896 · 1450 (mod 3037)

≡ 1808 (mod 3037)

Thus, the corresponding plaintext numeric block is 1808. The other blocks can be
found similarly. The resulting numeric string is 1808 1104 1302 0408 1806 1411
0304 1323. This yields the plaintext SILENCE IS GOLDEN. �

As this example demonstrates, once the values of p and e are known, a cryptan-
alyst can break the cipher. First, he or she must find the deciphering key d and then
apply modular exponentiation to each ciphertext block. This, however, is not an easy
task for very large primes p.
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However, fast algorithms do exist for finding d with only small factors for p − 1.
So to avoid this problem, we choose p = 2q + 1, where q is a large prime.

As another application of modular exponentiation, a common key k known only
to two individuals can be established in such a way that it would be computationally
infeasible for a cryptanalyst to crack it. This can be accomplished without exchang-
ing their enciphering keys at all. To see this, let p be a large prime as before and let x
be a positive integer such that (x,p) = 1, known to both people. Each person chooses
his own key ei, where (ei,p − 1) = 1 and 1 ≤ i ≤ 2. The first individual sends the
other the integer y1, where y1 ≡ xe1 (mod p), and the second individual then sends
the first person integer y2, where y2 ≡ xe2 (mod p). The first person determines the
common key e by computing e ≡ ye1

2 ≡ (xe2)e1 ≡ xe1e2 (mod p) and the second by
computing e ≡ ye2

1 ≡ (xe1)e2 ≡ xe1e2 (mod p), where 0 < e < p. Because e1 and e2

are known only to the two individuals, e is known only to them. It is computationally
infeasible for an unauthorized individual to determine it in a reasonable amount of
time.

This technique can obviously be extended to a network of n individuals with
individual keys e1, e2, . . . , en who want to share a common key e ≡ xe1e2···en (mod p)

for secret communication.

E X E R C I S E S 9.3

1. Find the number of letters grouped for an exponen-
tiation cipher in a plaintext numeric block that is 12
digits long.

2. Find the smallest prime that can be used as the mod-
ulus in an exponentiation cryptosystem if the letters
are grouped in blocks of two letters.

3. Show that the plaintext AB is left fixed by every ex-
ponentiation cipher.

With p = 3037 as the exponentiation modulus and e = 31
as the enciphering exponent, encipher each message.

4. ALL IS WELL. 5. HAVE A NICE DAY.

Using p = 2549 as the exponentiation modulus and e = 11
as the enciphering exponent, encrypt each message.

6. NO PAINS NO GAINS.
7. NOTHING TO EXCESS. (Solon)

Each ciphertext below was generated by an exponentia-
tion cipher with p = 3037 and e = 31. Decipher each.

8. 0790 0778 1509 0499
9. 0624 1435 2669 0998

Each ciphertext below was created by an exponentiation
cipher with p = 2333 and e = 13. Decrypt each.

10. 1194 1693 2202 1185 0008
11. 1560 1250 0522 0631 1505

Two persons would like to share secret messages by using
a common key and an exponentiation cipher with p = 131.
Using x = 2 as in the text, compute the common key e for
the given pair of individual keys.

12. 11, 23 13. 7, 17

14–15. Determine the common deciphering key in Exer-
cises 12 and 13.

� �
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9.4 The RSA Cryptosystem

In a conventional cipher system, the enciphering key is known only to the sender
and the intended receiver. Since once the enciphering key is known, an unauthorized
individual can discover the deciphering key in a short time. Consequently, before
coded messages are sent, the key must be transmitted over a secure communication
channel.

However, in 1976, Whitfield Diffie and Martin E. Hellman of Stanford Univer-
sity proposed a revolutionary cipher system, called a public-key cryptosystem, that
makes it unnecessary to keep the key away from unauthorized users. In a public-key
system, the enciphering algorithm E of every user of the system is made public as
in a telephone directory, while the corresponding decrypting algorithm D is known
only to the intended user. Although the encryption key E is public knowledge, it is
computationally infeasible to employ it to discover the decryption key D, so it is
virtually impossible for a cryptanalyst to crack the system.

Although Diffie and Hellman did not provide a practical implementation of a
public-key cipher system, they developed three properties such a cryptosystem must
have:

• Each user must have an encryption key E (which is made public) and a de-
cryption key D (which is kept secret) such that M = E(D(M)) = D(E(M)) for
every message M. Thus, the algorithms E and D are inverse operations.

• It is computationally easy for the user to compute the keys E and D.
• It is computationally infeasible for an unauthorized user to employ the en-

cryption key E to develop the decryption key D, ensuring the security of the
system.

How does such a cipher system work? Suppose there are n users of the system.
Each person i has an encryption key Ei in the public directory, where 1 ≤ i ≤ n. For
him to send a message P to person j, he looks up j’s encryption key Ej and then
sends him the encrypted message C = Ej(P). Then j applies his secret deciphering
algorithm Dj to C to recover the original plaintext P, since Dj(C) = Dj(Ej(P)) = P.
No other person k can crack the message C since Dk(C) = Dk(Ej(P)) �= P, when
k �= j.

In 1978, Ronald L. Rivest, Adi Shamir, and Leonard Adelman of the Massa-
chusetts Institute of Technology developed a practical way of implementing Diffie
and Hellman’s elegant concept. Popularly known as the RSA cryptosystem, this
public-key system is an exponentiation cipher system based on modular exponenti-
ation and Euler’s theorem. (RSA is an acronym for Rivest, Shamir, and Adelman.)
See Figures 9.4 and 9.5.
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Computer Science Prize to Honor 3 Forerunners of
Internet Security

John Markoff
The Association of Computing Machinery plans to announce
today that Ronald Le Rivest, Adi Shamir and Leonard M.
Adleman will receive the 2002 A. M. Turing Award for their
development work in public-key cryptography.

The award, which carries a $100,000 prize financed
by the Intel Corporation, is gives annually to leading re-
searchers in the field of computer science.

Working at the Massachusetts Institute of Technology
in 1977, the three men developed the RSA algorithm, which

is widely used today as a basic mechanism for secure Inter-
net transactions, as well as in the banking and credit card
industries.

The strength of this approach is that it provides highly
secure communications over distances between parties that
have never previously been in contact.

Dr. Rivest now teaches in the electrical engineering
and computer science department at M.I.T.

Dr. Shamir is a professor in the applied mathematics
department at the Weizmann Institute of Science in Israel.

Dr. Adleman is a professor of computer science and of
molecular biology at the University of Southern California.

Figure 9.4

A Prime Argument in Patent Debate

Simson Garfinkel SPECIAL TO THE GLOBE

In a move that will likely inflame the debate over the gov-
ernment’s patent application procedures, a California math-
ematician has received what is believed to be the first patent
on a prime number.

But collecting royalties for its use might be difficult.
Actually, Roger Schlafly has patented two prime num-

bers, but only when they are used together. According to the
US Patent and Trade office, the numbers are trade-marked
under patent No. 5,373,560, a figure that doesn’t nearly ap-
proach the size of the two patented numbers themselves—
one is 150 digits long, the other 300 digits.

The patent, titled “partial modular reduction method,”
was awarded to Schlafly, an independent mathematician and
specialist in the field of cryptography, in December but only
recently came to public attention.

The patent claims a new technique for finding certain
kinds of prime numbers, which can be used to rapidly per-

form the kinds of mathematical operations necessary for
public key cryptography.

(A prime number is a number that cannot be evenly di-
vided by any number other than 1 and itself. The numbers
2, 3, 13 and 29 are all prime and are not covered by any
known patent. Public key cryptography is a technique, based
on prime number theory, that allows two individuals to ex-
change secret messages by computer.)

“I’m sure if you just went to someone and said, ‘Can
you patent a prime number?’ they would say ‘No, that’s
ridiculous,’ ” said Schlafly, interviewed from his home in So-
quel, near Santa Cruz, Calif. Schlafly said he developed the
patented algorithm while working on a program called SE-
CRET AGENT, which is used to encrypt electronic mail. He
added the patent claims for the two prime numbers as an
experiment. “I was kind of interested in pushing the sys-
tem to see how far you could go with allowable claims.”

(continued)

Figure 9.5
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Nevertheless, Schlafly said, the two prime numbers satisfy
the patent office’s conditions for patentability: They are use-
ful, have never been used before by anyone else, and their
use for this particular technique is not obvious.

Others see the prime number patent as evidence that
the patent office has lost its grip on the patenting process.

“That’s outrageous,” said Pamela Samuelson, a profes-
sor of law at the University of Pittsburgh and an expert on
software patents and copyrights.

“It also seems inconsistent with some of the recent de-
cisions issued by the Federal Circuit [Court of Appeals] . . .
Unless you claim some physical structure [that is used by]
an algorithm or a data structure, you can’t patent it.”

Nearly two years ago, the patent office awarded a
sweeping patent that covered the field of multimedia to
Compton’s New Media. At the time, an outraged computer in-
dustry argued that there was nothing new or novel in Comp-
ton’s programs that deserved a patent. Eventually, the patent
office reconsidered the Compton’s patent, and threw it out.

Whether or not that will happen with Schlafly’s patent
remains to be seen. Under most circumstances, patents are
invalid if the invention that they described is published before
the patent application is filed.

“There are entire journals and conference proceedings
devoted to the general subject of this application,” says Gre-
gory Aharonian, who published the Internet Patent News
Services and maintains a database of several hundred thou-
sand pieces of software art. But few software patents that
have been awarded in recent years cite any prior art other
than previous patents, Aharonian says.

But whereas the algorithm may be covered under the
doctrine of prior art, says Aharonian, the prime numbers

themselves are probably patentable. “The claiming of cer-
tain prime numbers as part of an encryption process doesn’t
seem to me to be unnatural,” said Aharonian. “I can claim
certain specific chemicals as part of a chemical engineer-
ing process, so why not a specific number as part of a math
engineering process?”

The numbers claimed in the patent are 512 bits and
1,024 bits long, or roughly 150 and 300 decimal digits. While
these numbers are quite large by everyday standards, they
are typical of the size of numbers used for cryptographic
processes. By design, the numbers are so large that it is
exceedingly unlikely that a person could guess them or oth-
erwise intentionally discover what they are.

The two principle techniques of public key cryptogra-
phy were discovered and patented by scientists at Stanford
University and at the Massachusetts Institute of Technology
in the 1970s. In 1990, they were both licensed to Public Key
Partners, a holding company based in California. Last year,
Schlafly filed suit against PKP in federal court, claiming that
the PKP patents are invalid.

Regarding his own patent, Schlafly said, its real value
is the technique that it describes for finding the special prime
numbers, rather than the two specific prime numbers that it
describes. “I really don’t anticipate somebody reading this
patent and saying, ‘look, here’s a good prime number, let’s
use it!’ ” he said.

Nevertheless, the patent gives Schlafly the legal right
to sue anybody in the United States for using his numbers
without permission. “I suppose that you can tell people that
if they want to license these prime numbers, they should just
call me up.”

Figure 9.5

The Enciphering Algorithm

In an RSA system, the enciphering key is a pair (e,n) of positive integers e and n,
where the enciphering modulus n is the product of two very large and distinct primes
p and q, each about 100 digits long, and (e, ϕ(n)) = 1. To encrypt a plaintext mes-
sage, as in the exponentiation cryptosystem, we group the plaintext numeric equiva-
lents into blocks of length 2m, with padding at the end if necessary. Then we convert
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I.B.M. Researchers Develop a New Encryption Formula

Laurence Zuckerman
I.B.M. plans to announce today that two of its researchers
have come up with a new computer encryption formula that
they say is nearly impossible to crack.

The International Business Machines Corporation said
that the breakthrough was still a long way from being em-
ployed outside the lab and that it did nothing to resolve the
running dispute between the computer industry and the Fed-
eral Government over whether law enforcement agencies

should be given access to encrypted communications. But
it could ultimately help reduce the vulnerability of so-called
public-key encryption, which is the favored security method
used to safeguard commerce and privacy on the Internet.

In public-key encryption, the sender of an electronic
communication uses software that automatically scrambles
the information by incorporating a publicly known numerical
key. Decoding the scrambled transmission requires a private
key, a number supposedly known only by the recipient.

The system is based on a problem that has defied so-
lution by mathematicians for 150 years, I.B.M. said.

Figure 9.6

each block P into a ciphertext block C using the encrypting congruence

C = E(P) ≡ Pe (mod n) (9.8)

where 0 ≤ C,P < n. See Figure 9.6.
The following example illustrates this algorithm.

EXAMPLE 9.14 Using the RSA enciphering modulus n = 2773 and the enciphering key e = 21, en-
crypt the message SILENCE IS GOLDEN.

SOLUTION

As in Example 9.12, after the numeric translation and grouping into blocks, the plain-
text yields

1808 1104 1302 0408 1806 1411 0304 1323

Now, using modular exponentiation and formula (9.8), convert each block P into a
ciphertext block C:

C ≡ Pe = P21 (mod 2773)

For instance, when P = 1808,

C ≡ 180821 ≡ 180816+4+1 ≡ 1511 · 666 · 1808 ≡ 0010 (mod 2773)

The other blocks can be found similarly. The ensuing ciphertext message is 0010
0325 2015 2693 2113 2398 2031 1857. �
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The Deciphering Algorithm

To decipher a ciphertext C generated by an RSA system, we need to compute the in-
verse d of the enciphering exponent e modulo ϕ(n), which exists since (e, ϕ(n)) = 1.
Then de ≡ 1 (mod ϕ(n)); that is, de = 1 + kϕ(n) for some constant k. Knowing the
deciphering exponent d, we can recover the plaintext P by raising both sides of con-
gruence (9.8) to the power d modulo n:

C = Pe (mod n)

Cd ≡ (Pe)d = Ped = P1+kϕ(n) (mod n)

= P · [Pϕ(n)]k ≡ P · 1k = P (mod n) (9.9)

where, by Euler’s theorem, Pϕ(n) ≡ 1 (mod n), if (P,n) = 1. The pair (d,n) is the
deciphering key.

Even in the highly unlikely event that (P,n) �= 1, the RSA algorithm works.
To see this, let n = pq. Then (P,n) = p, q, or pq. Since P < n, (P,n) �= n. When
(P,n) = p, (P,q) = 1, so by Fermat’s little theorem, Pq−1 ≡ 1 (mod q). Since de ≡ 1
(mod (p − 1)(q − 1)), de = 1 + k(p − 1)(q − 1) for some integer k. Therefore,

Pde = P · (Pq−1)k(p−1) ≡ P · 1k(p−1) ≡ P (mod q)

That is,

Cd ≡ P (mod q)

When (P, n) = p, Cd ≡ Pde ≡ 0 ≡ P (mod p). Thus, Cd ≡ P (mod p) and Cd ≡ P
(mod q), so Cd ≡ P (mod n). The case (P,n) = q yields the same conclusion.

For instance, if p and q are 100-digit primes, the probability of such an occur-
rence of a plaintext block is extremely negligible, namely, less than 2 · 10−99. See
Supplementary Exercises 6 and 7.

The following example demonstrates the decrypting algorithm D.

EXAMPLE 9.15 Decrypt the ciphertext message 0010 0325 2015 2693 2113 2398 2031 1857 that
was created using the RSA enciphering key (e,n) = (21,2773).

SOLUTION

Because ϕ(n) = ϕ(2773) = ϕ(47 · 59) = 46 · 58 = 2668 = 127 · 21 + 1, (−127) ·
21 ≡ 1 (mod 2668); that is, 2541 · 21 ≡ 1 (mod 2668), so the deciphering exponent
is d = 2541. Because P ≡ Cd (mod n), raise each ciphertext C to the power 2541
modulo 2773. For instance, when C = 0010:
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P ≡ 00102541 ≡ 102541 (mod 2773)

≡ 102048+256+128+64+32+8+4+1 (mod 2773)

≡ 1024 · 2431 · 2500 · 1366 · 2127 · 74 · 1681 · 10 (mod 2773)

≡ 1808 (mod 2773)

as expected. The other blocks can be decrypted similarly. �

Digital Signatures

The property E(D(M)) = M, found in public-key cryptosystems, can be effectively
used to transmit “digitally signed” messages. This is a practical and highly desir-
able feature, since such a cipher system ensures authentication and protects against
forgeries. Such digital signatures are widely used in electronic banking.

Interestingly, in June 2000, President Bill Clinton signed into law a bill allowing
businesses and consumers to enter into legally binding arrangements with electronic
rather than handwritten signatures. E-signing, as the new process is called, is ex-
pected to spur new technologies, accelerate electronic transactions, and save billions
of dollars in administrative costs. See Figure 9.7.

To see how signed messages work in public-key cipher systems and, in particu-
lar, RSA systems, suppose that person i wishes to send person j a signed message P.
First, person i applies his secret deciphering algorithm Di to P. This yields Di(P) ≡
Pdi (mod n); he then applies j’s enciphering algorithm Ej to it, since Ej is public
knowledge. This produces the message Ej(Di(P)) ≡ Pdiej (mod n). Person i now
sends this convoluted message to j.

To decipher this message, allegedly sent by person i, first person j applies his
deciphering key to it to yield

Dj(Ej(Dl(P))) ≡ (Pdiej)dj = (Pejdj)di ≡ Pdi (mod n) = Di(P)

because Dj and Ej are inverse operations. He then applies person i’s public encryption
algorithm Ei to it to yield

Ei(Di(P)) ≡ (Pdi)ei = Pdiei ≡ P (mod n)

Once again, because Ei and Di are inverse operations, this operation produces the
original plaintext P. This ensures that the original message was in fact sent by person
i and nobody else, since Ei(Dk(P)) �= P if k �= i. Consequently, i can never claim that
he did not send the plaintext P, since he is in sole possession of the secret key Di.

As these two examples demonstrate, both encryption and decryption become
tedious as n gets larger and larger; so for an RSA system to be realistically useful,
n must be very large. Both processes require fast computers for implementation.
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E-Signing Law Seen as a Boon to E-Business

Barnaby J. Feder
The law President Clinton signed last week allowing busi-
nesses and consumers to seal a variety of legally binding
arrangements with electronic rather than hand-written sig-
natures raised the speed limit on e-business development,
analysts say.

They project that many enterprises awash in docu-
ments, especially financial services, real estate and the
government itself, will accelerate efforts to use computer
transactions to limit paperwork once the law takes effect in
October. Such a transition is expected to save billions of dol-
lars annually in administrative costs and cut some online
transactions—like setting up a trading account or applying
for a home loan—from days to minutes.

“E-signing,” as the new process is called, is also ex-
pected to spur a variety of technologies that provide digital
variations on penning one’s name on paper, including the
use of coded messages, penlike styluses or thumb prints on
electronic pads, or camera shots of the signer’s face or eye.

The new law came after 46 states and many foreign
countries had adopted laws encouraging online deal-making,
and many online businesses have already incorporated such

capabilities. So it may be hard to calculate the immediate fi-
nancial impact of the federal law on the major companies
supplying such technology.

“It validates the market but it won’t really add to their
revenue in the near term,” said Mark Fernandes of Merrill
Lynch, who follows companies that provide the software and
support services needed for electronic business.

All of them rely on public key encryption, a technol-
ogy invented in the 1970’s but not widely used until the e-
commerce wave hit the Internet. Such systems use a combi-
nation of public and private keys, or snippets of numbers, to
pass secure messages through a trusted third party, or cer-
tification authority. The system not only allows a recipient to
be assured the message came from the party that claims to
have sent it but also that it has not been tampered with.

The digital signature such systems produce looks noth-
ing like a scrawled John Hancock—in fact, it is invisible. As a
result, many entrepreneurs are betting that other systems
will be used instead of public key encryption, or in addi-
tion to it, to complete e-commerce deals. President Clinton
signed the bill into law on Friday with a smart card—a credit
card-sized device programmed to work in combination with
a password furnished by the user. Such systems are already
widely used in Europe.

Figure 9.7

To choose n, first find two large primes p and q, about 100 digits long. Then
n = pq is about 200 digits long. That the value of n is public information does not
imply that its prime factors are publicly known. The factoring of a 200-digit number
is an extremely time-consuming proposition.

Once p and q have been selected, the enciphering exponent e must be chosen in
such a way that (e, ϕ(n)) = 1. One way to do this is by choosing a prime greater than
both p and q.

The exponent e must also be chosen so that 2e > n; this ensures that every plain-
text block, except 0 and 1, will be subjected to reduction modulo n. Otherwise, since
C ≡ Pe (mod n), P can be recovered by taking the eth root of C.

The deciphering exponent d can easily be computed using the euclidean algo-
rithm, where de ≡ 1 (mod ϕ(n)) and ϕ(n) = (p − 1)(q − 1).

Publishing the enciphering key (e, n) does not compromise security, because
a cryptanalyst must know the value of ϕ(n) to compute the deciphering expo-
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Cracking Huge Numbers

Ivars Peterson
It’s easy to multiply two large prime numbers to obtain a
larger number as the answer. But the reverse process—
factoring a large number to determine its components—
presents a formidable challenge. The problem appears so
hard that the difficulty of factoring underlies the so-called
RSA method of encrypting digital information.

An international team of computer scientists, mathe-
maticians, and other experts recently succeeded in finding
the factors of a 129-digit number (see fig. 1) suggested sev-
enteen years ago as a test of the security of the RSA cryp-
tographic scheme.

114, 381, 625, 757, 888, 867, 669, 235, 779, 976, 146, 612,
010, 218, 296, 721, 242, 362, 562, 561, 842, 935, 706, 935,
245, 733, 897, 830, 597, 123, 563, 958, 705, 058, 989, 075,
147, 599, 290, 026, 879, 543, 541 = 3, 490, 529, 510, 847,
650, 949, 147, 849, 619, 903, 898, 133, 417, 764, 638, 493,
387, 843, 990, 820, 577 × 32, 769, 132, 993, 266, 709, 549,
961, 988, 190, 834, 461, 413, 177, 642, 967, 992, 942, 539,
798, 288, 533

Fig. 1
The number and its two prime factors

This feat and other work now complicate encoding
schemes used for national and commercial security.

The effort required the use of more than 600 comput-
ers scattered throughout the world. Partial results were sent
electronically to graduate student Derek Atkins at the Massa-
chusetts Institute of Technology, who assembled and passed
the calculations on to Arjen K. Lenstra of Bell Communica-
tions Research in Morristown, New Jersey. In the final step,
which by itself consumed forty-five hours of computer time,
Lenstra used these data and a MasPar MP-1 computer with
16000 processors to compute the factors.

“It was a nice piece of work—a huge computation done
over 8 months,” says Burton S. Kaliski Jr. of RSA Data Secu-
rity in Redwood City, California.

The magnitude of the effort required to factor a 129-
digit number demonstrates the strength of the RSA cryp-
tosystem, which typically involves numbers of 155 or more
digits. However, steady improvements in factoring methods
are likely to force the use of significantly larger numbers in
the future to ensure security. More worrisome are the conse-
quences of new research apparently proving that under cer-
tain circumstances, factoring may actually be easy.—From
Science News, 7 May 1994.

Figure 9.8

nent d. Clearly, ϕ(n) can be computed if p and q are known, since ϕ(n) = ϕ(pq) =
(p − 1)(q − 1). Since computing ϕ(n) involves the factoring of n, it is an equally
difficult task. Since p and q are 100 digits long and n = pq is about 200 decimal dig-
its long, the fastest known factorization algorithm will take about four billion years
of computing time on the fastest available computer, as Table 9.9† shows. Although
this could change with time and technology, the RSA system is virtually secure at
present. If faster factorization techniques and faster computers become available,
then the size of the factors can be increased accordingly to maintain the security of
the system. See Figure 9.8.

Note that the primes p and q can be computed from ϕ(n). See Exercises 9 and 10.

† Based on R. L. Rivest et al., “A Method for Obtaining Digital Signatures and Public-Key Cryptosys-
tems,” Communications of the ACM, 21 (Feb. 1978), 120–126.
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Number of digits Time
50 3.9 hours
75 104 days

100 74 years
200 3.8 × 109 years
300 4.9 × 1015 years
500 4.2 × 1025 years

Table 9.9

Also, to prevent a cryptanalyst from resorting to special techniques to factor n,
both p and q should be of about the same size, with p − 1 and q − 1 having large
prime factors and (p − 1,q − 1) small.

However, if d is known then ed − 1, a multiple of ϕ(n) can be computed; know-
ing a multiple of ϕ(n), n can be factored fairly easily using an algorithm developed
in 1976 by G. L. Miller.

E X E R C I S E S 9.4

Using the RSA enciphering key (e,n) = (11,2867), en-
crypt each message.

1. SEAFOOD 2. OPEN DOOR

3–4. Redo Exercises 1 and 2 using the RSA enciphering
key (e,n) = (17,2867).

Each ciphertext below was generated by the RSA enci-
phering key (e,n) = (11,2867). Decipher each.

5. 1420 0614 1301 1694
6. 1959 1384 1174 2050

Decrypt each ciphertext below that was created by the
RSA enciphering key (e,n) = (17,2867).

7. 0579 0341 0827 1511
8. 0592 2131 2584 2188

Let n = pq, where p and q are primes with p > q. [Exer-
cises 9–11 show that if n and ϕ(n) are known, then the
prime factors of n can be determined.]

9. Show that p + q = n − ϕ(n) + 1.

10. Show that p − q =
√

(p + q)2 − 4n.
11. Express p and q in terms of n and ϕ(n).
12. Using Exercises 9–11, determine the primes p and q

if n = pq = 3869 and ϕ(n) = 3744.
13. Redo Exercise 12 if n = 3953 and ϕ(n) = 3828.

Anne and Betsey would like to send each other a signed
message using an RSA cipher. Their encryption keys are
(13,2747) and (17,2747), respectively. Find the signed
cipher message sent by

14. Anne if the plaintext message is MARKET.
15. Betsey if the plaintext message is INPUT.

With the enciphering keys as before, find the plaintext sent
by

16. Anne if her signed message to Betsey is 1148 0194
2715.

17. Betsey if her signed message to Anne is 1130 2414
2737.

� �
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9.5 Knapsack Ciphers

In 1978, Ralph C. Merkle and Martin E. Hellman, both electrical engineers at Stan-
ford University, developed a public-key cryptosystem based on the knapsack prob-
lem, a celebrated problem in combinatorics. It can be stated as follows: Given a
knapsack of volume S and n items of various volumes a1,a2, . . . ,an, which of the
items can fill the knapsack? In other words, given the positive integers a1,a2, . . . ,an,
called weights, and a positive integer S, solve the LDE

S = a1x1 + a2x2 + · · · + anxn (9.10)

where xi = 0 or 1. [Note that S is the dot product of the vectors (a1,a2, . . . ,an)

and (x1, x2, . . . , xn).] The knapsack problem may have no solutions, one solution, or
more than one solution.

For example, the knapsack problem 3x1 +5x2 +9x3 +19x4 +37x5 = 45 has one
solution (1,1,0,0,1), since 3+5+0+0+37 = 45. On the other hand, the knapsack
problem 3x1 +5x2 +8x3 +13x4 +21x5 = 34 has two solutions; they are (0,0,0,1,1)

and (0,1,1,0,1), because 0 + 0 + 0 + 13 + 21 = 34 = 0 + 5 + 8 + 0 + 21. But the
problem 5x1 + 14x2 + 15x3 + 27x4 + 11x5 = 23 has no solutions.

Solving a knapsack problem is usually a very difficult task. An obvious, but
certainly impractical, method is to check the various 2n possibilities for a solution
(x1, x2, . . . , xn), where xi = 0 or 1, until a solution emerges or all cases have been
exhausted. Even the best-known method for solving the problem requires about 2n/2

computational operations, so for n = 100 a computer solution becomes computation-
ally infeasible.

Nonetheless, problem (9.10) can be solved fairly easily if the weights have spe-
cial properties. For instance, if ai = 2i−1, then S = x1 + 2x2 + 22x3 + · · · + 2n−1xn

has a solution (x1, x2, . . . , xn) if (xn, xn−1, . . . , x1)two = S.

It is also easy to solve it if
j−1∑

i=1
ai < aj, where 2 ≤ j ≤ n. A sequence with this

property is said to be superincreasing. For example, consider the sequence 3, 5, 9,
19, 37. Because 3 < 5, 3 + 5 < 9, 3 + 5 + 9 < 19, and 3 + 5 + 9 + 19 < 37, the
sequence is superincreasing.

The following example shows how to solve a knapsack problem with superin-
creasing weights.

EXAMPLE 9.16 Solve the knapsack problem 3x1 + 5x2 + 9x3 + 19x4 + 37x5 = 45.

SOLUTION

Since the weights are superincreasing and since 3 + 5 + 9 + 19 < 37 < 45, x5 = 1.
Then 3x1 + 5x2 + 9x3 + 19x4 = 8. Since 19 > 8 and 9 > 8, x4 = 0 = x3. This
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yields 3x1 + 5x2 = 8, so x1 = 1 = x2. Thus the solution to the given problem is
(1,1,0,0,1). �

An Algorithm for Solving the Knapsack Problem with
Superincreasing Weights

This solution can be generalized to derive a solution to problem (9.10) with superin-
creasing weights, if a solution exists. It is given by the following algorithm:

xn =
{1 if S ≥ an

0 otherwise

Once xn is determined, the remaining components xn−1, xn−2, . . . , x1 can be com-
puted using the formula

xj =
⎧
⎨

⎩
1 if S −

n∑

i=j+1
aixi ≥ aj

0 otherwise

where j = n − 1,n − 2, . . . ,1. As the preceding example demonstrates and these
formulas indicate, we must work from right to left to find a solution.

To see why these formulas work, suppose xn = 0 when S ≥ an. Then S =
n∑

i=1
aixi ≤

n−1∑

i=1
ai < an, which is a contradiction. Therefore, xn = 1 when S ≥ an. It

also implies that xn = 0 if S < an.
Now let 1 ≤ j ≤ n − 1. Assume xj = 0 when S −

n∑

i=j+1
aixi ≥ aj. Then S −

n∑

i=j+1
aixi =

j∑

i=1
aixi =

j−1∑

i=1
aixi ≤

j−1∑

i=1
ai < aj, again a contradiction. Thus, both halves

do hold.
The following example illustrates this algorithm.

EXAMPLE 9.17 Solve the knapsack problem 2x1 + 3x2 + 7x3 + 13x4 + 27x5 = 39.

SOLUTION

First, notice that the sequence of weights is superincreasing. Here S = 39 and
(a1,a2,a3,a4,a5) = (2,3,7,13,27). Because S ≥ a5, x5 = 1. Then 2x1 + 3x2 +
7x3 +13x4 = 12 < 13(= a4), so x4 = 0. This yields, 2x1 +3x2 +7x3 = 12 > 7(= a3),
so x3 = 1. Then 2x1 +3x2 = 5 > 3, so x2 = 1. This implies x1 = 1. Thus, the solution
is (1,1,1,0,1); that is, 2 + 3 + 7 + 0 + 27 = 39. �
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The Enciphering Algorithm

We can build a public-key system based on knapsack problems with superincreasing
weights a1,a2, . . . ,an. To this end, choose a positive integer m > 2an and a positive
integer w relatively prime to m. Now form the sequence b1, b2, . . . , bn, where bi ≡
wai (mod m), 0 ≤ bi < m. This sequence need not be superincreasing.

A user of the knapsack cryptosystem makes the enciphering sequence b1,b2,

. . . ,bn public in a directory, keeping secret the original sequence a1,a2, . . . ,an, the
enciphering modulus m, and the multiplier w. Before encrypting a plaintext, con-
vert it into a bit string using the five-digit binary equivalents in Table 9.10. The string
is then partitioned into blocks P of length n, where n is the number of elements in the
enciphering sequence. If the last block does not have n bits, then pad it with enough
1s, so all blocks will be of the same length n. Now transform each numeric plaintext
block x1x2 . . . xn into the sum

S = b1x1 + b2x2 + · · · + bnxn (9.11)

The sums thus generated form the ciphertext message.

Binary Binary
Letter Equivalent Letter Equivalent

A 00000 N 01101
B 00001 O 01110
C 00010 P 01111
D 00011 Q 10000
E 00100 R 10001
F 00101 S 10010
G 00110 T 10011
H 00111 U 10100
I 01000 V 10101
J 01001 W 10110
K 01010 X 10111
L 01011 Y 11000
M 01100 Z 11001

Table 9.10

The following example illustrates this method.

EXAMPLE 9.18 Using the knapsack cipher based on the superincreasing weights 6, 8, 15, and 31,
modulus m = 65, and multiplier w = 12, encipher the message ON SALE.
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SOLUTION

First, notice that the sequence has n = 4 elements, m > 2a4, and (m,w) =
(65,12) = 1.

step 1 Multiply each element in the sequence by 12 and reduce each product mod-
ulo 65:
6 · 12 ≡ 7 (mod 65), 8 · 12 ≡ 31 (mod 65), 15 · 12 ≡ 50 (mod 65), and 31 · 12 ≡ 47
(mod 65). The resulting enciphering sequence is 7, 31, 50, 47.

step 2 Using Table 9.10, translate the letters into binary and then group the bits
into blocks of length 4. Pad the last block with 1s if necessary:
01110 01101 10010 00000 01011 00100. This yields 0111 0011 0110 0100 0000
0101 1001 0011.

step 3 Find the ciphertext message:
To this end, convert each block into a sum by multiplying the bits by the elements
7, 31, 50, and 47 of the enciphering sequence and then by adding the products. For
example, 0 · 7 + 1 · 31 + 1 · 50 + 1 · 47 = 128. Similarly, the other sums are 97, 81,
31, 0, 78, 54, and 97. Thus, the ciphertext message is 128 97 81 31 0 78 54 97. �

The Deciphering Algorithm

Deciphering a knapsack ciphertext is equally easy. Multiply equation (9.11) by w−1

modulo m, which exists since (m,w) = 1:

w−1S ≡
n∑

i=1

w−1bixi (mod m)

≡
n∑

i=1

(w−1bi)xi ≡
n∑

i=1

aixi (mod m)

Because m > 2an and 2an >
n∑

i=1
aixi, m >

n∑

i=1
aixi. Let S′ ≡ w−1S (mod m), where

0 ≤ S′ < m. Then S′ =
n∑

i=1
aixi. This knapsack problem can be solved because

the original coefficients a1,a2, . . . ,an are superincreasing. The unique solution
(x1, x2, . . . , xn) yields the block x1x2 . . . xn. After finding all the blocks, all we need
to do is regroup the bits into blocks of five bits and then substitute the letter corre-
sponding to each block.
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The following example illustrates this algorithm.

EXAMPLE 9.19 Decipher the knapsack ciphertext message 128 97 81 31 0 78 54 97 created with
modulus m = 65, multiplier w = 12, and the enciphering sequence 7, 31, 50, 47.

SOLUTION

step 1 Use the euclidean algorithm to find the inverse of w modulo m.
Since 38 · 12 ≡ 1 (mod 65), w−1 ≡ 38 (mod 65).

step 2 Construct a knapsack problem for each numeric ciphertext block and solve
it.

S = b1x1 + b2x2 + b3x3 + b4x4

128 = 7x1 + 31x2 + 50x3 + 47x4

Multiply both sides by w−1 ≡ 38 modulo 65:

38 · 128 ≡ 38 · 7x1 + 38 · 31x2 + 38 · 50x3 + 38 · 47x4 (mod 65)

This yields 54 = 6x1 + 8x2 + 15x3 + 31x4. Solving, x1x2x3x4 = 0111. Similarly, we
get the other blocks: 0011 0110 0100 0000 0101 1001 0011.

step 3 Recover the plaintext by regrouping the bits into blocks of length five, and
then replace each with the corresponding letter.
This yields the original message ON SALE. (Verify this.) �

A Drawback of the Knapsack Cryptosystem

The Merkle–Hellman knapsack cryptosystem does not possess the property E(D(M))

= M as proposed for a public-key system by Diffie and Hellman. Consequently, it is
not a candidate for a signature system.

Initially, the Merkle–Hellman system generated a great deal of interest since the
encryption and decryption algorithms are easier and faster to implement. It seemed
to be a major breakthrough, since it is based on a difficult problem. In April 1982,
however, A. Shamir established otherwise; he developed an efficient algorithm for
solving knapsack problems involving the encryption weights b1,b2, . . . ,bn, where
bi ≡ wai (mod m) and a1,a2, . . . ,an is a superincreasing sequence. The flaw lies in
the fact that multiplying ai by w and then reducing it modulo m does not hide ai well
enough.

Since 1982, several knapsack ciphers have been proposed and broken. For
instance, the scheme proposed by R. L. Graham and A. Shamir was broken by
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L. M. Adelman in 1983. More recently, a new knapsack cipher based on finite fields
in abstract algebra was proposed by B. Chor and R. L. Rivest. Referring to Poe’s
claim that any code could be cracked, they remarked, “At the moment we do not
know of any attacks capable of breaking this system in a reasonable amount of time.”

E X E R C I S E S 9.5

Determine whether the given sequence is superincreasing.

1. 3, 5, 10, 19, 36 2. 3, 6, 12, 24, 48

Solve each knapsack problem with superincreasing
weights.

3. x1 + 2x2 + 4x3 + 8x4 + 16x5 = 23

4. 3x1 + 6x2 + 12x3 + 24x4 + 48x5 = 57

5. 4x1 + 5x2 + 11x3 + 23x4 + 45x5 = 60

6. 2x1 + 3x2 + 6x3 + 12x4 + 24x5 + 48x6 + 96x7 = 65

7. Using the superincreasing sequence 3, 6, 12, 24, con-
struct the knapsack enciphering sequence with mod-
ulus m = 53 and multiplier w = 23.

8. Redo Exercise 7 with the superincreasing sequence 2,
3, 7, 13, 29, and with m = 63 and w = 25.

Encrypt each message using Exercise 7.

9. SELL ALL. 10. EUREKA.

11–12. Using Exercise 8, encipher the messages in Exer-
cises 9 and 10.

Each knapsack ciphertext below was generated with mod-
ulus 65, multiplier 12, and the enciphering sequence 7, 31,
50, 47. Decrypt each.

13. 54 47 47 57 97 81 97 57 50 31
14. 104 47 47 81 104 47 104 54 57 31

Each knapsack ciphertext was created with modulus 53,
multiplier 23, and the enciphering sequence 16, 32, 11,
22. Decipher each.

15. 65 33 48 16 70 00 49 38 48 27
16. 33 33 38 48 33 32 49 16 33

� �

X CHAPTER SUMMARY

This chapter discussed the art of secrecy systems, a widely used application of num-
ber theory in the form of cryptology. A cipher system can be conventional or public-
key. In a conventional cryptosystem, the enciphering and deciphering keys are kept
secret between the sender and the intended receiver; in a public-key system, the en-
ciphering key is published in a public directory.

The conventional systems presented here are affine, Vigenère, Hill, and expo-
nentiation.
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Affine Ciphers
• C ≡ aP + k (mod 26), where a is a positive integer ≤ 25 and (a,26) = 1.

(p. 420)
• When a = 1 and k = 3, it yields the Caesar cipher. (p. 417)

Vigenère Ciphers
• Vigenère ciphers employ a keyword w1w2 . . .wn of length n and n shift ci-

phers Ci ≡ Pi + ki (mod 26). (p. 423)

Hill Ciphers
• Hill ciphers are block ciphers that convert plaintext blocks P of length n into

ciphertext blocks of the same length using an n × n enciphering matrix A:
C ≡ AP (mod 26). (p. 425)

Exponentiation Ciphers
• C ≡ Pe (mod p), where 0 ≤ P,C < p, and (e,p − 1) = 1; e is the encryption

exponent of the cryptosystem. Exponentiation ciphers employ the euclidean
algorithm, modular exponentiation, and Fermat’s little theorem. The multi-
plicative inverse d of e modulo p serves as the deciphering exponent: P ≡ Cd

(mod p). (p. 431)

The RSA Cryptosystems
• C = E(P) ≡ Pe (mod n), where 0 ≤ P,C < n, n = pq, and (e, ϕ(n)) = 1.

(p. 437)
• P = D(C) ≡ Cd (mod n), where d is the multiplicative inverse of e modulo

ϕ(n). (p. 438)
• The RSA system uses the euclidean algorithm, modular exponentiation, and

Euler’s theorem. Since E(D(M)) = M for any message M, the RSA system
enables the transmission of digitally signed messages. (p. 439)

Knapsack Ciphers
• Based on the classic knapsack problem, S = ∑

aixi, where the weights ai

are superincreasing, xi = 1 or 0, and 1 ≤ i ≤ n, the knapsack system makes
the sequence b1,b2, . . . ,bn and m > 2an public, where bi ≡ wai (mod m),
0 ≤ bi < m, and (w,m) = 1. (p. 445)

• The decrypting strategy involves solving the knapsack problem S′ = ∑
aixi,

where S′ is the least residue of w−1S modulo m. Unlike the RSA system,
knapsack ciphers do not have the property E(D(M)) = M, so they are not a
signature system. (p. 446)
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X REVIEW EXERCISES

Encipher each using the affine cipher C ≡ 5P + 11 (mod 26).

1. NO ROSE WITHOUT A THORN.
2. THE HIGHEST RESULT OF EDUCATION IS TOLERANCE. (Helen Keller)

Decipher each ciphertext created by the affine cipher C ≡ 7P + 13 (mod 26).

3. QHOJP BSPCS 4. JPNWH HIJNM NISSS

Cryptanalyze each ciphertext created by an affine cipher C ≡ aP + k (mod 26).

5. VDGVT VLONN 6. JAMWM KJWJW TBBBB

Using the keyword SECRET for a Vigenère cipher, encipher each message.

7. FOR SALE. 8. EXIT ONLY.

Use the matrix A =
⎡

⎣
2 11 5
7 0 4
9 3 8

⎤

⎦ for Exercises 9–13.

Using the Hill enciphering matrix A, encrypt each message.

9. GOODBYE. 10. VIOLETS ARE BLUE.

Each ciphertext below was generated by the Hill enciphering matrix A. Decrypt each.

11. ZXB UYW NUM 12. DAT SKO DOB UQR

13. Find the blocks left fixed by the Hill enciphering matrix A.

14. Find the blocks left fixed by the Hill encrypting matrix

[
3 5
8 13

]

.

With p = 2729 as the exponentiation modulus and e = 37 as the enciphering expo-
nent, encrypt each message.

15. LABOR DAY 16. MARATHON

Decipher each ciphertext created by an exponentiation cipher with p = 2729 and
e = 29.

17. 2740 2652 0996 18. 0920 1279 0466 1146 1575

Using the RSA enciphering key (e,n) = (23,3599), encrypt each message.

19. CLOSED BOOK 20. TOP SECRET

Decipher each ciphertext generated by the RSA enciphering key (e,n) = (23,3599).

21. 0710 0854 0182 1587 22. 1549 1816 2376 0699
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Ann and Bob would like to send each other a secret message using the RSA enci-
phering keys (17,2537) and (13,2537), respectively. Find the signed ciphertext sent
by:

23. Ann if the plaintext is MAIL. 24. Bob if the plaintext is FINE.

With the RSA enciphering keys as defined, find the plaintext message sent by

25. Ann if her signed message to Bob is 1206 1821.
26. Bob if his signed message to Ann is 0386 1611.

Determine whether the given sequence is superincreasing.

27. 3, 5, 8, 13, 21 28. 2, 3, 6, 12, 24

Solve each knapsack problem.

29. 2x1 + 3x2 + 6x3 + 12x4 + 24x5 = 17

30. 3x1 + 4x2 + 9x3 + 19x4 + 43x5 = 55

Encipher each message using the knapsack cipher with modulus 65, multiplier 17,
and superincreasing sequence 2, 3, 6, 12.

31. FOR SALE 32. TOP RANK

The knapsack ciphertext here was created with the enciphering sequence 36, 5, 22,
13, modulus 43, and multiplier 12. Decrypt each.

33. 27 00 22 22 58 22 05 54 41 76 22 35 40
34. 27 49 22 76 35 22 18 54 13 35

X SUPPLEMENTARY EXERCISES

1. Define the product cipher resulting from the affine ciphers C ≡ aP + b (mod 26)

and C ≡ cP + d (mod 26), where (a,26) = 1 = (c,26).
2. Find a deciphering formula to decipher a ciphertext generated by the affine ciphers

C ≡ aP + b (mod 26) and C ≡ cP + d (mod 26), where (ac,26) = 1.

3. Find the number of blocks of letters left fixed by the enciphering matrix

[
a b
c d

]

.

4. Prove that the product of two Hill ciphers is a Hill cipher.
5. Let A and B be two enciphering matrices of the same size for two different block

ciphers. Does the product cipher formed by A followed by B yield the same cipher
as the one formed by B followed by A? If not, why not?

6. Show that the probability that a plaintext block P selected at random is not rela-

tively prime to the RSA enciphering modulus n = pq is
1

p
+ 1

q
− 1

pq
.



452 CHAPTER 9 Cryptology

7. Suppose the primes p and q in the RSA enciphering modulus n = pq are 100 digits
long. Show that the probability that an arbitrarily selected block is not relatively
prime to n is less than 2 · 10−99.

8. Show that the sequence of positive integers a1,a2, . . . ,an is superincreasing,
where ai = 2i−1 and 1 ≤ i ≤ n.

9. Show that the sequence of positive integers a1,a2, . . . ,an is superincreasing if
ai+1 > 2ai, where 1 ≤ i ≤ n − 1.

X COMPUTER EXERCISES

Write a program to perform each task. Ignore all blank spaces and punctuation marks
in all plaintext messages.

1. Read in a plaintext and encipher it using the Caesar cipher.
2. Read in a positive integer k and construct a table showing the alphabetic let-

ters, the corresponding ciphertext letters created by the shift cipher C ≡ P + k
(mod 26) and their ordinal numbers, as in Table 9.4.

3. Read in a plaintext, a shift factor k, and encipher it using the shift cipher C ≡
P + k (mod 26).

4. Read in a ciphertext encrypted by the Caesar cipher and decrypt it.
5. Read in a ciphertext encrypted by the shift cipher and the shift factor k, and

decrypt it.
6. Read in two positive integers a and k, and a ciphertext enciphered using the

affine cipher C ≡ aP + k (mod 26), where (a,26) = 1. Decrypt it.
7. Read in two positive integers a and k with (a,26) = 1. Find the letters of the

plaintext left fixed by the affine cipher C ≡ aP + k (mod 26).
8. Read in two positive integers a and k with (a,26) = 1 and a plaintext. Encipher

it using the affine cipher C ≡ aP + k (mod 26).
9. Read in arbitrary text and construct a percent frequency distribution of letters in

the text.
10. Read in a ciphertext enciphered using a shift cipher C ≡ P + k (mod 26). Using

Table 9.2, cryptanalyze it.
11. Read in a ciphertext enciphered using an affine cipher C ≡ aP + k (mod 26).

Using Table 9.2, cryptanalyze it.
12. Read in two positive integers a and k with (a,26) = 1 and a plaintext. Con-

struct a table that shows the alphabetic letters, the corresponding ciphertext let-
ters generated by the cipher C ≡ aP + k (mod 26), and their ordinal numbers, as
in Table 9.5.

13. Read in a plaintext and an n × n enciphering matrix A for Hill encipherment.
Translate it into ciphertext.



Enrichment Readings 453

14. Read in a ciphertext encrypted by a Hill enciphering matrix A and decrypt it.
15. Read in a plaintext, a prime modulus p for an exponentiation cipher, and an

enciphering exponent e. Convert it into ciphertext using modular exponentiation.
16. Read in a numeric ciphertext generated by an exponentiation cipher with a prime

modulus p and an enciphering exponent e. Translate it into plaintext.
17. Read in a plaintext and encrypt it using the RSA enciphering key (e,n).
18. Read in a numeric ciphertext generated using an RSA enciphering key (e,n).

Translate it into plaintext.
19. Read in the enciphering keys (e1,n) and (e2,n) of Anne and Betsey. Send each

a signed message by the other. Convert the received message by each to recover
the original message.

20. Read in the weights of a knapsack problem and determine whether they are
superincreasing.

21. Read in the superincreasing weights of a knapsack problem and solve it.
22. Read in a superincreasing sequence, a modulus m, and a multiplier w. Compute

the corresponding knapsack enciphering sequence.
23. Read in a superincreasing sequence, a modulus m, a multiplier w, and a plaintext.

Translate it into a knapsack ciphertext.
24. Read in a knapsack ciphertext, the enciphering sequence that generated it, the

knapsack modulus m, and multiplier w. Convert it into plaintext.
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10 Primitive Roots
and Indices

An expert problem solver must be endowed with two incompatible

qualities—a restless imagination and a pertinent pertinacity.

— HOWARD W. EVES

n this chapter, we will continue to study the least residues modulo a positiveIinteger m, this time using three important concepts: the order of an element a,
the primitive root modulo m, and the index of a. We will then identify those

positive integers that possess primitive roots and study some interesting applications.
Anyone familiar with group theory in abstract algebra will find the first two sections
familiar territory.

10.1 The Order of a Positive Integer

Let m be a positive integer, and a any positive integer such that (a,m) = 1. Then, by
Euler’s theorem, there is a positive exponent e such that ae ≡ 1 (mod m), namely,
e = ϕ(m). In general, ϕ(m) need not be the smallest such exponent. By the well-
ordering principle, there is always such a least positive exponent.

For example, let us compute the least residues of the first 6 = ϕ(7) powers of
every positive least residue a modulo 7 and look for the smallest such exponent in
each case. For convenience, they are summarized in Table 10.1. The smallest positive
exponent e such that ae ≡ 1 (mod 7) for each positive residue a is circled in the table;
they are 1, 3, 6, 3, 6, and 2 for a = 1, 2, 3, 4, 5, and 6, respectively. Such an exponent
e is called the order of a modulo 7, a concept introduced by Gauss.

455
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a a2 a3 a4 a5 a6

1© 1 1 1 1 1
2 4 1© 2 4 1
3 2 6 4 5 1©
4 2 1© 4 2 1
5 4 6 2 3 1©
6 1© 6 1 6 1

Table 10.1

The Order of a Positive Integer

Let m and a be any positive integers such that (a,m) = 1. Then the least positive
exponent e such that ae ≡ 1 (mod m) is the order of a modulo m. It is denoted by
ordm a, or simply ord a, if omitting the modulus does not lead to confusion.

The term order is borrowed here from group theory. (If you have already studied
group theory, you should find this definition and this section relatively familiar.)

It follows from Table 10.1 that ord7 1 = 1, ord7 2 = ord7 4 = 3, ord7 3 =
ord7 5 = 6, and ord7 6 = 2. The following example illustrates the definition further.

EXAMPLE 10.1 Compute ord13 5 and ord13 7.

SOLUTION

First, notice that (5,13) = 1 = (7,13). To evaluate each order, we compute the least
residues of powers of 5 and 7 modulo 13 until we reach the residue 1. (Feel free to
introduce negative residues when convenient.)

52 ≡ −1 (mod 13), 53 ≡ −5 (mod 13), 54 ≡ 1 (mod 13)

Thus, 4 is the least positive exponent e such that 5e ≡ 1 (mod 13), so ord13 5 = 4.
To evaluate ord13 7, notice that

72 ≡ −3 (mod 13) 73 ≡ 5 (mod 13) 74 ≡ −4 (mod 13)

75 ≡ −2 (mod 13) 76 ≡ −1 (mod 13) 77 ≡ 6 (mod 13)

78 ≡ 3 (mod 13) 79 ≡ −5 (mod 13) 710 ≡ 4 (mod 13)

711 ≡ 2 (mod 13) 712 ≡ 1 (mod 13)

Thus, ord13 7 = 12. �

It appears from this example that to compute ordm a, we need to compute ak

modulo m for every positive integer k ≤ ϕ(m). Fortunately, the following theorem
helps us eliminate many of them as possible candidates for ordm a.
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THEOREM 10.1 Let a be a positive integer such that (a,m) = 1 and ordm a = e. Then an ≡ 1 (mod m)

if and only if e|n.

PROOF

Suppose an ≡ 1 (mod m). By the division algorithm, there are integers q and r such
that n = qe + r, where 0 ≤ r < e. Then

an = aqe+r = (ae)q · ar

≡ 1q · ar ≡ ar (mod m)

But an ≡ 1 (mod m), so ar ≡ 1 (mod m), where 0 ≤ r < e. Since e is the least positive
integer such that ae ≡ 1 (mod m) and r < e, this forces r = 0. Thus, n = qe and hence
e|n.

Conversely, let e|n. Then n = be for some positive integer b. Therefore,

an = abe = (ae)b

≡ 1b ≡ 1 (mod m)

This completes the proof. �

This theorem has a very useful corollary that provides a practical tool for com-
puting ordm a.

COROLLARY 10.1 Let a be a positive integer such that (a,m) = 1. Then ordm a|ϕ(m). In particular, if p
is a prime and p � a, then ordp a|p − 1.

PROOF

By Euler’s theorem, aϕ(m) ≡ 1 (mod m). Therefore, by Theorem 10.1, ordm a|ϕ(m).
The special case follows since ϕ(p) = p − 1. �

This result narrows down considerably the list of possible candidates for ordm a
to the set of positive factors of ϕ(m). Consequently, to compute ordm a, we do not
need to look at all positive powers of a that are ≤ ϕ(m), but need only consider
those positive powers d of a, where d|ϕ(m). The following two examples illustrate
this.

EXAMPLE 10.2 Compute ord21 5.

SOLUTION

First, notice that ϕ(21) = ϕ(3 · 7) = ϕ(3)ϕ(7) = 2 · 6 = 12. The positive factors d of
ϕ(21) = 12 are 1, 2, 3, 4, 6, and 12, so only these are the possible values of ord21 5.
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To find it, compute 5d modulo 21 for each d until the residue becomes 1:

51 ≡ 5 (mod 21) 52 ≡ 4 (mod 21) 53 ≡ −1 (mod 21)

54 ≡ −5 (mod 21) but 56 ≡ 1 (mod 21)

Thus, we conclude that ord21 5 = 6. �

Suppose ai ≡ aj (mod m). Then a reasonable question to ask is: How are i and j
related? This is answered by the following corollary.

COROLLARY 10.2 Let ordm a = e. Then ai ≡ aj (mod m) if and only if i ≡ j (mod e).

PROOF

Suppose ai ≡ aj (mod m) and i ≥ j. Since (a,m) = 1, (aj,m) = 1. So, by Corol-
lary 4.6, a−j exists modulo m. Therefore,

ai · a−j ≡ aj · a−j (mod m)

That is,

ai−j ≡ 1 (mod m)

Thus, by Theorem 10.1, e|i − j; that is, i ≡ j (mod e).
Conversely, let i ≡ j (mod e), where i ≥ j. Then i = j + ke for some integer k.

Therefore,

ai = aj+ke = aj · (ae)k

≡ aj · 1k ≡ aj (mod m)

which is the desired result. �

The following example illustrates this result. It will be useful to us later.

EXAMPLE 10.3 Recall from Example 10.2 that ord21 5 = 6. You may verify that 514 ≡ 52 (mod 21),
where 14 ≡ 2 (mod 6). But 517 �≡ 53 (mod 21), since 17 �≡ 3 (mod 6). �

Suppose we know that ordm a = e. How then is ordm(ak) related to e, where
k > 0? This is answered by the following theorem.

THEOREM 10.2 Let ordm a = e and k any positive integer. Then ordm(ak) = e

(e, k)
.
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PROOF

Let ordm(ak) = r and d = (e, k). Then e = sd and k = td, where s and t are positive
integers such that (s, t) = 1. Since

(ak)s = (atd)s = (asd)t = (ae)t

≡ 1t ≡ 1 (mod m)

by Theorem 10.1, r|s.
Since ordm(ak) = r, (ak)r = akr ≡ 1 (mod m), so e|kr. Thus, sd|kr and hence,

sd|tdr. So s|tr. But (s, t) = 1, so s|r.
Thus, r|s and s|r. Therefore, s = r; that is,

ordm(ak) = r = s = e

d
= e

(e, k) �

The following example illustrates this theorem.

EXAMPLE 10.4 In Example 10.2, we found that ord21 5 = 6. Therefore, by Theorem 10.2, ord21(59)

= 6

(6,9)
= 6

3
= 2.

To confirm this, notice that

52 ≡ 4 (mod 21) 54 ≡ 16 (mod 21) 58 ≡ 4 (mod 21)

59 ≡ −1 (mod 21) 518 ≡ 1 (mod 21)

So ord21(59) = 2, as expected. �

Theorem 10.2 leads us to the following result.

COROLLARY 10.3 Let ordm a = e and k any positive integer. Then ordm(ak) = e if and only if (e, k) = 1.

PROOF

By Theorem 10.2, ordm(ak) = e

(e, k)
. This equals e if and only if (e, k) = 1. �

For instance, by Example 10.2, ord21 5 = 6. Therefore, ord21(511) = 6, since
(11,6) = 1. We can confirm this by direct computation.

Once again, let a be a positive integer such that (a,m) = 1. Then, by Corol-
lary 10.1, ordm a|ϕ(m); so the maximum possible value of ordm a is ϕ(m). Such least
residues do exist. For example, in Example 10.1 we found that ord13 7 = 12 = ϕ(13).
Such least residues possess remarkable properties and consequently deserve special
attention, so we make the following definition.
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Primitive Roots

Let α be a positive integer such that (α,m) = 1. Then α is a primitive root modulo
m if ordm α = ϕ(m).

The following two examples illustrate this definition.

EXAMPLE 10.5 It follows by Table 10.1 that ord7 3 = 6 = ϕ(7) = ord7 5; so both 3 and 5 are primitive
roots modulo 7.

In Example 10.1, we found that ord13 7 = 12 = ϕ(13), so 7 is a primitive root
modulo 13. �

EXAMPLE 10.6 Verify that 2 is a primitive root modulo 9.

SOLUTION

Since ϕ(9) = 6, it suffices to show that 26 ≡ 1 (mod 9) and 2k �≡ 1 (mod 9) if 0 <

k < 6. Since ord9 2 = 1, 2, 3, or 6, we compute 21, 22, 23, and 26 modulo 9:

21 ≡ 2 (mod 9) 22 ≡ 4 (mod 9) 23 ≡ −1 (mod 9) and 26 ≡ 1 (mod 9)

Thus, ord9 2 = 6 = ϕ(9), and hence 2 is a primitive root modulo 9. �

Examples 10.5 and 10.6 might give the impression that every positive integer
m has a primitive root. However, this is not always the case. For example, there
are no primitive roots modulo 12. Note that there are ϕ(12) = 4 positive integers
less than 12 and relatively prime to it, namely, 1, 5, 7, and 11. But ord12 1 = 1 and
ord12 5 = ord12 7 = ord12 11 = 2; so none of them are primitive roots.

Primitive Roots Modulo Fermat Primes fn

Next, we take a look at the primitive roots modulo Fermat primes fn, where n ≥ 0.
Clearly, 2 is a primitive root modulo the Fermat primes f0 = 3 and f1 = 5. The fol-
lowing example demonstrates that these are the only Fermat primes for which 2 is a
primitive root.

EXAMPLE 10.7 Show that 2 is not a primitive root modulo any Fermat prime fn, where n ≥ 2.

PROOF

We have

22n + 1 = fn ≡ 0 (mod fn)
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so

22n ≡ −1 (mod fn)

Then

22n+1 ≡ 1 (mod fn)

ordfn 2 ≤ 2n+1

< 22n
, because 2n > n + 1 for n ≥ 2

= ϕ(fn)

Thus, 2 is not a primitive root modulo fn, where n ≥ 2. �

In Section �10.4, we shall conclusively identify those positive integers that pos-
sess primitive roots. The following theorem plays an important role in our search.

THEOREM 10.3 If α is a primitive root modulo m, then the least residues of α,α2, . . . , αϕ(m) modulo
m are a permutation of the ϕ(m) positive integers ≤ m and relatively prime to m.

PROOF

It suffices to show that α,α2, . . . , αϕ(m) are relatively prime to m and no two of them
are congruent modulo m.

• Since (α,m) = 1, by Corollary 3.2, (αk,m) = 1 for every positive integer k.
• To show that no two of the first ϕ(m) powers of α are congruent modulo

m, assume that αi ≡ αj (mod m), where 1 ≤ i, j ≤ ϕ(m). Assume further that
i ≤ j. Then, by Corollary 10.2, i ≡ j (mod ϕ(m)). But i, j ≤ ϕ(m), so i = j.
Thus, no two of the powers of α are congruent modulo m.

Thus, the least residues of α,α2, . . . , αϕ(m) modulo m are a rearrangement of the
ϕ(m) positive integers ≤ m and relatively prime to m. �

The following example illustrates this theorem.

EXAMPLE 10.8 Let m = 18. There are ϕ(18) = 6 positive integers ≤ 18 and relatively prime to 18.
They are 1, 5, 7, 11, 13, and 17. You may verify that α = 5 is a primitive root modulo
18. The first ϕ(18) = 6 powers of 5 are 5, 52, 53, 54, 55, and 56. Their least residues
modulo 18 are 5, 7, 17, 13, 11, and 1, respectively; they are a rearrangement of the
residues 1, 5, 7, 11, 13, and 17, as expected. �
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Theorem 10.3 has a powerful corollary. It gives us the exact number of primitive
roots modulo m, if they exist.

COROLLARY 10.4 If m has a primitive root, then it has ϕ(ϕ(m)) primitive roots. In particular, if m is a
prime p, then it has ϕ(p − 1) primitive roots.

PROOF

Let α be a primitive root modulo m. Then, by Theorem 10.3, the least residues of
α,α2, . . . , αϕ(m) modulo m are distinct and relatively prime to m. By Corollary 10.3,
ordm(αk) = ϕ(m) if and only if (k, ϕ(m)) = 1; that is, αk is a primitive root modulo
m if and only if (k, ϕ(m)) = 1. But there are ϕ(ϕ(m)) positive integers ≤ ϕ(m) and
relatively prime to ϕ(m). Thus, m has ϕ(ϕ(m)) primitive roots.

The special case follows trivially since ϕ(p) = p − 1. �

This proof provides a constructive method for finding all ϕ(ϕ(m)) primitive
roots modulo m from a given primitive root α modulo m. They are given by αk,
where (k, ϕ(m)) = 1, as the following example demonstrates.

EXAMPLE 10.9 Using the fact that 5 is a primitive root modulo 54, find the remaining incongruent
primitive roots.

SOLUTION

By Corollary 10.4, 54 has ϕ(ϕ(54)) = ϕ(18) = 6 primitive roots. They are given by
5k, where (k,18) = 1. The positive integers ≤ 18 and relatively prime to it are 1, 5, 7,
11, 13, and 17, so the corresponding primitive roots are given by 51, 55, 57, 511, 513,
and 517 modulo 54, that is, 5, 47, 41, 29, 23, and 11, respectively. Thus, the remaining
primitive roots modulo 54, in increasing order, are 11, 23, 29, 41, and 47. �

The following example employs the special case in Corollary 10.4.

EXAMPLE 10.10 Find the incongruent primitive roots modulo 19.

SOLUTION

By trial and error, we find that 2 is a primitive root modulo 19. Therefore, by Corol-
lary 10.5, 19 has ϕ(18) = 6 primitive roots 2k, where (k,18) = 1. Thus they are 21,
25, 27, 211, 213, and 217 modulo 19, that is, 2, 3, 10, 13, 14, and 15 in ascending
order. �
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E X E R C I S E S 10.1

Evaluate each.

1. ord7 3 2. ord8 5
3. ord11 5 4. ord13 8
5. Given that ord23 9 = 11, find ord23 14.
6. Given that ord19 11 = 3, find ord19 8.
7. Using the congruence 58 ≡ 1 (mod 13), compute

ord13 5.
8. Using the congruence 39 ≡ −1 (mod 19), compute

ord19 3.

Using the given order of the least residue a of a prime p,
find the order of the given element b modulo p.

9. ord13 4 = 6, b = 45 10. ord17 8 = 16, b = 89

11. ord11 7 = 10, b = 74 12. ord17 2 = 8, b = 26

13. Show, by an example, that ordp(−a) �= ordp a.

Verify each.

14. ord11 3 = 5

15. 34 + 33 + 32 + 3 + 1 ≡ 0 (mod 11)

16. ord13 4 = 6

17. 45 + 44 + · · · + 4 + 1 ≡ 0 (mod 13)

Find the least positive integer m such that

18. ordm 9 = 16 19. ordm 5 = 22
20. ordm 5 = 6 21. ordm 7 = 10
22. Make a conjecture using Exercises 18–21.

Give a counterexample to disprove each statement, where
p is a prime.

23. ordp(p − a) = ordp a.
24. If d|ϕ(m), then there is a least residue a modulo m

with order d.
25. Every prime p has an even number of primitive roots.
26. Without direct computation, show that ord8 a ≤ 2,

where (a,8) = 1.
27. Using the fact that ord13 5 = 4, compute the remain-

der when 51001 is divided by 13.
28. Using the fact that 6 is a primitive root modulo 41,

compute the remainder when 62020 is divided by 41.

Using the orders of the given least residues a and b mod-
ulo m, compute ordm(ab).

29. ord9 7 = 3, ord9 8 = 2
30. ord13 3 = 3, ord13 5 = 4

Assuming each prime p has a primitive root, find the num-
ber of primitive roots modulo p.

31. 11 32. 17 33. 29 34. 101

Find the incongruent primitive roots modulo the given
prime. Assume each has a primitive root.

35. 7 36. 11 37. 13 38. 17
39. Using Exercises 35–38, make a conjecture about the

product of the incongruent primitive roots modulo an
odd prime p.

40. Show that 8 has no primitive roots.
41. Show that 12 has no primitive roots.
42. Let p be an odd prime. Then every prime factor of Mp

is of the form 2kp + 1. Using this fact, find the small-
est prime factor of M11. (See Exercise 54 for a proof
of this fact.)

43. Let p and q be primes > 3 and q|Rp, where Rp is
the repunit with p ones. Then q must be of the form
2kp + 1. Using this fact, find the least prime factors
of R5, R7, R13, and R41. (See Exercise 55 for a proof
of this fact.)

Prove each, where p is a prime, and a and m are positive
integers.

44. If a prime p > 3 has a primitive root, then it has an
even number of primitive roots.

45. Let a−1 be a multiplicative inverse of a modulo m.
Then ordm(a−1) = ordm a.

46. A least residue a is a primitive root modulo m if and
only if a−1 is a primitive root modulo m.

47. Let (a,m) = 1 such that ordm a = m − 1. Then m is a
prime.

48. Let p be an odd prime and ordp r = e. Then re−1 +
re−2 + · · · + r + 1 ≡ 0 (mod p).

49. Let p ≡ 1 (mod 4) be a prime and a a positive integer
such that p � a. Then a is a primitive root modulo p if
and only if p − a is also a primitive root.

50. Let α be a primitive root modulo a positive integer
m ≥ 3. Then αϕ(m)/2 ≡ −1 (mod m).



464 CHAPTER 10 Primitive Roots and Indices

51. Let ordm a = hk. Then ordm(ah) = k.
52. Let ordm a = h and ordm b = k, where (h, k) = 1.

Then ordm ab = hk.
53. Let p and q be odd primes such that q|ap − 1. Then

either q|a − 1 or q = 2kp + 1 for some integer k.
54. Let p be an odd prime. Then every prime factor of Mp

is of the form 2kp + 1. (Hint: Use Exercise 53.)
55. Let p and q be primes > 3 and q|Rp, where Rp is

the repunit with p ones. Then q must be of the form
2kp + 1.

56. The odd prime factors of the integers n2 + 1 are of
the form 4k + 1.

57. The odd prime factors of the integers n4 + 1 are of
the form 8k + 1.

58. There are infinitely primes of the form 4k + 1.
[Hint: Assume there is only a finite number of
such primes, p1,p2, . . . ,pr . Then consider N =
(2p1p2 · · ·pr)

2 + 1 and use Exercise 56.]
59. There are infinitely many primes of the form 8k + 1.

[Hint: Assume there is only a finite number of
such primes, p1,p2, . . . ,pr . Then consider N =
(2p1p2 · · ·pr)

4 + 1 and use Exercise 57.]

� �

10.2 Primality Tests

We can use the concept of the order of an integer to develop primality tests. Lucas’
theorem, discovered in 1876, provides one such test; it is based on the fact that a
positive integer n is prime if and only if ϕ(n) = n − 1.

THEOREM 10.4 (Lucas’ Theorem) Let n be a positive integer. If there is a positive integer x such
that xn−1 ≡ 1 (mod n) and x(n−1)/q �≡ 1 (mod n) for all prime factors q of n − 1, then
n is prime.

PROOF

Let ordn x = e. Since xn−1 ≡ 1 (mod n), by Theorem 10.1, e|n − 1. We would like to
show that e = n − 1, so assume that e �= n − 1. Since e|n − 1, n − 1 = ke for some
integer k > 1. Let q be a prime factor of k. Then:

x(n−1)/q = xke/q = (xe)(k/q)

≡ 1 (mod n),

which is a contradiction. So e = n−1; that is, ordn x = n−1 = ϕ(n), because n−1 =
ordn x|ϕ(n) ≤ n − 1. Thus, n is a prime. �

The following example illustrates this test.
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EXAMPLE 10.11 Using Lucas’ theorem, show that n = 1117 is a prime.

SOLUTION

We shall choose x = 2 to show that n satisfies the conditions of the test.
First, notice that

21116 = (2100)11 · 216

≡ 29311 · 750 ≡ 70 · 750 ≡ 1 (mod 1117)

Since 1116 = 22 · 32 · 31, the prime factors of n − 1 = 1116 are 2, 3, and 31.
When q = 2,

2(n−1)/q = 2558 = (250)11 · 28

≡ 6911 · 256 ≡ 1069 · 256 ≡ −1 (mod 1117);
when q = 3,

2(n−1)/q = 2372 = (250)7 · 222

≡ 697 · 1086 ≡ 112 · 1086 ≡ 996 (mod 1117);
when q = 31,

2(n−1)/q = 236 = (210)3 · 26

≡ (−93)3 · 64 ≡ 1000 · 64 ≡ 331 (mod 1117)

Thus, 21116/q �≡ 1 (mod 1117) for all prime factors q of 1116. Therefore, by Lucas’
theorem, 1117 is a prime. �

Note: As this example indicates, a scientific calculator, such as TI-86, with a built-in
mod operator will speed up your computation.

We can refine Lucas’ theorem to yield the following more efficient primality
test.

COROLLARY 10.5 Let n be an odd positive integer. If there is a positive integer x such that x(n−1)/2 ≡ −1
(mod n) and x(n−1)/q �≡ 1 (mod n) for all odd prime factors q of n−1, then n is prime.

PROOF

Since x(n−1)/2 ≡ −1 (mod n), xn−1 = (x(n−1)/2)2 ≡ (−1)2 ≡ 1 (mod n). Further-
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more, x(n−1)/q �≡ 1 (mod n), when q = 2 or q is any odd prime factor of n − 1. Thus,
both conditions in Lucas’ theorem are satisfied, so n is prime. �

The following example illustrates this refined test.

EXAMPLE 10.12 Using Corollary 10.5, verify that n = 1213 is a prime.

SOLUTION

We shall use x = 5 here. Since n − 1 = 1212 = 22 · 3 · 101, the odd prime factors of
n − 1 are 3 and 101.

Notice that

5(n−1)/2 = 5606 = (5100)6 · 56

≡ (−252)6 · 1069 ≡ 497 · 1069 ≡ −1 (mod 1213)

When q = 3,

5(n−1)/q = 5404 = (5100)4 · 54

≡ (−252)4 · 625 ≡ 21 · 625 ≡ 995 (mod 1213)

When q = 101,

5(n−1)/q = 512 = 510 · 52

≡ (−238) · 25 ≡ 115 (mod 1213)

Thus, in both cases, 5(n−1)/q �≡ 1 (mod 1213), so 1213 is a prime. �

E X E R C I S E S 10.2

Verify that each number is a prime, using Lucas’ theorem
and the given value of x.

1. 101, x = 2 2. 257, x = 3

3. 773, x = 3 4. 823, x = 3

Verify that each number is a prime, using Corollary 10.5
and the given value of x.

5. 127, x = 3 6. 241, x = 7

7. 577, x = 5 8. 797, x = 2

9. Let fn denote the nth Fermat number. Suppose there

exists a positive integer x such that x22n ≡ 1 (mod fn)

and x22n−1 �≡ 1 (mod fn). Prove that fn is a prime.
10. Using Exercise 9, show that both f2 and f3 are primes.

� �
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10.3 Primitive Roots for Primes

In Corollary 10.4, we found that if a positive integer m has a primitive root, then it
has ϕ(ϕ(m)) primitive roots. The corollary, however, does not assure us that every
positive integer m has a primitive root. For example, 8 does not have a primitive
root. To see this, notice that ϕ(8) = 4. For a positive integer a to be a primitive root
modulo 8, (a,8) = 1 and hence a must be odd. So a ≡ ±1 or ±3 (mod 8). Then
a2 ≡ 1 (mod 8). Thus ord8 a ≤ 2. Consequently, ord8 a �= ϕ(8), so a cannot be a
primitive root.

The obvious question is: What kind of positive integers m have primitive roots?
First, we need to show that every prime has a primitive root. To this end, we need to
lay some groundwork by using polynomial congruences.

Let f (x) be a polynomial with integral coefficients. An integer α is a solution of
f (x) ≡ 0 (mod m) if f (α) ≡ 0 (mod m). Clearly, if β ≡ α (mod m), then β is also a
solution modulo m.

EXAMPLE 10.13 Consider the polynomial congruence

f (x) = x2 − x + 1 ≡ 0 (mod 13).

It has two incongruent solutions modulo 13, namely 4 and 10:

f (4) ≡ 16 − 4 + 1 ≡ 0 (mod 13)

f (10) ≡ 100 − 10 + 1 ≡ 0 (mod 13)

But the congruence 2x2 + 3x + 4 ≡ 0 (mod 5) has no solutions. (Verify this.) �

The following theorem about the number of solutions of polynomial congru-
ences f (x) ≡ 0 (mod p) plays a pivotal role in the existence proof of primitive roots
for primes.

THEOREM 10.5 (Lagrange’s Theorem) Let f (x) =
n∑

i=0
aixi be a polynomial of degree n ≥ 1 with

integral coefficients, where p � an. Then the congruence f (x) ≡ 0 (mod p) has at most
n incongruent solutions modulo p.

PROOF (by induction on n)
When n = 1, f (x) = a1x + a0, where p � a1. Since (p,a1) = 1, the congruence a1x +
a0 ≡ 0 (mod p) has a unique solution, by Corollary 4.6. So when n = 1, f (x) ≡ 0
(mod p) has at most one solution. Thus the theorem is true when n = 1.
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Now assume it is true for polynomials of degree k − 1. Let f (x) =
k∑

i=0
aixi be a

polynomial of degree k, where p � ak. If f (x) ≡ 0 (mod p) has no solutions, then the
result follows.

So assume that it has at least one solution α, where 0 ≤ α < p. Let q(x) be the
quotient and r (an integer) be the remainder when f (x) is divided by x − α, where
q(x) is a polynomial of degree k − 1 with integral coefficients. (This follows by the
remainder theorem.) Then

f (x) = (x − α)q(x) + r

Then

f (α) = (α − α)q(α) + r

0 ≡ 0 + r (mod p)

r ≡ 0 (mod p)

Therefore,

f (x) ≡ (x − α)q(x) (mod p)

where degree q(x) ≤ k − 1. Let β be any other incongruent solution of f (x) ≡ 0
(mod p), where 0 ≤ β < p. Then

f (β) ≡ (β − α)q(β) (mod p)

0 ≡ (β − α)q(β) (mod p)

Since β �≡ α (mod p), this implies q(β) ≡ 0 (mod p). Thus, every solution of f (x) ≡
0 (mod p), different from α, is a solution of q(x) ≡ 0 (mod p). Clearly, every solution
of q(x) ≡ 0 (mod p) is also a solution of f (x) ≡ 0 (mod p). Since deg q(x) ≤ k−1, by
the inductive hypothesis, q(x) ≡ 0 (mod p) has at most k − 1 solutions, so f (x) ≡ 0
(mod p) has at most 1 + (k − 1) = k solutions.

Thus, by induction, the theorem is true for every polynomial of degree n ≥ 1. �

For example, the polynomial f (x) = x2 − x+1 in Example 10.13 has degree two
and the congruence f (x) ≡ 0 (mod 13) has at most two solutions modulo 13. The
polynomial g(x) = 2x2 + 3x + 4 also has degree two, but the congruence g(x) ≡ 0
(mod 5) has no solutions modulo 5; in any case, it has at most two solutions.

The following result is a very important consequence of this theorem. It plays a
crucial role in establishing the existence of primitive roots for primes.

COROLLARY 10.6 If p is a prime and d|p − 1, then the congruence xd − 1 ≡ 0 (mod p) has exactly d
incongruent solutions modulo p.
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PROOF

By Fermat’s little theorem, the congruence xp−1 − 1 ≡ 0 (mod p) has exactly p − 1
solutions modulo p, namely, 1 through p − 1. Since d|p − 1,

xp−1 − 1 = (xd − 1)(xp−1−d + xp−1−2d + · · · + xd + 1)

= (xd − 1)g(x)

where g(x) = xp−1−d +xp−1−2d +· · ·+xd +1 is a polynomial of degree p−1−d. By
Lagrange’s theorem, g(x) ≡ 0 (mod p) has at most p − 1 − d incongruent solutions.
Therefore, xd − 1 ≡ 0 (mod p) has at least (p − 1) − (p − 1 − d) = d incongruent
solutions. But, again, by Lagrange’s theorem, xd − 1 ≡ 0 (mod p) has at most d
incongruent solutions. Thus, it has exactly d incongruent solutions modulo p. �

The following example illustrates this result.

EXAMPLE 10.14 Find the incongruent solutions of the congruence x3 − 1 ≡ 0 (mod 13).

SOLUTION

Since x3 − 1 = (x − 1)(x2 + x + 1), the congruence x3 − 1 ≡ 0 (mod 13) implies
x − 1 ≡ 0 (mod 13) or x2 + x + 1 ≡ 0 (mod 13). The congruence x − 1 ≡ 0 (mod 13)

yields x = 1. Because x2 + x + 1 ≡ x2 + x − 12 ≡ (x + 4)(x − 3) ≡ 0 (mod 13),
x ≡ 3 (mod 13) or x ≡ −4 ≡ 9 (mod 13). (Verify both.) It has no other incongruent
solutions. Thus, the given congruence has exactly three incongruent solutions: 1, 3,
and 9. �

Wilson’s theorem, presented in Section 7.1, can be derived elegantly from Corol-
lary 10.6, as shown below. But first, we should note that Lagrange’s theorem can be

restated as follows: Let f (x) =
n∑

i=0
aixi be a polynomial of degree n with integral co-

efficients. If the congruence f (x) ≡ 0 (mod p) has more than n incongruent solutions,
then ai ≡ 0 (mod p) for every i.

COROLLARY 10.7 (Wilson’s Theorem) If p is a prime, then (p − 1)! ≡ −1 (mod p).

PROOF

[The essence of the proof lies in cleverly selecting a suitable polynomial f (x).] Let
f (x) = (x−1)(x−2) · · · (x−p+1)−xp−1 +1. Clearly, f (x) is a polynomial of degree
p−2 with integral coefficients. By Fermat’s little theorem, xp−1 −1 ≡ 0 (mod p) has
p−1 incongruent solutions. Each is also a solution of (x−1)(x−2) · · · (x−p+1) ≡
0 (mod p). Therefore, f (x) ≡ 0 (mod p) has p − 1 incongruent solutions, one more
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than the degree of f (x). Therefore, every coefficient of f (x) must be congruent to 0
modulo p. In particular, the constant term f (0) must be congruent to 0 modulo p. But

f (0) = (−1)(−2) · · · [−(p − 1)] − 0 + 1

= (−1)p−1(p − 1)! + 1

Therefore, (−1)p−1(p − 1)! + 1 ≡ 0 (mod p); that is, (p − 1)! ≡ (−1)p (mod p).
If p = 2, then (−1)p ≡ 1 ≡ −1 (mod p); if p is odd, then (−1)p = −1. Thus, in

both cases, (p − 1)! ≡ −1 (mod p). �

Next, we turn to a major result on the number of incongruent residues of order
d modulo p. However, before we do, let us study an example that will illuminate the
proof of the theorem.

EXAMPLE 10.15 Let p = 19 and d|p − 1. Let ψ(d)† denote the number of incongruent residues of
order d modulo p. Compute ψ(d) and ϕ(d) for each d, and

∑

d|p−1
ψ(d).

SOLUTION

(The details are left for you to fill in.) Because d|18, d = 1, 2, 3, 6, 9, or 18. The
number ψ(d) of incongruent residues of order d, the incongruent residues of order d,
and ϕ(d) are listed in Table 10.2 for various values of d. (Verify them.)

d 1 2 3 6 9 18
Incongruent 4, 5, 2, 3,

residues 1 18 7, 11 8, 12 6, 9 10, 13
of order d 16, 17 14, 15

ψ(d) 1 1 2 2 6 6
ϕ(d) 1 1 2 2 6 6

Table 10.2

It follows from the table that

∑

d|p−1

ψ(d) =
∑

d|18

ψ(d)

= 1 + 1 + 2 + 2 + 6 + 6 = 18

= p − 1 �

† ψ is the lowercase Greek letter psi.
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Figure 10.1 A partitioning of the set of positive residues modulo 19.

Let’s pursue this example a bit further. Notice that the incongruent residues of
order d modulo 19 form a partitioning of the set of positive residues modulo 19, as
Figure 10.1 shows; ψ(d) denotes the number of elements in each class. Interestingly
enough, ψ(d) = ϕ(d) for each d. (See Exercises 12–15.)

We now arrive at the main result, proved by the French mathematician Adrien-
Marie Legendre in 1785.

THEOREM 10.6 Let p be a prime and d a positive factor of p − 1. Then there are exactly ϕ(d) incon-
gruent integers of order d modulo p.

PROOF

For every positive factor d of p − 1, let ψ(d) denote the number of positive residues
modulo p that have order d. Because there are p − 1 positive residues and each has
a unique order d, the positive residues of order d form a partitioning of the set of
positive residues. Therefore,

∑

d|p−1

ψ(d) = p − 1

But, by Theorem 8.6,
∑

d|p−1

ϕ(d) = p − 1

Therefore,
∑

d|p−1

ψ(d) =
∑

d|p−1

ϕ(d) (10.1)

Next, we need to show that ψ(d) = ϕ(d) for every d. To this end, we consider
two cases.

case 1 Let ψ(d) = 0. Then, clearly, ψ(d) < ϕ(d), so ψ(d) ≤ ϕ(d).
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case 2 Let ψ(d) �= 0. Then there must be an integer a of order d modulo p.
Consequently, by Corollary 10.3, the d integers a,a2, . . . ,ad are incongruent mod-
ulo p. Besides, each is a solution of the congruence xd − 1 ≡ 0 (mod p), since
(ak)d = (ad)k ≡ 1 (mod p), where 1 ≤ k ≤ d. Therefore, by Corollary 10.6, they are
the d incongruent solutions of the congruence xd − 1 ≡ 0 (mod p) and ordp(ak)|d by
Theorem 10.1.

But, by Corollary 10.3, ordp(ak) = ordp a = d if and only if (k,d) = 1. Since
there are ϕ(d) positive integers ≤ d and relatively prime to d, there are exactly ϕ(d)

residues of ak modulo p that have order d. Therefore, ψ(d) = ϕ(d).

Thus, in both cases, ψ(d) ≤ ϕ(d). So, for equality (10.1) to hold, we must have
ψ(d) = ϕ(d) for all d. In other words, there are exactly ϕ(d) incongruent integers
(or residues) of order d modulo p. �

The following example illustrates this theorem.

EXAMPLE 10.16 Find the number of incongruent integers of order d modulo 13, where d|12.

SOLUTION

Since d|12, d = 1, 2, 3, 4, 6, or 12. Let ψ(d) denote the number of incongruent
residues of order d modulo 13. Then

ψ(1) = ϕ(1) = 1 ψ(2) = ϕ(2) = 1 ψ(3) = ϕ(3) = 2
ψ(4) = ϕ(4) = 2 ψ(6) = ϕ(6) = 2 ψ(12) = ϕ(12) = 4

It will be useful to find the least positive residues modulo 13 of order d (see Exer-
cise 12). Since ψ(12) = 4, it follows that there are four primitive roots modulo 13. �

In the following corollary, Theorem 10.6 yields a class of positive integers that
have primitive roots.

COROLLARY 10.8 Every prime p has ϕ(p − 1) incongruent primitive roots.

PROOF

Since p − 1|p − 1, by Theorem 10.6, there are ϕ(p − 1) incongruent integers of order
p − 1 modulo p. Each of them, by definition, is a primitive root. Therefore, there are
ϕ(p − 1) primitive roots modulo p. �

For instance, p = 19 has ϕ(18) = 6 incongruent primitive roots. Try to find them.
The fact that every prime has a primitive root was established by Euler in 1773.

He even constructed a list of primitive roots modulo primes ≤ 37.



10.3 Primitive Roots for Primes 473

Notice that the proof of Corollary 10.8 is nonconstructive; that is, it does not tell
us how to find the primitive roots modulo primes. They need to be found by direct
computation. In 1839, the German mathematician Karl Gustave Jacob Jacobi pub-
lished an extensive table of primitive roots modulo primes < 1000. For convenience,
Table T.3 at the end of this book lists the least positive primitive roots modulo primes
p ≤ 100.

E X E R C I S E S 10.3

Find the incongruent roots of the congruence f (x) ≡ 0
(mod 7) for each polynomial f (x).

1. x2 + 3 2. x3 + 1

3. x2 + x + 1 4. x3 + 2x2 + 3x + 4

Find the incongruent roots of the congruence f (x) ≡ 0
(mod 11) for each polynomial f (x).

5. x2 + 3 6. x2 − x − 1
7. 2x2 + 3x + 1 8. 2x3 + x2 − 3x + 1
9. Find the incongruent roots modulo 7 of the polyno-

mial xd − 1 for every factor d of 6.
10. Find the incongruent roots modulo 13 of the polyno-

mial xd − 1 for every factor d of 12.
11. Verify that 5 is a factor of every coefficient of the

polynomial

f (x) = (x − 1)(x − 2)(x − 3)(x − 4) − x4 + 1

Find the number of incongruent integers of order d mod-
ulo the given prime p.

12. d = 4, p = 13 13. d = 6, p = 19
14. d = 11, p = 23 15. d = 48, p = 97
16. Let α be a primitive root modulo an odd prime p.

What can you say about αk if (k,p − 1) = 1?
17. Let α be a primitive root modulo an odd prime p. Can

the least residue of α(p−1)/2 modulo p be 1?
18. Let α be a primitive root modulo an odd prime p. Find

the least residue of α(p−1)/2 modulo p.

Both 3 and 5 are primitive roots modulo 7. Verify each.

19. 35 + 34 + · · · + 3 + 1 ≡ 0 (mod 7)

20. 55 + 54 + · · · + 5 + 1 ≡ 0 (mod 7)

Disprove each statement in Exercises 21 and 22.

21. The product of two primitive roots modulo an odd
prime p is a primitive root modulo p.

22. The sum of two primitive roots modulo an odd prime
p is a primitive root modulo p.

23. Show, by an example, that the sum of two primitive
roots modulo an odd prime p can also be a primitive
root.

24. The prime p = 7 has two primitive roots α. Find ordp

(−α) in each case.
25. The prime p = 11 has four primitive roots α. Find

ordp(−α) in each case.
26. Let α be a primitive root modulo a prime p ≡ 3

(mod 4). Using Exercises 24 and 25, make a conjec-
ture about ordp(−α).

Using the fact that α is a primitive root modulo an odd
prime, determine whether −α is also a primitive root.

27. α = 2, p = 5 28. α = 2, p = 13

29. α = 5, p = 17 30. α = 2, p = 29

31. Using Exercises 27–30, make a conjecture about the
prime p for which both α and −α are primitive roots.

32. Find an odd prime p such that α is a primitive root
modulo p, but −α is not.

33. Using Exercises 35–38 in Exercises 10.1, make a con-
jecture about the product of incongruent primitive
roots modulo a prime p.

Let p = 13 and d a positive factor of p − 1. Let ψ(d) de-
note the number of positive residues of order d modulo p.

34. Find ψ(d) for each d.
35. Verify that

∑

d|p−1
ψ(d) = p − 1.

36. Verify that ψ(d) = ϕ(d) for each d.
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37–39. Redo Exercises 34–36 with p = 17.

Find the least residues of order d modulo p for each posi-
tive factor d of p − 1, where

40. p = 13 41. p = 23

Using the given primitive root α modulo a prime p, find
the remaining least incongruent primitive roots modulo p.

42. α = 2, p = 13 43. α = 3, p = 17

44. α = 5, p = 23 45. α = 3, p = 31

Prove each.

46. Let α be a solution of the congruence f (x) ≡ 0
(mod m) and β ≡ α (mod m), where f (x) is a poly-
nomial with integral coefficients. Then β is also a so-
lution of the congruence.

47. Let α be a primitive root modulo an odd prime p.
Then αp−2 + αp−3 + · · · + α + 1 ≡ 0 (mod p).

48. The product of the incongruent primitive roots mod-
ulo a prime p is congruent to 1 modulo p.

49. If α is a primitive root modulo a prime p ≡ 1 (mod 4),
then α(p−1)/4 satisfies the congruence x2 + 1 ≡ 0
(mod p).

50. If α is a primitive root modulo a prime p ≡ 3 (mod 4),
then α(p−3)/4 cannot be a solution of the congruence
x2 + 1 ≡ 0 (mod p).

51. If α is a primitive root modulo a prime p ≡ 3 (mod 4),

then ordp(−α) = p − 1

2
.

52. Let α be a primitive root modulo an odd prime p.
Then −α is a primitive root modulo p if and only if
p ≡ 1 (mod 4).

53. Let α be a primitive root modulo pj, where p is an odd
prime, α is odd, and j ≥ 1. Then α is also a primitive
root modulo 2pj.

54. Let α be a primitive root modulo pj, where p is an odd
prime, α is even, and j ≥ 1. Then α + pj is a primitive
root modulo 2pj.

� �

�10.4 Composites with Primitive Roots (optional)

In the preceding section, we established that every prime p has a primitive root; in
fact, it has ϕ(p−1) primitive roots. We will now identify the class of positive integers
that possess primitive roots; it consists of 1, 2, 4, pk, and 2pk, where p is an odd prime
and k any positive integer. In Example 10.9, for instance, we found that 54 = 2 · 33

has (six) incongruent primitive roots. The development of this major result is a bit
complicated. We begin by showing that p2 has a primitive root, but first, we need to
study an example.

EXAMPLE 10.17 Notice that α = 2 is the only primitive root modulo p = 3. It is also a primitive root
modulo p2 = 9: 2ϕ(9) = 26 ≡ 1 (mod 9), and 2k �≡ 1 (mod 9) for k < 6. Thus, α is a
primitive root modulo both p and p2.

Likewise, 3 is a primitive root modulo both 5 and 52. (Verify this.) �
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Before moving on to our first result, we add a lemma to shorten its proof.

LEMMA 10.1 Let α be a primitive root modulo an odd prime p. Then ordp2(α + p) �= p − 1.

PROOF (by contradiction)
Let β = α + p. Assume that ordp2 β = p − 1. Then βp−1 ≡ 1 (mod p2). We have

βp−1 = (α + p)p−1

= αp−1 + (p − 1)αp−2p +
(

p − 1

2

)

αp−3p2 + · · · + pp−1

1 ≡ αp−1 + p(p − 1)αp−2 (mod p2)

1 ≡ 1 − pαp−2 (mod p2)

This yields pαp−2 ≡ 0 (mod p2); that is, αp−2 ≡ 0 (mod p). This is a contradiction,
since α is a primitive root. Thus,

ordp2 β = ordp2(α + p) �= p − 1 �

The following example illustrates this result.

EXAMPLE 10.18 Notice that α = 5 is a primitive root modulo 7. Verify that

ordp2(α + p) = ord49 12 �= ord7 5 = ordpα

PROOF

Notice that 122 ≡ −3 (mod 49), 123 ≡ 13 (mod 49), 126 ≡ 22 (mod 49), 127 ≡ 19
(mod 49), and 1221 ≡ −1 (mod 49). Therefore, ord49 12 = 42 �= 6 = ord7 5. �

The following theorem shows that p2 has a primitive root for every odd prime p.

THEOREM 10.7 If α is a primitive root modulo an odd prime p, then either α or α + p is a primitive
root modulo p2.

PROOF

Since α is a primitive root modulo p, ordp α = p − 1. Let ordp2 α = e. Then αe ≡ 1
(mod p2), so e|ϕ(p2), but ϕ(p2) = p(p − 1). Therefore, e|p(p − 1).

Since αe ≡ 1 (mod p2), αe ≡ 1 (mod p), so p − 1|e. Then e = k(p − 1) for some
integer k. Therefore, k(p − 1)|p(p − 1), so k|p. Thus, either k = 1 or k = p; that is,
either e = p − 1 or e = p(p − 1).
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case 1 Let e = p(p − 1). Then e = ϕ(p2), so α is a primitive root modulo p2.

case 2 Let e = p − 1. We shall show that β = α + p is a primitive root modulo p2.
Since β ≡ α (mod p), β is also a primitive root modulo p. Therefore, by the preced-
ing discussion, ordp2 β = p − 1 or p(p − 1). But, by Lemma 10.1, ordp2 β �= p − 1.
So ordp2 β = p(p − 1) = ϕ(p2). Thus, β = α + p is a primitive root modulo p2. �

This theorem shows that the square of every odd prime has a primitive root. It
also provides a mechanism for finding such a primitive root, as the following example
illustrates.

EXAMPLE 10.19 Recall from Example 10.17 that α = 3 is a primitive root modulo both 5 and 52. In
Example 10.18, we found that α = 5 is a primitive root modulo 7. Although it is not
a primitive root modulo 49, α+p = 5+7 = 12 is a primitive root modulo 49. (Verify
this.) �

Now we can show that every power pk of an odd prime p has a primitive root.
We know that it is true for k = 1 and 2. So it suffices to show that it is true for k ≥ 3.
Again, we split the proof into smaller units, for the sake of clarity.

LEMMA 10.2 Let α be a primitive root modulo an odd prime p such that αp−1 �≡ 1 (mod p2). Then
αpk−2(p−1) �≡ 1 (mod pk) for every integer k ≥ 2.

PROOF (by induction on k)
When k = 2,

αpk−2(p−1) = αp−1 �≡ 1 (mod p2)

by the hypothesis. Thus, the statement is true when k = 2.
Assume it is true for an arbitrary integer t ≥ 2:

αpt−2(p−1) �≡ 1 (mod pt)

Since (α,p) = 1, (α,pt−1) = 1. So, by Euler’s theorem,

αϕ(pt−1) ≡ 1 (mod pt−1)

That is,

αpt−2(p−1) ≡ 1 (mod pt−1)
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Then

αpt−2(p−1) = 1 + qpt−1 (10.2)

for some integer q. By the inductive hypothesis, this implies p � q.
Now we take the pth power of both sides of equation (10.2) and expand the RHS

using the binomial theorem:

αpt−1(p−1) = (1 + qpt−1)p

= 1 + qpt +
(

p

2

)

q2p2(t−1) + · · · + qppp(t−1)

≡ 1 + qpt (mod pt+1)

Since p � q, this implies

αpt−1(p−1) �≡ 1 (mod pt+1)

Thus, by induction, the given statement is true for every integer k ≥ 2. �

This lemma enables us to complete the next segment of our proof.

THEOREM 10.8 Every power pk of an odd prime p has a primitive root, where k ≥ 2.

PROOF

Let α be a primitive root modulo p. If α is also a primitive root modulo p2, then
αp−1 �≡ 1 (mod p2). On the other hand, if α is not a primitive root modulo p2, then,
by Theorem 10.7, β = α + p is a primitive root modulo p2,where β ≡ α (mod p)

and βp−1 �≡ 1 (mod p2). Thus, in both cases, p2 has a primitive root γ such that
γ p−1 �≡ 1 (mod p2). (Note: γ = α if α is a primitive root modulo p2; otherwise,
γ = β.) Therefore, by Lemma 10.2,

γ pk−2(p−1) �≡ 1 (mod pk)

for every integer k ≥ 2.
Next we need to show that γ is in fact a primitive root modulo pk; that

is, ordpk γ = ϕ(pk). To this end, assume that ordpk γ = e. Then e|ϕ(pk), where
ϕ(pk) = pk−1(p − 1). Since γ e ≡ 1 (mod pk), γ e ≡ 1 (mod p). This implies p − 1|e.

Let e = (p − 1)t for some integer t. Then (p − 1)t|pk−1(p − 1); that is, t|pk−1.
So t = pi, where 0 ≤ i ≤ k − 1 and hence e = pi(p − 1). If i ≤ k − 2, then

γ pi(p−1) ≡ 1 (mod pk)

which is a contradiction. Therefore, i = k − 1 and hence ordpk γ = pk−1(p − 1) =
ϕ(pk). Thus, γ is a primitive root modulo pk for every k ≥ 2. �
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Two interesting observations: (1) The proof of this theorem gives us a bonus. It
shows every primitive root modulo p2 is also a primitive root modulo pk, where
k ≥ 2. (2) So, by Theorems 10.7 and 10.8, a primitive root α modulo an odd prime
p can be employed to find a primitive root γ modulo pk. If α is a primitive root
modulo p2, then γ = α; otherwise, γ = α + p.

The following example illustrates both cases.

EXAMPLE 10.20 In Example 10.19, we found that 3 is a primitive root modulo both 5 and 52. So, by
Theorem 10.8, 3 is a primitive root modulo every power of 5. For instance, it is a
primitive root modulo 56 = 15,625. To verify this, we shall just show that 3ϕ(56)/2 =
32·55 = 36250 ≡ −1 (mod 56), leaving out the details.

Since 3125 ≡ 11693 (mod 56) and 32000 ≡ 2501 (mod 56) (verify both),

36250 = (32000)3 · (3125)2

≡ 25013 · 116932 (mod 56)

≡ 15624 ≡ −1 (mod 56)

Remember that in Example 10.19, we found that α = 5 is a primitive root mod-
ulo 7, but not of 49. However, α + p = 5 + 7 = 12 is a primitive root modulo 72.
So, by Theorem 10.8, 12 is a primitive root modulo 7k, where k ≥ 2. For exam-
ple, 12 is a primitive root modulo 75 = 16,807. To verify this, we can show that
12ϕ(75)/2 = 123·74 = 127203 ≡ −1 (mod 75), leaving out the details.

We have 123 ≡ 1728 (mod 75), 12200 ≡ −4336 (mod 75) and 127000 ≡ −4184
(mod 75). (Verify them.) Therefore,

127203 = 127000 · 12200 · 123

≡ (−4184)(−4336)(1728) ≡ −1 (mod 75) �

Next, we can determine whether the integer 2k has primitive roots. Clearly, 1, 2,
and 4 have primitive roots, namely, 1, 1, and 3, respectively. At this point, the natural
question to ask is: Does 2k have primitive roots if k ≥ 3? Before we can answer,
we introduce two lemmas that enable us to shorten the proof of the next theorem,
Theorem 10.9.

LEMMA 10.3 The square of every odd integer is congruent to 1 modulo 8.
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PROOF

Let a be an odd integer, say, a = 2i + 1 for some integer i. Then a2 = 4i2 + 4i + 1 =
4i(i + 1) + 1. Since 2|i(i + 1),8|4i(i + 1), so a2 ≡ 1 (mod 8). �

LEMMA 10.4 Let a be an odd integer and t ≥ 3. Then a2t−2 ≡ 1 (mod 2t).

PROOF (by induction on t)
The given conclusion is clearly true when t = 3, by Lemma 10.3. So assume it is true
for an arbitrary integer k ≥ 3:

a2k−2 ≡ 1 (mod 2k)

a2k−2 = 1 + q · 2k for some integer q
Then

a2k−1 = (a2k−2
)2 = (1 + q · 2k)2

= 1 + q · 2k+1 + q222k

≡ 1 (mod 2k+1)

Thus, if the statement holds for t = k, it also holds for t = k + 1. Therefore, by
induction, the conclusion is true for every integer t ≥ 3. �

Using this lemma, we can conclude that 2k has no primitive roots if k ≥ 3, as the
following theorem shows.

THEOREM 10.9 The integer 2k has no primitive roots if k ≥ 3.

PROOF (by contradiction)
Suppose 2k has a primitive root α. Then ord2k α = ϕ(2k) = 2k−1. But, since

(α,2) = 1, α is odd. Then, by Lemma 10.4, α2k−2 ≡ 1 (mod 2k). Consequently,
ord2k α ≤ 2k−2, which is a contradiction. Thus, 2k has no primitive roots for k ≥ 3. �

By virtue of this theorem, the integers 8, 16, 32, 64, and so on, possess no prim-
itive roots.

Next we can prove that a positive integer cannot have a primitive root, if it is
divisible by two distinct odd primes, or if it has the form 2ipj, where i ≥ 2 and p is
an odd prime. To this end, we need the following lemma.

LEMMA 10.5 The integer ab possesses no primitive roots if a,b > 2 and (a,b) = 1.

PROOF (by contradiction)
Suppose ab has a primitive root α. Then (α,ab) = 1 and αϕ(ab) ≡ 1 (mod ab). Since
(α,ab) = 1, (α,a) = 1 = (α,b).
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Let d = (ϕ(a), ϕ(b)). Since a, b > 2, both ϕ(a) and ϕ(b) are even by Theo-

rem 8.5, so d ≥ 2. Besides, since d|ϕ(a) and d|ϕ(b),
ϕ(a)ϕ(b)

d
= ϕ(ab)

d
is an integer.

But d > 1, so
ϕ(ab)

d
< ϕ(ab).

Since (α,a) = 1 and αϕ(a) ≡ 1 (mod a),

αϕ(ab)/d = αϕ(a)ϕ(b)/d = [αϕ(a)]ϕ(b)/d [Note: d|ϕ(b).]
≡ 1ϕ(b)/d ≡ 1 (mod a)

Similarly, αϕ(ab)/d ≡ 1 (mod b). Therefore, αϕ(ab)/d ≡ 1 (mod ab), which is a con-
tradiction, since α is a primitive root modulo ab and ϕ(ab)/d < ϕ(ab). Thus, ab has
no primitive roots. �

For example, 20 has no primitive roots, since 20 = 4 · 5, where 4, 5 > 2 and
(4,5) = 1. Likewise, 150 = 6 · 25 has no primitive roots.

THEOREM 10.10 A positive integer has no primitive roots if it has two distinct odd prime factors, or if
it is of the form 2ipj, where p is an odd prime and i ≥ 2.

PROOF

Suppose a positive integer n has two distinct odd prime factors p and q. Then, by
Lemma 10.5, piqj and hence n has no primitive roots.

On the other hand, let n = 2ipj, where i ≥ 2 and p is an odd prime. Again, by
Lemma 10.5 with a = 2i and b = pj, n = ab = 2ipj does not have a primitive root.
This concludes the proof. �

EXAMPLE 10.21 The integer 1125 = 32 · 53 has no primitive roots, since it is divisible by two distinct
odd primes. Likewise, 3780 = 22 · 33 · 5 · 7 also has no primitive roots. The integer
19,208 = 23 · 74 also has none since it has the form 2ipj, where i ≥ 2. �

Theorem 10.10 brings us a giant step forward in our search for positive integers
with primitive roots. It narrows the list considerably to a list of integers of the form
n = 2ipj, where p is an odd prime. If i = 0 and j = 0, then n = 1 has a primitive root.
On the other hand, if j > 0, then by Corollary 10.8 and Theorems 10.7 and 10.8,
n = pj has a primitive root. If i ≥ 2, then, by Theorem 10.10, n has no primitive
roots.

We will now take up the remaining case n = 2pj in the following theorem.

THEOREM 10.11 The integer n = 2pj, where p is an odd prime, has a primitive root.
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PROOF

Let α be a primitive root modulo pj. (Such an integer exists by Corollary 10.10 and
Theorem 10.8.) So

αϕ(pj) ≡ 1 (mod pj)

case 1 Suppose α is odd. (We shall show that α is a primitive root modulo n.)
Since ϕ(n) = ϕ(2pj) = ϕ(2)ϕ(pj) = ϕ(pj),

αϕ(n) = αϕ(pj) ≡ 1 (mod pj) (10.3)

Since α is odd, α ≡ 1 (mod 2), so

αϕ(pj) ≡ 1 (mod 2) (10.4)

Therefore, by congruences (10.3) and (10.4),

αϕ(n) ≡ 1 (mod 2pj); that is, αϕ(n) ≡ 1 (mod n)

Suppose ordn α = e < ϕ(n) = ϕ(2pj). Then αe ≡ 1 (mod pj). Thus ϕ(pj) ≤ e <

ϕ(pj), which is clearly a contradiction. Therefore, ordn α = ϕ(n) and α is a primitive
root modulo n.

case 2 Suppose α is even. Then β = α + pj is odd, so

βϕ(pj) ≡ 1 (mod 2)

Besides, since β ≡ α (mod pj), βϕ(n) ≡ αϕ(pj) ≡ 1 (mod 2pj); that is, βϕ(n) ≡ 1
(mod n). As in case 1, it follows that β is a primitive root modulo n.

Thus, in both cases, n = 2pj has a primitive root. �

The following example illustrates this theorem.

EXAMPLE 10.22 Let n = 38 = 2 · 19. By Example 10.10, 3 is a primitive root modulo 19. So, by
Theorem 10.11, 3 is also a primitive root modulo 38. (Verify this.)

On the other hand, 10 is also a primitive root modulo 19. Since 10 is even, 10 +
19 = 29 is a primitive root modulo 38, by Theorem 10.11. To verify this, we shall just
show that 29ϕ(38)/2 = 299 ≡ −1 (mod 38), leaving out the details. Since 29 ≡ −9
(mod 38), 293 ≡ −7 (mod 38). Thus 299 = (293)3 ≡ (−7)3 ≡ −1 (mod 38). �

In conclusion, we can now combine the results in Corollary 10.8 and Theo-
rems 10.7, 10.8, 10.9, and 10.11 into Theorem 10.12, which conclusively identifies
the integers with primitive roots. It was published by Gauss in 1801.
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THEOREM 10.12 The only positive integers that possess primitive roots are 1, 2, 4, pk, and 2pk, where
p is an odd prime and k a positive integer. �

Accordingly, the first 12 positive integers that have primitive roots are 1, 2, 3, 4,
5, 6, 7, 9, 10, 11, 13, and 14; the integers 8, 12, and 15 do not have primitive roots.

E X E R C I S E S 10.4

Verify that 3 is a primitive root modulo each.

1. 52 2. 53 3. 54 4. 55

5. Verify that 3 is a primitive root modulo 72.
6. Verify that 12 is a primitive root modulo 74.

Find a primitive root modulo p2 for each odd prime p.

7. 11 8. 13 9. 17 10. 19

Find a primitive root modulo pk for each odd prime p and
k ≥ 2.

11. 3, k = 4 12. 5, k = 3

13. 7, k = 3 14. 23, k = 2

Two is a primitive root modulo 5. Determine whether each
is a primitive root modulo 52.

15. 2 16. 2 + 5

Five is a primitive root modulo 7. Determine whether each
is a primitive root modulo 72.

17. 5 18. 5 + 7

Using the given primitive root α modulo the odd prime p,
find a primitive root modulo n.

19. α = 3, p = 5, n = 10
20. α = 5, p = 23, n = 1058
21. α = 2, p = 3, n = 486
22. α = 6, p = 13, n = 4394

Determine whether each integer has a primitive root.

23. 46 24. 486
25. 1024 26. 1029
27. 2187 28. 5324
29. 11,466 30. 742,586

Find the incongruent primitive roots modulo each.

31. 22 32. 26 33. 33 34. 34

Prove each.

35. If p is an odd prime, both pk and 2pk have the same
number of primitive roots.

36. If a positive integer n (>7) has no primitive roots,
then nm has no primitive roots for any integer m ≥ 1.

� �

10.5 The Algebra of Indices

The concept of an index, which is analogous to a logarithm, was introduced by Gauss
in his Disquisitiones Arithmeticae. As we will see shortly, the concept of index is
very useful for solving certain congruences and for computing remainders.
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Let α be a primitive root modulo a positive integer m. (Recall from Theo-
rem 10.12 that m = 1, 2, 4, pk, or 2pk, where p is an odd prime.) Then, by Theo-
rem 10.3, the least residues of α,α2, . . . , αϕ(m) modulo m are a permutation of the
ϕ(m) positive integers ≤ m and relatively prime to it. For instance, in Example 10.10
we found that α = 5 is a primitive root modulo 18 and the least residues of 5, 52, 53,
54, 55, and 56 are a rearrangement of the ϕ(18) = 6 positive integers 1, 5, 7, 11, 13,
and 17 that are ≤ 18 and relatively prime to it.

Let a be a positive integer ≤ 18 and relatively prime to it. Then a ≡ 5k (mod 18)

for some positive integer k, where 1 ≤ k ≤ 6. For instance, let a = 13; then k = 4
since 13 ≡ 54 (mod 18). Accordingly, we say that 4 is the index of 13 to the base 5
modulo 18 and make the following definition.

Index

Let m be a positive integer with a primitive root α, and a a positive integer such that
(a,m) = 1. Then the least positive integer k such that αk ≡ a (mod m) is called the
index of a to the base α modulo m. It is denoted by indα a or simply ind a when no
confusion arises. Note that 1 ≤ k ≤ ϕ(m).

The following example illustrates this definition.

EXAMPLE 10.23 The integer 5 is a primitive root modulo 18. Notice that

51 ≡ 5 (mod 18) 52 ≡ 7 (mod 18) 53 ≡ 17 (mod 18)

54 ≡ 13 (mod 18) 55 ≡ 11 (mod 18) 56 ≡ 1 (mod 18)

Consequently,

ind5 5 = 1 ind5 7 = 2 ind5 17 = 3
ind5 13 = 4 ind5 11 = 5 ind5 1 = 6

Suppose we choose a different primitive root modulo 18, say, 11. Then,

111 ≡ 11 (mod 18) 112 ≡ 13 (mod 18) 113 ≡ 17 (mod 18)

114 ≡ 7 (mod 18) 115 ≡ 5 (mod 18) 116 ≡ 1 (mod 18)

Consequently,

ind11 5 = 5 ind11 7 = 4 ind11 17 = 3
ind11 13 = 2 ind11 11 = 1 ind11 1 = 6

Notice that, in general, ind5 a �= ind11 a. For instance, 2 = ind5 7 �= ind11 7 = 4. Con-
sequently, the value of indα a depends on the primitive root α (and the modulus m). �
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It follows from the definition that, as in the case of logarithms, indα a is a positive
exponent. Notice that αindα a ≡ a (mod m) and that indα a is the least such positive
exponent, where 1 ≤ indα a ≤ ϕ(m).

Suppose a ≡ b (mod m). To see how ind a and ind b are related, let us as-
sume that α is a primitive root modulo m. Then αindαa ≡ a (mod m) and αindαb ≡ b
(mod m). Because a ≡ b (mod m), αindαa ≡ αindαb (mod m). Then, by Corol-
lary 10.2, indα a = indα b. Thus, a ≡ b (mod m) if and only if indα a = indα b.

For example, 67 ≡ 13 (mod 18). Recall from Example 10.23 that ind5 13 = 4.
Since 54 ≡ 67 (mod 18), ind5 67 = 4. Thus, ind5 13 = ind5 67.

The property αindαa ≡ a (mod m) reminds us of the logarithmic property,
blogb a = a for any legal base b and any positive real number a. Likewise, the prop-
erty indα a = indα b if and only if a ≡ b (mod m) reminds us of another logarithmic
property: logb x = logb y if and only if x = y.

Indices obey three additional properties, analogous to the following logarithmic
properties:

• logb 1 = 0
• logb(xy) = logb x + logb y
• logb(x

n) = n logb x

They are presented in the following theorem.

THEOREM 10.13 Let m be a positive integer with a primitive root α, and a and b be positive integers
relatively prime to m. Then:

• indα 1 ≡ 0 (mod ϕ(m))

• indα(ab) ≡ indα a + indα b (mod ϕ(m))

• indα(an) ≡ n · indα a (mod ϕ(m))

PROOF

(1) Since α is a primitive root modulo m, ϕ(m) is the least positive integer such
that αϕ(m) ≡ 1 (mod m). Consequently, indα 1 = ϕ(m) ≡ 0 (mod ϕ(m)).

(2) By definition, αindaa ≡ a (mod m) and αindab ≡ b (mod m). Therefore,

ab ≡ αindα a · αindα b ≡ αindα a+indα b (mod m)

Again, by definition, ab ≡ αindα(ab) (mod m). Thus,

αindα(ab) ≡ αindα a+indα b (mod m)

Therefore, by Corollary 10.2, indα(ab) ≡ indα a + indα b (mod ϕ(m)).
(3) By definition, αindα(an) ≡ an (mod m). But

αn·indα a = (αindα a)n ≡ an (mod m)
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Thus,

αindα(an) ≡ αn·indα a (mod m)

indα(an) ≡ n · indα a (mod (m)) �

EXAMPLE 10.24 Verify properties (2) and (3) of Theorem 10.13 with α = 5, m = 18, a = 11, b = 13,
and n = 7.

SOLUTION

From Example 10.23, ind5 11 = 5 and ind5 13 = 4.

(1) ind5 11 + ind5 13 = 5 + 4 ≡ 3 (mod 6). [Note: ϕ(18) = 6.]
By direct computation,

ind5(11 · 13) = ind5 17 = 3

≡ ind5 11 + ind5 13 (mod 6)

(2) 7 · ind5 11 = 7 · 5 ≡ 5 (mod 6)

By direct computation, ind5(117) = ind5 11 ≡ 5 (mod 6)

Therefore, 5(117) ≡ 7 · ind5 11 (mod 6). �

Just as we can use logarithms to convert multiplication problems to addition
problems, we can use Theorem 10.13 to do the same. Accordingly, indices are useful
in solving congruences of the form axb ≡ c (mod m) and abx ≡ c (mod m), where
(a,m) = 1. The following three examples illustrate this technique.

EXAMPLE 10.25 Solve the congruence 11x ≡ 7 (mod 18).

SOLUTION

Since 5 is a primitive root modulo 18 by Example 10.8, we take ind5 of both sides of
the given congruence:

ind5(11x) ≡ ind5 7 (mod ϕ(18))

By Theorem 10.13, this yields,

ind5 11 + ind5 x ≡ ind5 7 (mod 6)

But, by Example 10.23, ind5 11 = 5 and ind5 7 = 2. Therefore:
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5 + ind5 x ≡ 2 (mod 6)

ind5 x ≡ 3 (mod 6)

x ≡ 53 ≡ 17 (mod 18)

We can verify this by direct substitution. (Note: This method requires the availability
of indices of positive integers ≤ 18 and relatively prime to it.) �

The following two examples involve a knowledge of the indices to the base 2
modulo 13. (Notice that 2 is a primitive root modulo 13.) So, for convenience, we
construct a necessary table, as Table 10.3 shows.

a 1 2 3 4 5 6 7 8 9 10 11 12
ind2 a 12 1 4 2 9 5 11 3 8 10 7 6

Table 10.3

EXAMPLE 10.26 Solve the congruence 8x5 ≡ 3 (mod 13).

SOLUTION

We have 8x5 ≡ 3 (mod 13). Take ind2 of both sides:

ind2(8x5) ≡ ind2 3 (mod 12)

Applying Theorem 10.13 twice, this yields

ind2 8 + 5 ind2 x ≡ ind2 3 (mod 12)

Using Table 10.3, this becomes

3 + 5 ind2 x ≡ 4 (mod 12)

5 ind2 x ≡ 1 (mod 12)

ind2 x ≡ 5 (mod 12)

x ≡ 6 (mod 13), by Table 10.3

Again, we can verify this by direct computation. �
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Note: In this example, we have used an index table to make solving this relatively
difficult problem surprisingly easy. In fact, there is nothing sacred about the choice
of 2 as the base. We can use any primitive root modulo 13 as the base. See Exercises
17 and 19.

Indices are useful for solving congruences with variable exponents, as the next
example illustrates.

EXAMPLE 10.27 Solve the congruence 113x ≡ 5 (mod 13).

SOLUTION

Take ind2 of both sides of the congruence:

ind2(113x) ≡ ind2 5 (mod 12)

Using Theorem 10.13, this yields

3x · ind2 11 ≡ ind2 5 (mod 12)

Now use Table 10.3:

(3x) · 7 ≡ 9 (mod 12)

7x ≡ 3 (mod 4)

x ≡ 1 (mod 4)

x ≡ 1,5, or 9 (mod 13)

Thus, the given congruence has three incongruent solutions. (See Exercises 18 and
20 also.) �

E X E R C I S E S 10.5

1. Let α be a primitive root modulo an odd prime p and
(α,p) = 1. Evaluate indα α.

2. Let α be a primitive root modulo a positive integer m.
Find indα 1.

Let α be a primitive root modulo an odd prime p and

(a,p) = 1. Then indα(p − a) ≡ indα a + p − 1

2
(mod p −

1). This formula enables us to compute indα(p − a) using
indα a. In Exercises 3–6, use the given data to compute
the corresponding index.

3. p = 13, ind2 5 = 9, ind2 8

4. p = 13, ind2 9 = 8, ind2 4

5. p = 17, ind3 11 = 7, ind3 6

6. p = 19, ind2 13 = 5, ind2 6

Using the preceding formula for indα(p − a), complete
each table.

7. p = 7,
a 1 2 3 4 5 6

ind3 a 6 2 1 . . .
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8. p = 11,
a 1 2 3 4 5 6 7 8 9 10

ind7 a 10 3 4 6 2 . . . . .

Let m be a positive integer with a primitive root α and a
a positive integer relatively prime to m. Let b be a mul-
tiplicative inverse of a modulo m. Then indα b = ϕ(m) −
indα a. Using this fact, compute indα b for the given val-
ues of m, α, and a.

9. m = 13, α = 2, a = 5

10. m = 17, α = 3, a = 7

11. m = 19, α = 2, a = 8

12. m = 18, α = 5, a = 13

Let m be a positive integer with a primitive root α. Let a
and b be positive integers such that (a,m) = 1 = (b,m)

and indα b = ϕ(m) − indα a. Then a and b are multiplica-
tive inverses of each other modulo m. Using this fact, de-
termine if the given integers a and b are multiplicative
inverses of each other for the given value of m.

13. m = 13, α = 2, a = 6, b = 11

14. m = 17, α = 3, a = 12, b = 10

15. m = 19, α = 2, a = 5, b = 13

16. m = 18, α = 11, a = 7, b = 13

Solve each congruence using indices to the base 6.

17. 8x5 ≡ 3 (mod 13) 18. 113x ≡ 5 (mod 13)

19–20. Solve the congruences in Exercises 17 and 18
using indices to the base 11.

Solve each congruence using indices.

21. 7x ≡ 13 (mod 18) 22. 5x ≡ 8 (mod 17)

23. 2x4 ≡ 5 (mod 13) 24. 3x2 ≡ 10 (mod 13)

25. 4x3 ≡ 5 (mod 17) 26. 85x ≡ 5 (mod 13)

27. 75x−1 ≡ 5 (mod 13) 28. 34x+1 ≡ 10 (mod 19)

Using indices, determine the remainder when the first in-
teger is divided by the second.

29. 231001, 13 30. 411776, 19

31. 517 · 719, 13 32. 23111 + 11123, 17

Prove each.

33. Let α be a primitive root modulo a positive integer
m > 2. Then indα(m − 1) = ϕ(m)/2.

34. Let α be a primitive root modulo an odd prime p.
Then indα(p − 1) = (p − 1)/2. (Hint: Use Exer-
cise 33.)

35. Let α be a primitive root modulo a positive integer
m > 2 and (a,m) = 1. Then indα(m − a) = indα a +
ϕ(m)/2.

36. Let m be a positive integer with a primitive root α. Let
a and b be positive integers such that (a,m) = 1 =
(b,m). Then a and b are multiplicative inverses of
each other modulo m if and only if indα b = ϕ(m) −
indα a.

37. Let p be an odd prime. Let b be a multiplicative in-
verse of an integer a modulo p, where p � a. Then
ind b = p − 1 − ind a.

38. Let p be an odd prime. Then the congruence x2 ≡ −1
(mod p) is solvable if and only if p is of the form
4k + 1.

39. There are infinitely many primes of the form 4k + 1.
[Hint: Assume there is only a finite number of primes
p1,p2, . . . ,pn of the form 4k + 1. Using Exercise 38,
show that q = (p1p2 · · ·pn)2 + 1 has a prime factor
of the form 4k + 1, but different from p1,p2, . . . ,
and pn.]

40. Let p be an odd prime. Then the congruence x4 ≡ −1
(mod p) is solvable if and only if p is of the form
8k + 1.

41. There are infinitely many primes of the form 8k + 1.
[Hint: Assume there is only a finite number of primes
p1,p2, . . . ,pn of the form 8k + 1. Using Exercise 40,
show that q = (p1p2 · · ·pn)4 + 1 has a prime factor
of the form 8k + 1, but different from p1,p2, . . . ,
and pn.]

�42. Let m be a positive integer with a primitive root and
a a positive integer such that (a,m) = 1. Then the
congruence xk ≡ a (mod m) is solvable if and only if
aϕ(m)/d ≡ 1 (mod m), where d = (k, ϕ(m)).

43. Let p be a prime and a a positive integer such that
p � a. Then the congruence xk ≡ a (mod p) is solv-
able if and only if a(p−1)/d ≡ 1 (mod p), where d =
(k,p − 1). (Hint: Use Exercise 42.)

� �
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X CHAPTER SUMMARY

In this chapter we studied three important concepts: the order of a positive integer
modulo m, primitive root, and the index of a least residue modulo m. We learned their
fundamental properties and a few applications, including the existence of infinitely
many primes of certain types; two primality tests; and methods of finding remainders
and solving special congruences.

The Order of a Positive Integer
• The order of a positive integer a, where (a,m) = 1, is the least positive ex-

ponent e such that ae ≡ 1 (mod m). It is denoted by ordm a or simply ord a.
(p. 456)

• Let ordm a = e. Then an ≡ 1 (mod m) if and only if e|n. (p. 457)
• In particular, ordm a|ϕ(m). (p. 457)
• If p is a prime, then ordm a|p − 1. (p. 457)
• Let ordm a = e. Then ai ≡ aj (mod m) if and only if i ≡ j (mod e). (p. 458)
• Let ordm a = e and k any positive integer. Then ordm(ak) = e/(e, k). (p. 458)
• ordm(ak) = e if and only if (e, k) = 1. (p. 459)

Primitive Root
• A positive integer α such that (α,m) = 1 is a primitive root modulo m if

ordm α = ϕ(m). (p. 460)
• If α is a primitive root modulo m, then the least residues of α,α2, . . . , αϕ(m)

modulo m are a permutation of the ϕ(m) positive integers ≤ m and relatively
prime to it. (p. 461)

• If m has a primitive root, then it has ϕ(ϕ(m)) primitive roots. (p. 462)
• If a prime p has a primitive root, then it has ϕ(p − 1) primitive roots. (p. 462)

Primality Tests
• (Lucas’ theorem) Let n be a positive integer. If there is a positive integer x

such that xn−1 ≡ 1 (mod n) and x(n−1)/q �≡ 1 (mod n) for all prime factors q
of n − 1, then n is prime. (p. 464)

• Let n be an odd positive integer. If there is a positive integer x such that
x(n−1)/2 ≡ −1 (mod n) and x(n−1)/q �≡ 1 (mod n) for all odd prime factors
q of n − 1, then n is prime. (p. 465)

Primitive Roots for Primes

• (Lagrange’s theorem) Let f (x) =
n∑

i=0
aixi be a polynomial of degree n ≥ 1

with integral coefficients, where p � an. Then the congruence f (x) ≡ 0 (mod p)

has at most n incongruent solutions modulo p. (p. 467)
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• If p is a prime and d|p − 1, then the congruence xd − 1 ≡ 0 (mod p) has
exactly d incongruent solutions modulo p. (p. 469)

• (Wilson’s theorem) If p is a prime, then (p − 1)! ≡ −1 (mod p). (p. 469)
• Let p be a prime and d|p−1. Then there are exactly ϕ(d) incongruent integers

of order d modulo p. (p. 471)
• Every prime p has ϕ(p − 1) incongruent primitive roots. (p. 472)

Composites with Primitive Roots
• If α is a primitive root modulo an odd prime p, then ordp2(α + p) �= p − 1.

(p. 475)
• If α is a primitive root modulo an odd prime p, then either α or α + p is a

primitive root modulo p2. (p. 475)
• Let α be a primitive root modulo an odd prime p such that αp−1 �≡ 1 (mod p2).

Then αpk−2(p−1) �≡ 1 (mod pk) for every integer k ≥ 2. (p. 476)
• Every power pk of an odd prime p has a primitive root, where k ≥ 2. (p. 477)
• The square of every odd integer is congruent to 1 modulo 8. (p. 478)
• Let a be an odd integer and t ≥ 3. Then a2t−2− ≡ 1 (mod 2t). (p. 479)
• The integer 2k has no primitive roots if k ≥ 3. (p. 479)
• The integer ab possesses no primitive roots if a,b > 2 and (a,b) = 1.

(p. 479)
• A positive integer has no primitive roots if it has two distinct odd prime factors

or if it is of the form 2ipj, where p is an odd prime and i ≥ 2. (p. 480)
• The integer n = 2pj, where p is an odd prime, has a primitive root. (p. 480)
• The only positive integers that possess primitive roots are 1, 2, 4, pk, and 2pk,

where p is an odd prime and k a positive integer. (p. 482)

Index of an Integer
• Let α be a primitive root modulo m and (a,m) = 1. The least positive integer

k such that αk ≡ a (mod m) is the index of a to the base α modulo m, denoted
by indαa or simply ind a. For a given modulus m, it depends on the choice
of α. (p. 483)

• Let m be a positive integer with a primitive root α, and a and b be positive
integers relatively prime to m. Then:
• indα 1 ≡ 0 (mod ϕ(m))

• indα(ab) ≡ indα a + indα b (mod ϕ(m))

• indα(an) ≡ n · indα a (mod ϕ(m)) (p. 484)



Review Exercises 491

X REVIEW EXERCISES

Evaluate each.

1. ord7 4 2. ord9 4 3. ord11 4 4. ord13 4

Using the given order of the least residue a of a prime p, compute the order of the
element b modulo p.

5. ord13 5 = 4, b = 57 6. ord17 8 = 8, b = 86

Using the given orders of the least residues a and b, compute ordm(ab).

7. ord13 5 = 4, ord13 9 = 3 8. ord18 7 = 3, ord18 17 = 2

Find the number of primitive roots modulo each.

9. 24 10. 38 11. 1024 12. 33,614

Determine whether each integer has a primitive root.

13. 1723 14. 2116 15. 48,778 16. 167,042

Using the given primitive root α modulo m, find the remaining primitive roots.

17. α = 3, m = 50 18. α = 2, m = 81
19. Let α be a primitive root modulo pj, where p is an odd prime and j ≥ 1. Find a

primitive root β modulo 2pj.

Using the given primitive root α modulo each prime p, find a primitive root modulo n.

20. α = 3, p = 7, n = 2p 21. α = 5, p = 23, n = p2

22. α = 2, p = 29, n = p2 23. α = 2, p = 5, n = 2p3

Find the incongruent primitive roots modulo each.

24. 10 25. 50 26. 54 27. 81
28. 98 29. 121 30. 125 31. 162
32. Using the fact that ord15 7 = 4, compute the remainder when 372002 is divided

by 15.
33. Using the fact that 6 is a primitive root modulo 109, compute the remainder

when 4242076 is divided by 109.
34. Find ordp(p − a) if ordp a = q, where p and q are odd primes.

Compute each, where 3 and 5 are primitive roots modulo 14.

35. ind3 11 36. ind3 3 37. ind5 13 38. ind3 9

Using the modulus 50 and the fact that ind3 13 = 17 and ind3 47 = 11, compute each.

39. ind3(13 · 47) 40. ind3(474)



492 CHAPTER 10 Primitive Roots and Indices

Let α be a primitive root modulo a positive integer m > 2 and (a,m) = 1. Then
indα(m − a) ≡ indα a +ϕ(m)/2 (mod ϕ(m)). Using this fact, α = 3, m = 14, and the
given indα a, compute indα(m − a).

41. ind3 5 = 5 42. ind3 13 = 3

Solve each congruence using indices.

43. 3x7 ≡ 4 (mod 11) 44. 5x3 ≡ 8 (mod 13)

45. 54x−1 ≡ 11 (mod 17) 46. 133x−4 ≡ 16 (mod 19)

Using indices, find the remainder when the first integer is divided by the second.

47. 501976, 13 48. 10301030, 17

Verify that each integer n is a prime, using Lucas’ theorem and the given value of x.

49. n = 137, x = 3 50. n = 1193, x = 3

Verify that each integer n is a prime, using Corollary 10.5 and the given value of x.

51. n = 137, x = 3 52. n = 709, x = 2

X SUPPLEMENTARY EXERCISES

Let fn denote the nth Fermat number, where n ≥ 0.

1. Prove that ordfn 2|2n+1.
2. Find ordfn 2, where fn is a prime.
3. Prove that ordp 2 = 2n+1, where p is a prime factor of fn.
4. Prove that every prime factor of fn is of the form 2n+1k + 1. (This was shown by

Euler in 1747; eight years earlier, he had shown that every such factor must be
of the form 2t+1k + 1. (Hint: Use Exercise 3.)

5. Using the fact ord19 7 = 3, find ord19 8. (Hint: 8 = 7 + 1.)
6. Using the fact ord31 26 = 6, find ord31 25. (Hint: 25 = 26 − 1.)
7. Let ordp a = 3, where p is an odd prime. Prove that ordp(a + 1) = 6.
8. Let ordp(a + 1) = 6, where p is an odd prime. Prove that ordp a = 3.

Let k, m, and n be any positive integers. Prove or disprove each.

9. ordmn 10 = [ordm 10,ordn 10], where (m,10) = (n,10) = (m,n) = 1. (C. Cooper
and R. E. Kennedy, 1995)

10. If p is a prime > 3, then ordpk 10 = pk−1 ·ordp10. (C. Cooper and R. E. Kennedy,
1995)

�11. Find an odd prime p and a primitive root g modulo p such that 1 < g < p and g
is not a primitive root modulo p2. (S. W. Golomb, 1993)
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X COMPUTER EXERCISES

Write a program to perform each task.

1. Read in a prime p and find the order of each least residue modulo p.
2. Read in a positive integer m. Find the order of each least residue modulo m, if it

exists.
3. Read in a positive integer m and list all its primitive roots, if they exist.
4. Find the smallest prime p with a primitive root α such that it is not a primitive

root modulo p2.
5. Make a list of primes p ≤ 100 and the smallest primitive root modulo each.
6. Read in a primitive root α modulo a prime p and print the remaining incongruent

primitive roots modulo p.
7. Read in a primitive root α modulo pj, where p is an odd prime and j ≥ 1. Using

α, find a primitive root modulo 2pj.
8. Read in an odd prime p. Find a primitive root α modulo p and use it to find a

primitive root modulo p2 and 2pj, where j ≥ 1.
9. Read in the first 10 odd primes p. Find a primitive root α modulo p and use it to

find a primitive root modulo p2 and 2pj for each p, where j ≥ 1. Print the output
in tabular form.

10. Read in an odd prime p. Find a primitive root α modulo p and use it to construct
a table of indices of every least positive residue a modulo p. Use the table to pair
the least residues that are multiplicative inverses of each other.

X ENRICHMENT READINGS

1. J. D. Dixon, “Factorization and Primality Tests,” The American Mathematical
Monthly, 91 (1984), 333–353.

2. N. Robbins, “Calculating a Primitive Root (mod pe),” The Mathematical Gazette,
59 (1975), 195.





11 Quadratic Congruences

. . . mathematical proofs, like diamonds, are hard as well as

clear, and will be touched by nothing but strict reasoning.

— JOHN LOCKE

e studied the solvability of linear congruences in Section 4.2 and dis-W cussed primitive roots in Chapter 10. Now we turn to quadratic con-
gruences. This includes the concept of a quadratic residue; a test for an

integer to be a quadratic residue; two powerful notations—the Legendre symbol and
the Jacobi symbol; the fascinating law of quadratic reciprocity, which is one of the
jewels of number theory; and a primality test for Fermat numbers.

11.1 Quadratic Residues

We begin by considering the quadratic congruence

Ax2 + Bx + C ≡ 0 (mod p) (11.1)

where p is an odd prime and p � A. (If p|A, then it reduces to a linear congruence.)
Since p is odd and p � A, p � 4A. So we multiply both sides of congruence (11.1) by
4A to yield a perfect square on the LHS:

4A(Ax2 + Bx + C) ≡ 0 (mod p) (11.2)

But

4A(Ax2 + Bx + C) = 4A2x2 + 4ABx + 4AC

= (2Ax + B)2 − (
B2 − 4AC

)

495
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Therefore, congruence (11.2) can be rewritten as

(2Ax + B)2 ≡ (
B2 − 4AC

)
(mod p) (11.3)

which is of the form

y2 ≡ a (mod p) (11.4)

where y = 2Ax + B and a = B2 − 4AC.
Since these steps are reversible, this discussion shows that congruence (11.1) is

solvable if and only if congruence (11.4) is solvable.
The following numeric example demonstrates this.

EXAMPLE 11.1 Solve the quadratic congruence 3x2 − 4x + 7 ≡ 0 (mod 13).

SOLUTION

3x2 − 4x + 7 ≡ 0 (mod 13)

Multiply both sides by 4 · 3 = 12:

36x2 − 48x + 84 ≡ 0 (mod 13)

That is,

(6x − 4)2 ≡ (16 − 84) (mod 13)

(6x − 4)2 ≡ 10 (mod 13)

Let y = 6x − 4. Then y2 ≡ 10 (mod 13). This congruence has exactly two solutions,
y ≡ 6, 7 (mod 13). (Verify this.)

Therefore, the solutions of the congruence are given by those of the linear con-
gruences 6x − 4 ≡ 6 (mod 13) and 6x − 4 ≡ 7 (mod 13), namely, x ≡ 6, 4 (mod 13).
Verify this, too. �

Notice that the quadratic congruence in this example has exactly two solutions.
But the next example shows that not every quadratic congruence has a solution.

EXAMPLE 11.2 Solve, if possible, the quadratic congruence 3x2 + 7x + 5 ≡ 0 (mod 13).

SOLUTION

The congruence 3x2 + 7x + 5 ≡ 0 (mod 13) yields (6x + 7)2 ≡ 2 (mod 13) (verify
this). But the square of none of the least residues modulo 13 yields 2. So this con-
gruence, and hence the given one, is not solvable. �
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Since congruences (11.1) and (11.4) are equivalent, meaning they have exactly
the same solutions when solvable, we restrict our study to congruences of the form

x2 ≡ a (mod p) (11.5)

Since x2 ≡ 10 (mod 13) has exactly two solutions, but x2 ≡ 2 (mod 13) has none,
we are tempted to ask: When is congruence (11.5) solvable? When solvable, how
many incongruent solutions does it have modulo p?

To answer the second question first, suppose that p|a. Then x2 ≡ 0 (mod p), so
x ≡ 0 (mod p) is the only solution. Now assume p � a. Then congruence (11.5) has
exactly two incongruent solutions.

To see this, let α be a solution of (11.5): α2 ≡ a (mod p). Let β = p − α. Then
β2 = (p −α)2 ≡ (−α)2 ≡ α2 ≡ a (mod p). So β is also a solution of the congruence.
Besides, α and β are incongruent, since if β ≡ α (mod p), then p − α ≡ α (mod p);
that is, −α ≡ α (mod p), so 2α ≡ 0 (mod p). But (2,p) = 1; therefore, α ≡ 0 (mod p),
which is a contradiction. Thus, α and p −α are two incongruent solutions of congru-
ence (11.5).

Suppose congruence (11.5) has a third solution γ . Then γ 2 ≡ α2 (mod p), so
p|γ 2 − α2. Then either γ ≡ α (mod p) or γ ≡ −α ≡ β (mod p). Consequently, con-
gruence (11.5) has no more than two solutions.

We have thus established the following result.

LEMMA 11.1 Let p be an odd prime and a an integer such that p � a. Then the congruence x2 ≡
a (mod p) has either no solutions or exactly two incongruent solutions. �

This discussion shows that if we can find one solution α, we can find the other
by simply taking its additive inverse −α. For instance, in Example 11.1 we found
that 6 is a solution of x2 ≡ 10 (mod 13); so the other solution is −6 ≡ 7 (mod 13), as
expected.

Before we answer the question concerning when congruence (11.5) is solvable,
we need to make the following definition.

Quadratic Residue

Let m be a positive integer and a any integer such that (a,m) = 1. Then a is a
quadratic residue of m if the congruence x2 ≡ a (mod m) is solvable; otherwise,
it is a quadratic nonresidue of m.

Notice that if b ≡ a (mod m), and if a is a quadratic residue of m, then b is also a
quadratic residue of m. Accordingly, we confine our discussion of quadratic residues
to the least residues modulo m.

The following example illustrates the definition.
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EXAMPLE 11.3 Find the quadratic residues and nonresidues of p = 13.

SOLUTION

Notice that

12 ≡ 1 ≡ 122 (mod 13) 22 ≡ 4 ≡ 112 (mod 13)

32 ≡ 9 ≡ 102 (mod 13) 42 ≡ 3 ≡ 92 (mod 13)

52 ≡ 12 ≡ 82 (mod 13) 62 ≡ 10 ≡ 72 (mod 13)

Accordingly, 13 has exactly six quadratic residues, namely, 1, 3, 4, 9, 10, and 12;
and it has six quadratic nonresidues also, namely, 2, 5, 6, 7, 8, and 11. (In 1973,
R. H. Hudson of the University of South Carolina proved that 13 is the only prime p
that has more than

√
p consecutive quadratic nonresidues.) �

This example provides us with two interesting bonuses:

• The prime 13 has the same number of quadratic residues and nonresidues,
namely, 6; and

• They form a partitioning of the set of positive residues of 13 (see Figure 11.1).

Figure 11.1 The set of positive residues of 13.

The following theorem shows that it is not a coincidence that 13 has the same
number of quadratic residues and nonresidues.

THEOREM 11.1 Every odd prime p has exactly (p − 1)/2 quadratic residues and (p − 1)/2 quadratic
nonresidues.

PROOF

Suppose p has k (incongruent) quadratic residues. By Lemma 11.1, each yields two
incongruent solutions, so the total number of solutions is 2k. But there are p − 1



11.1 Quadratic Residues 499

squares of the least positive residues, 1 through p − 1. So 2k = p − 1; that is, k =
(p − 1)/2. Thus, there are (p − 1)/2 quadratic residues and (p − 1)/2 quadratic
nonresidues. �

We still have not answered the question we asked earlier: When is congru-
ence (11.5) solvable? This is answered by the following theorem, developed by Euler.

THEOREM 11.2 (Euler’s Criterion) Let p be an odd prime. Then a positive integer a with p � a is a
quadratic residue of p if and only if a(p−1)/2 ≡ 1 (mod p).

PROOF

Suppose that a is a quadratic residue of p. Then the congruence x2 ≡ a (mod p) has
a solution α, where (p, α) = 1. Consequently, by Fermat’s little theorem, αp−1 ≡
1 (mod p). Then a(p−1)/2 ≡ (α2)(p−1)/2 = αp−1 ≡ 1 (mod p).

Conversely, suppose that a(p−1)/2 ≡ 1 (mod p). By Corollary 10.8, p has a prim-
itive root β . Then a ≡ βk (mod p) for some positive integer k, where 1 ≤ k ≤ p − 1.
Then βk(p−1)/2 ≡ a(p−1)/2 ≡ 1 (mod p). Since β is a primitive root modulo p,
ordp β = p − 1|k(p − 1)/2; that is, k must be an even integer, say, k = 2i. Then
a ≡ β2i ≡ (β i)2 (mod p), so a is a quadratic residue of p.

This completes the proof. �

The following example demonstrates this test.

EXAMPLE 11.4 Determine whether 10 and 7 are quadratic residues of 13.

SOLUTION

• Notice that 10(13−1)/2 = 106 ≡ (−3)6 ≡ 1 (mod 13), so, by Euler’s criterion,
10 is a quadratic residue of 13, as found in Example 11.3. (Consequently, the
congruence x2 ≡ 10 (mod 13) is solvable.)

• This time, we compute 7(13−1)/2 (mod 13): 7(13−1)/2 ≡ 76 ≡ (73)2 ≡ 52 ≡
−1 (mod 13). Since 76 �≡ 1 (mod 13), by Euler’s criterion, 7 is a quadratic
nonresidue of 13, as found in Example 11.3. �

In Theorem 11.2, suppose a(p−1)/2 �≡ 1 (mod p). Then a is a quadratic non-
residue. We can then tell exactly what the least residue of a(p−1)/2 modulo p is. To
this end, notice that, by Fermat’s little theorem, ap−1 ≡ 1 (mod p). Since p is odd and
ap−1 − 1 = [a(p−1)/2 + 1][a(p−1)/2 − 1], this implies either a(p−1)/2 ≡ 1 (mod p) or
a(p−1)/2 ≡ −1 (mod p). But a(p−1)/2 �≡ 1 (mod p), so a(p−1)/2 ≡ −1 (mod p). Thus,
if a is a quadratic nonresidue, then a(p−1)/2 ≡ −1 (mod p).

Conversely, let a be an integer such that p � a and a(p−1)/2 ≡ −1 (mod p). Then
a cannot be a quadratic residue, since if it is, then, by Euler’s criterion, a(p−1)/2 ≡
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1 (mod p). This implies −1 ≡ 1 (mod p); that is, p = 2, which is a contradiction.
Thus, if a(p−1)/2 ≡ −1 (mod p), then a must be a quadratic nonresidue.

Accordingly, we have the following result.

COROLLARY 11.1 Let p be an odd prime. Then a positive integer a, where p � a, is a quadratic non-
residue if and only if a(p−1)/2 ≡ −1 (mod p). �

For instance, in Example 10.12 we found that 5(1213−1)/2 ≡ 5606 ≡
−1 (mod 1213). So, by this corollary, 5 is a quadratic nonresidue of 1213.

It follows, by Euler’s criterion, that congruence (11.5) is solvable if and only
if a(p−1)/2 ≡ 1 (mod p). Although Theorem 11.2 provides a test for determining the
solvability of the congruence, it is not practical when p is fairly large. We will explore
this further in the next section.

E X E R C I S E S 11.1

Solve each quadratic congruence, if possible.

1. x2 ≡ 1 (mod 6) 2. x2 ≡ 1 (mod 8)

3. x2 ≡ 1 (mod 12) 4. x2 ≡ 3 (mod 6)

5. x2 ≡ 5 (mod 6) 6. 7x2 ≡ 1 (mod 18)

7. 3x2 ≡ 5 (mod 7) 8. 7x2 ≡ 6 (mod 13)

9. 4x2 ≡ 7 (mod 11)

10. 4x2 + 4x − 3 ≡ 0 (mod 5)

11. 2x2 + 3x + 1 ≡ 0 (mod 7)

12. 2x2 + x + 1 ≡ 0 (mod 11)

13. 25x2 + 70x + 37 ≡ 0 (mod 13)

Find the number of quadratic residues of each integer.

14. 17 15. 12
16. 19 17. 101

Find the quadratic residues of each integer.

18. 8 19. 18
20. 17 21. 23

Determine whether the given integer a is a quadratic
residue of the corresponding prime p.

22. a = 5, p = 23 23. a = 7, p = 29

24. a = 2, p = 37 25. a = 3, p = 47

Verify that the congruences x2 ≡ a (mod p) and x2 ≡
b (mod p) are not solvable, but x2 ≡ ab (mod p) is solv-

able for the given values of a, b, and p. (See Exer-
cise 34.)

26. a = 3, b = 5, p = 7

27. a = 7, b = 10, p = 11
28. Find the number of quadratic residues of the Fermat

prime fn.

Prove each.
29. Every primitive root modulo an odd prime p is a

quadratic nonresidue.
30. The integer p − 1 is a quadratic residue of an odd

prime p if and only if p ≡ 1 (mod 4).
31. Let a be a quadratic residue of an odd prime p.

Then p − a is a quadratic residue if and only if
p ≡ 1 (mod 4).

32. Let a be a quadratic residue of an odd prime p.
Then p − a is a quadratic nonresidue if and only if
p ≡ 3 (mod 4).

33. The product of two quadratic residues of an odd
prime p is a quadratic residue.

34. The product of two quadratic nonresidues of an odd
prime p is a quadratic residue.

35. The square of a quadratic nonresidue of an odd prime
p is a quadratic residue.

36. The product of a quadratic residue and a quadratic
nonresidue of an odd prime p is a quadratic non-
residue.
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37. The multiplicative inverse of a quadratic residue of an
odd prime is also a quadratic residue.
(Hint: Use Exercise 36.)

38. The integer p − 1 is a quadratic nonresidue of every
Mersenne prime Mp.

39. An integer a is a quadratic residue of a Mersenne
prime Mp if and only if p−a is a quadratic nonresidue
of Mp.

40. If p = 2n + 1 is a prime, then every quadratic non-
residue of p is a primitive root of p.

41. Let p be an odd prime such that (a, p) = 1 = (b, p).
Then either all three quadratic congruences x2 ≡
a (mod p), and x2 ≡ b (mod p), x2 ≡ ab (mod p) are
solvable or exactly one of them is solvable.
(Hint: Use Exercises 33 and 34.)

� �

11.2 The Legendre Symbol

Although Euler’s criterion provides us with a beautiful test for determining the solv-
ability of the congruence x2 ≡ a (mod p), computing a(p−1)/2 (mod p) is tedious
when p and a are large. For example, it is not easy to apply the test for determining
the solvability of x2 ≡ 3797 (mod 7297). (See Example 11.18.) So we now present
the Legendre symbol, a powerful notation introduced by the French mathematician
Adrien-Marie Legendre in his 1798 book, Essai sur la Theorie de Nombres. Legen-
dre’s Theories des Nombres and Gauss’ Disquisitiones Arithmeticae were the stan-
dard works on number theory for many years.

The Legendre symbol, as we will see shortly, greatly simplifies our task of de-
termining the solvability of congruence (11.5).

The Legendre Symbol

Let p be an odd prime and a any integer such that p � a. The Legendre symbol (a/p)

is defined by

(a/p) =
{

1 if a is a quadratic residue of p
−1 otherwise

Notice that the Legendre symbol (a/p) is not defined if p|a. The next example
illustrates this definition.

EXAMPLE 11.5 In Example 11.3, we found that the residues 1, 3, 4, 9, 10, and 12 are quadratic
residues of 13, whereas the residues 2, 5, 6, 7, 8, and 11 are not. Therefore, (1/13) =
(3/13) = (4/13) = (9/13) = (10/13) = (12/13) = 1, whereas (2/13) = (5/13) =
(6/13) = (7/13) = (8/13) = (11/13) = −1. �
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Adrien-Marie Legendre (1752–1833) was born into a well-to-do Parisian family

and studied at the Collège Mazarin. His first published articles appeared in 1774

in a treatise on mechanics by his mathematics professor, although he was not

given credit in the book. He was a professor of mathematics at the École Militaire

in Paris from 1775 to 1780 and afterward appointed professor at then École Nor-

male. In 1782 Legendre won the Berlin Academy prize for his essay on ballistics.

His memoir, Recherches d’Analyse Indeterminee, published in 1785, contains a

nonrigorous account of the law of quadratic reciprocity, as well as many applica-

tions, a discussion of the decomposition of positive integers as the sum of three

squares, and a Statement of Dirichlet’s theorem on the existence of infinitely many

primes in arithmetic progressions (Theorem 3.16). In 1823 he provided a beauti-

ful demonstration of Fermat’s last theorem for the case n = 5.

Although best known for his work on elliptic integrals, Legendre made significant contributions to number

theory, calculus of variations, spherical harmonics, and geometry. His Éléments de Géométrie, a pedagogical

improvement of Euclid’s Elements, was so popular that it went through numerous editions and translations, and

was used as a text for over a century, the first English translation appearing in 1819.

Legendre had a second edition of his number theory book published in 1808, a third edition in 1830 in two

volumes under the title Théories des Nombres, and a fourth edition in 1900.

A disciple of Euler and Lagrange, a marvelous calculator, and a skillful analyst, Legendre raised “numerous

questions that were fruitful subjects of investigation for mathematicians of the 19th century.”

Using the Legendre symbol, it follows that (a/p) ≡ a(p−1)/2 (mod p). Accord-
ingly, Euler’s criterion can be rewritten as follows.

THEOREM 11.3 (Euler’s Criterion) Let p be an odd prime. Then a positive integer a with p � a is a
quadratic residue of p if and only if (a/p) = 1. �

In other words, x2 ≡ a (mod p) is solvable if and only if (a/p) = 1. For instance,
since (10/13) = 1, x2 ≡ 10 (mod 13) is solvable. (See Example 11.5.) But (7/13) =
−1, so x2 ≡ 7 (mod 13) is not solvable.

Thus, to determine the solvability of the congruence x2 ≡ 3797 (mod 7297), we
need to compute the symbol (3797/7297). But how do we evaluate it? We do not have
enough tools to work with the symbol, so we present three fundamental properties of
the symbol in the following theorem.

THEOREM 11.4 Let p be an odd prime, and a and b be any integers with p � ab. Then

(1) If a ≡ b (mod p), then (a/p) = (b/p).
(2) (a/p)(b/p) = (ab/p)

(3) (a2/p) = 1
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PROOF

(1) Suppose a ≡ b (mod p). Then the congruence x2 ≡ a (mod p) is solvable if
and only if x2 ≡ b (mod p) is solvable. Therefore, (a/p) = (b/p).

(2) By Euler’s criterion, (ab/p) ≡ (ab)(p−1)/2 ≡ a(p−1)/2b(p−1)/2 ≡ (a/p)(b/p)

(mod p). Again, since p is odd and the value of a Legendre symbol is 1 or
−1, this is so if and only if equality holds.

(3) By part (2), (a2/p) = (a/p)(a/p). But (a/p) = ±1. So (a2/p) = 1 in both
cases. This completes the proof. �

Property (1) in the theorem can also be proved as follows. Suppose a ≡
b (mod p) and the congruence x2 ≡ a (mod p) is solvable; that is, (a/p) = 1. Since
a ≡ b (mod p), x2 ≡ b (mod p) is also solvable. Therefore, (b/p) = 1 = (a/p). On
the other hand, suppose x2 ≡ a (mod p) is not solvable; that is, (a/p) = −1. Since
a ≡ b (mod p), x2 ≡ b (mod p) is also not solvable. So (b/p) = −1 = (a/p). Thus, in
both cases, (a/p) = (b/p).

Property (3) can also be proven using congruence. Since x2 ≡ a2 (mod p) is
always solvable, (a2/p) = 1.

The preceding properties have beautiful consequences (see Exercises 33–36 in
Section 11.1):

• If a ≡ b (mod p), then either both are quadratic residues or both are quadratic
nonresidues.

• The product of two quadratic residues is a quadratic residue.
• The product of a quadratic residue and a quadratic nonresidue is a quadratic

nonresidue.
• The product of two quadratic nonresidues is a quadratic residue.
• The square of every integer relatively prime to p is a quadratic residue.

Properties (2) and (3) can be employed to evaluate the Legendre symbol (a2b/p),
where p � ab, provided we know the value of (b/p). To see this, notice that

(a2b/p) = (a2/p)(b/p), by property (2)

= (b/p), by property (3)

For example, suppose we know that (7/31) = 1. Then (28/31) = (4/31)(7/31)

= 1 · (7/31) = (7/31) = 1. (We will see later how to compute (7/31) without using
Euler’s criterion.)

Using Euler’s criterion, we can now identify the primes for which −1 is a
quadratic residue.

COROLLARY 11.2 If p is an odd prime, then (−1/p) = (−1)(p−1)/2. That is,

(−1/p) =
{

1 if p ≡ 1 (mod 4)

−1 if p ≡ −1 (mod 4)
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PROOF

By Euler’s criterion,

(−1/p) ≡ (−1)(p−1)/2 (mod p)

= (−1)(p−1)/2 since (−1)(p−1)/2 = ±1

=
{

1 if p is of the form 4k + 1
−1 if p is of the form 4k + 3

=
{

1 if p ≡ 1 (mod 4)

−1 if p ≡ −1 (mod 4) �

According to this corollary, −1 is a quadratic residue of p if and only if p ≡
1 (mod 4); that is, x2 ≡ p − 1 (mod p) is solvable if and only if p ≡ 1 (mod 4). For
example, x2 ≡ 12 (mod 13) is solvable, but x2 ≡ 22 (mod 23) is not.

Corollary 11.2 can now be used to evaluate Legendre symbols of the form
(−a2/p), as the following example shows.

EXAMPLE 11.6 Evaluate (−4/41) and (−9/83).

SOLUTION

• (−4/41) = (4/41)(−1/41), by property (2)

= (−1/41) by property (3)

= 1, by Corollary 11.2

• (−9/83) = (9/83)(−1/83)

= (−1/83)

= −1 �

Another interesting application of Theorem 11.4 and Corollary 11.2 is that they
can be used to establish the existence of infinitely many primes of the form 4n + 1,
as the following example shows (see Section 3.4).

EXAMPLE 11.7 Prove that there are infinitely many primes of the form 4n + 1.

PROOF (by contradiction)
Assume that there is only a finite number of such primes, say, p1,p2, . . . ,pk. Let
N = (2p1p2 · · ·pk)

2 + 1. Since N is odd, it must have an odd prime factor p. Then
N ≡ 0 (mod p), so (2p1p2 · · ·pk)

2 ≡ −1 (mod p).
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By property (3) in Theorem 11.4, ((2p1p2 · · ·pk)
2/p) = 1 and so, by prop-

erty (1), (−1/p) = 1. Then, by Corollary 11.2, p must be of the form 4n + 1. So
p = pi for some i, where 1 ≤ i ≤ k. This implies, N ≡ 1 (mod p), which is a contra-
diction. Thus, there are infinitely many primes of the desired form. �

Property (2) in Theorem 11.4 can be applied to evaluate Legendre symbols of
the form (qi/p), where p � q, as the following corollary shows.

COROLLARY 11.3 Let p be an odd prime, q a prime such that p � q, and i a positive integer. Then
(qi/p) = (q/p)i. �

The following example illustrates this.

EXAMPLE 11.8 Using the fact that (5/17) = −1, compute (125/17) and (15625/17).

SOLUTION

• (125/17) = (53/17)

= (5/17)3, by Corollary 11.3

= (−1)3 = −1

• (15625/17) = (56/17)

= (5/17)6 = (−1)6 = 1 �

Returning to Theorem 11.4, we find that property (2) can obviously be extended
to any finite number of primes not divisible by p. Accordingly, we have the following
result, which follows by induction.

COROLLARY 11.4 Let p be an odd prime and let
n∏

i=1
pei

i be the canonical decomposition of a, where

(a,p) = 1. Then (a/p) =
n∏

i=1
(pi/p)ei .

PROOF

Since (a, p) = 1, (pi, p) = 1 for every i. So (pei
i /p) = (pi/p)ei , by Corollary 11.3.

Thus,

(a/p) =
n∏

i=1

(pei
i /p) =

n∏

i=1

(pi/p)ei �
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This result can be employed to evaluate (a/p), provided we know the value of
(pi/p) for every prime factor pi of a, as the following example illustrates.

EXAMPLE 11.9 Using the fact that (2/23) = 1 and (5/23) = −1, compute (5000/23).

SOLUTION

Notice that 5000 = 2354. So, by Corollary 11.4,

(5000/23) = (2/23)3(5/23)4

= 13 · (−1)4 = 1 �

How did we know that (2/23) = 1 and (5/23) = −1? We could certainly use
Euler’s criterion to evaluate each, but we would like to avoid that tedious undertak-
ing. Instead, we can derive additional properties of the Legendre symbol in the rest
of this section and in the next, which will enable us to compute (a/p). To this end,
we now prove an elegant criterion due to Gauss, although this also is theoretical in
nature. Its proof is a bit long and complicated, so we will first study two examples to
clarify the proof.

EXAMPLE 11.10 Let p = 23 and a = 5. Let ν† denote the number of least positive residues of the
11 = (p − 1)/2 integers 1 · 5,2 · 5,3 · 5, . . . ,11 · 5 modulo p that exceed p/2. Find ν

and determine whether (5/23) = (−1)ν .

SOLUTION

Notice that the least positive residues of the integers 1 · 5, 2 · 5, 3 · 5, 4 · 5, 5 · 5, 6 · 5,
7 · 5, 8 · 5, 9 · 5, 10 · 5, and 11 · 5 modulo 23 are 5, 10, 15, 20, 2, 7, 12, 17, 22, 4,
and 9, respectively. Clearly, five of them exceed p/2 = 11.5, so ν = 5.

To evaluate (5/23), we apply Euler’s criterion:

5(p−1)/2 = 511 = (
55)2 · 5 ≡ (−3)2 · 5 ≡ −1 (mod 23)

Thus, (5/23) = −1 and hence (5/23) = (−1)ν . �

This example shows that 5 is a quadratic nonresidue of 23; furthermore, the
quadratic nature of 5 modulo 23 is determined by the value of ν. This fact is not a
coincidence and is the essence of the next theorem, but first, let us examine one more
example.

† ν is the lower case Greek letter nu.
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EXAMPLE 11.11 (Example 11.10 continued) There are v = 5 least positive residues > p/2, namely,
12, 15, 17, 20, and 22. Call them s1 through s5. Then the integers p−s1 through p−s5

are 23 − 12, 23 − 15, 23 − 17, 23 − 20, and 23 − 22 respectively, namely, 11, 8, 6,
3, and 1, respectively; no two of them are congruent modulo 23.

There are k = 11 − v = 11 − 5 = 6 residues, r1 through r6, that are < p/2,
namely, 2, 4, 5, 7, 9, and 10; no two of them are congruent modulo 23 either.

Furthermore, none of them is congruent to 11, 8, 6, 3, or 1 modulo 23. Thus the
residues 2, 4, 5, 7, 9, 10, 11, 8, 6, 3, and 1 are positive and ≤ (p − 1)/2. (Amazingly
enough, they are a permutation of the residues 1 through (p − 1)/2 modulo p.) �

We are now ready for the next milestone in our journey, discovered by Gauss in
1808. The proof is a bit long, so follow it patiently.

THEOREM 11.5 (Gauss’ Lemma) Let p be an odd prime and a an integer such that p � a. Let ν

denote the number of least positive residues of the integers a,2a,3a, . . . , [(p−1)/2]a
that exceed p/2. Then (a/p) = (−1)ν .

PROOF

Let r1, r2, . . . , rk be the least positive residues of the integers a,2a,3a, . . . ,

[(p − 1)/2]a modulo p that are ≤ p/2, and s1, s2, . . . , sν those that exceed p/2.
Then k + ν = (p − 1)/2.

Now, consider the integers r1, r2, . . . , rk,p − s1,p − s2, . . . ,p − sν . Each is pos-
itive and less than p/2. We would like to show that no two of them are congruent
modulo p.

First, notice that no two ris are congruent, since if ri ≡ rj (mod p), then tia ≡
tja (mod p) for some ti and tj, where i < j and 1 ≤ ti, tj ≤ (p − 1)/2. But p � a, so
ti ≡ tj (mod p), which is impossible. Thus, no two ris are congruent. Likewise, no
two sis and hence no two p − sis are congruent modulo p.

Next we would like to show that no ri is congruent to any p − sj. If ri ≡ p −
sj (mod p), then ri ≡ −sj (mod p), so ri + sj ≡ 0 (mod p). This is impossible, since
both ri and sj are less than p/2 and hence ri + sj < p. Thus, no ri is congruent to
p − sj modulo p.

Consequently, the positive integers r1, r2, . . . , rk,p − s1,p − s2, . . . ,p − sν are
all < p/2 and are incongruent modulo p. Since there are k + ν = (p − 1)/2 of them,
they must be the same as the least residues 1,2, . . . , (p − 1)/2. Therefore,

r1r2 · · · rk(p − s1)(p − s2) · · · (p − sν) ≡ 1 · 2 · · ·
(

p − 1

2

)

(mod p)

That is,

(−1)νr1r2 · · · rks1s2 · · · sν ≡
(

p − 1

2

)

! (mod p) (11.6)
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But r1, r2, . . . , rk, s1, s2, . . . , sν are the least positive residues of a,2a, . . . ,(
p − 1

2

)

a. Therefore,

r1r2 · · · rks1s2 · · · sν ≡ a(2a)(3a) · · ·
(

p − 1

2

)

a (mod p)

Thus,

(−1)νa(2a)(3a) · · ·
(

p − 1

2

)

a ≡
(

p − 1

2

)

! (mod p), by equation (11.6).

Thus,

(−1)νa(p−1)/2
(

p − 1

2

)

! ≡
(

p − 1

2

)

! (mod p)

But p � ((p − 1)/2)!, so

(−1)νa(p−1)/2 ≡ 1 (mod p)

That is,

a(p−1)/2 ≡ (−1)ν (mod p)

But, by Euler’s criterion,

(a/p) ≡ a(p−1)/2 (mod p)

Thus, (a/p) = (−1)ν , because (a/p) = ±1 and p is an odd prime. �

EXAMPLE 11.12 Evaluate (10/13) and (7/13) using Gauss’ lemma.

SOLUTION

• We have p = 13, a = 10, and (p − 1)/2 = 6. The least positive residues of the
integers 1 · 10, 2 · 10, 3 · 10, 4 · 10, 5 · 10, and 6 · 10 modulo 13 are 10, 7, 4,
1, 11, and 8, respectively. Exactly ν = 4 of them are greater than p/2 = 6.5.
Therefore, by Gauss’ lemma, (10/13) = (−1)4 = 1.

• With a = 7, the least positive residues of the integers 1 · 7, 2 · 7, 3 · 7, 4 · 7,
5 · 7, and 6 · 7 modulo 13 are 7, 1, 8, 2, 9, and 3, respectively. Since ν = 3 of
them are greater than p/2 = 6.5, (7/13) = (−1)3 = −1.

(Notice that these values agree with the ones found in Example 11.5.) �

The following is an immediate consequence of Gauss’ lemma.

COROLLARY 11.5 Let p be an odd prime with p � a. Let ν denote the number of least positive residues
of the integers a,2a, . . . , [(p − 1)/2]a that exceed p/2. Then (a/p) = 1 if and only if
ν is even. �
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An elegant application of Gauss’ lemma is that it can be used to determine the
quadratic nature of 2 modulo an odd prime p, as the next theorem shows. First, we
will study an example.

EXAMPLE 11.13 Evaluate (2/13) using Gauss’ lemma.

SOLUTION

Here p = 13. By Gauss’ lemma, (2/13) = (−1)ν , where ν denotes the number of
least positive residues of the integers 1 · 2, 2 · 2, 3 · 2, 4 · 2, 5 · 2, and 6 · 2 modulo 13
that exceed p/2 = 6.5. Notice that they are all less than p. This time, we shall find ν

in a different way.

v = number of the residues 2r that exceed p/2

= (p − 1)/2 − (number of positive integers 2r < p/2)

= 6 − (number of positive integersr < p/4)

= 6 − �p/4�
= 6 − �13/4� = 6 − 3 = 3

Therefore, (2/13) = (−1)3 = −1. (See Example 11.5 also.) �

This example paves the way for the following important result.

THEOREM 11.6 Let p be an odd prime. Then

(2/p) =
{

1 if p ≡ ±1 (mod 8)

−1 if p ≡ ±3 (mod 8)

PROOF

By Gauss’ lemma, (2/p) = (−1)v, where ν denotes the number of least positive

residues of the integers 1 · 2,2 · 2,3 · 2, . . . ,

(
p − 1

2

)

· 2 modulo p that are greater

than p/2. Each of them is positive and less than p, so they are (p−1)/2 least residues
modulo p. Thus,

ν = number of the residues 2r that exceed p/2

= (p − 1)/2 − (number of positive integers 2r < p/2)

= (p − 1)/2 − (number of positive integers r < p/4)

= (p − 1)/2 − �p/4� (11.7)
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case 1 Let p ≡ 1 (mod 8). Then p = 8k + 1 for some integer k. So,

ν = (p − 1)/2 − �p/4� = 4k − 2k = 2k

case 2 Let p ≡ −1 (mod 8). Then p = 8k − 1 for some integer k. So,

ν = (p − 1)/2 − �p/4� = (4k − 1) − (2k − 1) = 2k

case 3 Let p ≡ 3 (mod 8). Then p = 8k + 3 for some integer k. So,

ν = (p − 1)/2 − �p/4� = (4k + 1) − 2k = 2k + 1

case 4 Let p ≡ −3 (mod 8). Then p = 8k − 3 for some integer k. So,

ν = (p − 1)/2 − �p/4� = (4k − 2) − (2k − 1) = 2k − 1

Thus, if p ≡ ±1 (mod 8), then ν is even, so (2/p) = 1; if p ≡ ±3, v is odd and
hence (2/p) = −1. �

It follows from this theorem that 2 is a quadratic residue of an odd prime p
if and only if p ≡ ±1 (mod 8); that is, x2 ≡ 2 (mod p) is solvable if and only if
p ≡ ±1 (mod 8).

Using this result, we can now compute Legendre symbols of the form (±2a2/p),
where p is an odd prime and p � a, as the following example illustrates.

EXAMPLE 11.14 Compute (8/19) and (22/31).

SOLUTION

• (8/19) = (4 · 2/19) = (4/19)(2/19), by Theorem 11.4

= (2/19), by Theorem 11.4

= −1, by Theorem 11.6

• (13/31) = (−18/31), by Theorem 11.4

= (9/31)(2/31)(−1/31), by Theorem 11.4

= (−1/31), by Theorems 11.4 and 11.6

= −1, by Corollary 11.2 �

The following example is an interesting application of Theorem 11.6 and Euler’s
criterion. It illustrates the combined power of the two results.
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EXAMPLE 11.15 Verify that 9973|(24986 + 1).

SOLUTION

Notice that 9973 is a prime and is ≡ 5 (mod 8). So, by Theorem 11.6, (2/9973) =
−1. Thus, by Euler’s criterion, (2/9973) ≡ 24986 ≡ −1 (mod 9973), so 9973|(24986 +
1). �

In this example, we could use properties of congruence and arrive at the same
conclusion by showing that 24986 ≡ −1 (mod 9973), but this would involve tedious
and time-consuming computations. The dual power of Theorem 11.6 and Euler’s
criterion makes our job a lot easier.

Returning to Theorem 11.6, we can restate the formula for (2/p) in a compact
way, as the following result shows.

COROLLARY 11.6 Let p be an odd prime. Then (2/p) = (−1)(p
2−1)/8.

PROOF

We consider the four cases as in the preceding proof. If p ≡ 1 (mod 8), then
p2 − 1

8
=

(
p − 1

8

)

(p + 1) is an even integer; if p ≡ −1 (mod 8), then
p2 − 1

8
=

(
p + 1

8

)

(p − 1) is also an even integer. Thus, if p ≡ ±1 (mod 8), then (−1)(p
2−1)/8 = 1 =

(2/p), by Theorem 11.6.
On the other hand, let p ≡ ±3 (mod 8). Then p = 8k ± 3 for some integer k.

Therefore,

p2 − 1

8
= 64k2 ± 48k + 8

8
= 8k2 ± 6k + 1

which is clearly an odd integer. Consequently, (−1)(p
2−1)/8 = −1 = (2/p), again, by

Theorem 11.6. �

For example, (2/13) = (−1)(169−1)/8 = (−1)21 = −1. (See Example 11.13
also.)

The following example, proposed by O. N. Dalton of Texas in 1982, is an
interesting application of this corollary and Theorem 11.6. (See Example 11.27
also.)

EXAMPLE 11.16 Let p be a prime of the form 4n ± 1. Compute the value of nn modulo p.
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SOLUTION

Let p = 4n + r, where r = ±1. Then 4n ≡ −r (mod p). So (4n)n ≡ (−r)n (mod p);
that is,

22nnn ≡ (−r)n (mod p) (11.8)

case 1 Let r = 1. Then 2n = (p − 1)/2, so

22n = 2(p−1)/2 ≡ (2/p) = (−1)(p
2−1)/8 = (−1)n(2n+1)

= [
(−1)2n+1]n ≡ (−1)n (mod p)

So congruence (11.8) yields

(−1)nnn ≡ (−1)n (mod p); thus, nn ≡ 1 (mod p)

case 2 Let r = −1. Then 22nnn ≡ 1 ≡ p + 1 (mod p). Since (2/p) ≡ 2(p−1)/2 =
22n−1 (mod p), this implies (2/p)nn ≡ (p + 1)/2 (mod p); that is, nn ≡ (2/p)(p +
1)/2 (mod p). Since p ≡ −1 (mod 4), p ≡ 3 or 7 modulo 8.

If p ≡ 3 (mod 8), (2/p) = −1, so nn ≡ −(p+1)/2 ≡ (p−1)/2 = 2n−1 (mod p).
On the other hand, if p ≡ 7 (mod 8), (2/p) = 1, so nn ≡ (p + 1)/2 = 2n (mod p).

Thus,

nn =
⎧
⎨

⎩

1 (mod p) if p ≡ 1 or 5 (mod 8)

2n (mod p) if p ≡ 7 (mod 8)

2n − 1 (mod p) if p ≡ 3 (mod 8)
�

If p = 4n ± 1 is a prime, it is easy to show that n is a quadratic residue of p. See
Exercise 44.

Theorem 11.6 also has a fine application to primitive roots. Although we estab-
lished in Chapter 10 that the integers 1, 2, 4, pk, and 2pk have primitive roots, we
did not provide a constructive mechanism for finding them. We shall now see that
2 · (−1)(p−1)/2 is a primitive root modulo primes of the form 2p + 1, where p is an
odd prime.

THEOREM 11.7 If p and 2p+1 are odd primes, then 2 · (−1)(p−1)/2 is a primitive root modulo 2p+1.

PROOF

Let q = 2p + 1 and α = 2 · (−1)(p−1)/2. Clearly, (α,p) = 1 and ϕ(q) = 2p. It suffices
to show that ordqα = 2p.

case 1 Let p ≡ 1 (mod 4). Then q ≡ 3 (mod 8), so (2/q) = −1, by Theorem 11.6.
But, by Euler’s criterion, (2/q) ≡ 2(q−1)/2 (mod q), so 2p = 2(q−1)/2 ≡ (2/q) ≡
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−1 (mod q). Then α2p = [2 · (−1)(p−1)/2]2p = 22p · (−1)p(p−1) = 22p · 1 = 22p ≡
(−1)2 ≡ 1 (mod q). Thus, ordq α|2p, so ordq α = 1, 2, p, or 2p.

Clearly, ordq α �= 1. If ordq α = 2, then α2 ≡ 1 (mod q). Since α2 = 4, this means
4 ≡ 1 (mod q); so q = 3; this implies p = 1, which is a contradiction.

Now suppose that ordq α = p. Then αp ≡ 1 (mod q). This implies, [2 ·
(−1)(p−1)/2]p = (2 · 1)p = 2p ≡ 1 (mod q), since (p − 1)/2 is even. This is also a
contradiction, since 2p ≡ −1 (mod q) from the first paragraph. Therefore, ordq α �= p.

Thus, ordq α = 2p and α is a primitive root modulo q.

case 2 Let p ≡ −1 (mod 4). Then q ≡ −1 (mod 8), so (2/q) = 1, by Theorem 11.6.
Then 2p ≡ 1 (mod q) and α2p ≡ 1 (mod q). Consequently, ordq α = 1, 2, p, or 2p.

Proceeding, as in case 1, we can show that ordq α �= 1 or 2. So assume
ordq α = p. Then αp ≡ 1 (mod q). Since p and (p − 1)/2 are odd, this implies
[2 · (−1)(p−1)/2]p = [2 · (−1)]p = −2p ≡ 1 (mod q); that is, 2p ≡ −1 (mod q). This
is a contradiction, so ordq α �= p. Consequently, ordq α = 2p and α is a primitive root
modulo q.

Thus, in both cases, α is a primitive root. �

It follows by this theorem that 2 is a primitive root modulo the primes 11, 59,
83, and 107, and −2 is a primitive root modulo 7, 23, and 47. (Verify these.)

Interestingly, there is a similar result that shows 2 is a primitive root modulo yet
another class of primes: If p and 4p + 1 are primes, then 2 is a primitive root modulo
4p + 1. (See Exercise 62.)

E X E R C I S E S 11.2

Evaluate each Legendre symbol, using Euler’s crite-
rion.

1. (5/7) 2. (3/11)

3. (7/11) 4. (11/17)

Evaluate each, using Corollary 11.2.

5. (16/17) 6. (18/19)

7. (−1/29) 8. (−1/47)

Using the fact that (2/23) = 1 = (3/23) and (5/23) = −1,
evaluate each.

9. (128/23) 10. (125/23)

11. (600/23) 12. (1250/23)

Using the fact that (3/19) = −1 = (7/19), compute each.

13. (27/19) 14. (63/19)

15. (147/19) 16. (9261/19)

Let p be an odd prime with p � a. Let ν denote the
number of least positive residues of the integers a,2a,

3a, . . . , [(p − 1)/2]a that exceed p/2. Find the value of
ν for the given values of p and a.

17. p = 13, a = 3 18. p = 13, a = 5
19. p = 17, a = 4 20. p = 19, a = 7

Using Gauss’ lemma, evaluate each.

21. (5/13) 22. (4/17)

23. (7/19) 24. (13/31)

Compute each.

25. (2/19) 26. (2/23)

27. (2/41) 28. (2/43)

29. (13/31) 30. (−50/29)

31. (41/43) 32. (110/59)
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33. If p and 4p + 1 are primes, then 2 is a primitive root
modulo 4p + 1. Using this fact, find five primes for
which 2 is a primitive root. (See Exercise 62.)

Using the fact that (3/p) =
{

1 if p ≡ ±1 (mod 12)

−1 if p ≡ ±5 (mod 12)

evaluate each. (See Exercise 32 in Section 11.3.)

34. (3/17) 35. (12/19)

36. (−3/31) 37. (35/47)

38. Let p ≡ 3 (mod 4) and q = 2p + 1 be primes. Then
q|Mp. Using this fact, verify that 23|M11 and 47|M23.
(See Exercise 52.)

Let p be an odd prime with a primitive root α and a a
positive integer ≤ p − 1. Then there exists an integer k
such that αk ≡ a (mod p), where 1 ≤ k ≤ p − 1. Then a
is a quadratic residue of p if and only if k is even. Using
this fact and the given primitive root α, find the quadratic
residues of the corresponding prime.

39. p = 13, α = 2 40. p = 17, α = 3

Verify each. (Hint: Use Euler’s criterion.)

41. 1913|(2956 − 1) 42. 2029|(21014 − 1)

Prove each, where p is an odd prime and (a, p) = 1 =
(b, p).

43. If a ≡ b (mod p), then either both a and b are
quadratic residues or both are quadratic nonresidues.

44. If p = 4n ± 1 is a prime, then n is a quadratic residue
of p. (O. N. Dalton, 1981)

45. Let p ≡ 1 (mod 4) and a be a quadratic residue of p.
Then p − a is a quadratic residue of p.

46. Let p ≡ 3 (mod 4) and a be a quadratic residue of p.
Then p − a is a quadratic nonresidue of p.

47. Let p ≡ ±1 (mod 8) and a be a quadratic residue of
p. Then 2a is a quadratic residue of p.

48. Let p ≡ 3 (mod 8) and a be a quadratic residue of p.
Then p − 2a is a quadratic residue of p.

49. (1/p) + (2/p) + · · · + ((p − 1)/p) = 0.

(Hint: Use Theorem 11.1.)

50. (−2/p) =
{

1 if p ≡ 1 or 3 (mod 8)

−1 if p ≡ −1 or − 3 (mod 8)

51. Let q be a prime factor of Mp. Then 2 is a quadratic
residue of q if and only if q is of the form 2kp + 1.

52. Let p ≡ 3 (mod 4) and q = 2p + 1 be primes. Then
q|Mp. (Euler)

Let a and b be positive integers such that ab ≡ 1 (mod p).
Then:

53. (a/p) = (b/p)

54. (a(a + 1)/p) = ((b + 1)/p)

55. Let p > 3. Then p divides the sum of its quadratic
residues.

56. Every primitive root modulo a Fermat prime fn is a
quadratic nonresidue.

Let p be an odd prime with a primitive root α and a a pos-
itive integer ≤ p − 1. Then there exists an integer k such
that αk ≡ a (mod p), where 1 ≤ k ≤ p − 1. Using this fact,
prove each.

57. The integer a is a quadratic residue of p if and only
if k is even.

58. There are exactly (p − 1)/2 quadratic residues of p.
59. Using PMI, prove Corollary 11.4.

Prove each.

�60. There are infinitely many primes of the form 8n − 1.
[Hint: Assume there is only a finite number of such
primes, p1,p2, . . . ,pk. Consider the integer N =
(4p1p2 · · ·pk)

2 − 2 and apply Theorem 11.6.]

�61.
p−2∑

a=1
(a(a + 1)/p) = −1

(Hint: The integer a has a multiplicative inverse b.
Then use Exercises 54 and 58.)

�62. If p and 4p + 1 are primes, then 2 is a primitive root
modulo 4p + 1.

�63. Every quadratic nonresidue of a Fermat prime fn is
a primitive root modulo fn.

�64. Using the technique used in the proof of Theorem
11.6, derive a formula for (3/p), where p is a prime
> 3.

� �
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11.3 Quadratic Reciprocity

Let p be an odd prime and a = ∏

i
pei

i be the canonical decomposition of a, where (p,

pi) = 1 for all pi. Then, as we found in Corollary 11.4, the Legendre symbol (a/p)

can be evaluated, provided we know the value of (pi/p), where p and pi are distinct
primes.

To evaluate the Legendre symbol, suppose that p and q are distinct odd primes.
Suppose we know the value of (p/q). Can we then compute (q/p)? In other words,
if p is a square modulo q, is q a square modulo p? Astonishingly, such a remarkable
relationship exists between them. Based on numerical evidence, it was conjectured
by Euler in 1783 and by Lagrange in 1785. Two years later, Legendre restated the
relationship, the law of quadratic reciprocity, in its present elegant form, and pro-
vided a long but incomplete proof in the Mémoires of the French Academy. He tried
another proof in his 1798 Essai, but that also was imperfect.

Gauss began his work on quadratic residues before he entered the University of
Göttingen. After a year of intense study and perhaps unaware of the earlier work by
Euler, Lagrange, and Legendre, Gauss gave the first complete, rigorous proof of the
law; he was only 18 years old then. He called it the fundamental theorem, “the gem
of higher arithmetic.” “For a whole year,” he later wrote, “this theorem tormented
me and absorbed my greatest efforts until, at last, I obtained the proof explained
in the fourth section of the Disquisitiones Arithmeticae.” Gauss took credit for the
law, claiming that a theorem belongs to the one who provides the first demonstration
of it. An irate Legendre complained: “This excessive impudence is unbelievable in
a man who has sufficient personal merit not to have the need of appropriating the
discoveries of others.” In any case, in 1808 Legendre adopted the proof by his young
critic. Gauss was so intrigued by the law that he went on to publish seven more
independent proofs, one in 1796, 1801, and 1805, two in 1808, and two in 1818; he
also searched for an analogue in the theory of cubic and biquadratic residues.

Since that time, mathematicians have attempted to construct newer proofs of
the law. In 1830, Jacobi supplied a proof that Legendre called superior to Gauss’.
Since 1796, more than 190 proofs have been published, the most recent in 2004 by
S. Y. Kim of McMaster University, Ontario, Canada, in The American Mathematical
Monthly.

The following lemma, which appears complicated, paves the way for the law of
quadratic reciprocity.

LEMMA 11.2 Let p and q be distinct odd primes. Then

(p−1)/2∑

k=1

⌊
kq

p

⌋

+
(q−1)/2∑

k=1

⌊
kp

q

⌋

= (p − 1)

2
· (q − 1)

2
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Before we prove the lemma, let us study the following example for a better
understanding of its proof.

EXAMPLE 11.17 Verify Lemma 11.2 with p = 7 and q = 11.

SOLUTION

(p−1)/2∑

k=1

⌊
kq

p

⌋

=
3∑

k=1

⌊
11k

7

⌋

=
⌊

11 · 1

7

⌋

+
⌊

11 · 2

7

⌋

+
⌊

11 · 3

7

⌋

= 1 + 3 + 4 = 8

(q−1)/2∑

k=1

⌊
kp

q

⌋

=
5∑

k=1

⌊
7k

11

⌋

=
⌊

7 · 1

11

⌋

+
⌊

7 · 2

11

⌋

+
⌊

7 · 3

11

⌋

+
⌊

7 · 4

11

⌋

+
⌊

7 · 5

11

⌋

= 0 + 1 + 1 + 2 + 3 = 7

Therefore, LHS = 8 + 7 = 15 = 3 · 5 = RHS. �

Unfortunately, although this example illustrates the lemma, the algebraic ap-
proach does not shed any light on its proof. Therefore, we demonstrate it geometri-
cally.

Notice that

⌊
11k

7

⌋

is the number of positive integers ≤ 11k

7
; that is,

⌊
11k

7

⌋

equals the number of lattice points (which are points with integral coordinates on
the cartesian plane) that lie on the line x = k, above the x-axis, and below the line y =
11

7
x. Therefore,

3∑

i=1

⌊
11k

7

⌋

is the number of lattice points inside or on the polygon

ABCD in Figure 11.2. It equals 1 + 3 + 4 = 8.

On the other hand,

⌊
7k

11

⌋

equals the number of lattice points that lie on the line

y = k, but to the right of the y-axis, and above line x = 7

11
y; that is, y = 11

7
x. Thus,

5∑

k=1

⌊
7k

11

⌋

is the number of lattice points that lie on or inside the polygon ADEF in

the figure; it equals 0 + 1 + 1 + 2 + 3 = 7. Thus the total number of lattice points
= 8 + 7 = 15 = 3 · 5 = number of lattice points inside or on the rectangle BCEF.
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Ferdinand Gotthold Eisenstein (1823–1852), born in Berlin, entered the Univer-

sity of Berlin at the late age of 20 due to ill health. But by then he had mastered the

work of Gauss, Dirichlet, and Jacobi. In 1844, he published two proofs of the law of

quadratic reciprocity, and the analogous laws of cubic reciprocity and biquadratic

reciprocity. Four years later in Berlin he was imprisoned briefly by the Prussian

army for his revolutionary activities in Berlin. Elected to the Berlin Academy of Sci-

ences as Jacobi’s successor in 1852, he made significant contributions to number

theory and algebra.

Eisenstein died of tuberculosis at the age of 29.

Figure 11.2

We now employ this geometric approach to establish the lemma. It is due to the
German mathematician Ferdinand Eisenstein, a student of Gauss at Berlin.

PROOF (of the lemma)

Let S(p,q) =
(p−1)/2∑

k=1

⌊
kq

p

⌋

and S(q,p) =
(q−1)/2∑

k=1

⌊
kp

q

⌋

. Since p and q are distinct

odd primes, kq/p and kp/q are never integers. Since

⌊
kq

p

⌋

is the number of positive

integers ≤ kq

p
,

⌊
kq

p

⌋

gives the number of lattice points on the vertical line x = k,

above the x-axis, and below the line y = q

p
x. (Notice that no points on the line y =

q

p
x are lattice points when x < p.) Therefore, S(p,q) denotes the number of lattice

points above the x-axis, below the line y = q

p
x, and on the vertical lines x = k, where

1 ≤ k ≤ p − 1

2
. Referring to Figure 11.3, S(p,q) equals the number of lattice points

on or inside the polygon ABCDE.



518 CHAPTER 11 Quadratic Congruences

Figure 11.3

A similar argument shows that S(q, p) denotes the total number of lattice points

lying to the right of the y-axis, above the line x = p

q
y; that is, y = q

p
x, and on the lines

y = k, where 1 ≤ k ≤ q − 1

2
. In other words, S(q, p) denotes the number of lattice

points inside or on �AEF.
Thus, S(p,q)+S(q, p) denotes the total number of lattice points inside or on the

rectangle BCDF, namely,

(
p − 1

2

)

·
(

q − 1

2

)

. This yields the desired result. �

At last we arrive at the law of quadratic reciprocity, which is quite aesthetically
appealing. The proof given is Gauss’ third proof of the law, and hinges on his earlier
lemma and Lemma 11.2, just proved. The proof begins identically to that of Gauss’
lemma, so you may review its proof.

THEOREM 11.8 (Law of Quadratic Reciprocity) Let p and q be distinct odd primes. Then

(p/q)(q/p) = (−1)
p−1

2 · q−1
2

PROOF

Let r1, r2, . . . , rk denote the least positive residues of the integers q,2q, . . . ,(
p − 1

2

)

q modulo p that are ≤ p/2 and s1, s2, . . . , sv those that exceed p/2. Clearly,

k + ν = p − 1

2
and (q/p) = (−1)ν .
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In the proof of Gauss’ lemma, we established that the
p − 1

2
integers r1, r2,

. . . , rk, p− s1,p− s2, . . . ,p− sν are a permutation of the integers 1,2, . . . , (p−1)/2.
Therefore,

k∑

i=1

ri +
ν∑

j=1

(p − sj) =
(p−1)/2∑

k=1

k

=

(
p − 1

2

)(
p + 1

2

)

2
Thus,

k∑

i=1

ri + νp −
ν∑

j=1

sj = p2 − 1

8

Let R =
k∑

i=1
ri and S =

ν∑

j=1
sj. Then, this yields,

p2 − 1

8
= R + νp − S (11.9)

Returning to the preceding integers kq, where 1 ≤ k ≤ p − 1

2
,

⌊
kq

p

⌋

denotes the

quotient when kq is divided by p. Let tk denote the remainder when kq is divided
by p, where 0 ≤ tk < p. Thus tk is the least residue of kq modulo p. Then, by the
division algorithm,

kq =
⌊

kq

p

⌋

· p + tk where 0 ≤ tk ≤ p − 1

Therefore,
(p−1)/2∑

k=1

kq =
(p−1)/2∑

k=1

⌊
kq

p

⌋

· p +
(p−1)/2∑

k=1

tk

That is,

q
(p−1)/2∑

k=1

k = pS(p,q) + R + S

q ·
(

p2 − 1

8

)

= pS(p,q) + R + S (11.10)

Subtracting equation (11.9) from equation (11.10), we get

(q − 1) ·
(

p2 − 1

8

)

= p[S(p,q) − ν] + 2S
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Since the LHS and 2S are even, it follows that S(p, q) − ν is even. Therefore,
(−1)S(p,q)−ν = 1; that is, (−1)S(p,q) = (−1)ν .

But, by Gauss’ lemma, (q/p) = (−1)ν . Therefore, (q/p) = (−1)S(p,q). Similarly,
(p/q) = (−1)S(q,p). Therefore,

(p/q)(q/p) = (−1)S(q,p) · (−1)S(p,q)

= (−1)S(q,p)+S(p,q)

= (−1)
p−1

2 · q−1
2 , by Lemma 11.2

This concludes the proof. �

The law of quadratic reciprocity can be restated in a more practical form, as the
following corollary shows.

COROLLARY 11.7 Let p and q be distinct odd primes. Then

(q/p) =
{

(p/q) if p ≡ 1 (mod 4) or q ≡ 1 (mod 4)

−(p/q) if p ≡ q ≡ 3 (mod 4)

PROOF

If p ≡ 1 (mod 4), then (p − 1)/2 is even; so (p − 1)(q − 1)/4 is even. Therefore,
by the law of quadratic reciprocity, (p/q)(q/p) = 1. But (p/q) = ±1 = (q/p), so
(q/p) = (p/q). Similarly, if q ≡ 1 (mod 4), then (q/p) = (p/q).

On the other hand, assume that p ≡ q ≡ 3 (mod 4). Then (p − 1)/2, (q − 1)/2,
and hence (p − 1)/2 · (q − 1)/2 are odd. Therefore, again by the law of quadratic
reciprocity, (p/q)(q/p) = −1. Thus, (q/p) = −(p/q). �

For example, since 17 ≡ 1 (mod 4), (17/29) = (29/17); and since 23 ≡
3 (mod 4) and 47 ≡ 3 (mod 4), (23/47) = −(47/23).

Corollary 11.7, together with Theorems 11.4 and 11.6, and Corollaries 11.2 and
11.4, can be applied to evaluate any Legendre symbol (a/p), where p is an odd prime
and p � a, as the following example illustrates. It demonstrates the power of the law
of quadratic reciprocity.

EXAMPLE 11.18 Compute (152/43) and (3797/7297).

SOLUTION

• Notice that 152 ≡ 23 (mod 43), so (152/43) = (23/43). Since 23 ≡ 3 (mod 4)

and 43 ≡ 3 (mod 4), by Corollary 11.7, (23/43) = −(43/23) = −(20/23) =
−(4/23)(5/23) = −(5/23) = 1. Therefore, (152/43) = (23/43) = 1. [Con-
sequently, the congruence x2 ≡ 152 (mod 43) is solvable.]



11.3 Quadratic Reciprocity 521

• First, notice that both 3797 and 7297 are primes; also, 3797 ≡ 1 (mod 4) and
7297 ≡ 1 (mod 4). Therefore, by the law of quadratic reciprocity,

(3797/7297) = (7297/3797)

= (3500/3797) = (22 · 53 · 7/3797)

= (22/3797)(53/3797)(7/3797)

= (22/3797)(5/3797)3(7/3797) (11.11)

By Theorem 11.4, (22/3797) = 1; furthermore, (5/3797) = (3797/5) =
(2/5) = −1, by Theorem 11.6; (7/3797) = (3797/7) = (3/7) = −1; there-
fore, by equation (11.11), (3797/7297) = 1 · (−1)3(−1) = 1. [Thus the con-
gruence x2 ≡ 3797 (mod 7297) is also solvable.] �

The following example is a simple but interesting application of the law of
quadratic reciprocity and Theorem 11.6.

EXAMPLE 11.19 Show that 1! + 2! + 3! + · · · + n! is never a square, where n > 3.

PROOF (by contradiction)
Let N = 1! + 2! + 3! + · · · + n!. Assume that N = x2 for some positive integer x.
Since n > 3, N > 5. Then (N/5) = (x2/5) = 1.

Since N ≡ 1! + 2! + 3! + 4! ≡ 3 (mod 5), (N/5) = (3/5). But (3/5) = (5/3) =
(2/3) = −1, so (N/5) = −1, which is a contradiction. Thus, N cannot be a perfect
square, where n > 3. (Notice that N is a square if n = 0,1, or 3.) �

The following example, a bit complicated, is also a fine application of the law of
quadratic reciprocity. In addition to Theorem 11.4, it employs two additional facts:

• The product of two integers of the form 5k + 1 is also of the same form.
• If p is an odd prime �= 5, then (5/p) = 1 if and only if p ≡ ±1 (mod 5).

Try to confirm both. See Exercises 21 and 29.

EXAMPLE 11.20 Prove that there are infinitely many primes of the form 10k − 1.

PROOF

Let N = 5(n!)2 − 1, where n > 1. Clearly, N is of the form 10k − 1. Let p be a prime
factor of N. Clearly, p must be odd. Since p|N, 5(n!)2 ≡ 1 (mod p), so (5(n!)2/p) =
(1/p) = 1; that is, (5/p)((n!)2/p) = (5/p) = 1. Thus, p ≡ ±1 (mod 5), so p is of the
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form 5k ± 1. Since N is of the form 5k − 1, not all prime factors of N can be of the
form 5k + 1. Therefore, N must have a prime factor q of the form 5k − 1.

If k is an odd integer 2j + 1, then q = 5k − 1 = 5(2j + 1) − 1 = 10j + 4 is not a
prime. Therefore, k must be even and hence q must be of the form 10k − 1.

Notice that if q ≤ n, then q|n!. But q|N, so q|−1, which is a contradiction. Thus,
q > n.

Thus, for every positive integer n > 1, there is a prime factor q greater than n
and of the form 10k − 1. In other words, there are infinitely many such primes; they
all end in the digit 9. (See Exercise 42 for an alternate proof.) �

The next example is a bonus. It is a fine confluence of the binomial theorem,
Fermat’s little theorem, Euler’s criterion, and the law of quadratic reciprocity.

EXAMPLE 11.21 Let Fn denote the nth Fibonacci number and p an odd prime �= 5. Then

Fp ≡
{

1 (mod p) if p ≡ ±1 (mod 5)

−1 (mod p) if p ≡ ±2 (mod 5)

SOLUTION

Recall from Section 2.6 that

Fn = αn − βn

α − β
= αn − βn

√
5

← Binet’s formula

where α = 1 + √
5

2
and β = −1

α
= 1 − √

5

2
.

Thus,

√
5Fp =

(
1 + √

5

2

)p

−
(

1 − √
5

2

)p

√
52pFp = (

1 + √
5
)p − (

1 − √
5
)p

=
p∑

r=0

(
p

r

)
(√

5
)r −

p∑

r=0

(
p

r

)
(−√

5
)r

= 2

[(
p

1

)
(√

5
) +

(
p

3

)
(√

5
)3 +

(
p

5

)
(√

5
)5 + · · · +

(
p

p

)
(√

5
)p

]

That is,

2p−1Fp =
(

p

1

)

+
(

p

3

)

5 +
(

p

5

)

52 + · · · +
(

p

p

)

5(p−1)/2
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Since p
∣
∣
(

p

k

)

for 1 ≤ k ≤ p−1 and

(
p

p

)

= 1, this implies 2p−1Fp ≡ 5(p−1)/2 (mod p).

By Fermat’s little theorem, 2p−1 ≡ 1 (mod p) and by Euler’s criterion, 5(p−1)/2 ≡
(5/p) (mod p). Thus Fp ≡ (5/p) (mod p). But

(5/p) =
{

1 if p ≡ ±1 (mod 5)

−1 if p ≡ ±2 (mod 5)

Therefore,

Fp ≡
{

1 (mod p) if p ≡ ±1 (mod 5)

−1 (mod p) if p ≡ ±2 (mod 5)
�

For example, 41 ≡ 1 (mod 5) and F41 = 165,580,141 ≡ 1 (mod 41), whereas
43 ≡ 3 (mod 5) and F43 = 433,494,437 ≡ 42 (mod 43), as expected.

In 1877, T. Pepin of France employed the law of quadratic reciprocity to develop
an elegant test for determining the primality of the Fermat number fn. His test is the
essence of the following theorem.

THEOREM 11.9 (Pepin’s Test, 1877) The Fermat number fn is a prime if and only if 3(fn−1)/2 ≡
−1 (mod fn), where n ≥ 1.

PROOF

Assume that fn = 22n + 1 is a prime. Since fn ≡ 1 (mod 4), by the law of quadratic
reciprocity, (3/fn) = (fn/3). But fn ≡ (−1)2n + 1 ≡ 2 (mod 3), so (fn/3) = (2/3) =
−1. Thus (3/fn) = −1.

But, by Euler’s criterion, (3/fn) ≡ 3(fn−1)/2 (mod fn). Therefore,

3(fn−1)/2 ≡ −1 (mod fn)

Conversely, assume that 3(fn−1)/2 ≡ −1 (mod fn); so 3(fn−1)/2 ≡ −1 (mod p) for
a prime factor p of fn. Then 3fn−1 ≡ 1 (mod p), so ordp 3|fn − 1; that is, ordp 3|22n

.
Consequently, ordp 3 = 2k for some positive integer k.

We would like to show that k = 2n. Suppose that k < 2n; then 2n − k

− 1 ≥ 0. Since 32k ≡ 1 (mod p), (32k
)22n−k−1 ≡ 1 (mod p); that is, 322n−1 ≡

3(fn−1)/2 ≡ 1 (mod p). This yields 1 ≡ −1 (mod p); that is, p = 2, which is a con-
tradiction. Therefore, k = 2n and hence ordp 3 = fn − 1. By Fermat’s little theorem,
ordp 3 ≤ p−1. Therefore, fn −1 = ordp 3 ≤ p−1, where p|fn. This implies that fn = p,
a prime. �

The following example illustrates this test.
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EXAMPLE 11.22 Show that f4 = 224 + 1 = 65,537 is a prime.

PROOF

By Pepin’s test, it suffices to show that 3(f4−1)/2 = 3215 = 332768 ≡ −1 (mod f4). We
have 38 ≡ 6561 (mod f4), 320 ≡ 19390 (mod f4), 340 ≡ −13669 (mod f4), 360 ≡
−10282 (mod f4), 3200 ≡ −28787 (mod f4), 3500 ≡ 26868 (mod f4), and 332000 ≡
27748 (mod f4). Therefore:

332768 = 332000 · 3500 · 3200 · 360 · 38

≡ (27748)(26868)(−28787)(−10282)(6561) (mod f4)

≡ −1 (mod f4)

Thus, f4 is a prime. �

In 1905, J. C. Moorehead and A. E. Western, independently applied Pepin’s test
and established the compositeness of the 39-digit Fermat number f7, although no
factors were provided. The actual prime factorization of f7 was provided 65 years
later, in 1970, by J. Brillhart and M. A. Morrison:

f7 = (29 × 116,503,103,764,643 + 1)(29 × 11,141,971,095,088,142,685 + 1)

In 1909, Moorehead and Western, this time working together, proved the compos-
ite nature of f8, again using Pepin’s test. However, the smallest prime factor of f8
was not discovered until 1980, when R. P. Brent and J. M. Pollard found it to be
1,238,926,361,552,897. The other prime factor, found shortly thereafter by H. C.
Williams, is 62 digits long.

The search for Fermat primes did not end there. In 1960, G. A. Paxson used
the test to determine the composite nature of f13. Two years later, J. L. Selfridge
and A. Hurwitz, again using Pepin’s test, demonstrated the compositeness of f14,
without finding any of its prime factors. In 1980, W. Keller determined that f9448 is
composite, with 19 × 29450 + 1 as a factor. In the same year, G. Gostin discovered
that 31,065,037,602,817 is a prime factor of f17.

In 1988, Brent successfully factored f11 = 22048 + 1; f11 is 617 digits long and
319,489 is the smallest prime factor of f11. In the same year, J. Young and D. Buell
applied Pepin’s test using a supercomputer, to determine that f20, which is 315,653
digits long, is composite. Two years later, Pollard factored the 155-digit f9 into three
primes, the smallest of which is 2,424,833; the other two are 49 and 99 digits long.
It took Pollard two months to factor f9 using techniques in algebraic number fields
and a worldwide network of 1000 computers.
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n Status of fn Year Discoverer(s)
0–4 primes 1640 P. Fermat

5 composite 1732 L. Euler
6 composite 1880 F. Landry (at age 82)
7 composite 1905 J. C. Moorehead & A. E. Western
8 composite 1909 J. C. Moorehead & A. E. Western
9 composite 1903 A. E. Western

10 composite 1952 R. M. Robinson
11 composite 1899 A. J. C. Cunningham
12 composite 1877 I. M. Pervouchine & E. Lucas
13 composite 1960 G. A. Paxson
14 composite 1961 A. Hurwitz & J. L. Selfridge
15 composite 1925 M. Kraitchik
16 composite 1953 J. L. Selfridge
17 composite 1980 G. B. Gostin
18 composite 1903 A. E. Western
19 composite 1962 H. Riesel
20 composite 1988 J. Young & D. A. Buell
21 composite 1963 C. P. Wrathall
22 composite 1993 R. E. Crandall et al.
23 composite 1878 I. M. Pervouchine
24 composite 1999 E. Mayer et al.
25 composite 1963 C. P. Wrathall
26 composite 1963 C. P. Wrathall
27 composite 1963 C. P. Wrathall
28 composite 1997 T. Taura
29 composite 1980 G. B. Gostin & P. B. Mclaughlin
30 composite 1963 C. P. Wrathall

Table 11.1

Although Fermat numbers f10 through f30 are known to be composite, not all
their prime factors have been discovered; f14, f20, f22, and f24 are known to be com-
posite, but no prime factors are known. Thus, f4 = 65,537 remains the largest known
Fermat prime.

Table 11.1 summarizes the primality status of Fermat numbers fn, where 0 ≤
n ≤ 30, their discoverers, and the years of discovery. As of January 1, 2006, 225
Fermat numbers are known to be composite, 258 prime factors are known, and f5
through f11 are completely factored. Besides, the largest known composite Fermat
number is f2478782, discovered in 2003 by Cosgrave, Jobling, Woltman, and Gallot:
3 · 22478785 + 1 is a factor.

In 1878, Pepin’s test was generalized by François Proth,† although he never gave
a proof.

† François Proth (1852–1879) was a self-taught farmer, who lived near Verdun, France.



526 CHAPTER 11 Quadratic Congruences

THEOREM 11.10 (Proth’s Theorem, 1878) Let N = k · 2n + 1, where 0 < k < 2n. Suppose there is a
positive integer a such that (a/N) = −1. Then N is a prime if and only if a(N−1)/2 ≡
−1 (mod N). �

Since the proof of Proth’s theorem involves results not yet discussed, we omit
the proof.†

E X E R C I S E S 11.3

Verify Lemma 11.2 for the given values of p and q.

1. p = 5, q = 11 2. p = 13, q = 11

Compute each Legendre symbol.

3. (261/47) 4. (−267/61)

5. (176/241) 6. (1188/379)

7. (−1776/1013) 8. (−2020/3593)

9. (1428/2411) 10. (3533/4133)

Let p and q be odd primes such that p = 4a + q. Then
(a/p) = (a/q) (see Exercise 31). Using this fact, evaluate
each.

11. (3/17) 12. (10/43)

13. (43/191) 14. (114/479)

Let p be a prime ≡ 3 (mod 4). Then the solutions of the
congruence x2 ≡ a (mod p) are x ≡ ±a(p+1)/4 (mod p)

(see Exercise 30). Using this fact, solve each quadratic
congruence.

15. x2 ≡ 13 (mod 23) 16. x2 ≡ 17 (mod 43)

Using Pepin’s test, if possible, verify that each Fermat
number is a prime.

17. f0 18. f1 19. f2 20. f3

21. Derive a formula for (5/p), where p is an odd prime
�= 5.

Compute the least residue of the Fibonacci number Fp

modulo p corresponding to each prime p.

(Hint: Use Example 11.21.)

22. 53 23. 79 24. 89 25. 97

Solve each quadratic congruence with composite mod-
ulus. Each has four incongruent solutions. [Hint: To
solve x2 ≡ a (mod pq), solve x2 ≡ a (mod p) and x2 ≡
a (mod q), and then use the CRT.]

26. x2 ≡ 13 (mod 391) 27. x2 ≡ 17 (mod 817)

28. In 1891, Lucas proved that the prime factors of 24q +
1 are of the form 16hq + 1. Using this fact, find a
prime factor of the Fermat numbers f5 and f6.

Prove each.
29. The product of two integers of the form 5k + 1 is also

of the same form.
30. Let p be a prime ≡ 3 (mod 4). Then x ≡

±a(p+1)/4 (mod p) are solutions of the congruence
x2 ≡ a (mod p), where a is a quadratic residue of p.

31. Let p and q be odd primes such that p = 4a + q. Then
(a/p) = (a/q).

32. Let p be a prime > 3. Then

(3/p) =
{

1 if p ≡ ±1 (mod 12)

−1 if p ≡ ±5 (mod 12)

33. Let p be a prime > 3. Then

(−3/p) =
{

1 if p ≡ 1 (mod 6)

−1 if p ≡ 5 (mod 6)

† For a proof, see K. H. Rosen, Elementary Number Theory and Its Applications, Addison-
Wesley, Boston, 2005.
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34. Let p be an odd prime �= 5. Then (5−1/p) = (p−1/5).
35. Let fn denote the nth Fermat number. Then fn ≡

1 (mod 4), where n ≥ 1. (Hint: Use induction.)
36. Let fm and fn denote distinct Fermat primes. Then

(fm/fn) = (fn/fm). (Hint: Use Exercise 35.)
37. Let fn be a Fermat prime and Mp a Mersenne prime,

where n > 0 and p > 2. Then (fn/Mp) = (Mp/fn).
38. Three is a primitive root modulo every Fermat prime

fn, where n ≥ 1. (Hint: Use Pepin’s test.)
39. Let Mp and Mq be distinct Mersenne primes > 3.

Then (Mp/Mq) = −(Mq/Mp).
40. Let p and q be distinct odd primes. The congruence

x2 ≡ a (mod pq) is solvable if both x2 ≡ a (mod p)

and x2 ≡ a (mod q) are solvable.

41. There are infinitely many primes of the form 6n+1.

[Hint: Assume that there are only finitely many
such primes, p1,p2, . . . ,pk . Then consider N =
(2p1p2 · · ·pk)

2 + 3 and use Exercise 33.]
�42. Prove by contradiction that there are infinitely many

primes of the form 10k − 1.
�43. Derive a formula for (7/p), where p is an odd prime

�= 7.
�44. Let p be an odd prime �= 5, and Fn the nth Fibonacci

number. Then

Fp+1 ≡
{

1 (mod p) if p ≡ ±1 (mod 5)

0 (mod p) if p ≡ ±2 (mod 5)

� �

11.4 The Jacobi Symbol

Our discussion of the solvability of the quadratic congruence x2 ≡ a (mod m) led
us to the definition of the Legendre symbol (a/p) and a detailed investigation of its
properties in Sections 11.1–11.3. We will now generalize the Legendre symbol to the
Jacobi symbol, which was introduced in 1846 by the German mathematician Karl G.
J. Jacobi. In the Jacobi symbol (a/m), the modulus m need not be a prime, but must
be odd and relatively prime to a. We now define it in terms of the Legendre symbol.

The Jacobi Symbol

Let m be an odd positive integer with the canonical decomposition m =
k∏

i=1
pei

i , and

a any integer with (a, m) = 1. Then the Jacobi symbol (a/m) is defined by

(a/m) =
(

a
/ k∏

i=1

pei
i

)

=
k∏

i=1

(a/pi)
ei

where (a/pi) denotes the familiar Legendre symbol.
Although we are using the same notation for both symbols, it should be clear

from the context whether the symbol is Legendre or Jacobi. Bear in mind that the
symbol (a/m) is the Legendre symbol if and only if m is a prime.

The following example clarifies the definition.
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Karl Gustav Jacob Jacobi (1804–1851) was born into a wealthy family in Pots-

dam, Germany. After graduating in 1821 from the local Gymnasium, where he ex-

celled in Greek, Latin, history, and mathematics, he pursued his mathematical in-

terest at the University of Berlin. There he mastered the works of Euler, Lagrange,

and other leading mathematicians, and received his Ph.D. in 1825. Although his

professional career began at the age of 20 at Berlin, there was little prospect for

promotion, so in 1826 he joined the faculty at the University of Königsberg. Be-

coming a full professor there in 1832, he remained there until he became a royal

prisoner in 1842.

An early founder of the theory of determinants, he developed (independently

of Abel) the theory of elliptic functions, and invented the functional determinant,

Jacobian. He made important contributions to number theory, calculus of variations, analytical mechanics, and

dynamics.

A prolific writer, Jacobi died of smallpox in Berlin.

EXAMPLE 11.23 Evaluate the Jacobi symbols (55/273) and (364/935).

SOLUTION

• Notice that 273 = 3 · 7 · 13. So, by the definition of the Jacobi symbol,

(55/273) = (55/3)(55/7)(55/13)

= (1/3)(−1/7)(3/13) = 1 · (−1)(13/3)

= −(1/3) = −1

• 935 = 5 · 11 · 17, so

(364/935) = (364/5)(364/11)(364/17)

= (4/5)(1/11)(7/17) = 1 · 1 · (7/17)

= (7/17) = (17/7) = (3/7)

= −(7/3) = −(1/3) = −1 �

We can now ask if knowing the value of (a/m) helps us to determine the solv-
ability of the congruence x2 ≡ a (mod m). From Sections 11.1 and 11.2, we know
the answer if m is a prime p: It is solvable if and only if (a/p) = 1.
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First, suppose that x2 ≡ a (mod m) is solvable, where m is composite and pi is a
prime factor of m. Then x2 ≡ a (mod pi) is solvable, so (a/pi) = 1. Therefore,

(a/m) =
k∏

i=1

(a/pi)
ei =

k∏

i=1

1ei = 1

Thus, if x2 ≡ a (mod m) is solvable, then the Jacobi symbol (a/m) = 1.
On the other hand, assume that (a/m) = 1. Unfortunately, this does not imply

that the congruence x2 ≡ a (mod m) is solvable. For example, notice that (2/33) =
(2/3 · 11) = (2/3)(2/11) = (−1)(−1) = 1, but x2 ≡ 2 (mod 33) has no solutions.
(Verify this. See Exercise 1.)

Interestingly enough, the Jacobi symbol and the Legendre symbol share several
analogous properties, as the following two theorems show.

THEOREM 11.11 Let m be an odd positive integer, and a and b be any integers with (a, m) = 1 =
(b, m). Then

(1) If a ≡ b (mod m), then (a/m) = (b/m).
(2) (ab/m) = (a/m)(b/m)

(3) (a2/m) = 1

PROOF

Let m =
k∏

i=1
pei

i be the canonical decomposition of m.

(1) Since a ≡ b (mod m), a ≡ b (mod pi), so (a/pi) = (b/pi), by Theorem
11.4. Therefore,

(a/pi)
ei = (b/pi)

ei

Thus,

(a/m) =
k∏

i=1

(a/pi)
ei =

k∏

i=1

(b/pi)
ei = (b/m)

(2) By Theorem 11.4, (ab/pi) = (a/pi)(b/pi). Therefore,

(ab/pi)
ei = (a/pi)

ei(b/pi)
ei

Thus,

(ab/m) =
k∏

i=1

(ab/pi)
ei =

k∏

i=1

(a/pi)
ei(b/pi)

ei

=
k∏

i=1

(a/pi)
ei

k∏

i=1

(b/pi)
ei = (a/m)(b/m)

(3) Since (a2/m) = (a/m)2, by property (2), the desired result follows. �
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The following example demonstrates the first two properties.

EXAMPLE 11.24 Let m = 231 = 3 · 7 · 11.

• First, notice that 211 ≡ −20 (mod 231). Then

(211/231) = (211/3 · 7 · 11) = (211/3)(211/7)(211/11)

= (1/3)(1/7)(2/11)

(−20/231) = (−20/3 · 7 · 11) = (−20/3)(−20/7)(−20/11)

= (1/3)(1/7)(2/11)

Thus, (211/231) = (−20/231). [You may verify that (211/231) = −1.]

• (4 · 50/231) = (4 · 50/3 · 7 · 11) = (4 · 50/3)(4 · 50/7)(4 · 50/11)

= (4/3)(50/3)(4/7)(50/7)(4/11)(50/11)

= [(4/3)(4/7)(4/11)][(50/3)(50/7)(50/11)]
= (4/3 · 7 · 11)(50/3 · 7 · 11) = (4/231)(50/231)

(You may verify that (4 · 50/231) = 1.) �

The next theorem generalizes Corollary 11.2 and Theorem 11.6, but we add a
lemma to make its proof simpler and shorter.

LEMMA 11.3 Let m be an odd positive integer with canonical decomposition
k∏

i=1
pei

i . Then

(1)
k∑

i=1
ei(pi − 1)/2 ≡ (m − 1)/2 (mod 2)

(2)
k∑

i=1
ei(p2

i − 1)/8 ≡ (m2 − 1)/8 (mod 2)

PROOF

First, notice that pi − 1 ≡ 0 (mod 2) and p2
i − 1 ≡ 0 (mod 8).

(1) We write pi as pi = 1 + (pi − 1), so

pei
i = [

1 + (pi − 1)
]ei

Using the binomial theorem, since pi − 1 is even, this yields

pei
i ≡ 1 + ei(pi − 1) (mod 4)
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Therefore,

m =
k∏

i=1

pei
i ≡

k∏

i=1

[
1 + ei(pi − 1)

]
(mod 4) (11.12)

But

[
1 + ei(pi − 1)

][
1 + ej(pj − 1)

] ≡ 1 + ei(pi − 1) + ej(pj − 1) (mod 4)

So, by congruence (11.12),

m ≡ 1 +
k∑

i=1

ei(pi − 1) (mod 4)

Thus,
k∑

i=1
ei(pi − 1)/2 ≡ (m − 1)/2 (mod 2).

(2) Since p2
i − 1 ≡ 0 (mod 8), by the binomial theorem,

p2ei
i = (p2

i )
ei = [

1 + (p2
i − 1)

]ei

≡ 1 + ei(p
2
i − 1) (mod 64)

But

[
1 + ei(p

2
i − 1)

][
1 + ej(p

2
j − 1)

] ≡ 1 + ei(p
2
i − 1) + ej(p

2
j − 1) (mod 64)

Therefore,

m2 =
k∏

i=1

p2ei
i ≡

k∏

i=1

[
1 + ei

(
p2

i − 1
)]

(mod 64)

≡ 1 +
k∑

i=1

ei(p
2
i − 1) (mod 64)

Thus,
k∑

i=1
ei(p2

i − 1)/8 ≡ (m2 − 1)/8 (mod 2). This concludes the proof. �

We are now ready for the next major result.

THEOREM 11.12 Let m be an odd positive integer. Then

(1) (−1/m) = (−1)(m−1)/2

(2) (2/m) = (−1)(m
2−1)/8



532 CHAPTER 11 Quadratic Congruences

PROOF

Let m =
k∏

i=1
pei

i be the canonical decomposition of m. Then

(1) (−1/m) =
k∏

i=1

(−1/pi)
ei =

k∏

i=1

[
(−1)(pi−1)/2]ei, by Corollary 11.2

= (−1)

k∑

i=1
ei(pi−1)/2

= (−1)(m−1)/2, by Lemma 11.3

(2) (2/m) =
k∏

i=1

(2/pi)
ei

=
k∏

i=1

(−1)ei(p2
i −1)/8, by Corollary 11.6

= (−1)

k∑

i=1
ei(p2

i −1)/8

= (−1)(m
2−1)/8, by Lemma 11.3 �

For example,

(−1/39) = (−1)(39−1)/2 = (−1)19 = −1

(2/819) = (−1)(8192−1)/8 = (−1)83845 = −1

We now present the analogous law of quadratic reciprocity for Jacobi symbol. It
employs both the earlier version and Lemma 11.3.

THEOREM 11.13 (The Generalized Law of Quadratic Reciprocity) Let m and n be relatively
prime odd positive integers. Then

(m/n)(n/m) = (−1)
m−1

2 · n−1
2

PROOF

Let m =
r∏

i=1
pai

i and n =
s∏

i=1
q

bj
j be the canonical decompositions of m and n, respec-

tively. Then, by definition,

(m/n) =
s∏

j=1

(m/qj)
bj =

s∏

j=1

[
r∏

i=1

(pi/qj)
aibj

]

=
s∏

j=1

r∏

i=1

(pi/qj)
aibj
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and

(n/m) =
r∏

i=1

(n/pi)
ai =

r∏

i=1

[
s∏

j=1

(qj/pi)
bjai

]

=
r∏

i=1

s∏

j=1

(qj/pi)
bjai

Therefore,

(m/n)(n/m) =
r∏

i=1

s∏

j=1

[(pi/qj)(qj/pi)]aibj

=
r∏

i=1

s∏

j=1

[
(−1)

pi−1
2 · qj−1

2

]aibj

= (−1)

∑

i

∑

j
aibj

( pi−1
2

)( qj−1
2

)

= (−1)

[∑

i
ai(

pi−1
2 )

][∑

j
bj(

qj−1
2 )

]

= (−1)
m−1

2 · n−1
2 , by Lemma 11.3

This concludes the proof. �

The following two examples demonstrate the power of this generalized version.

EXAMPLE 11.25 Using the generalized law of quadratic reciprocity, compute the Jacobi symbol
(221/399).

SOLUTION

By the generalized law of quadratic reciprocity,

(221/399) = (−1)
221−1

2 · 399−1
2 (399/221) = (399/221)

= (178/221) = (2/221)(89/221) (11.13)

By Theorem 11.12, (2/221) = (−1)(2212−1)/8 = −1.
By the generalized law of quadratic reciprocity,

(89/221) = (−1)
89−1

2 · 221−1
2 (221/89)

= (221/89) = (43/89)

= (−1)
43−1

2 · 89−1
2 (89/43)

= (89/43) = (3/43)

= (−1)
3−1

2 · 43−1
2 (43/3)
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= −(43/3) = −(1/3)

= −1

Therefore, by equation (11.13), (221/399) = (−1)(−1) = 1. �

The generalized law of quadratic reciprocity is extremely useful for evaluating
the Legendre symbol (a/p), where a is an odd composite number and p an odd prime
with p � a, as the following example illustrates.

EXAMPLE 11.26 Using the generalized law of quadratic reciprocity, evaluate (391/439).

SOLUTION

By the generalized law of quadratic reciprocity,

(391/439) = (−1)
391−1

2 · 439−1
2 (439/391) = −(439/391)

= −(48/391) = −(16/391)(3/391)

= −(3/391) = −(−1)
3−1

2 · 391−1
2 (391/3)

= (391/3) = (1/3)

= 1 �

The following example, a continuation of Example 11.16, is a fine application
of the generalized law of quadratic reciprocity.

EXAMPLE 11.27 Let p be a prime of the form 4n ± 1. Prove that every positive factor d of n is a
quadratic residue of p.

PROOF

Let p = 4n + r, where r = ±1. Let d = 2st, where s ≥ 0 and t is odd.
If s ≥ 1, then p ≡ r (mod 8), so (2/p) = 1, by Theorem 11.6. Thus, for s ≥ 0,

(d/p) = (2st/p) = (2/p)s(t/p) = (t/p). So (d/p) = 1 if t = 1. If t �= 1, then, by the
generalized law of quadratic reciprocity,

(t/p) = (−1)
t−1

2 · p−1
2 (p/t)

If r = 1, then (p − 1)/2 is even and (p/t) = (1/t) = 1, so (t/p) = 1. If r = −1, then
(p − 1)/2 is odd, so (t/p) = (−1)(t−1)/2(−1/t) = (−1/t)2 = 1. Thus, in both cases,
(d/p) = (t/p) = 1, so d is a quadratic residue of p. �
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E X E R C I S E S 11.4

1. Find the quadratic residues of 33.

Evaluate each Jacobi symbol.

2. (2/21) 3. (3/35)

4. (12/25) 5. (23/65)

6. (52/129) 7. (442/385)

8. (−68/665) 9. (−198/2873)

Evaluate each Jacobi symbol.

10. (2/15) 11. (17/33)

Verify that each congruence is not solvable.

12. x2 ≡ 2 (mod 15) 13. x2 ≡ 17 (mod 33)

Compute each.

14. (3/72) 15. (3/53 · 75)

16. (3/57 · 75 · 113) 17. (3/5 · 73 · 136)

18. Let m be an odd positive integer with prime-
power factorization paqbrc, where p ≡ q ≡ r ≡
±5 (mod 12). Under what conditions will (3/m) = 1?
(Hint: Study Exercises 14–17.)

19. Let m be an odd positive integer with prime-
power factorization paqbrcsd , where p ≡ q ≡ r ≡
±5 (mod 12) and s ≡ ±1 (mod 12). Under what con-

ditions will (3/m) = 1?
(Hint: Study Exercises 14–18.)

Prove each.

20. Let m be an odd integer such that (a/m) = −1. Then
the congruence x2 ≡ a (mod m) is not solvable.

21. Let m be an odd positive integer. Then

(−1/m) =
{

1 if m ≡ 1 (mod 4)

−1 if m ≡ −1 (mod 4)

22. Let m be an odd positive integer. Then

(2/m) =
{

1 if m ≡ ±1 (mod 8)

−1 if m ≡ ±3 (mod 8)

23. Let m and n be relatively prime odd positive inte-
gers. Then

(n/m) =
{

(m/n) if m ≡ 1 or n ≡ l (mod 4)

−(m/n) if m ≡ n ≡ 3 (mod 4)

�24. Let m be an odd positive integer such that 3 � m.
Then (3/m) = 1 if and only if the sum of the ex-
ponents of the prime factors ≡ ±5 (mod 12) of m is
even.

� �

�11.5 Quadratic Congruences with Composite Moduli (optional)

Thus far, we have focused on solving quadratic congruences x2 ≡ a (mod p), where
p is an odd prime and p � a. In fact, we have enough tools to solve quadratic con-
gruences even if the modulus m is the product of a finite number of distinct odd
primes. For instance, let p and q be distinct odd primes such that (a,pq) = 1.
Since (a/pq) = (a/p)(a/q), x2 ≡ a (mod pq) is solvable if both x2 ≡ a (mod p) and
x2 ≡ a (mod q) are solvable. Consequently, if we know their solutions, we can then
apply the CRT to generate the solutions of x2 ≡ a (mod pq), as the following two
examples illustrate.
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EXAMPLE 11.28 Solve the quadratic congruence x2 ≡ 15 (mod 187).

SOLUTION

First, notice that 187 = 11 · 17, and (15/11) = 1 = (15/17), so the congruences
x2 ≡ 15 (mod 11) and x2 ≡ 15 (mod 17) are solvable. Thus, x2 ≡ 15 (mod 187) is
also solvable.

You may verify that the two incongruent solutions of x2 ≡ 15 (mod 11) are x ≡
±2 (mod 11) and those of x2 ≡ 15 (mod 17) are x ≡ ±7 (mod 17). Therefore, by the
CRT, the given congruence has four incongruent solutions: x ≡ ±24,±75 (mod 187);
that is, x ≡ 24,75,112,163 modulo 187. �

If p ≡ 3 (mod 4) and x2 ≡ a (mod p) is solvable, then its solutions are known
explicitly. (See Exercise 30 in Section 11.3.) Consequently, in such cases, x2 ≡
a (mod pq) can be solved fairly easily, as the following example shows.

EXAMPLE 11.29 Solve the congruence x2 ≡ 6 (mod 437).

SOLUTION

First, notice that 437 = 19 · 23 and (6/19) = 1 = (6/23), so the congruences
x2 ≡ 6 (mod 19) and x2 ≡ 6 (mod 23) are solvable. When p ≡ 3 (mod 4), the so-
lutions of x2 ≡ a (mod p) are x ≡ ±a(p+1)/4 (mod p). Since 19 ≡ 3 ≡ 23 (mod 4),
the solutions of x2 ≡ 6 (mod 19) are x ≡ ±6(19+1)/4 ≡ ±65 ≡ ±5 (mod 19), and
those of x2 ≡ 6 (mod 23) are x ≡ ±6(23+1)/4 ≡ ±66 ≡ ±12 (mod 23). Thus, by
the CRT, the solutions of x2 ≡ 6 (mod 437) are x ≡ ±81,±195 (mod 437); that is,
x ≡ 81,195,242,356 modulo 437. �

It follows from these two examples that if the modulus m is the product of a
finite number of distinct primes and (a/p) = 1 for every prime factor p of m, then
the congruence can be solved. See Exercises 1–4.

We now turn our attention to the case where m is a prime-power pn, p being odd.
Two questions we can reasonably ask are:

• When is the congruence x2 ≡ a (mod pn) solvable?
• When it is solvable, how do we find the solutions?

Before answering, let us study the following example, since it should clarify the
proof of the next theorem.

EXAMPLE 11.30 Find a solution of the congruence x2 ≡ 23 (mod 73).
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SOLUTION

We shall illustrate the strategy step by step.

step 1 Solve the congruence x2 = 23 (mod 7).
Since 23 ≡ 2 (mod 7) and (2/7) = 1, x2 ≡ 23 (mod 7) is solvable; its solutions are
x ≡ 3, 4 (mod 7).

step 2 Construct a solution of x2 ≡ 23 (mod 72).
Since 3 is a solution of x2 ≡ 23 (mod 7), 32 = 23 + 7i for some integer i, namely,
i = −2; thus, 9 = 23 + (−2) · 7. We now ingeniously look for a solution of the form
3 + 7j, so square it:

(3 + 7j)2 = 9 + 42j + 49j2

≡ 9 + 42j (mod 72)

≡ [23 + (−2) · 7] + 42j(mod 72)

≡ 23 + 7(−2 + 6j) (mod 72)

Now choose j such that −2 + 6j ≡ 0 (mod 7); that is, 6j ≡ 2 (mod 7); thus, choose
j ≡ 5 (mod 7) or j = 5. Then 3+7j ≡ 3+7 ·5 ≡ 38 (mod 72) and 382 ≡ 23 (mod 72).
Thus, 38 is a solution of x2 ≡ 23 (mod 72).

step 3 Now use 38 to generate a solution of x2 ≡ 23 (mod 73).
Since 382 ≡ 23 (mod 72), 382 = 23 + k · 72 for some integer k, namely, 29: 382 =
23 + 29 · 72. Now look for a solution of the form 38 + 72	. Since

(38 + 72	)2 = 382 + 76 · 72	 + 74	2

≡ 382 + 76 · 72	 (mod 73)

≡ (23 + 29 · 72) + 76 · 72	 (mod 73)

≡ 23 + 72(29 + 76	) (mod 73)

Choose 	 such that 29 + 76	 ≡ 0 (mod 7); that is, such that 1 + 6	 ≡ 0 (mod 7); thus
choose 	 = 1. Then 38 + 72	 = 38 + 72 · 1 ≡ 87 (mod 73). Thus, 872 ≡ 23 (mod 73),
so 87 is a solution of the given congruence. [Now use the solution 4 of x2 ≡
23 (mod 7), and steps 2 and 3 to find the other solution of x2 ≡ 23 (mod 73); it is
256.] �

This example shows that if the congruence x2 ≡ a (mod p) is solvable, then x2 ≡
a (mod pn) is also solvable. Further, its solutions can be used step by step to generate
the solutions of x2 ≡ a (mod pn). This is the essence of the following theorem.
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THEOREM 11.14 Let p be an odd prime, a any integer such that p � a, and n any positive integer. Then
the congruence x2 ≡ a (mod pn) is solvable if and only if (a/p) = 1.

PROOF

Suppose that x2 ≡ a (mod pn) is solvable. Then x2 ≡ a (mod p) is also solvable, so
(a/p) = 1.

Conversely, let (a/p) = 1; that is, assume that x2 ≡ a (mod p) is solvable. We
shall now prove by induction that x2 ≡ a (mod pn) is solvable for every positive
integer n. Clearly it is true when n = 1. So assume it is true for an arbitrary integer
k ≥ 1: x2 ≡ a (mod pk) is solvable. We shall now show that x2 ≡ a (mod pk+1) is also
solvable by constructing a solution.

Let α be a solution of x2 ≡ a (mod pk). Then α2 ≡ a (mod pk); that is, α2 =
a + ipk for some integer i (see Step 2 in Example 11.30). We now generate a solution
of the form α + jpk of x2 ≡ a (mod pk+1). Then

(α + jpk)2 = α2 + 2αjpk + j2p2k

≡ α2 + 2αjpk (mod pk+1), since 2k ≥ k + 1

≡ (a + ipk) + 2αjpk (mod pk+1)

≡ a + (i + 2αj)pk (mod pk+1)

Now choose j such that i + 2αj ≡ 0 (mod p). Such a j exists by Theorem 4.9, since
(2α, p) = 1. With such a j, (α + jpk)2 ≡ a (mod pk+1). Thus, α + jpk is a solution of
x2 ≡ a (mod pk+1).

Thus, by induction, x2 ≡ a (mod pn) is solvable for every positive integer n. �

This theorem provides a test to determine the solvability of x2 ≡ a (mod pn),
and an algorithm to construct a solution of the congruence from that of x2 ≡
a (mod pn−1). Thus, knowing the solutions of x2 ≡ a (mod p), we can step by step
build up to those of x2 ≡ a (mod pn), as the following example illustrates.

EXAMPLE 11.31 In Example 11.30, we found that 87 is a solution of x2 ≡ 23 (mod 73). Using Theo-
rem 11.14, find the remaining solution.

SOLUTION

Recall that x2 ≡ 23 (mod 7) has two solutions, 3 and 4 modulo 7, and we used 3 to
arrive at the solution 87. To find the remaining solution we proceed as follows, where
a = 23 and p = 7.

step 1 Initialize α and k. (k is the current exponent of the modulus 7.)
α = 4 and k = 1.
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step 2 Express α2 in the form a + ip and solve for i.
α2 = a + ip yields 16 = 23 + 7i, thus i = −1.

step 3 Solve the linear congruence i + 2αj ≡ 0 (mod p) for j.
Then −1 + 2 · 4j ≡ 0 (mod 7); that is, j ≡ 1 (mod 7), so choose j = 1.

step 4 Extract a solution of x2 ≡ a (mod p2).
α + jp = 4 + 1 · 7 = 11 is a solution of x2 ≡ 23 (mod 72). (Verify this.)

step 5 Update α and k.
α = 11 and k = 2.
With the new values of α and k, repeat steps 2–4 to find a solution of x2 ≡ a (mod p3).

step 6 Express α2 in the form a + ip2.
α2 = a + ip2 yields 121 = 23 + i · 72; thus i = 2.

step 7 Solve the linear congruence i + 2αj ≡ 0 (mod p) for j.
2 + 2 · 11j ≡ 0 (mod 7) yields j = 5.

step 8 Generate a solution of x2 ≡ a (mod p3).
α + jp2 = 11 + 5 · 72 = 256 is a solution of x2 ≡ 23 (mod 73), as expected. �

Using the preceding two examples, we can solve x2 ≡ 23 (mod 74) and x2 ≡
23 (mod 75). See Exercises 7 and 8.

Next we examine congruences of the form x2 ≡ a (mod 2n). Suppose a is even
and a = 2bc �≡ 0 (mod 2n), where c is odd. Clearly, b < n. If b is odd, the congruence
has no solution. (See Exercise 52.) If b is even, say, b = 2i, then x2 ≡ 22ic (mod 2n);
that is, (x/2i)2 ≡ c (mod 2n−b). This is of the form y2 ≡ c (mod 2k), where c is odd.
Consequently, we restrict our investigation to the case where a is odd. Then, depend-
ing on the value of k, the congruence can have exactly one, two, or four solutions.
This is the essence of the following theorem. A portion of its proof runs along the
same lines as the proof of Theorem 11.14.

THEOREM 11.15 Let a be an odd integer and n any integer ≥ 3. Then the congruence

• x2 ≡ a (mod 2) is solvable.
• x2 ≡ a (mod 4) is solvable if and only if a ≡ 1 (mod 4).
• x2 ≡ a (mod 2n) is solvable if and only if a ≡ 1 (mod 8).

PROOF

• Because a ≡ 1 (mod 2), x2 ≡ 1 (mod 2) has exactly one solution, namely, 1.
• Suppose x2 ≡ a (mod 4) is solvable. Since a is odd, so is x2. Then x must

be odd and hence x2 ≡ 1 (mod 8). (See Exercise 46.) Consequently, x2 ≡
1 (mod 4) and hence a ≡ 1 (mod 4).
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Conversely, assume that a ≡ 1 (mod 4). Then x2 ≡ 1 (mod 4) is solvable since
it has (exactly) two incongruent solutions, namely, 1 and 3.

• Suppose x2 ≡ a (mod 2n) is solvable. Then, x2 ≡ 1 (mod 8), so a ≡ 1 (mod 8).
Conversely, suppose a ≡ 1 (mod 8). We will then prove by induction that
x2 ≡ a (mod 2n) is solvable for every n ≥ 3. First, notice that x2 ≡ 1 (mod 8)

is solvable with exactly four incongruent solutions, namely, 1, 3, 5, and 7.
Now assume that x2 ≡ a (mod 2k) has a solution α for an arbitrary integer
k ≥ 3. Then α2 ≡ a (mod 2k); that is, α2 = a + i2k for some integer i. We now
generate a solution of x2 ≡ a (mod 2k+1) in the form α + j2k−1 (similar to that
in Theorem 11.14). Then:

(α + j2k−1)2 = α2 + αj2k + j222k−2

≡ α2 + αj2k (mod 2k+1), since k ≥ 3

≡ (a + i2k) + αj2k (mod 2k+1)

≡ a + (i + αj)2k (mod 2k+1)

Now choose j such that i + αj ≡ 0 (mod 2). Since α is odd, such a j ex-
ists by Corollary 4.7. Then (α + j2k−1)2 ≡ a (mod 2k+1). Consequently,
x2 ≡ a (mod 2k+1) is solvable with α+ j2k−1 as a solution. Thus, by induction,
x2 ≡ a (mod 2n) is solvable for every integer n ≥ 3. �

We can take another example: Since 37 �≡ 1 (mod 8), it follows by the theorem
that x2 ≡ 37 (mod 64) is not solvable; likewise, x2 ≡ 5 (mod 8) is also not solvable.

Since every solution of x2 ≡ a (mod 2k) yields a solution of x2 ≡ a (mod 2k+1),
where k ≥ 3, and x2 ≡ a (mod 8) has four solutions, it follows that x2 ≡ a (mod 2n)

has at least four solutions, where n ≥ 3. In fact, if α is a solution, then it can be
shown that 2n − α and 2n−1 ± α are also solutions. (See Exercise 53.) It can also be
shown that it has no other incongruent solutions. Accordingly, we have the following
result.

COROLLARY 11.8 If a ≡ 1 (mod 8) and n ≥ 3, then the congruence x2 ≡ a (mod 2n) has exactly four
incongruent solutions. �

The following example illustrates the theorem.

EXAMPLE 11.32 Solve the congruence x2 ≡ 17 (mod 32).

SOLUTION

Since 17 ≡ 1 (mod 8), the congruence is solvable.
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step 1 Find a solution of x2 ≡ a (mod 23).
Since 12 ≡ 17 (mod 23), α = 1 is a solution of x2 ≡ 17 (mod 23). Then 12 = 17 + 8i,
where i = −2.

step 2 Find a solution of x2 ≡ a (mod 24) with k = 3.
(See the proof of Theorem 11.15.) Choose j such that i+αj = −2+1 · j ≡ 0 (mod 2).
Thus, we choose j = 0. Then α + j2k−1 = 1 + 0 · 4 = 1 is a solution of x2 ≡
17 (mod 24), which is obviously true.

step 3 Update the values of α, k, and i.
Clearly, α = 1 and k = 4. Since 12 ≡ 17 (mod 16), 12 = 17 + 16i; so choose i = −1.

step 4 Find a solution of x2 ≡ a (mod 25), where k = 4.
Choose j such that i+αj = −1+1 · j ≡ 0 (mod 2), so choose j = 1. Then α+ j2k−1 =
1 + 1 · 23 = 9 is a solution of x2 ≡ 17 (mod 25). (You may verify this.)

step 5 Find the remaining solutions of x2 ≡ a (mod 25).
They are given by −9 = 23 and 2n−1 ± 9 = 24 ± 9 modulo 32.

Thus, the four solutions of the given congruence are 7, 9, 23, and 25 mod-
ulo 32. �

As the theorem shows and this example illustrates, finding a solution of x2 ≡
a (mod 8) is a good starting place to construct a solution of x2 ≡ a (mod 2n),
where n ≥ 4. The exercises to follow provide ample opportunities for such a pur-
suit.

We now tie all pieces together. Let m = 2e0
∏

i
pei

i be the canonical decomposi-

tion of m and (a, m) = 1. Theorems 11.14 and 11.15 enable us to solve the con-
gruences x2 ≡ a (mod pj) and x2 ≡ a (mod 2k). Consequently, x2 ≡ a (mod m) is
solvable if and only if they are solvable. Accordingly, we have the following re-
sult.

THEOREM 11.16 Let m be a positive integer with canonical decomposition 2e0
∏

i
pei

i and a any integer

with (a, m) = 1. Then x2 ≡ a (mod m) is solvable if and only if x2 ≡ a (mod 2e0) and
x2 ≡ a (mod pei

i ) are solvable. �

Knowing the solutions of the congruences x2 ≡ a (mod 2e0) and x2 ≡ a (mod pel
i ),

we can solve the congruence x2 ≡ a (mod m) using the CRT, as the next example il-
lustrates. Obviously, the task will be long and complicated if m contains several
distinct prime factors.
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EXAMPLE 11.33 Solve the quadratic congruence x2 ≡ 97 (mod 7688).

SOLUTION

(We leave the details for you to fill in.) Since 7688 = 23 · 312, we first solve the
congruences x2 ≡ 97 (mod 8) and x2 ≡ 97 (mod 312), and then use their solutions to
solve the given congruence.

step 1 Solve x2 ≡ 97 (mod 8).
Since x2 ≡ 1 (mod 8), x ≡ 1,3,5,7 (mod 8).

step 2 Solve x2 ≡ 97 (mod 31).
Then x2 ≡ 4 (mod 31), so x ≡ 2,29 (mod 31).

step 3 Solve x2 ≡ 97 (mod 312).
Using Theorem 11.14, the two solutions are x ≡ 215,746 (mod 312).

step 4 Use the solutions in steps 1 and 3 to solve x2 ≡ 97 (mod 7688).
By the CRT, it has eight incongruent solutions, namely, x ≡ 215, 1707, 2137, 3629,
4059, 5551, 5981, 7473 (mod 7688). �

E X E R C I S E S 11.5

Solve each quadratic congruence.

1. x2 ≡ 4 (mod 35) 2. x2 ≡ 23 (mod 77)

3. x2 ≡ 43 (mod 221) 4. x2 ≡ 69 (mod 2431)

Using the given solution of the congruence, solve the cor-
responding congruence.

5. 108 is a solution of x2 ≡ 3 (mod 132); x2 ≡
3 (mod 133)

6. 211 is a solution of x2 ≡ 15 (mod 172); x2 ≡
15 (mod 173)

Solve each congruence.
(Hint: Use Examples 11.30 and 11.31.)

7. x2 ≡ 23 (mod 74) 8. x2 ≡ 23 (mod 75)

Solve each congruence.

9. x2 ≡ 10 (mod 132) 10. x2 ≡ 10 (mod 133)

11. x2 ≡ 5 (mod 112) 12. x2 ≡ 5 (mod 113)

13. x2 ≡ 13 (mod 172) 14. x2 ≡ 17 (mod 192)

15. x2 ≡ 17 (mod 64) 16. x2 ≡ 17 (mod 256)

17. x2 ≡ 25 (mod 32) 18. x2 ≡ 25 (mod 128)

19. x2 ≡ 33 (mod 64) 20. x2 ≡ 33 (mod 128)

21. x2 ≡ 41 (mod 32) 22. x2 ≡ 41 (mod 256)

23. x2 ≡ 41 (mod 1024)

Solve each. (See Example 11.1 and Exercise 10 in Sec-
tion 11.1.)

24. 3x2 − 4x + 7 ≡ 0 (mod 132)

25. 4x2 + 4x − 3 ≡ 0 (mod 52)

Solve each congruence.
(Hint: Find a least residue b such that ab ≡ 1 (mod p).)

26. 2x2 +1 ≡ 0 (mod 11) 27. 2x2 +1 ≡ 0 (mod 17)

28. 3x2 +1 ≡ 0 (mod 13) 29. 3x2 +1 ≡ 0 (mod 19)
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Solve each congruence, if possible.
(Hint: Use Exercises 1–4.)

30. x2 ≡ 4 (mod 140) 31. x2 ≡ 23 (mod 308)

32. x2 ≡ 43 (mod 1768) 33. x2 ≡ 13 (mod 1156)

34. x2 ≡ 5 (mod 5324) 35. x2 ≡ 17 (mod 2888)

Assuming that the congruence x2 ≡ a (mod m) is solvable,
find the number of solutions for the indicated value of m,
where p,q, and r are distinct odd primes, and a is an inte-
ger with (a, pqr) = 1.

36. m = pq 37. m = p2

38. m = 4pq 39. m = pqr

40. m = p2q3r4 41. m = 8p2q3r4

Let m = 2e0
k∏

i=1
pei

i be the canonical decomposition of m

and (a,m) = 1. Assuming that x2 ≡ a (mod m) is solv-
able, find its number of solutions in each case.

42. e0 = 0 43. e0 = 1

44. e0 = 2 45. e0 ≥ 3

Prove each.

46. The square of every odd integer is congruent to 1
modulo 8.

47. Let a and b be two positive integers and p an
odd prime such that ab ≡ 1 (mod p). Then (a/p) =
(b/p).

48. Let p be an odd prime. Then the congruence 2x2 +
1 ≡ 0 (mod p) is solvable if and only if p ≡ 1 or
p ≡ 3 (mod 8). (Hint: Use Exercise 47.)

49. Let p be a prime > 3. Then 3x2 + 1 ≡ 0 (mod p) if
and only if p ≡ 1 (mod 6).

50. Let α be a solution of x2 ≡ a (mod pn), where p is
an odd prime and p � a. Show that pn − α is also a
solution.

51. Let p be an odd prime and a an integer such that
p � a. If the congruence x2 ≡ a (mod pn) is solvable,
it has exactly two solutions, where n ≥ 2.

(Hint: Use Exercise 50.)
52. Let n be a positive integer and a = 2bc �≡

0 (mod 2n), where b and c are odd integers. Then
the congruence x2 ≡ a (mod 2n) is not solvable.

53. Let α be a solution of x2 ≡ a (mod 2n), where n ≥ 3
and a ≡ 1 (mod 8). Then 2n − α and 2n−1 ± α are
also solutions.

�54. The congruence x2 ≡ a (mod 2n), where n ≥ 3 and
a ≡ 1 (mod 8) has exactly four incongruent solu-
tions. (Hint: Use Exercise 53.)

� �

X CHAPTER SUMMARY

In this chapter, we explored the theory of quadratic congruences via the concept of a
quadratic residue, and established several criteria for determining the solvability of
the congruence x2 ≡ a (mod p), where p is an odd prime and p � a. The congruence
has either two or no incongruent solutions.

Quadratic Residue
• An integer a is a quadratic residue of a positive integer m, where (a, m) = 1,

if x2 ≡ a (mod m) has a solution; otherwise, it is a quadratic nonresidue.
(p. 497)

• Every odd prime p has exactly (p − 1)/2 quadratic residues and exactly
(p − 1)/2 quadratic nonresidues. (p. 498)
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• (Euler’s criterion) Let p be an odd prime. Then a positive integer a with p � a
is a quadratic residue of p if and only if a(p−1)/2 ≡ 1 (mod p). (p. 499)

• Let p be an odd prime. Then a positive integer a, where p � a, is a quadratic
nonresidue if and only if a(p−1)/2 ≡ −1 (mod p). (p. 500)

The Legendre Symbol
• Let p be an odd prime and a any integer such that p � a. The Legendre symbol

(a/p) is defined by

(a/p) =
{

1 if a is a quadratic residue of p
−1 otherwise (p. 501)

• Euler’s criterion Let p be an odd prime. Then a positive integer a with p � a
is a quadratic residue of p if and only if (a/p) = 1. (p. 502)

• Let p be an odd prime, and a and b be integers with p � ab. Then:

• If a ≡ b (mod p), then (a/p) = (b/p).
• (a/p)(b/p) = (ab/p).
• (a2/p) = 1. (p. 502)

• If p is an odd prime, then

(−1/p) =
{

1 if p ≡ 1 (mod 4)

−1 if p ≡ −1 (mod 4) (p. 503)

• Let p be an odd prime, q a prime such that p � q, and i a positive integer. Then
(qi/p) = (q/p)i. (p. 505)

• Let p be an odd prime and let a =
n∏

i=1
pei

i be the canonical decomposition of a,

where (a, p) = 1. Then (a/p) =
n∏

i=1
(pi/p)ei . (p. 505)

• Gauss’ Lemma Let p be an odd prime and a an integer such that p � a.
Let ν denote the number of least positive residues of the integers a,2a,3a,

. . . , [(p − 1)/2]a that exceed p/2. Then (a/p) = (−1)ν . (p. 507)
• Let p be an odd prime with p � a. Let v denote the number of least positive

residues of the integers a,2a, . . . , [(p−1)/2]a that exceed p/2. Then (a/p) =
1 if and only if v is even. (p. 508).

• Let p be an odd prime. Then

(2/p) =
{

1 if p ≡ ±1 (mod 8)

−1 if p ≡ ±3 (mod 8) (p. 509)

• Let p be an odd prime. Then (2/p) = (−1)(p
2−1)/8. (p. 511)
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• If p and 2p + 1 are odd primes, then 2(−1)(p−1)/2 is a primitive root modulo
2p + 1. (p. 512)

• Let p and q be distinct odd primes. Then

(p−1)/2∑

k=1

⌊
kq

p

⌋

+
(q−1)/2∑

k=1

⌊
kp

q

⌋

= (p − 1)

2
· (q − 1)

2
(p. 515)

• Law of Quadratic Reciprocity Let p and q be distinct odd primes. Then

(p/q)(q/p) = (−1)
(p−1)

2 · (q−1)
2 (p. 518)

• Let p and q be distinct odd primes. Then

(q/p) =
{

(p/q) if p ≡ 1 (mod 4) or q ≡ 1 (mod 4)

−(p/q) if p ≡ q ≡ 3 (mod 4) (p. 520)

• Pepin’s Test The Fermat number fn is a prime if and only if 3(fn−1)/2 ≡
−1 (mod fn). (p. 523)

The Jacobi Symbol

• Let m be an odd positive integer with the canonical decomposition
k∏

i=1
pei

i ,

where (a, m) = 1. Then the Jacobi symbol (a/m) is defined by

(a/m) =
(

a
/ k∏

i=1

pei
i

)

=
k∏

i=1

(a/pi)
ei

where (a/pi) denotes the Legendre symbol. (p. 527)
• Let m be an odd positive integer, and a and b be any integers with (a, m) =

1 = (b, m). Then

• If a ≡ b (mod m), then (a/m) = (b/m).
• (ab/m) = (a/m)(b/m)

• (a2/m) = 1 (p. 529)

• Let m be an odd positive integer with prime-power decomposition
k∏

i=1
pei

i .

Then

•
k∑

i=1
ei(pi − 1)/2 ≡ (m − 1)/2 (mod 2)

•
k∑

i=1
ei

(
p2

i − 1
)
/8 ≡ (m2 − 1)/8 (mod 2). (p. 530)
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• Let m be an odd positive integer. Then

• (−1/m) = (−1)(m−1)/2

• (2/m) = (−1)(m
2−1)/8. (p. 531)

• The Generalized Quadratic Reciprocity Law Let m and n be relatively
prime odd positive integers. Then

(m/n)(n/m) = (−1)
m−1

2
n−1

2 (p. 532)

• Let p be an odd prime, and a and n any positive integers such that p � a. Then
the congruence x2 ≡ a (mod pn) is solvable if and only if (a/p) = 1. (p. 538)

• Let a be an odd integer and n any integer ≥ 3. Then the congruence

• x2 ≡ a (mod 2) is solvable.
• x2 ≡ a (mod 4) is solvable if and only if a ≡ 1 (mod 4).
• x2 ≡ a (mod 2n) is solvable if and only if a ≡ 1 (mod 8). (p. 539)

• If a ≡ 1 (mod 8) and n ≥ 3, then x2 ≡ a (mod 2n) has exactly four incongruent
solutions. (p. 540)

• Let m be a positive integer with canonical decomposition 2e0
∏

i
pei

i and a any

integer with (a, m) = 1. Then the congruence x2 ≡ a (mod m) is solvable if
and only if x2 ≡ a (mod 2e0) and x2 ≡ a (mod pei

i ) are solvable. (p. 541)

X REVIEW EXERCISES

Solve each quadratic congruence.

1. x2 ≡ 13 (mod 17) 2. x2 ≡ 31 (mod 33)

Evaluate each, where Mp is a Mersenne number, fn a Fermat number, and p an odd
prime, and n > 0.

3. (116/73) 4. (1033/1999) 5. (1739/3749)

6. (2327/4367) 7. (1/Mp) 8. (1/fn)
9. (−1/Mp) 10. (−1/fn) 11. (3/Mp)

12. (−3/Mp) 13. (3/fn) 14. (−3/fn)
15. (5/p), where p = n! + 1 is a prime and n ≥ 5.

16. (5/p), where p = n! − 1 is a prime and n ≥ 5.

17. (3/p), where p = 2n + 1 is a prime and n is even.
18. (p/3), where p = 2n + 1 is a prime and n is even.
19. (5/p), where p = 24n + 1 is a prime.
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20. (p/5), where p = 24n + 1 is a prime.
21. Both 13 and 29 are quadratic nonresidues of 47. Using this fact, find a quadratic

residue of 47.

Verify each. (Hint: Use Euler’s criterion.)

22. 2999|(21499 − 1) 23. 3989|(21994 + 1)

24. 3347|(31673 − 1) 25. 4793|(32396 + 1)

Given that α is a solution of the congruence x2 ≡ a (mod p), where p is an odd prime.
Find a solution of x2 ≡ 4a (mod p) for the given values of a,p, and α.

26. a = 10, p = 13, and α = 6 27. a = 9, p = 17, and α = 14

If p is a prime ≡ ±1 (mod 8), then p|(2(p−1)/2 − 1). (See Exercise 51.) Using this
fact, find a prime factor of each Mersenne number.

28. 223 − 1 29. 283 − 1 30. 289 − 1 31. 21013 − 1

32. Let p be an odd prime such that q = 2p + 1 is also a prime. If p ≡ 1 (mod 4),
then 2 is a primitive root modulo q. Otherwise, −2 is a primitive root modulo q.
(See Exercise 53.) Using these facts, find four primes for which 2 is a primitive
root and four primes for which −2 is a primitive root.

33. Characterize the prime factors p of the integer n2 + 1, where n > 1.

Solve each quadratic congruence. (See Exercises 11 and 12 in Section 1.)

34. 2x2 + 3x + 1 ≡ 0 (mod 72) 35. 2x2 + x + 1 ≡ 0 (mod 112)

Solve each congruence, if possible.

36. x2 ≡ 27 (mod 253) 37. x2 ≡ 53 (mod 2431)

38. x2 ≡ 5 (mod 968) 39. x2 ≡ 169 (mod 9724)

40. x2 ≡ 47 (mod 173) 41. x2 ≡ 226 (mod 193)

42. Let α be a solution of the congruence x2 ≡ a (mod p), where p is an odd prime
and p � 4a. Find a solution of x2 ≡ 4a (mod p).

43. Find a factor of the Mersenne number 21000151 − 1.

Prove each.

44. Let p be an odd prime, e an even positive integer, and a an integer such that p � a.
Then (2ea/p) = (a/p).

45. Let a be a positive integer and p an odd prime such that p � 4a. Then the congru-
ence x2 ≡ a (mod p) is solvable if and only if x2 ≡ 4a (mod p) is solvable.

46. Let p be a prime factor of a positive integer n and q = n! + 1 be a prime. Then
(p/q) = 1.

47. Let p be a prime factor of a positive integer n and q = n! − 1 be a prime, where
p ≡ 1 (mod 4). Then (p/q) = 1.
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48. Let p and q be distinct odd primes. Then the congruence x2 ≡ q (mod p) is
solvable if and only if x2 ≡ p (mod q) is solvable, unless p ≡ q ≡ 3 (mod 4).

49. If p is a prime ≡ ±1 (mod 8), then p|[2(p−1)/2 − 1].
50. Let p be an odd prime such that p|(a2n + b2n), where p � ab and n ≥ 1. Then p is

of the form 4k + 1.
51. Every quadratic nonresidue of a Fermat prime fn is a primitive root.
52. Every primitive root modulo a Fermat prime is a quadratic nonresidue.
53. Let p be an odd prime such that q = 2p + 1 is also a prime. If p ≡ 1 (mod 4),

then 2 is a primitive root modulo q. Otherwise, −2 is a primitive root modulo q.
54. There is an infinite number of primes of the form 8n − 1.

(Hint: Assume there are only finitely many such primes p1,p2, . . . ,pk. Consider
N = (p1p2 · · ·pk)

2 − 2.)
55. There is an infinite number of primes of the form 8n + 3.

(Hint: Assume there are only finitely many such primes p1,p2, . . . ,pk. Consider
N = (p1p2 · · ·pk)

2 + 2.)
56. There is an infinite number of primes of the form 6n + 1.

(Hint: Assume there are only finitely many such primes p1,p2, . . . ,pk. Consider
N = (p1p2 · · ·pk)

2 + 3.)
57. Three is a primitive root modulo every prime p = 2n + 1, where n > 1.
58. Let p and q be distinct odd primes and p� = p(−1)(p−1)/2. Then (p�/q) = (q/p).
58. Let m and n be relatively prime odd integers and m� = m(−1)(m−1)/2. Then

(m�/n) = (n/m).

X SUPPLEMENTARY EXERCISES

Let Z�
p denote the set of least positive residues modulo an odd prime p. Let f : Z�

p →
{±1} defined by f (a) = (a/p). (The function f is a fine example of a homomorphism
in group theory.)

1. Prove that f (ab) = f (a) · f (b), where p � ab.
2. Prove that f is a surjection.
3. Identify the set K of least positive residues a modulo p such that f (a) = 1. (K is

the kernel of f .)
4. Find K when p = 13.

Let p be an odd prime and a any integer such that p � a. Then a is a cubic residue if
x3 ≡ a (mod p) is solvable; it is a biquadratic residue if x4 ≡ a (mod p) is solvable.

5. Find the cubic residues of 5 and 7.
6. Find the biquadratic residues of 7 and 11.
7. Prove that every biquadratic residue of p is also a quadratic residue.
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8. Show that a quadratic residue of p need not be a biquadratic residue.
9. Gauss proved that −1 is a biquadratic residue of p if and only if p ≡ 1 (mod 8).

Verify that −1 is a biquadratic residue of 17, but a biquadratic nonresidue of 13.

Let a be a nonsquare positive integer ≡ 0 or 1 (mod 4), p an odd prime with p � a,

and n a positive integer with prime factorization
k∏

i=1
pei

i , where (a, n) = 1. Then the

Kronecker symbol (a/n), named for the German mathematician Leopold Kronecker
(1823–1891), is defined as follows:

(a/2) =
{

1 if a ≡ 1 (mod 8)

−1 if a ≡ 5 (mod 8)

(a/p) = Legendre symbol (a/p) =
{

1 if a is a quadratic residue modulo p
−1 otherwise

(a/n) = Jacobi symbol (a/n) =
k∏

i=1

(a/pi)
ei

In Exercises 10–15, (a/n) denotes the Kronecker symbol. Evaluate each.

10. (108/239) 11. (85/2)

12. (28/153) 13. (85/3861)

Prove each.

14. (a/2) = (2/a), if 2 � a.
15. Let m and n be positive integers such that (a, mn) = 1. Then (a/mn) =

(a/m)(a/n).

X COMPUTER EXERCISES

Write a program to perform each task, where p is an odd prime.
1. Read in p and a positive integer a relatively prime to p. Find the incongruent

solutions of the quadratic congruence x2 ≡ a (mod p).
2. Read in p and list the quadratic residues of p.
3. Read in p and two positive integers a and b relatively prime to p. Determine if

they are quadratic residues of p. If neither of them is a quadratic residue, use
them to find one.

4. Read in p and an integer a, where p � a. Evaluate (a/p) using
(a) Euler’s criterion.
(b) The law of quadratic reciprocity.
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5. Read in p and a positive integer such that p � a.

(a) Compute (a/p).
(b) Let ν denote the number of least residues of the integers a,2a,3a, . . . ,

[(p − 1)/2]a that exceed p/2. Find ν.
(c) Is (a/p) = (−1)ν?

6. Read in two distinct odd primes p and q, and verify the law of quadratic reci-
procity.

7. Read in a prime p ≡ ±1 (mod 8).
(a) Verify that 2(p−1)/2 ≡ 1 (mod p).
(b) Find a prime factor of 2(p−1)/2 − 1.

8. Read in two distinct odd primes p and q, and a positive integer a such that
(a, pq) = 1. Using the solutions of the congruences x2 ≡ a (mod p) and x2 ≡
a (mod q), solve x2 ≡ a (mod pq).

9. Read in an odd positive integer m and an integer a such that (a, m) = 1. Evaluate
the Jacobi symbol (a/m).

10. Read in two relatively prime odd integers, and verify Theorems 11.12 and 11.13.
11. Read in a positive integer n and an integer a such that p � a. Determine if the

congruence x2 ≡ a (mod pn) is solvable.
12. Read in a positive integer n and an integer a such that p � a. Solve the congruence

x2 ≡ a (mod pn).
13. Read in an odd integer a and an integer n ≥ 3. Determine if the congruence

x2 ≡ a (mod 2n) is solvable; if so, find its solutions.
14. Read in an integer m ≥ 2 and an integer a such that (a, m) = 1. Solve the con-

gruence x2 ≡ a (mod m), if possible.
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12 Continued Fractions

If I have seen farther than other men, it is because

I have stood on the shoulders of giants.

— ISAAC NEWTON

This chapter explores fractions of a special nature that we do not encounter in every-
day life, fractions such as

113

77
= 1 + 1

2 + 1

3 + 1

4 + 1

5 + · · ·
Such a multi-layered fraction is a continued fraction, a term coined by the English
mathematician John Wallis (1616–1703). His book, Opera Mathematica (1695) con-
tains some basic work on continued fractions. Aryabhata used them to solve specific
LDEs. Italian mathematician Rafael Bombelli (1526–1573) is often credited with
laying the foundation for the theory of continued fractions, since he attempted to
approximate

√
13 by such fractions in his L’Algebra Opera (1572). In 1613, Ital-

ian mathematician Pietro Antonio Cataldi (1548–1626) pursued approximating
√

18
by continued fractions. The Dutch physicist and mathematician Christiaan Huygens
(1629–1695) investigated such fractions for the design of a mathematical model for
the planets in his Descriptio Automati Planetari (1703).

Although these mathematicians made contributions to the development of con-
tinued fractions, the modern theory of such fractions did not flourish until Euler,
Johan Heinrich Lambert (1728–1777), and Lagrange embraced the topic. Euler stud-
ied them around 1730 and his De Fractionlous Continious (1737) contains much of
his work. In 1759, he employed them to solve equations of the form x2 − Ny2 = 1,

551
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called Pell’s equation (see Section 13.1). Seven years later, Lagrange developed the
fundamental properties of periodic continued fractions.

In 1931, D. H. Lehmer and R. E. Powers developed a factoring method based on
continued fractions. M. A. Morrison and J. Brillhart demonstrated the power of this
method by factoring f7 in 1974.

We now study a brief introduction to continued fractions.

12.1 Finite Continued Fractions

A finite continued fraction is an expression of the form

x = a0 + 1

a1 + 1

a2 + 1

. . . + 1

an−1 + 1

an

(12.1)

where each ai is a real number, a0 ≥ 0, ai+1 > 0 and i ≥ 0. The numbers
a1,a2, . . . ,an are the partial quotients of the finite continued fraction. The frac-
tion is simple if each ai is an integer.

Since this notation is a bit cumbersome to manage, the fraction is often written
as

[a0;a1,a2,a3, . . . ,an]
where a0 = �x� and the semicolon separates the fractional part from the integral part.

For example,

[1;2,3,4,5,6] = 1 + 1

2 + 1

3 + 1

4 + 1

5 + 1

6

= 1393

972

Although it follows from the definition that every simple finite continued frac-
tion represents a rational number, we shall now formally prove it, using induction.
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THEOREM 12.1 Every finite simple continued fraction represents a rational number.

PROOF

(We shall apply induction on the number of partial quotients.) Let [a0;a1,a2, . . . ,an]
be a finite simple continued fraction. When n = 1,

[a0;a1] = a0 + 1

a1
= a0a1 + 1

a1

is a rational number.
Now assume that every finite simple continued fraction with k partial quotients

is a rational number, where k ≥ 1. Then

[a0;a1,a2, . . . ,ak,ak+1] = a0 + 1

[a1;a2, . . . ,ak,ak+1]
Since [a1;a2, . . . ,ak+1] contains k partial quotients, it is a rational number r/s,
where s �= 0. Then

[a0;a1,a2, . . . ,ak,ak+1] = a0 + 1

r/s
= a0 + s

r
= a0r + s

r

is a rational number.
Thus, by induction, [a0;a1,a2, . . . ,an] is a rational number for every positive

integer n. �

The following theorem shows that the converse is also true: Every rational num-
ber can be represented by a finite simple continued fraction. This was discovered by
Euler. The proof invokes the euclidean algorithm from Section 3.2.

THEOREM 12.2 Every rational number can be represented by a finite simple continued fraction.

PROOF

Let x = a/b be a rational number, where b > 0. For convenience, we let r0 = a and
r1 = b. By the euclidean algorithm, we have

r0 = r1q1 + r2, 0 < r2 < r1

r1 = r2q2 + r3, 0 < r3 < r2

r2 = r3q3 + r4, 0 < r4 < r3
...

rn−2 = rn−1qn−1 + rn, 0 < rn < rn−1

rn−1 = rnqn
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where the quotients q2,q3, . . . ,qn and the remainders r2, r3, . . . , rn are positive.
It follows from these equations that

a

b
= r0

r1
= q1 + r2

r1
= q1 + 1

r1/r2

r1

r2
= q2 + r3

r2
= q2 + 1

r2/r3

r2

r3
= q3 + r4

r3
= q3 + 1

r3/r4
...

rn−2

rn−1
= qn−1 + rn

rn−1
= qn−1 + 1

rn−1/rn
rn−1

rn
= qn

Substituting for r1/r2 in the first equation yields

a

b
= q1 + 1

q2 + r3/r2

Now substitute for r2/r3:

a

b
= q1 + 1

q2 + 1

q3 + 1

r3/r4

Continuing like this, we get

a

b
= q1 + 1

q2 + 1

q3 + 1

. . . + 1

qn−1 + 1

qn

= [q1;q2,q3, . . . ,qn−1,qn]

Thus, every rational number can be represented by a finite simple continued
fraction. �
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The following example illustrates this algorithm.

EXAMPLE 12.1 Express
225

157
as a finite simple continued fraction.

SOLUTION

By the euclidean algorithm, we have

225 = 1 · 157 + 68

157 = 2 · 68 + 21

68 = 3 · 21 + 5

21 = 4 · 5 + 1

5 = 5 · 1

Thus,

225

157
= 1 + 68

157
= 1 + 1

157/68

= 1 + 1

2 + 21

68

= 1 + 1

2 + 1

68/21

= 1 + 1

2 + 1

3 + 5

21

= 1 + 1

2 + 1

3 + 1

21/5

= 1 + 1

2 + 1

3 + 1

4 + 1

5

= [1;2,3,4,5]

The Jigsaw Puzzle Revisited

In Section 3.2, we saw that the euclidean algorithm yields a jigsaw puzzle. We will
now show how the numbers of different-size squares in the puzzle yield an interesting

dividend. To this end, suppose we would like to convert
23

13
into a simple continued
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fraction. By the euclidean algorithm, we have

23 = 1 · 13 + 10

13 = 1 · 10 + 3

10 = 3 · 3 + 1

3 = 3 · 1

So
23

13
= [1;1,3,3].

It follows from Figure 12.1 that the 23 × 13 rectangle can be cut up into one
13 × 13 square, one 10 × 10 square, three 3 × 3 squares, and three 1 × 1 squares.
Notice that the numbers of squares of the various sizes are the partial quotients in the
continued fraction.

Figure 12.1

Suppose an > 1 in the finite simple continued fraction [a0;a1, . . . ,an]. Since

an = (an − 1) + 1

1
, it follows that [a0;a1, . . . ,an] = [a0;a1, . . . ,an − 1,1]. For ex-

ample, [1;2,3,4,5] = [1;2,3,4,1].
On the other hand, let an = 1. Then

[a0;a1, . . . ,an] = [a0;a1, . . . ,an−1,1] = [a0,a1, . . . ,an−1 + 1]
For example, [1;2,3,4,1] = [1;2,3,5].

Thus, every rational number can be written as a finite simple continued frac-
tion in two different ways. In other words, the continued fraction representation of a
rational number is not unique.

Next, we discuss approximations of continued fractions.

Convergents of a Continued Fraction

By truncating the continued fraction for x = [a0;a1, . . . ,an] at the various plus signs
[see equation (12.1)], we can generate a sequence {ck} of approximations of x, where
0 ≤ k ≤ n; thus, ck = [a0,a1, . . . ,ak]; ck is called the kth convergent of x, a concept
introduced by Wallis in his Opera Mathematica.
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For example, you may verify that

F8

F7
= 21

13
= [1;1,1,1,1,1,1]

The various convergents are

c0 = [1] = 1

1
= 1

c1 = [1;1] = 2

1
= 2

c2 = [1;1,1] = 3

2
= 1.5

c3 = [1;1,1,1] = 5

3
≈ 1.6666666667

c4 = [1;1,1,1,1] = 8

5
= 1.6

c5 = [1;1,1,1,1,1] = 13

8
= 1.625

c6 = [1;1,1,1,1,1,1] = 21

13
≈ 1.6153846154

Some interesting observations:

• These convergents ck approach the actual value
21

13
as k increases, where 0 ≤

k ≤ 6.
• The convergents c2k approach it from below and the convergents c2k+1 from

above; so the convergents are alternately less than and greater than
21

13
, ex-

cept the last convergent; that is, c0 < c2 < c4 <
21

13
< c5 < c3 < c1; see Fig-

ure 12.2.

Figure 12.2

• The convergents display a remarkable pattern: ck = Fk+2

Fk+1
, 0 ≤ k ≤ 6.
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We shall return to these observations later.
We can facilitate the computation of the convergents ck = pk

qk
by developing

formulas for its numerator and denominator, as the next theorem shows.

THEOREM 12.3 The kth convergent of the finite simple continued fraction [a0;a1, . . . ,an] is

ck = pk

qk

where 2 ≤ k ≤ n, and the sequences {pk} and {qk} are defined recursively as follows:

p0 = a0 q0 = 1
p1 = a0a1 + 1 q1 = a1

pk = akpk−1 + pk−2 qk = akqk−1 + qk−2

PROOF

We shall prove by induction that ck = pk

qk
yields the kth convergent of the continued

fraction for each value of k, where 0 ≤ k ≤ n.
When k = 0,

c0 = [a0] = a0

1
= p0

q0

and when k = 1,

c1 = [a0;a1] = a0 + 1

a1
= a0a1 + 1

a1
= p1

q1

Thus, the theorem is true when k = 0 and k = 1.
Now assume that the formula for ck works for an arbitrary integer m, where

2 ≤ m < n. That is,

cm = pm

qm
= ampm−1 + pm−2

amqm−1 + qm−2
(12.2)

Then

cm+1 = [a0;a1, . . . ,am,am+1]

=
[

a0;a1, . . . ,am−1,am + 1

am+1

]

Notice that the integers pm−1, pm−2, qm−1, and qm−2 depend only on the partial
quotients a0,a1, . . . ,am−1, and not on am. So the convergent cm+1 can be computed

from formula (12.2) by replacing am with am + 1

am+1
:
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cm+1 =

(

am + 1

am+1

)

pm−1 + pm−2

(

am + 1

am+1

)

qm−1 + qm−2

= am+1(ampm−1 + pm−2) + pm−1

am+1(amqm−1 + qm−2) + qm−1

= am+1pm + pm−1

am+1qm + qm−1
, by formula (12.2)

Thus, by induction, the formula works for every value of k, where 0 ≤ k ≤ n. �

The following example illustrates this theorem.

EXAMPLE 12.2 Using Theorem 12.3, compute the convergents of the continued fraction

[2;3,1,5] = 52

23
.

SOLUTION

We have a0 = 2,a1 = 3,a2 = 1, and a3 = 5. First, we compute pk and qk for each k,
where 0 ≤ k ≤ 3:

p0 = a0 = 2 q0 = 1
p1 = a0a1 + 1 = 2 · 3 + 1 = 7 q1 = a1 = 3
p2 = a2p1 + p0 = 1 · 7 + 2 = 9 q2 = a2q1 + q0 = 1 · 3 + 1 = 4
p3 = a3p2 + p1 = 5 · 9 + 7 = 52 q3 = a3q2 + q1 = 5 · 4 + 3 = 23

Thus, the various convergents are

c0 = p0

q0
= 2

1
c1 = p1

q1
= 7

3

c2 = p2

q2
= 9

4
c3 = p3

q3
= 52

23 �

A table such as Table 12.1 can be used effectively to compute pk and qk, from
which ck can be computed. For example, p2 = 9 = 1 · 7 + 2 and q3 = 23 = 5 · 4 + 3.

k 0 1 2 3

ak 2 3 1 5
pk 2 7 9 52
qk 1 3 4 23

Table 12.1



560 CHAPTER 12 Continued Fractions

The next theorem reveals a Cassini-like relationship among the numerators and
the denominators of two successive convergents of a finite simple continued fraction.

THEOREM 12.4 Let ck = pk

qk
be the kth convergent of the simple continued fraction [a0;a1, . . . ,an],

where 1 ≤ k ≤ n. Then pkqk−1 − qkpk−1 = (−1)k−1.

PROOF (by induction)
Using the definitions of the sequences {pk} and {qk} in Theorem 12.3,

p1q0 − q1p0 = (a0a1 + 1) · 1 − a1a0 = 1 = (−1)1−1

So the formula works when k = 1.
Now assume that it is true for an arbitrary positive integer k < n:

pkqk−1 − qkpk−1 = (−1)k−1

Then, by the recursive definition of pk and qk,

pk+1qk − qk+1pk = (ak+1pk + pk−1)qk − (ak+1qk + qk−1)pk

= −(pkqk−1 − qkpk−1)

= −(−1)k−1, by the inductive hypothesis

= (−1)k

So the formula works for k +1 also. Thus, by induction, the theorem is true for every
positive integer ≤ n. �

The following example illustrates this theorem.

EXAMPLE 12.3 Verify Theorem 12.4 using the convergents of the continued fraction [2;3,1,5].

SOLUTION

Using Example 12.2, we have

p1q0 − q1p0 = 7 · 1 −3 · 2 = 1 = (−1)1−1

p2q1 − q2p1 = 9 · 3 −4 · 7 = −1 = (−1)2−1

p3q2 − q3p2 = 52 · 4 −23 · 9 = 1 = (−1)3−1

Thus, pkqk−1 − qkpk−1 = (−1)k−1 for every value of k, where 1 ≤ k ≤ 3. �

As in the case of Cassini’s formula, Theorem 12.4 has an interesting byproduct
about pk and qk, as the next corollary shows.
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COROLLARY 12.1 Let ck = pk

qk
be the kth convergent of the simple continued fraction [a0;a1, . . . ,an].

Then (pk,qk) = 1, where 1 ≤ k ≤ n.

PROOF

Let d = (pk,qk). Since pkqk−1 − qkpk−1 = (−1)k−1, it follows by Theorem 2.4 that
d|(−1)k−1. But d > 0, so d = 1. Thus, (pk,qk) = 1, as desired. �

For example, consider the convergents of the continued fraction [2;3,1,5] in
Example 12.2. Notice that (p1,q1) = (7,3) = 1; (p2,q2) = (9,4) = 1; and (p3,q3) =
(52,23) = 1.

The following corollary shows another interesting consequence of Theo-
rem 12.4.

COROLLARY 12.2 Let ck = pk

qk
be the kth convergent of the simple continued fraction [a0;a1, . . . ,an],

where 1 ≤ k ≤ n. Then

ck − ck−1 = (−1)k−1

qkqk−1

PROOF

By Theorem 12.3,

ck − ck−1 = pk

qk
− pk−1

qk−1

= pkqk−1 − qkpk−1

qkqk−1

= (−1)k−1

qkqk−1
, by Theorem 12.4 �

This leads us to following result.

COROLLARY 12.3 Let ck = pk

qk
be the kth convergent of the simple continued fraction [a0;a1, . . . ,an].

Then

ck − ck−2 = ak(−1)k

qkqk−2

where 2 ≤ k ≤ n.

PROOF

By Corollary 12.2,

ck − ck−1 = (−1)k−1

qkqk−1



562 CHAPTER 12 Continued Fractions

and

ck−1 − ck−2 = (−1)k−2

qk−1qk−2

Adding these two equations,

ck − ck−2 = (−1)k−1

qkqk−1
+ (−1)k−2

qk−1qk−2

= (−1)k−2(qk − qk−2)

qkqk−1qk−2

= (−1)k−2(akqk−1)

qkqk−1qk−2
, by Theorem 12.3

= (−1)kak

qkqk−2
�

We are now ready to confirm the observation made earlier (in Figure 12.2).

THEOREM 12.5 Let ck = pk

qk
be the kth convergent of the simple continued fraction [a0;a1, . . . ,an].

Then c2i < c2i+2, c2i+3 < c2i+1, and c2i < c2j+1, where i, j ≥ 0.

PROOF

By Corollary 12.3,

ck − ck−2 = ak(−1)k

qkqk−2

where 2 ≤ k ≤ n. Let k = 2i + 2, where i ≥ 0. This equation yields

c2i+2 − c2i = a2i+2(−1)2i+2

q2i+2q2i

Since a2i+2,q2i+2,q2i > 0, the RHS is positive; so c2i < c2i+2; thus c0 < c2 <

c4 < · · · .
Likewise, by letting k = 2i + 3 in Corollary 12.3, we get c2i+3 < c2i+1; thus

c1 > c3 > c5 > · · · .
Finally, by Corollary 12.2, c2s < c2s−1; so c2i+2j < c2i+2j−1. But c2i+2j−1 <

c2j−1. Thus c2i < c2i+2j < c2i+2j−1 < c2j−1, so c2i < c2j−1 for every i, j ≥ 0. In
words, every even-numbered convergent is less than every odd-numbered conver-
gent. �

It follows from the theorem that

c0 < c2 < c4 < · · · < c5 < c3 < c1
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For example, returning to the convergents of the continued fraction
21

13
=

[1;1,1,1,1,1,1], notice that c0 < c2 < c4 < c6, c1 < c3 < c5, and c0 < c2 < c4 <

c6 < c5 < c3 < c1.
Next we present an interesting application of finite simple continued fractions

to LDEs.

Continued Fractions and LDEs

Recall from Theorem 4.1 that the LDE ax + by = c is solvable if and only if d | c,
where d = (a,b). If x0, y0 is a particular solution, then it has infinitely many solutions
x = x0 + (b/d)t, y = y0 − (a/d)t.

Continued fractions can be employed to solve LDEs. To see this, first consider
the LDE ax + by = 1, where b > 0 and (a,b) = 1. Since a/b is a rational number, by
Theorem 12.2, it can be represented by a continued fraction [a0;a1, . . . ,an]. Then

cn = pn

qn
= a

b

Since (pn,qn) = 1 = (a,b), it follows that a = pn and b = qn.
By Theorem 12.4, pnqn−1 − qnpn−1 = (−1)n−1; so aqn−1 − bpn−1 = (−1)n−1.

When n is odd, it becomes aqn−1 + b(−pn−1) = 1; so x0 = qn−1, y0 = −pn−1 is a
solution of the LDE ax + by = 1. On the other hand, when n is even, it becomes
a(−qn−1) + bpn−1 = 1; so x0 = −qn−1, y0 = pn−1 is a solution.

When x0, y0 is a solution of the LDE ax + by = 1, ax0 + by0 = 1; so a(cx0) +
b(cy0) = c; thus, cx0, cy0 is a particular solution of the LDE ax + by = c.

The following example illustrates this technique.

EXAMPLE 12.4 Using continued fractions, solve Mahavira’s puzzle in Example 3.17.

SOLUTION

By Example 3.17, we have 63x −23y = −7; that is, (−63)x +23y = 7. First, we find
a particular solution of the LDE (−63)x + 23y = 1, where (−63,23) = 1. To this

end, we express
−63

23
as a continued fraction, using the euclidean algorithm:

−63 = (−3) · 23 + 6
23 = 3 · 6 + 5

6 = 1 · 5 + 1
5 = 5 · 1

So
−63

23
= [−3;3,1,5]. Then c2 = p2

q2
= −11

4
and c3 = p3

q3
= −63

23
; so p2 =

−11,q2 = 4,p3 = −63, and q3 = 23.
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By Theorem 12.4, p3q2 − q3p2 = (−1)3−1; that is, (−63) · 4 + 23 · 11 = 1.
Consequently, x0 = 4, y0 = 11 is a particular solution of the LDE (−63)x + 23y = 1.
Therefore, 7x0 = 28, 7y0 = 77 is a particular solution of the LDE (−63)x + 23y = 7.
So, by Theorem 3.20, its general solution is x = 7x0 + bt = 28 + 23t, y = 7y0 − at =
77 + 63t. (Notice that this is consistent with the solution in Example 3.17.) �

E X E R C I S E S 12.1

Rewrite each as a finite simple continued fraction.

1.
57

23
2.

1199

199
3.

−43

17
4.

89

55

Represent each continued fraction as a rational number.

5. [1;2,3,4,5] 6. [1;1,1,1,1,1]
7. [−3;5,4,3,2] 8. [5;4,3,2,1]

Use Figure 12.3 to answer Exercises 9 and 10, where each
smallest square is a 1 × 1 square. (R. Knott)

Figure 12.3

9. Find the continued fraction corresponding to the split-
ting up of the rectangle into squares.

10. Find the rational number (in lowest terms) repre-
sented by the continued fraction.

Using Theorem 12.3, compute the convergents of each
continued fraction.

11. [1;1,1,1,1,1,1] 12. [0;2,7,7,6]
13. [3;1,4,2,7] 14. [−2;5,4,7,1]
The second and third convergents of the continued frac-
tion [1;2,3,4,5,6,7,8] are 10/7 and 43/30, respec-
tively. Using them, find each convergent:

15. c4 16. c6

The fourth and fifth convergents of the continued fraction
[1;1,1,1,1,1,1,3] are 8/5 and 13/8, respectively. Using

them, compute each convergent.

17. c6 18. c7

19. Let cn denote the nth convergent of the finite contin-

ued fraction [1;1,1,1, . . . ,1]. Prove that cn = Fn+2

Fn+1
,

where n ≥ 1.
20. Using the finite continued fraction [1;1,1,1, . . . ,1],

prove that Fn+2Fn − F2
n+1 = (−1)n+1, where n ≥ 1.

Let ck = pk

qk
be the kth convergent of the simple continued

fraction [1;2,3,4,5,6], where 1 ≤ k ≤ n. Express each as
a simple continued fraction.

21.
p4

p3
22.

p5

p4
23.

q4

q3
24.

q5

q4

25. Using Exercises 21 and 22, make a conjecture about
pk

pk−1
, where

pk

qk
denotes the kth convergent of the

simple continued fraction [a0;a1, . . . ,an], where 2 ≤
k ≤ n.

26. Using Exercises 23 and 24, make a conjecture about
qk

qk−1
, where

pk

qk
denotes the kth convergent of

the simple continued fraction [a0;a1, . . . ,an], where
2 ≤ k ≤ n.

Using the continued fraction of the given rational num-
ber r, find the continued fraction of 1/r.

27. 57/23 28. 1199/199

29. Let r be a rational number with simple continued
fraction [a0;a1, . . . ,an]. Using Exercises 25 and 26,
conjecture the continued fraction for 1/r.

30. Establish the conjecture in Exercise 29.
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Solve each LDE, using continued fractions.

31. 12x + 13y = 14 32. 28x + 91y = 119

33. 1776x + 1976y = 4152

34. 1076x + 2076y = 3076

� �

12.2 Infinite Continued Fractions

Suppose there are infinitely many terms in the expression [a0;a1, . . . ,an, . . .], where
a0 ≥ 0 and ai > 0 for i ≥ 1. Such a fraction is an infinite continued fraction. In
particular, if each aj is an integer, then it is an infinite simple continued fraction.

More generally, an infinite simple continued fraction is of the form

a0 + b1

a1 + b2

a2 + b3

a3 + · · ·

where a0 ≥ 0, and ai and bi+1 are integers for each i.

An interesting example of such a continued fraction is the identity for
4

π
, dis-

covered in 1655 by Lord William V. Brouncker (1620–1684), the first president of
the Royal Society. He discovered it by converting Wallis’ celebrated infinite product

4

π
= 3 · 3 · 5 · 5 · 7 · 7 · · ·

2 · 4 · 4 · 6 · 6 · · ·

into a continued fraction:

4

π
= 1 + 12

2 + 32

2 + 52

2 + 72

2 + · · ·

This is the first recorded infinite continued fraction, but Brouncker did not provide a
proof; it was given by Euler in 1775.
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An infinite continued fraction for
π

4
is

π

4
= 1 + 12

3 + 22

5 + 32

7 + 42

9 + · · ·
In 1999, L. J. Lange of the University of Missouri developed an equally fasci-

nating continued fraction for π :

π = 3 + 12

6 + 32

6 + 52

6 + 72

6 + · · ·
For convenience, we restrict our discussion to infinite simple continued frac-

tions, where bi = 1. The simplest such continued fraction is [1;1,1,1, . . .].
One of the most astounding continued fractions was developed by the Indian

mathematical genius Srinivasa Ramanujan, who studied them in 1908:

(√√
5α − α

)
e2π/5 = [

0; e−2π , e−4π , e−6π , . . .
]

where α denotes the golden ratio. When Ramanujan communicated this marvelous
result to Hardy in his first letter to him in 1913, Hardy was stunned by the discovery
and could not derive it himself. Equally intriguing is its reciprocal:

e−2π/5
√√

5α − α
= [

1; e−2π , e−4π , e−6π , . . .
]

Ramanujan discovered about 200 such infinite continued fractions.
How do we evaluate infinite simple continued fractions? We will answer this

gradually. First, notice that although the continued fraction [a0;a1,a2, . . .] is infinite,
the convergents

cn = [a0;a1, . . . ,an]
are finite, and hence represent rational numbers, so the properties of convergents
from the previous section can be applied to these convergents also. Since

c0 < c2 < c4 < · · · < c5 < c3 < c1
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Srinivasa Aiyangar Ramanujan (1887–1920), the greatest Indian mathemati-

cian, was born in Erode, near Madras, the son of a bookkeeper at a cloth store

in Kumbakonam. After two years of elementary school, he transferred to the high

school at age seven. At ten, he placed first in the district primary examination.

In 1903, his passion for mathematics was sparked when he borrowed a copy of

George Schoobridge Carr’s A Synopsis of Elementary Results in Pure and Ap-

plied Mathematics from a university student. Without any formal training or out-

side help, Ramanujan established the 6000 theorems in the book, stated without

proofs or any explanation, and kept their proofs in a notebook.

Graduating from high school in 1904, he entered the University of Madras on

a scholarship. However, his neglect of all subjects except mathematics caused Ramanujan to lose the scholarship

after a year, and he dropped out of college. He returned to the University after traveling through the countryside,

but never graduated. During this period, he pursued his passion, rediscovering previously known results and dis-

covering new ones in hypergeometric series and elliptic functions.

His marriage in 1909 compelled him to earn a living. Three years later, he secured a low-paying clerk’s job

with the Madras Port Trust. He published his first article in 1911 on Bernoulli numbers in the Journal of the Indian

Mathematical Society and two more the following year.

In 1913, Ramanujan began corresponding with the eminent English mathematician Godfrey H. Hardy of

Cambridge University. His first letter included more than 100 theorems, some without proofs. After examining

them carefully, Hardy concluded that “they could only be written down by a mathematician of the highest class;

they must be true because if they were not true, no one would have the imagination to invent them.”

Ramanujan arrived in Cambridge in 1914 with the help of a scholarship arranged by Hardy. During his five-

year stay, he and Hardy collaborated on a number of articles in the theory of partitions, analytic number theory,

continued fractions, infinite series, and elliptic functions.

In 1917, Ramanujan became seriously ill. He was incorrectly diagnosed with tuberculosis; however, it is now

believed that he suffered from a vitamin deficiency caused by his strict vegetarianism.

When Ramanujan was sick in a nursing home, Hardy visited him. Hardy told him that the number of the

cab he came in, 1729, was a “rather dull number” and he hoped that it wasn’t a bad omen. “No, sir,” Ramanujan

responded. “It is a very interesting number. It is the smallest number expressible as the sum of two cubes in two

different ways.”

In 1918, Ramanujan became one of the youngest members of the Fellow of the Royal Society and a fellow

of Trinity College.

Ramanujan returned to India the following year. He pursued his mathematical passion even on his deathbed.

His short but extremely productive life ended when he was only 32.

by Theorem 12.5, the sequence {c2n} is an increasing sequence that is bounded above
by c1, and the sequence {c2n+1} is a decreasing sequence that is bounded below
by c0. Consequently, both sequences have limits; that is, as n approaches infinity,
sequence {c2n} approaches a limit �; and the sequence {c2n+1} approaches a limit �′;
thus,

lim
n→∞ c2n = � and lim

n→∞ c2n+1 = �′
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The next theorem shows that � = �′.

THEOREM 12.6 Let ck = [a0;a1, . . . ,ak] denote the kth convergent of the simple continued fraction
[a0;a1,a2, . . .]. Then

lim
n→∞ c2n = lim

n→∞ c2n+1

PROOF

By Corollary 12.2,

c2n+1 − c2n = (−1)2n

q2n+1q2n
= 1

q2n+1q2n

<
1

q2
2n

, since q2n+1 > q2n

As n gets larger and larger, qn and hence q2
n get larger and larger; then

1

q2
n

gets smaller

and smaller, but never negative. So lim
n→∞(c2n+1 − c2n) = 0.

Thus,

lim
n→∞ c2n+1 − lim

n→∞ c2n = lim
n→∞(c2n+1 − c2n)

= 0

So the two limits are equal. �

It follows from this theorem that the sequences {c2n} and {c2n+1} of convergents
of the continued fraction [a0;a1,a2, . . .] approaches a unique limit �. This common
limit is the value of the continued fraction:

� = lim
n→∞ cn = [a0;a1,a2, . . .]

For example, let cn denote the nth convergent of the continued fraction

[1;1,1,1, . . .], where n ≥ 0. Then cn = Fn+2

Fn+1
; this can be established using induc-

tion (see Exercise 13). Thus,

cn = pn

qn
= Fn+2

Fn+1

[This relationship was first observed in 1753 by the English mathematician Robert
Simson (1687–1768).] Since

lim
n→∞ cn = lim

n→∞
Fn+2

Fn+1
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(see Exercise 14), the sequence {cn} converges to the golden ratio α; that is,
[1;1,1,1, . . .] = α.

We can establish this fact by using an alternate route, without employing conver-
gents. To this end, let x = [1;1,1,1, . . .]. Then [1;1,1,1, . . .] = [1; [1;1,1,1, . . .]],
so x = [1; x] = 1+ 1

x
. Then x2 −x−1 = 0. Solving it, we get x = 1 ± √

5

2
, but x > 0;

so x = 1 + √
5

2
= α; see Figure 12.4.

Figure 12.4

In Theorem 12.1, we proved that every finite simple continued fraction repre-
sents a rational number. We now show that every infinite simple continued fraction
represents an irrational number.

THEOREM 12.7 The infinite simple continued fraction [a0;a1,a2, . . .] represents an irrational num-
ber.

PROOF (by contradiction)
Let x = [a0;a1,a2, . . .]. Then x is the limit of the sequence {cn} of convergents cn =
pn

qn
= [a0; ,a1, . . . ,an]. Since

c0 < c2 < · · · < c2n < · · · < c2n+1 < · · · < c3 < c1↑
x

it follows that c2n < x < c2n+1; so

0 < x − c2n < c2n+1 − c2n

By Corollary 12.2, this implies that

0 < x − p2n

q2n
<

1

q2n+1q2n
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Suppose x is a rational number a/b, where b > 0. Then

0 <
a

b
− p2n

q2n
<

1

q2n+1q2n

That is,

0 < aq2n − bp2n <
b

q2n+1

Thus, aq2n − bp2n is a positive integer <
b

q2n+1
. But as n gets larger and larger, so

does q2n+1. Hence, there is an integer k such that q2k+1 > b, that is,
b

q2k+1
< 1. Then

0 < aq2k − bp2k < 1. This implies that aq2k − bp2k is a positive integer < 1. Since
this is impossible, x cannot be a rational number; in other words, x is an irrational
number. �

The next theorem shows that every irrational number x can be represented by
an infinite simple continued fraction. Therefore, every irrational number can be ap-
proximated by a rational number. It provides an algorithm for constructing such a
continued fraction and uses the floor function from Section 1.1. The proof is a bit
long, so follow it carefully.

THEOREM 12.8 Let x = x0 be an irrational number. Define the sequence {ak}∞k=0 of integers ak recur-
sively as follows:

ak = �xk�, xk+1 = 1

xk − ak

where k ≥ 0. Then x = [a0;a1,a2, . . .].

PROOF

It follows from the recursive definition that ak is an integer for every k.
We now establish by induction that xk is an irrational number for every k ≥ 0.

To this end, first notice that x0 is irrational and a0 = �x0� �= x0. Besides, since x0 is

irrational, x0 − a0 is irrational; so x1 = 1

x0 − a0
is an irrational number.

Now assume that xk is irrational for an arbitrary integer k ≥ 0. Then xk − ak and

hence
1

xk − ak
are irrational; that is, xk+1 is irrational. Thus, by induction, every xk

is an irrational number.
Next we will show that ak ≥ 1 for every k ≥ 1. Since ak is an integer and xk

is an irrational number, ak �= xk; so xk − ak > 0. But xk − ak = xk − �xk� < 1; so
0 < xk − ak < 1. Hence
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xk+1 = 1

xk − ak
> 1

Consequently, ak+1 = �xk+1� ≥ 1 for every k ≥ 0. That is, the integers a1,a2, . . . are
all positive.

We will now show that x = [a0;a1,a2, . . .]. From the recursive formula

xk+1 = 1

xk − ak

it follows that

xk = ak + 1

xk+1

where k ≥ 0. Successively substituting for x1, x2, x3, . . . , this yields

x0 = a0 + 1

x1
= [a0; x1]

= a0 + 1

a1 + 1

x2

= [a0;a1, x2]

= a0 + 1

a1 + 1

a2 + 1

x3

= [a0;a1,a2, x3]

...

= a0 + 1

a1 + 1

a2 + 1

. . . + 1

an + 1

xn+1

= [a0;a1,a2, . . . ,an, xn+1]

where n ≥ 0.
Finally, we must show that x0 = lim

n→∞[a0;a1, . . . ,an, xn+1]. To this end, let

ck = pk

qk
denote the kth convergent of the continued fraction [a0;a1,a2, . . .]. Then,

by Theorem 12.3,

x0 = [a0;a1, . . . ,an, xn+1]
= xn+1pn + pn−1

xn+1qn + qn−1
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Then

x0 − cn = xn+1pn + pn−1

xn+1qn + qn−1
− pn

qn

= −(pnqn−1 − qnpn−1)

(xn+1qn + qn−1)qn

= (−1)n

(xn+1qn + qn−1)qn
, by Theorem 12.4

Since xn+1 > an+1, this yields

|x0 − cn| = 1

(xn+1qn + qn−1)qn

<
1

(an+1qn + qn−1)qn

= 1

qn+1qn

As n gets larger and larger, so does qn. Therefore, as n approaches infinity,
1

qn+1qn
approaches zero; that is, cn → x0 as n → ∞. Thus,

x = x0 = lim
n→∞ cn = [a0;a1,a2, . . .]

as desired. �

The next theorem shows that the infinite continued fraction representation of an
irrational number is unique. We omit its proof in the interest of brevity; see Supple-
mentary Exercise 4.

THEOREM 12.9 If [a0;a1,a2, . . .] and [b0;b1,b2, . . .] represent the same irrational number, then ak =
bk for every k ≥ 0.

The following example illustrates the constructive algorithm in Theorem 12.8.

EXAMPLE 12.5 Express
√

13 as an infinite simple continued fraction.
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SOLUTION

Let x = x0 = √
13. Then a0 = �√13� = 3. By the recursive definition in Theo-

rem 12.8, we have

x1 = 1

x0 − a0
= 1√

13 − 3
=

√
13 + 3

4
a1 = �x1� = 1

x2 = 1

x1 − a1
=

√
13 − 3

4 − √
13

=
√

13 + 1

3
a2 = �x2� = 1

x3 = 1

x2 − a2
= 3√

13 − 2
=

√
13 + 2

3
a3 = �x3� = 1

x4 = 1

x3 − a3
= 3√

13 − 1
=

√
13 + 1

4
a4 = �x4� = 1

x5 = 1

x4 − a4
= 4√

13 − 3
= √

13 + 3 a5 = �x5� = 6

x6 = 1

x5 − a5
= 1√

13 − 3
=

√
13 + 3

4
a6 = �x6� = 1

Clearly, the pattern continues. Thus,

√
13 = [3;1,1,1,1,6,1,1,1,1,6, . . .]

This is often written as
√

13 = [
3;1,1,1,1,6

]

to indicate the periodic behavior. �

An Infinite Continued Fraction for
1
α

In 1951, F. C. Ogg of Bowling Green State University discovered a sophisticated
way of converting

√
5 − 1 into an infinite simple continued fraction:

√
5 − 1 = 1 + √

5 − 2 = 1 + 1√
5 + 2

= 1 + 1

4 + √
5 − 2

= 1 + 1

4 + 1√
5 + 2

= 1 + 1

4 + 1

4 + √
5 − 2
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= 1 + 1

4 + 1

4 + 1

4 + · · ·
= [1;4,4,4, . . .]
= [

1;4
]

The various convergents of this continued fraction are 1,
5

4
,

21

17
,

89

72
,

377

305
, . . . . Now

divide each by 2. The resulting numbers are
1

2
,

5

8
,

21

34
,

89

144
,

377

610
, . . . ; so the nth

convergent of the continued fraction for

√
5 − 1

2
is

F3n+2

F3n+3
, where n ≥ 0. Since

lim
n→∞

F3n+2

F3n+3
= lim

n→∞
1

F3n+3/F3n+2
= 1

α
=

√
5 − 1

2

So the continued fraction for

√
5 − 1

2
is that of

1

α
. Since α = [1;1,1,1, . . .], it fol-

lows that 1
α

= [0;1,1,1, . . .].
Using Theorem 12.8, the next example develops the infinite continued fraction

for e = 2.718281828 . . . , the base of the natural logarithm. It was discovered by
Euler in 1737.

EXAMPLE 12.6 Find the continued fraction expansion for e.

SOLUTION

We have x0 = e = 2.718281828 . . . , so a0 = 2. Using the algorithm in Theorem 12.8,
we have

x1 = 1

x0 − a0
= 1

0.7182818280 . . .
= 1.3922111920 . . . a1 = 1

x2 = 1

x1 − a1
= 1

0.3922111920 . . .
= 2.5496467725 . . . a2 = 2

x3 = 1

x2 − a2
= 1

0.5496467725 . . .
= 1.8193502627 . . . a3 = 1

x4 = 1

x3 − a3
= 1

0.8193502627 . . .
= 1.2204792571 . . . a4 = 1

x5 = 1

x4 − a4
= 1

0.2204792571 . . .
= 4.5355740627 . . . a5 = 4
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Continuing like this, we get

e = [2;1,2,1,1,4,1,1,6,1,1,8, . . .]

where the even partial quotients are separated by two 1s. �

Euler also showed that

e − 1

e + 1
= [0;2,6,10,14,18, . . .]

and

e2 − 1

e2 + 1
= [0;1,3,5,7,9, . . .]

E X E R C I S E S 12.2

Convert each into an infinite simple continued fraction.

1.
√

2 2.
√

3 3.
√

5

4.
√

12 5. π 6.
√

π

Compute the first five convergents of the continued frac-
tion for each.

7.
√

2 8.
√

3 9. π 10.
√

π

11. Using the continued fraction π = [3;7,15,1,292,

1, . . .], compute the value of π correct to eight deci-
mal places.

12. Using the continued fraction e = [2;1,2,1,1,4,1,1,

6,1,1,8, . . .], compute the value of e correct to six
decimal places.

13. Let cn denote the nth convergent of the continued
fraction [1;1,1,1,1, . . .], where n ≥ 1. Prove that

cn = Fn+2

Fn+1
.

14. Prove that lim
n→∞

Fn+1

Fn
= α, the golden ratio.

Evaluate each simple infinite continued fraction.

15. [Fn;Fn,Fn,Fn, . . .] 16. [Ln;Ln,Ln,Ln, . . .]
� �

X CHAPTER SUMMARY

In this chapter, we presented a brief introduction to the theory of continued fractions.
A continued fraction is simple if each partial quotient is an integer. We learned how
to identify rational and irrational numbers, using their continued fraction representa-
tions.
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Finite Simple Continued Fractions

• Compact notation [a0;a1, . . . ,an] (p. 552)
• Every rational number can be represented by a finite simple continued frac-

tion. (p. 553)

• ck = pk

qk
= [a0;a1, . . . ,ak] gives the kth convergent of the continued fraction.

(p. 556)
• ck can be defined recursively (p. 558):

p0 = a0 q0 = 1
p1 = a0a1 + 1 q1 = a1

pk = akpk−1 + pk−2 qk = akqk−1 + qk−2

• pkqk−1 − qkpk−1 = (−1)k−1 (p. 560)
• (pk,qk) = 1 (p. 561)

• ck − ck−1 = (−1)k−1

qkqk−1
(p. 561)

• ck − ck−2 = ak(−1)k

qkqk−2
(p. 561)

• c0 < c2 < c4 < · · · < c5 < c3 < c1 (p. 562)
• Finite simple continued fractions can be used to solve LDEs. (p. 563)

Infinite Simple Continued Fractions

• Notation [a0;a1, . . . ,an, . . .] (p. 565)
• The sequence of convergents {cn} approaches a unique limit. (p. 568)
• An infinite simple continued fraction represents an irrational number. (p. 569)
• The continued fraction representation [a0;a1, . . .] of an irrational number

x = x0 can be found recursively:

ak = �xk�, xk+1 = 1

xk − ak
(p. 570)

• Every irrational number has a unique continued fraction representation.
(p. 572)

X REVIEW EXERCISES

Rewrite each rational number as a continued fraction.

1.
47

19
2.

−1023

43
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Represent each continued fraction as a rational number.

3. [5;4,3,2,1] 4. [3;1,2,1,2,1]
The third and fourth convergents of the continued fraction [0;1,3,5,7,9,11] are
16/21 and 115/151, respectively. Using them, compute each convergent.

5. c5 6. c6

Using the continued fraction for the given rational number r, find the continued frac-

tion for
1

r
.

7.
25

18
8.

464

675

Using continued fractions, solve each LDE, if possible.

9. 43x + 23y = 33 10. 33x + 55y = 93
11. 76x + 176y = 276 12. 365x + 185y = 135

Using continued fractions, solve each Fibonacci LDE.

13. 144x + 89y = 23 14. 233x − 144y = 19

Rewrite each as an infinite simple continued fraction.

15.
√

7 16.
√

10 17.
√

e 18. lg 2

19. Using the continued fraction

e − 1

e + 1
= [0;2,6,10,14,18, . . .] (Euler, 1737)

compute the value of
e − 1

e + 1
correct to eight decimal places.

20. Using the continued fraction

e2 − 1

e2 + 1
= [0;1,3,5,7,9, . . .] (Euler, 1737)

compute the value of
e2 − 1

e2 + 1
correct to eight decimal places.

21. Let r be a rational number < 1 with finite simple continued fraction [a0;a1,

. . . ,an]. Prove that
1

r
= [a1;a2, . . . ,an].

22. Using Cassini’s formula, prove that lim
n→∞(cn − cn−1) = 0, where cn denotes the

nth convergent of the continued fraction [1;1,1,1,1, . . .].
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X SUPPLEMENTARY EXERCISES

Let
pk

qk
denote the kth convergent of the simple continued fraction [a0;a1, . . . ,an],

where a0 > 0 and 1 ≤ k ≤ n. Prove each. (See Exercises 21–24 in Section 12.1.)

1.
pk

pk−1
= [ak;ak−1, . . . ,a1,a0] 2.

qk

qk−1
= [ak;ak−1, . . . ,a2,a1]

3. qk ≥ 2k/2, where k ≥ 2. 4. Theorem 12.9.

X COMPUTER EXERCISES

Write a program to perform each task:

1. Express the rational numbers
3191

2191
and

9587

9439
as finite simple continued fractions.

2. Using continued fractions, compute the golden ratio correct to 50 decimal places.
3. Using continued fractions, solve the LDEs 5717x + 4799y = 3076 and 9767x +

3919y = 6677, if possible.
4. Using the continued fraction for e, compute e correct to 50 decimal places.
5. Using the continued fraction for π , compute it correct to 50 decimal places.
6. Using continued fractions, compute

√
1001 and

√
10001 correct to 50 decimal

places.

X ENRICHMENT READINGS

1. G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th
edition, Oxford, New York, 1995, 129–153.

2. I. Niven et al., An Introduction to the Theory of Numbers, 5th edition, Wiley, New
York, 1991, 325–351.

3. C. S. Ogilvy and J. T. Anderson, Excursions in Number Theory, Dover, New York,
1988, 115–131.



13 Miscellaneous Nonlinear
Diophantine Equations

And perhaps posterity will thank me for having

shown it that the ancients did not know everything.

— PIERRE DE FERMAT

n this chapter we will deal with some important nonlinear diophantine equationsIand discover how to solve them, when possible. The most common nonlinear
diophantine equations are x2 +y2 = z2, xn +yn = zn, and x2 −Ny2 = ±1. We will

see how the solutions of x2 + y2 = z2 and x2 − Ny2 = ±1 are related to Pythagorean
triangles. We will also explore the celebrated Fermat’s last theorem, as well as Beal’s
conjecture, which is related to it. We will also see that while some positive integers
can be expressed as the sum of two squares, all can be written as the sum of four
squares.

13.1 Pythagorean Triangles

The Pythagorean theorem is one of the most elegant and remarkable results in ele-
mentary mathematics. It states that the sum of the squares of the lengths of the legs
of a right triangle equals the square of the length of its hypotenuse. Its converse is
also true: If the sum of the squares of the lengths of two sides of a triangle equals
the square of the length of its third side, then the triangle is a right triangle. Right
triangles whose sides have integral lengths are called Pythagorean triangles.

This relationship was known even before Pythagoras. The Babylonian clay tablet
(see Figure 13.1) in the G. A. Plympton Collection at Columbia University reveals
that the Babylonians knew of the theorem more than 3500 years ago.

579
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Figure 13.1 Babylonian tablet.

They described Pythagorean triangles with sides of the following lengths:

60,45,75;72,65,97;120,119,169;360,319,481;
2700,2291,3541;4800,4601,6649;6480,4961,8161

The ancient Egyptians used right angles for surveying and resurveying their
lands, the boundaries of which were often destroyed by Nile floods. According to
S. J. Kolpas of Glendale Community College, around 2000 B.C., they discovered the
simplest and universally known 3-4-5 Pythagorean triangle.

Around the same time, the ancient Indians also employed right angles. They
used the 3-4-5 triangle and also found the 12-16-20, 5-12-13, and 8-15-17 triangles.

The Cairo Mathematical Papyrus (ca. 300 B.C.) is an Egyptian document that
when it was examined in 1962 was found to contain 40 problems, 9 of which deal
with the Pythagorean relation.

The ancient Greeks learned the technique of constructing the 3-4-5 triangle from
the Egyptians. The Pythagoreans explored it and generalized it to all right triangles,
resulting in the Pythagorean theorem.

It seems clear that the seed for the Pythagorean theorem was planted centuries
before Pythagoras, although he is credited with its independent discovery and its first
proof about 2500 years ago.

Interestingly, in modern times, six stamps featuring Pythagoras or the Pythago-
rean theorem have been issued; one by Nicaragua, one by Surinam, and four by
Greece. The Greek stamp in Figure 13.2 provides a geometric illustration of the 3-4-
5 Pythagorean triangle.

Numerous proofs of the Pythagorean theorem exist in mathematical literature,
including one by James A. Garfield (1831–1881), who constructed a proof before he
became the twentieth president of the United States. The Pythagorean Proposition,
by E. S. Loomis, contains 230 different proofs of the theorem.
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Figure 13.2 A Greek stamp illustrating the Pythagorean theorem.

Pythagorean Triples

Let x and y denote the lengths of the legs of a right triangle and z the length of its
hypotenuse. Then, by the Pythagorean theorem, x, y, and z satisfy the diophantine
equation

x2 + y2 = z2 (13.1)

The positive integral triplet x-y-z is called a Pythagorean triple. Thus, the task of
finding all Pythagorean triangles is the same as that of finding all Pythagorean triples.

Clearly, 3-4-5 is a Pythagorean triple. Because (3n)2 + (4n)2 = (5n)2, it follows
that 3n-4n-5n is also a Pythagorean triple for every positive integer n. Thus, there are
infinitely many Pythagorean triples.

For the curious-minded, there is a Pythagorean triplet that contains the beastly
number: 2162 + 6302 = 6662; it can also be written as (6 · 6 · 6)2 + (666 − 6 · 6)2 =
6662, as observed by M. Keith in 2002.

Pythagorean Triples and Fibonacci Numbers

We can digress briefly to discuss how Fibonacci numbers can be used to construct
Pythagorean triples. To this end, consider four consecutive Fibonacci numbers Fn,
Fn+1, Fn+2, and Fn+3. Let x = FnFn+3, y = 2Fn+1Fn+2, and z = F2

n+1 + F2
n+2. Then

x2 + y2 = z2 (see Exercise 4), so x-y-z is a Pythagorean triple.
For example, let n = 4. Then x = 3 ·13 = 39, y = 2 ·5 ·8 = 80, and z = 52 +82 =

89. Since 392 + 802 = 892, 39-80-89 is a Pythagorean triple.

Two Ancient Methods

Since m2 + [(m2 − 1)/2]2 = [(m2 + 1)/2]2, where m is odd, this formula yields
Pythagorean triples. The Pythagoreans are credited with its discovery.



582 CHAPTER 13 Miscellaneous Nonlinear Diophantine Equations

A similar formula was discovered by the Greek philosopher Plato (ca. 427–347
B.C.):

(2m)2 + (m2 − 1)2 = (m2 + 1)2

where m is any integer. This formula also yields infinitely many Pythagorean triples.
Unfortunately, neither of these two formulas yields all Pythagorean triples, so

our task is to find them all, just as Euclid did in his Elements. To this end, we begin
with a definition.

Primitive Pythagorean Triples

A Pythagorean triple x-y-z is primitive if (x, y, z) = 1.
For example, the Pythagorean triples 3-4-5 and 120-119-169 are primitive,

whereas 6-8-10 and 60-45-75 are not.
In 1934, M. Willey of Mississippi and E. C. Kennedy of the University of Texas

developed a delightful scheme for constructing mechanically any number of primi-
tive Pythagorean triples, which manifest an intriguing pattern. The scheme appeared
as a solution to a problem proposed in 1933 by Kennedy. Table 13.1 shows the
scheme. Study the pattern, and add a few more lines to the pattern. See Exercises
5 and 6.

x y z
21 220 221
201 20200 20201

2001 2002000 2002001
20001 200020000 200020001

200001 2000020000 20000200001

Table 13.1

In our search for all Pythagorean triples, we first make an important observation.
Let x-y-z be an arbitrary Pythagorean triple, where (x, y, z) = d. Then x = du, y = dv,
and z = dw, where (u, v,w) = 1. Since u2 + v2 = w2, u-v-w is also a Pythagorean
triple. Thus, every Pythagorean triple is a multiple of a primitive Pythagorean triple.

In order to develop a formula that produces all primitive Pythagorean triples, we
need to develop a series of lemmas.

LEMMA 13.1 If x-y-z is a primitive Pythagorean triple, then (x, y) = (y, z) = (z, x) = 1.

PROOF

Let x-y-z be a primitive Pythagorean triple and (x, y) = d > 1. Let p be a prime
factor of d. Then p|x and p|y. Since x2 + y2 = z2, this implies p|z2 and hence p|z.
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Consequently, x-y-z is not a primitive Pythagorean triple, which is a contradiction.
Thus, (x, y) = 1. Similarly, (y, z) = 1 = (z, x). �

The following lemma establishes that in a primitive Pythagorean triple x-y-z,
exactly one of the numbers x and y is even; in other words, x and y have opposite
parity.

LEMMA 13.2 If x-y-z is a primitive Pythagorean triple, then x and y have different parity.

PROOF

Suppose both x and y are even. Then (x, y) ≥ 2. This violates Lemma 13.1, so both
cannot be even.

Suppose both x and y are odd. Then x2 ≡ 1 ≡ y2 (mod 4), so z2 = x2 + y2 ≡ 2
(mod 4). Since this is also impossible (this can be shown using the technique in
Example 4.7), both cannot be odd, either.

Thus, exactly one of the integers x and y is even. �

For example, 5-12-13 is a primitive Pythagorean triple, where 5 is odd and 12 is
even; and 120-119-169 is a primitive Pythagorean triple, where 120 is even and 119
is odd.

This lemma has an immediate byproduct. Its proof can be completed as an exer-
cise.

COROLLARY 13.1 If x-y-z is a primitive Pythagorean triple, where x is even, then y and z are odd. �

We need one other lemma in order to find a formula for primitive Pythagorean
triples. The following lemma, an application of the Fundamental Theorem of Arith-
metic, proves that if the product of two relatively prime integers is a square, then
both integers must be squares.

LEMMA 13.3 Let r and s be relatively prime integers such that rs is a square, then both r and s are
also squares.

PROOF

Let r = pe1
1 pe2

2 · · ·pek
k and s = qf1

1 qf2
2 · · ·qfl

l be the canonical decompositions of r and
s, respectively. Since (r, s) = 1, the decompositions have no common prime factors;
that is, pi �= qj for every i and j. Then, by the Fundamental Theorem of Arithmetic,

pe1
1 pe2

2 · · ·pek
k qf1

1 qf2
2 · · ·qfl

l

is the prime-power decomposition of rs. Since rs is a square, it follows that each ei

and fj must be even. Thus, both r and s are squares. �
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For example, 15,876 = 22 · 34 · 72 and 75,625 = 54 · 112 are relatively prime;
their product 15,876 · 75,625 = (2 · 32 · 7 · 52 · 11)2 is a square; and so are 15,876 =
(2 · 32 · 7)2 and 75,625 = (52 · 11)2.

We are now ready to establish our main result, but we split its proof into two
lemmas for the sake of brevity. Lemma 13.4 delineates the conditions all primitive
Pythagorean triples must satisfy.

LEMMA 13.4 Let x-y-z be a primitive Pythagorean triple. Then there are relatively prime integers
m and n with different parity such that x = 2mn, y = m2 −n2, and z = m2 +n2, where
m > n.

PROOF

By Lemma 13.2, exactly one of the integers x and y is even. Without loss of general-
ity, we assume that x is even; so both y and z are odd, by Corollary 13.1.

Then z+y and z−y are even, so z+y = 2u and z−y = 2v for some integers u and
v. Therefore, x2 = z2 − y2 = (z + y)(z − y) = (2u)(2v) = 4uv and hence (x/2)2 = uv.

We now claim that (u, v) = 1. To see this, let d = (u, v) > 1. Then d|u and d|v;
that is, d|(z + y) and d|(z − y). So d|y and d|z, by Theorem 2.4. But this contradicts
Lemma 13.1. Therefore, (u, v) = 1.

Since uv is a square, by Lemma 13.3, both u and v are squares. Thus, there are
positive integers m and n such that u = m2 and v = n2. Then x2 = 4uv = 4m2n2, so
x = 2mn; y = u − v = m2 − n2; and z = u + v = m2 + n2. Since y > 0, m > n.

Next we show that (m,n) = 1. To this end, let d = (m,n). Then d|m and d|n, so
d|u and d|v, and hence d|(u, v) = 1. Thus, d = (m,n) = 1.

It remains to show that m and n have different parity. If both m and n are even,
then both u and v would be even. This is impossible, since (u, v) = 1. If both m
and n are odd, then y = m2 − n2 and z = m2 + n2 would be even. This is again a
contradiction, since (y, z) = 1.

Thus, every primitive Pythagorean triple must satisfy the given conditions. �

The integers m and n in this lemma are called the generators of the primitive
Pythagorean triple x-y-z.

For example, consider the primitive Pythagorean triple 120-119-169. In this case
x = 120 = 2 ·12 ·5, y = 119 = 122 −52, and z = 122 +52, where 12 > 5; (12,5) = 1;
and 12 and 5 have opposite parity. The integers 12 and 5 are the generators of this
primitive Pythagorean triple.

The following lemma establishes the converse of this lemma.

LEMMA 13.5 Let x = 2mn, y = m2 − n2, and z = m2 + n2, where m and n are relatively prime with
different parity, and m > n. Then x-y-z is a primitive Pythagorean triple.
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PROOF

Since

x2 + y2 = (2mn)2 + (m2 − n2)2

= 4m2n2 + (m4 + n4 − 2m2n2)

= (m4 + n4 + 2m2n2) = (m2 + n2)2

= z2

x-y-z is a Pythagorean triple.
So it remains to demonstrate that x-y-z is primitive. To confirm this, suppose

that (x, y, z) > 1. Let p be a prime factor of (x, y, z). Then p|y and p|z. Since m and
n have different parity, both y and z are odd. So p �= 2. Since p|y and p|z, it follows
that p|2m2 and p|2n2; but p �= 2, so p|m2 and p|n2. Hence p|m and p|n, so (m,n) > 1.
Since this is a contradiction, it follows that (x, y, z) = 1. Thus, x-y-z is a primitive
Pythagorean triple. �

This lemma provides an algorithm for constructing a primitive Pythagorean
triple, as the following example shows.

EXAMPLE 13.1 Let m = 9 and n = 4. Clearly, m > n; (m,n) = 1; and m and n have opposite parity.
Therefore, by Lemma 13.5, x-y-z is a primitive Pythagorean triple, where x = 2 · 9 ·
4 = 72, y = 92 − 42 = 65, and z = 92 + 42 = 97. �

Combining Lemmas 13.4 and 13.5, we get the following elegant characterization
of primitive Pythagorean triples.

THEOREM 13.1 Let x, y, and z be positive integers, where x is even. Then x-y-z is a primitive
Pythagorean triple if and only if there are relatively prime integers m and n with
different parity such that x = 2mn, y = m2 − n2, and z = m2 + n2, where m > n. �

Table 13.2 lists all primitive Pythagorean triples with m ≤ 10.
This table reveals some interesting patterns among the primitive Pythagorean

triples x-y-z:

• Either x or y is divisible by 3.
• Exactly one of the numbers x, y, and z is divisible by 5.
• The number x is divisible by 4.
• The product of the lengths of the legs of a Pythagorean triangle is divisible

by 12.
• The product of the lengths of the sides of a Pythagorean triangle is divisible

by 60.
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Table 13.2 Pythagorean triples with m ≤ 10.

We can establish these results with little or no difficulty. See Exercises 15–19.
Next, we present certain Pythagorean triangles with special properties.

Intriguing Pythagorean Triangles

A close examination of Table 13.2 shows that the lengths of the legs of a prim-
itive Pythagorean triangle can be consecutive integers. The triangles 3-4-5 and
20-21-29 are two such triangles. Such primitive Pythagorean triples x-y-z can be
employed to construct a family of infinitely many primitive Pythagorean triples. See
Exercise 30.

The table also shows that the lengths of the sides of a Pythagorean triangle can
be squares. See the circled numbers in the table. Table 13.3 lists the lengths x, y, and
z of the sides of four Pythagorean triangles, where z is a square, and Table 13.4 lists
the lengths of the sides of four Pythagorean triangles, where x or y is a square.
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Table 13.3 Pythagorean triangles with z a square.

Table 13.4 Pythagorean triangles with x or y a square.

Pythagorean Triangles with the Same Perimeter

Pythagorean triangles with the same perimeter do exist. They are rare and not easy
to find, if primitive Pythagorean triples are used. Three such triangles are 7080-
119-7081, 5032-3255-5993, and 168-7055-7057, generated by m = 60 and n = 59;
m = 68 and n = 37; and m = 84 and n = 1, respectively. Their common perimeter
is 14,280. Notice that the Pythagorean triangles 48-20-52, 24-45-51, and 40-30-50
share a smaller common perimeter, namely, 120.

Pythagorean Triangles with the Same Area

Do Pythagorean triangles with the same area exist? A close investigation of Ta-
ble 13.2 reveals a pleasant surprise. It contains two such triangles, 20-21-29 and
12-35-37, with the same area, 210.

Pythagorean triangles with equal areas were studied by Diophantus, Fermat, and
the English logician Lewis Carroll. A note in Carroll’s diary, dated December 19,
1897, reads as follows: “Sat up last night till 4 A.M. [sic] over a tempting problem
sent me from New York: to find three equal rational sided right triangles. I found two
whose sides are 20, 21, 29 and 12, 35, 37 but could not find three.”

The smallest area common to three primitive Pythagorean triangles is 13, 123,
110. Their sides are generated by 77, 38; 138, 5; and 78, 55. See Exercise 28.



588 CHAPTER 13 Miscellaneous Nonlinear Diophantine Equations

Lewis Carroll (1832–1898), the son of a clergyman, was born in Daresbury, Eng-

land. He graduated from Christ College, Oxford University, in 1854. He began teaching

mathematics at his alma mater in 1855, where he spent most of his life. He became a

deacon in the Church of England in 1861.

Carroll’s famous books, Alice in Wonderland and its sequel, Through the Looking-

Glass and What Alice Found There, have provided a lot of pleasure to both children

and adults all over the world. Alice in Wonderland is available in more than 30 lan-

guages, including Arabic and Chinese, and also in Braille. The character is named for

Alice Liddell, a daughter of the dean of Christ Church.

Pythagorean Triangles with the Same Numerical Area and
Perimeter

Interestingly, Pythagorean triangles with the same numerical areas and perimeters do

exist. For example, let x-y-z = 12-5-13. Then x + y + z = 30 = 12 · 5

2
= 1

2
xy.

To check if there are any others, we have x2 + y2 = z2 and x + y + z = xy

2
.

Eliminating z between the two equations, we get

x(y − 4) = 8 + 4(y − 4)

x = 4 + 8

y − 4

This implies that (y − 4)|8; so y − 4 = 1,2,4, or 8; that is, y = 5,6,8,12. Corre-
spondingly, x = 12,8,6,5. They yield two distinct Pythagorean triangles: 12-5-13
and 8-6-10.

Palindromic Pythagorean Triples

The Pythagorean triple 3-4-5 has the interesting property that each component is a
palindrome. Such a triple is a palindromic Pythagorean triple. For example, 33-
44-55 and 303-404-505 are both palindromic Pythagorean triples; the latter was dis-
covered in 1997 by Patrick DeGeest of Belgium.

There is a systematic way of constructing an infinite number of such triples from
the 3-4-5 triple. To see this, let s be a finite binary word beginning with a 1. Let sR

denote the word obtained by reversing order of the digits in s. Then their concate-
nation t = ssR is palindromic, and so are the numbers 3t, 4t, and 5t. Consequently,
3t-4t-5t is also a palindromic Pythagorean triple.
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E X E R C I S E S 13.1

1. Rewrite symbolically the statement that the integers
m and n have different parity.

2. Let x-y-z be a primitive Pythagorean triple, where x
is even. Prove that y and z are odd.

3. Show that 3-4-5 is the only primitive Pythagorean
triple consisting of consecutive integers.

4. Let Fn denote the nth Fibonacci number, where
n ≥ 1. Show that

(FnFn+3)2 + (2Fn+1Fn+2)2 = (F2
n+1 + F2

n+2)2

5. Add the next two lines to Table 13.1.
6. Study the following primitive Pythagorean triples

pattern. Add the next two lines.

412 + 8402 = 8412

4012 + 804002 = 804012

40012 + 80040002 = 80040012

400012 + 8000400002 = 8000400012

...

Find all primitive Pythagorean triples with the given value
of m.

7. 11 8. 12

Study the following pattern of Pythagorean triples:

32 + 42 = 52

52 + 122 = 132

72 + 242 = 252

92 + 402 = 412

112 + 602 = 612

...

9. Add the next two lines.
10. Predict a formula for the nth line, where n ≥ 1.
11. Establish the formula in Exercise 9.
12–14. Redo Exercises 9–11 with the following pattern

of Pythagorean triples.

82 + 152 = 172

122 + 352 = 372

162 + 632 = 652

202 + 992 = 1012

...

Let x-y-z be a primitive Pythagorean triple. Prove each.

15. Either x or y is divisible by 3.
16. Exactly one of the numbers x, y, or z is divisible by 5.
17. At least one of the numbers x, y, or z is divisible by 4.
18. The product of the lengths of the legs of a Pythag-

orean triangle is divisible by 12.
19. The product of the lengths of the sides of a Pythag-

orean triangle is divisible by 60.
20. Let x-y-z be a primitive Pythagorean triple such that

z = x + 1. Prove that x = 2n(n + 1), y = 2n + 1,
and z = 2n(n + 1) + 1, where n ≥ 1. (This formula
characterizes the primitive Pythagorean triples with
z = x + 1.)
(Hint: Consider z − x in the proof of Lemma 13.4.)

21. Let x-y-z be a primitive Pythagorean triple touch that
z = x + 2. Prove that x = 2m, y = m2 − 1, and z =
m2 + 1, where m ≥ 2.

Consider a Pythagorean triangle with sides x = 2mn, y =
m2 − n2, and z = m2 + n2, where x-y-z is a primitive
Pythagorean triple.

22. Compute its perimeter.
23. Compute its area.
24. Compute its area if the hypotenuse is longer than the

even leg by one.
25. Is it possible for the triangle to have its hypotenuse

longer than its odd side by one? Justify your answer.
26. Compute the perimeter of an arbitrary Pythagorean

triangle.
27. Compute the area of an arbitrary Pythagorean trian-

gle.
28. Verify that the primitive Pythagorean triangles gener-

ated by 77, 38; 138, 5; and 78, 55 enclose the same
area. (C. L. Shedd, 1945)

29. In 1943, W. P. Whitlock, Jr., studied the areas of over
1300 primitive Pythagorean triangles and made an in-
teresting observation: The areas of only two of them
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could be expressed using a single digit; they are the
3-4-5 and 1924-693-2045 triangles. Compute the area
of the primitive Pythagorean triangle 1924-693-2045.
(Watch for the beastly number.)

30. Let ak be a positive integer defined by ak = 2ak−1 +
ak−2, where a1 = 1, a2 = 2, and k ≥ 3. Prove that
m = ak , n = ak−1 generate a primitive Pythagorean
triangle whose legs differ by unity. (W. P. Whitlock,
Jr., 1943)

31. Let xn-yn-zn be a primitive Pythagorean triple, where
yn = xn + 1. Prove that xn+1-yn+1-zn+1 is also a
primitive Pythagorean triple, where

⎡

⎢
⎣

xn+1
yn+1
zn+1

⎤

⎥
⎦ =

⎡

⎢
⎣

3 2 1
3 2 2
4 3 2

⎤

⎥
⎦

⎡

⎢
⎣

xn

zn

1

⎤

⎥
⎦ , n ≥ 1

(This yields a recursive algorithm for computing an
infinite family of primitive Pythagorean triples.)

32. Show that x = (m2 − pn2)/p, y = mn, and z = (m2 +
pn2)/p is a solution of the diophantine equation x2 +
py2 = z2.

Consider the diophantine equation 1/x2 + 1/y2 = 1/z2.

�33. Find the smallest solution. (A. Dunn, 1980)
�34. Find the general solution. (A. Dunn, 1980)

� �

13.2 Fermat’s Last Theorem

In the preceding section, we established that there are infinitely many solutions of
the diophantine equation x2 + y2 = z2, where x, y, and z are positive integers. Now
we can ask if the equation x3 + y3 = z3 is solvable with positive integers. Or is
x4 + y4 = z4? More generally, is the diophantine equation

xn + yn = zn (13.2)

solvable with positive integers only, where n ≥ 3?

Fermat’s Conjecture

Fermat, around the year 1637, conjectured that Fermat’s equation (13.2) has no pos-
itive integral solutions when n ≥ 3. Unfortunately, he did not confirm the claim with
a proof, which he had done on several occasions. In fact, in one of his many marginal
notes in his copy of Claude Bachet de Méziriac’s (1581–1638) Latin translation of
Diophantus’ Arithmetica, Fermat comments that he has “discovered a truly wonder-
ful proof of this, but the margin is too small to contain it.” Whether he indeed had
a proof, or whether he, realizing its complexity, wrote the comment to challenge fu-
ture mathematicians, we may never know. “Fermat’s reputation for veracity should
be strong evidence for believing he had a proof. Only once he has been found incor-
rect,” writes Beiler in his delightful book, Recreations in the Theory of Numbers. He
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adds, “Posterity has wished many times that the margin of Bachet’s Diophantus had
been wider or Fermat less secretive” about his techniques.

Although no proof of Fermat’s conjecture existed for over three centuries, the
conjecture came to be known as Fermat’s Last Theorem for two reasons: First, the
name distinguishes it from Fermat’s Little Theorem; and second, this was the last of
his conjectures that was neither proved nor disproved.

In 1823 and then in 1850, the Academy of Science in Paris offered a prize for
a correct proof. Unfortunately, this produced a wave of thousands of mathematical
misadventures. A third prize was offered in 1883 by the Academy of Brussels.

When Gauss was told of the Paris Prize, he claimed that “Fermat’s theorem as an
isolated proposition has very little interest for me, because I could easily lay down
a multitude of such proportions, which could neither prove nor dispose of.” When
the German mathematician David Hilbert (1862–1943) was asked, he said, “Before
beginning I should have to put in three years of intensive study, and I haven’t that
much time to squander on a probable failure.”

In 1908, the German physician and amateur mathematician F. Paul Wolfskehl
bequeathed 100,000 marks to the Göttingen Academy of Sciences to be offered as a
prize for a complete proof of Fermat’s Last Theorem. As a result, from 1908–1911,
a flood of over 1000 incorrect proofs were presented. According to mathematical
historian Howard Eves, “Fermat’s Last Theorem has the peculiar distinction of being
the mathematical problem for which the greatest number of incorrect proofs have
been published.”

In 1770, Euler provided the first proof of Fermat’s Last Theorem for the case
n = 3, but his proof contained a few gaps. It was later perfected by Legendre. Fermat
himself gave a proof for the case n = 4, employing the method of infinite descent,
which we shall demonstrate shortly. Around 1825, Dirichlet and Legendre, capitaliz-
ing on Fermat’s technique of infinite descent, independently confirmed the conjecture
for n = 5. About fourteen years later, Lamé established the conjecture for n = 7.

Since the proof for n = 3 is complicated, we will omit it. We can instead go
directly to the case n = 4 and establish the validity of the theorem as a corollary
to the following stronger theorem. Its proof, employing Theorem 13.1, illustrates
Fermat’s technique of infinite descent, which is really rooted in the well-ordering
principle. The essence of this method lies in constructing a solution “smaller” than a
given positive integral solution.

THEOREM 13.2 (Fermat) The diophantine equation x4 + y4 = z2 has no positive integral solutions.

PROOF

Let a-b-c be a solution of the equation, so a4 + b4 = c2. Let (a,b) = d. Then a =
dα and b = dβ for some positive integers α and β , where (α,β) = 1. This implies
(dα)4 + (dβ)4 = c2, so d4|c2 and hence d2|c. Therefore, c = d2γ for some integer γ .
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Thus, d4(α4 + β4) = d4γ 2, that is, α4 + β4 = γ 2. In other words, α-β-γ is also a
solution, where (α,β) = 1. Thus, we can assume that (a,b) = 1. Since z is a positive
integer, we also assume that a-b-c is a solution such that the value of c is the least
among such solutions x-y-z of the given diophantine equation.

The equation a4 + b4 = c2 can be rewritten as (a2)2 + (b2)2 = c2, so a2-b2-c is
a Pythagorean triple. Since (a,b) = 1, it follows by Exercise 72 in Section 3.1 that
(a2,b2) = 1. Thus, a2-b2-c is in fact a primitive Pythagorean triple.

Therefore, by Theorem 13.1, there are positive integers m and n such that a2 =
2mn, b2 = m2 − n2, and c = m2 + n2, where (m,n) = 1, m �≡ n (mod 2), and m > n
and b is odd.

Because m �≡ n (mod 2), exactly one of them is even. To identify it, suppose n
is odd, so m is even. Then 1 ≡ b2 ≡ 0 − 1 ≡ 3 (mod 4), which is a contradiction.
Therefore, n is even (and hence m is odd).

Let n = 2q. Then a2 = 4mq, so (a/2)2 = mq. (Remember, a is even.) Since
(m,n) = 1, it follows that (m,q) = 1. Therefore, by Lemma 13.3, both m and q are
squares. Let m = t2 and q = u2.

Because n2 + b2 = m2, n-b-m is a Pythagorean triple. Furthermore, (n,b) = 1,
so n-b-m is a primitive Pythagorean triple. Therefore, since n is even, again by The-
orem 13.1, there are positive integers v and w such that n = 2vw, b = v2 − w2, and
m = v2 + w2, where v > w, (v,w) = 1, and v �≡ w (mod 2).

Then vw = n/2 = q = u2. Because (v,w) = 1, it follows, again by Lemma 13.3,
that v = r2 and w = s2 for some positive integers r and s.

Substituting for v, w, and m in the equation v2 + w2 = m, we get r4 + s4 = t2.
This shows that r-s-t is also a solution of the equation x4 + y4 = z2, where

0 < t ≤ t2 = m ≤ m2 < m2 + n2 = c

Thus, we have systematically constructed a solution r-s-t of the given equation,
where 0 < t < c. This is a contradiction, since we assumed that the solution a-b-c
has the least value of z. Hence, our assumption that the equation x4 + y4 = z2 has
positive integral solutions is invalid. This concludes the proof. �

As a byproduct, this theorem establishes Fermat’s conjecture for n = 4, as the
following corollary shows.

COROLLARY 13.2 The diophantine equation x4 + y4 = z4 has no positive integral solutions.

PROOF

Let a-b-c be a solution of the equation. Then a4 + b4 = (c2)2, showing that a-b-c2

is a solution of the equation x4 + y4 = z2. Since this contradicts Theorem 13.2, the
result follows. �
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This corollary yields the following intriguing result.

COROLLARY 13.3 The lengths of the sides of a Pythagorean triangle cannot all be squares.

PROOF

Let x and y denote the lengths of the legs of a Pythagorean triangle and z the length
of its hypotenuse. Suppose x, y, and z are squares, say, x = u2, y = v2, and z = w2.
Then u4 + v4 = w4, which is impossible by Corollary 13.2. Thus, the lengths cannot
all be squares. �

The Rest of the Story

Corollary 13.2 plays an important role in establishing Fermat’s Last Theorem for any
exponent n ≥ 3. It tells us that we need only concentrate on exponents that are odd
primes.

We can see this as follows: By the Fundamental Theorem of Arithmetic, n is
either a power of 2 or is divisible by an odd prime. If n is a power of 2, then n = 4m,
where m ≥ 1. Then the equation xn + yn = zn becomes (xm)4 + (ym)4 = (zm)4. This
implies xm-ym-zm is a solution of x4 + y4 = z4, which is a contradiction. Thus, if n is
a power of 2, equation (13.2) has no positive integral solutions.

On the other hand, let n = mp. Then equation (13.2) becomes (xm)p + (ym)p =
(zm)p. So if we can show that the equation xp + yp = zp is not solvable, it will imply
that equation (13.2) is not solvable when n = mp.

Thus, Fermat’s Last Theorem can be established if we can show that the equa-
tion xp + yp = zp is not solvable for any odd prime, as Euler, Dirichlet and Legendre,
and Lamé showed for p = 3,5, and 7, respectively. For over 350 years, numerous
tenacious mathematicians, in addition to these great ones, worked diligently to de-
molish what Beiler, in his book, calls “the stone wall” of Fermat’s Last Theorem,
“chipping off a piece of granite here and another there.”

The German mathematician Ernst E. Kummer played a pivotal role in the de-
velopment of a proof. In 1843, he submitted a purported proof to Dirichlet, who im-
mediately found a flaw in his reasoning. Kummer returned to his search with added
determination, developing a new class of numbers called algebraic numbers, and
a new branch of modern algebra called the theory of ideals. Kummer succeeded in
proving Fermat’s Last Theorem for a large family of primes. In fact, all subsequent
pursuits of a valid proof were based on Kummer’s work.

In 1983, the German-born mathematician Gerd Faltings of Princeton University
proved that the number of solutions of Fermat’s equation is finite for n ≥ 3, a re-
sult conjectured many years earlier by Louis Mordell. In 1988, the Japanese mathe-
matician Yoichi Miyaoka claimed that he had a proof. Unfortunately, the stone wall
remained insurmountable.
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Ernst Eduard Kummer (1810–1893) was born at Sorau, Germany (now Zary,

Poland). After his early education at the Gymnasium in Sorau, he entered

the University of Halle in 1828 to study theology, but soon gave it up to pur-

sue mathematics. After receiving his doctorate in 1831, Kummer taught at the

Gymnasium in Sorau for a year and then at the Gymnasium at Liegnitz (now

Legnica, Poland) for 10 years.

In 1842, Kummer was appointed professor of mathematics at the Univer-

sity of Breslau (now Wroclaw, Poland), where he remained until 1855. When

Dirichlet left the University of Berlin in 1855 to succeed Gauss at Göttingen,

Kummer was appointed professor at Berlin.

In his quest for a proof of Fermat’s Last Theorem, Kummer created the

so-called algebraic numbers. His proof failed, since he assumed the funda-

mental theorem of arithmetic for such numbers, which he later restored by de-

veloping the theory of ideals. For this, Kummer was awarded the grand prize

of the Paris Academy of Sciences in 1857, although he had not competed.

He made significant contributions to the study of hypergeometric series and

geometry.

A creative pioneer of nineteenth-century mathematics, Kummer died at Berlin after a productive career and

quiet retirement.

The Stone Wall Crumbles and Wiles Meets Fermat

Finally, in June 1993, the stone wall started to crumble. The English mathematician
Andrew Wiles of Princeton University announced at a number theory conference at
Cambridge University, England, that he had solved Fermat’s Last Theorem using
elliptic functions and modular forms. The news was taken so seriously that it made
the front page of The New York News (see Figure 13.3) and was covered by Time and
Newsweek, and the NBC Nightly News. The discovery caused Wiles to be named one
of “the 25 most important people of the year” in People magazine.

Five months later, a flaw was detected (see Figure 13.4), which was corrected
in October 1994. The corrected version has withstood intense scrutiny by experts.
Although the German prize offered in 1908 had lost most of its cash value due to
inflation, Wiles still collected $50,000 in 1997 for his singular achievement.

Wiles’ discovery was so outstanding that in 1997 the British Broadcasting Com-
pany (BBC) produced The Proof, an inspiring and delightful television documentary
shown also in the United States on PBS. In the film, Wiles describes his seven years
of relentless, solitary pursuit in his attic for a proof of Fermat’s Last Theorem as
follows:

“Perhaps I can best describe my experience of doing mathematics in terms of
a journey through a dark unexplored mansion. You enter the first room of the man-
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Andrew J. Wiles (1953–) was born in Cambridge, England. From early child-

hood he had a fascination for mathematical problems; he loved to do them at

school and home, and even made up new ones on his own. At age 10, he was

browsing through mathematics books at a local public library. He was struck

by one particular problem—Fermat’s Last Theorem—in one of them. The fact

that it looked simple and that it eluded the brilliance of mathematicians around

the world for over three centuries really fascinated him. Solving the problem

became his obsession.

In 1971, Wiles entered Merton College, Oxford, and graduated in three years. He then went to Clare Col-

lege, Cambridge, and received his Ph.D. in 1980 under John Coates in the theory of elliptic curves. This laid the

foundation for his famous discovery of a proof of Fermat’s Last Theorem in June 1993.

During the years 1977–1980, Wiles was a Junior Research Fellow at Clare College and a Benjamin Pierce

Assistant Professor at Harvard University. In 1981, he became visiting professor at the Sonderforschungsbereich

Theoretische Mathematik in Bonn, and later joined the Institute for Advanced Study in Princeton. The following

year, he became a professor at Princeton University and a visiting professor at the University of Paris. As a

Guggenheim Fellow, he then spent a year as a visiting professor at the Institut des Hautes Études Scientifiques

and at the École Normale Supérieure. During 1988–1990, Wiles was a Royal Society Research Professor at

Oxford. Since 1994, he has been Eugene Higgins Professor of Mathematics at Princeton.

In 1989, Wiles was elected a fellow of the Royal Society, London. He has received numerous honors, includ-

ing the Schock Prize in Mathematics from the Royal Academy of Sciences (1995), Prix Fermat from the Universite

Paul Sabatier and Matra Marconi Space (1995), the Wolf Prize in mathematics (1996), and the National Academy

of Sciences Award in Mathematics (1996).

At Last, Shout of ‘Eureka!’ An Age-Old Math
Mystery

Gina Kolata
More than 350 years ago, a French mathematician wrote a
deceptively simple theorem in the margins of a book, adding
that he had discovered a marvelous proof of it but lacked
space to include it in the margin. He died without ever of-
fering his proof, and mathematicians have been trying ever
since to supply it.

Now, after thousands of claims of success that proved
untrue, mathematicians say the daunting challenge, perhaps
the most famous of unsolved mathematical problems, has at
last been surmounted.

The problem is Fermat’s last theorem, and its appar-
ent conqueror is Dr. Andrew Wiles, a 40-year-old English
mathematician who works at Princeton University. Dr. Wiles
announced the result yesterday at the last of three lectures
given over three days at Cambridge University in England.

Within a few minutes of the conclusion of his final
lecture, computer mail messages were winging around the
world as mathematicians alerted each other to the startling
and almost wholly unexpected result.

Dr. Leonard Adelman of the University of Southern
California said he received a message about an hour after
Dr. Wiles’s announcement. The frenzy is justified, he said.

(continued)

Figure 13.3
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“It’s the most exciting thing that’s happened in—geez—
maybe ever, in mathematics.”

Impossible Is Possible

Mathematicians present at the lecture said they felt “an
elation,” said Dr. Kenneth Ribet of the University of California
at Berkeley, in a telephone interview from Cambridge.

The theorem, an overarching statement about what so-
lutions are possible for certain simple equations, was stated
in 1637 by Pierre de Fermat, a 17th-century French mathe-
matician and physicist. Many of the brightest-minds in math-
ematics have struggled to find the proof ever since, and
many have concluded that Fermat, contrary to his tantalizing

claim, had probably failed to develop one despite his consid-
erable mathematical ability.

With Dr. Wiles’ result, Dr. Ribet said, “the mathemat-
ical landscape has changed.” He explained: “You discover
that things that seemed completely impossible are more of a
reality. This changes the way you approach problems, what
you think is possible.”

Dr. Barry Mazur, a Harvard University mathematician,
also reached by telephone in Cambridge, said: “A lot more
is proved than Fermat’s last theorem. One could envision a
proof of a problem, no matter how celebrated, that had no im-
plications. But this is just the reverse. This is the emergence
of a technique that is visibly powerful. It’s going to prove a lot
more.”

Figure 13.3

How a Gap in the Fermat Proof Was Bridged

Gina Kolata
Fermat’s last theorem, which has tantalized mathematicians
for more than 350 years, has at last been solved, say those
who have read the revised but not yet published proof. But
the endgame of this furious chase has proved as full of last-
minute surprises as a murder mystery.

For Dr. Andrew Wiles of Princeton University, the chief
author of the proof, triumph had to be snatched from the jaws
of disaster. His first proof, which aroused world-wide atten-
tion when announced two years ago, turned out to contain a
gap, which Dr. Wiles found he was unable to cross alone.

The enormous intellectual trophy of having conquered
the world’s most famous mathematical problem seemed
about to slip from his grasp. If he invited a well-known math-
ematician to help him bridge the gap, he would risk having to
share the credit. What was needed, and what he pulled off,
was a miraculous save with just the right collaborator.

On a mathematical level, Fermat’s last theorem turns
out to have extraordinarily deep roots, despite its apparent
simplicity. The theorem is a special case of an overarching

mathematical idea known as the Taniyama conjecture, which
is itself a giant step toward the goal of the Langlands pro-
gram, a grand unified theory of mathematics.

THE GAP

A ‘Minor’ Problem Turns Into a Crisis

Several minor faults were found and Dr. Wiles fixed
them. But then, in the fall of 1993, a reviewer asked him to
justify an assertion, in the midst of his proof, that a certain
estimate was correct.

The gap at first seemed to be a minor one. But though
the estimate seemed intuitively to be correct, proving it was
a different matter.

Before Dr. Wiles’ was willing to announce that he and
Dr. Taylor had filled the gap, he asked a few leading experts
to check his argument. One was Dr. Faltings in Germany,
who said he read it in a week and was convinced it was
correct. Now, Dr. Faltings has improved the proof, making
it sleeker and easier to follow. Still, he said, most mathemati-
cians who are expert enough in the field to read the proof will
probably require a month to go through it.

Figure 13.4
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sion and it’s completely dark. You stumble around bumping into the furniture, but
gradually you learn where each piece of furniture is. Finally, after six months or so,
you find the light switch, you turn it on, and suddenly it’s all illuminated. You can
see exactly where you were. Then you move into the next room and spend another
six months in the dark. So each of these breakthroughs, while sometimes they’re
momentary, sometimes over a period of a day or two, they are the culmination of—
and couldn’t exist without—the many months of stumbling around in the dark that
proceed them.”

Having solved his childhood passion and achieved world fame, he concludes at
the end of the film that the journey is finally over: “There is a certain sense of sadness,
but at the same time there is this tremendous sense of achievement. There’s also a
sense of freedom. I was so obsessed by this problem that I was thinking about it all
the time—when I woke up in the morning, when I went to sleep at night—and that
went on for eight years. That’s a long time to think about one thing. That particular
odyssey is now over. My mind is now at rest.”

Wiles’ monumental accomplishment has inspired several books and videos.
More importantly, as R. K. Guy writes in his Unsolved Problems in Number The-
ory, “Fermat’s Last Theorem . . . has generated a great deal of good mathematics,
whether goodness is fathomed by beauty, depth, or applicability.”

Fermat’s Last Theorem Goes to Broadway, Almost

Interestingly, Fermat’s last theorem even has made it to off-Broadway. A musical
called Fermat’s Last Tango, based on the BBC film and Simon Singh’s book Fer-
mat’s Enigma, premiered off-Broadway at the York Theater Company in New York
City. It ran for about five weeks at the end of 2000; see Figure 13.5. The musical
is available on videotape or DVD from the Clay Mathematics Institute, Cambridge,
Massachusetts; visit the website www.claymath.org/events/fermtslasttango.htm.

The Diophantine Equation x4 − y4 = z2

We now move on to the diophantine equation x4 −y4 = z2, which is closely related to
x4 + y4 = z2. The proof by Fermat that this new equation also has no positive integral
solutions runs similar to the proof of Theorem 13.2, so we omit it. See Exercise 17.

THEOREM 13.3 (Fermat) The diophantine equation x4 − y4 = z2 has no positive integral solu-
tions. �

This theorem has a fascinating byproduct, which Fermat also jotted down in a
margin of his copy of Diophantus’ Arithmetica.

COROLLARY 13.4 (Fermat) The area of a Pythagorean triangle cannot be an integral square.
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Fermat’s Last Theorem: The Musical
Mathematics will show up on stage once again in Novem-
ber, this in a musical called Fermat’s Last Tango, which will
premiere Off Broadway at the York Theater Company in New
York City. The musical, written by the husband-and-wife team
of Joanne Sydney Lessner and Joshua Rosenblum, is in-
spired by the story of Andrew Wiles’ proof of Fermat’s Last
Theorem, as made public by the PBS film “The Proof” and
the book Fermat’s Enigma, by Simon Singh.

The musical tells the story of Professor Daniel Keane,
who comes up with a proof that Fermat couldn’t possibly un-
derstand, finds a flaw in the proof, and then fixes the flaw
under the watchful eye of Fermat and other dead mathe-
maticians (who now all reside in the “After-Math,” of course).
Fermat, Pythagoras, Euclid, Newton, and Gauss all feature
in the show. The tone is lighthearted and whimsical.

Towards the end of the story Fermat is shown running
a nightmarish game show called “Prove My Theorem!” in
which Professor Keane finds himself a contestant. The other
great mathematicians end up getting tired of Fermat’s an-
tics, and decide to help the professor fix his proof. The music

combines operetta, blues, pop, and, of course, tango. The
performance is almost completely sung through, with very
little spoken dialogue.

Both of the play’s authors were music majors at Yale.
Joshua Rosenblum says he briefly considered a mathemat-
ics minor, but in the end didn’t get much beyond calcu-
lus, though he continues to nurture a recreational interest
in mathematics. Both became fascinated by the story of the
proof of Fermat’s Last Theorem, and decided to write a mu-
sical on the subject. The show contains little mathematics,
but what it does include it tries to get right. The authors have
also included some references they hope will resonate with
mathematicians. For example, one of the obstacles Fermat
puts before Professor Keane in his game show is the fact
that mathematics is a “young man’s game.”

Performances of Fermat’s Last Tango will begin on No-
vember 21 and run through December 31, Tuesday through
Saturday. The York Theatre Company is located at the The-
atre at St. Peter’s, Citicorp Center, 619 Lexington Avenue (at
54th Street), New York, NY 10022. For tickets, call 212-239-
6200.

Figure 13.5

PROOF

Let x and y be the lengths of the legs, and z the length of the hypotenuse of the
Pythagorean triangle. Then x2 + y2 = z2 and the area of the triangle equals xy/2.
Suppose the area is a square, say, s2 : xy/2 = s2. Then (x + y)2 = z2 + 4s2 and
(x − y)2 = z2 − 4s2. This yields

(x + y)2(x − y)2 = (z2 + 4s2)(z2 − 4s2)

(x2 − y2)2 = z4 − (2s)4

This contradicts Theorem 13.3, so the area cannot be an integral square. �

The following corollary also follows from Theorem 13.3. We leave its proof as
a routine exercise.

COROLLARY 13.5 Let x and y be positive integers. Then x2 + y2 and x2 − y2 cannot both be squares. �

Now we turn to a generalization of Fermat’s Last Theorem.
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Beal’s Conjecture

In 1994, Texas millionaire and amateur mathematician Andrew Beal, the founder,
owner, and chairman of the Beal Bank in Dallas, read in a local newspaper about
Wiles’ proof of Fermat’s Last Theorem. He then conjectured that the equation xm +

?yn = zr has no positive integral solutions, where (x, y, z) = 1 and the exponents m,
n, and r are integers ≥ 3. If Beal’s conjecture can be established, then Fermat’s last
theorem would follow from it as an intriguing corollary. See Figure 13.6.

Figure 13.6 Beal’s problem, Math Horizons, February 1998.

Beal, in the tradition of Paul Wolfskehl in 1908, has offered a cash prize of
$50,000 to the first person to solve his problem; the prize is intended to motivate the
mathematics community and to elevate Beal’s conjecture to the level of the origi-
nal Fermat’s conjecture. Beal established a committee of three distinguished mathe-
maticians, headed by R. Daniel Mauldin of the University of North Texas, to screen
proofs of his conjecture submitted by potential prize-winners.

Since then, the prize has been increased to $100,000 for either a proof or a
counterexample of Beal’s conjecture. The prize will be awarded by The American
Mathematical Society, which holds the prize money.
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Andrew Beal

Beal’s conjecture creates a new opportunity and a more difficult stone wall to
challenge the mathematics community. If the past is any indication, then surmounting
it could be a long and difficult task.

Catalan’s Conjecture

As in the case with Fermat’s equation, if one of the exponents in Beal’s equation can
be 1 or 2, then it does have solutions. Two such solutions are given by 11 + 23 = 32

and 25 + 72 = 34. The first of these two equations is the Catalan relation, named
after Catalan, who conjectured that 8 = 23 and 9 = 32 are the only powers differing
by unity; that is, the diophantine equation xm − yn = 1, where m,n ≥ 2, has exactly
one solution: x = 3, y = 2 and m = 2, n = 3.

Interestingly, more than 500 years before Catalan made the conjecture, Levi ben
Gerson (1288–1344) of France showed that 32 and 23 are the only powers of 2 and 3
that differ by 1. In 1976, Robert Tijdeman of the University of Leiden, Netherlands,
made significant progress when he proved that Catalan’s diophantine equation has
only a finite number of solutions. In 2000, Preda Mihailescu of the University of
Paderborn, Germany, established Catalan’s celebrated conjecture; he presented his
proof at a number theory conference in Montreal in 2000.

A fact somewhat related to Catalan’s solution: In 1992, H. Gauchman and
I. Rosenholtz of East Illinois University found that 41 is the smallest prime that
is not the difference (in either order) of a power of 2 and a power of 3: 41 �= 3m − 2n

or 2n − 3m; see Exercise 18. In the following year, D. W. Kostwer, noticing that
41 = 25 + 32, showed that 53 is the smallest prime that is neither a sum nor a differ-
ence (in either order) of a power of 2 and a power of 3.
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Fermat–Catalan Conjecture

Combining Fermat’s Last Theorem and Catalan’s conjecture, a new conjecture has
?recently been formulated: The diophantine equation xr + ys = zt has only finitely

many solutions, where x, y, and z are pairwise relatively prime, and
1

r
+ 1

s
+ 1

t
< 1.

So far, ten solutions are known, discovered by Mauldin in 1997:

1r + 23 = 32 25 + 72 = 34

73 + 132 = 29 27 + 173 = 712

35 + 114 = 1222 177 + 762713 = 210639282

14143 + 22134592 = 657 92623 + 153122832 = 1137

438 + 962223 = 300429072 338 + 15490342 = 156133

E X E R C I S E S 13.2

1. Let x and y be positive integers. Prove that x2 + y2

and x2 − y2 cannot both be squares.
2. Let x and y be positive integers. Then both x2 + y2

and x2 − y2 cannot be k times a square, where k is a
positive integer.

3. Prove that the area of a Pythagorean triangle cannot
be twice a square.

4. Show that the diophantine equation 1/x4 + 1/y4 =
1/z2 has no positive integral solutions.

Prove each, where p is a prime.

5. If xp−1 + yp−1 = zp−1, then p|xyz.

6. If xp + yp = zp, then p|(x + y − z).
7. Find a solution of the diophantine equation x4 + y4 =

2z2.
8. Show that the diophantine equation x4 −y4 = 2z2 has

no positive integral solutions.
9. Show that no two of the numbers x, y, and z in a

Pythagorean triple x-y-z can be squares; that is, the
lengths of no two sides of a Pythagorean triangle can
be squares.

Find a solution of each diophantine equation.

10. x2 + 2 = y3 11. x2 + 4 = y3

Use the diophantine equation w3 +x3 +y3 = z3 to answer
Exercises 12–16.

12. Verify that 3-4-5-6 is a solution.
13. Prove that the equation has infinitely many solutions.
14. Show that 3-4-5-6 is the only solution of the equation

consisting of consecutive integers.
15. In his book, Beiler gives a fancy, but complicated for-

mula that can be used to find a special class of positive
integral solutions of the equation:

a3(a3 + b3)3 = b3(a3 + b3)3 + a3(a3 − 2b3)3

+ b3(2a3 − b3)3

Verify that 9-12-15-18 and 28-53-75-84 are two solu-
tions.

16. Beiler also gives another formula to find a similar
class of solutions:

a3(a3 + 2b3)3 = a3(a3 − b3)3 + b3(a3 − b3)3

+ b3(2a3 + b3)3

Verify that 7-14-7-20 and 26-55-78-87 are both solu-
tions.

�17. Prove that the diophantine equation x4 − y4 = z2 has
no positive integral solutions. (Fermat)

�18. Show that 41 is the smallest prime that is not the dif-
ference (in either order) of a power of 2 and a power
of 3. (H. Gauchman and I. Rosenholtz, 1992)

� �
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13.3 Sums of Squares

Recall that if x-y-z is a Pythagorean triple, then z2 can be written as the sum of
two squares: z2 = x2 + y2. There are several obviously related problems: Can every
positive integer be expressed as the sum of two squares of nonnegative integers?
Three squares? Four squares? Is there a least positive integer n such that every
positive integer can be written as the sum of n squares of nonnegative integers?
The problem of expressing positive integers as the sum of squares has been stud-
ied for centuries by mathematicians, including Diophantus, Fermat, Euler, and La-
grange.

Not all positive integers can be represented as the sum of two squares. For exam-
ple, 3 cannot. So we will characterize those that are representable as the sum of two
squares. Not all positive integers can be written as the sum of three squares, either.
Interestingly, we will find later on that every positive integer can be represented as
the sum of four squares. Now we will explore these problems step by step.

Sums of Two Squares

Of the first 100 positive integers, exactly 43 can be expressed as the sum of two
squares. Those are the circled numbers in Table 13.5. Do you see a pattern among
them? Do you observe a pattern among the uncircled ones?

Table 13.5
If the answer is no, look at some of the uncircled numbers, such as 3, 7, 11, 15,

19, and 23. Anything special about them? Yes, they are all congruent to 3 modulo 4.
Such numbers are not representable as the sum of two squares, as the following
lemma confirms.
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LEMMA 13.6 If n ≡ 3 (mod 4), then n is not representable as the sum of two squares.

PROOF

Suppose n = x2 + y2 for some integers x and y. Since w2 ≡ 0 or 1 (mod 4) for any
integer w, it follows that n = x2 + y2 ≡ 0, 1, or 2 (mod 4). Since n ≡ 3 (mod 4), the
result follows. �

Suppose an integer n can be written as the sum of two squares. We can use such
a representation to express infinitely many related integers also as such sums, as the
next lemma shows. Its proof is a one-liner, so we leave it as an exercise.

LEMMA 13.7 If a positive integer n can be expressed as the sum of two squares, then so can k2n
for every positive integer k. �

This lemma can be reworded as follows: A square times a representable number
is also representable as the sum of two squares.

Lemma 13.7 explains why numbers such as 18 = 32 ·2 and 45 = 32 ·5 are circled
in Table 13.5: 18 = 32 + 32 and 45 = 62 + 32.

Now, how did 20 and 26 make the list? Notice that 10 = 2 · 5 = (12 + 12)(22 +
12) = 32 + 12 and 26 = 2 · 13 = (12 + 12)(32 + 22) = 52 + 12. More generally, the
product of two representable integers is also representable as the sum of two squares,
as the following lemma confirms.

LEMMA 13.8 (Diophantus) The product of two sums of two squares is representable as the sum
of two squares.

PROOF

Let m = a2 + b2 and n = c2 + d2 for some integers m and n. Then

mn = (a2 + b2)(c2 + d2) = (ac + bd)2 + (ad − bc)2

This identity can be verified by expanding both sides. �

For example, let m = 5 = 22 + 12 and n = 13 = 32 + 22. Then

mn = 65 = (2 · 3 + 1 · 2)2 + (2 · 2 − 1 · 3)2 = 82 + 12

Thus, 65 is also a sum of two squares.
An easy way to establish the identity in Lemma 13.8 is by using complex num-

bers. See Exercise 6.
To see why a number like 99 is not representable in the desired form, let us study

its canonical decomposition: 99 = 32 ·11. The factorization contains a prime factor p
with an odd exponent, where p ≡ 3 (mod 4), namely, p = 11. Such numbers are not
representable; we shall confirm this in Theorem 13.4. But we can do so only after
laying groundwork in the form of two more lemmas.
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LEMMA 13.9 Let p be a prime. If p ≡ 1 (mod 4), then there are positive integers x and y such that
x2 + y2 = kp for some positive integer k, where k < p.

PROOF

Since p ≡ 1 (mod 4), by Corollary 11.2, −1 is a quadratic residue of p. In other
words, there is a positive integer a < p such that a2 ≡ −1 (mod p); that is, a2 + 1 =
kp for some positive integer k. Thus, there are integers x = a and y = 1 such that
x2 + y2 = kp.

It remains to show that k < p. Since a ≤ p − 1 and kp = a2 + 1 < (p − 1)2 + 1,
kp < p2 − 2(p − 1); so kp < p2 and hence k < p, as desired. �

For example, p = 13 ≡ 1 (mod 4). Then 52 ≡ −1 (mod 13), so a = 5 and k = 2.
Notice that a = 8 also would work, since 82 ≡ −1 (mod 13) in which case k = 5. In
both cases, k < 13. Furthermore, 32 + 22 = 13, so x = 3, y = 2, and k = 1.

The following lemma, employing the well-ordering principle and Lemmas 13.8
and 13.9, shows that if p ≡ 1 (mod 4), then there exist positive integers x and y such
that p = x2 + y2. It is the first major result for sums of two squares.

LEMMA 13.10 Every prime p ≡ 1 (mod 4) can be written as the sum of two squares.

PROOF

Lemma 13.9 coupled with the well-ordering principle implies that there is a least
positive integer m such that mp = x2 + y2 for some suitable positive integers x and y.
We shall show that m = 1 by contradiction.

Suppose m > 1. Define integers r and s by

r ≡ x (mod m) and s ≡ y (mod m) (13.3)

where

−m/2 < r, s ≤ m/2 (13.4)

Then r2 + s2 ≡ x2 + y2 = mp ≡ 0 (mod m), so r2 + s2 = mn for some positive in-
teger n. Therefore, (r2 + s2)(x2 + y2) = (mn)(mp) = m2np. But, by Lemma 13.8,
(r2 + s2)(x2 + y2) = (rx + sy)2 + (ry − sx)2. Thus,

(rx + sy)2 + (ry − sx)2 = m2np (13.5)

It follows by congruences (13.3) that

rx + sy ≡ x2 + y2 ≡ (mod m) and ry − sx ≡ xy − yx ≡ 0 (mod m)

These two congruences imply that both (rx + sy)/m and (ry − sx)/m are integers.
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It now follows from equation (13.5) that

np =
(

rx + sy

m

)2

+
(

ry − sx

m

)2

which is a sum of two squares.
The inequalities (13.4) imply that r2 + s2 ≤ (m/2)2 + (m/2)2 = m2/2. Thus,

mn ≤ m2/2; that is, n ≤ m/2. Therefore, n < m.
Now n �= 0, since if n = 0, then r2 + s2 = 0; so r = 0 = s. Then x ≡ 0 ≡ y

(mod m), so m|x and m|y. Therefore, m2|(x2 + y2): that is, m2|mp. This implies m|p.
Since m < p by Lemma 13.9, m must be 1. This negates our hypothesis that m > 1.
Therefore, n ≥ 1.

Thus, n is a positive integer < m such that np is a sum of two squares. This is
a contradiction, since we assumed that m is the least such positive integer. Conse-
quently, m = 1; that is, p = x2 + y2, as desired. �

The proof of this lemma is an existence proof. It does not tell us how to find the
integers x and y in the lemma.

THEOREM 13.4 If p = 2 or p ≡ 1 (mod 4), then p is expressible as the sum of two squares.

PROOF

Since 2 = 12 + 12, the theorem follows by Lemma 13.10. �

For example, p = 61 ≡ 1 (mod 4); 61 = 62 + 52 and p = 197 ≡ 1 (mod 4);
197 = 142 + 12.

We are now ready to identify those positive integers that can be written as the
sum of two squares, as the following theorem shows.

THEOREM 13.5 A positive integer n is expressible as the sum of two squares if and only if the expo-
nent of each of its prime factors congruent to 3 modulo 4 in the canonical decompo-
sition of n is even.

PROOF

Suppose the canonical decomposition of n contains a prime factor p with odd expo-
nent 2i + 1, where p ≡ 3 (mod 4). Suppose also that n = x2 + y2 for some integers x
and y.

Let d = (x, y), r = x/d, s = y/d, and m = n/d2. Then (r, s) = 1 and r2 + s2 = m.
Let pj be the largest power of p that divides d. Since m = n/d2, p2i−2j+1|m,

where 2i − 2j + 1 ≥ 1. Hence p|m.
Suppose p|r. Then since s2 = m − r2 and p|m, this implies that p|s. This is a

contradiction, since (r, s) = 1. Therefore, p � r.
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Therefore, by Corollary 4.6, there is an integer t such that rt ≡ s (mod p). Then

0 ≡ m = r2 + s2 ≡ r2 + (rt)2 = r2(1 + t2) (mod p)

Because (p, r) = 1, this implies 1 + t2 ≡ 0 (mod p); that is, t2 ≡ −1 (mod p). So −1
is a quadratic residue of p. This is a contradiction, by Corollary 11.2. Thus, n cannot
be the sum of two squares.

Conversely, suppose that the exponent of each prime factor of n congruent
to 3 modulo 4 in the canonical decomposition of n is even. Then n can be writ-
ten as n = a2b, where b is a product of distinct primes �≡ 3 (mod 4). By Theo-
rem 13.4 and Lemma 13.8, b is representable as the sum of two squares. Therefore,
by Lemma 13.7, a2b = n can be expressed as the sum of two squares.

This completes the proof. �

This theorem enables us to determine if a positive integer can be written as the
sum of two squares.

EXAMPLE 13.2 Notice that 5733 = 32 ·72 ·13. Although the prime factors 3 and 7 in the factorization
are both congruent to 3 modulo 4, their exponents are even. The prime factor 13 is
congruent to 1 modulo 4. Since 13 = 32 + 22, by Theorem 13.5, 5733 can be written
as the sum of two squares:

5733 = (3 · 7)2(32 + 22) = (3 · 7 · 3)2 + (3 · 7 · 2)2 = 632 + 422 �

Sums of Three Squares

We have seen that some positive integers cannot be expressed as the sum of two
squares. So we are tempted to ask if every positive integer can be represented as the
sum of three squares. With an extra square to spare, we might be tempted to think so.

For example, 3 = 12 + 12 + 12,6 = 22 + 12 + 12,14 = 32 + 22 + 12, and
26 = 42 + 32 + 12. But, unfortunately, 7 has no such representation. So adding three
squares does not work.

Sums of Four Squares

Will four squares suffice? The previous culprit, 7, does have such a representation:
7 = 22 + 12 + 12 + 12. In fact, we will see later that adding four squares will work
for every positive integer.

Although Diophantus seems to have conjectured that every positive integer can
be represented as the sum of four squares, the French mathematician Bachet was
the first to state it explicitly. In 1621, he verified it for positive integers ≤ 325, but
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could not provide a proof. Fifteen years later, Fermat claimed that he had discovered
a proof using his method of infinite descent, but once again, he did not supply any
details of his proof.

In 1730, Euler took up the challenge. Thirteen years later, he extended
Lemma 13.8 to include products of sums of four squares, paving the way to an
eventual proof. In 1751, he proved a fundamental result, marking another milestone
in our journey: The diophantine equation 1 + x2 + y2 ≡ 0 (mod p) is solvable for
every prime p. Still, Euler was unable to develop a proof. In 1770, Lagrange, em-
ploying Euler’s techniques, constructed the first published proof. Three years later,
Euler also succeeded, demonstrating a simpler proof.

We will now develop a proof of the four-squares problem, in several steps.

LEMMA 13.11 (Euler, 1743) The product of the sums of four squares can be expressed as the sum
of four squares.

PROOF

The proof of this lemma follows from the algebraic identity

(a2 + b2 + c2 + d2)(e2 + f 2 + g2 + h2)

= (ae + bf + cg + dh)2 + (af − be + ch − dg)2

+ (ag − bh − ce + df )2 + (ah + bg − cf − de)2

which can be verified by expanding the two sides separately. �

Notice that Lemma 13.8 follows from this lemma. See Exercise 23.
The following example illustrates this lemma.

EXAMPLE 13.3 We have 7 = 22 + 12 + 12 + 12 and 11 = 32 + 12 + 12 + 02. Therefore, by
Lemma 13.11,

77 = 7 · 11 = (22 + 12 + 12 + 12)(32 + 12 + 12 + 02)

= (2 · 3 + 1 · 1 + 1 · 1 + 1 · 0)2 + (2 · 1 − 1 · 3 + 1 · 0 − 1 · 1)2

+ (2 · 1 − 1 · 0 − 1 · 3 + 1 · 1)2 + (2 · 0 + 1 · 1 − 1 · 1 − 1 · 3)2

= 82 + (−2)2 + 02 + (−3)2 = 82 + 32 + 22 + 02 �

The next lemma brings us a step closer.

LEMMA 13.12 (Euler, 1751) If p is an odd prime, then there are integers x and y such that 1 +
x2 + y2 ≡ 0 (mod p), where 0 ≤ x, y < p/2.
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PROOF

Consider the set A = {02,12, . . . , [(p − 1)/2]2}. Let r2 and s2 be any two distinct
elements of A such that r2 ≡ s2 (mod p). Then r ≡ ±s (mod p). Since r �= s and
r, s < p, r �≡ s (mod p). If r ≡ −s (mod p), then p|(r + s). This is impossible since
0 < r + s < p. Thus, no two distinct elements of A are congruent modulo p.

Likewise, no two elements of the set B = {−1 − 02,−1 − 12, . . . ,−1 −
[(p − 1)/2]2} are congruent modulo p.

Then A ∪ B contains (p + 1)/2 + (p + 1)/2 = p + 1 elements. Therefore, by
the pigeonhole principle, two elements of A ∪ B must be congruent modulo p. This
implies that some element in A must be congruent to some element in B modulo p;
that is, x2 ≡ −1 − y2 (mod p) for some integers x and y, where 0 ≤ x, y < p/2. Thus,
1 + x2 + y2 ≡ 0 (mod p). �

The following example illustrates this lemma.

EXAMPLE 13.4 Let p = 13. Then A = {02,12,22,32,42,52,62} = {0,1,4,9,16,25,36} and B =
{−1 − 02,−1 − 12,−1 − 22,−1 − 32,−1 − 42,−1 − 52,−1 − 62} = {−1,−2,−5,

−10,−17,−26,−37}. By Lemma 13.12, some element x2 in A is congruent to some
element −1 − y2 in B. Since 52 ≡ −1 (mod 13), 1 + 52 + 02 ≡ 0 (mod 13); so
x = 5 and y = 0. Similarly, 1 + 42 + 32 ≡ 0 (mod 13), so x = 4 and y = 3. (These
solutions can easily be found by observing that A = {0,1,4,9,3,12,10} and B =
{12,11,8,3,9,0,2} modulo 13.) �

Lemma 13.12 yields a corollary, which is analogous to Lemma 13.9.

COROLLARY 13.6 If p is an odd prime, there exists a positive integer k < p such that kp can be expressed
as the sum of four squares.

PROOF

By Lemma 13.12, there are integers x and y such that 1 + x2 + y2 ≡ 0 (mod p)

where 0 ≤ x, y < p/2. So x2 + y2 + 12 + 02 = kp for some positive integer k. Since
0 ≤ x, y < p/2, x2 + y2 + 1 < (p/2)2 + (p/2)2 + 1 = p2/2 + 1 < p2. Hence, kp < p2,
so k < p. Thus, kp = x2 + y2 + 12 + 02, where k < p. �

For instance, it follows by Example 13.4 that 42 + 32 + 1 ≡ 0 (mod 13); so
42 + 32 + 12 + 02 = 13k, where k = 2 < 13 = p.

The next lemma, which is analogous to Lemma 13.10, shows that every prime
can be represented as the sum of four squares.

LEMMA 13.13 Every prime can be written as the sum of four squares.
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PROOF

Let p be a prime. Since 2 = 12 + 12 + 02 + 02, the result follows when p = 2. So
assume that p is odd.

By the well-ordering principle and Corollary 13.6, there exists a smallest posi-
tive integer m such that

mp = w2 + x2 + y2 + z2 (13.6)

for some integers w, x, y, and z, where 1 ≤ m < p.
Suppose m is even, so mp is also even. Then w, x, y, and z must have the same

parity, or exactly two of them must have odd parity. Rearranging the terms when
necessary, let us assume that w ≡ x (mod 2) and y ≡ z (mod 2). Then (w + x)/2,
(w − x)/2, (y + z)/2, and (y − z)/2 are integers and

(
w + x

2

)2

+
(

w − x

2

)2

+
(

y + z

2

)2

+
(

y − z

2

)2

= w2 + x2 + y2 + z2

2
=

(
m

2

)

p

Thus, (m/2)p can be expressed as the sum of four squares, where m/2 < m. This
violates the minimality of m, so m is odd.

We shall now show that m = 1. To this end, assume m > 1. Let a, b, c, and d be
nonnegative integers such that w ≡ a (mod m), x ≡ b (mod m), y ≡ c (mod m), and
z ≡ d (mod m), where −m/2 < a,b, c,d < m/2. Then

a2 + b2 + c2 + d2 ≡ w2 + x2 + y2 + z2 ≡ 0 (mod m)

so

a2 + b2 + c2 + d2 = mn (13.7)

where n is some nonnegative integer and 0 ≤ a2 + b2 + c2 + d2 < 4(m/2)2 = m2.
Hence, 0 ≤ mn < m2, so 0 ≤ n < m.

If n = 0, then a = b = c = d = 0; so w ≡ x ≡ y ≡ z ≡ 0 (mod m). Then m2|(w2 +
x2 + y2 + z2); this implies m2|mp, so m|p. This is a contradiction since 1 < m < p.
Thus, n ≥ 1 and hence 1 ≤ n < m.

Using equations (13.6) and (13.7), Lemma 13.11 yields

(w2 + x2 + y2 + z2)(a2 + b2 + c2 + d2)

= (wa + xb + yc + zd)2 + (wb − xa + yd − zc)2

+ (wc − xd − ya + zb)2 + (wd + xc − yb − za)2

That is,

m2np = (mp)(mn) = r2 + s2 + t2 + u2 (13.8)
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where

r = wa + xb + yc + zd

s = wb − xa + yd − zc

t = wc − xd − ya + zb

u = wd + xc − yb − za

Notice that r = wa + xb + yc + zd ≡ w2 + x2 + y2 + z2 ≡ 0 (mod m). Similarly,
s ≡ t ≡ u ≡ 0 (mod m). Thus r, s, t, and u are all divisible by m.

Thus equation (13.8) yields

np = (r/m)2 + (s/m)2 + (t/m)2 + (u/m)2

where n < m. This violates the choice of m, so m = 1. Hence, p = w2 + x2 + y2 + z2,
a sum of four squares. This concludes the proof. �

We are now ready to combine the various facts we have just learned, so we can
establish that every positive integer can be expressed as the sum of four squares.
Although the English mathematician Edward Waring (1734–1798) stated this in
his 1770 edition of Meditationes Algebraicae, Lagrange proved it in the same
year.

THEOREM 13.6 (Lagrange, 1770) Every positive integer can be written as the sum of four squares.

PROOF

Let n be a positive integer. Since 1 = 12 +02 +02 +02, the result is true when n = 1.
Now assume that n ≥ 1. Let n = ∏

i
pei

i be the canonical decomposition of n. By

Lemma 13.13, each pi can be written as the sum of four squares.
Therefore, by Lemma 13.11, pei

i and hence
∏

i
pei

i = n, can be written as the sum

of four squares. �

The following example demonstrates this result.

EXAMPLE 13.5 Write 15,795 as the sum of four squares.

SOLUTION

Notice that 15,795 = 35 · 5 · 13. Also 3 = 12 + 12 + 12 + 02,5 = 22 + 12 + 02 + 02,
and 13 = 32 + 22 + 02 + 02. Then:
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35 = 34(12 + 12 + 12 + 02) = 92(12 + 12 + 12 + 02)

= 92 + 92 + 92 + 02 and

5 · 13 = (22 + 12 + 02 + 02)(32 + 22 + 02 + 02)

= (2 · 3 + 1 · 2 + 0 · 0 + 0 · 0)2 + (2 · 2 − 1 · 3 + 0 · 0 − 0 · 0)2

+ (2 · 0 − 1 · 0 − 0 · 3 + 0 · 2)2 + (2 · 0 + 1 · 0 − 0 · 2 − 0 · 3)2

= 82 + 12 + 02 + 02

Therefore,

15795 = 35 · 5 · 13 = (92 + 92 + 92 + 02)(82 + 12 + 02 + 02)

= (9 · 8 + 9 · 1 + 9 · 0 + 0 · 0)2 + (9 · 1 − 9 · 8 + 9 · 0 − 0 · 0)2

+ (9 · 0 − 9 · 0 − 9 · 8 + 0 · 1)2 + (9 · 0 + 9 · 0 − 9 · 1 − 0 · 8)2

= 812 + 632 + 722 + 92 = 812 + 722 + 632 + 92 �

Next, we turn to a conjecture related to expressing positive integers as sums of
powers.

In his Meditationes Algebraicae, Waring also stated without proof that every
positive integer can be written as the sum of 9 cubes, 19 fourth powers, and so on.
His conjecture can be rephrased formally as follows.

Waring’s Conjecture

Every positive integer can be written as the sum of g(k) kth powers of nonnegative
integers.

It follows by Lagrange’s theorem that g(2) = 4. In 1909, Hilbert established the
existence of the number g(k) for each positive integer k, but no formula for g(k) was
given.

In 1851, Jacobi observed that both 23 and 239 require nine cubes: 23 =
2 · 23 + 7 · 13 and 239 = 2 · 43 + 4 · 33 + 3 · 13; he also observed that 454 is
the largest integer ≤ 12,000 that requires eight cubes and 8042 is the largest in-
teger ≤ 12,000 that requires seven cubes: 454 = 73 + 4 · 33 + 3 · 13 and 8042 =
163 + 123 + 2 · 103 + 63 + 2 · 13; interestingly, 239, 454, and 8042 remain the largest
known integers requiring 9, 8, and 7 cubes, respectively. In 1912, A. Wieferich and
A. J. Kempner showed that g(3) = 9; Twenty-seven years later, L. E. Dickson of the
University of Chicago established that 23 and 239 are the only integers that require
nine cubes, and every integer greater than 239 can be written as a sum of at most
eight cubes.
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In 1859, Liouville showed that g(4) ≤ 53 and in 1974 H. E. Thomas showed that
g(4) ≤ 22. In 1986, R. Balasubramanian, J. Deshouillers, and F. Dress showed that
g(4) = 19.

In 1964, Jing-Run Chen of the Institute of Mathematics at Beijing, showed that
g(5) = 37; and in 1940, S. S. Pillai established that g(6) = 73. It is also known that
g(7) = 143,g(8) = 279, and g(9) = 548.

Interestingly enough, an explicit formula for g(k) has been conjectured for?
k ≥ 6:

g(k) = �3/2�k + 2k − 2

E X E R C I S E S 13.3

Express each integer as the sum of two squares.

1. 13 2. 29 3. 41 4. 97
5. Let n = x2 + y2 for some positive integers x and y,

and k an arbitrary positive integer. Show that k2n can
be written as the sum of two squares.

6. Using complex numbers, prove that (a2 + b2)(c2 +
d2) = (ac + bd)2 + (ad − bc)2.

Using Lemma 13.8, express each product as the sum of
two squares.

7. 13 · 17 8. 41 · 53

Determine whether each integer can be written as the sum
of two squares.

9. 101 10. 137 11. 233 12. 585

Express each integer as the sum of two squares.

13. 149 14. 193 15. 200 16. 833

Let p, q, and r be distinct primes such that p ≡ 1 (mod 4)

and q ≡ 3 ≡ r (mod 4). Determine whether each number
is expressible as the sum of two squares.

17. 23p3q4r5 18. 2p5q4r6

19. Show that one more than twice the product of two
consecutive positive integers can be written as the
sum of two squares.

20. Show that no positive integer n ≡ 7 (mod 8) can be
written as the sum of three squares.

21. Let x, y, and z be positive integers such that x2 + y2 +
z2 ≡ 0 (mod 4). Show that x ≡ y ≡ z ≡ 0 (mod 2).

22. Show that no integer N of the form 4e(8n + 7) can be
represented as the sum of three squares.
(Hint: Use Exercise 20.)

23. Deduce Lemma 13.8 from Lemma 13.11.

Using the facts that 7 = 22 + 12 + 12 + 12 and 31 =
52 + 22 + 12 + 12, represent each as the sum of four
squares.

24. 49 25. 217 26. 343 27. 29,791

Express each prime as the sum of four squares.

28. 43 29. 89 30. 197 31. 349

Write each integer as the sum of four squares.

32. 81 33. 840 34. 1,275 35. 64,125

36. Show that every integer n > 169 can be written as the
sum of five squares.
(Hint: Consider m = n − 169, and use the fact that
169 = 132 = 122 +52 = 122 +42 +32 = 102 +82 +
22 + 12.)

37. Write 23 as the sum of cubes.

� �
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John Pell (1611–1685) was born in Sussex, England. After studying at Steyn-

ing School, he entered Trinity College, Cambridge, at the age of thirteen. He

received his B.A. in 1629 and M.A. in the following year. He then became an

assistant schoolmaster, although his father, a clergyman, had wished him to

follow his profession.

Pell’s scholarship in mathematics and languages earned him a faculty po-

sition at the University of Amsterdam in 1643. Three years later, at the invitation

of the Prince of Orange, he moved to a new academy at Breda, where he re-

mained until 1652.

In 1654, Pell entered the English diplomatic service, serving as Oliver

Cromwell’s diplomat to Switzerland for the next four years. After returning to

England, he joined the clergy, and in 1673 he became a chaplain to the Bishop

of London. Pell died in London in utter poverty.

13.4 Pell’s Equation

The integer 10 has an intriguing property: One less than the number is a square: 10−
1 = 32; and one less than one-half of the number is also a square: 10/2−1 = 22. The
next number that has the same property is 290: 290 − 1 = 172 and 290/2 − 1 = 122.

Are there are other such numbers? If yes, how do we find them?
To discover this, let r be such a number. Then r − 1 = x2 and r/2 − 1 = y2

for some positive integers x and y. Eliminating r between the equations yields the
diophantine equation x2 − 2y2 = 1. Clearly x = 3, y = 2 is a solution of the equation:
32 − 2 · 22 = 1. Likewise, x = 17, y = 12 is also a solution: 172 − 2 · 122 = 1.

More generally, we would like to solve the nonlinear diophantine equation
x2 − Ny2 = 1. This equation is commonly called Pell’s equation, after John Pell.
However, the name, mistakenly given by Euler, is a misnomer because Pell did not
make any significant contributions to the study of the equation.

As early as 800 A.D., Indian mathematicians knew how to solve Pell’s equation.
About 650 A.D., Brahmagupta claimed that “a person who can within a year solve
the equation x2 − 92y2 = 1 is a mathematician.” His claim makes sense when we
realize that x = 1151, y = 120 is the least solution: 11512 −92 ·1202 = 1. The Indian
mathematicians Acharya Jayadeva (ca. 1000) and Bhaskara developed a method for
solving Pell’s equation.

Fermat, writing in 1657 to Wallis and Brouncker, proposed the problem of show-
ing that Pell’s equation has infinitely many solutions, when N > 0 and square-free.
Bernard Frenicle de Bessey had computed the least solutions of the equation for
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Brahmagupta (ca. 598–ca. 670), the most prominent Indian astronomer and mathematician of the seventh cen-

tury, was born in Bhillamala, Gujarat, India. He lived and worked at the astronomical observatory in Ujjain in

Rajasthan, where he had access to the writings of Hero of Alexandria, Ptolemy, Diophantus, and Aryabhata.

At the age of thirty, he wrote his masterwork, Brahma-sphuta-siddhanta (the revised astronomical system of

Brahma). Two of its 21 chapters are devoted to mathematics. Translated into Arabic in 775, the book contains the

rules of operation with zero: a + 0 = a = a − 0, and a · 0 = 0. (He claimed incorrectly that 0 ÷ 0 = 1.) In 665, he

wrote his second book, Khandakhadyaka, on the astronomical system of Aryabhata. The mathematical contents

of both works appeared in English in 1817.

Brahmagupta considered himself primarily an astronomer, but pursued mathematics for its applicability to

astronomy. Besides his work on indeterminate equations, he contributed to solving Pell’s equation x2 − Ny2 = 1.

He showed that the related diophantine equation x2 − Ny2 = −1 could not be solved unless N is the sum of

two squares. He developed many algebraic and geometric formulas, including the extension of Hero’s formula

to cyclic quadrilaterals and a proof of the Pythagorean theorem. Brahmagupta fairly accurately computed the

circumference of the earth and the length of the calendar year.

Besides astronomy and mathematics, Brahmagupta had a keen interest in physics also. His claim that “bod-

ies fall towards the earth as it is in the nature of the earth to attract bodies, just as it is in the nature of water to

flow,” indicates that he had a strong sense of the gravitational force.

Brahmagupta was considered the gem of all mathematicians by the 12th century Indian mathematician

Bhaskara.

Bhaskara (1114–ca. 1185), an astrologer, astronomer, and mathematician of exceptional computational ability,

was born in Bijapur, Karnataka, India. He became head of the famous astronomical observatory at Ujjain, Ra-

jasthan. In 1150, he discovered several approximations of π : 3927/1250 = 3.1416 for accurate work, 22/7 for a

rough estimate, and
√

10 for everyday use.

Bhaskara’s most important work, Siddhanta Siromani, written in 1150, consists of four parts: The first two

parts, Leelavati (which means the beautiful and happens to be his daughter’s name) and Beejaganita (seed

arithmetic), deal with arithmetic and algebra, respectively, and the other two with astronomy and geometry.

Leelavati delineates the rules of addition, subtraction, multiplication, division, squaring, cubing, square and

cube roots, fractions, operations with zero: a ± 0 = a, 02 = 0 = √
0, and a ÷ 0 = ∞, linear and quadratic equa-

tions, and arithmetic and geometric sequences. In addition, it includes a symbol for zero and is the earliest known

systematic exposition of the decimal system. Leelavati was translated into Persian in 1587 at the request of Em-

peror Akbar, and into English in 1816 and again in 1817.

Bhaskara developed a formula for the surface area and volume of a sphere, the number of permutations with

repetitions, sin(A + B), and sin 2A. He also solved Pell’s equation x2 − Ny2 = 1 for N = 8,11,32,61, and 67.

N ≤ 150. Soon after Fermat’s proposal, Wallis and Brouncker described a method
for solving the equation, with no formal justification. In 1767, Euler made significant
contributions toward a formal proof. The following year, 111 years after Fermat’s
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Bernard Frenicle de Bessy (ca. 1605–1675), a gifted amateur French mathematician and counselor at the

Cour des Monnaies, was born in Paris. In 1666, Louis XIV appointed him to the Academy of Sciences. Frenicle

kept extensive correspondences with the most important mathematicians of his time, including René Descartes,

Fermat, Mersenne, and John Wallis.

Frenicle proved that the area of a Pythagorean triangle cannot be a square, a problem proposed to him by

Fermat in 1640. He proved also that the legs of a Pythagorean triangle cannot both be squares and hence the

area of a Pythagorean triangle cannot be twice a square.

In 1657, Fermat proposed to him a diophantine problem: Find an integer x such that Nx2 + 1 is a square,

where N is a non-square. Frenicle solved it for N ≤ 150.

initial proposal, Lagrange provided a complete proof, using the theory of continued
fractions.† In 1842, Dirichlet constructed an improved version of Lagrange’s proof.

We now turn to solving Pell’s equation.

Trivial Solutions

When N = 0, we halve x = ±1, but y is arbitrary. They are trivial solutions. If
N ≤ −2, x2 − Ny2 ≥ 0; so the only solutions are the trivial ones with y = 0, namely,
x = ±1, y = 0. If N = −1, then x2 + y2 = 1; again, the only solutions are the trivial
ones, namely, (±1,0), (0,±1).

Nontrivial Solutions

So we assume that N > 0. If N is a square m2, then Pell’s equation yields

1 = x2 − m2y2 = (x − my)(x + my)

Then x − my = 1 = x + my or x − my = −1 = x + my. Solving these two linear
systems, we get a solution in each case.

Thus, when N < 0 or N is a square, we know the exact solutions, and they are
finite in number. So we turn to the case when N is positive and square-free.

The simplest such Pell equation is when N = 2: x2 − 2y2 = 1. Because 32 − 2 ·
22 = 1, x = 3, y = 2 is a solution; so is x = 17, y = 12. Thus, x2 −2y2 = 1 has at least
two solutions. In fact, we shall see later that it has infinitely many solutions.

† See I. Niven et al., An Introduction to the Theory of Numbers, 5th ed., Wiley, New York, 1991,
351–359.
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Next, we make thee important observations about the solutions:

• If x, y is a solution, then so are x,−y; and −x,±y. Thus, the nontrivial solu-
tions occur in quadruples. So we can always assume that x and y are positive.

• Because 1+Ny2 = x2, nontrivial solutions can be found by computing 1+Ny2

and then determining if it is a square. For example, 1 + 92 · 1202 = 11512;
so x = 1151, y = 120 is a solution of x2 − 92y2 = 1, as noted earlier. This
method, although it sounds simple in theory, is not practical.

• Let a, b be a solution. Then a2 − Nb2 = (a + b
√

N)(a − b
√

N), so numbers
of the form a + b

√
N play an important role in finding the solutions. For con-

venience, we then say that the irrational number a + b
√

N yields a solution.
For instance, 1151 + 120

√
92 yields a solution of x2 − 92y2 = 1.

The next lemma enables us to construct new solutions from known ones.

LEMMA 13.14 If r and s yield solutions of Pell’s equation x2 − Ny2 = 1, where N > 0 and is square-
free, then so does rs.

PROOF

Let r = a + b
√

N and s = c + d
√

N. Since

rs = (
a + b

√
N

)(
c + d

√
N

) = (ac + bdN) + (ad + bc)
√

N

(see Exercise 11), it follows that rs also yields a solution. �

The following example illustrates this lemma.

EXAMPLE 13.6 r = 3 + 2
√

2 and s = 17 + 12
√

2 yield two solutions of x2 − 2y2 = 1. Find two
additional solutions.

SOLUTION

By Lemma 13.14, rs = (3 · 17 + 2 · 12 · 2) + (3 · 12 + 2 · 17)
√

2 = 99 + 70
√

2 yields
a solution: 992 − 2 · 702 = 1. Likewise, r2 = (3 · 3 + 2 · 2 · 2) + (3 · 2 + 2 · 3)

√
2 =

17 + 12
√

2 also yields a solution. �

As we noticed in this example, it follows by Lemma 13.14 that every positive
power of r also yields a solution.

The following lemma helps us determine the least solution of x2 − Ny2 = 1,
where N > 0 and is square-free.

LEMMA 13.15 Let N > 0 and square-free. Suppose r = a + b
√

N and s = c + d
√

N yield solutions
of x2 − Ny2 = 1, where a,b, c,d > 0. Then r < s if and only if a < c.
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PROOF

Suppose r < s. If a ≥ c, then a2 ≥ c2. Since a2 = 1 + Nb2 and c2 = 1 + Nd2, this
implies b2 ≥ d2. So b ≥ d. Then a+b

√
N ≥ c+d

√
N; that is, r ≥ s. This contradicts

our hypothesis, so a < c.
Conversely, let a < c. Then a2 < c2, so 1+Nb2 < 1+Nd2. This implies b2 < d2

and hence b < d. So r = a + b
√

N < c + d
√

N = s. Thus, if a < c, then r < s. This
concludes the proof. �

Using the well-ordering principle, it follows by this lemma that Pell’s equation
has a least solution α,β . For example, α = 3, β = 2 is the least solution of x2 −
2y2 = 1, and α = 2, β = 1 is the least solution of x2 − 3y2 = 1.

The least solution α,β of x2 − Ny2 = 1 can be used to compute infinitely many
solutions. To see this, first notice that α2 − Nβ2 = 1, so (α2 − Nβ2)n = 1 for every
integer n. Then

x2 − Ny2 = (α2 − Nβ2)n

(
x + y

√
N

)(
x − y

√
N

) = (
α + β

√
N

)n(
α − β

√
N

)n

Equating factors with the same sign, we get

x + y
√

N = (
α + β

√
N

)n and x − y
√

N = (
α − β

√
N

)n

Solving this linear system yields

x = [(
α + β

√
N

)n + (
α − β

√
N

)n]
/2

and

y = [(
α + β

√
N

)n − (
α − β

√
N

)n]/(
2
√

N
)

Thus, we have the following result.

THEOREM 13.7 Suppose α + β
√

N yields the least solution of x2 − Ny2 = 1, where N > 0 and is
square-free. Then the equation has infinitely many solutions, given by

x = [(
α + β

√
N

)n + (
α − β

√
N

)n]
/2

y = [(
α + β

√
N

)n − (
α − β

√
N

)n]/(
2
√

N
)

�

The next example demonstrates this theorem.

EXAMPLE 13.7 Using the fact that 3 + 2
√

2 yields the least solution of x2 − 2y2 = 1, find two new
solutions.
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SOLUTION

By Theorem 13.7,

x = [(
3 + 2

√
2
)n + (

3 − 2
√

2
)n]

/2

y = [(
3 + 2

√
2
)n − (

3 − 2
√

2
)n]/(

2
√

2
)

is a solution for every integer n. Notice that n = 1 yields the least solution.
When n = 2,

x = [(
3 + 2

√
2
)2 + (

3 − 2
√

2
)2]

/2 = 17

and

y = [(
3 + 2

√
2
)2 − (

3 − 2
√

2
)2]/(

2
√

2
) = 12

when n = 3,

x = [(
3 + 2

√
2
)3 + (

3 − 2
√

2
)3]

/2 = 99

and

y = [(
3 + 2

√
2
)3 − (

3 − 2
√

2
)3]/(

2
√

2
) = 70

Thus, 17 + 12
√

2 and 99 + 70
√

2 yield two new solutions. �

Next, we pursue a related Pell’s equation and show how its solutions are related
to Pythagorean triples.

A Related Pell’s Equation

Like the number 10, 48 enjoys an intriguing property. One more than the number is
a square: 48 + 1 = 72; one more than one-half of it is also a square: 48/2 + 1 = 52.
In fact, 48 is the smallest such positive integer. The next number that works is 1680:
1680 + 1 = 412 and 1680/2 + 1 = 292.

To see if there are other positive integers with the same property, let s be such an
integer. Then s + 1 = x2 and s/2 + 1 = y2 for some positive integers x and y. These
two equations yield the related Pell’s equation x2 − 2y2 = −1.

Clearly, x = 1 = y is a solution (It yields s = 0); in fact, it is the least solution.
A second solution is x = 7, y = 5 : 72 − 2 · 52 = −1; then s = x2 − 1 = 49 − 1 = 48.

More generally, the infinitely many solutions of the nonlinear diophantine equa-
tion x2 − Ny2 = −1, when solvable, are given by the following theorem. Its proof
follows along the same lines as that of Theorem 13.7, so in the interest of brevity, we
leave it as an exercise.
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THEOREM 13.8 Suppose α + β
√

N yields the least solution of x2 − Ny2 = −1, where N > 0 and is
square-free. Then the equation has infinitely many solutions, given by

x = [(
α + β

√
N

)2n−1 + (
α − β

√
N

)2n−1]
/2

y = [(
α + β

√
N

)2n−1 − (
α − β

√
N

)2n−1]/(
2
√

N
)

�

The following example illustrates this theorem.

EXAMPLE 13.8 Using the fact that 1+√
2 is the least solution of x2 −2y2 = −1, find a new solution.

SOLUTION

We already know that 7, 5 is also a solution. So to find a third solution, we use
Theorem 13.8 and the binomial theorem with n = 3. Then

x = [(
1 + √

2
)5 + (

1 − √
2
)5]

/2 = 41

and

y = [(
1 + √

2
)5 − (

1 − √
2
)5]/(

2
√

2
) = 29

Thus, 41 + 29
√

2 yields a new solution: 412 − 2 · 292 = −1. �

Next, we present an interesting relationship between Pell’s equation and its rel-
ative, and Pythagorean triples.

Primitive Pythagorean Triples Revisited

Recall from Section 13.1 that there are primitive Pythagorean triples x-y-z such that
x and y are consecutive integers; 3-4-5, 21-20-29, and 119-120-169 are three such
triples. The legs of the corresponding primitive Pythagorean triangles are consecutive
integers.

For x and y to be consecutive integers, we must have (m2 − n2) − 2mn = ±1
for some integers m and n. This can be written in terms of Pell’s equation as
(m − n)2 − 2n2 = ±1. Consequently, such triples can be obtained alternately by
solving the diophantine equations u2 − 2v2 = ±1.

For example, the least solution of u2 − 2v2 = −1 is u = 1 = v. This implies
m − n = 1 = n, so m = 2 and n = 1. Correspondingly, x = m2 − n2 = 3 and y =
2mn = 4 are consecutive lengths of the legs of the 3-4-5 Pythagorean triangle.

The least solution of u2 − 2v2 = 1 is u = 3, v = 2. This implies m − n = 3 and
n = 2; so m = 5 and n = 2. Then x = m2 − n2 = 21 and y = 2mn = 20, once again
consecutive legs.
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Fibonacci and Lucas Numbers Revisited

In their 1967 study of simple continued fractions, C. T. Long and J. H. Jordan of
Washington State University discovered a close relationship among the golden ratio,
Fn, Ln and the nonlinear diophantine equation x2 − Ny2 = n. The following results,
discovered by them, “provide unusual characterization of both Fibonacci and Lucas
numbers.” We omit their proofs in the interest of brevity:

• The diophantine equation x2 −5y2 = −4 is solvable in positive integers if and
only if x = L2n−1 and y = F2n−1, where n ≥ 1.

• The diophantine equation x2 − 5y2 = 4 is solvable in positive integers if and
only if x = L2n and y = F2n, where n ≥ 1.

E X E R C I S E S 13.4

Find two nontrivial solutions of Pell’s equation with the
given value of N.

1. 5 2. 7 3. 10 4. 11

Consider the Pell’s equation x2 − 15y2 = 1.

5. Find a nontrivial solution.
6. Using the solution in Exercise 5, find two additional

solutions.

7–8. Redo Exercises 5–6 with x2 − 14y2 = 1.

9. Using the fact that x = 17, y = 12 is a solution of
x2 − 2y2 = 1, find a solution of u2 − 8v2 = 1.

10. Using the fact that x = 97, y = 56 is a solution of
x2 − 3y2 = 1, find a solution of u2 − 12v2 = 1.

11. Let a, b, c, and d be any integers. Prove that
(a2 − Nb2)(c2 − Nd2) = (ac + Nbd)2 − N(ad + bc)2

12. Using the fact that 2 + √
3 yields the least solution of

x2 − 3y2 = 1, find two new solutions.
13. Using the fact that 5 + 2

√
6 yields the least solution

of x2 − 6y2 = 1, find two new solutions.

Suppose that r = a+b
√

N yields a solution of x2 −Ny2 =
1. Prove each.

14. 1/r yields a solution.
15. rn yields a solution for every n ≥ 1.
16. r−n yields a solution for every n ≥ 1.

17. Suppose that x1 + y1
√

N = α + β
√

N yields the least
solution of x2 − Ny2 = 1 and that xn, yn denotes an
arbitrary solution, where n ≥ 1. Show that

xn = αxn−1 + βNyn−1, yn = βxn−1 + αyn−1

is also a solution. (Koshy, 2000)
18. Deduce the recursive definition of solutions if N = 2.

(Koshy, 2000)

In Exercises 19 and 20, a Pell’s equation and its least solu-
tion are given. Using the recursive formula in Exercise 17,
find two new solutions in each case.

19. x2 − 2y2 = 1;3,2 20. x2 − 23y2 = 1;24,5

21. Prove that the diophantine equation x2 − 3y2 = −1
has no solutions.

22. Prove that the diophantine equation x2 − Ny2 = −1
has no solutions if N ≡ 3 (mod 4).

23. Establish Theorem 13.8.

Let xn, yn be an arbitrary solution of x2 − Ny2 = −1,
where x1 = α, y1 = β is its least solution.

24. Define xn, yn recursively.
25. Deduce the recursive formula if N = 2.
26. Using Exercise 25 and the fact that α = 1 = β is the

least solution of x2 − 2y2 = −1, compute x2, y2 and
x3, y3.
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27. Find a formula for the combined solutions of the dio-
phantine equations x2 − 2y2 = ±1.
(Hint: Use Theorems 13.7 and 13.8.)

28. Let X-Y-Z be a primitive Pythagorean triangle with
consecutive legs. Find a formula for X and Y .
(Hint: Use Exercise 27.)

� �

X CHAPTER SUMMARY

This chapter presented several nonlinear diophantine equations. Five of them are

Pythagorean equation x2 + y2 = z2

Fermat’s equation xn + yn = zn, n ≥ 3
Beal’s equation xm + yn = zr, m,n, r ≥ 3
Pell’s equation x2 − Ny2 = 1
Its relative x2 − Ny2 = −1

Pythagorean Triple
• A triplet x-y-z such that x2 + y2 = z2 is a Pythagorean triple. (p. 581)
• It is primitive if (x, y, z) = 1. (p. 582)
• If x-y-z is a primitive Pythagorean triple, then (x, y) = (y, z) = (z, x) = 1.

(p. 582)
• If x-y-z is a primitive Pythagorean triple, then x �≡ y (mod 2). (p. 583)
• If x-y-z is a primitive Pythagorean triple and x is even, then y ≡ z ≡ 1 (mod 2).

(p. 583)
• If (r, s) = 1 and rs is a square, then both r and s are also squares. (p. 583)
• Let x-y-z be a primitive Pythagorean triple. Then there are relatively prime

integers m and n with different parity such that x = 2mn, y = m2 − n2, and
z = m2 + n2, where m > n. (p. 584)

• Let x = 2mn, y = m2 −n2, and z = m2 +n2, where m and n are relatively prime
integers with different parity and m > n. Then x-y-z is a primitive Pythagorean
triple. (p. 584)

• Let x, y, z be positive integers, where x is even. Then x-y-z is a primitive
Pythagorean triple if and only if there are relatively prime integers m and n
with different parity such that x = 2mn, y = m2 − n2, and z = m2 + n2, where
m > n. (p. 585)

Fermat’s Last Theorem
• (Fermat’s conjecture) The diophantine equation xn + yn = zn has no positive

integral solutions if n ≥ 3. (p. 590)
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• The diophantine equation x4 + y4 = z2 has no positive integral solutions.
(p. 591)

• The diophantine equation x4 + y4 = z4 has no positive integral solutions.
(p. 592)

• Not all lengths of the sides of a Pythagorean triangle can be squares. (p. 593)
• In 1994, Wiles established Fermat’s conjecture. (p. 594)
• The diophantine equation x4 − y4 = z2 has no positive integral solutions.

(p. 597)
• The area of a Pythagorean triangle cannot be an integral square. (p. 597)
• Let x and y be positive integers. Then x2 + y2 and x2 − y2 cannot both be

squares. (p. 598)

Beal’s Conjecture
• The diophantine equation xm + yn = zr has no positive integral solutions,

where (x, y, z) = 1 and m,n, r ≥ 3. (p. 599)

Sum of Two Squares
• If n ≡ 3 (mod 4), then n cannot be written as the sum of two squares.

(p. 603)
• If n can be written as the sum of two squares, so can k2n. (p. 603)
• The product of two sums of two squares can be expressed as the sum of two

squares. (p. 603)
• If p ≡ 1 (mod 4), there are positive integers x and y such that x2 + y2 = kp for

some positive integer k < p. (p. 604)
• Every prime p ≡ 1 (mod 4) can be written as the sum of two squares.

(p. 604)
• If p = 2 or p ≡ 1 (mod 4), then p is expressible as the sum of two squares.

(p. 605)
• A positive integer is expressible as the sum of two squares if and only if the

exponent of each of its prime factors congruent to 3 (mod 4) in the canonical
decomposition of n is even. (p. 605)

Sum of Four Squares
• The product of the sums of four squares can be written as the sum of four

squares. (p. 607)
• If p is an odd prime, there exist integers x and y such that 1 + x2 + y2 ≡ 0

(mod p), where 0 ≤ x, y < p/2. (p. 607)
• If p is an odd prime, there is a positive integer k < p such that kp can be

written as the sum of four squares. (p. 608)
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• Every prime can be written as the sum of four squares. (p. 608)
• Every positive integer can be written as the sum of four squares. (p. 610)

Waring’s Conjecture
• Every positive integer can be written as the sum of g(k) kth powers of non-

negative integers. (p. 611)

Pell’s Equation x2 − Ny2 = 1
• Let N > 0 and square-free. Suppose that r = a+b

√
N and s = c+d

√
N yield

solutions, where a,b, c,d > 0. Then r < s if and only if a < c. (p. 616)
• If r and s yield solutions, then so does rs. (p. 616)
• Suppose α+β

√
N yields the least solution. Then the infinitely many solutions

are given by

x = [(
α + β

√
N

)n + (
α − β

√
N

)n]
/2

y = [(
α + β

√
N

)n − (
α − β

√
N

)n]/(
2
√

N
)

(p. 617)

• Suppose α + β
√

N yields the least solution of x2 − Ny2 = −1. Its infinitely
many solutions are given by

x = [(
α + β

√
N

)2n−1 + (
α − β

√
N

)2n−1]
/2

y = [(
α + β

√
N

)2n−1 − (
α − β

√
N

)2n−1]/(
2
√

N
)

(p. 619)

X REVIEW EXERCISES

Study the following primitive Pythagorean triples pattern:

692 + 2602 = 2692

6092 + 206002 = 206092

60092 + 20060002 = 20060092

600092 + 2000600002 = 2000600092

...

1. Find the next two lines in the pattern.
2. Predict a formula for the nth equation.
3. Justify the formula in Exercise 2.

Use Table 13.6 to answer Exercises 4 and 5.
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Generators Sides of a Pythagorean Triangle
M N X Y Z
3 1 6 8 10
6 3 36 27 45

10 6 120 64 136
15 10 300 125 325

Table 13.6

4. Predict the next two lines in the table.
5. Make a conjecture about the generators and a leg of a Pythagorean triangle.
6. Verify that the primitive Pythagorean triangles with generators 60, 59; 68, 37;

and 84, 1 have the same perimeter. (A. S. Anema, 1949)
7. Show that every Pythagorean triple x-y-z, where x, y, and z are in arithmetic

progression, is of the form 3n-4n-5n, where n ≥ 1.
8. Suppose that the generators of a Pythagorean triangle are consecutive triangular

numbers. Show that the length of a leg of the triangle is a cube.
9. Verify that the Pythagorean triangles with generators 133, 88; 152, 35; 153, 133;

and 133, 65 enclose the same area. Find the common area.
10. Let a,b, and c be positive integers such that a2 + ab + b2 = c2. Prove that the

Pythagorean triangles with generators c, a; c, b; and a + b, c enclose the same
area. (Diophantus)

11. Let a = m2 + mn,b = 3n2 − mn, c = m2 − mn, and d = 3n2 + mn. Prove that
the Pythagorean triangles with generators a, b, and c, d enclose the same area.
(W. P. Whitlock, Jr., 1943)

12. Let A = a2 + 3b2 = C = E, B = 3b2 + 2ab − a2, D = 3b2 − 2ab − a2, and F =
4ab, where a and b are positive integers. Prove that the Pythagorean triangles
generated by A, B; C, D; and E, F enclose the same area. (Euler)

Use the array in Table 13.7, studied in 1950 by H. L. Umansky of Emerson High
School, Union City, New Jersey, to answer Exercises 13 and 14.

n
m

1 2 3 4 5 . . .

1 ·
2 5
3 10 13
4 17 20 25
5 26 29 34 41
6 37 40 45 52 61

Table 13.7
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13. Add the next two lines.
14. Define the element A(m,n) in row m and column n of the array, where 1 ≤

m < n.

Let m and n be the generators of a primitive Pythagorean triangle with a square
perimeter P. (W. P. Whitlock, Jr., 1948)

15. Find P.
16. Show that 8, 1; 18, 7; and 78, 71 generate primitive Pythagorean triangles with

square perimeters.
17. Prove that m must be even and n odd.
18. Prove that M = 2m2 and N = n2 + 2mn − m2 generate a primitive Pythagorean

triangle with perimeter P2.

Determine whether each number is representable as the sum of two squares.

19. 131 20. 157 21. 341 22. 873

Express each number as the sum of two squares.

23. 289 24. 349 25. 449 26. 697

Using Lemma 13.8, express each product as the sum of two squares.

27. 37 · 41 28. 74 · 73

Write each prime as the sum of four squares.

29. 179 30. 293 31. 337 32. 739

Write each integer as the sum of four squares.

33. 13 · 17 34. 23 · 43 35. 1360 36. 2394
37. Show that the diophantine equation w3 + x3 = y3 + z3 has infinitely many posi-

tive integral solutions.

Consider the diophantine equation w4 + x4 = y4 + z4.

38. Show that 59-158-133-134 is a solution.
39. Show that it has infinitely many integral solutions.

Find a nontrivial solution of each Pell’s equation.

40. x2 − 18y2 = 1 41. x2 − 20y2 = 1

Using the given least solution of the corresponding Pell’s equation, find another so-
lution.

42. 33, 8; x2 − 17y2 = 1 43. 23, 4; x2 − 33y2 = 1

Using the given least solution of the corresponding Pell’s equation and recursion,
construct a new solution.
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44. 25, 4; x2 − 39y2 = 1 45. 48, 7; x2 − 47y2 = 1

Use the diophantine equation x2 − 5y2 = −1 for Exercises 46 and 47.

46. Find the least solution.
47. Using the explicit formula in Theorem 13.7, find two new solutions.
48. Using recursion and the least solution in Exercise 46, find two new solutions.

X SUPPLEMENTARY EXERCISES

1. In 1953, F. L. Miksa of Illinois found four primitive Pythagorean triangles whose
areas contain all ten digits, each exactly once. They are generated by 320, 49;
122, 293; 322, 83; and 298, 179. Confirm Miksa’s observation.

Verify each. (V. Thébault, 1946)

2. Each of the consecutive integers 370 and 371 equals the sum of the cubes of its
digits.

3. Each of the consecutive integers 336,700 and 336,701 equals the sum of the
cubes of the numbers formed by the digits grouped in twos.

4. Each of the consecutive integers 33,366,700 and 33,366,701 equals the sum of
the cubes of the numbers formed by the digits grouped in threes.

5. Add the next line to the number pattern formed by Exercises 2–4.
6. A product of k different primes ≡ 1 or 3 (mod 8) can be written in the form

x2 + 2y2 in 2k−1 ways. Express 561 in the desired form. (W. P. Whitlock, Jr.,
1946)

The sum of n + 1 consecutive squares can sometimes be written as the sum of the
squares of the next n consecutive integers. For example, 32 + 42 = 52 and 102 +
112 + 122 = 132 + 142. Express each as a sum of consecutive squares.

7. 212 + 222 + 232 + 242 8. 362 + 372 + 382 + 392 + 402

9. Predict the next equation in this number pattern.
10. Prove that the sum of n + 1 consecutive squares, beginning with [n(2n + 1)]2

equals the sum of the squares of the next n consecutive squares.

The sum of consecutive squares can be a single square. For example, 12 + 22 + 32 +
42 + · · · + 242 = 702. Express each as a single square.

11. 182 + 192 + 202 + · · · + 282 12. 382 + 392 + 402 + · · · + 482

13. Jekuthiel Ginsburg of Yeshiva College (now Yeshiva University) observed that
the positive factors 1, 2, 3, and 6 of 6 have 1, 2, 2, and 4 positive factors, respec-
tively, and (1 + 2 + 2 + 4)2 = 13 + 23 + 23 + 43. Verify that 30 has a similar
property.
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Study the following number pattern:

3(13) = 13 + 2(14)

3(1 + 3)3 = 13 + 33 + 2(14 + 34)

3(1 + 3 + 6)3 = 13 + 33 + 63 + 2(14 + 34 + 64)

...

14. Add the next two lines.
15. Conjecture a formula for the nth line.
16. Find three consecutive positive integers x, y, and z such that x3 + y3 + z3 is a

cube.
17. Let w, x, y, and z be four consecutive positive integers such that w3 + x3 + y3 =

z3. Show that w = 3. (In 1911, L. Aubry proved that 3, 4, and 5 are the only three
consecutive integers, where the sum of each integer cubed is also a cube.)

18. Jacobi found that 2
( n∑

i=1
i
)4 =

n∑

i=1
i5 +

n∑

i=1
i7. Verify the formula for n = 4.

19. Verify that each of the sums 142 + 362 + 582 + 902 and 162 + 382 + 502 +
942 equals the sum of the squares of the same bases with their digits reversed.
(D. R. Kaprekar and R. V. Iyer, 1950)

In 1937, R. Goormaghtigh of Belgium discovered a delightful method for expressing
sums of squares of integers as sums of squares with the digits reversed. It is based on
the following fact:

If
n∑

i=1

x2
i =

n∑

i=1

y2
i , then

n∑

i=1

(10xi + yi)
2 =

n−1∑

i=0

(10yn−i + xn−i)
2 (13.9)

20. Establish formula (13.9).

Using formula (13.9), express each as a sum of three squares. (Hint: 42 + 52 + 62 =
82 + 32 + 22.)

21. 482 + 532 + 622 22. 432 + 522 + 682

Using formula (13.9), express each as a sum of four squares. (Hint: 82 + 52 + 32 +
22 = 72 + 62 + 42 + 12.)

23. 872 + 562 + 342 + 212 24. 862 + 542 + 312 + 272

25. Find four consecutive positive integers w, x, y, and z such that w3 + x3 + y3 + z3

is also a cube.
26. Find a solution of the diophantine equation wn +xn+1 +yn+2 +zn+3 = un2+3n+1.

(N. Schaumberger, 1993)
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27. Express the beastly number 666 as the sum of squares of consecutive primes.
(M. Zerger, 1993)

X COMPUTER EXERCISES

Write a program to perform each task.

1. Read in a positive integer n ≤ 25 and print all primitive Pythagorean triples x-y-z,
where x ≤ n.

2. Read in a positive integer n ≤ 25. Print the Fibonacci numbers Fn through Fn+3.
Use them to print a Pythagorean triple x-y-z. Determine if it is a primitive
Pythagorean triple.

3. Read in a positive integer n and a primitive Pythagorean triple x-y-z, where y =
x + 1. Print n primitive Pythagorean triples.

4. Find four primitive Pythagorean triangles whose areas contain all ten digits.
(F. L. Miksa, 1953)

5. Read in a positive integer n. Determine if it can be written as the sum of two
squares. If yes, express it as such a sum.

6. Read in a positive integer n. Express it as the sum of four squares.
7. Read in a square-free positive integer N and the least solution of Pell’s equation

x2 − Ny2 = 1. Use recursion to print five new solutions.
8. Redo Exercise 6 with x2 − Ny2 = −1.
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A Appendix

A.1 Proof Methods

Proofs, no matter how simple or complicated, are the heart and soul of mathematics.
They play a central role in its development and guarantee the correctness of math-
ematical results. No results are accepted as true unless they can be proved using
logical reasoning.

Before we discuss the various proof techniques, we need several definitions and
some facts from symbolic logic.

Proposition

A proposition (or statement) is a declarative sentence that is either true or false, but
not both. It is often denoted by the letter p, q, r, s, or t. The truthfulness or falsity of
a proposition is its truth value, denoted by T and F, respectively.

Compound Proposition

A compound proposition is formed by combining two or more simple propositions,
using logic operators: ∧ (and), ∨ (or), ∼ (not), → (implies), and ↔ (if and only
if). The conjunction p ∧ q of two propositions p and q is true if and only if both
components are true; their disjunction p ∨ q is true if at least one component is true.
The negation ∼ p has the opposite truth value of p. An implication p → q (read
p implies q or if p, then q) is false only if the premise p is true and the conclusion
q is false. A biconditional p ↔ q (read p if and only if q) is true if and only if both
components have the same truth value.

631
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p q p ∧ q p ∨ q ∼p p → q p ↔ q
T T T T F T T
T F F T F F F
F T F T T T F
F F F F T T T

Table A.1

Table A.1 shows the truth tables for the various compound propositions corre-
sponding to the various possible pairs of truth values of p and q.

Three new implications can be constructed from a given implication p → q.
They are the converse q → p, inverse ∼p → ∼q, and the contrapositive ∼q →
∼p.

A tautology is a compound proposition that is always true. A contradiction is
a compound proposition that is always false. A contingency is a compound proposi-
tion that is neither a tautology nor a contradiction.

Logical Equivalence

Two compound propositions p and q are logically equivalent if they have identical
truth values in every case, symbolized by p ≡ q. For example, p → q ≡ ∼p ∨ q and
p → q ≡ ∼q →∼ p.

Proof Methods

A theorem in mathematics is a true proposition. Theorems are often stated as impli-
cations H → C, where H denotes the hypothesis of the theorem and C its conclusion.
Proving such a theorem means verifying that the proposition H → C is a tautology.
This section presents six standard methods for proving theorems: vacuous proof,
trivial proof, direct proof, indirect proof, proof by cases, and existence proof
(see Figure A.1). Vacuous and trivial proofs are, in general, parts of larger and more
complicated proofs.

Figure A.1
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Vacuous Proof
Suppose the hypothesis H of the implication H → C is false. Then the implication is
true regardless of whether the conclusion C is true or false. Thus, if the hypothesis
can be shown to be false, the theorem H → C is true by default; such a proof is a
vacuous proof. Vacuous proofs, though rare, are necessary to handle special cases.

EXAMPLE A.1 Consider the statement, If 1 = 2, then 3 = 4. Since the hypothesis is false, the propo-
sition is vacuously true. �

Trivial Proof
Suppose the conclusion of the implication H → C is true. Again, the implication is
true irrespective of the truth value of H. Consequently, if C can be shown to be true,
such a proof is a trivial proof.

EXAMPLE A.2 Consider the statement, If 1 = 2, then Paris is in France. This statement is trivially
true since the conclusion is true. �

Direct Proof
In a direct proof of the theorem H → C, we assume that the given hypothesis H is
true. Using the laws of logic or previously known facts, we then establish the desired
conclusion C as the final step of a chain of implications: H → C1, C1 → C2, . . . , and
Cn → C. Then H → C.

The next example illustrates this method.
Often, theorems are stated in the form of sentences, so we first rewrite them

symbolically and then work with the symbols, as the next example shows.

EXAMPLE A.3 Prove directly that the product of any two odd integers is an odd integer.

PROOF

Let x and y be any two odd integers. Then there exist integers m and n such that
x = 2m + 1 and y = 2n + 1. Thus,

x · y = (2m + 1) · (2n + 1)

= 4mn + 2m + 2n + 1

= 2(2mn + m + n) + 1

= 2k + 1

where k = 2mn + m + n is an integer. Thus, xy is also an odd integer. �
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Indirect Proof

There are two kinds of an indirect proof of the theorem H → C: proof of the con-
trapositive and proof by contradiction. The first method is based on the law of the
contrapositive, H → C ≡ ∼C → ∼H. In this method, we assume the desired con-
clusion C is false; then, using the laws of logic, we establish that the hypothesis H is
also false. Once this is done, the theorem is proved.

The following example illustrates this method.

EXAMPLE A.4 Prove indirectly: If the square of an integer is odd, then the integer is odd.

PROOF OF THE CONTRAPOSITIVE

Let x be any integer such that x2 is odd. We would like to prove that x must be an
odd integer. In the indirect method, we assume the conclusion is false; that is, x is not
odd, in other words, assume x is an even integer. Let x = 2k for some integer k. Then
x2 = (2k)2 = 4k2 = 2(2k2), which is an even integer. This makes our hypothesis that
x2 is an odd integer false. Therefore, by the law of the contrapositive, our assumption
must be wrong; so x must be an odd integer. Thus, if x2 is an odd integer, then x is
also an odd integer. �

Proof by contradiction is based on the law of reductio ad absurdum: H → C ≡
[ H ∧ (∼C)] → F, where F denotes a contradiction. In this method, we assume the
given hypothesis H is true, but the conclusion C is false. We then argue logically and
reach a contradiction F.

The following example illustrates this method.

EXAMPLE A.5 Prove by contradiction: There is no largest prime number.

PROOF BY CONTRADICTION

(Notice that the theorem has no explicit hypothesis.) Suppose the given conclusion
is false; that is, there is a largest prime number p. So the prime numbers we have are
2,3,5, . . . ,p.

Let x denote the product of all these prime numbers plus one: x = (2 · 3 · 5
· · ·p) + 1. Clearly, x > p. When x is divided by each of the primes 2, 3, 5, . . . , p, we
get 1 as the remainder. Therefore, x is not divisible by any of the primes and hence x
must be a prime. Thus, x is a prime number greater than p.

But this contradicts the assumption that p is the largest prime, so our assumption
is false. In other words, there is no largest prime number. �

We now turn to the next proof technique.
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Proof by Cases

Suppose we want to prove a theorem of the form H1 ∨ H2 ∨ · · · ∨ Hn → C. Since
H1 ∨ H2 ∨ · · · ∨ Hn → C ≡ (H1 → C) ∧ (H2 → C) ∧ · · · ∧ (Hn → C),H1 ∨ H2 ∨
· · · ∨ Hn → C is true if and only if each implication Hi → C is true. Consequently,
we need only prove that each implication is true. Such a proof is a proof by cases,
as the following example illustrates.

EXAMPLE A.6 There are two kinds of inhabitants, knights and knaves, on an island. Knights always
tell the truth, whereas knaves always lie. Every inhabitant is either a knight or a
knave. Two inhabitants are of the same type if they are both knights or both knaves.
Let A, B, and C be three inhabitants of the island. Suppose A says, “B is a knave,”
and B says, “A and C are of the same type.” Prove that C is a knave.†

PROOF BY CASES

Although this theorem is not explicitly of the form (H1 ∨ H2 ∨ · · · ∨ Hn) → C, we
artificially create two cases, namely, A is a knight and A is a knave.

case 1 Suppose A is a knight. Since knights always tell the truth, his statement
that B is a knave is true. So B is a knave and hence his statement is false. Therefore,
A and C are of different types, thus C is a knave.

case 2 Suppose A is a knave. Then his statement is false, so B is a knight. Since
knights always tell the truth, B’s statement is true. So A and C are of the same type,
thus C is a knave.

Thus, in both cases, C is a knave. �

We now turn to the existence proof method.

Existence Proof

Finally, theorems of the form (∃x)P(x) also occur in mathematics, where ∃ denotes
the existential quantifier.‡ To prove such a theorem, we must establish the existence
of an object a for which P(a) is true. Accordingly, such a proof is an existence proof.

† Based on R. M. Smullyan, What Is the Name of This Book?, Prentice-Hall, Englewood Cliffs, NJ,
1978.

‡ The existential quantifier ∃ stands for some, there exists a(n), or there is a at least one.
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There are two kinds of an existence proof: constructive existence proof and
nonconstructive existence proof. If we are able to find an object b such that P(b) is
true, such an existence proof is a constructive proof. The following example illus-
trates this method.

EXAMPLE A.7 Prove that there is a positive integer that can be expressed as the sum of two cubes in
two different ways.

CONSTRUCTIVE PROOF

By the preceding discussion, all we need is to produce a positive integer b that has
the required properties. Choose b = 1729. Since 1729 = 13 + 123 = 93 + 103, 1729
is such an integer. This concludes the proof. �

A nonconstructive existence proof of the theorem (∃x)P(x) does not provide
us with an element a for which P(a) is true, but rather establishes its existence by an
indirect method, usually contradiction, as the following example illustrates.

EXAMPLE A.8 Prove that there is a prime number > 3.

NONCONSTRUCTIVE PROOF

Suppose there are no primes > 3. Then 2 and 3 are the only primes. Since every inte-
ger ≥ 2 can be expressed as a product of powers of primes, 25 must be expressible as
a product of powers of 2 and 3; that is, 25 = 2i3j for some integers i and j. But neither
2 nor 3 is a factor of 25, so 25 cannot be written in the form 2i3j, a contradiction.
Consequently, there must be a prime > 3. �

We conclude this section with a brief discussion of counterexamples.

Counterexample

Consider the statement, Every girl is a brunette. Is it true or false? Since we can find
at least one girl who is not a brunette, the statement is false.

More generally, suppose you would like to show that the proposition (∀x)P(x)
is false, where ∀ denotes the universal quantifier.† Since ∼ [(∀x)P(x)] ≡ (∃x)
[∼P(x)], the statement (∀x)P(x) is false if there exists an item for which P(x) is false.
Such an object x is a counterexample. Thus, to disprove the proposition (∀x)P(x),
all we need is to produce a counterexample c for which P(c) is false, as the next two
examples illustrate.

† The universal quantifier ∀ stands for the word all, each, or every.
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EXAMPLE A.9 Number theorists dream of finding formulas that generate prime numbers. One such
formula was found by Euler (see Chapter 2), namely, E(n) = n2 − n + 41. It yields a
prime for n = 1,2, . . . ,40. Suppose we claim that the formula generates a prime for
every positive integer n. Since E(41) = 412 − 41 + 41 = 412 is not a prime, 41 is a
counterexample, thus disproving the claim. �

EXAMPLE A.10 Around 1640, Fermat conjectured that numbers of the form f (n) = 22n + 1 are prime
numbers for all nonnegative integers n. For instance, f (0) = 3, f (1) = 5, f (2) =
17, f (3) = 257, and f (4) = 65537 are all primes. In 1732, however, Euler established
the falsity of Fermat’s conjecture by producing a counterexample. He showed that
f (5) = 225 + 1 = 641 × 6700417, a composite number. �

E X E R C I S E S A.1

Determine whether each implication is vacuously true for
the indicated value of n.

1. If n ≥ 1, then 2n ≥ n; n = 0
2. If n ≥ 4, then 2n ≥ n2; n = 0,1,2,3

Determine whether each implication is trivially true.
3. If n is a prime number, then n2 + n is an even integer.
4. If n ≥ 41, then n3 − n is divisible by 3.

Prove each using the direct method.
5. The sum of any two even integers is even.
6. The sum of any two odd integers is even.
7. The square of an even integer is even.
8. The product of any two even integers is even.
9. The square of an odd integer is odd.

10. The product of any two odd integers is odd.
11. The product of any even integer and any odd integer

is even.
12. The square of every integer of the form 3k + 1 is also

of the same form, where k is some integer.
13. The square of every integer of the form 4k + 1 is also

of the same form, where k is some integer.

14. The arithmetic mean
a + b

2
of any two nonnegative

real numbers a and b is greater than or equal to their
geometric mean

√
ab.

(Hint: consider (
√

a − √
b)2 ≥ 0.)

Prove each, using the law of the contrapositive.

15. If the square of an integer is even, then the integer
is even.

16. If the square of an integer is odd, then the integer
is odd.

17. If the product of two integers is even, then at least
one of them must be an even integer.

18. If the product of two integers is odd, then both
must be odd integers.

Prove the following by contradiction, where p is a
prime number.
19.

√
2 is an irrational number.

20.
√

5 is an irrational number.
21.

√
p is an irrational number.

�22. log10 2 is an irrational number.
Prove the following by cases, where n is an arbitrary
integer.
23. n2 + n is an even integer.
24. 2n3 + 3n2 + n is an even integer.
25. n3 − n is divisible by 3.

(Hint: Assume that every integer is of the form
3k,3k + 1, or 3k + 2.)

Prove each by the existence method, where |x| denotes
the absolute value of x.
26. There are integers x such that x2 = x.
27. There are integers x such that |x| = x.
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28. There are infinitely many integers that can be ex-
pressed as the sum of two cubes in two different ways.

29. The equation x2 + y2 = z2 has infinitely many integer
solutions.

Give a counterexample to disprove each statement.
30. The absolute value of every real number is positive.
31. The square of every real number is positive.
32. Every prime number is odd.
33. Every month has exactly 30 days.
Let a,b, and c be any real numbers. Then a < b if and
only if there is a positive real number x such that a + x
= b. Using this fact, prove each.
34. If a < b and b < c, then a < c.

35. If a < b, then a + c < b + c.
36. If a + c < b + c, then a < b.
37. Let a and b be any two real numbers such that

a · b = 0. Then either a = 0 or b = 0.

(Hint: p → (q ∨ r) ≡ (p∧ ∼ q) → r.)
�38. The formula f (n) = n2 − 79n + 1601 yields a prime

for 0 ≤ n ≤ 10. Give a counterexample to disprove
the claim that the formula yields a prime for every
nonnegative integer n.

�39. Let f (n) = 2n − 1, where n is a positive integer. For
example, f (2) = 3, f (3) = 7, and f (5) = 31 are all
primes. Give a counterexample to disprove the claim
that if n is a prime, then 2n − 1 is a prime.

� �

A.2 Web Sites

The following web sites provide valuable information for further exploration and
enrichment. Since the status of a web site could change with time, not all of them
may exist when you try; if they do not, use a search engine to locate sites that provide
similar information.

1. Number Theory Web (www.math.uga.edu/∼ntheory/web.html)
Lists information of interest to number theorists.

2. List of Mathematicians
(http:/aleph0.clarku.edu/∼djoyce/mathhist/chronology.
html)
Gives a chronological list of mathematical works and mathematicians.

3. Fibonacci and Lucas Numbers
(http://jwilson/coe.uga.edu/EMT668/EMAT668...trypro/
fib%26luc%26phi/AKEwrite-up12.html)
Shows how Fibonacci numbers, Lucas numbers, and the Golden Ratio are re-
lated.

4. Euclidean Algorithm
There are over 20 web sites for euclidean algorithm. Five of them are:
www.math.umn.edu/∼garrett/js/gcd.html
www.unc.edu/∼rowlet/Math8l/notes/Euclidal.html
www.csclub.uwaterloo.ca/∼mpslager/compsci/GCD.html
www.math.sc.edu/∼sumner/numbertheory/euclidean/
euclidean.html
www.math.umass.edu/∼dhayes/math597a/ugcd2/
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5. Fermat Numbers (www.vamri.xray.ufl.edu/proths/fermat.
html)
Lists the prime factors k · 2n + 1 of Fermat numbers fm and complete factoring
status.

6. The Largest Known Primes (www.utm.edu/research/primes/
largest.html)
Contains a brief introduction to prime numbers, and lists the 10 known largest
primes, 10 largest known twin primes, 10 largest known Mersenne primes,
10 largest known factorial primes, and 10 largest known Sophie Germain primes.

7. The Great Internet Mersenne Prime Search (www.Mersenne.org)
A very comprehensive web site for Mersenne primes and provides links to sites
for other classes of primes, such as twin primes, Sophie Germain primes, Kelly
primes, Cunningham chains, and Fermat primes. By signing up with GIMPS,
you can join a worldwide network of mathematicians and computer scientists in
the search for larger primes and get your name into the record book.

8. Mersenne Primes: History, Theorems, and Lists
(www.utm.edu/research/primes/mersenne.shtml)
Gives a brief history of Mersenne primes, perfect numbers, a list of known
Mersenne primes, a brief history of the Lucas–Lehmer test, and some conjec-
tures about Mersenne primes.

9. Large Primes Found by SGU/Cray
(http//reality.sgi.com/csp/ioccc/noll/prime/
prime_press.html)
Lists all large primes discovered by computer scientists at Silicon Graphics’
Cray Research Unit.

10. The “Proth” Program and the Search for Primes
(http://perso.wanadoo.fr/yves.gallot/Dublin)
Gives a history of the Proth program, primality tests, and the search for primes.

11. The Law of Quadratic Reciprocity
There are over 20 web sites on quadratic reciprocity. Five of them are:
www.izuser.uni-heidelberg.del/∼hb3/rchrono.html
www.seanet.com/∼ksbrown/kmath075.htm
www.math.umn.edu/∼garrett/m/number_theory/quad_rec.
shtml
www.math.nmsu.edu/∼history/schauspiel/schauspiel.html
www.math.swt.edu/∼haz/prob_sets/notes/node32.html

12. Pythagorean triples
There are over 20 web sites for Pythagorean triples. Five of them are:
www.math.clemson.edu/∼rsimms/neat/math/pyth/
www.maths.uts.edu.au/numericon/triples.html
www.math.uic.edu/∼fields/puzzle/triples.html
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www.faust.fr.bw.schule.de/mhb/pythagen.htm
www.math.utah.edu/∼alfeld/teaching/pt.html

13. Palindromic Pythagorean Triples
(www.ping.be/∼pingo6758/pythago.htm)
Gives an algorithm for constructing palindromic Pythagorean triples from a
known palindromic Pythagorean triple and lists several near-misses.

14. Nova: The Proof (www.pbs.org/wgbh/nova/proof)
This web site is related to the delightful Nova program on Andrew Wiles’ proof
of Fermat’s Last Theorem. It gives a transcript of an interview with Wiles, who
spent seven years of his life in his attic cracking the problem.

15. Fermat’s Last Theorem
There are a number of sites on Fermat’s Last Theorem, including one in Hebrew.
Three of them are:
www.cs.unb.ca/∼alopez-o/math-faq/node22.html
This answers a few basic questions about the theorem.
www.best.com/∼cgd/home/flt/flt01.htm
This site provides a thorough overview of the proof of the theorem.
www.-groups.dcs.st-and.ac.uk/∼history/HistTopics/
Fermat’s_last_theorem.html
This site gives a some biographical information on Fermat and a brief history of
the problem.

16. Waring’s Problem
The following sites discuss the proofs of two special cases of Waring’s conjec-
ture; g(3) = 9 (Wieferich and Kemner, 1912) and g(5) = 37 (Chen, 1964).
The web sites by valuable references for the problem:
www.seanet.com/∼ksbrown/kmath316.htm
www.mathsoft.com/asolve/pwrs32/pwrs32.html
www.math.niu.edu/∼rusin/known-math/96/warings

17. Generalized Fermat–Wiles Equation
(www.mathsoft.com/asolve/fermat/fermat.html)
Examines a generalized version of Fermat’s equation xn + yn = zn.
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able T.1 on pp. 642–648 lists the least prime factor of each odd positive inte-Tger < 10,000 and not divisible by 5. The beginning digit(s) is (are) listed on
the left side and the last digit on the top of the column. For example, 3 is the

smallest prime factor of 2001.
A dash indicates that the corresponding number is a prime. For instance, 2347

is a prime.
Table T.2 on pp. 649–651 gives the values of the arithmetic functions ϕ, τ , and

σ for each positive integer ≤ 100. For example, ϕ(28) = 12, τ(28) = 6, and σ(28) =
56.

Table T.3 on p. 652 lists the least primitive root r modulo each prime p < 1000.
For example, 3 is the least primitive root modulo 17 and 5 the least primitive root
modulo 73.

Table T.4 on pp. 653–656 gives the index of each positive integer ≤ 96 and to
the base that is the least primitive root modulo a prime p. For example, 3 is the least
primitive root modulo 17; ind3 12 = 13, since 313 ≡ 12 (mod 17).

641
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1 3 7 9 1 3 7 9 1 3 7 9 1 3 7 9
0 − − − 3 40 − 13 11 − 80 3 11 3 − 120 − 3 17 3
1 − − − − 41 3 7 3 − 81 − 3 19 3 121 7 − − 23
2 3 − 3 − 42 − 3 7 3 82 − − − − 122 3 − 3 −
3 − 3 − 3 43 − − 19 − 83 3 7 3 − 123 − 3 − 3
4 − − − 7 44 3 − 3 − 84 29 3 7 3 124 17 11 29 −
5 3 − 3 − 45 11 3 − 3 85 23 − − − 125 3 7 3 −
6 − 3 − 3 46 − − − 7 86 3 − 3 11 126 13 3 7 3
7 − − 7 − 47 3 11 3 − 87 13 3 − 3 127 31 19 − −
8 3 − 3 − 48 13 3 − 3 88 − − − 7 128 3 − 3 −
9 7 3 − 3 49 − 17 7 − 89 3 19 3 29 129 − 3 − 3

10 − − − − 50 3 − 3 − 90 17 3 − 3 130 − − − 7
11 3 − 3 7 51 7 3 11 3 91 − 11 7 − 131 3 13 3 −
12 11 3 − 3 52 − − 17 23 92 3 13 3 − 132 − 3 − 3
13 − 7 − − 53 3 13 3 7 93 7 3 − 3 133 11 31 7 13
14 3 11 3 − 54 − 3 − 3 94 − 23 − 13 134 3 17 3 19
15 − 3 − 3 55 19 7 − 13 95 3 8 3 7 135 7 3 23 3
16 7 − − 13 56 3 − 3 − 96 31 3 − 3 136 − 29 − 37
17 3 − 3 − 57 − 3 − 3 97 − 7 − 11 137 3 − 3 7
18 − 3 11 3 58 7 11 − 19 98 3 − 3 23 138 − 3 19 3
19 − − − − 59 3 − 3 − 99 − 3 − 3 139 13 7 11 −
20 3 7 3 11 60 − 3 − 3 100 7 17 19 − 140 3 23 3 −
21 − 3 7 3 61 13 − − − 101 3 − 3 − 141 17 3 13 3
22 13 − − − 62 3 7 3 17 102 − 3 13 3 142 7 − − −
23 3 − 3 − 63 − 3 7 3 103 − − 17 − 143 3 − 3 −
24 − 3 13 3 64 − − − 11 104 3 7 3 − 144 11 3 − 3
25 − 11 − 7 65 3 − 3 − 105 − 3 7 3 145 − − 31 −
26 3 − 3 − 66 − 3 23 3 106 − − 11 − 146 3 7 3 13
27 − 3 − 3 67 11 − − 7 107 3 29 3 13 147 − 3 7 3
28 − − 7 17 68 3 − 3 13 108 23 3 − 3 148 − − − −
29 3 − 3 13 69 − 3 17 3 109 − − − 7 149 3 − 3 −
30 7 3 − 3 70 − 19 7 − 110 3 − 3 − 150 19 3 11 3
31 − − − 11 71 3 23 3 − 111 11 3 − 3 151 − 17 37 7
32 3 17 3 7 72 7 3 − 3 112 19 − 7 − 152 3 − 3 11
33 − 3 − 3 73 17 − 11 − 113 3 11 3 17 153 − 3 29 3
34 11 7 − − 74 3 − 3 7 114 7 3 31 3 154 23 − 7 −
35 3 − 3 − 75 − 3 − 3 115 − − 13 19 155 3 − 3 −
36 19 3 − 3 76 − 7 13 − 116 3 − 3 7 156 7 3 − 3
37 7 − 13 − 77 3 − 3 19 117 − 3 11 3 157 − 11 19 −
38 7 − 3 − 78 11 3 − 3 118 − 7 − 29 158 3 − 3 7
39 17 3 − 3 79 7 13 − 17 119 3 − 3 11 159 37 3 − 3

Table T.1 Factor table.
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1 3 7 9 1 3 7 9 1 3 7 9 1 3 7 9
160 − 7 − − 200 3 − 3 7 240 7 3 29 3 280 − − 7 53
161 3 − 3 − 201 − 3 − 3 241 − 19 − 41 281 3 29 3 −
162 − 3 − 3 202 43 7 − − 242 3 − 3 7 282 7 3 11 3
163 7 23 − 11 203 3 19 3 − 243 11 3 − 3 283 19 − − 17
164 3 31 3 17 204 13 3 23 3 244 − 7 − 31 284 3 − 3 7
165 13 3 − 3 205 7 − 11 29 245 3 11 3 − 285 − 3 − 3
166 11 − − − 206 3 − 3 − 246 23 3 − 3 286 − 7 47 19
167 3 7 3 23 207 19 3 31 3 247 7 − − 37 287 3 13 3 −
168 41 3 7 3 208 − − − − 248 3 13 3 19 288 43 3 − 3
169 19 − − − 209 3 7 3 − 249 47 3 11 3 289 7 11 − 13
170 3 13 3 − 210 11 3 7 3 250 41 − 23 13 290 3 − 3 −
171 29 3 17 3 211 − − 29 13 251 3 7 3 11 291 41 3 − 3
172 − − 11 7 212 3 11 3 − 252 − 3 7 3 292 23 37 − 29
173 3 − 3 37 213 − 3 − 3 253 − 17 43 − 293 3 7 3 −
174 − 3 − 3 214 − − 19 7 254 3 − 3 − 294 17 3 7 3
175 17 − 7 − 215 3 − 3 17 255 − 3 − 3 295 13 − − 11
176 3 41 3 29 216 − 3 11 3 256 13 11 17 7 296 3 − 3 −
177 7 3 − 3 217 13 41 7 − 257 3 31 3 − 297 − 3 13 3
178 13 − − − 218 3 37 3 11 258 29 3 13 3 298 11 19 29 7
179 3 11 3 7 219 7 3 13 3 259 − − 7 23 299 3 41 3 −
180 − 3 13 3 220 31 − − 47 260 3 19 3 − 300 − 3 31 3
181 − 7 23 17 221 3 − 3 7 261 7 3 − 3 301 − 23 7 −
182 3 − 3 31 222 − 3 17 3 262 − 43 37 11 302 3 − 3 13
183 − 3 11 3 223 23 7 − − 263 3 − 3 7 303 7 3 − 3
184 7 19 − 43 224 3 − 3 13 264 19 3 − 3 304 − 17 11 −
185 3 17 3 11 225 − 3 37 3 265 11 7 − − 305 3 43 3 7
186 − 3 − 3 226 7 31 − − 266 3 − 3 17 306 − 3 − 3
187 − − − − 227 3 − 3 43 267 − 3 − 3 307 37 7 17 −
188 3 7 3 − 228 − 3 − 3 268 7 − − − 308 3 − 3 −
189 31 3 7 3 229 29 − − 11 269 3 − 3 − 309 11 3 19 3
190 − 11 − 23 230 3 7 3 − 270 37 3 − 3 310 7 29 13 −
191 3 − 3 19 231 − 3 7 3 271 − − 11 − 311 3 11 3 −
192 17 3 41 3 232 11 23 13 17 272 3 7 3 − 312 − 3 53 3
193 − − 13 7 233 3 − 3 − 273 − 3 7 3 313 31 13 − 43
194 3 29 3 − 234 − 3 − 3 274 − 13 41 − 314 3 7 3 47
195 − 3 19 3 235 − 13 − 7 275 3 − 3 31 315 23 3 7 3
196 37 13 7 11 236 3 17 3 23 276 11 3 − 3 316 29 − − −
197 3 − 3 − 237 − 3 − 3 277 17 47 − 7 317 3 19 3 11
198 7 3 − 3 238 − − 7 − 278 3 11 3 − 318 − 3 − 3
199 11 − − − 239 3 − 3 − 279 − 3 − 3 319 − 31 23 7

Table T.1 (Continued)
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1 3 7 9 1 3 7 9 1 3 7 9 1 3 7 9
320 3 − 3 − 360 13 3 − 3 400 − − − 19 440 3 7 3 −
321 13 3 − 3 361 23 − − 7 401 3 − 3 − 441 11 3 7 3
322 − 11 7 − 362 3 − 3 19 402 − 3 − 3 442 − − 19 43
323 3 53 3 41 363 − 3 − 3 403 29 37 11 7 443 3 11 3 23
324 7 3 17 3 364 11 − 7 41 404 3 13 3 − 444 − 3 − 3
325 − − − − 365 3 13 3 − 405 − 3 − 3 445 − 61 − 7
326 3 13 3 7 366 7 3 19 3 406 31 17 7 13 446 3 − 3 41
327 − 3 29 3 367 − − − 13 407 3 − 3 − 447 17 3 11 3
328 17 7 19 11 368 3 29 3 7 408 7 3 61 3 448 − − 7 67
329 3 37 3 − 369 − 3 − 3 409 − − 17 − 449 3 − 3 11
330 − 3 − 3 370 − 7 11 − 410 3 11 3 7 450 7 3 − 3
331 7 − 31 − 371 3 47 3 − 411 − 3 23 3 451 13 − − −
332 3 − 3 − 372 61 3 − 3 412 13 7 − − 452 3 − 3 7
333 − 3 47 3 373 7 − 37 − 413 3 − 3 − 453 23 3 13 3
334 13 − − 17 374 3 19 3 23 414 41 3 11 3 454 19 7 − −
335 3 7 3 − 375 11 3 13 3 415 7 − − − 455 3 29 3 47
336 − 3 7 3 376 − 53 − − 416 3 23 3 11 456 − 3 − 3
337 − − 11 31 377 3 7 3 − 417 43 3 − 3 457 7 17 23 19
338 3 17 3 − 378 19 3 7 3 418 37 47 53 59 458 3 − 3 13
339 − 3 43 3 379 17 − − 29 419 3 7 3 13 459 − 3 − 3
340 19 41 − 7 380 3 − 3 31 420 − 3 7 3 460 43 − 17 11
341 3 − 3 13 381 37 3 11 3 421 − 11 − − 461 3 7 3 31
342 11 3 23 3 382 − − 43 7 422 3 41 3 − 462 − 3 7 3
343 47 − 7 19 383 3 − 3 11 423 − 3 19 3 463 11 41 − −
344 3 11 3 − 384 23 3 − 3 424 − − 31 7 464 3 − 3 −
345 7 3 − 3 385 − − 7 17 425 3 − 3 − 465 − 3 − 3
346 − − − − 386 3 − 3 53 426 − 3 17 3 466 59 − 13 7
347 3 23 3 7 387 7 3 − 3 427 − − 7 11 467 3 − 3 −
348 59 3 11 3 388 − 11 13 − 428 3 − 3 − 468 31 3 43 3
349 − 7 13 − 389 3 17 3 7 429 7 3 − 3 469 − 13 7 37
350 3 31 3 11 390 47 3 − 3 430 11 13 59 31 470 3 − 3 17
351 − 3 − 3 391 − 7 − − 431 3 19 3 7 471 7 3 53 3
352 7 13 − − 392 3 − 3 − 432 29 3 − 3 472 − − 29 −
353 3 − 3 − 393 − 3 31 3 433 61 7 − − 473 3 − 3 7
354 − 3 − 3 394 7 − − 11 434 3 43 3 − 474 11 3 47 3
355 53 11 − − 395 3 59 3 37 435 19 3 − 3 475 − 7 67 −
356 3 7 3 43 396 17 3 − 3 436 7 − 11 17 476 3 11 3 19
357 − 3 7 3 397 11 29 41 23 437 3 − 3 29 477 13 3 17 3
358 − − 17 37 398 3 7 3 − 438 13 3 41 3 478 7 − − −
359 3 − 3 59 399 13 3 7 3 439 − 23 − 53 479 3 − 3 −

Table T.1 (Continued)
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1 3 7 9 1 3 7 9 1 3 7 9 1 3 7 9
480 − 3 11 3 520 7 11 41 − 560 3 13 3 71 600 17 3 −3
481 17 − − 61 521 3 13 3 17 561 31 3 41 3 601 − 7 11 13
482 3 7 3 11 522 23 3 − 3 562 7 − 17 13 602 3 19 3 −
483 − 3 7 3 523 − − − 13 563 3 43 3 − 603 37 3 − 3
484 47 29 37 13 524 3 7 3 29 564 − 3 − 3 604 7 − − 23
485 3 23 3 43 525 59 3 7 3 565 − − − − 605 3 − 3 73
486 − 3 31 3 526 − 19 23 11 566 3 7 3 − 606 11 3 − 3
487 − 11 − 7 527 3 − 3 − 567 53 3 7 3 607 13 − 59 −
488 3 19 3 − 528 − 3 17 3 568 13 − 11 − 608 3 7 3 −
489 67 3 59 3 529 11 67 − 7 569 3 − 3 41 609 − 3 7 3
490 13 − 7 − 530 3 − 3 − 570 − 3 13 3 610 − 17 31 41
491 3 17 3 − 531 47 3 13 3 571 − 29 − 7 611 3 − 311 29
492 7 3 13 3 532 17 − 7 73 572 3 59 3 17 612 − 3 11 3
493 − − − 11 533 3 − 3 19 573 11 3 − 3 613 − − 17 7
494 3 − 3 7 534 7 3 − 3 574 − − 7 − 614 3 − 3 11
495 − 3 − 3 535 − 53 11 23 575 3 11 3 13 615 − 3 47 3
496 11 7 − − 536 3 31 3 7 576 7 3 73 3 616 61 − 7 31
497 3 − 3 13 537 41 3 19 3 577 29 23 53 − 617 3 − 3 37
498 17 3 − 3 538 − 7 − 17 578 3 − 3 7 618 7 3 23 3
499 7 − 19 − 539 3 − 3 − 579 − 3 11 3 619 41 11 − −
500 3 − 3 − 540 11 3 − 3 580 − 7 − 37 620 3 − 3 7
501 − 3 29 3 541 7 − − − 581 3 − 3 11 621 − 3 − 3
502 − − 11 47 542 3 11 3 61 582 − 3 − 3 622 − 7 13 −
503 3 7 3 − 543 − 3 − 3 583 7 19 13 − 623 3 23 3 17
504 71 3 7 3 544 − − 13 − 584 3 − 3 − 624 79 3 − 3
505 − 31 13 − 545 3 7 3 53 585 − 3 − 3 625 7 13 − 11
506 3 61 3 37 546 43 3 7 3 586 − 11 − − 626 3 − 3 −
507 11 3 − 3 547 − 13 − − 587 3 7 3 − 627 − 3 − 3
508 − 13 − 7 548 3 − 3 11 588 − 3 7 3 628 11 61 − 19
509 3 11 3 − 549 17 3 23 3 589 43 71 − 17 629 3 7 3 −
510 − 3 − 3 550 − − − 7 590 3 − 3 19 630 − 3 7 3
511 19 − 7 − 551 3 37 3 − 591 23 3 61 3 631 − 59 − 71
512 3 47 3 23 552 − 3 − 3 592 31 − − 7 632 3 − 3 −
513 7 3 11 3 553 − 11 7 29 593 3 17 3 − 633 13 3 − 3
514 53 37 − 19 554 3 23 3 31 594 13 3 19 3 634 17 − 11 7
515 3 − 3 7 555 7 3 − 3 595 11 − 7 59 635 3 − 3 −
516 13 3 − 3 556 67 − 19 − 596 3 67 3 47 636 − 3 − 3
517 − 7 31 − 557 3 − 3 7 597 7 3 43 3 637 23 − 7 −
518 3 71 3 − 558 − 3 37 3 598 − 31 − 53 638 3 13 3 −
519 29 3 − 3 559 − 7 29 11 599 3 13 3 7 639 7 3 − 3

Table T.1 (Continued)
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1 3 7 9 1 3 7 9 1 3 7 9 1 3 7 9
640 37 19 43 13 680 3 − 3 11 720 19 3 − 3 760 11 − − 7
641 3 11 3 7 681 7 3 17 3 721 − − 7 − 761 3 23 3 19
642 − 3 − 3 682 19 − − − 722 3 31 3 − 762 − 3 29 3
643 59 7 41 47 683 3 − 3 7 723 7 3 − 3 763 13 17 7 −
644 3 17 3 − 684 − 3 41 3 724 13 − − 11 764 3 − 3 −
645 − 3 11 3 685 13 7 − 19 725 3 − 3 7 765 7 3 13 3
646 7 23 29 − 686 3 − 3 − 726 53 3 13 3 766 47 79 11 −
647 3 − 3 11 687 − 3 13 3 727 11 7 19 29 767 3 − 3 7
648 − 3 13 3 688 7 − 71 83 728 3 − 3 37 768 − 3 − 3
649 − 43 73 67 689 3 61 3 − 729 23 3 − 3 769 − 7 43 −
650 3 7 3 23 690 67 3 − 3 730 7 67 − − 770 3 − 3 13
651 17 3 7 3 691 − 31 − 11 731 3 71 3 13 771 11 3 − 3
652 − 11 61 − 692 3 7 3 13 732 − 3 17 3 772 7 − − 59
653 3 47 3 13 693 29 3 7 3 733 − − 11 41 773 3 11 3 71
654 31 3 − 3 694 11 53 − − 734 3 7 3 − 774 − 3 61 3
655 − − 79 7 695 3 17 3 − 735 − 3 7 3 775 23 − − −
656 3 − 3 − 696 − 3 − 3 736 17 37 53 − 776 3 7 3 17
657 − 3 − 3 697 − 19 − 7 737 3 73 3 47 777 19 3 7 3
658 − 29 7 11 698 3 − 3 29 738 11 3 83 3 778 31 43 13 −
659 3 19 3 − 699 − 3 − 3 739 19 − 13 7 779 3 − 3 11
660 7 3 − 3 700 − 47 7 43 740 3 11 3 31 780 29 3 37 3
661 11 17 13 − 701 3 − 3 − 741 − 3 − 3 781 73 13 − 7
662 3 37 3 7 702 7 3 − 3 742 41 13 7 17 782 3 − 3 −
663 19 3 − 3 703 79 13 31 − 743 3 − 3 43 783 41 3 17 3
664 29 7 17 61 704 3 − 3 7 744 7 3 11 3 784 − 11 7 47
665 3 − 3 − 705 11 3 − 3 745 − 29 − − 785 3 − 3 29
666 − 3 59 3 706 23 7 37 − 746 3 17 3 7 786 7 3 − 3
667 7 − 11 − 707 3 11 3 − 747 31 3 − 3 787 17 − − −
668 3 41 3 − 708 73 3 19 3 748 − 7 − − 788 3 − 3 7
669 − 3 37 3 709 7 41 47 31 749 3 59 3 − 789 13 3 53 3
670 − − 19 − 710 3 − 3 − 750 13 3 − 3 790 − 7 − 11
671 3 7 3 − 711 13 3 11 3 751 7 11 − 73 791 3 41 3 −
672 11 3 7 3 712 − 17 − − 752 3 − 3 − 792 89 3 − 3
673 53 − − 23 713 3 7 3 11 753 17 3 − 3 793 7 − − 17
674 3 11 3 17 714 37 3 7 3 754 − 19 − − 794 3 13 3 −
675 43 3 29 3 715 − 23 17 − 755 3 7 3 − 795 − 3 73 3
676 − − 67 7 716 3 13 3 67 756 − 3 7 3 796 19 − 31 13
677 3 13 3 − 717 71 3 − 3 757 67 − − 11 797 3 7 3 79
678 − 3 11 3 718 43 11 − 7 758 3 − 3 − 798 23 3 7 3
679 − − 7 13 719 3 − 3 23 759 − 3 71 3 799 61 − 11 19

Table T.1 (Continued)
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1 3 7 9 1 3 7 9 1 3 7 9 1 3 7 9
800 3 53 3 − 840 31 3 7 3 880 13 − − 23 920 3 − 3 −
801 − 3 − 3 841 13 47 19 − 881 3 7 3 − 921 61 3 13 3
802 13 71 23 7 842 3 − 3 − 882 − 3 7 3 922 − 23 − 11
803 3 29 3 − 843 − 3 11 3 883 − 11 − − 923 3 7 3 −
804 11 3 13 3 844 23 − − 7 884 3 37 3 − 924 − 3 7 3
805 83 − 7 − 845 3 79 3 11 885 53 3 17 3 925 11 19 − 47
806 3 11 3 − 846 − 3 − 3 886 − − − 7 926 3 59 3 13
807 7 3 41 3 847 43 37 7 61 887 3 19 3 13 927 73 3 − 3
808 − 59 − − 848 3 17 3 13 888 83 3 − 3 928 − − 37 7
809 3 − 3 7 849 7 3 29 3 889 17 − 7 11 929 3 − 3 17
810 − 3 11 3 850 − 11 47 67 890 3 29 3 59 930 71 3 41 3
811 − 7 − 23 851 3 − 3 7 891 7 3 37 3 931 − 67 7 −
812 3 − 3 11 852 − 3 − 3 892 11 − 79 − 932 3 − 3 19
813 47 3 79 3 853 19 7 − − 893 3 − 3 7 933 7 3 − 3
814 7 17 − 29 854 3 − 3 83 894 − 3 23 3 934 − − 13 −
815 3 31 3 41 855 17 3 43 3 895 − 7 13 17 935 3 47 3 7
816 − 3 − 3 856 7 − 13 11 896 3 − 3 − 936 11 3 17 3
817 − 11 13 − 857 3 − 3 23 897 − 3 47 3 937 − 7 − 83
818 3 7 3 19 858 − 3 31 3 898 7 13 11 89 938 3 11 3 41
819 − 3 7 3 859 11 13 − − 899 3 17 3 − 939 − 3 − 3
820 59 13 29 − 860 3 7 3 − 900 − 3 − 3 940 7 − 23 97
821 3 43 3 − 861 79 3 7 3 901 − − 71 29 941 3 − 3 −
822 − 3 19 3 862 37 − − − 902 3 7 3 − 942 − 3 11 3
823 − − − 7 863 3 89 3 53 903 11 3 7 3 943 − − − −
824 3 − 3 73 864 − 3 − 3 904 − − 83 − 944 3 7 3 11
825 37 3 23 3 865 41 17 11 7 905 3 11 3 − 945 13 3 7 3
826 11 − 7 − 866 3 − 3 − 906 13 3 − 3 946 − − − 17
827 3 − 3 17 867 13 3 − 3 907 47 43 29 7 947 3 − 3 −
828 7 3 − 3 868 − 19 7 − 908 3 31 3 61 948 19 3 53 3
829 − − − 43 869 3 − 3 − 909 − 3 11 3 949 − 11 − 7
830 3 19 3 7 870 7 3 − 3 910 19 − 7 − 950 3 13 3 37
831 − 3 − 3 871 31 − 23 − 911 3 31 3 11 951 − 3 31 3
832 53 7 11 − 872 3 11 3 7 912 7 3 − 3 952 − 89 7 13
833 3 13 3 31 873 − 3 − 3 913 23 − − 13 953 3 − 3 −
834 19 3 17 3 874 − 7 − 13 914 3 41 3 7 954 7 3 − 3
835 7 − 61 13 875 3 − 3 19 915 − 3 − 3 955 − 41 19 11
836 3 − 3 − 876 − 3 11 3 916 − 7 89 53 956 3 73 3 7
837 11 3 − 3 877 7 31 67 − 917 3 − 3 67 957 17 3 61 3
838 17 83 − − 878 3 − 3 11 918 − 3 − 3 958 11 7 − 43
839 3 7 3 37 879 59 3 19 3 919 7 29 17 − 959 3 53 3 29

Table T.1 (Continued)
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1 3 7 9 1 3 7 9 1 3 7 9 1 3 7 9
960 − 3 13 3 970 89 31 18 7 980 3 − 3 17 990 − 3 − 3
961 7 − 59 − 971 3 11 3 − 981 − 3 − 3 991 11 23 47 7
962 3 − 3 − 972 − 3 71 3 982 7 11 31 − 992 3 − 3 −
963 − 3 23 3 973 37 − 7 − 983 3 − 3 − 993 − 3 19 3
964 31 − 11 − 974 3 − 3 − 984 13 3 43 3 994 − 61 7 −
965 3 7 3 13 975 7 3 11 3 985 − 59 − − 995 3 37 3 23
966 − 3 7 3 976 43 13 − − 986 3 7 3 71 996 7 3 − 3
967 19 17 − − 977 3 29 3 7 987 − 3 7 3 997 13 − 11 17
968 3 23 3 − 978 − 3 − 3 988 41 − − 11 998 3 67 3 7
969 11 3 − 3 979 − 7 97 41 989 3 13 3 19 999 97 3 13 3

Table T.1
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n φ(n) τ (n) σ (n)
1 1 1 1
2 1 2 3
3 2 2 4
4 2 3 7
5 4 2 6
6 2 4 12
7 6 2 8
8 4 4 15
9 6 3 13

10 4 4 18
11 10 2 12
12 4 6 28
13 12 2 14
14 6 4 24
15 8 4 24
16 8 5 31
17 16 2 18
18 6 6 39
19 18 2 20
20 8 6 42
21 12 4 32
22 10 4 36
23 22 2 24
24 8 8 60
25 20 3 31
26 12 4 42
27 18 4 40
28 12 6 56
29 28 2 30
30 8 8 72
31 30 2 32
32 16 6 63
33 20 4 48
34 16 4 54
35 24 4 48
36 12 9 91
37 36 2 38
38 18 4 60
39 24 4 56
40 16 8 90

Table T.2 Values of some arithmetic functions.
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n φ(n) τ (n) σ (n)
41 40 2 42
42 12 8 96
43 42 2 44
44 20 6 84
45 24 6 78
46 22 4 72
47 46 2 48
48 16 10 124
49 42 3 57
50 20 6 93
51 32 4 72
52 24 6 98
53 52 2 54
54 18 8 120
55 40 4 72
56 24 8 120
57 36 4 80
58 28 4 90
59 58 2 60
60 16 12 168
61 60 2 62
62 30 4 96
63 36 6 104
64 32 7 127
65 48 4 84
66 20 8 144
67 66 2 68
68 32 6 126
69 44 4 96
70 24 8 144
71 70 2 72
72 24 12 195
73 72 2 74
74 36 4 114
75 40 6 124
76 36 6 140
77 60 4 96
78 24 8 168
79 78 2 80
80 32 10 186

Table T.2 (Continued)
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n φ(n) τ (n) σ (n)
81 54 5 121
82 40 4 126
83 82 2 84
84 24 12 224
85 64 4 108
86 42 4 132
87 56 4 120
88 40 8 180
89 88 2 90
90 24 12 234
91 72 4 112
92 44 6 168
93 60 4 128
94 46 4 144
95 72 4 120
96 32 12 252
97 96 2 98
98 42 6 171
99 60 6 156

100 40 9 217

Table T.2
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p r p r p r p r
2 1 191 19 439 15 709 2
3 2 193 5 443 2 719 11
5 2 197 2 449 3 727 5
7 3 199 3 457 13 733 6

11 2 211 2 461 2 739 3
13 2 223 3 463 3 743 5
17 3 227 2 467 2 751 3
19 2 229 6 479 13 757 2
23 5 233 3 487 3 761 6
29 2 239 7 491 2 769 11
31 3 241 7 499 7 773 2
37 2 251 6 503 5 787 2
41 6 257 3 509 2 797 2
43 3 263 5 521 3 809 3
47 5 269 2 523 2 811 3
53 2 271 6 541 2 821 2
59 2 277 5 547 2 823 3
61 2 281 3 557 2 827 2
67 2 283 3 563 2 829 2
71 7 293 2 569 3 839 11
73 5 307 5 571 3 853 2
79 3 311 17 577 5 857 3
83 2 313 10 587 2 859 2
89 3 317 2 593 3 863 5
97 5 331 3 599 7 877 2

101 2 337 10 601 7 881 3
103 5 347 2 607 3 883 2
107 2 349 2 613 2 887 5
109 6 353 3 617 3 907 2
113 3 359 7 619 2 911 17
127 3 367 6 631 3 919 7
131 2 373 2 641 3 929 3
137 3 379 2 643 11 937 5
139 2 383 5 647 5 941 2
149 2 389 2 653 2 947 2
151 6 397 5 659 2 953 3
157 5 401 3 661 2 967 5
163 2 409 21 673 5 971 6
167 5 419 2 677 2 977 3
173 2 421 2 683 5 983 5
179 2 431 7 691 3 991 6
181 2 433 5 701 2 997 7

Table T.3 Least primitive roots r modulo primes p.



Tables 653

Numbers

p 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
3 2 1
5 4 1 3 2 Indices
7 6 2 1 4 5 3

11 10 1 8 2 4 9 7 3 6 5
13 12 1 4 2 9 5 11 3 8 10 7 6
17 16 14 1 12 5 15 11 10 2 3 7 13 4 9 6 8
19 18 1 13 2 16 14 6 3 8 17 12 15 5 7 11 4
23 22 2 16 4 1 18 19 6 10 3 9 20 14 21 17 8
29 28 1 5 2 22 6 12 3 10 23 25 7 18 13 27 4
31 30 24 1 18 20 25 28 12 2 14 23 19 11 22 21 0
37 36 1 26 2 23 27 32 3 16 24 30 28 11 33 13 4
41 40 26 15 12 22 1 39 38 30 8 3 27 31 25 37 24
43 42 27 1 12 25 28 35 39 2 10 30 13 32 20 26 24
47 46 18 20 36 1 38 32 8 40 19 7 10 11 4 21 26
53 52 1 17 2 47 18 14 3 34 48 6 19 24 15 12 4
59 58 1 50 2 6 51 18 3 42 7 25 52 45 19 56 4
61 60 1 6 2 22 7 49 3 12 23 15 8 40 50 28 4
67 66 1 39 2 15 40 23 3 12 16 59 41 19 24 54 4
71 70 6 26 12 28 32 1 18 52 34 31 38 39 7 54 24
73 72 8 6 16 1 14 33 24 12 9 55 22 59 41 7 32
79 78 4 1 8 62 5 53 12 2 66 68 9 34 57 63 16
83 82 1 72 2 27 73 8 3 62 28 24 74 77 9 17 4
89 88 16 1 32 70 17 81 48 2 86 84 33 23 9 71 64
97 96 34 70 68 1 8 31 6 44 35 86 42 25 65 71 40

Numbers

p 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
19 10 9
23 7 12 15 5 13 11 Indices
29 21 11 9 24 17 26 20 8 16 19 15 14
31 7 26 4 8 29 17 27 13 10 5 3 16 9 15
37 7 17 35 25 22 31 15 29 10 12 6 34 21 14 9 5 20
41 33 16 9 34 14 29 36 13 4 17 5 11 7 23 28 10 18
43 38 29 19 37 36 15 16 40 8 17 3 5 41 11 34 9 31
47 16 12 45 37 6 25 5 28 2 29 14 22 35 39 3 44 27
53 10 35 37 49 31 7 39 20 42 25 51 16 46 13 33 5 23
59 40 43 38 8 10 26 15 53 12 46 34 20 28 57 49 5 17
61 47 13 26 24 55 16 57 9 44 41 18 51 35 29 59 5 21
67 64 13 10 17 62 60 28 42 30 20 51 25 44 55 47 5 32
71 49 58 16 40 27 37 15 44 56 45 8 13 68 60 11 30 57
73 21 20 62 17 39 63 46 30 2 67 18 49 35 15 11 40 61
79 21 6 32 70 54 72 26 13 46 38 3 61 11 67 56 20 69
83 56 63 47 29 80 25 60 75 56 78 52 10 12 18 38 5 14
89 6 18 35 14 82 12 57 49 52 39 3 25 59 87 31 80 85
97 89 78 81 69 5 24 77 76 2 59 18 3 13 9 46 74 60

Table T.4 Indices.
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Numbers

p 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
37 8 19 18
41 19 21 2 32 35 6 20 Indices
43 23 18 14 7 4 33 22 6 21
47 34 33 30 42 17 31 9 15 24 13 43 41 23
53 11 9 36 30 38 41 50 45 32 22 8 29 40 44 21 23
59 41 24 44 55 39 37 9 14 11 33 27 48 16 23 54 36
61 48 11 14 39 27 46 25 54 56 43 17 34 58 20 10 38
67 65 38 14 22 11 58 18 53 63 9 61 27 29 50 43 46
71 55 29 64 20 22 65 46 25 33 48 43 10 21 9 50 2
73 29 34 28 64 70 65 25 4 47 51 71 13 54 31 38 66
79 25 37 10 19 36 35 74 75 58 49 76 64 30 59 17 28
83 57 35 64 20 48 67 30 40 81 71 26 7 61 23 76 16
89 22 63 34 11 51 24 30 21 10 29 28 72 73 54 65 74
97 27 32 16 91 19 95 7 85 39 4 58 45 15 84 14 62

Numbers

p 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
53 43 27 26
59 13 32 47 22 35 31 21 30 29 Indices
61 45 53 42 33 19 37 52 32 36 31 30
67 31 37 21 57 52 8 26 49 45 36 56 7 48 35 6 34
71 62 5 51 23 14 59 19 42 4 3 66 69 17 53 36 67
73 10 27 3 53 26 56 57 68 43 5 23 58 19 45 48 60
79 50 22 42 77 7 52 65 33 15 31 71 45 60 55 24 18
83 55 46 79 59 53 51 11 37 13 34 19 66 39 70 6 22
89 68 7 55 78 19 66 41 36 75 43 15 69 47 83 8 5
97 36 63 93 10 52 87 37 55 47 67 43 64 80 75 12 26

Numbers

p 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
67 33
71 63 47 61 41 35 Indices
73 69 50 37 52 42 44 36
79 73 48 29 27 41 51 14 44 23 47 40 43 39
83 15 45 58 50 36 33 65 69 21 44 49 32 68 43 31 42
89 13 56 38 58 79 62 50 20 27 53 67 77 40 42 46 4
97 94 57 61 51 66 11 50 28 29 72 53 21 33 30 41 88

Numbers

p 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
83 41
89 37 61 26 76 45 60 44 Indices
97 23 17 73 90 38 83 92 54 79 56 49 20 22 82 48

Table T.4 (Continued)
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Indices

p 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
3 2 1
5 2 4 3 1
7 3 2 6 4 5 1 Numbers

11 2 4 8 5 10 9 7 3 6 1
13 2 4 8 3 6 12 11 9 5 10 7 1
17 3 9 10 13 5 15 11 16 14 8 7 4 12 2 6 1
19 2 4 8 16 13 7 14 9 18 17 15 11 3 6 12 5
23 5 2 10 4 20 8 17 16 11 9 22 18 21 13 19 3
29 2 4 8 16 3 6 12 24 19 9 18 7 14 28 27 25
31 3 9 27 19 26 16 17 20 29 25 13 8 24 10 30 28
37 2 4 8 16 32 27 17 34 31 25 13 26 15 30 23 9
41 6 36 11 25 27 39 29 10 19 32 28 4 24 21 3 18
43 3 9 27 38 28 41 37 25 32 10 30 4 12 36 22 23
47 5 25 31 14 23 21 11 8 40 12 13 18 43 27 41 17
53 2 4 8 16 32 11 22 44 35 17 34 15 30 7 14 28
59 2 4 8 16 32 5 10 20 40 21 42 25 50 41 23 46
61 2 4 8 16 32 3 6 12 24 48 35 9 18 36 11 22
67 2 4 8 16 32 64 61 55 43 19 38 9 18 36 5 10
71 7 49 59 58 51 2 14 27 47 45 31 4 28 54 23 19
73 5 25 52 41 59 3 15 2 10 50 31 9 45 6 30 4
79 3 9 27 2 6 18 54 4 12 36 29 8 24 72 58 16
83 2 4 8 16 32 64 45 7 14 28 56 29 58 33 66 49
89 3 9 27 81 65 17 51 64 14 42 37 22 66 20 60 2
97 5 25 28 43 21 8 40 6 30 53 71 64 29 48 46 36

Indices

p 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
19 10 1
23 15 6 7 12 14 1 Numbers
29 21 13 26 23 17 5 10 20 11 22 15 1
31 22 4 12 5 15 14 11 2 6 18 23 7 21 1
37 18 36 35 33 29 21 5 10 20 3 6 12 24 11 22 7 14
41 26 33 34 40 35 5 30 16 14 2 12 31 22 9 13 37 17
43 26 35 19 14 42 40 34 16 5 15 2 6 18 11 33 13 39
47 38 2 10 3 15 28 46 42 22 16 33 24 26 36 39 7 35
53 3 6 12 24 48 43 33 13 26 52 51 49 45 37 21 42 31
59 33 7 14 28 56 53 47 35 11 22 44 29 58 57 55 51 43
61 44 27 54 47 33 5 10 20 40 19 38 15 30 60 59 57 53
67 20 40 13 26 52 37 7 14 28 56 45 23 46 25 50 33 66
71 62 8 56 37 46 38 53 16 41 3 21 5 35 32 11 6 42
73 20 27 62 18 17 12 60 8 40 54 51 36 34 24 47 16 7
79 48 65 37 32 17 51 74 64 34 23 69 49 68 46 59 19 57
83 15 30 60 37 74 65 47 11 22 44 5 10 20 40 80 77 71
89 6 18 54 73 41 34 13 39 28 84 74 44 43 40 31 4 12
97 83 27 38 93 77 94 82 22 13 65 34 73 74 79 7 35 78

Table T.4 (Continued)
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Indices

p 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
37 28 19 1
41 20 38 23 15 8 7 1 Numbers
43 31 7 21 20 17 8 24 29 1
47 34 29 4 20 6 30 9 45 37 44 32 19 1
53 9 18 36 19 38 23 46 39 25 50 47 41 29 5 10 20
59 27 54 49 39 19 38 17 34 9 18 36 13 26 52 45 31
61 45 29 58 55 49 37 13 26 52 43 25 50 39 17 34 7
67 65 63 59 51 35 3 6 12 24 48 29 58 49 31 62 57
71 10 70 64 22 12 13 20 69 57 44 24 26 40 67 43 17
73 35 29 72 68 48 21 32 14 70 58 71 63 23 42 64 28
79 13 39 38 35 26 78 76 70 52 77 73 61 25 75 67 43
83 59 35 70 57 31 62 41 82 81 79 75 67 51 19 38 76
89 36 19 57 82 68 26 78 56 79 59 88 86 80 62 8 24
97 2 10 50 56 86 42 16 80 12 60 9 45 31 58 96 92

Indices

p 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
53 40 27 1
59 3 6 12 24 48 37 15 30 1 Numbers
61 14 28 56 51 41 21 42 23 46 31 1
67 47 27 54 41 15 30 60 53 39 11 22 44 21 42 17 34
71 48 52 9 63 15 34 25 33 18 55 30 68 50 66 36 39
73 67 43 69 53 46 11 55 56 61 13 65 33 19 22 37 39
79 50 71 55 7 21 63 31 14 42 47 62 28 5 15 45 56
83 69 55 27 54 25 50 17 34 68 53 23 46 9 18 36 72
89 72 38 25 75 47 52 67 23 69 29 87 83 71 35 16 48
97 72 69 54 76 89 57 91 67 44 26 33 68 49 51 61 14

Indices

p 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
67 1
71 60 65 29 61 1
73 49 26 57 66 38 44 1
79 10 30 11 33 20 60 22 66 40 41 44 53 1
83 61 39 78 73 63 43 3 6 12 24 48 13 26 52 21 42
89 55 76 50 61 5 15 45 46 49 58 85 77 53 70 32 7
97 70 59 4 20 3 15 75 84 32 63 24 23 18 90 67 19

Indices

p 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
83 1 Numbers
89 21 63 11 33 10 30 1
97 95 87 47 41 11 55 81 17 85 37 88 52 66 39 1

Table T.4
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S
Solutions to
Odd-Numbered
Exercises

Chapter 1 Fundamentals

Exercises 1.1 (p. 7)
1. 1806 3. 0 or −1
5. yes, if x is an integer. 7. 370

9. Canceling a − b = 0 from both sides is invalid.
11. 1105 = 42 + 332 = 92 + 322 = 232 + 242 = 122 + 312

13. Let n2 = 2xy89. Then n must be a three-digit number beginning with 1 and ending in
3 or 7, so n is of the form 1t3 or 1t7. Since 1402 = 19,600 < 2xy89 < 32,400 = 1802,
143 ≤ n ≤ 177. Because (10u + 3)2 = 100u2 + 60u + 9, u must be 3 or 8 in order to
yield 8 as the tens digit in n2, which cannot be the case. Similarly, from (10u + 7)2 =
100u2 + 140u + 49, it follows that u = 1 or 6. Only u = 6 falls within the bounds for n,
so n = 167. Thus, 1672 = 27,889 and xy = 78.

15. There are �√500� = 22 squares and � 3√500� = 7 cubes ≤ 500. Among them, � 6√500� =
2 are counted twice, namely 1 and 64. Thus, there are 22 + 7 − 2 = 27 integers ≤ 500 that
are not in the sequence, and 473 integers that are either nonsquares or noncubes ≤ 500.
So to find the 500th term of the sequence, append 27 integers to the list 2,3,5, . . . ,500.
Because we cannot use 512, it must be 528.

17. Suppose a,b ≥ 0. Then a+b ≥ 0, so |a+b| = a+b = |a|+|b|. If a,b < 0, then a+b < 0,
so |a + b| = −(a + b) = (−a) + (−b) ≤ a + b = |a| + |b|. Suppose a ≥ 0 and b < 0. If
|a| > |b|, then |a + b| = a + b ≤ |a| + |b|. The other case follows similarly.

19. Let n = 2k + 1 for some integer k. Then �n/2� = �k + 1/2� = k + 1 = (2k + 2)/2 =
(n + 1)/2.

21. Let n = 2k + 1 for some integer k. Then �n2/4� = �k2 + k + 1/4� = k2 + k + 1 =
[(4k2 + 4k + 1) + 3]/4 = (n2 + 3)/4.

23. Let x = k + x′, where k = �x� and 0 < x′ < 1. Then �x� = k + 1 = �x� + 1.
25. Let x = k + x′, where k = �x� and 0 ≤ x′ < 1. Then �x + n� = k + 1 + n = �x� + n.

665
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27. Let x = k + x′, where k = �x� and 0 ≤ x′ < 1. Then �x/n� = �(k + x′)/n� = �k/n� =
��x�/n�.

29. d(0, x) = |x − 0| = |x|
31. d(x, y) = |y − x| = |−(x − y)| = |x − y| = d(y, x)
33. case 1 Let x ≥ y. Then |x − y| = x − y, max{x, y} = x, and max{x, y} = y. Thus,

max{x, y} − min{x, y} = x − y = |x − y|.
case 2 Let x < y. Then, |x − y| = y − x, max{x, y} = y, and min{x, y} = x. Thus,
max{x, y} − min{x, y} = y − x = |x − y|.

Exercises 1.2 (p. 14)
1. 21 3. 5 5. 20 7. 21

9. 135 11.
12∑

k=1
(2k − 1) 13.

11∑

k=1
k(k + 1) 15. T

17. S = (am+1 − am) + (am+2 − am+1) + · · · + (an − an−1) = an − am
n∑

i=1
[(i + 1)2 − i2] =

n∑

i=1
(i + 1)2 −

n∑

i=1
i219.

(n + 1)2 − 1 = 2
n∑

i=1
i +

n∑

i=1
1

n2 + n = 2
n∑

i=1
i

n∑

i=1
i = n(n + 1)/2

21. [n(n + 1)/2]2 23. 32 25. 255 27. 4420
29. 10 31. 210 33. 28 35. 6
37. 480480 39. 613
41. a11 + a12 + a21 + a22 + a31 + a32 43. 2a1 + 2a2 + 2a3

45. sum =
1023∑

n=1
[lg(n + 1) − lg n] = lg 1024 − lg 1 = 10 − 0 = 10

47. sum = �lg 2/1� + �lg 3/2� + �lg 4/3� + · · · + �lg 1025/1024� = 1 + 0 + · · · + 0 = 1
49. When n ≥ 10,n! is divisible by 100. Therefore, the tens digit in the given sum equals the

tens digit in
9∑

i=1
n!. By direct computation, it ends in 13, so the desired tens digit is 1.

51. Given sum =
∞∑

n=0

⌊
1000

2n+1
+ 1

2

⌋

. Thus, the sum is not infinite since if n ≥ 14, then

10000

2n+1
<

1

2
, so

⌊
10000

2n+1
+ 1

2

⌋

= 0

Therefore,

given sum =
13∑

n=0

⌊
10000

2n+1
+ 1

2

⌋

=
13∑

n=0

(⌊
10000

2n − 10000

2n+1

⌋)

,

because �x + 1/2� = �2x� − �x�
= 10,000 −

⌊
10000

214

⌋

= 10,000 − 0 = 10,000
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Exercises 1.3 (p. 24)
1. no, because it has no least element. 3. yes

5. Assume there is an integer n between a and a + 1: a < n < a + 1. Then 0 < n − a < 1.
Thus exists an integer n − a between 0 and 1, a contradiction.

7. proof (by contradiction): Assume there are no integers n such that na ≥ b; that is, na < b
for every integer n. Then the set S = {b − na | n ∈ Z+} consists of positive integers, so by
the well-ordering principle, S has a least element �. Then � = b − ma for some integer m.
Notice that b − (m + 1)a ∈ S, but b − (m + 1)a < b − ma = �, a contradiction.

9. Let A = {a ∈ Z | a ≤ n0}. Then the set B = {n0 − a | a ∈ A} consists of nonnegative in-
tegers and hence has a least element �. Thus, n0 − a ≥ � for every element a in A; that
is, n0 − � ≥ a for every a in A. But n0 − � ≤ n0, so n0 − � ∈ A. Thus, n0 − � is a largest
element of A.

11. 364
(Note: In Exercises 13 and 15, P(n) denotes the given statement.)

13. basis step: When n = 1, LHS = 1 RHS. Therefore, P(1) is true.

induction step: Assume P(k) is true:
k∑

i=1
(2i − 1) = k2. Then

k∑

i=1
(2i − 1) + (2k + 1) = k2 + (2k + 1) = (k + 1)2.

Therefore, P(k + 1) is true. Thus, the given result follows by PMI.
15. basis step: When n = 1, LHS = 1 = RHS. Therefore, P(1) is true.

induction step: Assume P(k) is true:
k∑

i=1
i3 =

[
k(k + 1)

2

]2
. Then

k∑

i=1
i3 + (k + 1)3 =

[
k(k + 1)

2

]2
+ (k + 1)3 = (k + 1)2

[
k2 + 4k + 4

4

]

= (k + 1)2(k + 2)2

4
=
[

(k + 1)(k + 2)

2

]2

Therefore, P(k + 1) is true. Thus, the result is true by PMI.

17. 28,335 19.

{
n2/4 if n is even
(n2 − 1)/4 otherwise

21. x =
n∑

i=1
(2i − 1) = n2 23. x =

n∑

i=1
i = n(n + 1)

2

25.
n(n + 1)(n + 2)

6
27.

n(n + 1)(2n + 1)

6

29. (n!)2 31. 2n2(n+1)

33. Recall that the kth term of the geometric sequence a,ar,ar2, . . . is ak = ark−1. So the
number of grains on the last square = n2th term in the sequence 1,2,22,23, . . . . Here
a = 1, r = 2, and k = n2. Therefore, the number of grains on the last square is

1 · (2n2−1) = 2n2−1. (We could prove this using induction also.)
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35. P(1) does not imply P(2). 37.
n(n + 1)(2n + 1)

6

39.

[
n(n + 1)

2

]2
41. 8204

43. proof: Suppose q(n) satisfies the conditions of the second principle. Let p(n) = q(n0) ∧
q(n0 + 1) ∧ · · · ∧ q(n), where n ≥ n0. Because q(n0) is true, p(n0) is true. Assume p(k) is
true, where k ≥ n0. By condition (2), q(k + 1) is true. Therefore, p(k + 1) = q(n0)∧ · · · ∧
q(k) ∧ q(k + 1) is true. So p(k) implies p(k + 1). So by the first principle, p(n) is true for
every n ≥ n0. Thus, q(n) is true for every n ≥ n0.

45.
n(3n4 + 7n2 + 2)

12

Exercises 1.4 (p. 31)
1. 1, 4, 7, 10 3. 1, 2, 3, 4

5. 1, 1, 2, 4 7. a1 = 1
an = an−1 + 3,n ≥ 2

9. a0 = 0
an = 2an−1 + 3,n ≥ 1

11. a1 = a
an = an−1 + d,n ≥ 2

Sn = a + (a + d) + · · · + [a + (n − 2)d] + [a + (n − 1)d]13.

Also, Sn = [a + (n − 1)d] + [a + (n − 2)d] + · · · + (a + d) + a

Adding, 2Sn = [2a + (n − 1)d] + [2a + (n − 1)d] + · · · + [2a + (n − 1)d]
+ [2a + (n − 1)d]

= n[2a + (n − 1)d]
Therefore, Sn = n

2
[2a + (n − 1)d]

15. an = arn−1 17. a1 = 1
an = an−1 + (n − 1),n ≥ 2

19. By Exercise 13, sum of the numbers in row n = n

2
[first term + last term]

= n

2
{[n(n − 1)/2 + 1] + [n(n + 1)]}

= n(n2 + 1)

2

21. a1 = 1
an = an−1 + n,n ≥ 2

23. bn = 2n − 1

25. 91 27. 91

29. f (99) = f (f (110)) = f (100) = f (f (111)) = f (101) = 91
31. Let k be the smallest integer such that 90 ≤ x + 11k ≤ 100. Then f (x) = f (f (x + 11)) =

f (f (f (x + 11 · 2))) = · · · = f k+1(x + 11k). Because 90 ≤ x + 11k ≤ 100 and k ≥ 1,
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f (x + 11k) = 91, by Exercise 30. Therefore, f k+1(x + 11k) = f k(91). Because f (91) = 91
by Exercise 29, f k(91) = 91. So f (x) = 91 for 0 ≤ x < 90.

33. 3 35. 7

37. proof (by PMI): When n = 0, LHS = A(2,0) = A(1,1) = A(0,A(1,0)) = 1 + A(1,0) −
1 + A(0,1) = 1 + 2 = 3 = RHS. So P(0) is true.
Assume P(k): A(2, k) = 3 + 2k. Then

A(2, k + 1) = A(1,A(2, k)) = A(1,3 + 2k) = A(0,A(1,2 + 2k)) = 1 + A(1,2 + 2k)

= 1 + A(0,A(1,1 + 2k)) = 2 + A(1,1 + 2k) = 2 + A(0,A(1,2k))

= 3 + A(1,2k) = 3 + (2k + 2) = 3 + 2(k + 1)

Therefore, P(k + 1) is true. Thus, the result follows by induction.
39. proof (by PMI): When n = 0, LHS = A(3,0) = A(2,1) = A(1,A(2,0)) = A(1,3) =

2 + 3 = 23 − 3 = RHS. So P(0) is true.
Assume P(k): A(3, k) = 2k+3 − 3. Then

A(3, k + 1) = A(2,A(3, k)) = A(2,2k+3 − 3) = 3 + 2(2k+3 − 3) = 2k+4 − 3

Therefore, P(k + 1) is true. Thus, the result follows by induction.

Exercises 1.5 (p. 38)

1. The number of gifts sent on the nth day =
n∑

i=1
i = n(n + 1)

2
=
(

n + 1
2

)

3. 112 5. 32x5 − 80x4 + 80x3 − 40x2 + 10x − 1
7. 17,920 9. 10

11. 35 13.

(
n

�n/2�
)

15. 5 17. 52

19. By Exercise 18,

(
2n
n

)

= 2

(
2n − 1
n − 1

)

, which is even.

21. LHS = sum of the even binomial coefficients = sum of the odd binomial coefficients =
RHS

23. (1 + x)2n = (1 + x)n(1 + x)n. Because (1 + x)2n =
2n∑

r=0

(
2n
r

)

x2n−r ,

coefficient of xn =
(

2n
r

)

. But (1 + x)n(1 + x)n =
[

n∑

r=0

(
n
r

)

xn−r

][
n∑

r=0

(
n

n − r

)

xr

]

so coefficient of xn =
n∑

r=0

(
n
r

)(
n

n − r

)

. Therefore,
n∑

r=0

(
n
r

)(
n

n − r

)

=
(

2n
n

)

25. Let S =
n∑

r=1
r

(
n
r

)

=
n−1∑

r=1
r

(
n
r

)

+ n

(
n
n

)
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Reversing the sum on the RHS, S = n

(
n
n

)

+
n−1∑

r=1
(n − r)

(
n

n − r

)

Adding these two equations,

2S = n

(
n
n

)

+
n−1∑

r=1
(n − r + r)

(
n
r

)

+ n

(
n
n

)

= n

(
n
0

)

+ n
n−1∑

r=1

(
n
r

)

+ n

(
n
n

)

= n

[ n∑

r=0

(
n
r

)]

= n2n

So S = n · 2n−1.

27. Suppose C(n, r − 1) < C(n, r). Then
n!

(r − 1)!(n − r + 1)! <
n!

r!(n − r)!
This yields

1

n − r + 1
<

1

r
; that is, n − r + 1 > r. So r <

n + 1

2
.

Conversely, let r <
n + 1

2
. By retracing the steps, it can be shown that C(n, r − 1) <

C(n, r).
29. proof (by PMI): Let P(r) denote the given statement. When r = 0, LHS = 1 = RHS, so

P(0) is true. Assume P(k) is true:
k∑

i=0

(
n + i

i

)

=
(

n + k + 1

k

)

Then
k+1∑

i=0

(
n + i

i

)

=
k∑

i=0

(
n + i

i

)

+
(

n + k + 1

k

)

=
(

n + k + 1

k

)

+
(

n + k + 1

k + 1

)

=
(

n + k + 2

k + 1

)

by Pascal’s identity. Thus, P(k) implies P(k + 1), so the result follows by induction.
31. proof (by PMI): Let P(n) denote the given statement. When n = 0, LHS = 1 = RHS. So

P(0) is true.

Assume P(k) is true for an arbitrary k ≥ 0:
k∑

i=0

(
k

i

)2
=
(

2k

k

)

Then
k+1∑

i=0

(
k + 1

i

)2
=

k+1∑

i=0

[(
k

i

)

+
(

k

i − 1

)]2

=
k+1∑

i=0

(
k

i

)

+
k+1∑

i=0

(
k

i − 1

)

+ 2
k+1∑

i=0

(
k

i − 1

)(
k

i

)

=
k∑

i=0

(
k

i

)

+
k∑

i=0

(
k

i − 1

)

+ 2
k∑

i=0

(
k

i − 1

)(
k

i

)

=
(

2k

k

)

+
(

2k

k

)

+ 2

(
2k

k + 1

)

= 2

[(
2k

k

)

+
(

2k

k + 1

)]

= 2

(
2k + 1

k + 1

)

Therefore, P(k) implies P(k + 1), so the result follows by induction.
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33. n(1 + x)n−1 =
n∑

r=1

(
n
r

)

rxr−1. Let x = −1. Then 0 =
n∑

r=1
r

(
n
r

)

(−1)r−1. That is,

1

(
n

1

)

+ 3

(
n

3

)

+ · · · = 2

(
n

2

)

+ 4

(
n

4

)

+ · · · so each = n2n−2, by Exercise 32.

35. proof: Let P(n) denote the given statement, where n ≥ 2. When n = 2, LHS = 1 = RHS.
So P(2) is true.

Assume P(k):
k∑

i=2

(
i
2

)

=
(

k + 1
3

)

, where k ≥ 2

Then
k+1∑

i=2

(
i

2

)

=
k∑

i=2

(
i

2

)

+
(

k + 1

2

)

=
(

k + 1

3

)

+
(

k + 1

2

)

=
(

k + 2

3

)

by Pascal’s identity. Therefore, P(k + 1) is true. Thus, by induction, the result holds for
every n ≥ 2.

37. proof: Let P(n) denote the given statement, where n ≥ 3. When n = 3, LHS = 1 = RHS.
So P(3) is true.

Assume P(k):
k∑

i=3

(
i

3

)

=
(

k + 1

4

)

, where k ≥ 3

Then
k+1∑

i=3

(
i

3

)

=
k∑

i=3

(
i

3

)

+
(

k + 1

3

)

=
(

k + 1

4

)

+
(

k + 1

3

)

=
(

k + 2

4

)

by Pascal’s identity. Therefore, P(k + 1) is true. Thus, by induction, the formula holds for
every integer n ≥ 3.

Exercises 1.6 (p. 48)
1. tn = tn−1 + n = tn−2 + (n − 1) + n = · · · = t1 + 2 + 3 + · · · + n = n(n + 1)/2

3. sn = sn−1 + (2n − 1) = sn−2 + (2n − 3) + (2n − 1) = · · ·
= s1 + 3 + 5 + · · · + (2n − 1) = 1 + 3 + 5 + · · · + (2n − 1) = n2

5. p1 = 1; pn = pn−1 + 3n − 2, n ≥ 2
7. RHS = n + 3tn−1 = n + 3(n − 1)n/2 = (n/2)(3n − 1) = pn = LHS
9. RHS = 4n(n − 1)/2 + n = n(2n − 1) = hn = LHS

11. LHS =
[

(n − 1)n

2

]2
+
[

n(n + 1)

2

]2
= n2

4
[(n − 1)2 + (n + 1)2] = n2

2
(n2 + 1) = tn2 =

RHS

13. LHS = (2n − 1)(2n)

2
= n2 = RHS

15. Since tk = tk−1 + k, the result follows by letting k = tn.
17. Let n = k(k + 1)/2 for some k ∈ Z+. Then 9n + 1 = 9k(k + 1)/2 = (3k + 1)(3k + 2)/2;

25n + 3 = 25k(k + 1)/2 + 3 = (5k + 2)(5k + 3)/2; and 49n + 6 = 49k(k + 1)/2 + 6 =
(7k + 3)(7k + 4)/2.

19. h1 = 1; hn = hn−1 + 4n − 3, n ≥ 2 21. 1, 7, 18, 34

en = en−1 + 5n − 4 = en−2 + [5(n − 1) − 4] + (5n − 4)23.

= en−2 + 5[(n − 1) + n] − 2 · 4
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= en−3 + 5[(n − 2) + (n − 1) + n] − 3 · 4

...

= e1 + 5(2 + 3 + · · · + n) − 4(n − 1)

= 1 + 5(2 + 3 + · · · + n) − 4(n − 1)

= 1 + 5[n(n + 1)/2 − 1] − 4(n − 1)

= 1 + 5n(n + 1)/2 − 5 − 4n + 4 = n(5n − 3)/2

25. o1 = 1; on = on−1 + 6n − 5, n ≥ 2
27. 21, 15; 171, 105 29. 55, 66, 666 31. 41616, 1413721
33. proof: Notice that 1 and 36 are both triangular numbers and square numbers. Let tn be

any triangular number that is also a square. Then 4tn is a square, and 8tn +1 is a square by
Exercise 4; so 4tn(8tn +1) is a square. But it is also the triangular number 8tn(8tn +1)/2.

35. By Exercise 34,
n∑

k=1

1

tk
= 2n

n + 1
. So as n → ∞, the RHS and hence the LHS approaches 2.

Exercises 1.7 (p. 52)
1. T1 = 1; T8 = 36; T49 = 1225; T288 = 41,616
3. S1 = 1; Sn = Sn−1 + n2, n ≥ 2

5.
n∑

k=1
pk =

n∑

k=1

k(3k − 1)

2
= 1

2

[

3
n∑

k=1
k2 −

n∑

k=1
k

]

= 1

2

[
3n(n + 1)(2n + 1)

6
− n(n + 1)

2

]

= n2(n + 1)

2

7. Pn = Pn−1 + n(3n − 1)

2
= Pn−2 + (n − 1)(3n − 4)

2
+ n(3n − 1)

2
= · · ·
= 1 + 2 · 5

2
+ 3 · 8

2
+ · · · + n(3n − 1)

2

= 1 · 2

2
+ 2 · 5

2
+ 3 · 8

2
+ · · · + n(3n − 1)

2
= 1

2

n∑

i=1

i(3i − 1)

= 1

2

[
3n(n + 1)(2n + 1)

6
− n(n + 1)

2

]

= n(n + 1)

4
[(2n + 1) − 1] = n2(n + 1)

2

9. H1 = 1; Hn = Hn−1 + n(2n − 1), n ≥ 2
11. 1, 8, 26, 60, 115

Exercises 1.8 (p. 57)

1. Cn = (2n)!
(n + 1)!n! = 1

n
· (2n)!
(n − 1)!(n + 1)! = 1

n

(
2n

n − 1

)
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3.

(
2n

n

)

−
(

2n

n − 2

)

= (2n)!
n!n! − (2n)!

(n − 2)!(n + 2)! = (2n)!
n!(n + 1)!

[

(n + 1)! − n(n − 1)

n + 2

]

= (2n)!
n!(n + 1)! · 2(2n + 1)

n + 2
= (2n)!(2n + 1)(2n + 2)

n!(n + 1)!(n + 2)

= (2n + 2)!
(n + 1)!(n + 2)! = Cn+1

5.

(
2n − 1

n − 1

)

−
(

2n − 1

n − 2

)

= (2n − 1)!
(n − 1)!n! − (2n − 1)!

(n − 2)!(n + 1)!

= (2n − 1)!
(n + 1)!n! [n(n + 1) − n(n − 1)]

= (2n − 1)!
(n + 1)!n! (2n) = (2n)!

(n + 1)!n! = Cn

7.

(
2n + 1

n + 1

)

− 2

(
2n

n + 1

)

= (2n + 1)!
(n + 1)!n! − 2

(2n)!
(n + 1)!(n − 1)! = (2n + 1)Cn − (2n)Cn = Cn

9. C6 =
2∑

r=0

(
5
2r

)

25−2rCr = 32 + 80 + 20 = 132

11. By Exercise 10, xC2(x) − C(x) + 1 = 0, so C(x) = 1 ± √
1 − 4x

2
. But every Cn > 0; so

C(x) = 1 + √
1 − 4x

2
.

Review Exercises (p. 60)

1.
n∑

i=1
i(i + 1) =

n∑

i=1
i2 +

n∑

i=1
i = n(n + 1)(2n + 1)

6
+ n(n + 1)

2
= n(n + 1)(n + 2)

3

3.
n∑

i=1

n∑

j=1
2i3j =

n∑

i=1
2i
( n∑

j=1
3j
)

= e
n∑

i=1
2i
(

3n+1 − 1

2
− 1

)

= 3n+1 − 3

2

( n∑

i=1
2i
)

= 3n+1 − 3

2
·
(

2n+1 − 1

2 − 1
− 1

)

= (2n − 1)(3n+1 − 3)

5.
n∏

i=1

n∏

j=1
2i3j =

n∏

i=1
2ni
( n∏

j=1
3j
)

=
n∏

i=1
2ni · 3(

∑
j) =

n∏

i=1
2ni · 3n(n+1)/2

= 3n2(n+1)/2 · 2(σni) = 3n2(n+1)/2 · 2n(
∑

i)

= 3n2(n+1)/2 · 2n·n(n+1)/2 = 6n2(n+1)/2

7.
n∏

i=1

i∏

j=1
2i =

n∏

i=1
2i2 = 2

n∑

i=1
i2

= 2n(n+1)(2n+1)/6

9. 22n
11. n · n = n2

13. 7 15. h(1) = 0
h(n) = h(n − 1) + 4(n − 1),n ≥ 2
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17. proof (by PMI): Let P(n): h(n) = 2n(n − 1). When n = 1, LHS = 0 = RHS. So P(1) is
true. Assume P(k) is true: h(k) = 2k(k−1). Then h(k+1) = h(k)+4k = 2k(k−1)+4k =
2k(k + 1). Therefore, P(k) implies P(k + 1), so the result follows by induction.

19. an = 2 · 3n, n ≥ 1

21. an =
n∑

i=1
(3i − 1) = 3

n∑

i=1
i − n = 3 · n(n + 1)

2
− n = (3n + 1)

2
, n ≥ 0

23. proof: Let a be any integer. Then 4a(a + 1) + 1 = 4a2 + 4a + 1 = (2a + 1)2, a square.
25. proof: Clearly, (3,4,5) is a solution: 32 + 42 = 52. Let k be any integer. Then (3k)2 +

(4k)2 = (5k)2, showing that (3k,4k,5k) is also a solution for every integer k.
27. proof (by PMI): When n = 1, LHS = 1

3 = RHS, so P(1) is true.

Assume P(k) is true:
k∑

i=1

1

(2i − 1)(2i + 1)
= k

2k + 1

Then
k+1∑

i=1

1

(2i − 1)(2i + 1)
=

k∑

i=1

1

(2i − 1)(2i + 1)
+ 1

(2k + 1)(2k + 3)

= k

2k + 1
+ 1

(2k + 1)(2k + 3)
= k(2k + 3) + 1

(2k + 1)(2k + 3)

= (k + 1)(2k + 1)

(2k + 1)(2k + 3)
= k + 1

2(k + 1) + 1

Therefore, P(k) implies P(k + 1), so the result holds by PMI.
29. When n = 1, RHS = 2 ·3 = a1 = LHS; so P(1) is true. Assume P(k) is true. Then ak+1 =

3ak = 3(2 ·3k) = 2 ·3k+1. So P(k) implies P(k+1). Thus, the result follows by induction.

31. When n = 0, RHS = 0 = a0 = LHS; so P(0) is true. Assume P(k) is true: ak = k(3k + 1)

2
.

Then ak+1 = ak + (3k + 2) = k(3k + 1)

2
+ (3k + 2) = (k + 1)(3k + 4)

2
.

Thus, P(k) implies P(k + 1), so the result follows by PMI.
33. Let P(n) denote the given statement, where 1 ≤ r ≤ n. When n = 1, LHS = 1 RHS; so

P(1) is true. Assume P(k) is true:
k∑

i=r
C(i, r) = C(k + 1, r + 1)

Then
k+1∑

i=r
C(i, r) =

k∑

i=r
C(i, r) + C(k + 1, r) = C(k + 1, r + 1) + C(k + 1, r)

= C(k + 2, r + 1)

Thus, P(k) implies P(k + 1), so the result follows by PMI.

35. LHS =
[

n(n + 1)

2

]2
−
[

(n − 1)n

2

]2
= n2

4
[(n + 1)2 − (n − 1)2] = n2

4
(4n) = n3

37. 1, 3, 6, 55, 66, 171, 595, 666
39. proof: tn + tn−1tn+1 = n(n + 1)/2 + (n − 1)n/2 · (n + 1)(n + 2)/2

= [n(n + 1)/2][1 + (n2 + n − 2)/2]
= n(n + 1)/2 · n(n + 1)/2 = t2n
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41. RHS = n(n + 1)

2
+ k(k + 1)

2
− (n + 1)k = n2 + k2 − 2nk + n − k

2

= (n − k)(n − k + 1)

2
= LHS

43. LHS = (n − 1)n

2
· k(k + 1)

2
+ n(n + 1)

2
· (k − 1)k)

2
= nk

2
(nk − 1) = RHS

45. proof (by PMI): When n = 1, the result is true. Assuming that
(nr)!
(r!)n is an integer,

[(n + 1)r]!
(r!)n+1

= (nr)!
r!n (n + 1) is also an integer. Thus, the result follows by induction.

47. a1 = 1 = a2
an = an−1 + an−2, n ≥ 3

Supplementary Exercises (p. 62)
1. (m2 − n2)2 + (2mn)2 = (m4 − 2m2n2 + n4) + 4m2n2 = m4 + 2m2n2 + n4 = (m2 + n2)2

3. 112 = 6 + 7 + 8 + · · · + 14 + 15 + 16; 132 = 7 + 8 + 9 + · · · + 17 + 18 + 19

5. RHS =
3n−2∑

i=n
i =

3n−2∑

i=1
i −

n−1∑

i=1
i = (3n−2)(3n−1)

2 − (n−1)n
2

= 4n2 − 4n + 1 = (2n − 1)2 = LHS

7. Let S denote the sum of the numbers in the first n bands of the array and Sd the sum of
an arithmetic sequence in the array with common difference d, where 2 ≤ d ≤ n + 1. To
establish the given formula, we compute the sum S in two different ways.
Notice that the common differences of the arithmetic sequences are 2,3,4, . . . , (n + 1),

. . . , and their nth terms are 2n−1,3n−2,4n−3, . . . , (n+1)n−n = n2, . . . , respectively.
The sum of the numbers Bn in the nth band is given by

Bn = Sn+1 + {(2n − 1) + (3n − 2) + (4n − 3) + · · · + [n · n − (n − 1)]}

= n

2
[2 · 1 + (n − 1)(n + 1)] +

[

n
n∑

i=2
i −

n−1∑

i=1
i

]

= (n2 + 1)

2
+ n

( n∑

i=1
i − 1

)

−
( n∑

i=1
i − n

)

= n(n2 + 1)

2
+ (n − 1)

n∑

i=1
i

= n(n2 + 1)

2
+ (n − 1) · n(n + 1)

2
= n(n2 + 1)

2
+ n(n2 − 1)

2
= n3

Thus, the sum of the numbers in each band is a cube. Adding the numbers band by band,

we get S =
n∑

i=1
Bi =

n∑

i=1
i3.

We can evaluate S in a different way also. Adding the sums of the arithmetic sequences
row by row,

S =
n+1∑

d=2
Sd =

n+1∑

d=2

{
n

2
[2 · 1 + (n − 1)d]

}

= n

2

[

2n + (n − 1)
n+1∑

d=2
d

]

= n

2

[

2n + (n − 1)

( n+1∑

d=1
d − 1

)]
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= n

2

[

2n + (n − 1)
(n + 1)(n + 2)

2
− (n − 1)

]

= n

2

[

n + 1 + (n + 2)(n2 − 1)

2

]

= n

4
(n3 + 2n2 + n) =

[
n(n + 1)

2

]2

Thus,
n∑

i=1
i3 =

[
n(n + 1)

2

]2
, as desired.

9. an = an−1 + (n − 1)

= an−2 + (n − 2) + (n − 1)

...

= a1 + 1 + 2 + 3 + · · · + (n − 1)

= 1 + n(n − 1)/2

11. We shall use the following identities:

(1) n

(
n − 1

k − 1

)

= k

(
n

k

)

(2)
n∑

k=0

(
n

k

)

= 2n (3)
n∑

k=1

(
n

k

)

= n2n−1

n∑

k=0

(
n

k

)

k2 =
n∑

k=0

(
n

k

)

k · k =
n∑

k=0
n

(
n − 1

k − 1

)

k = n
n∑

k=0

(
n − 1

k − 1

)

(k − 1 + 1)

= n
n∑

k=0

(
n − 1

k − 1

)

(k − 1) + n
n∑

k=0

(
n − 1

k − 1

)

= n
n∑

k=0
(n − 1)

(
n − 2

k − 2

)

+
n−1∑

k=1

(
n − 1

k − 1

)

= n(n − 1)
n−2∑

k=2

(
n − 2

k − 2

)

+ n
n−1∑

k=1

(
n − 1

k − 1

)

= n(n − 1)
n−2∑

k=0

(
n − 2

k

)

+ n
n−1∑

k=0

(
n − 1

k

)

= n(n − 1) · 2n−2 + n · 2n−1 = n(n + 1)2n−2

13. When n = 3, RHS = (13 + 33 + 63) + 2(14 + 34 + 64) = 244 + 2756 = 3000

= 3(1 + 3 + 6)3 = LHS

When n = 4, RHS = (13 + 33 + 63 + 103) + 2(14 + 34 + 64 + 104)

= 1244 + 22756 = 24000 = 3(1 + 3 + 6 + 10)3 = LHS

15. 1729 = 13 + 123 = 93 + 103 17. 113 + 123 + 133 + 143 = 203

19. Let S denote the sum of the numbers in the nth set and Si the sum of the numbers in the
first i sets. Then S = Sn − Sn−1.
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Number of elements in the first n sets = 1 + 7 + 13 + · · · + [6(n − 1) + 1]
= n

2
[1 + 6(n − 1) + 1] = n

2
(6n − 4) = 3n2 − 2n

Then Sn = (3n2 − 2n)(3n2 − 2n + 1)

2
= 9n4 − 12n3 + 7n2 − 2n

2

So Sn−1 = 9(n − 1)4 − 12(n − 1)3 + 7(n − 1)2 − 2(n − 1)

2

= 9n4 − 48n3 + 97n2 − 88n + 30

2
Therefore,

S = Sn − Sn−1 = 9n4 − 12n3 + 7n2 − 2n

2
− 9n4 − 48n3 + 97n2 − 88n + 30

2

= 18n3 − 45n2 + 43n − 15

21. Let Sn =
k∑

i=1
pi =

k∑

i=1

i(3i − 1)

2
, where k = n(n + 1)/2.

Then Sn = 1

2

[

3
k∑

i=1
i2 −

k∑

i=1
i

]

= k2(k + 1)

2
= (n2 + n)2[(n2 + n) + 2]

16

= (n2 + n)3 + 2(n2 + n)2

16
= n6 + 3n5 + 5n4 + 5n3 + 2n2

16

Changing n to n − 1, Sn−1 = n6 − 3n5 + 5n4 − 5n3 + 2n2

16

Therefore, the desired sum = Sn − Sn−1 = 6n5 + 10n3

16
= n3(3n2 + 5)

8

Chapter 2 Divisibility

Exercises 2.1 (p. 79)
1. 7, 1 3. −25, 0 5. 5 7. 4
9. 161 11. 2896 13. 138 15. 1695

17. T 19. F 21. F 23. T 25. F

27. 32 = (−3)2, but 3 �= −3. 29. 3|(4 + 5), but 3 � 4 and 3 � 5.

31. 28 33. 13/6 35. 135, 175, 315, 735

37. f (n) =
⎧
⎨

⎩

1 if n mod 3 = 0
3 if n mod 3 = 1
2 otherwise

39. proof: Because a|b and c|d, b = ma and d = nc for some integers m and n. Then bd =
mn(ac), so ac|bd.

41. proof: Let x = 2m + 1 and y = 2n + 1 be any two odd integers. Then x + y = (2m + 1) +
(2n + 1) = 2(m + n + 1), an even integer.
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43. proof: Let x be an even integer and y an odd integer. Then x = 2m and y = 2n + 1 for
some integers m and n. So x + y = (2m) + (2n + 1) = 2(m + n) + 1, which is an odd
integer.

45. proof (by contradiction): Let x be any integer such that x2 is odd. Suppose x is even,
so x = 2k for some integer k. Then x2 = (2k)2 = 2(2k2), an even integer, which is a
contradiction.

47. proof: Let x = 4m + 1 and y = 4n + 1 be any two integers of the given form. Then
x + y = (4m + 1) + (4n + 1) = 2(2m + 2n + 1), which is an even integer.

49. proof: Let x = 3m + 1 and y = 3n + 1 be any two integers of the given form. Then
x · y = (3m + 1) · (3n + 1) = 3(3mn + m + n) + 1, an integer of the same form.

51. proof: Assume the given conclusion is false. Then both integers are odd, and hence their
product is also odd. This contradicts the given hypothesis, so the result follows.

53. proof: Let n be an even integer, say, n = 2m. Then n2 + n = 4m2 + 2m = 2(2m2 + m),
which is an even integer. On the other hand, let n be an odd integer, say, n = 2m + 1. Then
n2 + n = (2m + 1)2 + (2m + 1) = 2(2m2 + 3m + 1), which is also an even integer.

55. proof: Let n be an even integer, say, n = 2m. Then n3 − n = 8m3 − 2m = 2(4m2 − m),
which is an even integer. On the other hand, let n be an odd integer, say, n = 2m + 1. Then
n3 − n = (2m + 1)3 − (2m + 1) = 2(4m3 + 6m2 + 2m), which is also an even integer.

57. Let A,B, and C be three arbitrary finite sets. Notice that A ∩ C = C ∩ A and (A ∩ B) ∩
(A ∩ C) = A ∩ B ∩ C.

|A ∪ B ∪ C| = |A ∪ (B ∪ C)| = |A| + |B ∪ C| − |A ∩ (B ∪ C)|
= |A| + |B ∪ C| − |(A ∩ B) ∪ (A ∩ C)|
= |A| + (|B| + |C| − |B ∩ C|) − [|A ∩ B| + |A ∩ C| − |(A ∩ B) ∩ (A ∩ C)|]
= |A| + |B| + |C| − |A ∩ B| − |B ∩ C| − |C ∩ A| + |A ∩ B ∩ C|

59. proof: Let n be any positive integer. Then n(n + 1)(n + 2)(n + 3) = [n(n + 3)][(n +
1)(n + 2)] = (n2 + 3n)(n2 + 3n + 2) = (n2 + 3n + 1)2 − 1. By Exercise 58, this cannot
be a square.

61. By Exercise 60, 3|(n + 3), so 3|n. Let n = 3m. Then 27m3 + (3m + 1)3 + (3m + 2)3 =
(3m + 3)3. Simplifying, we get 3m3 − 2m − 1 = 0; that is, (m − 1)(3m2 + 3m + 1) = 0.
Since 3m2 + 3m + 1 = 0 has no real solutions, m − 1 = 0; that is, m = 1, so n = 3.

63. proof (by PMI): When n = 1, n4 + 2n3 + n2 = 1 + 2 + 1 = 4 is divisible by 4. So P(1) is
true. Assume P(k) is true. Let k4 + 2k3 + k2 = 4m for some m ∈ Z+. Then

(k + 1)4 + 2(k + 1)3 + (k + 1)2 = (k4 + 2k3 + k2) + 4(k3 + 3k2 + 2k + 1)

= 4m + 4(k3 + 3k2 + 2k + 1) = 4(m + k3 + 3k2 + 2k + 1)

which is divisible by 4. Thus P(k) implies P(k + 1), so the result follows by PMI.

65. proof: 42n + 10n − 1 = (5 − 1)2n + 10n − 1 =
2n∑

r=0

(
2n

r

)

52n−r(−1)r + 10n − 1

=
2n−2∑

r=0

(
2n

r

)

52n−r(−1)r − 10n + 1 + 10n − 1



Chapter 2 Divisibility 679

=
2n−2∑

r=0

(
2n

r

)

52n−r(−1)r

= 52n −
(

2n

1

)

52n−1 + · · · +
(

2n

2n − 2

)

52

which is clearly divisible by 25.

Exercises 2.2 (p. 87)
1. 13 3. 1022 5. 10000110100two

7. 3360eight 9. 15eight 11. 72eight
13. 1Dsixteen 15. 75sixteen 17. 110110two

19. 1000110111two

19 = 1 + 2 + 1621.

19 · 31 = 1 · 31 + 2 · 31 + 16 · 31

= 31 + 62 + 496 = 589

29 = 1 + 4 + 8 + 1623.

29 · 49 = 1 · 49 + 4 · 49 + 8 · 49 + 16 · 49

= 49 + 196 + 392 + 784 = 1421

25.
19 9 4 2 1
31� 62� 124 248 496� 19 · 31 = 31 + 62 + 496 = 589

27.
29 14 7 3 1
49� 98 196� 392� 784� 29 · 47 = 49 + 196 + 392 + 784 = 1421

29.
1 2 4 8 16

19 38 76� 152� 304

243 = 152 + 76 + 15
quotient = 8 + 4 = 12

remainder = 15

31.
1 2 4 8 16 32 64

35 70� 140 280 560� 1120� 2240

1776 = 1120 + 560 + 70 + 26
quotient = 32 + 16 + 2 = 50

remainder = 26
33. 110, 1011, 10110, 11011, 101010
35. 0; 1 37. 2 39. 5
41. If n ≥ 22, then n3 will contain at least 5 digits and n4 at least 6 digits, so together they will

contain at least 11 digits. If n ≤ 17, together they will contain at most 9 digits. Therefore,
18 ≤ n ≤ 21. n = 19, 20, or 21 does not work, but n = 18 works: 183 = 5832 and 184 =
104976.

43. 4 45. n 47. 165 49. 101
51. 210 = 1024, 220 = . . .6, 240 = . . .6. Therefore, 2100 = 240 · 240 · 220 = . . .6 × . . .6 ×

. . .6 = . . .6, so the ones digit is 6.
53. 10ABtwelve
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Exercises 2.3 (p. 97)
1. + 0 1 2 3 4

0 0 1 2 3 4
1 1 2 3 4 10
2 2 3 4 10 11
3 3 4 10 11 12
4 4 10 11 12 13

3. 110two 5. 1000seven

7. 4 ≤ b ≤ 7 9. 3174eight
11. 87ECsixteen 13. 206seven

15. ABBsixteen 17. 10100two

19. 42B5twelve

21. × 0 1 2 3 4 5 6
0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6
2 0 2 4 6 11 13 15
3 0 3 6 12 15 21 24
4 0 4 11 15 22 26 33
5 0 5 13 21 26 34 42
6 0 6 15 24 33 42 51

23. 133102five
25. A010twelve
27. 132011five
29. B706twelve
31. 3071730eight
33. 889C98sixteen

Exercises 2.4 (p. 102)
1. 21, 28 3. 51, 70 5. 56, 84 7. 13, 21

9. 16 + 9 = 25
25 + 11 = 36

11. 1 + 4 + 9 + 16 + 25 = 55
1 + 4 + 9 + 16 + 25 + 36 = 91

13. 1 + 4 · 6 = 25
1 + 5 · 7 = 36

15. 111111 · 111111 = 12345654321
1111111 · 1111111 = 1234567654321

17. 12345679 · 54 = 666666666
12345679 · 63 = 777777777

19. 1 1 0 0 1 1
1 0 1 0 1 0 1

21. 1 + 2 + 3 + · · · + n = n(n + 1)/2 23. 1 + 2 + 4 + · · · + 2n = 2n+1 − 1
25. (n + 1)3 − (n + 1) = n(n + 1)(n + 2) 27. 66 . . .66︸ ︷︷ ︸

n sixes

7 × 66 . . .66︸ ︷︷ ︸
n sixes

7 = 44 . . .44︸ ︷︷ ︸
n+1 4s

88 . . .88︸ ︷︷ ︸
n 8s

9

29. 33 . . .33︸ ︷︷ ︸
n threes

4 × 33 . . .33︸ ︷︷ ︸
n threes

4 31. 102n − 10n + 1 = 99 . . .99︸ ︷︷ ︸
n 9s

00 . . .00︸ ︷︷ ︸
n 0s

1

= 11 . . .11︸ ︷︷ ︸
n+1 1s

55 . . .55︸ ︷︷ ︸
n 5s

6

33. proof (by PMI): Let P(n):
n∑

i=1
i2 = n(n + 1)(2n + 1)/6, where n ≥ 1. Clearly, P(1) is true.

Assume P(k) is true for any integer k ≥ 1. Then

k+1∑

i=1
i2 =

k∑

i=1
i2 + (k + 1)2 = k(k + 1)(2k + 1)

6
+ (k + 1)2 = (k + 1)

(2k2 + k) + 6(k + 1)

6

= (k + 1)(k + 2)[2(k + 1) + 1]
6

Because P(k) implies P(k + 1), the result follows by PMI.
35. proof: 1 + n(n + 2) = n2 + 2n + 1 = (n + 1)2
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proof: RHS = 123 . . . (n − 1)n(n − 1) . . .32137.

= 1 · 102n−2 + 2 · 102n−3 + 3 · 102n−4 + · · · + 3 · 102 + 2 · 10 + 1 · 100

= 102n−2 + 102n−3 + 102n−4 + · · · + 102 + 10 + 1

+ 102n−3 + 102n−4 + · · · + 102 + 10

+ 102n−4 + · · · + 102

...

+ 10n + 10n−1 + 10n−2

+ 10n−1

= 102n−1 − 1

9
+
(

102n−2 − 1

9
− 10 − 1

9

)

+
(

102n−3 − 1

9
− 102 − 1

9

)

+· · · +
(

10n − 1

9
− 10n−1 − 1

9

)

= 1

9
{(102n−1 + 102n−2 + 102n−3 + · · · + 10n) − [(10 − 1) + (102 − 1)

+ · · · + (10n−1 − 1)] − n}
= 1

9

[(
102n − 1

9
− 10n − 1

9

)

− (10 + 102 + · · · + 10n−1) + (n + 1) − n

]

= 1

9

(
102n − 1

9
− 10n − 1

9
− 10n − 1

9
+ 1 + n − 1 − n

)

= 1

9

(
102n − 1

9
− 2 · 10n − 1

9

)

= 102n − 2 · 10n + 1

81
= (10n − 1)(10n + 1)

81
= 10n − 1

9
· 10n + 1

9
= 111 . . .1︸ ︷︷ ︸

n ones

×111 . . .1︸ ︷︷ ︸
n ones

= LHS

39. It fails when n = 10. 41. 123454321, 12345654321
43. no 45. 2n − 1 = n2 − (n − 1)2

47. 11 12 13 14 15
16 17 18 19 20 21

49.
n(n2 + 1)

2
51. n(n − 1) + 1,n(n + 1) − 1

RHS = 123 . . . (n − 1)53.

= 1 · 10n−2 + 2 · 10n−3 + 3 · 10n−4 + · · · + (n − 2) · 10 + (n − 1)

= 10n−2 + 10n−3 + 10n−4 + · · · + 10 + 1

+ 10n−3 + 10n−4 + · · · + 10 + 1

+ 10n−4 + · · · + 103 + 1
. . .

+ 102 + 10 + 1

+ 10 + 1

+ 1
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=
(

10n−1 − 1

9
+ 10n−2 − 1

9
+ 10n−3 − 1

9
+ · · · + 103 − 1

9
+ 102 − 1

9

)

+ 10 − 1

9

= 1

9

[
(10n−1 + 10n−2 + 10n−3 + · · · + 10 + 1) − (n − 1) − 1

]

= 1

9

(
10n − 1

9
− n

)

= 10n − 9n − 1

81
= LHS

123 . . .n = 1 · 10n−1 + 2 · 10n−2 + 3 · 10n−3 + · · · + (n − 1) · 10 + n55.

= 10n−1 + 10n−2 + 10n−3 + · · · + 102 + 10 + 1

+ 10n−2 + 10n−3 + · · · + 102 + 10 + 1
. . .

+ 102 + 10 + 1

+ 10 + 1

+ 1

=
(

10n − 1

9
+ 10n−1 − 1

9
+ · · · + 103 − 1

9
+ 102 − 1

9

)

+ 10 − 1

9

= 1

9

(
10n+1 − 1

9
− 1 − n

)

= 10n+1 − 9n − 10

81

LHS = 123 . . .n × 8 + n = 8(10n+1 − 9n − 10)

81
+ n = 80 · 10n + 9n − 80

81

= (81 − 1)10n + 9n − 81 + 1

81

= 10n − 10n − 9n − 1

81
− 1 = 987 . . . (10 − n)

= RHS, by Exercises 53 and 54

Exercises 2.5 (p. 126)
1. F 3. F 5. F 7. T 9. T

11. no, since 3|129. 13. no, since 7|1001.
15. 15 17. 24 19. 24, 25, 26, 27, 28
21. 362882 through 362889 23. 39916802 through 39916811

25. 5, 7 27. 7 29. 23
31. 37 33. 101 35. n = 4
37. x − y = (n + 1)/2 − (n − 1)/2 = 1, so x − y is a trivial factor of n.
39. 1,p,q,pq,p2,p2q 41. 1,p,q,pq,p2,q2,p2q,pq2,p2q2

43. 2 · 3 · 7 · 43 + 1 = 1807 = 13 · 139
45. proof: Let n and n + 1 be any two consecutive integers that are primes. Because they are

consecutive integers, one of them is even. Suppose it is n. Then 2|n. But n is a prime, so
n = 2 and hence n + 1 = 3. The case that n + 1 is even yields n = 1, a contradiction.
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47. proof: Because p2 + 8 is prime, p must be odd. By the division algorithm, p is of the
form 3n, 3n − 1, or 3n + 1. If p = 3n ± 1, then p2 + 8 = (3n ± 1)2 + 8 = 9n2 ± 6n + 9 is
divisible by 3. So p = 3n, and hence n = 1 and p = 3. Then p3 + 4 = 31 is a prime.

49. Since p <
p + q

2
< q, and p and q are successive odd primes, r = p + q

2
cannot be a

prime. So r is composite.
51. Since p2 + 2 is a prime, p ≥ 3. When p = 3, both p2 + 2 = 11 and p3 + 2 = 29 are

primes. Suppose p > 3. By the division algorithm, p is of the form 3q ± 1. Then p2 + 2 =
(3q ± 1)2 + 2 = 9q2 ± 6q + 3, so 3|(p2 + 2) and hence p2 + 2 is not a prime. Thus p = 3.

53. proof (of the contrapositive): If p is even, p must be 2. Then p + 2 = 4 is not a prime.
55. proof: Let p be any odd prime. By the division algorithm, p is of the form 4n, 4n + 1,

4n + 2, or 4n + 3. Since p is odd, it must be of the form 4n + 1 or 4n + 3.
57. proof: Let n = ab. Then 2n − 1 = 2ab − 1 = (2a − 1)[2(b−1)a + 2(b−2)a + · · · + 1],

a composite number.
59. proof (by contradiction): Suppose there is a positive integer > 1 that has no prime fac-

tors. Then the set of positive integers that have no prime factors is nonempty, so by the
well-ordering principle, it has a least element n. Because n has no prime factors and n|n,
n cannot be a prime. Let n = ab, where 1 < a,b < n. Since 1 < a < n, a has a prime
factor p. Since p|a and a|n,p|n, which is a contradiction. Thus, every positive integer > 1
has a prime factor.

61. yes 63. yes
65. 1111 = 11 · 101 and 11111 = 41 · 271, so both R4 and R5 are composite.
67. Three and 5 are primes, but R3 = 111 = 3 · 37 and R5 = 11111 = 41 · 271 are not primes.
69. 3–5–7, 61–67–71
71. proof (by PMI): Because E6 = 30031 < 83521 = p4

7, the result is true when n = 6. As-
sume it is true for an arbitrary n ≥ 6. Then En+1 = Enpn+1 − (pn+1 − 1) < Enpn+1 <

(pn+1)n−2pn+1 = (pn+1)n−1 < (pn+2)n−1. Thus, by induction, the result is true for all
n ≥ 6.

73. proof: Let N = p1p2 · · ·pn + 1. By Lemma 2.1, N has a prime factor p. Because pi � N
for 1 ≤ i ≤ n, p ≥ pn+1. Since p|N, p ≤ N. Therefore, pn+1 ≤ N.

75. proof: Since Cn = (2n)!
(n + 1)!n! , (n + 2)Cn+1 = (4n + 2)Cn. Assume that Cn is a prime for

some n. It follows from Segner’s formula that if n > 3, then
n + 2

Cn
< 1; so Cn > n + 2.

Consequently, Cn | Cn+1, so Cn+1 = kCn for some positive integer k. Then 4n + 2 =
k(n + 2), hence 1 ≤ k ≤ 3 and thus n ≤ 4. It follows that C2 and C3 are the only Catalan
numbers that are prime.

Exercises 2.6 (p. 137)
1. Fn = Fn+1 − Fn−1

Fn−1 = Fn − Fn−2
...

F3 = F4 − F2
F2 = F3 − F1
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Adding,
n∑

i=2
Fi = (F3 + · · · + Fn−1 + Fn + Fn+1) − (F1 + F2 + · · · + Fn−1)

= Fn + Fn+1 − F1 − F2

That is,
n∑

i=1
Fi = Fn + Fn+1 − F2 = Fn+2 − 1

3. 33 5. 232
7. proof (by strong version of PMI): Let P(n) denote the statement that an = Fn − 1, where

n ≥ 1. Because a0 = 0 = F1 − 1, P(1) is true. Now assume that P(1), P(2), . . . , and P(k)
are true for an arbitrary integer k ≥ 1. Since Fn+1 = Fn + Fn−1, an+1 = an + an−1 =
(Fn − 1) + (Fn−1 − 1) = (Fn + Fn−1) − 2 = Fn+1 − 2 = an+1 − 1. Thus, P(k + 1) is
true, so the result follows by PMI.

9. proof: ai = Fi − 1. Therefore,
n∑

i=1
ai =

n∑

i=1
Fi − n = (Fn+2 − 1) − n = Fn+2 − 1 − n =

(an+2 + 1) − 1 − n = an+2 − n
11. 1; 2; 1.5; 1.66666667; 1.6; 1.625; 1.61538462; 1.61904762; 1.61764706; 1.61818182

13.
n∑

i=1
F2i−1 = F2n 15.

n∑

i=1
Li = Ln+2 − 3

17.
n∑

i=1
L2i = L2n+1 − 1 19.

n∑

i=1
L2

i = LnLn+1 − 2

(In Exercises 20–30, P(n) denotes the given predicate.)

21. basis step When n = 2, LHS = −1 = RHS. So P(2) is true.
induction step Assume P(k) is true: F2

k − Fk−1Fk+1 = (−1)k−1. Then

F2
k+1 − FkFk+2 = F2

k+1 − Fk(Fk + Fk+1) = F2
k+1 − F2

k − FkFk+1

= F2
k+1 − [Fk−1Fk+1 + (−1)k−1] − FkFk+1

= F2
k+1 − Fk+1(Fk−1 + Fk) + (−1)k

= F2
k+1 − Fk+1Fk+1 + (−1)k = 0 + (−1)k = (−1)k

Thus, P(k) implies P(k + 1), so the result holds for every n ≥ 1.
23. basis step When n = 1, LHS = 1 = RHS; so P(1) is true.

induction step Assume P(n) is true for an arbitrary integer n ≥ 1. Then

n+1∑

i=1

F2i−1 =
n∑

i=1

F2i−1 + F2n+1 = F2n + F2n+1 = F2n+2

Thus, P(n) implies P(n + 1), so, by induction, the result is true for every n ≥ 1.
25. basis step When n = 1, LHS = 1 = RHS; so P(1) is true.

induction step Assume P(n) is true for an arbitrary integer n ≥ 1. Then

n+1∑

i=1

Li =
n∑

i=1

Li + Ln+1 = (Ln+2 − 3) + Ln+1 = (Ln+1 + Ln+2) − 3 = Ln+3 − 3

Thus, P(n) implies P(n + 1), so, by induction, the result is true for every n ≥ 1.
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27. basis step When n = 1, LHS = 3 = RHS; so P(1) is true.
induction step Assume P(n) is true for an arbitrary integer n ≥ 1. Then

n+1∑

i=1

L2i =
n∑

i=1

L2i + L2n+2 = (L2n+1 − 1) + L2n+2

= (L2n+1 + L2n+2) − 1 = L2n+3 − 1

Thus, P(n) implies P(n + 1), so, by induction, the result is true for every n ≥ 1.
29. basis step When n = 1, LHS = 1 = RHS; so P(1) is true.

induction step Assume P(n) is true for an arbitrary integer n ≥ 1. Then

n+1∑

i=1

L2
i =

n∑

i=1

L2
i + L2

n+1 = (LnLn+1 − 2) + L2
n+1

= Ln+1(Ln + Ln+1) − 2 = Ln+1Ln+2 − 2

Thus, P(n) implies P(n + 1), so, by induction, the result is true for every n ≥ 1.
31. Because |A| = −1, |An| = |A|n = (−1)n. Therefore, Fn+1Fn−1 − F2

n = |An| = (−1)n.
33. Because α and β are solutions of the equation x2 = x + 1, α + β = 1. Therefore, b2 =

α2 − β2

α − β
= α + β = 1.

35. u1 = α + β = 1, by Exercise 33.
37. Because α and β are solutions of the equation x2 = x + 1, α2 = α + 1 and β2 = β + 1. So

un−1 + un−2 = (αn−1 + βn−1) + (αn−2 + βn−2) = αn−2(α + 1) + βn−2(β + 1)

= αn−2 · α2 + βn−2 · β2 = αn + βn = un

Fn−1 + Fn+1 = αn−1 − βn−1

α − β
+ αn+1 − βn+1

α − β
= αn−1(1 + α2) − βn−1(1 + β2)

α − β
39.

= αn−1(
√

5α) − βn−1(−√
5β)

α − β
= αn + βn = Ln

Ln−1 + Ln+1 = (αn−1 + βn−1) + (αn+1 + βn+1) = αn−1(1 + α2) + βn−1(1 + β2)41.

= αn−1(
√

5α) + βn−1(−√
5β) = √

5(αn − βn) = 5Fn

F2
n+1 − F2

n−1 = (αn+1 − βn+1)2 − (αn−1 − βn−1)2

5
43.

= [α2n+2 + β2n+2 − 2(αβ)n+1] − [α2n−2 + β2n−2 − 2(αβ)n+1]
5

= α2n(α2 − α−2) + β2n(β2 − β−2)

5

= α2n(α2 − β2) + β2n(β2 − α2)

5

= α2n − β2n

α − β
= F2n
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45. a1 = 2, a2 = 3; an = an−1 + an−2, n ≥ 3

Exercises 2.7 (p. 142)
1. 257; 65537
3. proof (by PMI): Let P(n) denote the statement that the ones digit in fn is 7, where n ≥

2. Because f2 = 17, P(2) is true. Now assume P(k) is true for an arbitrary integer k ≥
2. By Theorem 2.16, fk+1 = f 2

k − 2fk + 2. Because fk ends in 7, f 2
k − 2fk + 2 ends in

9 − 4 + 2 = 7. Thus, P(k + 1) is true, so, by PMI, every fn ends in 7 for n ≥ 2.
5. proof (by contradiction): Assume m is not a prime, say, m = ab. Then 2ab − 1 =

(2b − 1)(2(a−1)b + 2(a−2)b + · · · + 2b + 1), so (2b − 1)|(2ab − 1), a contradiction.
7. proof: When k ≥ 3, tk = k(k + 1)/2 ends in 1, 3, 5, 6, or 8. Thus, the only Fermat number

that is also triangular is 3.

9. yes; 5 · 27 + 1 = 5 · 128 + 1 = 641. 11. no 13. yes

Review Exercises (p. 146)
1. 1666 3. 2036 5. 1024 7. 2989
9. 11110101two 11. 2305eight 13. 100001two 15. 4233658sixteen

17. 265eight 19. 463eight 21. B5sixteen 23. 133sixteen

25. n2

27. an =
{

n(n + 2)/4 if n is even
(n + 1)2/4 otherwise

29. proof: Let P(n) denote the given statement. Since 3|0, P(1) is true. Now assume P(k)
is true for an arbitrary integer k ≥ 1: k3 − k = 3m for some integer m. Then (k + 1)3 −
(k + 1) = (k3 − k) + 3(k2 + k) = 3m + 3(k2 + k) is divisible by 3, so P(k + 1) is true.
Thus, the result follows by PMI.

31. proof: When n = 1, LHS = 1

3
= RHS. So P(1) is true. Assume P(k) is true:

k∑

i=1

1

(2i − 1)(2i + 1)
= k

2k + 1
. Then

k+1∑

i=1

1

(2i − 1)(2i + 1)

=
k∑

i=1

1

(2i − 1)(2i + 1)
+ 1

(2k + 1)(2k + 3)
= k

2k + 1
+ 1

(2k + 1)(2k + 3)

= k(2k + 3) + 1

(2k + 1)(2k + 3)
= (k + 1)(2k + 1)

(2k + 1)(2k + 3)
= k + 1

2(k + 1) + 1
.

Thus, P(k) implies P(k + 1), so the result follows by PMI.
33. proof: Let P(n): We must select at least 2n + 1 socks to ensure n matching pairs. By the

PHP, P(1) is true. Assume P(k) is true, that is, we must select at least 2k + 1 socks to
ensure k matching pairs. Add one matching pair. This ensures k + 1 matching pairs by
selecting (2k + 1)+ 2 = 2(k + 1)+ 1 socks. Therefore, P(k) implies P(k + 1). Thus, P(n)

is true for every integer n ≥ 1.
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35. 777777 · 999999 = 777776222223
7777777 · 9999999 = 77777762222223

37. composite, since 3|327. 39. prime

41. 32 43. 35 45. 5042 through 5047

47. 87, 178, 291, 202 through 87, 178, 291, 214

p1 = 2 = 2 · 1 p2 = 3 = 1 + 2 p3 = 5 = 1 − 2 + 2 · 3

p4 = 7 = 1 − 2 + 3 + 5 p5 = 11 = 1 − 2 + 3 − 5 + 2 · 7

p6 = 13 = 1 + 2 − 3 − 5 + 7 + 11 p7 = 17 = −1 − 2 + 3 − 5 + 7 − 11 + 2 · 13

p8 = 19 = 1 − 2 − 3 − 5 + 9 − 11 + 13 + 17

51. Let p = 29. Then 229 + 1 = 536,870,913 = 3 · 59 · 3,033,169. So q = 59 · 3,033,169 is not
a prime.

53. proof: n4 − n2 = n2(n2 − 1) = n(n − 1)n(n + 1) is divisible by 3.
55. proof: By the division algorithm, every odd integer n is of the form 4k + 1 or 4k + 3. If

n = 4k + 1, then n2 = (4k + 1)2 = 16k2 + 8k + 1 = 8(2k2 + k) + 1. If n = 4k + 3, then
n2 = (4k + 3)2 = 16k2 + 24k + 1 = 8(2k2 + 3k) + 1. Thus, in both cases, n2 is of the
form 8m + 1.

57. Since b3n ± 1 = (bn)3 ± 13 = (bn ± 1)(b2n ∓ 1),b3n ± 1 is composite for n ≥ 1.
59. proof (by R. L. Patton): Let N be the given number. Then N = (3655n − 3482n) −

(2012n − 1848n). Since 3655 − 3482 = 173 = 2021 − 1848 and a − b|an − bn, 173|N. N
is the difference of two odd numbers, 2|N. Therefore, 2 · 173 = 346|N.

61. F2 = 1, not a prime; F19 = 4181 = 37 · 113, not a prime.

63. yes 65. yes

67. proof: Let P(n) denote the given statement. When n = 1, LHS = 1 = RHS, so P(1)

is true. Assume P(k) is true: Fk = (αk − βk)/(α − β). Because xn = xFn + Fn−1,
xn+1 = xFn+1 + Fn. Therefore, αn+1 = αFn+1 + Fn and βn+1 = βFn+1 + Fn. Then
αn+1 − βn+1 = (α − β)Fk+1, so P(k + 1) is true. Thus, the result follows by induc-
tion.

69. proof (by PMI): Let P(n) be the statement that F3n−2 and F3n−1 are odd, and F3n is even.
Because F1 and F2 are odd, and F3 is even, P(1) is true. Now assume P(k) is true: F3k−2
and F3k−1 are odd, and F3k is even. Because F3(k+1) = F3k+3 = F3k+2 + F3k+1 =
(F3k+1 + F3k) + (F3k + F3k−1) = 2F3k + (F3k+1 + F3k−1) is even by the inductive
hypothesis. Thus, the result follows by PMI.

Supplementary Exercises (p. 148)
1. x = 40 3. 6174

5. K1(1968) = 8172; K2(1968) = K(8172) = 7443; K3(1968) = K(7443) = 3996;
K4(1968) = K(3996) = 6264; K5(1968) = K(6264) = 4176; K6(1968) = K(4176) =
6174.

7. 113, 131, 311, 199, 919, 991, 337, 373, 733 9. 3779, 9377, 7937,7793
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11. If a cyclic prime N contains 0, 2, 4, 6, or 8, then some permutation of N will end in 0, 2,
4, 6, or 8; the resulting number would not be a prime. Similarly, it cannot contain 5.

13. 2, 3, 5, 7, 11, 13, 17, 31, 37, 71, 73, 79, 97
15. 337 is a reversible prime, but not palindromic.
17. Because the ith step leads to a new lucky number for every positive integer i, there are

infinitely many lucky numbers.
19. even; even
21. S1 = 1; Sn = [(bn − b) + (b − 1)]/(b − 1) = bSn−1 + 1, n ≥ 2
23. proof: When b = a2, Sn = (a2n − 1)/(a2 − 1) = (an − 1)(an + 1)/(a2 − 1). When n is

even and > 2, a2 − 1|an − 1. When n is odd and > 2,a − 1|an − 1 and a + 1|an + 1. In
both cases, Sn is composite.

25. 2n(3n4 + 13n2 + 8) = 6n5 + 26n3 + 16n = (4n3 + 12n)n2 + (2n4 + 14n2 + 16)n

= n2(n4 + 2n3 + 7n2 + 6n + 8) + n(n4 + 2n3 + 7n2 + 6n + 8)

− n2(n4 − 2n3 + 7n2 − 6n + 8) + n(n4 − 2n3 + 7n2 − 6n + 8)

= (n2 + n)(n4 + 2n3 + 7n2 + 6n + 8) − (n2 − n)(n4 − 2n3 + 7n2 − 6n + 8)

= (n2 + n)(n2 + n + 2)(n2 + n + 4) − (n2 − n)(n2 − n + 2)(n2 − n + 4)

Let n2 + n = n(n + 1) = 2m. Then K = (n2 + n)(n2 + n + 2)(n2 + n + 4) = 2m(2m +
2)(2m + 4) = 8m(m + 1)(m + 2). Because m(m + 1)(m + 2) is the product of three
consecutive integers, it is divisible by 6. Therefore, 48|K. Similarly, 48|L, where L =
(n2 − n)(n2 − n + 2)(n2 − n + 4). So 48|(K − L). Thus 24|[n(3n4 + 13n2 + 8)].

27. A = 1, B = 27721; A = 1, B = 11! + 1. (If A = B, then A + n|B + n.)

29. g1 = 2, g2 = 3
gn = gn−1 + gn−2, n ≥ 3

31. f (n,1) = 1

f (n,n) =
{

1 if n = 0 or 1
0 otherwise

f (n, k) = f (n − 2, k − 1) + f (n − 1, k)

33. an =
{

1 if n = 0
(1 + an−1)/k if n ≥ 1

35. proof (by PMI): Let P(n) be the statement that an = (kn + k − 2)/[kn(k − 1)]. Clearly,
P(0) is true. Assume P(n) is true for an arbitrary integer n ≥ 0. Then

an+1 = (1 + an)/k = {1 + (kn + k − 2)/[kn(k − 1)]}/k

= [kn(k − 1) + kn + k − 2]/kn+1(k − 1) = (kn+1 + k − 2)/kn+1(k − 1)

Thus P(k + 1) is true. Hence, the result follows by PMI.

37. Let P(k) denote the sum of the first k Fibonacci numbers. Then P(k) =
k∑

i=1
Fi = Fk+2 −1.

So Sn = P[n(n + 1)/2] − P[n(n − 1)/2] =
n(n+1)/2∑

i=1
Fi −

n(n−1)/2∑

i=1
Fi

= Fn(n+1)/2+2 − Fn(n−1)/2+2
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Exercises 3.1 (p. 165)
1. T 3. F 5. F 7. T 9. F 11. F

13. 4 = (−1) · 24 + 1 · 28 15. 1 = 5 · 21 + (−4) · 26

17. 12 19. 8 21. n 23. 1
25. 1 27. a 29. a 31. a + b

33. a2 − b2 35. 3 = (−1) · 15 + 1 · 18 + 0 · 24

37. 1 = (−1) · 15 + 2 · 18 + (−1) · 20 + 0 · 28
39. (15,24,28,45) = ((15,24,28),45) = (((15,24),28),45) = ((3,28),45) = (1,45) = 1
41. (18,24,36,63) = ((18,24,36),63) = (((18,24),36),63) = ((6,36),63) = (6,63) = 3
43. (a2b2,ab3,a2b3,a3b4,a4b4) = ((a2b2,ab3,a2b3,a3b4),a4b4) = (((a2b2,ab3,a2b3),

a3b4),a4b4) = ((((a2b2,ab3),a2b3),a3b4),a4b4) = (((ab2,a2b3),a3b4),a4b4) =
((ab2,a3b4),a4b4) = (ab2, a4b4) = ab2

45. Let a = 4, b = 6, and c = 8
47. proof: Let d = (a,b) and d′ = (a,−b). Because d|b, d| − b. Thus d|d′. Similarly, d′|d.

Thus d = d′.
49. proof: By Exercises 47 and 48, (−a,−b) = (a,−b) = (a,b).
51. proof: Let d = (a,b), so d = αa + βb for some integers α and β . Then dc = α(ac) +

β(bc). Thus dc = (ac,bc); that is, c(a,b) = (ac,bc).
53. proof: Let d = (p,a) and d > 1. Then d|p and d|a. Because d|p, d = p, so p|a, a contra-

diction. Thus (p,a) = 1.
55. proof (by PMI): Let P(n) denote the given statement. Clearly, P(2) is true. As-

sume P(k) is true for an arbitrary integer k ≥ 2. Because d = (a1,a2, . . . ,ak+1) =
((a1,a2, . . . ,ak),ak+1),d|(a1,a2, . . . ,ak) and d|ak+1. By the inductive hypothesis, d|ai
for every i, where 1 ≤ i ≤ k. So d|ai for every i, where 1 ≤ i ≤ k + 1. Thus, the result
follows by PMI.

57. proof: By Theorem 3.4, (a,a − b) = (a,b). Thus, (a,a − b) = 1 if and only if (a,b) = 1.
59. proof: Since (a,b) = 1 = (a, c), ra + sb = 1 = xa + yc for some integers r, s, x, and y.

Then (ra + sb)(xa + yc) = 1; that is, αa +βbc = 1, where α = rxa + yc + sxb and β = sy.
61. proof: Let (a2 + b2,a2 + 2ab) = 1 or 5. Let d = (a,b). Then a = αd and b = βd, where

(α,β) = 1. Then a2 + b2 = (α2 + β2)d2 and a2 + 2ab = (α2 + 2αβ)d2; so d2|(a2 +
b2,a2 + 2ab). Thus, d2|1 and d2|5. In either case, d = 1. Thus (a,b) = 1.

63. proof: Let d = (an − 1,am + 1). Then an = rd + 1 and am = sd − 1 for some integers r
and s. Then, by the binomial theorem

amn = (an)m = (rd + 1)m =
m∑

i=0

(
m

i

)

(rd)i = 1 + Ad

and

amn = (am)n = (sd − 1)n = (−1)n
n∑

j=0

(
n

j

)

(−sd)j = −
n∑

j=0

(
n

j

)

(−sd)j = Bd − 1

for some integers A and B. Thus, 1 + Ad = Bd − 1, where A �= B. Then (B − A)d = 2, so
d|2. Thus, d = 1 or 2.
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65. proof:
a(a + b − 1)!

a!b! =
(

a + b − 1

a − 1

)

and
b(a + b − 1)!

a!b! =
(

a + b − 1

b − 1

)

. Then

(a,b)
(a + b − 1)!

a!b! =
(

a(a + b − 1)!
a!b! ,

b(a + b − 1)!
a!b!

)

=
((

a + b − 1

a − 1

)

,

(
a + b − 1

b − 1

))

is an integer. Thus, a!b!|(a,b)(a + b − 1)!.
67. proof: We have (Fm,Fn) = F(m,n). Suppose Fm|Fn. Then (Fm,Fn) = Fm = F(m,n), so

m = (m,n). This implies, m|n.
Conversely, let m|n. Then (Fm,Fn) = F(m,n) = Fm, so Fm|Fn.

69. proof:
fn − 2

fm
= ak − 1

a + 1
, where a = 22m

and k = 2n−m = ak−1 − ak−2 + · · · − 1, so

fm|(fn − 2).
71. proof: Let P(n): Every fn contributes a new prime factor. Clearly, P(0) is true. Assume

P(n) is true for n ≤ k − 1. fk has a prime factor p. Suppose p|fi for some i, where 0 ≤ i ≤
k − 1. Then p|fi and p|fk , which is a contradiction by Theorem 3.2. So p is different from
the prime factors of f0, f1, . . . , and fk−1. Thus, P(k) is true, so the result follows by PMI.

73. proof: Let d = (m,n). Then, by Theorem 3.5, there are integers A and B such that d =
Am + Bn. Multiplying both sides by

(
m
n

)

, this yields d

(
m

n

)

= Am

(
m

n

)

+ Bn

(
m

n

)

=

m

[

A

(
m

n

)

+ B

(
m − 1

n − 1

)]

= mC where C is an integer. So
m

d

∣
∣
∣
∣

(
m

n

)

. That is,
m

(m,n)

∣
∣
∣
∣

(
m

n

)

.

Exercises 3.2 (p. 173)
1. 8 3. 4 5. 8 7. 4

9. 8 = 42 · 1024 − 43 · 1000 11. 4 = (−85) · 2076 + 164 · 1076
13. (−71) · 1976 + 79 · 1776 15. (−97) · 3076 + 151 · 1976

17. proof: By the division algorithm, a = bq + r for some integer q. Since d′|b and d′|r, d′|a.
Thus, d′|a and d′|b. Thus, d′|(a,b); that is, d′|d.

19. proof (by PMI): Let P(n) denote the given statement.
basis step When n = 2, F2 = 1 < (1 + √

5)/2 = α. So P(2) is true.
induction step Assume P(2),P(3), . . . , and P(k) are true, that is, Fi < αi−1,2 ≤ i ≤ k.
Then αk = αk−1 + αk−2 > Fk + Fk−1 = Fk+1.
Thus, P(k) implies P(k + 1), so the result holds for every n ≥ 2.

Exercises 3.3 (p. 182)
1. 3 · 11 · 59 3. 34 · 23

5. 227 + 1 = (29)3 = 13 = (29 + 1)(218 − 29 + 1) = (23 + 1)(26 − 23 + 1)(218 − 29 + 1)

= 32 · 57 · 261633 = 34 · 19 · 87211

7. Let x = 100. Then 10,510,100,501 = 1 · x5 + 5x4 + 10x3 + 10x2 + 5x + 1 = (x + 1)5 =
1015.

9. 1, p 11. 1, p, q, pq
13. 1, 2, 3, 4, 6, 8, 12, 16, 24, 48
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15. 1, 2, 3, 5, 6, 7, 10, 14, 15, 21, 30, 35, 42, 70, 105, 210

17. 24 19. 149
21. 240; 241; 242; 243; 244 23. 30

25. pq2 27. 6 29. 1 31. 2 33. 4

35. largest integer b such that 2b|b 37. 333 + 111 + 37 + 12 + 4 + 1 = 498
39. 143 + 20 + 2 = 165 41. b = n − e = 1001 − 994 = 7

43. b = n − e = 3076 − 3073 = 3
45. proof: Because p|a · a, p|a by Lemma 3.3.
47. proof (by PMI): Clearly, the statement is true when n = 1, so assume it is true for an arbi-

trary integer n ≥ 1. Then
n+1∏

i=1
(4ki +1) =

[ n∏

i=1
(4ki +1)

]

(4kn+1 +1) = (4m+1)(4kn+1 +
1), which is of the form 4k + 1 by Lemma 3.5.

49. proof (by contradiction): Assume (a,b) > 1. Let p be a prime factor of (a,b). Then p|a
and p|b. Then p|an and p|bn, so p|(an,bn); that is, p|1, a contradiction.

51. proof: Using Dirichlet’s theorem with a = 5 and b = 8, there are infinitely primes of the
form 8n + 5.

53. proof (by strong version of PMI): The statement is true when n = 1. So assume it is true
for every positive integer 1 through an arbitrary positive integer k. Consider the integer
k +1. If k +1 is even, k +1 = 2m for some integer m. Then m is of the form 2a5bc, by the
inductive hypothesis, so k + 1 = 2(2a5bc) = 2a+15bc, where c is not divisible by 2 or 5.
Suppose k + 1 is odd. If k + 1 is divisible by 5, then k + 1 = 5x for some integer x. Then
x is of the form 2a5bc by the inductive hypothesis, so k + 1 = 5x = 5(2a5bc) = 2a5b+1c,
where c is not divisible by 2 or 5. Finally, assume k + 1 is not divisible by 5. Then
k + 1 = 2050c, where c = k + 1 is not divisible by 2 or 5.

55. 4 57. 9 59.
pi+1 − 1

p − 1
61.

(pi+1 − 1)(qj+1 − 1)

(p − 1)(q − 1)

63. proof: Assume n is square-free and its prime-factorization contains a factor pk , where
k ≥ 2. Then p2|n, so n is not square-free, a contradiction.
Conversely, let n = p1p2 · · ·pk , where the primes pi are distinct. Assume n is not square-
free. Then p2|n for some prime p, so p2|p1p2 · · ·pk , which is a contradiction.

65. 4, 8, 9
67. proof: Let pa ‖ m and pb ‖ n, so m = paA and n = pbB, where p � A and p � B. Then

mn = (paA)(pbB) = pa+b(AB), where p � AB. So pa+b ‖ mn.
69. proof: Let pa ‖ m and pb ‖ n, so m = paA and n = pbB, where p � A and p � B. Suppose

a ≤ b. Then m + n = paA + pbB = pa(A + pb−aB). Because p � A, it follows that pa ‖
(m + n); that is, pmin(a,b) ‖ (m + n). The case that a > b is quite similar.

Exercises 3.4 (p. 188)
1. F 3. T 5. T 7. F
9. F 11. 2310 13. b 15. b

17. ab 19. 231 21. 11
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23. 20, 840; 40, 420; 60, 280; 120, 140 25. a = b

27. [15,18,24,30] = [[15,18,24],30] = [[15,18],24,30] = [[90,24],30] = [360,30] =
360

29. [12,15,18,25,30] = [[12,15,18,25],30] = [[[12,15,18],25],30] = [[[12,15],18],
25,30] = [[[60,18],25],30] = [[180,25],30] = [900,30] = 900

31. Let n =∏
i

pei
i . Because n is a square, 2|ei; similarly, 3|ei and 5|ei. Therefore, [2,3,5]|ei;

that is, 30|ei for every i. Thus, the least possible exponent is 30 and the least possible base
is 2, so n = 230 = 1,073,741,824.

33. In the proof of Theorem 3.17 we found that (a,b) · [a,b] = ab, so (a,b)|[a,b].
35. proof: Let � = [a,b]. Then m = q� + r, where 0 ≤ r ≤ �. Then r = m − q�. Because both

m and 1 are common multiples of a and b, r is also a common multiple of a and b. But
this is impossible since r < �. Therefore, r = 0. Thus �|m.

37. proof (by PMI): Let P(n) denote the given statement. By Exercise 34, P(2) is
true. Now assume P(t) is true for t ≥ 2: [ka1, ka2, . . . , kat] = k[a1,a2, . . . ,at]. Then
[ka1, ka2, . . . , kat+1] = [[ka1, ka2, . . . , kat], kat+1] = [k[a1,a2, . . . ,at], kat+1] =
k[[a1,a2, . . . ,at],at+1] = k[a1,a2, . . . ,at,at+1], by the inductive hypothesis, and Ex-
ercises 34 and 36.

39. proof: Let x ≤ y ≤ z. Then LHS = z − x + x + y + x = x + y + z = RHS. The other five
cases can be handled similarly.

41. Let a = ∏
i

pai
i , b = ∏

i
pbi

i , and c = ∏
i

pci
i . Suppose ai ≤ bi ≤ ci. Then [b, c] = ∏

i
pci

i ,

(a, [b, c]) = ∏

i
pai

i , (a,b) = ∏

i
pai

i , and (a, c) = ∏

i
pai

i . So [(a,b), (a, c)] = ∏

i
pai

i =
(a, [b, c]). Similarly, it is true in the other five cases.

Exercises 3.5 (p. 203)
1. 84 3. no 5. yes 7. no

9. x = 3 + 4t, y = −1 − 3t 11. x = −3 + 7t, y = 4 − 5t
13. x = 41001 − 247t, y = −36849 + 222t
15. x = 2 − 3t, y = 2t 17. x = −1 + 13t, y = 2 − 12t
19. x = 1 − 13t, y = 1 + 4t 21. 18 mangoes
23. The clerk has made a computational error. 25. 3 apples

27. By Cassini’s formula, F13F11 − F212 = 1; that is, 233 · 89 − 1442 = 1. So 233 · (19 ·
89) − 144(19 · 144) = 19. Thus, the general solution is x = 19 · 89 − 144t = 1681 − 144t,
y = 19 · −233t = 2736 − 233t.

29. yes 31. yes 33. x = 3t, y = 0, z = 2 − t

35. x = −22 − 5t + 2t′, y = −t′, z = −11 − 2t
37. The general solution is: n = 8 + 12t, d = 6 − t, q = 12 − 2t. The unique solution is

8 nickels, 6 dimes, and 12 quarters, corresponding to t = 0.
39. The general solution is h = 1535 − 4t, c = 1600 − 4t, z = −1600 + 5t, where 356 ≤ t ≤

383. The possible combinations are: 111, 176, 180; 107, 172, 185; . . . ; 7, 72, 310; and 3,
68, 315.



Chapter 3 Greatest Common Divisors 693

41. proof (by PMI): The statement is true when n = 2, by Theorem 3.19, so assume it

is true for an arbitrary integer k ≥ 2. Assume
k+1∑

i=1
aixi =

k∑

i=1
aixi + ak+1xk+1 = c is

solvable. By the inductive hypothesis,
k∑

i=1
aixi = y is solvable, so (a1, . . . ,ak)|y, since

y + ak+1xk+1 = c, (y,ak+1)|c. Since (a1, . . . ,ak,ak+1) = ((a1, . . . ,ak),ak+1), it fol-
lows that (a1, . . . ,ak,ak+1)|c.
Conversely, suppose (a1, . . . ,an)|c. Then c = d · (a1, . . . ,an). But (a1, . . . ,an) = a1y1 +
· · · + anyn for some integers yi. Then c = a1(dy1) + · · · + an(dyn), so the LDE a1x1 +
· · · + anxn is solvable.

Review Exercises (p. 207)
1. 90 3. 16 5. 4 7. 3

9. (16,20,36,48) = ((16,20,36),48) = (((16,20),36),48) = ((4,36),48) = (4,48) = 4
11. (28,48,68,78) = ((28,48,68),78) = (((28,48),68),78) = ((4,68),78) = (4,78) = 2

13. 2 = 4 · 14 + (−3) · 18 15. 2 = 0 · 12 + (−1) · 18 + 1 · 20
17. 1, 2, 7, 14, 49, 98 19. 1, p, . . . ,pi,q,pq, . . . ,piq
21. 24 · 53 23. 7 · 11 · 23
25. 52 + 10 + 2 = 64 27. 280 + 56 + 11 + 2 = 349

29. 0 31. 0 33. 2 35. 0
37. 630 39. 528 41. 28, 29 43. 192

45. 630
47. [16,20,36,48] = [[16,20,36],48] = [[[16,20],36],48] = [[80,36],48] = [720,48] =

720
49. [28,48,68,78] = [[28,48,68],78] = [[[28,48],68],78] = [[336,68],78] = [5712,78]

= 74,256
51. proof (by PMI): Let P(n) denote the given statement. Clearly, P(1) is true. Assume P(k)

is true: If p|ak , then pk|ak . Because ak+1 = ak ·a,pk ·p|ak+1, by the inductive hypothesis.
That is, pk+1|ak+1. Thus, by PMI, the result is true for every n ≥ 1.

53. proof: The product of any three consecutive integers is divisible by 2 and that of any three
consecutive integers is divisible by 3. Therefore, by Review Exercise 52, it is divisible by
[2,3] = 6.

55. proof: Let (p,p + 2) = d and d > 1. Then d|p and d|(p + 2), so d|2 and hence d = 2.
Then p + 2 = 4 is not a prime. Therefore, d = 1 = (p,p + 2).

57. proof: Let (a, c) = t. Then a = mt and c = nt, where (m,n) = 1. Because a|b, b = αt =
αmt for some integer α. Likewise, d = βc = βnt for some integer β . Therefore, (b,d) =
(βnt, αmt) = (βn, αm)t, so t|(b,d); that is, (a, c)|(b,d).

59. proof: Let x = 4i + 3 and y = 4j + 3 be any two integers of the given form. Then xy =
(4i + 3)(4j + 3) = 4(4ij + i + j + 2)+ 1 = 4n + 1, where n = 4ij + i + j. Thus, xy is of the
desired form.

61. proof: Let n =∏
i

pei
i . By the division algorithm, ei = 3qi + ri, where 0 ≤ ri < 3. Then



694 Solutions to Odd-Numbered Exercises

n =∏
i

pei
i =∏

i
p3qi+ri

i =
(
∏

i
p3qi

i

)(
∏

i
pri

i

)

Thus, n is a cube if and only if ri = 0 for every i, that is, if and only if every exponent in
the canonical decomposition of n is divisible by 3.

63. Using Dirichlet’s theorem with a = 4 and b = 7, there is an infinite number of primes of
the form 7n + 4.

65. proof: Suppose the power of p in the canonical decomposition of n is e. By Theorem 2.5,
there are exactly �n/pi� positive integers that are less than or equal to n and divisible by
pi, where i ≥ 1. Thus, the number of positive integers ≤ n and divisible by p is

∑

i≥1
�n/pi�;

that is, e = ∑
i≥1

�n/pi�.

67. a =∏
i

pai
i ,b =∏

i
pbi

i , and c =∏
i

pci
i . Suppose ai ≤ bi ≤ ci. Then [a,b] =∏

i
pbi

i , [b, c] =
∏

i
pci

i , [c,a] =∏
i

pci
i , (a,b) =∏

i
pai

i , (b, c) =∏
i

pbi
i , and (c,a) =∏

i
pai

i . So

([a,b], [b, c], [c,a]) =
∏

i

pbi
i = [(a,b), (b, c), (c,a)]

The other five cases follow similarly.
69. proof (by PMI): The result is true when n = 0. Assume it is true for an arbitrary integer

n ≥ 0. Since 6(n + 1)|(3n + 1)(3n + 2)(3n + 3), it follows that 6(n + 1)6nn!|(3n)!(3n +
1)(3n + 2)(3n + 3); that is, 6n+1(n + 1)!|[3(n + 1)!]. Thus, the result follows by PMI.

71. 15! = 211 · 36 · 53 · 72 · 11 · 13 73. 23! = 219 · 39 · 54 · 73 · 112 · 13 · 17 · 19 · 23

75. Since (76,176) = 4 and 4|276, the LDE is solvable.
77. By trial and error, x0 = −1, y0 = 2 is a particular solution. The general solution is x =

−1 + (176/4)t = −1 + 44t, y = 2 − (76/4)t = 2 − 19t.

79. 76x + 176y = 276, so x = 276 − 176y

76
= 3 − 2y + 48 − 24y

76
= 3 − 2y + u, where u =

48 − 24y

76
. Then 24y + 76u = 48, so y = 2 − 19u

6
. Since y is an integer, u = 6t for some

integer t. Then y = 2 − 19t and x = 3 − 2(2 − 19t) + 6t = −1 + 44t. Thus, the general
solution is x = −1 + 4t, y = 2 − 19t.

81. By Exercise 38 in Section 3.5, the LDE is 1024n − 15625z = 8404. Then

n = 15625z + 8404

1024
= 15z + 8 + 265z + 212

1024

Let a = 265z + 212

1024
, so 265z = 1024a − 212; that is, z = 3a + 229a − 212

265
. Let b =

229a − 212

265
, so 229a = 265b + 212, so a = b + 36b + 212

229
. Let c = 36b + 212

229
, so b =

6c − 5 + 13c − 32

36
. Let d = 13c − 32

36
, so c = 2d + 2 + 10d + 6

13
. Let e = 10d + 6

13
. Then

d = e + 3e − 6

10
. Now we let f = 3e − 6

10
, so e = 3f + 2 + f

3
. Since e is an integer, f = 3t

for some integer t. Then

e = 3f + 2 + t = 10t + 2, d = e + f = (10t + 2) + 3t = 13t + 2

c = 2d + 2 + e = 2(13t + 2) + 2 + 10t + 2 = 36t + 8
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b = 6c − 5 + d = 6(36t + 8) − 5 + (13t + 2) = 229t + 45

and a = b + c = (229t + 45) + (36t + 8) = 265t + 5

z = 3a + b = 3(265t + 53) + (229t + 45) = 1024t + 204

So n = 15z + 8 + a = 15(1024t + 204) + 8 + (265t + 53) = 15625t + 3121
83. Let a denote the number of apples, e the number of oranges, and p the number of pears.

Then a + e + p = 12 (1) and 75a + 30e + 60p = 630 (2). Substituting for p in (2), we get
15a − 30e = −90; that is, a − 2e = −6. So a0 = 0, e0 = 3 is a particular solution of this
LDE. The general solution is a = −2t, e = 3 − t, p = 9 + 3t. Since a > 0, t < 0; since
p > 0, −3 < t. Thus, −3 < t < 0. t = −1 implies a = 2, e = 4, and p = 6; and t = −2
yields a = 4, e = 5, and p = 3.

Supplementary Exercises (p. 209)
1. [1,2,3,4,5] = 60; [1,2,3,4,5,6] = 60; [1,2,3,4,5,6,7] = 420; [1,2,3,4,5,6,7,8] =

840
3. 9� = 3(8�) = 3 · 840 = 2520
5. proof: Let 2 ≤ i ≤ n + 1. Then i|(n + 1)�. Therefore, i|[(n + 1)� + i] for 2 ≤ i ≤ n + 1.

Thus, (n + 1)� + 2, (n + 1)� + 3, . . . , (n + 1)� + (n + 1) are n consecutive composite
numbers.

7. 2,3,7,13,61,61, and 421; they are all primes. Therefore, n� + 1 is a prime for every
n ≥ 1.

9. 5,11,59,419,419, and 839; they are primes. Therefore, n� −1 is a prime for every n ≥ 3.
11. proof (by J. S. Shipman): Suppose (a,b) = 1. Then M = ab and (c,m) = (c,ab). Let

(c,a) = d, where d > 1. Then c = c′d and a = a′d for some integers c′ and a′. So b =
c − a = d(c′ − a′), and hence d|b. Thus, d|a and d|b, which contradicts the hypothesis
that (a,b) = 1; so (c,a) = 1. Similarly, (c,b) = 1. Therefore, (c,ab) = 1. Thus, (c,m) =
(c,ab) = 1 = (a,b).
Suppose (a,b) = d > 1. Let a = a′d and b = b′d for some integers a′ and b′, where
(a′,b′) = 1. Then c = a + b = (a′ + b′)d = c′d, where c′ = a′ + b′. Since

m = ab

(a,b)
= a′b′d2

d
= a′b′d

it follows that (c,m) = (c′d,a′b′d) = d(c′,a′b′) = d = (a,b)

proof: an − bn = (a − b)

(n−1∑

k=0
akbn−1−k

)

13.

an − bn

a − b
=

n−1∑

k=0
akbn−1−k =

n−1∑

k=1
[(ak − bk)bn−1−k + bn−1] + bn−1

=
n−1∑

k=1
[(ak − bk)bn−1−k] + (n − 1)bn−1 + bn−1

= (a − b)Q(a,b) + nbn−1 (1)
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where Q(a,b) is a polynomial in a and b with integral coefficients. Let d =
((an − bn)/(a − b),a − b) and e = (n(a,b)n−1,a − b). From equation (1), d|nbn−1.
Similarly, d|nan−1, so d|(nan−1, nbn−1). But (nan−1,nbn−1) = n(an−1,bn−1) =
n(a,b)n−1, hence d|e.
Because e|n(a,b)n−1 and n(a,b)n−1 = (nan−1,nbn−1), e|nbn−1. Also e|a − b, so by
equation (1), e|((an − bn)/(a − b)). Thus, e|d. Thus, d|e and e|d, so e = d.

15. proof: Let d = (m,n), e = ad − bd , and f = (am − bm,an − bn). Because d|m,
ad − bd|am − bm; that is, e|am − bm. Similarly, e|an − bn, so e|f .
To show that f |e, because d = (m,n),d = mx − ny for some integers x and y. Then amx =
any+d = any(bd + e). Therefore, amx − bmx = any(bd + e) − bmx = bd(any − bny) +
eany (1). Because f |(am − bm) and (am − bm)|(amx − bmx), f |(amx − bmx). Likewise,
f |(any − bny). So, by equation (1), f |eany.
To show that (f ,a) = 1, let (f ,a) = d′. Then d′|a, so d′|am and d′|(am − bm); so
d′|[am − (am − bm)]; that is, d′|bm. Thus, d′|am and d′|bm, but (am,bm) = 1 because
(a,b) = 1. So d′ = 1. Thus, (f ,a) = 1. Since f |eany, this implies f |e. Thus, e|f and f |e, so
f = e.

Chapter 4 Congruences

Exercises 4.1 (p. 228)
1. T 3. T 5. T 7. T 9. T 11. T

13. T 15. F 17. F 19. T 21. F 23. T

25. n ≡ 1 (mod 2) 27. n ≡ 0 (mod 5) 29. Friday 31. 1 P.M.
33. 32 ≡ 22 (mod 5), but 3 �≡ 2 (mod 5).
35. Because k! ≡ 0 (mod 10) if k ≥ 5,1! + 2! + · · ·+ 1000! ≡ 1! + 2! + 3! + 4! ≡ 3 (mod 10),

so the remainder is 3.
37. Because k! ≡ 0 (mod 12) if k ≥ 4,1! + 2! + · · · + 1000! ≡ 1! + 2! + 3! ≡ 9 (mod 12), so

the remainder is 9.
39. 23 ≡ 1 (mod 7), so 235 = (23)11 · 4 ≡ 1 · 4 ≡ 4 (mod 7). Thus, the remainder is 4.
41. 231001 ≡ 61001 = (616)62 · 68 · 6 ≡ 162 · (−1) · 6 ≡ −6 ≡ 11 (mod 17), so the remainder

is 11.
43. 297 ≡ 264 · 232 · 2 ≡ 3 · 9 · 2 ≡ 2 (mod 13). Thus, the desired remainder is 2.
45. 13218 ≡ 13128 ·1364 ·1316 ·138 ·132 ≡ 1 ·1 ·1 ·1 · (−1) ≡ 16 (mod 17). So the remainder

is 16.
47. 1776 ≡ 6 (mod 10) and 6n ≡ 6 (mod 10) for every n ≥ 1. Thus, 1776n ≡ 6n ≡ 6 (mod 10)

for n ≥ 1, so the desired units digit is 6.
49. 1077 ≡ 7 (mod 10). By Example 4.12, 7a ≡ 1 (mod 10) if a ≡ 0 (mod 4); 7 (mod 10)

if a ≡ 1 (mod 4); 9 (mod 10) if a ≡ 2 (mod 4); and 3 (mod 10) if a ≡ 3 (mod 4). Be-
cause 1177 ≡ 1 (mod 4), 1177n ≡ 1 (mod 4) for every n ≥ 1. Because a ≡ 1 (mod 4)

corresponds to 7 (mod 10), the ones digit is 7.
51. 1776 ≡ 76 (mod 100). Since 76n ≡ 76 (mod 100) for every n ≥ 1, the desired number

is 76.
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53. r 55. 1, 5 57. 1, 3, 5, 7
59. at least 2 for m ≥ 3 61. a 63. 2
65. 6 67. −1 (mod p)

69. proof: Because a ≡ b (mod m) and c ≡ c (mod m), the result follows by Theorem 4.4.
71. proof: Because a ≡ b (mod m) and c ≡ c (mod m), the result follows by Theorem 4.4.
73. proof: Because ac ≡ bc (mod p), p|(ac − bc); that is, p|c(a − b). But p � c, so p|(a − b);

that is, a ≡ b (mod p).

75. proof: Let f (x) =
n∑

i=0
cixi. Because a ≡ b (mod m), cai ≡ cbi (mod m), so

n∑

i=0
ciai ≡

n∑

i=0
cibi. That is, f (a) ≡ f (b) (mod m).

77. proof: By the division algorithm, every odd integer is of the form 4k + 1 or 4k + 3; so it
is congruent to 1 or 3 modulo 4.

79. proof: Let n = 2k + 1 be any odd integer. Then n2 = 4(k2 + k) + 1 ≡ 1 (mod 4).
81. proof: Because 2a ≡ 0 (mod p), p|2a. But p � 2, so p|a; that is, a ≡ 0 (mod p).
83. proof (by PMI): The given statement is true when n = 0. So assume P(k) is true for an

arbitrary integer k ≥ 0. Then (k +1)4 +2(k +1)3 + (k +1)2 = (k4 +2k3 + k2)+4(3k2 +
3k +1) ≡ 0 (mod 4), by the inductive hypothesis, so the statement is true when n = k +1.
Thus, the result is true for every n ≥ 0.

85. proof: Let m be a positive integer. Because m(m + 1) ≡ 0,2,6 (mod 10), m(m + 1)/2 ≡
0,1,3 (mod 5). Therefore, every triangular number tm ends in 0, 1, 3, 5, 6, or 8.
When n ≥ 2, the Fermat number fn ≡ 7 (mod 10); that is, when n ≥ 2, fn ends in 7.
Therefore, when n ≥ 2, no fn can be a triangular number. The Fermat numbers f1 = 5 and
f2 = 17 are not triangular, but f0 = 3 is.

87. proof (by PMI): The result is true when n = 3. Assume it is true for all integers k, where

3 ≤ k < n: 52k ≡ 52k−1
(mod 10k+1); so 52k = 52k−1 + t · 10k+1 for some integer t. Then

52k+1 = 52k + t2 · 102k+2 + 2t · 52k−1 · 10k+1 = 52k + 10k+2(t2 · 10k + 52k−1−1) ≡ 52k

(mod 10k+2). Thus, the result follows by the strong version of PMI.

89.

(
2p

r

)

= (2p)(2p − 1) · · · [2p − (p − 1)]
r! ≡ 0 (mod p), since 0 < r < p.

91. proof: Clearly, p must be odd. By the division algorithm, p ≡ 0, 1, or 2 (mod 3). Since
p � d, d ≡ ±1 (mod 3).
case 1 Suppose p ≡ 0 (mod 3). Since p is a prime, p = 3.
case 2 Suppose p ≡ 1 (mod 3). If d ≡ 1 (mod 3), then p + 2d ≡ 1 + 2 ≡ 0 (mod 3); so
p + 2d is composite. Hence d �≡ 1 (mod 3). If d ≡ −1 (mod 3), then likewise p + 4d is
composite. Thus, p �≡ 1 (mod 3).
case 3 Suppose p ≡ −1 (mod 3). If d ≡ 1 (mod 3), then p+4d is composite. If d ≡ −1
(mod 3), then likewise p + 2d is composite. Thus, d �≡ ±1 (mod 3); so p �≡ −1 (mod 3).
Thus p = 3.

93. Since 1010100 ≡ 310100
(mod 7) and 10100 ≡ 4100 ≡ 4 (mod 6), the desired remainder

is 4.

Exercises 4.2 (p. 237)
1. yes 3. yes 5. no 7. 3 9. 1 11. 12



698 Solutions to Odd-Numbered Exercises

13. ax0 ≡ b (mod m). Then a[x0 + (m/d)t] ≡ ax0 + (am/d)t ≡ b + m(a/d)t ≡ b + 0 ≡ b
(mod m).

15. The incongruent solutions are given by 1 + (91/7)t = 1 + 13t, where 0 ≤ t ≤ 6. They are
0, 14, 27, 40, 53, 66, and 79.

17. The incongruent solutions are given by 1 + (28/7)t = 1 + 4t, where 0 ≤ t ≤ 6. They are
1, 5, 9, 13, 17, 21, and 25.

19. The incongruent solutions are given by 2 + (1076/4)t = 2 + 269t, where 0 ≤ t ≤ 3. They
are 2, 271, 540, and 809.

21. 3x ≡ 5 (mod 4), so x ≡ 3 (mod 4); that is, x = 3 + 4t. Then 3(3 + 4t) + 4y = 5, so y =
−1 − 3t. Thus, the general solution of the LDE is x = 3 + 4t, y = −1 − 3t.

23. Because 15x ≡ 39 (mod 21), x ≡ 4 (mod 7). Thus, x = 4 + 7t. Then 15(4 + 7t) + 21y =
39, so y = −1 − 5t. Thus, the general solution is x = 4 + 7t, y = −1 − 5t.

25. 48x ≡ 144 (mod 84), so 4x ≡ 12 (mod 7); that is, x ≡ 3 (mod 7) and x = 3 + 7t. Then
4(3 + 7t) = 12, so y = −4t. Thus, the general solution of the LDE is x = 3 + 7t, y = −4t.

27. 1, 2, 3, 4 29. 1, 6

31. Because 5x ≡ 3 (mod 6) and 5−1 ≡ 5 (mod 6), 5 · 5x ≡ 5 · 3 (mod 6); that is, x ≡ 3
(mod 6).

33. 19x ≡ 29 (mod 16), so 3x ≡ 13 (mod 16). Because 3−1 ≡ 11 (mod 16), 11 · 3x ≡ 11 · 13
(mod 16); that is, x ≡ 15 (mod 16).

35. Because ab = ba ≡ 1 (mod m), a is an inverse of b modulo m.
37. proof: Suppose a is invertible modulo m. Then a2 ≡ 1 (mod m); that is, (a − 1)(a +

1) = a2 − 1 ≡ 0 (mod p). Thus, a ≡ ±1 (mod p). Conversely, let a ≡ ±1 (mod p). Then
a2 − 1 = (a − 1)(a + 1) ≡ 0 (mod p); that is, a2 ≡ 1 (mod p). Thus, a is self-invertible
modulo p.

39. Because 1910 ≡ 1 (mod 100), 191991 = (1910)199 · 19 ≡ 1 · 19 (mod 100), the last two-
digit number is 19.

171776 = (175)355 · 17 ≡ (−143)355 · 17 ≡ −(1433)118 · 143 · 17 ≡ −207118 · 43141.

≡ −(2072)59 · 431 ≡ −(−151)59 · 431 ≡ 15159 · 431 ≡ (1513)19 · 1512 · 431

≡ (−49)19 · 231 ≡ −(494)4 · 493 · 231 ≡ −(−199)4 · 919 ≡ −1993 · 199 · 919

≡ −599 · (−119) ≡ 281 (mod 1000)

43. By Exercise 18 in Section 3.3, 376! has 93 trailing zeros, so the last nonzero digit d in
376! is the ones digit in 376!/1093. Because d is even, d = 2,4,6, or 8.

375!
593

= 375!
575 · 75! · 75!

515 · 15! · 15!
53

≡ (−1)75 · (−1)15 · (−1)3 ≡ −1 ≡ 4 (mod 5)

so
376!
593

≡ 4 (mod 5). Therefore,

376!
1093

≡ 4 · 2−93 ≡ 4 · (24)−23 · 2−1 ≡ 4 · 1 · 3 ≡ 2 (mod 5)

Thus, d = 2.
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45. By Exercise 20 in Section 3.3, 1010! has 251 trailing zeros, so the last nonzero digit d in
1010! is the ones digit in 1010!/10251. Because d is even, d = 2,4,6, or 8.

1010!
5251

= 1010!
5202 · 202! · 202!

540 · 40! · 40!
58 · 8! · 8!

5

≡ (−1)202 · [(−1)40 · 1 · 2] · (−1)8 · [(−1) · 1 · 2 · 3] ≡ 3 (mod 5)

Because 2−4 ≡ 1 (mod 5) and 2−3 ≡ 2 (mod 5),

1010!
10251

= 1010! · 2−251

5251
≡ 3 · 2−251 ≡ 3 · 2−248 · 2−3 ≡ 3 · 1 · 2 ≡ 1 (mod 5)

so d = 6.
47. x = −3337 + 148t

Exercises 4.3 (p. 240)
1. We have the sequence 2, 5, 26, 677, . . . . Since (x2 − x1,3199) = 7, 7|3199. Hence, 3199 =

7 · 457.
3. We have the sequence 2, 5, 26, 677, 8772, 5156, 1777, 1051, 253, 5372, 8489, 6793, 6517,

7605, 9185, 3690, 2312, . . . . Since (x16 − x8,9773) = 29,19|9773; so 9773 = 29 · 337.
5. We have 2, 5, 26, 677, 18363, 25060, 10704, 24209, 39638, . . . . Since (x6 − x3,39997) =

37, 37|39997.
7. We have 3, 8, 3968, 26202, 36295, 25829, 27277, 10534, 13477, 3151, 9544, 14766, 11108,

. . . . Then (x12 − x6,39997) = 851, so 851|39997.

Review Exercises (p. 241)
1. Thursday 3. 5:30 A.M.
5. (6,9) = (3,9) = 3, but 6 �= 3 (mod 9). 7. p = 5

9. no 11. 5 13. 8

15. The incongruent solutions are x = 7 + 13t, where 0 ≤ t ≤ 11. They are 7, 20, 33, 46, 59,
72, 85, 98, 111, 124, 137, and 150.

17. Because 36x ≡ 96 (mod 156), by Exercise 15, x = 7 + 13t. Then y = −1 − 3t.
19. 1, 17
21. k! ≡ 0 (mod 13) when k ≥ 13. So 1! + 2! + · · · + 300! ≡ 1! + 2! + · · · + 12! ≡ 9 (mod 13)

23. 0 or 1
25. 5103 = 564 · 532 · 54 · 52 · 5 ≡ 1 · 1 · 1 · (−1) · 5 ≡ −5 ≡ 8 (mod 13)

27. 3100 = (38)12 · 34 ≡ 912 · 92 = (94)3 · 92 ≡ 95 ≡ 81 (mod 91)

29. 2100 = (25)20 ≡ 120 ≡ 1 (mod 11) and 3123 = (35)24 ·33 ≡ 124 ·5 ≡ 5 (mod 11). There-
fore, 210 + 3123 ≡ 1 + 5 ≡ 6 (mod 11).

31. Since 13 ≡ −4 (mod 17), (−4)2 ≡ −1 (mod 17), (−1)3 ≡ −1 (mod 17), and (−1)4 ≡ 1
(mod 17), the desired remainder is 1.

33. 33434 = (310)343 · 34 ≡ 49343 · 81 ≡ (492)171 · 49 · 81 ≡ 1171 · 69 ≡ 69 (mod 100)

35. 33003 = (310)30 · 33 ≡ 49300 · 27 ≡ (4910)30 · 27 ≡ 130 · 27 ≡ 027 (mod 1000)
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37. 1024 ≡ 4 (mod 10). Let n ≥ 1. If n is odd, then 4n ≡ 4 (mod 10); otherwise, 4n ≡ 6
(mod 10). Since k = 1025n is always odd, 4k ≡ 4 (mod 10), so the desired ones digit is 4.

39. When k ≥ 4, k! ≡ 0 (mod 12). Therefore, 1! + 2! + 3! + · · · + 100! ≡ 1! + 2! + 3! ≡ 9
(mod 12). Thus, the desired remainder is 9.

41. When k ≥ 4, k! ≡ 0 (mod 24). Using a 24-hour clock, 15 +
100∑

k=1
k! ≡ 15 + 1! + 2! + 3! ≡ 0

(mod 24). So the time will be midnight.
43. Let q = p + 2. When p = 3, q = 5 and pq − 2 = 13; they are all primes. Suppose p > 3.

Since p is prime, p ≡ ±1 (mod 3). If p ≡ 1 (mod 3), then q ≡ 0 (mod 3), which is im-
possible. If p ≡ −1 (mod 3), then q ≡ 1 (mod 3); then pq − 2 ≡ 0 (mod 3), which is also
impossible. Thus, p = 3 is the only such value.

45. Let n = 7429. With x0 = 2 and f (x) = x2 +1, we have the sequence 5,26,677,5161,2957,

7346,6890,791,1646, . . . . Then (x2 − x1,n) = (x4 − x2,n) = 1, but (x6 − x3,n) = 19.
So 19|7429. Thus, 7429 = 19 · 391 = 19 · 17 · 23 = 17 · 19 · 23.

47. proof: Because a2 ≡ b2 (mod p), p|(a − b)(a + b). So either p|a − b or p|a + b; that is,
either a ≡ b (mod p) or a ≡ −b (mod p); that is, a ≡ ±b (mod p).

49. proof: Because n3 − n = (n − 1)n(n + 1) is the product of three consecutive integers, it
is divisible by 3. So n3 − n ≡ 0 (mod 3); that is, n3 ≡ n (mod 3).

51. proof (by PMI): Because 1 + 0 ≡ 1 (mod 25), the statement is true when n = 0. Assume
it is true for an arbitrary integer k ≥ 0: 42k + 10k ≡ 1 (mod 25). Then,

42(k+1) + 10(k + 1) = 16 · 42k + 10k + 10 ≡ 16(1 − 10k) + 10k + 10

= 26 − 150k ≡ 1 (mod 25)

Thus, the result follows by PMI.
53. proof: Because a ≡ b (mod p), p|a−b. Similarly, q|a−b. So [p,q]|a−b; that is, pq|a−b.

In other words, a ≡ b (mod pq).
55. proof (by U. Dudley): Let N = 12 · 900n + 1, where n ≥ 1. By the division algorithm, let

n = 3k + r, where 0 ≤ r < 3. When r = 0, N ≡ 0 (mod 13); when r = 1, N ≡ 0 (mod 7);
and when r = 2, N ≡ 0 (mod 19). Thus, N is composite when n ≥ 1. So n = 0 and hence
N = 13, a twin prime.

57. proof (by R. S. Stacy): Let N = 2p + 3p. Since p is odd, N = 5S, where

S =
p−1∑

k=0
2p−1−k3k ≡

p−1∑

k=0
2p−1−k(−2)k ≡

p−1∑

k=0
2p−1 ≡ p2p−1 (mod 5)

Suppose p �= 5. Then p ≡ ±1,±2 (mod 5), so S ≡ k �≡ 0 (mod 5). Thus 5 � S, so 52 � N.
Consequently, N is not a perfect power. When p = 5, N = 275, again not a perfect power.

Supplementary Exercises (p. 243)
1. Because 1287xy6 ≡ 0 (mod 72),

1287xy6 ≡ 0 (mod 8) and (1)

1287xy6 ≡ 0 (mod 9) (2)
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Congruence (1) implies y + 1 ≡ 0 (mod 2), so y is odd. Thus, y = 1, 3, 5, 7, or 9. The two
congruences yield

2x + y + 3 ≡ 0 (mod 4) and (3)

x + y + 6 ≡ 0 (mod 9) (4)

If y = 1, then 2x + 4 ≡ 0 (mod 4); that is, x = 0,2,4,6, or 8, of which only 2 satisfies (4),
so (2,1) is a solution. If y = 3, then 2x + 6 ≡ 0 (mod 4) by (3), so x + 1 ≡ 0 (mod 2).
Thus, x = 1, 3, 5, 7, or 9, of which only x = 9 satisfies (4). The corresponding solution is
(9,3). Similarly, we get one more solution, (5,7). Thus, there are three solutions: (2,1),
(5,7), and (9,3).

3. Let k be the largest factor of An. Since A1 = −1995 = −3 · 5 · 7 · 19, k|1995. Because
An ≡ 2n − 2n − 1n + 1n ≡ 0 (mod 3), 3|An. Likewise, 5|An, 7|An, and 19|An. Therefore,
[3,5,7,19] = 1995|An. Thus, k = 1995.

5. Because

2000∑

i=1001
i1999 =

1000∑

j=1
(j + 1000)1999 ≡

1000∑

j=1
(j − 1001)1999 ≡

1000∑

i=1
(−i)1999 (mod 2001)

it follows that

2000∑

i=1
i1999 =

1000∑

i=1
i1999 +

2000∑

i=1001
i1999 ≡

1000∑

i=1
i1999 +

1000∑

i=1
(−i)1999 ≡ 0 (mod 2001)

7. proof: Let d be the ones digit in a. Then a ≡ d (mod 10) and a2 ≡ d2 (mod 10). Because
a is automorphic, d2 ≡ d (mod 10). The only solutions of this congruence are 0, 1, 5 and 6.

9. (by B. D. Beasly) Notice that x, y, and z are relatively prime. Thus, 2 ≤ x < y < z. The
given congruences can be combined to get xy + yz + zx − 1 ≡ 0 (mod x, y, and z). Since
x, y, and z are relatively prime, this implies xy + yz + zx ≡ 1 (mod xyz). Therefore,
xy + yz + zx = 1 + k(xyz) for some positive integer k. This yields 1/x + 1/y + 1/z =
k + 1/xyz > 1. Because 2 ≤ x < y < z, this implies (x,y, z) = (2,3,4) or (2,3,5). But
(2,4) �= 1, so the unique solution of the given congruences is (2,3,5).

11. (by S. Fernandez) Let (x, y, z) be a solution. Then, by symmetry, a permutation of (x, y, z)
is also a solution. The entries are distinct and are ≥ 3. Since xy mod z = 2, xy − 2 = kz
for some positive integer k. Since y < z, ky < xy − 2, so k < x.
Since zx mod y = 2, −2(x + k) ≡ (xy − 2)x − 2k ≡ k(zx − 2) ≡ 0 (mod y). So y|2(x + k);
that is, 2(x + k) = �y for some positive integer �. Then �y = 2(x + k) < 4x < 4y; so
1 ≤ � ≤ 3.
Since yz mod x = 2, −2(2+�) ≡ 2(xy−2)−2� ≡ 2kz−2� ≡ 2(x+k)z−2� ≡ �(yz−2) ≡
0 (mod x). Therefore, x|2(2 + �).

Thus, y = 2(x + k)

�
and z = xy − 2

k
, where 1 ≤ � ≤ 3 ≤ x, 1 ≤ k < x, x|2(2 + �), and

�|2(x + k). Of the 22 triplets (�, x, k) that satisfy these conditions, only six yield valid
solutions: (1,3,1), (1,3,2), (2,4,1), (2,4,2), (1,6,1), and (1,6,5). The correspond-
ing solutions (x, y, z) are (3,8,22), (3,10,14), (4,5,18), (4,6,11), (6,14,82), and
(6,22,26).
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Chapter 5 Congruence Applications

Exercises 5.1 (p. 252)
1. F 3. T 5. T
7. By 2 and 4 9. By 2, 4, and 8. 11. Not by 3 or 9.

13. Not by 3 or 9. 15. yes 17. yes

19. no 21. yes 23. definitely wrong
25. definitely wrong 27. definitely wrong 29. 8
31. 1
33. 4(103)+a(102)+b(10)+8 ≡ 0 (mod 8) yields 2a+b ≡ 0 (mod 4). Likewise, a+b ≡ 6

(mod 9). These two congruences yield a = 2 and b = 4. Thus, the desired number is 4248.
35. Let n be the number with the given properties. By the division algorithm, n = (i + 1)qi + i

for some qi. Then n + 1 = (i + 1)qi + (i + 1), so (i + 1)|(n + 1); that is, 2,3, . . . , and 9
are factors of n + 1. Thus, n + 1 = [2,3, . . . ,9,10] = 2520, so n = 2519.

37. Let n = nk . 10k +· · ·+n1 ·10+n0. Since 103 ≡ 1 (mod 37), n ≡ n2 ·102 +n1 ·10+n0 ≡
n2n1n0 (mod 37). Thus, n is divisible by 37 if and only if the three-digit number n2n1n0
is divisible by 37.

39. Definitely wrong. 41. 16429058 ≡ 8 (mod 9), so the digital root is 8.
43. 17761776 ≡ 31776 ≡ (32)888 ≡ 0888 ≡ 0 (mod 9), so the digital root is 9.
45. proof: Let d be the digital root of n, so n ≡ d ≡ 0 (mod 9). Then mn ≡ 0 (mod 9), so the

digital root of mn is also 9.
47. Let n be any integer and d its digital root. Then n2 ≡ d2 (mod 9). Since 02 ≡ 0 (mod 9),

(±1)2 ≡ 1 (mod 9), (±2)2 ≡ 4 (mod 9), (±3)2 ≡ 0 (mod 9), and (±4)2 ≡ 7 (mod 9), it
follows that the digital root of a square must be 1, 4, 7, or 9.
Since the digital root of 61,194,858,376 is 6, it follows that it cannot be a square.

49. proof: Let N be a triangular number. Then N = n(n + 1)/2 for some positive integer n.
case 1 Let n be even, say, n = 2k. Then N = k(2k + 1). Let d denote the units digit in k.
Then N ≡ d(2d + 1) (mod 10). Because 0 ≤ d ≤ 9, the residues of d(2d + 1) modulo 10
are 0, 3, 0, 1, 6, 5, 8, 5, 6, and 1, so the possible units digits are 0, 1, 3, 5, 6, and 8.
case 2 Let n be odd, say, n = 2k + 1. Then N = (k + 1)(2k + 1). Let d denote the
units digit in k. Then N ≡ (d + 1)(2d + 1) (mod 10). Since 0 ≤ d ≤ 9, the residues of
(d + 1)(2d + 1) modulo 10 are 3, 0, 1, 6, 5, 8, 5, 6, 1, and 0, so the possible units digits
are 0, 1, 3, 5, 6, and 8.

51. proof: Because Rn = (10n − 1)/9, d|Rn implies 10n ≡ 1 (mod d). Because d|an−1 . . .

a1a0,an−110n−1 + an−210n−2 + · · · + a110 + a0 ≡ 0 (mod d). Therefore, an−110n +
an−210n−1 +· · ·+ a1102 + a010 ≡ 0 (mod d); that is, an−210n−1 + an−310n−2 +· · ·+
a010 + an−1 ≡ 0 (mod d), so d|an−2 . . .a0an−1. Similarly, d divides the other cyclic
permutations also.

53. proof: Let N = 22000 + 22001 + 22003 + · · · + 22007. Since 23 ≡ −1 (mod 9), N =
(23)666 · 22 + (23)667 + (23)667 + (23)667 · 22 + (23)668 + (23)668 · 2 + (23)668 · 22 +
(23)669 ≡ (−1)4 + (−1) + (−1)2 + (−1)4 + 1 + 2 + 4 − 1 ≡ 3 (mod 9). So the digital
root of N is 3. But the digital root of a square is 1, 4, 7, or 9. Consequently, N cannot be
a square.
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Exercises 5.2 (p. 257)

1. 3.

5. 7.

9. 11.

13. 15.
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Exercises 5.3 (p. 272)
1. 0 3. 0
5. The string contains an even number of errors. 7. 0
9. 300706202013 = 6 (mod 9) and −6 ≡ 3 (mod 9), so the check digit is 3.

11. check digit ≡ (7,9,0,0,2,9,6,6) · (7,3,9,7,3,9,7,3) ≡ 223 ≡ 3 (mod 10), so the
check digit is 3.

13. Because the check digit is 3 and (3,3,1,3,d,4,4,7) · (7,3,9,7,3,9,7,3) ≡ 3d + 5
(mod 10), 3d + 5 ≡ 2 (mod 10), so d = 6.

15. check digit ≡ −(0,8,7,6,2,0,3,2,1) · (10,9,8,7,6,5,4,3,2) ≡ −202 ≡ 7 (mod 11),
so the check digit is 7.

17. yes, because check digit = 1 ≡ −(0,2,0,1,5,7,6,0,3) · (10,9,8,7,6,5,4,3,2) =
−120 ≡ 1 (mod 11).

19. check digit ≡ −(0,1,6,0,0,0,6,6,6,1,0) · (3,1,3,1,3,1,3,1,3,1,3) ≡ −62 ≡ 8
(mod 10), so it is 8.

21. no, since check digit = 8 �≡ −(0,7,0,7,3,4,0,6,3,1,0) · (3,1,3,1,3,1,3,1,3,1,3) =
−43 ≡ 7 (mod 10).

23. no, because d10 ≡ −(0,6,5,4,6,3,3,0,7) · (3,7,6,1,8,9,4,5,2) = −177 ≡ 10
(mod 11), but d10 is given to be 0.

25. check digit ≡ −(1,2,3,4,5,6,7) · (8,7,6,5,4,3,2) ≡ −112 ≡ 9 (mod 11), so the check
digit is 9.

27. check digit ≡ (3,1,5,7,4,0,6) · (7,3,1,7,3,1,7) ≡ 132 ≡ 2 (mod 10). Therefore,
check digit = 2.

29. check digit ≡ (9,8,7,6,5,4,3,2) · (1,4,9,2,1,9,9,4) = 192 ≡ 2 (mod 10), so it is 2.
31. Let x ≡ −(0,2,4,3,5,7,9) · (2,7,6,5,4,3,2) = −112 ≡ 9 (mod 11). So the check digit

is x = 9.
33. Using Exercise 31, the check digit is still 9.

35. d7 ≡ −
{[ 3∑

i=1
(2d2i div 10) + �2di/10�

]

+
3∑

i=1
d2i−1

}

(mod 10)

37. 6
39. weighted sum = 8 · 2 + 7 · 8 + 6 · 7 + 5 · 5 + 4 · 2 + 3 · 1 + 2 · 6 + 10 · 5 + 9 · 1 + 8 · 8 +

7 · 5 + 6 · 4 + 5 · 1 + 4 · 8 + 3 · 7 + 2 · 3 ≡ 1 (mod 11). So check digit = 1, same as the
give check digit. Therefore, the VIN is valid.

41. yes

Exercises 5.5 (p. 282)
1. gn = 0 + [1 + 2 + · · · + (n − 1)] = n(n − 1)/2
3.

Team
Round

1 2 3 4 5 6

1 5 4 6 2 1 3
2 6 5 4 3 2 1
3 2 1 5 6 3 4
4 3 6 1 5 4 2
5 4 3 2 1 6 5
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5.
Team

Round
1 2 3 4 5 6 7 8 9

1 9 8 7 6 bye 4 3 2 1

2 bye 9 8 7 6 5 4 3 2

3 2 1 9 8 7 bye 5 4 3

4 3 bye 1 9 8 7 6 5 4

5 4 3 2 1 9 8 bye 6 5

6 5 4 bye 2 1 9 8 7 6

7 6 5 4 3 2 1 9 bye 7

8 7 6 5 bye 3 2 1 9 8

9 8 7 6 5 4 3 2 1 bye

7. No, because the pairing is cyclic. For example, in round 1, team 1 plays team 2, but team 2
plays team 3.

Exercises 5.6 (p. 287)
1. Thursday 3. Monday 5. T 7. T
9. Because there are 20 years in the range 2000–2019, of which five are leap years, Janu-

ary 1, 2020, falls on day 20 + 5 ≡ 4 (mod 7), that is, Wednesday.
11. Because d ≡ 17 + �2.6 × 11 − 0.2� − 34 + 5 + �17/4� + �5/4� ≡ 0 (mod 7), the desired

day is Sunday.
13. d ≡ 4 + �2.6 × 5 − 0.2�− 34 + 76 +�17/4� + �76/4� ≡ 4 (mod 7), so the desired day is

Thursday.
15. d ≡ 7+�2.6 × 1 − 0.2�−36+76+�18/4�+�76/4� ≡ 2 (mod 7). So the day is Tuesday.
17. d ≡ 16 + �2.6 × 5 − 0.2� − 38 + 45 + �19/4� + �45/4� ≡ 1 (mod 7). Thus the day is

Monday.
19. d ≡ 12+�2.6 × 2 − 0.2�−38+61+�19/4�+�61/4� ≡ 3 (mod 7), so the day is Wednes-

day.
21. x ≡ 2000+�1999/4�−�1999/100�+�1999/400� ≡ 6 (mod 7), so it falls on a Saturday.
23. x ≡ 2076 + �2075/4� − �2075/100� + �2075/400� ≡ 3 (mod 7). So Jan. 1, 2076 is a

Wednesday.
25. one; October 13 27. two; March 13, November 13
29. April 7 31. April 26
33. d ≡ �23/9� + 17 + 4 + 1706 + 426 − 17 + 4 − 0 ≡ 0 (mod 7), so the day is Sunday.
35. d ≡ �23 × 7/9�+4+4+1776+444−17+4−2 ≡ 4 (mod 7), thus the day is Thursday.
37. d ≡ �23 × 3/9�+7+4+1876+469−18+4−2 ≡ 2 (mod 7). Thus the day is Tuesday.
39. d ≡ �23 × 7/9� + 16 + 4 + 1945 + 486 − 19 + 4 − 2 ≡ 1 (mod 7). So it is Monday.
41. d ≡ �23 × 4/9� + 12 + 4 + 1961 + 490 − 19 + 4 − 2 ≡ 3 (mod 7). Thus it is Wednesday.
43. proof: Because D < 100, D/400 < 0.25. Let C = 4q + r, where 0 ≤ r ≤ 3, so C/4 =

q + r/4 < q + 0.75. Then C/4 + D/400 < q + 1, so �C/4 + D/400� = q = �C/4�.
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Review Exercises (p. 289)
1. 3 3. yes 5. no
7. 1, 3, 5, 7, or 9 9. 9 11. definitely wrong

13. definitely wrong 15. 0 17. 1
19. 9
21. 55551122 ≡ 21122 ≡ (23)374 ≡ (−1)374 ≡ 1 (mod 9), so the digital root is 1.
23. The digital root of the given number is 3. But the digital root of a square is 1, 4, 7, or 9,

so it cannot be a square.
25. The digital root of the given number is 8. Because the digital root of a cube is 1, 8, or 9, it

can be a cube. (In fact, it is not a cube.)
27. d ≡ −(0,1,3,1,3,0,0,3,6,2,2) · (3,1,3,1,3,1,3,1,3,1,3) ≡ −9 ≡ 1 (mod 10), so

the check digit is 1. But the given check digit is 4, so it is an invalid UPC number.
29. Since d ≡ −(7,5,1,7,4,6,0,3,3,6,1) ·(3,1,3,1,3,1,3,1,3,1,3) ≡ −5 ≡ 5 (mod 10),

the UPC number is 7-51746-03361-5.
31. check digit ≡ −(3,3,0,1,4,0,0,0,9,9,0,7,3) · (2,1,2,1,2,1,2,1,2,1,2,1,2) − 1 ≡

−(6 + 3 + 1 + 8 + 18 + 9 + 0 + 7 + 6) − 1 ≡ −9 ≡ 1 (mod 10), so the check digit is 1.
33. check digit ≡ −[ρ(10) + ρ(4) + ρ(0) + ρ(2) + ρ(8) + ρ(10) + ρ(14) + ρ(12) + (3 +

9 + 4 + 9 + 2 + 3 + 3)] ≡ −[(1 + 4 + 0 + 2 + 8 + 1 + 5 + 3) + 33] ≡ −57 ≡ 3 (mod 10),
so it is 3.

35. d ≡ 1 + �2.6 × 12 − 0.2� − 34 + 90 + �17/4� + �90/4� ≡ 2 (mod 7). So the desired day
is a Tuesday.

37. 7
39. f (1) � f 2(2) � f 3(6) � f 4(2) � f 5(4) � f 6(4) � f 7(1) � f 8(2) � f 9(9) � f 10(8) � s11 = 0; this

yields s11 = 1.

Supplementary Exercises (p. 291)
1. proof: Because 0 < p(n) ≤ 9, ρ(ρ(n)) = ρ(n).

3. proof: Let m =∑
i

mi10i and n =∑
i

ni10i. Then mn =
(∑

i
mi10i

)(∑

i
ni10i

)
, so mn ≡

(∑

i
mi

)(∑

i
ni

)
(mod 9). That is, ρ(mn) = ρ(m)ρ(n).

5. proof: Because d|b − 1, b ≡ 1 (mod d). Then n =∑
i

nibi ≡∑
i

ni (mod d). Thus, n is

divisible by d if and only if
∑

i
ni is divisible by d.

7. Using a = 1, 3|n if and only if 3|q + r.
9. With a = 1, 9|n if and only if 9|q + r.

11. With a = 4, 13|n if and only if 3|q + 4r.
13. Using a = 2, 3|n if and only if 3|q + 2r.
15. By a repeated application of the test in Exercise 10, 11|28303.
17. By a repeated application of the test in Exercise 13, 19|61731.
19. proof: Let N = 100a + 10b + c ≡ 2a + 3b + c ≡ 0 (mod 7). Then N′ = (100c + 10b +

a) − (c − a) ≡ 2a + 3b + c ≡ 0 (mod 7).
21. proof: If p = 2, then n = 6, so its digital root is 6. Assume p > 2. Then p is odd and

2p−1 ≡ (−1)p−1 ≡ 1 (mod 3), so 2p−1 = 3k + 1 for some integer k. Then n = (3k +
1)(6k + 1) = 18k2 + 9k + 1 ≡ 1 (mod 9), so the digital root of n is 1.
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Chapter 6 Systems of Linear Congruences

Exercises 6.1 (p. 302)
1. yes 3. no
5. x = 2 + 5t1. Then 2 + 5t1 ≡ 3 (mod 7); that is, t1 ≡ 3 (mod 7). So t1 = 3 + 7t. Thus,

x = 17 + 35t.
7. x ≡ 1 (mod 2) yields x = 1 + 2t1. Then 1 + 2t1 ≡ 2 (mod 3), so t1 ≡ 2 (mod 3); that is,

t1 = 2 + 3t2. Therefore, x = 5 + 6t2. Then 5 + 6t2 ≡ 3 (mod 5); that is, t2 ≡ 3 (mod 5).
So t2 = 3 + 5t. Thus, x = 23 + 30t.

9. x ≡ 1 (mod 3) yields x = 1 + 3t1. Then 1 + 3t1 ≡ 3 (mod 4); that is, t1 = 2 + 4t2, so
x = 7+12t2. Then 7+12t2 ≡ 4 (mod 7), so t2 = 5+7t3. Therefore, x = 67+84t3. Then
67 + 84t3 ≡ 7 (mod 11); that is, t3 = 4 + 11t. Thus, x = 403 + 924t.

11. M1 = 7 and M2 = 5. M1y1 ≡ 1 (mod m1) yields 7y1 ≡ 1 (mod 5); that is, y1 ≡ 3 (mod 5).
Similarly, y2 ≡ 3 (mod 7). Thus, x ≡∑

i
aiMiyi ≡ 2 · 7 · 3 + 3 · 5 · 3 ≡ 17 (mod 35). Thus,

x = 17 + 35t.
13. M1 = 15, M2 = 10, M3 = 6, y1 ≡ 1 (mod 2), y2 ≡ 1 (mod 3), and y3 ≡ 1 (mod 5). Then

x ≡ 1 · 15 · 1 + 2 · 10 · 1 + 3 · 6 · 1 ≡ 23 (mod 30), so x = 23 + 30t.
15. M1 = 308, M2 = 231, M3 = 132, M4 = 84, y1 ≡ 2 (mod 3), y2 ≡ 3 (mod 4), y3 ≡ 6

(mod 7), and y4 ≡ 8 (mod 11). Then x ≡ 1 ·308 ·2+3 ·231 ·3+4 ·132 ·6+7 ·84 ·8 ≡ 403
(mod 924), so x = 403 + 924t.

17. Because x = 2 + 4t, 2 + 4t ≡ 3 (mod 6); that is, 4t ≡ 1 (mod 6) which is not solvable
because (4,6) �= 1.

19. Let x be the desired integer. Then x ≡ 3 (mod 7), x ≡ 4 (mod 9), and x ≡ 8 (mod 11).
Using the CRT with M1 = 99, M2 = 77, M3 = 63, y1 ≡ 1 (mod 7), y2 ≡ 2 (mod 9), and
y3 ≡ 7 (mod 11), x ≡ 3 · 99 · 1 + 4 · 77 · 2 + 8 · 63 · 7 ≡ 283 (mod 693), so x = 283.

21. Let x be the desired integer. Then x ≡ 0 (mod 7), x ≡ 2 (mod 5), x ≡ 3 (mod 6), and x ≡ 5
(mod 11). Using the CRT with M2 = 462, M3 = 385, M4 = 210, y2 ≡ 3 (mod 7), y3 ≡ 1
(mod 6), and y4 ≡ 1 (mod 11), x ≡ 0 · M1 · y1 + 2 · 462 · 3 + 3 · 385 · 1 + 5 · 210 · 1 ≡ 357
(mod 2310), so x = 357.

23. We have n ≡ 0 (mod 2), n ≡ 2 (mod 3), n ≡ 3 (mod 5), n ≡ 4 (mod 7), and n ≡ 7
(mod 11). Using the CRT with M2 = 770, M3 = 462, M4 = 330, M5 = 210, y2 ≡ 2
(mod 3), y3 ≡ 3 (mod 5), y4 ≡ 1 (mod 7), and y5 ≡ 1 (mod 11), n ≡ 0 · M1 · y1 + 2 · 770 ·
2 + 3 · 462 · 3 + 4 · 330 · 1 + 7 · 210 · 1 ≡ 788 (mod 2310), so n = 788.

25. n ≡ 0 (mod 9), n ≡ −1 (mod 16), and n ≡ −2 (mod 25). Using the CRT with M2 = 225,
M3 = 144, y2 ≡ 1 (mod 16), and y3 ≡ 4 (mod 25), n ≡ 0 ·M1 · y1 + (−1) ·225 ·1+ (−2) ·
144 · 4 ≡ 2223 (mod 3600), so n = 2223.

27. Let n be an integer that leaves the given remainders. Then n ≡ 0 (mod 3), n ≡ 2 (mod 5),
n ≡ 3 (mod 7), and n ≡ 5 (mod 13). Using the CRT with M2 = 273, M3 = 195, M4 =
105, y2 ≡ 2 (mod 5), y3 ≡ −1 (mod 7), and y4 ≡ 1 (mod 13), n ≡ 0 · M1 · y1 + 2 · 273 ·
2 + 3 · 195 · (−1) + 5 · 105 · 1 ≡ 1032 (mod 1365), so n = 1032 + 1365t. So the largest
such integer < 6000 is n = 5127.

29. Because 43|n + 2, 23|n + 2. Thus 23|n and 23|n + 2; so 23|2, which is a contradiction.
Thus, no such integer exists.
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Exercises 6.2 (p. 306)
1. yes, because (10,5) = 5|(2 − 5) 3. no, because (9,18) = 9 � (4 + 2)

5. yes 7. yes
9. 66 + [8,9,10]t = 66 + 360t

11. Because (12,15) = 3 and 3|(10 − 4), the system is solvable. x ≡ 10 (mod 12) yields
x = 10 + 12t1 ≡ 4 (mod 5); that is, t1 = 2 + 5t. Thus, x = 10 + 12(2 + 5t) = 34 + 60t.

13. By Theorem 6.3, the linear system is solvable. Since x = 1 + 10t1 ≡ 5 (mod 12), t1 =
4 + 6t, so x = 1 + 10(4 + 6t) = 41 + 60t. But 41 + 60t ≡ −4 (mod 15) is true for all
values of t, so x = 41 + 60t.

15. Because x = 2 + 6t1 ≡ 5 (mod 9), t1 = 2 + 3t2. Then x = 2 + 6(2 + 3t2) = 14 + 18t2 ≡ 8
(mod 11), so t2 = 7 + 11t3. So x = 14 + 18(7 + 11t3) = 140 + 198t3 ≡ 11 (mod 15), so
t3 = 2 + 5t. Thus, x = 140 + 198(2 + 5t) = 536 + 990t.

17. By Theorem 4.8, x ≡ a (mod [m1,m2, . . . ,mk]), so x = a + [m1,m2, . . . ,mk]t.
19. Let n denote the number of fruits. Then n ≡ 5 (mod 12), n ≡ 9 (mod 16), and n ≡ 11

(mod 18). Thus, n = 5 + 12t1 ≡ 9 (mod 16), so t1 = 3 + 4t2. Therefore, n = 5 + 12(3 +
4t2) = 41 = 48t2 ≡ 11 (mod 18), so t2 = 2+3t. Thus, n = 41+48(2+3t) = 137+144t.
Because n > 500,n = 137 + 144 · 3 = 569.

21. We have n ≡ 0 (mod 3), n ≡ −1 (mod 4), n ≡ −2 (mod 5), n ≡ −3 (mod 6), and n ≡ −4
(mod 7). Then n = 3t1 ≡ −1 (mod 4), so t1 = 1 + 4t2. Therefore, n = 3(1 + 4t2) =
3 + 12t2 ≡ −2 (mod 5), so t2 = 5t3. Then n = 3 + 60t3 ≡ −3 (mod 6), which is true
for all t3, so n = 3 + 60t3 ≡ −4 (mod 7). This yields t3 = 7t. Therefore, n = 3 + 420t.
Because n ≥ 4,n = 423.

23. Let n denote the number of eggs in the basket. Then n ≡ 1 (mod 2), n ≡ 2 (mod 3), n ≡ 3
(mod 4), n ≡ 5 (mod 6), and n ≡ 0 (mod 7). Because n ≡ 1 (mod 2), n = 1 + 2t1 ≡
2 (mod 3), so t1 = 2 + 3t2. Therefore, n = 1 + 2(2 + 3t2) = 5 + 6t2 ≡ 3 (mod 4), so
t2 = 1 + 2t3. Therefore, n = 5 + 6(1 + 2t3) = 11 + 12t3 ≡ 4 (mod 5), so t3 = 4 + 5t4.
Then n = 11 + 12(4 + 5t4) = 59 + 60t4 ≡ 5 (mod 6), which is true for all t4. Therefore,
n = 59 + 60t4 ≡ 0 (mod 7), so t4 = 1 + t. Thus, n = 59 + 60(1 + 7t) = 119 + 420t, so
there must have been at least 119 eggs in the basket.

25. We have n ≡ 0 (mod 9), n ≡ −1 (mod 16), n ≡ −2 (mod 25), and n ≡ −3 (mod 49).
Then n = 9t1 ≡ −1 (mod 16), so t1 = 7 + 16t2. Therefore, n = 63 + 144t2 ≡ −2
(mod 25), so t2 = 15 + 25t3. Then n = 63 + 144(15 + 25t3) = 2223 + 3600t3 ≡ −3
(mod 49), so t3 = 14 + 49t. Therefore, n = 2223 + 3600(14 + 49t) = 52623 + 176400t,
so the desired smallest positive integer is 52,623.

Exercises 6.3 (p. 312)
1. � ≡ 6 (mod 7) and (6,7) = 1, so the system is solvable.
3. � ≡ 7 (mod 13) and (7,13) = 1, so the system is solvable.
5. � ≡ 3 (mod 11) and (3,11) = 1, so the system is solvable.
7. x ≡ 6 (mod 7), y ≡ 2 (mod 7). 9. x ≡ 5 (mod 13), y ≡ 4 (mod 13).

11. x ≡ 4 (mod 11), y ≡ 7 (mod 11).
13. � ≡ 6 (mod 7) and �−1 ≡ 6 (mod 7). Therefore, x ≡ 6(25 − 24) ≡ 6 (mod 7) and y ≡

6(18 − 20) ≡ 2 (mod 7).
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15. � ≡ 7 (mod 13) and �−1 ≡ 2 (mod 13). Therefore, x ≡ 2(−70 − 12) ≡ 5 (mod 13) and
y ≡ 2(10 − 60) ≡ 4 (mod 7).

17. � ≡ 8 (mod 11) and �−1 ≡ 7 (mod 11). x ≡ 7(3 − 15) ≡ 4 (mod 11) and y ≡ 7(5 −
15) ≡ 7 (mod 11).

19. � ≡ 8 (mod 13) and �−1 ≡ 5 (mod 13). Therefore, x ≡ 5(40 − 99) ≡ 4 (mod 13) and
y ≡ 5(45 − 88) ≡ 6 (mod 13).

21. � ≡ 1 (mod 18) and �−1 ≡ 1 (mod 18). Therefore, x ≡ (−12) · 12 − (−11) · 2 ≡ 4
(mod 18) and y ≡ 7 · 2 − 11 · 12 ≡ 8 (mod 18).

23. x ≡ 1 (mod 11), y ≡ 8 (mod 11), z ≡ 1 (mod 11).
25. Because � ≡ 3 (mod 11) and (3,11) = 1, the system has a unique solution modulo 11.
27. Because � ≡ 14 (mod 13) and (14,13) = 1, the system has a unique solution modulo 13.
29. � ≡ 3 (mod 11) and �−1 ≡ 4 (mod 11). Then x ≡ 4 · 3 ≡ 1 (mod 11), y ≡ 4 · 2 ≡ 8

(mod 11), z ≡ 4 · 3 ≡ 1 (mod 11).
31. � = 14 ≡ 1 (mod 13) and �−1 ≡ 1 (mod 13). Then x ≡ 1 · 68 ≡ 3 (mod 13), y ≡ 1 ·

(−48) ≡ 4 (mod 13), z ≡ 1 · (−112) ≡ 5 (mod 13).

Review Exercises (p. 314)
1. Because x = 3 + 7t1 ≡ 5 (mod 10), t1 ≡ 6 + 10t, so x = 3 + 7(6 + 10t) = 45 + 70t.
3. Because x = 2 + 5t1 ≡ 3 (mod 7), t1 = 3 + 7t2. Then x = 2 + 5(3 + 7t2) = 17 + 35t2 ≡ 5

(mod 8), so t2 = 4 + 8t. Thus, x = 17 + 35(4 + 8t) = 157 + 280t.
5. Using the CRT with M1 = 10,M2 = 7, y1 ≡ 5 (mod 7), and y2 ≡ 3 (mod 10), x ≡ 3 · 10 ·

5 + 5 · 7 · 3 = 255 ≡ 45 (mod 70), so x = 45 + 70t.
7. Using the CRT with M1 = 56,M2 = 40,M3 = 35, y1 ≡ 1 (mod 5), y2 ≡ 3 (mod 7), and

y3 ≡ 3 (mod 8), x ≡ 2 · 56 · 1 + 3 · 40 · 3 + 5 · 35 · 3 = 997 ≡ 157 (mod 280), so x =
157 + 280t.

9. Let n be such an integer. Then n ≡ 1 (mod 7), n ≡ 7 (mod 11), and n ≡ 11 (mod 15).
Because n = 1 + 7t1 ≡ 7 (mod 11), t1 = 4 + 11t2. Therefore, n = 1 + 7(4 + 11t2) =
29 + 77t2 ≡ 11 (mod 15), so t2 = 6 + 15t. Thus, n = 29 + 77(6 + 15t) = 491 + 1155t, so
the least such positive integer is 491.

11. Let n be such an integer. Then n ≡ 2 (mod 5), n ≡ 5 (mod 11), n ≡ 0 (mod 12), and n ≡ 1
(mod 13). Because n ≡ 0 (mod 12), n = 12t1 ≡ 2 (mod 5), t1 = 1 + 5t2. Therefore, n =
12(1 + 5t2) = 12 + 60t2 ≡ 5 (mod 11), so t2 = 3 + 11t3. Then n = 12 + 60(3 + 11t3) =
192+660t3 ≡ 1 (mod 13), so t3 = 3+13t. Thus, n = 192+660(3+13t) = 2172+8580t.
So the largest integer < 15, with the desired remainders is 2172 + 8580 = 10,752.

13. We have n ≡ 0 (mod 3), n ≡ −1 (mod 4), n ≡ −2 (mod 5), n ≡ −3 (mod 7), and n ≡ −4
(mod 11). Using the CRT with M2 = 1155, M3 = 924, M4 = 660, M5 = 420, y2 ≡ 3
(mod 4), y3 ≡ 4 (mod 5), y4 ≡ 4 (mod 7), and y5 ≡ 6 (mod 11), x ≡ 0 · M1 · y1 + (−1) ·
1155 · 3 + (−2) · 924 · 4 + (−3) · 660 · 4 + (−4) · 420 · 6 = −28,857 ≡ 3483 (mod 4620),
so the smallest desired integer is 3483.

15. Let n denote the number of pennies in the jar. Then n ≡ 3 (mod 5), n ≡ 5 (mod 6), n ≡ 4
(mod 7), and n ≡ 8 (mod 11). Using the CRT with M1 = 462, M2 = 385, M3 = 330,
M4 = 210, y1 ≡ 3 (mod 5), y2 ≡ 1 (mod 6), y3 ≡ 1 (mod 7), and y4 ≡ 1 (mod 11), x ≡
3 · 462 · 3 + 5 · 385 · 1 + 4 · 330 · 1 + 8 · 210 · 1 = 9083 ≡ 2153 (mod 2310). Thus, the least
number of coins in the jar is 2153.
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17. Because � ≡ 5 · 5 − 6 · 7 ≡ 1 (mod 9) and (�,9) = 1, the linear system is solvable.
19. Because � ≡ 8 · 9 − 7 · 11 ≡ 8 (mod 13) and (�,13) = 1, the linear system is solvable.
21. 5x + 7y ≡ 3 (mod 9) (1) and 6x + 5y ≡ 4 (mod 9) (2). Multiply (1) by 6 and (2) by 5;

subtract one from the other. Then 17y ≡ −2 (mod 9); that is, y ≡ 2 (mod 9), so x ≡ 5
(mod 9). Thus, x ≡ 5 (mod 9) and y ≡ 2 (mod 9).

23. 8x + 5y ≡ 4 (mod 15) (1) and 3x + 11y ≡ 7 (mod 15) (2). Multiply (1) by 3 and (2) by 8.
Subtracting one from the other, 73y ≡ 44 (mod 15); that is, y ≡ 8 (mod 15), so x ≡ 3
(mod 15). Thus, x ≡ 3 (mod 15) and y ≡ 8 (mod 15).

25. x−y− z ≡ 5 (mod 17) (1), x+2y+ z ≡ 2 (mod 17) (2), and 2x−3y− z ≡ 0 (mod 17) (3).
Adding (1) and (2) yields 2x + y ≡ 7 (mod 17) (4). Adding (2) and (3) yields 3x − y ≡ 2
(mod 17) (5). Now add (4) and (5): 5x ≡ 9 (mod 17); that is, x ≡ 12 (mod 17). Therefore,
y ≡ 7 − 24 ≡ 0 (mod 17). Then from (2), z ≡ 2 − 12 − 0 ≡ 7 (mod 17). Thus, x ≡ 12
(mod 17), y ≡ 0 (mod 17), and z ≡ 7 (mod 17).

27. � = 25 − 42 ≡ 1 (mod 9) and �−1 ≡ 1 (mod 9). So x ≡ 5 · 3 − 7 · 4 ≡ 5 (mod 9) and
y ≡ 5 · 4 − 6 · 3 ≡ 2 (mod 9).

29. � = 88 − 15 ≡ 13 (mod 15) and �−1 ≡ 7 (mod 15). Therefore, x ≡ 7(11 · 4 − 5 · 7) ≡ 3
(mod 15) and y ≡ 7(8 · 7 − 3 · 4) ≡ 8 (mod 15).

31. � =

∣
∣
∣
∣
∣
∣
∣

1 −1 −1
1 2 1
2 −3 −1

∣
∣
∣
∣
∣
∣
∣

≡ 5 (mod 17), �−1 ≡ 7 (mod 17), Dx ≡ 9 (mod 17), Dy ≡ 0

(mod 17), Dz ≡ 1 (mod 17). Then x ≡ �−1 · Dx ≡ 7 · 9 ≡ 12 (mod 17). Similarly,
y ≡ 7 · 0 ≡ 0 (mod 17) and z ≡ 7 · 1 ≡ 7 (mod 17).

33. Let x denote the number of one-bedroom apartments and y that of two-bedroom apart-
ments. Then 69x + 66y ≡ 54 (mod 101) and 70x + 67y ≡ 53 (mod 101). Because � ≡ 3
(mod 101) and �−1 ≡ 34 (mod 101), x ≡ 34(67 · 54 − 66 · 53) ≡ 40 (mod 101) and
y ≡ 34(69 · 53 − 70 · 54) ≡ 60 (mod 101). Thus, there are 40 one-bedroom and 60 two-
bedroom apartments.

Supplementary Exercises (p. 316)

1.

[
3 5
4 7

][
7 6
7 3

]

=
[

56 33
77 45

]

≡
[

1 0
0 1

]

(mod 11) and

[
7 6
7 3

][
3 5
4 7

]

=
[

45 77
33 56

]

≡
[

1 0
0 1

]

(mod 11)

Therefore, they are inverses of each other modulo 11.

3.

[
3 5
4 7

][
x
y

]

≡
[

7
9

]

(mod 11)

5.

[
3 5
4 7

][
x
y

]

≡
[

7
9

]

(mod 11). Therefore, by Exercise 2,

[
x
y

]

≡
[

7 6
7 3

][
7
9

]

=
[

103
76

]

≡
[

4
10

]

(mod 13)
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Thus, x ≡ 4 (mod 13) and y ≡ 10 (mod 13).

7. proof:

[
a b
c d

]

· �−1

[
d −b

−c a

]

= �−1

[
� 0
0 �

]

= I2. Also,

�−1

[
d −b

−c a

][
a b
c d

]

= �−1

[
� 0
0 �

]

= I2.

Thus, one is the inverse of the other.

9. � ≡ 5 · 7 − 3 · 8 ≡ 11 (mod 13) and �−1 ≡ 6 (mod 13).

A−1 ≡ 6

[
7 −8

−3 5

]

=
[

42 −48
−18 30

]

≡
[

3 4
8 4

]

(mod 13)

11.

[
3 4
5 6

][
x
y

]

≡
[

2
3

]

(mod 7). Therefore,

[
x
y

]

≡
[

4 2
6 2

][
2
3

]

=
[

14
18

]

≡
[

0
4

]

(mod 7), by Exercise 8.

13.

[
8 13

10 11

][
x
y

]

≡
[

9
8

]

(mod 17). Therefore,

[
x
y

]

≡
[

5 8
14 16

][
9
8

]

=
[

109
254

]

≡
[

7
16

]

(mod 17)

by Exercise 10.
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Exercises 7.1 (p. 326)
1. 1, 6 3. 1, 18 5. 1, 5 7. 1, 5, 7, 11

9. The congruence x2 ≡ 1 (mod 6) has exactly two solutions, but m = 6 is not a prime.
11. Because a2 ≡ 1 (mod m), (m − a)2 = m2 − 2am + a2 ≡ a2 ≡ 1 (mod m), so m − a is also

a solution.
13. With p = 5, (p − 1)! = 4! = 24 ≡ −1 (mod 5).
15. With p = 13, (p − 1)! = 12! = (1 · 12)(2 · 6)(3 · 4)(5 · 8)(7 · 11)(9 · 10) ≡ (−1)5 ≡ −1

(mod 13).
17. proof: (p − 1)(p − 2) · · · (p − k) ≡ (−1)(−2) · · · (−k) ≡ (−1)kk! (mod p).
19. proof: By Wilson’s theorem, (p − 1)! ≡ −1 (mod p), so [(p − 1)!]2 ≡ 1 (mod p);

that is, [12 · 32 · · · (p − 2)2][22 · 42 · · · (p − 1)2] ≡ 1 (mod p). Then, by Exercise 18,
(−1)(p+1)/2[22 · 42 · · · (p − 1)2] ≡ 1 (mod p). Therefore, 22 · 42 · · · (p − 1)2 ≡
(−1)(p+1)/2 (mod p).

21. proof: By Wilson’s theorem, −1 ≡ (p − 1)! = (p − r − 1)![(p − r) · · · (p − 1)] ≡
(p−r−1)!(−1)rr! ≡ (p−r−1)!(−1)r(−1)r ≡ (p−r−1)! (mod p). Thus, (p−r−1)! ≡
−1 (mod p).
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23. proof (by PMI): By Wilson’s theorem, the result is true when r = 0. Now assume it is
true for an arbitrary integer r, where 0 ≤ r ≤ p − 1. Then 0 ≡ r![p − (r + 1)! + (−1)r ≡
r![p − (r + 2)]![p − (r + 1)] + (−1)r ≡ r!(p − r − 2)!p − (r + 1)!(p − r − 2)! + (−1)r ≡
0 − (r + 1)!(p − r − 2)! + (−1)r ≡ (r + 1)!(p − r − 2)! + (−1)r (mod p). Thus, the result
follows by PMI.

25. proof: Since

(
np

p

)

= n

(
np − 1

p − 1

)

,n

[(
np − 1

p − 1

)

− 1

]

=
(

np

p

)

− n. So, by Exercise 24,

n

[(
np − 1

p − 1

)

− 1

]

≡ (mod p). Since (n,p) = 1, this yields the desired result.

27. proof (by The CPPPS group): [m! + (m + 1)!][n! + (n + 1)!] = m![1 + (m + 1)]n![1 +
(n + 1)] = m!n!(m + 2)(n + 2) = m!n!(mn + m + n + p + 1) ≡ m!n!(mn + m + n + 1) ≡
m!n!(m+1)(n+1) ≡ (m+1)!(n+1)! (mod p) (1). Since m+1 = p− (n+2), (m+1)! =
[p − (n + 2)]! = [p − (n + 2)][p − (n + 3)] · · · [p − (p − 1)] ≡ (−1)m+1(n + 2)(n + 3) · · ·
(p − 1) (mod p). Substituting for (m + 1)! in (1), (m + 1)!(n + 1)! ≡ (n + 1)!(−1)m+1

(n + 2)(n + 3) · · · (p − 1) ≡ (−1)m+1(p − 1)! (mod p). By Wilson’s theorem, this yields
the desired result.

29. With p = 5, [(p − 1)/2]! = 2, so [((p − 1)/2)!]2 = 4 ≡ −1 (mod 5).
31. With p = 17, [(p − 1)/2]! = 40320 ≡ 13 (mod 17), so [(p − 1)/2)!]2 ≡ 132 ≡ −1

(mod 17).
33. If p is a prime ≡ 1 (mod 4), then [(p − 1)/2)!]2 ≡ −1 (mod p).
35. proof: Because p− i ≡ −i (mod p), (p−1)! = [1 ·2 · · · (p−1)/2][(p+1)/2) · · · (p−1)] =

[(p − 1)/2]!{[−(p − 1)/2] · · · (−2)(−1)} = [(p − 1)/2]![(p − 1)/2)]!(−1)(p−1)/2 =
(−1)(p−1)/2{[(p−1)/2]!}2. Therefore, by Wilson’s theorem, (−1)(p−1)/2{[(p−1)/2]!}2

≡ −1 (mod p); that is, {[(p − 1)/2]!}2 ≡ (−1)(p+1)/2 (mod p). Since p ≡ 1 (mod 4),
(p + 1)/2 is odd, so {[(p − 1)/2]!}2 ≡ −1 (mod p).

Exercises 7.2 (p. 336)
1. 71001 = (716)62 · 78 · 7 ≡ 162 · (−1) · 7 ≡ −7 ≡ 10 (mod 17).
3. 151976 ≡ (1522)89 · 1518 ≡ 189 · (154)4 · 152 ≡ 24 · (−5) ≡ 12 (mod 23).
5. 5101 = (56)16 · 55 ≡ 116 · 3 ≡ 3 (mod 7).
7. Because 29 ≡ 1 (mod 7), 292076 ≡ 1 (mod 7).
9. Because 8−1 ≡ 7 (mod 11), 7 · 8x ≡ 7 · 3 (mod 11); that is, x ≡ 10 (mod 11).

11. Because 26x ≡ 12 (mod 17), 9x ≡ 12 (mod 17); that is, 3x ≡ 4 (mod 17). Then 6(3x) ≡
6 · 4 (mod 17); that is, x ≡ 7 (mod 17).

13. Because 210 ≡ 1 (mod 11) and 230 ≡ 1 (mod 31), 2340 = (210)34 ≡ 1 (mod 11) and
2340 = (230)11 · 210 ≡ 1 · 1 ≡ 1 (mod 31). Therefore, by Theorem 4.8, 2340 ≡ 1
(mod [11,31]); that is, 2340 ≡ 1 (mod 341).

15. Notice that 247 ≡ 13 · 19. By Fermat’s Little Theorem 1318 ≡ 1 (mod 19) and 1912 ≡ 1
(mod 13). Therefore, 1318 + 1912 ≡ 1 + 0 ≡ 1 (mod 19) and 1318 + 1912 ≡ 0 + 1 ≡ 1
(mod 13). Then 1318 + 1912 ≡ 1 (mod [13,19]) ≡ 1 (mod 247).

17. By Theorem 7.7, (16 + 21)23 = 3723 ≡ 37 = 16 + 21 ≡ 1623 + 2123 (mod 23).
19. proof: ap ≡ a (mod p), so apq ≡ (ap)q ≡ aq ≡ a (mod p). Similarly, apq ≡ a (mod q).

Then, by Theorem 4.8, apq ≡ a (mod [p,q]); that is, apq ≡ a (mod pq).
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21. proof: By Theorem 7.7, (a−b)p ≡ a−b (mod p). But, by Fermat’s little theorem, a−b ≡
ap − bp ≡ 0 (mod p). Therefore, (a − b)p ≡ 0 (mod p); that is, a ≡ b (mod p).

23. proof: By Fermat’s little theorem, pq−1 + qp−1 ≡ 1 + 0 ≡ 1 (mod q) and pq−1 + qp−1 ≡
0 + 1 ≡ 1 (mod p). Therefore, by Theorem 4.8, pq−1 + qp−1 ≡ 1 (mod [p,q]) ≡ 1
(mod pq).

25. Since 3!|(n − 1)n(n + 1), n5 ≡ n (mod 6). By Theorem 7.7, n5 − n ≡ 0 (mod 5). Thus,
n5 − n ≡ (mod [6,5]); that is, n5 ≡ n (mod 30).

27. proof: Because rp−1 ≡ 1 (mod p), where 0 < r < p, 1p−1 + 2p−1 + · · · + (p − 1)p−1 ≡
p − 1 ≡ −1 (mod p).

29. proof: Let 0 < r < p. Then, by Theorem 7.7, (a + r)p ≡ a + r (mod p). Because p is odd,

p−1∑

r=1
(a + r)p ≡

p−1∑

r=1
(a + r) = (p − 1)a + (p − 1)p

2
2 ≡ −a (mod p)

31. proof: By Theorem 7.7, ap ≡ a (mod p). Since p − 1 is even, ap−1 = 1 =
(a(p−1)/2 − 1)[a(p−1)/2 + 1] = (a − 1)[a(p−3)/2 + · · · + 1](a + 1)[a(p−3)/2 − · · · − 1].
So a|ap − a,a − 1|ap − a, and a + 1|ap − a, so ap ≡ a (mod 6). Thus, by Theorem 4.8,
ap ≡ a (mod 6p).

33. By the binomial theorem,

(a + b)p =
p∑

k=0

(
p

k

)

ap−kbk = ap +
p−1∑

k=1

(
p

k

)

ap−kbk + bp ≡ ap + bp (mod p)

by Exercise 30.
35. proof (by PMI): The statement is clearly true when x = 0, so assume it is true for an

arbitrary integer r ≥ 0: (r + 1)p ≡ rp + 1 (mod p). Then, by Exercise 30,

(r + 2)p = [(r + 1) + 1]p =
p∑

k=0

(
p

k

)

(r + 1)k = 1 +
p−1∑

k=1

(
p

k

)

(r + 1)k + (r + 1)p

≡ 1 + (r + 1)p ≡ 1 + (rp + 1) = rp + 2 ≡ (r + 1)p + 1

by the IH. Therefore, by PMI, the statement is true for every integer x ≥ 0.
37. proof: By the binomial theorem and Exercise 35,

pa∑

i=0

(
pa

i

)

xi = (x + 1)pa = [(x + 1)p]a ≡ (xp + 1)a ≡
a∑

j=0

(
a

j

)

xjp (mod p)

The result now follows by equating the coefficients of xbp from both sides.
39. Since 25! ≡ 1966! ≡ 1861 (mod 7967) and (1860,7967) = 31, 31|7967.

Exercises 7.3 (p. 340)
1. Because 10 = 2 ·5, 22 −1 = 3 and 25 −1 = 31 are factors of 210 −1. Therefore, 210 −1 =

3 · 341 = 3 · 31 · 11 = 3 · 11 · 31.
3. We have 15 = 3 · 5, so both 23 − 1 = 7 and 25 − 1 = 31 are factors of 215 − 1. Therefore,

215 − 1 = 7 · 4681 = 7 · 31 · 151.
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5. Notice that 561 = 3 ·11 ·17. Because 2561 ≡ (−1)561 ≡ −1 ≡ 2 (mod 3), 2561 = (25)112 ·
2 ≡ (−1)112 · 2 ≡ 1 · 2 ≡ 2 (mod 11), and 2561 = (24)140 · 2 ≡ (−1)140 · 2 ≡ 1 · 2 ≡ 2
(mod 17), by Theorem 4.8, 2561 ≡ 2 (mod [3,11,17]) ≡ 2 (mod 561).

7. Notice that 1105 = 5 · 13 · 17. Since 21105 = (24)276 · 2 ≡ 1276 · 2 ≡ 2 (mod 5), 21105 =
(212)92 · 2 ≡ 192 · 2 ≡ 2 (mod 13), and 21105 = (216)69 · 2 ≡ 169 · 2 ≡ 2 (mod 17), by
Theorem 4.8, 21105 ≡ 2 (mod [5,13,17]) ≡ 2 (mod 1105).

9. 210 ≡ 4 (mod 340), 230 ≡ 26 (mod 340), 240 ≡ 28 (mod 340), and 2300 ≡ 24 (mod 340).
Therefore, 2340 = 2300 · 240 ≡ 24 · 28 ≡ 210 · 4 ≡ 4 · 4 ≡ 16 (mod 340). Thus 2340 �≡ 2
(mod 340).

11. 414 ≡ (42)7 ≡ 17 ≡ 1 (mod 15).
13. First, notice that 35 = 5 · 7. Because 634 ≡ 134 ≡ 1 (mod 5) and 634 ≡ (−1)34 ≡ 1

(mod 7), by Theorem 4.8, 634 ≡ 1 (mod 35).
15. Because 91 = 7 · 13, we compute 290 modulo 7 and then modulo 13: 290 = (26)15 ≡

115 ≡ 1 (mod 7), but 290 = (212)7 ·26 ≡ 17 · (−1) �≡ 1 (mod 13). Therefore, by Theorem
4.8, 290 �≡ 1 (mod 91).

17. Because 1105 = 5 · 13 · 17, it suffices to show that a1104 ≡ 1 (mod 1105) for all positive
integers a, where (a,1105) = 1. By Fermat’s Little Theorem, a4 ≡ 1 (mod 5), a12 ≡ 1
(mod 13), and a16 ≡ 1 (mod 17). Therefore, a1104 = (a4)276 ≡ 1276 ≡ 1 (mod 5),
a1104 = (a12)92 ≡ 192 ≡ 1 (mod 13), and a1104 = (a16)69 ≡ 169 ≡ 1 (mod 17). There-
fore, by Theorem 4.8, a1104 ≡ 1 (mod 1105).

19. We have 2465 = 5 ·17 ·29. Let a be any positive integer with (a,2465) = 1. Then, by Fer-
mat’s Little Theorem, a4 ≡ 1 (mod 5), a16 ≡ 1 (mod 17), and a28 ≡ 1 (mod 29). There-
fore, a2464 = (a4)616 ≡ 1616 ≡ 1 (mod 5), a2464 = (a16)154 ≡ 1154 ≡ 1 (mod 17), and
a2464 = (a28)88 ≡ 188 ≡ 1 (mod 29). Therefore, by Theorem 4.8, a2464 ≡ 1 (mod 2465).

21. 74 = 492 ≡ (−1)2 ≡ 1 (mod 52).

23. 196 = (193)2 ≡ (−1)3 ≡ 1 (mod 73). 25. 23912 = (2394)3 ≡ 13 ≡ 1 (mod 134).

Exercises 7.4 (p. 347)
1. ϕ(8) = ϕ(23) = 23 − 22 = 8 − 4 = 4. 3. ϕ(21) = ϕ(3 · 7) = ϕ(3)ϕ(7) = 2 · 6 = 12.
5. 1, 2, 4, 7, 8, 11, 13, and 14. 7. 1, 3, 5, 9, 11, 13, 15, 17, 19, 23, 25, and 27.

9. 16 ≡ 1 (mod 18); 56 ≡ (53)2 ≡ (−1)2 ≡ 1 (mod 18); 76 = (73)2 ≡ 12 ≡ 1 (mod 18);
116 = (113)2 ≡ (−1)2 ≡ 1 (mod 18); 136 = (133)2 ≡ 12 ≡ 1 (mod 18); and 176 ≡
(−1)6 ≡ 1 (mod 18).

11. Because ϕ(6) = 2 and (a,6) = 1, a = 1 or 5. Then 12 ≡ 1 ≡ (−1)2 ≡ 52 (mod 6).
13. We have ϕ(15) = 8 and a = 1,2,4,7,8,11,13, and 14. Then, 18 ≡ 1 ≡ (−1)8 ≡ 148

(mod 15); 28 = (24)2 ≡ 12 ≡ 1 ≡ (−2)8 ≡ 138 (mod 15); 48 = (42)4 ≡ 14 ≡ 1 ≡
(−4)8 ≡ 118 (mod 15); and 78 = (74)2 ≡ 12 ≡ 1 ≡ (−7)8 ≡ 88 (mod 15).

15. Because ϕ(15) = 8, by Euler’s theorem, 78 ≡ 1 (mod 15). Therefore, 71020 = (78)127 ·
74 ≡ 1127 · 1 ≡ 1 (mod 15).

17. Notice that ϕ(24) = 8. Therefore, 791776 ≡ 71776 ≡ (78)222 ≡ 1222 ≡ 1 (mod 24).
19. We have ϕ(10) = 4 and 17 ≡ 7 (mod 10). So, by Euler’s theorem, 74 ≡ 1 (mod 10).

Therefore, 176666 ≡ (74)1666 · 72 ≡ 11666 · 9 ≡ 9 (mod 10), so the ones digit is 9.
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21. Because ϕ(16) = 8, by Euler’s theorem 78 ≡ 1 (mod 16). Therefore, 71030 ≡ (78)128 ·
(72)3 ≡ 1128 · 13 ≡ 1 (mod 16), so the desired ones digit is 1.

23. Because ϕ(10) = 4, multiply both sides by 73 ≡ 3 (mod 10): 3(7x) ≡ 3 · 8 (mod 10); that
is, x ≡ 4 (mod 10).

25. We have 7x ≡ 13 (mod 18). Because ϕ(18) = 6, multiply both sides by 75 ≡ 13 (mod 18):
13(7x) ≡ 13 · 13 (mod 18); that is, x ≡ 7 (mod 18).

27. We have 3x ≡ 7 (mod 20), ϕ(20) = 8, and 37 ≡ 7 (mod 20). Therefore, 7(3x) ≡ 7 · 7
(mod 20); that is, x ≡ 9 (mod 20).

29. ϕ(15) = ϕ(3 · 5) = ϕ(3)ϕ(5) = 2 · 4 = 8.
31. ϕ(105) = ϕ(3 · 5 · 7) = ϕ(3)ϕ(5)ϕ(7) = 2 · 4 · 6 = 48.
33.

∑

d|7
ϕ(d) = ϕ(1) + ϕ(7) = 1 + 6 = 7.

35.
∑

d|12
ϕ(d) = ϕ(1) + ϕ(2) + ϕ(3) + ϕ(4) + ϕ(6) + ϕ(12) = 1 + 1 + 2 + 2 + 2 + 4 = 12

37.
∑

d|n
ϕ(d) = n.

39.
∑

d|10
(−1)10/dϕ(d) = (−1)10/1ϕ(1) + (−1)10/2ϕ(2) + (−1)10/5ϕ(5) + (−1)10/10ϕ(10)

= 1 − 1 + 4 − 4 = 0

41.
∑

d|17
(−1)17/dϕ(d) = (−1)17/1ϕ(1) + (−1)17/17ϕ(17) = −1 − 16 = −17.

43. Let S = 1 + 9 + · · · + 923 = 924 − 1

9 − 1
. Therefore, 8S = 924 − 1 ≡ 0 (mod 35) by Euler’s

theorem. But (8,35) = 1, so S ≡ 0 (mod 35).
45. Let a = 4 and b = 7. Then ϕ(4,7) = ϕ(1) = 1 �= 2 = (2,6) = (ϕ(4), ϕ(7)).
47. proof: By Euler’s theorem, aϕ(m) ≡ 1 (mod m); that is, a · aϕ(m)−1 ≡ 1 (mod m). There-

fore, aϕ(m)−1 is an inverse of a modulo m.
49. proof: By Euler’s theorem aϕ(b) ≡ 1 (mod b) and bϕ(a) ≡ 1 (mod a). Therefore, aϕ(b) +

bϕ(a) ≡ 1+0 ≡ 1 (mod b) and aϕ(b) +bϕ(a) ≡ 0+1 ≡ 1 (mod a). Thus, by Theorem 4.8,
aϕ(b) + bϕ(a) ≡ 1 (mod [a,b]) ≡ 1 (mod ab).

51. proof: By Euler’s theorem, (a − 1)(aϕ(m)−1 + · · · + a + 1) = aϕ(m) ≡ 0 (mod m). But
(a − 1,m) = 1, so aϕ(m)−1 + · · · + a + 1 ≡ 0 (mod m).

53. There are four positive integers ≤ 23 and relatively prime to it, namely, 1, 3, 5, and 7.
Therefore, ϕ(23) = 4 = 23 − 22.

55. There are 18 positive integers ≤ 34 and relatively prime to it, namely, 1, 2, 4, 5, 7, 8, 10,
11, 13, 14, 16, 17, 19, 20, 22, 23, 25, and 26. Therefore, ϕ(34) = 18 = 33 − 32.

57. ϕ(pn) = pn − pn−1.
59. proof: Let Mk = [ϕ(m1), ϕ(m2), . . . , ϕ(mk)]. Because ϕ(mi)|Mk,Mk/ϕ(mi) is a posi-

tive integer, where 1 ≤ i ≤ k. Then aMk = [aϕ(mi)]Mk/ϕ(mi) ≡ 1Mk/ϕ(mi) ≡ 1 (mod mi).
Therefore, by Theorem 4.8, we have the desired conclusion, aMk ≡ 1 (mod [m1,m2,

. . . ,mk]).
61. Because the moduli mi are pairwise relatively prime, (Mi,mi) = 1 for all i, so by Euler’s

theorem Mϕ(mi)
i ≡ 1 (mod mi). When j �= i, Mj ≡ 0 (mod mi). Because x ≡∑

j�=i
ajM

ϕ(mj)

j +
aiM

ϕ(mi)
i ≡ 0 + ai ≡ (mod mi) for every i, it follows that x is a solution of the linear

system. By the CRT, the solution is unique.
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63. M1 = 9, M2 = 4, ϕ(m1) = ϕ(4) = 2, and ϕ(m2) = ϕ(9) = 6. Therefore, x ≡ 3 · 92 +
5 · 46 ≡ 23 (mod 36).

65. M1 = 35, M2 = 21, M3 = 15, ϕ(3) = 2, ϕ(5) = 4, and ϕ(7) = 6. Therefore, x ≡ 2 · 352 +
4 · 214 + 5 · 156 ≡ 89 (mod 105).

67. M1 = 585, M2 = 468, M3 = 260, M4 = 180, ϕ(4) = 2, ϕ(5) = 4, ϕ(9) = 6, and ϕ(13) =
12. Therefore, x ≡ 2 · 5852 + 3 · 4684 + 4 · 2606 + 5 · 18012 ≡ 1318 (mod 2340).

Review Exercises (p. 350)
1. 18! = (1 · 18)(2 · 10)(3 · 13)(4 · 5)(6 · 16)(7 · 11)(8 · 12)(9 · 17)(14 · 15)

≡ (−1) · 1 · 1 · 1 · 1 · 1 · 1 · 1 · 1 ≡ −1 (mod 19).
3. 11! ≡ 0 (mod 3) and 11! ≡ 0 (mod 4), so 11! ≡ 0 (mod 12). Thus 11! �≡ −1 (mod 12).
5. 1922 ≡ (−4)22 ≡ 422 ≡ (46)3 · 44 ≡ 23 · 3 ≡ 1 (mod 23).
7. 184567 ≡ 54567 ≡ (52)2283 · 5 ≡ (−1)2283 · 5 ≡ −5 ≡ 8 (mod 13).
9. 551876 ≡ 11876 ≡ 1 (mod 3); 551876 ≡ (−1)1876 ≡ 11876 ≡ 1 (mod 4). Therefore, by

Theorem 4.8, 551876 ≡ 1 (mod [3,4]) ≡ 1 (mod 12).
11. By Exercise 50 in Section 7.4, 1316 + 1712 ≡ 1 (mod 17 · 13) ≡ 1 (mod 221).
13. By Exercise 26 in Section 7.2, 1119 +1911 ≡ 11+19 ≡ 30 (mod 11 ·19) ≡ 30 (mod 209).
15. 1820 = (185)4 ≡ 184 ≡ 126 (mod 450) and 256 ≡ 325 (mod 450). Therefore, 1820 +

256 ≡ 126 + 325 ≡ 1 (mod 450).
17. 151942 ≡ 41942 ≡ (45)388 · 42 ≡ 1388 · 42 ≡ 1388 · 5 ≡ 1 · 5 ≡ 5 (mod 11), so the ones

digit is 5.
19. Since 24! ≡ 460 (mod 5899) and (459,5899) = 17, 17|5899.
21. ϕ(16) = ϕ(24) = 24 − 23 = 8.
23. ϕ(200) = ϕ(23 · 52) = ϕ(23)ϕ(52) = (23 − 22)(52 − 5) = 4 · 20 = 80.
25. ϕ(17) = 16 27. ϕ(25) = 20
29. There are ϕ(16) = 8 positive integers ≤ 16 and relatively prime to it. They are 1, 3, 5, 7, 9,

11, 13, and 15. Then, 18 ≡ 1 ≡ (−1)8 ≡ 158 (mod 16); 38 = (34)2 ≡ 12 ≡ 1 ≡ (−1)8 ≡
138 (mod 16); 58 = (54)2 ≡ 12 ≡ 1 ≡ (−1)8 ≡ 118 (mod 16); 78 = (72)4 ≡ 14 ≡ 1 ≡
(−1)8 ≡ 98 (mod 16).

31. 2731961 ≡ 731961 = (735)392 ·73 ≡ (−7)392 ·73 ≡ 7392 ·73 ≡ (74)98 ·73 ≡ 198 ·73 ≡ 73
(mod 100), so the last two-digit number is 73.

33. The given congruence yields 7x ≡ 10 (mod 13). Because 711 ≡ 2 (mod 13), multiply
both sides by 2: 2(7x) ≡ 20 (mod 13); that is, x ≡ 7 (mod 13).

35. Because 65x ≡ 27 (mod 18), we have 11x ≡ 9 (mod 18). Multiply both sides by
11ϕ(18)−1 = 115 ≡ 5 (mod 18): 5(11x) ≡ 5 · 9 (mod 18); that is, x ≡ 9 (mod 18).

37. 22047 = (211)186 · 2 ≡ 1186 · 2 ≡ 1 · 2 ≡ 2 (mod 2047), so 2047 is a pseudoprime.

39. Let S = 1+7+· · ·+717 = 718 − 1

18
. Therefore, 18S = 718 −1 ≡ 0 (mod 19) by Fermat’s

Little Theorem. But (18,19) = 1, so S ≡ 0 (mod 19).
41. 1265 ≡ 265 = (24)16 ·2 ≡ 116 ·2 ≡ 1 ·2 ≡ 2 ≡ 12 (mod 5) and 1265 ≡ (−1)65 ≡ −1 ≡ 12

(mod 13). Therefore, by Theorem 4.8, 1265 ≡ 12 (mod [5,13]) ≡ 12 (mod 65).
43. 2887 ≡ 187 ≡ 1 ≡ 28 (mod 3) and 2887 ≡ (−1)87 ≡ −1 ≡ 28 (mod 29). Therefore, by

Theorem 4.8, 2887 ≡ 28 (mod [3,29]) ≡ (mod 87).
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45. 3816 = (382)8 ≡ (−1)8 ≡ 1 (mod 172).
47.

∑

d|8
ϕ(d) = ϕ(1) + ϕ(2) + ϕ(4) + ϕ(8) = 1 + 1 + 3 + 3 = 8.

49.
∑

d|18
ϕ(d) = ϕ(1) + ϕ(2) + ϕ(3) + ϕ(6) + ϕ(9) + ϕ(18) = 1 + 1 + 2 + 2 + 6 + 6 = 18.

51.
∑

d|8
(−1)n/dϕ(d) = (−1)8/1ϕ(1) + (−1)8/2ϕ(2) + (−1)8/4ϕ(4) + (−1)8/8ϕ(8)

= 1 · 1 + 1 · 1 + 1 · 2 + (−1) · 4 = 0.

53.
∑

d|18
(−1)18/dϕ(d) = (−1)18/1ϕ(1) + (−1)18/2ϕ(2) + (−1)18/3ϕ(3) + (−1)18/6ϕ(6)

+ (−1)18/9ϕ(9) + (−1)18/18ϕ(18) = 1 − 1 + 2 − 2 + 6 − 6 = 0.

55. Let a be any positive integer with (a,8911) = 1. By Fermat’s Little Theorem, a6 ≡ 1
(mod 7), a18 ≡ 1 (mod 19), and a66 ≡ 1 (mod 67). Therefore, a8910 = (a6)1485 ≡
11485 ≡ 1 (mod 7), a8910 = (a18)495 ≡ 1495 ≡ 1 (mod 19), and a8910 = (a66)135 ≡
1135 ≡ 1 (mod 67). Therefore, by Theorem 4.8, a8910 ≡ 1 (mod [7,19,67]) ≡ 1
(mod 8911). Thus, 8911 is a Carmichael number.

57.
p−1∑

i=1
ai = a

(p−1∑

i=1
i

)

= a
(p − 1)p

2
≡ 0 (mod p), since p is odd.

59. proof: Because p − i ≡ −i (mod p),

(p − 1)! = [1 · 2 · · · (p − 1)/2][(p + 1)/2) · · · (p − 1)]
= [(p − 1)/2]!{[−(p − 1)/2] · · · (−2)(−1)}
= [(p − 1)/2]![(p − 1)/2)]!(−1)(p−1)/2 = (−1)(p−1)/2{[(p − 1)/2]!}2

Therefore, by Wilson’s theorem, (−1)(p−1)/2{[(p − 1)/2]!}2 ≡ −1 (mod p); that is,
{[(p − 1)/2]!}2 ≡ (−1)(p+1)/2 (mod p). Since p ≡ 3 (mod 4), (p + 1)/2 is even, so
{[(p − 1)/2]!}2 ≡ −1 (mod p). Thus, [(p − 1)/2]! ≡ ±1 (mod p).

Supplementary Exercises (p. 351)

1. W(5) = 4! + 1

5
= 25

5
= 5 ≡ 0 (mod 5), so W(5) is a Wilson prime. Likewise, W(13) =

12! + 1

13
= 479001601

13
= 36846277 ≡ 0 (mod 13), so 13 is also a Wilson prime.

3. (a) 202 = 2 · 101. Sum of the digits in 202 = 2 + 0 + 2 = 4 = 2 + 1 + 0 + 1 = sum of the
digits in the prime factors of 202. So, 202 is a Smith number.
(b) 265 = 5 · 53. Sum of the digits in 265 = 2 + 6 + 5 = 13 = 5 + 5 + 3 = sum of the
digits in the prime factors of 265. So, 265 is a Smith number.
(c) 666 = 2 ·3 ·3 ·37. Sum of the digits in 666 = 6+6+6 = 18 = 2+3+3+3+7 = sum
of the digits in the prime factors of 666. So, 666 is a Smith number.
(d) 1111 = 11 · 101. Sum of the digits in 1111 = 1 + 1 + 1 + 1 = 4 = 2 + 2 = sum of the
digits in the prime factors of 1111. So, 1111 is a Smith number.

5. φ(1) = 1 = φ(2); φ(3) = 2 = φ(4)

φ(15) = φ(3)φ(5) = 2 · 4 = 8 = 24 − 23 = φ(16)
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φ(104) = φ(8)φ(13) = 4 · 12 = 48 = 2 · 4 · 6 = φ(3)φ(5)φ(7) = φ(105)

φ(164) = φ(4)φ(41) = 2 · 40 = 2 · 4 · 10 = φ(3)φ(5)φ(11) = φ(165)

φ(194) = φ(2)φ(97) = 1 · 96 = 96 = 2 · 4 · 12 = φ(3)φ(5)φ(13) = φ(195)

φ(255) = φ(3)φ(5)φ(17) = 2 · 4 · 16 = 128 = 28 − 27 = φ(28) = φ(256)

φ(495) = φ(32)φ(5)φ(11) = 6 · 4 · 10 = 240 = 8 · 30 = φ(16)φ(31) = φ(496) and

φ(65535) = φ(3)φ(5)φ(17)φ(257) = 2 · 4 · 16 · 256 = 32768 = 216 − 215

= φ(216) = φ(65536)

Thus 1, 3, 15, 104, 164, 194, 255, 495, and 65535 are solutions of the equation.
7. proof: Since φ(2k) = 2k − 2k−1 = 2k−1, f (2k) = 2k−1 + 2k−2 + · · · + 1 + φ(1) =

(2k−1 + 2k−2 + · · · + 1) + 1 = 1 + (2k − 1)/(2 − 1) = 2k

9. proof (by PMI): The statement is true when n = 1, by virtue of Wilson’s theorem. Assume

it is true for an arbitrary positive integer k:
(kp − 1)!

(k − 1)!pk−1
≡ (−1)k (mod p). We have

(kp + 1) · · · [(k + 1)p − 1] ≡ (p − 1)! ≡ −1 (mod p), by Wilson’s theorem. Then

[(k + 1)p − 1]!
k!pk

= (kp − 1)!
(k − 1)!pk−1

· (kp)(kp + 1) · · · [(k + 1)p − 1]
kp

= (kp − 1)!
(k − 1)!pk−1

· (kp)(kp + 1) · · · [(k + 1)p − 1] ≡ (−1)k(p − 1)! ≡ (−1)k+1

by the inductive hypothesis and Wilson’s theorem. Thus, the statement is true when n =
k + 1, so the result follows by PMI.

Chapter 8 Multiplicative Functions

Exercises 8.1 (p. 364)
1. Because f (mn) = 0 = 0 · 0 = f (m)f (n), f is multiplicative.
3. ϕ(341) = ϕ(11 · 31) = ϕ(11)ϕ(31) = 10 · 30 = 300.
5. ϕ(1105) = ϕ(5 · 13 · 17) = ϕ(5)ϕ(13)ϕ(17) = 4 · 12 · 16 = 768.
7. ϕ(6860) = ϕ(22 · 5 · 73) = ϕ(22)ϕ(5)ϕ(73) = 2 · 4 · 294 = 2352.
9. ϕ(183920) = ϕ(24 · 5 · 112 · 19) = ϕ(24)ϕ(5)ϕ(112)ϕ(19) = 8 · 4 · 110 · 18 = 63,360.

11. ϕ(3!) = ϕ(6) = 2. 13. ϕ(7!) = ϕ(24 ·32 ·5 ·7) = 8 ·6 ·4 ·6 = 1152.

15. 1 17. 7, 9, 14, 18

19. ϕ(pq) = ϕ(p)ϕ(q) = (p − 1)(q − 1) = (p − 1)(p + 1) = p2 − 1.
21. Let p < q. By Exercise 19, ϕ(pq) = p2 − 1 = 288. Then p2 = 289, so p = 17. Hence,

q = 19.
23. No, since ϕ(n) ≤ n for every positive integer n.
25. ϕ(n) = ϕ(2k) = 2k − 2k−1 = 2k−1 = 2k/2 = n/2.
27. Since n is odd, (4,n) = 1. Therefore, ϕ(4n) = ϕ(4)ϕ(n) = 2ϕ(n).
29. ϕ(n) = ϕ(2j) = 2j−1 = n/2.



Chapter 8 Multiplicative Functions 719

31. ϕ(n) = ϕ(2j3k) = ϕ(2j)ϕ(3k) = 2j−13k−1 · 2 = 2j3k−1 = n/3, so 3ϕ(n) = n.
33. proof: ϕ(22k+1) = 22k = (2k)2 is a square.
35. proof: Because p � n, (p,n) = 1. Therefore, ϕ(pn) = ϕ(p)ϕ(n) = (p − 1)ϕ(n).
37. ϕ(pe) = pe−1(p − 1), so ϕ(ϕ(pe)) = ϕ(pe(p − 1)) = ϕ(pe−1)ϕ(p − 1) = pe−2(p − 1)

ϕ(p − 1) = pe−2ϕ(p)ϕ(p − 1) = pe−2ϕ(p(p − 1))

39. proof: Let m = pia and n = pb, where (a,p) = (b,p) = 1, and i ≥ 1. Then ϕ(mn) =
ϕ(pi+1ab) = ϕ(pi+1)ϕ(ab) = pi(p − 1)ϕ(ab). So

ϕ(m)ϕ(n) = ϕ(pia)ϕ(pb) = pi−1(p − 1)2ϕ(a)ϕ(b) = (p − 1)ϕ(mn)/p

41. proof: Let m = da and n = db, where (a,b) = 1. Let d =∏
i

pei
i . Then mn =∏

i
p2ei

i · ab,

so ϕ(mn) =∏
i
ϕ(p2ei

i )ϕ(ab) =∏
i
(p2ei−1

i )(pi − 1)ϕ(ab). ϕ(m)ϕ(n) =∏
i
[p2ei−1

i (pi − 1)

ϕ(a)ϕ(b)(pi − 1)/pi] = ϕ(mn)
∏

i
(1 − 1/pi) = ϕ(mn)ϕ(d)/d

43. Let m = n. Then d = n. Then, by Exercise 41, ϕ(n2) = n/ϕ(n) · ϕ(n) · ϕ(n) = nϕ(n).
45. proof (by PMI): The statement is clearly true when e = 1, so assume it is true for an arbi-

trary positive integer e = k. Then, using Exercise 41 with m = nk and d = n, ϕ(nk+1) =
n/ϕ(n) · ϕ(nk)ϕ(n) = n · nk−1ϕ(n) = nkϕ(n), by the IH. Therefore, by PMI, the result is
true for every exponent e ≥ 1.

47. ϕ(48) = ϕ(6 · 8) = 2/ϕ(2) · ϕ(6)ϕ(8) = 2 · 2 · 4 = 16.
49. ϕ(375) = ϕ(15 · 25) = 5/ϕ(5) · ϕ(15)ϕ(25) = 5/4 · 8 · 20 = 200.
51. ϕ(16) = ϕ(24) = 23ϕ(2) = 23 · 1 = 8.
53. ϕ(2401) = ϕ(74) = 73ϕ(7) = 73 · 6 = 2058.
55. 6 57. 27 59. nϕ(n)/2
61. proof (by D. A. Breault): Clearly, n > 4; so 2|n and 3|n, and hence 6|n. Thus n = 6m

for some positive integer m. Then ϕ(n) = ϕ(6)ϕ(m) = 2ϕ(m); so 3ϕ(n) = 6ϕ(m) =
6m
∏

p|m
(1 − 1/p) = n

∏

p|m
(1 − 1/p) ≤ n, as desired.

63. proof: We have ϕ(n)/n =∏
i
(1−1/p). Let n = 2a3b, where a,b > 0. Then ϕ(n)/n = 1/3.

Since a and b are arbitrary, this implies that there are infinitely many positive integers n
such that ϕ(n)/n = 1/3. On the other hand, let ϕ(n)/n = 1/4. Then

∏

p|m
(1 − 1/p) = 1/4;

that is, 4
∏

p|m
(p − 1) = ∏

p|m
p; so 4|RHS, which is impossible.

Exercises 8.2 (p. 372)
1. Because 43 is a prime, τ (43) = 2. 3. 2187 = 37, so τ (2187) = 7 + 1 = 8.
5. Because the only positive factors of 43 are 1 and 43, σ(43) = 1 + 43 = 44.
7. 2187 = 37, so σ(2187) = σ(37) = (38 − 1)/2 = 3280.
9. 1, p, q, and pq. 11. 1, p, q, pq, p2, and p2q.

13. 1 + p + q + pq 15. (1 + q)(1 + p + p2)

17. 1,p, . . . ,pi,q,pq, . . . ,piq, . . . ,qj, . . . ,piqj

19. They are primes.
21. τ (n) = 2k and σ(n) = (p1 + 1)(p2 + 1) · · · (pk + 1).
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23. Product = 1 · 2 · 22 · 23 · · ·22e = 21+2+3+···+2e = 22e(2e+1)/2 = 22e−1(2e+1).
25. Product = 0 ≤ ∏

0≤i≤a
0≤j≤b

piqj =∏
j

pa(a+1)/2q(a+1)j = p(b+1)a(a+1)/2q(a+1)b(b+1)/2

= (paqb)(a+1)(b+1)/2 = nτ(n)/2

27. τ (n) = 2p 29. σ(6) = 12 31. σ(496) = σ(24 · 31) = 31 · 32 = 992.

33. Let n = 2p−1(2p − 1), where p and 2p − 1 are primes. Then σ(n) = 2n.
35. σ(p + 2) = 1 + (p + 2) = (1 + p) + 2 = σ(p) + 2.
37. For σ(p) = 1 + p to be odd, p must be even. So p = 2.
39. RHS = 2 · σ(332) = 2 · 588 = 1176 = LHS.
41. LHS = 432 = 2 · 216 = 2ϕ(666) = RHS.
43. ϕ(p) + σ(p) = (p − 1) + (p + 1) = 2p.
45. proof: Let n =∏

i
pei

i . Then τ (n) =∏
i
(ei + 1). If τ (n) is odd, ei must be even, say, ei =

2ki. Then n =∏
i

p2ki
i = (

∏

i
pki

i )2 is a square.

47. proof: Let n =∏
i

pei
i . Then τ (n) =∏

i
(ei + 1). If τ (n) is a prime, then i = 1 and either

e1 = 1 or e1 must be an even integer 2e. If e1 = 1, then n is a prime. If e1 = 2e, then
n = p2e.

49. proof: 1 + p + · · · + pk = 1 + k odd numbers. This sum is odd if and only if k is even.
51. proof: Let n =∏

i
pei

i . Then σ(n) =∏
i
(pei

i − 1)/(pi − 1). Let σ(n) be odd. If every pi is

odd, then (pei
i − 1)/(pi − 1) is odd for every i. So ei is even for every i. Therefore, n is a

square. Suppose p1 = 2. Then σ(n) = (2ei+1 − 1)
∏

i>1
(pei+1

i − 1)/(pi − 1) is odd, so both

factors are odd. Again, all ei are even as before. If ei = 0, then n is of the form m2, a
square. If ei > 0, then 2ei is even, so n is of the form 2em2. Thus, in both cases, n is of
the form 2em2, where e ≥ 0.

53. proof: Since every divisor of m is also a divisor of n,
∑

d|m
1

d
≤∑

d|n
1

d
. The desired result

follows by Exercise 42.
55. proof: Let n =∏

i
pei

i be the canonical decomposition of n. Then σ(n) =∏
i

σ(pei
i ). So

σ(n)

n
=∏

i

σ(pei
i )

pei
i

<
∏

i

pi

pi − 1
=∏

p|n
p

p − 1

57. σ2(18) = ∑

d|18
d2 = 12 + 22 + 32 + 62 + 92 + 182 = 455.

59. σ3(28) = ∑

d|28
d3 = 13 + 23 + 43 + 73 + 143 + 282 = 25,112.

61. σk(p
e) = ∑

d|pe
dk =

e∑

i=0
(pi)k =

e∑

i=0
pki = p(e+1)k − 1

pk − 1

63. proof: By Theorem 8.6, F(n) = ∑
d|n

f (d) is multiplicative. Let f (n) = nk . Then σk =
F(n) =∑

d|n
dk is multiplicative, since f is multiplicative.

65. σk(n) =∏
i

σk(p
ei
i ) =∏

i

[
(p(ei+1)k

i − 1)/(pi − 1)
]
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67. σ3(18) = σ3(2 · 32) = (26 − 1)/1 · (39 − 1)/2 = 619,983
69. σ4(84) = σ4(22 · 3 · 7) = (212 − 1)/1 · (38 − 1)/2 · (78 − 1)/6 = 12,905,081,280,000

Exercises 8.3 (p. 379)
1. Because 2p is a perfect number, σ(2p) = 4p; that is, 1 + 2 + p + 2p = 4p, so p = 3.
3. ϕ(n) = ϕ(2p−1)ϕ(2p − 1) = 2p−2(2p − 2) = 22p−2 − 2p−1 = 22p−2 + n − 22p−1 =

n − 22p−2.
5. Let m = 2p − 1. Then tm = m(m + 1)/2 = 2p−1(2p − 1) is a triangular number.
7. Because p and q are distinct odd primes, σ(pq) = 1+p+q+pq. Also (p−q)(q−1) > 2;

that is, 1 − p − q + pq > 2, so 1 + p + q < pq. Thus, σ(pq) < 2pq, so pq is not a perfect
number.

9. Notice that 1 and 2 are not solutions, but 3 is a solution. We will now show that the
equation is not solvable if n > 3. Let n = 3 + k, where k ≥ 1. Then RHS = 2(3 + k)+ 3 =
2k+9 and LHS = (3+k)k+2 = (3+k)k(3+k)2 = (3+k)k(9+6k+k2) > 2k+9 = RHS.
Thus, if n > 3, then the equation is not solvable.

11. Because the sum of the cubes of the first n odd integers = n2(2n2 − 1), the sum of
the cubes of the first 2(p−1)/2 odd numbers equals (2(p−1)/2)2[2 · (2(p−1)/2)2 − 1] =
2p−1(2p − 1), a perfect number.

13. proof: Let m = 2p−1(2p − 1) and n = 2q−1(2q − 1) be even perfect numbers. Then mn =
2p+q−1(2p − 1)(2q − 1) is not a perfect number since (2p − 1)(2q − 1) is not a prime.

15. proof: Since q = 2p − 1 is a prime, every factor d of n is of the form 2iqj, where 0 ≤ i ≤
p − 1 and 0 ≤ j ≤ 1. So

∏

d|n
d =∏

i,j
2iqj =

(p−1∏

i=0
2i
)(p−1∏

i=0
2iq

)

= [2p(p−1)/2][2p(p−1)/2qp] = 2p(p−1)qp = np.

17. proof: Since p and e are odd, let p = 2r + 1 and e = 2s + 1. Then n = (2r + 1)2s+1m2.
Since n is odd perfect, 2|σ(n), but 4 � σ(n). But σ(n) = σ(2r + 1)2s+1 · σ(m2). So,
4 � σ(2r + 1)2s+1.
Now,

(2r + 1)i =
i∑

j=0

(
i

j

)

(2r)j ≡ 1 + 2ir (mod 4).

Therefore,

σ(2r + 1)2s+1 ≡
2s+1∑

i=0
(1 + 2ir) ≡ (2s + 2) + 2r · (2s + 1)(2s + 2)

2

≡ (2s + 2)(1 + r + 2rs) (mod 4) ≡ (r + 1)(s + 1) (mod 2) (1)

Since 4 � σ(2r + 1)2s+1, it follows from (1) that (r + 1)(s + 1) �≡ 0 (mod 2); so (r +
1)(s + 1) ≡ 1 (mod 2). Consequently, r ≡ s ≡ 0 (mod 2); that is, both r and s are even,
say, r = 2a and s = 2b. Then p = 4a + 1 and e = 4b + 1, so p ≡ 1 ≡ a (mod 4).

19. proof: We have n = pem2, where p ≡ 1 (mod 4) and m is odd. Since m is odd, m ≡ ±1
(mod 4), so m2 ≡ 1 (mod 4). Thus, n ≡ 1e · 1 ≡ 1 (mod 4).

21. σ(88) = 180 > 2 · 88, so 88 is abundant.
23. Since σ(315) = 624 < 2 · 315,315 is deficient.
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25. Let n = 222M23. Since M23 = 223 − 1 = 47. 178,481 is composite, σ(M23) > 1 + M23 =
223. Therefore, σ(n) = σ(222)σ (M23) = (223 − 1)σ (M23) > M23 · 223 = 2n. Thus, n is
abundant.

27. Let n = 2k−1(2k − 1). Since 2k − 1 is composite, σ(2k − 1) > (2k − 1) + 1 = 2k . There-
fore, σ(n) = (2k − 1)σ (2k − 1) > 2k(2k − 1) = 2n, so n is abundant.

29. Because σ(30240) = σ(25 · 33 · 5 · 7) = 63 · 40 · 6 · 8 = 120,960, 30,240 is 4-perfect.
31. 2620 = 22 · 5 · 131 and 2924 = 22 · 17 · 43. Because σ(2620) = 7 · 6 · 132 = 5544 =

7 · 18 · 44 = σ(2924) = 2924 + 2620, 2620 and 2924 are amicable numbers.
33. When n = 2,2nab = 4(3 · 4 − 1)(3 · 2 − 1) = 4 · 11 · 5 = 220 and 2nc = 4(9 · 8 − 1) = 284

are amicable numbers; likewise, n = 4 yields the amicable numbers 17,296 and 18,416.
35. Sum of the first 17 primes = 2 + 3 + 5 + 7 + 11 + 13 + 17 + 19 + 23 + 29 + 31 + 37 +

41 + 43 + 47 + 53 + 59 = 440 = 2 · 220; sum of their squares = 16756 = 59 · 284.

37. ν(20) = 1 · 2 · 4 · 5 · 10 = 202 39. ν(24) = 1 · 2 · 3 · 4 · 6 · 8 · 12 = 243

41. ν(pq) = 1 · p · q = pq 43. σ(p) = 1 + p < 2p, so p is deficient

45. σ(pe) = (pe+1 − 1)/(p − 1) < 2pe, so pe is deficient.
47. proof: Because p is prime and 2ep is abundant, σ(2ep) = (2e+1 − 1)(p + 1) > 2 · 2ep.

That is, p2e+1 +2e+1 −p−1 > p2e+1. So 2e+1 > p+1; that is, e+1 ≥ lg(p+1). Thus,
e ≥ �lg 2(p + 1)� − 1.

49. proof: σ(σ (2k)) = σ(2k+1 − 1) = 2k+1 = 2 · 2k . Therefore, 2k is superperfect.

51. proof: Because m and n are amicable, σ(m) = m + n = σ(n). σ(m) = ∑

d|m
m

d
= m

∑

d|m
1

d
.

Therefore,

(
∑

d|m
1

d

)−1
= m

σ(m)
. Similarly,

(
∑

d|n
1

d

)−1
= n

σ(n)
. Therefore,

(
∑

d|m
1

d

)−1
+
(
∑

d|n
1

d

)−1
= m

σ(m)
+ n

σ(n)
= m + n

σ(m)
= 1

53. proof: ν(n) =
e−1∏

i=0
pi = pe(e−1)/2 = n(e−1)/2. Thus, ν(n) is a power of n if and only if

(e − 1)/2 is an integer; that is, if and only if e is odd and e > 1.
55. proof: Let ν(n) = nk . Then nτ(n)/2 = nk , so τ (n) = 2(k + 1). Thus, τ (n) is even and is

≥ 4. Conversely, let τ (n) be even and ≥ 4, say, 2k, where k ≥ 2. Then ν(n) = nk−1, which
is a power of n.

57.
1

h(n)
= 1

τ (n)

(
∑

d|n
1

d

)

= 1

τ (n)

(
∑

d|n
1

n/d

)

= 1

τ (n)

(
∑

d|n
d

n

)

= 1

nτ (n)

∑

d|n
d = σ(n)

nτ (n)

Therefore, h(n) = nτ (n)

σ (n)
.

Exercises 8.4 (p. 397)
1. 1, 11, 111, 1111, 11111.
3. Number of digits in M2281 = �2281 log 2� = 687.
5. Number of digits in M110503 = �110503 log 2� = 33,265.
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7. Because 4k ≡ 4 (mod 10) if k is odd, 2127 = (22)63 · 2 = 463 · 2 = 4 · 2 ≡ 8 (mod 10),
M127 ≡ 7 (mod 10), so M127 ends in 7.

9. When k is even, 4k ≡ 6 (mod 10). So 211213 = (22)5606 · 2 = 45606 · 2 ≡ 6 · 2 ≡ 2
(mod 10). Then M11213 ≡ 1 (mod 10), so M11213 ends in 1.

11. Because 24k ≡ 76 (mod 100) when k is even, 2127 = (210)12 · 27 = 2412 · 28 ≡ 76 · 28 ≡
28 (mod 100). Thus, M127 ≡ 27 (mod 100), so M127 ends in 27.

13. Because 24k ≡ 76 (mod 100) when k is even, 29941 = (210)994 · 2 = 24994 · 2 ≡ 76 · 2 ≡
52 (mod 100). Thus, M9941 ≡ 51 (mod 100), so M9941 ends in 51.

15. Because 2103 ≡ 8 (mod 1000), 21279 = (2103)12 · 225 · 218 ≡ 812 · 432 · 144 ≡ 088
(mod 1000), M1279 ≡ 087 (mod 1000). Thus, M1279 ends in 087.

17. Because 2103 ≡ 8 (mod 1000), 2110503 = (2103)1072 · 287 ≡ 81072 · 287 = 23303 =
(2103)32 · 27 ≡ 832 · 27 = 2103 ≡ 008 (mod 1000). Thus, M110503 ≡ 007 (mod 1000),
so M110503 ends in 007.

19. proof: When k is even, 4k ≡ 6 (mod 10). Because n ≥ 2, 22n = 22·2n−1 = 42n−1 ≡ 6
(mod 10), fn ≡ 7 (mod 10). Thus, if n ≥ 2, fn ends in 7.

21. By Exercise 20, the number of digits in f13 is given by �213 log 2� = 2467.
23. By Exercise 20, f23 contains �223 log 2� = 2,525,223 digits.

25. 1 followed by 2n − 1 zeros and then a 1. 27. p ones followed by p − 1 zeros.

29. There are ϕ(10) = 4 positive integers ≤ 10 and relatively prime to 10, namely, 1, 3, 7,
and 9. Because k|4, k = 1,2, or 4. Clearly, k �= 1. Since 32 �= 1 (mod 10), k �= 2. So k = 4.

31. There are ϕ(18) = 6 positive integers ≤ 18 and relatively prime to 18, namely, 1, 5, 7, 11,
13, and 17. Because k|6, k = 1, 2, 3, or 6. Clearly, k �= 1. Since 52 �= 1 (mod 18), k �= 2.
Besides, 53 �≡ 1 (mod 18), so k �= 3. Thus, k = 6.

33. M7 = 27 −1 = 127. By Theorem 8.12, every factor of M7 is of the form 14k +1. Because
there are no primes of the form 14k + 1 that are ≤ �√127� = 11, M7 is a prime.

35. If M17 = 217 − 1 = 131071 is composite, it must have a prime factor ≤ �√131071� =
362, which is of the form 34k + 1. Such primes are 103, 137, 239, and 307. But none of
them is a factor of M17, so it is a prime.

37. Every prime factor of M29 is of the form 58k + 1. When k = 4, 58k + 1 = 233 and
233|M29, so M29 is composite.

39. The prime factors of M43 are of the form 86k + 1. When k = 5, 86k + 1 = 431 and
431|M43, so M43 is composite.

41. proof: Let m = 2n/2.

Sum of the cubes of the first m odd positive integers =
m∑

i=1
(2i − 1)3

= 8
m∑

i=1
i3 − 12

m∑

i=1
i2 + 6

m∑

i=1
i −

m∑

i=1
1

= 8[m(m + 1)/2]2 − 12[m(m + 1)(2m + 1)/6] + 6[m(m + 1)/2] − m

= 2m2(m + 1)2 − 2m(m + 1)(2m + 1) + 3m(m + 1) − m

= m(m + 1)[(2m2 + 2m) − (4m + 2)] − m
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= m(m + 1)(2m2 − 2m + 1) − m = m[(m + 1)(2m2 − 2m + 1) − 1]
= m(2m3 − m) = m2(2m2 − 1) = 2n(2n+1 − 1)

43. proof: Let n = 2k. Then, by Exercise 41,

S = 22k(22k+1 − 1) = 4k(2 · 4k − 1)

≡
{

4(2 · 4 − 1) ≡ 8 (mod 10) if k = n/2 is odd
6(2 · 6 − 1) ≡ 6 (mod 10) otherwise

Now consider the case n/2 = 2j + 1 is odd. Then S = 24j+2(24j+3 − 1) = 4 · 16j(8 ·
16j − 1). But 16i ≡ 76 (mod 100) if i ≡ 0 (mod 5); 16i ≡ 16 (mod 100) if i ≡ 1 (mod 5);
16i ≡ 56 (mod 100) if i ≡ 2 (mod 5); 16i ≡ 96 (mod 100) if i ≡ 3 (mod 5); and 16i ≡ 36
(mod 100) if i ≡ 4 (mod 5). In each case, it can be shown that S ≡ 28 (mod 100). Thus,
S ends in 6 or 28.

45. Clearly, the digital root of M2 is 3 and that of M3 is 7. Suppose p > 3. Then p is of the
form 6k + 1 or 6k + 5. When p = 6k + 1, Mp ≡ 1 (mod 9); when p = 6k + 5, Mp ≡ 4
(mod 9). Thus, the digital root of Mp is 1 if p ≡ 1 (mod 6) and 4 if p ≡ 5 (mod 6).

47. It follows from Segner’s formula that Cn = 2(C0Cn−1 + C1Cn−2 + · · · + C n−3
2

C n+1
2

) +
C2

n−1
2

. Consequently, for n > 0, Cn is odd if and only if both n and C n−1
2

are odd. The

same argument implies that Cn is odd if and only if
n − 1

2
and C n−3

4
are both odd or

n − 1

2
= 0. Continuing this finite descent, it follows that Cn is odd if and only if C n−(2m−1)

2m

is odd, where m ≥ 1. But the least value of k for which Ck is odd is k = 0. Thus, the

sequence of these if and only if statements terminates when
n − (2m − 1)

2m = 0; that is,

when n = 2m − 1, a Mersenne number.

Exercises 8.5 (p. 405)
1. 101 is prime, so μ(101) = −1.
3. Because 2047 = 23 · 89, μ(2047) = (−1)2 = 1.

5. μ(p) = −1. 7. Because 22|2p−1(2p − 1), μ(2p−1(2p − 1)) = 0.

9.
∑

d|5
μ(d)τ (5/d) = μ(1)τ (5) + μ(5)τ (1) = 1 · 2 + (−1) · 1 = 1.

11.
∑

d|10
μ(d)τ (10/d) = μ(1)τ (10) + μ(2)τ (5) + μ(5)τ (2) + μ(10)τ (1)

= 1 · 4 + (−1) · 2 + (−1) · 2 + (−1)2 · 1 = 4 − 2 − 2 + 1 = 1
13.

∑

d|5
μ(d)σ (5/d) = μ(1)σ (5) + μ(5)σ (1) = 1 · 6 + (−1) · 1 = 6 − 1 = 5

15.
∑

d|10
μ(d)σ (10/d) = μ(1)σ (10) + μ(2)σ (5) + μ(5)σ (2) + μ(10)σ (1)

= 1 · 18 + (−1) · 6 + (−1) · 3 + (−1)2 · 1 = 18 − 6 − 3 + 1 = 10

17. ϕ(23) = 23
∑

d|23

μ(d)

d
= 23

[
μ(d)

1
+ μ(d)

23

]

= 23(1 − 1/23) = 22.
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19. ϕ(36) = 36
∑

d|36

μ(d)

d

= 36

[
μ(1)

1
+ μ(2)

2
+ μ(3)

3
+ μ(4)

4
+ μ(6)

6
+ μ(9)

9
+ μ(18)

18
+ μ(36)

36

]

= 36(1 − 1/2 − 1/3 + 0/4 + 1/6 + 0/9 + 0/18 + 0/36) = 12

21. μ(pq) = (−1)2 = (−1)(−1) = μ(p)μ(q)

23. μ(p2qr) = 0 = 0 · (−1) · (−1) = μ(p2)μ(q)μ(r)
25.

∑

d|pq
μ(d)τ (d) = μ(1)τ (1) + μ(p)τ (p) + μ(q)τ (q) + μ(pq)τ (pq)

= 1 · 1 + (−1) · 2 + (−1) · 2 + (−1)2 · 4 = 1 − 2 − 2 + 4 = 1

27.
∑

d|p2qr
μ(d)τ (d) = μ(1)τ (1) + μ(p)τ (p) + μ(q)τ (q) + μ(r)τ (r) + μ(p2)τ (p2)

+ μ(pq)τ (pq) + μ(pr)τ (pr) + μ(qr)τ (qr) + μ(p2q)τ (p2q)

+ μ(p2r)τ (p2r) + μ(pqr)τ (pqr) + μ(p2qr)τ (p2qr)

= 1 − 2 − 2 − 2 + 0 + 4 + 4 + 4 + 0 + 0 − 8 + 0 = −1
29.

∑

d|pq
μ(d)τ (d) = μ(1)σ (1) + μ(p)σ (p) = 1 · 1 + (−1) · (p + 1) = 1 − p − 1 = −p

31.
∑

d|p2q
μ(d)σ (d) = μ(1)σ (1) + μ(p)σ (p) + μ(q)τ (q) + μ(p2)σ (p2) + μ(pq)τ (pq)

+ μ(p2q)τ (p2q)

= 1 − p − 1 − q − 1 + 1 + p + q + pq = pq

33.
∑

d|p
μ(d)τ (d) = −p = (−1)1p;

∑

d|pq
μ(d)τ (d) = pq = (−1)2pq;

∑

d|pqr
μ(d)τ (d) = −pqr = (−1)3pqr. Thus, we conjecture that

∑

d|n
μ(d)τ (d) = (−1)kn,

where n is a product of k distinct primes.
35. Because 104 = 23 · 3, λ(104) = (−1)3+1 = 1.
37. 3024 = 24 · 33 · 7, so λ(3024) = (−1)4+3+1 = 1
39.

∑

d|12
λ(d) = λ(1) + λ(2) + λ(3) + λ(4) + λ(6) + λ(12) = 1 − 1 − 1 + 1 + 1 − 1 = 0

41.
∑

d|28
λ(d) = λ(1) + λ(2) + λ(4) + λ(7) + λ(14) + λ(28) = 1 − 1 + 1 − 1 + 1 − 1 = 0

43. proof: By Theorem 8.5, n =∑
d|n

ϕ(d). Therefore, by Möbius inversion formula, ϕ(n) =
∑

d|n
μ(d)(n/d).

45. proof:
∑

d|n
μ(d)

d
=∑

i,j

μ(d)

piqj =
(
∑

i

μ(d)

pi

)(
∑

j

μ(d)

qj

)

= (1 − 1/p)(1 − 1/q)

47. proof: By Theorem 8.18,

ϕ(pe) =
∑

d|pe

μ(d)(pe/d) =
e∑

i=0

μ(d)(pe/pi) = μ(1)pe + μ(p)(pe/p) = pe − pe−1

49. proof: Let m =∏
i

pei
i and n =∏

j
q

fj
j , where (pi,qj) = 1. Then mn =∏

i,j
p

eṫ
i q

fj
j , so

λ(mn) = (−1)
∑

ei+∑ fj = (−1)
∑

ei(−1)
∑

fj = λ(m)λ(n)
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Thus, λ is multiplicative.
51. proof: Let f (n) =∑

d|n
λ(d). Then f (pe) =∑

i
λ(pi) = λ(1) + λ(p) + · · · + λ(pe) = 1 if and

only if e is even. Let n =
k∏

i=1
pei

i . Since λ is multiplicative, so is f . Therefore, f (n) =
∏

i
f (pei

i ) = 1k if and only if each ei is even; that is, if and only if n is a square.

53. proof: Let (m,n) = 1. Every divisor d of mn can be written as d = xy, where x|m, y|n,
and (x, y) = 1. So, by the inversion formula,

f (mn) = ∑

d|mn
μ(d)F(mn/d) = ∑

x|m
y|n

μ(xy)F(mn/xy) = ∑
x|m
y|n

μ(x)μ(y)F(m/x)F(n/y)

= ∑

x|m
μ(x)F(m/x)

∑

y|n
μ(y)F(m/y) = f (m)f (n) so f is multiplicative.

Review Exercises (p. 408)
1. sum = ϕ(2020) = 800.
3. σ(945) = σ(33)σ (5)σ (7) = 40 · 6 · 8 = 1920 > 1890 = 2 · 945, so 945 is abundant.

σ(45,045) = σ(32)σ (5)σ (7)σ (11)σ (13) = 13 · 6 · 8 · 12 · 14 = 104,832 > 90,090 =
2 · 45,045, so 45,045 is also abundant.

5. σ(12,285) = σ(33)σ (5)σ (7)σ (13) = 40 · 6 · 8 · 14 = 26,880; σ(14,595) = σ(3)σ (5)σ (7)

σ (139) = 4 · 6 · 8 · 140 = 26,880 = 12,285 + 14,595. Therefore, they are amicable.
7. Every factor of M53 = 253 − 1 is of the form 106k + 1. When k = 60,106k + 1 = 6361

and 6361|M53.

9.
n∑

i=0
σ(2i) =

n∑

i=0
(2i+1 − 1) =

n∑

i=0
2i+1 − (n + 1) = 2n+2 − n − 2.

11. σ and τ are multiplicative. But (σ + τ )(4 · 7) = σ(28) + τ (28) = 56 + 6 = 62 �= 100 =
10 · 10 = (σ + τ )(4) · (σ + τ )(7), so σ + τ is not multiplicative.

13. proof: Let (m,n) = 1. Then (fg)(mn) = f (mn) · g(mn) = f (m)f (n) · g(m)g(n) = (fg)(m) ·
(fg)(n). Thus, fg is multiplicative.

15. proof: Every hexagonal number is of the form hn = n(2n − 1). Let n = 2p−1. Then hn =
2p−1(2p − 1), an even perfect number.

17. proof: Let n =∏
i

pi, where pi = 2qi − 1 is a Mersenne prime. Then σ(n) =∏
i

2qi = 2e,

where e =∑
i

qi, so σ(n) is a power of 2.

19. proof: σ(fn) − ϕ(fn) = (1 + fn) − (fn − 1) = 2.
21. proof (by induction on e): When e = 1, aϕ(n) = ap−1 ≡ 1 (mod p), which is true

by Fermat’s Little Theorem. So assume it is true for an arbitrary positive exponent e:
aϕ(pe) ≡ 1 (mod pe); that is, aϕ(pe) = 1 + kpe for some positive integer k. Then

aϕ(pe+1) = apϕ(pe) = [aϕ(pe)]p = (1 + kpe)p =
p∑

r=0

(
p

r

)

(kpe)r

= 1 +
p∑

r=0

(
p

r

)

(krper) ≡ 1 (mod pe+1)
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since p
∣
∣
∣

(
p
r

)

when 0 < r < p. Thus, by PMI, the result is true for every positive expo-

nent e.
23. proof: Let N = 2p−1(2p − 1), where both p and 2p−1 − 1 are primes. When p = 2,

N = 6 and when p = 5, N = 496, and both end in 6. So assume p ≥ 7. Then p = r
(mod 10), where r = 1, 3, 7, or 9. Let p = 10k+r. Then N = 210k+r−1(210k+r −1). Since
210 ≡ 4 (mod 10), 210 ≡ 4k (mod 10). Therefore, N = 4k2r−1(4k2r − 1). But 4k ≡ 4 or
6 (mod 10).

case 1 Let 4k ≡ 4 (mod 10). Then N ≡ 4 · 2r−1(4 · 2r − 1) (mod 10). If r = 1, then
N ≡ 4(8 − 1) ≡ 8 (mod 10); if r = 3,N ≡ 4 · 4(4 · 8 − 1) ≡ 6 · 1 ≡ 6 (mod 10); if r =
7,N ≡ 4 · 26(4 · 27 − 1) ≡ 6(4 · 8 − 1) ≡ 6 (mod 10); and if r = 9,N ≡ 4 · 28(4 · 29 − 1) ≡
4(4 · 2 − 1) ≡ 8 (mod 10).

case 2 Let 4k ≡ 6 (mod 10). Then N ≡ 6 · 2r−1(6 · 2r − 1) (mod 10). This case is quite
similar. Thus, in both cases, N ends in 6 or 8.

25. proof: Let n = 2k ·3 ·p. Since σ(n) = 3n, (2k+1 −1) ·4 ·(p+1) = 3 ·2k ·3p. Because p+1
is even, let p + 1 = 2�q, where q is odd, � > 1, and (p,q) = 1. Then (2k+1 − 1)2�+2 · q =
32 · 2k · p. Clearly, � + 2 = k, so k ≥ 3. Therefore,

(2�+3 − 1)q = 9p (1)

Because (p,q) = 1, q|9. Therefore, q = 1, 3, or 9.

case 1 Let q = 1. Then p + 1 = 2�; that is, p = 2� − 1. Therefore, by equation (1),
2�+3 − 1 = 9(2� − 1); that is, 8 · 2� − 1 = 9 · 2� − 9. Therefore, 2� = 8, so � = 3, k = 5,
and p = 23 − 1 = 7. Thus n = 25 · 3 · 7 = 672.

case 2 Let q = 3. Then p + 1 = 3 · 2�; that is, p = 3 · 2� − 1. Therefore, by equation (1),
(8 · 2�+3 − 1) · 3 = 9(3 · 2� − 1); that is, 8 · 2� − 1 = 9 · 2� − 3. Therefore, 2� = 2, so
� = 1 · k = 3, and p = 3 · 21 − 1 = 5. Thus, n = 23 · 3 · 5 = 120.

case 3 Let q = 9. Then p + 1 = 9 · 2�; that is, p = 9 · 2� − 1. Therefore, by equation
(1), 9(8 · 2�+3 − 1) · 3 = 9(9 · 2� − 1); that is, 8 · 2� − 1 = 9 · 2�, which is impossi-
ble.
Thus, 120 and 672 are the only 3-perfect numbers of the form 2k · 3 · p.

Supplementary Exercises (p. 409)
1. 5775, 5776.
3. proof: σ(M) = σ(d)(a + 1)(b + 1) and σ(N) = σ(d)(c + 1). Because σ(M) = σ(N),

σ(d)(a + 1)(b + 1) = σ(d)(c + 1); that is, (a + 1)(b + 1) = (c + 1). Because σ(M) =
σ(d)(a + 1)(b + 1) and σ(M) = M + N = d(ab + c), σ(d)(a + 1)(b + 1) = d(ab + c).

5. proof: Because σ(2n) = 2n+1 − 1, by equation (3), (2n+1 − 1)(ab + a + b + 1) =
2n+1ab + 2na + 2nb; that is, ab − 2na − 2nb + a + b − 2n+1 + 1 = 0. Adding 22n

to both sides, this yields, a[b − (2n − 1)] − b(2n − 1) + (2n − 1)2 = 22n; that is,
[a − (2n − 1)][b − (2n − 1)] = 22n.

7. Use m = 1, a = 3 · 2n − 1, b = 3 · 2n−1 − 1 and c = 9 · 22n−1 − 1.
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9. proof: σ(d)/d = σ(32 ·7 ·13)/9 ·7 ·13 = 1456/9 ·7 ·13 = 16/9. Therefore, By Exercise 8,
2 − (a + b + 2)/(a + 1)(b + 1) = 16/9; that is, 2(ab + a + b + 1) = 9(a + b + 2). Then
4ab − 14a − 14b + 49; that is, (2a − 7)(2b − 7) = 81.

11. When a = 5, b = 17, and c = 107, M = 32 ·7 ·13 ·5 ·17 = 69,615 and N = 32 ·7 ·13 ·107 =
87,633.

13. proof (by W. D. Blair): Because (mi,mj) = 1 for i �= j, by Euler’s theorem, mϕ(mi)
i ≡ 1

(mod mj). Because ϕ is multiplicative, ϕ(m) = ϕ(m1)ϕ(m2) · · ·ϕ(mn). Hence,

mϕ(m)/ϕ(mi)
i ≡ 1 (mod mj) for all i �= j. Also m

ϕ(m)/ϕ(mj)

j ≡ 0 (mod mj). Thus for every j,

1 ≤ j ≤ n,
n∑

i=1
m

ϕ(m)/ϕ(mj)

i ≡ n − 1 (mod mj). Because the mj’s are relatively prime, the

result now follows.
15. σ(2) = 3, σ(3) = 4, σ(4) = 7, and σ(5) = 6.
17. proof: Let f (n) =∑

d|n
μ(d)τ (d). Since μ and τ are multiplicative, so is f . We have f (pe) =

∑

d|n
μ(d)τ (d) = μ(1)τ (1) + μ(p)τ (p) + 0 = 1 − 2 = −1. So

F(n) =
k∏

i=1
f (pei

i ) =
k∏

i=1
(−1) = (−1)k

19. proof: Let f (n) =∑
d|n

μ(d)ϕ(d). Since μ and ϕ are multiplicative, so is f . We have f (pe) =
∑

d|n
μ(d)ϕ(d) = μ(1)ϕ(1) + μ(p)τ (p) + 0 = 1 − (p − 1) = 2 − p. So

F(n) =
k∏

i=1
f (pei

i ) =
k∏

i=1
(2 − pi)

21. Using f = τ ,
∑

d|n
μ(d)τ (d) =

k∏

i=1
[1 − τ (pi)] =

k∏

i=1
(1 − 2) = (−1)k

23. Using f = ϕ,
∑

d|n
μ(d)ϕ(d) =

k∏

i=1
[1 − ϕ(pi)] =

k∏

i=1
[1 − (pi − 1)] =

k∏

i=1
(2 − pi)

25. Using f = 1/d,
∑

d|n
μ(d)

d
=

k∏

i=1
(1 − 1/pi)

27. σ(16) = σ(24) = 25 − 1 = 31 = 2 · 16 − 1, so 16 is near-perfect.

Chapter 9 Cryptology

Exercises 9.1 (p. 424)
1. DOOLV ZHOOW KDWHQ GVZHO O
3. NECESSITY IS THE MOTHER OF INVENTION
5. YZWPR LNJTD DZRCP LELDS ZYPDE J
7. TIME IS THE BEST MEDICINE
9. HMCFU ZXWKT HPMBF JHIXB WXGTS TG

11. KNHOX AETRM KUNWO GKVEW TEZMB MZ
13. THE BUCK STOPS HERE



Chapter 9 Cryptology 729

15. none 17. D, Q
19. A FOOL SEES NOT THE SAME TREE THAT A WISE MAN SEES

21. ϕ(26) · 26 = 12 · 26 = 312 23. IMPDG YZMGY PMK
25. WE ARE ALWAYS GETTING READY TO LIVE BUT NEVER LIVING
27. OIIOID CBXJWZ UBWLHF QZPUHK JMZLCK QBWLWT KMCJIJ
29. LIFE WONT WAIT

Exercises 9.2 (p. 430)
1. JV BF NA OI HO AQ 3. SEND MORE MONEY
5. ZRO RWV CAJ DJW ZWL ABN NDE QTY
7. A HUNGRY MAN IS NOT A FREE MAN

9. Solving the linear system

[
5 13
3 18

][
x
y

]

≡
[

x
y

]

(mod 26) yields x = 0 = y. Thus, the

block left fixed is AA.

11. The enciphering key for the product cipher is

[
7 15
3 4

][
2 11
5 13

]

≡
[

11 12
0 7

]

(mod 26),

so the cipher text is XA FE DM DA GP.

13. By Exercise 11, the enciphering matrix for the product cipher is

[
11 12

0 7

]

(mod 26).

Let

[
x
y

]

be a fixed block. Then the matrix congruence

[
11 12

0 7

][
x
y

]

≡
[

x
y

]

(mod 26)

yields the linear system

10x + 12y ≡ 0 (mod 26)

6y ≡ 0 (mod 26)

Solving this system, we get x = y = 0; x = 0, y = 13; x = 13, y = 0; and x = 13 = y. Thus,
there are four fixed blocks: AA, AN, NA, and NN.

15. A LABOR OF LOVE INDEED

Exercises 9.3 (p. 433)
1. 6
3. Because AB = 0001 = P,C = Pe (mod p), and 1e ≡ 1 (mod p), it follows that C =

0001 = P.
5. 1443 0748 1917 1557 2620 0351
7. 0388 1048 2080 1093 1224 1404 0335 14xx

9. PANCAKE 11. FIREBRAND 13. e = 27·17 ≡ 30 (mod 131)

15. Because 83 · 30 ≡ 1 (mod 131), the common deciphering key is 83.
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Exercises 9.4 (p. 442)
1. 1466 0248 1575 0315 3. 1836 1683 1719 2466
5. With d = 251, the plaintext is MORNING.
7. With d = 2273, the plaintext is MORNING.
9. Because ϕ(n) = ϕ(pq) = ϕ(p)ϕ(q) = (p − 1)(q − 1) = pq − p − q + 1 = n − p − q + 1,

p + q = n − ϕ(n) + 1.
11. Using Exercises 9 and 10,

p = [(p + q) + (p − q)]/2 =
{

n − ϕ(n) + 1 +
√

[n − ϕ(n) + 1]2 − 4n
}/

2

and q = [(p + q) − (p − q)]/2 =
{

n − ϕ(n) + 1 −
√

[n − ϕ(n) + 1]2 − 4n
}/

2

13. By Exercises 9 and 10, p+q = 3953−3828+1 = 126 and p−q =
√

1262 − 4 · 3953 = 8.
Therefore, p = 67 and q = 59.

15. We have e1 = 13, d1 = 2437, e2 = 17, and d2 = 1553. Using the coding schemes A =
D2(P) ≡ Pd2 (mod n) and S = E1(A) = Ae1 (mod n), the signed message sent is 0464
1719 1322.

17. We have e1 = 13, d1 = 2437, e2 = 17, and d2 = 1553. Let A = D2(P) ≡ Pd2 (mod 2747)

and S = E1(A) ≡ Ae1 (mod 2747), Betsey’s signed message. Then D1(S) = Ae1d1 ≡
A (mod 2747) and P ≡ Ae2d2 (mod 2747). Using these schemes, Betsey’s plaintext mes-
sage is MONEY.

Exercises 9.5 (p. 448)
1. No 3. (1,1,1,0,1) 5. (1,0,1,0,1)

7. 16, 32, 11, 22 9. 38 22 22 43 49 00 11 70 65 11. 60 49 54 54 00 54 54
13. SEND MORE 15. OPEN BOOK

Review Exercises (p. 450)
1. YDSDX FRZCU DHCLC UDSYW 3. TOP SECRET 5. ETCETRA
7. XSTJEE WBZOBQ 9. CUA HNO MQD 11. HONEY MOON

13. Solving the congruence

⎡

⎢
⎣

2 11 5
7 0 4
9 3 8

⎤

⎥
⎦

⎡

⎢
⎣

x
y
z

⎤

⎥
⎦≡

⎡

⎢
⎣

x
y
z

⎤

⎥
⎦ (mod 26), we get x = y = z = 0, or

x = 13 = y and z = 0. Thus, the blocks left fixed are AAA and NNA.
15. 2524 2599 0546 2338 17. 2470 2652 0996 19. 2737 0696 2524 3514 3372
21. GOOD JOB 23. 1532 1426 25. FAT
27. No 29. (1,1,0,1,0) 31. 37 80 71 46 37 00 37 85 43
33. MARKET OPEN

Supplementary Exercises (p. 451)
1. C ≡ c(aP + b) + d ≡ acP + bc + d (mod 26)
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3. The matrix congruence

[
a b
c d

][
x
y

]

≡
[

x
y

]

(mod 26) yields the linear system

(a − 1)x + by ≡ 0 (mod 26)

cx + (d − 1)y ≡ 0 (mod 26)

Eliminating y, [(a − 1)(d − 1) − bc]x ≡ 0 (mod 26); that is, (ad − bc − a − d + 1)x ≡ 0
(mod 26). This congruence has k = (ad − bc − a − d + 1,26) solutions. Thus, k blocks
are left fixed by the enciphering matrix.

5. No, because matrix multiplication is not commutative.
7. By Exercise 6, the probability equals 1/p + 1/q − 1/pq < 10−99 + 10−99 − 10−9801 <

2 · 10−99.

9. proof: Let ai+1 > 2ai. Then
j∑

i=1
ai+1 > 2

j∑

i=1
ai; that is,

j∑

i=2
ai + aj+1 > 2

j∑

i=2
ai + 2a1.

Then ai+1 >
j∑

i=2
ai + 2a1 =

j∑

i=1
ai + a1. Thus, ai+1 >

j∑

i=1
ai, so the sequence is superin-

creasing.

Chapter 10 Primitive Roots and Indices

Exercises 10.1 (p. 463)
1. 6 3. 5

5. Because ord23 9 = 11, 911 ≡ 1 (mod 23); that is, (−14)11 ≡ 1 (mod 23). Then 1411 ≡
−1 (mod 23), so 1422 ≡ 1 (mod 23). Since 142 �≡ 1 (mod 23), this implies ord23 14 = 22.

7. Because 58 ≡ 1 (mod 13), ord13 5 = 1, 2, 4, or 8. But 51 �≡ 1 (mod 13) and 52 �≡ 1
(mod 13). Since 54 ≡ 1 (mod 13), ord13 5 = 4.

9. Because ord13 4 = 6, ord13 45 = 6 by Corollary 10.3.
11. By Theorem 10.2, ord11 74 = 10/(10,4) = 10/2 = 5.
13. ord13 4 = 6, whereas ord13(−4) = ord13 9 = 1.
15. 34 + 33 + 32 + 3 + 1 = (35 − 1)/(3 − 1) = (35 − 1)/2 ≡ 6(35 − 1) ≡ 6 · 0 ≡ 0 (mod 11).
17. 45 + 44 + 43 + 42 + 4 + 1 = (46 − 1)/(4 − 1) = (46 − 1)/3 ≡ 9(46 − 1) ≡ 9 · 0 ≡ 0

(mod 13).
19. Because ordm 5 ≤ ϕ(m) ≤ m − 1, 22 ≤ m − 1; so m ≥ 23. But 522 ≡ 1 (mod 23), so

m = 23.
21. Because ordm 7 ≤ ϕ(m) ≤ m − 1, 10 ≤ m − 1; so m ≥ 11. But 710 ≡ 1 (mod 11), so

m = 11.
23. Let p = 7 and a = 2. Then ord7 2 = 3 �= 6 = ord7 5 = ord7(7 − 2).
25. p = 3 has exactly one primitive root, namely, 2.
27. Because 54 ≡ 1 (mod 13), 51001 = (54)250 · 5 ≡ 1 · 5 ≡ 5 (mod 13), so the desired re-

mainder is 5.
29. We have 73 ≡ 1 (mod 9) and 83 ≡ 1 (mod 9). Therefore, (7 · 8)6 = (73)2 · (82)3 ≡ 1

(mod 9). Thus, ord9 56 = 1, 2, 3, or 6. Because 561 ≡ 2 �≡ 1 (mod 9), 562 ≡ 4 �≡ 1
(mod 9), and 563 ≡ 8 �≡ 1 (mod 9), it follows that ord9 56 = 6.



732 Solutions to Odd-Numbered Exercises

31. ϕ(10) = 4 33. ϕ(28) = ϕ(4 · 7) = ϕ(4)ϕ(7) = 12
35. 3, 5 37. 2, 6, 7, 11

39. The product of the incongruent primitive roots is congruent to 1 modulo p.
41. There are four positive integers ≤ 12 and relatively prime to 12: 1, 5, 7, and 11. Because

12 ≡ 52 ≡ 72 ≡ 112 ≡ 1 (mod 12), ord12 1 = ord12 5 = ord12 7 = ord12 11 = 2 �= 4 =
ϕ(12). Therefore, 12 has no primitive roots.

43. The prime factors of R5 are of the form q = 2kp + 1, where p ≥ 5 and k ≥ 1. When p = 5,
q = 10k + 1. The numbers 11 and 31 of the form 10k + 1 are not factors of R5; but 41|R5.
Similarly, 239|R7, 53|R13, and 83|R41.

45. proof: Let ordm a = h and ordm(a−1) = k. Because ah ≡ 1 (mod m), (a−1)h = a−h ≡
1 (mod m). So k|h. Similarly, h|k. Thus, h = k.

47. proof: Assume m is not a prime. Then ϕ(m) < m − 1. Because ordm a|ϕ(m), ordm a ≤
ϕ(m) < m − 1. Because this contradicts the hypothesis, m is a prime.

49. proof: Let p−1 = 4k, where k ≥ 1. Let a be a primitive root modulo p, so ordp a = ϕ(p) =
p − 1. Then (p − a)ϕ(p) ≡ (−a)4k ≡ a4k ≡ ap−1 ≡ 1 (mod p), so ordp(p − a)|ϕ(p). Let
ordp(p − a) = h < p − 1. Then (p − a)h ≡ 1 (mod p); that is, (−a)h ≡ 1 (mod p), so
a2h ≡ 1 (mod p). Then ordp a|2h; that is, p − 1|h. Since (p − 1)/2|h and h < p − 1,
(p − 1)/2 = h = 2k. Thus, h is even. This implies ah ≡ (−a)h ≡ 1 (mod p), where h <

p − 1, which is a contradiction.
Conversely, let p−a be a primitive root modulo p. Then ap−1 ≡ (−a)p−1 ≡ 1 (mod p), so
ordp a|p−1. Suppose ordp a = r, where r|p−1, but r < p−1. Since (p−a)2r ≡ (−a)2r ≡
(ar)2 ≡ 1 (mod p), p − 1|2r. So (p − 1)/2|r. Because (p − 1)/2 is even, this implies r is
even. Therefore, (p − a)r ≡ (−a)r ≡ ar ≡ 1 (mod p), where r < p − 1. Because this is a
contradiction, ordp a = p − 1.

51. proof: Because ordm a = hk, by Theorem 10.2, ordm(ah) = hk/(hk,h) = hk/h = k.
53. proof: Because q|ap − 1,ap ≡ 1 (mod q); so ordm a = 1 or p. If ordm a = 1, then q|a − 1.

If ordm a = p, then p|ϕ(q); that is, p|q − 1, so q = 2kp + 1, since q − 1 is even.
55. proof: Rp = (10p − 1)/9, so 10p − 1 = 9 · Rp. Since q|Rp, this implies q|10p − 1. There-

fore, 10p ≡ 1 (mod q). Thus, p|q − 1, so q = 2kp + 1, since q − 1 is even.
57. proof: Let p be an odd prime factor of n4 +1. Then n4 ≡ −1 (mod p), so n8 ≡ 1 (mod p).

Thus, 8|ϕ(p) = p − 1; so p is of the form 8k + 1.
59. proof: Assume that there are only finitely many primes, p1 through pr , of the form 8k+1.

Let N = (2p1 · · ·pr)
4 + 1; it is of the form n4 + 1. By Exercise 57, it has an odd prime

factor p of the form 8k + 1. Then p �= pi for every i, which contradicts the hypothesis.

Exercises 10.2 (p. 466)
1. 210 = (220)10 ≡ 1410 ≡ 1 (mod 101). The prime factors of 100 = 22 · 52 are 2 and 5.

When q = 2,2100/2 = 250 ≡ (210)5 ≡ 145 ≡ −1 (mod 101); when q = 5,2100/5 =
220 ≡ (210)2 ≡ 142 ≡ 95 (mod 101). Thus, 2100/q �≡ 1 (mod 101) for all prime factors q
of 100. Therefore, by Lucas’ theorem, 101 is a prime.

3. 3772 = (3100)7 · 360 · 312 ≡ 387 · 1603 · 390 ≡ 733 · 646 · 390 ≡ 1 (mod 773). The prime
factors of 772 = 22 · 193 are 2 and 193. When q = 2,3772/2 = 3386 ≡ (3100)3 · 380 · 36 ≡
385 · 1604 · 36 ≡ 762 · 551 · 729 ≡ −1 (mod 773); when q = 193,3772/193 = 34 ≡ 81
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(mod 773). Thus, 3772/q �≡ 1 (mod 773) for all prime factors q of 773. Therefore, by
Lucas’ theorem, 773 is a prime.

5. First, 3(127−1)/2 = 363 = (320)3 ·33 ≡ 363 ·27 ≡ −1 (mod 127). Because 126 = 2 ·32 ·7,
the odd prime factors q of 126 are 3 and 7. When q = 3,342 = (310)4 · 32 ≡ 64 · 9 ≡ 107
(mod 127); when q = 7,318 = 310 · 38 ≡ (−6)(84) ≡ 4 (mod 127). Thus, in both cases,
3(127−1)/q �≡ 1 (mod 127), so 127 is a prime.

7. First, notice that 5576/2 = 5288 = (5100)2 · (540)2 · 58 ≡ 1622 · 1302 · 573 ≡ −1
(mod 577). Because 576 = 26 · 9, its only odd prime factor q is 9. When q = 9,

3(577−1)/9 = 564 ≡ 335 �≡ 1 (mod 577); so 577 is prime.
9. Because there is a positive integer x such that xfn−1 ≡ 1 (mod fn) and x(fn−1)/2 �≡

1 (mod fn), it follows that fn is a prime.

Exercises 10.3 (p. 473)
1. 2, 5 3. 2, 4 5. none 7. 5, 10
9. x − 1,1; x2 − 1,1,6; x3 − 1,1,2,4; x6 − 1,1 through 6.

11. f (x) = (x4 − 10x3 + 35x2 − 50x + 24)− x4 + 1 = −10x3 + 35x2 − 50x + 25. Clearly, 5 is
a factor of every coefficient.

13. ϕ(6) = 2 15. ϕ(48) = 16 17. no
19. 35 + 34 + · · · + 1 = (36 − 1)/(3 − 1) = (36 − 1)/2 ≡ 4(36 − 1) ≡ 4 · 0 ≡ 0 (mod 7).
21. 2 and 6 are primitive roots modulo 11. But 2 · 6 ≡ 1 (mod 11) is not, since ord11 1 =

1 �= 10.
23. 3 and 5 are primitive roots modulo 17, and so is 3 + 5 ≡ 8 (mod 17).
25. ord11(−2) = ord11 9 = 5; ord11(−6) = ord11 5 = 5; ord11(−7) = ord11 4 = 5; and

ord11(−8) = ord11 3 = 5.
27. yes, because ord5(−2) = ord5 3 = 4 = ϕ(5).

29. yes, because ord17(−5) = ord17 12 = 16 = ϕ(17). 31. p ≡ 1 (mod 4)

33. The product of incongruent primitive roots modulo an odd prime p is congruent to 1
modulo p.

35.
∑

d|12
ψ(d) = ψ(1) + ψ(2) + ψ(3) + ψ(6) + ψ(12) = 1 + 1 + 2 + 2 + 2 + 4 = 12 =

13 − 1
37. d|16 implies d = 1, 2, 4, 8, or 16. ψ(1) = 1 = ψ(2), ψ(4) = 2, ψ(8) = 4, and ψ(16) = 8.
39. ψ(1) = 1 = ϕ(1), ψ(2) = 1 = ϕ(2), ψ(4) = 2 = ϕ(4), ψ(8) = 4 = ϕ(8), and ψ(16) =

8 = ϕ(16).
41. d = 1, 2, 11, or 22. The only least residue of order 1 modulo 23 is 1; the residue of order

2 modulo 23 is 22; there are 10 residues of order 11: 2, 3, 4, 6, 8, 9, 12, 13, 16, and 18;
and there are 10 least residues of order 22: 5, 7, 10, 11, 14, 15, 17, 19, 20, and 21.

43. The ϕ(16) = 8 primitive roots modulo 17 are given by 3k modulo 17, where (k,16) = 1.
They are 31, 33, 35, 37, 39, 311, 313, and 315 modulo 17, that is, 3, 5, 6, 7, 10, 11, 12,
and 14.

45. The ϕ(30) = 8 primitive roots modulo 31 are given by 3k modulo 31, where (k,30) = 1.
They are 31, 37, 311, 313, 317, 319, 323, and 329 modulo 31, that is, 3, 11, 12, 13, 17, 21,
22, and 24.
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47. proof: (α −1)(αp−2 +αp−3 +· · ·+α +1) = αp−1 −1 ≡ 0 (mod p). But α �≡ 1 (mod p),
so αp−2 + αp−3 + · · · + α + 1 ≡ 0 (mod p).

49. Because α is a primitive root modulo p, αp−1 ≡ 1 (mod p), so α(p−1)/2 ≡ −1 (mod p).
Then [α(p−1)/4]2 + 1 = α(p−1)/2 + 1 ≡ −1 + 1 ≡ 0 (mod p). Thus, α(p−1)/4 satisfies
the congruence x2 + 1 ≡ 0 (mod p).

51. proof: Let p = 4k + 3, where k ≥ 1. Because α is a primitive root modulo p,
α2k+1 = α(p−1)/2 ≡ −1 (mod p). Then (−α)(p−1)/2 = −α2k+1 ≡ 1 (mod p). There-
fore, ordp(−α)|2k + 1. Let ordp(−α) = t, where t < 2k + 1. Then (−α)t ≡ 1 (mod p);
that is, αt ≡ (−1)t (mod p), so α2t ≡ 1 (mod p). Then p − 1|2t, so (p − 1)/2|t, where
t < 2k + 1 = (p − 1)/2. Because this is impossible, t = 2k + 1 = (p − 1)/2; that is,
ordp(−α) = (p − 1)/2.

53. proof: Because α is a primitive root modulo pj, αϕ(pj) ≡ 1 (mod pj) and αt �≡ 1 (mod pj)

for t < ϕ(pj). Since ϕ(2pj) = ϕ(pj), it follows that αϕ(2pj) ≡ 1 (mod pj). Because α is
odd, αϕ(2pj) ≡ 1 (mod 2). Therefore, αϕ(2pj) ≡ 1 (mod 2pj).
Suppose αe ≡ 1 (mod 2pj), where e < ϕ(2pj). This implies αe ≡ 1 (mod pj), where
e < ϕ(pj̇). This contradicts the assumption that α is a primitive root modulo pj. Thus,
α is also a primitive root modulo 2pj.

Exercises 10.4 (p. 482)
1. First, 3ϕ(25) = 320 ≡ 1 (mod 25). Because 3e �≡ 1 (mod 25), when e = 1, 2, 4, 5, or 10,

3 is a primitive root modulo 52.
3. We have 3ϕ(625) = 3500 ≡ 1 (mod 625). Because 3e �≡ 1 (mod 625) for e = 1, 2, 4, 5, 10,

20, or 100, it follows that 3 is a primitive root modulo 54.
5. We have 3ϕ(49) = 342 ≡ 1 (mod 49). Because 3e �≡ 1 (mod 49) for e = 1, 2, 3, 6, 7, 14,

or 21, it follows that 3 is a primitive root modulo 72.
7. 2 is a primitive root modulo both 11 and 112.
9. 3 is a primitive root modulo both 17 and 172.

11. 2 is a primitive root modulo both 3 and 34.
13. 3 is a primitive root modulo both 7 and 73.
15. yes 17. yes
19. Because n = 2p and α = 3 is odd, by Theorem 10.12, 3 is also a primitive root modulo

10.
21. Because n = 486 = 2 · 35 and α = 2 is even, by Theorem 10.12, α + pj = 2 + 35 = 245 is

a primitive root modulo 486.
23. yes 25. no 27. yes 29. no
31. 7, 13, 17, 19 33. 2, 5, 11, 14, 20, 23

35. proof: number of primitive roots modulo 2pk = ϕ(ϕ(2pk)) = ϕ(ϕ(2)ϕ(pk)) = ϕ(ϕ(pk)) =
number of primitive roots modulo pk .

Exercises 10.5 (p. 487)
1. indα α = 1
3. ind2 8 ≡ ind2 5 + 6 ≡ 9 + 6 ≡ 3 (mod 12), so ind2 8 = 3.
5. ind3 6 ≡ ind3 11 + 8 ≡ 7 + 8 ≡ 15 (mod 17), so ind3 6 = 15.
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7.
a 1 2 3 4 5 6

ind3 a 6 2 1 4 5 3
9. ind2 8 = 12 − ind2 5 = 12 − 9 = 3

11. ind2 12 = 18 − ind2 8 = 18 − 3 = 15
13. ind2 11 = 7 = 12 − 5 = ϕ(13) − ind2 6, so 11 ≡ 6−1 (mod 13).
15. ind2 13 = 5 �= 18 − 6 = ϕ(19) − ind2 5, so 13 �≡ 5−1 (mod 19).

17. ind6(8x5) ≡ ind6 3 (mod 12)

ind6 8 + 5 ind6 x ≡ ind6 3 (mod 12)

3 + 5 ind6 x ≡ 1 (mod 12)

x ≡ 6 (mod 13)

19. ind11(8x5) ≡ ind11 3 (mod 12)

ind11 8 + 5 ind11 x ≡ ind11 3 (mod 12)

9 + 5 ind11 x ≡ 4 (mod 12)

ind11 x ≡ 12 (mod 12)

x ≡ 6 (mod 13)

21. ind5(7x) ≡ ind5 13 (mod 6)

ind6 7 + ind5 x ≡ ind5 13 (mod 6)

2 + ind5 x ≡ 4 (mod 6)

ind6 x ≡ 2 (mod 6)

x ≡ 7 (mod 18)

23. ind2(2x4) ≡ ind2 5 (mod 12)

ind2 2 + 4 ind2 x ≡ ind2 5 (mod 12)

1 + 4 ind2 x ≡ 9 (mod 12)

4 ind2 x ≡ 8 (mod 12)

ind2 x ≡ 2 (mod 3)

ind2 x ≡ 2,5,8,11 (mod 12)

x ≡ 4,6,7,9 (mod 13)

25. ind3(4x3) ≡ ind3 5 (mod 16)

ind3 4 + 3 ind3 x ≡ ind3 5 (mod 16)

12 + 3 ind3 x ≡ 5 (mod 16)

3 ind3 x ≡ 9 (mod 16)

ind3 x ≡ 3 (mod 16)

x ≡ 10 (mod 17)

27. ind2(75x−1) ≡ ind2 5 (mod 12)

(5x − 1) ind2 7 ≡ ind2 5 (mod 12)

11(5x − 1) ≡ 9 (mod 12)

5x ≡ 4 (mod 12)

x ≡ 8 (mod 12)

x ≡ 8 (mod 13)

29. Let x = 231001 ≡ 101001 (mod 13). Then ind2 x ≡ 1001 · ind2 10 ≡ 1001 · 10 ≡
2 (mod 12), so x ≡ 4 (mod 13).

31. Let x = 517 · 719 (mod 13). Then ind2 x ≡ 17 · ind2 5 + 19 · ind2 7 ≡ 17 · 9 + 19 · 11 ≡
2 (mod 12), so x ≡ 4 (mod 13).

33. proof: Because αϕ(m) ≡ 1 (mod m), αϕ(m)/2 ≡ −1 (mod m). Therefore, indα(m − 1) =
ϕ(m)/2.

35. proof: Because α is a primitive root modulo m, αϕ(m) ≡ 1 (mod m). Then αϕ(m)/2 ≡
−1 (mod m) and m − a ≡ a · αϕ(m)/2. Therefore, indα(m − a) ≡ indα a + indα αϕ(m)/2

(mod ϕ(m)). That is, indα(m − a) ≡ indα a + ϕ(m)/2 (mod ϕ(m)). Thus, indα(m − a) ≡
indu a + ϕ(m)/2.

37. Follows by Exercise 36 with m = p.
39. proof (by contradiction): Because pi ≡ 1 (mod 4), q = (p1 · · ·pn)2 + 1 ≡ 1 + 1 ≡

2 (mod 4). Therefore, q = 4x + 2 = 2(2x + 1) for some integer x. Since q has an odd
factor, it has an odd prime factor p. So, q ≡ 0 (mod p), and hence, (p1 · · ·pn)2 ≡ −1
(mod p). Therefore, by Exercise 38, p is of the form 4k + 1. If p = pi for some i, then p|1,
which is a contradiction. So, p �= pi for every i. Thus, q has a prime factor of the form
4k + 1 different from every pi; this is again a contradiction.

41. proof (by contradiction): Because pi ≡ 1 (mod 8), p1 · · ·pn ≡ 1 (mod 8). Therefore, q =
(p1 · · ·pn)4 +1 ≡ 1+1 ≡ 2 (mod 8). Then q = 8x+2 = 2(4x+1) has an odd prime factor
and hence (p1 · · ·pn)4 ≡ −1 (mod p). Thus, by Exercise 40, p is of the form 8k + 1. If
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p = pi for some i, then p|1, which is a contradiction. So p �= pi for every i. Thus, q has a
prime factor of the form 8k + 1, different from every pi; this is again a contradiction.

43. Follows from Exercise 42 with m = p.

Review Exercises (p. 491)
1. 3 3. 5 5. ord13(57) = 4/(4,7) = 4/1 = 4
7. 3 · 4 = 12 9. 0 11. 0

13. yes, because 1723 is a prime. 15. yes, because 48778 = 2 · 293.

17. αi is a primitive root modulo 50 if and only if (i, ϕ(50)) = (i,20) = 1. So, the remaining
primitive roots modulo 50 are given by 33, 37, 39, 311, 313, 317, and 319 modulo 50, that
is, 13, 17, 23, 27, 33, 37, and 47.

19. β = α if α is odd; otherwise, β = α + pj.

21. 5 23. 2 + 53 = 127

25. 3, 13, 17, 23, 27, 33, 37, and 47.
27. 2, 5, 8, 11, 14, 17, 20, 23, 26, 32, 35, 41, 44, 47, 50, 53, 56, 59, 62, 68, 71, and 77.
29. 2, 6, 7, 8, 17, 18, 19, 24, 28, 29, 30, 35, 39, 41, 46, 50, 51, 52, 57, 62, 63, 68, 72, 73, 74,

76, 79, 83, 84, 85, 87, 90, 94, 95, 96, 101, 105, 107, 116, and 117.
31. 5, 11, 23, 29, 41,47, 59, 65, 77, 83, 95, 101, 113, 119, 131, 137, 149, and 155.
33. 6108 ≡ 1 (mod 109), so

4242076 ≡ (64)2076 ≡ 68304 ≡ (6108)76 · 696 ≡ 1 · 696 = (66)16 ≡ 416 ≡ 75 (mod 109)

35. 4 37. 3

39. ind3(13 · 47) ≡ ind3 13 + ind3 47 ≡ 17 + 11 ≡ 28 (mod 50).
41. ind3 9 ≡ ind3 5 + ϕ(14)/2 (mod ϕ(14)) ≡ 5 + 3 ≡ 2 (mod 6).

43. ind2(3x7) ≡ ind2 4 (mod 10)

ind2 3 + 7 ind2 x ≡ 2 ind2 2 (mod 10)

8 + 7 ind2 x ≡ 2 (mod 10)

7 ind2 x ≡ 4 (mod 10)

ind3 x ≡ 2 (mod 10)

x ≡ 4 (mod 11)

45. ind3(34x−1) ≡ ind3 11 (mod 16)

(4x − 1) ind3 5 ≡ ind3 11 (mod 16)

5(4x − 1) ≡ 7 (mod 16)

5x ≡ 3 (mod 4)

x ≡ 3 (mod 4)

x ≡ 3,7,10,14 (mod 17)

47. Let x = 501976 ≡ 111976 (mod 13). Then ind2 x ≡ 1976 · ind2 11 ≡ 1976 ·7 ≡ 8 (mod 12),
so x ≡ 28 ≡ 9 (mod 13).

49. 3136 ≡ (320)6 · 316 ≡ 46 · 88 ≡ 123 · 88 ≡ 1 (mod 137). The prime factors q of 136 =
23 · 17 are 2 and 17. When q = 2,368 = (320)3 · 38 ≡ 43 · 122 ≡ −1 �≡ 1 (mod 137);
when q = 17,38 = 122 �≡ 1 (mod 137). Therefore, by Lucas’ theorem, 137 is a prime.

51. As in Exercise 49, 3136 ≡ 1 (mod 137). The only odd prime factor q of 136 is 17. When
q = 17,38 = 122 �≡ 1 (mod 137). Therefore, by Corollary 10.8, 137 is a prime.

Supplementary Exercises (p. 492)
1. proof: fn = 22n + 1 ≡ 0 (mod fn), so 22n ≡ −1 (mod fn). Then 22n+1 ≡ 1 (mod fn), so

ordfn 2|2n+1.
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3. proof: Because p is a prime factor of fn, fn = 22n + 1 ≡ 0 (mod p). Then 22n ≡ −1

(mod p), so 22n+1 ≡ 1 (mod p). Therefore, ordp 2|2n+1. Let ordp 2 = 2k , where k ≤ n.

Then 22k ≡ 1 (mod p), so 22k·2n−k ≡ 22n ≡ 1 (mod p). Because this is impossible,
k = n + 1. Thus, ordp 2 = 2n+1.

5. Because ord19 7 = 3,73 ≡ 1 (mod 19). Then 83 ≡ (7 + 1)3 = 73 + 3 · 72 + 3 · 7 + 1 ≡
1 + 14 + 2 + 1 ≡ −1 (mod 19), so 86 ≡ 1 (mod 19). Thus, ord19 8 = 6.

7. proof: Because p is odd and ordp a = 3, p > 3. Because a3 ≡ 1 (mod p) and a �≡ 1
(mod p), a2 + a + 1 ≡ 0 (mod p). Then (a + 1)6 = a6 + 6a5 + 15a4 + 20a3 + 15a2 +
6a + 1 ≡ 1 + 6a5 + 15a4 + 20a3 + 15a2 + 6a + 1 ≡ 1 + 21(a2 + a + 1) ≡ 1 (mod p).
Therefore, ordp(a + 1) = 1, 2, 3, or 6.

case 1 If ordp(a + 1) = 1, then a ≡ 0 (mod p). This is impossible.

case 2 If ordp(a+1) = 2, then (a+1)2 ≡ 1 (mod p). This implies a2 +2a ≡ 0 (mod p),
so p|a or p|a + 2. But p � a. So suppose p|a + 2. Because a2 + 2a ≡ 0 (mod p), a2 + 2 ≡
2(a2 + a + 1) ≡ 0 (mod p). Therefore, (a2 + a + 1) + 3 ≡ (a2 + 2) + (a + 2) (mod p);
that is, 0 + 3 ≡ 0 + 0 (mod p). Thus, 3 ≡ 0 (mod p). This is also impossible.

case 3 Let ordp(a + 1) = 3. Then (a + 1)2 ≡ 1 (mod p), so a3 + 3a2 + 3a ≡ 0 (mod p);
that is, 3a(a2 + a + 1) ≡ 2a3 (mod p). This implies 2a3 ≡ 0 (mod p). Therefore, p|2 or
p|a; both are impossible. Thus, ordp(a + 1) = 6.

9. proof (by C. Vitale): Let (m,n) = (m,10) = (n,10) = 1. Let d = [ordm 10,ordn 10], so
d = x · ordp 10 = y · ordp 10 for some positive integers x and y. Then 10x·ordm 10 ≡ 10d ≡
1 (mod m) and 10y·ordn 10 ≡ 10d ≡ 1 (mod n). This implies 10d ≡ 1 (mod mn), be-
cause (m,n) = 1. Therefore, ordmn 10|d. But, by definition, 10ordmn 10 ≡ 1 (mod mn),
so 10ordmn 10 ≡ 1 (mod m) and 10ordmn 10 ≡ 1 (mod n). This implies ordm 10|ordmn 10
and ordn 10|ordmn 10. Therefore, d|ordmn 10. Thus d = [ordm 10,ordn 10] = ordmn 10.

11. p = 29, g = 14.
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Exercises 11.1 (p. 500)
1. 1, 5 3. 1, 5, 7, 11 5. none
7. 2, 5 9. none

11. (4x + 3)2 ≡ 1 (mod 7)

4x + 3 ≡ 1,6 (mod 7)

x ≡ 3,6 (mod 7)

13. (2x − 5)2 ≡ 4 (mod 13)

2x − 5 ≡ ±2 (mod 13)

2x ≡ 3,7 (mod 13)

x ≡ 8,10 (mod 13)

15. 1 17. 50
19. 1, 4, 7, 9, 10, 13, 16 21. 1, 2, 3, 4, 6, 8, 9, 12, 13, 16, 18

23. Because 62 ≡ 7 (mod 29), 7 is a quadratic residue of 29.
25. Because 122 ≡ 3 (mod 47), 3 is a quadratic residue of 47.
27. x2 ≡ 1, 3, 4, 5, or 9 (mod 11) for every nonzero residue modulo 11. Therefore, x2 ≡ 7

(mod 11) and x2 ≡ 10 (mod 11) are not solvable. But x2 ≡ 7 · 10 ≡ 4 (mod 11) has two
solutions, 2 and 9.
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29. proof: Let α be a primitive root modulo p. Then αp−1 ≡ 1 (mod p), so [α(p−1)/2 −
1][α(p−1)/2 + 1] ≡ 0 (mod p). But α(p−1)/2 �≡ 1 (mod p), so α is a quadratic nonresidue
of p.

31. proof: Because α is a quadratic residue of p, α(p−1)/2 ≡ 1 (mod p). Then (p −
a)(p−1)/2 ≡ (−a)(p−1)/2 = a(p−1)/2(−1)(p−1)/2 ≡ (−1)(p−1)/2 (mod p). This is con-
gruent to 1 (mod p) if and only if p ≡ 1 (mod 4).

33. proof: Let a and b be quadratic residues of p. Then x2 ≡ a (mod p) and y2 ≡ a (mod p)

are solvable. So (xy)2 = x2y2 ≡ ab (mod p). Thus, ab is also a quadratic residue of p.
35. proof: Let a be a quadratic nonresidue of p. Then a(p−1)/2 ≡ −1 (mod p), so

(a2)(p−1)/2 = [a(p−1)/2]2 ≡ (−1)2 ≡ 1 (mod p). Thus, a2 is a quadratic residue of p.
(This result follows trivially from Exercise 34.)

37. proof (by contradiction): Let a be a quadratic residue of p and b ≡ a−1 (mod p). Sup-
pose b is a quadratic nonresidue. Then, by Exercise 36, 1 ≡ ab (mod p) is a quadratic
nonresidue, which is a contradiction.

39. proof: Suppose a is a quadratic residue of Mp. Then a(Mp−1)/2 ≡ 1 (mod p), so
(−a)(Mp−1)/2 = −a(Mp−1)/2 ≡ −1 (mod Mp). Thus, p−a ≡ −a is also a quadratic non-
residue of Mp. The converse follows by reversing the steps.

41. proof: Suppose not all three congruences are solvable.

case 1 Suppose none are solvable. Then both a and b are quadratic nonresidues, so, by
Exercise 34, ab is a quadratic residue. Hence x2 ≡ ab is solvable, which is a contradiction.

case 2 If exactly one congruence is solvable, then we are done.

case 3 Suppose exactly two congruences, say, x2 ≡ a (mod p) and x2 ≡ b (mod p), are
solvable.

Then a and b, and hence ab are quadratic residues by Exercises 33. In other words, x2 ≡
ab (mod p) is solvable, again a contradiction.

Exercises 11.2 (p. 513)
1. −1 3. −1
5. (16/17) = (−1/7) = 1 7. (−1/29) = 1

9. (128/23) = (27/23) = (2/23)7 = 17 = 1
11. (600/23) = (2/23)3(3/23)(5/23)2 = 13 · 1 · (−1)2 = 1
13. (27/19) = (3/19)3 = (−1)3 = −1
15. (147/19) = (3/19)(7/19)2 = (−1)(−1)2 = −1
17. There are two residues > 6.5, namely, 9 and 12; so v = 2.
19. There are four residues > 8.5, namely, 11, 12, 15, and 16; so v = 4.
21. (5/13) = (−1)3 = −1 23. (7/19) = (−1)4 = 1
25. (2/19) = −1 27. (2/41) = 1
29. (13/31) = −1
31. (41/43) = (−2/43) = (−1/43)(2/43) = (−1)(−1) = 1
33. 13, 29, 53, 149, 173
35. (12/19) = (4/12)(3/12) = 1 · (−1) = −1
37. (35/47) = (−12/47) = (−1/47)(3/47)(4/47) = (−1) · 1 · 1 = −1
39. 22, 24, 26, 28, 210, 212 modulo 13, that is, 1, 3, 4, 9, 10, 12.



Chapter 11 Quadratic Congruences 739

41. Because 1913 ≡ 1 (mod 8), (2/1913) = 1. Therefore, 2956 ≡ 1 (mod 1913); that is,
1913|2956 − 1.

43. proof: Because a ≡ b (mod p), (a/p) = (b/p). Therefore, either both a and b are
quadratic residues or both are quadratic nonresidues.

45. proof: Because a is a quadratic residue of p, (a/p) = 1 ≡ a(p−1)/2 (mod p). Then (p −
a)(p−1)/2 ≡ (−a)(p−1)/2 ≡ a(p−1)/2 ≡ 1 (mod p), because p ≡ 1 (mod 8). So p − a is
also a quadratic residue of p.

47. proof: Because (2a/p) = (2/p)(a/p) = 1 · 1 = 1, 2a is a quadratic residue of p.
49. proof: Given sum = [(p − 1)/2] · 1 + [(p − 1)/2] · (−1) = 0.
51. proof: Because q|Mp,2p ≡ 1 (mod q). Let ordq 2 = e. Then e|p, so e = 1 or e = p. But

e �= 1, so e = p. By Euler’s criterion, (2/q) ≡ 2(q−1)/2 (mod q). So (2/q) = 1 if and only
if 2(q−1)/2 ≡ 1 (mod q); that is, if and only if p|(q − 1)/2. Thus, 2 is a quadratic residue
of q if and only if q is of the form 2kp + 1.

53. proof: Because (a/p)(b/p) = (ab/p) = (1/p) = 1, (a/p) = (b/p).
55. proof: The quadratic residues of p are congruent to 12,22, . . . , [(p − 1)/2]2 modulo p.

Let S be their sum. Then

6S = 6
(p−1)/2∑

i=1
i2 ≡ [(p − 1)/2] · [(p + 1)/2] ≡ 0 (mod p)

But 6 � p. Therefore, S ≡ 0 (mod p).
57. proof: Because αp−1 ≡ 1 (mod p), (a/p) = (αk/p) = (α/p)k ≡ [α(p−1)/2]k ≡ (−1)k

(mod p). Thus, (a/p) = 1 if and only if k is even.
59. proof (by PMI): When n = 1, a = pe1

1 . Because (a/p) = (pe1
1 /p) = (p1/p)e1 , the result is

true when n = 1. Now assume it is true for an arbitrary positive integer k. Let a =
k+1∏

i=1
pei

i .

Then (a/p) =
(k+1∏

i=1
pei

i · p
ek+1
k+1 /p

)

=
(k+1∏

i=1
pei

i /p

)

(p
ek+1
k+1 /p)

=
k+1∏

i=1
(pei

i /p) · (pek+1
k+1 /p) =

k+1∏

i=1
(pk/p)ei

Thus, by PMI, the result is true for every n ≥ 1.
61. proof: Let ab ≡ 1 (mod p). As a runs over the integers 1 through p − 2,b + 1 runs over

the residues 2 through p − 1. Therefore, by Exercise 54,

p−2∑

a=1
(a(a + 1)/p) =

p−1∑

b=2
((b + 1)/p) =

p−1∑

i=2
(i/p) =

p−1∑

i=1

(i/p) − (1/p)

= 0 − 1 = −1

63. proof: Let α be a quadratic nonresidue of fn. Then α22n−1 ≡ −1 (mod fn), so α22n ≡ 1
(mod fn). Thus, ordfn α|22n

.

Let ordfn α = e. Then e = 2k , where k ≤ 2n. Suppose k < 2n. Then αe = 22k ≡ 1

(mod fn), so 22n−1 = (α2k
)22n−k−1 ≡ 1 (mod fn), which is a contradiction. Thus,

ordfn α = 22n
and α is a primitive root modulo fn.
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Exercises 11.3 (p. 526)

1.
2∑

k=1
�11k/5� = �11/5� + �22/5� = 2 + 4 = 6 and

5∑

k=1
�5k/11� = �5/11� + �10/11� + �15/11� + �20/11� + �25/11�

= 0 + 0 + 1 + 1 + 2 = 4

.

Therefore, LHS = 6 + 4 = 10 = 2 · 5 = RHS.
3. (261/47) = (26/47) = (2/47)(13/47) = 1 · (47/13) = (8/13) = (2/13)3 = (−1)3 = −1
5. (176/241) = (24/241)(11/241) = (11/241) = (−1/11) = −1
7. (−1776/1013) = (250/1013) = (2/1013)(53/1013) = −(5/1013)3 = −(1013/5)3

= −(3/5)3 = −13 = −1

9. (1428/2411) = (22/2411)(3/2411)(7/2411)(17/2411)

= 1 · −(2411/3) · −(2411/7) · (2411/17)

= (2/3)(3/7)(−3/17) = (−1) · −(7/3)(−1/17)(3/17)

= (1/3)(−1/17)(17/3) = 1 · 1 · (2/3) = −1
11. 17 = 4 · 3 + 5, so (3/17) = (3/5) = (−2/5) = (−1/5)(2/5) = 1 · (−1) = −1
13. 191 = 4 · 43 + 19, so (43/191) = (43/19) = (5/19) = (19/5) = (−1/5) = 1
15. x ≡ ±13(23+1)/4 ≡ ±136 ≡ ±6 (mod 23), so x ≡ 6,17 (mod 23).
17. Pepin’s test cannot be applied, since n = 0; nonetheless, f0 is a prime.
19. Because 3(f2−1)/2 = 3128 ≡ −1 (mod 17), 17 is a prime.
21. By the law of quadratic reciprocity,

(5/p) = (p/5)

⎧
⎪⎪⎨

⎪⎪⎩

(1/5) = 1 if p ≡ 1 (mod 5)

(2/5) = −1 if p ≡ 2 (mod 5)

(3/5) = −1 if p ≡ 3 (mod 5)

(4/5) = 1 if p ≡ 4 (mod 5)

=
{

1 if p ≡ ±1 (mod 5)

−1 if p ≡ ±2 (mod 5)

23. Because 79 ≡ −1 (mod 5), F79 ≡ 1 (mod 79).
25. Because 97 ≡ 2 (mod 5), F97 ≡ −1 (mod 97).
27. 817 = 19 · 43. The solutions of x2 ≡ 17 (mod 19) are x = 6,13; and those of x2 ≡ 17

(mod 43) are x = 19,24. Using the CRT, the solution of the system x ≡ 6 (mod 19) and
x ≡ 19 (mod 43) is x ≡ 6 · 43 · 4 + 19 · 19 · 34 ≡ 234 (mod 817); similarly we get three
more solutions: x ≡ 196, 621, 583 modulo 817.

29. proof: Let m = 5s + 1 and n = 5t + 1. Then mn = (5s + 1)(5t + 1) = 5(5st + s + t) + 1.
31. proof: Notice that p ≡ 3 ≡ q (mod 4). Because p = q + 4a, (4a/p) = ((p − q)/p) =

((−q)/p) = ((−1/p)(q/p)) = (−1)(−1)(p/q) = (p/q); that is, (a/p) = (p/q). Besides,
(4a/q) = ((p − q)/q) = (p/q); that is, (a/q) = (p/q). Thus (a/p) = (a/q).

33. proof: Using Exercise 32,

(−3/p) = (−1/p)(3/p) =
{

(−1/p) if p ≡ ±1 (mod 12)

−(−1/p) if p ≡ ±5 (mod 12)

When p ≡ 1 (mod 12), p ≡ 1 (mod 6); when p ≡ −1 (mod 12), p ≡ 5 (mod 6); and
similarly the other two cases. Combining the four cases, we get the desired result.
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35. proof (by PMI): Because f1 = 5 ≡ 1 (mod 4), the result is true when n = 1. Assume it is

true for an arbitrary positive integer n. Then fn+1 = 22n+1 + 1 = 22·2n + 1 = 42n + 1 ≡ 1
(mod 4). Thus, the result follows by induction.

37. proof: When n > 0, fn ≡ 1, (mod 4) by Exercise 35, and when p > 2, Mp ≡ 3 (mod 4).
Thus, by the law of quadratic reciprocity (fn/Mp) = (Mp/fn).

39. proof: If Mt = 2t − 1 > 3, t > 2. If t ≡ 1 (mod 4), then Mt = 24t+t − 1 = 2(24)t − 1 ≡
2 · 0 − 1 ≡ 3 (mod 4). If t ≡ 3 (mod 4), then Mt = 24t+3 − 1 = 8(24)t − 1 ≡ 0 − 1 ≡ 3
(mod 4). Thus, if t is an odd prime, Mt ≡ 3 (mod 4). Consequently, because Mp ≡ 3 ≡ Mq

(mod 4), (Mp/Mq) = −(Mq/Mp), by Corollary 11.7.
41. proof (by contradiction): Assume that there are only finitely many such primes p1, . . . ,pk .

Let N = (2p1 · · ·pk)
2 + 3. It must have an odd prime factor p, so (2p1 · · ·pk)

2 ≡ −3
(mod p) and (−3/p) = 1. By Exercise 33, this implies p ≡ 1 (mod 6). Suppose p = pi for
some i. Then p|pi and p|N, so p = 3, a contradiction. Thus p �= pi for every i, which is
also a contradiction.

43. By the law of quadratic reciprocity, (7/p) =
{

(p/7) if p ≡ 1 (mod 4)

−(p/7) if p ≡ 3 (mod 4)

If p ≡ 1 (mod 4), then, by the CRT, (7/p) =
{

1 if p ≡ 1,9,25 (mod 28)

−1 if p ≡ 5,13,17 (mod 28)

If p ≡ 3 (mod 4), then, by a similar argument, (7/p) =
{

1 if p ≡ 11,15,23 (mod 28)

−1 if p ≡ 3,9,27 (mod 28)

Thus, (7/p) =
{

1 if p ≡ 1,3,9,19,25,27 (mod 28)

−1 if p ≡ 5,11,13,15,17,23 (mod 28)

Exercises 11.4 (p. 535)
1. 1, 3, 4, 9, 12, 15, 16, 22, 25, 27, 31
3. (3/35) = (3/5)(3/7) = (−1) · −(7/3) = (1/3) = 1
5. (23/65) = (23/5)(23/13) = (3/5)(−3/13) = (−1) · (−1/3) · (13/3) = −(1/3) = −1
7. (442/385) = (442/5)(442/7)(442/11) = (2/5)(1/7)(2/11) = (−1) · 1 · (−1) = 1
9. (−198/2873) = (−198/17)(−198/132) = (6/7)(−198/13)2 = (2/7)(3/17) · 1

= 1 · (−1) · 1 = −1
11. (17/33) = (17/3)(17/11) = (2/3)(6/11) = (−1) · (2/11)(3/11) = −(−1) · 1 = 1
13. By Exercise 1, 17 is not a quadratic residue of 33. So the congruence is not solvable.
15. (3/53 · 75) = (3/5)3(3/7)5 = (−1)3(−1)5 = 1
17. (3/5 · 73 · 136) = (3/5)(3/7)3(3/13)6 = (−1)(−1)3 · 1 = 1
19. (3/m) = (3/p)a(3/q)b(3/r)c(3/s)d = (−1)a(−1)b(−1)c(1)d = (−1)a+b+c, so (3/m) =

1 if and only if a + b + c is even.
21. proof: Let m =∏

i
pei

i , where each pi is odd. If m ≡ 1 (mod 4), then every factor pi is

congruent to 1 (mod 4), or m contains an even number ej of prime factors pj ≡ 3 (mod 4),
where j �= i. Then, by Corollary 11.2,

(−1/m) =
∏

i

(−1/pi)
ei .
∏

j�=i

(−1/pj)
ej =

∏

i

1ei ·
∏

j�=i

(−1)ej = 1 · 1 = 1
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If m ≡ −1 (mod 4), then there must be an odd number of prime factors of m that are
congruent to −1 (mod 4); since (−1/p) = −1, by Corollary 11.2 for each such factor, it
follows that (−1/m) = −1. Thus, (−1/m) = 1 if m ≡ 1 (mod 4) and −1 otherwise.

23. proof: By the generalized law of quadratic reciprocity, (m/n)(n/m) =
(−1)(m−1)/2·(n−1)/2. If m ≡ 1 (mod 4), then (m − 1)/2 is even; if n ≡ 1 (mod 4), then
(n − 1)/2 is even. In both cases, (m − 1)/2 · (n − 1)/2 is even, so (m/n)(n/m) = 1.
Therefore, (n/m) = (m/n).
If m ≡ 3 ≡ n (mod 4), then both (m − 1)/2 and (n − 1)/2 are odd, so (m/n)(n/m) = −1.
Therefore, (n/m) = −(m/n).

Exercises 11.5 (p. 542)
1. If x2 ≡ 4 (mod 5), then x ≡ 2,3 (mod 5). If x2 ≡ 4 (mod 7), then x ≡ 2,5 (mod 7). Then,

by the CRT, x ≡ 2,12,23,33 (mod 35).
3. If x2 ≡ 43 ≡ 4 (mod 13), then x ≡ 2,11 (mod 13). If x2 ≡ 43 ≡ 9 (mod 17), then x ≡

3,14 (mod 17). Then, by the CRT, x ≡ 37,54,167,184 (mod 221).
5. Because 108 is a solution of x2 ≡ 3 (mod 132), 1082 = 3 + 132k, where k = 69. Now

look for a solution of the form 108 + 132�. Then (108 + 132�)2 ≡ 1082 + 216 · 132� ≡
(3+69 ·132)+216 ·132� ≡ 3+132(69+216�) (mod 133). Set 69+216� ≡ 0 (mod 13);
this yields � = 6. Then 108+132� = 1122 is a solution of x2 ≡ 3 (mod 133). The remain-
ing solution is −1122 ≡ 1075 (mod 133).

7. By Example 11.30, 87 is a solution of x2 ≡ 23 (mod 73). Then 872 = 23 + 73k, where
k = 22. Now look for a solution of the form 87 + 73�: (87 + 73�)2 ≡ 872 + 174 · 73� ≡
(23+22 ·73)+174 ·73� ≡ 23+73(22+174�) (mod 74). Solving 22+174� ≡ 0 (mod 7)

yields � = 1. Therefore, 87 + 73 · 1 = 430 is a solution of x2 ≡ 23 (mod 74). The remain-
ing solution is −430 ≡ 1971 (mod 74).

9. Because 6 is a solution of x2 ≡ 10 (mod 13), 62 = 10 + 13k, where k = 2. Now look
for a solution of the form 6 + 13�: (6 + 13�)2 ≡ 62 + 12 · 13� ≡ (10 + 2 · 13) + 12.
13� ≡ 10 + 13(2 + 12�) (mod 132). Solving 2 + 12� ≡ 0 (mod 13) yields � = 2. Then
6 + 13� = 32 is a solution of x2 ≡ 10 (mod 132); so the other solution is −32 ≡ 137
(mod 132).

11. Because 4 is a solution of x2 ≡ 5 (mod 11), 42 = 5 + 11k, where k = 1. Now look for a
solution of the form 4+11�: (4+11�)2 ≡ 42 +8 ·11� ≡ (5+1 ·11)+8 ·11� ≡ 5+11(1+
8�) (mod 112). Solving 1 + 8� ≡ 0 (mod 11) yields � = 4. Therefore, 4 + 11� = 48 is a
solution of x2 ≡ 5 (mod 112); the remaining solution is −48 ≡ 73 (mod 112).

13. Because 8 is a solution of x2 ≡ 13 (mod 17), 82 = 13 + 17k, where 3 = 1. Now look for
a solution of the form 8 + 17�: (8 + 17�)2 ≡ 82 + 16 · 17� ≡ (13 + 3 · 17) + 16 · 17� ≡
13 + 17(3 + 16�) (mod 172). Solving 3 + 16� ≡ 0 (mod 17) yields � = 3. Therefore,
8 + 17� = 59 is a solution of x2 ≡ 13 (mod 172); the remaining solution is −59 ≡ 230
(mod 172).

15. Using step 4 in Example 11.32, α = 9 is a solution of x2 ≡ 17 (mod 32). Then 92 =
17 + 32i, where i = 2. Now choose j such that i + αj = 2 + 9j ≡ 0 (mod 2): j = 0. Then
α + j2k−1 = 9 + 0 · 24 = 9 is a solution of x2 ≡ 17 (mod 64). The remaining solutions
are −9 ≡ 55 and 25 ± 9 modulo 64, that is, 23, 41, and 55 modulo 64.



Chapter 11 Quadratic Congruences 743

17. α = 1 is a solution of x2 ≡ 25 ≡ 1 (mod 8), so 12 = 25 + 8i, where i = −3. Now choose
j such that i + αj = −3 + 1j ≡ 0 (mod 2): j = 1. Then α + j2k−1 = 1 + 0 · 22 = 5 is a
solution of x2 ≡ 25 (mod 16), so 52 = 25 + 16i, where i = 0. Now choose j such that
i + αj = 0 + 5j ≡ 0 (mod 2): j = 0. Then α + j2k−1 = 5 + 0 · 23 = 5 is a solution of
x2 ≡ 25 (mod 32). The remaining solutions are −5 and 24 ± 5 modulo 32, that is, 11, 21,
and 27 modulo 32.

19. Because α = 1 is a solution of x2 ≡ 33 ≡ 1 (mod 8), 12 = 33 + 8i, where i = −4. Now
choose j such that i+αj = −4+1j ≡ 0 (mod 2): j = 0. Then α + j2k−1 = 1+0 ·22 = 1 is
a solution of x2 ≡ 33 (mod 16), so 12 = 33+16i, where i = −2. This implies α+ j2k−1 =
1 + 0 · 23 = 1 is a solution of x2 ≡ 33 (mod 32), so 12 = 33 + 32i, where i = −1. This
yields α + j2k−1 = 1 + 1 · 24 = 17 as a solution of x2 ≡ 33 (mod 64). The remaining
solutions are −17 and 25 ± 17 modulo 64, that is, 15, 47, and 49 modulo 64.

21. α = 1 is a solution of x2 ≡ 41 ≡ 1 (mod 8). Then α + j2k−1 = 1 + 1 · 22 = 5 is a solution
of x2 ≡ 41 (mod 16). This yields α + j2k−1 = 5 + 1 · 23 = 13 is a solution of x2 ≡ 41
(mod 32). The remaining solutions are −13 ≡ 19,24 − 13 ≡ 3, and 24 + 13 ≡ 29 modulo
32.

23. By Exercise 22, α = 77 is a solution of x2 ≡ 41 ≡ 1 (mod 256). So α + j2k−1 = 77 +
(−1) · 27 = −51 is a solution of x2 ≡ 41 (mod 512). This yields α + j2k−1 = −51 +
1 · 28 = 205 is a solution of x2 ≡ 41 (mod 1024). The remaining solutions are −205 ≡
819,29 − 205 ≡ 307, and 29 + 205 ≡ 717 modulo 1024.

25. The given congruence can be written as y2 ≡ 4 (mod 52), where y = 2x + 1. Clearly,
y = ±2 are solutions of this congruence. When y = 2,2x + 1 ≡ 2 (mod 25), so x ≡ 13
(mod 25). The other solution is x ≡ 11 (mod 25), corresponding to y ≡ −2 (mod 25).

27. 9(2x2 + 1) ≡ 0 (mod 17); that is, x2 ≡ 8 (mod 17). Therefore, x ≡ 5,12 (mod 17).
29. 13(3x2 + 1) ≡ 0 (mod 19); that is, x2 ≡ 6 (mod 19). Therefore, x ≡ 5,14 (mod 19).
31. Because 23 �≡ 1 (mod 4), x2 ≡ 23 (mod 4) is not solvable by Theorem 11.15. Therefore,

the given congruence is not solvable.
33. We have x2 ≡ 13 (mod 4) and x2 ≡ 13 (mod 172). The solutions of x2 ≡ 13 (mod 4) are

1, 3 (mod 4) and those of the other are 59, 230 (mod 172). When x ≡ 1 (mod 4) and
x ≡ 59 (mod 172), by the CRT, x ≡ 1 · 172 · 1 + 59 · 4 · 217 ≡ 637 (mod 1156). Similarly,
we get three more solutions: 59, 519, and 1097 modulo 1156.

35. We have x2 ≡ 17 (mod 8) and x2 ≡ 17 (mod 192). The solutions of x2 ≡ 17 ≡ 1 (mod 8)

are 1, 3, 5, and 7 (mod 8); x = 6 is a solution of x2 ≡ 17 (mod 19), so the two solutions of
x2 ≡ 17 (mod 192) are 6 + 19 · 11 ≡ 215 (mod 192) and −215 ≡ 146 (mod 192). When
x ≡ 1 (mod 8) and x ≡ 215 (mod 192), by the CRT, x ≡ 1 · 192 · 1 + 215 · 8 · 316 ≡ 215
(mod 2888); when x ≡ 1 (mod 8) and x ≡ 146 (mod 192), x ≡ 1 · 192 · 1 + 146 · 8 · 316 ≡
2673 (mod 2888); Similarly, we get six more solutions: 507, 937, 1229, 1659, 1951, and
2381 modulo 2888.

37. 2 39. 8 41. 32 43. 2k 45. 2k+2

47. proof: Because ab ≡ 1 (mod p), (ab/p) = (1/p) = 1. That is, (a/p)(b/p) = 1, so (a/p) =
(b/p).

49. proof: 3x2 +1 ≡ 0 (mod p) is solvable if and only if x2 ≡ −3−1 (mod p) is solvable; that
is, if and only if (−3−1/p) = 1. But (−3−1/p) = 1 if and only if (−3/p) = 1; that is, if
and only if p ≡ 1 (mod 6), by Exercise 33 in Section 11.3.
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51. proof: Let α be a solution. Then, by Exercise 50, pn − α is also a solution. Suppose
α ≡ pn − α (mod pn). Then 2α ≡ 0 (mod pn), so α ≡ 0 (mod pn), which is impossible.
Therefore, α and pn − α are two incongruent solutions.
Let β be any solution of the congruence. Then α2 ≡ a ≡ β2 (mod pn), so (α + β)

(α − β) = α2 − β2 ≡ 0 (mod pn). Because n ≥ 2, this implies either pn|α + β,pn|α − β ,
or p|α +β and p|α −β . If pn|α +β , then β = pn −α. If pn|α −β , then α = β . In the last
case, p|2α, so p|α since p is odd. Let α = mp. Then m2p2 ≡ a (mod pn), which implies
p|a, which is a contradiction.
Thus, the given congruence has exactly two incongruent solutions, α and pn − α.

53. proof: Because (2n −α)2 ≡ (−α)2 ≡ a (mod pn) and (2n−1 ±α)2 = 22n−2 ±2nα+α2 ≡
0 ± 0 · α ≡ a (mod pn), the result follows.

Review Exercises (p. 546)
1. 8, 9
3. (116/73) = (43/73) = (73/43) = (40/43) = (10/43) = (2/43)(3/5) = −(−1) = 1
5. (3749/1739) = (271/1739) = (271/37)(271/47) = (12/37)(36/47)

= (3/37) = (37/3) = (1/3) = 1
7. (1/Mp) = 1
9. Because Mp ≡ 3 (mod 4), (−1/Mp) = −1.

11. Because Mp = 2p − 1 ≡ (−1)p − 1 ≡ 1 (mod 3), (3/Mp) = −(Mp/3) = −(1/3) = −1.
13. Because fn ≡ 1 (mod 4) and fn ≡ 2 (mod 3), (3/fn) = (fn/3) = (2/3) = −1.
15. Because n ≥ 5,p = n! + 1 ≡ 0 + 1 ≡ 1 (mod 5). Therefore, (5/p) = (p/5) = (1/5) = 1.
17. Because n is even, p = 4k + 1 ≡ 4 + 1 ≡ 5 (mod 12); so (3/p) = −1.
19. Because p = 16n + 1 ≡ 1 + 1 ≡ 2 (mod 5), (5/p) = −1.
21. Because the product of two quadratic nonresidues is a quadratic residue, 13 · 29 ≡ 12

(mod 73) is a quadratic residue.
23. 3989 ≡ 5 (mod 8), so (2/3989) = −1. Then 21994 ≡ −1 (mod 3989).
25. Because 4793 ≡ 5 (mod 12), (3/4793) = −1; that is, 32396 ≡ −1 (mod 4793).
27. Because 14 is a solution of x2 ≡ 9 (mod 17), it is also a solution of (x/2)2 ≡ 9 (mod 17).

Therefore, x/2 ≡ 14 (mod 17). Thus, x ≡ 28 ≡ 11 (mod 17).
29. 167|283 − 1 31. 2027|21013 − 1
33. Let p|n2 + 1. Then n2 ≡ −1 (mod p), so (−1/p) = (n2/p) = 1. But (−1/p) = 1 if and

only if p ≡ 1 (mod 4). Thus, p|n2 + 1 if and only if p ≡ 1 (mod 4).
35. The given congruence can be written as y2 ≡ 114 (mod 112), where y ≡ 4x + 1

(mod 112). Because 2 is a solution of y2 ≡ 114 ≡ 4 (mod 11), 22 ≡ 114 + 11i, where
i = −10. Then 2 + 11j = 2 + 11 · 8 = 90 is a solution of y2 ≡ 114 (mod 112), and so
is −90 ≡ 31 (mod 112). When y = 90,4x + 1 ≡ 90 (mod 112), so x ≡ 112 (mod 112).
When y = 31,4x + 1 ≡ 31 (mod 112), so x ≡ 68 (mod 112).

37. Because 2431 = 11 · 13 · 17, x2 ≡ 53 (mod 2431) implies x2 ≡ 9 (mod 11), x2 ≡ 1
(mod 13), and x2 ≡ 2 (mod 17). Solving them, we get x ≡ 3,8 (mod 11), x ≡ 1,12
(mod 13), and x ≡ 6,11 (mod 17), respectively. Then, by the CRT, x ≡ 261, 300, 844,
1026, 1405, 1587, 2131, 2170 (mod 2431).

39. Because 9724 = 4 · 11 · 13 · 17, the given congruence implies x2 ≡ 169 (mod 4), x2 ≡ 169
(mod 11), x2 ≡ 169 (mod 13), and x2 ≡ 169 (mod 17). The only solution of x2 ≡ 169
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(mod 13) is 0; that is, x ≡ 13 (mod 13). The various solutions of the given congruence
are 13, 871, 3991, 4849, 4875, 5733, 8853, and 9711 modulo 9724.

41. 6 is a solution of x2 ≡ 226 ≡ 17 (mod 19). Then 6 + 19j = 6 + 19 · 4 = 82 is a solution
of x2 ≡ 226 (mod 192). Consequently, 82 + 192j = 82 + 192 · 8 = 2970 is a solution of
x2 ≡ 226 (mod 193). The other solution is −2970 ≡ 3889 (mod 193).

43. p = 1,000,151 ≡ 3 (mod 4) and q = 2p + 1 = 2,000,303 are primes. Therefore,
2000303|M1000151.

45. proof: (4a/p) = (4/p)(a/p) = (a/p). Thus, (4a/p) = 1 if and only if (a/p) = 1. In other
words, the congruence x2 ≡ 4a (mod p) is solvable if and only if x2 ≡ a (mod p) is solv-
able.

47. proof: Because q ≡ −1 (mod p), (q/p) = (−1/p) = 1. Then (p/q) = (q/p) = 1.
49. proof: Because p ≡ ±1 (mod 8), (2/p) = 1; that is, 2(p−1)/2 ≡ 1 (mod p), so

p|2(p−1)/2 − 1.
51. proof: Let α be a quadratic nonresidue of fn. Then α(fn−1)/2 ≡ −1 (mod fn). Therefore,

αfn−1 ≡ 1 (mod fn). Thus α is a primitive root modulo fn, because ordfn α �< fn.
53. proof: Because p ≡ 1 (mod 4), q ≡ 3 (mod 8); so (2/q) = −1. Then, by Euler’s criterion,

2(q−1)/2 ≡ −1 (mod q); that is, 22p ≡ 1 (mod q). Consequently, ordq 2 = 1,2,p, or 2p.
Clearly, ordq 2 �= 1. If ordq 2 = 2, then 22 ≡ 1 (mod q); that is, q|3, which is impossible.
Because 2p = 2(q−1)/2 �≡ 1 (mod q), ordq 2 �= p. Thus ordq 2 = 2p = ϕ(q), and hence 2
is a primitive root modulo q.
On the other hand, let p ≡ 3 (mod 4). Then q ≡ −1 (mod 8), so (−1/q) = −1 and
(2/q) = 1. Thus (−2/q) = −1 ≡ (−2)p (mod q); that is, (−2)2p ≡ 1 (mod q). As ear-
lier, it can be shown that −2 is a primitive root modulo q.

55. proof (by contradiction): Assume that there are only a finite number of such primes,
p1, . . . ,pk . Let N = (p1 · · ·pk)

2 + 2. Notice that N ≡ 3 (mod 8). Let p be an odd prime
factor of N. Because p|N, (p1 · · ·pk)

2 ≡ −2 (mod p), so (−2/p) = 1. Therefore, by Ex-
ercise 50 in Section 11.2, p ≡ 1 or 3 (mod 8). If every prime factor of N is ≡ 1 (mod 8),
then N also would be ≡ 1 (mod 8). Because N ≡ 3 (mod 8), it must have a prime factor
q ≡ 3 (mod 8).
If q = pi for some i, then q|2, which is impossible. Therefore, q �= pi for every i, which is
a contradiction.

57. proof: Because p ≡ (−1)n + 1 (mod 3), p ≡ 2 (mod 3) if n is even and 0 (mod 3) oth-
erwise. Therefore, n must be even for p to be a prime; so (p/3) = (2/3) = −1; that is,

3(p−1)/2 ≡ 32n−1 ≡ −1 (mod p). Then 32n ≡ 1 (mod p).
Let ordp 3 = e. Then e|2n, so e = 2k , where k ≤ n. If k < n, then 1 = (32k

)2n−k−1 =
32n−1 ≡ −1 (mod p), which is a contradiction. Thus ordp 3 = 2n, and 3 is a primitive root
modulo p.

59. proof: Let m ≡ 1 (mod 4). Then (m − 1)/2 is even, so m∗ = m. Therefore, (m∗/n) =
(m/n) = (n/m), by Theorem 11.13.
On the other hand, let m ≡ 3 (mod 4). Then (m − 1)/2 is odd. Therefore, (m∗/n) =
(−m/n) = (−1/n)(m/n). If n ≡ 1 (mod 4), then (−1/n) = 1 and (m/n) = (n/m); thus,
(m∗/n) = 1. (n/m) = (n/m). If n ≡ 3 (mod 4), then (−1/n) ≡ −1 and (m/n) = −(n/m);
thus (m∗/n) = (−1)(−(n/m)) = (n/m).
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Supplementary Exercises (p. 548)
1. proof: f (ab) = (ab/p) = (a/p)(b/p) = f (a) · f (b).
3. K = set of quadratic residues of p 5. 1, 2, 3, 4; 1, 6

7. proof: Let a be a biquadratic residue of p, so x4 ≡ a (mod p) is solvable. Then (x2)2 ≡ a
(mod p), so y2 ≡ a (mod p) is solvable. Thus, a is also a quadratic residue of p.

9. Because 84 ≡ −1 (mod 7), −1 is a biquadratic residue of 17. Since the biquadratic
residues of 13 are 1, 3, and 9,−1 is a biquadratic nonresidue of 13.

11. (85/2) = −1, since 85 ≡ 5 (mod 8).
13. (85/3861) = (5 · 17/3)3(5 · 17/11)(5 · 17/13) = (5 · 17/3)(5 · 17/11)(5 · 17/13)

= (4/3)(8/11)(7/13) = (1/3)(2/11) · [−(13/7)]
= 1 · (−1) · [−(−1/7)] = (−1/7) = −1

15. Let m =∏
i

pei
i and n =∏

i
qfi

i be the prime factorizations of m and n. Then

(a/mn) =∏
i
(a/pi)

ei ·∏
i
(a/qi)

fi = (a/m)(a/n)

Chapter 12 Continued Fractions

Exercises 12.1 (p. 564)

1. [2;2,11] 3. [−3;2,8] 5.
113

77
7.

−441

157
9. The 21 × 13 rectangle contains one 13 × 13 square, one 8 × 8 square, one 5 × 5 square,

one 3×3 square, one 2×2 square, and two 1×1 square. So the desired continued fraction
is [1;1,1,1,1,2].

11. It follows from the table
n 1 2 3 4 5 6
an 1 1 1 1 1 1
pn 2 3 5 8 13 21
qn 1 2 3 5 8 13

that [1;1,1,1,1,1,1] = p6

q6
= 21

13
.

13. [3;1,4,2,7] = p4

q4
= 313

82

15. c4 = p4

q4
= a4p3 + p2

a4q3 + q2
= 5 · 43 + 10

5 · 30 + 7
= 225

157

17. c6 = p6

q6
= a6p5 + p4

a6q5 + q4
= 1 · 13 + 8

1 · 8 + 5
= 21

13

19. proof (by PMI): The result is clearly true when n = 1 and n = 2. Now assume it is true
for all positive integers ≤ k. Then, by Theorem 12.3,

ck+1 = pk+1

qk+1
= ak+1pk + pk−1

ak+1qk + qk−1
= 1 · Fk+2 + Fk+1

1 · Fk+1 + Fk
= Fk+3

Fk+2

Thus, the result follows by strong induction.
21. [5;4,3,2,1]
23. [5;4,3,2] 25.

pk

pk−1
= [ak;ak−1, . . . ,a1,a0]

27. [0;2,2,11] 29.
1

r
= [0;a0,a1, . . . ,an]

31. Since (12,13) = 1, the LDE is solvable. Since
12

13
= [0;1,12] and p2q1 − q2p1 = −1,

12 · 14 + 13(−14) = 14; so the general solution is x = 14 + 13t, y = −14 − 12t.
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33. Since (1776,1976) = 8 and 8|4152, the LDE is solvable. The LDE can be rewritten

as 222x + 247y = 519. Using the continued fraction
222

247
= [0;1,8,1,7,3], p5q4 −

q5p4 = 1. This yields x = 41001 + 247t, y = −36849 − 222t.

Exercises 12.2 (p. 575)
1. [1;2] 3. [2;4]
5. [3;7,15,1,292,1,1,2,1,3,1, . . .]
7. It follows from the table

n 1 2 3 4 5
an 2 2 2 2 2
pn 3 7 17 41 99
qn 2 5 12 29 70

that c1 = 3/2, c2 = 7/5,
c3 = 17/12, c4 = 41/29, and
c5 = 99/70.

9. We have π = [3;7,15,1,292,1,1,2,1,3,1, . . .].
It follows from the table

n 1 2 3 4 5
an 7 15 1 292 1
pn 22 333 355 103993 104348
qn 7 106 113 33102 33215

that c1 = 22/7, c2 = 333/106, c3 = 355/113,
c4 = 103993/33102, and c5 = 104348/33215.

11. By Exercise 9, c4 = 103993

33102
≈ 3.1415926530, and c5 = 104348

33215
≈ 3.1415926539; so

π ≈ 3.14159265.
13. Follows by Exercise 19 in Section 12.1.

15. Let x = [Fn;Fn,Fn, . . .]. Then x = Fn + 1

x
. Solving this, x =

Fn ±
√

F2
n + 4

2
. But x > 0,

so x =
Fn +

√
F2

n + 4

2
.

Review Exercises (p. 576)

1. [2;2,9] 3.
225

43

5. c5 = p5

q5
= a5p4 + p3

a5q4 + q3
= 9 · 115 + 16

9 · 151 + 21
= 1051

1380

7. [0;1,2,1,1,3]
9. Since (43,23) = 1, the LDE is solvable. Using the continued fraction

43

23
= [1;1,6,1,2],

the general solution is x = −264 + 23t, y = 495 − 43t.
11. Since (76,176) = 4 and 4|276, the LDE is solvable. Dividing the LDE by 4, it becomes

19x + 44y = 69. Using the continued fraction
19

44
= [0;2,3,6], the general solution is

x = 483 + 44t, y = −207 − 19t.

13. Using the convergents c9 = p9

q9
= F11

F10
= 89

55
and c10 = p10

q10
= F12

F11
= 144

89
, the general

solution is x = −1265 + 89t, y = 2047 − 144t.

15. [2;1,1,1,3,0,1,1,1, . . . ] 17. [1;1,1,1,5,1,1,9,1,1,13,1,1, . . . ]
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19. c5 = 15541

33630
= 0.462117157 . . . and c6 = 342762

741721
= 0.462117157 . . . . So

e − 1

e + 1
≈

0.46211715.

21. proof: Since r < 1, r = [0;a1,a2, . . . ,an] = 1

[a1;a2, . . . ,an] . So
1

r
= [a1;a2, . . . ,an].

Supplementary Exercises (p. 578)
1. Since pk = akpk−1 + pk−2,

pk

pk−1
= ak + pk−2

pk−1
= ak + 1

pk−1
pk−2

. Continuing like this, we get:

pk

pk−1
= ak + 1

ak−1 + 1

pk−2/pk−3

= ak + 1

ak−1 + 1

ak−2 + 1

. . . + 1

a1
= [ak;ak−1, . . . ,a1,a0]

3. proof (by PMI): Since q2 = a2a1 + 1 ≥ 2 and q3 = a3q2 + q1 ≥ q2 + q1 > 2q1 ≥ 2, the
result is true when k = 2 and k = 3. Now assume that qi ≥ 2i/2 for all integers i, where
2 ≤ i ≤ k − 1. Then qk = akqk−1 + qk−2 ≥ 2qk−2 ≥ 2 · 2(k−2)/2; that is, qk ≥ 2k/2. Thus,
the result follows by strong induction, where k ≥ 2.

Chapter 13 Miscellaneous Nonlinear Diophantine Equations

Exercises 13.1 (p. 589)
1. m �≡ n (mod 2)

3. Let x–(x + 1)–(x + 2) be a Pythagorean triple consisting of consecutive positive integers.
Then x2 + (x+1)2 = (x+2)2. This yields (x−3)(x+1) = 0. Because x > 0, x = 3. Thus,
3–4–5 is the only Pythagorean triple consecutive positive integers; clearly, it is primitive.

5. 2000001 2000002000000 2000002000001
20000001 200000020000000 200000020000001

7. 44–117–125, 88–105–137, 132–85–157, 176–57–185, 220–21–221
9. 132 + 842 = 852; 152 + 1122 = 1132

11. The conjecture in Exercise 10 is (2n + 1)2 + [2n(n + 1)]2 = [2n(n + 1) + 1]2, where
n ≥ 1.
proof: RHS = [2n(n + 1) + 1]2 = [2n(n + 1)]2 + 2[2n(n + 1)] + 1 = [2n(n + 1)]2 +
(4n2 + 4n + 1) = 2n(n + 1)2 + (2n + 1)2 = LHS.

13. (4n)2 + (4n2 − 1)2 = (4n2 + 1)2, n ≥ 2.
15. proof: If 3|m or 3|n, then 3|x or 3|y. Suppose 3 � m and 3 � n. Then, by Fermat’s Little

Theorem, m2 ≡ 1 ≡ n2 (mod 3). Therefore, y = m2 − n2 ≡ 0 (mod 3), so 3|y.
17. proof: If 2|m, then 4|x and we are done. If 2 � m, then m is odd. Therefore, n has to be

even and hence 2|n. Then also 4|x. Thus, at least one of the numbers x, y, and z is divisible
by 4.

19. proof: By Exercise 18, 12|xyz. By Exercise 16, 5 divides x, y, or z; so 5|xyz. Thus, 60|xyz.
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21. proof: Because 2 = z − y = (m2 + n2) − (m2 − n2), 2n2 = 2, so n = 1. Then x = 2m,
y = m2 − 1, and z = m2 + 1.

23. Area = (base)(height)/2 = (2mn)(m2 − n2)/2 = mn(m2 − n2).
25. No, because if it does, then m2 − n2 + 1 = m2 + n2. This yields 2n2 = 1; so n is an

irrational number, which is a contradiction.
27. Area = (base)(height)/2 = (k2mn) · k(m2 − n2)/2 = k2mn(m2 − n2), where k is an arbi-

trary positive integer.
29. Area = xy/2 = (1294)(693)/2 = 666,666.
31. proof: First, notice that z2

n = x2
n + (xn + 1)2 = 2x2

n + 2xn + 1. Also, yn+1 + 1 = xn+1 + 1.
Next we show that x2

n+1 + y2
n+1 = z2

n+1:

x2
n+1 + y2

n+1 = (3xn + 2zn + 1)2 + (3xn + 2zn + 2)2

= 18x2
n + 8z2

n + 24znxn + 34xn + 12z + 5

= 18x2
n + 8(2x2

n + 2xn + 1) + 24znxn + 18xn + 12zn + 5

= 34x2
n + 24znxn + 34xn + 12zn + 13

z2
n+1 = (4xn + 3zn + 2)2 = 16x2

n + 9z2
n + 24znxn + 16xn + 12zn + 4

= 16x2
n + 9(2x2

n − 2xn + 1) + 24znxn + 16xn + 12zn + 4

= 34x2
n + 24znxn + 34xn + 12zn + 13 = x2

n+1 + y2
n+1

Finally, let p be a prime factor of (xn+1, yn+1, zn+1). Then p|xn+1 and p|yn+1, so
p|(yn+1 −xn+1). That is, p|1, which is a contradiction. Therefore, (xn+1, yn+1, zn+1) = 1.
Thus xn+1–yn+1–zn+1 is also a primitive Pythagorean triple.

33. x = 15, y = 20, z = 12.

Exercises 13.2 (p. 601)
1. proof: Suppose x2 + y2 = r2 and x2 − y2 = s2 for some integers r and s. Then x4 − y4 =

(x2 + y2)(x2 − y2) = (rs)2. Because this contradicts Theorem 13.3, the result follows.
3. proof: Area of a Pythagorean triangle = xy/2. Suppose the area equals 2u2 for some

integer u. Then xy = 4u2. This implies (x + y)2 = z2 + 8u2 and (x − y)2 = z2 − 8u2, so
(x + y)2(x − y)2 = (z2 + 8u2)(z2 − 8u2). That is, (x2 − y2)2 = z4 − (4u)4. Because this
negates Theorem 13.3, the result follows.

5. proof: If p divides x, y, or z, then p|xyz. Otherwise, by Fermat’s little theorem, xp−1 ≡
yp−1 ≡ zp−1 ≡ 1 (mod p). Since xp−1 + yp−1 = zp−1, this implies 1 + 1 ≡ 1 (mod p),
which is a contradiction.

7. 1–1–1
9. We have z2 = x2 + y2. Suppose x = r2 and y = s2 for some integers r and s. Then r4 +

s4 = z2, which is impossible by Theorem 13.2. On the other hand, let x and z be squares.
Let x = r2 and z = t2 for some integers r and t. Then t4 − r4 = y2, which is impossible
by Theorem 13.3. By symmetry, it is impossible for y and z also to be squares.

11. 2–2
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13. Because 3–4–5–6 is a solution by Exercise 12, 3n–4n–5n–6n is also a solution for every
positive integer. Thus, the equation has infinitely many solutions.

15. When a = 2 and b = 1, the formula yields 93 + 123 + 153 = 183, so 9–12–15–18 is a
solution. Similarly, when a = 3 and b = 1, the formula yields the solution 28–53–75–84.

17. proof (by contradiction): Assume that x4 − y4 = z2 has integral solutions and x–y–z is a
solution with the least positive value of x. Then z2 + y4 = x4; that is, z2 + (y2)2 = (x2)2.
Then z–y2–x2 is a primitive Pythagorean triple.

case 1 Let y2 be odd. Then there exist positive integers m and n such that z = 2mn,
y2 = m2 − n2, and x2 = m2 + n2, where m > n and (m,n) = 1. This implies m4 − n4 =
(m2 + n2)(m2 − n2) = x2y2 = (xy)2, so m–n–xy is also a solution of the given equation.
Because 0 < m2 < m2 +n2 = x2, it follows that m–n–xy is smaller than the least solution,
which is a contradiction.

case 2 Let y2 be even. Then there exist positive integers m and n such that y2 = 2mn,
z2 = m2 − n2, and x2 = m2 + n2, where m > n, (m,n) = 1,m is even, and n is odd. Be-
cause (2m,n) = 1 and y2 = 2mn, 2m = r2 and n = s2 for some integers r and s. Because
r is even, this implies m = 2t2 for some integer t. Therefore, x2 = 4t4 + s4, so 2t2–s2–x
is a primitive Pythagorean triple. Consequently, there are positive integers u and v such
that 2t2 = 2uv, s2 = u2 − v2, and x = u2 + v2, where u > v and (u, v) = 1. Since t2 = uv,
u = a2 and v = b2 for some integers a and b. Then s2 = a4 − b4, so a–b–s is also a solu-
tion of the given equation x4 − y4 = z2. Because 0 < a = √

u < u2 + v2 = x, this yields a
contradiction. Thus, the given equation has no positive integral solutions.

Exercises 13.3 (p. 612)
1. 13 = 22 + 32 3. 41 = 42 + 52 5. k2n = k2(x2 + y2) = (kx)2 + (ky)2

7. 13 = 22 + 32 and 17 = 12 + 42. Therefore, 13 · 17 = (2 · 1 + 3 · 4)2 + (2 · 4 − 3 · 1)2 =
142 + 52.

9. yes, because 101 is a prime and 101 ≡ 1 (mod 4).
11. yes, since 233 is a prime and 233 ≡ 1 (mod 4).
13. 149 = 102 + 72 15. 200 = 142 + 22

17. Although r ≡ 3 (mod 4), since the exponent of r is odd, the given number is not express-
ible as the sum of two squares.

19. Because 2n(n + 1) + 1 = 2n2 + 2n + 1 = n2 + (n2 + 2n + 1) = n2 + (n + 1)2, the result
follows.

21. Let x2 + y2 + z2 ≡ 0 (mod 4). If all the integers are odd, then x2 + y2 + z2 ≡ 1 + 1 + 1 ≡
3 (mod 4), which is a contradiction. Suppose two of them, say, x and y, are odd. Then
x2 + y2 + z2 ≡ 1 + 1 + 0 ≡ 2 (mod 4), again a contradiction. Similarly, even if one of
them is odd, we will again get a contradiction. Thus, x ≡ y ≡ z ≡ 0 (mod 2).

23. Follows by letting c = d = g = h = 0 in Lemma 13.11.
25. 217 = 7 · 31 = (22 + 12 + 12 + 12)(52 + 22 + 12 + 12)

= (2 · 5 + 1 · 2 + 1 · 1 + 1 · 1)2 + (2 · 2 − 1 · 5 + 1 · 1 − 1 · 1)2

+ (2 · 1 − 1 · 1 − 1 · 5 + 1 · 2)2 + (2 · 1 + 1 · 1 − 1 · 2 − 1 · 5)2

= 142 + 12 + 22 + 42
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27. 29,791 = 31 · 312 = (52 + 22 + 12 + 12) · 312 = 1552 + 622 + 312 + 312

29. 89 = 82 + 52 + 02 + 02

31. 349 = 182 + 52 + 02 + 02

33. 840 = 23 · 7 · 15 = 22(2 · 105) = 22(12 + 12 + 02 + 02)(102 + 22 + 12 + 02)

= 22(142 + 32 + 22 + 12) = 282 + 62 + 42 + 22

35. Because 64,125 = 33 · 53 · 19,3 · 5 = 32 + 22 + 12 + 12, and 19 = 42 + 12 + 12 + 12,

64,125 = 32 · 52(3 · 5 · 19) = 152(32 + 22 + 12 + 12)(42 + 12 + 12 + 12)

= 152(142 + 92 + 22 + 22) = 2102 + 1352 + 302 + 302

37. 23 = 23 + 23 + 13 + 13 + 13 + 13 + 13 + 13 + 13

Exercises 13.4 (p. 620)
1. 9, 4; 161, 72 3. 19, 6; 721, 228 5. 4, 1 7. 15, 4

9. Let y = 2v. Then u2 − 2y2 = 1; 17, 12 is a solution of this equation. Therefore, 2v = 12
and v = 6. Thus, u = 17, v = 6 is a solution.

11. proof: LHS = a2c2 + N2b2d2 − N(a2d2 + b2c2)

= (ac + Nbd)2 − N(2abcd + a2d2 + b2c2)

= (ac + Nbd)2 − N(ad + bc)2 = RHS

13. When n = 2, Theorem 13.7 yields x = [(5 + 2
√

6)2 + (5 − 2
√

6)2]/2 = 49 and y = [(5 +
2
√

6)2 − (5 − 2
√

6)2]/2
√

6 = 20; when n = 3, Theorem 13.7 yields x = [(5 + 2
√

6)3 +
(5 − 2

√
6)3]/2 = 485 and y = [(5 + 2

√
6)3 − (5 − 2

√
6)3]/2

√
6 = 198.

15. proof (by PMI): The statement is clearly true when n = 1. Assume it is true for an arbi-
trary positive integer n = k. Then rk+1 = rk · r also yields a solution by Lemma 12.14.
Thus, by induction, the statement is true for every n ≥ 1.

x2
n − Ny2

n = (αxn−1 + βNyn−1)2 − N(βxn−1 + αyn−1)217.

= (α2x2
n−1 + β2N2y2

n−1 + 2αβNxn−1yn−1)

− N(β2x2
n−1 + α2y2

n−1 + 2αβxn−1yn−1)

= α2(x2
n−1 − Ny2

n−1) − Nβ2(x2
n−1 − Ny2

n−1)

= α2 · 1 − Nβ2 · 1 = α2 − Nβ2 = 1.

Thus, xn, yn is a solution.
19. α = 3, β = 2 = N.

(a) x1 = αx0 +βNy0 = α2 + 2β2 = 9 + 2 · 4 = 17, y1 = βx0 +αy0 = βα +αβ = 2αβ =
2 · 3 · 2 = 12.

(b) x2 = αx1 + βNy1 = 3 · 17 + 2 · 2 · 12 = 99, y2 = βx1 + αy1 = 2 · 17 + 3 · 12 = 70.

21. proof (by contradiction): Suppose there is a solution x, y. Then x2 +1 = 3y2 ≡ 0 (mod 3).
But x2 +1 ≡ 1 or 2 (mod 3) for all integers x. Because this is a contradiction, no solutions
exist.

23. proof: x2 − Ny2 = −1 = α2 − Nβ2 = (α2 − Nβ2)2n−1; that is, (x + y
√

N)(x − y
√

N) =
(α + β

√
N)2n−1(α − β

√
N)2n−1. Now equate factors with the same sign: x + y

√
N =
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(α + β
√

N)2n−1 and x − y
√

N = (α − β
√

N)2n−1. Solving, x = [(α + β
√

N)2n−1 +
(α − β

√
N)2n−1]/2 and y = [(α + β

√
N)2n−1 − (α − β

√
N)2n−1]/2

√
N.

25. xn = 3xn−1 + 4yn−1, yn = 2xn−1 + 3yn−1, where x1 = 1 = y1 and n ≥ 2.
27. The solutions of the equation x2 −2y2 = 1 are given by x = [(3+2

√
2)n + (3−2

√
2)n]/2

and y = [(3 + 2
√

2)n − (3 − 2
√

2)n]/2
√

2. Since 3 + 2
√

2 = (1 + √
2)2, these equations

can be rewritten as

x = [(1 + √
2)2n + (1 − √

2)2n]/2, y = [(1 + √
2)2n − (1 − √

2)2n]/2
√

2

The solutions of the equation x2 − 2y2 = −1 are given by

x = [(1 + √
2)2n−1 + (1 − √

2)2n−1]/2, y = [(1 + √
2)2n−1 − (1 − √

2)2n−1]/2
√

2

Combining these two cases, we get the solution:

x = [(1 + √
2)k + (1 − √

2)k]/2, y = [(1 + √
2)k − (1 − √

2)k]/2
√

2

where k ≥ 1.

Review Exercises (p. 623)
1. 6000092 + 200006000002 = 200006000092

60000092 + 20000060000002 = 20000060000092

3. LHS = [3(2n + 3)]2 + [2n(n + 3)]2 = (36n2 + 108n + 81) + (4n4 + 24n3 + 36n2)

= 4n4 + 24n3 + 72n2 + 108n + 81 = (2n2 + 6n + 9)2

= [2n(n + 3) + 9]2 = RHS where n = 10m

.

5. If the generators of a Pythagorean triple are consecutive triangular numbers, then the
length of a leg of the triangle is a cube.

7. Because x, y, and z are in arithmetic progression, we can assume that x = a−n, y = a, and
z = a + n for some positive integers a and n. Because they form a Pythagorean triangle,
(a − n)2 + a2 = (a + n)2. Simplifying, we get a = 4n. Thus, x–y–z = 3n–4n–5n.

9. The corresponding Pythagorean triples are 23408–9945–25433, 10640–21879–24329,
40698–5720–41098, and 17290–13464–21914.

11. proof: x = 2ab = 2(m2 + mn)(3n2 − mn) = 2mn(m + n)(m − n) and y = a2 − b2 =
(m2 + mn)2 − (3n2 − mn)2 = (m2 + 3n2)(m + 3n)(m − n). Therefore, area = xy/2 =
mn(m + n)(3n − m)(m2 + 3n2)(m + 3n)(m − n) = mn(m2 − n2)(m2 − 9n2)(m2 + 3n2).
In the second case, x = 2cd = 2(m2 −mn)(3n2 +mn) = 2mn(m−n)(m+3n) and y = c2 −
d2 = (m2 −mn)2 − (3n2 +mn)2 = (m2 +3n2)(m−3n)(m+n). Therefore, area = xy/2 =
mn(m − n)(m + 3n)(m2 + 3n2)(m − 3n)(m + n) = mn(m2 − n2)(m2 − 9n2)(m2 + 3n2).
Thus, the areas are equal.

13. 50 53 58 65 74 85
65 68 73 80 89 100 113

15. We have x = 2mn, y = m2 − n2, and z = m2 + n2, where m > n, (m,n) = 1, and m �≡ n
(mod 2). Then P = 2m2 + 2mn = 2m(m + n).

17. By Exercise 15, perimeter P = 2m(m + n). Because (m,n) = 1, (m,m + n) = 1. Because
m+n is odd, it follows that (2m,m+n) = 1. Because P is a square, 2m = u2 and m+n =
v2 for some integers u and v. Therefore, m is even and hence n is odd.
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19. no 21. no
23. 289 = 172 + 02 25. 449 = 202 + 72

27. 37 · 41 = (62 + 12)(52 + 42) = (6 · 5 + 1 · 4)2 + (6 · 4 − 1 · 5)2 = 342 + 192

29. 179 = 132 + 32 + 12 + 02 31. 337 = 182 + 32 + 22 + 02

33. 13 · 17 = (32 + 22 + 02 + 02)(42 + 12 + 02 + 02) = 142 + 52 + 02 + 02

35. 1360 = 24 · 5 · 17 = 24 · (5 · 17) = 24(22 + 12 + 02 + 02)(42 + 12 + 02 + 02)

= 42(82 + 42 + 22 + 12) = 322 + 162 + 82 + 42

37. Because 93 + 103 = 123 + 13, 9–10–12–1 is a solution; so is 9n–10n–12n–n for every
positive integer n. Thus, the equation has infinitely many integral solutions.

39. Because 59–158–133–134 is a solution, 5n–158n–133n–134n is also a solution for every
integer n; so the given equation has infinitely many integral solutions.

41. 9, 2
43. Because r = 23 + 4

√
33 is a solution, r2 = 1057 + 184

√
33 also yields a solution. That

is, 1057, 184 is also a solution.
45. α = x1 = 48, β = y1 = 7, and N = 47. Then x2 = αx1 + Nβy1 = 482 + 47 · 7 = 4607 and

y2 = βx1 + αy1 = 7 · 48 + 48 · 7 = 672. Therefore, 4607, 672 is also a solution.
47. α = 2, β = 1, and N = 5. When n = 2, Theorem 13.7 yields x = [(2 + √

5)3 + (2 −√
5)3]/2 = 38 and y = [(2 + √

5)3 − (2 − √
5)3]/2

√
5 = 17. When n = 3, the theorem

yields x = [(2 + √
5)5 + (2 − √

5)5]/2 = 682 and y = [(2 + √
5)5 − (2 − √

5)5]/2
√

5 =
305.
Thus, 38, 17; and 682, 305 are two new solutions.

Supplementary Exercises (p. 626)
1. The legs of the corresponding primitive Pythagorean triangle are 31360, 99999; 71492,

70965; 53452, 96795; and 106684, 56763. Their areas are 1567984320, 2536714890,
2586943170, and 3027851946, respectively.

3. 336700 = 333 + 673 + 003

336701 = 333 + 673 + 013

5. 370 = 33+ 73+ 03

336700 = 333+ 673+ 003

333667000 = 3333+ 6673+ 0003

333366670000 = 33333+ 66673+ 00003

371 = 33+ 73+ 13

336701 = 333+ 673+ 013

333667001 = 3333+ 6673+ 0013

333366670001 = 33333+ 66673+ 00013

7. 252 + 262 + 272

9. 552 + 562 + 572 + 582 + 592 + 602 = 612 + 622 + 632 + 642 + 652

11. 772

13. The positive factors of 30 are 1, 2, 3, 5, 6, 10, 15, and 30; they have 1, 2, 2, 2, 4, 4,
4, and 8 positive factors, respectively. Then (1 + 2 + 2 + 2 + 4 + 4 + 4 + 8)2 = 729 =
13 + 23 + 23 + 23 + 43 + 43 + 43 + 83

15. Let tk denote the kth triangular number. Then 3

( n∑

k=1
tk

)3
=

n∑

k=1
t3k + 2

n∑

k=1
t4k .

17. Let x − 1, x, x + 1, and x + 2 be the four consecutive integers. Then (x − 1)3 + x3 +
(x + 1)3 = (x + 2)3. Simplifying, we get (x − 4)(x2 + x + 1) = 0. Because x2 + x + 1 = 0
has no integral solutions, x = 4. Therefore, w = x − 1 = 3.



754 Solutions to Odd-Numbered Exercises

19. 142 + 362 + 582 + 902 = 092 + 852 + 632 + 412 = 12,956
162 + 382 + 502 + 942 = 492 + 052 + 832 + 612 = 13,036

21. 262 + 352 + 842 23. 122 + 432 + 652 + 782

25. 113 + 123 + 133 + 143 = 203 27. 666 = 22 +32 +52 +72 +112 +132 +172

Appendix A.1 (p. 637)
1. yes 3. yes
5. Let x and y be any two even integers. Then x = 2m and y = 2n for some integers m and n.

Then x + y = 2m + 2n = 2(m + n), which is also an even integer.
7. Let x = 2m be any even integer. Then x2 = (2m)2 = 2(2m2) is also an even integer.
9. Let x be any odd integer. Then x = 2m + 1 for some integer m. Then x2 = (2m + 1)2 =

2(2m2 + 2m) + 1, which is an odd integer.
11. Let x be any even integer and y any odd integer. Then x = 2m and y = 2n + 1 for some

integers m and n. Then xy = (2m)(2n + 1) = 2(2mn + m), an even integer.
13. Let x = 4k + 1. Then x2 = (4k + 1)2 = 16k2 + 8k + 1 = 4(4k2 + 2k)+ 1 = 4m + 1, where

m = 4k2 + 2k is an even integer. Therefore, x2 is also an integer of the same form.
15. Let x be any integer. Assume it is not even, so it is odd and is of the form 2m + 1. Then

x2 = (2m + 1)2 = 4m2 + 4m + 1 = 2(2m2 + 2m) + 1, which is an odd integer. So, the
given hypothesis is false and the result follows.

17. Let x and y be any two integers. Assume that the given conclusion is false; that is, assume
that both x and y are odd integers. Then x = 2m + 1 and y = 2n + 1 for some integers m
and n, so xy = (2m + 1)(2n + 1) = 2(2mn + m + n) + 1, an odd integer. This negates the
given hypothesis and so the result follows.

19. Suppose
√

2 is not an irrational number; that is,
√

2 is a rational number. Let
√

2 = a/b,
where a and b have no positive common factors except 1. Then (a/b)2 = 2 or a2 = 2b2.
Therefore, 2 is a factor of a2 and hence of a. Then a = 2m for some integer m. So (2m)2 =
2b2 or b2 = 2m2. Then 2 is a factor of b2 and hence of b. Consequently, 2 is a common
factor of a and b, which is a contradiction.

21. Assume
√

p is a rational number a/b, where a and b have no positive common factors
except 1. Then

√
p = a/b, (a/b)2 = p, or a2 = pb2. Consequently, p is a factor of a2 and

hence of a. So let a = mp. Then (mp)2 = pb2 or b2 = pm2. As before, this shows p is a
factor of b. Thus, p is a common factor of a and b, a contradiction.

23. proof: case 1 Let n be an even integer, say, 2m. Then n2 +n = (2m)2 +2m = 2(2m2 +m),
an even integer.

case 2 Let n be an odd integer, say, 2m + 1. Then n2 + n = (2m + 1)2 + (2m + 1) =
(4m2 + 4m + 1) + (2m + 1) = 2(2m2 + 3m + 1), again, an even integer.

25. proof: Every integer n is of the form 3k,3k + 1, or 3k + 2.

case 1 Let n = 3k. Then n3 − n = (3k)3 − (3k) = 27k3 − 3k = 3(9k3 − k).

case 2 Let n = 3k + 1. Then n3 − n = (3k + 1)3 − (3k + 1) = (27k3 + 27k2 + 9k + 1) −
(3k + 1) = 27k3 + 27k2 + 6k = 3(9k3 + 9k2 + 2k).

case 3 Let n = 3k + 2. Then n3 − n = (3k + 2)3 − (3k + 2) = (27k3 + 54k2 + 36k + 8) −
(3k + 2) = 27k3 + 54k2 + 33k + 6 = 3(9k3 + 18k2 + 11k + 2)

Thus, in every case, n3 − n is divisible by 3.
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27. x = 3
29. proof: Because 3–4–5 is a solution, 3n–4n–5n is also a solution for every integer n.
31. 0, because 02 is not positive. 33. January has 31 days.
35. proof: Because a < b, there is a positive real number x such that a + x = b. Therefore,

(a + x) + c = b + c; that is, (a + c) + x = b + c. Therefore, a + c < b + c.
37. proof: Let a · b = 0 and a �= 0. Because a · 0 = 0,a · b = a · 0. Canceling a from both

sides, we get b = 0.
39. 11, because 2047 = 23 · 89.
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188
gcd and, 185
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322, 327

Lemmas, 104
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Linear combinations, 75
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Linear diophantine equations
(LDE), 188–204, 206

continued fractions and, 563–564
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Ogg, F. C., 573
On Polygonal Numbers (Diophantus),

189
Ones complement, 93
Opera Mathematica (Wallis), 551
Opposite parity, 583
Order relation, 4–5, 57–58
Orders

defining, 456
of positive integers, 455–464, 489

Ordinal numbers, 416

P
Paganini, B. N. I., 380
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Fibonacci numbers and, 581
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Pell’s equation and, 618–619
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enrichment readings on, 550
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primes, 117, 144
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on congruence applications,

289–290
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on continued fractions, 576–577
on cryptology, 450–451
on divisibility, 146–148
on fundamentals, 60–62
on greatest common divisors,

207–209
on multiplicative functions,

408–409
on nonlinear Diophantine equations,

623–626
on primitive roots, 491–492
on quadratic congruences, 546–547
on systems of linear congruences,

314–316
Rho method, 240
RHS (right-hand side), 19n, 20
Ribet, Kenneth, 596f
Riccioli, Giovan Battista, 134
Riele, H. J. J. te, 379
Rivest, Ronald L., 434, 435f, 441n, 448
Romulus, 282
Roonguthai, Warut, 389
Roosevelt, Franklin Delano, 415
Roots. See Digital root; Primitive roots
Rosen, K. H., 526n
Rosenblum, Joshua, 598
Rosenholtz, I., 600
Round-robin tournaments, 277–282

algorithm for constructing, 280–281
congruences in, 278
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RSA cryptosystem, 434–442, 449

deciphering algorithms in, 438–439
enciphering algorithm in, 436–439
security tests of, 441f

Ruiz, S. M., 330
Russian peasant algorithms, 86

S
Samuelson, Pamela, 436f
Sapientia (Hrotsvit), 374
Saxena, N., 108
Scherk, H. J., 147
Schinzel, A., 141
Schlafly, Roger, 435f–436f
Sedgewick, R., 414
Segner, Johann Andreas von, 56–57
Segner’s recursive formula, 56–57
Selberg, Alte, 112
Self-invertible, 234
Selfridge, John L., 376, 387, 524
Selkin, F. B., 102n
Serial numbers, 271
Shafer, M., 385
Shallit, Jeffrey, 393
Shamir, Adi, 434, 435f, 447–448
Shanks, Daniel, 118
Shift ciphers, 418–420
Shifting multiplication, 94–96
Shi-Kie, Chu, 34n
Shirham, King, 26
Siddhanta Siromani (Bhaskara),

614
Sierpinski, W., 391n
Sieve of Eratosthenes, 106–109
Sigma function, 366–370, 407
Signatures, digital, 439–442
Silverman, Joseph, 415
Simson, Robert, life of, 134
Singh, Simon, 597
6 (number), 373–374
Slowinski, D., 116, 383
Smarandache, Florentin, 124
Smith, Harold, 351
Smith numbers, 352
sn

recursive definition of, 44–46
tn and, 45

Sociable numbers, 410
Sophie Germaine primes, 121, 144

largest, 122

Square grids, 256
Square numbers, 44

digital roots of, 251
pentagonal and triangular numbers

and, 47
pyramidal, 50–51

Square roots, 387
Square-free numbers, 141

positive integers, 183
Squares, sums of. See Sums of

squares
Stamps, 580, 581f
Stars, m-pointed, 253–254

examples of, 254f
Stifel, Michel, 33n
Straus, Ernest, 113
Subbarao, M. V., 325
Substitution ciphers, 416–417
Subtraction

in base b, 91–92
binary, 93

Summation index, 10
Summation notation, 9–11, 58

indexed, 11–13
for multiple summations, 12

Summation symbol, 9
Sums of squares, 602–612, 622–623

four, 606–607, 622–623
three, 606
two, 602–606, 622

Sun-Tsu, 295, 298
Superincreasing sequences, 443

weights, 444
Superperfect, 380
Supplementary exercises

on classical milestones, 351–352
on congruence applications, 291
on congruences, 243–244
on continued fractions, 578
on cryptology, 451–452
on divisibility, 148–151
on divisibility tests, 291
on fundamentals, 62–65
on greatest common divisors,

209
on multiplicative functions,

409–411
on nonlinear Diophantine equations,

626–628
on primitive roots, 492–493
on quadratic congruences, 548–549
on systems of linear congruences,

316–317

Sylvester, James Joseph, 150
Sylvester numbers, 150
Symmetric property, 213
Synopsis of Elementary Results in Pure

and Applied Mathematics
(Carr), 567

Systems of linear congruences
computer exercises, 318
defining, 295
enrichment readings on, 318–319
general solutions of, 296
review exercises, 314–316
solutions to, 296
supplementary exercises on,

316–317

T
Table of Primes (Lehmer), 118
Tau function, 365–366, 407
Tavole di Numberi Primi (Poletti), 147
Telescoping sums, 14
10 (number), divisibility test for, 247
Terminal step, in inductive definition, 27

Tetrahedral numbers, 49–50
Thébault, V., 63
Theorem, 394–395

defining, 5n
Théorie des nombres (Kraitchik), 140
Théories des Nombres (Legendre), 501,

502
Theory of ideals, 593
Thomas, H. E., 611
Thompson, Clive, 108
3 (number), divisibility test for, 248
TI-86, 465
Tijdeman, Robert, 600
tn

recursive definition of, 41
sn and, 45

Touchard, J., 379
Touchard’s theorem, 378
Tower of Brahma, 29, 131

puzzle based on, 29n
Towers of powers, modulo m, 224–226
Toyota, 268
Transitive property, 75, 213
Treatise on Figurate Numbers (Pascal),

39
Triangular numbers, 40–41

defining, 40
pyramidal, 49–50
square and pentagonal numbers and,

47
sums of, 45
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Trichotomy, law of, 5, 57
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Turing, Alan M., 32, 435f
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28 (number), 374
Twin primes, 118, 144

largest known, 118t
Pentium chip and, 119–121
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2 (number), 259

casting out, 253
2i (number), divisibility test for, 248
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Twos complement, 93

U
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Uniqueness proof, 70–71
Units, 104
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life of, 113

Varanasi, 29n
Variables, dummy, 10
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vos Savant, Marilyn, 370
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Waring, Edward, 610

life of, 322
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superincreasing, 444
Weiner, Paul A., 379
Well-ordering principle, 16–19, 58
Western, A. E., 524
Western Number Theory Conference,

376n
Whole numbers W, 4
Wieferich, A., 611
Wilansky, Albert, 351
Wiles, Andrew, 594–597, 598f

life of, 595
Willey, M., 582
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Williams, Hugh C., 117, 524
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Wilson, Woodrow, 413
Wilson’s theorem, 321–326, 348, 469–

470, 490
alternate proof of, 330

Wolfskehl, F. Paul, 591, 599
Woltman, George, 116, 383, 385,
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World War I, 413
World War II, 414
Wrench, John, Jr., 118
Wright, E. M., 388
Wunderlich, M., 165
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Young, J., 524
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Zeller, Christian, 285
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