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Preface

The aim of the fifth edition of Hydraulics	in	Civil	and	Environmental	Engineering remains being 
to provide a comprehensive coverage of civil engineering hydraulics in all its aspects and to pro-
vide an introduction to the principles of environmentally sound hydraulic engineering practice. 
To those who would be reading this book for the first time, we hope you enjoy it. You should 
find sufficient material to cover most first degree courses and useful information for a higher 
degree and for professional practice. The references and further reading lists are comprehensive 
and point the way to further study.

The fifth edition has been extensively reviewed by a panel of ten experts drawn from across 
the world. It contains much of the material from the previous editions and includes substantive 
revisions of the chapters on hydraulic machines, flood hydrology and computational modelling. 
New material has also been added to the chapters on hydrostatics, principles of fluid flow, 
behaviour of real fluids, open channel flow, pressure surge in pipelines, wave theory, sediment 
transport, river engineering and coastal engineering. The latest recommendations regarding 
climate change predictions, impacts and adaptation measures have also been included. The 
chapter on water quality modelling has been removed to contain the size of the book. References 
have been updated throughout.

Finally, we have a website (http://www.routledge.com/books/details/9780415306096/) 
which contains the solutions manual to the problems, some spreadsheets and links to other 
websites of interest.
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xi

short History of Hydraulics

Hydraulics is a very ancient science. The Egyptians and Babylonians constructed canals, both 
for irrigation and for defensive purposes. No attempts were made at that time to understand 
the laws of fluid motion. The first notable attempts to rationalise the nature of pressure and 
flow patterns were undertaken by the Greeks. The laws of hydrostatics and buoyancy were 
enunciated; Ctesibius and Hero designed hydraulic equipment such as the piston pump and 
water clock and, of course, there was the Archimedes screw pump. The Romans appear, like the 
Egyptians, to have been more interested in the practical and constructional aspects of hydrau-
lics than in theorising. Thus, development continued slowly until the time of the Renaissance, 
when men such as Leonardo Da Vinci began to publish the results of their observations. Ideas 
which emerged then, respecting conservation of mass (continuity of flow), frictional resistance 
and the velocity of surface waves, are still in use, though sometimes in a more refined form. 
The Italian School became famous for their work. Toricelli et al. observed the behaviour of 
water jets. They compared the path traced by a free jet with projectile theory and related the 
jet velocity to the square root of the pressure generating the flow. Guglielmini et al. published 
the results of observations on river flows. The Italians were hydraulicians in the original sense 
of the word, i.e., they were primarily empiricists. Up to this point, mathematics had played 
no significant part in this sort of scientific work. Indeed, at that time mathematics was largely 
confined to the principles of geometry, but this was about to change.

In the seventeenth century, several brilliant men emerged. Descartes, Pascal, Newton, Boyle, 
Hooke and Leibnitz laid the foundations of modern mathematics and physics. This enabled 
researchers to perceive a logical pattern in the various aspects of mechanics. On this basis, four 
great pioneers – Bernoulli, Euler, Clairaut and D’Alembert – developed the academic discipline 
of hydrodynamics. They combined a sound mathematical framework with an acute perception 
of the physical phenomena which they were attempting to represent. In the eighteenth century, 
further progress was made, both in experimentation and in analysis. In Italy, for example, Poleni 
investigated the concept of discharge coefficients. However, it was French and German thinkers 
who now led the way. Henri de Pitot constructed a device which could measure flow velocity. 
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Antoine Chézy (1718–1798), followed by Eytelwein and Woltmann, developed a rational equa-
tion to describe flow in streams. Men such as Borda, Bossut and du Buat not only extended 
knowledge but also took pains to see that the available knowledge was disseminated. Woltmann 
and Venturi used Bernoulli’s work as a basis for developing the principles of flow measurement.

The nineteenth century was a period of further advance. Hagen (1797–1884) constructed 
experiments to investigate the effects of temperature on pipe flow. His understanding of the 
nature of fluid viscosity was limited to Newton’s ideas, yet so careful was his work that the 
results were within 1% of modern measurements. He injected sawdust into the fluid for some 
of his experiments in order to visualise the motion. He was probably the first person knowingly 
to observe turbulence, though he was unable to grasp its significance fully. At almost the same 
time, a French doctor (Poiseuille) was also making observations on flow in pipes (in an attempt 
to understand the flow of blood in blood vessels), which led to the development of equations for 
laminar flow in pipes. Further contributions were made by Weisbach, Bresse and Henri Darcy, 
who developed equations for frictional resistance in pipe and channel flows (the first attempts 
to grapple with this problem coincided with signs of an incipient awareness of the existence 
of the ‘boundary layer’). During the later part of the century, important advances were made 
in experimentation. The first practical wind tunnel, the first towing tank for model testing of 
ships and the first realistic attempt to model a tidal estuary (by O. Reynolds) were all part of 
this flowering of knowledge. These techniques are still used today. Reynolds also succeeded in 
defining the different types of flow, observing cavitation and explaining Darcy’s friction law in 
greater detail.

Even at this stage, studies of fluid flows were subdivided into ‘classical hydrodynamics’ 
(which was a purely mathematical approach with little interest in experimental work) and 
‘experimental hydraulics’. Navier, Stokes, Schwarz, Christoffel and other hydrodynamicists all 
contributed to the development of a formidable array of mathematical equations and methods, 
including the conformal transformation. Their work agreed only sporadically with the prac-
titioners (the hydraulicians) and, indeed, there were frequently yawning disparities between 
the results suggested by the two schools. The rapid growth of industry in the nineteenth and 
twentieth centuries was by now producing a demand for a better understanding of fluid flow 
phenomena. The real breakthrough came with the work of Prandtl. In 1901, he proposed that 
flow was ‘divided into two interdependent parts. There is on the one hand the free fluid which 
can be treated as inviscid (i.e., which obeyed the laws of hydrodynamics) … and on the other 
hand the transition layer at the fixed boundaries’ (the transition layer is the thin layer of fluid 
within which frictional forces dominate). With this brilliant insight, Prandtl effectively fused 
together the two disparate schools of thought and laid the foundation for the development of 
the unified science of fluid mechanics.

The twentieth century has, in consequence, seen tremendous advances in the understanding 
and application of fluid mechanics in almost every branch of engineering. It is only possible to 
give the barest outline here. Prandtl and Th. von Kármán published a series of papers in the 
1920s and 1930s, covering various aspects of boundary layer theory and turbulence. Their work 
was supplemented by increasingly sophisticated laboratory research (e.g., the work of Dryden 
and his colleagues at NACA in the United States). These efforts had an impact on every aspect 
of engineering fluid mechanics. In the 1930s, the efforts of Nikuradse (in Germany), Moody (in 
America), Colebrook (in Great Britain) and others resulted in a clearer understanding of pipe 
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flows and, in particular, of the factors affecting pipe friction. This led directly to the modern 
methods for estimating flows in pipes and channels.

Since 1945, the advent of the electronic computer and advances in sensing and data logging 
equipment have revolutionised many aspects of hydraulics. Our understanding of the nature of 
turbulence, steady and unsteady flows in channels, sediment transport and maritime phenom-
ena have developed rapidly. This led to developments in mathematical modelling and hence to 
ever-improving computer software. Furthermore, the availability of the Internet means that 
information can now be rapidly communicated around the world. Today’s engineer therefore 
has the tools to achieve more effective and economic designs.

Hydraulics research continues on an international scale to seek solutions to the many pressing 
problems in water and environmental management. There is therefore every reason to expect 
that engineers and scientists working in this area will face exciting and difficult challenges 
which will make the fullest demands on their skills.
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xv

Introductory notes

Before formally embarking on a study of the engineering aspects of the behaviour of fluids, it 
is worth pausing to consider the area to be studied, the nature of the substance and one or two 
other basic points. Students who already have some grounding in fluid mechanics may wish to 
proceed directly to the main body of the text.

CIvIl engIneerIng HydraulICs

‘Fluid mechanics’ is the general title given to the study of all aspects of the behaviour of fluids 
which are relevant to engineers. Within this very broad discipline, a number of subsections have 
developed. Of these subsections, hydraulics is the branch which concentrates on the study of 
liquids. Civil engineers are largely, though not exclusively, concerned with one liquid, namely 
water. The development of the industrial society rests largely on the ability of civil engineers to 
provide adequate water services, such as the supply of potable water, drainage, flood control, etc.

nature oF FluIds

A fluid is a substance which can readily flow, i.e., in which there can be a continuous relative motion 
between one particle and another. A fluid is inelastic in shear and therefore continuously deforms 
under application of a shear force without the possibility of a return to its original disposition.

Fluids are subdivided into the following:

Liquids which have a definite volume for a given mass, i.e., they cannot readily be altered (say, 
compressed) due to changes of temperature or pressure – if liquid is poured into a con-
tainer, a clearly defined interface is established between the liquid and the atmosphere.

Gases generally exhibit no clear interface, will expand to fill any container and are readily 
compressible.
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ProPertIes oF FluIds

Density is the ratio of mass of a given quantity of a substance to the volume occupied by that 
quantity.

Specific	weight is the ratio of weight of a given quantity of a substance to the volume occupied 
by that quantity. An alternative definition is that specific weight equals the product of density 
and gravitational acceleration.

Relative	density (otherwise called ‘specific gravity’) is the ratio of the density of a substance 
to some standard density (usually the standard density is that of water at 4°C).

Viscosity represents the susceptibility of a given fluid to shear deformation and is defined by 
the ratio of the applied shear stress to rate of shear strain. This property is discussed in detail 
in Chapter 3.

Surface	tension is the tensile force per unit length at the free surface of a liquid. The reason 
for the existence of this force arises from intermolecular attraction (Figure I.1a). In the body 
of the liquid, a molecule is surrounded by other molecules, and intermolecular forces are sym-
metrical and in equilibrium. At the surface of the liquid (Figure I.1b), a molecule has this force 
acting only through 180°. This imbalance of forces means that the molecules at the surface tend 
to be drawn together, and they act rather like a very thin membrane under tension. This causes 
a slight deformation at the surface of a liquid (the meniscus effect).

Bulk	modulus is a measure of the compressibility of a liquid and is the ratio of the change in 
pressure to the volumetric strain caused by the pressure change. This property is discussed in 
Chapter 6.

unIts

In order to define the magnitudes of physical quantities (such as mass or velocity) or proper-
ties (density, etc.), it is necessary to set up a standardised framework of units. In this book, the 
Système Internationale d’Unités (SI system) will generally be used. There are six primary units 
(see Table I.1) from which all others are derived. For a complete specification of a magnitude, a 
number and a unit are required (e.g., 5 m, 3 kg).

(a) (b) (c)

FIgure I.1 Surface tension. (a) Balance of forces on immersed molecule. (b) Imbalance of forces on molecule 
at surface of liquid. (c) Meniscus effect.
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The principal derived units are as follows:

Velocity is the distance travelled in unit time and therefore has the dimensions of LT−1 and 
units m/s.

Acceleration is the change of velocity in unit time and has dimensions LT−2(=velocity per 
second) and units m/s2.

Force is derived by the application of Newton’s second law, which may be summarised as 
‘force = mass × acceleration’ − it is measured in newtons, where 1 newton (N) is that 
force which will accelerate a mass of 1 kg at 1 m/s2 and has dimensions MLT−2 and units 
kg m/s2.

Energy (or ‘work’, or heat) is measured in joules (J), 1 J being the work equivalent of a force 
of 1 N acting through a distance of 1 m and has dimensions ML2T−2 and units N m.

Power, the rate of energy expenditure, is measured in watts (=joules per second) and has 
dimensions ML2T−3 and units N m/s.

The dimensions and units of the properties of fluids are the following:

Density, which by definition is mass/volume = ML−3, has units of kg/m3.
Specific	weight is the force applied by a body of given mass in a gravitational field – its 

dimensions are ML−2T−2 and its units are N/m3.
Relative	density is a ratio and is therefore dimensionless.

Viscosity
shear stress

rate of shear strain
force/area

veloci
= = ( )

( tty/distance)

has dimensions ML−1T−1 and its units may be expressed as either N s/m2 or kg/m s.
Surface	tension is defined as force per unit length, so its dimensions are MT−2 and its units 

are N/m.

taBle I.1 Six Primary Units in the SI System

Quantity
Symbol of 
Quantity SI Unit Symbol of Unit

Length L Metre m

Mass M Kilogramme kg

Time t Second s

Electric current i Ampere A

Luminous intensity I Candela Cd

Temperature T Kelvin K



xviii Introductory Notes

dIMensIonal HoMogeneIty

If any equation is to represent some physical situation accurately, it must achieve numerical 
equality and dimensional equality (or equality of units).

It is strongly recommended that when constructing equations, the numerical value and the 
units of each term be written down. It is then possible to check that both of the required equali-
ties are, in fact, achieved. Thus, if at the end of a calculation one has

55 kg m 55 s=

then a mistake has been made, even though there is numerical equality. This point is especially 
important when equations incorporate coefficients. Unless the coefficients are known to be 
dimensionless, a check should be made to ascertain precisely what the units relevant to a given 
numerical value are. If an engineer applies a particular numerical value for a coefficient without 
checking units, it is perfectly possible to design a whole system incorrectly and waste large sums 
of money. Subsequent excuses (“I didn’t know it was in centimetres”) are not usually popular!
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Principal symbols

a amplitude
A area (m2)
A catchment area (km2)
AF amplification factor
A(h) plan area of reservoir at stage h (m2)
Ap areal packing of grains
AR ratio of partially open value area to fully open area
AS cross-sectional area of sediment particle (m2)
AST cross-sectional area of surge tower (m2)
AV cross-sectional area of flow at value (m2)
b width (m)
b amplitude
b probability weighted moment
B centre of buoyancy
B surface width of channel (m)
B* sediment transport parameter
c celerity (m/s)
c concentration (g/m3 or parts per million)
C Chézy coefficient (m1/2/s)
C concentration (mg/l)
C concentration (g/m3 or parts per million)
C0 celerity of waves in deep water (m/s)
Cc contraction coefficient
Cd discharge coefficient
CD drag coefficient
CE entrainment coefficient
Cf friction coefficient
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CG group celerity of waves (m/s)
CL lift coefficient
Cv velocity coefficient
Cr Courant number
d water depth under a wave (m)
d diameter (m)
D diameter (m)
D difference operator
D duration (h)
D( f, θ) directional spreading function
dB water depth for a breaking wave (m)
De energy dissipation
Dm hydraulic mean depth (m)
DM molecular diffusion coefficient (m2/s or m2/day)
DS sediment size (m)
DT turbulent diffusion coefficient (m2/s or m2/day)
e pipe wall thickness (m)
e sediment transport ‘efficiency’
E Young’s modulus (N/m2)
E energy (J)
EK kinetic energy of wave (J)
EP potential energy of wave (J)
er error
ES specific energy (m)
f wave frequency (Hz)
F fetch length (km)
F force (N)
FD drag force (N)
Fr Froude number
fW wave friction factor
g gravitational acceleration (m/s2)
G centre of gravity
H head (m)
H wave height (m)
H0 wave height in deep water (m)
HB wave height at breaker line (m)
HC cavitation head (m)
hf frictional head loss (m)
hL local head loss (m)
HP pump head (m)
Ht turbine head (m)
i rainfall intensity (mm/h)
I inflow (to reservoir) (m3/s)
I second moment of area (m4)
k wave number (m−1)
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K bulk modulus (N/m2)
K channel conveyance (m3/s)
K von Kármán constant
Kd diffraction coefficient
kL local loss coefficient
KN dimensionless specific speed
KR refraction coefficient for waves
kS surface roughness (m)
KS shoaling coefficient for waves
KX longitudinal mixing coefficient (m2/s or m2/day)
l L-moment
l length (m)
L length (dimension)
L wavelength (m)
l distance to centroid of area (m)
l′ distance to centre of pressure (m)
m beach slope
m mass (kg)
m spectral moment
M mass (dimension)
M metacentre
M momentum (kg/m s)
n Manning’s roughness coefficient
N rotational speed (1/s)
N record length
NS specific speed
O outflow (from reservoir) m3/s
p pressure (N/m2)
P probability
P wetted perimeter (m)
P power (kW)
P rainfall depth (mm)
p* piezometric pressure (N/m2)
ps porosity
PS sill or crest height (m)
q discharge per unit channel width (m3/ms)
Q discharge (m3/s)
qLS sediment transport per unit width at a point (m3/ms)
QLS longshore sediment transport by waves (m3/s or m3/annum)
QMLS longshore sediment transport by waves (kg/s)
Qp peak runoff (m3/s)
Qp spectral peakedness
QS sediment discharge (m3/s)
qs sediment discharge per unit channel width (m3/ms)
QTr flood discharge of return period Tr (m3/s)



xxii Principal Symbols

r radius (m)
R radius (m)
R hydraulic radius (m)
R reaction force (N)
R wave reflection parameter
Rp reading on pressure gauge
Re Reynolds’ number
ReW wave Reynolds’ number
S radiation stress (N/m)
Sc slope of channel bed to give critical flow
SCR slope of channel bed to give critical shear stress for sediment transport
Sf slope of hydraulic gradient
S0 slope of channel bed
Ss slope of water surface
SXX, SYY principal radiation stress (N/m)
SXX, SYY radiation stresses in x, y directions (N/m)
S( f) spectral energy density (m2 s)
S( f, θ) directional spectral energy density (m2/s)
St Strouhal number
t time (s)
t L-moment ratio
T temperature
T tension force (N)
T return period (years)
T wave period (s)
tc time of concentration (min)
te time of entry into drainage system (min)
tf time of flow through a drainage pipe (min)
Tp periodic time (s)
Tp time to peak runoff of the unit hydrograph (h)
TT periodic time of tide (h)
TS surface tension (N/m)
TB time base of the unit hydrograph (h)
u velocity (m/s)
U wind speed (m/s)
ū average velocity (m/s)
um maximum nearbed orbital velocity (m/s)
u0 initial velocity (m/s)
U∞ ‘free stream’ velocity (m/s)
u* friction velocity (m/s)
v velocity (m/s)
vl period-averaged mean longshore velocity (m/s)
V velocity (usually mean velocity of flow) (m/s)
V volume (m3)
VA absolute velocity (m/s)
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VF radial velocity in hydraulic machine (m/s)
VFS fall velocity of a sediment particle (m/s)
VI tangential velocity of pump impeller (m/s)
VR relative velocity (m/s)
VS volume of sediment particle (m3)
VSR volume of surface runoff
VST velocity of flow in a surge tower (m/s)
VW tangential (whirl) velocity in hydraulic machine
w velocity (m/s)
W weight (N)
W′ immersed weight of a particle (N)
We Weber number
x growth curve factor
X body force (N)
X length (m)
Y body force (N)
y water depth (m)
y reduced variate
yc critical depth (m)
yn normal depth (m)
z height above datum (m)
Z length (m)
Z body force (N)
α angle (degree or rad)
α velocity coefficient
β momentum coefficient
β slope of seabed or beach
Γ circulation
γ wave height ratio
δ boundary layer thickness (m)
δ* displacement thickness (m)
ε spectral width
εd energy dissipation (kg/s3)
ζ vorticity
η efficiency
η excursion (m)
ηd set-down (m)
ηu set-up (m)
θ angle (degree or rad)
θ momentum thickness (m)
θs Shields parameter
λ friction factor
λ scale factor
μ absolute viscosity (kg/m s)
μT eddy viscosity (kg/m s)



xxiv Principal Symbols

ν kinematic viscosity (m2/s)
ξp Irribaren number
Π dimensionless group
ρ density of liquid (kg/m3)
ρs density of sediment (kg/m3)
σ hoop stress (N/m2)
σ normal stress (N/m2)
τ shear stress (N/m2)
τb seabed shear stress (N/m2)
τCR critical shear stress for sediment transport (N/m2)
τ0 shear stress at a solid boundary (N/m2)
ϕ velocity potential
Φ sediment transport parameter
ψ stream function
Ψ sediment transport parameter
ω rotational speed (1/s)
ω angular frequency (rad/s)
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3

Chapter 1

Hydrostatics

1.1  Pressure

Hydrostatics is the study of fluids at rest and is therefore the simplest aspect of hydraulics. The 
main characteristic of a stationary fluid is the force which it brings to bear on its surroundings. 
A fluid force is frequently specified as a pressure, p, which is the force exerted on a unit area. 
Pressure is measured in N/m2 or in “bar” (1 bar = 105 N/m2).

By	the	end	of	this	chapter	you	should

 ◾ Be able to calculate a pressure from the reading on a manometric instrument
 ◾ Be able to calculate the pressure force and centre of pressure on a surface immersed in 

a liquid
 ◾ Understand Archimedes’ principle of buoyancy
 ◾ Be able to determine whether an object will float in a stable fashion or not

Pressure is not constant everywhere in a body of fluid. In fact, if pressure is measured at a 
series of different depths below the upper surface of the fluid, it will be found that the pres-
sure reading increases with increasing depth. An exact relationship can be developed between 
pressure, p, and depth, y, as follows. Suppose there is a large body of liquid (e.g., a lake or 
swimming pool), then take any imaginary vertical column of liquid within that main body 
(Figure 1.1). The column of fluid is at rest; therefore, all of the forces acting on the column 
are in equilibrium. If this statement is to be true for any point on the boundary surfaces of the 
column, the action and reaction forces must be perpendicular to the boundary surface. If any 
forces were not perpendicular to the boundary, then a shear force component would exist; this 
condition arises only for fluids in motion. It follows that the only force which is supporting 
the column of fluid is the force acting upwards due to the pressure on the base of the column. 
For the column to be in equilibrium, the upward force must exactly equal the weight force 
acting downward.

The volume of the column, V, is the product of its horizontal cross-sectional area, A, and 
its height, y. The specific weight of the liquid is the product of its density (symbol ρ) and the 
gravitational acceleration, g. Hence, the weight of the column is found by taking the product of 
the specific weight and the volume, i.e., the weight = ρgAy.
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The force acting upwards is the product of pressure and horizontal cross-sectional area, 
i.e., pA. Therefore,

 pA gAy= ρ

and so

 p g y= ρ  (1.1a)

This is the basic hydrostatic equation or “law”. By way of example, in freshwater (which has a 
density of 1000 kg/m3), the pressure at a depth of 10 m is

 

p ( ) . ( )

,

.

N/m 1 (kg/m ) 9 81(m/s ) 1 m

98 1  N/m

98 1 kN/m

2 3 2

2

= × ×

=

=

000 0

00
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The equation is correct both numerically and in terms of its units. For all practical purposes, 
the value of g (= 9.81 m/s2) is constant on the earth’s surface. The product ρg will therefore also 
be constant for any homogeneous incompressible fluid, and (1.1a) then indicates that pressure 
varies linearly with the depth y (Figure 1.2).

1.1.1  gauge Pressure and absolute Pressure

An important case of pressure variation is that of a liquid with a gaseous atmosphere above its 
free surface. The pressure of the gaseous atmosphere immediately above the free surface is pA 
(Figure 1.3). For equilibrium, the pressure in the liquid at the free surface is pA, and therefore 
at any depth y below the free surface the absolute pressure pABS (i.e., the pressure with respect 
to absolute zero) must be

 p p gyABS A= + ρ

Zero pressure

Weight

p

FIgure 1.1 Pressure distribution around a column of liquid.
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The gauge pressure is the pressure with respect to pA (i.e., pA is treated as the pressure “datum”):

 p gy= =ρ gauge pressure

It is possible for gauge pressure to be positive (above pA) or negative (below pA). Negative gauge 
pressures are usually termed vacuum pressures. Virtually every civil engineering project is con-
structed on the earth’s surface, so it is customary to take atmospheric pressure as the datum. 
Most pressure gauges read zero at atmospheric pressure.

1.2  Pressure MeasureMent

The argument so far has centred upon variation of pressure with depth. However, suppose 
that a pipeline is filled with liquid under pressure (Figure 1.4a). At one point the pipe has 
been pierced and a vertical transparent tube has been attached. The liquid level would rise to a 
height y, and since (1.1a) may be rearranged to read

 p g y/ρ =  (1.1b)

p = ρgy

y

FIgure 1.2 Pressure variation with depth.

pA

pA

pA  ρgy

Gauge
Absolute

y

FIgure 1.3 Gauge and absolute pressure.
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this height will indicate the pressure. The term p/ρg is often called “pressure head” or just 
“head”. A vertical tube pressure indicator is known as a piezometer. The piezometer is of only 
limited use. Even to record quite moderate water pressures, the height of a piezometer becomes 
impracticably large. For example, a pressure of water of 100 kN/m2 corresponds to a height 
of roughly 10 m, and civil engineers commonly design systems for higher pressure than this. 
The  piezometer is obviously useless for gas pipelines.

To overcome this problem, engineers have developed a range of devices. From a purely 
hydrostatic viewpoint, perhaps the most significant of these is the manometer (Figure 1.4b), 
which is a U-shaped transparent tube. This permits the use of a second gauge fluid having a 
density (ρB) which differs from the density (ρA) of the primary fluid in the pipeline. The two 
fluids must be immiscible and must not react chemically with each other. When the gauge 
pressure in the pipeline is zero, the surface of the gauge fluid in the left-hand vertical section 
will be at the same horizontal level as the surface of the gauge fluid in the right-hand vertical 
section (i.e., Rp = O). When the pressure of the liquid in the pipeline is raised to pressure p, 
this pressure will force the level of the gauge fluid in the left-hand section downwards which 
will simultaneously force the level of the gauge fluid in the right-hand-side upwards, so that 
the difference in surface levels is now Rp as shown in Figure 1.4b. To evaluate the pressure, we 
proceed as follows.

Rp
0

 θ

Pressure p

(e)(d)

y

y  ρA

 ρB ρB

Rp

Rp
y1

y2

X X
X X

Pressure p

Pressure p
(b)(a) (c)

Pressure p1

Pressure p2

FIgure 1.4 Pressure measuring devices. (a) Piezometer, (b) manometer with secondary gauge fluid, (c)  differential 
manometer, (d) inclined manometer, and (e) Bourdon gauge.
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Set a horizontal datum X–X at the lower gauge fluid level, i.e., at the interface between fluid A 
and fluid B in the left-hand vertical section. The pressure in the left-hand section at X–X is the 
sum of the pressure p at the centre of the pipe and the pressure due to the height y of fluid A, i.e.,

 p p gyX X A– = + ρ

In the right-hand section, the pressure at X–X is due to the height Rp of fluid B (atmospheric 
pressure is ignored, so the final answer will be a gauge pressure), i.e.,

 p gRpX X B– = ρ

In any continuous homogeneous fluid, pressure is constant along any horizontal datum. Since 
X–X passes through the interface on the left-hand side and through fluid B on the right-hand 
side, pX−X must be the same on both sides. Therefore,

 p p gy gRpX X A B− = + =ρ ρ

so

 p gR gyp= −ρ ρB A  (1.2a)

Thus, if ρA, ρB, and y are known, the pressure p may be calculated for any reading Rp on the 
manometer. Equation 1.2a is often written in terms of pressure head:

 

p
g

R ypρ
ρ
ρA

B

A
= −  (1.2b)

The manometer may also be connected up to record the pressure difference between two points 
(Figure 1.4c).

Other devices include the following:

 1. The sloping tube manometer (Figure 1.4d), which works on the same essential prin-
ciple as the U-tube. However, the right-hand limb comprises a transparent tube sloping 
at an angle θ while the left-hand limb comprises a tank whose horizontal cross section is 
much larger than that of the tube. The primary fluid extends from the pipeline through 
a flexible connecting tube into the top of the tank. The pressure p forces fluid from the 
tank into the transparent sloping tube, giving the reading Rp. The level in the tank falls 
only by a relatively small amount, so the reading is usually taken from a fixed datum. 
The equation of pressure may be adapted from (1.2a) if it is realised that y	=	Rp sin θ.

 2. The Bourdon gauge is a semi-mechanical device (Figure 1.4e). It consists of a tube formed 
into the shape of a question mark, with its upper end sealed. The upper end is connected 
by a linkage to a pointer. An increase in pressure causes a slight deformation of the tube. 
This is transmitted to the pointer, which rotates through a corresponding angle. Bourdon 
gauges can be designed for a much wider range of pressures than can manometers. On the 
other hand, they are somewhat less precise and require a certain amount of maintenance.
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 3. Pressure transducers are devices which convert a pressure into a corresponding elec-
trical output. They are particularly applicable for use in conjunction with automatic 
(computer-controlled) systems, or where variable or pulsating pressures need to be 
measured. For details of such devices, the manufacturer’s literature is usually the best 
source of information.

Example 1.1: Pressure Measurement

A pipe contains water at a gauge pressure of 50 kN/m2.
If a piezometer (Figure 1.4a) is attached to the pipe, what will be the height, y, from 

the pipe centre to the surface level of the liquid in the piezometer?
The piezometer is replaced by a manometer (Figure 1.4b), which is connected to the 

pipe by a flexible tube. The gauge fluid is mercury, so what will be the reading Rp for the 
same gauge pressure?

Density of water is 1,000 kg/m3, density of mercury is 13,600 kg/m3.

Solution

From Equation 1.1b, the piezometer reading is

 y p= = × =/ g 5 / 1, 9 81 5 97 mρ 0 000 000 0, ( . ) .

If the piezometer is replaced by a manometer, then the reading is calculated from 
Equation 1.2a:

 p gR gyp= −ρ ρB A

However, we have no information about the height y (Figure 1.4b). To produce a solution, 
we will have to make an assumption. It is reasonable to suppose that the manometer will 
be located close to the pipeline so we could assume that when gauge pressure in the pipe-
line is zero (and therefore Rp is zero), the surface level of the mercury is horizontal with the 
pipe centre. When the pipe is pressurised to 50 kN/m2, the mercury level on the left side 
of the manometer will be forced downwards to a level Rp/2 below the pipe centreline (so 
y	=	Rp/2). The mercury on the right side will rise by Rp/2 above the pipe centreline and so

 p gR gy gR gRp p p= − = −ρ ρ ρ ρB A B A /2

 5 13 6 9 81 1, 9 81 /20 000 00 000, , . .= × × − × ×R Rp p

∴ Rp = 0.389 m based on the aforementioned assumption.
It will be noted that the manometer reading is much smaller than that for the piezometer.
(You might try re-working this solution assuming that y = 1.5 m below the pipe centre 

to see what difference it makes).
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1.3  Pressure ForCes on suBMerged BodIes

1.3.1  omnidirectional nature of Pressure

In developing the equation of hydrostatic pressure distribution, it was emphasised that pressure 
forces were assumed to be perpendicular to the imaginary surfaces of the column of liquid. 
However, this, taken to its logical conclusion, must mean that at any point in the fluid the 
pressure acts equally in all directions. That this is true may be formally demonstrated as fol-
lows. Imagine a small sphere of fluid which is stationary within a larger body of the same fluid 
(Figure 1.5). Action and reaction forces must be in equilibrium at all points round the sphere. If 
the sphere diameter is reduced, then even though d → 0 (and therefore the weight of the sphere 
tends to zero) the equilibrium statement must still be true. Therefore, in an uninterrupted fluid 
continuum, pressure at any point acts equally in all directions.

1.3.2  Pressure on Plane surfaces

Following on from the preceding paragraph, what happens if a solid object is immersed in a 
liquid? The answer is that in order for there to be equilibrium, the liquid will apply a pressure 
force which is perpendicular to the surface of the object at all points. All the other pressure 
components illustrated in Figure 1.5 will also be in equilibrium. This principle only ceases to 
apply if there is relative motion between the liquid and the object.

To understand how liquid pressure acts on a solid surface, consider Figure 1.6a. This shows a 
flat plate of width B and length L which is suspended horizontally in water at depth y. We have 
seen that p = ρgy, and, as the plate is horizontal, pressure p is uniform over the whole surface. 
As an example, take y = 2 m, B = 1 m and L = 2.5 m. The pressure at a depth of 2 m,

 p gy= = × × =ρ 1, 9 81 2 19 62 N/m2000 0. , .

FIgure 1.5 Pressure at a point in a liquid.
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So the total force, F, on the top surface of the plate, is the product of pressure and the area of 
the plate, i.e., F	=	p	×	B	×	L = 19,620 × 1 × 2.5 = 49,050 N.

For many cases, engineers find it convenient to treat this total (or resultant) force as if it was 
concentrated at a point (sometimes known as the centre of pressure or point of action), rather 
than as a distributed load. For this example pressure, p is constant over the plate surface, so 
taking any straight line on the plate surface which passes though the centroid (geometrical 
centre) of the plate, the pressure force is symmetrical about that line. Therefore, F can be con-
sidered to be concentrated at the centroid (this can be proved formally by taking moments), 
F is perpendicular to the plate surface. Clearly there is a balancing force on the underside of 
the plate.

Now considering Figure 1.6b, what happens to the pressure force if the plate is suspended 
vertically in the water with its upper edge exactly at the surface of the water? Because pres-
sure p increases with depth, the pressure is now a variable not a constant. If we take the same 
plate dimensions as mentioned earlier, B = 1 m and L (now the vertical height) = 2.5 m, then 
at the water surface gauge pressure is zero. At the bottom of the plate, pressure at depth 2.5 m 
is calculated as p = ρgy = 1,000 × 9.81 × 2.5 = 24,525 N. Since the pressure variation with y is 
linear, we might assume that the product of average pressure and plate surface area would give 
the force on one side of the plate:

 

24 525 0
2

1 2 5 30 656
,

. , ( )
+ =× × N to nearest whole number

Locating the point of action of F is not so easy as for the horizontal plate problem. Also, civil 
engineers deal with a variety of geometrical shapes under pressure. We therefore need a more 
general approach. For this we need to apply a mathematical method. To show how this is devel-
oped, take an arbitrary plane surface which is immersed in a liquid (Figure 1.7). Somewhere on 
the surface, take a small element of area δA. The force δF on that area, due to the pressure of 
the liquid, is pδA = δF. Obviously, the total force acting on the whole plane surface must be the 
sum of all the products (pδA). However, p is not a constant. Thus, if the element is a distance y 

y
F

F
c

c
Pressure

B

L

(b)(a)

FIgure 1.6 Pressure force on plate. (a) Horizontal plate and (b) vertical plate.
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below the free surface of the liquid, then p = ρgy and pδA = δF = ρgyδA and therefore the total 
force is F = ρg ∫ ydA (ρ and g, being constants, are outside the integral). But

 y l= sinθ

Therefore,

 
F g l A g l A= =∫ ∫ρ θ ρ θsin d sin d( )

The quantity ∫ l dA is a geometrical characteristic of the shape, and is known as the first 
moment of area. This integral can be evaluated for any shape and equals the product Al

–
, where 

A is the area of the plane surface and l
–
 is the distance from the origin O to the centroid of the 

plane. Therefore,

 F g Al= ρ θ( )sin  (1.3)

In addition to the magnitude of the force F, it is usually necessary to know the precise loca-
tion and angle of its line of action. The pressure is, of course, distributed over the whole of the 
immersed body, but it is almost always more convenient to regard F as a concentrated point load.

Returning to the element of area, the force δF produces a moment δFl about the origin. This 
may be written as

 

moment

sin

sin 2

= =

=

=

δ ρ δ

ρ θ δ

ρ θ δ

Fl gy Al

gl Al

g l A

( )

( )

In the limit, dFl = ρg(sin θ)l2dA, so for the whole surface the moment is ρg(sin θ) ∫l2 dA.
The quantity ∫l2dA is another geometrical characteristic, known as the second moment of 

area, which has the symbol I (see Appendix A). Therefore,

 moment about origin sin= ρ θg I( )

0

y

l΄
l– l

Centroid

δA
θ

FIgure 1.7 Pressure on a plane surface.



12 Principles and Basic Applications

Therefore, the distance from the origin to the point of action of F is

 
′ = = =l

g I
g Al

I
Al

moment
force

sin
sin

ρ θ
ρ θ

( )
( )  

(1.4)

I is usually evaluated by the parallel axes theorem, which gives a solution in the form:

 I I A l= +0
2

where
I is the second moment of area of a plane surface about origin O
I0 is the second moment of area of the surface about an axis through its centroid

The axis is parallel to the axis at O.	I0 is a function of geometrical shape. Al
–

2 is the portion of I 
due to the distance from O to the centroid of the surface. Note that for a rectangle of width B 
and height L, I0 = BL3/12 and for a circular plane of radius R,	I0 = πR4/4.

We now apply these equations to the problem of the 1 m wide, 2.5 m high plane immersed 
vertically in water (Figure 1.6b).

Example 1.2: Pressure Forces on a Plate

Figure 1.6b shows a plate suspended vertically in water with its upper edge at the water 
surface. The plate width, B = 1 m, and its height, L = 2.5 m. Find the total pressure force 
on one side of the plate and the location of the point of action relative to the water surface.

Solution

The total force on the plate is calculated from F = ρgl
–
	A sin θ.

The centroid of the plate is at its centre so the vertical distance from water surface to 
centroid,

 l . . . ,= = =2 5/2 125 m The plate is suspended vertically  so 9θ 0°° =and sin 1θ .

∴ F = 1,000 × 9.81 × 1.25 × (1 × 2.5) × 1 = 30,656 N
(the same result as was found before)

The point of action of the force will be l′ below the water surface, and l′	=	I/Al
–

 

I I Al l

l

BL BL

A

= + = + = × + × × =0
3 2 3 2 4/12 1 2 5 /12 1 2 5 125 5 2 8 m( . ) ( . ) . .2 0

( . ) . .= = × × =BLl 1 2 5 125 3 125 m3

∴ l′ = 5.208/3.125 = 1.667 m below water surface.
The point of action is also midway across the plate.
(You might like to re-work this example for the situation that the upper edge of the plate 

is 2 m below the water surface, you should obtain the answers F = 79,706 N and l′ = 3.41 m.)
Now we take a more practical example.
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Example 1.3: Pressure Forces on a Dam

A rockfill dam is to have the cross section shown in Figure 1.8a. The reservoir design 
depth is to be 10 m. Estimate

 (a) The force on the dam per unit width
 (b) The location of the centre of pressure

Solution

Using trigonometry, the wetted slant height is 14.14 m.

 

Force on dam sin d sin

sin area
wetted heig

= =

= ×

∫ρ θ ρ θ

ρ θ

g l A g Al

g

( ) ( )

hht

1 9 81 sin 45 14 14 1 14 14/2

693 46 N/m wi

2

000

0







= × × ° × ×

=

. ( . ) .

, ddth

The moment of the force is ρg sin θ × (2nd moment of area). Therefore,

 M I A= × × +1 9 81 sin  wetted height/2 2000 0. [ ( ) ]θ

where I0 is the second moment of area about centroid. Hence,

 

M = × × °

=

× + × 













1 9 81 sin 45000

1 14 14
12

1 14 14
14 14

2

3 2

.
.

( . )
.

66 537 4  N m, ,0 0

10 m 45°

5 m 9.43 m

6.67 m

F

(b)(a)

FIgure 1.8 Dam section (Example 1.3). (a) Detail of dam and (b) force diagram.
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So,

 l′ = =6 537 4 /693 46 9 43 m, , , .0 0 0

(see Figure 1.8b). Therefore, the slant height from base to the centre of pressure is 4.71 m.

1.3.3  Pressure on Curved surfaces

Not all immersed structures are flat. Some dams have an upstream face which may be curved 
in both the vertical and the horizontal planes. Certain types of adjustable hydraulic structures 
(used to control water levels), such as gates, may also be curved.

It has already been shown that pressure is perpendicular to an immersed surface. The pressure 
on a curved surface would be distributed as shown in Figure 1.9a. To calculate the total force 
directly is inconvenient. At any small area δA, the force δF (=pδA) will be perpendicular to the 
surface. This force can be resolved into two components (Figure 1.9b), one vertical, δFy, and one 
horizontal, δFx. It can easily be shown that ΣδFy is the total weight, W, of the volume of liquid 
above the curved surface. The horizontal force, Fx = ΣδFx, is equal to the pressure force on a 
vertical plane surface equal in height to the projected height of the curved surface. The resul-
tant force may be obtained from the triangle of forces (Figure 1.9c). The weight component of 
the volume will act through its centre of gravity, while the horizontal component will act at the 
distance l′ below the free surface of the liquid. The resultant force will act through the point of 
intersection of the lines of action of W and Fx.

(a) (b) (c)

 δFx

 δFy = δW

Resultant

Fx

W

FIgure 1.9 Pressure force on curved surface. (a) Pressure distribution, (b) force on element of surface, and 
(c) force diagram.
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Example 1.4: Hydrostatic Force on a Quadrant Gate

Find the magnitude and direction of the resultant force of water on the quadrant gate 
shown in Figure 1.10a. The principal dimensions of the gate are

 Radius of gate 1 m=

 Width of gate 3 m=

 Water density 1  kg/m3= 000

The position of the centre of gravity is, as shown, 4R/3π horizontally from the origin.

Solution

 (a) For vertical component,

 Area of sector /4 /4 785 m2 2 2= = × =π πR 1 0.

 Volume of water 785 3 2 355 m3= × =0. .

 Weight of water 9 81 1 2 355 23 1  N= × × =. . ,000 00

 Centre of gravity is 4 1/3 424 m from origin× =π 0.

O

CG 0.667 m

0.424 m

CG

14,715 N

27,390 N

23,100 N(a) (b)

O

4R
3π——

FIgure 1.10 Pressure on quadrant gate (Example 1.4). (a) Detail of gate and (b) force diagram.
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 (b) For horizontal component, centroid of vertical projected area is 0.5 m below free 
surface of water. Therefore, from (1.3),

 Force 1 9 81 3 1 5 14 715 N= × × × × ==ρgAl 000 0. . ,

  The point of action of this component lies l′ below the free surface:

 

′ = = + = × + ×

′ = × × +

l I Al I Al I

l

/ where /, ( ) . ( )

( ) . (

2
0

2 3

2

3 1 0 5 3 1 12

3 1 0 5 33 1 12
3 1 0 5

0 667
3 /

m
×

× ×
=)

( ) .
.

  Since this is for the vertical projected surface, l′ is a vertical distance. The resul-
tant force, F, is given by

 F = + =23 100 14 715 27 3902 2, , , N

This will act at an angle tan−1(23,100/14,715), i.e., 57.5° below the horizontal. 
The force is therefore disposed as shown in Figure 1.10b, with its line of action 
passing through “O”.

1.4  FlotatIon

1.4.1  Buoyancy Forces

Although civil engineers are not boat designers, they do have to deal with cases of buoyancy 
from time to time. Some typical examples are

 1. Buried gas pipelines in waterlogged ground
 2. Exploration rigs used by oil or gas corporations
 3. Towing large steel dock/lock gates by sea or river (assuming that the structure can float, 

of course)

Figure 1.11 shows the vertical forces acting on an immersed cylinder of horizontal cross- sectional 
area A with its axis vertical.

The force acting downwards is due to pressure on the top surface, i.e., p1A = ρgyA. The force 
acting upwards is due to pressure on the bottom surface and is given by p2A = ρg(y	+	L)A. So,

 Total upthrust B= = + − =F g y L A gyA gLAρ ρ ρ( )

where LA is the volume of the cylinder. This leads to Archimedes’ principle that “the upthrust 
on a body is equal to the weight of the fluid displaced”. The upthrust acts through the centre of 
buoyancy B, which is the centre of gravity of the displaced fluid. For the case of a floating body, 
there must be equilibrium between FB and the weight of the body.
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1.4.2  stable Flotation

If a body is designed to float, it must do so in a stable fashion. This means that if the body suf-
fers an angular displacement, it will automatically return to the original (correct) position. To 
appreciate how a floating body may exhibit this self-righting property, it must be realised that 
(with the exception of circular sections) the angular displacement of a body causes a lateral dis-
placement in the position of B. Consider, for example, the pontoon of rectangular section shown 
in Figure 1.12a. For upright flotation, the pressure distribution across the base is uniform. The 
centre of buoyancy lies on the vertical centreline. Since the pontoon is upright, the weight, W, 
must also be acting along the vertical centreline. If the vessel now rotates about its longitudinal 
axis (“heels over”) through angle θ (Figure 1.12b), the pressure distribution on the base becomes 
non-uniform, although still linear. This is, therefore, similar to the other pressure distribution 
patterns which have been examined. The shift from a uniform distribution (with the vessel 
upright) to a non-uniform distribution necessarily implies a corresponding shift in the position 
of the line of action of the resultant force. The buoyancy force now acts through B′ rather than 
through the original centre of buoyancy B. If a vertical line (representing the buoyancy force) 
is drawn through B′, it intercepts the centreline of the vessel at point M, which is called the 
“metacentre”. Using trigonometry, the distance BB′ may be found:

 BB MB′ = ′ sinθ

Unfortunately, the distances MB′ and BB′ are both unknown. In order to evaluate them, use is 
made of the pressure distribution as follows.

The pressure, p, on the base at any distance a from the centreline is

 p g Y a= +ρ θ( )sin

p1

p2

L

y

FIgure 1.11 Pressure on immersed body.
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The corresponding force on an element of width δa and length l is

 δ δ ρ θ δF pl a g Y a l a= = +( )sin

The vertical component of δF is the buoyancy component, so that

 δ ρ θ δ θF g Y a l aB sin cos= +( )

The moment of this component about B is

 ρ θ δ θg Y a l a a( ) ( )+ sin cos

(b) (c)

Vertical
component (FB)

Metacentre

M
Angle of heel

(or tilt)

Resultant force
(F) on base

G

B B΄ θ

Force on strip = plδa

Original p (= ρgY)

p = ρg (Y + y)

δa

a

δa

a

θ

b

l

b

H

Y

FB

Plan

Freeboard

G

Centre of gravity

Centre of buoyancy

B

Uniform pressure distribution on base(a)

W

= ρg (Y + a sin θ)

FIgure 1.12 Flotation of pontoon. (a) Pontoon in upright position, (b) pontoon heeling through angle θ, and 
(c) pressure distribution on pontoon base.
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So, for the whole vessel, the moment due to the buoyancy force is given by

 −

+

∫ +
b

b

g Y a l a a
/

/

( ) ( )
2

2

ρ θ θsin cos d

to which the solution is

 Moment sin cos /12 sin cos3= =ρ θ θ ρ θ θg b l g I( )( )( ) ( )( )

Remember, this is the moment due to the change in position of the centre of buoyancy. It has 
already been shown that buoyancy force FB = ρgV and that .BB MB′ = ′ sinθ  Thus,

 

Moment sin

sin cos

B B= × = ×

=

F BB F MB

g I

′ ′ θ

ρ θ θ( )( )

Substituting for FB and rearranging,

 
MB

I
V

MB′ = 





=cos /cosθ θ

If θ is small, cos θ → 1 and

 MB I V= ( )/  (1.5)

The appearance of the second moment of area could have been anticipated in view of its associa-
tion with linear non-uniform stress distributions.

The self-righting ability of a body is a function of the geometrical relationship between M 
and the centre of gravity G:

 1. If M is above G, the body is stable (i.e., self-righting).
 2. If M coincides with G, the body is neutrally stable and will neither capsize nor be 

self-righting.
 3. If M is below G, the body is unstable and will capsize.

A glance at the disposition of the forces shows that the righting action is due to the moment of 
buoyancy force about the centre of gravity. This may be expressed as

 Righting moment B= ×F MG θ

where θ is measured in radians. A number of simplifications are inherent in the derivation of 
these relationships. For example, the effect of the pressure distribution on each side has been 
ignored. However, as long as θ is small, the resulting errors are negligible.
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Example 1.5: Buoyancy (Uplift) Force on Quadrant Gate

For a gate having the same dimensions as for Example 1.4, find the magnitude and direc-
tion of the force if the water is on the opposite side of the gate (Figure 1.13).

Solution

 (a) For vertical component,

 Area of sector as before 785 m2( ) .= 0

 Volume of water displaced 2 355 m3= .

 Buoyancy force 9 81 1 2 355 23 1  NB, . . ,F = × × =000 00

  The centre of gravity of the sector is 0.424 m from the origin, so this will be the 
position of the centre of buoyancy.

 (b) For horizontal component, centroid of vertical projected area is 0.5 m below the 
free surface of the water, so

 Force 1 9 81 3 1 5 14 715 N= = × × × × =ρgAl . . ,000 0

  The calculation of the position of the points of action is as mentioned earlier. 
Therefore, l′ = 0.667 m in the vertical plane. The resultant force, F, is given by

 F = + =23 100 14 715 27 3902 2, , , N

The solution is numerically identical to that of Example 1.4. The only difference 
is that here each force is acting in the opposite direction to the corresponding 
force in Example 1.4.

O

B

Buoyancy component
Resultant

Horizontal
component

FIgure 1.13 Pressure on quadrant gate (Example 1.5).
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Example 1.6: Pontoon Stability

During serious river flooding, one span of a road bridge collapses. Government engineers 
decide to install a temporary pontoon bridge while repairs are in progress (Figure 1.14). 
The river is 80 m wide and 7 m deep, and is not tidal. An outline specification of the 
temporary scheme is

Clearance between pontoon base and river bed = 5.5 m
Pontoon freeboard (i.e., distance from water line to deck) = 1.50 m
Maximum pontoon self weight = 220 t
Width of highway = 10 m
Maximum side tilt due to 40 t vehicle load = 4°

Assume that the centre of gravity (c.g.) of the vehicle is 3 m above the bridge deck and 
2 m off-centre. Assume that the pontoon centre of gravity lies at the geometrical centre 
of the pontoon.

Estimate the principal pontoon dimensions.

Solution

 Pontoon draft i e  depth of immersion  7 5 5 15 m( . ., ) . .= − =

 

Total height of pontoon draft freeboard 15 15 3 m 

Total w

= + = + =. .

eeight due to pontoon vehicle 22 4 26  t+ = + =0 0 0

2 m

Freeboard

Draft W

3 m

c.g. of vehicle

FIgure 1.14 Pontoon bridge (Example 1.6).
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Therefore, the volume of water displaced is 260 m3, since 1 m3 of water has a mass of
1 t. So,

 
pontoon length

volume displaced
width draft

m=
×

=
×

=260
10 1 5

17 333
.

.

This is not a whole submultiple of the river width, so say that the pontoon length is 20 m, 
with a corresponding draft of 1.3 m.

Check that the pontoon stability is within specified limits:

 
MB

I
V

= = × =( )
.

20 10 12
260

6 41
3 /

m

(from (1.5)). The pontoon centre of gravity is at its geometrical centre, 1.5 m above the 
base. The centre of gravity of the vehicle is 3 m above the deck, and therefore 6 m above 
the base of the pontoon. Taking moments about the pontoon base, the combined centre 
of gravity (c.g.) position is found:

 
Height of combined c g above the base  . .

( . ) ( )= × + × =220 1 5 40 6
260

22 192 m.

The centre of buoyancy, B, is at the centre of gravity of the displaced fluid. This lies at 
the geometrical centre of the immersed section of the pontoon, and is therefore 0.65 m 
above base.

Therefore, the distance MG between the metacentre and the centre of gravity is

 MG = + − =6 41 65 2 192 4 868 m. . . .0

 Overturning moment due to the vehicle 4 2 8  tm= × =0 0

 Righting moment 26 4 868 c= × ×0 . θ

For equilibrium, righting moment = overturning moment, so

 
θc rad=

×
= =80

260 4 868
0 062 3 55

.
. . °

which is within specification.
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1.5  suMMary

This chapter has introduced the fundamental concepts of pressure forces, pressure measure-
ment, and flotation. Further information about loadings on dams may be found in Novak et al. 
(2007), Chapter 1.

ProBleMs For solutIon

1.1 A pipe contains oil (density = 850 kg/m3) at a gauge pressure of 200 kN/m2. Calculate the 
piezometric pressure head (a) in terms of the oil and (b) in terms of water.

[24 m, 20.4 m]
1.2 A sloping tube manometer has the capacity for a maximum scale reading Rp = 150 mm. If 

it is to measure a maximum pressure of 400 N/m2, what must be the angle θ at which the 
tube is set? Assume a fixed zero position. The gauge fluid has a density of 1800 kg/m3.

[8.69°]
1.3 For the manometer in Question 2, the horizontal cross section of the tank is 40 times the 

tube cross section. What will be the percentage error in the indicated pressure reading due 
to the fall in the level in the tank?

[16.5%]
1.4 A mercury manometer is connected to a flow meter in a pipeline. The gauge pressure at 

Point 1 is 38 kN/m2 and at Point 2 the vacuum pressure is −50 kN/m2. The fluid in the 
pipeline is water. Calculate the manometer reading Rp.

[712 mm]

1 2

Rp
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1.5 An inverted tube has its upper end sealed and the air has been evacuated to give a vacuum. 
The lower end is open and stands in a bath of mercury. If the air pressure is 101.5 kN/m2, 
what will be the height of the mercury in the tube?

[760 mm]

1.6 A gas holder is sited at the foot of a hill and contains gas at an absolute pressure of 103,000 
N/m2. If the atmospheric pressure is 101,500 N/m2, calculate the gauge pressure in head 
of water. The gas holder supplies gas through a main pipeline whose highest point is 150 m 
above the gas holder. What is the gauge pressure at this point? Take density of air as 1.21 
kg/m3 and density of gas as 0.56 kg/m3.

[153 mm water, 250 mm water]

150 m

1.7 A large drain is 1 m2 in cross section. It discharges into a sump whose wall is angled at 45°. 
At the outlet end of the drain there is a steel flap valve hinged along its upper edge. The 
mass of the flap is 100 kg, and the centre of gravity lies at its geometrical centre. The flap 
gate is also held shut by a weight of 250 kg on a 500 mm cantilever arm. To what level will 
the water rise in the drain before the valve lifts?

[0.58 m]
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Hinge

Weight

Gate1 m

45°

1.8 A mass concrete dam has the section shown in the below figure and spans a channel 200 m 
wide. Estimate the magnitude of the resultant force, its angle to the horizontal and the 
point at which its line of action passes through the base line.

[630.5 MN, 13.5°, 36.6 m from O]

5 m

20 m

O

5 m 35 m

1.9 A radial gate is to be used to control the flow down a spillway. The gate is 10 m in 
radius and 12 m wide, and is supported on two shaft bearings. Calculate the load on 
each bearing. Prove that the resultant hydrostatic force passes through the axis of the 
bearings.

[0.889 MN]
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10 m radius

6 m

1.10 A pontoon is to be used as a working platform for diving activities associated with a dock-
yard scheme. The pontoon is to be rectangular in both plan and elevation and is to have 
the following specification:

Width = 6 m
Mass = 300,000 kg
Metacentric height ≥ 1.5 m
Centre of gravity = 0.3 m above geometrical centre
Freeboard (height from water level to deck) ≥ 750 mm
Estimate the overall length, L, and overall height, h, of the pontoon if it is floating in 

freshwater (density = 1000 kg/m3).
[L = 36.25 m, h = 2.13 m]

Reference
Novak, P., Moffat, A. I. B., Nalluri, C., and Narayanan, R. (2007) Hydraulic Structures, 4th edn., Taylor & Francis, 

London, UK.
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Chapter 2

Principles of Fluid Flow

2.1  IntroduCtIon

The problems encountered in Chapter 1 involved only a small number of quantities, basically 
ρ, g and y. In consequence, the equations developed were simple and precise.

Thus, if the results of hydrostatic experimentation and calculation are compared, they are 
found to agree within the limits of experimental accuracy. Unfortunately, this combination of 
simplicity and accuracy does not apply when we turn our attention to problems involving fluid 
flows. Engineering flows are mostly very complex, and it is not usually possible to evolve precise 
theoretical models.

However, a great deal can be learnt about flows by adopting the techniques and equations 
which were developed by the hydrodynamicists. These equations are reasonably straightfor-
ward because they are developed for the case of an “ideal” fluid. An ideal fluid has no viscosity 
(i.e., it is inviscid), has no surface tension and is incompressible. Viscosity and compressibility 
are the major reasons for the complexity of real fluid flows. Of course, no such substance as an 
“ideal” fluid actually exists. Nevertheless, for certain types of problem, the equations for “ideal” 
flows are remarkably accurate.

By	the	end	of	this	chapter	you	should

 ◾ Understand the conservation of matter, energy and momentum as they apply to a flow-
ing fluid

 ◾ Be able to apply the continuity and energy equations to calculate related variations in 
pressure, velocity and elevation in a simple ducted flow

 ◾ Be able to estimate reaction forces on pipelines
 ◾ Be able to estimate discharge through a venturi meter, orifice plate meter or orifice 

outlet
 ◾ Be able to plot the streamlines for simple potential flows
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2.2  ClassIFICatIon oF FloWs

Flows can be classified in a number of ways. The system generally adopted is to consider the 
flow as being characterised by two parameters – time and distance. The class into which any 
particular flow falls is usually a reliable guide to the appropriate method of solution.

The first major subdivision is based on consideration of the timescale. This categorises all 
flows as either steady or unsteady.

A flow is steady if the parameters describing that flow do not vary with time. Typical param-
eters of a flow are velocity, discharge (volume per second passing a given point), pressure or 
depth of flow (e.g., in a river or channel). Conversely, a flow is unsteady if these parameters do 
vary with time.

Because of the complex equations associated with unsteady flows, engineers often use steady 
flow equations even where a small degree of unsteadiness is present. A case in point is that of 
flows in rivers, where the discharge is rarely, if ever, absolutely steady. Nevertheless, if changes 
occur slowly, steady flow equations give quite accurate results.

The second subdivision relates to the scale of distance. This classifies flows as being uniform 
or non-uniform.

A flow is uniform if the parameters describing the flow do not vary with distance along the 
flow path. Conversely, for a non-uniform flow, the magnitude of the parameters varies from 
point to point along the flow path.

The existence of a uniform flow necessarily implies that the area of the cross section 
perpendicular to the direction of flow is constant. A typical example is that of the flow 
in a pipeline of constant diameter. By contrast, one would have a non-uniform flow in a 
tapered pipe.

The two sets of subdivisions or classifications (steady–unsteady, uniform–non-uniform) are 
not mutually exclusive. Some flows exhibit changes with respect to both time and distance, 
while others change with respect to time or distance only. However, the majority of flows will 
fall into one of the classifications listed next.

2.2.1  steady uniform Flow

For such a flow the discharge is constant with time, and the cross section through which the 
flow passes is of constant area. A typical example is that of constant flow through a long straight 
pipe of uniform diameter.

2.2.2  steady non-uniform Flow

The discharge is constant with time, but the cross-sectional area varies with distance. Examples 
are flow in a tapering pipe and flow with constant discharge in a river (the cross section of a river 
usually varies from point to point).
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2.2.3  unsteady uniform Flow

The cross section through the flow is constant, but the discharge varies with time. This is a 
complex flow pattern. An example is that of unsteady flow in a long straight pipe of uniform 
diameter, associated with the operation of a surge tower (see Chapter 12).

2.2.4  unsteady non-uniform Flow

The cross section and discharge vary with both time and distance. This is typified by the passage 
of a flood wave in a natural channel, and is the most complex flow to analyse.

2.3  vIsualIsatIon oF FloW Patterns

2.3.1  streamlines

The fundamental method of visualising a flow pattern is by means of “streamlines”. A stream-
line is constructed by drawing a line which is tangential to the velocity vectors of a connected 
series of fluid particles (Figure 2.1a). (Bearing in mind that velocity is a vector quantity, i.e., it 
involves a magnitude and a direction.)

The streamline is thus a line representing the direction of flow of the series of particles at a 
given instant. Because the streamline is always tangential to the flow, it follows that there is no 
flow across a streamline.

(b)

Streamline

(a)

FIgure 2.1 Definitions of a (a) streamline and a (b) streamtube.
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A set of streamlines may be arranged to form an imaginary pipe or tube. This is known as 
a “streamtube” (Figure 2.1b). Under certain specific circumstances, streamtubes can actually 
be identified. For example, the internal surface of a pipeline must also be a streamtube, since 
the vectors representing the flow adjacent to the surface must be parallel to that surface. The 
surface is therefore “covered” with streamlines.

The hydrodynamicists developed a theoretical framework which makes it possible to con-
struct streamlines for a variety of ideal flows, by using a graphical technique. The resulting 
diagrams are known as “flow nets”, and these are discussed in Section 2.9.

2.3.2  streaklines

Clearly, it will be difficult to construct a streamline for a real flow, since individual particles of 
fluid are not visible to the eye. A simple method of obtaining approximate information regard-
ing streamline patterns is to inject a dye into the flow. The dye will trace out a path known as 
a “streakline”, which may be photographed. Usually the characteristics of the dye (its density, 
etc.) will not be identical to those of the fluid. The streakline, therefore, will not necessarily be 
absolutely identical to the streamline.

2.3.3  one-, two- and three-dimensional Flow

Most real flows are three-dimensional, in that velocity, pressure and other parameters may vary 
in three directions (x, y, z). There may also be variation of the parameters with time.

In practice it is nearly always possible to consider the flow to be one- or two-dimensional. 
This greatly simplifies the equations of flow. Minor adjustments to these simplified equations 
can often be incorporated to allow for a two- or three-dimensional flow. For example, steady 
uniform flow in a pipe is considered to be one-dimensional, the flow being characterised by a 
streamline along the centreline of the pipe. The velocity and pressure variations across the pipe 
are ignored, or are considered separately as secondary effects.

2.4  FundaMental equatIons oF FluId dynaMICs

2.4.1  description and Physical Basis

In order to develop the equations which describe a flow, hydrodynamicists assumed that fluids 
are subject to certain fundamental laws of physics. The pertinent laws are

 1. Conservation of matter (conservation of mass)
 2. Conservation of energy
 3. Conservation of momentum

These principles were initially developed for the case of a solid body, and it is worth expanding 
them a little before proceeding.
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2.4.1.1   Conservation of Matter

The law of conservation of matter states that matter cannot be created or destroyed, though it 
may be changed from one form to another (e.g., by a chemical or nuclear process). This study of 
hydraulics excludes chemical processes, etc., so conservation of matter can be simplified to the 
principle of conservation of mass.

2.4.1.2   Conservation of Energy and the Concept of “Work”

The law of conservation of energy states that energy cannot be created or destroyed, though it 
may be transformed from one type to another. Work and energy are related terms. Work done is 
the product of a force, multiplied by a distance through which the force has acted. For example, 
if you owned a rather unreliable car, which broke down, you might ask some friends for help to 
push the car to a safe parking place in which case your friends would exert force F(N) to move 
the car distance L(m) and the work done equals F	×	L (N m).

Energy is the capacity or potential for doing work and therefore has the same dimensions (N m) 
as work done. Energy can exist in a number of forms but for our immediate purposes we are inter-
ested in only three, which can be applied to an incompressible liquid.

 1. Potential energy is related to the height (or elevation) above some datum level. If the 
mass of our unreliable car is M kg and it is situated at the top of a hill which is z m high, 
then the potential energy is Mgz (N m).

 2. Kinetic energy is related to motion and here takes the form Mu2/2 where u is the velocity. 
If we give our imaginary car on the hill a push in the right direction, it will start to roll 
down the hill. It will gain kinetic energy (as it accelerates), simultaneously losing poten-
tial energy (due to loss of height).

 3. For a liquid there is a third form of energy related to pressure, p (N/m2). Consider a 
vertical pipe (area A, m2) full of water flowing at a constant velocity u down the pipe. 
The kinetic energy cannot change as u = constant, but potential energy is reducing with 
height and this reduction must appear in some other form. In practice, we find that as 
z reduces, p increases and so pressure represents a form of energy in flowing fluids.

We will see later in this chapter that pressure and energy can be related due to the “flow work” 
done by the pressure.

It was stated earlier that energy cannot be destroyed or “lost”. Engineers sometimes refer 
(loosely) to “energy losses”, e.g., due to friction. In reality, the energy which is “lost” from the 
fluid has been transformed into low-level heat transfer, so no “loss” has actually occurred.

2.4.1.3   Conservation of Momentum

The law of conservation of momentum states that a body in motion cannot gain or lose momen-
tum unless some external force is applied. The classical statement of this law is Newton’s  second 
law of motion, i.e., if momentum = mass × velocity, then

 Force rate of change of momentum= .
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Applying these laws to a solid body is relatively straightforward, since the body will be of 
measurable size and mass. For example, if the mass of a body is known, the force required to 
produce a given acceleration is easily calculated. However, for the case of a fluid the attempt 
to apply these laws presents a problem. A flowing fluid is a continuum – that is to say, it is not 
possible to subdivide the flow into separate small masses. How, then, can the three basic laws be 
applied? How can a suitable mass of fluid be identified so that we can investigate its momentum 
or its energy? The answer lies in the use of “control volumes”.

2.4.2  Control volumes

A control volume is a purely imaginary region within a body of flowing fluid. The region is usu-
ally (though not always) at a fixed location and of fixed size. Inside the region, all of the dynamic 
forces cancel each other. Attention may therefore be focused on the forces acting externally 
on the control volume. The control volume may be of any shape. Therefore, a shape may be 
selected which is most convenient for any particular application. In the work which follows, 
a short streamtube (Figure 2.1b) will be used as a control volume. This may be visualised as a 
short transparent pipe or tube. Fluid enters through one end of the tube and leaves through the 
other. Any forces act externally along the boundaries of the control volume.

2.5  aPPlICatIon oF tHe ConservatIon 
laWs to FluId FloWs

2.5.1  Continuity equation (Principle 
of Conservation of Mass)

During any time interval δt, the principle of conservation of mass implies that for any control 
volume the mass flow entering minus the mass flow leaving equals the change of mass within 
the control volume.

If the flow is steady, then the mass must be entering (or leaving) the volume at a constant 
rate. If we further restrict our attention to incompressible flow, then the mass of fluid within 
the control volume must remain fixed. In other words, the change of mass within the control 
volume is zero. Therefore, during time δt,

 Mass flow entering mass flow leaving=

Since the flow is incompressible, the density of the fluid is constant throughout the fluid 
 continuum. Mass flow entering may be calculated by taking the product

 ( , ) (density of fluid  volume of fluid entering per secondρ × ,, )Q

Mass flow is therefore represented by the product ρQ, hence

 ρ ρQ Q( ) ( )entering leaving=
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But since flow is incompressible, the density is constant, so

 Q Q( ) ( )entering  leaving=  (2.1a)

This is the “continuity equation” for steady incompressible flow.
The dimensions of Q are L3T−1 (SI units m3/s). This can be expressed alternatively as L2LT−1, 

which is the product of an area and a velocity. Suppose that measurements are taken of the 
velocity of flow across the entry to the control volume and that the velocity is constant at u1 m/s. 
Then, if the cross-sectional area of the streamtube at entry is A1,

 Q( )entering 1 1= u A

Note that the area must be that of a plane perpendicular to the direction of flow. Similar 
remarks apply to the flow leaving the volume. Thus, if the velocity of flow leaving the volume is 
u2 and the area of the streamtube at exit is A2, then

 Q( )leaving 2 2= u A

Therefore, the continuity equation may also be written as

 u A u A1 1 2 2=  (2.1b)

2.5.2  energy equation (Principle 
of Conservation of energy)

This may be simply derived by considering the forms of energy available to the fluid. Figure 2.2 
shows the control volume used to develop the equation. The combination of a flow and a pres-
sure implies that work is done. Thus, if pressure p acts on area A, the corresponding force is pA. 

z1

p1A1

L

p2A2

z2

FIgure 2.2 Streamtube used to derive the energy equation.
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If the fluid is flowing, then in travelling through a length L the work done equals the product 
of force and distance, i.e.,

 " "flow work  done = pAL

For the control volume under consideration, the fluid entering the system travels through dis-
tance L during time interval δt. The flow work done during this time is p1A1L. The mass, m, 
entering the system is ρ1A1L during δt. Therefore, the kinetic energy (KE) entering the system is

 
KE = =1

2
1
2

2
1 1 1

2mu A Luρ

The potential energy of a body is mgz, where z is the height of the body above some arbitrary 
datum. The potential energy of the mass ρ1A1L entering during δt is ρ1A1Lgz. The total energy 
entering is the sum of the flow work done and the potential and kinetic energies, i.e.,

 
p A L A Lu A L z1 1 1 1 1

2
1 1 1

1
2

+ +ρ ρ g

It is more convenient to consider the energy per unit weight of fluid. Note that the weight of 
fluid entering the system is ρ1gA1L, so the energy per unit weight of fluid is
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Similarly, at the exit the total energy per unit weight of fluid leaving the system is

 

p
g

u
g

z2

2

2
2

2
2ρ

+ +

If, during the passage from entry to exit, no energy is supplied to the fluid or extracted from 
the fluid, then clearly

 Energy entering energy leaving=

If the flow is incompressible, then ρ1 = ρ2 = ρ, hence

 

p
g

u
g

z
p
g

u
g

z H1 1
2

1
2 2

2

2
2 2ρ ρ

+ + = + + = = constant  (2.2)

This is the “Bernoulli equation” named after Daniel Bernoulli (1700–1782), who published one 
of the first books on fluid flow in 1738.
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Several points should be made about this equation.

 1. The statement that “no energy is extracted from the fluid” implies that the fluid is fric-
tionless. If this were not so, frictional forces would transform some of the energy into 
heat, then

 Energy entering at 1 energy leaving at 2>

  i.e., there would be a “loss” of energy between 1 and 2.
 2. The reader should check the dimensions of each separate component of the Bernoulli 

equation:
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 z ≡ L m( )

  Thus, all the constituent parts of the equation have units of metres. For this reason, 
each term may be regarded as a “head”: p/ρg = pressure head, u2/2g = kinetic, or veloc-
ity head, z = potential or elevation head.

 3. The equation was developed for a streamtube of finite area A. However, A must 
be “small”, otherwise the height (z) of a streamline at the bottom of the tube is sig-
nificantly less than that of a streamline at the top of the tube. Strictly, therefore, 
Bernoulli’s equation applies along a single streamline. However, if the diameter of 
the appropriate control volume is small compared with its length, engineers apply 
Bernoulli’s equation between two points without specific reference to a particular 
streamline.

It is possible to derive Bernoulli’s equation in a mathematically rigorous fashion, as is now 
demonstrated.

Figure 2.3 shows a small (elemental) streamtube of cylindrical section. Taking this to be a 
control volume at an instant in time, the forces acting in the direction of flow along the stream-
tube are the following:

Pressure	forces

 Upstream end +pA
 Downstream end −(p + δp)A
 Circumference zero (pressure forces p′ cancel)

Weight	force

 − = −mg A Lgcos cosθ ρ δ θ
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Newton’s second law (force = mass × acceleration) may be used to relate these forces:

 pA p p A A Lg A L u t− + − =( ) ( )δ ρ δ θ ρ δcos d /d

Setting δL cos θ = δz and cancelling terms,

 − − =A p Ag z A L u tδ ρ δ ρ δ ( )d /d

Dividing by ρA δL, and in the limit

 

1
0

ρ
dp
dL

du
dt

g
dz
dL

+ + =

For steady flow, velocity (u) only varies with distance (L). Therefore,

 

du
dt

dL
dt

du
dL

u
du
dL

= =

Hence, substituting for du/dt,

 

1
0

ρ
dp
dL

u
du
dL

g
dz
dL

+ + =  (2.3)

Equation 2.3 is known as Euler’s equation (in honour of the Swiss mathematician Leonhard 
Euler [1707–1783]).

p, A
mg

p΄

p΄

δL
p + δp, A

z

θ

FIgure 2.3 An elemental cylindrical streamtube.
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For incompressible fluids, Euler’s equation may be integrated to yield

 

p u
gz

ρ
+ + =

2

2
constant

or, dividing by g,

 

p
g

u
g

z
ρ

+ + =
2

2
constant

This is, of course, Bernoulli’s equation (cf. (2.2)).

2.5.3  Momentum equation (Principle 
of Conservation of Momentum)

Again, consider the streamtube shown in Figure 2.2 and apply Newton’s second law in the form 
force = rate of change of momentum (i.e., F = d(mu)/dt)). In a time interval δt,

 Momentum entering 1 1= ρδ δQ tu

 Momentum leaving 2 2= ρδ δQ tu

and δQ1 = δQ2 = δQ by the continuity principle. Hence, the force required to produce this 
change of momentum is

 
δ ρδ δ

δ
ρδF

t u u
t

u u= − = −Q
Q

( )
( )2 1

2 1

For a real system there may be a number of changes in direction of the flow and the correspond-
ing forces. It is therefore usual to subdivide the problem into its separate x-, y- and z compo-
nents. Calculate each component separately, then resolve (or “merge”) them mathematically to 
obtain the final solution. Hence, for the x direction,

 δ ρδF u ux x x= −Q( )2 1

and similarly for δFy and δFz.
So far in this chapter we have used u to represent the velocity of the fluid, on the assumption 

that the velocity is on a streamline or is uniform across a small streamtube. In practice we often 
know the discharge, Q, rather than the velocity of flow. A velocity is therefore derived from Q and 
the cross-sectional area of flow, A, hence V	=	Q/A, where V is known as the mean velocity (this 
is discussed further in the next section). The x-momentum equation can therefore be written as

 F V Vx x x= − 2 1ρQ( )  (2.4)

(similarly for Fy and Fz) provided that the velocity (V) is uniform across the area A.
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Equation 2.4 is the momentum equation for steady flow for a region of uniform velocity. 
The momentum force is composed of the sum of all external forces acting on the streamtube 
(control volume) and may include pressure forces (FP) and reaction forces (FR), i.e.,

 F F Fx = + P RΣ( )  (2.5)

This is explained more fully in Section 2.7, where the momentum equation is used to find the 
forces acting on pipe bends, etc.

2.5.4  energy and Momentum Coefficients

Up to this point we have not considered the possible effects of variation of velocity, u, over 
a cross section through a flow. We have therefore used u (velocity at a streamline or across a 
stream tube) or V (the mean velocity) without considering why. In practice the velocity u will 
vary from one point to another. There are a number of methods for investigating the details of 
a particular flow, of which we will consider two.

Method	A: We could install a device to enable us to measure the discharge, QA. Then knowing 
the cross-sectional area, A, we can find the mean velocity V(= Q/A). Hence, we can calculate a 
value for the kinetic energy,

 
KEA = =ρ ρQV AV2 3

2 2
 (2.6a)

Similarly we can calculate a value for momentum,

 MA = =ρ ρQV AV 2  (2.6b)

Method	B: We could (by an appropriate means) subdivide the cross section into small subareas 
(a1, a2, a3 …). We then use a velocity meter to measure the velocity of flow for each subarea 
(u1, u2, u3, …). We can then calculate the discharge by adding together the discharges for all of 
the subareas:

 QB = + + …( )u a u a u a1 1 2 2 3 3

We can also find the kinetic energy

 
KEB = + + …( )1

2
1
3

1 2
3

2 3
3

3ρ u a u a u a  (2.7a)

and the momentum

 
MB = + + …( )ρ u a u a u a1

2
1 2

2
2 3

2
3  (2.7b)

The two methods for finding Q will usually give similar answers, within the limits of experi-
mental accuracy. However, the estimates of kinetic energy and momentum using method B are 
always higher than estimates using method A. The ratio KEB/KEA is known as the energy coef-
ficient (symbol α) and the ratio MB/MA is the momentum coefficient (symbol β).
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The Bernoulli energy equation may then be rewritten in terms of mean velocity V as

 

p
g

V
g

z
p
g

V
g

z1 1 1
2

1
2 2 2

2

2
2 2ρ

α
ρ

α+ + = + + = constant  (2.8a)

and the momentum equation as

 F V Vx x x= −ρ βQ ( )2 1  (2.9)

The values of α and β must be derived from the velocity distributions across a region, as outlined 
earlier. They always exceed unity, but usually by only a small margin, so they are frequently 
omitted. However, this is not always the case, and they should therefore not be forgotten.

Example calculations for these coefficients for open-channel flow are given in Chapter 5. In 
the case of turbulent pipe flow, α = 1.06 and β = 1.02, and both may safely be ignored.

2.6  aPPlICatIon oF tHe energy equatIon

Bernoulli’s equation may be applied to any continuous flow system. The simplest system might 
be a single pipeline with a frictionless fluid discharging through it.

For such a system, (2.2) may be rewritten as
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g
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2
2 2ρ ρ

+ + = + + = constant

where subscripts 1 and 2 refer to two points along any streamline. Hence, Bernoulli’s energy 
equation, in conjunction with the continuity equation, may be used to determine the variation 
of pressure and velocity along any streamline.

Example 2.1: Application of Bernoulli’s Equation

For the frictionless syphon shown in Figure 2.4, determine the discharge and the pressure 
heads at A and B, given that the pipe diameter is 200 mm and the nozzle exit diameter 
is 150 mm.

Solution

To find the discharge, first apply Bernoulli’s equation along the streamline between 1 and 2:
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2 2ρ ρ

+ + = + +

At both points 1 and 2, the pressure is atmospheric and is taken as zero gauge pressure, 
therefore p1 = p2 = O. Also at point 1 (on the water surface), velocity V1 is negligible, hence

 
z z

V
g

1 2
2
2

2
− =
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From Figure 2.4,

 z z1 2 122 15 137 m− = + =. . .0

Hence,

 

V
g
2
2

2
1 37= .

or

 V2 5 18 m/s= .

Next apply the continuity equation to find the discharge:

 

Q =

= × ×





VA

5 18
0 15
4

2

.
.π

Hence,

 Q = 0 0. 92 m /s3

To find the pressure head at A, again apply Bernoulli’s equation along the streamline 
from 1 to A.
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2

2 2ρ ρ
+ + = + +A A

A
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2.44 m

1.22 m

0.15 mB
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FIgure 2.4 Syphon arrangement for Example 2.1.
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As stated earlier, p1 = 0 and V1 = 0, thus
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and

 V AA A = Q
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Hence,
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g
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ρ
= − − = −2 44 0 44 2 88. . .

The pressure head at B is found similarly, again taking p1 and V1 as zero
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 ( ) .z z1 B 122 m− =

 V VB A 2 93 m/s= = .

 

p
g
B m

ρ
= − =1 22 0 44 0 78. . .

It may be observed that the pressure head at A is negative. This is because atmospheric 
pressure was taken as zero (i.e., pressures are gauge pressures) and therefore the pressure 
head at A is still positive in terms of absolute pressure, because atmospheric pressure is 
about 10.1 m head of water.
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2.6.1  Modifications to Bernoulli’s equation

In practice, the total energy of a streamline does not remain constant. Energy is “lost” through 
friction, and external energy may be added by means of a pump or extracted by a turbine. These 
energy gains and losses are explained in later chapters, but it is worth introducing them into 
Bernoulli’s equation at this point so that it can be extended to cover a wider range of practical 
cases. Consider a streamline between two points 1 and 2. If the energy head lost through fric-
tion is denoted by hf and the external energy head added (say by a pump) is E, then Bernoulli’s 
equation may be rewritten as

 H E H h1 2+ = + f

or
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g

z E
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z h1 1
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2 2ρ ρ

+ + + = + + + f  (2.8b)

There are other forms of energy (e.g., thermal and turbulent energy) which have not been 
considered here. However, Equations 2.8a and 2.8b can be used to deal with many practical 
problems.

Example 2.2: Application of Bernoulli’s Equation with Energy Gains and Losses

A pump delivers water from a lower to a higher reservoir. The difference in eleva-
tion between the reservoirs is 10 m. The pump provides an energy head of 11 m and 
the frictional head losses are 0.7 m. If the pipe diameter is 300 mm, calculate the 
discharge.

Solution

Apply the modified Bernoulli’s equation from the lower to the higher reservoir:

 H H1 211 7+ = + 0.

or
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Taking p1 = p2 = 0 and V1 = 0,
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Applying the continuity equation

 
Q = ×





=V2

2
30 3

4
0 171

π .
. m /s

2.7  aPPlICatIon oF tHe MoMentuM equatIon

2.7.1  range of applications

The momentum equation may be used directly to evaluate the force causing a change of 
momentum in a fluid. Such applications include determining forces on pipe bends and junc-
tions,  nozzles and hydraulic machines. Examples of some of these are given in this section.

In addition, the momentum equation is used to solve problems in which energy losses occur 
that cannot be evaluated directly, or when the flow is unsteady. Examples of such problems 
include local head losses in pipes, the hydraulic jump and unsteady flow in pipes and channels. 
These applications are discussed in later chapters.

2.7.2  Forces exerted on Pipework

Whenever there is a change in geometry or direction, the fluid will exert a force on the pipe-
work. These forces may be considerable and must be resisted in order that the pipeline does not 
move. For underground pipes, the forces are normally resisted by thrust blocks which transfer 
the force to the surrounding earth. For exposed pipework, the forces are transmitted by sup-
ports at the pipe joints to the nearest structural member (e.g., a wall or beam). The calculation 
of these forces is now illustrated by three examples.

Example 2.3: Force Exerted by a Firehose

Calculate the force required to hold a firehose for a discharge of 5 L/s (Litres/s) if the 
nozzle has an inlet diameter of 75 mm and an outlet diameter of 25 mm.
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Solution

The nozzle, surrounded by a suitable control volume, is shown in Figure 2.5. The forces 
acting in the x-direction on the control volume are the pressure forces (FP) and the reac-
tion force (FR) of the nozzle on the fluid (here shown in the negative x-direction.) The sum 
of these must equal the momentum force (FM). Hence, (2.4) and (2.5) apply, i.e.,

 F F FM P R= +

(where all terms are taken positive with x) and

 F V VM 2 1= −ρQ( )

V1 and V2 may be found using the continuity equation (where 5 L/s = 0.005 m3/s):

 

V A1 1

2
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4

= = ×





=

Q/
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.
.

. ( )

π

and

 

V A2 2

2
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0 025
4
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=

Q/
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.
.

. ( )

π

y

x

V1, p1 V2 , p0

FR

p0

p0Control volume

FIgure 2.5 Forces on a nozzle.
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Remember that in dealing with pressure forces we are taking the forces which are just 
outside of the control volume acting on what is inside the control volume. Listing the 
pressure forces we have:

 (a) The pressure p1 acting over the inlet area A1 in the positive x direction (this is the 
pressure at the end of the firehose, at the entry to the nozzle).

 (b) The pressure p0 acting over the outlet area A2 in the negative x direction.
 (c) Pressure p0 also acts over the curved external surface of the nozzle, which 

results in components of force parallel to the nozzle centreline (x-direction on 
Figure 2.5), and perpendicular to the nozzle centreline. The x-direction com-
ponent equals p0 multiplied by the projected area (A1 − A2). The perpendicular 
component acts equally all around the nozzle and is therefore in equilibrium.

The pressure forces are therefore

 F p A p A p A AP 1 1 2 1 2= − − −0 0( )

The pressure p1 may be found using Bernoulli’s equation:
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The external pressure p0, will almost always, as here, be the atmospheric pressure. This 
will be acting over the whole of the external surface of the nozzle. From Chapter 1, it was 
pointed out that we usually use gauge pressures and that atmospheric pressure is therefore 
taken as being zero. So we take p0 = 0, both in the equation for Fp and in the Bernoulli 
equation, which greatly simplifies the problem. Therefore,

 

p
g

V V
g

1 2
2

1
2

2ρ
= −

or

 

p V V1 2
2

1
22 000 0= −( ) = −

=

( ) ( )( . . )

.

ρ/ 1 /2 1 19 113

5128 kN/m

2 2

2

Hence,

 

FP
3 25128 1 75 /4

226 kN

= × × ×

=

. .

.

0 0 0

0

π



46 Principles and Basic Applications

The momentum force is

 

FM
31 5 1 19 113

453 kN

= × −

=

0 0 00 0

0 0

. ( . . )

.

Hence, the reaction force is

 

F F FR M p

453  kN

=  kN

= −

= −

−

0 0 0 226

0 181

. .

.

FR is the force exerted on the fluid by the nozzle. The fireman must, of course, provide a 
force of equal magnitude but opposite direction to FR.

Example 2.4: Force on a Pipe Bend

Calculate the magnitude and direction of the force exerted by the pipe bend shown in 
Figure 2.6 if the diameter is 600 mm, the discharge is 0.3 m3/s and the upstream pressure 
head is 30 m.

Control volume

V1, p1

V2, p2

FR

θ

x

y

FIgure 2.6 Forces on a pipe bend.
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Solution

The principles used to solve this problem are similar to the previous example. However, 
here the force on the pipe is due to the change in the direction of flow. We are therefore 
going to split the problem into its separate x and y components as follows:

 F F Fx x xM P R= +

 F F Fy y yM P R= +

and

 F V Vx x xM 2 1= −ρQ( )

 F V Vy y yM 2 1= −ρQ( )

As the pipe is of constant diameter, and V	=	Q/A

 

V V2 1
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4
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= = ×





=

.
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.

π

1 6 m/s

Neglecting the small energy loss around the pipe bend,

 p p g2 1
23  294 3 kN/m= = =0 ρ .

Pressure	forces

From the control volume shown, the pressure at point 1 produces a force in the posi-
tive x-direction. There is no other pressure in the x-direction, so the component of 
force in the negative x-direction is zero. Similarly in the y-direction pressure at point 
2 produces a force in the negative y-direction only, so the positive y component is 
zero, thus,

 

F p AxP 1 1
2294 3 6 /4

83 21 kN

= − = × ×

=

0 0. .

.

π

and

 F p AyP 2 2 83 21 kN= − = −0 .
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Momentum	forces

Notice that the fluid enters the bend with initial x-direction velocity V1. After negotiating 
the bend the fluid leaves flowing in the y-direction so that the final x-direction velocity 
(and momentum) is zero. Therefore,
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And for the y direction, the initial velocity is zero, so
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Reaction	forces
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Hence, we can now use the x and y components of force to calculate the resultant force:

 

F F Fx yR R R
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= +
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2 2

.

And find its angle to the x axis:
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Example 2.5: Force on a T-Junction

Calculate the magnitude and direction of the force exerted by the T-junction shown in 
Figure 2.7 if the discharges are Q1 = 0.3 m3/s, Q2 = 0.15 m3/s, Q3 = 0.15 m3/s, the diameters 
are D1 = 450 mm, D2 = 300 mm, D3 = 200 mm and the upstream pressure p1 = 500 kN/m2.

Solution

In this case, there are changes of direction and pressure and velocity. First find the three 
velocities by continuity, then apply Bernoulli’s equation to find the pressures p2 and p3. 
Then apply the momentum equation.

Velocities

 V A1 1 1/ 1886 m/s= =Q .

 V A2 2 2/ 2 122 m/s= =Q .

 V A3 3 3/ 4 775 m/s= =Q .

Pressures
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FIgure 2.7 Forces on a T-junction.
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Hence,

 
p p V V2 1 1

2
2
2 22 499 53= + − =( )ρ . kN/m

 
p p V V3 1 1

2
3
2 22 490 38= + −( ) =ρ . kN/m

The treatment of the forces follows exactly the same principles as for Example 2.4. 
However, because this is a T-junction, there are two y-direction pressure forces (negative 
direction at 2, positive at 3) and similarly positive velocity at 2 and negative at 3. We can 
now calculate the pressure and momentum forces and then find the resultant.

Pressure	forces

 F p AxP 1 1 79 52 kN= − =0 .

 F p A p AyP 3 3 2 2 19 96 kN= − = − .

Momentum	forces

 F VxM 1 1 566 kN= − = −0 0ρQ .

 F V VyM 2 2 3 3 4  kN= + − − = −ρ ρQ Q( ) .0 0 0

Reaction	forces

 F F Fx x xR M P 8 9 kN= − = − 0 0.

 F F Fy y yR M P 19 5  kN= − = + . 0

Hence,

 
F F Fx yR R R kN= + =2 2 82 43.
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2.8  veloCIty and dIsCHarge MeasureMent

2.8.1  velocity Measurement

The pitot tube, shown diagrammatically in Figure 2.8a, is used to measure velocity. At the nose 
of the pitot tube, the fluid is brought to rest and the height of the fluid in the pitot tube  therefore 
corresponds to p/ρg	+	u2/2g. This is known as the stagnation pressure. The pressure head (p/ρg) 
is measured separately by a second tube, and hence
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g

u
g
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g

h
ρ ρ

+ = +
2

2

or

 
u gh= 2  (2.10)

The two pressure heads are normally measured by a single integrated instrument called the 
pitot-static tube, as shown in Figure 2.8b. This instrument, when connected to a suitable 
manometer, may be used to measure point velocities in pipes, channels and wind tunnels. The 
value of h is derived from the manometer reading as shown in Chapter 1.

2.8.2  discharge Measurement in Pipelines

The venturi meter, shown in Figure 2.9a, is an instrument which may be used to measure discharge 
in pipelines. It essentially consists of a narrowed section tapering out to the pipe diameter at each 
end. In the throat section, the velocity is increased, and consequently the pressure is decreased. 
By measuring the difference in pressure, an estimate of discharge may be made as follows.

Consider a streamline from the upstream position (1) to the throat position (2). Then
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FIgure 2.8 Velocity measurement. (a) Pitot tube and (b) pitot static tube.
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(assuming no energy losses and using mean velocities), or
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The pressure head difference is indicated by the manometer reading, Rp, hence
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where ρg is the density of the gauge fluid. Also, by continuity,

 Q = =V A V A1 1 2 2

Substituting for V2 in terms of V1 yields

 V A A gh1
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1 2
2 1 2[( ) ]/ *− =
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Solving for V1,
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FIgure 2.9 Discharge measurement. (a) Venturi meter and (b) orifice plate.
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Hence,
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Taking m	=	D1/D2,
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The actual discharge will be slightly less than this due to energy losses, mainly in the diverging 
section. These energy losses are accounted for by introducing a coefficient of discharge, Cd, such 
that Qactual = CdQideal. Energy losses may be minimised by careful design as shown in British 
Standard BS EN ISO 5167-1 or the Water	Measurement	Manual (USBR, 1967). Venturi meters 
designed in accordance with these standards have Cd values in the range 0.97–0.99.

It is useful to note that the indicated head (Rp), and consequently the discharge equation, is 
independent of the inclination of the meter. You may care to prove this for yourself by deriving 
the expression for h* for an inclined venturi meter.

A second device (shown in Figure 2.9b) for measuring discharge in a pipeline is an orifice 
plate. Its function is similar to the venturi meter, in that a region of low pressure is cre-
ated by a local constriction. The same discharge equation therefore applies. However, the 
major difference between the devices lies in the fact that, downstream of the orifice plate, 
the flow area expands instantaneously while the fluid is unable to expand at the same rate. 
This creates a “separation zone” of turbulent eddies in which large energy losses occur. 
Consequently, the coefficient of discharge is considerably lower than that for the venturi 
meter (typically about 0.65). The advantages of the orifice plate are its lower cost and its 
compactness. So long as the increased energy losses are acceptable, it may be used instead 
of a venturi meter.

2.8.3  discharge through a small orifice

Figure 2.10 shows a jet of water issuing from a large tank through a small orifice. At a small 
distance from the tank, the streamlines are straight and parallel, and the pressure p0 is atmo-
spheric. Application of Bernoulli’s equation between this point and the water surface in the 
tank yields
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This result is usually attributed to Torricelli, who demonstrated its validity experimentally in 
1643. The discharge may be calculated by applying the continuity equation

 Q = uA

or

 
Q Aideal = 2gh  (2.12)

where A is the area of the jet.
The area of the jet, however, is smaller than that of the orifice due to the convergence of the 

streamlines, as is shown in Figure 2.10. The contraction of the jet is called the vena contracta. 
Experiments have shown that the jet area (A) and orifice area (A0) are related by

 A C A= c 0

where Cc is the coefficient of contraction and is normally in the range 0.61–0.66.
In addition, energy losses are incurred at the orifice, and therefore a second coefficient 

Cv, the velocity coefficient, is introduced to account for these. Cv is normally in the range 
0.97–0.99. Hence, the true discharge may be written as

 
Qactual v c= C C A gh0 2

or

 
Q Cactual d= A gh0 2  (2.13)

where Cd is the overall coefficient of discharge.

p0, u

h

FIgure 2.10 Discharge through a small orifice.
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2.8.4  discharge through a large orifice

If the orifice is large, then the small orifice equation will no longer be accurate. This is a result 
of the significant variation of h (and therefore u) across the orifice. In such cases, it is necessary 
to find the discharge as follows (see Figure 2.11).

For any elemental strip of thickness δy, across a rectangular orifice,
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If h1 tends to zero, the upper edge of the orifice no longer influences the flow. This corresponds 
to a thin plate weir. Consequently, (2.14) forms the basis for a discharge formula of thin plate 
weirs. This is developed more fully in Chapter 13.

2.9  PotentIal FloWs

The use of control volumes enables us to evaluate certain overall changes in the properties 
of a flow without having to consider the minute details. However, useful additional informa-
tion may be found by investigating the behaviour of streamlines. There are certain conditions 

h2

h1

b

y

δy

FIgure 2.11 Discharge through a large orifice.
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which have to be fulfilled for the correct application of streamlines to a flow, namely that 
the fluid is inviscid and incompressible and the flow is irrotational. Streamlines are always 
tangential to the direction of flow, so no flow ever crosses a streamline. If the pattern of 
vectors which depict the flow of a connected sequence of fluid particles is known, then the 
corresponding streamline can be drawn. If this can be repeated for the whole of a flow, then 
a corresponding series of streamlines can be drawn which give a graphical representation (or 
“map”) of the flow. There are mathematical conditions which govern the validity of such a 
map. For certain flow patterns involving real fluids, these conditions are not fulfilled. It has 
already been stated that any solid boundary (e.g., a pipe wall) which encloses a flow may be 
regarded as a surface covered by a continuous series of adjacent streamlines (i.e., a “stream 
surface” or streamtube).

2.9.1  Properties of streamlines

2.9.1.1   The Stream Function

Let two streamlines, AC and BD (Figure 2.12), enclose a two-dimensional flow. The stream-
lines are not necessarily parallel or straight. Since no flow can cross a streamline, the discharge 
crossing boundary AB must equal the discharge crossing CD. Another way of looking at this 
is to state that if point A is arbitrarily taken as zero, then there is a certain increment of dis-
charge, δQ, between A and B. If point C is taken as zero, then the increment of discharge 
between C and D must be the same as that between A and B. Streamline AC may therefore 
(arbitrarily) be treated as a “zero streamline”. Streamline BD may then be assigned a numeri-
cal value corresponding to the increment in discharge between AC and BD. This number is 
called the stream function, Ψ. The concept of a stream function may be expressed algebra-
ically as follows.

db

A
C

Streamline

Streamline

x

B

D

V

dL

y

FIgure 2.12 Two-dimensional flow.
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Let the velocity of flow at any point be V (Figure 2.12). Then for unit depth of flow (depth is 
assumed to lie in the z-direction in Cartesian coordinates) the increment of discharge between 
streamline 1 (AC) and streamline 2 (BD) is

 

Ψ Ψ= = = =∫ ∫ ∫
1

2

d d d constant
A

B

C

D

V b V b

 

(2.15)

For convenience, in algebraic manipulations it is usual to use a sign convention as well as a 
magnitude to define Ψ. The convention adopted here is that if an observer faces downstream 
(i.e., with the flow moving away from the observer in the direction of sight), Ψ will increase 
positively to the left (see Figure 2.13). Since Ψ is an arbitrary function of position, the position 
of the reference or zero streamline is also arbitrary, so it is perfectly possible to have positive 
and negative values of Ψ. The negative sign does not have any special significance (it does not 
indicate the existence of a “negative flow”, whatever that might be) and should be interpreted 
purely graphically.

2.9.1.2   The Velocity Potential Function

Another function can also be used to characterise a flow. This is known as the “potential func-
tion” or “velocity potential”, which is defined by the equation dϕ/dL	=	V. Hence,

 
φ = ∫V Ld  (2.16)

Conventionally, ϕ increases in the direction of flow. Lines of constant ϕ are known as “equipoten-
tial” lines, and are orthogonal to streamlines. A diagram which represents a flow in terms of its 

δψ

δψ

δψ
δxv = – ——

δψ
δyu = + ——

v

V

u

+ψ, –x

+ψ, +y

FIgure 2.13 Components of flow in Cartesian coordinates.
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lines of Ψ and ϕ is a “flow net”. An accelerating flow (V increasing) is indicated by  convergence 
of the streamlines and equipotential lines, whereas a decelerating flow will be represented by 
diverging streamlines and equipotential lines.

The stream function has a physical meaning, since it is related to the discharge of the flow-
ing fluid. Velocity potential, however, cannot be measured, so it must be regarded as a purely 
mathematical concept.

2.9.2  Conditions for the validity of a Flow net

An important condition for the validity of a flow net is that the flow is irrotational. To under-
stand what this means look at Figure 2.14. Figure 2.14a shows a small element of fluid which 
is embedded in a flow. At a particular instant of time the element is rectangular in shape. As 
long as the element does not change shape or its orientation to the x and y axes, its motion is 
irrotational. Figure 2.14b shows what has happened after a short time interval if the top of the 
element is travelling slightly faster than the bottom. The effect is to cause the left and right 
sides to rotate clockwise, so this is a rotational motion. Figure 2.14c shows what happens to the 
element after a short time interval from the initial instant, if the velocity distribution is such 
that the left- and right-hand sides have rotated clockwise, whilst the top and bottom sides have 
rotated anticlockwise. If the clockwise rotation is equal in magnitude to the anticlockwise rota-
tion, then the rotations are assumed to cancel, and the motion is then irrotational.

We now express this concept in mathematical terms. The velocity, V, is resolved into its x- and 
y-components, u and v, respectively. If there is a velocity u at ordinate y, and a velocity (u + δu) at 
(y + δy), then the net rotation of an element (Figure 2.14b) may be defined as δu/δy.

However, for an element with velocities u (at y), (u + δu) (at y + δy) and v (at x), v + δv 
(at x + δx), the net rotation is δu/δy − δv/δx (see Figure 2.14c). In an irrotational flow, and 
for the limit δx → 0, δy → 0,

 

∂
∂

− ∂
∂

=u
y

v
x

0  (2.17)

(a) (b) (c)

u

u + δu
θ

u

v
u + δu

v + δv

θ

θ

Net rotation δu
δy= θ = —— Net rotation = θ – θ δu

δy
δv
δx= —— – —— = 0

FIgure 2.14 Rotational and irrotational flows. (a) Initial position, (b) position after unit time and (c) alternative 
position after unit time.
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2.9.3  stream and Potential Functions 
in Cartesian Coordinates

It is often useful to express the two flow functions in terms of their Cartesian coordinates, 
especially for some of the algebraic manipulations which arise (Figure 2.13). The x-direction 
component of V is u, so from the definition of Ψ

 
u

y
= ∂

∂
Ψ

 (2.18)

Similarly for the y-component,

 
v

x
= − ∂

∂
Ψ

 (2.19)

By a similar process of reasoning,

 
u

x
v

y
= ∂

∂
= ∂

∂
φ φ

 (2.20)

We have encountered the concept of continuity (see Equations 2.1a and 2.1b). There is an alter-
native way of expressing the same idea. This is in the form of a partial differential equation. For 
an incompressible, two-dimensional flow, it takes the form

 

∂
∂

+ ∂
∂

=u
x

v
y

0

It is not necessary to know how to derive the equation at this stage, though the derivation is 
given in Section 14.3 if required. If we now make use of Equations 2.20, and substitute for u and 
v in the continuity equation, we obtain

 

∂
∂

+ ∂
∂

=
2

2

2

2 0
φ φ

x y

This is the Laplace equation which will be satisfied if the flow is irrotational.

2.10  soMe tyPICal FloW Patterns

2.10.1  uniform rectilinear Flow

For the case of a positive uniform flow parallel to the x-axis (Figure 2.15) (velocity = u = constant), 
u = dΨ/dy (from (2.18)). Therefore,

 
Ψ Ψ= = =∫ ∫d du y uy  (2.21)
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(if Ψ = 0 when y = 0, then the constant of integration = 0). Similarly, for a positive uniform flow 
parallel to the y-axis (from (2.19)),

 
Ψ = − = −∫ v x vxd  (2.22)

For a uniform flow with velocity V and parallel to neither axis,

 
V

b
= d

d
Ψ

Therefore,

 δ δΨ = V b

This may be expressed in terms of the x- and y-components:

 δ δ δ δΨ = = −V b u y v x

Therefore,

 Ψ = −uy vx  (2.23)

Example 2.6: Drawing Streamlines

Draw the streamlines for the following flows (up to a maximum Ψ value of 20):

 (a) A uniform flow of 5 m/s parallel to the x-axis positive direction
 (b) A uniform flow of 5 m/s parallel to the y-axis negative direction
 (c) The flow resulting from the combination of (a) and (b)

y

x

φ=ux

Velocity=u

ψ=uy

FIgure 2.15 Rectilinear flow.
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Solution

 (a) For a flow of 5 m/s, the stream function is

 Ψu 5= = +uy y

  The streamlines are drawn in Figure 2.16.
 (b) For a flow of 5 m/s in the negative y-direction, the stream function is

 Ψv 5= − − = +( )vx x

  These streamlines are also shown in Figure 2.16.
 (c) The combined stream function is

 Ψc 5 5= +y x

This pattern of streamlines is obtained by simple graphical addition. Thus, at the 
junction between the streamlines Ψu = 5 and Ψv = 5, the total is Ψc = 5 + 5 = +10, 
and so on. Points having the same total are then joined to form the streamline 
pattern for the total flow.

+20

+15
ψu=5y

ψc=+20

ψc=+15

ψc=+10

ψv=5x

+20+15+10+5

+10

+5

FIgure 2.16 Addition of two rectilinear flows (Example 2.6).
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2.10.2  radial Flows

Radial flows may be flows whose velocity vectors point away from the centre (“source”) or 
towards the centre (“sink”) (see Figure 2.17). For unit depth of flow, the discharge between 
any pair of radial lines, subtending angle θ at the centre, must be equal to the product of radial 
velocity and cross-sectional area between those lines, i.e.,

 δ δθQ = V rr

for a source. Therefore, from the definition of Ψ,

 Ψ = V rr θ  (2.24)

If the total discharge from the source is Qs = Vrr2π, then

 Ψ = Qs /2θ π  (2.25)

Since a sink is simply a “negative source”, the stream function for a sink is

 Ψ = −Qs /2θ π  (2.26)

Since potential lines are orthogonal to streamlines, it follows that an equipotential is in the form 
of a circle. From (2.24) and (2.25), Vr = Qs/2πr for a source. Therefore,
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 (2.27)

Potential lines

Velocity = Vr
θ

Streamlines

FIgure 2.17 Radial flow.



63Principles of Fluid Flow

2.10.3  Flows in a Curved Path

A streamline may be curved in any arbitrary fashion, depending on the pattern of forces to 
which it is being subjected. Therefore, from Newton’s second law, if a flow is following a curved 
path, then there must be some lateral force acting upon the fluid. An equation to express this 
is now developed.

Consider an element of fluid constrained to travel in a path which is curved, as shown in 

Figure 2.18. The mean velocity of the element is V V+





1
2

δ  and its mass is ρaδr. The radial 

force exerted by the element on its surrounds is given by
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For the element to be in equilibrium, the surrounding fluid must exert a reaction force on the ele-
ment. This reaction is the result of an increase in pressure with radius. Therefore, equating forces,
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So, if δV	≪	V and δr	≪	r, we obtain

 

δ
δ

ρp
r

V
r

=
2

 (2.28)

δr
r p

V

V + δV

Cross-sectional area a

p + δp

FIgure 2.18 Flow in a curved path.
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The Bernoulli equation may be applied along any streamline. If the streamlines are assumed to 
lie in a horizontal plane, then the potential energy is constant so the “z” term may be dropped, 
and the Bernoulli equation becomes

 

V
g

p
g

2

2
+ = =

ρ
constant H

The rate of change of head between one streamline and another is therefore
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If products of small quantities are ignored,
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Substituting for δp/δr from (2.28),
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or, in the limit (δr → 0),
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 (2.29)

2.10.4  vortices

Equation 2.29 is a completely general equation for any flow with circumferential streamlines. 
Two cases of such flows are of particular interest. They are both members of the same “family” 
of flows, which are given the general title of vortices. The two specific cases examined here are 
the free vortex and the forced vortex.

2.10.4.1   Forced Vortex

A forced vortex is a circular motion approximating to the pattern generated by the action of a 
mechanical rotor on a fluid. The rotor “forces” the fluid to rotate at uniform rotational speed 
ω rad/s, so V = ωr. Therefore,
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Substitution in (2.29) yields
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d
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 (2.30)

A forced vortex is a rotational flow, so it cannot be represented by a flow net.

2.10.4.2   Free Vortex

A free vortex approximates to naturally occurring circular flows (e.g., the circumferential com-
ponent of the flow down a drain hole or around a river bend) in which there is no external 
source of energy. It follows that there can be no difference of total head between one streamline 
and another, i.e.,
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This equation is satisfied by a flow such that
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A free vortex is irrotational. This may seem surprising; nevertheless, the absence of a mechani-
cal rotor does mean that for any fluid element at radius r the net rotation is zero, as defined 
by Figure 2.14. The element at the centre is an apparent exception to this (and is known as a 
“singular point”), but as the statement r → 0 also implies that V → ∞ it is of no practical sig-
nificance. The free vortex therefore conforms to the conditions for construction of a flow net. 
Since the flow is in a circumferential path, dψ/dr	=	V. Therefore,
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As the potential lines are orthogonal to the streamlines, a line of constant potential must be a 
radial line. From the definition of ϕ,

 
φ φ θ θ= = = =∫ ∫d dV L Vr K  (2.32)

(The reader may like to compare the ψ and ϕ functions for a source or sink with those for the 
free vortex.)

2.10.5  Circulation and vorticity

The study of vortices forms a useful starting point for developing the concepts of circulation and 
vorticity (Figure 2.19). Circulation is simply the product (velocity × length) around a  circuit. 
For the element of fluid shown in the figure, the circulation Γ (assuming positive flows are anti-
clockwise) is

 Γ = + + − = +( )( )V V r r Vr V r r Vδ δ θ θ δ θ δ θ

The flow is assumed to be in a circular arc, so velocities in the radial direction are zero.
The vorticity ζ is simply the intensity of circulation, i.e.,
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which should be compared with (2.29).

V+δV
r+δr

V

r

+

θ

FIgure 2.19 Definition diagram for vorticity and circulation.
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Example 2.7: Vortex Flow

A cylinder of diameter 350 mm is filled with water and is rotated at 130 rad/s. Assuming 
that there is zero gauge pressure on the centreline at the top of the cylinder, estimate

 (a) The pressure on the side wall of the cylinder
 (b) The loading on the upper end plate due to the pressure

Solution

 (a) As the cylinder is rotated mechanically, the flow induced in the fluid will be a 
forced vortex. Equation 2.30 is therefore appropriate:
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  Given that pressure is zero at the centre, and knowing that velocity is also zero 
(ωr → 0 when r → 0), the constant C must be zero.

Therefore, at r = 0.175 m,
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  Therefore,
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 (b) At any radius r within the cylinder,
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Note that hydrostatic forces have been ignored in this example, since they would be small 
compared with the forces due to the vortex.

2.10.6  Combinations of Flow Patterns

The real value and power of potential flow methods can only be appreciated when the various 
individual flow patterns are combined (or superposed). A large number of combined patterns 
have been developed, closely approximating to real flows. Some idea of the wide range of pat-
terns available may be obtained by consulting Milne-Thompson (1968). There is space here 
only for a brief introduction.

It is possible to combine flows graphically or algebraically. An example of the first method 
has already been presented (Example 2.6) and another follows. For the algebraic approach it is 
sometimes best to apply polar, rather than Cartesian, coordinates.

Example 2.8: Streamlines

A linear flow, having a uniform negative velocity of 60 m/s parallel to the x-axis, is com-
bined with a source with a discharge of 160 m3/s. Draw the streamlines for the combined 
flow and locate the stagnation point.
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Solution

The stream function for the linear flow is −60y, and that for the source is +160θ/2π. The 
streamlines for the two flows are shown in Figure 2.20. The combined streamlines are 
obtained by using graphical addition, as outlined in Example 2.6.

A stagnation point (a point where the fluid comes to rest) occurs where the velocity due 
to the source is equal and opposite to the linear flow, i.e., where Vr = +60 m/s. So, using 
(2.24) and (2.25),

 
V rr

sθ θ
π

= =Q
2

Ψ

Hence Vr = Qs/2πr, and for the stagnation point 60 = 160/2πr, so r = 0.424 m. The veloci-
ties are equal and opposite only along the axis y = 0 (see Figure 2.20).
(Note: Heavy lines represent Ψc.)

The streamlines for the combined flow divide about the line Ψc = 0. This line can be 
treated as the external surface of a solid body, all the streamlines with a negative Ψc then 
represent the flow around such a shape.

–55
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FIgure 2.20 Streamline pattern – source, plus linear flow (Example 2.8).
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The graphical approach to flow nets is a useful introduction to the application of poten-
tial flows. For more complex combinations of flows, this method becomes rather cumbersome. 
There are corresponding mathematical solution methods (see Massey and Ward-Smith, 2000) 
for a range of flows. Furthermore, a mathematical mapping technique known as conformal trans-
formation (originally proposed by Nikolai Joukowski (1847–1921)) may be found in advanced 
mathematics texts. This makes it possible to take the geometrical pattern representing one flow 
and transform it into a different but related pattern. The application of this technique contrib-
uted significantly to the development of aerodynamics.

2.11  suMMary

This chapter has covered the first principles of fluid dynamics. A clear understanding of the 
conservation laws is an essential prerequisite to dealing with more complex problems. Much 
information about flow measurement in pipeflows may be found in the British Standard (BS EN 
ISO 5167-1). Massey and Ward-Smith (2000) cover potential flows in more detail.

ProBleMs For solutIon

2.1 For the pipeline shown in the below figure, estimate the velocity of flow V(=Q/A) at 
Section 1, and the pressure p1. The fluid is water, and the pressure head at entry is 2 m 
of water. Assume that there are no losses in the pipe itself. The only loss of energy is due 
to the dissipation of the kinetic energy at the exit (Section 2). Explain why this solution 
is physically impossible.

[24.4 m/s, −239 kN/m2]

Entry

4 m

200 mm square section 300 mm square section

2

10 m 5 m

1

2.2 A jet of water 50 mm in diameter is directed vertically upwards. The initial (datum) 
velocity of the jet is 14 m/s. Determine the jet velocity and diameter 2.5 m above datum. 
At what height above datum would the jet come to rest?

[12.1 m/s, 53.8 mm, 10 m]
2.3 Calculate the velocity (α) and momentum (β) coefficients for the case of laminar pipe flow 

if the velocity distribution is given by

 u K R rr = −( )2 2
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where
ur is the velocity at radius r
R is the pipe radius
K is a constant

(Hint. Figures 4.2 and 4.3a may be of assistance)
[α = 2, β = 4/3]

2.4 A reducing pipe bend is shown in the below figure. If the discharge is 500 L/s and the 
upstream pressure is 1000 kN/m2, find the magnitude and direction of the force on the 
bend.

[174.4 kN, 8.26°]

500 mm
diameter

200 mm diameter

45°

2.5 For the pipe junction shown in the below figure, estimate the magnitude and direction of 
the required resistance force to prevent movement of the junction for the following condi-
tions: p1 = 69 kN/m2, Q1 = 570 L/s and Q3 = 340 L/s.

[FR = 6.93 kN, θ = 25.1°]

θ

300 mm

45°

60°

450 mm

150 mm

FRQ3

Q2

Q1
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2.6 A duct of diameter 0.8 m carries gas (ρ = 1.3 kg/m3). At one point, the duct diameter 
reduces to 0.74 m. Starting from Bernoulli’s equation, estimate the velocity of flow in the 
reduced section, and the mass flow rate (=ρQ) through the duct if the pressure difference 
between a point upstream of the reduction and another point at the reduction is equiva-
lent to 30 mm of water.

[41.1 m/s, 23.0 kg/s]
2.7 A venturi meter is installed in a 300 mm diameter water main to measure the discharge as 

shown in Figure 2.9a. If the throat diameter is 200 mm, the manometer reading is 15 mm 
(using mercury as a gauge fluid (density 13.6 × 103 kg/m3)) and Cd = 0.98, what is the 
discharge?

[66.2 L/s]
2.8 Starting from first principles, derive the discharge equation for a 90° V-notch weir. (Hint. 

Figure 2.11 is a good starting point.)

 
Qideal tan=





8
15

45 2 5 2gh /

2.9 A source having a discharge of 4 m3/ms occurs at the origin (0, 0) of Cartesian coordinates. 
This is superimposed on a uniform rectilinear flow of 5 m/s parallel to the x-axis. Plot the 
flow net. Determine the coordinates of the stagnation point.

[127 mm, 0]
2.10 An ideal (potential) flow pattern is made up from a combination of

 ◾ A source with a discharge of 3.8 m3/s
 ◾ A forced vortex of 300 mm diameter rotating at 100 rad/s
 ◾ A free vortex surrounding the forced vortex

Sketch the stream function diagram which represents the above pattern.
Estimate the pressure and velocity at a radius of 250 mm.

[181.6 kN/m2, 9.32 m/s]
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Chapter 3

Behaviour of real Fluids

3.1  real and Ideal FluIds

In Chapter 2, equations describing fluid motion were developed. The equations were 
 mathematically straightforward because the fluid was assumed to be ideal, i.e., it possessed the 
following characteristics:

 1. It was inviscid
 2. It was incompressible
 3. It had no surface tension
 4. It always formed a continuum

From a civil engineering standpoint, surface tension problems are encountered only under 
rather special circumstances (e.g., very low flows over weirs or in hydraulic models). 
Compressibility phenomena are particularly associated with the high-speed gas flows which 
occur in chemical engineering or aerodynamics. The civil engineer may occasionally need to 
consider one particular case of compressibility associated with surge, and this will be investi-
gated in Chapters 6 and 12.

By	the	end	of	this	chapter	you	should

 ◾ Understand the concept of viscosity of fluids
 ◾ Understand Reynolds’ experiment and the meaning of laminar and turbulent flow
 ◾ Understand simple mathematical models of turbulence
 ◾ Be able to calculate the basic characteristic dimensions of a boundary layer
 ◾ Understand the implications of surface roughness and “separation of flow” on the drag 

forces on an object
 ◾ Understand the concept of cavitation

In this chapter, it is the effect of viscosity which will dominate the discussion, since it is this 
characteristic which differentiates so many aspects of real flows from ideal flows. This differ-
ence is exemplified if the ideal and real flows around a bluff (i.e., non-streamlined) shape are 
compared (Figure 3.1). The ideal fluid flows smoothly around the body with no loss of energy 
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between the upstream and downstream sides of the body. The pressure distribution around the 
body is therefore symmetrical and may be obtained by applying Bernoulli’s equation. The real 
fluid flow approximates to the ideal flow only around the upstream portion of the body, where 
the streamlines are converging. Shortly after the streamlines start to diverge (as the fluid starts 
to negotiate the downstream part of the body), the streamlines fail to conform to the symmetri-
cal pattern. A region of strongly eddying flow occurs (Figures 3.1b and 3.2), in which there are 
substantial energy losses.

Consequently, there is now an asymmetrical pressure distribution, which in turn implies 
that there is now a force acting on the body. An explanation for the behaviour of the real fluid 
will emerge as the nature of viscosity is considered.

3.2  vIsCous FloW

3.2.1  approach to viscosity

Perhaps the best way to approach viscosity is to contrast the effect of shearing action on a 
real fluid with that on an ideal fluid. Imagine, for example, that the fluids are both lying sand-
wiched between a fixed solid surface on one side and a movable belt (initially stationary) on 

p1 p1p2 p2

p1 = p2 p1 > p2(a) (b)

Force

FIgure 3.1 Ideal and real flow around a cylinder. (a) Ideal flow and (b) real flow.

FIgure 3.2 Flow around a cylinder showing eddy formation. (Courtesy of TecQuipment Limited, Nottingham, UK.)
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the other (Figure 3.3). Turning first to the ideal fluid (Figure 3.3a), if the belt is set in motion, 
experimental measurements will indicate

 a. That the force required to move the belt is negligible
 b. That the movement of the belt has no effect whatsoever on the ideal fluid, which there-

fore remains stationary

By contrast, if the other belt is slowly started and comparable measurements are taken on the 
real fluid, the following observations will be made:

 a. A considerable force is required to maintain belt motion, even at slow speed.
 b. The whole body of fluid is deforming and continues to deform as long as belt motion 

continues. Closer investigation will reveal that the deformation pattern consists in the 
shearing, or sliding, of one layer of fluid over another. The layer of fluid immediately 
adjacent to the solid surface will adhere to that surface and, similarly, the layer adjacent 
to the belt adheres to the belt. Between the solid surface and the belt the fluid veloc-
ity is assumed to vary linearly as shown in Figure 3.3c. It is characteristic of a viscous 
fluid that it will deform continuously under a shear force. It is emphasised that this 
discussion is based on the assumption that the velocities are low, and that the flow is 
two-dimensional only.

3.2.2  definition of viscosity

The pattern of events outlined in the previous section raises two questions. First, how must 
viscosity be defined? Second, based on this definition, can numerical values of viscosity be 
obtained for each fluid? Referring to the velocity diagram in Figure 3.3, it is evident that the 
shear force is being transmitted from one layer to another. If any pair of adjacent layers are 
taken, the lower one will have some velocity, u, whilst the upper one will be travelling with 

(a) (b)

(c)

dy

u
u + du

y

FIgure 3.3 Effect of shear force on fluid. (a) Ideal fluid, (b) viscous fluid and (c) velocity variation for viscous flow.
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velocity u	+	du. The rate of shear strain is thus du/dy. Newton postulated that the shear force 
applied and the rate of fluid shear were related by the equation

 F A u y= × ×constant d /d( )

where A is the area of the shear plane (i.e., the cross-sectional area of the fluid in the x–z plane). 
The equation may be rewritten as

 

F
A

u
y

= = ×τ constant
d
d

 (3.1)

(this is valid only for “laminar” flows, see Section 3.3). The constant is known as the absolute 
coefficient of viscosity of a fluid and is given the symbol μ. Experiments have shown that

 1. μ is not a constant
 2. For the group of fluids known as “Newtonian fluids”, μ remains constant only at con-

stant temperature – if the temperature rises, viscosity falls, and if the temperature falls, 
viscosity rises (water is a Newtonian fluid)

 3. There are some (“non-Newtonian”) fluids in which μ is a function of both temperature 
and rate of shear

Another form of the coefficient of viscosity is obtained if absolute viscosity is divided by fluid 
density to produce the coefficient of kinematic viscosity, ν:

 
ν = µ

ρ

Both coefficients have dimensions: μ is measured in N s/m2 (or kg/m s) and ν is in m2/s.

Example 3.1: Viscous Flow

A moving belt system, such as that depicted in Figure 3.3, is to be used to transfer lubri-
cant from a sump to the point of application. The working length of the belt is assumed to 
be straight and to be running parallel to a stationary metal surface.

The belt speed is 200 mm/s, the perpendicular distance between the belt and the 
metal surface is 5 mm, and the belt is 500 mm wide. The lubricant is an oil, having an 
absolute viscosity of 0.007 N s/m2. Estimate the force per unit length of belt, and the 
quantity of lubricant discharged per second.

Solution

 
τ µ= = × ×

×
=

−

−
d
d

N/m2u
y

0 007
200 10

5 10
0 28

3

3. .
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Area A of a 1 m length of belt = 1 × 0.5 = 0.5 m2

Force per unit length of belt = 0.28 × 0.5 = 0.14 N
To estimate the discharge, note that the velocity is assumed to vary linearly with per-

pendicular distance from the belt. The discharge may therefore be obtained by taking the 
product of the mean velocity, V, and the area of the flow cross section, by

 
Q Vby= = × × × = ×

−
−200 10

2
0 5 0 005 2 5 10

3
4 3. . . m /s

3.3  staBIlIty oF laMInar FloWs 
and tHe onset oF turBulenCe

3.3.1  Introduction

The description of viscous flow based on the moving belt is obviously just imaginary. In practice, 
laminar flows exist only at very low fluid velocities. If the velocity of our imaginary belt was to 
be increased (increasing the rate of shear), a point would be reached where a major transforma-
tion takes place in the flow pattern.

3.3.2  effect of a disturbance in a sheared Flow

Consider first a slowly moving sheared flow. What might be the effect of a small distur-
bance (due perhaps to a small local vibration) on the otherwise rectilinear flow pattern? The 
pathlines might be slightly deflected (Figure 3.4a) bunching together more closely at A and 
opening out correspondingly at B. This implies that the local velocity at A, uA, increases 
slightly compared with the upstream velocity u, while at the same time uB reduces. Now, from 
Bernoulli’s equation,

 

p
g

u
g

p
g

u
g

p
g

u
gρ ρ ρ

+ = + = +
2 2 2

2 2 2
A A B B

Therefore pB > pA. It can thus be reasoned that the disturbance will produce a small transverse 
resultant force acting from B towards A. The lateral component of velocity will also produce 

A

B

(a) (b) (c)

FIgure 3.4 Effect of disturbance on a viscous flow. (a) Stable, (b) transition and (c) unstable.
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a corresponding component of viscous shear force, which acts in the opposite sense to the resul-
tant disturbing force. As long as the fluid is moving slowly, the resultant disturbing force tends 
to be outweighed by the viscous force. Disturbances are therefore damped out. As the rate of 
shear increases, the effect of the disturbance becomes more pronounced:

 1. The difference between uA and uB increases.
 2. The pressure difference (pA − pB) increases with u uA B

2 2−( ), so the deflection of the 
pathline becomes more pronounced.

 3. The greater shear results in a deformation of the crest of the pathline pattern 
(Figure 3.4b). When the rate of shear is sufficiently great, the deformation is carried 
beyond the point at which the rectilinear pattern of pathlines can cohere (one can 
think of an analogy with a breaking wave). The flow pattern then disintegrates into a 
disorderly pattern of eddies in place of the orderly pattern of layers (Figure 3.4c).

This is (deliberately) a radical oversimplification of a complex physical pattern. It does, however, 
explain why the neat and mathematically tractable viscous flows only exist at low velocities. The 
other eddying flow is known as turbulent flow. The existence of these distinct patterns of flow 
was first investigated scientifically by Osborne Reynolds (1842–1912) at Manchester University.

3.3.3  reynolds’ experiment

Classical hydrodynamicists (most of them were primarily mathematicians) had long been puz-
zled by certain aspects of flow which did not conform to the known mathematical formulations. 
Towards the end of the nineteenth century, Reynolds designed an experiment in which a fila-
ment of dye was injected into a flow of water (Figure 3.5). The discharge was carefully con-
trolled and passed through a glass tube so that observations could be made. Reynolds discovered 

Filament of dye

Laminar (viscous) Transitional

Turbulent

FIgure 3.5 Reynolds’ experiment.
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that the dye filament would flow smoothly along the tube as long as the velocities remained very 
low. If the discharge was increased gradually, a point was reached at which the filament became 
wavy. A small further increase in discharge was then sufficient to trigger a vigorous eddying 
motion, and the dye mixed completely with the water. Thus, three distinct patterns of flow 
were revealed:

“Viscous” or “laminar” – in which the fluid may be considered to flow in discrete layers 
with no mixing.

“Transitional” – in which some degree of unsteadiness becomes apparent (the wavy fila-
ment). Modern experimentation has demonstrated that this type of flow may comprise 
short “bursts” of turbulence embedded in a laminar flow.

“Turbulent” – in which the flow incorporates an eddying or mixing action. The motion of 
a fluid particle within a turbulent flow is complex and irregular, involving fluctuations 
in velocity and direction.

Most of the flows that are encountered by civil engineers are turbulent flows.

3.3.4  reynolds number

An obvious question that now arises is “can we predict whether a flow will be viscous or tur-
bulent?” Reynolds” experiments revealed that the onset of turbulence was a function of fluid 
velocity, viscosity and a typical dimension. This led to the formation of the dimensionless 
Reynolds number (symbol Re):

 
Re = =ρ

µ
ul ul

ν
 (3.2)

It is possible to show that the Reynolds number represents a ratio of forces (see Example 11.1):

 
Re

inertia force
viscous force

=

For this reason, any two flows may be “compared” by reference to their respective Reynolds 
numbers. The onset of turbulence therefore tends to occur within a predictable range of values 
of Re. For example, flows in commercial pipelines normally conform to the following pattern:

For Re < 2000, laminar flow exists
For 2000 < Re < 4000, the flow is transitional
For Re > 4000, the flow is turbulent

These values of Re should be regarded only as a rough guide (in some experiments laminar flows 
have been detected for Re >> 4000).
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3.4  sHearIng aCtIon In turBulent FloWs

3.4.1  general description

Shearing in laminar flows may be visualised as a purely frictional action between adjacent fluid 
layers. By contrast, shearing in turbulent flows is both difficult to visualise and less amenable to 
mathematical treatment. As a consequence, the solutions of problems involving turbulent flows 
tend to invoke experimental data.

In Section 3.3, a (rather crude) model of flow instability was proposed. This led to a descrip-
tion of the way in which a streamline might be broken down into an eddy formation. An indi-
vidual eddy may be considered to possess a certain size or “scale”. Its size when formed will be 
related to the scale of its surrounding boundary (e.g., the diameter of a pipe or the depth of a 
river). Due to the effects of the roughness of most boundary surfaces and to the impact of other 
eddies, an initially large eddy will break down progressively into smaller and smaller eddies. 
This process will be continually repeated so a turbulent flow consists of a procession of eddies 
of differing scales. The passage of a succession of eddies therefore produces a measurable fluc-
tuation in the velocity at any given point (Figure 3.6). The eddies are generally irregular in size 
and shape, so the fluctuation of velocity with time is correspondingly irregular. For convenience, 
this fluctuating velocity is broken down into two components:

 1. The time-averaged velocity of flow at a point, u. For the present, this is assumed to be 
parallel to the x-axis.

 2. Fluctuating components u′ (in the x-direction), v′ (y-direction) and w′ (z-direction). 
The time average of u′, v′ or w′ is obviously zero. The magnitudes of u′, v′ and w′ and 
the rapidity with which they fluctuate give an indication of the structure of the eddy 
pattern.

A measure of the magnitude of the fluctuations may be based upon the root-mean-square of the 

quantity u′ (i.e., ′u 2
). This measure is usually known as the “intensity of turbulence” and is the 

ratio ′u u2 .

u΄

u

Time

Ve
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—u 2́√

FIgure 3.6 Variation of velocity with time in turbulent flow.
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3.4.2  simple Models of turbulent Flows

Turbulence implies that within a fluid flow individual particles of fluid are “jostling” (migrating 
transversely) as they are carried along with the flow. An attempt to plot the pathlines of a series 
of particles on a diagram would result in a tangled and confused pattern of lines. Since particles 
are continuously interchanging, it follows that their properties will similarly be continuously 
interchanging (hence the rapid mixing of the dye in Reynolds’ observations of turbulence). Due 
to the complexity of the motion, it is impossible to produce an equation or numerical model of 
turbulence which is simple, complete and accurate. Nevertheless, some useful insights may be 
gained by investigating two elementary models of turbulence, even though both are known to 
have serious shortcomings.

3.4.2.1   The “Reynolds” Stress” Model

It has been stated earlier that the fluctuating components of velocity are u′, v′ and w′. If we 
restrict our attention to a two-dimensional flow (x- and y-components), then only u′ and v′ 
are present (Figure 3.7a). Hence, during a time interval dt, the mass of fluid flowing in the 
y- direction through a small horizontal element of area δA is

 ρ δ δv A t′

This mass has an instantaneous horizontal velocity of u	+	u′. Its momentum, δM, is therefore

 δ ρ δ δM v A t u u= ′ + ′( )

Therefore, the rate of transport (or rate of interchange) of momentum during the particular 
instant is

 

δ
δ

ρ δ ρ δ ρ δM
t

v A u u v Au v u A= ′ + ′ = ′ + ′ ′( )

The average rate of transport of momentum will be a function of the time-averaged velocities 
of the fluid particles. The magnitude of u remains constant. The averaged values of u′ and v′ are 

′u  and ′v , but ′u  and ′v  must both be zero (see Figure 3.6 and the associated text). Despite this 
fact, the product ′ ′u v  may not be zero, so

 
average

δ
δ

ρ δM
t

u v A= ′ ′

The existence of a “rate of interchange” of momentum necessarily implies the existence of a 
corresponding force within the fluid:

 δ ρ δF u v A= ′ ′



82 Principles and Basic Applications

Alternatively, since force/area = stress, τ,

 
τ δ

δ
ρ= = ′ ′F

A
u v  (3.3)

This is termed a Reynolds’ stress.

3.4.2.2   Prandtl Eddy Model

A slightly more sophisticated approach is due to Prandtl, a German engineer, who pioneered 
much of the work on shear flows in the early years of the twentieth century. Prandtl sought 
to develop a simple model of an eddy, from which an analogue to viscosity might be derived. 

(a)

(b)

u u΄

v΄

u΄

u΄
δy

δy

δΑ

δΑ

u–δu

u+δu

u
u΄

FIgure 3.7 Turbulent eddies. (a) Reynolds’ eddy model and (b) eddy for Prandtl model.



83Behaviour of Real Fluids

Consider, then, a rectilinear flow. At a point (x, y) in the flow, the velocity of flow is u. 
Superimposed on that flow is an eddy (Figure 3.7b) in the form of a ring of cross-sectional 
area δA. The eddy is rotating, rather like a wheel. The tangential velocity of the eddy is u′, and 
thus the mass flow transferred at any one cross section will be ρδAu′. The rate of interchange 
of mass is therefore 2ρδAu′ (since one mass of fluid migrates upwards as another equal mass 
migrates downwards).

Between the plane at y and the plane at y + δy, the velocity increases from u to u + δu, so it 
is reasonable to assume that

 
δ δu u y

u
y

= ′ = d
d

so

 Rate of interchange 2 d /d= ρδ δA y u y

The rate of interchange of momentum is the product of the rate of mass interchange and the 
change in velocity in the y direction, i.e., δu. Therefore, the rate of change of momentum across 
the eddy is
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Now, shear stress, τ = force/area of shear plane (2δA), and force = dM/dt, therefore
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where μT is the “eddy viscosity” and is given by
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2  (3.5)

μT is analogous to μ, but is a function of the rate of shear, and of eddy size (l).
Eddy viscosity is therefore too complex to be reducible, for example, to a convenient viscos-

ity diagram. Prandtl’s treatment is now rather dated. Nevertheless, because of its links with the 
physics of turbulence, it is a convenient starting point for the student. Furthermore, Prandtl’s 
model formed the basis of much of the progress in the analysis of turbulence which continues 
to the present.
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3.4.3  velocity distribution in turbulent shear Flows

It is possible to develop a relationship between y and u on the basis of Prandtl’s work. In order 
to achieve this, an assumption must be made regarding eddy size. The simplest guess might 
be that (δy) = constant × y, i.e., a linear relationship. If the constant is K, then (3.5) may be 
rewritten as

 
τ ρ=
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y
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d
d

or
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d
d

 (3.6)

Now the ratio τ ρ/  is known as the “friction velocity”, u*. No such velocity actually exists in 

the flow; u* is just a “reference” value. Also, from (3.3), u u v* = ′ ′ .
Equation 3.6 may therefore be rewritten in terms of u*:

 
u Ky

u
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d
d

=  (3.6a)

Therefore,
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=  (3.6b)

so
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y C= +* ln

or

 

u
u K

y C
*

ln= +1
 (3.7)

No further progress can now be made on a purely mathematical basis; it is necessary to use 
experimental data to evaluate K and C. It was originally thought that K was a constant (equal 
to 0.4), but this is now known to be an oversimplification. C is a function of surface roughness, 
kS, and must be determined for different materials.
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3.4.3.1   The k–ε Turbulence Model

Another technique, which has become quite widely used in computational modelling, is based 
on the use of two parameters, namely the turbulent kinetic energy k(= 0.5(u′2 + v′2 + w′2)) and 
the rate of dissipation of k due to viscous damping, which is denoted by ε.

Computational models based on this technique usually incorporate two equations, to estab-
lish the rates of change of k and of ε. The eddy viscosity is then estimated as μT = ρCμk2/ε, 
where Cμ is a coefficient. Readers who wish to pursue this, and other  techniques currently in 
use, should refer to Rodi (1993) or to the comprehensive book by McComb (1991).

3.5  Boundary layer

3.5.1  description of a Boundary layer

The concepts used in analysing shearing action in fluids have been introduced earlier. For illus-
trative purposes, it was assumed that the shearing action was occurring in a fluid sandwiched 
between a moving belt and a stationary solid surface. The fluid was thus bounded on two 
sides. It may have occurred to the reader that such a situation is not common in civil engineer-
ing. Some flows (e.g., the flow of air round a building) are bounded on one side only, while 
 others (e.g., the flow through a pipe) are completely surrounded by a stationary solid surface. 
To develop the boundary layer concept, it is helpful to begin with a flow bounded on one side 
only. Consider, therefore, a rectilinear flow passing over a stationary flat plate which lies parallel 
to the flow (Figure 3.8a). The incident flow (i.e., the flow just upstream of the plate) has a uni-
form  velocity, U∞. As the flow comes into contact with the plate, the layer of fluid immediately 
adjacent to the plate decelerates (due to viscous friction) and comes to rest. This follows from the 
postulate that in viscous fluids a thin layer of fluid actually “adheres” to a solid surface. There is 
then a considerable shearing action between the layer of fluid on the plate surface and the second 
layer of fluid. The second layer is therefore forced to decelerate (though it is not quite brought to 
rest), creating a shearing action with the third layer of fluid, and so on. As the fluid passes fur-
ther along the plate, the zone in which shearing action occurs tends to spread further outwards 
(Figure 3.8b). This zone is known as a “boundary layer”. Outside the boundary layer the flow 
remains effectively free of shear, so the fluid here is not subjected to viscosity-related forces. 
The fluid flow outside a boundary layer may therefore be assumed to act like an ideal fluid.

U∞

U∞

y

u(b)(a)

FIgure 3.8 Development of a boundary layer. (a) Incident flow (b) boundary layer.
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As with any other sheared flow, the flow within the boundary layer may be viscous or tur-
bulent, depending on the value of the Reynolds number. To evaluate Re we need a “typical 
dimension” and in boundary layers this dimension is usually the distance in the x-plane from 
the leading edge of the solid boundary. The Reynolds number thus becomes Rex = ρU∞x/μ.

A moment’s reflection should convince the reader that if the solid surface is sufficiently long, 
a point will be reached at which the magnitude of Re indicates the onset of turbulence. This 
hypothesis accords with experimental observations. To add further to the complications, the very 
low velocities in the flow close to the plate imply a low local Re, and the consequent possibility 
of laminar flow here. The structure of the boundary layer is therefore as is shown in Figure 3.9. 
A graph (or “distribution”) of velocity variation with y may be drawn. This reveals that

 1. In the laminar zone, there is a smooth velocity distribution to which a mathematical 
function can be fitted with good accuracy.

 2. In the turbulent zone, the mixing or eddying action produces a steeply sheared profile 
near the surface of the plate, but a flatter, more uniform profile further out towards the 
boundary layer edge.

In both cases, the velocity distributions are assumed to be asymptotic to the free stream 
 velocity, U∞.

3.5.2  Boundary layer equations

Although the basic structure of a boundary layer is clear, the engineer usually needs a pre-
cise numerical description for each particular problem. The basic parameters and equations 
required will now be developed. In the interests of simplicity, this treatment will be restricted 
to a two-dimensional incompressible flow with constant pressure.

 1. The boundary layer thickness, δ, is the distance in the y-direction from the solid surface 
to the outer edge of the boundary layer. Since the velocity distribution in the bound-
ary layer is asymptotic to U∞, it is difficult to measure an exact value for δ. The usual 
convention is to assume that the edge of the boundary layer occurs where u/U∞ = 0.99.

Laminar zone

Laminar sub-layer

Transition

Turbulent zone
Velocity distribution

FIgure 3.9 Structure of a boundary layer.
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 2. The velocity distribution at a section in a boundary layer is pictured in Figures 3.10 and 
3.11. Everywhere inside the boundary layer the velocity, u, is less than the free stream 
velocity U∞. The discharge through section CD (Figure 3.11) is therefore less than the dis-
charge through the same cross-sectional area in the free stream, i.e., there is a  discharge 
“deficit” within the boundary layer. However, the discharge contained between the solid 
surface (AD) and any streamline above AD (and outside of the boundary layer, of course) 
must remain constant, so the streamline is progressively displaced further from the sur-
face AD (y increases with increasing x). The distance by which it is displaced is known 
as the displacement thickness, δ*. In other words δ* is the thickness of a layer of fluid, 
flowing at velocity U∞ which would carry a discharge equal to the deficit. This deficit in 
discharge can be quantified for unit width and an equation can be developed for δ*:

 deficit of discharge through an element = −( )U u y∞ δ

 
deficit through whole boundary layer section d

0

δ

∞∫ −( )U u y

u

δy
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y

FIgure 3.10 Velocity distribution in a boundary layer.
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FIgure 3.11 Longitudinal section through a boundary layer.
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  In the free stream, an equivalent discharge would pass through a layer of depth δ*, so
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 3. The momentum thickness, θ, is analogous to the displacement thickness. It may be 
defined as the depth of a layer in the free stream which would pass a momentum flux 
equivalent to the deficit due to the boundary layer:

 mass flow through element = ρ δu y

 deficit of momentum flux = −ρ δ ∞u y U u( )

 

deficit through whole boundary layer section = −∫ ρ ∞
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u dy U u
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  In the free stream, an equivalent momentum flux would pass through a layer of depth 
θ and unit width, so that

 

ρ θ ρ∞

δ

∞U u U u y2

0

= −( )∫ d

 

θ
δ

∞ ∞
= −



∫

0

1
u

U
u

U
yd  (3.9)

 4. The definition of kinetic energy thickness δ** follows the same pattern, leading to the 
equation

 

δ
δ

∞ ∞
** d= − 













∫

0

2

1
u

U
u

U
y  (3.10)



89Behaviour of Real Fluids

Example 3.2: Boundary Layer Parameters

A wide channel carries water flowing with a depth of 0.5 m and a surface velocity of 
2 m/s which is assumed to be the free stream velocity U∞. At one location the boundary 
layer thickness, δ, is found to be 0.2 m. Show whether the flow is laminar or turbulent, 
and calculate the magnitude of the displacement thickness and the momentum thickness.

Take the velocity distribution as u/U∞ = (y/δ)1/7. The density of the water is 1000 kg/m3 and 
the absolute viscosity is 1.14 × 10−3 kg/m s.

Solution

The parameter which indicates the type of flow is Reynolds number, Re = (ρul)/μ, where 
l is a “typical dimension” which we assume is the depth of water, therefore
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With such a large value, flow is definitely turbulent.
The displacement thickness, δ*, is found by using Equation 3.8:
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The momentum thickness, θ, is found by using Equation 3.9
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 5. The momentum integral equation is used to relate certain boundary layer parameters 
so that numerical estimates may be made. Consider the longitudinal section through a 
boundary layer (Figure 3.11), the section is bounded on its outer side by a streamline, 
BC, and is 1 m wide. The discharge across CD is

 

Q u yCD d= ∫
0

δ

 The momentum flux (=ρQ × velocity) is therefore

 

d
d
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t

u y= ∫ ρ
δ

2

0

 As BC is a streamline, the discharge across AB must be the same as that across CD:

 

Q u yAB d= ∫
0

δ

 The incident velocity at AB is U∞, so the momentum flux is
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 Boundary layers are actually very thin, so it is reasonable to assume the velocities are 
in the x-direction. The loss of momentum flux is due to the frictional shear force (FS) 
at the solid surface. Therefore,
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 The negative sign follows from the fact that the frictional resistance acts in the opposite 
sense to the velocity. This equation may be rearranged to give
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 The frictional shear at the solid surface is not a constant, but varies with x, due to the 
growth of the boundary layer. The shear force may therefore be expressed as

 

F x
L

S d= ∫ τ0

0

 where τ0 is the shear stress between the fluid and the solid surface. The momentum 
integral equation is therefore

 

τ ρ θ∞0
2

0

dx U
L

=∫  (3.11)

3.5.3  solution of the Momentum Integral equation

In order to solve the momentum equation, some further information regarding θ and τ0 is 
required. Both of these quantities are related to the velocity distribution in the boundary layer. 
Since velocity distribution depends on the nature of the flow, i.e., whether it is laminar or tur-
bulent, the two cases are now considered separately.

3.5.3.1   Laminar Flow

The velocity distribution in a laminar boundary layer may be expressed in a number of forms. 
A typical equation is
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If A and B are known, the integral mentioned earlier can be evaluated. Furthermore,
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(3.13)

If (3.12) and (3.13) are substituted into (3.11), a solution can be obtained.
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3.5.3.2   Turbulent Flow

Experimental investigations have shown that the velocity distribution outside the laminar sub-
layer may be approximately represented by
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Typically (after Prandtl) a value n = 7 is used. This can be substituted into the equation for the 
momentum thickness (Equation 3.9) and a solution obtained. This equation cannot, however, 
be differentiated to obtain τ0, since
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It is again necessary to use experimental data to fill the gap in the mathematical procedure. This 
provides us with the alternative relationship
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where

 Re /δ ρ δ µ= ∞U

Example 3.3: Turbulent Boundary Layer

Water flows down a smooth wide concrete apron into a river. Assuming that a turbulent 
boundary layer forms, estimate the shear stress and the boundary layer thickness 50 m 
downstream of the entrance to the apron. Use the following data:

 U m∞
−= = × =7 m/s 114 1 kg/ms 4µ . 0 3
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From (3.11),
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From (3.9),
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Substituting u/U∞ = (y/δ)1/7,
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Substituting ρ = 1000 kg/m3 and U∞ = 7 m/s, and rearranging,
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3.6  soMe IMPlICatIons oF tHe 
Boundary layer ConCePt

3.6.1  “Flow separation”

Returning to the problem of flow round a “bluff” shape, which was considered at the beginning 
of the chapter, it is now possible to investigate the pattern of events in the light of our knowl-
edge of boundary layer formation (see Figure 3.12).

Around the upstream half of the body, the fluid is deflected outwards, the streamlines con-
verge as the flow accelerates and a boundary layer grows progressively. After the fluid passes the 
Y–Y axis, the flow is decelerating. The fluid in the boundary layer is travelling at a lower speed 
than the fluid in the free stream, and a point is reached at which negative velocities arise at the 
inner part of the boundary layer. The line traced by the points of zero velocity downstream of 
the body divides the zones of the positive and negative velocity and indicates that flow sepa-
ration has occurred. The development of the negative velocity zone further implies that the 
pressures within the zone are low compared with those in the free stream. Fluid from further 
out in the boundary layer is therefore drawn inwards to the low pressure zone. The effect of all 
this is that powerful eddies are generated, which are then drawn downstream by the flow, thus 
forming the “wake” zone.

High pressure

y

x

Y

Y

d
Wake

Negative velocities
(separated flow)

Low pressure

FIgure 3.12 Flow separation.
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3.6.2  surface roughness and Boundary 
layer development

A question may be posed: Different materials exhibit different degrees of roughness (e.g., plas-
tic or concrete) − does this have any effect on the boundary layer? There are, broadly, three 
answers which could be given:

 1. In laminar flow, the friction is transmitted by pure shearing action. Consequently, the 
roughness of the solid surface has no effect, except to trap small “pools” of stationary 
fluid in the interstices, and thus slightly increase the thickness of the stationary layer of 
fluid.

 2. In a turbulent flow, a laminar sublayer forms close to the solid surface. If the average 
height of the surface roughness is smaller than the height of the laminar sublayer, there 
will be little or no effect on the overall flow.

 3. Turbulent flow embodies a process of momentum transfer from layer to layer. 
Consequently, if the surface roughness protrudes through the laminar region into the 
turbulent region, then it will cause additional eddy formation and therefore greater 
energy loss in the turbulent flow. This implies that the apparent frictional shear will be 
increased.

3.6.3  “drag” Forces on a Body

From the outline given in the two preceding paragraphs, it will be evident that a body immersed 
in an external flow may be subjected to two distinct force patterns:

 1. Due to the frictional shearing action between the body and the flow.
 2. Due to flow separation, if the body is “bluff”. Under such conditions, the deflection 

of the incident flow around the upstream face of the body creates a region of locally 
increased pressure, whilst the separation zone downstream creates a region of locally low 
pressure. This pressure difference exerts a force on the body. The component of this 
force in the direction of the incident flow is known as the “form drag”. If there is a 
component perpendicular to this direction, it is often referred to as “lift”. The termi-
nology originated in the aeronautical industry, which sponsored much of the research 
subsequent to Prandtl’s pioneering work.

Measurements have been carried out on many body shapes, ranging from rectangular sections 
to aerofoil (wing) shapes. The measured forces are usually reduced to coefficient form, for 
example drag is expressed as “drag coefficient” CD, where

 

C
AU

D
drag force=
1
2

2ρ ∞
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A is a “representative area”, e.g., the cross-sectional area of a body perpendicular to the direc-
tion of the incident flow. Note that the drag force is usually the total force due to both friction 
and form components. CD is therefore a function of the body shape and the Reynolds number. 
Graphs of CD versus the Reynolds number for various shapes may be found in Schlichting et al. 
(1999). Civil engineers encounter “drag” problems in connection with wind flows around build-
ings, bridge piers in rivers, etc.

It is worth drawing attention to one further characteristic of separated flows. Under certain 
conditions, it is possible for the eddy-forming mechanism to generate a rhythmic pattern in 
the wake. Eddies are shed alternately, first from one side of the body and then from the other. 
This eddy-shedding process sets up an oscillatory transverse (lift) force on the body, whereas 
in a symmetrically generated wake the forces generated in this way are symmetrical, and there-
fore effectively cancel. If the rhythmical pattern is set up it generates an alternating transverse 
force which can cause vibration problems. The frequency of the eddy-shedding is related to the 
Strouhal number:

 St frequency /= × ∞d U

Experiments have shown that, for circular cylinders,

 St 198 1 19 7/Re for 25 Re 2 1 5= − < < ×0 0 0. ( . ),

Vibration problems of this type tend to occur when the natural frequency of a flexible structure 
(e.g., a suspension bridge or metal-clad chimney) coincides with the eddy frequency.

3.6.4  Bounded Flows

Most civil engineering flows are “bounded”, either completely (as in pipe flows) or partly (as in 
open channels). Boundary layer growth will commence at the entry to the pipe or channel sys-
tem, and continue downstream. Providing that the system is of sufficient length, a point will be 
reached at which the boundary layer thickness, δ, extends as far as the centreline (Figure 3.13). 
From this point onwards it is clear that no boundary layer growth is possible. The flow has 
therefore become virtually uniform, and the boundary shear stress, τ0, must, within close lim-
its, be constant. This is known as the “fully developed flow” condition. In most practical cases, 
the “entry length” is short compared with the overall length of the pipe or channel (e.g., in lami-
nar pipe flow the entry length is approximately 110d, while for turbulent pipe flow it is approxi-
mately 50d). It is therefore conventional and simplest to treat most problems as if the flow were 
fully developed throughout. In fully developed flows, it is usual for the boundary shear stress to 
be expressed in terms of a “coefficient of friction” (symbol Cf), which is defined by the equation
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where V is the mean velocity of flow (i.e., Q/A).
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In view of what was said previously, it is not surprising that the friction factor is

 1. A function of the flow type (laminar or turbulent) and consequently a function of the 
Reynolds number

 2. A function of the boundary roughness (in turbulent flows), providing the roughness 
elements are sufficiently high – the evaluation and applications of friction factors will 
be developed more fully in Chapter 4

3.7  CavItatIon

At the beginning of this chapter, reference was made to the characteristics of an ideal fluid. 
One of those characteristics specified that an ideal fluid constituted a homogeneous continuum 
under all conditions of flow. This is also frequently true of real fluids – frequently, but not 
always. The principal exception to homogeneous flow will now be examined.

If the pressure of a liquid falls, the temperature at which boiling occurs also falls. It follows 
that a fall in pressure of sufficient magnitude will induce boiling, even at normal atmospheric 
temperatures, and this phenomenon is called cavitation. Cavitation arises under certain condi-
tions; some typical examples are as follows:

 1. In severely sheared separated flows of liquids. Such flows can occur on spillways or in 
control valves in pipelines.

 2. In fluid machines such as pumps or turbines. Fluid machines involve an energy interchange 
process (e.g., pumps may convert electrical power into fluid power). The interchange 
involves a moving element that is immersed in the fluid. Under some circumstances, very 
low pressures may occur at the interface between the element and the fluid.

The reason for regarding cavitation as a problem is that the boiling process involves the formation 
and collapse of vapour bubbles in the liquid. When these bubbles collapse, they cause a consid-
erable local shock (or “hammer blow”), i.e., a sharp rise and fall in the local pressure. The peak 
pressure during such a shock may be up to 400 × 106 N/m2. Although one such event lasts only 
a few milliseconds, under cavitating conditions the event may be repeated in rapid succession. 
The potential for producing damage to concrete or metal surfaces is thus considerable. There have 

δ

Developing flow in entry length Fully developed flow

d

FIgure 3.13 Development of flow pattern in the entrance to a pipe.
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been a number of cases of major (and therefore expensive!) damage in large hydroelectric schemes. 
Theoretically, the onset of cavitation coincides with the vapour pressure of the liquid. However, 
the presence of dissolved gases or small solid particles in suspension frequently means that cavita-
tion can occur at higher pressures. It is usually assumed that with water at 20°C, for example, it is 
inadvisable to operate at pressure heads lower than 3 m absolute (i.e., 7 m vacuum).

3.8  surFaCe tensIon eFFeCts

Surface tension has been briefly discussed in the Introductory Notes. Surface tension, TS, is 
usually very small compared with other forces in fluid flows (e.g., for a water surface exposed to 
air, TS ≃ 0.073 N/m). In the vast majority of cases, engineers ignore surface tension. However, it 
may assume importance in low flows (e.g., in hydraulic models or in weir flows under very low 
heads). Research into such situations led to the formation of a dimensionless parameter known 
as the Weber number, We (named after the German naval architect M. Weber [1871–1951]):

 
We

inertia force
surface tension

= = ρu l
TS

2

For a given flow, the magnitude of We indicates whether TS is likely to be significant.

3.9  suMMary

The major topics covered in this chapter have related to turbulence and the boundary layer. 
Within this brief account, it is impossible to achieve more than an introductory coverage. More 
advanced studies may be pursued by consulting the work of Schlichting et al. (1999) or Cebeci 
and Bradshaw (1977) on boundary layers. Also, Hinze (1975), McComb (1991) and Tennekes 
and Lumley (1972) provide more comprehensive treatments of the physics and mathematical 
modelling of turbulence.

ProBleMs For solutIon

3.1 Determine whether the following flows are laminar or turbulent:
(a) A flow of water (ρ = 1000 kg/m3, μ = 1.2 × 10−3 kg/m s) through a pipe of square cross 

section. The section is 500 × 500 mm and the mean velocity of flow is 3 m/s.
(b) A flow of air (ρ = 1.24 kg/m3, μ = 1.7 × 10−5 kg/m s) through a pipe of diameter 25 mm. 

The mean velocity is 0.1 m/s.
3.2 A laminar boundary layer forms over a plate which moves at 3 m/s through water. Estimate 

the boundary layer thickness 5 m downstream of the leading edge. Assume ρ = 1000 kg/m3 
and μ = 1 × 10−3 kg/m s. The velocity distribution is
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3.3 Define the terms boundary layer, displacement thickness and momentum thickness. 
A  rectangular surface 500 mm wide and 1 m long is immersed in water. The water is flow-
ing at a free stream velocity of 20 m/s parallel to the surface. Evaluate the shear force of the 
fluid on the surface, assuming that the flow is turbulent throughout the boundary layer. For 
water, ρ = 1000 kg/m3 and μ = 1.2 × 10−3 kg/m s. The velocity distribution in the boundary 
layer (u/U∞) = (y/δ)1/7, τ ρ ρ δ µ∞ ∞0

2 1 40 0225= −. ( ) /U U / .
[252.8 N]

3.4 A chimney for a new chemical plant is 30 m tall and 1 m in diameter, to be fabricated from 
stainless steel. It is to be designed for a maximum wind speed of 80 km/h. Calculate the 
total wind loading on the structure. If the chimney has a natural frequency of 0.5 Hz, deter-
mine whether a problem could arise due to self-induced oscillation and, if so, at what wind 
speed this would occur. Assume CD = 1.0. The density and viscosity of air are 1.24 kg/m3 
and 1.7 × 10−5 kg/m s, respectively.

[9183 N, yes, at 9 km/h]
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Chapter 4

Flow in Pipes and 
Closed Conduits

4.1  IntroduCtIon

The flow of water, oil and gas in pipes is of immense practical significance in civil engineering. 
Water is conveyed from its source, normally in pressure pipelines (Figure 4.1), to water treat-
ment plants where it enters the distribution system and finally arrives at the consumer. Surface 
water drainage and sewerage is conveyed by closed conduits, which do not usually operate under 
pressure, to sewage treatment plants, from where it is usually discharged to a river or the sea. 
Oil and gas are often transferred from their source by pressure pipelines to refineries (oil) or 
into a distribution network for supply (gas).

Surprising as it may seem, a comprehensive theory of the flow of fluids in pipes was not 
developed until the late 1930s, and practical design methods for the evaluation of discharges, 
pressures and head losses did not appear until 1958. Until these design tools were available, the 
efficient design of pipeline systems was not possible.

This chapter describes the theories of pipe flow, beginning with a review of the historical 
context and ending with the practical applications. The treatment is limited to steady flow in 
pressurised and non-pressurised pipes, which is the principal means by which individual pipe-
lines are designed.

By	the	end	of	this	chapter	you	should

 ◾ Have an appreciation of the historical context to the development of pipe flow theories
 ◾ Understand the fundamental concepts of pipe flow for both laminar and turbulent flow
 ◾ Have knowledge of and be able to apply the equations for pressurised pipe flow to solve 

typical problems
 ◾ Have knowledge of and be able to apply the equations for non-pressurised, partially full 

pipe flow to solve typical problems

This chapter also provides the background knowledge required for the study of pressure surge in 
pipelines which is described in Chapter 6 and the design of pipeline systems and the associated 
practical aspects which are dealt with in Chapter 12.
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Supply pipeline

Water treatment plant

Ringmain distribution
system (pressurised)

Surface water drainage and sewerage system (non-pressurised)

Sewage treatment plantSewage outfall

River

Sea

FIgure 4.1 Synthetic hydrological cycle.
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4.2  HIstorICal Context

Table 4.1 lists the names of the main contributors, and their contributions, to pipe flow theories 
in chronological order.

The Colebrook–White transition formula represents the culmination of all the previous work 
and can be applied to any fluid in any pipe operating under turbulent flow conditions. The later 
contributions of Moody, Ackers and Barr are mainly concerned with the practical application of 
the Colebrook–White equation.

There are three major concepts described in the table. These are

 1. The distinction between laminar and turbulent flow
 2. The distinction between rough and smooth pipes
 3. The distinction between artificially roughened pipes and commercial pipes

To understand these concepts, the best starting point is the contribution of Reynolds, 
 followed by the laminar flow equations, before proceeding to the more complex turbulent 
flow equations.

taBle 4.1 Chronological Development of Pipe Flow Theories

Date Name Contribution

1839–1841 Hagen and Poiseuille Laminar flow equation

1850 Darcy and Weisbach Turbulent flow equation

1884 Reynolds Distinction between laminar and turbulent flow 
– Reynolds number

1902 Hazen–Williams formula Empirical formula for flow of water in pipes

1913 Blasius Friction factor equation for smooth pipes

1914 Stanton and Pannell Experimental values of the friction factor for smooth 
pipes

1930 Nikuradse Experimental values of the friction factor for 
artificially rough pipes

1930s Prandtl and von Kármán Equations for rough and smooth friction factors

1937–1939 Colebrook and White Experimental values of the friction factor for 
commercial pipes and the transition formula

1944 Moody The Moody diagram for commercial pipes

1958 Ackers The Hydraulics Research Station Charts and Tables 
for the design of pipes and channels

1975 Barr Direct solution of the Colebrook–White equation
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4.2.1  laminar and turbulent Flow

Reynolds’ experiments demonstrated that there were two kinds of flow – laminar and turbulent – as 
described in Chapter 3. He found that transition from laminar to turbulent flow occurred at a criti-
cal velocity for a given pipe and fluid. Expressing his results in terms of the dimensionless parameter 
Re = ρDV/μ, he found that for Re less than about 2000 the flow was always laminar and that for Re 
greater than about 4000 the flow was always turbulent. For Re between 2000 and 4000, he found 
that the flow could be either laminar or turbulent and termed this the transition region.

In a further set of experiments, he found that for laminar flow the frictional head loss in a 
pipe was proportional to the velocity and that for turbulent flow the head loss was proportional 
to the square of the velocity.

These two results had been previously determined by Hagen and Poiseuille (hf ∝ V) and 
Darcy and Weisbach (hf ∝ V2), but it was Reynolds who put these equations in the context of 
laminar and turbulent flow.

4.3  FundaMental ConCePts oF PIPe FloW

4.3.1  Momentum equation

Before proceeding to derive the laminar and turbulent flow equations, it is instructive to con-
sider the momentum (or dynamic) equation of flow and the influence of the boundary layer.

Referring to Figure 4.2, showing an elemental annulus of fluid, thickness δr, length δl, in a pipe 
of radius R, the forces acting are the pressure forces, the shear forces and the weight of the fluid. 
The pressure forces act in the directions shown on the upstream and downstream sections of the 
annulus, which can be considered as a control volume (refer to Chapter 2). The shear forces are due 

τ2πrδlp2πrδr ρg2πrδrδl

δr

δl

r

R

z

Q

θ

(τ+—–δr)2π(r+δr)δldτ
dr ( p+—–δl)2πδrdp

dl

FIgure 4.2 Derivation of the momentum equation.
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to the velocity gradient across the pipe, the velocity being zero at the pipe wall and a maximum at 
the centre. The sum of the forces acting is equal to the rate of change of momentum. In this case the 
rate of change of momentum is zero, since the flow is steady and uniform. Hence, allowing for the 
pressure force to vary with distance along the pipe and the shear force to vary with the radius then
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Rearranging,
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At the centreline r = 0, and therefore constant = 0. Hence,
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 (4.1)

Equation 4.1 is the momentum equation for steady uniform flow in a pipe. It is equally appli-
cable to laminar or turbulent flow, and relates the shear stress τ at radius r to the rate of head 
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loss with distance along the pipe. If an expression for the shear force can be found in terms of 
the velocity at radius r, then the momentum equation may be used to relate the velocity (and 
hence discharge) to head loss.

In the case of laminar flow, this is a simple matter. However, for the case of turbulent flow it 
is more complicated, as will be seen in the following sections.

4.3.2  development of Boundary layers

Figure 4.3a shows the development of laminar flow in a pipe. At entry to the pipe, a laminar 
boundary layer begins to grow. However, the growth of the boundary layer is halted when it 
reaches the pipe centreline, and thereafter the flow consists entirely of a boundary layer of 
thickness r. The resulting velocity distribution is as shown in Figure 4.3a.

For the case of turbulent flow shown in Figure 4.3b, the growth of the boundary layer is not 
suppressed until it becomes a turbulent boundary layer with the accompanying laminar sub-
layer. The resulting velocity profile therefore differs considerably from the laminar case. The 
existence of the laminar sublayer is of prime importance in explaining the difference between 
smooth and rough pipes.

Expressions relating shear stress to velocity have been developed in Chapter 3, and these will 
be used in explaining the pipe flow equations in the following sections.

Boundary layer

(a)

Velocity
profile

u

Laminar sub-layer

Turbulent boundary layer
Laminar boundary layer(b)

Velocity
profile

u

FIgure 4.3 Boundary layers and velocity distributions: (a) laminar flow and (b) turbulent flow.
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4.4  laMInar FloW

For the case of laminar flow, Newton’s law of viscosity may be used to evaluate the shear stress 
(τ) in terms of velocity (u):

 
τ µ µ= = −d

d
d
d

u
y

u
r
r

where ur is the velocity at any radius r and the negative sign must be introduced as ur reduces 

with increasing r and thus 
d
d

isnegative
u
r
r , whereas 

d
d

ispositive
u
y

.

Substituting into the momentum equation (4.1),

 
τ µ= − = −d

d
d
d
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rr = 1
2µ

*

Integrating,
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rr = +1
4

2

µ
d
d

constant
*

At the pipe boundary, ur = 0 and r	=	R, hence

 
constant

d
d

= − 1
4

2

µ
p
l

R
*

and

 
u

p
l

R rr = − −1
4

2 2

µ
d
d

*
( )  (4.2)

Equation 4.2 represents a parabolic velocity distribution, as shown in Figure 4.3a. The discharge 
(Q) may be determined from (4.2). Returning to Figure 4.1 and considering the elemental dis-
charge (δQ) through the annulus, then

 δ π δQ r rur= 2

Integrating

 Q ru r
R

r= ∫2
0

π d
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Substituting for ur from (4.2) gives

 

Q
p
l

r R r r
R

= − −∫2
4

0

2 2π
µ

d
d

d
*

( )

or

 
Q
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R= − π
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*
 (4.3)

Also the mean velocity (V) may be obtained directly from Q:

 
V

A
p
l

R
R

= = −Q d
d

π
µ π8

14
2

*
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V
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l

R= − 1
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2

µ
d
d

*
 (4.4)

In practice, it is usual to express (4.4) in terms of frictional head loss by making the substitution

 
h

p
gf = − ∆ *

ρ

Equation 4.4 then becomes

 
V

h
L

g
D= 1

8 4

2

µ
ρf

or

 
h

LV
gDf = 32

2

µ
ρ

 (4.5)

This is the Hagen–Poiseuille equation, named after the two people who first (independently) 
carried out the experimental work leading to it.

The wall shear stress (τ0) may be related to the mean velocity (V) by eliminating dp*/dl from 
(4.1) and (4.4) to give

 
τ µ= 4

 2

Vr
R  (4.6)
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As τ = τ0 when r	=	R, then

 
τ µ

0 = 4 V
R  (4.7)

Equation 4.6 shows that (for a given V) the shear stress is proportional to r, and is zero at the 
pipe centreline, with a maximum value (τ0) at the pipe boundary.

Example 4.1: Laminar Pipe Flow

Oil flows through a 25 mm diameter pipe with a mean velocity of 0.3 m/s. Given that 
μ = 4.8 × 10−2 kg/m s and ρ = 800 kg/m3, calculate (a) the pressure drop in a 45 m length 
and (b) the maximum velocity, and the velocity 5 mm from the pipe wall.

Solution

First check that flow is laminar, i.e., Re < 2000.

 

Re / 8 25 3/4 8 1

125

= = × × ×

=

−ρ µDV 00 0 0 0 0 2. . .

 (a) To find the pressure drop, apply (4.5):

 

h LV gDf
2

2

32 /

32 4 8 1 45 3 / 8 9 81 25

4 228

=

= × × × × × ×

=

−

µ ρ

( . . ) ( . . )

.

0 0 00 0 02

mm of oil( )

  or Δp = −ρghf = −33.18 kN/m2. (Note: the negative sign indicates that pressure 
reduces in the direction of flow.)

 (b) To find the velocities, apply (4.2):

 
u

p
l

R rr = − −1
4

2 2

µ
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*
( )

  The maximum velocity (Umax) occurs at the pipe centreline, i.e., when r = 0, hence

 

Umax /
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=
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4 4 8 10
33 18 10
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0 025 2
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2
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2

.
.

( . )

. /

  (Note: Umax = 2 × mean velocity (compare (4.2) and (4.4).))
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  To find the velocity 5 mm from the pipe wall (U5), use (4.2) with r = (0.025/2) 
−0.005, i.e., r = 0.0075:

 

u5

384 m s

= −
× ×

× − × −

=

−
1

4 4 8 10
33 18 10
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0 0125 0 0075

0

2
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2 2

.
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. /

4.5  turBulent FloW

For turbulent flow, Newton’s viscosity law does not apply and, as described in Chapter 3, semi-
empirical relationships for τ0 were derived by Prandtl. Also, Reynolds’ experiments, and the ear-
lier ones of Darcy and Weisbach, indicated that head loss was proportional to the mean velocity 
squared. Using the momentum equation (4.1), then
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hence
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Assuming hf = KV2, based on the experimental results cited earlier, then
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2

2
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L
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R

or

 τ0 = K V1 2

(for hf = KV2).
Returning to the momentum equation and making the substitution τ0 = K1V2, then
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or

 
h

K LV
gDf = 4 1

2

ρ

Making the substitution λ = 8K1/ρ, then

 
h

LV
gDf = λ 2

2
 (4.8)

This is the Darcy–Weisbach equation, in which λ is called the pipe friction factor and is 
sometimes referred to as f (American practice) or 4f (early British practice). In current prac-
tice, λ is the normal usage and is found, for instance, in the Hydraulics Research Station 
charts and tables. It should be noted that λ is dimensionless, and may be used with any 
system of units.

The original investigators presumed that the friction factor was constant. This was subse-
quently found to be incorrect (as described in Section 3.6). Equations relating λ to both the 
Reynolds number and the pipe roughness were developed later. It may be noted here that the 
value of λ is quite variable, ranging from a minimum about 0.008 in a smooth pipe at high 
Reynolds number to about 0.08 for a very rough pipe for all turbulent Reynolds numbers.

4.5.1  smooth Pipes and the Blasius equation

Experimental investigations by Blasius and others early in the twentieth century led to the equation

 
λ = 0

0

.
.

316
Re 25  

(4.9)

The later experiments of Stanton and Pannel, using drawn brass tubes, confirmed the validity 
of the Blasius equation for Reynolds numbers up to 105. However, at higher values of Re the 
Blasius equation underestimated λ for these pipes. Before further progress could be made, the 
distinction between “smooth” and “rough” pipes had to be established.

4.5.2  artificially rough Pipes and nikuradse’s 
experimental results

Nikuradse made a major contribution to the theory of pipe flow by objectively differentiating 
between smooth and rough turbulence in pipes. He carried out a painstaking series of experi-
ments to determine both the friction factor and the velocity distributions at various Reynolds 
numbers up to 3 × 106. In these experiments, pipes were artificially roughened by sticking 
uniform sand grains on to smooth pipes. He defined the relative roughness (kS/D) as the ratio 
of the sand grain size to the pipe diameter. By using pipes of different diameter and sand grains 
of different size, he produced a set of experimental results of λ and Re for a range of relative 
roughness of 1/30 to 1/1014.



112 Principles and Basic Applications

He plotted his results as log λ against log Re for each value of KS/D, as shown in Figure 4.4. 
This figure shows that there are five regions of flow, as follows:

 1. Laminar	flow. The region in which the relative roughness has no influence on the fric-
tion factor. This was assumed in deriving the Hagen–Poiseuille equation (4.5). Equating 
this to the Darcy–Weisbach equation (4.8) gives

 

32
22

2µ
ρ

λVL
gD

LV
gD

=

  or

 
λ µ

ρ
= =64 64

DV Re
 (4.10)

  Hence, the Darcy–Weisbach equation may also be used for laminar flow, provided that 
λ is evaluated by (4.10).

 2. Transition	from	laminar	to	turbulent	flow. An unstable region between Re = 2000 and 
4000. Fortunately, pipe flow normally lies outside this region.

 3. Smooth	turbulence. The limiting line of turbulent flow, approached by all values of rela-
tive roughness as Re decreases.

 4. Transitional	 turbulence. The region in which λ varies with both Re and kS/D. The 
limit of this region varies with kS/D. In practice, most of pipe flow lies within this 
region.

 5. Rough	turbulence. The region in which λ remains constant for a given kS/D, and is inde-
pendent of Re.
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FIgure 4.4 Nikuradse’s experimental results.
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An explanation of why these five regions exist has already been given in Section 3.6. It may be 
summarised as follows:

Laminar	flow. Surface roughness has no influence on shear stress transmission.
Transitional	turbulence. The presence of the laminar sublayer “smooths” the effect of sur-

face roughness.
Rough	turbulence. The surface roughness is large enough to break up the laminar sublayer 

giving turbulence right across the pipe.

4.5.3  rough and smooth laws of von 
Kármán and Prandtl

The publication of Nikuradse’s experimental results (particularly his velocity distribution 
measurements) was used by von Kármán and Prandtl to supplement their own work on 
 turbulent boundary layers. By combining their theories of turbulent boundary layer flows 
with the experimental results, they derived the semi-empirical rough and smooth laws. 
These were

For smooth pipes

 

1
2

2 51λ
λ= log

Re
.

 (4.11)

For rough pipes

 

1
2

3 7
λ

= log
S

. D
k

 (4.12)

The smooth law is a better fit to the experimental data than the Blasius equation.

4.5.4  Colebrook–White transition Formula

The experimental work of Nikuradse and the theoretical work of von Kármán and Prandtl 
provided the framework for a theory of pipe friction. However, these results were not of direct 
use to engineers because they applied only to artificially roughened pipes. Commercial pipes 
have roughness which is uneven both in size and spacing, and do not, therefore, necessarily cor-
respond to the pipes used in Nikuradse’s experiments.

Colebrook and White made two major contributions to the development and application 
of pipe friction theory to engineering design. Initially, they carried out experiments to deter-
mine the effect of non-uniform roughness as found in commercial pipes. They discovered that 
in the turbulent transition region the λ–Re curves exhibited a gradual change from smooth 
to rough turbulence in contrast to Nikuradse’s “S”-shaped curves for uniform roughness, size 
and spacing. Colebrook then went on to determine the “effective roughness” size of many 
commercial pipes. He achieved this by studying published results of frictional head loss and 
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discharge for commercial pipes, ranging in size from 4 in. (101.6 mm) to 61 in. (1549.4 
mm), and for materials, including drawn brass, galvanised, cast and wrought iron, bitumen-
lined pipes and concrete-lined pipes. By comparing the friction factor of these pipes with 
Nikuradse’s results for uniform roughness size in the rough turbulent zone, he was able to 
determine an “effective roughness” size for the commercial pipes equivalent to Nikuradse’s 
results. He was thus able to publish a list of kS values applicable to commercial pipes.

A second contribution of Colebrook and White stemmed from their experimental results 
on non-uniform roughness. They combined the von Kármán–Prandtl rough and smooth laws 
in the form

 

1
2

3 7
2 51

λ λ
= − +





log
Re

Sk
D.

.
 (4.13)

This gave predicted results very close to the observed transitional behaviour of commercial 
pipes, and is known as the Colebrook–White transition formula. It is applicable to the whole 
of the turbulent region for commercial pipes using an effective roughness value determined 
experimentally for each type of pipe.

4.5.5  Practical application of the Colebrook–White 
transition Formula

Equation 4.13 was not at first used very widely by engineers, mainly because it was not expressed 
directly in terms of the standard engineering variables of diameter, discharge and hydraulic 
gradient. In addition, the equation is implicit and requires a trial-and-error solution. In the 
1940s, slide-rules and logarithm tables were the main computational aids of the engineer, since 
pocket calculators and computers were not then available. So these objections to the use of the 
Colebrook–White equation were not unreasonable.

The first attempt to make engineering calculations easier was made by Moody. He produced 
a λ–Re plot based on (4.13) for commercial pipes, as shown in Figure 4.5 which is now known 
as the Moody diagram. He also presented an explicit formula for λ:

 

λ = + +


















0 0055 1
20 000 106 1 3

.
/

Re
Sk

D
 (4.14)

which gives λ correct to ±5% for 4 × 103 < Re < 1 × 107 and for kS/D < 0.01.
In a more recent publication, Barr (1975) gives another explicit formulation for λ:

 

1
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3 7
5 1286

0 89λ
= − +





log
Re

Sk
D.

.
.  (4.15)

In this formula the smooth law component ( . )2 51/Re λ  has been replaced by an approximation 
(5.1286/Re0.89). For Re > 105 this provides a solution for Sf (= hf/L) to an accuracy better than ±1%.
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However, the basic engineering objections to the use of the Colebrook–White equation were 
not overcome until the publication of Charts	for	the	Hydraulic	Design	of	Channels	and	Pipes in 
1958 by the Hydraulics Research Station. In this publication, the three dependent engineering 
variables (Q, D and Sf) were presented in the form of a series of charts for various kS values, as 
shown in Figure 4.6. Additional information regarding suitable design values for kS and other 
matters was also included. Table 4.2 lists typical values for various materials.

These charts are based on the combination of the Colebrook–White equation (4.13) with the 
Darcy–Weisbach formula (4.8), to give
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where Sf = hf/L, the hydraulic gradient. (Note: for further details concerning the hydraulic gradi-
ent refer to Chapter 12.) In this equation the velocity (and hence discharge) can be computed 
directly for a known diameter and frictional head loss.

Subsequently, the Hydraulics Research Station also produced Tables	for	the	Hydraulic	Design	
of	Pipes. These tables are currently published by HR Wallingford, the successor to the Hydraulics 
Research Station.

In practice, any two of the three variables (Q, D and Sf) may be known, and therefore the 
most appropriate solution technique depends on circumstances. For instance, in the case of an 
existing pipeline, the diameter and available head are known and hence the discharge may be 
found directly from (4.16). For the case of a new installation, the available head and required 
discharge are known and the requisite diameter must be found. This will involve a trial-and-
error procedure unless the HRS charts or tables are used. Finally, in the case of analysis of pipe 
networks, the required discharges and pipe diameters are known and the head loss must be com-
puted. This problem may be most easily solved using an explicit formula for λ or the HRS charts.

Examples illustrating the application of the various methods to the solution of a simple pipe 
friction problem now follow.

Example 4.2: Estimation of Discharge Given Diameter and Head Loss

A pipeline 10 km long, 300 mm in diameter and with roughness size 0.03 mm, conveys 
water from a reservoir (top water level 850 m above datum) to a water treatment plant 
(inlet water level 700 m above datum). Assuming that the reservoir remains full, estimate 
the discharge, using the following methods:

 (a) The Colebrook–White formula
 (b) The Moody diagram
 (c) The HRS charts

Note: Assume ν = 1.13 × 10−6 m2/s.

taBle 4.2 Typical kS Values

Pipe Material kS (mm)

Brass, copper, glass, perspex 0.003

Asbestos cement 0.03

Wrought iron 0.06

Galvanised iron 0.15

Plastic 0.03

Bitumen-lined ductile iron 0.03

Spun concrete lined ductile iron 0.03

Slimed concrete sewer 6.0
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Solution

 (a) Using (4.16),

 D k= =0 0 0. .3 m 3 mmS

 Sf 85 7 /1  15= − =( ) .0 00 0 000 0 0

  hence
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4
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2
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π

m /s

 (b) The same solution should be obtainable using the Moody diagram; however, it 
is less accurate since it involves interpolation from a graph. The solution method is 
as follows:

 (1) Calculate kS/D
 (2) Guess a value for V
 (3) Calculate Re
 (4) Estimate λ using the Moody diagram
 (5) Calculate hf

 (6) Compare hf with the available head (H)
 (7) If H	≠ hf, then repeat from step 2

  This is a tedious solution technique, but it shows why the HRS charts were produced!

 (1) kS/D = 0.03 × 10−3/0.3 = 0.0001.
 (2) As the solution for V has already been found in part (a) take V = 2.5 m/s.
 (3)

 

Re

664 1 6

= = ×
×

= ×

−
DV
v

0 3 2 5
1 13 10

0 0

6

. .
.

.

 (4) Referring to Figure 4.5, Re = 0.664 × 106 and kS/D = 0.0001 confirms that 
the flow is in the transitional turbulent region. Following the kS/D curve until 
it intersects with Re yields

 λ � 0 0. 14

  (Note: Interpolation is difficult due to the logarithmic scale.)
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 (5) Using (4.8),

 

h
LV
gD gf

148 7 m

= = × ×
×

=

λ 2 4 2

2
0 014 10 2 5

2 0 3
. .

.

.

 (6) H = (850 − 700) = 150 ≠ 148.7.
 (7) A better guess for V is obtained by increasing V slightly. This will not signifi-

cantly alter λ, but will increase hf. In this instance, convergence to the solu-
tion is rapid because the correct solution for V was assumed initially!

 (c) If the HRS chart shown in Figure 4.6 is used, then the solution of the equation 
lies at the intersection of the hydraulic gradient line (sloping downwards right to 
left) with the diameter (vertical), reading off the corresponding discharge (line 
sloping downwards left to right).

	 	 Sf = 0.015 100Sf = 1.5
  and D = 300 mm
  giving Q = 180 L/s = 0.18 m3/s

Example 4.3: Estimation of Pipe Diameter Given Discharge and Head

A discharge of 400 L/s is to be conveyed from a headworks at 1050 m above datum to 
a treatment plant at 1000 m above datum. The pipeline length is 5 km. Estimate the 
required diameter, assuming that kS = 0.03 mm.

Solution

This requires an iterative solution if methods (a) or (b) of the previous example are used. 
However, a direct solution can be obtained using the HRS charts.

Sf = 50/5000 100Sf = 1
and Q = 400 L/s
giving D = 440 mm

In practice, the nearest (larger) available diameter would be used (450 mm in this case).

Example 4.4: Estimation of Head Loss Given Discharge and Diameter

The known outflow from a branch of a distribution system is 30 L/s. The pipe diameter 
is 150 mm, length 500 m and roughness coefficient estimated at 0.06 mm. Find the head 
loss in the pipe, using the explicit formulae of Moody and Barr.

Solution

Again, the HRS charts could be used directly. However, if the analysis is being carried out 
by computer, solution is more efficient using an equation.

 Q D= =0 0 0. .3 m /s 15 m3
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 V = 17 m/s.

 Re 15 17/113 1= × × −0 0 6. . .

 Re 226 1 6= ×0 0.

Using the Moody formula (4.14),
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Using the Barr formula (4.15),
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The accuracy of these formulae may be compared by substituting in the Colebrook–White 
equation (4.13) as follows:

λ 1/ λ − +






=2
3 7

2 51l g
Re

So 1k
D.

.
λ λ

0.0182 7.415 7.441

This confirms that both formulae are reasonably accurate in this case.
The head loss may now be computed using the Darcy–Weisbach formula (4.8):
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4.5.6  Hazen–Williams Formula

The emphasis here has been placed on the development and use of the Colebrook–White tran-
sition formula. Using the charts or tables it is simple to apply to single pipelines. However, 
for pipes in series or parallel or for the more general case of pipe networks it rapidly becomes 
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impossible to use for hand calculations. For this reason, simpler empirical formulae are still in 
common use. Perhaps the most notable is the Hazen–Williams formula, which takes the form

 
V CD
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or, alternatively,
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where C is a coefficient. The value of C varies from about 70 to 150, depending on pipe diam-
eter, material and age.

This formula gives reasonably accurate results over the range of Re commonly found in water 
distribution systems, and because the value of C is assumed to be constant, it can be easily 
used for hand calculation. In reality, C should change with Re, and caution should be exercised 
in its use. An interesting problem is to compare the predicted discharges as calculated by the 
Colebrook–White equation and by the Hazen–Williams formula over a large range of Re for a 
given pipe. The use of a computer is recommended for this exercise.

4.6  loCal Head losses

Head losses, in addition to those due to friction, are always incurred at pipe bends, junctions, 
valves, etc. These additional losses are due to eddy formation generated in the fluid at the fitting, 
and, for completeness, they must be taken into account. In the case of long pipelines (e.g., sev-
eral kilometres) the local losses may be negligible, but for short pipelines, they may be greater 
than the frictional losses. Local head losses are often termed minor head losses, but here local 
head losses is the preferred term, as they are not always minor.

A general theoretical treatment for local head losses is not available. It is usual to assume 
rough turbulence and this leads to the simple equation

 
h

k V
g

L
L

2

2
=

 
(4.17)

where
hL is the local head loss
kL is a constant for a particular fitting

For the particular case of a sudden enlargement (for instance, exit from a pipe to a tank) an 
expression may be derived for kL in terms of the area of the pipe. This result may be extended 
to the case of a sudden contraction (for instance, entry to a pipe from a tank). For all other cases 
(e.g., bends, valves, junctions and bellmouths), values for kL must be derived experimentally.

Figure 4.7a shows the case of a sudden enlargement. From position (1) to (2) the velocity 
decreases and therefore the pressure increases. At position (1′) turbulent eddies are formed, 
which gives rise to a local energy loss. As the pressure cannot change instantaneously at the 
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sudden enlargement, it is usually assumed that at position (1′) the pressure is the same as at 
position (1). Applying the momentum equation between (1) and (2),

 p A p A Q V V1 2 2 2 2 1− = −ρ ( )

The continuity equation (Q	=	A2V2) is now used to eliminate Q, so, with some rearrangement,

 

p p
pg

V
g

V V2 1 2
1 2

− = −( )  (4.17a)

The local head loss may now be found by applying the energy equation from (1) to (2):
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FIgure 4.7 Local head loss: (a) at a sudden enlargement and (b) at a sudden contraction.
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or
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If (a) and (b) are combined and rearranged,
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The continuity equation may now be used again to express the result in terms of the two areas. 
Hence, substituting V1A1/A2 for V2
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Equation 4.18 relates hL to the areas and the upstream velocity. Comparing this equation with 
(4.17) yields
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For the case of a pipe discharging into a tank, A2 is much greater than A1, and hence kL = 1. 
In other words, for a sudden large expansion, the head loss equals the velocity head before 
expansion.

Figure 4.7b shows the case of a sudden contraction. From position (1) to (1′) the flow con-
tracts, forming a vena contracta. Experiments indicate that the contraction of the flow area is 
generally about 40%. If the energy loss from (1) to (1′) is assumed to be negligible, then the 
remaining head loss occurs in the expansion from (1′) to (2). Since an expansion loss gave rise 
to (4.18), that equation may now be applied here. As

 A A′1 20 6� .

then
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or

 
h
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g

L = 0 44
2

2
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(4.19)

i.e., kL = 0.44.
Typical kL values for other important local losses (bends, tees, bellmouths and valves) are 

given in Table 4.3.

Example 4.5:  Discharge Calculation for a Simple Pipe 
System Including Local Losses

Solve Example 4.2 allowing for local head losses incurred by the following items:

20 90° bends

2 gate valves

1 bellmouth entry

1 bellmouth exit

Solution

The available static head (150 m) is dissipated both by friction and local head losses. 
Hence,

 H h h= +f L

taBle 4.3 Local Head Loss Coefficients

kL Value

Item
Theoretical or 
Experimental Design Practice Comments

Bellmouth entrance 0.05 0.10 V = velocity in pipe

Exit 0.2 0.5

90° bend 0.4 0.5

90° tees

In-line flow 0.35 0.4 (for equal diameters)

Branch to line 1.20 1.5 (for equal diameters)

Gate valve (open) 0.12 0.25
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Using Table 4.3,

 

h V g

V g

L
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2 5 2 25 1 5 /2

111 2

= × + × + +[ ]
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( . ) ( . ) . .

. /

0 0 0 0 0

Using the Colebrook–White formula (as in Example 4.2) now requires an iterative solu-
tion, since hf is initially unknown. A solution procedure is as follows:

 (1) Assume hf ≃ H (i.e., ignore hL)
 (2) Calculate V
 (3) Calculate hL using V
 (4) Calculate hf + hL

 (5) If hf + hL ≠ H, set hf = H − hL and return to (2)

Using Example 4.2, an initial solution for V has already been found, i.e.,

 V = 2 514 m/s.

Hence,

 h gL
2111 2 514 /2 3 58m= × =. . .

Adjust h,

 hf 15 3 58 146 42 m= − =0 . .

Hence,

 Sf 146 42/1 1464= =. , .0 000 0 0

Substitute in (4.16),

 

V g= − × × ×
×

+ × ×− −

2 2 0 3 0 01464
0 03 10
3 7 0 15

2 51 1 13 10
0 3 2

3 6

. .
.
. .

. .
.

log
gg × ×











=

0 3 0 01464. .

.2 386 m/s

Recalculate hL,

 h gL
2111 2 386 /2 3 22= × =. . .
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Check

 h hL f 146 42 3 22 149 64 15+ = + =. . . � 0

This is sufficiently accurate to be acceptable.

Hence,

 Q = × × =2 386 3 /4 17 m /s2 3. . .π 0 0

Note: Ignoring hL gives Q = 0.18 m3/s.

4.7  PartIally Full PIPes

Pipe systems for surface water drainage and sewerage are normally designed to flow full, but not 
under pressure. This contrasts with water mains, which are normally full and under pressure. 
The Colebrook–White equation may be used for drainage pipes by noting that, because the pipe 
flow is not pressurised, the water surface is parallel to the pipe invert (for uniform flow), so the 
hydraulic gradient equals the pipe gradient:

 

h
L

Sf = 0

where S0 is the pipe gradient.
Additionally, an estimate of the discharge and velocity for the partially full condition is 

required. This enables the engineer to check if self-cleansing velocities are maintained at the min-
imum discharge. Self-cleansing velocities are of crucial importance in the design of surface water 
drainage and sewerage networks, where the flow may contain a considerable suspended solids 
load. A self-cleansing velocity of 0.75 m/s is commonly assumed for drainage and sewerage design.

A free surface flow has one more variable than full pipe flow, namely the height of the free 
surface. This can introduce considerable complexity (refer to Chapter 5). However, for the case 
of circular conduits, the Colebrook–White equation may be modified to provide a solution.

Starting from the assumption that the friction factor for the partially full condition behaves 
similarly to that for the full condition, it remains to find a parameter for the partially full pipe which 
is equivalent to the diameter for the full pipe case. The hydraulic radius R is such a parameter:

 
R

A
P

=

where
A is the water cross-sectional area
P is the wetted perimeter

For a pipe flowing full,
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or

 4R D=

Hence, the Colebrook–White transition law applied to partially full pipes becomes
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where Re = 4RV/ν.
Figure 4.8 shows a pipe with partially full flow (at a depth d). Starting from the Darcy–

Weisbach equation (4.8) and replacing hf/L by S0 gives
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λ

Hence, for a given pipe with partially full flow,
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Forming the ratio Vd/VD = Vp gives
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(4.21)

d
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φ

FIgure 4.8 Pipe running partially full.
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where the subscripts p, D and d refer, respectively, to the proportional value, the full depth (D) 
and the partially full depth (d). Similarly,
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(4.22)

For a circular pipe,
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Substitution of (4.23) and (4.24) into (4.21) and (4.22) allows calculation of the proportional 
velocity and discharge for any proportional depth (d/D). The expression for λ (Equation 4.20) 
is, however, rather awkward to manipulate. Consider first the case of rough turbulence. Then,
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This may be expressed by its equivalent:
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as
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Equation 4.25 may be substituted into (4.21) and (4.22) to yield
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The equivalent expressions for the transition region (as derived in Hydraulics Research Paper 
No. 2, published in 1959) are
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These results for θ = 1000 are plotted in Figure 4.9. Tabulated values for various θ may be found 
in HR Wallingford (2006). Neither Vp nor Qp are very sensitive to θ.

It has already been said that pipe systems for surface water drainage and sewerage are 
 normally designed to flow full, but not under pressure. However, Figure 4.9 shows that the dis-
charge in a partially full pipe may be greater than the discharge for a full pipe. This is because 
the wetted perimeter reduces rapidly immediately the pipe ceases to be full whereas the area 
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does not, with a consequent increase in velocity. This condition is usually ignored for design 
purposes, because if the pipe runs full at any section (e.g., due to wave action or unsteady con-
ditions), then the discharge will rapidly reduce to the full pipe condition and cause a “backing 
up” of the flow upstream.

Example 4.6: Hydraulic Design of a Sewer

A sewerage pipe is to be laid at a gradient of 1 in 300. The design maximum discharge is 
75 L/s and the design minimum flow is estimated to be 10 L/s. Determine the required 
pipe diameter to both carry the maximum discharge and maintain a self-cleansing veloc-
ity of 0.75 m/s at the minimum discharge.

Solution

The easiest way to solve this problem is to use the HR Wallingford design charts or tables. 
For a sewer, kS = 6.00 mm (Table 4.2). However, to illustrate the solution, Figure 4.6 is 
used (for which kS = 0.03 mm):

 Q = 75L/s

 1 / 1 /3 333f00 00 00 0h L = = .

Using Figure 4.6

 D V= =3  mm and 1 6 m/s00 0.
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Qd/QD and Vd/VD
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FIgure 4.9 Proportional discharge and velocity for pipes flowing partially full (with θ = 1000).
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Next check the velocity for Q = 10 L/s

 Qp 1 /75 133= =0 0.

Using Figure 4.9 (neglecting the effect of θ),

 d D Q/ 25 for 133p= =0 0. .

Hence Vp = 0.72 and

 Vd 72 1 6 76 m/s= × =0 0 0. . .

This value exceeds the self-cleansing velocity, and hence the solution is D = 300 mm. In 
cases where the self-cleansing velocity is not maintained, it is necessary to increase the 
diameter or the pipe gradient.

Note: The solution using kS = 6 mm and accounting for θ gives the following values:

D = 375 mm for Q = 81 L/s and V = 0.73 m/s
θ = 45
Qp = 10/81 = 0.123
d/D = 0.024
Vp = 0.67 m/s
Vd = 0.49 m/s

Hence, it would be necessary to increase D or S0. In this case, increasing S0 would be pref-
erable, but this is often not possible because of topographical constraints.

4.8  suMMary

This chapter has summarised the historical development of pipe flow theories and detailed 
the derivations of the resulting equations for both pressurised and non-pressurised pipe flow. 
Methods for the solution of these equations have also been presented for the most common 
design problems. One good source of further reading may be found in Webber (2007).

ProBleMs For solutIon

4.1 Find the maximum discharge in a 12 mm diameter domestic plumbing system for which 
the flow is laminar. For this discharge find the head loss per metre run, the maximum veloc-
ity and the friction factor. Take μ = 1.14 × 10−3 kg/ms.

[Q = 0.0215 L/s, hf = 4.9 mm/m, Vmax = 0.38 m/s, λ = 0.032]
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4.2 Write an essay describing the historical development of turbulent pipe flow theory. The 
essay should include the contributions of all those named in Table 4.1, and should both 
describe their work and explain its relevance to current practice.

4.3 Write a computer program which will calculate the necessary data to reproduce the Moody 
diagram. The program calculations should be based on the Colebrook–White transition 
equation.

4.4 Write a computer program to calculate the discharge in a simple pipe system including local 
losses. Hence, or otherwise, find the discharge for the following two cases:
(a) Pipe length = 10,000 m

Pipe diameter = 500 mm
Pipe roughness (kS) = 0.03 mm
Static head = 150 m
Local loss coefficient (kL) = 0

(b) Pipe length = 50 m
Pipe diameter = 300 mm
Pipe roughness (kS) = 0.6 mm
Static head = 10 m
Local loss coefficient (kL) = 10
Take μ = 1.14 × 10−3 kg/ms.

[(a) Q = 0.68 m3/s, (b) Q = 0.265 m3/s]
4.5 Water flows vertically down a pipe of diameter 150 mm at 2.4 m/s. The pipe suddenly 

enlarges to 300 mm diameter. Find the local head loss. If the flow is reversed and the coef-
ficient of contraction is 0.62, find the new local head loss.

[hL = 0.165 m, hL = 0.11 m]
4.6 A sewer of diameter 1200 mm is laid to a gradient of 1 m in 100 m. Using the HRS tables 

or charts with kS = 0.6 mm find:
(a) The full bore discharge and velocity
(b) The flow depth and velocity for Q = 0.5 m3/s
Why might this pipe size be considered unsuitable?

[(a) Q = 4.5 m3/s, V = 3.75 m/s; (b) d = 0.28 m, V = 2.5 m/s]
4.7 A concrete pipe 750 mm in diameter is laid to a gradient of 1 in 200. The estimated value of 

Manning’s n is 0.012, and the pipe-full discharge is estimated to be 0.85 m3/s. (a) Calculate 
the discharge for a proportional depth of 0.9 using Manning’s equation. (b) Explain why 
the discharge in (a) is greater than the pipe-full discharge.

[Q = 0.91 m3/s]
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Chapter 5

open Channel Flow

5.1 FloW WItH a Free surFaCe

Open channel flow is characterised by the existence of a free surface (the water surface). In 
contrast to pipe flow, this constitutes a boundary at which the pressure is atmospheric and 
across which the shear forces are negligible. The longitudinal profile of the free surface defines 
the hydraulic gradient and determines the cross-sectional area of flow, as shown in Figure 5.1. 
It also necessitates the introduction of a new variable—the stage (see Figure 5.1)—to define the 
position of the free surface at any point in the channel.

In consequence, problems in open channel flow are more complex than those of pipe flow, 
and the solutions are more varied, making the study of such problems both interesting and chal-
lenging. In this chapter, the basic concepts are introduced and a variety of common engineering 
applications are discussed.

By	the	end	of	this	chapter	you	should

 ◾ Have an appreciation of flow classification and the properties of natural and artificial 
channels

 ◾ Understand the fundamental concepts involved in the study of uniform flow, rapidly 
varied flow, gradually varied flow and unsteady flow, including energy and momentum 
concepts, the significance of the Froude number and the theory underlining critical 
depth meters

 ◾ Have knowledge of and be able to apply the equations for uniform flow, rapidly varied 
flow, gradually varied flow and critical depth meters to solve typical problems

This chapter also provides the background knowledge required for the study of some aspects of 
hydraulic structures presented in Chapter 13, computational modelling discussed in Chapter 14 
and for river and canal engineering discussed in Chapter 15.
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5.2 FloW ClassIFICatIon

The fundamental types of flow have already been discussed in Chapter 2. However, it is appro-
priate here to expand those descriptions as applied to open channels. Recalling that flow may 
be steady or unsteady and uniform or nonuniform, the major classifications applied to open 
channels are as follows:

Steady	uniform	flow, in which the depth is constant, both with time and distance. This consti-
tutes the fundamental type of flow in an open channel in which the gravity forces are in equi-
librium with the resistance forces. It is considered in Section 5.6.

Steady	non-uniform	flow, in which the depth varies with distance, but not with time. The flow 
may be either (a) gradually varied or (b) rapidly varied. Type (a) requires the joint application of 
energy and frictional resistance equations and is considered in Section 5.10. Type (b) requires 
the application of the conservation equation and either energy or momentum principles and is 
considered in Sections 5.7 and 5.8.

Unsteady	flow, in which the depth varies with both time and distance (unsteady uniform flow 
is very rare). This is the most complex flow type, requiring the solution of conservation, energy, 
momentum and friction equations through time. It is considered in Section 5.11.

The various flow types are all shown in Figure 5.2.

5.3  natural and artIFICIal CHannels 
and tHeIr ProPertIes

Artificial channels comprise all man-made channels, including irrigation and navigation canals, 
spillway channels, sewers, culverts and drainage ditches. They are normally of regular cross-
sectional shape and bed slope, and as such are examples of prismatic channels (which do not 

Hydraulic gradient
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water surface level
and channel shape

Water surface
and hydraulic
gradient

Energy gradient
A
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A

A(a)

(b)

Q

Q

FIgure 5.1 Comparison between (a) pipe flow and (b) open channel flow.
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change their cross section in the streamwise direction). Their construction materials are varied, 
but commonly used materials include concrete, steel and earth. The surface roughness charac-
teristics of these materials are normally well defined within engineering tolerances. In conse-
quence, the application of hydraulic theories to flow in artificial channels will normally yield 
reasonably accurate results.

In contrast, natural channels are normally very irregular in shape, and their materials 
are diverse. The surface roughness of natural channels changes with time, distance and 
water surface elevation. Therefore, it is more difficult to apply hydraulic theory to natural 
channels and obtain satisfactory results. Many applications involve man-made alterations 
to natural channels (e.g., river control structures and flood alleviation measures). Such 
applications require an understanding not only of hydraulic theory but also of the associ-
ated disciplines of sediment transport, hydrology and river morphology (refer to Chapters 
9, 10 and 15).

Various geometric properties of natural and artificial channels need to be determined for 
hydraulic purposes. In the case of artificial channels, these may all be expressed algebraically in 
terms of the depth (y), as shown in Table 5.1. This is not possible for natural channels, so graphs 
or tables relating them to stage (h) must be used.

Constant depth

Steady uniform ow

GVF GVF
GVF GVF GVFRVF RVF RVF

Steady varied ow
RVF rapidly varied ow
GVF gradually varied ow

Flood wave (GVF) Bore (RVF)Unsteady ow

RVF

Unsteady uniform ow

Varying depth

FIgure 5.2 Types of flow.
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The commonly used geometric properties are shown in Figure 5.3 and defined as follows:

Depth (y)—the vertical distance of the lowest point of a channel section from the free surface
Stage (h)—the vertical distance of the free surface from an arbitrary datum
Area (A)—the cross-sectional area of flow normal to the direction of flow
Wetted	perimeter (P)—the length of the wetted surface measured normal to the direction 

of flow
Surface	width (B)—the width of the channel section at the free surface
Hydraulic	radius (R)—the ratio of area to wetted perimeter (A/P)
Hydraulic	mean	depth (Dm)—the ratio of area to surface width (A/B)

A

A

y

B

A

P

h

FIgure 5.3 Definition sketch of geometric channel properties.

taBle 5.1 Geometric Properties of Some Common Prismatic Channels
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5.4  veloCIty dIstrIButIons, energy 
and MoMentuM CoeFFICIents

The point velocity in an open channel varies continuously across the cross section because of 
friction along the boundary. However, the velocity distribution is not axisymmetric (as in pipe 
flow) due to the presence of the free surface. One might expect to find the maximum veloc-
ity at the free surface, where the shear stress is negligible, but the maximum velocity normally 
occurs below the free surface. Typical velocity distributions are shown in Figure 5.4 for various 
channel shapes.

The depression of the point of maximum velocity below the free surface may be explained 
by the presence of secondary currents which circulate from the boundaries towards the chan-
nel centre. Detailed experiments on velocity distributions have demonstrated the existence 
of such secondary currents and recent theoretical studies concerning three-dimensional 
 turbulence have illuminated the mechanisms for their existence (refer to Section 15.7 for 
further details).

The energy and momentum coefficients (α and β) defined in Chapter 2 can only be evalu-
ated for a channel if the velocity distribution has been measured. This contrasts with pipe 
flow, where theoretical velocity distributions for laminar and turbulent flow have been derived, 
which enable direct integration of the defining equations to be made.

For turbulent flow in regular channels, α rarely exceeds 1.15 and β rarely exceeds 1.05. In 
consequence, these coefficients are normally assumed to be unity. However, in irregular chan-
nels where the flow may divide into distinct regions, α may exceed 2 and should therefore be 
included in flow computations. Referring to Figure 5.5, which shows a natural channel with two 
flood banks, the flow may be divided into three regions. By making the assumption that α = 1 
for each region, the value of α for the whole channel may be found as follows:

 α = = + +
+ +

∫u A

V A
V A V A V A

V A A A

3

3
1
3

1 2
3

2 3
3

3
3

1 2 3

d

( )
 (5.1)
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FIgure 5.4 Velocity distributions in open channels. (Note: Contour numbers are expressed as a percentage of 
the maximum velocity.)
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where
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1 2 3  

Further details are provided in Section 5.6 under channel conveyance.

5.5 laMInar and turBulent FloW

In Section 5.2, the state of flow was not discussed. It may be either laminar or turbulent, as 
in pipe flow. The criterion for determining whether the flow is laminar or turbulent is the 
Reynolds number (Re), which was introduced in Chapters 3 and 4:

 

For pipe flow Re = ρDV/μ

For laminar pipe flow Re < 2000

For turbulent pipe flow Re > 4000  

(3.2)

These results can be applied to open channel flow if a suitable form of the Reynolds number 
can be found. This requires that the characteristic length dimension, the diameter (for pipes), 
be replaced by an equivalent characteristic length for channels. The one adopted is termed the 
hydraulic radius (R) as defined in Section 5.3.

Hence, the Reynolds number for channels may be written as

 
Re channel( ) = ρ

µ
RV

 (5.2)

For a pipe flowing full, R	=	D/4, so

 
Re

Re
4channel
pipe

( )
( )=

and for laminar channel flow

Re 5channel( ) < 00

1
3 2

FIgure 5.5 Division of a channel into a main channel and flood banks.
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and for turbulent channel flow

Re 1channel( ) > 000

In practice, the upper limit of Re is not so well defined for channels as it is for pipes and is nor-
mally taken to be 2000.

In Chapter 4, the Darcy–Weisbach formula for pipe friction was introduced, and the relation-
ship between laminar, transitional and turbulent flow was depicted on the Moody diagram. 
A similar diagram for channels has been developed. Starting from the Darcy–Weisbach formula,

 
h

LV
gDf 2

= λ 2

 
(4.8)

and making the substitutions R	=	D/4 and hf/L	=	S0 (where S0 = bed slope), then for uniform 
flow in an open channel

S
V
g R

0

2

2 4
= λ

or

 
λ = 8g

2

RS
V

0

 
(5.3)

The λ–Re relationship for pipes is given by the Colebrook–White transition law and by substi-
tuting R	=	D/4 the equivalent formula for channels is

 

1
2

14 8
0 6275

λ λ
= − +





log
Re

Sk
R.

.

 
(5.4a)

Also, combining (5.4a) with (5.3) yields

 
V gRS

k
R R gRS

= − +








2 8

14 8
0 6275

8
0

0

log S

.
. ν

 
(5.4b)

A λ–Re diagram for channels may be derived using (5.4a) and channel velocities may be found 
directly from (5.4b). However, the application of these equations to a particular channel is more 
complex than the pipe case due to the extra variables involved (i.e., for channels, R changes with 
depth and channel shape). In addition, the validity of this approach is questionable because the 
presence of the free surface has a considerable effect on the velocity distributions, as previously 
discussed. Hence, the frictional resistance is nonuniformly distributed around the boundary, in 
contrast to pressurised pipe flow, where the frictional resistance is uniformly distributed around 
the pipe wall.

In practice, the flow in open channels is normally in the rough turbulent zone, and conse-
quently it is possible to use simpler formulae to relate frictional losses to velocity and channel 
shape, as discussed in the next section.
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5.6 unIForM FloW

5.6.1 development of Friction Formulae

Historically, the development of uniform flow resistance equations preceded the detailed inves-
tigations of pipe flow resistance. These developments are outlined later, and comparisons are 
made with pipe flow theory.

For uniform flow to occur, the gravity forces must exactly balance the frictional resistance 
forces which constitute the boundary shear force. Figure 5.6 shows a small longitudinal section 
in which uniform flow exists.

The gravity force resolved in the direction of flow = ρgAL sin θ and the shear force resolved 
in the direction of flow = τ0PL, where τ0 is the mean boundary shear stress. Hence,

τ ρ θ0PL AL= g sin 

Considering channels of small slope only, then

sin tanθ θ� = S0

hence,

τ ρ
0

0= gAS
P

or

 τ ρ0 0= gRS  (5.5)

5.6.2 Chézy equation

To interpret (5.5), an estimate of the magnitude of τ0 is required. Assuming a state of rough 
turbulent flow, then

τ α τ0
2

0
2V KVor =

ρgALV

L

θ

τ0

FIgure 5.6 Derivation of uniform flow equations.
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Substituting into (5.5) for τ0,

V
g

K
RS= ρ

0

which may be written as

 V RS= C 0  (5.6)

This is known as the Chézy equation. It is named after the French engineer who developed the 
formula when designing a canal for the Paris water supply in 1768. The Chézy coefficient C is 
not, in fact, constant but depends on the Reynolds number and boundary roughness, as can be 
readily appreciated from the previous discussions of the λ–Re diagram. A direct comparison 
between C and λ can be found by substituting (5.6) into (5.3) to yield

C g= 8 /λ

In 1869, an elaborate formula for Chézy’s C was published by two Swiss engineers: Ganguillet 
and Kutter. It was based on actual discharge data from the River Mississippi and a wide range of 
natural and artificial channels in Europe. The formula (in metric units) is

 
C = + +

+ +



0 552
41 6 1 811 0 00281

1 41 65 0 000281
0

0

.
. . .

[ . ( . )]
/ /

/ /
n S

S n R

  

(5.7)

where n is a coefficient known as Kutter’s n and is dependent solely on the boundary roughness.

5.6.3 Manning equation

In 1889, the Irish engineer Robert Manning presented another formula (at a meeting of the 
Institution of Civil Engineers of Ireland) for the evaluation of the Chézy coefficient, which was 
later simplified to

 
C = R

n

1 6/

 
(5.8)

This formula was developed from seven different formulae and was further verified by 170 
observations. Other research workers in the field derived similar formulae independently of 
Manning, including Hagen in 1876, Gauckler in 1868 and Strickler in 1923. In consequence, 
there is some confusion as to whom the equation should be attributed to, but it is generally 
known as the Manning equation.

Substitution of (5.8) into (5.6) yields

V
n

R S= 





1 2 3
0
1 2/ /
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and the equivalent formula for discharge is

 
Q = 1 5 3

2 3 0
1 2

n
A
P

S
/

/
/

 
(5.9)

where n is a constant known as Manning’s n (it is numerically equivalent to Kutter’s n). It should 
be noted that n is taken to be a constant, independent of units. However, in Manning’s equation, 
it can be seen to have dimensions of TL1/3. In practice, therefore, it is necessary to take note 
that if the lengths are measured in feet then the equation for velocity needs to be multiplied by 
1.486 (see ven te Chow [1959] for more details).

Manning’s equation has the twin attributes of simplicity and accuracy. It provides reasonably 
accurate results for a large range of natural and artificial channels, given that the flow is in the 
rough turbulent zone and that an accurate assessment of Manning’s n has been made. It has been 
widely adopted for use by engineers throughout the world.

5.6.4 evaluation of Manning’s n

The value of the roughness coefficient n determines the frictional resistance of a given channel. 
It can be evaluated directly by discharge and stage measurements for a known cross section and 
slope. However, for design purposes, this information is rarely available, and it is necessary to 
rely on documented values obtained from similar channels.

For the case of artificially lined channels, n may be estimated with reasonable accuracy. 
For natural channels, the estimates are likely to be rather less accurate. In addition, the value 
of n may change with stage (particularly with flood flows over flood banks) and with time (due 
to changes in bed material as a result of sediment transport) or season (due to the presence of 
vegetation). In such cases, a suitably conservative design value is normally adopted. Table 5.2 

taBle 5.2 Typical Values of Manning’s n

Channel Type Surface Material and Alignment

River Earth, straight 0.02–0.025

Earth, meandering 0.03–0.05

Gravel (75–150 mm), straight 0.03–0.04

Gravel (75–150 mm), winding or braided 0.04–0.08

Unlined canals Earth, straight 0.018–0.025

Rock, straight 0.025–0.045

Lined canals Concrete 0.012–0.017

Models Mortar 0.011–0.013

Perspex 0.009



145Open Channel Flow

lists typical values of n for various materials and channel conditions. More detailed guidance 
is given by Chow (1959). A much more recent book (Chaudhry, 2008) also provides more 
details.

5.6.5 uniform Flow Computations

Manning’s formula may be used to determine steady uniform flow. There are two types of 
commonly occurring problems to solve. The first is to determine the discharge given the depth, 
and the second is to determine the depth given the discharge. The depth is referred to as the 
normal depth, which is synonymous with steady uniform flow. As uniform flow can only occur 
in a channel of constant cross section, natural channels should be excluded. However, in solving 
the equations of gradually varied flow applicable to natural channels, it is still necessary to solve 
Manning’s equation. Therefore, it is useful to consider the application of Manning’s equation 
to irregular channels in this section. The following examples illustrate the application of the 
relevant principles.

Example 5.1: Discharge from Depth for a Trapezoidal Channel

The normal depth of flow in a trapezoidal concrete lined channel is 2 m. The channel 
base width is 5 m and has side slopes of 1:2. Manning’s n is 0.015 and the bed slope, S0, is 
0.001. Determine the discharge (Q), mean velocity (V ) and the Reynolds number (Re).

Solution

Using Table 5.1,

A y y P y= + = + + 5 2( ) 5 2 1 22

Hence, applying (5.9) for y = 2 m

Q = ×
+[ ]

+ ×( )





×

=

1
0 015

5 4 2

5 2 2 5
0 001

5 3

2 3
1 2

.
( )

.

/

/

/
/

 45 m s3

To find the mean velocity, simply apply the continuity equation:

V
A

= =
+

=Q 45
5 4 2

2 5
( )

. /m s
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The Reynolds number is given by

Re = ρ
µ
RV

where R	=	A/P. In this case,

R = +

+ ×( )





=( )
.

5 4 2

5 2 2 5
1 29 m

and

Re = × ×
×

= ×−
10 1 29 2 5

1 14 10
2 83 10

3

3
6. .

.
.

Note: Re is very high and corresponds to the rough turbulent zone. Therefore, Manning’s 
equation is applicable. The interested reader may care to check the validity of this statement 
by applying the Colebrook–White equation (5.4b). First, calculate a kS value equivalent to 
n = 0015 for y = 2 m[kS = 2.225 mm]. Then using these values of kS and n compare the 
discharges as calculated using the Manning and Colebrook–White equations for a range 
of depths. Provided the channel is operating in the rough turbulent zone, the results are 
very similar.

Example 5.2: Depth from Discharge for a Trapezoidal Channel

If the discharge in the channel given in Example 5.1 were 30 m3/s, find the normal depth 
of flow.

Solution

From Example 5.1

Q
y y

y
= ×

+[ ]
+ 

×1
0 015

5 2

5 2 5
0 001

5 3

2 3
1 2

.
( )

.
/

/
/

or

Q = ×
+[ ]

+ 
2 108

5 2

5 2 5

5 3

2 3.
( )

/

/

y y

y

At first sight this may appear to be an intractable equation, and it will also be different 
for different channel shapes. The simplest method of solution is to adopt a  trial-and-error 
 procedure. Various values of y are tried, and the resultant Q is compared with that 
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required. Iteration ceases when reasonable agreement is found. In this case y < 2 as Q < 45, 
so an initial value of 1.7 is tried.

Trial depths (m)
Resultant 

Discharge (m3/s)

1.7 32.7

1.6 29.1

1.63 30.1

Hence, the solution is y = 163 m for Q = 30 m3/s.

5.6.6 Channel Conveyance

Channel conveyance (K) is a measure of the discharge carrying capacity of a channel, defined 
by the equation

 Q = KS0
1 2/

 (5.10)

For any given water depth (or stage), its value may be found by equating (5.10) with Manning’s 
equation (5.9) to give

 
K

A
nP

=
5 3

2 3

/

/
 

(5.11)

Its principal use is in determining the discharge and the energy and momentum coefficients in 
compound channels. It is also a convenient parameter to use in the computational procedures 
for evaluating gradually varying (steady and unsteady) flow problems in compound channels.

The equation for the energy coefficient α in a compound channel (5.1) may be expressed in 
general terms as

α = =

=

∑
∑
i

N

i i

i

N

i

V A

V A

1

3

3

1

where N is the number of subsections.
This may be rewritten as

 

α =
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=
=
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(5.12)
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where
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As S0 is constant and recalling (5.10), then
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(5.13)

Hence as

i

N

i

i

N

iQ K
= =

∑ ∑=
1 1

const

Then (5.12) may be rewritten as

 

α =
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(5.14)

Similarly it may be shown that

 

β =






=

=
=
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(5.15)

Also (5.13) may be rewritten as

 

S
K

i

N

i

0

2

1

2=




=∑

Q

 

(5.16)

Thus both α and β can be evaluated for any given stage without explicitly determining Qi. In 
addition, (5.16) may be used to find the friction slope Sf, a quantity defined in Section 5.10 and 
used in determining gradually varied flow profiles.
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5.6.7 Compound Channels

Example 5.3 illustrates the calculation of the discharge and the energy coefficient in a com-
pound channel. It may be noted that although trapezoidal sections are used, the same principles 
apply to natural sections except that the areas and wetted perimeters must be evaluated from 
tables of stage versus area and perimeter rather than from depths and side slopes.

Example 5.3: Compound Channels

During large floods, the water level in the channel given in Example 5.1 exceeds 
the  bank-full level of 2.5 m. The flood banks are 10 m wide and are grassed with side 
slopes of 1:3. The estimated Manning’s n for these flood banks is 0.035. Estimate the dis-
charge for a  maximum flood level of 4 m and the value of the velocity coefficient α.

Solution

In this case, it is necessary to split the section into subsections (1), (2), (3) as shown in 
Figure 5.7. Manning’s formula may be applied to each one in turn, and the discharges can 
be summed. The division of the section into subsections is a little arbitrary. If the shear 
stress across the arbitrary divisions is small compared with the bed shear stresses, it may 
be ignored to obtain an approximate solution.

For section (1)

A1
25 15

2
2 5 15 1 5 47 5= +





+ × =. ( . ) . m

and

P1 5 2 5 2 5 16 18= + ×( ) =. . m

hence

K1

5 3

2 3

47 5
16 18 0 015

6492 5=
×

=.
. .

.
( )

/

/

14.5 m

3

2 5 m10 m

y = 4 m

1

1 1
3 2

10 m

1.5 m

14.5 m15.0 m

FIgure 5.7 Compound channel section for Example 5.3.
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Sections (2) and (3) have the same dimensions, hence

A A2 3
210 14 5

2
1 5 18 38= = +





× =.
. . m

P P2 3 10 10 1 5 14 74= = + ×( ) =. . m

and

K K2 3

5 3

2 3

18 38
14 74 0 035

608 4= =
×

=.
. .

.
/

/

hence

 
Q1

5 3

2 3
1 21

0 015
47 5

16 18
0 001= × ×

.
.

.
.

/

/
/ (from (5.9))
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or

Q Q K2 3 2
1 2

3

1

19 2 m s

= = ×

=

0 00.

. /

/

hence

Q Q Q Q= + + = + + ×

=

1 2 3 1 2 3
1 2

3

 1

243 7 m s

( ) .

. /

/K K K 0 00

The velocity coefficient may be found directly from (5.1) or equivalently from (5.14).
From (5.1)

α = + +V A V A V A
V A

1
3

1 2
3

2 3
3

3
3

V
A

1
1

1

205 3
47 5

4 32= = =Q .
.

. /m s
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From (5.14)
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= .

Note: This example illustrates a case in which the velocity coefficient should not be 
ignored.

Example 5.3 demonstrates how a first estimate of the relationship between stage and discharge 
may be obtained for a compound channel. However, according to research carried in the 1980s, 
the method outlined in Example 5.3 may lead to errors of up to ±20% (or even more) in the 
predicted discharge at a given stage. The first interim report concerning this research was that 
of Ramsbottom (1989), in which existing methods for flow estimation in compound chan-
nels, estimates of their accuracy and the variation of Manning’s n with stage are described. 
Additionally, Knight (1989) contains an excellent description of the problems of (and some of 
the solutions to) the hydraulics of flood channels. This was followed by publication of a new 
method developed by Ackers (1992), described in more detail in Chapter 15. For the most 
recent work on this subject, the interested reader should also refer to Chapter 15, in which some 
of the complexities of flow in compound channels are further described.

5.7  raPIdly varIed FloW: tHe use 
oF energy PrInCIPles

5.7.1 applications and Methods of solution

Rapidly varied flow occurs whenever there is a sudden change in the geometry of the channel 
or in the regime of the flow. Typical examples of the first type include flow over sharp-crested 
weirs and flow through regions of rapidly varied cross section (e.g., venturi flumes and broad-
crested weirs). The second type is normally associated with the hydraulic jump phenomenon in 
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which flow with high velocity and small depth is rapidly changed to flow with low velocity and 
large depth. The regime of flow is defined by the Froude number, a concept which is explained 
later in this section.

In regions of rapidly varied flow, the water surface profile changes suddenly and therefore 
has pronounced curvature. The pressure distribution under these circumstances departs 
considerably from the hydrostatic distribution. The assumptions of parallel streamlines and 
hydrostatic pressure distribution which are used for uniform and gradually varied flow do not 
apply. Solutions to rapidly varied flow problems have been found using the concepts of ideal 
fluid flow coupled with the use of finite-element techniques. However, such solutions are com-
plex and do not include the boundary layer effects in real fluids.

Many rapidly varied flow problems may be solved approximately using energy or momentum 
concepts, and for engineering purposes this is often sufficiently accurate. This section describes 
and explains the use of these concepts.

5.7.2 energy equation in open Channels

Bernoulli’s equation, derived in Chapter 2, may be applied to any streamline. If the streamlines 
are parallel, then the pressure distribution is hydrostatic.

Referring to Figure 5.8, which shows uniform flow in a steep channel, consider point A on a 
streamline. The pressure force at point A balances the component of weight normal to the bed, i.e.,

 p S gd SA cos ∆ ∆= ρ θ  

 p gd gyA 2cos = =ρ θ ρ

d

y1 y2

A

ρgd   S

αV 2

2g

ΔS

θ

 θ PA

zA

HA

ρg

FIgure 5.8 Application of Bernoulli’s equation to uniform flow in open channels.
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It is more convenient to express this pressure force in terms of y1 (the vertical distance from the 
streamline to the free surface). Since

 
d

y
d y= =2

cos
and cos1θ

θ

then

 y y2 1
2cos= θ

and hence

 p gyA 1
2cos= ρ θ

or

 pA g y/ρ θ= 1
2cos

Most channels have very small bed slopes (e.g., less than 1:100, corresponding to θ less than 
0.57° or cos2 θ greater than 0.9999) and therefore for such channels

 cos2 1θ �

and

 p g yA/ρ � 1  (5.17)

Hence, Bernoulli’s equation becomes

 H y
V
g

z= + +α 2

2
 (5.18)

5.7.3 application of the energy equation

Consider the problem shown in Figure 5.9. Steady uniform flow is interrupted by the presence 
of a hump in the streambed. The upstream depth and the discharge are known, and it simply 
remains to find the depth of flow at position (2).

Applying the energy equation (5.18) and assuming frictional energy losses between (1) and 
(2) are negligible, then

 y
V

g
y

V
g

z1
1
2

2
2
2

2 2
+ = + + ∆  (5.19)

(taking α = 1).
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There are two principal unknown quantities − V2 and y2 − and hence to solve this problem a 
second equation is required – the continuity equation:

 V y V y q1 1 2 2= =

where q is the discharge per unit width. Combining these equations,

 
y

q
g y

y
q
g y

z1

2

1
2 2

2

2
22 2

+ = + + ∆

and rearranging,

 
2 2 2 02

3
2
2

1

2

1
2

2g y y g z g y
q
y

q+ − −






+ =∆

This is a cubic equation, in which y2 is the only unknown, and to which there are three possible 
mathematical solutions. As far as the fluid flow is concerned, however, only one solution is pos-
sible. To determine which of the solutions for y2 is correct requires a more detailed knowledge 
of the flow.

5.7.4 specific energy

To solve the problem mentioned earlier, the concept of specific energy was introduced by 
Bakhmeteff in 1912. Specific energy (Es) is defined as the energy of the flow referred to the 
channel bed as datum:

  (5.20)E y
V

s

2

2g
= + α

V1
2

2g
V2

2

y2

  z21

y1 QH

2g

FIgure 5.9 Flow transition problem.
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Application of the specific energy equation provides the solution to many rapidly varied flow 
problems.

For steady flow, (5.20) may be rewritten as

 
E y

Q A
g

s = + ( )α
/

2

2

Now consider a rectangular channel:

 

Q
A

bq
by

q
y

= =

where b is the width of the channel. Hence,

 
E y

q
g y

S

2

22
= + α

( )

As q is constant,

 
( )E y y

q
S

2
2

2g
constant− = =α

or

 ( ) /E y yS
2constant− =

Again, this is a cubic equation for the depth y for a given ES. Considering only positive solutions, 
then the equation is a curve with two asymptotes:

 as Sy E→ → ∞0,

 as Sy E y→ ∞ →,

This curve is now used to solve the problem given in Figure 5.9. In Figure 5.10, the problem has 
been redrawn alongside a graph of depth versus specific energy.

Equation 5.19 may be written as

 ES1 = ES2 + Δz (5.21)

This result is plotted on the specific energy diagram in Figure 5.10. Point A on the curve corre-
sponds to conditions at point (1) in the channel. Point (2) in the channel must be at either point 
B or B′ on the specific energy curve (from (5.21)). All points between (1) and (2) must lie on 
the specific energy curve between A and B or B′. To arrive at point B′ would imply that at some 
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intermediate point ES1 − ES2 > Δz, which is physically impossible. Hence, the flow depth at (2) 
must correspond to point B on the specific energy curve. This is a very significant result, so an 
example of such a flow transition follows.

Example 5.4: Flow Transition

The discharge in a rectangular channel of width 5 m and maximum depth 2 m is 10 m3/s. 
The normal depth of flow is 1.25 m. Determine the depth of flow downstream of a section 
in which the bed rises by 0.2 m over a distance of 1 m.

Solution

The solution is shown graphically in Figure 5.10. Assuming frictional losses are negligible, 
then (5.21) applies, i.e.,

 E E zS1 S2= + ∆

In this case,

 
E y V g gS m1 1 1

2 2
2 1 25 10 5 1 25 2 1 38= + = + ×[ ] =/ . /( . ) / .

 
E y y g y g yS2 2 2

2
2

2
2
210 5 2 2 2= + ( )  = +/ / /

 ∆z 2= 0.

Hence,

 
1 38 2 2 0 22

2
2
2. / .= + ( ) +y g y
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 1 18 22 2

2. /= +y g y
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y
y

q = constant

ES

ES2

ES1

Δz

45°

Δy

Δz

H

V1
2

2g
V2

2

2g

B΄

B

1 2

A

FIgure 5.10 Use of specific energy to solve flow transition problems.
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This is a cubic equation for y2, but the correct solution is that given by point B 
in Figure 5.10, which in this case is about 0.9 m. This is used as the initial estimate in a 
trial-and-error solution, as follows:

 

y2 (m)  Es2 = y2 + 2/gy2
2(m)

0.9 1.15

1.0 1.2

0.96 1.18

Hence, the solution is y2 = 096 m.

This result is often a source of puzzlement, and a simple physical explanation is 
called for. The answer lies in realising that the fluid is accelerating. Consider, initially, 
that the water surface remains at the same level over the bed rise. As the water depth 
is less (over the bed rise) and the discharge constant, then the velocity must have 
increased; i.e., the fluid must have accelerated. However, to accelerate the fluid, a force 
is required. This is provided by a fall in the water surface elevation, which implies that 
the hydrostatic force acting in the downstream direction is greater than that acting in 
the upstream direction.

5.7.5 subcritical, Critical and supercritical Flow

In Figure 5.11, the specific energy curve (for constant discharge) has been redrawn alongside 
a second curve of depth against discharge for constant Es. The figure is now used to illustrate 
several important principles of rapidly varied flow.

 1. For a given constant discharge:
 a. The specific energy curve has a minimum value ESc at point c with a corresponding 

depth yc – known as the critical depth.
 b. For any other value of Es, there are two possible depths of flow known at alternate 

depths, one of which is termed subcritical and the other supercritical:
  For supercritical flow, y	<	yc

  For subcritical flow, y	>	yc

 2. For a given constant specific energy:
a. The depth–discharge curve shows that discharge is a maximum at the critical 

depth.
b. For all other discharges, there are two possible depths of flow (sub- and supercriti-

cal) for any particular value of Es.
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5.7.6 general equation of Critical Flow

Referring to Figure 5.11, the general equation for critical flow may be derived by determining 
ESc and Qmax, independently, from the specific energy equation. It will be seen that the two 
methods both result in the same solution.

For Q = constant For ES constant

ES = y + αV2/2g ES = y + αV 2/2g

or or

E y
g
Q
AS = + aα

2

2

2 ( ) Q
g
A E y= 2 1 2

α
( ) ( )/

S a–

For a minimum value (i.e., Esc),
d
d

= = + d
d

d
d

bSE
y

Q
g A A

A
y

0 1
2

12

2
α 





( )

For Qmax with Es = E0 = constant,
d
d

= + d
d

= bQ
y

g A E y A
y
E y

2
2

00
1 2

0
1 2

α
( ) ( ) ( )

/
/–

–
–

−






Since δA = B δy, Since δA = B δy,

then in the limit then in the limit

d
d

=A
y

B
d
d

=A
y

B

substituting, into (b) substituting, into (b)

0 1
2

2
2

3= c c– –αQ
g
B A E

A
B

y0 2
= +

or and substituting into (a)

αQ B
gA

2

3 1c

c
= αQ

gA
max =
2

3 1B

y

yc

yc

y

E1

Subcritical

Subcritical

Supercritical

Supercritical

ESc E1

Constant discharge, Q1 Constant speci
c energy, E1

Es Q1 Qmax Q

FIgure 5.11 Variation of specific energy and discharge with depth.
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Comparing,

 αQ B
gA

c

c

max
2

3 1=  (5.22)

In other words, at the critical depth the discharge is a maximum and the specific energy is a 
minimum.

5.7.7  Critical depth and Critical velocity 
(for a rectangular Channel)

Determination of the critical depth (yc) in a channel is necessary for both rapidly and gradually 
varied flow problems. The associated critical velocity (Vc) will be used in the explanation of 
the significance of the Froude number. Both of these parameters may be derived directly from 
(5.22) for any shape of channel. For illustrative purposes, the simplest artificial channel shape 
is used here, i.e., rectangular. For critical flow,

 

αQ B
gA

2

3 1=

For a rectangular channel, Q	=	qb, B	=	b, and A	=	by. Substituting in (5.22) and taking α = 1, 
then

 
y

q
g

c

2
1 3

=






/

 
(5.23)

and as

 V y qc c =

then

 V g yc c=  (5.24)

Also, as

 
E y

V
g

SC c
c= +
2

2

then

 
E y

y
Sc c

c

2
= +

or

 y Ec SC= 2
3

 (5.25)
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5.7.8 application of the Critical depth line

The application of critical depth is illustrated in Figure 5.12, which shows the effect of a local 
bed rise on the free surface elevation for various initial depths of flow. It should be noted from 
(5.23) that the critical depth is dependent only on the discharge. Hence, for a given discharge, 
the critical depth line may be drawn on the longitudinal channel section as shown in Figure 
5.12. If the upstream flow is initially subcritical, then a depression of the water surface will 
occur above the rise in bed level. Conversely, if the upstream water level is initially super-
critical, then an increase in the water surface level will occur. As the upstream water level 
approaches the critical depth, then the change in elevation of the free surface becomes more 
marked. All of these results may easily be verified by reference to the specific energy diagram 
drawn alongside in Figure 5.12. A practical example of this phenomenon often occurs in rivers 
under flood conditions. The normal depth of flow may be nearly critical, and any undulations in 
the bed result in large standing wave formations.

A further result may be gleaned from this example. If the local bed rise is sufficiently large, 
then critical flow will occur. It has already been shown that discharge is a maximum for critical 
flow and hence, under these circumstances, the local bed rise is acting as a “choke” on the flow, 
so called because it limits the discharge. It is left to the reader to decide what happens if Δz is 
so large that Es2 is less than any point on the Es curve. The question will be discussed again later 
in Section 5.9 and in Example 5.10.

5.7.9 Froude number

The Froude number (pronounced as Frood) is defined as

 
Fr = V

gL  

q = constant

  z

a

b

c
d

a

b

c
d

1

yc

ES

for (a) y1 yc,    y ≈    z

(d) y1 yc,    y ≈ 0

(b) y1 yc,    y       z
(c) y1 yc,    y       z

FIgure 5.12 Effect of a local bed rise on the water surface elevation.
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where L is a characteristic dimension. It is attributed to William Froude (1810–1897), who used 
such a relationship in model studies for ships. If L is replaced by Dm, the hydraulic mean depth, 
then the resulting dimensionless parameter

 
Fr

m

= V
gD  

(5.26)

is applicable to open channel flow. This is extremely useful, as it defines the regime of flow, and 
as many of the energy and momentum equations may be written in terms of the Froude number.

The physical significance of Fr may be understood in two different ways. First, from dimen-
sional analysis,

 
Fr

inertial force
gravitational force

2
2 2

3

2

= ≡ =ρ
ρ
L V
gL

V
gL

Secondly, by considering the speed of propagation c of a wave of low amplitude and long wave-
length, a fresh insight is gained. Such waves may be generated in a channel as oscillatory waves 
or surge waves. Oscillatory waves (e.g., ocean waves) are considered in Chapter 8, and surge 
waves in Section 5.11. Both types of wave lead to the result that c g y= . For a rectangular 
channel Dm = y, and hence

 
Fr

water velocity
wave velocity

= =V
g y

Also, for a rectangular channel V g yc c= , and hence, for critical flow,

 
Fr= = =c

c

V
g y

g y

g y
1

This is a general result for all channels (as it can be shown that for non-rectangular channels 
V gD c gDc m mand= = ).

For subcritical flow,

 V V< <c and Fr  1

For supercritical flow,

 V V> >c and Fr  1

The Froude number therefore defines the regime of flow. There is a second consequence of major 
significance. Flow disturbances are propagated at a velocity of c g y= . Hence, if the flow is 
supercritical, any flow disturbance can only travel downstream as the water velocity exceeds the 
wave velocity. By contrast, for subcritical flow, flow disturbances can travel both upstream and 
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downstream. Such flow disturbances are introduced by all channel controls and local features. 
For example, if a pebble is dropped into a still lake, then small waves are generated in all direc-
tions at equal speeds, resulting in concentric wave fronts. Now imagine dropping the pebble 
into a river. The wave fronts will move upstream slower than they do downstream, due to the 
current. If the water velocity exceeds the wave velocity, the wave will not move upstream at all.

An example of how channel controls transmit disturbances upstream and downstream is 
shown in Figure 5.13. To summarise:

For Fr > 1 – Supercritical flow
  – Water velocity > wave velocity
  – Disturbances travel downstream
  – Upstream water levels are unaffected by downstream control
For Fr < 1 – Subcritical flow
  – Water velocity < wave velocity
  – Disturbances travel upstream and downstream
  – Upstream water levels are affected by downstream control

When the Froude number is close to one in a channel reach, flow conditions tend to become 
unstable, resulting in wave formations. If the channel is a compound channel, for example, 
flood flows in a main channel and its flood plains, then some very interesting and little inves-
tigated phenomena can occur. For example, it is possible to imagine that flow in the main 
channel is very close to critical flow and that flow on the flood plains is still subcritical (due to 
much lower velocities). In fact, what happens is that at the interface between flood plain and 
main channel, flow on the flood	plain side of the interface becomes critical first because the 
velocity is close to that of the main channel but the depth is much less. Studies by Knight and 
Yuen (1990) have shown that both sub- and supercritical flow can exist simultaneously in a 
compound channel.

yc

yn

yn

(a)

(b)

yc

FIgure 5.13 Flow disturbance. (a) Caused by the weir is transmitted upstream as Fr < 1 and yn > yc. (b) Caused 
by a change of slope is not transmitted upstream as Fr > 1 and yn < yc.
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5.8  raPIdly varIed FloW: tHe use 
oF MoMentuM PrInCIPles

5.8.1 Hydraulic Jump

The hydraulic jump phenomenon is an important type of rapidly varied flow. It is also an exam-
ple of a stationary surge wave. A hydraulic jump occurs when a supercritical flow meets a 
subcritical flow. The resulting flow transition is rapid and involves a large energy loss due to 
turbulence. Under these circumstances, a solution to the hydraulic jump problem cannot be 
found using a specific energy diagram. Instead, the momentum equation is used. Figures 5.14a 
and b depict a hydraulic jump and the associated specific energy and force–momentum dia-
grams. Initially, ΔEs is unknown, as only the discharge and upstream depth are given. By using 
the momentum principle, the sequent depth y2 may be found in terms of the initial depth y1 
and the upstream Froude number (Fr1). It may be noted that these two depths are also often 
referred to as conjugate depths.

F + M

Initial depth

Sequent depth

y1

V2

F2

F1
V1

y2

y

V1

V2

y1

  ES

ES

yc

y2

y

(a)

(b)

FIgure 5.14 Hydraulic jump. (a) With associated specific energy diagram. (b) With associated force–
momentum diagram.
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5.8.2 Momentum equation

The momentum equation derived in Chapter 2 may be written as

 F Mm  = ∆

where	M	is	the	momentum	per	unit	time.
In this case, the forces acting are the hydrostatic pressure forces upstream (F1) and down-

stream (F2) of the jump. Their directions of action are as shown in Figure 5.14b. This is a point 
which often causes difficulty. It may be understood most easily by considering the jump to be 
inside a control volume, and to consider the external forces acting on the control volume (as 
described in Chapter 2).

Ignoring boundary friction, and for small channel slopes:

 Net force in -direction 1 2x F F= −

 Momentum change per unit time 2 1( ) = −M M

Hence,

 F F M M1 2 2 1− = −

or

 F M F M1 1 2 2 constant for constant discharge+ = + = ( )

If depth (y) is plotted against force + momentum change (F	 +	 M) for a constant discharge 
(known as the specific force diagram), as in Figure 5.14b, then for a stable hydraulic jump

 F M+ = constant  (5.27)

Therefore, for any given initial depth, the sequent depth is the corresponding depth on the 
force–momentum diagram.

5.8.3  solution of the Momentum equation 
for a rectangular Channel

For a rectangular channel, (5.27) may be evaluated as follows:

 
F g y y b F g y y b1 1 1 2 2 22 2= ( ) = ( )ρ ρ/ /

 

M QV M QV

Q
Q
y b

Q
Q
y b

1 1 2 2

1 2

= =

= =

ρ ρ

ρ ρ
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Substituting in (5.27) and rearranging,

 
ρ ρgb

y y
Q
b y y2

1 1
1
2

2
2

2

2 1
−( ) = −







Substituting q	=	Q/b and simplifying,

 1
2

1 1
1
2

2
2

2

2 1
y y

q
g y y

−( ) = −






 1
2

1 2 1 2

2
1 2

2 1
( )( )

( )
y y y y

q
g

y y
y y

+ − = −

 
1
2

1
1 2

2

2 1
( )y y

q
g y y

+ =

Substituting q	=	V1y1 and dividing by y1
2,

 
1
2

12

1

2

1

1
2

1
1
2y

y
y
y

V
gy

Fr+






= =

This is a quadratic equation in y2/y1, whose solution is

 y
y

Fr2
1

1
2

2
1 8 1= 





+ −( )  (5.28a)

Alternatively it may be shown that

 y
y

Fr1
2

2
2

2
1 8 1= 





+ −( )  (5.28b)

5.8.4 energy dissipation in a Hydraulic Jump

Using (5.28a), y2 may be evaluated in terms of y1 and hence the energy loss through the jump 
determined:

 ∆E E E y
V

g
y

V
g

= − = +






− +






1 2 1
1
2

2
2
2

2 2

Substituting q	=	Vy,

 ∆E y y
q
g y y

= − + −




1 2

2

1
2

2
22

1 1
 (5.29)
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Equation 5.28a may be rewritten as

 Fr12
2

1

2

1

1
2

1= +






y
y

y
y

 (5.30)

The upstream Froude number is related to q as follows:

 
Fr1

1

1

1

1

= = ( )V
g y

q y

g y

/

 
Fr12

2

1
3= q

g y  

(5.31)

Substituting (5.30) and (5.31) into (5.29), the solution is

 
∆E

y y
y y

= −( )2 1
3

1 24  
(5.32)

It should be noted that the energy loss increases very sharply with the relative height of the 
jump.

5.8.5 significance of the Hydraulic Jump equations

In the preceding section, the hydraulic jump equation was deliberately formulated in terms 
of the upstream Froude number. The usefulness of this form of the equation is now demon-
strated. For critical flow Fr = 1, and substitution into (5.28a) gives y2 = y1. This is an unstable 
condition resulting in an undular standing wave formation. For supercritical flow upstream 
Fr > 1 and hence y2 > y1. This is the required condition for the formation of a hydraulic jump. 
For subcritical flow upstream Fr1 < 1 and hence y2 < y1. This is not physically possible without the 
presence of some obstruction in the flow path. Such an obstruction would introduce an associated 
resistance force (FR) and the momentum equation would then become F1 − F2 − FR = M2 − M1. 
Under these circumstances a hydraulic jump would not form, but the momentum equation could 
be used to evaluate the resistance force (FR). To summarise, for a hydraulic jump to form, the 
upstream flow must be supercritical, and the higher the upstream Froude number, the greater 
the height of the jump and the greater the loss of energy through the jump.

5.8.6 stability of the Hydraulic Jump

The hydraulic jump equation contains three independent variables: y1, y2 and Fr1. A stable 
(i.e., stationary) jump will form only if these three independent variables conform to the rela-
tionship given in (5.28a). To illustrate this, Figure 5.15 shows a hydraulic jump formed 
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between two sluice gates. The upstream depth (y1) and Froude number (Fr1) are controlled by 
the upstream sluice gate for a given discharge. The downstream depth (y2) is controlled by the 
downstream sluice gate, and not by the hydraulic jump. Denoting the sequent depth by y′2, then 
the following observations may be made:

If y y2 2= ′  then a stable jump forms

If y y2 > ′2,  then the downstream force + momentum change is greater than the upstream 
force + momentum change, and the jump moves upstream

If y y2 < ′2 ,  then the downstream force + momentum change is less than the upstream 
force + momentum change and the jump moves downstream

Even if a stable jump forms, it may occur anywhere between the two sluice gates.

5.8.7 Hydraulic Jump length

The length (Lj) of the hydraulic jump is of practical importance when designing hydraulic struc-
tures or analysing situations in which a jump may form. There are no theoretical equations to 
determine the length of a jump and so recourse to experimental measurements is necessary. 
Chow (1959) provides a graph plot relating Lj/y2 to Fr1 for Fr ranging from 1 to 20. A strong 
jump occurs when Fr1 > 9, a steady jump occurs when 4.5 < Fr1 < 9, an oscillating jump occurs 
when 2.5 < Fr1 < 4.5, a weak jump occurs when 1.7 < Fr1 < 2.5 and an undular jump occurs when 
1 < Fr1 < 1.7. For <4.5 Fr > 13 Lj/y2 ≈ 6. Chaudhry (2008) gives an equation which reasonably 
matches the experimental values given by

 L yj 1 1 22 tanh Fr 1 /22]= −0 [( )

F + M

y1

y2́

y2

y2

y1

Q

y

FIgure 5.15 Stability of the hydraulic jump.
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5.8.8 occurrence and uses of a Hydraulic Jump

The hydraulic jump phenomenon has important applications in hydraulic engineering. Jumps 
may form downstream of hydraulic structures such as spillways, sluice gates and venturi flumes. 
They also sometimes occur downstream of bridge piers (normally under flood flow conditions).

Jumps may be deliberately induced to act as an energy dissipation device (e.g., in stilling 
bays) and to localise bed scour. These uses are discussed in Chapter 13.

5.9 CrItICal dePtH Meters

The effect of a local bed rise on the flow regime has previously been discussed. It was concluded 
that critical flow over the bed rise would occur if the change in specific energy was such that 
it was reduced to the minimum specific energy. This situation is shown in Figure 5.16. This 
condition of critical depth over the bed rise, at first sight, may be thought only to occur for one 
particular step height (Δz1) and upstream depth (y1).

Consider what would happen if Δz1 was further increased to Δz2. The change in energy from 
(1) to (2) would be such that no position on the specific energy curve corresponding to (2) 
could be  found. This apparent impossibility may be explained by reconsidering the specific 
energy curve. It was drawn for a particular fixed value of discharge (Q1). In Figure 5.16, a second 
 (thinner) curve is drawn for a smaller discharge (Q2) for which the specific energy at position (2) 
is a minimum. Hence, if the step height was Δz2, then the discharge would initially be limited 
to Q2. However, if the discharge in the channel was Q1, then the difference in the discharges 
(Q1 − Q2) would have to be stored in the channel upstream, resulting in an increase in the depth 
y1. After a short time, the new upstream depth (y′1) would be sufficient to pass the required 
discharge Q1 over the bed rise. In other words, the upstream energy will adjust itself such that 
the given discharge (Q1) can pass over the bed rise with the minimum specific energy obtained 
at the critical depth. Of course, this will only apply provided that Δz is sufficiently large. Under 
these conditions, the local bed rise is acting as a control on the discharge by providing a choke. 
The upstream water depth is controlled by the bed rise, not by the channel. Such a bed rise is 
known as a broad-crested weir. Its usefulness lies in its ability to control the relationship between 
depth and discharge and hence it may be used as a discharge measuring device.

ES

yc

y1

yc

   z

Hh

y1H1

V1
2/2g

ES2

y    z2

   z1

FIgure 5.16 Broad-crested weir.
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5.9.1  derivation of the discharge equation 
for Broad-Crested Weirs

Referring to Figure 5.16, and assuming that the depth is critical at position (2), then from (5.24)

 V V g y2 = =c c

and

 Q VA g y by= = c c

where b is the width of the channel at position (2). Also, from (5.25)

 y Ec S= 2
3

2

Assuming no energy losses between (1) and (2), then

 
E h
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2

2
= + =

 
y Hc = 2

3

Substituting for yc

 Q g b H= 





1 2
3 2

3 22
3

/
/

/

or

 Q
g

bH= 2
3

2
3

3 2/  (5.33)

In practice, there are energy losses and it is the upstream depth rather than energy that is mea-
sured. Equation 5.33 is modified by the inclusion of the coefficient of discharge (Cd) to account for 
energy losses and the coefficient of velocity (Cv) to account for the upstream velocity head, giving

 Q C C
g

bh= d v
2
3

2
3

3 2/  (5.34)

Broad-crested weirs are discussed in more detail in Chapter 13.

5.9.2 venturi Flumes

This is a second example of a critical depth meter. In this case, the channel width is contracted 
to choke the flow, as shown in Figure 5.17. To demonstrate that critical flow is produced, it 
is necessary to draw two specific energy curves. Although the discharge (Q) is constant, the 
discharge per unit width (q) is greater in the throat of the flume than it is upstream. To force 
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critical depth to occur in the throat, the specific energy in the throat must be a minimum. 
Neglecting energy losses, then the upstream specific energy (ES1) will have the same value. 
Providing that the upstream energy (En) for uniform flow is less than ES1, then the venturi 
flume, not the channel, will control the discharge. The equation for the discharge is the same as 
for the broad-crested weir (i.e., Equation 5.34), remembering that b is the width at the section 
at which flow is critical, i.e., the throat.

Downstream of the throat the width expands and the flow, rather than returning to sub-
critical flow, continues to accelerate and becomes supercritical. As channel flow is normally 
subcritical, then at some point downstream a hydraulic jump will form. If the hydraulic jump 
moves upstream into the throat, then critical flow will no longer be induced and the flume will 
operate in the submerged condition. Under these circumstances, the discharge equation (5.34) 
no longer applies, and venturi flumes are therefore designed to prevent this happening for as 
wide a range of conditions as possible.

Venturi flumes are discussed in more detail in Chapter 13.

5.10 gradually varIed FloW

5.10.1 significance of Bed slope and Channel Friction

In the discussions of rapidly varied flow, the influence of bed slope and channel friction was not 
mentioned. It was assumed that frictional effects may be ignored in a region of rapidly varied 
flow. This is a reasonable assumption, since the changes take place over a very short distance. 
However, bed slope and channel friction are very important because they determine the flow 
regime under gradually varied flow conditions.

The discussion of the specific energy curve and the criteria for maximum discharge indicated 
that, for a given specific energy or discharge, there are two possible flow depths at any point 
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FIgure 5.17 Venturi flume.
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in a channel. The solution of Manning’s equation results in only one possible flow depth (the 
normal depth). This apparent paradox is resolved by noting the influence of the bed slope and 
channel friction. These parameters determine which of the two possible flow depths will occur 
at any given point for uniform flow. In other words, for uniform flow, the bed slope and channel 
friction determine whether the flow regime is sub- or supercritical.

For a given channel and discharge, the normal depth of flow may be found using Manning’s 
equation and the critical depth using (5.23). The normal depth of flow may be less than, equal 
to, or greater than, the critical depth. For a given channel shape and roughness, only one value 
of slope will produce the critical depth, and this is known as the critical slope (Sc). If the slope 
is steeper than Sc, then the flow will be supercritical and the slope is termed a steep slope. 
Conversely, if the slope is less steep than Sc, then the flow will be subcritical and the slope is 
termed a mild slope.

5.10.2 Critical Bed slope in a Wide rectangular Channel

To illustrate this concept, the equation for the critical bed slope is now derived for the case of 
a wide rectangular channel.

For uniform flow,

 Q
n

A
P

S= 1 5 3

2 3 0
1 2

/

/
/  (5.9)

and for critical flow
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(taking α = 1 in (5.22)).
Hence, combining (5.9) and (5.22) to eliminate Q,
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where Sc is the critical bed slope.
For a wide rectangular channel of width b, B	=	b,	A	=	by and P	≃	b.
Making these substitutions for a wide rectangular channel,
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where yc is the critical depth. Hence,
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(5.35)

The implications of this equation are best seen from a numerical example.
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Example 5.5: Determination of Critical Bed Slope

Given a wide rectangular channel of width 20 m, determine the critical bed slope and 
discharge for critical depths of 0.2, 0.5, and 1.0 m. Assume that n = 0035.

Solution

Using
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1 3/  
(5.35)

and

 Q
n

A
P

S= 1 5 3

2 3 0
1 2

/

/
/  (5.9)

For a particular yc, substitute into (5.35) to find Sc, and then substitute into (5.9) to find 
Q, hence

 

y (m) Sc (m/m) Q (m3/s)

0.2 0.02 5.5

0.5 0.015 21.3

1.0 0.012 58.7

The results of Example 5.5 demonstrate that the critical bed slope is dependent on dis-
charge. In other words, for a given channel with a given slope, it is the discharge which 
determines whether that slope is mild or steep.

Example 5.6: Critical Depth and Slope in a Natural Channel

The data given next were derived from the measured cross section of a natural stream 
channel. Using the data, determine the critical stage and associated critical bed slope for 
a discharge of 60 m3/s assuming n = 0.04.

Stage (m) Area (m2) Perimeter (m) Surface width (m)

0.5 3.5 9.5 9.0

1.0 9.0 13.9 13.0

1.5 16.0 16.7 15.0

2.0 24.0 19.5 17.0
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Solution

In this case, (5.23) and (5.35) for critical depth and slope cannot be used, as these were 
both derived assuming a rectangular channel. Instead, (5.22) – the general equation for 
critical flow – must be used, i.e.,

 
αQ B

gA

2

3 1c

c
=  (5.22)

Both A and B are functions of stage (h), as given in the previous table. In this case, The 
best method of solution is a graphical one. Rearranging (5.22),
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g
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= c

c

Hence, if h is plotted against A3/B, then for h = hc, A3
c/Bc = αQ2/g, and hc may be read 

directly from the graph for any value of αQ2/g on the A3/B axis. From the given data, val-
ues of A3/B for various h may be calculated, i.e.,

h (m) A3/B (m5)

0.5 4.8

1.0 56.1

1.5 273.1

2.0 813.2

and for critical flow αQ2/g = 602/g = 367 (assuming that α = 1).
By inspection, the critical stage must be between 1.5 and 2.0. Using linear interpolation,
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To find the critical bed slope, apply Manning’s equation with h	=	hc = 1.59, Q = 60:
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For hc = 1.59, again using linear interpolation,
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5.10.3 Flow transitions

Having developed the idea of mild and steep slopes, the critical depth line and subcritical 
and supercritical flow, the concept of flow transitions is now introduced. Figure 5.18 shows 
two types of transition, due to changes of bed slope. In Figure 5.18a it is presupposed that the 
channel is of mild slope upstream and steep slope downstream. The critical depth (for a given 
discharge) is constant. Upstream, the flow is subcritical and the depth is greater than the criti-
cal depth. Downstream, the converse is true. In the vicinity of the intersection of the mild and 
steep slopes, gradually varied flow is taking place and the flow regime is in transition from sub- 
to supercritical. At the intersection the flow is critical.

In Figure 5.18b, the slopes have been reversed and the resulting flow transition is both more 
spectacular and more complex. Upstream, the flow is supercritical, and downstream the flow 
is subcritical. This type of transition is only possible through the mechanism of the hydrau-
lic jump. Gradually varied flow takes place between the intersection of the slopes and the 
upstream end of the jump.

An explanation as to why these two types of transition exist may be found in terms of the 
Froude number. Consider what would happen if a flow disturbance was introduced in the tran-
sition region shown in Figure 5.18a. On the upstream (mild) slope Fr < 1, and the disturbance 
would propagate both upstream and downstream. On the downstream (steep) slope the distur-
bance would propagate downstream. The net result is that all flow disturbances are swept away 
from the transition region, resulting in the smooth flow transition shown.

Subcritical

Supercritical
Supercritical

Subcritical

yc

S0 < Sc

Q

S0 > Sc

(a) (b)

S0 > Sc

S0 < Sc

yc

FIgure 5.18 Flow transitions. (a) Subcritical to supercritical. (b) Supercritical to subcritical.
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Conversely, for the transition shown in Figure 5.18b, flow disturbances introduced upstream 
(on the steep slope) propagate downstream only. Those introduced downstream propagate both 
upstream and downstream. The net result in this case is that the disturbances are concentrated 
into a small region, which is the hydraulic jump.

5.10.4 general equation of gradually varied Flow

To determine the flow profile through a region of gradually varied flow, due to changes of slope 
or cross section, the general equation of gradually varied flow must first be derived.

The equation is derived by assuming that for gradually varied flow the change in energy with 
distance is equal to the frictional losses (e.g., ignoring any flow accelerations). Hence,
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where Sf is the friction slope. Rewriting,
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where S0 is the bed slope. From section (5.7),
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Combining this with (5.37) gives
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which is the general equation of gradually varied flow.
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Sf represents the slope of the total energy line (dH/dx). Since the bed slope (S0) and the fric-
tion slope (Sf) are coincident for uniform flow, the friction slope (Sf) may be evaluated using 
Manning’s equation or the Colebrook–White equation (5.4b).

Equations 5.37 and 5.38 are differential equations relating depth to distance. There is no gen-
eral explicit solution (although particular solutions are available for prismatic channels). Numerical 
methods of solution are normally used in practice. These methods are considered in a later section.

5.10.5 Classification of Flow Profiles

Before examining methods of solution of (5.37) and (5.38), a deeper understanding of this type 
of flow may be gained by taking a general overview of (5.38).

For a given discharge, Sf and Fr2 are functions of depth (y), e.g.,

 

S n Q P A
Q B gA
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and hence increasingA y

Hence, it follows that as

 S S y yf nwhen uniform flow= =0 ( )

then

 S S y yf nwhen> <0

 S S y yf nwhen< >0

and

 Fr 1 when2
c> <y y

 Fr 1 when2
c< >y y

These inequalities may now be used to find the sign of dy/dx in (5.38) for any condition.
Figure 5.19 shows a channel of mild slope with the critical and normal depths of flow marked. 

For gradually varied flow, the surface profile may occupy the three regions shown, and the sign 
of dy/dx can be found for each region:

Region 1

 y y y S S y x> > < <n c f
2and Fr 1  hence d /d is positive, , .0

Region 2

 y y y S S y xn c f
2and Fr 1  hence d /d is negative> > > <, , .0

Region 3

 y y y S S y xn c f
2 and Fr 1  hence d /d is positive> > > >, , .0

The boundary conditions for each region may be determined similarly.
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Region 1. As y → ∞, Sf and Fr → 0 and dy/dx	→ S0, hence the water surface is asymptotic to a 
horizontal line (as y is referred to the channel bed).

For y	→ yn, Sf → S0 and dy/dx → 0, hence the water surface is asymptotic to the line y	=	yn.
This water surface profile is termed an M1 profile. It is the type of profile which would form 

upstream of a weir or reservoir, and is known as a backwater curve.

Regions 2 and 3. The profiles may be derived in a similar manner. They are shown in Figure 5.19. 
However, there are two anomalous results for Regions 2 and 3. First, for the M2 profile, 
dy/dx → ∞ as y	→ yc. This is physically impossible and may be explained by the fact that as y	→ yc 
the fluid enters a region of rapidly varied flow, and hence (5.37) and (5.38) are no longer valid. 
The M2 profile is known as a drawdown curve, and would occur at a free overfall.

Secondly, for the M3 profile, dy/dx → ∞ as y	→ yc. Again, this is impossible, and in practice 
a hydraulic jump will form before y	=	yc.

So far, the discussion of surface profiles has been restricted to channels of mild slope. For 
completeness, channels of critical, steep, horizontal and adverse slopes must be considered. The 
resulting profiles can all be derived by similar reasoning, and are shown in Figure 5.20.

5.10.6  outlining surface Profiles and determining 
Control Points

An understanding of these flow profiles and how to apply them is an essential prerequisite for 
numerical solution of the equations. Before particular types of flow profiles can be determined 
for any given situation, two things must be ascertained:

 1. Whether the channel slope is mild, critical or steep. To determine its category, the 
critical and normal depth of flow must be found for the particular design discharge.

 2. The position of the control point or points must be established. A control point is 
defined as any point where there is a known relationship between head and discharge. 
Typical examples are weirs, flumes and gates or, alternatively, any point in a channel 
where critical depth occurs (e.g., at the brink of a free overfall), or the normal depth of 
flow at a suitably remote distance from the point of interest.

Having established the slope category and the position of any control points, the flow profile(s) 
may then be sketched. For subcritical flow, the profiles are controlled from a point downstream. 
For supercritical flow, the profiles are controlled from upstream.

Horizontal asymptote

Region 1

Region 2

Region 3yc
yn

M1

M2

M3

FIgure 5.19 Profile types for a mild slope.
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FIgure 5.20 Classification of gradually varied flow profiles.
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Figure 5.21 shows three typical flow profiles. Figure 5.21a shows the influence of a broad-
crested weir on upstream water levels. Numerical solution of this problem proceeds upstream 
from the weir (refer to Example 5.7).

Figure 5.21b shows the influence of bridge piers under flood conditions. Many old masonry 
bridges (with several bridge piers) act in a similar manner to venturi flumes in choking the flow 
(particularly at high discharges). Flow through the bridge is rapidly varied and, on exit from the 
bridge piers, the flow is supercritical. However, supercritical flow cannot exist for long, as the 
downstream slope is mild and the downstream flow uniform (assuming that it is unaffected by 
downstream control). A hydraulic jump must form to return the flow to the subcritical condi-
tion. The position and height of the jump are determined as shown in Figure 5.21b. An example 
of this type of problem is given in Example 5.8.

M1

yn

yc

yc

S < Sc
(a)

(b)

(c)

M3

Bridge deck
Conjugate depth curve

M1

yn

yc

S < Sc

H2

Conjugate depth curve
LJ

yn

S > Sc

S = 0

H3

S2

S < Sc
ycy2

FIgure 5.21 Examples of typical surface profiles. (Note: ◾ denotes a control point.) (a) Influence of broad-
crested weir on river flow. (b) Influence of bridge piers on river flow under flood conditions. (c) Side channel 
spillway and stilling basin.
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Figure 5.21c shows the flow profile for a side channel spillway and stilling basin. In this 
example, it is assumed that the side channel is not so steep as to invalidate the equations of 
gradually varied flow and that aeration does not occur (refer to Chapter 13 for more details).

5.10.7  Methods of solution of the gradually 
varied Flow equation

The three forms of the gradually varied flow equation are
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There are three types of solution to these equations:

 1. Direct integration
 2. Graphical integration
 3. Numerical integration

These three methods of solution are discussed, and examples are given where appropriate.
Direct	integration. Equation 5.38 may be solved directly only for regular channels. Integration 

methods have been developed by various workers, starting with Dupuit in 1848, who found 
a solution for wide rectangular channels. He used the Chézy resistance equation and ignored 
changes of kinetic energy. In 1860, Bresse found a solution including changes of kinetic energy 
(again for wide rectangular channels using the Chézy equation). Bakhmeteff, starting in 1912, 
extended the work to trapezoidal channels. Using Manning’s resistance equation, various other 
workers have extended Bakhmeteff’s method.

Full details of these methods may be found in Henderson (1966) or Chow (1959). They are 
not discussed here as they have been superseded by numerical integration methods which may 
be used for both regular and irregular channels.

Graphical	integration. Equation 5.38 may be rewritten as
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or
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If a graph of y against f(y) is plotted, then the area under the curve is equivalent to X. The value 
of the function f(y) may be found by substitution of A, P, S0 and Sf for various y for a given Q. 
Hence, the distance X between given depths (y1 and y2) may be found graphically.

This method was quite popular until the widespread use of computers facilitated the use of 
the more versatile numerical methods.

Numerical	integration. Using simple numerical techniques, all types of gradually varied flow 
problems may be quickly and easily solved using only a PC. A single program may be written 
which will solve most problems.

However, as an aid to understanding, the numerical methods are discussed under three 
headings:

 1. The direct step method (distance from depth for regular channels)
 2. The standard step method, regular channels (depth from distance for regular channels)
 3. The standard step method, natural channels (depth from distance for natural channels)

The	direct	step	method. Equation 5.38 may be rewritten in finite difference form as

 ∆x y
S S

= −
−







∆ 1 2

0

Fr

f mean

 (5.39)

where “mean” refers to the mean value for the interval (Δx). This form of the equation may be 
used to determine, directly, the distance between given differences of depth for any trapezoidal 
channel. The method is best illustrated by an example.

Example 5.7: Determining a Backwater Profile by the Direct Step Method

Using Figure 5.21a, showing a backwater curve, determine the profile for the following 
(flood) conditions:

 Q S n= = =6  m s 2 m km 4300 0 00/ / .

channel: rectangular, width 50 m
weir: Cd = 0.88
sill height: Ps = 2.5 m
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Solution

First, establish a control point as follows.

 (a) Find normal depth (yn) from Manning’s equation:
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  Solution by trial and error yields

 yn 4 443 m= .

 (b) Find the critical depth (yc):
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 (c) Find the depth over the weir (yw):

 Q C Bh= 17 5 d
3 2. /0

  In this case,

 6 17 5 88 5 3 200 0 0 0= × × ×. . /h

  so

 h = 4 m

  As

 y h Pw S= +

 yw  6 5 m= .

  Hence, yw > yn > yc (i.e., Region 1), and S	<	Sc (i.e., a mild slope).
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   This confirms (a) that the control is at the weir and (b) that there is an M1 type 
profile.

   The profile is found by taking yw = 6.5 m as the initial depth and y = 4.5 m 
(slightly greater than yn) as the final depth, and proceeding upstream at small 
intervals of depth Δy. Fr, S0 and Sf are evaluated at each intermediate depth, and 
a solution is found for Δx using the finite difference equation. A tabular solution 
is shown in Table 5.3, and the resulting profile is shown in Figure 5.22.

Table 5.3 is self-explanatory, but the following points should be kept in mind:

 1. Signs.
	 x is positive in the direction of flow
	 S0 is positive (except for adverse slopes)
	 Sf is positive by definition
 Δy is positive if final depth > initial depth
 Δy is negative if initial depth > final depth

 In Example 5.7, Δy is negative and S0 is positive, which makes Δx negative.
 2. Accuracy. Normal depth is always approached asymptotically, so for depths approach-

ing normal depth S0 − Sf is very small and must be calculated accurately. Of course, it 
is not possible to calculate the distance of normal depth from the control point as this 
is theoretically infinite. In Example 5.7, a depth slightly larger than normal depth was 
chosen for this reason.

In regions of large curvature (i.e., approaching critical depth) Equation 5.38 is no 
longer valid as the pressure distribution departs from hydrostatic pressure. Thus the 
accuracy of the solution is impaired as critical depth is approached and the solution 
should be terminated before critical depth is reached.

 3. Choice	of	step	interval. Numerical solutions always involve approximations, and here the 
choice of step interval affects the solution. The smaller the step interval, the greater 
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FIgure 5.22 Backwater profile for Example 5.7.
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taBle 5.3 Solution of Example 5.7

Input Data

Discharge = 600 m3/s

Channel width = 50 m

Mannings’s n = 0.04

Number of intervals = 10

Slope = 0.002 m/m

Normal depth 4.4333

Critical depth = 2.4483 m

Initial depth = 6.5 m

Final depth = 4.5 m

Tabular solution

y (m) A (m2) P(m) Fr
(1 − Fr2) 
Mean Sf

(S0 − Sf) 
Mean x (m)

6.5000 325.0000 63.0000 0.2312 0.0006 0.0000

0.9439 0.0014

6.3000 315.0000 62.6000 0.2423 0.0007 −139.1034

0.9383 0.0013

6.1000 305.0000 62.2000 0.2543 0.0007 −284.4225

0.9319 0.0012

5.9000 295.0000 61.8000 0.2673 0.0008 −437.6747

0.9246 0.0011

5.7000 285.0000 61.4000 0.2815 0.0009 −601.3459

0.9163 0.0010

5.5000 275.0000 61.0000 0.2970 0.0010 −779.2213

0.9066 0.0009

5.3000 265.0000 60.6000 0.3140 0.0011 −977.4688

0.8954 0.0008

5.1000 255.0000 60.2000 0.3327 0.0013 −1207.1478

0.8823 0.0006

4.9000 245.0000 59.8000 0.3532 0.0015 −1491.1912

0.8669 0.0004

4.7000 235.0000 59.4000 0.3760 0.0017 −1890.7515

0.8488 0.0002

4.5000 225.0000 59.0000 0.4014 0.0019 −2695.5699
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the accuracy should be, if a suitable numerical scheme has been used (see Chapter 14 
for more details). If the calculations are carried out by computer, then successively 
smaller steps may be chosen until the solution converges to the desired degree of accu-
racy. In Example 5.7, such an exercise yielded the following results:

No. of Steps Δy Length of Reach Percentage Change

5 −0.4 2587.0

4.0

10 −0.2 2696.0

2.2

20 −0.1 2757.0

0.6

30 −0.067 2775.0

0.5

60 −0.033 2788.4

0.14

125 −0.016 2792.2

0.03

250 −0.008 2793.1

0.007

500 −0.004 2793.3

0.004

1000 −0.002 2793.4

0.000

2000 −0.001 2793.4

 The results of this exercise suggest that 1000 steps are necessary to achieve conver-
gence. However, the 10 steps originally selected give a solution to within 3.5% of the 
converged solution. It may be noted also that finding the mean values of (1 − Fr2) and 

(S0 − Sf) separately rather than the mean value of 
1 2

0

−
−







Fr

f mean
S S  over the interval Δy 

provides a better numerical solution. For a more extensive and numerically rigorous 
treatment of this problem, the reader is referred to Chaudhry (2008).

 4. Validity	of	solution. It has been suggested that the identification of a control point is of 
paramount importance in determining gradually varied flow profiles. This is reasonable 
if a broad understanding of the flow pattern is the aim. However, the equations may 
be solved between any two depths provided they are within the same region of flow. 
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Thus, in the case of Example 5.7, the solution may proceed upstream or downstream, 
provided that both the initial and final depths are greater than the normal depth. If 
this condition is not met, then the sign of Δx will change at some intermediate point, 
demonstrating that the solution has passed through an asymptote and the solution is 
no longer valid.

 5. Composite	profiles. Channels may have more than one control point, as already shown in 
Figure 5.21b and c. In the case of Figure 5.21b, a hydraulic jump effects the transition 
from supercritical to subcritical flow, but its height and position are determined by the 
upstream and downstream control points. An example of how to solve such problems 
follows.

Example 5.8: Composite Profiles

For the situation shown in Figure 5.21b, determine the distance of the jump from the 
bridge for the following conditions:

 Q = = = 6 m /s  3 m/km  4300 0 00S n .

channel: rectangular, width 50 m
depth at exit from the bridge = 1.2 m

Solution

First, normal and critical depth must be found using the same methods as in Example 5.7. 
These are

 y yn c3 897 m 2 448 m= =. .

In this case, the sequent depth of the jump equals the normal depth of flow. Utilising the 
hydraulic jump equation (5.28b)

 
y

y
1

2
2
2

2
1 8 1= 





+ −( )Fr

gives y1 = 1.41 m for y2 = yn = 3.897 m.
Hence, to find the distance of the jump from the bridge, an M3 profile must be cal-

culated starting from the bridge (at y = 1.2) and ending at the initial depth of the jump 
(y = 1.41). This is most easily achieved by using the direct step method. Table 5.4 shows 
the calculations using a step length of 0.05 m. The position of y = 1.41 m is found by 
interpolation:

 y x= =14 11368. .
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 y x= =145 14 151. .

 
( . . )

( . )
( . . )

( . . )
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11 368
1 45 1 4

14 151 11 368
−

−
= −

−X

 X = 11925 m.

taBle 5.4 Tabular Solution of Example 5.8

Input Data

Discharge = 600 m3/s

Channel width = 50 m

Mannings’s n = 0.04

Number of intervals = 5

Slope = 0.003 m/m

Normal depth = 3.8967 m

Critical depth = 2.4483 m

Initial depth = 1.2 m

Final depth = 1.45 m

Tabular Solution

y (m) A (m2) P(m) Fr
(1 − Fr2) 
Mean Sf

(S0 − Sf) 
Mean x(m)

1.2000 60.0000 52.4000 2.9146 0.1336 0.0000

−7.0052 −0.1222

1.2500 62.5000 52.5000 2.7415 0.1169 2.8657

−6.0985 −0.1068

1.3000 65.0000 52.6000 2.5848 0.1028 5.7196

−5.3237 −0.0939

1.3500 67.5000 52.7000 2.4426 0.0909 8.5558

−4.6578 −0.0828

1.4000 70.0000 52.8000 2.3129 0.0807 11.3682

−4.0822 −0.0734

1.4500 72.5000 52.9000 2.1943 0.0720 14.1507

Note: An alternative approach, necessary in cases where the jump exists between two profiles, is to plot the 
conjugate depth curve for the jump on the profile to find the points of intersection, as shown in Figure 5.23.
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The	standard	step	method	(for	regular	channels). Equation 5.37 may be rewritten in finite differ-
ence form as

 ∆ ∆E x SS f meanS= −( )0  (5.40)

where “mean” refers to the mean values for the interval Δx.
This form of the equation may be used to determine the depth at given distance intervals. 

The solution method is an iterative procedure as follows:

 1. Assume a value for depth (y)
 2. Calculate the corresponding specific energy (ESxG)
 3. Calculate the corresponding friction slope (Sf)
 4. Calculate ΔES over the interval Δx using (5.40)
 5. Calculate ESx+Δx = ESx + ΔES

 6. Compare ESx+Δx and ESxG

 7. If ESx+Δx ≠ ESxG, then return to 1

Hence, to determine the depth at a given distance may require several iterations. However, this 
method has the advantage over the direct step method that depth is calculated from distance, 
which is the more usual problem. Example 5.9 illustrates the method by solving again the prob-
lem of Example 5.7 (Figure 5.23).

Example 5.9: Determining a Backwater Profile by the Standard Step Method

Solve Example 5.7 again by using a standard step length of 150 m.
The establishment of a control point and the normal and critical depths are as in 

Example 5.7. A tabular solution is shown in Table 5.5. Only the correct values of depth (y) 
are shown in the table (to save space). The solution is most easily carried out by computer.
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FIgure 5.23 Composite profiles for Example 5.8.
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Solution

The	 standard	 step	method	 (for	 natural	 channels). A common application of flow profiles is in 
determining the effects of channel controls in natural channels. For several reasons this appli-
cation is more complex than the preceding cases. The discharge is generally more variable and 
difficult to quantify, and the assessment of Manning’s n is less accurate. These aspects are dealt 
with elsewhere (see Section 5.6 and Chapter 10).

taBle 5.5 Tabular Solution of Example 5.9

Y (m) A (m2) P (m) EG (m) Sf

(S0 − Sf) 
Mean ΔE (m) EC (m) X (m)

6.5000 325.0000 63.0000 6.6737 0.0006 6.6737 0

0.0014 −0.2032

6.2848 314.2386 62.5695 6.4706 0.0007 6.4705 −150

0.0013 −0.1928

6.0795 303.9756 62.1590 6.2781 0.0008 6.2778 −300

0.0012 −0.1814

5.8852 294.2583 61.7703 6.0971 0.0008 6.0967 −450

0.0011 −0.1692

5.7027 285.1330 61.4053 5.9283 0.0009 5.9279 −600

0.0010 −0.1561

5.5328 276.6424 61.0657 5.7726 0.0010 5.7722 −750

0.0009 −0.1424

5.3765 268.8232 60.7529 5.6304 0.0011 5.6302 −900

0.0009 −0.1283

5.2351 261.7527 60.4701 5.5029 0.0012 5.5020 −1050

0.0008 −0.1141

5.1078 255.3910 60.2156 5.3891 0.0013 5.3887 −1200

0.0007 −0.1002

4.9958 249.7889 59.9916 5.2899 0.0014 5.2890 −1350

0.0006 −0.0867

4.8975 244.8755 59.7950 5.2035 0.0015 5.2032 −1500

0.0005 −0.0740

4.8134 240.6717 59.6269 5.1302 0.0015 5.1295 −1650

0.0004 −0.0623

4.7416 237.0775 59.4831 5.0680 0.0016 5.0679 −1800

0.0003 −0.0518

4.6818 234.0911 59.3636 5.0167 0.0017 5.0162 −1950
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Another main difficulty lies in relating areas and perimeters to depth. This can only be accom-
plished by a detailed cross-sectional survey at known locations. In this way, tables of area and 
perimeter for a given stage may be prepared. Notice that depth must be replaced by stage, as depth 
is not a meaningful quantity for natural sections. Alternatively, the cross-sectional data may be 
stored on a computer, values of area and perimeter being computed as required for a given stage.
The solution technique is to use (5.36) in finite difference form as

 ∆ ∆H x S= −( )f mean  (5.41)

where “mean” refers to the mean value over the interval Δx.
This may be solved iteratively to find the stage at a given distance in a similar manner to the 

standard step method for regular channels, if depth is replaced by stage and specific energy by 
total energy.

Two further complications arise in applying Equation 5.41 to natural channels. The first 
one is in determining the mean friction slope (Sf mean). At any particular cross section, Sf may 
be determined either directly from Manning’s equation or by using the conveyance function 
(Equation 5.16 with Sf replacing S0).

However, in a natural channel, each cross section is likely to be different and hence it is nec-
essary to find a representative friction slope for each reach from the cross-sectional data at each 
end of the reach. It is possible to conceive the representative friction slope as being some kind 
of weighted average value derived either directly from the friction slopes at each cross section 
or directly from a weighted average value of the channel conveyances.

Cunge et al. (1980, pp. 129–130) compare four methods of finding a representative friction 
slope. Differences between results from the methods can be very large if the upstream and 
downstream cross sections are very different. He concludes that if this is the case then a smaller 
distance step should be introduced. In Equation 5.41, the mean value of Sf has been chosen as it 
is the simplest representation conceptually.

The second complication in solving Equation 5.41 in natural channels arises from the presence 
of flood banks. When flood discharges are being considered, the flow will overtop the main channel 
and flow on the flood plain will occur. Under these circumstances, the energy coefficient (α) must 
be computed. Where natural channels have well-defined flood plains (as shown in Figure 5.5), 
then α is conveniently estimated by Equation 5.14 which uses the channel conveyance function.

An iterative solution method for two-stage natural sections can, therefore, be set up as follows:

 1. Assume a value for stage (hG) at x + Δx
 2. Calculate the corresponding values of Ai, Pi and Ki at x + Δx from the tabulated cross-

sectional data and hence find α (using (5.14)) at x + Δx for the assumed stage (hG)
 3. Calculate the mean cross-sectional velocity (V

–
	=	Q/A) at x + Δx and hence find the 

total energy at x + Δx(HG = hG + αV
– 2/2g)

 4. Calculate the friction slope SfG(x+Δx) at x + Δx using Equation 5.16 and hence find the 
mean friction slope Sfmean = (SfG(x+Δx) + Sf(x))/2

 5. Calculate ΔH over the interval Δx using (5.41)
 6. Calculate Hx+Δx = Hx + ΔH
 7. Compare Hx+Δx and HG

 8. If Hx+Δx ≠ HG, then repeat from 1 until suitable convergence is obtained



191Open Channel Flow

Several commercially available mathematical models have been developed for application to 
natural channels (see Section 15.6 for further details). Such models generally include calibra-
tion of Manning’s n values from recorded discharge and water levels, incorporate the effects of 
weirs and bridge piers and include lateral inflows. They also compute one-dimensional gradu-
ally varied unsteady flow (see Section 5.11 for further details).

5.11 unsteady FloW

5.11.1 types of unsteady Flow

Unsteady flow is the normal state of affairs in nature, but for many engineering applications 
the flow may be considered to be steady. However, under some circumstances, it is necessary to 
consider unsteady flow. Such circumstances may include the following:

Translatory	waves. The movement of flood waves down rivers.

Surges	and	bores. These are produced by sudden changes in depth and/or discharge (e.g., tidal 
effects or control gates).

Oscillatory	waves. Waves produced by vertical movement rather than horizontal movement 
(e.g., ocean waves).

Translatory waves are considered in a simplified way in Chapter 10 (hydrology, flood routing) 
and they are considered in more detail later in this section as an example of gradually varied 
unsteady flow. Surge waves are an example of rapidly varied unsteady flow and a simple treat-
ment is presented in the following section. Oscillatory waves are considered in Chapter 8.

5.11.2 surge Waves

A typical surge wave is shown in Figure 5.24a, in which a sudden increase in the downstream 
depth has produced a steep-fronted wave moving upstream at velocity V. The wave is, in fact, 
a moving hydraulic jump, and the solution for the speed of the wave is most easily obtained 
by transposing the problem to that of the hydraulic jump. This may be achieved by the use of 
the technique of the travelling observer, as shown in Figure 5.24b. To an observer travelling 
on the wave at velocity V, the wave is stationary but the upstream and downstream velocities 
are increased to V1 + V and V2 + V, respectively (and the river bed is moving at velocity V). 
The travelling observer sees a (stationary) hydraulic jump. Hence, the hydraulic jump equation 
may be applied as follows:
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i.e.,
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 (5.42)

This equation may be solved for known upstream conditions and the downstream depth. If y2 is 
unknown, then the continuity equation may be used:

 
V V y V V y1 1 2 2 +( ) = +( )

In this case, Q2 must be known for solution of V.

Considering (5.42) in more detail, three useful results may be obtained. First, as y2/y1 tends 
to unity, then (V1 + V) tends to g y . As (V1 + V) = c (the wave speed relative to the water) 
this confirms the result given in Section 5.7 that small disturbances are propagated at a speed 
c g y=  (for rectangular channels).

Second, for y2/y1 > 1, then ( ) .V V g y1 1+ >  This implies that surge waves can travel upstream 
even for supercritical flow. This is confirmed by Example 5.10. However, after the passage of 
such a surge wave, the resulting flow is always subcritical.

Thirdly, for ( )V V g y1 1+ > , then the surge wave will overtake any upstream disturbances, 
and conversely any downstream disturbances will overtake the surge. Hence, this type of surge 
wave remains stable and steep fronted.

There are, in fact, four possible types of surge waves; upstream and downstream, each of 
which may be positive or negative. Positive surges result in an increase in depth and are stable 
and steep fronted (as discussed previously). Negative surges result in a decrease in depth. These 
are unstable and tend to die out as disturbances travel faster than the surge wave.

Example 5.10: Speed of Propagation of an Upstream Positive Surge Wave

Uniform flow in a steep rectangular channel is interrupted by the presence of a hump 
in the channel bed which produces critical flow for the initial discharge of 4 m3/s. If the 
flow is suddenly reduced to 3 m3/s some distance upstream, determine the new depth 
and speed of propagation of the surge wave. (Channel	data: b = 3 m, n = 0.015, S0 = 0.01, 
Δz = 0.083 m.)

V

y2
y2

y1

V1

V2
V1 + V

V2 + V

V

y1

FIgure 5.24 Surge waves.
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Solution

Referring to Figure 5.12, this problem is an example of what happens when Δz	>	ES1 − ES2 
and y1 < yc. In this case, for the initial discharge flow over the hump is critical, but for 
the reduced discharge ES1 (for y1 = yn) is insufficient. The result is that choked flow is 
produced by y1 increasing to a new value above critical depth, which produces a positive 
surge wave travelling upstream.

For Q = 4 m3/s:

yn = 0.421 m (using Manning’s equation)
yc = 0.566 m (using (5.23))
ESc = 0.849 m (using (5.25))
ESn = 0932 m (using (5.20))
ESn − ESc = 0.083 = Δz (i.e., critical flow is produced)

For Q = 3 m3/s:

yn = 0.348 m
yc = 0.467 m
ESc = 0.701 m
ESn = 0.769 m
ESn − ESc = 0.068 < Δz

Hence, normal depth cannot be maintained. The new depth upstream of the hump (y2) 
is found from

 E E zS2 Sc  = + ∆

i.e.,

 ES2 784 m= 0.

giving

 y2 67 m by iteration= 0. ( )

The equation of the surge wave may now be applied:
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where

 y y y1 n 2 348 m  67 m= = =0 0. .

 V Q A y1 1 n3 3 2 874 m s= = × =/ /( ) . /

Substituting into (5.42) yields

 V = 0. /23 m s
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This example shows that a surge wave may travel upstream even for supercritical flow, but 
leaves behind subcritical flow. The surge wave will proceed upstream until either it sub-
merges the upstream control or until a stationary hydraulic jump forms (by y2 decreasing 
to the sequent depth).

5.11.3  gradually varied unsteady Flow

This type of flow implies translatory wave motion of long wavelength and low amplitude. In this 
case, the assumption of parallel streamlines and hydrostatic pressure distributions is reasonable.

Strictly speaking, the equations of motion apply only to truly one-dimensional flow in which 
the water surface is horizontal at any cross section and the velocity is uniform over the cross 
section. This is only an approximation to natural river flow. Supplementary coefficients (e.g., 
the momentum coefficient β) are often introduced into the equations to simulate quasi two-
dimensional flow. For flood flows in natural channels with flood plains, further approximations 
have to be made.

The derivation and solution of the gradually varied unsteady flow equations is a complicated 
matter, even for the simplest case of a rectangular channel. General solutions are made practi-
cable only by the use of a computer. An introductory discussion of some of the techniques used 
may be found in Chapter 14, and the reference list there includes some of the more advanced 
texts, which give details of the range of numerical techniques in current use. Practical aspects 
of computational modelling of river flows are discussed in Chapter 15.

5.12 suMMary

In this chapter, the fundamental concepts for open channel flow have been presented, cover-
ing steady uniform flow, rapidly varied flow, gradually varied flow and unsteady flow, including 
energy and momentum concepts and the significance of the Froude number. Critical depth 
meters have also been introduced. The equations for all of these have been presented together 
with solutions and worked examples. A recent, comprehensive source for further reading may 
be found in Chaudhry (2008). The two classic texts of Henderson (1966) and Ven te Chow 
(1959) are also excellent sources of knowledge and understanding.

ProBleMs For solutIon

5.1 To solve Manning’s equation for depth of flow given the discharge (Q) requires an iterative 
procedure. Prove that for a wide rectangular channel a good estimate of the depth (y) is 
given by

 
y y

Q
Q
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1

1
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  where y1 and Q1 are initial estimates of y and Q. Hence, write a computer program to 
solve Manning’s equation for depth given discharge for any trapezoidal channel, such 
that the solution for y gives a discharge to within 1% of Q. Use this program to find the 
depth of flow for the following conditions:

  (a) b = 2 m, side slope 1:1, n = 0.015, S0 = 2 m/km, Q = 21 m3/s
  (b) b = 10 m, side slope 1:2, n = 0.04, S0 = 1 m/km, Q = 95 m3/s

[(a) y = 1.846 m, (b) y = 3.776 m]
5.2 Produce a graphical solution to Example 5.4, drawn accurately to scale, as shown in 

Figure 5.10.
5.3 The normal depth of flow in a rectangular channel (2 m deep and 5 m wide) is 1 m. It is 

laid to a slope of 1 m/km with a Manning’s n = 0.02. Some distance downstream there is 
a hump of height 0.5 m on the stream bed. Determine the depth of flow (y1) immediately 
upstream of the hump.

[y1 = 1.27 m]
5.4 Starting from first principles, show that the following equation holds true for a hydraulic 

jump in a trapezoidal channel:
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where
y is the depth of flow
b is the bottom width
Q is the discharge
x is the side slope (1 vertical to x horizontal)

  Hence, draw the force momentum diagram for the following conditions and determine 
the initial depth if the sequent depth is 0.2 m: Q = 50 L/s, b = 0.46 m, x = 1.

[Initial depth = 0.038 m]
5.5 Suppose that a stable hydraulic jump forms between the two sluice gates shown in 

Figure 5.15. If the flow depth downstream of a sluice gate is 61% of the gate opening (yg), 
determine the downstream gate opening (yg2) for the following conditions: y1 = 0.61 m, 
Q = 15 m3/s, b = 5 m. (Hint. Assume no loss of energy through a sluice gate.)

[yg2 = 1.115 m]
5.6 A rectangular concrete channel has a broad-crested weir at its downstream end as shown 

in Figure 5.16. The channel is 10 m wide, has a bed slope of 1 m/km and Manning’s n 
is estimated to be 0.012. If the discharge is 150 m3/s,

  (a) Calculate the minimum height of the weir (Δz) to produce critical flow
  (b) If Δz = 0.5 m, calculate the upstream head (H1) if Cd = 0.88

[(a) Δz = 0.179 m, (b) H1 = 5.14 m]
5.7 A trapezoidal channel of bed width 5 m and side slopes 1:2 has a flow of 15 m3/s. At a 

certain point in the channel the bed slope changes from 10 m/km (upstream) to 50 m/km 
(downstream). Taking Manning’s n to be 0.035, determine the following:

  a. The normal depth of flow upstream and downstream
  b. The critical depth of flow upstream and downstream
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  c. The Froude number upstream and downstream
  d. The depth at the intersection of the two slopes
  Sketch the flow profile.

[(a) yn = 0.953 and 0.61 (m), in (b) yc = 0.86 (m), in (c) Fr = 0.84 and 1.77, (d) y	=	yc, 
sketch: see Figure 5.18a]

5.8 A lake discharges directly into a rectangular concrete channel. If the head of water in the 
lake above the channel bed is 3 m and the channel is 6 m wide with Manning’s n = 0.015, 
find:

  a. The discharge for a channel bed slope of 100 m/km
  b. The discharge for a channel bed slope of 1 m/km

[(a) Q = 53.15 m3/s, (b) Q = 42 m3/s]
5.9 Using a computer program, or otherwise, verify that the three mild slope profiles given in 

Figure 5.20 are correct.
5.10 For the situation described in Problem 8(a), find the distance over which the depth reduces 

from critical depth to y = 0.8 m and the normal depth. Why is the solution unlikely to be 
very accurate?

[For Q = 53.15 and yc = 2.0 m, y = 0.8 m after 57.5 m, yn = 0.642 m; at y	=	yc flow is 
rapidly varied and for steep slopes refer to section 13.5.]
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Chapter 6

Pressure surge in Pipelines

6.1 IntroduCtIon

All of the pipe flows considered in Chapter 4 were steady flows, i.e., discharge was assumed 
to remain constant with time. This corresponds to the situation when the devices (e.g., valves 
and pumps) which control the flow are set to produce steady-state conditions. From time to 
time it will be necessary to alter the control settings to meet changes in demand. Immediately 
following such an alteration, the flow will be accelerating (or decelerating) and will therefore 
be unsteady. Unsteady (or “surge”) conditions often continue for only a very short period. 
Nevertheless, the effects on the system may, under some circumstances, be dramatic (includ-
ing pipe bursts).

By	the	end	of	this	chapter	you	should

 ◾ Understand the meaning of pressure surge in pipelines
 ◾ Understand the difference between incompressible and compressible surge and the 

meaning of the term “shock wave”
 ◾ Be able to calculate the surge pressure in a simple rigid – or elastic – walled pipe for 

complete shutdown
 ◾ Understand the implications of instantaneous, rapid and slow shutdown

For the sake of simplicity, consider first a case involving flow of an incompressible liquid. Civil 
engineers commonly deal with pipelines of considerable length and diameter. Such a pipeline 
will contain a large mass of flowing fluid, and the momentum of the fluid will therefore be cor-
respondingly large, as in the case of a long pipeline from a reservoir (Figure 6.1a). Note that the 
velocity of flow is here denoted by “u” (because V is used for volume):

Mass of liquid in pipeline = ρAL

Momentum of liquid  ( / )= = =M ALu u Q Aρ
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If the flow is retarded by a control valve at the downstream end, then the fluid undergoes a rate 
of change of momentum of

 

d
d

d
d

M
t

AL
u
t

= ρ  (6.1)

A force, F, is required to produce this change of momentum. This force is applied to the fluid by 
the control valve. This force exists only during the deceleration of the fluid, and it is therefore 
only a short-lived phenomenon. According to the laws of fluid pressure, a force (or pressure) 
applied in one plane must be transmitted in all directions (Figure 6.1b), therefore

δpA F=

where δp is the instantaneous rise in pressure corresponding to F (this is known as a “surge pres-
sure” or “transient pressure”). Hence,
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As L is a constant for a given system, δp = f(du/dt), i.e., δp is a function of the rate of closure of 
the valve. Upstream of the valve, δp (or δh) varies linearly with distance. An example will now 
be developed to illustrate the use of this approach.

Hydraulic gradient

(a) (b)

δp
F = δpA

Static pressure line

hf δh

Surge pressure line

FIgure 6.1 Incompressible surge: (a) pipeline system and (b) surge pressure at valve.
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Example 6.1: Incompressible Unsteady Flow

Water flows from a reservoir along a rigid horizontal pipeline. The pipe intake is 20 m 
below the water surface elevation in the reservoir. The pipe is 0.15 m in diameter and 
1500 m long, and λ = 0.02. The pipe discharges to atmosphere through a valve at its 
downstream end. The rate of valve adjustment is such that it can be completely closed in 
4 s and gives a uniform deceleration of the water in the pipe. Calculate the pressure just 
upstream of the valve and 500 m upstream of the valve if the valve aperture is adjusted 
from the fully open to the half-open position (in 2 s).

Solution

Before valve closure commences the velocity of flow is u0, so

h
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u
f m= = × ×
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During valve closure
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The surge pressure (δh) is given by
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Total head at valve = (static head + δh − hf) is

20 +53.5 5 = 68.5 m−

At a point 500 m upstream of the valve

δh = × =1000
9 81

1 4
4

35 7
.

.
. m

hf m= × =5
1000
1500

3 3.

Therefore, total head = 20 + 35.7 − 3.3 = 52.4 m. This example presupposes that the  liquid 
is incompressible and that the pipe is rigid.
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6.2 eFFeCt oF “raPId” valve Closure

Taking the pipe system used in the preceding example, consider now the effect of increasing the 
speed of valve closure:

Time of Closure (s) H (m)

4 53.5

3 71.3

2 107.0

1 214.0

0.5 428.0

0 ∞

The figures in the table do not give a completely accurate picture. If pressure measurements 
were to be taken, it would be found that the increase in head was, in fact, self-limiting, and that 
the maximum head was 214 m, not infinity. Therefore, it is necessary to ask why the theory 
outlined earlier is so much in error for the fast valve closure times (t < 1 s) and yet is reasonably 
accurate at the slower closure times. The answer lies in the assumptions made about the liquid 
and the pipeline (i.e., incompressible liquid and rigid pipe material). When rapid changes occur 
in the flow, the system no longer behaves in this “inelastic” manner. To clarify this point, the 
case of a compressible liquid contained in a rigid pipe is now considered (the effect of pipe mate-
rial elasticity is considered subsequently).

6.3 unsteady CoMPressIBle FloW

6.3.1 general description

As the rate of valve closure (or opening) increases, so do the inertia forces. A point is reached 
at which the liquid is being subjected to pressures which are sufficient to cause it to compress. 
Once compressibility has been brought into play, a radical change takes place in the pressure 
surge process in the body of fluid. The rapid alteration of the valve setting does not cause a 
uniform deceleration along the pipeline. Instead, the alteration generates a shock wave in the 
fluid. A shock wave is a zone in which the fluid is rapidly compressed (i.e., p and ρ increase) 
(see Figure 6.2). It travels through a fluid at the speed (or celerity) of sound (symbol c).

Through the mechanism of compressibility, the kinetic energy of the fluid before  acceleration 
is transformed into elastic energy (thus upholding the principle of conservation of energy). 
Note that the fluid upstream of the wave is still flowing at its original velocity, pressure and den-
sity. In fact, one way of viewing the process is to regard the shock wave as a “messenger” which is 
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carrying the “news” of the change in valve setting. This information is “received” by the fluid at 
a given point only when the shock wave arrives at that point. The progress of the shock wave is 
now described, assuming a rigid pipe and complete valve closure, in a pipeline whose upstream 
end is connected to a reservoir.

 a. The valve closes, generating the shock wave (Figure 6.3a).
 b. The shock wave travels back along the pipeline (Figure 6.3b). Fluid between the wave 

and the valve is now compressed, with the pressure therefore raised to p + δp (i.e., the 
head raised by δh).

 c. The wave arrives at the reservoir (Figure 6.3c). The pipe is therefore now full of 
 compressed and pressurised fluid.

 d. There is an inequilibrium at the pipe–reservoir interface since the reservoir head 
remains unchanged. The fluid in the pipe begins to discharge in reverse into the reser-
voir (Figure 6.3d). A decompression wave is generated, which travels back towards the 
valve. The fluid between the reservoir and the decompression wave is therefore at the 
original p and ρ, but u is reversed. Once again, the fluid between the wave and the valve 
has not yet received the “message” and is still at (p + δp) and (ρ + δρ).

 e. The control valve (if closed) constitutes a dead end. When the decompression wave 
arrives, the reversed flow can proceed no further, so the fluid here cannot flow back 
to the reservoir. A negative pressure is generated at the valve (Figure 6.3e), which 
produces a “negative” shock wave. This, in turn, is transmitted towards the reservoir. 
Fluid between the wave and the valve is at rest, but under a negative pressure (which 
is theoretically equal in magnitude to δp under point b.). Fluid between the wave and 
the reservoir is still at p, ρ, and the flow is still reversed. (For simplicity, the possibility 
of cavitation has been ignored here.)

 f. When the negative wave arrives at the reservoir (Figure 6.3f), the pipeline pressure 
is lower than the reservoir pressure. Fluid therefore flows from the reservoir into the 
pipe. Theoretically, the velocity is now restored to its original magnitude and direction, 
since we have so far ignored all hydraulic losses.

The whole cycle (a) to (f) then repeats.

Shock wave

u0
p
ρ

u0 – δu
p + δp
ρ + δρ

c – u0
p + δp
ρ + δρ

Undisturbed fluid Undisturbed fluid

(a) (b)

Fluid after
compression

Fluid after
compression

c
p
ρ

c – u0

FIgure 6.2 Surge conditions – compressible fluid and rigid pipe. (a) Effect of compressibility (velocities relative 
to stationary point) and (b) effect of compressibility (velocities relative to shock waves).
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p + δp

(a)

(b)

(c)

(d)

(e)

(f )

p + δp

p + δp

p – δp

p + δp

x (=tc)

t = x/c
(where t = time
after closure)

t = L/c

L/c < t < 2L/c

t = 2L/c

t = 3L/c

p

p

c = celerity of
shock wave

Shock wave
u = 0

u = 0

u = 0

c

–u0

u0

u0

FIgure 6.3 Propagation of shock waves in a pipeline: (a) instant of valve closure, (b) passage of shock wave, 
(c) fluid compressed throughout pipe, (d) decompression, (e) fluid decompressed throughout pipe and (f) negative 
pressure throughout pipe.
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Strictly, the celerity of the shock wave is measured relative to the fluid, and therefore the 
shock wave travels past a stationary point at (c − u). However, since c >> u, (c − u) → c. The time 
taken for the shock wave to traverse the length of the pipeline is therefore

t
L
c

=

At any point in the pipeline the timing of pressure and velocity changes may be conveniently 
measured in multiples of L/c.

6.3.2  simple equations for “Instantaneous” alteration 
of valve setting in a rigid Pipeline

This is the simplest case to treat. To develop the equations, consider the conditions on either 
side of a shock wave. In order to view these conditions, it is convenient to use coordinates which 
move with the shock wave. From this viewpoint, velocities are as shown in Figure 6.2b. Because 
of the compression, it is imperative that the equation of mass continuity (i.e., mass conserva-
tion) be used:

Mass entering control volume = mass leaving control volume

ρ ρ δρAc c u A= + −( ) ( )0

which may be rewritten as

 ρ δρu c u0 0( )= −  (6.3)

Similarly, applying the momentum equation

Force = mass flow change in velocity×

( ) [ ( )]0p p A pA Ac c c u+ − = − −δ ρ

Hence,

 δ ρp cu= 0  (6.4)

The measure of the elasticity of a liquid is its bulk modulus (K):

K
p

V V
= − δ

δ /
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V being the volume of liquid. The negative sign arises because increasing pressure causes a 
reduction (negative increase) in volume.

By definition,

ρ = =mass
volume

m
V

therefore

d
d

ρ ρ
V

m
V V

= − = −2

so

δρ
ρ

δ= − V
V

therefore

 
K

p= δ
δρ ρ/

 (6.5)

From (6.3),

 

δρ
ρ

=
−( )
u

c u
0

0

 (6.6)

From (6.4),

u
p
c

0 = δ
ρ

From (6.5),

δρ
ρ

δ= p
K

Substituting for u0 and δρ/ρ in (6.6),

δ δ ρ
δ ρ

p
K

p c
c p c

=
−
( )

[ ( )]
/

/
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Rearranging,

ρ δc p
K

2

1
− =

If δp << K, then

ρc
K

2

1=

therefore

 K c= ρ 2  (6.7)

Equations 6.4 and 6.7 may then be solved simultaneously to obtain a value for δp. Note that 
no allowance has been made for straining of the pipe material, since the pipe is assumed to be 
rigid (i.e., E → ∞). It should be further noted that the passage of events is extremely rapid, as will 
become apparent in the following example.

Example 6.2: Surge in a Simple Pipeline

A valve is placed at the downstream end of a 3 km long pipeline. Water is initially flowing 
along the pipe at a mean velocity of 2.5 m/s. What is the magnitude of the surge pressure 
generated by a sudden and complete valve closure? Sketch the variation in pressure at the 
valve and at the mid-point of the pipeline after valve closure. Take celerity of sound as 
1500 m/s.

Solution

Increase in pressure is estimated from (6.4):

δ ρp cu= = × × = ×0
6 21000 1500 2.5 3.75 10  N/m

To sketch the pressure variation, it is necessary to know the transmission time for the 
shock wave:

t L c= = =/ 3000/1500 2 s

Following the cycle of events (a) to (f) at the valve the increase in pressure will be main-
tained while the shock wave travels to the reservoir and while the decompression wave 
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returns to the valve, this takes 2L/c = 4 s (Figure 6.4a). Similarly, the pressure will be 
negative for another 4 s, etc.

At the mid-point, it will take t = L/2c (=1 s) for the shock wave “messenger” to arrive 
and “deliver” the pressure increase. The initial increase is then maintained while the 
shock wave travels to the reservoir and the reflected decompression wave returns 
(this takes 2 × (L/2c) = L/c), whereupon the pressure reverts to its original value. The 
negative pressure from the valve arrives L/2c (=1 s) after it has been generated at the 
valve and so on (Figure 6.4b).

6.3.3  equations for “Instantaneous” valve 
Closure in an elastic Pipeline

We now proceed to a slightly more realistic setting for the pressure surge phenomenon, viz. a 
compressible fluid flowing in an elastic pipeline. The effect of the pressure increase behind the 
shock wave is

 1. To compress the fluid
 2. To strain the pipe walls

Due to the strain effect, the pipe cross section behind the shock wave is greater than the 
unstrained cross section ahead of the wave (Figure 6.5a). The mass continuity equation must 
therefore be written as

ρ ρ δρ δAc A A c u= + + −( ) ( ) ( )0

δp

δp

0 2 4 6
Time (s)

(b)

(a)

8 10 12 14

FIgure 6.4 Fluctuation of pressure in a pipeline: (a) pressure at valve and (b) pressure at mid-point.
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which may be rearranged to give

 ρ δ ρ δ δρ δu A A c A c u A A0 0 ( ) ( ) ( )+ − = − +  (6.8)

The momentum equation is

( ) ( ) 0p p A A pA Acu+ + − =δ δ ρ

Ignoring small quantities, this may be written as

δ ρp cu= 0

which is Equation 6.4. The equation relating to the elasticity of the fluid (Equation 6.5) remains 
unchanged:

K
p= δ

δρ ρ/

From (6.8),

 

δρ
ρ

δ δ
δ

=
+( ) −

− +( )( )
u A A c A

c u A A
0

0

 (6.9)

From (6.4),

u
p
c

0 = δ
ρ

From (6.5),

δρ
ρ

δ= p
K

Shock wave

c
p
ρ
A

c – u0
p + δp
ρ + δρ
A + δA

T = tension

T = tension
(a) (b)

δD/2

e (=wall
thickness)

D

FIgure 6.5 Surge conditions – compressible fluid and elastic pipe material. (a) Sectional elevation (velocities 
relative to shock wave) and (b) cross section.
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Substituting these two equations in (6.9),

δ δ ρ δ δ
δ ρ δ

δ δ ρ δ
ρ

p
K

p c A A c A

c p c A A

p A A c A

c
= ( ) +( ) −

−( )  +( ) =
+( ) −/

/

2

2 −−( ) +( )δ δp A A

Therefore,

δ ρ δ ρ δ δ δ δ δp
K

c A A c A p A A
p
K

A A2 2
2

+( )+ = +( )+ +( )

and rearranging,

ρ
δ δ δ

δ δ δ
c

p
A
A

p
K

p
K

A
A

A
A

2
1 1

1
=

+





+





+





+

If δp << K and δA/A << 1, then this equation simplifies to

 
ρ δ

δ δ
c

p
p K A A

2 =
+( ) ( )/ /

 (6.10)

Note that if the δA/A term is ignored, this becomes identical to (6.7). However, as the elasticity 
of the pipe is to be taken into account, it is necessary to find some relationship between δA and 
A in terms of the pipe characteristics. In developing the relationship it is assumed that the pipe 
is axially rigid (due, say, to pipe supports) but free to move radially.

Referring to Figure 6.5b, an increase in pressure δp inside a pipe produces a bursting (or 
“hoop”) tension T. Thus, for a pipe of length δx and diameter D,

δ = =pD x T e xδ σ δ2 2

where σ is the hoop stress in the pipe wall. Since,

stress
strain

=





=σ
s

E

then

s
E

= σ
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Therefore,

δ δ σ δp D x
E

e x
E

= 2

so

 

δp D
Ee

s
2

=  (6.11)

But

s
D
D

D
D

= = =change in length
original length

πδ
π

δ

and

δ π δ π
π

δA
A

D D D
D

D
D

s=
+( ) −

= =
2 2

2

2
2

Therefore,

 

δ δ

ρ δ
δ δ

A
A

p D
Ee

c
p

p K pD Ee K D Ee

=

= ( )+ ( ) = ( )+ ( )/ / / /
2 1

1
 (6.12)

Hence, if K, ρ, E and e are known, c can be calculated.
The only difference between the rigid pipe case and the elastic pipe case is therefore the 

speed at which the shock wave travels down the pipe. In every other respect, the solutions 
 follow the pattern of Example 6.2.

Example 6.3: Surge in a Steel Pipeline

A valve is placed at the downstream end of a 3 km long steel pipeline. The pipeline is 0.5 m 
internal diameter and the wall thickness is 0.006 m. The initial velocity of flow is 2.5 m/s.

E K= × = ×2100 10 2100 108 2 6 2N/m N/mand for water assume

What is the magnitude of surge pressure generated by a sudden and complete valve 
closure?
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Solution

First use Equation 6.12 to find the celerity of sound, c:

ρc

K
D
Ee

2
6 8

1
1

1
1 2100 10 0 5 2100 10

=






+





=
× + ×( ) ( ./ / ×× 0 006. )

Hence, c = 1070.2 m/s

Surge pressure is estimated from (6.4)

δ ρp cu= = × × = ×0
6 21000 1070 2 2 5 2 676 10. . . N/m

Some installations incorporate supports which allow some axial movement. When this 
is so, a hoop strain will produce a corresponding strain in the axial direction. This will 
slightly influence the magnitude of c. An appropriate allowance for this effect may be 
made by incorporating a term with the Poisson ratio in (6.11) (and hence in [6.12]).

6.4 analysIs oF More CoMPlex ProBleMs

6.4.1 description

For a realistic system under surge conditions the analysis must take account of

 1. Elasticity (of fluid and pipe material)
 2. Effect of hydraulic losses
 3. Non-instantaneous valve movement

The method given in the preceding section can be suitably extended, but it becomes rather cumber-
some. It is therefore worth turning to a method which is readily adapted for computer use. Such a 
method is now outlined, and although the actual process of developing the equations can seem rather 
long, it should be borne in mind that we are really only interested in the final equations. These will 
introduce the “method of characteristics” which may, in principle, be applied to any unsteady flow. 
To clarify matters as far as possible, the equations are developed step by step from first principles.

It is worth reviewing the events which take place as a pressure wave passes along a short length 
of pipe (Figure 6.6a). The valve closure (or change in setting) is now not instantaneous, though it 
is fast enough to generate a shock wave. However, since the change in setting takes a finite time, it 
will also take a finite time for the pressure rise δp to be generated. Consequently, the shock wave 
now occupies a significant length of pipeline, δx. This length will clearly be directly related to the 
pressure rise time (δx/c = δt). Due to the increase in pressure, two changes will occur:

 1. The fluid will compress.
 2. The (elastic) pipe will experience a strain.

Differential equations may therefore be developed based on the conservation of mass and 
momentum equations.
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6.4.1.1 Conservation of Mass

For the control volume shown in Figure 6.6a, (mass flow in) – (mass flow out) = (rate of change 
of mass in control volume)

ρ ρ ρ δ ρ δAu Au
x

Au x
t

A x− + ∂
∂







= ∂
∂

( ) ( )

Hence,

∂
∂

+ ∂
∂

+ ∂
∂

=( ) ( )ρ ρ ρA
t

A
u
x

u
A
x

0

or

∂
∂

+ ∂
∂

+ ∂
∂

=p
t

d A
dp

A
u
x

u
p
x

d A
dp

( ) ( )ρ ρ ρ
0

ρ, A, u, p

u + —— δx∂u
∂x(a) p + —— δx∂p

∂x

A + —— δx∂A
∂xρ + —— δx∂ρ

∂x

δx

Hydraulic gradient

Wsinθ

W
θ

τ0

H – z

H

(b)

z

pA

p + —— δx∂p
∂x A + —— δx∂A

∂x

FIgure 6.6 Surge conditions – compressible fluid, elastic pipe and “rapid” (but not instantaneous) valve closure. 
(a) Sectional elevation and (b) forces acting on fluid.
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Taking

c
A

d A dp
2 =

( )ρ /

(cf. Equation 6.10)

then the conservation of mass equation is

 

∂
∂

+ ∂
∂

+ ∂
∂

=p
t

c
u
x

u
p
x

ρ 2 0  (6.13)

6.4.1.2  The Momentum Equation

For the control volume shown in Figure 6.6b,
Sum of forces = rate of change of momentum

 
pA p

p
x

x A
A
x

x p
p
x

x
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x

x P− + ∂
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+ ∂
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+ + ∂
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∂
∂

−δ δ δ δ τ1
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0 δδ θx W
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g
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u
x

u
t

+ = ∂
∂

+ ∂
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sin
 

(6.14)

This can be simplified by ignoring higher order terms and dividing by W/g(W = ρgδA). Also, recall-
ing that τ0 = λρ u|u|/8 (where λ is the friction factor and |u| is the modulus or positive value of u), 
and that, for a circular pipe, the wetted perimeter P = πD, and the cross-sectional area is πD2/4:

 

1
2

0
ρ

λ θ∂
∂

+ − + ∂
∂

+ ∂
∂

=p
x

u u
D

g u
u
x

u
t

| |
sin  (6.15)

The u2 term (in the expression for shear stress) is replaced by u|u| to allow for the fact that the 
velocity may be positive or negative, and the direction of the shear stress must be in the opposite 
direction to motion.

Equations 6.13 and 6.15 may be expressed in terms of H instead of pressure, p. Taking 
p = ρg(H − z),

Then

∂
∂

= ∂ −
∂

= ∂
∂

+





p
x

g
H z

x
g

H
x

ρ ρ θ( )
sin

and

∂
∂

= ∂ −
∂

= ∂
∂

p
t

g
H z

t
g

H
t

ρ ρ( )
,

since ∂z/∂t = 0.
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Hence, the conservation of mass equation becomes

 
g

H
t

c
u
x

ug
H
x

gu
∂
∂

+ ∂
∂

+ ∂
∂

+ =2 0sinθ  (6.16)

and the momentum equation becomes

 
g

H
x

u u
D

u
u
x

u
t

∂
∂

+ + ∂
∂

+ ∂
∂

=λ | |
2

0  (6.17)

Equations 6.16 and 6.17 form the basis for a numerical model representing the velocities and 
pressures in a pipeline under conditions of unsteady compressible flow. A number of graphical 
and manual solution techniques have been developed and some are still useful under some cir-
cumstances (see, e.g., Fox, 1989, Chapter 2). However, a computer-based method is frequently 
the most convenient. The aforementioned equations are transformed into a computational 
model in Chapter 14.

6.5 ConCludIng reMarKs

 1. The intensity of surge pressures depends on the rate of change at a (variable) control-
ling boundary. If the rate of change is sufficiently fast, then the liquid will behave in 
the elastic mode. Therefore, it is important to have some general rules which indicate 
whether shock waves are likely to be generated. To illustrate this point, consider the 
effect of the time T required for complete closure of a valve at the downstream end of 
a pipeline of length L:

 a. If T < 2L/c, then the maximum surge pressure is incurred, since a returning decom-
pression wave cannot reach the valve before complete closure. Closure is therefore 
effectively instantaneous.

 b. At the other extreme, if T > 20L/c, then there will be little or no shock wave activ-
ity, and the liquid will behave in the incompressible mode – this is “slow” closure.

 c. For 2L/c < T < 20L/c, conditions are intermediate between (a) and (b) – this is 
known as a “rapid” valve closure.

 2. In this chapter, it has been assumed that the surge conditions have been generated by 
the closing of a valve. However, any variable boundary can produce a surge. An exam-
ple of a boundary which is variable (but might not be thought of as such) is a pump 
under power failure conditions.

 3. In designing a major pipeline system, it is necessary to evaluate the surge pressures 
under all foreseeable changes of boundary conditions. If excessively high values are 
predicted, then it is necessary to incorporate a system for reducing the surge to an 
acceptable level. This aspect of unsteady flow is discussed in Section 12.6.
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6.6 suMMary

This treatment of unsteady flows in pipes is only introductory. The development of a compu-
tational model from Equations 6.16 and 6.17 is presented in Chapter 14. Readers who need 
a more advanced treatment are referred to Ellis (2008), which includes a wealth of practical 
information, or Fox (1989).

ProBleMs For solutIon

6.1 A steel pipeline is 2.5 km long and 500 mm in diameter, and carries water. A control 
valve is sited at the downstream end. Calculate

 (a) The celerity of the shock wave in the fluid
 (b) The maximum discharge if the surge pressure following instantaneous shutdown is 

limited to 2900 kN/m2

 Take K = 2.11 × 109 N/m2.
[1450 m/s, 390 L/s]

6.2 The penstock to a turbine is 1 km long and 150 mm in diameter. The pipe is designed 
for a maximum pressure of 5600 kN/m2. The operating discharge is 44 L/s, and the 
corresponding pressure at the governor valve is 2450 kN/m2. What is the minimum 
time for complete shutdown? Take c = 1400 m/s.

[1.58 s]
6.3 A water supply main is 3 km long and carries water. The velocity of the water is 2.5 m/s. 

Calculate the surge pressure for instantaneous closure if K = 2.13 × 109 N/m2.
[372 m head]

6.4 A steel pipeline is 750 m long and 100 mm in diameter, and has a wall thickness 
of 7.5 mm. It carries oil at a velocity of 1 m/s and has a control valve at the down-
stream end. The valve shuts in 1 s. Determine (a) the speed of sound in the medium, 
(b) whether the 1 s closure is “rapid” or “instantaneous” and (c) the surge pressure. Take 
E = 205 × 109 N/m2 for steel. For the oil, ρ = 950 kg/m3 and K = 0.67 × 109 N/m2.

[(a) 801 m/s, (c) 761 kN/m2]
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Chapter 7

Hydraulic Machines

7.1  ClassIFICatIon oF MaCHInes

Civil engineers are not usually involved in the design of hydraulic machines. However, they 
are frequently called upon to design systems of which these machines form an integral part. 
Examples of such systems are pipelines for water supply, for surface and foul water drainage, for 
hydroelectric schemes and so on. It is therefore important that the civil engineer should have a 
sound basic understanding of hydraulic machines and their applications.

It is convenient to divide these machines into two categories:

 1. Pumps, i.e., machines which transform a power input (e.g., from an electric motor) into 
a hydraulic power output

 2. Turbines, i.e., machines which transform a hydraulic power input into a mechanical 
power output which is mainly utilised for generation of electrical power

Machines can be further subdivided into “positive displacement” units and “continuous flow” 
units. Typical positive displacement units are piston and diaphragm pumps, which are often 
used for pumping out groundworks. This chapter concentrates on the continuous flow units, 
which are by far the most widely used for permanent installations.

By	the	end	of	this	chapter	you	should

 ◾ Be able to identify the different types of pumps and turbines
 ◾ Be able to use a vector diagram to indicate the flow paths and energy transfer process 

in a centrifugal pump
 ◾ Understand typical performance data for a pump
 ◾ Be able to use the appropriate selection criteria to identify the type of pump or turbine 

for a given duty
 ◾ Be able to apply the Thoma cavitation criterion
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7.2  ContInuous FloW PuMPs

Continuous flow or “rotodynamic” pumps comprise two elements:

 1. A rotating element (impeller) which transfers energy to the fluid
 2. Some form of casing which encloses the impeller and to which the pipeline is connected

In many cases, the impeller is driven by an electric motor.

7.2.1  radial Flow (Centrifugal) Pump

This is one of the most widely utilised hydraulic machines (Figure 7.1). Like most continuous 
flow machines, it has the advantage of being able to pass either liquids or liquids with suspended 
solids (there are, of course, limits to the size and nature of the solids). These machines can thus 
be applied in such environments as sewage plants, drainage schemes and irrigation schemes. The 
casing must initially be full of liquid (i.e., the pump must be “primed”) in order to function. 
When the impeller rotates at its design speed, it imparts a radial component of motion to the 
volume of fluid trapped in the passages between the vanes. That fluid therefore passes outwards 
into the outer part of the casing (the volute) and then out into the high pressure (delivery) pipe-
line. As fluid continually evacuates the impeller, replenishment fluid is continually drawn from 
the low pressure (suction) pipeline into the casing.

7.2.1.1   Energy Transfer in Radial Flow Pumps

An insight into the energy transfer process may be obtained by producing vector diagrams rep-
resenting the flow as it enters and as it leaves the impeller. The flow through a radial flow pump 
impeller provides a relatively straightforward example. It is usually assumed that the incoming 

Flow Rotation

A A
Impeller

Flow
“Eye” (intake
to impeller)

Drive shaft
Section A–A

Impeller vane

Volute

Front
shroud

Back shroud

Seal

FIgure 7.1 Centrifugal pump.
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liquid enters the casing axially and then turns outwards, so that the flow is in the radial plane as 
it approaches the impeller. The curvature of the impeller vanes is designed to produce a change 
in the direction of the flow as the fluid passes outwards through the impeller. Vectors may be 
constructed which represent

 1. The absolute velocity of flow at a point, i.e., the velocity relative to a stationary point
 2. The relative velocity of flow, i.e., the velocity as “seen” from a point on the impeller

The principal velocity vectors are

 1. The tangential velocity of the impeller itself at radius r

 V rNI  = 2π

  where N is the rotational speed of impeller (rev/s)
 2. The absolute velocity VA of the fluid at radius r
 3. The relative velocity, VR (i.e., the velocity of the fluid relative to the impeller)
 4. The tangential component of VA is VW, often known as the “whirl” velocity
 5. The radial component of VA is VF

In order to produce the vector diagrams, it is simplest to assume that, as the flow passes through 
the impeller, the relative velocity traces a path which is everywhere congruent to the vane. 
Vector diagrams (Figure 7.2) can then be drawn.

Based on these diagrams, equations describing the energy transfer are now developed. 
At any radius r in the impeller, the flow will possess a tangential component of velocity VW. 

V11

VA1

VR2

VR1

V12
VW2VA2

VF2

α1
α2

α2

Rotation

Absolute fluid path

Relative fluid path
VW1

V F1

FIgure 7.2 Velocity diagrams for centrifugal pump.
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It will therefore have a corresponding tangential momentum flux, ρQVW. The moment of 
this flux about the impeller axis is ρQVWr. Just as force equals change of momentum flux, 
so torque equals change of moment of momentum flux. In this case, the change takes place 
between radii r1 and r2, so

 Torque ( ) = 2 W1T QV QVρ ρW r r2 1−

 Power = 2  = 2 ( )W2 W1π π ρ ρNT N QV QVr r2 1−

But 2πrN = VI, therefore

 Power = ( )W2 I2 W1 I1ρQ V V V V−  (7.1)

Therefore, ideal energy head, Hideal, imparted to the fluid is

 H
gQ g

V V V Videal W I W I
power= = −( )
ρ

1
2 2 1 1  

(7.2)

If VA1 is radial in direction, then VW1 = 0.

7.2.1.2   Energy Losses in Radial Flow Pumps

The overall rate of energy transfer actually attained is always less than the ideal values pre-
dicted by (7.2). There are a number of contributory factors, of which the major ones are as 
follows:

 1. During its passage through the impeller and volute, the fluid will suffer both frictional 
and local energy losses.

 2. The liquid in the volute is at a much higher pressure than the liquid at the entry so, 
unless the internal sealing arrangements are extremely good, some of the pressurised 
fluid leaks back to the impeller eye and then recirculates through the impeller. This 
clearly wastes a certain amount of energy.

 3. In the vector analysis, it had to be assumed that the flow through the impeller was 
axisymmetric. However, in order to produce a tangential acceleration, the force 
(and therefore pressure) must be higher on the front of each vane than on the back 
(Figure 7.3). At any given radius in the impeller, the pressure is therefore nonuni-
form. This results in a nonuniform relative velocity distribution, with the highest 
velocities at the back of the vanes and the lowest velocities at the front of the vanes. 
The effect of this is to distort the pattern of the vectors at the exit from the impeller 
and to reduce VW2.

 4. If the pressure in the suction line is too low, cavitation problems may arise. The low 
pressure zone near the backs of the vanes is particularly prone to cavitation, and if the 
problem is severe, then the pump performance will fall off dramatically.
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Example 7.1:  Centrifugal Pump

A centrifugal pump is required to deliver 350 L/s against a 15 m head. The impeller is of 
400 mm outer diameter and 200 mm inner diameter and rotates at 1400 rev/min. The 
intake and delivery pipelines are of the same diameter. The water flows in a radial direc-
tion as it approaches the impeller, and the radial velocity component remains constant at 
5 m/s as the flow passes through the impeller. Assume that the hydraulic losses account 
for a 10% head loss. Calculate the required vane angles at the outlet of the impeller. If 
the mechanical efficiency is 88%, estimate the power requirement for an electric motor.

Solution

 (a) The ideal head = 15/0.9 = 16.67 m, since the 15 m head was a net head (i.e., head 
after deduction of losses), and the hydraulic efficiency = (100 − 10)% = 90%.

 (b) From (7.2)

 H ideal W2 I2 W1 I1 = (1/ ) ( )g V V V V−

  Since the incoming flow is in a radial direction, VW1 = 0. Therefore,

 H g V Videal W2 I2 = 16.67 m = (1/ ) ( )

  Now,

 V r NI m/s2 22 2
0 4
2

1400
60

29 32= = × × =π π .
.

  Hence,

 VW2  = 5.58 m/s

High pressure

Low pressure

Rotation
Ideal vector diagram

Actual vector diagram

V12

β2

V
w2  (actual)

FIgure 7.3 Effect of pressure distribution on velocity diagram for centrifugal pump.
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 (c) From Figure 7.2, the outlet vane angle may be derived by taking

 
cot I W

F
α2

2 2

2

29 32 5 58
5

4 748= − = − =V V
V

. .
.

  therefore,

 α2 11.9= °

 (d) Power absorbed by impeller is

 ρgQH ideal 1000 9.81 0.35 16.67= × × ×
 = 57,236 W

  Since mechanical efficiency is 88%, the power absorbed by the pump will be

 

57 236
0 88

65 041
,
.

,= W

 say, 65 kW.

7.2.2  axial Flow Machines

The axial flow pump comprises an impeller in the form of a propeller sited on the pipeline axis 
(Figure 7.4). The pipeline itself therefore forms a “casing”. A cross section through one of the 
propeller blades has a shape which resembles a section through an aerofoil (aircraft wing). The 
section is arranged at some angle to the plane of the pipe cross section. This angle and the blade 
section shape combine to impart the required tangential acceleration to the fluid as it passes 
through the rotating impeller. Vector diagrams can be constructed to represent the flow at impel-
ler entry and exit, using exactly the same principles as for the radial flow machine. However, for 

Blades

Hub

Flow

Rotation

FIgure 7.4 Axial flow pump.
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almost all practical cases, the exit vector diagram varies with radius, so the procedure for esti-
mating rate of transfer of energy is more complicated. In any case, modern design techniques 
are based on an adaptation of aerofoil theory known as “cascade theory”, rather than on vector 
diagrams. A study of cascade theory is beyond the scope of this chapter, so the discussion will be 
curtailed here.

For axial flow machines with fixed blades, high efficiency is attained only over a fairly narrow 
range of discharge. For applications where a wider operational range is required, pumps with 
variable blade angle are available. Such machines are clearly more expensive, since a mechanical 
control system is required, together with more sophisticated instrumentation.

7.2.3  “Mixed Flow” Machines

“Mixed flow” machines are, in effect, a compromise between axial and radial flow machines. 
The impeller induces a three-dimensional flow pattern such that the path of a fluid particle 
would lie approximately along the surface of a diverging cone. The performance characteristics 
of these units lie between those of radial and axial flow machines. Some fairly large installations 
have been designed to incorporate mixed flow pumps.

7.3  PerForManCe data For ContInuous FloW PuMPs

The equations developed in Section 7.2 cannot readily be extended to enable realistic estimates 
of pump performance to be made. Actual performance data are invariably derived from a com-
prehensive laboratory testing programme. Such tests provide values of pump head, Hp, and 
power input, P, for the range of discharge, Q, at the design speed of the impeller. The energy 
imparted to the fluid is ρgQHp, so that a pump efficiency, η, may be derived:

 
η ρ= gQH

P
p

 (7.3)

The performance data may be presented in tabular or graphical form. Figures 7.5 and 7.6 show 
typical performance curves for a centrifugal pump and an axial flow pump, respectively. In this 
connection, some general observations may be made:

 1. The performance of a radial pump (or a fixed blade axial pump) depends substantially 
on the exit vane angle α2. For many radial pumps, α2 < 90°, and such designs have 
a peak power requirement corresponding to a particular value of Q. The electrical 
(or other) drive motor must be rated accordingly.

 2. Where machines are designed with α2 > 90°, then the power requirement increases 
with Q. This can pose difficult motor selection problems.

 3. Pressure at the intake to a centrifugal pump should not be allowed to fall below about 
3 m absolute head of water, or cavitation problems will arise. Axial machines have a 
much more limited suction capacity, since the flow around the blade section is very 
sensitive to low pressure. Too low an intake pressure therefore provokes flow separation 
and consequent loss of energy.
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 4. The relationship between Hp and Q for some axial designs is such that there may be 
parts of the range which are “barred”. The reason for this is that the pump would be 
prone to unsteady flow in the barred range.

 5. In order to obtain the pump performance required by the system, it is sometimes nec-
essary to use a multiple array of pumps. The pumps may be arranged either in series or 
in parallel. This is discussed further in Section 12.5.

 6. In order to function satisfactorily, the pump must be matched to the characteristics of 
the pipeline system in which it is installed. Again, this is covered in Section 12.5.

Q Q(a) (b)

η η

P

P

Hp

Hp

FIgure 7.5 Performance data for centrifugal pump. (a) Exit vane angle α2 > 90° and (b) exit vane angle α2 < 90°.

“Barred”
(unstable)

Zone η

Hp

P

Q

FIgure 7.6 Performance data for axial pump.
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7.4  PuMP seleCtIon

An indication of the type of pump which is appropriate to a particular duty may be obtained by 
reference to a performance parameter known as the “specific speed” Ns. For pumps,

 
N

NQ
H

s
p

=
1 2

3 4

/

/

The derivation and significance of Ns is discussed in Section 11.6. The “specific speed” is not 
really representative of any meaningful or measurable speed in a machine, so some practitioners 
refer to it as “type number”, since it is used in selection of pump type. The value of Ns for a 
particular machine is calculated for the conditions obtaining at its point of optimum efficiency, 
since ideally this should coincide with the installed operating point of the pump.

Unfortunately, a wide variety of units are used in calculating values of Ns:

N may be in rad/s, rev/s or rev/min
Q may be in m3/s, m3/min, L/s or L/min, UK gallons/min, US gallons/min, etc.
Hp may be in m or ft

The engineer needs to check this point carefully with the pump manufacturer.
Taking N in rev/min, Q in m3/s and H in m, a very rough guide to the range of duties covered 

by the different machines is as follows:

10 < Ns < 70 centrifugal (high head, low to moderate discharge)
70 < Ns < 165 mixed flow (moderate head, moderate discharge)
110 < Ns axial flow (low head, high discharge)

In making the selection, the points raised in the preceding section should also be borne in mind.

7.5  Hydro-PoWer turBInes

Hydro-electric power installations exist throughout the world and generate about 20% of global 
electricity, using the potential of local water resources. They therefore generate no carbon diox-
ide. The basic types of scheme are as follows:

Medium/high	level	schemes, where a reservoir is formed by construction of a dam (Figures 12.13 
and 13.11) from which water is fed down to the turbines.

Pumped	storage	schemes use two reservoirs, one at high level and the other at low (tailwater) 
level. Water is fed from the higher to the lower reservoir through the turbines to generate elec-
tricity. When electrical demand is low water is pumped from the lower to the upper reservoir. 
Such schemes use reversible turbine/pump and generator/motor units.

River	schemes usually involve construction of a weir/barrage which houses the turbines.

Tidal	schemes may involve construction of a barrage across an estuary to house the turbines. One 
difference with river schemes is the bi-directional flow over the tidal cycle with null (zero flow) 
periods at high and low tide.

Wave	Power is a developing technology, but is outside the coverage of this text.
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Rudimentary water power machines have been used for centuries, but it was not until the 
later part of the nineteenth century that more efficient designs began to appear. These have 
subsequently been developed to provide a high degree of efficiency and reliability. Hydraulic 
turbines may be broadly classified as impulse or reaction machines. Reaction turbines may be 
further subdivided into Francis and axial flow (propeller) types. Some very large units have 
been installed in recent schemes.

For the Francis turbine (Figure 7.7) the rotating element, or “runner”, is somewhat similar to 
the impeller of a centrifugal pump, and this type of machine could be seen as a centrifugal pump 
operating “in reverse”. Water enters the outer part of the casing (the volute) and flows inwards 
through the array of adjustable guide vanes and then through the runner. Energy is transferred 
from the water to the runner which drives the generator. The water then drains from the runner 
into the draft tube and hence to the tailrace. The draft tube is tapered to minimise the loss of 
kinetic energy and maximise the energy available at the turbine. The guide vanes are used to 
adjust the rate and direction of flow entering the runner. This permits optimisation of flow con-
ditions over a wide range of discharge and power output, to match the generating requirements.

The axial flow turbine (Figure 7.8) may similarly be regarded as the reversal of the axial flow 
pump. Adjustable guide vanes are installed at the turbine inlet for the same reasons as outlined 
earlier. Most modern units incorporate a mechanical system for varying the propeller blade 
angle of the runner to maintain high efficiency over the specified range of discharge and power 
output. Variable blade angle designs are known as Kaplan or bulb units. Some Kaplan units can 
adjust their blade angle either side of the neutral (zero angle) axis so they are reversible, and are 
therefore suitable for tidal power schemes.

As illustrated the turbine is housed with its axis vertical, but for some schemes (e.g., tidal) 
the turbine would be horizontally housed.

Reaction turbines run full of water, and the casing must be airtight. The gross head, H, is 
the difference between the reservoir and tailwater levels (or upstream and downstream levels 
for a river/tidal scheme). Ideally all of this would be converted into mechanical energy by the 

Flow

Rotation

Runner Volute

Guide vanes

Draft
tube

Tail race

Flow

FIgure 7.7 Radial flow (Francis) turbine.
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turbine, but there are energy losses in the pipeline so the head available at the turbine is Ht 
(=H – losses). Also, there are losses in the machine plus mechanical losses (bearing friction, 
etc.). Nevertheless turbines commonly attain better than 90% efficiency.

The pelton wheel is the commonest type of impulse turbine (Figure 7.9). The runner comprises 
a disc with a series of flow deflectors or “buckets” around its periphery. The water enters the casing 

Guide vanes

Runner
Flow

Tail race

FIgure 7.8 Axial flow turbine.

Nozzle

Runner

Casing
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through bucket

β

Valve
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Velocity diagramSection through casing

VR2

VR1 V1

VA1

VA2

FIgure 7.9 “Pelton wheel” turbine.
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through each of one or more nozzles as a high-velocity jet. As the runner rotates the jet impinges 
on each bucket in turn. The water is deflected by the buckets and the change in its momentum 
applies a force to the buckets and hence a torque to the drive shaft. The jet incorporates a stream-
lined control valve to regulate the discharge and hence the power output. Peak efficiency occurs 
at a particular runner speed. Gross head is due only to the height of the reservoir level above the 
nozzle (s), and Ht is gross head minus losses. The turbine casing does not run full of water.

7.6  turBIne seleCtIon

Turbines, like pumps, may be selected on the basis of the specific speed. For turbines specific 
speed is given by

 
N

NP
H

s

/

/=
1 2

5 4

(see Section 11.6) for which a variety of units are used.
Taking N in rev/min, power (P) in kW, and H in m, the indicative range of duties for each 

type of turbine is

8 < Ns < 30 pelton wheel (high head, low discharge)
40 < Ns < 450 Francis (moderate head, moderate discharge)
380 < Ns < 900 Axial (low head, high discharge)

7.7  CavItatIon In HydraulIC MaCHInes

Before closing the discussion, it is worth taking a slightly more detailed glance at the subject of 
cavitation. It is possible for cavitation to occur in both pumps and turbines if the liquid pressure 
falls sufficiently far below atmospheric pressure at any point in the machine. The vacuum head, 
HC, at which cavitation will commence is defined by the equation

 
H

p p
g

C = −( )atm vap

ρ

where
pvap is absolute vapour pressure
patm is the absolute pressure of the atmosphere

For the case of a pump sited above a sump (see Figure 12.6), the suction head at the pump 
equals the sum of the height of pump above sump, the friction loss in suction pipe and the 
kinetic head in suction pipe or, expressed algebraically,

 
H H h

V
gsps s f
s= + +
2

2

The “net positive suction head” (NPSH) is defined as

 NPSH = C psH H−
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A cavitation parameter σTh which was suggested by Thoma (a German engineer) relates NPSH 
to pump head

 
σTh

p

NPSH=
H

For a turbine, the definition of NPSH is usually related to the height of the turbine (z) above 
tailrace, so that NPSH = (HC − z) and

 
σTh

t

NPSH=
H

where Ht is the head available at the turbine (= gross head minus losses).
A considerable amount of data has been amassed on cavitation, and critical values of σTh(= σcrit) 

can be estimated for pumps or turbines. For freedom from cavitation, the operational σTh should 
exceed σcrit. Some typical equations for σcrit are as follows:

For a single intake radial flow pump,

 
σcrit

p

s=
×







= 





NQ
H

N1 2 4 3 4 3

191 191

/ / /

For a radial flow turbine,

 
σcrit

s0.006 0.55
381

1.8

= + 





N

For an axial flow turbine,

 
σcrit

s0.10 0.3
381

2.5

= + 





N

These equations provide only an approximate guide, further information can be obtained from 
manufacturers’ websites.

7.8  suMMary

The treatment of hydraulic machines presented here is very basic. Readers who need to extend 
their knowledge of pumps, turbines and related matters are referred to Novak et al. (2007) or 
Wislicenus (1965).

ProBleMs For solutIon

7.1  A centrifugal pump is designed for a discharge of 1 m3/s of water. The water enters the 
pump casing axially, leaving the impeller with an absolute velocity of 11.5 m/s at an angle 
of 16.5° to the tangent at the impeller periphery. The impeller is 500 mm in diameter, and 
rotates at 710 rev/min. Estimate the exit vane angle and the hydraulic power delivered.

[23.4°, 205 kW]
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7.2  A pump is to deliver 60 L/s through a 200 mm diameter pipeline. The pipe is 150 m long and 
rises 2 m. The friction factor λ = 0.028. Two pumps are being considered for the duty. Select 
the more suitable pump, and estimate the power required to drive the pump and the specific 
speed. Should the pump be of radial, axial or mixed flow type? Pump speed is 1385 rev/min.

Pump no. 1 Performance data

Head (m) 8.6 8.35 7.56 6.35 4.95 3.7 2.3

Discharge (L/s) 0 18 39 60 75 88 100

Efficiency (%) 0 52 72 79 75 63 48

Pump no. 2 Performance data

Head (m) 9.0 8.8 8.1 7.0 6.0 4.5 3.3

Discharge (L/s) 0 18 39 60 75 88 100

Efficiency (%) 0 52 75 76 67 58 46

[4.8 kW, 89, mixed flow]
7.3  Cavitation problems have been encountered in a mixed flow pump. The pump is sited with its 

intake 3 m above the water level in the reservoir and delivers 0.05 m3/s. The total head at outlet 
is 31.7 m, and at inlet is −7 m. Atmospheric pressure = pA = 101.4 kN/m2 and vapour pressure 
of water = pvap = 1.82 kN/m2. Determine the Thoma cavitation number. A similar pump is to 
operate at the same discharge and head, but with pA = 93.4 kN/m2 and pvap = 1.2 kN/m2. What 
is the maximum height of the pump intake above reservoir level if cavitation must be avoided?

[0.081, 2.25 m]
7.4  A hydraulic turbine is to be used to generate power on a site once used as a reservoir for 

water supply. The gross head at the turbine, H = 10 m and there are 5% hydraulic losses. 
The discharge through the turbine is 70 m3/s, the power generated is 6 MW and the syn-
chronous speed is 150 rev/min.

 (i) Calculate the specific speed and hence determine the type of turbine to be used.
 (ii) Given that absolute atmospheric pressure is equivalent to 10 m head of water, and 

the vapour pressure head (absolute) is 0.2 m, find the elevation, z, of the tailwater 
above or below the turbine. σ crit = 0.10 + 0.3 (Ns/381)2.5.
[specific speed = 653.6, −2.13 m]
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Chapter 8

Wave theory

8.1 Wave MotIon

Ocean waves are examples of periodic progressive waves, and as they approach the shores, they 
are of particular interest to civil engineers involved in the design of marine structures or coastal 
defence works. Consequently, this chapter is concerned with the theories of periodic progres-
sive waves and the interaction of waves with shorelines and coastal structures.

Ocean waves are generated mainly by the action of wind on water. The waves are formed 
initially by a complex process of resonance and shearing action, in which waves of differing 
wave height, length, period and direction are produced. Once formed, ocean waves can travel 
for vast distances, spreading in area and reducing in height, but maintaining wavelength and 
period, as shown in Figure 8.1. For example, waves produced in the gales of the “roaring forties”, 
deep in the Southern ocean, have been monitored all the way north across the Pacific Ocean to 
the shores of Alaska (a distance of 10,000 km). There are also several other types of waves in 
the ocean including the tides, storm surges and tsunamis. However, these are not treated here.

Wave theory normally employs the term wave	frequency in preference to wave period, where 
frequency is the inverse of period. As will be shown later, waves of differing frequencies travel 
at different speeds, and therefore outside the storm generation area, the sea state is modified as 
the various frequency components separate. The low-frequency waves travel more quickly than 
the high-frequency waves, resulting in a swell sea condition as opposed to a storm sea condition. 
This process is known as wave dispersion. Thus, wind waves may be characterised as irregular, 
short crested and steep, containing a large range of frequencies and directions. By contrast, swell 
waves may be characterised as fairly regular, long crested and not very steep, containing a small 
range of low frequencies and directions.

As waves approach a shoreline, their speed, wavelength, direction and height are altered by 
the processes of refraction and shoaling before breaking on the shore. Once waves have broken, 
they enter what is termed the surf zone. Here some of the most complex transformation and 
attenuation processes occur, including generation of cross- and long-shore currents, a set-up of 
the mean water level and vigorous sediment transport of beach material.

Where coastal structures are present, either on the shoreline or in the near-shore zone, waves 
may also be diffracted and reflected, resulting in additional complexities in the wave motion. 
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Figure 8.2 shows a simplified concept of the main wave transformation and attenuation  processes 
that must be considered by coastal engineers in designing coastal defence schemes.

The traditional approach to determining a design wave condition at a specific site of interest 
has been first to estimate a representative wave height, period and direction offshore in deep 
water and then to transform this representative wave by simulating the processes of refraction 
and shoaling to obtain the characteristics of the modified design wave at the point of interest. 
The more modern approach has been to replace the representative wave with what is termed 
a directional	energy	density	curve. This is in recognition of the fact that, at any point in the sea, 
the sea state is composed of a (largely) random periodic motion consisting of a range of wave 
heights, periods and directions.

Additionally, the existence of wave groups is of considerable significance, as they have been 
shown to be responsible for the structural failure of some maritime structures designed using 
the traditional approach. The existence of wave groups also generates secondary wave forms 
of much lower frequency and amplitude, called bound long waves. Inside the surf zone, these 
waves become separated from the “short” waves and have been shown to have a major influence 
on sediment transport and beach morphology, producing long- and cross-shore variations in the 
surf zone wave field.

To gain insight into an understanding of these complex processes, it is perhaps best to begin 
by considering the simplest approaches and then to consider how these need to be modified and 
extended so that a more accurate, realistic and reliable methodology can be determined for the 
specification of a sea state for coastal defence.

The following sections describe some aspects of wave theory of particular application 
in coastal engineering. Many results are quoted without derivation, as the derivations are 
often long and complex. The interested reader should consult the references provided for 
further details.

Wind

Storm wave generation

Dispersion

Swell wave crests

FIgure 8.1 Wave generation and dispersion.
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By	the	end	of	this	chapter,	you	should

 ◾ Be able to identify the principal types of wave motions and understand how they are 
formed, transformed and attenuated

 ◾ Understand the linear wave theory equations and be able to apply them to solve typical 
problems

 ◾ Be aware of the processes occurring in the surf zone and be able to calculate wave 
 set-up and longshore currents
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FIgure 8.2 Deep-water wave spectrum and wave transformation.
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 ◾ Be able to analyse wind, wave and water-level data to determine both short- and long-
term wave and water-level parameters used in engineering design

 ◾ Be aware of current guidelines on how to account for the effects of climate change in 
coastal engineering design

This chapter also provides all the background knowledge required for the study of coastal 
 engineering, which is presented in Chapter 16.

8.2 lInear Wave tHeory

The mathematical description of periodic progressive waves is complicated and is still the sub-
ject of research. Fortunately, the earliest (and simplest) description, attributed to Airy in 1845, 
is sufficiently accurate for many engineering purposes. Airy wave theory is commonly referred 
to as linear or first-order wave theory, because of the simplifying assumptions made in its deri-
vation. Other examples of wave theories are Stokes’s (second-, third- and fifth-order) and cnoi-
dal, both of which are approximations to the wave form of steep waves.

8.2.1 airy Waves

Wave motion consists of the propagation of a disturbance through a medium (e.g., ripples on 
water or sound through air). For water waves, this is manifested as periodic vertical motion 
above and below the still water level, viewed at a point, as time passes. For progressive waves, 
the wave crests can be seen to steadily move horizontally, as time passes. Where the water 
depth is sufficiently deep, the waves move largely without loss of form or height. Individual 
water particles move in circular orbits, always returning to their starting point. On the crest 
of a wave, the particle is at its highest point and is moving in the direction of the wave with 
maximum positive velocity. In a trough, the water particle is at its lowest point and is travelling 
at maximum velocity in the direction opposite to the direction of the wave.

The wave period is defined as the time for two successive wave crests to pass through a par-
ticular point. The wave length is the distance between successive crests. The wave celerity is 
the velocity at which the wave travels through the medium (equal to wavelength/wave period). 
This is differentiated from the wave speed, which is the speed at which the wave travels over a 
fixed point. The two are equal if the medium (e.g., the local sea area) is stationary.

The Airy wave was derived using the concepts of two-dimensional ideal fluid flow. This is a 
reasonable starting point for ocean waves, which are not greatly influenced by viscosity, surface 
tension or turbulence.

Figure 8.3 shows a sinusoidal wave of wavelength L, height H and period T. The variation of 
surface elevation with time, from the still water level, is denoted by η (referred to as excursion) 
and given by

 
η π= −













H x
L

t
T2

2cos  (8.1)



233Wave Theory

The wave celerity, c, is given by

 
c

L
T

=
 

(8.2)

Equation 8.1 represents the surface solution to the Airy wave equations. The derivation of the 
Airy wave equations starts from the Laplace equation for irrotational flow of an ideal fluid. The 
Laplace equation is simply an expression of the continuity equation applied to a flow net, as 
described in Chapter 2, and is given by
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where u is the velocity in the x direction, w is the velocity in the z direction and ϕ is the velocity 
potential.

A solution for ϕ is sought that satisfies the Laplace equation throughout the body of the 
flow. Additionally, this solution must satisfy the “boundary conditions”, that is, the conditions 
at the bed and on the surface. At the bed, assumed horizontal, the vertical velocity w must be 
zero. At the surface, any particle on the surface must remain on the surface, and the (unsteady) 
Bernoulli’s energy equation must be satisfied. Making the assumptions that H ≪ L and H ≫ d 
results in the linearised boundary conditions (in which the smaller, higher-order terms are 
neglected). The resulting solution for ϕ is given by
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Substituting this solution for ϕ into the two linearised surface boundary conditions yields the 
surface profile given in Equation 8.1 and the wave celerity c is given by
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FIgure 8.3 Definition sketch for a sinusoidal wave.
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Most modern texts concerning wave theory use the terms wave	number (k)(k = 2π/L) and wave	
frequency (ω)(ω = 2π/T). Thus Equation 8.3a may be more compactly stated as
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(8.3b)

Substituting for c from Equation 8.2 gives

c
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ω
ω

tanh( )

or

 ω2  tanh( )= gk kd  (8.3c)

Equation 8.3c is known as the wave	dispersion	equation. It may be solved, iteratively, for the 
wave number (k) and hence wavelength and celerity given the wave period and depth. Further 
details of the solution and its implications are given in Section 8.3.

The corresponding equations for the horizontal (ζ) and vertical (ξ) displacements and the 
velocities and accelerations of a particle at a mean depth −z below the still water level are
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and
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All the equations have three components. The first is a magnitude term, the second describes 
the variation with depth and is a function of relative depth and the third is a cyclic term con-
taining the phase information. Equations 8.4a and 8.5a describe an ellipse, which is the path 
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line of a particle according to linear theory. Equations 8.4b, 8.4c and 8.5b, 8.5c give the cor-
responding velocity and accelerations of the particle as it travels along its path. The vertical 
and horizontal excursions decrease with depth, the velocities are 90° out of phase with their 
respective displacements and the accelerations are 180° out of phase with the displacements. 
These equations are illustrated graphically in Figure 8.4.

Readers who wish to see a full derivation of the Airy wave equations are referred to Sorensen 
(1993) and Dean and Dalrymple (1991), in the first instance, for their clarity and engineering 
approach.

Direction of wave propagation

Deep water circular orbits(a) Transitional water elliptical orbits

π/2

Velocity

3π/2 2ππ

Celerity
Direction of wave propagation

0

π/2 3π/2 2ππ0

u = +; w = 0 u = 0; w = + u = –; w = 0 u = 0; w = – u = +; w = 0

αx = 0; αz = – αx = +; αz = 0 αx = 0; αz = + αx = –; αz = 0 αx = 0; αz = –

z

Acceleration

(b)

θ

FIgure 8.4 (a) Particle displacements for deep and transitional waves. (b) Velocities and accelerations.
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Strictly, the Airy wave equations apply only to waves of relatively small height in comparison 
with their wavelength and water depth. For steep waves and shallow-water waves, the profile 
becomes asymmetric, with high crests and shallow troughs. For such waves, celerity and wave-
length are affected by wave height. For details concerning finite-amplitude wave theories, the 
reader is referred to Sorensen (1993) for the reasons already cited.

8.2.1.1 Pressure Variation Induced by Wave Motion

The equation for pressure variation under a wave is derived by substituting the expression for 
velocity potential into the unsteady Bernoulli equation and equating the energy at the surface 
with the energy at any depth. After linearising the resulting equation by assuming that the 
velocities are small, the equation for pressure results, given by

p gz g
H

kx t
k d z

kd
= − + −

+{ }ρ ρ ω
2

cos( )
cosh ( )

cosh( )

(valid at or below the still water level, z = 0)
or

p gz g K zp= − +ρ ρ η ( )

where Kp(z) is known as the pressure attenuation factor, given by

K z
k d z

kd
p( )

cosh ( )
cosh( )

=
+{ }

The pressure attenuation factor is unity at the still water level, reducing to zero on the bed at 
the deep-water limit (i.e., d/L ≥ 0.5). At any depth (−z) under a wave crest, the pressure is a 
maximum and comprises the static pressure, −ρgz, plus the dynamic pressure, ρg(H/2)Kp(z). 
The reason why it is a maximum under a wave crest is because it is at this location that the 
vertical particle accelerations are at a maximum and are negative. The converse applies under 
a wave trough.

Pressure sensors located on the seabed can therefore be used to measure the wave height, pro-
vided they are located in the transitional water depth region. The wave height can be calculated 
from the pressure variation by calculating Kp(z) and subtracting the hydrostatic pressure (mean 
value of recorded pressure). This requires the solution of the wave dispersion equation for the 
wavelength in the particular depth, knowing the wave period. This is easily done for a simple 
wave train of constant period. However, in a real sea comprising a mixture of wave heights and 
periods, it is first necessary to determine each wave period present (by applying Fourier analysis 
techniques). Also given that the pressure sensor will be located in a particular depth, it will not 
detect any waves whose period is small enough for them to be deep-water waves in that depth.
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8.2.2 Influence of Water depth on Wave Characteristics

8.2.2.1 Deep-Water Approximations

The particle displacement equations (8.4) and (8.5) describe approximately circular patterns 
of motion in deep water. At a depth (−z) of L/2, the diameter is only 4% of the surface value. 
Hence deep-water waves are	unaffected	by	depth and have little or no influence on the seabed 
(see Figure 8.4).

For d/L > 0.5, tanh(kd) ≃ 1. Hence (8.3a) reduces to

 
c

gT
0

2
=

π  (8.6)

where the subscript 0 refers to deep water. Alternatively, using (8.2),

c
gL

0
0

2

1/2

=
π







Thus the deep-water wave celerity and wavelength are determined solely	by	the	wave	period.

8.2.2.2 Shallow-Water Approximations

For d/L < 0.04, tanh(kd) ≃ 2πd/L. Hence (8.3a) reduces to

c
gTd
L

=

and substituting this into (8.2) gives c gd= .
Thus the shallow-water wave celerity is determined	by	depth, and not by wave period. Hence 

shallow-water waves are not frequency dispersive whereas deep-water waves are.

8.2.2.3  Transitional Water Depth

This is the zone between deep water and shallow water, that is, 0.5 > d/L > 0.04. In this zone, 
tanh (kd) < 1; hence,

c
gT

kd C kd C= = <
2

0 0π
tanh tanh( ) ( )

This has important consequences, exhibited in the phenomena of refraction and shoaling, which 
are discussed in Section 8.3.

In addition, the particle displacement equations show that at the seabed, vertical compo-
nents are suppressed, so only horizontal displacements now take place (see Figure 8.4). This has 
important implications regarding sediment transport.
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8.2.3 group velocity and energy Propagation

The energy contained within a wave is the sum of the potential, kinetic and surface tension 
energies of all the particles within a wavelength, and it is quoted as the total energy per unit 
area of the sea surface. For Airy waves, the potential (EP) and kinetic (EK) energies are equal, 
and EP = EK = ρgH2L/16. Hence, the energy E per unit area of ocean is

 
E

gH= ρ 2

8  
(8.7)

(ignoring surface tension energy, which is negligible for ocean waves). This is a considerable 
amount of energy. For example, a (Beaufort) force 8 gale blowing for 24 h will produce a wave 
height in excess of 5 m, giving a wave energy exceeding 30 kJ/m2.

One might expect that wave power (or the rate of transmission of wave energy) would be 
equal to wave energy times the wave celerity. This is incorrect, and the derivation of the equa-
tion for wave power leads to an interesting result, which is of considerable importance. Wave 
energy is transmitted by individual particles, which possess potential, kinetic and pressure 
energy. Summing these energies and multiplying by the particle velocity in the x direction for 
all particles in the wave gives the rate of transmission of wave energy or wave power, P, and leads 
to the result (for an Airy wave)

 
P

gH c kd
kd

= +
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8 2
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2sinh( )

 (8.8)

or

P EC= G

where CG is the group wave celerity, given by
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c kd
kd

G
sinh

= +




2

1
2

2( )
 (8.9)

In deep water (d/L > 0.5), the group wave celerity CG = c/2, and in shallow water CG = c.
Hence in deep water, wave energy is transmitted forward at only half the wave celerity. This 

is a difficult concept to grasp, and therefore it is useful to examine it in more detail.
Consider a wave generator in a model bay supplying a constant energy input of 128 units 

and assume deep-water conditions. In the time corresponding to the first wave period, all 
of the energy supplied by the generator must be contained within one wavelength from the 
generator. After two wave periods, half of the energy contained within the first wavelength 
from the generator (64 units) will have been transmitted a further wavelength (i.e., two wave-
lengths in total). Also the energy within the first wavelength will have gained another 128 
units of energy from the generator and will have lost half of its previous energy in transmission 
(64 units). Hence the energy level within the first wavelength after two wave periods will be 
128 + 128 − 64 = 192 units. The process may be repeated indefinitely. Table 8.1 shows the 
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result after eight wave periods. This demonstrates that although energy has been radiated to a 
distance of eight wavelengths, the energy level of 128 units is propagating only one wavelength 
in every two wave periods. Also the eventual steady wave energy at the generator corresponds 
to 256 units of energy in which 128 units are continuously being supplied and half of the 256 
units are continuously being transmitted.

The appearance of the waveform to an observer is therefore one in which the leading wave 
front moves forward but continuously disappears. If the wave generator were stopped after eight 
wave periods, the wave group (of eight waves) would continue to move forward, but in addition 
wave energy would remain at the trailing edge in the same way as it appears at the leading edge. 
Thus, the wave group would appear to move forward at half the wave celerity, with individual 
waves appearing at the rear of the group and moving through the group to disappear again at 
the leading edge.

Returning to our example of a force 8 gale, a typical wave celerity is 14 m/s (for a wave 
period of 9 s): the group wave celerity is thus 7 m/s, giving a wave power of 210 kW/m length 
of wave crest.

8.3  Wave transForMatIon 
and attenuatIon ProCesses

As waves approach a shoreline, they enter the transitional depth region in which the wave 
motions are affected by the seabed. These effects include reduction of the wave celerity 
and wavelength, and thus alteration of the direction of the wave crests (refraction) and 
wave height (shoaling), with some wave energy dissipated by seabed friction and finally by 
 breaking. It should be noted that the reduction in wave celerity is caused by the depth and 
not	by	seabed	friction.

taBle 8.1 Wave Generation: To Show Group Wave Speed

Number 
of Wave 
Periods

Wave Energy within Various Wavelengths from 
Generator Total Wave 

Energy/Generated 
Energy1 2 3 4 5 6 7 8

1 128 0 0 0 0 0 0 0 1

2 192 64 0 0 0 0 0 0 2

3 224 128 32 0 0 0 0 0 3

4 240 176 80 16 0 0 0 0 4

5 248 208 128 48 8 0 0 0 5

6 252 228 168 88 28 4 0 0 6

7 254 240 198 128 58 16 2 0 7

8 255 247 219 163 93 37 9 1 8
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8.3.1 refraction

Wave celerity and wavelength are related through two Equations 8.2 and 8.3a to wave period 
(which is the only parameter that remains constant). This can be appreciated by postulating a 
change in wave period (from T1 to T2) over an area of sea. The number of waves entering the area 
in a fixed time t would be t/T1, and the number leaving would be t/T2. Unless T1 equals T2, the 
number of waves within the region could increase or decrease indefinitely.

Thus

c
C

kd
0

tanh( ) (from 8.3a)=

and

c
C

L
L0 0

(from 8.2a)=

To find the wave celerity and wavelength at any depth d, these two equations must be solved 
simultaneously. The solution is always such that c < C0 and L < L0 for d < d0 (where the sub-
script 0 refers to deep-water conditions).

Consider a deep-water wave approaching the transitional depth limit (d/L = 0.5), as shown 
in Figure 8.5. A wave travelling from A to B (in deep water) traverses a distance L0 in one wave 
period T. However, the wave travelling from C to D traverses a smaller distance L in the same time, 
as it is in the transitional depth region. Hence the new wave front is now BD, which has rotated with 
respect to AC. Letting the angle represent the angle of the wave front to the depth contour, then

sin and sin 0
0α α= =L

BC
L
BC

C α0 α0

Deep water

Transitional water

d/L0 = 0.5

D c

α B

A

C0

C0

FIgure 8.5 Wave refraction.
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Combining,

sin
sin

α
α0 0

= L
L

Hence

 

sin
sin

tanh
α
α0 0 0

= = =L
L

c
C

kd( )  (8.10)

As c < C0 then α < α0, which implies that as a wave approaches a shoreline from an oblique angle 
the wave fronts tend to align themselves with the underwater contours. Figure 8.6 shows the 
variation of c/C0 with d/L0 and of α/α0 with d/L0 (the latter specifically for the case of parallel 
contours). Note that L0 is used in preference to L as the former is a fixed quantity.

For non-parallel contours, individual wave rays (i.e., the orthogonals to the wave fronts) must 
be traced. Figure 8.6 can still be used to find α at each contour if α0 is taken as the angle (say α1) at 
one contour and α is taken as the new angle (say α2) to the next contour. The wave ray is usually 
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taken to change direction midway between contours. This procedure may be carried out by hand 
using tables or figures (see Silvester, 1974) or by computer as described later in this section.

8.3.1.1 Wave Breaking

As the refracted waves enter the shallow-water region, they break before reaching the shoreline. 
The foregoing analysis is not strictly applicable to this region, because the wave fronts steepen 
and are no longer described by the Airy waveform. However, as a general guideline, waves will 
break when

 d HB B1.28≈  (8.11)

where the subscript B refers to breaking.
The subject of wave breaking is of considerable interest both theoretically and practically. 

Further details are described in Section 8.4.
It is common practice to apply refraction analysis up to the breaker line. This is justified on 

the grounds that the inherent inaccuracies are small compared with the initial predictions for 
deep-water waves and are within acceptable engineering tolerances. To find the breaker line, it 
is necessary to estimate the wave height as the wave progresses inshore. This can be estimated 
from the refraction diagram in conjunction with shoaling calculations, as is now described.

8.3.1.2 Shoaling

Consider first a wave front travelling parallel to the seabed contours. Making the assumption 
that wave energy is transmitted shorewards without loss due to bed friction or turbulence, then

P
P

EC
E C0 0

1 8 8
0

= = G

G
from( . )

Substituting
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where KS is the shoaling coefficient.
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The shoaling coefficient can be evaluated from the equation for the group wave celerity 
(Equation 8.9).
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The variation of KS with d/L0 is shown in Figure 8.7.

8.3.1.3 Refraction and Shoaling

Consider next a wave front travelling obliquely to the seabed contours, as shown in Figure 8.8. 
In this case, as the wave rays bend, they may converge or diverge as they travel shorewards. 
At the contour d/L0 = 0.5,

BC
b b= =0

0cos cosα α

or

b
b0 0

= cos
cos

α
α

Again, assuming that the power transmitted between any two wave rays is constant (i.e., conserva-
tion of wave energy flux), then
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FIgure 8.7 Variation of the shoaling coefficient with depth.
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Substituting for E and b,

H
H

C
C0

2

0 0

1
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α
α

or

H
H
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C0

0
1 2 1 2
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G

α
α

/ /

Hence

 H H K K/ 0 R S=  (8.13)

where

KR
cos
cos

= 





α
α

0
1 2/

and is called the refraction	coefficient.
For parallel contours, KR can be found using Figure 8.6. In the more general case, KR can be 

found from the refraction diagram directly by measuring b and b0.

Wave fronts

Deep water

Transitional
water

Wave rays

Beach line

A

B
C

D

b0

α0

α d/L0 = 0.5

b

FIgure 8.8 Divergence of wave rays over parallel contours.
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8.3.2  numerical solution of the Wave 
dispersion equation

Solving the wave dispersion equation for L in any depth h requires either an iterative technique 
or a more sophisticated numerical approximation. Starting from Equation 8.10,

L
L

c
C

kd
0 0

= = ( )tanh

hence

L
gT d

L
= 





2

2
2

π
π

tanh

Given T and d, an initial estimate of L (L1) can be found by substituting L0 into the tanh term. 
Thereafter, successive estimates (say L2) can be taken as the average of the current and previous 
estimates (e.g., L2 = (L0 + L1)/2) until sufficiently accurate convergence is obtained. A much 
more efficient technique is described by Goda (2000), based on Newton’s method, given by

x x
x D x

D x
2 1

1 1

2
11 1

= −
−( )

+ − ( )
coth

coth

where
x = 2πd/L,	D = 2πd/L0 and the best estimate for the initial value is
x1 = D for D ≥ 1
x1 = D1/2 for D < 1

This provides an absolute error of less than 0.05% after three iterations.
A direct solution was derived by Hunt (1979), given by

c
gd

y y y y y
2

2 4 5 1 1

1 0 6522 0 4622 0 0864 0 0675= + + + + +( )





− −

. . . .

where y	=	k0d, which is accurate to 0.1% for 0 < y < ∞.

Example 8.1: Linear Wave Theory

 (a) Use linear wave theory to determine the wave length (L) and celerity (c) of waves 
which have a period (T) of 6 s when they are travelling in water 10 m deep.

 (b) If the waves described in part (a) are 2 m high (H), determine the maximum 
positive vertical and horizontal water particle velocity at mid depth. Would you 
expect these two velocities to be equal or not? Explain why.

 (c) Calculate the pressure attenuation factor (Kp(z)) for the conditions specified in 
part (b) and hence the maximum positive pressure head (p/ρg) induced by the wave.



246 Principles and Basic Applications

Solution

 (a) Solve the wave dispersion equation iteratively:

L
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2

2
56.21 m= =

π
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gT d

L
1
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02
2
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π
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L L
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L L

6
5 4( )

2
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π

π
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L L
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gT d
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2
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48 38= 





=
π

π
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L
L L

10
9 8( )

2
48.43= + =

L
gT d

L
11

2

102
2

48 4= 





=
π

π
tanh .

  The solution has converged to within 0.06%.
   Using Hunt’s equation

y k d
L

d= = =0 1.118
2π
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c
gd

y y y y y
2

2 4 5 1 1

1 0 6522 0 4622 0 0864 0 0675= + + + + +( )





− −

. . . .

  Therefore, c = 8.064 giving L = cT = 48.38 m.
 (b) For z = −5 m, d = 10 m, the maximum positive vertical velocity occurs at x = L/4, 

t = 0 (see Figure 8.4b)
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.2 0 443 m/s (from 8.5b)

  The maximum positive horizontal velocity occurs at x = 0, t = 0 (see Figure 8.4b)

u
H
T

k z d

kd
x
L

t
T

=
+( ){ }











−













=π π
cosh

sinh
cos

( )
.2 0 775 m/s (from 8.4b)

  These two velocities are not equal in transitional water depths, where orbits are 
 elliptical and the horizontal velocities are larger than the vertical velocities.

 (c)

K z
k d z

kd
p( )

cosh ( )
cosh( )

=
+{ }

For d = 10 m, z = −5 m, L = 48.38 m k = 2π/L = 0.13
Hence Kp(−5) = 0.619
Hence the pressure head (p/(ρg) induced by the wave = 0.619 × H/2 = 0.619 m.

Example 8.2: Wave Refraction and Shoaling

A deep-water wave has a period of 8.5 s, a height of 5 m and is travelling at 45° to the 
shoreline. Assuming that the seabed contours are parallel, find the height, depth, celerity 
and angle of the wave when it breaks.

Solution

 (a) Find the deep-water wavelength and celerity. From (8.6),

C
gT

0
2

13.27 m/s= =
π

From (8.2),

 L C T0 0 112.8 m= =
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 (b) At the breaking point, the following conditions (from 8.11 and 8.13) must be 
satisfied:

d H
H
H

K KB B
B

0
R S1.28 and= =

   For various trial values of d/L0, HB/H0 can be found using Figures 8.6 and 8.7. 
The correct solution is when (8.11) and (8.13) are satisfied simultaneously. This 
is most easily seen by preparing a table, as shown in Table 8.2.

   For d/L0 = 0.05, d = 5.6 m and H = 4.45, requiring a depth of breaking of 5.7 m. 
This is sufficiently accurate for an acceptable solution, so

H c dB B B4.45 m, 6.9 m/s, 5.7 m and 22= = = =α �

8.3.2.1 Seabed Friction

In the analysis of refraction and shoaling given earlier, it was assumed that there was no loss 
of energy as the waves were transmitted inshore. In reality, waves in transitional and shallow-
water depths will be attenuated by wave energy dissipation through seabed friction. Such 
energy losses can be estimated, using linear wave theory, in an analogous way to pipe and open 
channel flow frictional relationships. First, the mean seabed shear stress τb may be found using

τ ρb w m= 1
2

2f u

where
fw is the wave friction factor
um is the maximum near-bed orbital velocity
fw is a function of a local Reynolds number (Rew) defined in terms of um (for velocity) and either 

ab (wave amplitude at the bed) or the seabed grain size ks (for the characteristic length)

A diagram relating fw to Rew for various ratios of ab/ks, due to Jonsson, is given in Dyer (1986). 
This diagram is analogous to the Moody diagram for pipe friction factor (λ). Values of fw range 
from about 0.5 × 10−3 to 5. Hardisty (1990) summarises field measurements of fw (from Sleath), 
and notes that a typical field value is about 0.1. Using linear wave theory, um is given by

u
H

T kd
m

sinh
= π

taBle 8.2 Tabular Solution for Breaking Waves

d/L0 d (m) c/C0 c (m/s) KS α (deg) KR H/H0 H (m) dB (m)

0.1 11.3 0.7 9.3 0.93 30 0.9 0.84 4.2 5.4

0.05 5.6 0.52 6.9 1.02 22 0.87 0.89 4.45 5.7
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Second, the rate of energy dissipation may be found by combining the expression for τb with 
linear wave theory to obtain

 

d
d sinh( ) sinh( )

wH
x

f k H
kd kd kd

= −
+

4
3 2 2

2 2

π ( )
 (8.14)

The wave height attenuation due to seabed friction is of course a function of the distance	trav-
elled by the wave as well as the depth, wavelength and wave height. Thus, the total loss of wave 
height (ΔHf) due to friction may be found by integrating over the path of the wave ray.

British Standard 6349 presents a chart from which a wave height reduction factor may 
be obtained. Except for large waves in shallow water, seabed friction is of relatively little 
significance. Hence, for the design of maritime structures in depths of 10 m or more, seabed 
friction is often ignored. However, in determining the wave climate along the shore, sea-
bed friction is now normally included in numerical models, although an appropriate value 
for the wave friction factor remains uncertain and is subject to change with wave-induced 
bed forms.

8.3.2.2 Wave–Current Interaction

So far, consideration of wave properties has been limited to the case of waves generated and 
travelling on quiescent water. In general, however, ocean waves are normally travelling on cur-
rents generated by tides and other means. These currents will also, in general, vary in both space 
and time. Hence, two distinct cases need to be considered here. The first is that of waves travel-
ling on a current and the second when waves generated in quiescent water encounter a current 
(or travel over a varying current field).

For waves travelling on a current, two frames of reference need to be considered. The first is a 
moving or relative frame of reference, travelling at the current speed. In this frame of reference, 
all the wave equations derived so far still apply. The second frame of reference is the stationary 
or absolute frame. The concept which provides the key to understanding this situation is that 
the wavelength is the same in both frames of reference. This is because the wavelength in the 
relative frame is determined by the dispersion equation, and this wave is simply moved at a dif-
ferent speed in the absolute frame. In consequence, the absolute and relative wave periods are 
different.

Consider the case of a current with magnitude (u) following a wave with wave celerity (c): the 
wave speed with respect to the seabed (ca) becomes c + u. As the wavelength is the same in both 
reference frames, the absolute wave period will be less than the relative wave period. Conse-
quently, if waves on a current are measured at a fixed location (e.g., in the absolute frame), then 
it is the absolute period (Ta) which is measured. The current magnitude must, therefore, also be 
known in order to determine the wavelength. This can be shown as follows:

Starting from the dispersion equation (8.3a) and noting that c = L/Tr leads to
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As ca = c + u and ca = L/Ta, then
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This equation thus provides an implicit solution for the wavelength in the presence of a current 
when the absolute wave period has been measured.

Conversely, when waves travelling in quiescent water encounter a current, changes in wave 
height and wavelength will occur. This is because as waves travel from one region to the other 
requires that the absolute wave period remains constant for waves to be conserved. Consider the 
case of an opposing current: the wave speed relative to the seabed is reduced and therefore 
the wavelength will also decrease. Thus wave height and steepness will increase. In the limit, 
the waves will break when they reach limiting steepness. In addition, as wave energy is trans-
mitted at the group wave speed, waves cannot penetrate a current whose magnitude equals or 
exceeds the group wave speed and thus wave breaking and diffraction will occur under these 
circumstances. Such conditions can occur in the entrance channels to estuaries when strong ebb 
tides are running, creating a region of high, steep and breaking waves.

8.3.2.3 Current Refraction

Another example of wave–current interaction is that of current refraction. This occurs when a 
wave obliquely crosses from a region of still water to a region in which a current exists or in a 
changing current field. The simplest case is illustrated in Figure 8.9 showing deep-water wave 
refraction by a current. In an analogous manner to refraction caused by depth changes, Jonsson 
showed that in the case of current refraction

sin
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sin
cα α

α
=

−





1
2

u
c

The wave height is also affected and will decrease if the wave orthogonals diverge (as shown) or 
increase if the wave orthogonals converge.

Wave ray

Wave crest

Still water

u

α

c

αc

L

L

FIgure 8.9 Deep-water wave refraction by a current.



251Wave Theory

8.3.2.4   Generalised Refraction Equations 
for Numerical Solution Techniques

The foregoing equations for refraction and shoaling may be generalised for application to irregu-
lar bathymetry and then solved using a suitable numerical scheme. Two approaches have been 
developed. The first is the numerical equivalent of the ray (i.e., wave orthogonal)-tracing tech-
nique and allows determination of individual ray paths, giving a clear picture of wave refraction 
patterns for any bathymetry. The wave height at any location, however, has to be calculated 
separately using the local ray spacing b to find the refraction coefficient KR. The second method 
computes the local wave height and direction at each point on a regular grid using the wave and 
energy conservation equation in Cartesian coordinates. This is much more useful as input to 
other models (e.g., for wave-induced currents).

8.3.2.5 Wave Conservation Equation in Wave Ray Form

Figure 8.10 shows a pair of wave crests and a corresponding pair of wave rays. The wave rays are 
everywhere at right angles to the wave crests, resulting in an orthogonal grid. This implies that 
only wave refraction can occur. The wave ray at point A is at an angle θ with the x axis and is 
travelling at speed c. The wave ray at B is a small distance δb from A and is travelling at a speed 
c + δc, as it is in slightly deeper water than at point A.

In a small time δt, the wave ray at A moves to E at a speed c and the wave ray at B moves to D 
at speed c + δc. Thus, the wave orthogonal rotates through δθ. Let point M be the centre of rota-
tion at distance R from A to E. Using similar triangles,
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FIgure 8.10 Derivation of the wave conservation equation in wave ray form.
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Simplifying and rearranging,
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Also

δ δθs
R

= −

The negative sign is introduced to ensure that the orthogonal bends in the direction of reducing 
c or
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Combining (8.16) and (8.17) and in the limit,
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Considering a ray path, by trigonometry

δ δ θx s=  cos 

δ δ θy s=  sin 

and as

δ δs c t=

then in the limit
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Returning to (8.18) and given that
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and then applying the chain rule,
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Along a wave crest,
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Substituting (8.21) through (8.23) into (8.18) yields
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Finally, as ∂s = c∂t and substituting into (8.24),
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Equations 8.19 8.20 and 8.25 may be solved numerically along a ray path sequentially through 
time. Koutitas (1988) gives a worked example of such a scheme. If two closely spaced ray paths 
are calculated, the local refraction coefficient may then be found and hence the wave heights 
along the ray path determined. However, a more convenient method to achieve this was devel-
oped by Munk and Arthur. They derived an expression for the orthogonal separation factor 
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The derivation of these equations may be found in Dean and Dalrymple (1991) together with 
some references to the numerical solution techniques.



254 Principles and Basic Applications

8.3.2.6   Wave Conservation Equation and Wave Energy 
Conservation Equation in Cartesian Coordinates

The wave conservation equation (8.18) may be reformulated in Cartesian coordinates by 
transformation of the axes. The result, in terms of the wave number (k = 2π/L = ω/c), is 
given by
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The proof that Equation 8.26 is equivalent to (8.18) is given in Dean and Dalrymple (1991).
The wave energy conservation equation is given by
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where εd represents energy losses (due to seabed friction, cf. Equation 8.14). Again, Koutitas 
(1988) gives a worked example of a numerical solution to Equations 8.26 and 8.27.

8.3.3 Wave reflection

Waves normally incident on solid vertical boundaries (such as harbour walls and sea walls) are 
reflected such that the reflected wave has the same phase (but opposite direction) and substan-
tially the same amplitude as the incident wave. This fulfils the necessary condition that the 
horizontal velocity at the boundary is always zero. The resulting wave pattern set-up is called a 
standing	wave, as shown in Figure 8.11.
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FIgure 8.11 Standing waves.
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The equation of the surface excursion for the standing wave (subscript s) may be found 
by adding the two waveforms of the incident (subscript i) and ref lected (subscript r) 
waves. Thus,
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At the nodal points, there is no vertical movement with time, but the horizontal velocities are 
a maximum. By contrast, at the antinodes, crests and troughs appear alternately, but the hori-
zontal velocities are zero. For the case of large waves in shallow water and if the reflected wave 
has a similar amplitude to the incident wave, then the advancing and receding crests collide in 
a spectacular manner, forming a plume known as a clapotis. This is commonly observed at sea 
walls. Standing waves can cause considerable damage to maritime structures and bring about 
substantial erosion.

8.3.3.1 Clapotis Gaufre

When the incident wave is at an angle α to the normal from a vertical boundary, then the 
reflected wave will be in a direction α on the opposite side of the normal. This is illustrated in 
Figures 8.12 and 8.13.

Moving island crests

Incident waves

αα

Reflected waves

FIgure 8.12 Plan view of oblique wave reflection.
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The resulting wave motion (the clapotis gaufre) is complex but essentially consists of a dia-
mond pattern of island crests, which move parallel to the boundary. It is sometimes referred to 
as a short-crested system. The crests form at the intersection of the incident and reflected wave 
fronts. The resulting particle displacements are also complex but include the generation of a 
pattern of moving vortices. A detailed description of these motions may be found in Silvester 
(1974). The consequences of this in terms of sediment transport may be severe. Very substantial 
erosion and longshore transport may take place. Considering that oblique wave attack to sea 
walls is the norm rather than the exception, the existence of the clapotis gaufre has a profound 
influence on the long-term stability and effectiveness of coastal defence works. This does not 
seem to have been fully understood in traditional designs of sea walls, with the result that col-
lapsed sea walls and eroded coastlines have occurred.

8.3.3.2 Wave Reflection Coefficients

Defining a reflection coefficient as Kr = Hr/Hi, typical values are as follows:

Reflection barrier Kr

Concrete sea walls 0.7–1.0

Rock breakwaters 0.4–0.7

Beaches 0.05–0.2

Note that the reflected wave energy is equal to Kr
2, as energy is proportional to H2.

8.3.3.3   Predictive Equations for Wave 
Reflection from Rock Slopes

The CIRIA/CUR manual (1991) gives an excellent summary of the development of wave reflec-
tion equations based on laboratory data of reflection from rock breakwaters. This work clearly 

FIgure 8.13 Wave impact and reflection during a storm.
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demonstrates that rock slopes considerably reduce reflection compared with smooth imperme-
able slopes. Based on these data, the best-fit equation was found to be

Kr P= 0 125 0 7. .ξ

where

ξP is the Iribarren no. tan / / p= β H L
p refers to peak frequency

Davidson et al. (1996) subsequently carried out an extensive field measurement programme of 
wave reflection at prototype scale at the Elmer breakwaters (Sussex, the United Kingdom) and, 
after subsequent analysis, proposed a new predictive as follows.

A new dimensionless reflection parameter was proposed, given by
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where
dt(m) is the water depth at the toe of the structure
λ0 is the deep-water wavelength at peak frequency
Hi is the significant incident wave height
D is the characteristic diameter of rock armour
tan β is the structure slope

R was found to be a better parameter than ξ in predicting wave reflection.
The reflection coefficient is then given by

 K Rr
0.110.151=  (8.30)
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8.3.4 Wave diffraction

This is the process whereby waves bend round obstructions by radiation of the wave energy. 
Figure 8.14 shows an oblique wave train incident on the tip of a breakwater. There are three 
distinct regions:

 1. The shadow region in which diffraction takes place
 2. The short-crested region in which incident and reflected waves form a clapotis gaufre
 3. An undisturbed region of incident waves
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In region (1), the waves diffract with the wave fronts, forming circular arcs centred on the point 
of the breakwater. When the waves diffract, the wave heights diminish as the energy of the 
incident wave spreads over the region. The real situation is, however, more complicated than 
that presented in Figure 8.14. The reflected waves in region (2) will diffract into region (3) and 
hence extend the short-crested system into region (3).

8.3.4.1 Mathematical Formulation of Wave Diffraction

Mathematical solutions for wave diffraction have been developed for the case of constant water 
depth using linear wave theory. The basic differential equation for wave diffraction is known as 
the Helmholtz	equation. This can be derived from the Laplace equation (refer to Section 8.2) by 
making the appropriate substitutions as follows:

∇ = ( )2 0φ Laplace equation

Expanding in three dimensions,
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Now, let
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(i.e., ϕ is a function of depth and horizontal coordinates, and is periodic, and i is the imaginary 
number = −1 ).
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FIgure 8.14 Wave diffraction at a breakwater.
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For uniform depth, an expression for Z(z) satisfying the no-flow bottom boundary condition is

Z z k h z( ) cosh ( + )=

Substituting for ϕ and Z in the Laplace equation leads (after further manipulation) to the 
Helmholtz equation
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8.3.4.2 Solutions to the Helmholtz Equation

A solution to the Helmholtz equation was first found by Sommerfeld in 1896, who applied it to 
the diffraction of light (details may be found in Dean and Dalrymple, 1991). Somewhat later, 
Penney and Price (1952) showed that the same solution applied to water waves and presented 
solutions for incident waves from different directions passing a semi-infinite barrier and for nor-
mally incident waves passing through a barrier gap. For the case of normal incidence on a semi-
infinite barrier, it may be noted that, for a monochromatic wave, the diffraction coefficient Kd is 
approximately 0.5 at the edge of the shadow region and that Kd exceeds 1.0 in the “undisturbed” 
region because of diffraction of the reflected waves caused by the (perfectly) reflecting barrier. 
Their solution for the case of a barrier gap is essentially the superposition of the results from 
two mirror image semi-infinite barriers.

Their diagrams apply for a range of gap width to wavelength (b/L) from 1 to 5. When b/L 
exceeds 5, the diffraction patterns from each barrier do not overlap, and hence the semi-infinite 
barrier solution applies. For b/L less than 1, the gap acts as a point source, and wave energy is 
radiated as if it were coming from a single point at the centre of the gap.

It is important to note here that these diagrams should not be used for design. This is because 
of the importance of considering directional wave spectra, which are discussed in Section 8.6.

8.3.5 Combined refraction and diffraction

Refraction and diffraction often occur together. For example, the use of a wave ray model 
over irregular bathymetry may produce a caustic (i.e., a region where wave rays cross). Here 
diffraction will occur, spreading wave energy away from regions of large wave heights. 
Another example is around offshore breakwaters; here diffraction is often predominant close 
to the structure, with refraction becoming more important further away from the structure. 
In this latter case, an approximate solution can be obtained by applying diffraction diagrams 
over a distance of, say, up to 3–4 wavelengths from the breakwater gap and then refracting 
the waves thereafter.

The alternative is to find a solution to the Laplace equation over irregular bathymetry (mildly 
sloping bed) satisfying the various boundary equations. Such a solution was first derived in 1972 
by Berkhoff, and is known as the mild	slope	equation.
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It may be written as
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where ϕ(x, y) is a complex wave potential function. The solution of this equation is highly com-
plex and beyond the scope of this text. However, the interested reader is directed to McDowell 
(1988) and Dodd and Brampton (1995) for reviews of the subject. One recent development in 
solving the mild slope equation is that due to Li (1994). This version of the mild slope equa-
tion allows the simultaneous solution of refraction, diffraction and reflection. It has also been 
the subject of a field validation study. Initial results may be found in Ilic and Chadwick (1995). 
They tested this model at the site of an offshore breakwater scheme where refraction and reflec-
tion are the main processes seaward of the breakwaters, with diffraction and refraction taking 
place shorewards of the breakwaters.

8.4 surF Zone ProCesses

8.4.1 general description of the surf Zone

In Section 8.3, reference was made to the fact that waves may break in the shallow waters 
near to the shoreline. It is worth considering some aspects of breaking waves a little more 
closely. Waves may break (a) because the relationship between the water depth and the wave 
height produces an inherently unstable wave form; (b) because of the interaction between 
the waves and a current; (c) because of the presence of a natural or artificial barrier (such as 
a breakwater).

Consider the case of a coast with the seabed and beach consisting of sand. The bed slope (β) 
will usually be fairly shallow (say 0.01 < β < 0.03). Waves will therefore tend to start to break at 
some distance offshore of the beach or shoreline (i.e., the beach contour line that corresponds 
to the still water level; see Figure 8.15).

At this initial break point, the wave will be of height Hb and at an angle αb to the beach line. 
The region between this initial point and the beach is known as the surf	zone. In this region, 
the height of an individual wave is largely controlled by the water depth. The wave height will 
progressively attenuate as it advances towards the beach, and the characteristic foam or surf 
formation will be visible on the wave front. The mechanics of this progressive breaking is very 
complex. A brief summary is as follows:

 1. Turbulence and aeration are produced.
 2. Significant rates of change are induced in the momentum of the elements of fluid that 

constitute the wave. This produces a momentum force, which may be resolved into 
two components (Figure 8.15). The component that lies parallel to the shoreline is the 
cause of a corresponding “long-shore current”. The component that is perpendicular to 
the shoreline produces an increase in the depth of water above the still water level, and 
this is usually called the set-up.
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 3. Energy is lost because of bed friction and because of the production of turbulence. The 
frictional losses are produced both by the oscillatory motion at the seabed due to the 
wave and by the unidirectional motion of the longshore current. The two motions are 
not completely independent, and their interaction has significant effects on the bed 
friction.

8.4.1.1 Wave Breaking

There are two criteria that determine when a wave will break. The first is a limit to wave steep-
ness, and the second is a limit on the ratio of wave height to water depth. Theoretical limits 
can be derived from “solitary wave” theory. A “solitary wave” is a single wave with a crest and 
no trough.

Initial
break point Set-up

Grid line

Force

Component producing
set up

Component producing
longshore current

Longshore
current
velocity Longshore

current pro�le

Still water
level

d

FIgure 8.15 The surf zone.
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Such a wave was first observed by Russell in 1840, being produced by a barge on the Forth 
and Clyde canal. The two criteria are given by the following:

 1. Steepness H/L < 1/7
  This normally limits the height of deep-water waves.
 2. Ratio of height to depth: the breaking index

 
γ = =H

d
0.78

 
(8.34)

In practice, γ can vary from about 0.4 to 1.2 depending on beach slope and breaker type.
For random waves on mildly sloping beaches, γ ≈ 0.6 for Hs (the significant wave height 

defined in Section 8.5).

8.4.1.2 Breaker Types

Breaking waves may be classified as one of three types, as shown in Figure 8.16.
The type can be approximately determined by the value of the surf similarity parameter 

(or Iribarren no.)
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FIgure 8.16 Principal types of breaking waves.
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where tan β = beach slope and for

Spilling breaker ξb < 0.4

Plunging breaker 0.4 < ξb < 2.0

Surging breaker ξb > 2.0

Battjes (1968) found from real data that

 γ ≈ + < <ξ ξ0
0 17 0 08 0 05 2. . .for  (8.36)

Further details may be found in Horikawa (1988) and Fredsoe and Deigaard (1992).

8.4.2 radiation stress (Momentum Flux) theory

Wave set-up (and set-down) and longshore currents can be explained by the theory of radiation 
stress. This is defined as the excess	flow	of	momentum	due	to	the	presence	of	waves (with units of 
force/unit length). It arises from the orbital motion of individual water particles in the waves. These 
particle motions produce a net force in the direction of propagation (SXX) and a net force at right 
angles to the direction of propagation (SYY). The original theory was developed by Longuet-Higgins 
and Stewart (1964). Its application to longshore currents was subsequently developed by Longuet-
Higgins (1970). The interested reader is strongly recommended to refer to these papers, which are 
both scientifically elegant and presented in a readable style. Further details may also be found in 
Horikawa (1978) and Komar (1976). Here only a summary of the main results is presented.

The radiation stresses were derived from the linear wave theory equations by integrating the 
dynamic pressure over the total depth under a wave and over a wave period, and subtracting from 
this the integral static pressure below the still water depth. Thus, using the notation of Figure 8.3,
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The first integral is the mean value of the integrand over a wave period, where u is the horizon-
tal component of orbital velocity in the x direction. After considerable manipulation, it may be 
shown that
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Similarly,
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where v is the horizontal component of orbital velocity in the y direction.
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For waves travelling in the x direction, v = 0 and
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In deep water,
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In shallow water,
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Thus, both SXX and SYY increase in reducing water depths.

8.4.2.1 Wave Set-Down and Set-Up

The onshore momentum flux (i.e., force) SXX must be balanced by an equal and opposite force 
for equilibrium. This manifests itself as a slope in the mean still water level (given by dη/dx).

Consider the control volume shown in Figure 8.17, in which a set-up ( η ) on the still water 
level exists, induced by wave action.

The forces acting are the pressure forces, the reaction force on the bottom and the radiation 
stresses (all forces are wave period averaged). For equilibrium, the net force in the x direction 
is zero. Hence
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FIgure 8.17 Diagram for derivation of wave set-down/set-up.
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As

F F
F
x

xP P
P

2 1= + d
d

δ

S S
S
x

xXX XX
XX

2 1= + d
d

δ

then by substitution into (8.40)

 

d
d

d
d

PF
x

x
S
x

x RXX
xδ δ+ =  (8.41)
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and as Rx for a mildly sloping bottom is due to bottom pressure,
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And, finally, by simplifying we obtain
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where η is the difference between the still water level and the mean water level in the presence 
of waves.
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Outside the breaker zone, Equation 8.42 (in which Equation 8.38 is substituted for SXX) may 
be integrated to obtain

 
ηd

b

sinh
= − 1

8 2

2kH
kd( )  

(8.43)

This is referred to as the set-down (ηd) and demonstrates that the mean water level decreases in 
shallower water.

Inside the breaker zone, the momentum flux rapidly reduces as the wave height decreases. 
This manifests itself as a set-up (ηu) of the mean still water level. Making the assumption that 
inside the surf zone the broken wave height is controlled by depth such that

 H d= +γ η( )  (8.44)

where γ ≈ 0.8(cf. Hb/db = 1/1.28 = 0.78), then combining Equations 8.38, 8.42 and 8.44 leads 
to the result
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where β is the beach slope angle. Thus, for a uniform beach slope, it may be shown that
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− +1

1
8

3 2

( )d d

 

(8.45)

which implies that inside the surf zone, there is a rapid increase in the mean water level.

8.4.2.2 Radiation Stress Components for Oblique Waves

The radiation stresses SXX, SYY are, in fact, principal stresses. Utilising the theory of principal 
stresses, shear stresses will also act on any plane at an angle to the principal axes. This is illus-
trated in Figure 8.18 for the case of oblique wave incidence to a coastline.

y

x

X

θ

Shoreline

Y

FIgure 8.18 Relationships between principal axes and shoreline axes.
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The relationships between the principal radiation stresses and the direct and shear compo-
nents in the x, y directions are

S S S E G Gxx XX YY= + = + +cos sin cos2 2 21
2

1θ θ θ[( ) ]

S S S E G Gyy XX YY= + = + +sin cos sin2 2 21
2

1θ θ θ[( ) ]

S S S E Gxy XX YY= − = +sin cos sin cos sin cosθ θ θ θ θ θ1
2

1[( ) ]

where G = 2kd/sinh(2kd).

8.4.3 longshore Currents

Radiation stress theory has also been successfully used to explain the presence of longshore cur-
rents. The original theory is eloquently explained by Longuet-Higgins (1970). Subsequently, 
Komar (1976), as a result of his own theoretical and field investigations, developed the the-
ory further and presented revised equations. All of the foregoing is succinctly summarised in 
Hardisty (1990). Here a summary of the main principles is given together with a statement of 
the main equations.

An expression for the mean wave period-averaged longshore velocity vl( ) was derived from 
the following considerations. First, outside the surf zone, the energy flux towards the coast (Px) 
of a wave travelling at an oblique angle (α) is constant and given by

 P ECx = G  cos  (cf. Equation 8.8)α  (8.46)

Second, the radiation stress (Sxy) that constitutes the flux of y momentum parallel to the shore-
line across a plane x = constant is given by

S S Sxy XX YY= −sin cos sin cosα α α α

= +





E
kd
h kd

1
2 2sin

cos sinα α

 
= 





E
C
c
G cos sinα α  (8.47)

Hence combining (8.46) and (8.47),

S P
c

xy x= 





sin
outside the surf zone)

α
(
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Inside the surf zone, the net thrust Fy per unit area exerted by the waves in the water is given by

 
F

S
x

y
xy= −∂

∂  (8.48)

Substituting for Sxy from (8.48) and taking conditions at the wave break point (at which 

C c gd H dG b b b/= = =, γ  and u gdm b/= γ 2 ), Longuet-Higgins derived an expression for Fy:

 
F uy = 5

4
2ρ β αmbtan sin  (8.49)

Finally, by assuming that this thrust was balanced by frictional resistance in the longshore (y) 
direction, he derived an expression for the mean longshore velocity v l:

 
v

C
ul mb btan sin= 5

8
π β α  (8.50)

where C was a friction coefficient.
Subsequently, Komar found from an analysis of field data that tan β/C was effectively con-

stant, and he therefore proposed a modified formula:

 v ul b b bsin cos= 2 7. α α  (8.51)

in which the cos αb term has been added to cater for larger angles of incidence (Longuet-Higgins 
assumed small and therefore cos α → 1).

The distribution of longshore currents within the surf zone was also studied by both 
Longuet-Higgins and Komar. The distribution depends upon the assumptions made con-
cerning the horizontal eddy coefficient, which has the effect of transferring horizontal 
momentum across the surf zone. Komar (1976) presents a set of equations to predict the 
distribution.

Example 8.3: Wave Set-Down, Set-Up and Longshore Velocity

 (a) A deep-water wave of period 8.5 s and height 5 m is approaching the shoreline 
normally. Assuming the seabed contours are parallel, estimate the wave set-down 
at the breakpoint and the wave set-up at the shoreline.

 (b) If the same wave has a deep-water approach angle of 45°, estimate the mean long-
shore current in the surf zone.

Solution

 (a) The first stage of the solution is analogous to Example 8.1, except that no refrac-
tion occurs; thus at the break point, we obtain



269Wave Theory

d/L0 d (m) c/C0 c (m/s) KS α (deg) KR H/H0 H (m) dB (S)

0.06 6.4 0.56 7.5 1.00 0 1.00 1.0 5 6.4

  The set-down may now be calculated from Equation 8.43, that is,

ηd
b

sin
= − 1

8 2

2H k
h kd( )

  as

k L= = =2 / 2 /(112.8 0.56) 0.099π π ×

  and

2 2 0.099 6.4 1.267kd = =× ×

ηd sinh(
= − ×1

8
5 0 099

1 267

2 .
. )

  then

ηd m= −0 19.

  The set-up may be calculated from Equation 8.45:

η

γ

ηu b d=
+

















− +1

1
8

3 2

( )d d

  At the shoreline d = 0 and taking γ = 0.78, then

ηu =
+ ×

× −1
1 8 3 0 78

6 4 0 192/( . )
. .

ηu m= 1 0.

  Thus, it may be appreciated that set-down is quite small and the set-up much 
larger. In general, wave set-down is less than 5% of the breaking depth, and wave 
set-up is about 20% of the breaking depth. For a real sea, composed of vary-
ing wave heights and periods, the wave set-up will vary along a shoreline at any 
moment. This can produce the phenomenon referred to as surf	beats. Wave set-up 
also contributes to the overtopping of sea defence structures during storm condi-
tions and may thus cause coastal flooding.



270 Principles and Basic Applications

 (b) Here the same wave as in Example 8.1 has been used. Recalling that at the wave 
breakpoint αb = 22° and db = 5.7 m, then Equation 8.51 may be used to estimate v l:

v ul mb b bsin cos= 2 7. α α

  Recalling that

u gdmb b= γ
2

  then

umb = ×0 78
2

9 81 5 7
.

. .

= 2.92 m/s

  Hence

v l sin cos= ×2 7 2 92 22 22. . ( ) ( )

= 2.74 m/s

8.4.4 Infragravity Waves

Waves often travel in groups, as shown in Figure 8.19: hence under large waves, the set-down 
is larger than under small waves. This results in a second-order wave – the bound	long	wave. 
The bound long waves travel with the wave groups with a celerity corresponding to the group 

x

x

η

η

FIgure 8.19 The wave groups and the associated mean water level.
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 celerity of the short waves and thus are refracted with the short waves. In shallow water, the 
height of the bound long waves will increase quite dramatically because of shoaling.

In the surf zone, the short waves lose height and energy and can no longer balance the bound 
long waves, which are therefore released as free long waves. The free long waves are substan-
tially reflected from the beach and either progress back out to sea (for normally incident short 
waves), termed the leaky	mode, or refract and turn back to the shore to be re-reflected, termed 
the trapped	mode. The trapped free long waves then form 3D edge waves with a wave height that 
decreases with distance from the shore.

Another mechanism for generating long waves in the surf zone is variation in set-up caused 
by breaking wave groups. Surf beat is the variation of set-up on the shoreline and may be caused 
by a combination of free long waves in the surf zone, generated at sea as bound long waves, and 
free long waves generated in the surf zone because of variations in set-up.

Cell	circulation is the term used to describe currents within the surf zone that are not parallel 
to the shore. The existence of cell circulations is evidenced by rip currents (a common hazard 
for swimmers). Rip currents are a seaward return flow of water concentrated at points along 
the beach. They are caused by a longshore variation of wave height, and hence set-up, which 
provides the necessary hydraulic head to drive them. The longshore variation of wave height 
can be caused either by refraction effects or by the presence of edge waves. Under the latter 
circumstances, a regular pattern of cell circulations and rip currents will exist, and beach cusps 
may be formed. The interested reader is referred to Komar (1976) and Huntley et al. (1993) for 
further details.

8.5  analysIs oF Wave reCords: sHort-terM 
Wave statIstICs

Wind-generated waves are complex, incorporating many superimposed components of wave 
periods, heights and directions. If the sea state is recorded in a storm zone, then the resulting 
wave trace appears to consist of random periodic fluctuations. To find order in this apparent 
chaos, considerable research and measurement has been, and is being, undertaken.

Wave records are available for certain locations. These are normally gathered either by ship-
borne wave recorders (for fixed locations) or by wave rider buoys (which may be placed at 
specific sites of interest). These records generally consist of a wave trace for a short period (typi-
cally 20 min), recorded at fixed intervals (normally 3 h) and sampled at two readings per second 
(2 Hz). In this way, the typical sea state may be inferred without the necessity for continuous 
monitoring. An example wave trace is shown in Figure 8.20a. (Note: this was recorded in shal-
low water.)

8.5.1 short-term Wave statistics

Using such wave trace records, two types of analysis may be performed. The first type is referred 
to as time-domain	analysis and the second as frequency-domain	analysis. Both methods assume a 
state of stationarity (i.e., the sea state does not vary with time).
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8.5.1.1  Time-Domain Analysis

For a given wave record (e.g., a 20 min record representing a 3 h period), the following param-
eters may be directly derived in the time domain (refer to Figure 8.21) using either upcrossing 
or downcrossing analysis:

 1. Hz (mean height between zero upward (or downward) crossings)
 2. Tz (mean period between zero upward (or downward) crossings)
 3. Hc (mean height between wave crests)
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FIgure 8.20 Analysis of a wave record: (a) wave trace; (b) histogram of wave heights; (c) spectral density histogram.
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 4. Tc (mean period between wave crests)
 5. Hmax (maximum difference between adjacent crest and trough)
 6. Hrms (root-mean-square wave height)
 7. H1/3 (commonly referred to as Hs, the mean height of the highest one-third of the waves)
 8. H1/10 (mean height of the highest one-tenth of the waves)

Note that Tmax, T1/10 are the periods for the corresponding wave heights.
Based on previous experience, wave record analysis is greatly simplified if some assumptions 

are made regarding the probability distribution of wave heights and periods. For example, the 
distribution of wave heights is often assumed to follow the Rayleigh distribution: thus

 

P h H
H
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( ) exp 2
s

≥ − 

















=
2

 
(8.52)

where P(h ≥ H) is the probability that the wave height h will equal or exceed the given value H.
The corresponding probability density function f(h) is given by
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(Note: for a full discussion of probability density functions, refer to Chapter 10.)
For a wave record of N waves, taking

P h H
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where i is the rank number and
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FIgure 8.21 Time-domain analysis.
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then rearranging (8.52) and substituting for P gives

H H
N
i

= 













s ln

1
2

1 2/

For the case of i = 1, corresponding to H = Hmax,

H H Nmax s ln= 





1
2

1 2/

However, Hmax itself varies quite dramatically from one wave record to the next and needs to be 
treated as a statistical quantity. Hence it may be shown that the most probable value of Hmax is

 
H H Nmax s ln as given earlier= 





1
2

1 2/

 (8.54a)

and the mean value of Hmax is

 
H

H
N Nmax

s ln ln= +( )
2

0 28861 2 1 2( ) . ( )/ /

 
(8.54b)

Other useful results that have been derived include the following:

H Hzrms ≈ 1 13.

H H Hs rms rms� �2 1 4141 2/ .

H H H1 10 1 27 1 8/ . .� �s rms

H H H1 100 1 67 2 36/ . .� �s rms

H Hmax s (for a typical 20 min wave trace)�1 6.

Thus, if the value of Hrms is calculated from the record, the values of Hs, etc., may easily be 
estimated.

The Rayleigh distribution was originally derived by Lord Rayleigh in the late nineteenth 
century for sound waves. It is commonly assumed to apply to wind waves and swell mixtures, 
and gives a good approximation to most sea states. However, the Rayleigh distribution is theo-
retically only a good fit to sine waves with a small range of periods with varying amplitudes and 
phases. This is more characteristic of swell waves than of storm waves. To determine what type 
of distribution is applicable, the parameter ε, known as the spectral width, may be calculated:

ε2
2

1= − 





T
Tz

c
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For the Rayleigh distribution (i.e., a small range of periods), Tc ≃ Tz: hence ε → 0. For a typical 
storm sea (containing many frequencies), the period between adjacent crests is much smaller 
than the period between zero upward crossings and hence ε → 1.

Actual measurements of swell and storm waves as given by Silvester (1974) are as follows:

Swell Waves Storm Waves

ε ≃0.3 ≃0.6–0.8

Hs ≃1.42Hrms ≃1.48Hrms

H1/10 ≃1.8Hrms ≃2.0Hrms

Figure 8.20b illustrates the histogram of wave heights (derived from the wave trace shown in 
Figure 8.20a) and shows the fitted Rayleigh distribution. As a matter of interest, these data were 
recorded in very shallow water, for which the Rayleigh distribution was not expected to be a 
good fit. Applying a statistical goodness of fit criterion, this proved not to be the case. Further 
details may be found in Chadwick (1989).

Time-domain analysis has traditionally been carried out using analogue data. A rapid method 
was developed by Tucker to find Hrms, from which other wave parameters can be derived by 
assuming a Rayleigh distribution. More recently, digital data have become available, and Goda 
(2000) gives details of how to derive time-domain parameters directly.

Example 8.4

Using the time series data given in Table 8.3,

 (a) Determine Hmax, Tmax, Hs, Ts, Hz, Tz.
 (b) Plot a histogram of the wave heights using a class interval of 1 m.
 (c) Determine Hmax, Hs and Hrms from Hz, assuming a Rayleigh distribution.
 (d) Calculate the value of f(h) at the centre of each class interval and hence superim-

pose the pdf on the histogram (assume that the scale equivalence is f(h) ≡ n/NΔh).
 (e) Suggest reasons for the anomalies between the results in (a) and (c).

Solution

 (a) From Table 8.3,
  16th wave gives Hmax = 4.89, Tmax = 8.0
   For Hs, 16th, 3rd, 15th, 5th, 21st, 19th, 18th waves (21/3 = 7 waves) are the 

highest one-third of the waves.
   Average to obtain

H Ts s3.6 m, 7.8 s= =
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  For Hz, Tz, average all 21:

H Tz z= =2.4 m, 7.0 s

 (b)

Class Interval of Wave 
Height (m)

No. of Waves

0–1 1

1–2 7

2–3 9

3–4 1

4–5 3

  The histogram is shown in Figure 8.22.
 (c) From part (a),

Hz = 2.4 m

∴ = × =Hrms m1 13 2 4 2 71. . .

∴ = =H Hs rms m1 414 3 83. .

taBle 8.3 Wave Heights and Periods

Wave 
Number

Wave Height, 
H (m)

Wave Period, 
T (s)

Wave 
Number

Wave Height, 
H (m)

Wave 
Period, T (s)

1 0.54 4.2 11 1.03 6.1

2 2.05 8.0 12 1.95 8.0

3 4.52 6.9 13 1.97 7.6

4 2.58 11.9 14 1.62 7.0

5 3.20 7.3 15 4.08 8.2

6 1.87 5.4 16 4.89 8.0

7 1.90 4.4 17 2.43 9.0

8 1.00 5.2 18 2.83 9.2

9 2.05 6.3 19 2.94 7.9

10 2.37 4.3 20 2.23 5.3

21 2.98 6.9
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∴ = 











H H Nmax s ln
1
2

1 2/

= 3.83 ((1/2) ln 21)1/2

= 4.73 m

 (d) Using (8.53),
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rms rms
exp

h f(h) n ≡ f(h)NΔh

0.5 013 2.8

1.5 0.3 6.3

2.5 0.29 6.1

3.5 0.18 3.8

4.5 0.078 1.6

5.5 0.024 0.5

  These results are plotted in Figure 8.22.
 (e) The Rayleigh distribution is apparently not a good fit. (For statistical reliability, 

we require N > 100.)
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FIgure 8.22 Histogram and superimposed Rayleigh pdf.
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8.5.1.2  Frequency-Domain Analysis

The wave trace shown in Figure 8.20a can also be analysed in the frequency domain. This is 
made possible by the application of the Fourier series representation. In essence, any sea state 
can be described mathematically as being composed of an infinite series of sine waves of varying 
amplitude and frequency. Thus, the surface excursion η(t) at any time (defined in Figure 8.3) 
may be represented as

 
η ω ω

∞

( )t a nt b nt
n

n n= + 
=

∑
1

cos sin  (8.55)

where ω is the frequency (2π/T) and t = 0 to t = T; an and bn are amplitudes.
Equation 8.55 may be equivalently written as

η ω φ
∞

( )t c nt
n

n n= +( )
=

∑
1

cos

where

c a bn n n
2 2 2= +

tan /φ n b an n= −

(This is shown graphically in Figure 8.23.)
Noting that the equation for wave energy is E  =  ρgH2/8, wave energy is proportional to 

(amplitude)2/2 (with units of m2). Thus, the spectral energy density curve S( f) (with units of 
m2s) may be found from

 

S f f c
f

f f

n( )∆ =
+

∑
∆

1
2

2  (8.56)

To accomplish this, values of cn must be found from Equation 8.56. The technique commonly 
used for doing this is termed the fast Fourier transform (FFT). A description of the FFT tech-
niques is beyond the scope of this chapter, but the reader is directed to Carter et al. (1986) for 
a description of its application to sea waves, and to Broch (1981) for details of the principles of 
digital frequency analysis.

Suffice to say here that a given wave trace record may be analysed using FFT techniques 
to produce the spectral density histogram. An example is shown in Figure 8.20c. Having 
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obtained the spectral density histogram, then the frequency-domain	wave	parameters may be 
found from the following equations:

H mm0 0
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FIgure 8.23 Graphical representation of a Fourier series.
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Frequency-domain wave parameters do not have direct equivalent parameters in the time 
domain. However, as a useful guide, the following parameters have been found to be roughly 
equivalent:

Time-Domain 
Parameter

Equivalent Frequency-Domain 
Parameter

Hs Hm0 (approximate)

ηrms m0  (exact)

Tz Tm02 (approximate)

Ts 0.95Tp (approximate)

Because of the proliferation of wave parameters in both the time and frequency domains, there 
is confusion in the literature as to the precise definition of some of those parameters. For exam-
ple, Hm0  and Hs are often confused. For this reason (and others), a standard set of sea-state 
parameters was proposed by the International Association for Hydraulic Research. Details may 
be found in Darras (1987).
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8.5.2 directional Wave spectra

The sea state observed at any particular point consists of component waves not only of vari-
ous heights and periods but also from different directions. Therefore, a complete descrip-
tion of the sea state needs to include directional information. Mathematically, this may be 
expressed as

 
η θ θ π φ

∞ π

( , , ) , ,x y t a k x k y f t
n m

n m n m n m n n m= + − +( )
= =

∑∑
1 0

2

2cos cos sin  (8.57)

where
a is amplitude
k is wave number = 2π/L
f is frequency, θ is wave direction
ϕ is phase angle
n is frequency counter
m is direction counter

Equivalently, extending the concept of spectral density S( f) to include direction, the direc-
tional spectral density S( f, θ) can be defined as

S f S f G f( , ) ( ) ( , )θ θ=

where
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a S f fn
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f f

θ

θ θ

θ θ
++

∑∑ = ( , )∆ ∆
∆

 (8.58)

and G( f, θ) is the directional spreading function, where

−
∫ =

π

π

θ θG f( , )d 1

An idealised directional spectrum is shown in Figure 8.24.
Direct measurements of directional spectra have been measured by arrays of wave 

recorders of various forms (see, e.g., Chadwick et al., 1995a,b). The analysis of such records 
is complex (refer to Goda, 1985, or Dean and Dalrymple, 1991), and the analysis tech-
niques do not always work in real sea states, particularly when wave reflections are present. 
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A parametric form of the directional spreading function (as given in Goda, 1985) and due 
to Mitsuyasu is

 
G f N s( , )θ θ= 





cos2

2
 (8.59)

where N is a normalising factor, given by

N
s

=




−∫

1

2
2

π

π θ
cos

and s = sm( f/fp)μ; sm = 10 for wind waves, 25–75 for swell waves; μ = −2.5 for f ≥ fp, 5 for f < fp; 
and fp is the peak frequency.

8.5.2.1 Shoaling and Refraction of Directional Wave Spectra

In Section 8.3, discussion of shoaling and refraction was restricted to considering waves of single 
period, height and direction. However, as already shown in this section, a real sea state is more 

S( f, θ)

G( f, θ)

Δθ
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FIgure 8.24 Idealised directional spectrum: (a) directional spectral density; (b) directional spreading function.
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realistically represented as being composed of a large number of components of differing peri-
ods, heights and directions. Therefore, in determining an inshore sea state, due account should 
be taken of the offshore directional spectrum.

This can be achieved in a relatively straightforward way, provided the principle of linear 
superposition can be applied. This implies that non-linear processes such as seabed friction and 
higher-order wave theories are excluded.

The principle of the method is to carry out a refraction and shoaling analysis for every 
individual component frequency and direction and then to sum the resultant inshore energies 
at the new inshore directions at each frequency and hence assemble an inshore directional 
spectrum.

Mathematically, this may be expressed in the following way. For each component frequency 
and direction
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where subscript “o” refers to offshore and subscript “i” refers to inshore.
The inshore wave direction for each component is given by
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Summing over all f, θ,
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Here it is convenient to use the same directional increments inshore as used offshore, and there-
fore it is necessary to reallocate the offshore energies to the relevant directional sector inshore. 
Goda (2000) presents a set of design charts for the effective refraction coefficient and predominant 
wave direction over parallel contours using the Bretschneider–Mitsuyasu frequency spectrum and 
Mitsuyasu spreading function, which facilitate the ready application of the method described earlier.

8.5.2.2 Diffraction of Directional Wave Spectra

It was also Goda (2000) who pioneered the use of directional spectra in the determination of 
wave diffraction. He defined the effective diffraction coefficient (Kd)eff as
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and hence constructed a new set of diffraction diagrams.
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These diagrams show that the diffraction of a directional random sea state differs quite 
markedly from the case of a monochromatic sea. At the edge of the shadow zone for a semi-
infinite barrier, Kd is approximately 0.7 (cf. Kd = 0.5 for a monochromatic wave), and waves 
of greater height penetrate the shadow zone at equivalent points. For the case of a barrier 
gap, the wave height variations are smoothed compared with the monochromatic case, with 
smaller heights in the area of direct penetration and larger heights in the shadow regions.

Note also that there is a shift in the spectral peak wave period. This is because at any particu-
lar physical point in the diffraction zone, the Kd value will vary with wavelength and frequency. 
These results have been verified by Briggs et al. (1995) by a physical model study in the CERC 
directional spectral wave basin.

8.6 Wave PredICtIon FroM WInd reCords

8.6.1 storm Waves

For a given wind speed, the waves produced will depend on the duration D and fetch F: the 
longer the fetch or duration, the bigger the waves produced. However, as the wind contains only 
a given amount of energy, the wave heights will approach some limiting value for particular 
values of fetch and duration (when the rate of transfer of energy to the waves equals the energy 
dissipation by wave breaking and friction). This sea state is referred to as the fully	developed	
sea (FDS). Measurements of the FDS for various wind speeds indicate that the wave energy 
spectrum is similar for all FDSs, independent of location or wind speed.

8.6.2  Methods of Predicting Waves 
from Wind records

Wind is recorded for meteorological purposes at many sites and is therefore far more frequently 
recorded than are waves. Given that storm waves are dependent solely on wind speed, duration 
and fetch, the most common method used to predict wave climate is based on the use of wind 
records. This technique is generally referred to as hindcasting. As no purely theoretical means 
of predicting waves from wind has yet been devised, empirical relationships have been derived. 
The simplest of these provide a prediction in the form of a single wave height and period for a 
given wind speed, rather than a wave spectrum. The characteristic wave height most commonly 
used is that of the significant wave height, Hs.

Tables and charts relating Hs to wind speed, fetch and duration have been devised by vari-
ous people after considerable and painstaking research. Some of the first examples of these 
include the Darbyshire and Draper (1963) charts for oceanic and coastal waters around the 
United Kingdom, and the SMB method given in the U.S. Shore	Protection	Manual (Sverdrup 
et al., 1975). Figure 8.25 presents the Darbyshire and Draper charts. To use these charts, the 
required wind speed is selected, and the corresponding wave height (and period) is found at the 
first intersection of this wind speed with either the known fetch or the duration. Thus, the chart 
also determines whether the sea state is fetch or duration limited.
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Example 8.5: Use of the Darbyshire and Draper Charts

Using Figure 8.25:

 (a) Find the significant wave height Hs and period Ts and state whether the fully 
arisen sea has been reached under the following conditions:

  wind speed U = 20 m/s (i.e., Beaufort force 8)
  fetch F = 100 km
  storm duration D = 6 h
 (b) Find the new significant wave height if the fetch is now increased to 500 km (i.e., 

corresponding to a storm from a different direction).

Solution

 (a) The intersection of the two lines representing U = 20 m/s and F = 100 km on 
Figure 8.25 gives

H T Ds Sm s h� � �5 75 7 4.

   Hence, as the storm has a duration of 6 h, the fully arisen sea condition has 
been reached, and the waves are fetch limited.

 (b) In this case, intersection of the line representing U = 20 m/s with that rep-
resenting D = 6 h occurs before that with the line representing F = 500 km. 
Hence, the sea state is not fully arisen and the waves are duration limited, giv-
ing Hs ≃ 6 m.
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8.6.3  Parametric Forms for the spectral 
energy density Curve

In cases where the full wave spectrum is required (e.g., physical model testing of breakwaters) 
the Pierson–Moskowitz (PM) spectrum is now used for cases where the seas state is not fetch or 
duration limited. For a fully arisen sea, this may be stated in terms of wave frequency as
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where
S( f) is the spectral energy density (m2 s)
Kp = 0.0081
fp is the frequency at which the peak occurs in the spectrum = 0.8772g/2πu19.5

u19.5 is the wind speed at 19.5 m above the sea surface (m/s)

The PM spectrum was first presented in 1964 and was derived from measurements of ocean 
waves taken by weather ships in the north Atlantic. It does not describe conditions in fetch-
limited seas.

More recent work on wave energy spectra (Hasselmann et al., 1973) has been based on obser-
vations in the North Sea (Europe), resulting in the JOint North Sea WAve Project (JONSWAP) 
spectrum. This spectrum is given by
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10. ; ;.  is the wind speed at 10 m above the sea surface, F is 
fetch length in m; f g U Xp /= =3 5 3 310 10

0 33. ( ); . ;. γ  and W = 0.07 for f ≤ fp or 0.09 for f > fp.
The equation for the JONSWAP spectrum is more complicated than the equation for the 

PM spectrum because it is a function of both wind speed and fetch. Additionally, the param-
eter γ (known as the peak	enhancement	factor) is introduced (not to be confused with γ = H/d). 
Otherwise, the two spectra are of similar form.

Estimates of wave height Hs and period Ts may be derived from these two spectra given (in 
the Shore	Protection	Manual) by
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where U10 is in metre per second and F is in metres.
It may also be noted that for the JONSWAP spectrum
Ts ≈ 0.95 Tp and Tz ≈ 0.78 Tp

In the case of the JONSWAP spectrum, to determine if the waves are duration or fetch 
 limited, first the minimum duration can be estimated from
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And Feff used in place of F to calculate Hs and Ts.
The PM and JONSWAP spectra are deep-water spectra. Where a spectrum is required in 

transitional water depths, the TMA spectrum (after Hughes, 1984), named after the first letter 
of the three data sets used for field verification (Texel, Marsen and Arsloe), may be used. It is a 
modified JONSWAP spectrum in which the JONSWAP spectrum is multiplied by a function 
ϕ( f,	d) that is depth and frequency dependent. Hence
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Also the factors Kj and γ used in the JONSWAP spectrum have to be modified for water depth 
and are given by
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γ π=






2 47
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where Lp is the wavelength corresponding to fp in depth d.
Sorensen (1993) provides further details and references for these spectra.

Example 8.6

Given a wind speed of 22.66 m/s at 19.5 m above sea level and assuming an oceanic sea 
state that is not fetch limited, do the following:

 (a) Calculate S( f) at frequencies 0.05, 0.07, 0.09 and 0.11 Hz
 (b) Hence estimate m0, Hmo, Tp, Hs, Ts

Solution

 (a) In this case, the PM spectrum may be applied. Hence using (8.52),
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  for U19.5 = 22.66 m/s, fp = 0.06 Hz, and hence

F (Hz) S(f) (m2 s)

0.05 120

0.07 152

0.09 66

0.11 27.7

 (b) As m S f f0
0

= ∫
∞

( ) ,d  this may be approximated as m0 = ΣS( f)Δf.
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In this case, taking Δf = 0.02 and assuming that S( f) has only a value between f = 0.04 and 
f = 0.12 (this may be checked by calculating S( f) outside these limits), then for

f S(f) Δf S(f)Δf

0.05 120 0.02 2.4

0.07 152 0.02 3.04

0.09 66 0.02 1.32

0.11 27.7 0.02 0.55

Σ7.31

Therefore

m0
27 31≈ . m

H m0 04 10 8= = . m

H Hms ≈ 0

Or, using the equations,

H Us m≈ =0 025 10 6110
2. .

T Us s≈ =0 79 16 310. .

Alternatively,

T Ts P s≈ = =0 95
0 95
0 06

15 8.
.
.

.

T
f

p
p

s= =1
16 7.

8.6.4 effective Fetch

In cases where the fetch width is small in comparison with the fetch length, the problem arises 
of what fetch length (the effective fetch) should be used in predicting wave heights and frequen-
cies for varying wind directions. Three principal approaches have been developed by Saville in 
1962, Seymour in 1977 and Donelan in 1980.

Saville’s effective fetch concept is based on two assumptions. First, waves are generated over 
a 45° range either side of the wind direction with energy transfer from the wind to the waves 
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being proportional to the cosine of the angle between the wind and waves. Second, wave growth 
is proportional to fetch length. Hence

F
Fi i

i
eff

cos
cos

= Σ
Σ

2θ
θ

where Fi, θi are calculated at 6° intervals.
This method was first used with the SMB wave prediction method, which itself was found 

to overpredict wave heights for small fetches. It has subsequently also been used in conjunction 
with the JONSWAP spectrum.

Seymour’s method involves a more complex set of calculations, but is better grounded in 
wave generation mechanics. It assumes that wave energy E is distributed according to a cos2 
function over a 180° arc and that the energy along each direction, Ei, is given by the JONSWAP 
formulae (noting that E is proportional to H2/8). Hence

E E
i

i i= −( )∑( )2 2/ cos wπ θ θ θ∆

Donelan’s method also uses the JONSWAP formulae and assumes that the fetch length should 
be measured along the wave direction θw rather than the wind direction ϕ, and that the wind 
speed used for wave prediction should therefore be the component along the wave direction. 
Donelan assumed that the predominant wave direction was that which produces the maximum 
value of wave period. The resulting equations may be found in the CIRIA/CUR Manual (1991).

All of the foregoing hindcasting techniques should be used only to gain an initial estimate of 
the wave conditions. For more accurate results, numerical wave hindcasting models are now avail-
able, which are able to predict the growth and decay of the wave field in two dimensions as the 
wind field varies in space and time. For example, quoting from the UK meteorological office web-
site UKMet (2011) “the wave models account for growth of waves due to wind input, dissipation 
of energy by breaking waves, and transfer of energy between spectral components by non-linear 
interactions. Wave energy is advected from one grid point to the next at the group velocity. The 
wave models are run using hourly surface winds from our global and mesoscale numerical weather 
prediction (NWP) models and there are three operational wave model configurations, with dif-
ferent areas and resolutions, currently in use (global, European and for UK waters). All the mod-
els include some shallow-water physics, namely bottom friction, refraction and shoaling. The UK 
waters model additionally includes the effects of time-varying currents on the waves. The global 
wave model assimilates wave height data from the radar altimeter on the ERS-2 satellite.”

8.7 long-terM Wave statIstICs

If wave records are collected for an extended period (say for a season or several years), then the 
computed values of relevant parameters for each wave recording period (such as Hs, Ts) may be 
presented in the form of scatter diagrams (Hs versus Ts). These graphs can provide very useful 
information for contractors undertaking marine construction works or for designers. For  some 
purposes, it may be useful to extend these records to estimate the one-in-T-year event (e.g., the 
maximum wave height expected once in T years). This requires the application of frequency 
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analysis, which may be considered as the study of rare events. The principles and techniques are 
fully described in Chapter 10, and here consideration is restricted to their application to wave data.

8.7.1 application of Frequency analysis to Wave data

For wave data, the techniques of frequency analysis can be applied directly, provided the 
record is sufficiently long (e.g., at least 25 years of record to estimate the 50 year event). 
Unfortunately, this is rarely the case. More typically, wave records either are unavailable or 
are of relatively short duration, ranging from a season to a few years. In such cases, recourse 
must be made to using what in statistical terms is referred to as a partial duration series. 
In this case, all events greater than a threshold value are abstracted from the record and 
subjected to a modified form of frequency analysis. For wave data typically recorded at 3 h 
intervals, British Standard 6349 suggests that the first stage is to abstract the maximum wave 
heights from each storm event in an attempt to preserve the independence of each event. 
These data are then ranked and assigned a probability. Next, a suitable probability density 
function (pdf) is chosen, and the relevant wave parameter is plotted against the reduced 
variate. Finally, a straight line is fitted to the data and is then extrapolated to the relevant 
probability to obtain the wave height at the desired return period. Table 8.4 provides the 
details of the method together with five pdfs recommended in BS 6349. The wave period to 
be associated with the predicted wave height should be calculated on the basis of either wave 
steepness s = H/L ≈ 1/18 or from the PM or JONSWAP spectra, as applicable. Illustrating 
the use of wave steepness, in deep water, this gives
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3 42

1 2= =πH
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T H
z

z
s

sor . /

The corresponding equation, based on the PM spectrum, gives T Hz ≈ 4 1 1 2. ./
s

taBle 8.4 Choice of PDF

PDF Name Reduced Variate Wave Parameter

Weibull loge loge (1/pn) loge(Hn − HL)

Fisher–Tippet −loge loge[1/(1 − pn)] −loge(HL − Hn)

Frechet −loge loge[1/(1 − pn)] loge(Hn − HL)

Gumbel −loge loge[1/(1 − pn)] Hn

Gompertz loge loge(1/pn) Hn

pn = 1 − (n/(nx + 1)) (exceedance probability).

n is the rank no. (highest wave given highest rank).

nx is the total no. of data points.

Hn is the height for rank no. n.

HL is the (or upper) limiting wave height (chosen by trial)
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8.7.1.1 Determination of Tr Year Event Probability

The event-based probability needs to be related to the probability for the event with return 
period TR. This is achieved as follows:

Given nx data points in time T0 (years) and Hnx maximum wave height in time T0.

As
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then for a return period TR, the corresponding probability is
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For example, if 39 storms in 1 year are given, and the 50 year wave height is required, then
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8.7.1.2 Plotting Position Formulae

As stated in Chapter 10, the general plotting position formula is given by

P H H
i a

N b
>( ) = −

+design

where a and b are constants depending on the selected pdf. It would appear from the literature, 
for example, BS 6349 and Sorensen (1993), that most wave data have been analysed using the 
Weibull formula,

P H H
i

N
>( ) =

+design 1

whereas hydrological data sets are typically analysed using an unbiased plotting position 
 formula. The use of a biased plotting position appears to the author to be unjustified.

8.7.1.3 Outliers

Any data set may contain a rare event or events within a relatively short record. For example, 
the 100 year event may just happen to have occurred in the one season of recording. This is 
known as an outlier. Outliers will not fit any pdf because their assigned exceedance probability 
will be too high (i.e., not rare enough). Where these are known to have occurred, a pdf can be 
fitted to the remaining data and the return period of the outlier estimated using the fitted pdf.
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8.7.1.4  Fitting a PDF

It may prove necessary to try several pdfs before a good fit is found. Some pdfs contain two parameters 
to be fitted, and others three. Where three parameters are to be fitted, one must be assumed a priori 
(HL, e.g.,) before plotting. This may therefore necessitate an iterative procedure to obtain the best fit.

The “best fit” straight line (e.g., pdf) can be obtained in three ways mathematically (least 
squares, method of moments, method of maximum likelihood) or simply by eye. Additionally, 
the χ2 goodness of fit test can also be used to determine statistically (i.e., objectively) which 
pdf is the most appropriate. All of these techniques have been used. None of them provides a 
uniquely optimal approach, and it is very important to plot the data to appreciate visually how 
the data look in comparison with the fitted pdf.

8.7.1.5 Suitability of Records

Where records are short, the question “how typical is this record?” must be posed. Any extrapo-
lation to large return periods based on 1 year of data is likely to over- or underestimate longer-
term trends. To provide an indication of how reliable short-term records are, the results of 
an analysis of this problem are presented in Offshore Technology Report 89 300, Table 18 
(Department of Energy, 1990). This shows that if the 50 year return period wave height is esti-
mated from 1 year’s data, the 95% confidence level is ±20%. This reduces to 9% with 5 years’ 
data and 6% with 10 years’ data. There is no substitute for long-term records. Short records of 
wave can, however, be extended by the use of hindcasting of longer-term wind records.

8.7.1.6 Climate Change

The possible effects of global warming are now well documented. These are briefly described in 
Chapter 16. One possible consequence of relevance here is an increase in storminess for UK waters. 
Where long-term wave records exist, this may be discernible by plotting the mean annual value of 
Hs against time and extrapolating the trend. The original data set can then be de-trended before 
estimating the wave height of any return period, and the trend can be added back when estimating 
the same event at some future time. However, this technique may not be statistically significant in 
any particular data set, which is not to say that the effect is absent. Climate is also subject to other 
medium- and long-term changes, which will reduce the reliability of any estimates of rare events. 
Currently, the UK Environment Agency recommends that the estimation of extreme wave heights 
should be subject to a sensitivity analysis, with the ranges given in Table 8.7.

8.7.2 encounter Probability

This is the probability that an event with return period TR will occur within a given time of N 
years. It provides an insight into the probability of a rare event occurring, say, in a particular 
record and is also used in planning construction work. It may be derived as follows:

In any 1 year, the occurrence probability is

P X x
T

( )
1

(by definition)≥ =
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Conversely, the non-occurrence probability is

′ ≤ −P X x P( ) (1 )=

For two consecutive years,

′ ≤ − −P X x P P( ) (1 )(1 )2 =

For N years,

′ ≤ −P X x PN
N( ) (1 )=

Hence

P X x P PN N
N( ) ( )> = − ′ = − −1 1 1

or

P X x
T

N( )> = − −





1 1
1

Ν

Table 8.5 shows an example of the probability that an event with a return period of 100 years 
will occur within various design lives.

The subject of long-term wave statistics and associated matters has been only briefly 
addressed here. Interested readers are directed to Reeve (2009) for a much more in-depth 
analysis, which still manages to present the material in an understandable manner for 
non-mathematicians.

taBle 8.5 Design Life Probabilities

Design Life, N (Years) P(X ≥ 100 Year Event) (%)

1 1

5 5

50 39.5

100 63.4

200 86.6

500 99.3
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8.8 PredICtIon oF extreMe stIll Water levels

8.8.1 Principal Components

In the design of coastal structures or coastal defence schemes, consideration must be given 
to determining the highest water levels that are likely to occur. Tidal variations are the most 
obvious source of water-level variation, but there are several other sources that may need to 
be considered. These include storm surges, wind set-up, wave set-up, tsunami, seiches and sea 
level rise.

Tides are caused by the gravitational and centrifugal forces of the earth/moon/sun system. 
These forces can be accurately predicted by astronomical calculations. However, calculating 
tidal-level variations at any particular place from a knowledge of these forces is not so easy. 
As these forces contain many periodic components, an alternative method of tidal prediction, 
known as harmonic	analysis, is to determine the frequencies and amplitudes of these compo-
nents by Fourier series analysis of recorded tidal levels. Thus, astronomical tidal predictions can 
be made at any particular location with a tide gauge record.

Tides can be considered as long waves (i.e., their frequency is much less than that of short – 
wind – waves). Hence, they are also shallow-water waves even in the oceans (because of their 
immense wavelength). Shallow-water waves are strongly affected by shoaling, and therefore 
significant tidal water level rises may be expected in coastal seas and estuaries. A good first 
reference to understanding tides may be found in Open University (1989).

The Coriolis effect is produced by the earth’s rotation and, in the northern hemisphere, has 
the effect of a force that always turns a flow to the right. In the English Channel, this results in 
larger tidal ranges on the French coast than on the English coast.

Storm surges are caused by atmospheric pressure variations. The sea surface under a low-
pressure system rises because of the local reduction of pressure, and this locally increased water 
level tends to move with the depression, again acting as a long wave.

Wind set-up is the result of shear force between wind and water, which is balanced by an 
increasing water level in the downwind direction.

Wave set-up occurs only inside the surf zone and is caused by radiation stress gradients (refer 
to Section 8.4 for further details). Wave set-down occurs outside the breaker zone and is a 
maximum at the onset of breaking.

Tsunami, associated primarily with subsea seismic activity, induces long waves which can 
dramatically increase in height because of shoaling on the continental shelf.

Seiches are also long waves; they are caused by resonant excitation of any enclosed (lakes) or 
semi-enclosed (estuaries and harbours) body of water.

Sea level rise can be caused either by movement of the earth’s crust (isostatic uplift) or result-
ing from thermal expansion of the water mass and melting of polar ice caps (eustatic uplift).

8.8.2 design extreme still Water level

Ideally, each of the possible components contributing to the extreme still water level should 
be analysed separately and subjected to probability analysis where appropriate. However, the 
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combined probability of, for instance, storm surge and wind set-up will depend upon their joint 
probabilities. If these are independent, then the joint probability is the product of the individual 
probabilities. In contrast, if one is fully dependent upon the other, their joint probability is 
identical to individual probability of either. At many locations, storm surge, wind set-up, wave 
set-up and wave height are likely to be correlated, but not fully dependent, thus making a joint 
probability analysis complex.

A useful approach to the problem is to regard any tide gauge record as being composed of 
astronomical tide and storm surge (which incorporates any wind or wave set-up). Thus surge 
heights can be abstracted by subtracting the astronomical tide and then applying a probability 
analysis. Alternatively, the annual maxima of water level can be analysed by probability analysis 
directly. Such analyses have been carried out for many locations around the United Kingdom 
and may be found in Graff (1981) and Blackman (1985).

For an ungauged site, an estimate of ESWL may be found from the ESWL of the nearest 
gauged site by assuming that

ESWL MHWS
MHWS MLWS

constant
−
−

=
( )

Estimated 50 year return period storm surges around the United Kingdom may be found in 
Pugh (1987). They range from about 1 to 1.5 m except for East Anglia and the Thames Estuary, 
where surges of up to 2.75 m are predicted.

8.8.3 sea level rise

Considerable effort has been expended in recent years to predict global sea level rise due to 
global warming. Predictions have been prepared for the Intergovernmental Panel on Climate 
Change (IPCC). Since 1990, the IPCC has produced a series of reports, including four 
Assessment Reports in 1990, 1995, 2001 and 2007. In November 2009, the Copenhagen 
Diagnosis (2009) was produced. This is effectively an official consensus update on the 
IPCC’s 2007 report. They concluded that estimates of the future mean sea level rise should 
be significantly higher than IPCC projections from 2007 and indicated a rise of 0.4–1.2 m 
by 2100.

Around the United Kingdom, sea levels are also affected by crustal movements, and thus 
currently in the United Kingdom, the recommended rates of sea level rise for England include 
both elements. The values given by the UK Environment Agency are reproduced in Table 8.6. 
Sensitivity ranges for rainfall, river flow, wind speed and wave height were also estimated and 
are reproduced in Table 8.7.

The Environment Agency note that these allowances and sensitivity ranges were developed 
before the United Kingdom’s latest climate projections (UKCP09) were produced, but that 
they remain very reasonable estimates of change.

These allowances must be added to the ESWL to determine the future ESWL at any future 
date.
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8.9 suMMary

In this chapter, the fundamental concepts for wave theory of water waves have been pre-
sented, covering linear wave theory, wave transformation and attenuation processes and surf 
zone processes. In addition, the topics of short- and long-term wave statistics, the meth-
ods by which waves may be predicted from wind records and the methods to determine 

taBle 8.6 Recommended Rates of Sea Level Rise for England and Wales

Administrative or 
Devolved Region

Assumed 
Vertical 
Land 

Movement 
(mm/Year)

Net Sea 
Level Rise 
(mm/Year) 

1990–2025

Net Sea 
Level Rise 
(mm/Year) 

2025–2055

Net Sea 
Level Rise 
(mm/Year) 

2055–2085

Net Sea 
Level Rise 
(mm/Year) 

2085–2115

East of England, 
East Midlands, 
London, SE 
England (south of 
Flamborough 
Head)

−0.8 4.0 8.5 12.0 15.0

South West and 
Wales

−0.5 3.5 8.0 11.5 14.5

NW England, NE 
England, 
Scotland (north of 
Flamborough 
Head)

+0.8 2.5 7.0 10.0 13.0

Source: Data from UK Environment Agency, 2011. http://www.environment-agency.gov.uk/research/
planning/116769.aspx

taBle 8.7 Recommended Sensitivity Ranges for England and Wales

Parameter 1990–2025 2025–2055 2055–2085 2085–2115

Peak rainfall intensity (preferably 
for small catchments)

+5% +10% +20% +30%

Peak river flow (preferably for 
larger catchments)

+10% +20% +20% +20%

Offshore wind speed +5% +5% +10% +10%

Extreme wave height +5% +5% +10% +10%

Source: Data from UK Environment Agency, 2011. http://www.environment-agency.gov.uk/research/
planning/116769.aspx
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extreme still water levels have all been presented. Finally, the chapter briefly describes the 
methods currently used to account for climate change effects on sea levels, wind speeds and 
wave heights. The equations for all of the earlier described concepts have been presented 
together with solutions and worked examples. A comprehensive source for further reading 
concerning wave theory may be found in Dean and Dalrymple (1991), and comprehensive 
treatment of coastal engineering processes, theory and design practice may be found in 
Reeve et al. (2012).

ProBleMs For solutIon

8.1 A deep-water wave has a period of 8.5 s. Calculate the wave celerity, group wave celerity 
and wavelength in a transitional water depth corresponding to d/L0 = 0.1.

[L0 = 112.8 m, C0 = 13.27 m/s, c = 9.42 m/s, CG = 7.63 m/s, L = 80.0 m]
8.2 If the waves described in question 1 are 5 m high, determine the maximum vertical water 

particle acceleration at mid depth.
[az = 0.62 m/s2]

8.3 Swell waves with a height H = 3 m and a period of T = 8 s are reported to be heading 
towards an offshore platform in a uniform depth of 15 m. The platform is undergoing an 
underwater inspection, which is being carried out by a remotely operated vehicle (ROV). 
The ROV cannot operate satisfactory if the maximum horizontal water particle velocity 
at its working depth exceeds 0.6 m/s.

Use linear wave theory to determine the following:
 i. How long it will take for the swell to reach the platform if the leading waves are 25 km 

from the structure when reported.
 [cg = 7.48, hence t = 0.928 h]

 ii. Whether the ROV can operate satisfactorily at mid depth when the waves have 
reached the platform.

 [u =0.967 m/s, no]
 iii. Whether the ROV can operate at the seabed when the waves have reached the platform.

 [u = 0.83 m/s, no]
 iv. Calculate the maximum horizontal particle acceleration that the ROV would encoun-

ter at the surface.
 [ax = 1.13 m/s2]

8.4 A deep-water wave has a period of 8.5 s and a height of 5 m and is travelling at 30° to the 
shoreline. Assuming that the seabed contours are parallel, find the height, depth, celerity 
and angle of the wave when it breaks.

[HB = 4.75, c = 7.0 m/s, dB = 6.1, αB = 15.5°]
8.5 The probability density function for wave height, h, in a random sea state is given by the 

Rayleigh distribution:

f h h H h H( ) ( )exp[ ( ) ]= −2 2 2/ /rms rms

For Hrms = 1.0 m, plot the probability density function of h, the cumulative exceedance 
probability and the exceedance probability.
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8.6 Table P8.1 lists Hs for 20 storms in 1 year, recorded at a deep-water location. Taking the 
Gumbel distribution of extreme wave heights, plot the data and estimate the 50 year 
return period wave height.

[Hs about 7.0 m, Gumbel distribution is not a very good fit]
8.7 Using Figure 8.25, determine the significant wave heights and periods corresponding to a 

wind speed of 20 m/s, a fetch length of 200 km and for wind durations of 1, 6 and 24 h.
  [t = 1 h, Hs = 2.1 m, Ts = 4.2 s (duration limited)
	 	 t = 6 h, Hs = 6.0 m, Ts = 7.4 s (duration limited)
	 	 t = 24 h, Hs = 6.3 m, Ts = 7.6 s (fetch limited)]
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Chapter 9

sediment transport

9.1  IntroduCtIon

Most rivers transport sediment for some or all of the time. Over timescales of events (floods) 
seasons and years, erosion and deposition of sediment alters the channel cross section and affects 
channel roughness. Sediment deposition reduces reservoir capacity, erosion of the bed can lead 
to instability of the watercourse and scour can undermine hydraulic structures. Estuaries and 
coastlines are subject to constant sediment movements, leading to long-term accretion or ero-
sion. Thus, the study of sediment transport is of fundamental importance in river and coastal 
engineering. In this chapter, the basic concepts of sediment transport are introduced and some 
of the most widely used prediction formulae are described. The treatment is limited to cohesion-
less transport in uni-directional flow, which is the transport of sand and gravels by rivers and 
tidal currents.

The study of sediment transport involves many difficulties. This is why the approach adopted 
in this chapter is a little different from that used up to now. It is not always possible to provide 
rigorous proofs of equations. Even where this is possible, it may not be helpful to someone 
studying the subject for the first time, since some proofs are long and difficult. In general, proofs 
will be given only if they are reasonably simple. Where the development of an equation involves 
a complicated mathematical/empirical development, the equation will simply be stated with a 
brief outline of principles, the appropriate reference(s) and examples of its application. Only a 
limited selection of sediment transport equations can be given here. No special merit is claimed 
for this selection, but it is hoped that at least a path will have been cleared through the “jungle” 
which will enable the reader to explore some of the more advanced texts.

By	the	end	of	this	chapter	you	should

 ◾ Be able to identify the principal characteristics of sands and gravels and the modes of 
transport in water

 ◾ Understand the concepts of threshold of movement, the entrainment function and 
suspended sediment transport

 ◾ Be able to calculate the necessary parameters associated with the prediction of sedi-
ment transport
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 ◾ Be aware of the sediment transport equations for bed load, suspended load and total 
load and be able to calculate their values for both tidal and river flow situations

 ◾ Be aware of the accuracy and limitations of the transport equations and the further 
complexities to be found in estuaries and along coastlines

This chapter also provides some of the background knowledge required for the study of river 
engineering, which is presented in Chapter 15.

9.1.1  Characteristics of sands and gravels

Traditionally sand and gravel sizes have been classified according to the Wentworth scale. This 
defines sand as being very fine (0.0625–0.125 mm), fine (0.125–0.25 mm), medium (0.25–0.5 mm), 
coarse (0.5–1 mm) and very coarse (1–2 mm). Material sizes larger than this are classified as gravel, 
subdivided into granular (2–4 mm), pebble (4–64 mm), cobble (64–256 mm) and boulder 
(>256 mm). Rounded gravel, typical of a significant number of UK beaches, is referred to as shingle.

There are several physical properties of sand and gravel which are important in the study 
of sediment transport. The first is the sediment density (ρs), typically 2650 kg/m3 for quartz. 
The rest are required in recognition of the fact that river or coastal sediment beds comprise a 
mixture of the sediments, interspersed with voids which may be filled with air or water. Thus 
the bulk density (ρb) is defined as the in situ mass of the mixture/volume of the mixture, the 
porosity (ps) as the volume of air or water/volume of the mixture, typically about 0.4 for a sand 
bed, the voids ratio (e) as the volume of air or water/volume of the grains and finally the angle 
of repose (Φ), which is the limiting slope angle at which the grains begin to roll, typically 32° in 
air. In water this reduces to about 28°.

The material sizes in any particular location will normally comprise a range of grain sizes, thus 
it is standard practice to measure the grain size distribution by a sieve analysis from which the 
percentage by weight of material passing through a range of sieve sizes is plotted against particle 
size. The median size is denoted by D50, representing the diameter for which 50% of the grains by	
mass are finer. The spread of sizes is often indicated by the values of D84 and D16 and their ratio is 
used to measure the degree of sorting. A well-sorted sample is one in which there is a small range 
of sizes (D85/D16 < 2), whereas a well-mixed sample has a large range of sizes (D85/D16 > 16).

9.1.2  Modes of sediment transport

Clearly, sediment transport occurs only if there is an interface between a moving fluid and an 
erodible boundary. The activity at this interface is extremely complex. Once sediment is being 
transported, the flow is no longer a simple fluid flow, since two materials are involved. Sediment 
transport may be conceived of as occurring in one of two modes:

 1. By rolling, sliding or hopping along the floor (bed) of the river or sea – sediment thus 
transported constitutes the bedload, with the hopping motion referred to as saltation

 2. By suspension in the moving fluid (this is usually applicable to finer particles) which is 
the suspended load
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In addition to these two principal modes, two further modes may be present:

 1. The washload. This comprises very fine particles that are carried in suspension, but 
whose origin is not from the bed. Such particles typically enter the system from river 
tributaries. Their concentration cannot be predicted from the composition of the bed 
material.

 2. Sheetflow. This comprises an extension to the bedload. At higher transport rates, more 
than one grain layer of particles is activated and thus the bedload comprises several 
layers of moving particles, all in contact with one another.

Bedload transport is the dominant mode for low velocity flows and/or large grain sizes. It is con-
trolled by the bed shear stresses, as explained in the next section. Conversely, suspended load 
transport is the dominant mode for high velocity flows and/or small grain sizes. It is controlled 
by the level of fluid turbulence, as explained later. Gravel size fractions are typically transported 
as bedload, whereas sand sized fractions are transported by both bedload and suspended load, 
with suspended transport occurring up to several metres above the bed. In this situation, the 
suspended transport is often much larger than the bedload transport.

9.2  tHresHold oF MoveMent

9.2.1  description of threshold of Movement

If a perfectly round object (a cylinder or sphere) is placed on a smooth horizontal surface, it 
will readily roll on application of a small horizontal force. In the case of an erodible bound-
ary, of course, the particles are not perfectly round, and they lie on a surface which is inher-
ently rough and may not be flat or horizontal. Thus, the application of a force will only cause 
motion when it is sufficient to overcome the natural resistance to motion of the particle. 
The particles will probably be nonuniform in size. At the interface, a moving fluid will apply 
a shear force (Figure 9.1a), which implies that a proportionate force will be applied to the 
exposed surface of a particle. Observations by many experimenters have confirmed that if the 
shear force is gradually increased from zero, a point is reached at which particle movements 
can be observed at a number of small areas over the bed. A further small increase in τ0 (and 
therefore u) is usually sufficient to generate a widespread sediment motion (of the bedload 
type). This describes the “threshold of motion”. After further increments in τ0, another point 
is reached at which the finer particles begin to be swept up into the fluid. This defines the 
inception of a suspended load.

9.2.2  Parameters of sediment transport

Some idea of the problems which face the engineer may be gained by considering the case of a 
channel flow over a sandy bed which is initially level. Once the shear stress is sufficient to cause 
transport, “ripples” will form in the bed (Figure 9.2). These ripples may grow into larger “dunes”. 
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In flows having quite moderate, but subcritical Froude numbers, the dunes will migrate down-
stream. This is due to sand being driven from the dune crests and then being deposited just down-
stream on the lee side. Once the flow is sufficient to bring about a suspended load, major changes 
occur at the bed as the dunes will be “washed out”. For supercritical flow, antidunes may form, in 
which the bedforms migrate upstream. A relationship probably exists between the major param-
eters of the transport process (Froude number, sediment properties, fluid properties, shear stress, 
bed roughness or dune size and rate of sediment transport). A multitude of attempts have been 
made to develop a rational theory, so far with limited success. Most of the equations in current 
use have been developed on the basis of a combination of dimensional analysis, experimentation 
and simplified theoretical models.

FIgure 9.2 Sediment ripple formation.

Prominent grain

(a) (b)

Flow

W´(=(ρs–ρ)gVs)

FL

u

τ0

FD

FIgure 9.1 Fluid forces causing sediment movement. (a) Shear forces on granular bed and (b) force on “promi-
nent” grain.
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9.2.3  estimation of Bed shear stress

The estimation of bed shear stress is a critical component in subsequently estimating the sedi-
ment transport. Given the earlier discussion it can be seen that the total bed shear stress is 
composed of three contributions, namely,

 ◾ The skin friction or grain related friction (τ0s)
 ◾ The form drag (τ0f) resulting from ripple/dune formation
 ◾ A sediment transport contribution (τ0t) caused by momentum transfer to mobilise the 

grains

Hence, the total bed shear stress is given by

 τ τ τ τ0 0s 0f 0t= + +

Only the skin friction bed shear stress acts directly on the grains and thus this parameter must 
be used when calculating the threshold of motion, bed load transport and reference concentra-
tion, as will be detailed later in this section. However, the total shear stress is the parameter 
which determines the turbulent intensities which in turn governs suspended sediment trans-
port. Furthermore, the determination of bed shear stresses depends on whether the flow is that 
for a steady current, a wave or a combination of waves and currents.

The general equation, relating bed shear stress to depth-averaged horizontal velocity (U–) is 
given by

 τ ρ0
2= C UD

This general equation can be used for all current flows and for total bed shear stress or skin fric-
tion shear stress. A very useful additional parameter, known as the friction or shear velocity (u*) 
(refer to Chapter 3), is related to τ0 by

 
u* = τ

ρ
0

Its application is described in succeeding sections.

9.2.4  skin Friction Bed shear stress 
in uni-directional Flows

For river flow in the absence of bed forms, the skin friction bed shear stress can be simply related 
to the bed slope through Equation 5.5 (τ0 = ρgRS0). By substitution into the Manning equation, 
(V n y S= ( ) / /1 2 3

0
1 2/  for a wide rectangular channel), the value for CD is given by

 
C

gn
y

D =
2

1 3/
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However, in the presence of bedforms and for the case of tidal flows, another approach is neces-
sary. Skin friction bed shear stress is determined solely by the bed roughness, as quantified by 
either the Nikuradse roughness (ks) or the roughness length (z0), which is the height above the 
bed at which the velocity tends to zero. A widely used equation is that given by

 
C

z y
D

/
=

+










0 4
1 0

2
.

ln( )

For hydraulically rough flow (u* ks/ν > 70), commonly assumed for coarse sands and gravels,

 
z

k
0

s

30
=

ks is related to grain size and is usually given as

 ks 502.5D=

9.2.5  entrainment Function

A close inspection of an erodible granular boundary would reveal that some of the surface 
particles were more “prominent” or “exposed” (and therefore more prone to move) than oth-
ers (Figure 9.1b). The external force on this particle is due to the separated flow pattern. 
The other force acting on the particle is related to its submerged self-weight, W′ (where 
W′ = πD3g(ρS − ρ)/6 for a spherical particle) and to the angle of repose, ϕ. The number of 
prominent grains in a given surface area is related to the areal grain packing (= area of grains/
total area = Ap). As the area of a particle is proportional to the square of the typical particle 
size (D2), the number of exposed grains is a function of Ap/D2. The shear stress at the inter-
face, τ0s, is the sum of the forces on the individual particles, with the contribution due to 
prominent grains dominating, so the total force on each prominent grain in unit area may be 
expressed as

 
F

D
A

sD
p

∝τ0

2

At the threshold of movement τ0s = τCR, so

 
τ ρ ρ π φCR

p
s tan

D
A

g
D2 3

6
( )∝ −

This can be rearranged to give a dimensionless relationship
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The left-hand side of this equation is the ratio of a shear force to a gravity force, in general terms, 
this ratio is known as the entrainment function or Shields parameter (θs), i.e.,

 
θ τ

ρ ρs
0s

s
=

−( )gD
 (9.1)

At the threshold of movement this becomes the critical Shields parameter:

 
θ τ

ρ ρCR
CR

s
=

−( )gD
 (9.2)

This analysis suggests that the critical entrainment function should be a constant.
In 1936, an American engineer published the results of some pioneering research into sedi-

ment transport (Shields, 1936). He showed that the particle entrainment was related to a form 
of Reynolds number, based on the friction velocity u* (see Section 3.4), i.e., Re* = ρu*D/μ. 
Shields plotted the results of his experiments in the form of θs against Re* and proved that there 
was a well defined band of results indicating the threshold of motion. The Shields threshold line 
has subsequently been expressed in a more convenient form (Soulsby and Whitehouse, 1997), 
based on the use of a dimensionless particle size parameter, D*, given by

 
θCR =

+
+ − −0 3

1 1 2
0 055 1 0 02

.

. *
. [ exp( . *)]

D
D  (9.3)

where

 
D

g s
D*

( )
,

/

= −





1
2

1 3

ν
ρ ρ νs = / and  = kinematic viscosity os ff water = /µ ρ  (9.4)

Equation 9.3 can, therefore, be used to determine the critical shear stress (τCR) for any par-
ticle size (D). Figure 9.3 is a plot of θCR against D* showing data sets for waves, currents and 

Currents
Waves
Waves plus currents

0.1
0.01

0.1

1

Soulsby

Shields

1 10
D*

100 1000

θ C
R

FIgure 9.3 Threshold of motion of sediments beneath waves and/or currents from Soulsby (1997). (After 
Soulsby, R.L., Dynamics of Marine Sands, Thomas Telford, London, UK., 1997.)
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combined waves and currents, together with both the original Shields curve and the Soulsby 
curve defined in Equation 9.3.

If θs is determined from the bed shear stress via (9.1), then the regime of sediment transport 
can be calculated as follows:

 ◾ If θs < θCR, then no transport will occur.
 ◾ If θCR ≤ θs ≤ 0.8, then transport will occur with ripples or dunes.
 ◾ If θs > 0.8, then transport will occur as sheet flow with a flat bed.
 ◾ If u*s ≤ vFS (the particle fall speed), then there will not be any suspended sediment 

transport.
 ◾ If u*s > vFS, then suspended sediment transport will occur.

The latter two conditions may be better understood by noting that the friction velocity can be 
related to the intensity of turbulence through the concept of the Reynolds’ shear stress. This 
is the force resulting from the change of momentum associated with the fluctuating turbulent 
velocities (u/, v/). Referring to Chapter 3 it has already been shown that

 
u* = / /u v

For the case of homogeneous turbulence u/, v/ have the same magnitude, hence u* = u/ = v/. 
It will be shown in the next section that for suspended sediment transport u/ = v/ = vFS (and 
therefore u* = vFS).

9.3  general desCrIPtIon oF tHe MeCHanICs 
oF sedIMent transPort

9.3.1  Conditions at the Interface between a Flowing 
Fluid and a Particulate Boundary

For most practical cases, channel flows are turbulent. This means that the flow incorporates the 
irregular eddying motion, as discussed in Chapter 3.

A close look in the region of the granular boundary at the bed would reveal the existence of a 
sublayer comprising “pools” of stationary or slowly moving fluid in the interstices. This sublayer 
zone is not stable, since eddies (with high momentum) from the turbulent zone periodically 
penetrate the sublayer and eject the (low momentum) fluid from the “pools”. The momentum 
difference between the fluid from the two zones generates a shearing action, which in turn gen-
erates more eddies, and so on. Grains are thus subjected by the fluid to a fluctuating impulsive 
force. Once the force is sufficient to dislodge the more prominent grains (i.e., when τ0 ≥ τCR) they 
will roll over the neighbouring grain(s). As sediment movement becomes more widespread, the 
pattern of forces becomes more complex as moving particles collide with each other and with 
stationary particles. As τ0 increases further, granular movement penetrates more deeply into 
the bed. Bed movement may most simply be represented as a series of layers in relative  sliding 
motion (Figure 9.4), with a linear velocity distribution (note the analogy with laminar flow).
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9.3.2  Mechanics of Particle suspension

If sediment grains are drawn upwards from the channel bed and into suspension, it must follow 
that some vertical (upwards) force is being applied to the grains. The force must be sufficient to 
overcome the immersed self-weight of the particles. Consider a particle suspended in a verti-
cal flask (Figure 9.5). If the fluid is stationary, then the particle will fall due to its self-weight 
(assuming ρs > ρ), accelerating up to a limiting (or “terminal”) velocity vFS at which the self-
weight will be equal in magnitude to the drag force, FD, acting on the particle. If a discharge is 
now admitted at the base of the flask, the fluid is given a vertical upwards velocity v. As v → vFS, 
the particle will cease to fall and will appear to be stationary. If v > vFS then the particle can be 
made to travel upwards.

From this argument, it must follow that the suspension of sediment in a channel flow implies 
the existence of an upwards velocity component. In fact, this should not come as a complete 
surprise (as a review of Section 3.4 will reveal). Fluctuating vertical (and horizontal) compo-
nents of velocity are an integral part of a turbulent flow. Flow separation over the top of a par-
ticle provides an initial lift force (Figure 9.1b) which tends to draw it upwards. Providing that 
eddy activity is sufficiently intense, then the mixing action in the flow above the bed will sweep 
particles along and up into the body of the flow (Figure 9.6a). Naturally, the finer particles will 
be most readily suspended (like dust on a windy day).

Mobile bed of grains
y

Velocity distribution
in mobile bed

us

FIgure 9.4 Linear velocity distribution for idealised bed motion.

Maximum particle fall
velocity = vFS

W'

FD

FIgure 9.5 Forces acting on a falling particle.
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Since drag force = × 





C AUD
1
2

2ρ ∞  (see Section 3.6), then

 
( )ρ ρ ρs s D s FS D− = × =gV C A v F

1
2

2

where VS and AS are the volume and cross-sectional area of the particle. For spherical particles, 
the value of CD is a function of Reynolds number (=24/Re). However, most sediments are 
not spherical and behave differently to spherical particles. For natural sands, Soulsby (1997) 
derived a simple, but accurate, formula which is of universal application. It is given by

 
v

D
D DFS for all *= + −ν

[( . . * ) . ]/10 36 1 049 10 362 3 1 2  (9.5)

The Prandtl model of turbulence (Section 3.4) can be used as the basis for a sediment con-
centration model, assuming that sediment concentration, C (=volume of sediment/(volume of 
sediment + fluid)), varies as shown in Figure 9.6, and that this is an equilibrium condition. The 
forces acting on the particles are gravity and fluid drag. If the relative velocity between the par-
ticle and the fluid in the vertical plane is assumed to be vFS then the upwards rate of transport is
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d
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FS′ − −
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C
y

δ

and the downwards transport rate is
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FS′ + −












u v C y

C
y

δ

Particles swept upward by �ow

yr

Y

C – δC

C + δC

u + δu

u – δu

FIgure 9.6 Suspension of sediment.
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For equilibrium, the sum of the upwards and downwards transport rates must be zero. Hence, 
the net transport rate is

 
′ +







=u y
dC
dy

v CFSδ 0  (9.6)

From Equations 3.4 and 3.6a, u′δy = τ/(ρ(du/dy)) and (du/dy) = u*/Ky; also, for steady, two-
dimensional channel flows the vertical variation of shear stress is often taken as τ = τ0(1 − (y/Y)). 
Combining these with (9.6) gives the result
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This may be integrated to yield
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 (9.7)

where
Cr is a reference concentration at height yr

C(y) is the concentration at any height y above the bed

Equation 9.7 is a simple mathematical model of suspended sediment transport, but it cannot 
be solved without using experimental results to evaluate the unknown constants. The value for K 
is often taken as 0.4, but this is for a clear fluid. There is no general agreement as to the effect of 
suspended sediment on the value of K, though some experimental results are illustrated in Chang 
(1988) which indicate that K is not a constant. More recently, Soulsby (1997) suggests that K should 
be taken as 0.4 and that sediment induced effects on the velocity profile should be treated separately. 
The exponent in Equation 9.7 is known as the Rouse number, or suspension parameter, and the 
resulting sediment concentration profile the Rouse profile. As could be expected, for fine grains and 
high velocities the sediment is suspended throughout the water column. Conversely, for coarse grains 
and low velocities, the suspended sediment concentration rapidly reduces to zero above the bed.

To calculate the actual concentration C(y), a value for Cr is also required, together with the 
corresponding reference height, yr. Many expressions for Cr and yr have been developed (see 
Chang (1988), Raudkivi (1998) and van Rijn (1984)) for examples. More recently, a simple 
expression was derived by Zyserman and Fredsoe (1994) given by

 
Cr

s

s
= −

+ −
0 331 0 045

1 0 72 0 045

1 75

1 75

. ( . )
. ( . )

.

.

θ
θ

 (9.8a)

 yr 502D=  (9.8b)

The model does appear to fit experimental results quite well, but this should be viewed with caution, 
since the value of the exponent (vFS/Ku*) is difficult to estimate with confidence. Also the Prandtl 
turbulence model, used as the basis for the model, is only a crude approximation. Furthermore, one 
often has to assume that the turbulent shear is the same with the sediment in suspension as in clear 
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water, which is not true. Nevertheless, a number of solutions to (9.7) have been published, and it is 
worth illustrating the way in which the model may be applied by an example.

Example 9.1:  Suspended Sediment Transport in a River

A river having a rectangular cross section 100 m wide and 5 m deep has a bed slope of 1 m 
in 5 km. The bed of the river consists of fine sand of 0.2 mm diameter, and the bed rough-
ness ks can be taken as 0.4 mm. The vertical velocity distribution at the vertical centre 
line of the river is given by u = 2.5u* ln(30y/ks). The sediment density is 2650 kg/m3 and 
viscosity of water μ = 1.14 × 10−3 kg/m s.

Estimate the total suspended sediment discharge based on the relationship Δqs = Cuδy, 
where qs is the transport rate per unit width. Use (9.7) to find C.

Solution

The sediment fall velocity is found from (9.5), after first calculating D* from (9.4)
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We will also need the following:
Hydraulic radius R = A/P = (100 × 5)/(100 + (2 × 5)) = 4.55 m

 
Friction velocity * / m/s( . . ) .u gRS= = × × =0 9 81 4 55 1 5000 0 094

Bed shear stress τ0s = ρgRS0 = 1000 × 9.81 × 4.55 × 1/5000 = 8.93 N/m2

The sediment discharge Δqs must be found for a series of elevations, y, above the bed, and 
the total sediment discharge can be found by summation. This means that the velocity, u, 
and concentration C must be evaluated at each elevation. To evaluate C from (9.7), we 
need to have values for yr and Cr from (9.8a,b), with θs from (9.1)

 yr 502D 2 0.0002 0.0004 m= = × =

 
θ τ
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To illustrate the method, the river cross section is divided into five 1 m high horizontal 
“slices”. The velocity and concentration are calculated for the mid-height of each slice at 
the centre of the river and Δqs evaluated for each slice. Note that because the values of 
C and u are for the centre of the river, Δqs is the maximum sediment discharge per unit 
width through the “slice”. To find the sediment discharge for each slice over the whole 100 m 
width of the river it must be remembered that the water velocity and sediment transport will 
reduce from the maximum at the centre to zero at each of the banks. To allow for this the 
sediment discharge over the whole width is estimated as ΔQs = 0.667 × Δqs × 100, which 
assumes a parabolic distribution of sediment transport across the width of the river. The 
total sediment discharge is then

 Q Qs s= Σ∆

Thus, at y– = 0.5 m, u = 2.5u* ln (30 × 0.5/0.0004) = 2.47 m/s.
The concentration is
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Hence, the sediment discharge at the centre of the first “slice” (between 0 and 1m above 
the bed) is

 ∆q Cu ys
3 3 3d 3.71 10 2.47 1 9.19 10  m /m s= = × × × = ×− −

therefore

 ∆Qs
3 3 30.667 100 9.19 10 613 10  m /s= × × × = ×− −

The solution is completed in tabular form in Table 9.1.

9.4  sedIMent transPort equatIons

In practice, virtually all sediment transport occurs either as bedload or as a combination of 
bedload and suspended load (suspended load rarely occurs in isolation, except for certain cases 
involving very fine silts). The combined load is known as a total load.

9.4.1  Bedload Formulae

9.4.1.1   Tractive Force Equations

Following Shields’ work, various bed load transport equations have been developed, in which 
the transport is related to the entrainment function and its critical value. A convenient way to 
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express the resulting relationships is to use the dimensionless bedload transport rate factor (Φ) 
given by

 
Φ =

−
q

g s D
b

[ ( ) ] /1 3 1 2  (9.9)

where qb is the volumetric bedload transport rate per unit width, with units of m3/m/s.
An early formula, still commonly used, is that of Meyer-Peter Muller given by

 Φ = −8 3 2( ) /θ θs CR

A more recent formula is that of Neilsen (1992), given by

 Φ = −12 1 2θ θ θs s CR
/ ( )  (9.10)

This equation gives a good fit to a wide range of conditions. Soulsby (1997) presents these and 
other well known formulae and provides references and further reading.

9.4.1.2   Probabilistic Equations

It has already been pointed out that grain movement is brought about by the impulsive force of 
turbulent eddies. Eddy action does not occur uniformly with time or space. It might therefore 
be thought that the incidence of an eddy capable of transporting a particular grain is some 

taBle 9.1 Solution of Example 9.1

y y– u C Δqs ΔQs

5

4.5 2.99 0.23 ×10−3 0.68 ×10−3 45×10−3

4

3.5 2.93 0.54 ×10−3 1.57 ×10−3 105 ×10−3

3

2.5 2.85 0.92 ×10−3 2.62 ×10−3 175 ×10−3

2

1.5 2.73 1.57 ×10−3 4.30 ×10−3 287 ×10−3

1

0.5 2.47 3.71×10−3 9.19 ×10−3 613 ×10−3

0

Qs = ΣΔQs = 1.225 m3/s
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statistical function of time. Einstein (1942) proposed just such a probabilistic model of bedload 
for the case of a level bed of grains.

The basic ideas underlying Einstein’s equation are the following:

 1. For an individual grain, migration will take place in a series of jumps (Figure 9.7) of 
length L = KLD. During a time T a series of n such jumps will occur, so that the particle 
will travel a total distance nL.

 2. The probability, p, that a grain will be eroded during the typical time scale, T, must be 
some function of the immersed self-weight of the particle and the fluid lift force act-
ing on the particle. The immersed self-weight is (ρs − ρ)g(KVD3), and the lift force is 
CLρ(KAD2)u2/2, where grain area As = KAD2 and grain volume Vs = KVD3. Therefore,

 
p f

g K D
C K D u

= −







( ) ( )
( )

ρ ρ
ρ

s V

L A /

3

2 2 2  (9.11)

	 	 u is a “typical” velocity at the sublayer. Researchers have proposed that

 
u u gR S� �11 6 11 6 0. .* ′

  where R′ is that proportion of the hydraulic radius appropriate to sediment transport. 
Equation 9.11 is usually expressed as

 
p f= ⋅{B* }Ψ  (9.12)

  where
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 3. The number of grains of a given size in area A(= KLD × 1) is KLD/KAD2, therefore the 
number of grains dislodged during time T will be pKLD/KAD2. The volume of grains 
crossing a given boundary must therefore be
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Particle

KLD

KLDKLD
Unit width

FIgure 9.7 Einstein bedload model.
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  The volume must also be given by qsT. If the time T is some function of particle size and 
fall velocity, say T = KTD/vFS, then

 
q T q

K D
v

s s
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FS
=  (9.15)

  Equating (9.14) and (9.15),
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  Therefore,
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 (9.16)

  Equating (9.13) and (9.16), and evaluating vFS from (9.2), leads, with some rearrange-
ment, to
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s
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  where Φ is a dimensionless bedload function and B* and Ψ have been defined earlier.
 4. Following Einstein, a number of researchers investigated the relationship between Φ 

and Ψ. A typical result is due to Brown (in Rouse, 1950)

 
Φ

Ψ
 = 40

1
3







 (9.18)

  which is valid for Φ > 0.04. As Φ (and therefore qs) → 0.1/Ψ → 0.056, which corre-
sponds to the Shields threshold condition.

Example 9.2:  River Bedload

A European river has the following hydraulic characteristics: Q = 450 m3/s, width 50 m, 
depth 6 m, bed slope (S0), 3 × 10−4. The sediment has a typical diameter D50 = 0.01 m, 
 density = 2650 kg/m3 and take kinematic viscosity = 1.14 × 10−6 m2/s. Estimate the bedload 
transport, using the Neilsen and Einstein–Brown formulae, assuming that no  bedforms are 
present.

Solution

From the data given,
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 τ ρ0 0
41000 9.81 4.84 3 10= = × × × × −gRS

 = 14.245 N/m2

From (9.4)
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Hence, from (9.9) and (9.10) for Neilsen’s	equation,
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Using	the	Einstein–Brown	formula, from (9.13),
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Notice that, in the absence of other information, it has been assumed that R′ = R. From (9.18),

 Φ = 40(1/11.364)  = 0.02733
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and, using (9.17),
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Therefore,

 248.6 0.0273sq =

i.e.,

 qs
4 31.096 10  m /s= × −

or

 Qs
30.0055 m /s=

The substantial difference in the two estimates is not uncommon. Of the two, the Neilsen 
method is probably the more reliable.

9.4.1.3   Total Load Formulae

In practice, virtually all sediment transport occurs either as bedload or as a combination of 
bedload and suspended load (suspended load rarely occurs in isolation, except for certain cases 
involving very fine silts). The combined load is known as a total load. It is possible to calculate 
the total load from the sum of the bedload and suspended load, as described in the preceding 
sections. However, this requires careful matching of the bed and suspended load transport 
equations at a well-defined height. Practically, it is very difficult to separate bed and suspended 
load. For this reason, some researchers have tackled directly the problem of total load. Some 
examples of total load formulae are now outlined.

9.4.2  energy (stream Power) Formula (Bagnold, 1966)

The equation is based on the concept that a certain fraction of the available stream power is 
used to transport the sediment. The starting point is to determine the immersed weight trans-
port of sediment per unit bed area:

 total weight transport per unit channel width T b( )′ = ′W U W UU W Ub s s+ ′  (9.19)

where b refers to bedload and s to suspended load, and the U terms refer to “typical” sediment 
transport velocities.
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9.4.2.1   Bedload Component

From a consideration of the forces acting on a particle (Figure 9.1b), movement will occur when 
FD > resistance. The resistance is assumed to be a function of W′ (the immersed weight of the 
particles) and ϕ, the angle of friction:

 FD W tan= ′ φ

So if ′Wb is the immersed weight of particles per unit bed area being transported as bedload, 
then the bedload work rate (e.g., the energy consumed per unit time) is

 ′W Ub btan φ

The power, P, required to maintain the bed movement is provided by the flow. For uniform flow 
in a channel of rectangular cross section:

 
P gVbYS

P
b

gVYS= =ρ ρ0 0or  (9.20)

where V = Q/A. Only a fraction of the stream power is absorbed in bed movement. Bagnold 
used an “efficiency” eb to estimate the bedload power:

 
e

P
b

e gVYS W Ub b b btan= = ′ρ φ0  (9.21a)

9.4.2.2   Suspended Load Component

If a suspended load exists, then the fluid must supply an effective upwards velocity, which must 
be equal and opposite to vFS. The suspended load work rate is given by
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As some power has been absorbed in bed movement, the power remaining is (1 − eb)P/b. Power 
absorbed in suspended load transport is
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where es is a suspended load “efficiency”.

9.4.2.3   Total Load

This is obtained by adding the two components
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 (9.22)

( ( )′ = −W U gqT s sρ ρ  where qs is the total sediment transport per unit width.)
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This leaves the problem of evaluating eb, es, tan ϕ, etc. Bagnold assumed a universal constant 
value for es (= 0.015) and hence estimated that es(1 − eb) ≃ 0.01, both values being for fully 
turbulent flow. Some inevitable uncertainties were ignored in obtaining these values. The two 
remaining values have been reduced to analytical form.

tan ϕ.

 
If *s
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v
2

2 2

214
=

×
ρ
ρ

where G is analogous to the Reynolds number, Bagnold’s data lead to the following:
For G2 < 150,

 tan 0.75φ =  (9.23a)

For 150 < G2 < 6000,

 tan 0.236log 1.252φ = − +G  (9.23b)

For G2 > 6000,

 tan 0.374φ =  (9.23c)

eb. 

If ρs = 2650 kg/m3 and 0.3 < V < 3.0 m/s, then for 0.015 < D mm < 0.06,

 e Vb 0.012 log 3.28 0.15= − +  (9.24a)

For 0.06 < D mm < 0.2,

 e Vb 0.013 log 3.28 0.145= − +  (9.24b)

For 0.2 < D mm < 0.7,

 e Vb 0.016 log 3.28 0.139= − +  (9.24c)

For D mm > 0.7,

 e Vb 0.028 log 3.28 0.135= − +  (9.24d)

The Bagnold total load equation must thus be regarded as primarily a “sand in water” transport 
equation for water depths Y > 150 mm and particle sizes limited to the range given earlier.



321Sediment Transpor t

9.4.3  ackers and White (a & W) Formula (White, 
1972) and in revised Form in ackers (1993)

The A & W formula is one of the more recent developments in this field. Initially the underlying 
theoretical work was developed by considering the transport of coarse material (bedload) and 
fine material (suspended load) separately. Ackers and White then sought to establish “transi-
tional” relationships to account for the intermediate grain sizes. The functions which emerged 
are based upon three dimensionless quantities, Ggr, Fgr and Dgr: Ggr is the sediment transport 
parameter, which is based on the stream power concept. For bedload, the effective stream 
power is related to the velocity of flow and to the net shear force acting on the grains. Suspended 
load is assumed to be a function of total stream power, P. The particle mobility number, Fgr, is 
a function of shear stress/immersed weight of grains. The critical value of Fgr (i.e., the magni-
tude representing inception of motion) is denoted by Agr. Finally, a dimensionless particle size 
number, Dgr (this is the same as D* previously defined), expresses the relationship between 
immersed weight of grains and viscous forces.

The equations are then as follows:
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(note that V = Q/A). The index n does have a physical significance, since its magnitude is related 
to Dgr. For fine grains n = 1, for coarse grains n = 0, and for transitional sizes n = f(log Dgr).

The values for n, m, Agr and C are as follows:
For Dgr > 60 (coarse sediment with D50 > 2 mm):

 n m A C= = = =0, 1.78, 0.17, 0,025gr  (9.26a)

For 1 < Dgr < 60 (transitional and fine sediment, with D50 in the range 0.06–2 mm):

 n D= −1 0.56 log gr  (9.26b)

 m D= +1.67 6.83/ gr  (9.26c)

 A Dgr gr/= +0 14 0 23 1 2. . /  (9.26d)

 log 2.79 log 0.98(log ) 3.46gr gr
2C D D= − −  (9.26e)
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Equation 9.25a may also be expressed in the form Fgr = Agr + Agr (Ggr/C)1/m, which can be 
regarded as equating a function of transport mobility (Fgr) to the other terms.

The equations have been calibrated by reference to a wide range of data, and good results are 
claimed – “good results” in this context meaning that for 50% or more of the results,
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Example 9.3:  Siltation of Reservoir

A reservoir having a capacity of 20 × 106 m3 is to be sited in a river valley. The river 
has the following characteristics: width 10 m, bed slope 1 in 3000, discharge 87 m3/s 
(assumed to be constant) and depth 5 m. The river boundary is alluvial (D50 = 0.3 mm, 
ρs = 2650 kg/m3). Estimate the time which would elapse before the reservoir capacity is 
reduced to half its original capacity. Assume a rectangular channel section. Take kine-
matic  viscosity = 1.1 × 10−6 m2/s.

Solution

Using	Bagnold’s	method
Estimation	of tan ϕs. The sediment fall velocity is found from (9.5), after first calculating 
D* from (9.4)
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Assuming that Us → velocity of flow, then Us ≃ 87/(10 × 5) = 1.74 m/s = V
Therefore,

 tan /sφ = 0 042 1 74. .

Estimation	of	eb and	tan φ. For D50 = 0.3 mm, use (9.24c):

 eb 0.016 log(3.28 1.74) 0.139 0.127= − × × + =

 R = 2.5 m
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Therefore, from (9.23a), tan φ = 0.75.
Estimation	of	stream	power. From (9.20),
P/b = ρgVYS0 = 1000 × 9.81 × 1.74 × 5 × 1/3000 = 28.45 W/m. Thus, from (9.22),
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Therefore, over 10 m width flux = 10 × 16.6 = 166 N/s. This represents a volume
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ps is the porosity or voidage of the grains when packed closely together, and is usually 
approximately 0.3. Therefore, the rate at which the reservoir will fill is given by

 

166
2650 1000 9 81 1 0 3

14 65 10 3 3

( ) . ( . )
.

− × × −
= × − m /s

Therefore, the annual sediment volume = 462,023 m3. So the sediment will have reduced 
the capacity to half its original value in
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Using	the	A	&	W	equations
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 = 0.0904 m/s

From (9.25),
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Since Dgr is in the transitional range, (9.26b) through (9.26e) are used to calculate n, 
m, A and C:

From (9.26b)

 n D= − − =1 0.56 log =1 0.56(log7.12) 0.5226gr

From (9.26c)

 m D= + = + =1.67 6.83/ 1.67 6.83/7.12 2.629gr

From (9.26d)

 A Dgr gr/ /= + = + =0 14 0 23 0 14 0 23 7 12 0 22621 2 1 2. . . . . ./ /

From (9.26e)

 log 2.79 log 0.98(log ) 3.46gr gr
2C D D= − −

 = − − = −2.79(log 7.12) 0.98(log 7.12) 3.46  1.79382

Therefore,

 C = 0.016

Using (9.25b),
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Therefore, from (9.24a),
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Hence,

 qs
3 31.2 10  m /ms= × −

 Q qs s
3 310 12 10  m /s= = × −

Therefore, if the porosity, ps = 0.3, the reservoir will fill at a rate

 1.2 10 10/(1 0.3) 17.133 10  m /s3 3 3× × − = ×− −

Therefore, annual volume of sediment deposited is 521,087 m3. Hence, the reservoir 
capacity will be reduced by half in

 

20 10
2 521087

19 2
6×

×
≈

,
years.

9.5  ConCludIng notes on sedIMent transPort

9.5.1  limitations of transport equations

Sediment transport processes are complex and the aforementioned treatment is brief and intro-
ductory. Many important issues could not be covered. For example, it has been assumed that 
estimates of sediment transport rates may be based on one “typical” particle size. (D50, say), but 
this is not realistic since an actual river boundary consists of a range of particle sizes. It is pos-
sible to use a transport formula to estimate the transport rate for each of a series of particle size 
fractions and then add the rates to form a total. Even this is not correct since

 1. The exposed particles of a given size will constitute only a fraction of the area of the 
river boundary

 2. Some particles of a given size will be wholly or partly sheltered by surrounding (larger) 
particles, which will affect their mobility

An attempt to incorporate the effect of these conditions was made by Einstein et al., details of 
which may be found in Graf (1971) or Yang (1996). Yang also provides examples of comparative 
tests on a range of transport formulae.

The sediment transport formulae given here pre-suppose equilibrium conditions, i.e., rates 
of erosion are balanced by rates of deposition, that the discharge and boundary roughness (and 
hence shear stress) do not vary and that sediments are noncohesive. For natural rivers changes can 
occur over fairly short periods (e.g., the passage of a flood). Furthermore, in some cases, the finer 
fractions of sediment may be eroded from the bed and banks and not be replaced by deposition. 
The remaining (coarser) fractions are less easily eroded, so the sediment transport rate reduces 
and the channel becomes more stable; a process which is sometimes known as “armouring”. This 
problem has been studied in some depth for rivers, (see Pender and Li, 1996 for example).
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9.5.2  sediment transport in estuaries

The sediment which is transported down a river and into a sheltered estuary is often fine and 
silty in nature. In the estuary the water will be saline, due to mixing with seawater. The cur-
rent system in the estuary will be the resultant of the river discharge and the tidal cycle, the 
tides will also cause the depth of the water to vary. The sediment in the estuary is subjected to 
a number of changes:

 1. Electro-chemical changes due to the salt in the water (increasing salinity often causes 
flocculation which tends to increase deposition of the suspended sediment)

 2. Possible human impacts due to industrial effluents, shipping movements, etc.
 3. Repeated cycles of erosion, transport and deposition due to the tides
 4. Changes in the magnitudes of tidal currents (due to the range of conditions between 

spring and neap tides)
 5. Flushing of the estuary due to fluvial flood events

The outcome is a change in the nature and behaviour of the sediment, which becomes trans-
formed into estuarial mud. A chemical analysis would usually reveal a complex cocktail of silt, 
metals and other chemicals and clay. The mud is “sticky” in consistency because there is a degree 
of inter-particulate adhesion (or cohesion), and it is therefore known as a cohesive sediment or 
cohesive mud. It is often found that there is a thin surface layer of mud, which is fairly liquid, 
below which, the mud is consolidated and is less easily eroded. The cohesiveness has an effect on 
the threshold of motion and on sediment mobility and may significantly attenuate wave action.

Cohesive muds act as a sink for organic materials and other pollutants. This can have the 
beneficial effect of providing a food supply, for invertebrate organisms and hence for other wild-
life such as wading birds. On the other hand, high concentrations of suspended sediment can 
produce a biochemical oxygen demand (BOD) and hence a deleterious effect on aquatic life. 
An understanding of cohesive sediments must encompass their biological, chemical, physical 
and ecological attributes.

Some estuarial sediments may be a combination of cohesive and noncohesive sediments, add-
ing to the complexity of the transport processes. More details about cohesive sediments may be 
found in Dyer (1997), Raudkivi (1998) and Whitehouse et al. (2000).

9.5.3  Marine sediment transport

The flow field in a marine environment is complex, since there are tidal and other currents, 
waves and variations in depth, due to the tides. In intermediate or shallow waters, waves induce 
an oscillatory motion in the water over the seabed, and waves may break, producing intense 
local turbulence. Sediments may be sandy or stony (gravel/shingle). For some situations, sedi-
ment transport formulae originally developed for river flows have been adapted for maritime 
applications. However, where wave breaking occurs, it is normal practice to use transport 
formulae which have been developed and calibrated specifically for such conditions. A brief 
introduction to coastal sediment transport is included in Chapter 16. For further information, 
see Dyer (1986), Raudkivi (1998), Soulsby (1997) or Reeve et al. (2011).
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Research into many aspects of sediment transport is ongoing. The general availability of 
personal computers means that computational models are more commonly used. These have 
the potential to permit better simulation of the turbulent flow field and hence of the distribu-
tion of sediment transport in the water. However, calibration of such models and the accurate 
establishment of boundary conditions is still a problem due to limitations in the available data. 
Readers who wish to study the subject in more detail are referred in the first instance to van 
Rijn et al. (2001).

9.6  suMMary

In this chapter, the fundamental concepts for sediment transport have been presented, cover-
ing the principal characteristics of sands and gravels, the modes of transport in water, concepts 
of threshold of movement, the entrainment function and suspended sediment transport. Bed 
load, suspended load and total load sediment transport equations have been detailed, together 
with worked examples. Finally the accuracy and limitations of the transport equations and 
the further complexities to be found in estuaries and along coastlines have been discussed. 
An excellent source of further reading may be found in Soulsby (1997), for its clarity and 
authoritative presentation.

ProBleMs For solutIon

9.1 A river is 100 m wide and 8 m deep. The bed slope is 1 m per 2 km. The median sediment 
size is 10 mm. Estimate (a) the critical shear stress, (b) the sediment bed load using the Du 
Boys equation and (c) the minimum stable sediment size.

[9.06 N/m2, 0.15 m3/s, 37.5 mm]
9.2 Further downstream, the river in Problem 9.1 traverses a plain where D50 = 0.5 mm. 

Estimate the total sediment load. River dimensions are unchanged, Manning’s n = 0.02.
[1.38 m3/s approx. using Ackers–White]
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Chapter 10

Flood Hydrology

10.1  ClassIFICatIons

Hydrology has been defined as the study of the occurrence, circulation and distribution of water 
over and below the world’s surface. As such, it covers a vast area of endeavour and is not the 
exclusive preserve of civil engineers. Engineering hydrology is concerned with the quantitative 
relationship between rainfall and the resulting outflow in both natural river channels and arti-
ficial drainage systems, and, in particular, with the magnitude and time variations of outflow. 
This is because all water resource schemes require such estimates to be made before design of 
the relevant structures may proceed. Examples include reservoir design and flood risk manage-
ment including flood alleviation schemes and land drainage. Each of these examples involves 
different aspects of engineering hydrology, and all involve subsequent hydraulic analysis before 
safe and economical structures can be constructed.

Engineering hydrology is conveniently subdivided into two main areas of interest, namely, 
surface water hydrology and groundwater hydrology. The first of these is further subdivided 
into rural hydrology and urban hydrology, since the outflow response of these catchment types 
to rainfall is very different. A catchment (or watershed) is an area of the earth’s surface which 
drains into a particular river or underground storage.

The most common use of engineering hydrology is the prediction of “design” events. This 
may be considered analogous to the estimation of “design” loads on structures. Design events do 
not mimic nature, but are merely a convenient way of designing safe and economical structures 
for water resource schemes. As civil engineers are principally concerned with the extremes of 
nature, design events may be either floods or droughts. The design of hydraulic structures will 
normally require the estimation of a suitable design flood (e.g., for spillway sizing) and some-
times a design drought (e.g., for reservoir capacity).

The purpose of this chapter is to introduce the reader to some of the concepts of surface 
water hydrology. The treatment is limited to the estimation of design floods for rural and urban 
catchments. This limitation is necessary because a complete introduction to hydrology would 
occupy a textbook in its own right (for more detailed coverage, see Shaw et al., 2011 or McCuen, 
2005). However, the chapter is considered useful, since hydrological design is the precursor to 
many hydraulic designs. Consequently, civil engineers should have an overall understanding of 
both subjects and their interactions.
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By	the	end	of	this	chapter,	you	should

 ◾ Understand the dominant components of the hydrological cycle that influence the gen-
eration of floods in rivers

 ◾ Understand the estimation of flood frequency and be able to apply the generalised 
logistic distribution to an annual series of river flood discharges

 ◾ Understand the types of computational rainfall–streamflow models used for river flood 
simulation and be able to apply the unit hydrograph (UH) technique

 ◾ Understand the technique of level-pool routing for the safe design of reservoirs and the 
extension to river channel routing

 ◾ Understand the key aspects of urban storm drainage modelling

This chapter also provides some of the background knowledge required for the study of river 
engineering, which is presented in Chapter 15.

10.2  MetHods oF Flood PredICtIon 
For rural CatCHMents

Historically, civil engineers were faced with the problem of flood prediction long before the 
current methods of analysis were available. Two techniques in common use in the nineteenth 
and early twentieth centuries were those of using the largest recorded “historical” flood and 
the use of empirical formulae relating rainfall to streamflow. The former was generally more 
accurate, but as streamflow records were sparse, the latter was often used in practice. This 
was possible because rainfall records have been collected for much longer periods than have 
streamflow records.

The occurrence of a series of catastrophic floods in the 1960s in the United Kingdom prompted 
the Institution of Civil Engineers (ICE) to instigate a comprehensive research programme into 
methods of flood prediction. This was carried out at the Institute of Hydrology, IH (now the 
Centre for Ecology & Hydrology), and culminated in the publication of a new set of design meth-
ods which could be applied with greater confidence to a wide range of  conditions. The  current 
guidelines are presented in the Flood	Estimation	Handbook (IH, 1999), usually abbreviated as 
the FEH. Whilst the datasets used in the preparation of the FEH relate to UK river catch-
ments, the underlying principles may be applied generally. For example, there has been a corre-
sponding development of guidelines for catchments in the United States which are founded on 
 similar concepts, notably in Part 630 of the National	Engineering	Handbook (NEH) published 
by the Natural Resources Conservation Service (NRCS, 2007) and in Bulletin 17B published by 
the Interagency Advisory Committee on Water Data (IACWD, 1982).

There are fundamentally two types of flood prediction technique. These are statistical meth-
ods (e.g., frequency analysis) and rainfall–streamflow modelling. In addition, there are two 
types of catchment, those which are gauged (i.e., have recorded rainfall and run-off records) 
and those which are ungauged.

In the following sections, the basic ideas of catchment descriptors, frequency analysis and 
rainfall–streamflow modelling are introduced, and the application of these methods to gauged 
and ungauged catchments is discussed.
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10.3  CatCHMent desCrIPtors

A good starting point for a quantitative assessment of run-off is to consider the physical processes 
occurring in the hydrological cycle and within the catchment, as shown in Figure 10.1a and b.

Circulation of water takes place from the ocean to the atmosphere by evaporation, and this 
water is deposited on a catchment mainly as rainfall. From there, it may follow several routes, 
but eventually the water is returned to the sea via the rivers.

Within the catchment, several circulation routes are possible. Rainfall is initially intercepted 
by vegetation and may be re-evaporated. Secondly, infiltration into the soil or overland flow 
(often referred to as run-off) to a stream channel or river may occur. Water entering the soil 
layer may remain in storage (in the unsaturated zone) or may percolate to the groundwater table 
(the saturated zone). All subsurface water may move laterally and eventually enter a stream 
channel. The whole system may be viewed as a series of linked storage processes with inflows 
and outflows, as shown in Figure 10.1c. Such a representation is referred to as a conceptual 
model. If equations defining the storages and flows can be found, a mathematical catchment 
model can be constructed (see Beven, 2012).

Rainfall
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Surface runoff

Wind

Evaporation

Solar 
radiation

Groundwater flow

Infiltration

(a)

Rainfall

Surface storageEvapotranspiration
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Interflow
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Soil moisture
storage

Infiltraton
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Interflow Streamflow
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Capillary rise

(c)

Soil moisture
storage

Capillary rise

FIgure 10.1 Hydrological process. (a) The hydrological cycle. (b) Physical processes. (c) A conceptual model.
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Using this qualitative picture, a set of descriptors may be proposed which determine the 
response of the catchment to rainfall. These might include the following:

 1. Catchment area
 2. Soil type(s) and depth(s)
 3. Vegetation cover
 4. Stream slopes and surface slopes
 5. Rock type(s) and area(s)
 6. Drainage network (natural and artificial)
 7. Lakes and reservoirs
 8. Impermeable areas (e.g., roads, buildings, etc.)

In addition, different catchments will experience different climates, and hence the response of 
the catchment to rainfall will depend also on the prevailing climate. This may be represented 
by the following:

 a. Rainfall (depth, duration and intensity)
 b. Evaporation potential (derived from temperature, humidity, wind speed and solar radi-

ation measurements or from evaporation pan records)

However, from an engineering viewpoint, qualitative measures of catchment descriptors are 
inadequate in themselves, and quantitative measures are necessary to predict flood magnitudes. 
This was one of the tasks performed by the FEH team which led, for example, to the following 
equation for rural catchments:

 
QMED AREA

SAAR
FARL

SPRHOST= 





× 


1 172
1000 100

1 560
2 642.

.
.AE 


1 211

0 0198
.

. RESHOST  (10.1)

where
QMED is the median annual maximum flood (m3/s)
AREA is the catchment area (km2)
AE is the exponent of the AREA term
SAAR is the average annual rainfall over the standard period 1961–1990 (mm)
FARL is a number indicating the degree of flood attenuation due to reservoirs and lakes
SPRHOST is the standard percentage run-off depending on soil type (%)
RESHOST is a number dependent on soil type

An adjustment to the QMED for urbanisation may be undertaken. It should be noted that an 
improved version of the predictor equation for rural catchments has been proposed by Kjeldsen 
et al. (2008).

 QMED AREA FARLSAAR B=




8 3062 0 1536 0 04600 8510

1000
3 4451. . .. . FFIHOST2

 (10.2)

where BFIHOST is a number representing base flow dependent on soil type.
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Full details of the descriptors are given in the FEH and values are available in digital form for 
catchments with an area of 0.5 km2 or greater in the United Kingdom on the FEH CD-ROM 
(CEH, 2009a). This equation contains all the catchment descriptors which were found to 
be statistically significant and may be applied to ungauged catchments. However, it should 
be used only for UK rural catchments and as a last resort for the design of minor works if no 
suitable data can be transferred from another gauged catchment (see Section 10.4). These 
equations will give only an approximate value for QMED, and this reflects the difficulty of 
predicting natural events with any certainty. Furthermore, it should be noted that the topo-
graphic descriptors (e.g., AREA) provided in digital form are derived from a digital terrain 
model with a 50 m × 50 m grid size. Consequently, the definition of these descriptors for 
small, urbanised or relatively flat catchments may require checking against local information 
(e.g., maps and site surveys).

Predictor equations for flood discharges have also been developed for different states by the 
U.S. Geological Survey which have a similar mathematical form to Equations 10.1 and 10.2 
and depend on a range of descriptors, principally area, river channel slope and average annual 
rainfall. For further details, see Ries III (2007).

10.4  FrequenCy analysIs

For gauged catchments with records of sufficient length, the techniques of frequency analysis 
may be applied directly to determine the magnitude of a flood event with a specified return 
period. The concept of return period is an important one because it enables the determina-
tion of risk (economic or otherwise) associated with a given flood magnitude. The return 
period is usually expressed in years. It may be formally defined as the average time interval 
between flood events which are greater than a specified value. The qualifier “on average” is 
often  misunderstood. For example, although a 100 year flood event will occur, on average, once 
every 100 years, it may occur at any time (i.e., today or in several years’ time). Also, within any 
particular 100 year period, floods of greater magnitude may occur.

10.4.1  annual Maxima series

The return period is often estimated from a frequency analysis of an annual maxima series, in 
which the largest flood event from each year of records at a site is abstracted. The annual fre-
quency with which a given flood magnitude is exceeded is the reciprocal of return period, T. For 
sufficiently large T, this frequency represents the annual probability that a particular flood will 
exceed a specified value, Q, which may be written as

 
P Q

T
( ) = 1  (10.3)

The confusion surrounding the interpretation of return period may be alleviated by the use of 
the term “annual probability”of flooding, particularly when dealing with people who do not 
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have a technical background (Fleming, 2002). For example, the 1 in 100 year flood event is 
easier to understand as the 1% annual probability of flooding (i.e., there is a 1 in 100 chance of 
a particular flood magnitude being exceeded in any year). For consistency with the terminol-
ogy used in the FEH and other technical literature, return period will be used throughout this 
chapter. However, the reader’s attention is drawn to promoting the use of the term “annual 
probability” of flooding.

The annual maxima series requires a relatively long duration record (typically more than 
13 years). In order to capture the seasonal effects of climate for a region, it is usual to divide the 
record into water years (e.g., 1 October–30 September in the United Kingdom and the United 
States). The resulting series, in statistical terms, is considered to be an independent series and 
constitutes a random sample from an unknown population. The series may be plotted as a his-
togram, as shown in Figure 10.2a.

Taking, as an example, a 31 year record, the annual maxima are divided into n class intervals 
of equal size, ΔQ. The probability that the discharge will exceed, say, 60 m3/s is equal to the 
number of events greater than 60 m3/s divided by the total number of events, N:
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FIgure 10.2 Frequency analysis. (a) Histogram. (b) Probability density function, f(Q).
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and the corresponding return period is

 
T

P
= =1

(60)
3.4 years

If the histogram is now replaced by a smooth curve, as shown in Figure 10.2b, then

 

P Q f Q Q
Q

( ) ( )= ∫
∞

d

The function f(Q) is known as a probability density function (pdf) and, by definition,

 0

1
∞
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FIgure 10.2 (continued) Frequency analysis. (c) Cumulative non-exceedance probability, F. (d) Probability paper.
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(i.e., P(Q ≥ 0) = 1). Hence, the scale equivalent to the histogram ordinate is given by fi/NΔQ as

 i

n
if

N Q
Q

=
∑





=
1

1
∆

∆

where fi is the number of annual maxima in class i.
The point of this analysis is that it makes it possible to estimate the probability that the dis-

charge will exceed any given value greater than the maximum value in the data set (90 m3/s in 
this case). Replacing the histogram with the pdf allows such estimates to be made.

The technique which is used in practice looks rather different from the histogram, so the 
method is now extended. If, instead of drawing a pdf, the cumulative probability of non- 
exceedance, F(Q) is drawn, i.e.,

 

F Q P Q f Q Q
Q

( ) ( ) ( )= − = ∫1
0

d

then Figure 10.2c is the result. F(Q) is also known as the cumulative distribution function, F. It 
is usual to plot the discharge axis, Q, as the ordinate against a transformed version of the F scale 
known as the reduced variate, y, of the distribution as shown in Figure 10.2d. This is known as 
probability paper. The probability scale is non-linear and depends on the shape of the original pdf. 
The convention is to calculate the reduced variate scale so that the two-parameter case of the dis-
tribution plots as a straight line. (Note: this is true only if the pdf is an exact fit to the sample data!)

10.4.2  Plotting Positions

To plot the sample data on suitable probability paper requires the estimation of the cumulative 
probability of non-exceedance of each event. As an initial estimate, one could say that

 
F Q

i
N

i( ) =

where
i is the rank number
N is the total number of events, and where the annual maxima data, Qi, are ranked in 

ascending order of magnitude

However, this formula is unsatisfactory because the data set is a sample drawn from an unknown 
population. The largest value in the sample may have a considerably higher return period than 
that suggested by this simple formula which exhibits bias at the extremes of the distribution. 
A more general formula is

 
F Q

i a
N b

i( ) = −
+

where a and b are constants for particular pdfs.
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For the case of the generalised logistic (GL) distribution (discussed in the following section), 
a more unbiased plotting position (due to Gringorten) is given by

 
F Q

i
N

i( )
.
.

= −
+
0 44
0 12

 (10.4)

For example, again using the data set with N = 31, for the largest discharge (90 m3/s), i = 31 so

 
F( )

.

.
.90

31 0 44
31 0 12

0 982= −
+

=

Since

 
T

P Q F Q
= =

−
1 1

1( ) ( )
 (10.5)

then

 
T =

−
=1

1 0 982
55 6

.
. years

In other words, the expected return period of the largest discharge from the record is 55.6 years.
It is sometimes useful to be able to estimate the probability, or risk, r, that an event of return 

period T will be exceeded during a particular time interval of M years. From the derivation of 
the encounter probability in Chapter 8, this risk is given by

 
r

T

M

= − −





1 1
1

 (10.6)

10.4.3  generalised logistic distribution

Various pdfs have been tested to see if they fit hydrological data sets, for example the log-
normal, Gumbel, general extreme value and log-Pearson type III. A general result is that such 
data tend to be asymmetrical and that no single pdf is universally applicable. It should be 
noted that different analysis techniques and distributions will assign different return periods 
to observed events in a record. The FEH recommends fitting the GL distribution to annual 
maximum flow series in the United Kingdom for estimating return periods in the range 
2–200 years.

For the GL (Hosking and Wallis, 1997), the pdf is

 
f Q

e
e

k w

w( )
( )

( )

=
+

− − −

−
α 1 1

21
 (10.7)
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and the cumulative distribution function is

 
F

e w=
+ −
1

1
 (10.8)

where

 
w

k k Q k
Q k

=
− − − ≠

− =
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 (10.9)

and the quantile function (flood frequency curve) is

 
Q F

F F k k
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ξ α
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1 0

/ /

ln /
 (10.10)

The three parameters ξ, α and k are known as location, scale and shape parameters, respectively. 
For a GL, they define the shape of the pdf and may be estimated from the L-moments of the 
data set (explained later).

10.4.4  Pooled (regional) Frequency analysis

The FEH advocates the use of pooling groups whereby the combined annual maximum series of 
a group of hydrologically similar gauged catchments is analysed. The reasoning behind the use 
of pooling groups is to generate a large enough data sample to which the probability distribution 
can be fitted and extrapolated to predict the magnitude of long return period events at the site 
of interest – called the subject site. This is important since most river-gauging records are short 
by comparison with the return periods used for flood risk analysis. The use of pooling groups 
(sometimes referred to as regional frequency analysis) is based on the following basic assump-
tions (Hosking and Wallis, 1997):

 1. The annual maximum series at the different gauging stations are independent of each 
other

 2. The data at each gauging station follow the same underlying frequency distribution 
scaled by a site-specific index flood

For UK catchments, the median annual maximum flood, QMED, is used as the index flood. By 
definition, the median has a probability of non-exceedance of 0.5. Substituting into equation 
(10.10) gives ξ = QMED. The growth curve is defined by

 
x

Q F= ( )
QMED

 (10.11)



339Flood Hydrology

which can be expressed in shorthand form as

 
x

Q=
QMED

 (10.12)

where x is the growth curve factor. Hence the GL growth curve for k ≠ 0 becomes

 

x
k

F
F

k

= + − −













1 1

1β
 (10.13)

where

 
β α

ξ
=  (10.14)

Since ξ is fixed at QMED, this leaves only the k and β parameters to be estimated.
In the case where k = 0, the GL reduces to the two-parameter logistic distribution, and the 

growth curve is given by

 
x

F
F

= − −





1
1β ln  (10.15)

The logistic-reduced variate, y, form of Equation 10.15 is given by

 x y= +1 β  (10.16)

where

 
y

F
F

= − −





ln
1

 (10.17)

The GL and logistic growth curves may be plotted on logistic probability paper as shown in 
Figure 10.3. It should be noted that where the fitted distribution is bounded above (for cases 
where k > 0, because of the mathematical properties of Equation 10.13), the user must assess 
whether the upper bound adversely affects design events derived from the curve.

10.4.5  Fitting the gl growth Curve using l-Moments

The remaining parameters, k and β, of the GL growth curve may be estimated from the sample 
L-moment ratios for each gauging station in the pooling group. A full discussion of the method 
of L-moments can be found in Hosking and Wallis (1997) and in summary form in the FEH. 
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An outline of the procedure for estimating k and β is given later, and Example 10.1 illustrates 
the method for a single site.

 1. The probability-weighted moments, b, are estimated for a given gauge record using
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  where
Qj is the jth element of a sample of annual maximum flows arranged in ascending 

order
N is the sample size (i.e., the number of annual maxima in the record)
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FIgure 10.3 GL growth curves.
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 2. The sample L-moments are defined as

 l b1 0=  (10.19a)

 l b b2 1 02= −  (10.19b)

 l b b b3 2 1 06 6= − +  (10.19c)

 l b b b b4 3 2 1 020 30 12= − + −  (10.19d)

 3. The sample L-moment ratios are defined as

 
L-CV = =t

l
l

2
2

1
 (10.20a)

 
L-skewness = =t

l
l

3
3

2
 (10.20b)

 
L-kurtosis = =t

l
l

4
4

2
 (10.20c)

  These ratios are calculated for each gauge record in the pooling group. A weighted aver-
age (with the weightings based on the hydrological similarity of each gauging station to 
the subject site) is used to obtain the L-moment ratios for the pooling group.

 4. Finally, the GL growth curve parameters are estimated from the following:

 k t= − 3  (10.21a)

 
β π

π π
=

+ −
t k k

k k t t k
2

2 2

sin
sin( )

 (10.21b)

  where t2 and t3 are the L-moment ratios for the pooling group.

The gauging stations making up the pooling group are selected on the basis of hydrological 
similarity to the subject site (in terms of the AREA, BFIHOST and SAAR descriptors) and 
so that the combined record length is approximately 5T	where	T	 is the target return period 
required. The FEH gives detailed guidance on assessing the suitability of a pooling group. The 
methods involved and data requirements require computer analysis using the WINFAP-FEH 
software package (CEH, 2009b) for UK gauging stations and, as such, are outside the scope 
of this chapter. Up to date records of annual maxima for gauged catchments in the United 
Kingdom are available at the HiFlows website (Environment Agency, 2012).
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Example 10.1 illustrates the fitting procedure for a single site which may be carried out 
using a spreadsheet (available at the supporting website at http://www.routledge.com/books/
details/9780415306096/). It should be noted that fitting the GL to the annual maximum flows 
for a single site (i.e., in the absence of a pooling group) is acceptable provided the record length, 
N > 2T, where T is the maximum return period of interest.

Example 10.1:  Flood Frequency Analysis

Estimate the 20 year flood event for the River Dart at Austin’s Bridge using frequency 
analysis of the 43 year river flow record.

Data. Table 10.1 lists the annual maximum discharges for water years 1958/59 to 2000/01.

Solution

Table 10.2 lists the discharges from lowest to highest, and the associated calculations for the 
probability-weighted moments (using Equation 10.18). The cumulative non-exceedance 
probabilities are calculated using the Gringorten plotting position formula (equation 10.4). 
The logistic-reduced variate values are obtained from Equation 10.17. Table 10.2 also lists 
the QMED of the series, the L-moments, L-moment ratios, and the k and β sample estima-
tors of the GL distribution (calculated from Equations 10.19 through 10.21, respectively).

Table 10.3 shows the results of fitting the GL distribution using the sample k and β estimates 
over a range of F values.

The sample data and the fitted distribution are plotted in Figure 10.4. In addition, the pooled 
growth curve derived from the WINFAP-FEH software (CEH, 2009b) is shown for compari-
son. Figure 10.5 shows the histogram of the data series and the fitted pdf.

From the GL distribution fitted to the single site record, the growth curve factor, x, for the 
20 year event is 1.659 giving a flood of 371.187 m3/s (the pooled growth curve gives a flood 
magnitude of 362.212 m3/s).

10.4.6  Methods for estimating qMed

The FEH recommends that for gauged catchments with a record length greater than 13 years, 
QMED can be estimated from the median of the annual maxima series. For records between 
2 and 13 years, QMED can be derived from the series of peak flows that exceed a given thresh-
old value (called the peaks-over-a-threshold series).

For ungauged catchments, or where the record is less than 2 years in length, Kjeldsen et al. 
(2008) recommend an improvement to the FEH method for transferring data (in the form of 
the GL growth curve) from a donor gauged catchment. The estimated QMED at the subject site 
(e.g., from catchment descriptors) can be adjusted using the ratio of the observed to predicted 
QMED at the gauged donor site with an allowance made for the geographic distance between 
the centroids of the two catchments.
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taBle 10.1  Annual Maximum Discharges for the River Dart 
at Austin’s Bridge

Water Year 
(from Oct.)

Peak Discharge 
(m3/s)

Water Year 
(from Oct.)

Peak Discharge 
(m3/s)

1958 196.886 1980 250.105

1959 327.612 1981 183.630

1960 243.110 1982 317.843

1961 226.810 1983 269.781

1962 218.298 1984 223.727

1963 295.526 1985 222.161

1964 209.387 1986 261.088

1965 227.526 1987 207.150

1966 225.380 1988 179.819

1967 252.966 1989 210.063

1968 206.502 1990 237.144

1969 154.929 1991 92.551

1970 213.542 1992 302.603

1971 140.779 1993 161.489

1972 274.012 1994 215.800

1973 309.446 1995 158.365

1974 284.042 1996 224.299

1975 120.397 1997 175.910

1976 116.637 1998 246.980

1977 172.219 1999 328.887

1978 180.563 2000 371.035

1979 549.735

Source: Data copyright Environment Agency, HiFlows-UK, 2012, http://www. 
environment-agency.gov.uk/hiflows/91727.aspx. With permission.
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taBle 10.2  Single Site Frequency Analysis for the River Dart at Austin’s Bridge Using Sample Data from Annual Maxima Record

Water 
Year

Annual 
Maximum 

Flow Qj (m3/s) j
(j 1)
(N 1)

Qj
−
−

(j 1)(j 2)
(N 1)(N 2)

Qj
− −
− −

(j 1)(j 2)(j 3)
(N 1)(N 2)(N 3)

Qj
− − −

− − −
Q

QMED
j

Cumulative 
Non-exceedance 
Probability F(Q)

Logistic 
Reduced 
Variate y

1991 92.551 1 0.414 0.013 −4.331

1976 116.637 2 2.777 0.521 0.036 −3.282

1975 120.397 3 5.733 0.140 0.538 0.059 −2.763

1971 140.779 4 10.056 0.491 0.012 0.629 0.083 −2.408

1969 154.929 5 14.755 1.080 0.054 0.692 0.106 −2.135

1995 158.365 6 18.853 1.839 0.138 0.708 0.129 −1.910

1993 161.489 7 23.070 2.813 0.281 0.722 0.152 −1.718

1977 172.219 8 28.703 4.200 0.525 0.770 0.175 −1.548

1997 175.910 9 33.507 5.721 0.858 0.786 0.199 −1.396

1988 179.819 10 38.533 7.519 1.316 0.804 0.222 −1.256

1978 180.563 11 42.991 9.437 1.887 0.807 0.245 −1.126

1981 183.630 12 48.094 11.730 2.639 0.821 0.268 −1.004

1958 196.886 13 56.253 15.092 3.773 0.880 0.291 −0.889

1968 206.502 14 63.917 18.707 5.145 0.923 0.314 −0.779

1987 207.150 15 69.050 21.894 6.568 0.926 0.338 −0.674

1964 209.387 16 74.781 25.535 8.299 0.936 0.361 −0.572

1989 210.063 17 80.024 29.277 10.247 0.939 0.384 −0.472

1970 213.542 18 86.434 33.730 12.649 0.954 0.407 −0.375

1994 215.800 19 92.486 38.348 15.339 0.965 0.430 −0.280
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1962 218.298 20 98.754 43.355 18.426 0.976 0.454 −0.186

1985 222.161 21 105.791 49.025 22.061 0.993 0.477 −0.093

1984 223.727 22 111.864 54.568 25.920 1.000 0.500 0.000

1996 224.299 23 117.490 60.178 30.089 1.003 0.523 0.093

1966 225.380 24 123.422 66.227 34.769 1.007 0.546 0.186

1961 226.810 25 129.606 72.706 39.988 1.014 0.570 0.280

1965 227.526 26 135.432 79.277 45.584 1.017 0.593 0.375

1990 237.144 27 146.803 89.514 53.709 1.060 0.616 0.472

1960 243.110 28 156.285 99.108 61.942 1.087 0.639 0.572

1998 246.980 29 164.653 108.430 70.480 1.104 0.662 0.674

1980 250.105 30 172.692 117.936 79.607 1.118 0.686 0.779

1967 252.966 31 180.690 127.805 89.464 1.131 0.709 0.889

1986 261.088 32 192.708 141.006 102.229 1.167 0.732 1.004

1983 269.781 33 205.547 155.414 116.560 1.206 0.755 1.126

1972 274.012 34 215.295 168.035 130.227 1.225 0.778 1.256

1974 284.042 35 229.939 185.073 148.058 1.270 0.801 1.396

1963 295.526 36 246.272 204.225 168.486 1.321 0.825 1.548

1992 302.603 37 259.374 221.417 188.204 1.353 0.848 1.718

1973 309.446 38 272.607 239.362 209.442 1.383 0.871 1.910

1982 317.843 39 287.572 259.516 233.565 1.421 0.894 2.135

1959 327.612 40 304.211 281.952 260.805 1.464 0.917 2.408

1999 328.887 41 313.226 297.946 283.049 1.470 0.941 2.763

(continued )
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taBle 10.2 (continued)  Single Site Frequency Analysis for the River Dart at Austin’s Bridge Using Sample Data from Annual 

Maxima Record

Water 
Year

Annual 
Maximum 

Flow Qj (m3/s) j
(j 1)
(N 1)

Qj
−
−

(j 1)(j 2)
(N 1)(N 2)

Qj
− −
− −

(j 1)(j 2)(j 3)
(N 1)(N 2)(N 3)

Qj
− − −

− − −
Q

QMED
j

Cumulative 
Non-exceedance 
Probability F(Q)

Logistic 
Reduced 
Variate y

2000 371.035 42 362.201 353.367 344.533 1.658 0.964 3.282

1979 549.735 43 549.735 549.735 549.735 2.457 0.987 4.331

Totals 9986.734 5872.185 4252.730 3376.663

Probability-
weighted 
moments

b0 = 232.250 b1 = 136.562 b2 = 98.901 b3 = 78.527

Sample statistics

Median QMED 223.727

L-moments l1 232.250

l2 40.875

l3 6.279

l4 10.020

L-CV t2 0.176

L-skewness t3 0.154

L-kurtosis t4 0.245

GL distribution sample estimators

k −0.154

β 0.177
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taBle 10.3  GL Distribution Fitted Using Sample Estimators Derived from Annual Maxima 
Series for the River Dart at Austin’s Bridge

Cumulative 
Distribution 
Function F

GL Growth 
Curve Factor x 

(Equation 10.13)

Logistic-Reduced 
Variate y 

(Equation 10.17)

GL Peak Flow 
Q (m3/s) 

(Equation 10.12)

Return Period T 
(Years) 

(Equation 10.3)

0.05 0.581 −2.944 129.920 1.053

0.10 0.670 −2.197 149.869 1.111

0.15 0.730 −1.735 163.419 1.176

0.20 0.779 −1.386 174.275 1.250

0.25 0.821 −1.099 183.689 1.333

0.30 0.859 −0.847 192.262 1.429

0.35 0.895 −0.619 200.339 1.538

0.40 0.930 −0.405 208.158 1.667

0.45 0.965 −0.201 215.901 1.818

0.50 1.000 0.000 223.727 2.000

0.55 1.036 0.201 231.798 2.222

0.60 1.074 0.405 240.296 2.500

0.65 1.115 0.619 249.448 2.857

0.70 1.160 0.847 259.567 3.333

0.75 1.212 1.099 271.125 4.000

0.80 1.273 1.386 284.916 5.000

0.85 1.352 1.735 302.450 6.667

0.900 1.463 2.197 327.237 10.000

0.905 1.477 2.254 330.406 10.526

0.910 1.492 2.314 333.757 11.111

0.915 1.508 2.376 337.314 11.765

0.920 1.525 2.442 341.103 12.500

0.925 1.543 2.512 345.157 13.333

0.930 1.562 2.587 349.515 14.286

0.935 1.583 2.666 354.227 15.385

0.940 1.606 2.752 359.353 16.667

0.945 1.631 2.844 364.973 18.182

0.950 1.659 2.944 371.187 20.000
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10.4.7  the log-Pearson type III distribution

For rivers in the United States, Bulletin	17B recommends fitting the Pearson type III distribution 
to the log-transformed annual maximum flow series (IACWD, 1982). A method of moments is 
usually applied to fit this distribution (often abbreviated as the LP3) to the sample data, where 
the fitted discharge, Q, with a given exceedance probability, is given by

 logQ X KS= +  (10.22)
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FIgure 10.4 GL growth curve for the River Dart at Austin’s Bridge. (Sample data: Environment Agency, 
HiFlows-UK, 2012, http://www.environment-agency.gov.uk/hiflows/91727.aspx; Pooled data: Courtesy of the 
Centre for Ecology & Hydrology, Wallingford, UK.)
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FIgure 10.5 Histogram and GL pdf for the annual maxima series for the River Dart at Austin’s Bridge. (Data 
copyright Environment Agency, HiFlows-UK, 2012, http://www.environment-agency.gov.uk/hiflows/91727.aspx)
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where
X
–
 is the mean

S is the standard deviation of the log-transformed annual maximum flows

K is the standard deviate of the LP3 distribution, which is a function of the skew coef-
ficient of the log-transformed annual maximum flows and the exceedance probability, and 
is available in tables in Bulletin	17B. Using the fitted LP3 distribution for a range of gauged 
catchments, the U.S. Geological Survey has developed regional predictor equations based 
on catchment descriptors that may be used to estimate design discharges with particular 
return periods for ungauged catchments or for those with a record length less than 10 years 
(Ries III, 2007).

Annual peak flow records for gauged catchments in the United States are available at the 
National Water Information Service website (U.S. Geological Survey, 2012), and full details of 
fitting the LP3 distribution and of the regional analysis techniques methods are given in Bulletin	
17B (IACWD, 1982) and in Chapter 18 of part 630 of the NEH (NRCS, 2007). Software 
implementations of these flood frequency analysis methods include PeakFQ (Flynn et al., 2006) 
and HEC-SSP (U.S. Army Corps of Engineers, 2010c).

10.4.8  Improving the validity of Flood 
Frequency analysis

Since a gauge record is a sample of the time series of river flow for a catchment, the record 
should be representative of the entire series (population), i.e., the sample statistics should 
be stationary – whereby the statistical properties of the sample used to estimate the popu-
lation parameters are not affected by the start time of the sample nor the sample length. 
 Non-stationarity in a record may be exhibited as trend (underlying increase or decrease in 
values over time), periodicity (cyclic fluctuation) or as a sudden change. The causes of non-
stationarity include climate change, changes to the catchment (such as land use) and errors 
and changes in the methods of data measurement. The FEH recommends tests that can be 
employed to screen observed data for non-stationarity as well as adjustments that can be made 
to account for a limited amount of land use change. In addition, each flood peak data set for 
UK gauging stations provided with the WINFAP-FEH software (CEH, 2009b) contains notes 
concerning the features of the catchment and its record. An approach for dealing with climate 
change is presented in Section 10.10.

River flow records may contain observations that are substantially larger than the rest 
of the series. Such values can be termed outliers; however, this does not mean that they 
should be automatically excluded from the annual maxima series. One of the reasons for 
the use of pooling groups, the GL distribution and fitting the distribution using L-moments, 
is the relative robustness of the analysis against outliers (Ahmad et al., 1988; Hosking and 
Wallis, 1997). In addition, where historic records exist (e.g., historic flood marks and written 
accounts of extreme events) predating river gauging at a site, this information can be used 
to review the flood frequency estimates made using gauged data (see IACWD, 1982; Bayliss 
and Reed, 2001).
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10.5  raInFall–streaMFloW ModellIng

For situations where the shape of the river flood wave during a storm event is required (e.g., for 
assessing the flood storage requirements of flood plains and reservoirs) or where only rainfall 
records are available, rainfall–streamflow modelling techniques may be applied. The mathe-
matical modelling of this transformation is not precise, however, because of the complex behav-
iour of the hydrologic processes, the heterogeneity of the flow pathways and uncertainties in 
the measured data used. This is evident in the numerous models that have been developed. The 
selection of the model by the user depends on the application, the physical and temporal scales 
of the catchment processes to be represented and the availability of data. These factors influ-
ence the “perceptual model” of the user (Beven, 2012).

The approximate formulation of the user’s perceptual model as a mathematical model may 
be carried out in a number of different ways and may be classified as metric, conceptual, hybrid 
metric–conceptual or physics-based. The key features of selected types of model are outlined in 
the following sections with a detailed coverage of the widely used UH approach. It is also impor-
tant to note that the model may also be categorised in terms of whether it represents the varia-
tion in physical processes across the area of the catchment explicitly (a distributed model) or uses 
spatially averaged processes (a lumped model). Furthermore, it is possible to distinguish between 
stochastic and deterministic models where stochastic indicates that some of the model variables 
can take random values according to predefined probability distributions. A detailed introduc-
tion to the subject of computational rainfall–streamflow modelling is provided by Beven (2012).

10.5.1  Metric Models: the unit Hydrograph

Metric models use a system-based approach to transform inputs to outputs through a predefined 
mathematical transfer function based on observations. They do not describe processes. The most 
commonly used in rainfall–run-off modelling is the UH technique first introduced by Sherman 
(1932). In the development of the perceptual UH model for effluent streams, the total stream-
flow hydrograph associated with a given rain storm event is assumed to be made up of stormflow 
(traditionally referred to as surface run-off) from the event rainfall plus baseflow draining from 
water stored in the catchment following infiltration from previous rainfall events, as depicted in 
Figure 10.6a. The rainfall may also be considered to be composed of two parts. The net or effec-
tive rainfall is that part which forms the surface run-off while the rainfall losses constitute the 
remaining rainfall (this is either evaporated or enters soil moisture and groundwater storages).

In order to satisfy volume conservation over storm event timescales, the effective rainfall that is 
net of these losses needs to be derived from the observed rainfall. Similarly, the run-off needs to be 
derived from the observed streamflow hydrograph. The resulting closed system of effective event 
rainfall transformed into run-off shown in Figure 10.6b may be modelled by the UH analysis.

A lumped system can be conceptualised as shown in Figure 10.7 where an effective rainfall 
input, i(t), produces a run-off output, r(t), as continuous functions of time, t.

The system is represented by a system function, u, such that

 r t ui t( ) ( )=  (10.23)
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In practice, rainfall measurements are usually made as total collected in a time interval (typi-
cally per hour). Consequently, the continuous input, i(t), is approximated by n discrete rainfall 
pulses of duration Δt as shown in Figure 10.8.

Wang and Wu (1983) represent this pulse hyetograph as a series of unit-step functions, H(t), 
which take a value of 0 when t ≤ 0 and a value of 1 when t > 0. Consequently, the pulse rainfall 
is expressed as

 

i t w H t j t
j

n

j( ) ( )= −
=
∑

0

∆
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FIgure 10.6 Hydrograph analysis. (a) Rainfall and runoff separation. (b) Net rainfall and surface runoff.
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FIgure 10.7 Lumped UH system.
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FIgure 10.8 Pulse representation of rainfall data (hyetograph).
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where

 w i i j nj j j= − −1 for  = 1, 2, , …

Following Singh (1988), as Δt	→ 0 the unit pulse, H(t − jΔt) can be replaced by the Dirac delta 
impulse, δ(t), which takes a value of 1 at t = 0 and a value of 0 elsewhere. As n → ∞ so that nΔt = T, 
then jΔt can take all the values on the interval [0, T]. Hence, the continuous rainfall function can 
be represented as

 

i t i t
T

( ) ( ) ( )= −∫
0

τ δ τ τd  (10.24)

which can be extended over the whole time line −∞ < t < ∞. τ is the dummy time variable of 
integration. Combining Equations 10.23 and 10.24 gives

 

r t u i t( ) ( ) ( )= −
−∞

∞

∫ τ δ τ τd

Assuming a linear system, the principles of superposition and proportionality apply so that

 

r t i u t( ) ( ) ( )= −
−∞

∞

∫ τ δ τ τd

For a δ(t) input to such a system, the output is defined as the impulse response, u(t, τ), so that
u(t, τ) = uδ(t − τ), and

 

r t i u t( ) ( ) ( , )=
−∞

∞

∫ τ τ τd

Assuming the system is time invariant, u(t, τ) = uδ(t − τ) = u(t − τ). Also assuming a causal sys-
tem, u(t, τ) = 0 for τ > t and τ < 0, so that

 

r t i u t
t

( ) ( ) ( )= −∫
0

τ τ τd  (10.25)

Equation 10.25 expresses the stormflow (run-off), r(t), at a time t due to an impulsive, effec-
tive rainfall input, i(τ), at an earlier time τ, which is obtained through the convolution inte-
gral. The impulse response function, u(t), is referred to as the instantaneous unit hydrograph 
(IUH). It represents the run-off response to a given volume of effective rainfall falling instan-
taneously rather than in a finite duration. The system in Figure 10.7 can also be represented 
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by an ordinary linear differential equation with constant coefficients, and Equation 10.25 is 
the forced response solution of the non-homogeneous part of this differential equation for zero 
initial conditions.

The derivation of Equation 10.25 rests on the fundamental assumptions shown in Figure 10.9a 
through c. These are as follows:

 1. Any uniform net rainfall having a given duration will produce run-off of specific dura-
tion, regardless of intensity (i.e., the linearity assumption)

 2. The ratios of run-off equal the ratios of net rainfall intensities, provided that the rain-
falls are of equal duration (i.e., the proportionality assumption)

 3. The hydrograph representing a combination of several run-off events is the sum of the 
individual contributory events (i.e., the superposition assumption)

In addition, the time-invariance assumption implies that the catchment characteristics 
are unchanged over the duration of the run-off event, and the zero initial condition assumes 
that the run-off system starts from rest. The UH approach is discussed in full by Dooge and 
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FIgure 10.9 UH principles. (a) Equal time base. (b) Proportionality of runoff/net rainfall. (c) Superposition.
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O’Kane (2003), and the technique has been shown to work acceptably in spite of the observed 
non-linearity of the physical processes involved. Such models require relatively little data but 
are restricted to the calibration range used in fitting the UH to observed run-off event data.

10.5.2  unit Hydrograph definition and Convolution

The solution of Equation 10.25 for a storm of a given duration, D, involves the following three 
steps:

 1. Calculation of the IUH ordinates using a chosen form for u(t)
 2. Scaling the IUH to calculate the UH corresponding to the storm duration, D
 3. Calculation of the predicted run-off hydrograph by convolution of the UH with the 

effective rainfall hyetograph

Steps 1 and 2 can be combined to obtain the specific UH for an observed storm event by a pro-
cess of system identification (outlined in the following section).

The P mm, D h UH is the hydrograph of surface run-off produced by P mm of net (effective) 
rainfall in D h, provided the net rainfall falls uniformly over the catchment in both space and 
time. Both P and D may have any values, but commonly P is taken as 10 mm and D as 1 h.

Once a UH has been derived for a catchment, it may be used to predict the surface run-off for 
any storm event by the process of convolution. This is shown diagrammatically in Figure 10.10b, 
along with the UH definition (Figure 10.10a).

P mm net rainfall in D hours

Surface runo� response

u1 u2 u3 u4

u5 u6

D

1D0 2D 3D 4D
(a) (b)
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tt

2D 3D 4D 5D 6D 8D7D

P

Q

i

Q

i P

2P

D 2D

Q(t)

2 × UH
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FIgure 10.10 UH definition and convolution. (a) Definition. (b) Convolution.
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The process may also be expressed in matrix form as

 P U R⋅ =  (10.26)

where
P is the matrix of net rainfalls
U is the matrix of UH ordinates
R is the matrix of surface run-off ordinates

Alternatively, the process may be laid out in tabular form as shown in Table 10.4. A spread-
sheet for the matrix method is available at the supporting website (at http://www.routledge.com/
books/details/9780415306096/), and an example follows to illustrate the process of convolution.

taBle 10.4 Tabular and Matrix Methods of Convolution

Unit Hydrograph Ordinates

Time Rainfall u1 u2 u3 u4 u5 u6

Surface 
Run-Off

1 P1 p1u1 =r1

2 P2 p2u1 + 
p1u2

r2

3 p2u2 + 
p1u3

r3

4 p2u3 + 
p1u4

r4

5 p2u4 + 
p1u5

r5

6 p2u5 + 
p1u6

r6

7 p2u6 r7

Equivalent matrix form

p
p p

p p
p p

p p
p p

p

u
u

1

2 1

2 1

2 1

2 1

2 1

2

1

2

0 0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0 0

uu
u
u
u
u

r
r
r
r
r
r
r

3

4

5

6

7

1

2

3

4

5

6

7

=

Note: pi = Pi/P for a P mm, D h UH; i.e., if P1 = 30 mm and the UH is a 10 mm, D h UH, then 
p1 = 30/10 = 3.
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Example 10.2:  Convolution

Given the following 10 mm 1 h UH and net rainfall profile, determine the surface run-off 
hydrograph.

UH Data

Time (h) 0 1 2 3 4 5 6 7

Discharge (m3/s) 0 1 4 6 5 3 1 0

Net rainfall profile

Time (h) 0 1 2 3

Net rainfall (mm) 10 30 20

Solution

The solution may be found using the tabular method given in Table 10.4 as follows:

UH Ordinates (m3/s per 10 mm) Surface 
Run-Off 
in m3/sTime Pnet 0 1 4 6 5 3 1 0

0 10 1 × 0 0

1 30 3 × 0 +1 × 1 1

2 20 2 × 0 +3 × 1 +1 × 4 7

3 2 × 1 +3 × 4 +1 × 6 20

4 2 × 4 +3 × 6 +1 × 5 31

5 2 × 6 +3 × 5 +1 × 3 30

6 2 × 5 +3 × 3 +1 × 1 20

7 2 × 3 +3 × 1 +1 × 0 9

8 2 × 1 +3 × 0 2

9 2 × 0 0

10.5.3  derivation of unit Hydrographs

For gauged catchments, UHs may be derived by hydrograph analysis of measured storm events. 
In general, storm events are complex (i.e., varying intensity and duration), and the UH must be 
“identified” from such events. As surface run-off can be predicted by convoluting the UH with 
net rainfall, the converse must be true (i.e., the deconvolution problem).
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The matrix equation (10.26) may be solved for U by inversion. First P is converted into a 
square matrix by pre-multiplying by its transpose |PT|, hence,

 P P U P RT T⋅ ⋅ ⋅=

This equation may now be inverted to give

 U [P P] P RT T= ⋅ ⋅⋅ −1

In practice, the method suffers from complications due to instability which arises because the 
UH is only an approximate model and because of data errors. Full details of this method and its 
application are given in Boorman and Reed (1981).

10.5.4  synthetic unit Hydrographs

An alternative approach has been to prescribe the shape for a synthetic IUH and fit its param-
eters using observed data, for example, the kinked triangle used in the Revitalised Flood 
Hydrograph (ReFH) model in the United Kingdom (Kjeldsen, 2007) and the triangle used in 
the NRCS (formerly the Soil Conservation Service, SCS) in the United States (NRCS, 2007). 
A particular merit of this approach is that it can lend itself to more parsimonious models (i.e., 
with fewer parameters than the UH deconvolution). Figure 10.11 shows the IUHs used in the 
ReFH model in the United Kingdom and that used in the NRCS SCS method in the United 
States. These synthetic IUHs have a triangular form, whose shape is determined by the follow-
ing parameters: the time to peak (TP), the IUH peak (UP), the degree of kink in the standard 
triangular shape (Uk) and the time base (TB).

UH ordinate
(mm/time)

Triangular IUH used in
FSR/FEH and SCS models
IUH used in ReFH model

Tp

Uk

Up

2Tp Time

TB

TBt

U2Tp

FIgure 10.11 Synthetic IUH used in ReFH model. (After Kjeldsen, T.R., The Revitalised FSR/FEH Rainfall-Runoff 
Method, Flood Estimation Handbook Supplementary Report No. 1, Centre for Ecology & Hydrology, Wallingford, 
UK., 2007.)



358 Principles and Basic Applications

The parameters of the synthetic IUH in the ReFH model can be estimated either by deriving 
the IUH for an observed event or by using predictor equations based on multiple linear regres-
sion of the FEH catchment descriptors from gauged catchments, e.g., the time to peak (in hours) 
of the 10 mm IUH is given by the following equation (Kjeldsen, 2007):

 TP PROPWET DPLBAR URBEXT DPSBAR= +− − −1 563 11 09 0 60 3 34 0 28. ( ). . . .  (10.27)

where
PROPWET is the proportion of time during the standard period 1961–1990 that the 

SMD ≤ 6 mm
SMD is the soil moisture deficit (mm)
DPLBAR is a measure of the mean drainage length of the catchment
URBEXT is the extent of urban land cover
DPSBAR is the catchment slope (m/km)
where TP and TB are in hours and UP is in m3/s per 10 mm

Tests of the model on a number of gauged catchments reveal standard values for Uk = 0.80 and 
Up = 0.65.

Once the IUH has been determined for a catchment, it needs to be converted to the ΔT 
hour-UH where ΔT is equal to the timestep of the net rainfall hyetograph. The run-off routing 
can then be evaluated by convolution of the net rainfall with the ΔT hour-UH. The IUH can 
be converted to the required ΔT hour UH by using the S-curve technique (see, e.g., Kjeldsen, 
2007), unless predictor equations based on multiple linear regression of catchment descriptors 
are available.

In the NRCS method (NRCS, 2007), and using the associated units, the estimation of the 
parameters of the P inch, ΔT hour synthetic UH is given by

 
T Lag

T
U

T
TP P

P
P

2
484 TB 2 67= + = =∆ AP
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where
A is the catchment area (miles2)
P is the net rainfall (in.), and where TP and TB are in hours
UP is in ft3/s per P in.

Lag is the time between the centroid of the net rainfall hyetograph and the peak of the run-off 
and can be derived from an observed event or by using predictor equations based on the time of 
concentration, tc, where Lag ≅ 0.6tc, as a function of catchment descriptors.

10.5.5  Baseflow and rainfall separation

In order to use the UH technique to predict the total streamflow from the storm rainfall, it is 
necessary to apply a loss model to estimate the effective rainfall hyetograph, calculate the run-off 
(stormflow) using the UH and separately predict the baseflow. Given that baseflow represents 
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the groundwater contribution to the total hydrograph, a simple method for its approximate 
determination is that shown in Figure 10.6a. There the baseflow is assumed constant throughout 
the storm with a value equal to the total flow before the onset of storm run-off. Separation tech-
niques are based on determining the end of the run-off by estimating the point on the falling limb 
of the hydrograph where the curvature changes to the relatively slow baseflow recession. With 
sufficient observed storm hydrographs, it is possible to derive a master recession curve which 
can then be fitted to subsequently observed events. Once the baseflow separation line has been 
drawn, the volume of surface run-off (VSR) may be calculated (it is the area under the hydrograph 
above the baseflow line). The net or effective rainfall depth (Pnet) may then be determined as

 V P ASR net=  (10.28)

where A is the catchment area.
However, baseflow separation techniques are subject to considerable uncertainty (Tallaksen, 

1995). Moreover, tracer experiments by Sklash and Farvolden (1979) have shown the signifi-
cant contribution of groundwater stored in the catchment (prior to a storm event) to the whole 
streamflow hydrograph, emphasising that stormflow and baseflow are not independent pro-
cesses and, consequently, the premise of baseflow separation has been brought into question. 
This has implications for the validity of the time invariance and zero initial condition assump-
tions of the UH theory.

The identification of a definitive rainfall loss model remains an open problem, and a number of 
approaches have been proposed. The traditional method for doing this is to employ the concept 
of the ϕ index. The ϕ index assumes a constant loss rate (in mm rain/hour). This may be con-
ceived as being equivalent to a constant value of infiltration. In practice, the value of the ϕ index 
is set such that over the whole storm, Pnet (mm) of rainfall is contained above the ϕ index line as 
shown in Figure 10.12a. This method may be criticised for its lack of realism in representing the 
physical processes occurring during interception, evaporation and infiltration. A more realistic 
method might be to use a suitable infiltration curve (as illustrated in Figure 10.6a) rather than 
a constant rate, and such a method has also been employed in practice. The UK Flood Studies 
Team (Natural Environment Research Council, 1975) developed a percentage run-off (PR) to 
represent conceptually the contributing area effect of a proportion of the whole catchment to 
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FIgure 10.12 Rainfall separation technique. (a) ϕ index. (b) PR.
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stormflow. This is illustrated in Figure 10.12b. As with the ϕ index method, the PR is estimated 
such that the volume of effective rainfall equates to the volume of run-off. However, Ashfaq 
and Webster (2002) found that the predictor equations obtained from regression analysis of 
observed event run-off estimates with catchment characteristics were not robust. Consequently, 
the ReFH model (Kjeldsen, 2007) in the United Kingdom uses a moisture balance approach 
but with the probability distributed model (PDM) of Moore and Clarke (1981) to represent the 
assumed distribution of soil moisture storage capacity over the area of a catchment.

10.5.6  design Flood estimation using the unit 
Hydrograph rainfall–run-off Model

In the United Kingdom, the ReFH model (Kjeldsen, 2007) replaces the method presented in 
the original volume 4 of the FEH. In addition to the UH routing model, it incorporates baseflow 
and loss models that vary throughout the duration of the event and interact with the routing 
model, as shown schematically in Figure 10.13.

The rainfall losses are estimated at each time step in the model simulation by assuming a 
uniform cumulative distribution of soil moisture capacity over the catchment – the PDM model 
(Moore and Clarke, 1981). At a particular time, t, the run-off volume, rt, generated from the 
input precipitation volume, Pt, for the current soil moisture content, Ct, is estimated from

 

r
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C
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P
C

t C C Pt

t

t t
t t t= + = = +−
+

1

2max max
1for 1 2 3 and, , ,  (10.29)

until the soil moisture store becomes saturated (Ct becomes Cmax, the maximum storage 
 capacity) at which time 100% run-off occurs (rt/Pt = 1). Consequently, the model requires Cmax 
as the model parameter which may be estimated by calibrating the model for observed events 
or from catchment descriptors by

 Cmax BFIHOST PROPWET= −596 7 0 95 0 24. . .  (10.30)

Total rainfall

Net rainfall

Initial soil moisture
Cini

Initial baseflow
BF0

Loss
model
(Cmax)

Baseflow model
(BR, BL)

Total flow

Routing
model
(Tp)

FIgure 10.13 Schematic representation of the ReFH model. (After Kjeldsen, T.R., The Revitalised FSR/FEH 
Rainfall-Runoff Method, Flood Estimation Handbook Supplementary Report No. 1, Centre for Ecology & Hydrology, 
Wallingford, UK., 2007.)
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To commence the calculation, the initial soil moisture content, Cini, at time t = 0 is required, 
which can be obtained from catchment descriptors. The point rainfall depths with associated 
return periods between 1 and 1000 years and durations in the range 1 h to 8 days are available 
at 1 km grid intervals for the United Kingdom on the FEH CD-ROM (CEH, 2009a).

The run-off routing model requires the convolution of the net rainfall with the ΔT hour-UH 
where ΔT is equal to the timestep of the net rainfall hyetograph. The IUH is converted to the 
required ΔT hour UH by using the S-curve technique.

The baseflow (i.e., from groundwater draining from the surrounding catchment soil over 
time scales in excess of the duration of the storm rainfall) is estimated at each time step based 
upon an exponential recession curve. The model includes an estimate of baseflow recharge, BR, 
as a fraction of the run-off, rt, which is routed through a conceptual linear baseflow reservoir 
with a lag parameter, BL. This produces an equation for baseflow, BFt, at a time t as

 
BF BF for 1 2 3t t t t

K
K r K r K K t=

−
+ + + =− −

1
1 2

1 1 2 1 3 1[ ( ) ] , ,  (10.31)

where K1, K2 and K3 are functions of the BR and BL parameters.
To commence the calculation, the initial baseflow, BF0, at time t = 0 is required, which, again, 

can be obtained from catchment descriptors. The calculations in the ReFH method require a 
computer model, and a free spreadsheet implementation is available (CEH, 2007). Furthermore, 
the user needs access to the FEH CD-ROM (CEH, 2009a) for the catchment descriptors. By 
means of example, Figure 10.14 shows the design hydrograph with a 100 year peak flow for the 
River Dart at Austin’s Bridge estimated using the ReFH rainfall–run-off method.

The reliability of the model parameters obtained from predictor equations depends upon the 
goodness of fit of the multiple linear regression analysis of descriptors for gauged catchments. 

ReFH model output: Dart at Austin’s bridge
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FIgure 10.14 Predicted hydrograph for the River Dart for a 100 year flood event. (Output derived from the 
ReFH spreadsheet courtesy of the Centre for Ecology & Hydrology, Wallingford, UK.)
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Wherever possible, flood predictions should be reviewed in the light of other sources of infor-
mation (e.g., the use of local recorded events to derive the parameter values). Estimates of 
peak discharge using the ReFH method are, on average, higher than those made with the FEH 
frequency analysis for gauged catchments and Faulkner and Barber (2009) advise caution in 
applying the model to highly permeable or heavily urbanised catchments.

The calculations and extraction of values from tables and figures in the FEH are both time-
consuming and liable to user error. Consequently, the FEH rainfall–run-off model is available as 
part of commercial river modelling software packages, such as ISIS (Halcrow Group Ltd, 2012), 
InfoWorks RS (Innovyze, 2012b) and MIKE 11 (DHI Software, 2012a).

In the United States, the SCS method (NRCS, 2007) also uses a UH routing model to pre-
dict the run-off. A conceptual loss model is applied to calculate the net rainfall assuming an 
initial abstraction loss, Ia, that represents interception and surface ponding, followed by a time-
varying infiltration loss, F. The net rainfall depth (that becomes run-off), r, for a given total 
rainfall depth, P, and where P > Ia, is expressed as
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 (10.32)

where S is the potential maximum infiltration storage depth. From the analysis of observed 
flood events, Ia is taken to be 0.2S. In order to obtain values of S for a particular catchment, 
tables of curve number, CN, have been calibrated for a wide range of catchments and observed 
flood events, where CN is defined by

 
S = −1000

10
CN

 (10.33)

The CN is an index that represents the potential for a catchment surface to produce run-off, 
where the higher the value, the greater the run-off potential. Tables have been produced that 
relate the CN to four types of soils based on their hydrological properties, namely, groups A, B, C 
and D in increasing order of run-off potential (i.e., group A represents sands and group D clays). 
Maps of soil groups are available from county soil surveys in the United States. The effects of 
land use (e.g., vegetation cover) and land treatment (such as agricultural practices) are included in 
the CN tables, together with weightings for urban areas, where a maximum CN = 98 for imper-
meable areas (NRCS, 2007). The design rainfall depths, P, required for Equation 10.32 with 
associated return periods and durations are available from the National Weather Service (2012).

To predict the run-off variation with time, convolution of the net rainfall with the UH is 
undertaken in the same way as in the ReFH model. Baseflow is then added separately to pro-
duce the total streamflow. The entire SCS model can be applied to a catchment using software 
such as WinTR-20 (NRCS, 2009) and HEC-HMS (U.S. Army Corps of Engineers, 2010a).

10.5.7  Conceptual storage-routing Models

Conceptual models use a simplified representation of actual processes at large scale but usu-
ally do not have physically based measurable parameters. Typically, the conceptual representa-
tion has taken the form of a virtual reservoir storage component through which an inflow is 
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routed (see Section 10.7). Numerous variants on the use of linear stores for representing the 
flow routing have been developed; for a comprehensive review, see Singh (1988). Of particular 
note is the inclusion of linear channels that represent a time delay which a single linear reser-
voir does not model. Dooge (1959) introduced the linear channel and derived a general theory 
for the UH that was based on a cascade of linear channels and reservoirs in series. Chow and 
Kulandaiswamy (1971) showed that the cascade models can be derived from a general ordinary 
linear differential equation relating storage and flow continuity.

Following the development of these lumped models, attention has been focused on spatially 
distributed models, notable examples being Topmodel (Bevan and Kirby, 1979), the grid-to-
grid model (Bell and Moore, 1998) based on the PDM (Moore and Clarke, 1981) and HEC-
HMS (U.S. Army Corps of Engineers, 2010a). A clear introduction to these types of models is 
provided by Beven (2012).

An important feature of conceptual rainfall–streamflow modelling is the calibration of the 
parameters for the model to fit observed event data, since many models have parameters that 
cannot be measured. Although techniques have been developed for automatic calibration of 
models, there is evidence to suggest that for some models, there are different sets of parameter 
values which produce similarly acceptable predictions. Such uncertainty is manifest not only in 
the model structure and the parameters but also in the observed data. For a detailed coverage 
of the subject of model calibration and uncertainty, the interested reader is referred to Duan 
et al. (2003).

10.5.8  data-driven and Hybrid Metric–Conceptual Models

A generalisation of the metric approach is to apply data-driven models where both the model 
structure and parameters are unspecified in advance, and a heuristic computational search 
technique is used to fit a model to the observed data. Young and Beven (1994) advocate a top-
down approach particularly where the lack of data does not support model complexity – the 
data-based mechanistic model. The important feature of this approach over a pure system 
identification technique is that the user proposes a model structure in response to the outcome 
of initial tests using catchment data. In this way, the model form becomes catchment-specific. 
This does not restrict the user to a specific model structure, although some knowledge of viable 
mathematical forms is necessary. Young (2003) has successfully developed a technique for iden-
tifying linear models for catchments on the basis of two transfer functions: one to represent 
fast response (run-off), and the other to represent slow response (baseflow) and incorporates a 
power law rainfall loss model.

Artificial neural networks (ANNs) are based on conceptualisations of the learning behaviour 
of the human brain. They comprise several simple computational units (“neurons”) that have 
weighted connections with other neurons to form a network. Observed rainfall data are passed 
to a set of input units, which, depending on the weightings, pass a signal to connected units and 
so on through the network until an output is produced. This is compared with observed stream-
flow data, and the weights of the connections are iteratively adjusted until the error between 
the network output and the observation is minimised (i.e., the network is “trained”). Minns and 
Hall (1996) were the first to apply ANNs to rainfall–run-off modelling. In this form, ANNs are 
non-linear black box models although some work has been done to attempt to derive physically 



364 Principles and Basic Applications

interpretable process relationships from the network. In general, ANNs have been observed to 
forecast well, provided the input data are consistent with the training set used but are subject 
to the risk of over-fitting during the training (calibration) with a consequential loss of predictive 
performance when used with new input data.

10.5.9  Physics-Based rainfall–streamflow Models

Physics-based models have developed from the blueprint of Freeze and Harlan (1969), for exam-
ple the “SHE” model (Abbott et al., 1986). They are based on the coupled partial differential 
equations representing the conservation of mass and momentum for free surface overland flow 
and the subsurface saturated and unsaturated flow processes solved numerically on a grid (refer 
to Chapter 14). Through the use of physics-based theoretical and semi-empirical equations 
derived from laboratory-scale tests, it is possible to make use of measurable parameters, which 
makes this approach attractive for scenario testing, for example land use change predictions. 
However, the “upscaling” to represent the flow processes at the much larger catchment grid scale 
assumes that the grid point parameters are an averaged representation of the sub-grid heteroge-
neity of the catchment (e.g., topography, soil, vegetation, etc.) and that the process scales are the 
same. The number of parameters required to solve the different process equations at each grid 
point is substantial, and the values are likely to vary over the time of the rainfall events being 
simulated. This leads to problems in the calibration of the model given the limited quantity and 
resolution of observed data for a given catchment. Furthermore, there are issues concerning the 
use of different time steps for the stable solution of the coupled overland and subsurface flow 
equations, the non-linearity introduced by the modelling of soil moisture characteristics and 
the difficulty in representing preferential flow pathways (see Beven, 2012).

10.6  suMMary oF desIgn Flood ProCedures 
For rural CatCHMents

This is illustrated in Figure 10.15. The two basic approaches of frequency analysis and UH  rainfall–
run-off models are complementary. The accuracy of each method depends on the amount and 
the quality of available data. Estimates from gauged catchments are more accurate than those 
from ungauged catchments. Detailed advice on the choice of which method to use for different 
applications is available in the FEH, volume 1 (IH, 1999) and in the NEH (NRCS, 2007).

10.7  Flood routIng

10.7.1  general Principles

So far, the discussion has centred on methods of estimating flood events at a given location, typi-
cally at the outlet of a catchment or at a river gauge. However, the engineer requires estimates of 
both the stage and the discharge along a watercourse resulting from the passage of a flood wave. 
The technique of flood routing is used for this purpose.
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There are two distinct kinds of problem:

 1. Reservoir routing: to find the outflow hydrograph over the spillway from the inflow 
hydrograph

 2. Channel routing: to find the outflow hydrograph from a river reach (particular length 
of river channel) from the inflow hydrograph

In each case, the peak flow of the outflow hydrograph is less than and later than that of the inflow 
hydrograph. These processes are referred to as “attenuation” and “translation”, respectively.

To determine the outflow hydrograph from the inflow hydrograph requires the application of 
the continuity equation in the following form:

 
I O

V
t

− = d
d

 (10.34)

where
I is the inflow rate
O the outflow rate
V is the volume
t is time

Unit hydrograph method Frequency analysis

Are rainfall and runoff
records available?  

Yes No

Convolution with
design rainfall

Derive unit
hydrograph

Derive
synthetic unit
hydrograph 

Flood hydrograph
and Qpeak 

Record length of
subject site, N

>13 years 2–13 years <2 years 

QMED from
POT data

QMED from
AMS median

QMED From data
transfer from

donor/analogue
catchment

Target return
period, T

Obtain Q from growth
curve, Q = x.QMED Compare estimates of Q

N < 2T
fit GL growth curve

to pooling group

N > 2T
fit GL growth curve

to single group

FIgure 10.15 Summary of flood estimation methods (see FEH volume 1 for detailed discussion of selection 
criteria).
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This is shown diagrammatically in Figure 10.16. Expressing Equation 10.34 in a finite differ-
ence form gives
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+
∆ ∆
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2 2

 (10.35)

where
It and Ot are inflow and outflow rates at time t
It+Δt and Ot+Δt are inflow and outflow rates at time t + Δt

This equation may be solved successively through time for a known inflow hydrograph if the 
storage volume can be related to outflow (reservoir case) or channel properties.

10.7.2  reservoir routing

This case is shown in Figure 10.17. The outflow is governed by the height (stage h) of water 
above the spillway crest level, and the volume of live storage is also governed by this height. 
Hence, for a given reservoir, both the volume and the outflow can be expressed as functions of 
stage. This is achieved by a topographical survey and application of a suitable weir equation, 
respectively. Equation 10.34 may be solved by a number of numerical methods, including the 
Newton–Raphson method, which is demonstrated later.

Translation
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FIgure 10.16 Flood routing – general principles.
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Rearranging Equation 10.35 in terms of unknown and known values
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The storage–stage relationship may be expressed as

 V V h= ( )  (10.37)

where V(h) represents a function of stage, h, at time t + Δt.
The spillway outflow-stage relationship may be expressed as

 O Khn=  (10.38)

where K and n may be assumed constant and their values depend upon the type of spillway 
structure (refer to Chapter 13 for further details).

Substituting Equations 10.37 and 10.38 into Equation 10.36 yields a non-linear equation in 
one unknown, h
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This equation can be solved using a root-finding method (i.e., find h for F(h) = 0) such as the 
Newton–Raphson method (Chapra and Canale, 2010), where a better estimate of the root is 
hi+l and is given by

 
h h

F h
F h
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where hi is the previous estimate of the root. F ′(h) is obtained by differentiating equation (10.39) 
with respect to h and using the fact that volume differentiates to area, giving
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where A(h) represents the surface area of the reservoir as a function of stage, h, at time t + Δt.

I Live storage (V)

O

h

FIgure 10.17 Reservoir routing.
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The calculation of Equation 10.40 is repeated until there is no significant change in the 
estimate of h. A suitable starting estimate for hi is to use the stage at the previous time step, t 
(provided that hi > 0 to avoid a division by zero).

Care must be exercised in the selection of a suitable time step, Δt, to ensure that the hydro-
graph shape and peak are adequately represented and that the solution converges. Convergence 
can be checked by rerunning the calculations using smaller time steps until there is no notice-
able change between runs. Because of the number of calculations involved, the method is suited 
to solution by spreadsheet (an example is available at the supporting website at http://www.
routledge.com/books/details/9780415306096/) or computer program (e.g., the FORTRAN 
code accompanying the FEH volume 4, IH, 1999).

Example 10.3:  Reservoir Flood Routing

Determine the outflow hydrograph resulting from the probable maximum flood (PMF) at 
Ardingly Reservoir from the following data:

Reservoir plan area at spillway crest level = 0.8 km2;
Reservoir plan area 3 m above spillway crest level = 1.0 km2;
Spillway type = circular shaft;
Discharge equation: O = 64h3/2;
Discharge preceding occurrence of PMF = 5 m3/s.

PMF

time (h) 0 2 4 6 8 10 12 14 16 18 20

inflow (m3/s) 5 8 15 30 85 160 140 95 45 15 10

Solution

The approximate equations for V and A in terms of h may be derived by assuming a linear 
variation of area with stage:

 
A h h( ) .

( . )= + −





×0 8
1 0 8

3
106

 
A h

h
( ) .= +





×0 8
15

106 2m

where A(h) is the reservoir area at stage h. Hence,
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V h

h
h m( ) .= +





×0 8
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The outflow is related to stage through the weir equation O = 64h3/2. Choosing Δt = 2 h, 
i.e., 7200 s to correspond with the inflow data, then
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The values of the variables in the bracketed term are all known at the start of a given time 
step:

 
F h

A h
h′( )

( )
( . )/= +
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48 01 2 from 1 41

The solution may now proceed by using the tabular method shown in Table 10.5, once 
the initial conditions have been specified. At time zero, the outflow is 5 m3/s, the corre-
sponding stage is 0.183 m (from the spillway discharge equation) and the storage volume 
is 0.148 × 106 m3. Hence, the first row of Table 10.5 may be completed.

taBle 10.5  Solution for Reservoir Routing (Newton–Raphson Method Calculations Have 
Been Carried Out Using a Spreadsheet and Are Not Shown)

Time, t (h) Inflow, I (m3/s) Stage, h (m) Volume, V (m3) Area, A (m2)
Outflow, 
O (m3/s)

0 5 0.183 147,314.2 812,183.4 5.00

2 8 0.194 156,431.3 812,931.4 5.47

4 15 0.239 192,709.7 815,901.1 7.46

6 30 0.346 280,941.9 823,078.9 13.04

8 85 0.644 528,961.1 842,928.3 33.07

10 160 1.185 994,733.5 878,994.4 82.55

12 140 1.560 1,328,793.2 903,975.9 124.66

14 95 1.521 1,293,862.1 901,396.1 120.05

16 45 1.243 1,046,250.4 882,893.0 88.73

18 15 0.899 746,338.5 859,948.7 54.57

20 10 0.637 522,831.6 842,443.4 32.51
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The stage at the next time step is obtained by applying Equation 10.40 until F	(h) ≈ 0. The next 
row of Table 10.5 may now be completed. The inflow and outflow hydrographs are shown in 
Figure 10.18. It is left as an exercise for the reader to repeat the calculations for different time 
steps in order to assess convergence.

10.7.3  Channel routing

In this case, the storage volume is not a simple function of stage, and therefore solution of the 
continuity equation is more complex. It is commonly solved using the full equations of gradually 
varied unsteady flow as described in Chapter 14. There are a number of commercial software 
packages available for one-dimensional river modelling, for example InfoWorks RS (Innovyze, 
2012b), ISIS (Halcrow Group Ltd, 2012), MIKE 11 (DHI Software, 2012a) and HEC-RAS 
(U.S. Army Corps of Engineers, 2010b). However, there are simpler techniques which can 
be applied if previous inflow and outflow hydrographs have been recorded. These are referred 
to as hydrological routing methods and are used in some conceptual models for hydrological 
 forecasting. There are a number of hydrological routing methods including simplified versions 
of the unsteady gradually varied flow equations and routing through a series of simple reservoirs 
(for further details, see Beven, 2012). By means of example, the channel routing technique 
based on the so-called Muskingum method (after McCarthy in 1938) is described later.

Channel storage may be considered to consist of two parts, prism and wedge storage, as 
shown in Figure 10.19.
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FIgure 10.18 Reservoir flood routing – solution to Example 10.3.
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FIgure 10.19 Channel routing.
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Assuming no sudden change of cross-section within the reach, then approximate expressions 
for inflow, outflow and storage are

 I ay O ayi
n

o
n= =

where a and n are constants. Now
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where b,	m and c are constants. So
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Substituting for yi and yo and assuming m = n (approximately correct for natural channels),
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Taking K = b/a and X = c/b
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where
K is called the storage constant and has dimensions of time
X is a dimensionless weighting factor between 0 and 0.5 (but normally between 0.2 and 0.4)

Equation 10.42 is the Muskingum equation. It is obviously only an approximation but has been 
used widely with reasonable results.

Substitution of this equation into the continuity equation yields

 O C I C I C Ot t t t t t+ 0 + 1 2∆ ∆= + +  (10.43)

where
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and

	 C0 + C1 + C2 = 1

Hence, the outflow may be determined through time from the inflow hydrograph, the known 
values of K and X and a starting value for the outflow.

In the Muskingum method, both K and X may be determined by a numerical optimisa-
tion technique from a previously recorded event. For an assumed value for X, K is found by 
a least squares linear regression of V (derived from the known inflows and outflows) against 
[XI + (1 − X)O] (from Equation 10.42). A numerical optimisation can be readily performed 
using a spreadsheet to obtain the optimal value of X that produces the best straight-line fit with 
gradient K	to the recorded data (an example is available at the supporting website at http://
www.routledge.com/books/details/9780415306096/).

Example 10.4:  Channel Routing Using the Muskingum Method

Given the inflow and outflow hydrograph for a river reach in Table 10.6,

 (a) Assuming that the storage V can be written as in Equation 10.42, find K and X 
for the flood; and

 (b) Taking the outflow hydrograph from (a) as inflow to the next river reach with 
K = 27 and X = 0.2, find the peak outflow.

Solution

 (a) The first stage of the solution is to find the change in reach storage (ΔV) as a func-
tion of time. This may be found from the finite difference form of the continuity 
Equation 10.35. Second, the cumulative volume of reach storage (V) may be 
found by summing the ΔVs. Third, a value of X is chosen and V plotted against 
[XI + (1 − X)O]. A linear regression analysis is performed using a spreadsheet to 
obtain the gradient K. A spreadsheet optimisation is used to determine the value 
of X that produces the closest fitted line to the plotted data. The best result from 
the spreadsheet is found to be X = 0.272, for which K = 18.324 h. The results are 
tabulated in Table 10.7 and plotted in Figure 10.20.

 (b) Here Equation 10.43 is applied after solution of the Equations 10.44a through c 
for C0, C1 and C2 given by

 
C0

27 0 2 0 5 12
27 27 0 2 0 5 12

0 02= − × − ×
− × + ×

=( . ) ( . )
( . ) ( . )

.

  (note Δt = 12 h for the inflow hydrograph and thus K must have the same units)
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C1

27 0 2 0 5 12
27 27 0 2 0 5 12

0 41= × + ×
− × + ×

=( . ) ( . )
( . ) ( . )

.

 
C2

27 27 0 2 0 5 12
27 27 0 2 0 5 12

0 57= − × − ×
− × + ×

=( . ) ( . )
( . ) ( . )

.

as a check on the calculation

 C C C0 1 2 0.02 0.41 0.57 1+ + = + + =

which is correct.
The calculation of the new outflow hydrograph is shown in tabular form in Table 10.8. 

The peak outflow is seen to be 16.48 m3/s at t = 96 h. As with Example 10.3 (reservoir 
flood routing), an initial value for the outflow is required (here set to equal the inflow), 
and the tabular solution is easier to follow if the relevant Equation 10.43 is written above 
the table.

taBle 10.6 Data

Day

Hour

Inflow (m3/s) Outflow (m3/s)Midnight (m) Noon (n)

1 n 1.05 1.05

2 m 3.54 1.47

n 9.62 3.68

3 m 16.27 8.12

n 20.43 13.36

4 m 20.94 17.66

n 19.04 19.13

5 m 12.9 18.05

n 9.06 16.24

6 m 6.93 11.15

n 5.43 8.69

7 m 4.07 6.65

n 3.34 5.09

8 m 2.69 4.02

n 2.27 3.23
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taBle 10.7 Tabular Solution to Example 10.4(a) for X = 0.272 and K = 65,967 s

Time (h)
Inflow 
(m3/s)

Outflow 
(m3/s)

Storage 
Change (m3)

Storage 
Volumes (m3)

[XI + (1 − X)O] 
(m3/s)

Estimated 
Volumes (m3)

0 1.05 1.05 0 1.05 −70,711

12 3.54 1.47 44,712 44,712 2.03 −5865

24 9.62 3.68 173,016 217,728 5.30 209,358

36 16.27 8.12 304,344 522,072 10.34 541,903

48 20.43 13.36 328,752 850,824 15.28 868,193

60 20.94 17.66 223,560 1,074,384 18.55 1,083,851

72 19.04 19.13 68,904 1,143,288 19.11 1,120,359

84 12.9 18.05 −113,184 1,030,104 16.65 958,328

96 9.06 16.24 −266,328 763,776 14.29 802,506

108 6.93 11.15 −246,240 517,536 10.00 519,842

120 5.43 8.69 −161,568 355,968 7.80 374,787

132 4.07 6.65 −126,144 229,824 5.95 252,415

144 3.34 5.09 −93,528 136,296 4.61 164,398

156 2.69 4.02 −66,528 69,768 3.66 101,349

168 2.27 3.23 −49,464 20,304 2.97 55,873
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FIgure 10.20 Plot of the results of Table 10.7 for Example 10.4.
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This graphical technique is time-consuming. Cunge (1969) presented a simpler alternative 
to this approach, known as the constant-parameter Muskingum–Cunge method. He demon-
strated that K is approximately equal to the time of travel of the flood wave, i.e.,

 
K

L
c

≅ ∆
 (10.45)

where ΔL is the length of the river reach and c is the flood wave celerity ( )c g y≅  and
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where
Q
–

P is the mean flood peak
B
–
 is the mean surface width of the channel

Using these equations allows rapid calculation of K and X for each reach, and the constant-
parameter Muskingum–Cunge method may also be applied to rivers without recorded  outflow 
hydrographs (since Q

–
P is a reference flow determined from previous records and remains con-

stant throughout each time step). Recalculating the parameters at each time step for each 
reach – the variable-parameter Muskingum–Cunge (VPMC) method – provides an improved 
simulation of the routed hydrograph shape (Ponce and Yevjevich, 1978; Price, 1978). However, 
the VPMC method is non-linear and requires a numerical solution using a computational model. 
Furthermore, the VPMC method results in a small loss of volume (Tang et al., 1999).

Many of the commercially available one-dimensional river modelling software packages pro-
vide a facility for flood routing calculations. For the derivation of the momentum and continu-
ity equations that describe unsteady flows in rivers, the interested reader should also refer to 
Chapter 14 in which a finite difference solution scheme is presented.

taBle 10.8 Tabular Solution to Example 10.4(b)

Time (h) Inflow (m3/s) C0It+Δt (m3/s) C1It (m3/s) C2Ot (m3/s) Outflow (m3/s)

0.00 1.05 0.43 0.60 1.05

12.00 1.47 0.03 0.60 0.60 1.06

24.00 3.68 0.07 1.51 0.73 1.28

36.00 8.12 0.16 3.33 1.37 2.40

48.00 13.36 0.27 5.48 2.83 4.96

60.00 17.66 0.35 7.24 4.94 8.66

72.00 19.13 0.38 7.84 7.16 12.56

84.00 18.05 0.36 7.40 8.76 15.36

96.00 16.24 0.32 6.66 9.39 16.48

108.00 11.15 0.22 16.28
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10.8  desIgn Floods For reservoIr saFety

The safe design of reservoirs entails, amongst other things, the provision of a spillway which 
will prevent flood waters overtopping the dam, causing subsequent collapse and the release 
of a flood wave. In the past, many such failures have occurred, causing loss of life and 
property on a disastrous scale (for details, see Binnie, 1981). As a result of such failures in 
the United Kingdom, the Reservoirs (Safety Provisions) Act of 1930 was introduced at the 
instigation of the ICE. Subsequently, the Reservoirs (Safety Provisions) Act 1975 (see ICE, 
2000) was introduced, though this was only brought into force in 1986. The 1975 Act 
applies to reservoirs with a capacity in excess of 25,000 m3. This is under review in the light 
of the Flood and Water Management Act (2010) which proposes a minimum capacity for 
regulation of 10,000 m3.

The main purpose of these acts is to ensure that new reservoirs are designed by competent 
engineers (known as panel engineers, appointed through the ICE) and that existing reservoirs 
are regularly inspected and repaired in accordance with the recommendations of the panel engi-
neers. Furthermore, the Environment Agency is the enforcement authority for the Reservoirs 
Act in the United Kingdom, which includes maintaining a register of the construction details 
and historic performance of UK dams.

The design philosophy behind spillway sizing is to make them sufficiently large to pass design 
floods safely. UK practice is to categorise reservoirs in terms of the potential hazard to life and 
property should the dam be overtopped (ICE, 1996). In most cases, the design flood is the prob-
able maximum flood, PMF. Where a community is not at risk, the 1 in 10,000 year flood is used.

The estimation of a PMF is problematic, because, theoretically, such events should never 
occur. The ICE’s interim report on reservoir safety, re-published in 1960, tackled this prob-
lem by gathering information on the largest recorded historical floods. Using this informa-
tion, they produced an “envelope curve” of specific peak discharge (Q/A) against catchment 
area (A). Floods lying on the envelope curve were termed “normal maximum floods”, and 
it was suggested that reservoirs be designed for a “catastrophic flood” equal to twice the 
normal maximum flood.

With the advent of the Flood	Studies	Report, FSR (NERC, 1975), the ICE produced a new 
guide, Floods	and	Reservoir	Safety (1996). In this guide, the concept of the PMF was introduced, 
and details were given of how it may be calculated. The essence of the method is to estimate 
an inflow hydrograph based on the UH rainfall–run-off model. The storm rainfall (depth and 
profile) to be used is the estimated maximum rainfall, as calculated by the Meteorological 
Office. This is convoluted with a UH in which all the parameters are set to maximise run-off. 
Finally, the PMF is routed through the reservoir to find the outflow hydrograph, assuming a 
maximum initial water level with an allowance for wind-induced wave action. At the time of 
writing, research is being undertaken to validate the FEH (IH, 1999) method for estimating 
the PMF in terms of both the extreme rainfall values and the rainfall–run-off model, and, as 
an interim measure, the original FSR method is continuing to be used in the United Kingdom 
(DEFRA, 2004).

Many reservoirs in the United Kingdom are now over 100 years old and are suffering from 
the effects of age. It is to be expected that the inspection and repair of old reservoirs will assume 
more prominence than the construction of new ones for the foreseeable future. Guidance for 
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the design of reservoirs that do not fall under the 1975 Act is available in the United Kingdom 
(Hall et al., 1993; Kennard et al., 1996). Furthermore, there is ongoing research into the devel-
opment of a risk-based approach to reservoir safety where all the potential causes of dam fail-
ure and the consequences can be taken into account using defined probabilities (Brown and 
Gosden, 2004).

10.9  MetHods oF Flood PredICtIon 
For urBan CatCHMents

The run-off response of urban catchments to rainfall is different from that of rural catchments. 
For a given rainfall, flood rise times are quicker, flood peaks higher and flood volumes larger. 
This is due to two main physical differences between urban and rural catchments; the large 
proportion of impermeable areas (roads, roofs, pavements, etc.) and the existence of artificial 
piped drainage systems. The percentage run-off from impermeable areas is typically 60%–90%. 
The drainage systems convey this increased volume to the outflow point of the catchment much 
more quickly than natural drainage would. The design of drainage systems calls for the applica-
tion of both hydrological and hydraulic principles.

Historically, such designs have been based on the rational method (attributed to Lloyd-
Davies, 1906). Some of the shortcomings of this method were overcome in the Transport and 
Road Research Laboratory (TRRL) hydrograph method introduced in 1963 (refer to TRRL, 
1976). The Wallingford	Procedure (National Water Council, 1981) refined the hydrological prin-
ciples resulting in a modified rational method and a completely new method based on a con-
ceptual model of rainfall–run-off processes. Much of the hydrological work is derived from the 
methods in the FSR with additional research carried out specifically for urban catchments. The 
Wallingford	Procedure is commonly used in UK practice for generating the design storms and 
the consequent run-off that enters the drainage system. Since the publication of the FEH (IH, 
1999), the revised rainfall depth–duration–frequency model for the United Kingdom is increas-
ingly being used to estimate the design storm events.

The following two sections describe, in outline, the rational method and the Wallingford	
Procedure. Complete details are available in the references.

10.9.1  rational Method

The basis of this method is a simplistic relationship between rainfall and run-off of the form

 Q CiAP =  (10.47)

where
QP is the peak run-off rate
i is the rainfall intensity
A is the catchment area (normally impermeable area only)
C is the run-off coefficient
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In the modified rational method, this equation becomes

 
Q

C C iA
P

V R=
0 36.

 (10.48)

with the units QP in L/s, i in mm/h, A in hectares, and where CV is the volumetric run-off 
coefficient, CR is the routing coefficient and A is the total catchment area. The recommended 
equation for determining CV as given in the Wallingford	Procedure, Volume 1, is

 
CV

PR=
100

 (10.49a)

where PR is the (urban) percentage run-off which is found from

 PR 0.829 PIMP 25.0 SOIL 0.078 UCWI 20.7= + + −  (10.49b)

where
SOIL is a number depending on soil type
PIMP is percentage impermeable area to total catchment area
UCWI is the urban catchment wetness index (mm) (related to SAAR)

The recommended value for CR is a fixed value of CR = 1.3 for all systems. A variable PR model 
has been developed by Osborne (2009) as a more realistic alternative to Equation 10.49b and is 
available in the computational drainage modelling software used in UK practice.

To apply these equations to urban storm water drainage design requires knowledge of the 
critical storm duration to estimate i. The assumption made is that this storm duration is equal 
to the time of concentration of the catchment (tc), given by

 t t tc e f= +  (10.50)

where
te is the time of entry into the drainage system (between 3 and 8 min)
tf is the time of flow through the drainage system

The value of i for any given return period and duration may be found using the methodology 
and data given in the Wallingford	Procedure, Volumes 3 and 4, for UK catchments. First, values 
of Jenkinson’s r (M5 − 60 min/M5 − 2-day rainfall) and M5 − 60 min (which is the rainfall 
of 5 year return period and 60 min duration) are read from mapped values for the United 
Kingdom. Next, the value of M5 − D/M5 − 60 min (where D is the required duration) is read 
from plotted data using the value of r to obtain the required value of M5 − D. The value of 
MT − D (where T is the required return period) is then found from tabulated data relating 
M5 − D to return period T. This value of MT − D (the point rainfall of required return period 
and duration) is next reduced by multiplying by an areal reduction factor, which is plotted as a 
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function of duration and area, to obtain the design catchment rainfall depth. Finally, the design 
rainfall intensity (i) is found simply from

 
i

MT D
D

= −
 (10.51)

To calculate tf, a pipe size (D), length (L) and gradient (S0) must be chosen, and the full bore 
velocity (V) calculated (using the HRS tables or charts). Thus, for a single pipe tf = L/V, tc is 
found from Equation 10.50 and QP, from Equation 10.48.

If this value of QP exceeds the pipe-full discharge for the pipe initially chosen, then the 
procedure is repeated with a larger pipe size. For a complete drainage system, this analysis is 
carried out sequentially in the downstream direction. tc and A will, of course, increase, and 
consequently i will decrease, in the downstream direction.

Example 10.5:  Application of the Modified Rational Method

The modified rational method is to be used to design a small storm water drainage system. 
The following design information has already been established:

Pipe No Length (m) Gradient Area (ha) PIMP (%)

1.000 40 1/133 0.81 35

1.010 40 1/542 0.53 35

2.000 45 1/75 0.66 30

1.020 35 1/32 0.32 30

Time of entry =4 min

SOIL =0.3

ks =1.5 mm

UCWI =72 mm

CR =1.3

Available pipe sizes (mm) 150, 225, 300, 375, 450
Design storm intensities (2 year return period)

Time (min) 1 2 3 4 5 6

Rainfall intensity (mm/h) 86.1 76 68.4 62.4 57.6 53.5

 (a) Sketch a key plan of the system.
 (b) Determine the necessary pipe diameters using the modified rational method.
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Notes:

 1. The Hydraulic Research Station design tables relating pipe gradient, diameter, 
pipe-full discharge and velocity are required for simple application of the method.

 2. The rainfall intensity table will require interpolation, preferably by plotting the 
intensity curve, for accurate results.

Solution

 (a) A key plan of the system is shown in Figure 10.21. The notation system gives each 
pipe a reference decimal number. The pipe at the upstream end of the system 
is given the reference number 1.000, and the sequential system of pipes having 
the largest cumulative value of tc should all be labelled 1.xxx. All other pipes in 
the system will form branches into the main pipe run and should be numbered 
sequentially from upstream to downstream as pipes 2.000, 2.010… and 3.000, 
3.010, etc.

 (b) The solution is laid out in tabular form in Table 10.9, which is convenient 
for hand calculation. Several points may be noted concerning this solution as 
follows:

 1. Calculations start with the upstream pipe 1.000. Initially, the smallest avail-
able pipe size (150 mm) is tried. In this instance, a 225 mm diameter pipe is 
required.

 2. For pipe 1.010, the cumulative area and time of concentration include the 
upstream pipe 1.000. Because of the very shallow gradient, a 375 mm diam-
eter pipe is required.

 3. For pipe 2.000, the calculations follow the same pattern as for pipe 1.000, as 
it is another upstream pipe.

 4. For pipe 1.020, the cumulative area includes those for all preceding pipes and 
the time of concentration is the time of flow of pipes 1.000, 1.010 and 1.020 
plus the time of entry. The minimum permitted diameter is that of pipe 
1.010 (e.g., 375 mm) as in design pipe diameters are not allowed to decrease 

1.000

1.010

2.000

1.020

FIgure 10.21 Key plan of the sewer system in Example 10.7.
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taBle 10.9 Tabular Solution for the Modified Rational Method

Pipe 
Number

Pipe 
Length 

(m)
Pipe 

Gradient

Assumed 
Diameter 

(mm)

Pipe-Full 
Velocity 
(m/s)

tf 
(min)

tc 
(min)

i 
(mm/h)

Area 
(ha)

Cumm. 
Area 
(ha)

PIMP 
(%) CV

Qp 
(L/s)

Qfull 
(L/s) Comments

1.000 40 1/133 150 0.76 0.88 4.88 58.0 0.81 0.81 35 0.21 35.6 13.4 Diameter too 
small

225 0.99 0.67 4.67 59.0 36.2 39.5 Diameter 
correct

1.010 40 1/541 225 0.49 1.36 6.03 53.5 0.53 1.34 35 0.21 54.4 19.5 Diameter too 
small

300 0.59 1.13 5.8 54.5 55.4 41.9 Diameter too 
small

375 0.68 0.98 5.65 55.0 55.9 76.0 Diameter 
correct

2.000 45 1/75 150 1.01 0.74 4.74 58.5 0.66 0.66 30 0.17 23.7 17.9 Diameter too 
small

225 1.33 0.56 4.56 59.5 24.1 53.0 Diameter 
correct

1.020 35 1/32 375 2.84 0.2 5.85 53.0 0.32 2.32 30 0.19 84.4 313 Diameter too 
large but 
necessary as 
upstream pipe 
has 375 mm 
diameter
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downstream to prevent potential blockage problems. Finally, the volumetric 
run-off coefficient (Cv) is found as a weighted average of the contributions 
from all upstream contributing areas (because PIMP varies with each con-
tributing area) i.e.,

( )
( . . .

.
. . .Cumulative C

C C C
V

V V V
1 020

1 000 1 010 2 0000 81 0 53 0 6= × + × + × 66 0 32
2 32

1 020+ ×CV . . )
.

Whilst the rational method is often satisfactory from a design viewpoint, it can be criticised for 
its inability to simulate a real storm event for the following reasons:

 1. The inaccuracy of the run-off coefficient Cv – note that this is improved in the modified 
rational method

 2. The rainfall intensity varies continuously down the system: this does not correspond to 
a real storm event

 3. The assumption of full bore conditions to calculate tf – in reality, each pipe will be run-
ning partially full most of the time

For these reasons, the modified rational method is recommended only for the design of drainage 
systems in catchments which do not exceed 150 ha in area.

10.9.2  Wallingford Procedure surface run-off Model

This is based on a conceptual model of the physical processes occurring in an urban catchment. 
In the model, the net rainfall depth is calculated from a percentage run-off equation derived 
from regression analysis (e.g., the Wallingford Procedure constant PR Equation 10.49b or the 
UK variable PR model [Osborne, 2009]), and an allowance is made for depression storage due to 
surface ponding. The time distribution of this net rainfall is calculated according to the type of 
surface the rain falls upon. The run-off response of each subcatchment area is derived by rout-
ing the net rainfall through two non-linear reservoirs to produce a hydrograph of surface run-
off. The run-off hydrograph represents the inflow at a particular point in the drainage system.

10.9.3  drainage network analysis

The remaining aspect of the analysis is to predict the discharge and depth in each pipe (sewer) 
in the drainage system during a storm event. This may be undertaken by means of one of the 
channel routing methods described earlier. However, particularly where surcharging and sur-
face flooding are likely (e.g., in the assessment of the flood capacity of existing drainage sys-
tems), the full dynamic equations for one-dimensional, unsteady, gradually varied free surface 
flow may be considered necessary to be solved (see Chapter 14). In addition, the equations need 
to be modified to represent pressurised pipe-full flow. The solution of the equations concerned 
requires a computational model. For a comprehensive coverage of urban storm drainage design, 
refer to Butler and Davies (2010).
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There are a number of commercial software packages for the design of drainage systems for 
new developments, such as WinDes (Micro Drainage Limited, 2012) in the United Kingdom, 
and for the analysis of large sewerage networks, such as InfoWorks CS (Innovyze, 2012a) and 
MIKE URBAN (DHI Software, 2012). These packages incorporate the Wallingford	Procedure 
and FEH storm generation methods and offer a range of surface run-off models that can be 
applied in different countries.

10.9.4  supplementary Information regarding 
urban drainage analysis

Since the introduction and widespread adoption of the Wallingford	Procedure in the United 
Kingdom, the Wastewater Planning User Group has been formed to both disseminate 
knowledge of the techniques and to highlight and solve problems in applying the method. 
A series of user notes have been published which the reader is recommended to read if and 
when involved in storm water drainage design. Guidance on the selection of the method 
of analysis and the design parameters for urban storm drainage systems can be found in 
the European standard EN 752 (BSI, 2008) and in Sewers	for	Adoption (WRc, 2012) in the 
United Kingdom.

10.9.5  sustainable urban drainage systems

One of the consequences of traditional piped urban drainage systems is the reduced infiltration 
of rainwater into the soil. Consequently, the increased run-off during extreme storm events 
must be conveyed in the drainage system; otherwise, flooding occurs. Furthermore, if the sys-
tem outfalls into a river, there is a risk of increased erosion leading to channelisation and degra-
dation of the stream. As a result, there is a need for sustainable urban drainage systems which 
maximise the attenuation storage capacity of the system. This may be achieved through the 
use of natural storage features such as soakaways, ponds, filter drains, etc. Further details and 
guidance can be obtained from the ongoing work of the Construction Industry Research and 
Information Association in the United Kingdom (CIRIA, 2007).

10.10  ClIMate CHange IMPaCts 
In Flood Hydrology

There has been growing concern for the potential impacts of human-induced global climate 
change on flood risk assessment. One of the issues facing the hydrologist is that the use of 
historic records of river flow and rainfall does not cover a sufficient period of time to capture 
the perceived effects of increased greenhouse gas emissions. For example, the FEH (IH, 
1999) findings using the available historic records for the United Kingdom could not dem-
onstrate conclusively that climate change has (or, indeed, has not) affected flood behaviour. 
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Consequently, the hydrologist needs to rely on computational model predictions of what 
if scenarios of potential climate change in order to take a precautionary approach to flood 
risk assessment. Current guidance in the United Kingdom is to make an allowance of an 
increase of 10% in peak flows for the time period up to 2025 and an increase of 20% beyond 
then, and to test the sensitivity of these estimates wherever possible through running com-
putational models of the hydrological and/or flow processes (DEFRA, 2006). The input 
data for such models are available from the outputs of the global climate model of the UK 
Meteorological Office at the Hadley Centre run for four representative climate change sce-
narios. In the light of the findings of the fourth assessment report of the Intergovernmental 
Panel on Climate Change (IPCC), the UK Climate Impacts Programme has developed a set 
of UK Climate Projections, UKCP09 (DEFRA, 2011). These projections are probabilistic 
and indicate higher winter rainfall, and the guidance on the climate change allowances is 
under review. For more details on the findings of the IPCC, the interested reader should also 
refer to Chapter 16.

It should be noted that scaling down results from global climate models which do not simu-
late all the atmospheric processes fully to use for river catchment flood estimation is an active 
area of research (Wheater, 2002). As climate models and the available data improve, then, inev-
itably, the scenario estimates will continue to be updated. It is likely that the next generation of 
flood prediction tools will be increasingly based on running rainfall–run-off models with long 
time series of rainfall as input (modified to allow for climate change). The resulting synthetic 
river flow sequences can then be subjected to frequency analysis in order to estimate the return 
periods of flood events for design. However, there are issues over the calibration of these models 
by varying the parameters so that the model simulates observed flows from observed rainfall to 
an acceptable degree of accuracy (Beven, 2012).

10.11  suMMary

This chapter has introduced the key concepts of surface water flood hydrology in the context of 
sustainable civil engineering practice. The technique of flood frequency analysis for design peak 
flood estimation has been presented with particular reference to UK and U.S. methods. Further 
detailed guidance on the application of this technique is to be found in the Flood Estimation 
Handbook (IH, 1999) and in Bulletin	17B (IACWD, 1982).

The range of computational rainfall–streamflow models have been introduced with particu-
lar emphasis on the theory and application of the common UH and flood routing methods. 
Further guidance on the UH models used in the United Kingdom and the United States can be 
found in Kjeldsen (2007) and in the NEH (NRCS, 2007), respectively. For a detailed insight 
into rainfall–run-off modelling, see Beven (2012).

The concepts of flow prediction in urban storm drainage design have been presented using 
the rational method with the UK Wallingford Procedure as an example. For further details of 
the techniques of sustainable drainage design, see Butler and Davies (2010).

For a more comprehensive coverage of the field of engineering hydrology, Shaw et al. (2011) 
and McCuen (2005) are good starting points for UK and U.S. practice, respectively.
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ProBleMs For solutIon

10.1 “Any quantitative assessment of flood run-off should start from an appreciation of the 
catchment descriptors affecting run-off.”
(a)  State whether you agree or disagree with this statement, giving your reasons, and
(b) describe the effects on run-off of the catchment descriptors mentioned in Section 10.3.

10.2 The following data are the annual maxima floods for the River Don. Starting with linear 
graph paper, plot these data in a similar manner to that shown in Figure 10.2a, b and d (i.e., 
starting with a histogram, converting to a pdf and finally to a GL growth curve). Hence 
estimate the 50 year return period flood and comment on the reliability of this estimate.

Year 56 57 58 59 60 61 62

Flood (m3/s) 38.2 58.9 120.6 57.6 159.9 40.4 66.2

Year 63 64 65 66 67 68 69

Flood (m3/s) 73.6 66.5 206.8 84.8 97.1 142.1 82.1

[Q50 = 247 m3/s]
10.3 Calculate the peak run-off rate resulting from the probable maximum precipitation at 

Ardingly Reservoir from the following data:

Time (h) 0 1 2 3 4 5 6

Rainfall (mm) 2 5 8 11 14 31

Time (h) 6 7 8 9 10 11 12 13

Rainfall (mm) 93 31 14 11 8 5 2

Percentage run-off = 68% (from catchment descriptors)

Baseflow = 1 m3/s (from catchment descriptors)
10 mm, 1 h UH time to peak = 4 h
Catchment area = 21.82 km2

(Hint. Use a synthetic UH with Tp = 4 h)
[140 m3/s]

10.4 Describe, in detail, what methods you would use to estimate the 50 year return period 
flood (both peak discharge and flood hydrograph) for the following two cases:
(a) An ungauged catchment
(b) A gauged catchment with stream flow records of 15 years

Suggest ways in which your estimate could be improved (presuming that your improved 
estimates are required within 1 year!).

10.5 If the reservoir in Example 10.3 was not full preceding the occurrence of the PMF, but 
required an inflow volume of 705.6 × 103 m3 to bring it to spillway crest level, determine 
the new peak outflow.

[115 m3/s]
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10.6 Determine the necessary pipe diameters for the first three pipes of a drainage network 
using the modified rational method from the following data.

Pipe No. Length (m) Gradient Area (m2) te (min) ks (mm) CV

1.0 70 0.0175 1415 4 0.6 0.9

1.1 75 0.017 3275 4 0.6 0.9

1.2 92 0.0085 4085 4 0.6 0.9

Rainfall 
(mm/h)

55.3 54.3 53.4 52.5 51.7 50.8 50.0 49.3 48.5 47.8 47.1

Duration 
(min)

4.8 5.0 5.2 5.4 5.6 5.8 6.0 6.2 6.4 6.6 6.8

[1.0, d = 175 mm; 1.1, d = 225 mm; 1.2, d = 250 mm]
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Chapter 11

dimensional analysis and 
the theory of Physical Models

11.1  IntroduCtIon

The preceding chapters have explored various aspects of hydraulics. In each case, a fundamental 
concept has been described and, where possible, that concept has been translated into an alge-
braic expression which has then been used as the basis of a mathematical model. Mathematical 
models are functions which represent the behaviour of a physical system and which can be 
solved on a computer or calculator. A mathematical model is very convenient, since it is avail-
able whenever the engineer needs to use it. However, it may have occurred to the reader that 
some problems could be so complex that no adequate mathematical model could be formulated. 
If such a problem is encountered, what is the engineer to do? To deal with such problems, it is 
necessary to find an alternative to mathematical models. One alternative which is frequently 
adopted is the use of scale model experiments. However, this approach also raises questions. For 
example, even when the experimental results have been obtained, there may be no self-evident 
(e.g., geometrical) relationship between the model behaviour and the behaviour of the full-scale 
prototype. Thus, if an engineer wishes to employ model tests, two problems must be faced:

 1. The design of the model and of the experimental procedure
 2. The correct interpretation of the results

To this end, it is necessary to identify physical laws which apply equally to the behaviour of 
model and prototype. Our understanding of such laws has developed progressively over the last 
century or so.

By	the	end	of	this	chapter	you	should

 ◾ Understand the concepts of similarity and the theory of dimensional analysis
 ◾ Be able to apply these theories to a range of applications including pipe flow, open 

channel flow and hydraulic machines
 ◾ Be able to design and interpret the results for a range of hydraulic models including 

those for rivers, estuaries, coasts and hydraulic structures
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11.2  Idea oF “sIMIlarIty”

Ideas about basic forms of similarity are often gained early in life from simple shapes. These 
ideas are formalised mathematically as “geometrical similarity”. Geometrical similarity requires

 1. That all the corresponding lengths of two figures or objects are in one ratio
 2. That all corresponding angles are the same for both figures or objects

Now, (1) may be expressed algebraically as

 ′′ ′ =L L L/ λ

where λL is a “scale factor” of length (Figure 11.1a). Similar statements may be made about other 
characteristics of two systems, where such systems exhibit some form of “similarity”, i.e., where 
they have certain features in common. For example, measurements of the velocity patterns in 
two systems may reveal that at corresponding coordinates there is a relationship between the 
velocity U′ in one system and the velocity U″ in the other system. If that relationship is in the 
form U″/U′ = λU, then the two systems are “kinematically” similar (Figure 11.1b). This could 
equally well be restated in terms of the fundamental dimensions as

 λ λT L/ /= ′′ ′ = ′′ ′T T L L

since velocity has dimensions of LT−1.
There may also be systems which exhibit similarity in their force patterns (Figure 11.1c) so that

 λF /= ′′ ′F F

and since force = mass × acceleration, force may be said to possess the dimensions MLT−2; therefore, 
for systems with similar forces,

 λ λ λT L/ / /= ′′ ′ = ′′ ′ = ′′ ′T T L L M MM

must all be true. Systems exhibiting similarity of this nature are referred to as being “dynami-
cally” similar.

L´ U´

L˝ U˝

F´

F˝

(c)(a) (b)

FIgure 11.1 Similarity: (a) geometrical, (b) kinematic and (c) dynamic.
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These statements indicate the sorts of scales which may be of interest. They do not, however, 
help us to determine scale magnitudes. For this purpose, we must develop equations which 
reflect the appropriate dimensional considerations.

11.3  dIMensIonal HoMogeneIty 
and Its IMPlICatIons

Everyone understands what we mean by eggs, bananas and Rolls-Royces. However, consider the 
relationship

 3 2 4eggs bananas Rolls-Royces+ =

This will immediately be rejected as nonsense. There is no link, numerical, dimensional or of 
any other sort, between the left-hand and the right-hand sides. The point of this statement 
of the obvious is to impress the fact that most people intuitively accept the idea of homogeneity 
or harmony within an equation. Dimensional homogeneity must be true for any equation which 
purports to describe a set of physical events.

If any physical quantity, J, is considered, it will be possible to reduce it to some function of 
the three fundamental dimensions, mass, length and time, i.e.,

 J f= [ , , ]M L T

Furthermore, if the magnitude of J is compared for two similar systems, then

 
′′ = ′′

′
=J

J
f
f

J
’

M L T
M L T

[ , , ]
[ , , ]

λ

Self-evidently, this ratio must be dimensionless. This is true if the function is in the form of a 
product, and therefore

 J K M L Ta b c= [ ]  (11.1)

where
K is a numeric
a, b and c are powers or indices whose magnitudes have to be determined

As an example, if J is a velocity, then in (11.1), a = 0, b = 1 and c = −1, since velocity has dimen-
sions LT−1.

In one sense, it can be argued that dimensional relationships are arbitrary, since magnitudes 
depend on the choice of units (feet, metres, pounds, kilograms, etc.). For this reason, an equa-
tion which is a statement of a physical law is often used in a dimensionless form. Dimensionless 
equations are completely general, and are therefore frequently the basis for the representation 
of experimental data.



392 Principles and Basic Applications

11.4  dIMensIonal analysIs

Dimensional analysis is a powerful tool for deriving the dimensionless relationships referred to 
earlier. The methodology has long been used by engineers and scientists, and the techniques 
have been progressively refined over the years. Three approaches will be mentioned here. They 
are (1) the indicial method, (2) Buckingham”s method and (3) the matrix method. However, it 
must be emphasised that all methods are absolutely dependent on the correct identification of 
all the factors which govern the physical events being analysed. The omission of a single factor 
may give quite misleading results. The procedure is best explained through the medium of a 
worked example. To illustrate the reason for using this procedure, the reader should imagine 
that we have been presented with a set of data relating to some unfamiliar or new type of engi-
neering system. The indicial method will be used here.

Example 11.1: Dimensional Analysis Procedure

As part of a development programme, scale model tests have been carried out on a new 
hydraulic machine. The experimental team have presented the following data. Thrust 
force F, the flow velocity u, viscosity μ and density ρ of the fluid. A typical size of the 
system, L, is also given. Two questions must be posed, namely (a) how to analyse or plot 
the data in the most informative way and (b) how to relate the performance of the model 
to that of the working prototype.

Solution

It seems reasonable to postulate that the force F is related to the other given quantities, 
so one might say

 F f u L= [ , , , ]ρ µ

The form of the function is completely unknown, but it has been proposed earlier

 1. That the function must be in the form of a power product
 2. That there must be a dimensional balance between both sides of the equation

From 1, the equation may be rewritten as

 F K u La b c d= [ ]ρ µ  (11.2)

To meet the requirement of 2, each quantity must be reduced to its fundamental 
dimensions.

Force, F, is measured in newtons, but newtons are not fundamental dimensions. 
However, by definition, force is equated to the product of mass (M) and acceleration 
(which has dimensions LT−2). The fundamental dimensions of F are therefore MLT−2. 
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The dimensions of the other terms are ρ = ML−3, u = LT−1, μ = ML−1T−1 and L = L. These 
dimensional relationships may be conveniently tabulated as a matrix:

 

M

L

T

F u Lρ µ
1 1 0 1 0

1 3 1 1 1

2 0 1

− −
− − −11 0

















Expressing each quantity in (11.2) in terms of its dimensions,

 MLT K[(ML ) (LT ) (ML T ) L ]1− − − − −=2 3 1 1a b c d
 (11.3)

For dimensional homogeneity, the function has the dimensions MLT−2, and since a prod-
uct relationship exists, the sum of the indices (or powers) of each dimension in the 
function may be equated to the index of the same dimension on the left-hand side of 
the equation.

Thus, on the left-hand side, M has the index 1. In the function bracket, M has the 
indices a and c. Therefore,

 1 = +a c  (11.4)

Similarly, T has the index − 2 on the left-hand side, and the indices −b and −c in the func-
tion, therefore,

 2 = +b c  (11.5)

The corresponding indicial equation for L is

 1 3= − + − +a b c d  (11.6)

There are thus three equations (one for each fundamental dimension) but four unknown 
indices, so that a complete solution is unattainable. However, a partial solution is worth-
while. To obtain the partial solution, it is necessary in	this	case to select (or guess) three 
“governing variables”. Suppose that ρ, u and L are selected. The indices of ρ, u and L 
are a, b and d, respectively. So (11.4) through (11.6) must be rearranged in terms of a, 
b and d.

From (11.4),

 a c= −1  (11.7)

From (11.5),

 b c= −2  (11.8)
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Substituting (11.7) and (11.8) into (11.6)

 1 3 1 2= − − + − − +( ) ( )c c c d

and therefore

 d c= −2  (11.9)

Substituting for a, b and d in (11.2),

 
F K u Lc c c c=  

− − −ρ µ1 2 2

 

=


















K u L
uL

c

ρ µ
ρ

2 2

Since the function represents a product, it may be restated as

 
F u L K

uL
c

=






ρ ρ
µ

2 2

or as

 

F
u L

K
uL

c

ρ
ρ

µ2 2 =






−

 
(11.10)

where K and c are unknown.

There are a number of important points to be made about (11.10).

 1. Two groups have emerged from the analysis, F/ρu2L2 and ρuL/μ. If the reader cares to 
check, it will be found that both groups are dimensionless. For conciseness, dimension-
less groups are referred to as “Π” groups. Thus we might state

 Π1
2 2= F u L/ρ

  and

 Π2 = ρ µuL/

  Π2 is, of course, the Reynolds number, which has been encountered before.
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 2. Dimensionless groups are independent of units and of scale. Π1 and Π2 are therefore 
equally applicable to the model or to the prototype.

 3. Both Π groups represent ratios of forces, as will now be shown:

  The “inertia force” of a body, F = mass × acceleration
  The mass of a body = ρ × volume = ρL3

  Acceleration = du/dt, which has the dimensions of (velocity/time) = LT−2

  Therefore,

 Mass acceleration× = = =− −ρ ρ ρL LT L T u L3 2 4 2 2 2( )

  Therefore, Π1 represents the ratio of the thrust force to the inertia force:

   The inertia force per unit area = ρL4T−2L−2 = ρL2T−2

   Now ρL2T−2 may be rewritten as ρu2, so looking now at Π2, the ratio (inertia force/
viscous force) can be written as

 
ρu2

viscous force

  Viscous force is represented by the viscous shear stress, τ = μdu/dy. Dimensionally, this 
is the same as μu/y. Therefore,

 

ρ
µ

ρ
µ

u
u y

uy2

( )/
=

 

  which is Π2.
 4. All three fundamental dimensions are present in (11.10). Therefore, if the model is to 

truly represent the prototype, then both model and prototype must conform to the 
law of dynamic similarity. For this to be so, the magnitude of each dimensionless group 
must be the same for the model as for the prototype:

 Π Π1 1
′ ″=

 Π Π2 2
′ ″=

  where Π′ refers to the prototype and Π″ to the model.
   If the earlier statement (regarding equality of Π groups) is not fulfilled, it must fol-

low that ratios of forces in the model do not correspond to the ratios of forces in the 
prototype, and hence that the model and prototype are not dynamically similar.

 5. It would, of course, be possible to choose alternatives to ρ, u and L as governing vari-
ables. Different Π groups might then emerge. However, because the product ρuL 
represents the inertia force (which is a parameter relevant to any flow), these three 
quantities are very frequently selected. The groups which are ultimately the most help-
ful for experimental analysis have emerged largely by trial and error.
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The reader is strongly advised to review Example 11.1 carefully, since it contains all the main 
ideas and processes which form the basis of dimensional analysis.

The indicial method of dimensional analysis is perfectly satisfactory as long as the number of 
variables involved is small. For problems involving larger numbers of variables, a more orderly 
process is helpful. This leads us to the use of the Buckingham or the matrix methods.

11.5  dIMensIonal analysIs InvolvIng 
More varIaBles

11.5.1  Buckingham’s Method

Buckingham’s ideas were published in a paper in 1915. In outline, he proposed

 1. That if a physical phenomenon was a function of m quantities and n fundamental 
dimensions, dimensional analysis would produce (m – n)Π groups

 2. That each Π should be a function of n governing variables plus one more quantity
 3. The governing quantities must include all fundamental dimensions
 4. The governing quantities must not combine among themselves to form a dimensionless 

group
 5. As each Π is dimensionless, the final function must be dimensionless, and therefore 

dimensionally

 f m n[ , , , ]( )Π Π Π1 2
0 0 0… − = M L T

Referring back to Example 11.1, there were five quantities (F, ρ, u, μ, L) and three dimensions 
(M, L, T), from which we derived two groups. To obtain Π1, using Buckingham’s approach, 
with ρ, u and L as governing variables,

 Π1= M L Tρa b cu L F = 0 0 0

Therefore,

 ( ) ( ) ( )ML LT L MLT M L T− − − =3 1 2 0 0 0a b c

Equating indices,

 M a a+ = = −1 0 1 therefore 

 T b b− − = = −2 0 2 therefore 

 L a b c− + + + =3 1 0
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substituting for a and b,

 + − + + = = −3 2 1 0 2c ctherefore 

so

 Π1
2 2= F u L/ρ

Any remaining Π groups are produced in the same way, and thus Π2 = μ/ρuL, as before.

11.5.2  Matrix Method

This is based on the work of a number of investigators, notably Langhaar (1980) and Barr 
(1983). The method used here is described in detail in Matthews and Morfett (1986), and is a 
development of the previous work. It can readily be programmed for computer application, to 
speed up the analysis. The procedure entails

 1. Setting up a dimensional matrix with the governing variables represented by the first 
n columns

 2. Partitioning the matrix to form an “n × n” matrix and an additional matrix
 3. Applying Gauss–Jordan elimination to produce a leading diagonal of unity in the n × n 

matrix
 4. Abstracting the requisite Π groups from the final index matrix

All of the remaining examples in this chapter employ this method.

11.6  aPPlICatIons oF dynaMIC sIMIlarIty

11.6.1  Pipe Flow

The history of the development of the various pipe flow equations has already been outlined 
in Chapter 4. It is noteworthy that dimensional procedures underlie a number of these devel-
opments, such as Nikuradse’s diagram. An example illustrating the use of these procedures 
follows.

Example 11.2: Analysis of Pipe Flow

The hydraulic head loss, hf, in a simple pipeline is assumed to depend on the following 
quantities:

The density (ρ) and viscosity (μ) of the fluid
The diameter (D), length (L) and roughness (kS) of the pipe
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A typical flow velocity (usually the mean velocity) V
 (a) Develop the appropriate dimensionless groups to describe the flow.
 (b) A 10 km pipeline, 750 mm diameter, is to be used to convey oil (ρ = 850 kg/m3, μ = 

0.008 kg/m s). The design discharge is 450 L/s. The pipeline will incorporate booster 
pumping stations at suitable intervals. As part of the design procedure, a model study 
is to be carried out. A model scale λL = 1/50 has been selected, and air is to be used as 
the model fluid. The air has a density of 1.2 kg/m3 and viscosity of 1.8 × 10−5 kg/m s.

At what mean air velocity will the model be correctly simulating the flow of oil?
If the head loss in the model is 10 m for the full pipe length, what will be the head loss 

in the prototype?

Solution

 (a) If the matrix method is employed, the dimensional matrix is first produced. The 
principal quantities of interest are the following:

 1. The characteristics of the fluids: ρ, μ
 2. The characteristics of the pipeline: length L, diameter D and roughness kS

 3. The characteristics of the flow: typical (usually mean) velocity V, head loss hf

  The dimensional matrix (MD) is then

 

M

L

T

V D h k Lf Sρ µ|

|

|

|

0 0 1 0 1 0 0

1 1 3 1 1 1 1

1 0 0 0 1 0 0

− −
− −















  

(11.11)

  The governing variables are assumed to be V, D and ρ.
   Applying the Gauss–Jordan elimination procedure,

 

ρ µ
ρ

D V h k L

D
V

f S|

|

|

|

1 0 0 0 1 0 0

0 1 0 1 1 1 1

0 0 1 0

 

11 0 0















  

(11.12)

  and hence Mk
*, the index matrix is

 

f

S

Π Π Π Π1 2 3 4

0 1 0 0

1 1 1 1

0 1 0

ρ

µ

D
V
h

k
L

−
− − − −

− 00

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1



























  

(11.13)
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  Therefore,

 
Π Π1 2

1

= =






−
h
D

DVf ρ
µ

 
Π Π3 4= =k

D
L
D

S

  Because D was used as a governing variable, Π1 emerged as hfD−1. It is conven-
tional to use hfL−1 in preference to hfD−1, since hfL−1 represents the hydraulic gra-
dient. This makes no practical difference, providing the model is geometrically 
similar to the prototype, i.e.,

 

′′
′

= ′′
′

D
D

L
L

  in which case,

 

h D

h D

h L

h L

f

f

f

f

−

−

−

−

( )′′
( )′

=
( )′′
( )′

1

1

1

1

 (b) Proceeding to the numerical solution, the prototype velocity is obtained, as usual:

 
′ =

×
=V

0 45
4 0 75

1 0192

.
( ) .

.
π/

m/s

For dynamic similarity, the ratios of forces in the model must equal the correspond-
ing ratios in the prototype. In pipe flow, the force ratio is represented by the Reynolds 
 number, so

 Π Π2 2
″ ′=

For the prototype,

 
Π2

850 1 019 0 75
0 008

81 202′
′

= ′ ′ ′ = × × =ρ
µ
V D . .

.
,

Therefore,

 
Π2 581 202

1 2 0 75 50
1 8 10

″ = = × ′′ ×
× −

/. ( . )
.

V
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Therefore, the velocity in the model V″ = 81.2 m/s. The velocity which is required if the 
model is to truly represent the prototype is known as the “corresponding velocity”.

To estimate the head loss in the prototype, the modified Π1 equation (Π1 = hfL−1) is used:

 

h
L

h
L

f f





= 





′′′

i.e.,

 Π Π1 1
′ = ′′

In the model, hf
′′ = 10 m and L″ = 200 m. Therefore,

 

hf

,

′
10 000

10
200

=

So hf m′ = 500 , which will be the total head required from the booster pumps.

11.6.2  Free surface Flows

In Example 11.2, the evaluation of V″ presented no problem. This was so due to the domi-
nance of one pair of forces (momentum and shear), which are both represented by the Reynolds 
number. Hydraulics problems are by no means always so straightforward. A case in point is the 
family of free surface flows. These flows are controlled by momentum, shear and gravity forces, 
and this combination highlights a difficulty which has to be overcome through a fundamental 
grasp of the mechanics of fluids.

Example 11.3: Open Channel Flow

State the physical quantities which relate to steady open channel flow. Hence, derive the 
dimensionless groups which describe such a flow. Why is it theoretically impossible to 
produce a valid scale model? How is this problem usually overcome?

Solution

The principal characteristics of a steady channel flow are as follows:

A typical velocity (usually the mean velocity), V
The frictional resistance, F
The fluid characteristics, i.e., density (ρ) and viscosity (μ)
The geometrical characteristics of the channel, i.e., the depth, y (or hydraulic radius, R)
Bed slope S0, and surface roughness, ks

The gravitational acceleration, g
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The dimensional matrix is

 

M

L

T

SV R g k S Fρ µ 0

0 0 1 1 0 0 0 1

1 1 3 1 1 1 0 1

1 0 0 1 2 0 0 2

− −
− − − −

















 

(11.14)

Following Gauss-Jordan elimination,

 

Sρ µ
ρ

R V g k S F

R
V

0

1 0 0 1 0 0 0 1

0 1 0 1 1 1 0 2

0 0 1 1 2 0 0 2

−
















 

(11.15)

The index matrix is then

 

S

Π Π Π Π Π1 2 3 4 5

0

1 0 0 0 1

1

ρ

µ

R
V

g
k
S
F

− −
− 1 1 0 2

1 2 0 0 2

1 0 0 0 0

− −
− − −

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

































 

(11.16)

Therefore,

 
Π Π1 2

2

= =ρ
µ
RV V

gR

 
Π Π Π3 4 0 5 2 2= = =k

R
S

F
R V

S

ρ

In Example 11.2, the Reynolds number was the sole criterion for dynamic similarity. In 
channel flow there are two criteria: Reynolds number (Π1) and Froude number (Π2 = Fr2). 
Furthermore, in modelling channel flows, it is almost universal practice to use water as 
the “model fluid”. This means that ρ′ = ρ″ and μ′ = μ″.

From Π1,

 

ρ
µ

ρ
µ

′ ′ = ′′ ′′V R V R
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Therefore, V′R′ = V″R″, or

 

′′
′

= = ′
′′

V
V

R
R

V( )λ
 

(11.17)

From Π2,

 
V
Rg

V
Rg

2 2





=






′ ″

Therefore, since g must be the same for model as for prototype,

 
′′
′

= ′′
′

V
V

R
R

2

2

Therefore,

 
′′
′

= = ′′
′







V
V

R
R

V( )
/

λ
1 2

 (11.18)

It is clear that (11.17) and (11.18) are incompatible unless R″ = R′, i.e., unless the model 
and the prototype are identical in size. This is impracticable. It is possible to overcome 
this problem by considering the nature of the flow. In channels, as in pipes, frictional resis-
tance is a function of the viscosity (and therefore of the Reynolds number) for laminar and 
transitional turbulent flows. Once the flow is completely turbulent, resistance is indepen-
dent of viscosity. Therefore, if the magnitude of the Reynolds number representing the 
model flow is sufficiently great to indicate “complete turbulence”, (11.17) may be ignored. 
Model scaling is then based on (11.18) only. In practice, the design of hydraulic models 
involves rather more complexities than have emerged here, as will be seen in Section 11.7.

11.6.3  Hydraulic Machines

The quantities which are usually considered in a dimensional analysis of hydraulic machines 
are as follows:

 1. The power (P) and rotational speed (N) of the machine
 2. The pressure head (H) generated by the machine
 3. The corresponding discharge (Q)
 4. The typical machine size (D) and roughness (ks)
 5. The fluid characteristics (ρ and μ)

(Note that it is conventional for the pressure head to be represented as gH rather than 
 simply as H.)
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If ρ, N and D are used as governing variables, the following groups emerge:

 
Π Π Π1 3 5 2 3 3 2 2= = =P

N D
Q

ND
gH

N Dρ

 
Π Π4

2

5= =ρ
µ

ND k
D

S

Most hydraulic machines operate in the completely turbulent zone of flow, so that the Reynolds 
number term (Π4) is neglected. Since geometrical similarity must apply if two machines are 
to be compared, the geometrical term (Π5) is also usually ignored. Thus, Π1, Π2 and Π3 are 
the groups used in analysis. However, one further group, known as the “specific speed” of a 
machine, is derived by combining groups as follows.

11.6.3.1   Pumps

For pumps, the interest centres on the discharge and head of a particular machine. The product

 Π Π2
1 2

3
3 4

1 2

3 4
/ /

/

/( )
− = =NQ

gH
KN  

(11.19)

is a dimensionless specific speed. Historically, the “g” term was disregarded, and so convention-
ally the specific speed becomes

 N NQ Hs = 1 2 3 4/ //  (11.20)

This is not dimensionless.

11.6.3.2   Turbines

For turbines the emphasis lies with the power output and head terms. The product

 Π Π1
1 2

3
5 4

1 2

1 2 5 4
/ /

/

/ /( )
− = =NP

gH
KNρ  (11.21)

is again a dimensionless specific speed. However, since both the ρ and g terms are constant, they 
are usually ignored, and therefore

 N NP Hs = 1 2 5 4/ //  (11.22)

Again this is not dimensionless.
The name “specific speed” is an unfortunate term since neither KN nor NS represent a mean-

ingful “speed” anywhere in the machine. The name owes its origins to a concept which arose 
early in the development of hydraulic machines. It is best to think of it as a numeric whose value 
is related to the geometrical form and designed duty of a given machine. This value will be a 
constant for a particular “family” of similar machines, and will be calculated for the designed 
optimum operating conditions.
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Example 11.4: Pump Similarity

A 100 mm diameter pump, which is driven by a synchronous electric motor, has been 
tested with the following results:

Power supplied to pump = 3.2 kW
Pump speed = 1450 rev/min, head = 12.9 m, discharge = 20 L/s
Efficiency = 79%; fluid: water at 18°C

A geometrically similar pump is required to deliver 100 L/s against a 20 m head. The 
new pump will be driven by a synchronous motor. The speeds may be either 960 rev/min 
or 1450 rev/min. Calculate the principal characteristics (size, speed and power) of the 
new machine. Calculate also the specific speed, NS.

Solution

(Note that in the solution Π″ terms refer to the 100 mm pump.) Π3 is constant, i.e., Π Π″ ′3 3= . 
Therefore,

 

9 81 12 9
1450 0 1

9 81 20
2 2 2 2

. .
.

.×
×

= ×
′ ′N D

so

 ′ ′ =N D 180 5.

or

 ′ = ′N D180 5. /

Π2 is constant, i.e., Π Π2 2
″ ′= . Therefore,

 

0 02
1450 0 1

0 1
3 3

.
.

.
×

=
′ ′N D

so

 ′ ′ =N D 3 7 25.

or

 ′ = ′N D7 25 3. /
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Thus, combining these two equations

 
N

D D
′

′ ′
= =180 5 7 25

3

. .

Therefore, D′2 = 0.0402, i.e., D′ = 0.2 m. Hence,

 ′ = =N 180 5 0 2 902 5. / . . rev/min

Therefore, the speed must be 960 rev/min.
Check diameter:

960 = 180.5/D′

therefore D′ = 0.188 m. In practice, D′ would probably be rounded up to 0.2 m.
Check discharge from Π2:

 

0 02
1450 0 1 960 0 23 3

.
. .×

= ′
×
Q

therefore Q′ = 0.106 m3/s.
To estimate the power of the new pump, use Π1:

 

3 2
1000 1450 0 1 1000 960 0 23 5 3 5

.
. .× ×

= ′
× ×

P

therefore P′ = 29.72 kW.
The specific speed is obtained from (11.20), so for the new pump

 
NS

′ = × =960 0 1
20

32 1
1 2

3 4

.
.

/

/

Check against the original pump:

 
NS

″ = × =1450 0 02
12 9

30 1
1 2

3 4

.
.

.
/

/

The difference between NS
″ and NS

′ arises due to rounding up the speed of the new pump 
from 902.5 to 960 rev/min.



406 Principles and Basic Applications

11.7  HydraulIC Models

Traditionally, scaled physical models have been used extensively in the design of major hydrau-
lic engineering works, notably river engineering schemes, estuary schemes, hydraulic structures, 
coastal engineering schemes and port and harbour developments. More recently, physical 
models have been used for two other purposes, namely as process models and validation 
models. Process models comprise experimental investigations of physical processes to improve 
our knowledge of the underlying physics. Validation models are used to provide test data against 
which numerical models may be compared, validated and calibrated. Design, process and vali-
dation models are also subdivided into two classes: fixed bed and mobile bed. A fixed bed 
model is rigid, with a moulded bathymetry, whereas a mobile bed model has a bed of mobile 
material. Fixed bed models are the most common and are often used even when the prototype 
has an erodible boundary (e.g., rivers, coastlines, estuaries) where the principal interest lies in 
water levels, velocities, etc. Mobile bed models are needed when the principal interest lies 
in sediment deposition and erosion. In such models, a choice of model sediment has to be made. 
This is not a straightforward matter and is discussed later in this section. Finally, most models 
are constructed as (smaller) scale models of the prototype and are geometrically undistorted. 
However, some models are constructed as geometrically distorted models in which the vertical 
scale is larger than the horizontal scale. This enables models of large areas with small depths 
(e.g., long sections of rivers or estuaries) to be built in available laboratory space.

The current state of the art of hydraulic modelling involves a (sometimes) subtle interplay 
between the use of numerical models, physical models and field measurements. This interplay 
is important for both research studies and for hydraulic engineering design. Numerical mod-
els may be used to predict both the spatial and temporal variation of the wave, current and 
sediment transport fields. This can be achieved quickly and (relatively) cheaply in many cases. 
However, the accuracy of their predictions is limited primarily by the known physics and 
secondly by the assumed boundary and initial conditions. Currently, there are many aspects 
of the true physics which are either unknown or have not yet been included in numerical 
  models. Physical models, on the other hand, can be conceived of as being an analogue model 
of the true physics, without us necessarily knowing what the true physics is. Thus, in prin-
ciple, they should provide more accurate predictions. Experiments using physical models can 
also be undertaken using controlled conditions, thus allowing investigation of each controlling 
parameter independently. Physical models, of necessity, are normally smaller scale versions 
of the real situation. This requires a theoretical framework to relate model measurements to 
the real (prototype) situation. Unfortunately, the outcome of this theoretical framework is 
that scaled physical models are unable to simultaneously replicate all of the physical processes 
present in the prototype in correct proportion. This give rise to what are termed scale	effects. 
Thus we must return to nature, by way of field measurements. Such measurements obviously 
do contain all the real physics, if only we knew what to measure and had instruments to 
do so. Such measurements, as are possible, have to be taken in an often hostile environment, 
at considerable relative cost and under uncontrolled conditions. Thus, it can be appreciated 
that the three approaches all suffer from drawbacks, which preclude their exclusive use. 
On the other hand, it can also be seen that each approach can benefit from results gleaned from 
the others. In terms of the development of our understanding and the incorporation of that 
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understanding in the design process, field studies and physical model studies are required to 
improve both our knowledge of the physics and to calibrate and verify our numerical mod-
els. In addition, current design methodology often makes joint use of all three approaches, 
referred to as composite modelling.

11.7.1  river Models

For present purposes, a river will be defined as a channel in which flow is unidirectional. River 
models may be constructed:

 1. To study flow patterns only. The model then has a “rigid” or “fixed” bed (e.g., of wood 
or concrete).

 2. To study flow and sediment movement. The model must then be constructed with a 
particulate “mobile” bed.

River models may be “undistorted” or “distorted”. An undistorted model is geometrically similar 
to the prototype, and therefore has the same scale (λL) for the vertical and horizontal dimensions.

A distorted model has differing horizontal and vertical scales (λx and λy, respectively, with 
λx < λy) to save space and cost (but note that distorted mobile bed models may not simulate 
prototype sediment transport behaviour accurately). The possibility of distortion is based on 
studies of river flows. The flow pattern may be envisaged as two distinct zones (Figure 11.2a):

 1. The zone near to the bank in which velocity must vary in the x-direction (due to fric-
tional shear at the sides) and in the y-direction (due to friction at the bed). According to 
Keulegan (1938), this zone extends approximately 2.5y from each bank (and therefore 
occupies 2 × 2.5y = 5y of the total width of the river).

 2. The central zone, in which velocity varies in the y-direction, but varies very little in 
the x-direction. The flow is therefore practically two-dimensional. The properties of a 
two-dimensional flow may be represented by a “sample”, it is unnecessary to reproduce 

2.5y 2.5y

y

(a) 

(b) 

(c)

FIgure 11.2 River models: (a) prototype, (b) undistorted model and (c) distorted model.
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the whole flow. Therefore, if the model channel width B″ > 5y″, a sample of the central 
zone will be reproduced (Figure 11.2c). Distortion may help in achieving a sufficiently 
high Reynolds number to achieve completely turbulent flow, though this is a function 
of both the Reynolds number and surface roughness (see Figure 4.5, and a correspond-
ing version of the Moody diagram for open channels in Henderson, 1966, p. 93). Also, 
it is often impossible to achieve the correct magnitudes for the local losses at changes 
of section shape or direction in distorted models. A guide value of Re > 1000 may be 
taken as indicating turbulent flow, or if friction velocity is used Re* > 70, though it is 
desirable to exceed these values by a comfortable margin (see Section 5.5).

For mobile-bed models, further quantities (e.g., boundary shear, sediment diameter, and 
immersed sediment density) now have to be scaled and additional boundary conditions may 
be required. There are still only two degrees of freedom for the scaling of the model. This 
generally means the adoption of a separate sediment transport scale. One approach to design-
ing such models is based on the two parameters used for the Shields diagram (θs and Re*, see 
Section 9.2). Thus, if θs and Re* are the same for the model and prototype, it is assumed that 
the model will produce the same bed conditions, and that the ratio of particle size to roughness 
will be the same. It is often the case that the sediment density in the model differs from that in 
the prototype to achieve the correct scaling. Where suspended sediment transport is modelled, 
the  ratio of shear velocity to fall velocity, υFS becomes an important parameter, which may 
involve  scaling the sediment density. A range of granular materials is available for modelling, 
e.g., coal dust (ρs = 1300 kg/m3), araldite (ρs = 1120 kg/m3) and polystyrene (ρs = 1040 kg/m3).

Example 11.5: Model of a Large River

Explain the difference between distorted and undistorted models, and justify the use 
of distortion. Illustrate the application of distortion by reference to a model study of a 
lowland river having the following prototype dimensions: depth = 5 m, width = 190 m, 
slope = 0.0001, mean velocity = 1.15 m/s, ks = 0.02 m.

Solution

The first part of the question has been covered in the preceding text.
The preliminary stage in finding the model scale is to calculate the value of Re*. To 

calculate u* recall that

 
u* =







τ
ρ
0

1 2/

 
friction factor, *λ τ

ρ
= =







8
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2

2

V
u
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 V C RS= ( )0
1 2/
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where

 
C

g V
u

g= 





=










8
1 2

1 2

λ

/
/

*

Therefore, substituting for C in the Chézy formula and rearranging,

 u gRS gyS* = ( ) ( )0
1 2

0
1 2/ /

�

The data for the lowland river will therefore lead to

 u* m/s′ = × × =( . . ) ./9 81 5 0 0001 0 071 2

 
Re*

*′
′ ′

= = × ×
×

=−

ρ
µ

u ks 1000 0 07 0 02
1 14 10

12283

. .
.

Now u uV* *″ ′= λ , and from (11.18) λ λ λV y= R
1 2 1 2/ /� . Also k k kyS L S S″ ′ ′= =λ λ . Therefore,

 Re* * / Re*
/ /″ ′ ′ ′= = =ρ λ λ µ λ λ( )( )/u ky S y y y

1 2 3 2 3 21228

Since Re*
″ ≥ 70

for fully turbulent flow,

 1228 703 2λ y
/ ≥

i.e.,

 
λ y ≥ 





≥70
1228

1
6 752

2 3/

.

For an undistorted model, horizontal length scale and vertical length scale are the same. 
Therefore B″ = B′ × λx, i.e.,

 B″ = × =190
1

6 752
28 14

.
. m

and y″ = λy, i.e.,

 
y″ = × =5

1
6 752

0 74
.

. m

The model is thus the size of a substantial river! This is completely impracticable in terms 
of space and cost.
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Turning to the concept of the “distorted” model, y″ = 0.74. Therefore, the zones of 
three-dimensional flow near the two banks account for 2 × (2.5 × 0.74) = 3.7 m. 
Therefore, if B > 3.7 m, a sample of the central zone will be reproduced, say λx = 1/40, 
which gives

 ′′ = × =B 190 1 40 4 75( ) ./  m

Other scales are determined as follows:

 S y x0 ∝ /

So

 
λ λ

λS
/
/

= = =y

x

1 6 75
1 40

5 93
.

.

Therefore,

 S S0 0 0 0001 5 93 0 000593″ ′= = × =λS . . .

 Q V VBy= × =area  therefore,

 λ λ λ λ λ λ λ λ λQ V B y y x y x y= = =1 2 3 2/ /

So

 
λQ = 





=1
40

1
6 75

1
701

3 2

.

/

Now Q′ = 1.15 × 190 × 5 = 1092.5 m3/s, therefore

 ′′ = × =Q 1092 5
1

701
1 56 3. . m /s

(which would still strain the pumping resources of most laboratories!).
Now that the model has been distorted, the variation of depth with distance may not 

accurately reproduce the prototype characteristics. It is usual to carry out adjustments to 

the surface roughness in the model kS″( ) until an acceptable degree of accuracy is attained. 
This is known as “calibration” of the model.
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11.7.2  Models of estuarial and Coastal Hydraulics

Transport phenomena on coasts and in estuaries represent some of the most challenging prob-
lems in physical scale modelling. Flows are often complex, and scale effects may become 
significant.

11.7.2.1   Estuarial Models

Estuaries have been well described as meeting places (of salt and fresh water, of river flows 
and tidal flows, of different flora and fauna, etc.). The co-existence of salt and fresh water 
introduces the problem of differential density effects. The large areas of water may mean that 
Coriolis forces (due to the earth’s rotation) are significant, especially for mobile-bed models. 
Furthermore, the flow velocities and turbulence are usually three-dimensional. It is not possible 
to reproduce all of these effects in a scale model.

Acceptable results can often be achieved by making a number of simplifying assumptions:

 1. The horizontal shear stresses are usually greater by an order of magnitude than those 
on vertical planes.

 2. If λρ = 1, then Froudian scaling is used for current velocity.
 3. Coriolis forces are ignored except where bed forms due to sediment transport are 

important.
 4. Oscillatory flows are scaled using the Strouhal number (see Section 3.6).

To reproduce the correct horizontal shear forces and water surface profile, it is often necessary 
to exaggerate the bed roughness in the model. However, this inevitably introduces a scale effect 
which may be significant where dispersion effects are being modelled. For example, the rate of 
dispersion of a plume from a sewage treatment works into a wide estuary is often overestimated 
in a model.

Correct interpretation of the results of model tests depends crucially on the skills of the 
engineers responsible for design and operation of the model and on the availability of field data 
for proving and calibration purposes.

11.7.2.2  Coastal Models

Problems relating to tides and waves are encountered, for example, in the design of docks, 
coastal defences and sea outfalls (discharge pipes from storm sewers or sewage treatment 
works).

Physical models (Figure 11.3) are still widely used for these studies, though numerical mod-
elling has now superseded physical modelling in many instances. Since tides are a particular 
type of wave, this section is, in effect, all about waves.

Waves may be simply (and roughly) divided into two categories, namely “long” waves 
and “short” waves. The parameter of wave length is L/y, and it is generally held that for long 
waves L/y > 20 and for short waves L/y < 2. Short waves are primarily wind generated in deep 
waters. Long waves may be swell waves or may be tides. The principal characteristics of a wave 
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(see Figure 11.4) are the geometrical terms (height H, length L and mean water depth y) and 
the temporal terms (periodic time T and celerity c). Dimensional analysis shows that the main 
two parameters of the flow are the Froude and Strouhal numbers:

 Fr /  for long waves= c gy( ) ( )/1 2

 Fr /  for short waves= c gL( ) ( )/1 2

 St /= cT L  

It should be noted that, to avoid surface tension effects on the wave form, L ≫ 0.017 m 
(in practice L > 0.17 m).

None of these equations inherently excludes the possibility of some distortion. It must be 
recalled, however, that waves are a function of gravitation and of the fluid. A wave shape cannot 
be arbitrarily distorted. On the other hand, current patterns can be reproduced by distorted 
models. Thus, for example, wave diffraction patterns around a breakwater are not accurately 
reproduced in a distorted model.

FIgure 11.3 Hydraulic model of Port Belawan, Sumatra. (Courtesy of HR Wallingford Ltd., Oxfordshire, UK.)

L
y

c H

FIgure 11.4 Wave profile.
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Example 11.6: Harbour Model

A major and developing port is subject to excessive wave action during storms. This leads 
on occasion to damage to vessels at their moorings. A model test is to be carried out to 
optimise the design of a new breakwater. The harbour occupies 0.7 × 2 km, and the maxi-
mum space in the hydraulics laboratory is 10 × 20 m. Select the model scales.

Solution

The absolute maximum length scale would be

 
λL = =20

2000
1

100

However, allowances must be made for access and for the wave- and tide-producing mech-
anisms, so say λL = 1/120. (It is being assumed here the model will be undistorted, since 
wave diffraction is the centre of interest.)

Other scales are as follows:

 Wave height Hλ ( / ) /= ′′ ′ =H H 1 120

If St is the same for the model and the prototype, then

 St St and′′ = ′ =c gy( ) /1 2

Then rearranging we obtain

 

′′
′

= ′ ′′
′′ ′

T
T

c L
c L

i.e.,

 
λ λ

λT
c

w

w

= = =L 1 120
1 120

1
10 95

/
/ .

 say, Twλ = 1 11/

Tidal period TT = L/cT

Therefore,

 
λ λ

λ
λ
λ

T
L

c

L

L
T

T

= = �
1

11

Therefore, tidal period in model = 12/11 = 1.09 h.
Further details concerning coastal models may be found in Reeve et al. (2011) or 

Hughes (1993).
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11.7.3  Models of Hydraulic structures

Hydraulic structures are small compared with rivers or estuaries. In consequence, hydraulic 
models of such structures can usually be constructed to a relatively large scale (say 1/10 < λL < 
1/50) and need not be distorted. Velocity scales are usually based on the Froude number (for 
flows with a free surface) or the Reynolds number (for ducted flows). However, there are some 
exceptions to this general rule. For example, to simulate cavitation, the pressures in the model 
should be the same as those for the prototype. This is not always possible. Taking the case of 
a spillway model, the velocities in the model will be lower than those in the prototype, so the 
lowest model pressures will probably not be as low as those in the prototype. Nevertheless, 
an experienced researcher will usually be able to use the results from the model to predict 
 conditions on the prototype. Models can also be used to investigate local scour problems, or the 
current patterns set up by the structure.

Example 11.7: Spillway Model

A spillway system is to be designed for a dam (Figure 11.5). The design discharge over 
the spillway is 15 m3/s per metre width at a design head of 3 m. A hydraulic model is 
to be used to confirm the estimates of the spillway performance, and also to help in 
the design of the scour bed just downstream of the stilling basin. Estimate the scales 
of such a model if the scour bed is armoured with stones having a representative size 
D50 = 35 mm.

Solution

For fully turbulent flow, Re* > 70. To obtain Re*, u* must first be evaluated. From (3.7),

 

V
u

y
k*

ln
S

= 





1
0 4.

3 m

15 m
750 mm

60 m

6 m

Scour bed
armoured

with stones

FIgure 11.5 Spillway section (Example 11.7).
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where kS represents the roughness, which will be taken as being equal to D50/2. The 
magnitude of the velocity, V, over the scour bed is obtained from the continuity equation, 
V = Q/A = 15/6 = 2.5 m/s. Therefore,

 

2 5 1
0 4

6
0 035 2

.
. .u*

ln
/

= 





Therefore u* = 0.171 m/s. Hence,

 
Re*

′ = × × =1000 0 171 0 035
0 001

5985
. .
.

and λL /1 5 70 5985. ,=  so λL = 1/19.4 (say scale = 1/20). Now, λ λQ = =L
2 5 1

1789
.  so 

Q″  =  8.385  l/s and λ λV = =L /1 2 1 4 472/ . . The densimetric Froude numbers are, for the 
prototype,

 
Π2

21000 0 171
2560 1000 9 81 0 035

0 0516′ = ×
− × ×

=.
( ) . .

.

and for the model (assuming the same sediment density),

 
Π2

21000 0 171 4 472
2650 1000 9 81 0 035 20

0 0516″ = ×
− × ×

=( . / . )
( ) . ( . / )

.

so the sediment would be of 1.75 mm diameter in the model. The sediment in the model 
can be of the same density as that in the prototype.

11.8  suMMary

The subject of scaled physical hydraulic modelling is central to the design of many major 
hydraulic and coastal engineering schemes. Understanding and applying such models correctly 
is a complex matter. In this chapter, the basic theories of similarity and dimensional analysis 
have been described and examples given of how to apply these theories to common real-world 
problems. Readers wishing to gain greater insight into the whole subject of physical modelling 
are referred to Novak et al. (2010), in the first instance. At 600 pages long, this book draws 
together for the first time a comprehensive, high-level introduction to the study of hydraulic 
modelling, in all its forms.
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ProBleMs For solutIon

11.1  Use dimensional analysis to establish the dimensionless Π groups which are relevant to 
flow over a weir. Which group or groups are the most important for model analysis? Tests 
have been performed on a 1:50 scale model of a weir. The model discharge is 3.5 L/s. 
What is the corresponding discharge for the full scale weir?

  [62 m3/s]
11.2  Show that the resistance FR to the descent of a spherical particle through a liquid may be 

expressed as

 
F u r f

ur
R

2=






ρ ρ
µ

2

where r is the radius of the sphere, u is the velocity of descent and the other terms have 
their usual meaning. Hence, prove that if FR is proportional to u, then

FR = Kμru
If K = 6π, r = 0.01 mm, ρ = 1000 kg/m3 and μ = 1.1 × 10−3 kg/ms, estimate the time taken 
for a particle to fall through a distance of 3 m. The density of the particle is 2500 kg/m3.

  [3.1 h]
11.3  A radial flow pump has been tested and the following results obtained:

Speed = 2950 rev/min
Discharge = 50 l/s
Head = 75 m
Efficiency = 75%
The pump impeller is 350 mm in diameter. Determine the size and speed of a dynami-
cally similar pump for the following duty: discharge = 450 L/s, head = 117 m.

  [940 mm, 1375 rev/min]
11.4  A new dock is to be constructed in an estuary. The estuary is 1.5 km wide at the seaward 

end and 7 km in length. The depth of water at the dock site ranges from 40 m at low tide 
to 50 m at high tide. The laboratory area is 20 m wide and 60 m long. Give principal 
model scales and the maximum flow.

  [For λx = 1/250, tidal period = 45.5 min, Q″ = 4 L/s]
11.5  A flood alleviation scheme is required for a stretch of river 5 km long. The river is 60 m 

wide, and the average depth is 7.5 m, for the passage of the probable maximum flood 
discharge of 1700 m3/s. The laboratory for the previous question is to be used, but the 
model length must be accommodated across the 20 m width. The maximum laboratory 
discharge is 20 L/s. Estimate the model scales.

  [λx = 1/300, λy = 1/50, Q″ = 16 L/s]
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Chapter 12

Pipeline systems

12.1  IntroduCtIon

In Part I, the principles of hydraulics were explained. Part II considers how these principles 
may be applied to practical design problems. In this chapter, various aspects of pipelines are 
considered. The starting point is the design of simple (one pipe) pipelines. This is followed by 
a discussion of series, parallel and branched pipelines, leading to the analysis of distribution 
systems. Finally, the steady flow design of pumping mains is discussed, and the important topic 
of surge protection for pumping mains and turbine installations is introduced.

By	the	end	of	this	chapter,	you	should

 ◾ Understand the hydraulic and detailed design aspects of a pipeline
 ◾ Be able to estimate the discharges for series, parallel, branching and networked pipe 

systems
 ◾ Understand the basic elements in designing pumping main pipelines
 ◾ Understand the role of various surge protection techniques

12.2  desIgn oF a sIMPle PIPe systeM

12.2.1  aspects of design

Consider Figure 12.1, which shows a typical pipeline between two storage tanks. Broadly, there 
are two aspects to the design of this system:

 (a) Hydraulic calculations
 (b) Detail design

Under (a), a suitable pipe diameter must be determined for the available head and required 
discharge. This aspect has already been covered in Chapter 4. However, it should be noted that 
to estimate the local head losses, the proposed valves and fittings must be known. In addition, 
the maximum and minimum pressures within the pipeline must be found, to ensure that the 
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pressure rating of the pipe is sufficient and to check that sub-atmospheric pressures do not 
occur. This is most easily visualised by drawing the energy line and hydraulic gradient on the 
plan of the pipe longitudinal section (refer to the following section).

Under (b), the following must be considered:

 (i) Pipeline material, pressure rating and jointing system
 (ii) Provision of valves, bends, fittings and thrust blocks
 (iii) Locations of any necessary air valves and washouts

12.2.2  energy line and Hydraulic gradient

Applying Bernoulli’s energy equation to Figure 12.1,
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where hf is the frictional head loss and hL is the local head loss. As
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This equation is used to find the required diameter for the given discharge (cf. Example 4.5).
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FIgure 12.1 Design of a simple pipe system.
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and
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Both of these lines have a slope of Sf (hf/L), and local head losses are represented by a step change. 
They are both shown in Figure 12.1. The energy line begins and ends at the water level in the 
upper and lower tanks, and the hydraulic gradient is always a distance V 2/2g below the energy line.

The usefulness of the hydraulic gradient lies in the fact that it represents the height to which 
water would rise in a standpipe (piezometer). Hence, the location of the maximum and mini-
mum pressures may be found by finding the maximum and minimum heights between the pipe 
and the hydraulic gradient.

If the hydraulic gradient is below the pipe, then there is sub-atmospheric pressure at that 
point. This condition is to be avoided since cavitation may occur (if p/ρg < −7.0 m), and if there 
are any leaks in the pipeline, matter will be sucked into the pipe, possibly causing pollution of 
the water supply.

12.2.2.1   Pipe Materials and Jointing Systems

Table 12.1 lists typical pipe materials, associated linings and jointing systems for water supply pipelines.
The choice of material will depend on relative cost and ground conditions. All of the materi-

als in Table 12.1 are in common usage. More detailed guidance is given in Twort et al. (2000). 
Pipe joints, as shown in Figure 12.2, are normally of the spigot and socket type for underground 
pipes, where there are no lateral forces to resist. Flanged joints are used in pumping stations, 
service reservoirs, etc., where lateral forces must be resisted and where easy removal of pipe 
sections is required.

taBle 12.1 Pipe Materials and Joints for Water Supply Pipes

Material Protective Lining Joint Type(s)

Cast iron (old water mains) Bitumen Spigot and socket with run lead 
sealer, flanged

Ductile iron Bitumen, spun concrete Spigot and socket with rubber 
ring sealer, flanged

Steel Epoxy resin Welded (large pipes), screwed 
(small pipes)

Upvc None Spigot and socket with rubber 
ring sealer, sleeved with 
chemical sealer, flanged

Asbestos cement Bitumen Sleeved with rubber ring sealer

High-density polyethylene None None: pipes can be heat fused

(HDPE)



424 Aspects of Hydraulic Engineering

12.2.3  thrust Blocks

Thrust blocks should be provided at all fittings where a change of velocity or flow direction 
occurs. The forces acting may be calculated by applying the momentum equation (refer to 
Chapter 2). Thrust blocks are normally designed to withstand either the static head or the pipe 
test pressure, whichever is greater.

12.2.4  air valves and Washouts

Air valves should be provided at all high points in a water main, so that entrained air is removed 
during normal operation and air is evacuated during filling. To fulfil this dual role, double orifice 
air valves are commonly used. It should be noted, however, that air valves should not be placed 
in any regions of sub-atmospheric pressure, because air would then enter the pipe, rather than 
be expelled from it.

Washouts are normally placed at all low points so that the water main may be completely 
emptied for repair or inspection.

For a more comprehensive list of valve types, see Ellis (2008) or Twort et al. (2000).

12.3  serIes, Parallel and BranCHed PIPe systeMs

12.3.1  Introduction

Figure 12.3 shows all three cases. To determine the heads and discharges is more complex than 
simple pipe problems and requires the use of the continuity equation in addition to the energy 
and frictional head loss equations.

(c) 

(b) (a)

FIgure 12.2 Typical pipe joints. (a) Spigot and socket, (b) Flanged and (c) Sleeved.
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12.3.2  series solution

Energy H = hf1 + hf2

Continuity Q = Q1 = Q2

As hf1, hf2, are initially unknown, a solution method is as follows:

 1. Guess hf

 2. Calculate Q1 and Q2

 3. If Q1 = Q2, then the solution is correct
 4. If Q1 ≠ Q2, then return to (1)

12.3.3  Parallel solution

Energy H = hf1 = hf2

Continuity Q = Q1 + Q2

This problem can be solved directly for Q1 and Q2.
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FIgure 12.3 Series, parallel and branched pipes. (a) Series, (b) Parallel and (c) Branched.
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12.3.4  Branched solution

Energy hf1 = z1 − HJ

h z Hf2 J= −2

h H zf3 J= − 3

where HJ is the energy head at junction J.
Continuity Q3 = Q1 + Q2

As HJ is initially unknown, a method of solution is as follows:

 1. Guess HJ

 2. Calculate Q1, Q2 and Q3

 3. If Q1 + Q2 = Q3, then the solution is correct
 4. If Q1 + Q2 ≠ Q3, then return to (1)

Example 12.1: Branched Pipe System

Given the following data for the system shown in Figure 12.3c, calculate the discharge 
and the pressure head at the junction J:

Pipe Length (km) Diameter (mm) Roughness, kS (mm)

1 5 300 0.03

2 2 150 0.03

3 4 350 0.03

Item Elevation (m above Datum)

Reservoir 1 800

Reservoir 2 780

Reservoir 3 700

Junction J 720

Solution

The method is that given in the previous section, using Figure 4.6 (HRS chart) to find the 
discharges. Try HJ = 750 m above datum.
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Then,
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 hf m3 750 700 50= − =
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therefore

	 Q3 = 250 L/s

Hence, for

	 HJ = 750 m
	 Q1 + Q2 = 170 L/s
	 Q3 = 250 L/s

This is not the correct solution. A better guess would be achieved by reducing HJ, hence 
reducing Q3 and increasing Q1 and Q2. For HJ = 740 m above datum,

hf1 = 60 m  100Sf1 = 1.2  Q1 = 160 L/s
hf2 = 40 m  100Sf2 = 2.0  Q2 = 35 L/s Q1 + Q2 = 195 L/s
hf3 = 40 m  100Sf3 = 1.0  Q3 = 210 L/s

For HJ = 735 m above datum,

hf1 = 65 m  100Sf1 = 1.3   Q1 = 165 L/s
hf2 = 45 m  100Sf2 = 2.25   Q2 = 37 L/s Q1 + Q2 = 202 L/s
hf3 = 35 m  100Sf3 = 0.875  Q3 = 200 L/s

This is an acceptable solution. The pressure head at J (neglecting velocity head) is given by

pJ/ρg = HJ − zJ

= 735 − 720 = 15 m

It is worth noting that if the junction elevation were greater than 735 m above datum, 
then negative pressures would result. This problem could be overcome by increasing the 
diameter of pipe No. 2.
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12.4  dIstrIButIon systeMs

12.4.1  general design Considerations

A water supply distribution system consists of a complex network of interconnected pipes, 
service reservoirs and pumps which deliver water from the treatment plant to the consumer. 
Water demand is highly variable, both by day and by season. Supply, by contrast, is normally 
constant. Consequently, the distribution system must include storage elements and must be 
capable of flexible operation. Water pressures within the system are normally kept between 
a maximum (about 70 m head) and a minimum (about 20 m head) value. This ensures that 
consumer demand is met and that undue leakage due to excessive pressure does not occur. The 
topography of the demand area plays an important part in the design of the distribution system, 
particularly if there are large variations of ground levels. In this case, several independent net-
works may be required to keep within pressure limitations. For greater operational flexibility, 
however, they are usually interconnected through booster pumps or pressure reducing valves.

In addition to new distribution systems, a common need is for improvement to existing 
(often ageing) systems. It is good practice to use a ring main system in preference to a branching 
system. This prevents the occurrence of “dead ends” with the consequent risk of stagnant water, 
and permits more flexible operation, particularly when repairs must be carried out. Many exist-
ing systems have very high leakage rates (30%–50%). Leaks are often very difficult to locate and 
have an important bearing on the accuracy of any hydraulic analysis of the system.

An essential prerequisite to the improvement of an existing system is to have a clear under-
standing of how that system operates. This is often quite difficult to achieve. Plans of the pipe 
network, together with elevations, diameters, water levels, etc., are required. In addition, the 
demands must be estimated on a per capita consumption basis or preferably by simultaneous 
field measurements of pressures and flows at key points in the system.

The analysis of such systems is generally carried out by computer simulation, in which a 
numerical model of the system is initially calibrated to the field data before being used in a pre-
dictive mode. The model is a simplified version of the real system, and in particular, demands 
from the system are assumed to be concentrated at pipe ends or junctions. This allows relatively 
simple models to be used without great loss of accuracy, providing that a judicious use of pipe 
junctions is made.

Such models have been successfully used to locate areas of leakage within a system. However, 
if leakage rates are high and of unknown location, then a computer simulation may give mislead-
ing results and therefore be of little value.

Many computer models have been developed, and a number of packages are available pub-
licly or commercially, e.g., through the Environmental Protection Agency (USA) or Wallingford 
Software/Innovyze Ltd (UK).

12.4.2  Hydraulic analysis

The solution methods described for the analysis of series, parallel and branched pipes are not 
very suitable for the more complex case of networks. A network consists of loops and nodes 
as shown in Figure 12.4. Applying the continuity equation to a node, the sum of the inflows 
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towards the node must equal the sum of the outflows, therefore, treating outflows as negative 
and inflows as positive:

 i

n
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∑ =
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0
 

(12.1)

where n is the number of pipes joined at the node.
Turning to the diagram of the loop in Figure 12.4, we can track the energy losses by starting 

at a node and travelling around the loop calculating the loss for each pipe in turn. Here, it will 
be assumed that the direction of travel is clockwise and that flows and head losses are positive 
clockwise (so in Figure 12.4, there are two positive flows and two negative). Therefore, applying 
the energy equation,
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where m is the number of pipes in a loop. The sign convention sets flow and head loss as positive 
clockwise.

In addition,

 h f qfi i= ( )  (12.3)

where f(qi) represents the Darcy–Weisbach/Colebrook–White equation. Equations 12.1 through 
12.3 comprise a set of simultaneous non-linear equations, and an iterative solution is generally 
adopted. The two standard solution techniques, the loop method and the nodal method, are 
now discussed.

12.4.3  loop Method

This method, originally proposed by Hardy-Cross in 1936, essentially consists of eliminating 
the head losses from (12.2) and (12.3) to give a set of equations in discharge only. It may be 

Loop Node

HJ

qi

qihfi

FIgure 12.4 Networks.
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applied to loops where the external discharges are known and the flows within the loop are 
required. The basis of the method is as follows:

 1. Assume values for qi to satisfy Σqi = 0
 2. Calculate hfi from qi

 3. If Σhfi = 0, then the solution is correct
 4. If Σhfi ≠ 0, then apply a correction factor δq to all qi and return to (2)

A reasonably efficient value of δq for rapid convergence is given by
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Step 2 may be carried out using the HRS charts or tables (for hand calculations) or using 
Barr’s explicit formula for λ (for computer solution). Due account must be taken of the sign of 
qi and hfi, and of the use of an appropriate convention (i.e., clockwise positive).

Equation 12.4 may be derived as follows. Using the Darcy–Weisbach formula,

h
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2

or, for a given pipe and assuming that λ is constant,

h Qf k= 2

Taking the true flow to be Q, then
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and taking the true head loss to be Hf
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ignoring second-order terms and above (for δq << qi).

Then

H kq q qi if /= +2 1 2[ ( )]δ
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For a loop,

Σ Σ ΣH kq q kq qi i i if /= = +0 22 2δ
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Example 12.2: Flows in a Pipe Loop

For the square pipe loop shown in Figure 12.5, find the following:

 (a) The discharges in the loop
 (b) The pressure heads at points B,	C and D, if the pressure head at A is 70 m and A,	

B,	C and D have the same elevations

All pipes are 1 km long and 300 mm in diameter, with roughness 0.03 mm.

Solution

 (a) It is convenient for hand solution to use a tabular layout in conjunction with the 
HRS charts or tables for finding hfi from qi and d.

A B

20 L/s

40 L/s40 L/s

100 L/s

D C

FIgure 12.5 Example flow in a pipe loop.
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Initial trial (assume values for qi)

Pipe qi (L/s) hfi (m) hfi/qi

A–B +60 +2.00 0.0333

B–C +40 +0.93 0.0233

C–D 0 0 0

A–D −40 −0.93 0.0233

Σ +2.00 0.0799

Note the “positive clockwise” sign convention for qi and hfi.
Apply correction factor,

δq = − = −2
2 0 0799

12 5
( . )

. L/s

Second trial (new discharges = qi − 12.5)

Pipe qi (L/s) hfi (m) hfi/qi

A–B +47.5 +1.3 0.0274

B–C +27.5 +0.48 0.0175

C–D −12.5 −0.12 0.0096

A–D −52.5 −1.58 0.0301

Σ +0.08 0.0846

δq = − = −0 08
2 0 0846

0 5
.

( . )
. L/s

As δq = −0.5 L/s, this solution is sufficiently accurate for most practical purposes.
 (b) To find the pressure heads (p/ρg) at B,	 C and D, apply the energy equation. 

Ignoring velocity heads and recalling that the elevations are the same at A,	B,	C 
and D,

p
g

p
g

hB A
A Bρ ρ

= − = − =−f m70 1 3 68 7. .

p
g

p
g

hC B
B Cρ ρ

= − = − =−f m68 7 0 48 68 22. . .
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p
g

p
g

hD A
A Dρ ρ

= − = − =−f m70 1 58 68 42. .

As a check,

p
g

p
g

hC D
D Cρ ρ

= − = − =−f 68 42 0 12 68 3. . .

Comparing with the previous estimate (pC/ρg = 68.22 m), the difference is equal to 
Σhfi (the closing error).

12.4.4  nodal Method

This method, originally proposed by Cornish in 1939, consists of eliminating the discharges 
from (12.1) and (12.3) to give a set of equations in head losses only. It may be applied to loops or 
branches where the external heads are known and the heads within the networks are required. 
The basis of the method is as follows:

 1. Assume values for the head (HJ) at each junction
 2. Calculate qi from HJ

 3. If Σqi = 0, then the solution is correct
 4. If Σqi ≠ 0, then apply a correction factor δH to HJ and return to 2, where

 
δH

q
q h

i

i i
= 2Σ

Σ / f  
(12.5)

  The derivation of (12.5) is similar to that for (12.4).
   Step 2 may be carried out using the HRS charts or tables (for hand calculations) or 

using the Colebrook–White/Darcy–Weisbach equation for q in terms of hf (for com-
puter solution). An appropriate sign convention must be used for qi and hfi, e.g., qi and 
hfi positive entering a node.

Example 12.3: Flows in a Branched Pipe Network

Resolve Example 12.1 using the nodal method.

Solution

Assume a trial value of HJ = 750 m
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Pipe hfi (m) qi (L/s) qi/hfi

1 +50 +140 +2.8

2 +30 +30 +1.0

3 −50 −250 +5.0

Σ −80 8.8

Apply correction factor,

δH = − = −2 80
8 8

18 18
( )

.
. m

Second trial HJ = 750 − 18.18 = 731.82 m

Pipe hfi (m) qi (L/s) qi/hfi

1 +68.18 +168 +2.5

2 +48.18 +37 +0.8

3 − 31.82 − 191 +6.0

Σ +14 9.3

δH = = +2 14
9 3

3 01
( )
.

. m

Third trial HJ = 731.82 + 3.01 = 734.83 m

As the solution to Example 12.1 gave HJ = 735 m, then convergence has been achieved and 
the solution is as given in Example 12.1.

12.4.5  Complex networks

For more complex networks (e.g., more than one loop or junction), the loop and nodal methods 
may both be applied with minor modifications. In the case of the loop method, the correction 
factor δq at each iteration must be carried over from one loop to the next through any common 
pipes. For the nodal method, the correction factor δH is applied to successive nodes through the 
network at each iteration.

The choice of loop or nodal method for the analysis of complex networks depends on the 
available data. In terms of efficiency of solution and required computer storage space, the loop 
method requires more storage but converges more quickly, whereas the nodal method requires 
less storage but convergence is slower and not always achieved. Some computer packages use a 
hybrid (loop-nodal) method. Further information can be found in Novak et al. (2010).
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12.5  desIgn oF PuMPIng MaIns

12.5.1  Introduction

Typical applications of pumping mains include river abstractions (low-level supply to high-level 
demand), borehole supplies from groundwater and surface water and foul water drainage from 
low-lying land. In all of these cases, there are at least three elements to consider:

 1. Hydraulic design
 2. Economic matching of pump and pipeline
 3. Detail design

These three elements are now considered in turn.

12.5.2  Hydraulic design

The primary requirement is to determine a suitable pump and pipe combination for the required 
design discharge (Q). Consider Figure 12.6, which shows a simple pumping main. At start-up, 
the pump is required to deliver the design discharge (Q) against the static head (H). However, 
as soon as flow commences, frictional losses are introduced (hfs and hfd) which vary with dis-
charge. To attain the design discharge (Q), the head provided by the pump (Hp) must exactly 
match the static plus friction heads at Q. Hence the discharge is a function of both the pump 
and the pipeline. For a given system, the head-discharge characteristic curves for the pump may 
be superimposed on that for the pipeline, as shown in Figure 12.7. The point of intersection of 
the two characteristic curves locates the one possible combination of head and discharge for the 
system under steady flow conditions. The intersection point is referred to as the operating point.

Hp

Hs

H

Pump

hfd

hfs

FIgure 12.6 Simple pumping main.



436 Aspects of Hydraulic Engineering

To obtain the required discharge (Q), it may be necessary to investigate several pump and 
pipe combinations. In addition, it is obviously desirable that the pump should be running at or 
near peak efficiency at the design discharge (Q). This condition may be checked by drawing the 
pump efficiency curve (as shown in Figure 12.7).

Pumps are often arranged in series (for large static heads) or parallel (for varying discharge 
requirements). To obtain the discharge in these cases requires the estimation of their combined 
characteristic curves. These are obtained from the characteristic for the single pump case as 
follows:

For series operation (of n pumps),

H nH Q Qnp p np p = =

where subscript np denotes n pumps and subscript p denotes one pump.
For parallel operation (of n pumps),

H H Q nQnp p np p = =

The resulting characteristic curves for n = 2 are shown in Figure 12.7.

Two pumps in series

Pipeline

One pump

DischargeQ
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Two pumps
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ea
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FIgure 12.7 Pump and pipeline characteristics for a mixed flow pump.
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A secondary requirement is to prevent cavitation occurring in the pump. This is likely to 
occur if the water level in the suction well is several metres below the pump. As cavitation in 
pumps has already been described in Section 7.7, it is not discussed further here.

Example 12.4: Design of a Simple Pumping Main

Given the pump characteristics as follows, determine the pump efficiency and 
power requirement for a pipeline of diameter 300 mm, length 5 km, roughness 0.03 
mm and a static lift of 10 m. Comment on the suitability of this pump and pipeline 
combination.

Pump characteristics

Discharge (L/s) 0 10 20 30 40 50 60 70

Head (m) 26.25 24.00 21.75 19.50 17.50 15.00 11.75 6.75

Efficiency (%) 0 28 51 68 80 85 80 64

Solution

 (a) Determine the pipeline characteristic by finding the frictional losses at the dis-
charges given in the earlier table. These are most readily found using the HRS 
charts or tables.

Pipeline characteristics

Discharge (L/s) 20 30 40 50 60 70

Friction head (m) 1.35 2.8 4.7 7.25 9.75 13.5

Friction+static head (m) 11.35 12.8 14.7 17.25 19.75 23.5

 (b) Draw the characteristic curves as shown in Figure 12.8.
 (c) The operating point is given by

Qd = 45.5 L/s Hp = 16 m η = 84%

  The power consumption is given by:

P = ρgQH/η
= 103 × 9.81 × 45.5 × 10−3 × 16/0.84 W
= 8.5 kW

The operating point is satisfactory since the system is operating very close to the 
peak efficiency point of the pump.
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12.5.3  economics of Pumping Mains

For the required design discharge, a variety of possible pump and pipe combinations are 
possible. The final choice is not determined purely on the basis of hydraulic considerations. 
It is necessary to determine the least-cost solution. There are three basic elements involved:

 1. The pipe cost
 2. The pump cost
 3. The running cost

Pipe costs increase with diameter, but, conversely, pump and running costs will decrease with 
pipe diameter (because of smaller frictional losses). Hence a least-cost solution is possible, as is 
shown in Figure 12.9.

The normal method for finding this solution is as follows:

 1. Estimate the capital cost of pipes (material and laying) and the associated pumps for 
various pipe diameters

 2. Convert capital cost to annual cost by assessing interest charges or by discounted cash 
flow analyses

 3. Estimate the annual power charges and other running costs (maintenance, etc.)
 4. Tabulate the results and compare

Details of such calculations are given in Twort et al. (2000).
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FIgure 12.8 Characteristics curves for Example 12.4.
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12.5.4  detail design

A typical centrifugal pump installation is shown in Figure 12.10. The pump is installed between two 
valves for easy removal in case of repair or maintenance. On the suction side, a combined bellmouth 
entry and strainer are necessary, together with a non-return valve to ensure self-priming (i.e., the 
pump is full of liquid). On the delivery side, a second non-return valve is necessary to prevent damage 
from possible surge pressures. In addition, an air valve and flow meter (venturi type) are desirable.

12.6  surge ProteCtIon

12.6.1  general description

So far, this chapter has been concerned with steady flows in full pressurised pipelines. However, 
unsteady (or surge) conditions occur in most major pipe systems, as outlined in Chapter 6. 
A primary cause of surge is the operation of control valves, but there are other causes such as 

Total cost

Pipe cost

Running costs

Pump costs
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t

FIgure 12.9 Variation of pumped pipeline costs with pipe diameter.
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FIgure 12.10 Typical centrifugal pump installation.
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the starting or stopping of a pump. Other features of a pipeline (reservoirs, junctions, bifurca-
tions, etc.) will influence the transmission or reflection of the surge through the system. It is 
therefore essential to check for surge propagation under all operating conditions. Computational 
modelling using the method of characteristics (see Chapter 14) would generally be used. If 
surge pressures are likely to be problematic, then appropriate protection measures must be 
taken. A sample of the various available methods is given subsequently, which can be considered 
under the following headings:

Hydraulic (Surge towers, air chambers, bypasses)
Mechanical (flywheels)
Electrical (motors and starters for pumps)

Surge towers are incorporated in most hydroelectric schemes and are considered first.

12.6.2  simple surge tower

This is one of the simplest devices to analyse and to design. It consists of a large vertical tube con-
nected at its base to the pipeline (Figures 12.11 and 12.12). The top is open to the atmosphere. 
It is usually sited as close as possible to the controlling boundary which is causing the  surge. 

FIgure 12.11 Construction of the surge tower for Dinorwig pumped storage scheme, Wales. (Photograph 
courtesy of CEGB/John Mills.)
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With the valve open and steady flow in the pipe, the equilibrium water level in the surge tower 
will correspond to the pressure in the pipeline (i.e., it will lie on the hydraulic gradient). If the 
control valve is suddenly and completely closed, a rise in pressure is generated as the water 
decelerates. This causes a rise in the surge tower level. Since the valve is shut, the discharge 
in the pipe is all diverted into the surge tower. Thus, at time t after valve closure, if V is the 
mean velocity in the pipeline and VST the mean velocity in the surge tower, the continuity equa-
tion may be written

 VA V A= ST ST  (12.6a)

The rise in the water level in the surge tower means that the difference between reservoir 
level and surge tower level is now zST. The corresponding pressure difference, δp, is given by

δ ρp gz= ST

The resultant force acting on the fluid in the pipeline is obtained by taking the sum of the forces due 
to the pressure difference δp, the frictional resistance and any local losses. Taking each force in turn,

force due to pressure difference ST= =δ ρpA gz A

resistance due to pipe friction f= =ρ ρ λ
gh A

g LV A
gD

2

2

resistance due to local losses L
L= =ρ ρ

gh A
gK V A

g

2

2

(e.g., at the entry to the surge tower).

Reservoir
Hydraulic  gradient

Control
valve

VST

V1

–zST
hf

AST = Area of surge tower

A = Area of pipe

L

V

A1 = Area of pipe

FIgure 12.12 Surge tower.
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Since L and D are constant, and λ will be assumed to remain constant, the pipe friction 
resistance term may be written

ρ ρgh A gK V A gf f
2 /2=

where Kf = λL/D. The total resistance will retard the flow of water in the pipeline upstream of 
the surge tower. The mass of water in the pipe is ρAL, and its rate of change of momentum is 
ρALdV/dt. The momentum equation may therefore be written as

− − + +
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Dividing by ρA throughout,
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(12.7)

As it stands, this is not a standard differential equation, but it can be converted into a homoge-
neous equation as follows. The surge tower velocity, VST = dzST/dt, so (12.6a) may be written as
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Equation 12.7 may therefore be rewritten as

 

− − + 





+ 

















g z
K

g
z
t

A
A

K
g

z
t

A
A

f L
ST

ST ST ST STd
d

d
d2 2

2 2

== L
z
t

A
A

d
d

ST ST
2

2

 

(12.8)

This is a second-order differential equation, and readers who are familiar with these equa-
tions will recognise that it represents a “damped” harmonic motion. A graph of zST against t 
would therefore take the form of a sinusoidal curve whose amplitude decreases with time. 
Unfortunately, (12.8) is not quite in the standard mathematical form, due to the fact that the 
turbulent flow leads to resistance in terms of V2 or (dz/dt)2. It will be shown in Chapter 14 that 
a numerical solution is available. However, some useful information may be obtained if the fric-
tion and local loss terms are ignored. This yields
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(12.9)
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Now this is a standard second-order equation, which represents an undamped harmonic motion. 
A graph of zST against t would take the form of a sine curve. It is easily shown that the maximum 
amplitude of the curve is

 
z V

L
g

A
A

ST
ST

max = ± 0

 
(12.10)

where V0 is the original velocity of flow in the pipeline before valve closure.
The periodic time Tp may also be deduced:

 
T

L
g

A
A

p
ST= 2π

 
(12.11)

Equations 12.8 and 12.9 both draw broadly the same picture of events. When the valve is shut, 
the pipe flow is diverted into the surge tower. The water level in the tower accelerates upwards, 
overshoots the reservoir water level and comes to rest at elevation zSTmax. The difference in head 
between the surge tower and the reservoir cannot be sustained, so the surge tower level begins 
to fall and water flows in the negative direction in the pipeline. The surge tower level falls until 
it comes to rest at some level (zSTmin, say) below reservoir level. The flow then reverses and the 
surge tower level begins to rise again, and so on.

The design of a surge tower for a particular pipeline would be carried out in a number of 
stages. The effectiveness of the surge tower in suppressing excessive surge pressures is usually 
checked by modelling the system on a computer. A simple computational model for predicting 
surge tower behaviour is given in Chapter 14.

12.6.3  surge Protection for Hydroelectric schemes

A typical high head hydroelectric scheme (Figure 12.13) might consist of a reservoir feeding a 
low pressure tunnel or pipeline. The tunnel might be of considerable length and have a small 
gradient. At the end of the tunnel, the system would be divided into a series of high pressure 

Surge tower

Reservoir

Penstocks

Turbine house

Tailrace

Low-pressure
tunnel

FIgure 12.13 Typical hydroelectric scheme.
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penstocks laid down the hillside to the turbine house. It might well be convenient to construct 
the surge tower as a vertical excavation at the downstream end of the tunnel, as shown. The 
tunnel is thus protected from excessive surge pressures which could cause major damage.

The surge tower also provides a small reservoir of water so that when the flow into the tur-
bines is increasing (to meet electrical demand) and the pressure at the downstream end of the 
tunnel falls (in line with the hydraulic gradient), water flows from the tower and into the pen-
stocks. This helps to prevent excessively low transient pressures.

The equations of motion for a simple surge tower developed earlier were based on the 
assumption of complete control valve closure. In practice, the discharge would be adjusted as 
required to meet electrical demand. As the discharge was being altered, some water would flow 
into or out of the surge tower, and some would flow along the pipe. The continuity equation 
then becomes

VA V A V A
dz
dt

A− = = 



1 1 ST ST

ST
ST

or, in finite difference form,

 δ δz VA V A t AST ST/= −( )1 1  (12.12)

The flow into a water turbine is controlled by a mechanism known as a governor which is 
designed to automatically maintain a constant turbine speed to match the requirements of the 
generator. A change in the flow due to the governor will produce a change on the water level 
in the surge tower. In a badly designed system, where the surge tower and governor are mis-
matched, this interaction can produce unstable flow conditions. For this and other reasons, a 
variety of surge tower designs have been developed (see Novak et al., 2007).

12.6.3.1   Surge Protection in Pumped Mains

Unsteady flow can be generated by pumps when they are started or stopped. During start-up, 
the pump operating point moves from zero discharge to its steady-state condition (Section 
12.5). If a pump is switched off, or a power failure occurs, pressure downstream of the pump 
will drop. Surge pressures should be checked for both conditions.

The following approaches can be applied, individually or in various combinations, to mini-
mise the effects of surge.

12.6.3.1.1   Electrical Drives
With a few exceptions, most major pump installations are driven by electric starters and motors. 
There are various types, with differing implications for generating surge. This must be considered 
when selecting the drive for a particular pipeline system (see Twort et al., 2000; Ellis, 2008).

12.6.3.1.2   Flywheels
If a flywheel (a heavy metal disc) is attached to the drive shaft between the electric motor 
and the pump, the inertia is increased. This reduces the rates of acceleration and deceleration, 



445Pipeline Systems

during start-up and stopping, and hence reduces surge. However, it increases the mechanical 
loading on the pump mountings and also increases the electrical load, so it is not always a practi-
cal option.

12.6.3.1.3   Bypassing
This entails the installation of an additional pipeline (Figure 12.14) around the pump. This 
pipeline incorporates a non-return valve. During normal operation, the pressure downstream 
of the pump is higher than that upstream, so the valve remains closed. If the pump fails and 
the pressure downstream falls below the upstream pressure, then the valve opens and flow is 
admitted, limiting the fall in pressure. The bypass is also useful in long pipelines, where there 
may be a number of pumping stations along the pipeline. At times of low demand, some of the 
pumps may be turned off, and the flow will then proceed through the bypass. Bypassing will not 
work in pipelines where there is negative pressure upstream of the pump.

12.6.3.1.4   Air Chambers
An air chamber is, in effect, a very compact surge tower with its upper end capped so as to 
form an air-tight cylinder (Figure 12.15). Under normal operating conditions, the chamber is 
partially filled with liquid. The pressure of the air trapped above the liquid must be the same 
as that of the liquid. Consequently, under surge conditions, the liquid level in the chamber will 
rise or fall to correspond with pressure in the pipeline, in much the same way as that for the 
surge tower. Air chambers can usually be designed to be much more compact than surge towers.

Equations of motion can be developed for a pipeline with an air chamber which are similar 
to those for a surge tower (12.6b and 12.7). However, the momentum equation must include an 

Flow

Pump

Non-return valve

FIgure 12.14 Bypass system.

Pressure = p
Volume = v Air chamber

Flow
Pump

Non-return valve

Air

FIgure 12.15 Air chamber.
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extra term to account for the air pressure, p, and air volume, v, in the chamber. This is usually 
based on the relationship pvn = constant, where 1.0 < n < 1.4.

For large pumping schemes, multiple air chambers are used. Volumes of air and liquid in the 
chamber must be sufficient to absorb the maximum surge pressure and to prevent the pressure 
in the pipeline falling to vapour pressure. Air chambers require checking regularly to maintain 
air volumes since air is soluble in water.

12.7  suMMary

The design of a major pipeline requires care and attention to detail if a long trouble-free service 
life is to be achieved. It was possible to cover only the main aspects here. Readers who wish 
to extend their knowledge of modern design practice are referred in the first instance to Ellis 
(2008), Novak et al. (2007) and Twort et al. (2000).
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Chapter 13

Hydraulic structures

13.1 IntroduCtIon

Hydraulic structures are devices which are used to regulate or measure flow. Some are of fixed 
geometrical form, while others may be mechanically adjusted. Hydraulic structures form part 
of most major water engineering schemes, for irrigation, water supply, drainage, sewage treat-
ment, hydropower, etc. It is convenient to group the structures under three headings:

 1. Flow-measuring structures, e.g., weirs and flumes
 2. Regulation structures, e.g., gates or valves
 3. Discharge structures, e.g., spillways

As the reader progresses through the chapter, it will be observed that for most of these struc-
tures, the depth–discharge relationship is based on the Bernoulli (or specific energy) equation. 
However, some modifications have to be incorporated to account for the losses of energy which 
are inevitably incurred in real flows.

An immense amount of experimental and theoretical information has been accumulated 
during the last 100 years, which is reflected in the body of literature now available. The most 
succinct statements of present knowledge are usually to be found in the relevant British, 
International or American standards. However, standards may not necessarily be found to cover 
the more unusual structures.

By	the	end	of	this	chapter,	you	should

 ◾ Know the different types of weir and flume and how they are used to estimate dis-
charge in open channels

 ◾ Know the different types of spillway and their applications
 ◾ Understand the range of techniques used for energy dissipation downstream of a 

spillway
 ◾ Know the different types of flow control gate and be able to estimate the discharge 

through a given type of gate
 ◾ Be able to numerically model the discharge over lateral flow structures
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13.2 tHIn Plate (sHarP-Crested) WeIrs

This type of device is formed from plastic or metal plate of a suitable gauge. The plate is set 
vertically and spans the full width of the channel. The weir itself is incorporated into the top 
of the plate. The geometry of the weir depends on the precise nature of the application. In this 
section, we will concentrate on two basic forms, the rectangular weir and the vee (or triangular) 
weir. However, other forms are available, such as the compound weir.

It has already been stated that the primary purpose of a weir is to measure discharge. Once 
the upstream water level exceeds the crest height PS, water will flow over the weir. As the depth 
of water above the weir (h1) increases, the discharge over the weir increases correspondingly. 
Thus, if there is a known relationship between h1 and Q, we need only to measure h1 in order 
to deduce Q. The "ideal" relationship between h1 and Q may readily be derived for each weir 
shape on the basis of the Bernoulli equation. If these relationships are compared, it is evident 
that the triangular weir possesses greater sensitivity at low flows, whereas the rectangular weir 
can be designed to pass a higher flow for a given head and channel width.

13.2.1 rectangular Weirs

There are two types of rectangular weir (see Figure 13.1):

 1. "Uncontracted" or full-width weirs comprise a plate with a horizontal crest extend-
ing from one side of the channel to the other – the crest section is as illustrated in 
Figure 13.2.

 2. A "contracted" weir, by contrast, has a crest width which is less than the channel width.

Since the operation of a weir is based on the use of a gauged depth to estimate the discharge, 
we must know how these two quantities are related. The actual flow over a weir is quite com-
plex, involving a three-dimensional velocity pattern as well as viscous effects. The simplest 
method of developing a numerical model which represents a weir is to use the Bernoulli equa-
tion as a starting point. An idealised relationship between depth and discharge is obtained. 
This relationship can then be modified to take account of the differences between ideal and 
real flows.

13.2.1.1 Rectangular Weir Equation

Before developing this equation, it should be recalled that, even with an ideal fluid, the velocity 
distribution at the weir is not uniform (see Section 2.8) due to the variation in static pressure 
with depth. For this reason, the Bernoulli equation is first applied along one streamline, as 
shown in Figure 13.2. Thus, the total energy on the streamline A–A at Station 1 is

H
p
g

z
u
g

1
1

1
1
2

2
= + +

ρ
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FIgure 13.2 Flow over a thin plate weir.
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FIgure 13.1 Rectangular weirs: (a) full-width weir, (b) contracted weir, and (c) flow over weir – general view.
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Writing z1 + p1/ρg = y1, we obtain H y u g1 1 1
2 2= + / . At Station 2, the liquid passes over the weir 

and forms an overspilling "jet" whose underside (or "lower nappe") is exposed to the atmo-
sphere. The pressure distribution here cannot be of the linear hydrostatic form, and it is usual 
(after Weisbach) to assume that p2 is atmospheric pressure. Therefore, H z u g2 2 2

2 2= +  and, 
assuming that no losses occur,

H H1 2=

i.e.,
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u2 is thus a function of y1 and z2, i.e., u2 varies with elevation above the weir crest. At Station 2, 
the ideal discharge through an elemental strip of width b and depth δz is

δ δ δQ u b z g y z
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In order to integrate the equation, it is necessary to know the limiting values of z2. If the datum 
is now raised to the same elevation as the weir crest, the lower limit becomes z2 = 0. A value 
for the upper limit may be obtained by making the rather drastic assumption that the elevation 
of the water surface at Station 2 is the same as that at Station 1 and therefore that y1 = z2 = h1. 
(This implies a horizontal water surface and therefore that streamlines at Station 2 are parallel 
and horizontal. This is physically impossible.) With these assumptions,
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(13.1)

as b is constant for a rectangular weir.
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If u g1
2 2/  is negligible compared with h1, then (13.1) reduces to

 
Q b ghideal = − 2

3
2 1

3 2/

 
(13.2)

13.2.1.2 Modifications to the Rectangular Weir Equation

Due to the converging pattern of streamlines approaching the weir, the cross-sectional area of 
the jet just downstream of the weir will be significantly less than the cross section of the flow at 
the weir itself. This "contraction" or vena	contracta in the flow implies that the actual discharge, 
Q, will be less than Qideal.

There are two further discrepancies in the theory:

 1. The pressure distribution in the flow passing over the weir is not atmospheric but is 
distributed as shown in Figure 13.3

 2. The flow approaching the weir will be subject to viscous forces: this produces two 
effects – (a) a nonuniform velocity distribution in the channel and (b) a loss of energy 
between Stations 1 and 2

It was seen in Chapter 2 that it is conventional for Q and Qideal to be linked through the experi-
mentally derived coefficient, Cd, i.e., Cd = Q/Qideal. Cd is not strictly a constant. It can be shown 
by dimensional analysis that Cd = f{Re, We, h1/PS}. However, provided that the overspilling liq-
uid forms a "jet" whose lower nappe springs clear of the weir plate, the value of Cd will not vary 
greatly with Q (or Re). The problems of calibration (i.e., evaluating Cd experimentally) become 
far greater if the nappe clings to the downstream face of the weir plate. Such conditions tend 
to arise when the discharge is small. Under these conditions, the effects of viscosity and surface 
tension combine to bring about unstable, fluctuating flow conditions. Since the value of h1 is 
small at low flows, an accurate determination of Cd becomes impracticable. It will be seen later 
that these considerations lead to alternative weir shapes.

Pressure distribution

θ

y2 y3

FIgure 13.3 Section through nappe.
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A vertical section through the overspilling water passing through any weir would clearly show 
that a vertical contraction occurred. However, in the case of a contracted weir, contraction addi-
tionally occurs at the sides of the jet. The jet of an uncontracted weir clings to the channel sides, 
so air cannot readily gain access to the underside of the nappe. Any air initially trapped beneath 
the nappe will tend to be entrained in the flow of water. This, in turn, implies the possibility of 
sub-atmospheric pressure beneath the nappe. For this reason, the nappe for an uncontracted weir 
may tend to be drawn towards the weir more readily than the jet of a contracted weir. In order 
to offset this, some uncontracted weirs incorporate a vent pipe to admit air to the underside 
of the nappe. As the falling jet strikes the channel bed downstream of the weir, it will usually 
deflect away from the weir and along the channel. This means that there must be a net force in 
the direction of the acceleration (see Figure 13.3). To produce this force, the depth y2 (between 
the weir and the falling jet) must exceed that at y3 downstream of the point of impact, such that
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(13.3)

(V = Q/A = Q/by). This mechanism also tends to reduce the volume of air under the nappe, 
especially for an uncontracted weir.

A number of empirical discharge formulae have been developed which incorporate Cd. For 
uncontracted weirs under free discharge conditions, two typical equations are as follows:

 1. The Rehbock formula
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which is valid for 30 mm < h1 < 750 mm, b > 300 mm, PS > 100 mm, h1 < PS 

 
or ft sSQ g h P b h= +( ) +( )
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 2. White’s formula
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(13.5)

which is valid for h1 > 20 mm, PS > 150 mm, h1 < 2.2 PS

or ft /sSQ h P b g h= +( ) +( )( )0 562 1 0 153 0 0031 1
3 2 3. . .

/

Ackers et al. (1978) suggest that the accuracy of the formulae depends, to a discernible extent, 
on the siting of the gauging station for measuring the upstream head (h1). They recommend 
that this should be at least 2.67PS upstream of the weir, to avoid undue drawdown effects. For 
British/International Standard recommendations, see BS ISO 1438:2008 and also see the Water	
Measurement	Manual (U.S. Bureau of Reclamation, 1967).
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For contracted rectangular weirs, Equation 13.1 for Qideal is applicable. However, the mag-
nitude of the actual discharge, Q, will be affected by the vertical and lateral contraction of the 
jet. A number of empirical equations have been developed to enable estimates of Cd to be made. 
Two such formulae are given as follows:

 1. The Hamilton–Smith formula is

 C h PSd /= −0 616 1 1. ( )  (13.6)

which is valid for B > (b + 4h1), h1/B < 0.5, h1/PS < 0.5, 75 mm < h1 < 600 mm, PS > 300 
mm, b > 300 mm. This has the advantage of simplicity and, therefore, ease and speed 
in use (B = channel width).

 2. The Kindsvater–Carter formula makes use of the concept of the "effective" head and 
width, he and be, where

h h k b b ke h e band= + = +( ) ( )

kh and kb are experimentally determined quantities which allow for the effects of 
viscosity and surface tension. It has been found that kh = constant = 0.001 m.

The formula is therefore
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, 1

and must be determined empirically, see BS ISO 1438:2008 for more information.

Example 13.1: Determination of Discharge for a Rectangular Weir

A long channel 1.5 m wide terminates in a full-width rectangular weir whose crest height 
is 300 mm above the stream bed. If the measuring station is recording a depth of 400 mm 
above the weir crest, estimate the discharge

 (a) Assuming a flow with a negligible velocity of approach (take Cd as 0.7)
 (b) Including velocity of approach (taking the Coriolis coefficient, α, as 1.1 and Cd 

as 0.7)
 (c) Using White’s formula
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Solution
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 (from (13.2))

 (b) If the approach velocity is to be incorporated, (13.1) must be used. However, u1 
is initially unknown. The equation is therefore solved by successive approxima-
tions. For the sake of simplicity, it is usual to assume that the velocity at Station 
1 is uniform, i.e., u1 = Q/A1 = V1.

First	trial. If Q = 0.784 m3/s (from (a)), then
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Second	trial.	V1 = 0.861/[(0.3 + 0.4) × 1.5] = 0.82 m/s; therefore,
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which is sufficiently accurate for practical purposes.
 (c) Using White’s formula (Equation 13.5),

Q = + ×
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13.2.2 "submergence" and the Modular limit

All of the earlier equations have rested upon the assumption that the downstream depth, y3, is 
too low to impede the free discharge over the weir. There is then a unique relationship between 
h1 and Q. This is known as "modular flow". Weirs are designed for modular operation. In the 
field, however, circumstances may arise in which modular operation is not possible. A partial 
blockage of the channel downstream of a weir might be an example of such circumstances.

Consider what happens to Q if h1 remains constant but y3 increases until it rises above the 
crest. Up to a certain limiting value of y3, h1 and Q will be unaffected. The modular limit of 
operation occurs when this limiting y3 has been reached. If y3 increases further, h1 will have to 
increase in order to maintain the discharge. The weir is then said to be "submerged". Thus, for 
a given upstream depth, the discharge through a submerged weir is less than the free discharge. 
Furthermore, the discharge is now related to the depths upstream and downstream of the weir 
(i.e., to h1 and h3(= y3 − PS)), and not just to h1. The measurement of h3 is problematical, since 
the surface of the water downstream of the weir is highly disturbed. If an estimate of the dis-
charge QS of a submerged weir has to be made, Villemonte’s formula may be used:

 

Q
Q

h
h

S = − 

















1 3

1

3 2 0 385/ .

 

(13.7)

where Q is the free discharge which corresponds to the upstream depth h1. Much information 
is given in BS ISO 1438:2008 and in Ackers et al. (1978).

13.2.3 vee Weirs

It has been stated that rectangular weirs suffer from a loss of accuracy at low flows. The vee weir 
largely overcomes this problem. The variation of b with height, together with the narrow nappe 
width in the jet, means that for a given increase in Q, the increase in h1 for a vee weir will be much 
greater than that for a rectangular weir. Conversely, the greater sensitivity limits the range of dis-
charge for which a vee weir can be economically applied. The underlying theory and assumptions 
are the same as that for the rectangular weir excepting, of course, the fact that b is not a constant but 
a function of z. Thus, the discharge through an elementary strip across the weir (Figure 13.4) will be
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so
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(13.8)

The approach velocity, u1, is almost always negligible for vee weirs in view of the smaller dis-
charges for which they are designed. Therefore,
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(13.9)

The value of Cd is a function of Re, We, θ and h1, and magnitudes are given in British/International 
Standards for a wide range of weirs. The 90° weir is probably the most widely used. As a first 
approximation, a Cd of 0.59 may be used for this angle.

13.2.4 Plate Weirs of special Form

A wide variety of weir shapes have emerged over the years. One example is the Sutro weir, in 
which the variation of b with z is such that Q is directly proportional to h1. Other examples 
include the trapezoidal weir and the compound weir (a rectangular weir with a vee weir sunk in 
its crest). The reader is directed to Ackers et al. (1978) for further information.

b

Upstream water level

h1

z2

PS

δz

θ

FIgure 13.4 Vee weir.
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13.3 long-Based WeIrs

In contrast to plate weirs, long-based weirs are larger and generally more heavily constructed 
(e.g., from concrete). They are usually designed for use in the field and consequently may have 
to handle large discharges. An ideal long-based weir has the following characteristics:

 1. It is cheaply and easily fabricated (perhaps off-site).
 2. It is easily installed.
 3. It possesses a wide modular range.
 4. It produces a minimum afflux (i.e., minimum increase in upstream depth due to the 

installation of the weir, also known as minimum backwater effect).
 5. It requires a minimum of maintenance.

There are a number of different designs, of which a selection is considered in detail.

13.3.1 rectangular (Broad-Crested) Weir

Rectangular weirs are solid weirs of rectangular cross section, which span the full width of 
a channel. They form part of the family of critical depth metres introduced in Chapter 5. 
However, it is worth recapitulating the following facts:

 1. A "streamlined" hump placed on the bed of the channel results in a local increase in the 
velocity of flow and a corresponding reduction in the elevation of the water surface.

 2. Given a hump of sufficient height, critical flow will be produced in the flow over the 
hump. There is then a direct relationship between Q and h1, i.e., the flow is modular. 
Long-based weirs are designed for modular flow.

By definition, a rectangular weir is not streamlined. This, in turn, implies that the streamlines at 
the upstream end of the weir will not be parallel, since the flow will be accelerating. If frictional 
resistance is ignored, then the streamlines will become parallel and the flow becomes critical 
given a sufficient length of crest. It is then possible to derive a straightforward expression for 
Qideal in terms of H1 (see Figure 13.5), as was seen in Chapter 5 N B H h V g. . 1 1 1

2 2= +( )/ . Thus, 
as yc = 2/3H1,

Q g b Hideal = 





2
3

1

3 2/

In SI units, this becomes

 Q bHideal m /s= 1 705 1
3 2 3. /

 (13.10)

(in ft-s units, Q bHideal ft s)./= 3 09 1
3 2 3. /
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This equation may be modified to account for the differences between real and ideal fluids, 
using the relationship Q/Qideal = Cd:

 Q C bH CbH= × =d m /s1 705 1
3 2

1
3 2 3. / /

 
(13.11)

In reality, the flow over a long-crested rectangular weir is more complex than ideal flow. Frictional 
shearing action promotes the growth of a boundary layer, which in turn implies that the water 
surface profile takes the form shown in Figure 13.5b. Additionally, as the flow approaches the 
critical condition, there is a tendency for ripples to form on the surface.

The value of Cd has to be derived empirically. Singer proposed an equation for Cd in the form

 C Cd F= 0 848.  (13.12)

The correction factor, CF, is a function of h1/L and h1/(h1 + PS) and is presented in graphical 
form in Ackers et al. However, as a first approximation, where 0.45 < h1/L < 0.8 and 0.35 < h1/
(h1 + PS) < 0.6,
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(13.13)

These equations presuppose the establishment of critical flow over the crest. If the stage down-
stream of the weir rises above the stage which permits critical depth at the weir, then the weir will 
be submerged. An equation for Qideal for submerged flow can be developed, based on the energy 
and continuity equations. However, it is more usual to apply an empirical submergence correction 
factor (=Qs/Q), which will be a function of both upstream depth (h1) and depth over the crest 
(h2). The modular equation (13.11) can be multiplied by this factor to give the actual discharge.

h1

PS

L(a)

(b)

Boundary layer

Separation

FIgure 13.5 Broad-crested weir: (a) flow over broad-crested weir and (b) boundary layer growth.
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13.3.2 round-nosed Weirs

These are so named because of the radius formed on the leading corner. In other respects, they 
resemble the broad-crested weir. The incorporation of the radius makes it more robust of the 
two and also means that the discharge coefficient is insensitive to minor damage. The magni-
tude of Cd is higher than that for a rectangular weir. However, very little is known about the 
performance of such weirs under submerged conditions.

It is worth noting that the region just downstream of any weir can be liable to scouring, 
especially in natural channels. For this reason, some form of "stilling" arrangement may have to 
be incorporated.

13.3.3 Crump Weirs

In 1952, E. S. Crump published details of a weir with a triangular profile, which had been 
developed at the Hydraulics Research Station. This was claimed to give a wide modular range 
and also to give a more predictable performance under submerged conditions than other long-
based weirs (Figure 13.6).

Crump proposed upstream and downstream slopes of 1:2 and 1:5, respectively, which were 
based on sound principles. The upstream slope was designed so that sediment build-up would 
not reach the crest. The downstream slope was shallow enough to permit a hydraulic jump to 
form on the weir under modular flow conditions, thus providing an integral energy dissipator. 
Also, under submerged conditions, losses are not too high and the afflux is minimised. The 
primary gauging station is upstream of the weir. However, there is a second gauging point 
on the weir itself, just downstream of the crest. The second reading is used when the weir 
is submerged. The accuracy of the weir depends on the sharpness of the crest, so some weirs 
incorporate a metal insert at the crest. The secondary gauging tappings are drilled into the 
insert. The secondary tappings are sited near the crest in order to be clear of the disturbed flow 
further downstream.

Secondary tappings

1:2 slope
1:5 slope

h2
h1

V1
2/2g

PS

FIgure 13.6 Crump weir.
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The discharge equation for a Crump weir is in the form / /Q C C bg h= d v
1 2

1
3 2, which is clearly 

based on the same concepts as the corresponding equation for a rectangular weir. The value of 
Cd is about 0.63. The value of Cv varies with the ratio h1/(h1 + PS). For submerged flow,
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(13.14)

where hp is the head at the second gauging point. The onset of submergence occurs when down-
stream depth ≥0.75 × (upstream depth).

Since 1952, other variants have been developed, e.g., weirs with upstream and downstream 
slopes both 1:2. However, some of these designs have a less stable Cd and inferior submerged 
performance (see Ackers et al., 1978).

Example 13.2: Discharge Over a Broad-Crested Weir

A reservoir has a plan area of 100,000 m2. The discharge from the reservoir passes over 
a  rectangular broad-crested weir, having the following dimensions: b = 15 m, PS = 1 m, 
L = 2 m. Estimate the discharge over the weir if the reservoir level is 1 m above the weir crest.

If there is no inflow into the reservoir, estimate the time taken for the reservoir level to 
fall from 1 to 0.5 m above the weir crest. Assume that Cd remains constant.

Solution

From (13.13),

CF = + ×





+
+

−





=0 91 0 21
1
2

0 24
1

1 1
0 35 1 051. . . . .

Therefore,

Cd = × =0 848 1 051 0 891. . .

Substituting in (13.11),

Q = × × × =0 891 1 705 15 1 22 79 3. . .3/2  m /s

If the level in the reservoir falls from 1 m to 0.5 m, then let the upstream depth = y 
when time = t seconds after commencement of fall in reservoir level:

Q y y= × × × =0 891 1 705 15 22 793 2 3 2 3. . ./ /  /m s
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Therefore, during a time interval δt, the outflow will be

− = −Qδ δt y t22 79 3 2 3. / m

and the corresponding reduction in reservoir water level will be −δy. Thus, outflow will 
also be given by the product (plan area × δy) = −100,000 δy. Therefore,

100,000 22.79  3/2δ δy y t=

i.e.,

δ δ
t

y
y

= 100 000
22 79 3 2

,
. /

Integrating,

t
y

y y
= = −
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.

.
d

== ( )3635s or approx 1h.

13.4 FluMes

This term is applied to devices in which the flow is locally accelerated due to the following:

 1. A streamlined lateral contraction in the channel sides
 2. The combination of the lateral contraction, together with a streamlined hump in the 

invert (channel bed) (see Figure 13.7)

The first type of flume is known as a venturi flume, and it has already been briefly introduced in 
Section 5.9. Flumes are usually designed to achieve critical flow in the narrowest (throat) sec-
tion, together with a small afflux. Flumes are especially applicable where deposition of solids 
must be avoided (e.g., in sewage works or in irrigation canals traversing flat terrain).

A general equation for the ideal discharge through a flume may be developed on the basis of 
the energy and continuity principles.

From the energy equation,
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but

V
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Substituting for V1 and V2 and rearranging,
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(13.15)

If critical flow is attained in the throat, then y2 = 2/3ES. If this is substituted into (13.15), then 
(in SI units)

 Q b E b C yideal S v m /s= =1 705 1 7052
3 2

2 1
3 2 3. ./ /

 
(13.16)

b b2

Entry �roat
Length = L

Exit transition

(b)

(a)

(c)

y1 y2 y3

FIgure 13.7 Venturi flume. (a) View from above showing varying width of flume. (b) Long section – level invert. 
(c) Raised invert.



463Hydraulic Structures

where Cv is the velocity of approach correction factor (in ft-s units, Q b C yideal v ft /s).= 3 09 2 1
3 2 3. /  

The actual discharge is

 Q b C C y= 1 705 2 1
3 2 3. /

d v m /s  (13.17)

(which is the same as (5.34)).
Although the flatbed venturi flume is simpler to construct, it is sometimes necessary to raise 

the invert in the throat to attain critical conditions. For either the flat or raised floor, the flume 
throat length should ideally be sufficient to ensure that the curvature of the water surface is 
small, so that in the throat the water surface is parallel with the invert.

A special group of "short" flumes are less expensive and more compact than the "ideal" 
throated flume. However, the water surface profile varies rapidly, and a theoretical analysis is 
not really possible. Empirical relationships must therefore be developed. For this reason, com-
pact flumes tend to be of standard designs (e.g., the Parshall Flume) for which extensive calibra-
tion experiments have been carried out (see U.S. Bureau of Reclamation, 1967).

Example 13.3: Venturi Flume

An open channel is 2 m wide and of rectangular cross section. A venturi flume with 
a level invert, having a throat width of 1 m is installed at one point. Estimate the 
discharge

 (a) If the upstream depth is 1.2 m and critical flow occurs in the flume
 (b) If the upstream depth is 1.2 m and the depth in the throat is 1.05 m

Take Cv = 1 and Cd = 0.95.

Solution

 (a) If the flow in the throat is critical, then using (13.17),

Q = × × × =1 705 0 95 1 0 1 2 2 133 2 3. . . . ./  m /s

 (b) If y1 = 1.2 m and y2 = 1.05 m, we must use (13.15):

Q = × × × −
× × −

=0 95 2 0 1 2
2 9 81 1 2 1 05
2 1 2 1 1 05 1

1 9032
3. . .

. ( . . )
( . . )

.
/

m /s

The apparent ease of this approach (for flumes or for long-based weirs) to some 
extent disguises a number of difficulties which the designer must face. These are 
discussed in the next section.
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13.4.1 Flume design Methodology

 1. The principal obstacle to modular operation is submergence due to high tailwater lev-
els. To obtain modular conditions at low discharge, it is necessary to use a narrow 
throat combined with a small expansion angle in the exit transition. This approach 
suffers from two disadvantages:

 a. It is expensive.
 b. It will cause a large afflux at high discharges.

To illustrate the effect of installing a flume, Figure 13.8a shows how y1 varies with Q 
for two different throat widths. The appropriate values of yn are also given. The height 
of the banks upstream will impose a maximum limit on the afflux, which implies a 
corresponding lower limit on the value of b2. Incorporating a raised throat invert in the 
form of a streamlined hump often assists in deferring submergence. Indeed, it may be 
possible to improve the matching of the flume to the channel by raising the invert and 
increasing b2.

 2. The next problem is to determine the value of Cd. The flow in the main channel 
upstream probably approximates to a steady fully developed uniform flow. However, 
the flume is normally of a different material and surface roughness from that of the 
channel. Consequently, as the flow passes through the flume, a boundary layer appro-
priate to the surface of the flume will develop. The boundary layer will influence the 
values of Cd and Cv. It may be assumed (a) that boundary layer growth commences at 
the entry to the throat and (b) that the control is at the downstream end of the throat 
where the boundary layer thickness is greatest (Figure 13.8b). The boundary layer has 
the effect of reducing the values of y1 and b2 to (y1 − δ*) and (b2 − 2δ*), respectively. 
So, for a rectangular flume and channel,

 Q b yideal ∝ 2 1
3 2, /

y 1
 (m

)

b2 = 0.38b

b2 = 0.5b

yn

Q (m3/s)

b2

(b)(a)

δ

FIgure 13.8 Flume design. Effect of flume throat width on y1. (a) Relationship between y1 and Q for two throat 
widths. (b) Reduction in throat area due to boundary layer.
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and
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 3. Matching flume geometry to a given channel must be determined by trial and error. For 
a flume and channel of rectangular cross section, this is quite straightforward. A limit-
ing value of y1 must be related to the maximum flood discharge. A corresponding initial 
value of b2 may then be obtained:

b
Q

y
2

1
3 21 705

=
. /

assuming modular flow, and with b2 in metres.
In order to estimate Cd and Cv, δ* must first be evaluated. For a first approximation,

 δ* .= 0 003L  (13.20)

which is valid for Re > 2 × 105 and 105 > L/kS > 4000 as given in the International 
Standard, ISO 4359-1983 (NB a more detailed method for estimating δ* is presented 
in Annex D of the Standard). Also the throat length L should be not less than 2y1.

The value of b2 may then be checked:

 b
Q

C C y
2

1
3 21 705

=
. /

d v
 (13.21)

and the conditions downstream of the flume should then be assessed to ascertain 
whether submergence is a potential problem.

For flumes and channels which are not of rectangular section, the process remains essen-
tially the same. However, the discharge function, Q y/ . /1 705 1

3 2, will now vary with depth.
The art of "matching" lies in designing a flume for which the variation of discharge 

function with ES1 or y1 approximates closely to the corresponding variation for the 
channel. For a more detailed treatment of this problem, Ackers et al. (1978) should be 
consulted.

 4. The designer should check the range of discharge over which modular conditions apply:
 a. As a starting point, and assuming that the flow downstream of the flume is 

subcritical, ISO 4359-1983 states that the specific energy upstream should be 
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at least 1.25 times that downstream for a full-length exit transition. If the exit 
transition is truncated, this figure increases to 1.33 times the downstream spe-
cific energy.

 b. An alternative method, as outlined next, is due to Bos (1978). Starting with the 
equation for modular flow,

Q C C b E= ×constant d v S2 1
3 2/

or

Q C b E= ×constant v S2 2
3 2/

Hence

 E C ES d S1
2 3

2
/ =  (13.22)

In the exit transition, there will be losses of energy due both to friction and to "separation". This 
may be expressed as
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(13.23)

(see Figure 13.7).
The frictional head loss may be deduced from an appropriate equation (e.g., the Manning 

equation). The separation loss coefficient CL has been evaluated empirically (Bos, 1978): typi-
cal values are CL = 0.27 for a 28° included exit angle, CL = 0.68 for a 52° included exit angle.

If (13.22) is substituted into (13.23), then, with some rearrangement,
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This will apply as long as the hydraulic jump is downstream of the exit. Therefore, modular 
conditions will certainly exist if
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(13.24)

A similar approach may be applied to flow over long-based weirs.
It is not possible to predict the modular limit precisely

 1. Because Cd and CL cannot be accurately estimated
 2. Because it is difficult to estimate the location of a hydraulic jump if it occurs in the exit 

transition

In order to ensure that the streamlines in the throat are parallel, the length of the throat section 
should be at least twice ES1. For "short" flumes, of course, this criterion is not met.

The method outlined in this section will now be applied.
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Example 13.4: Flume Design Using Boundary Layer Theory

A flume is to be installed in a rectangular channel 2 m wide. The bed slope is 0.001, and 
Manning’s n is 0.01. When the flume is installed, the increase in upstream depth must 
not be greater than 350 mm at the maximum discharge of 4 m3/s. Take CL = 0.27 (28° 
expansion).

Solution

For the maximum discharge (using Manning’s equation),

4 2
0 01

0 001
2 3

1 2= ×y
R

n

/
/

.
.

therefore yn = 1.0 m.
For a first trial, take b2 as 1.5 m. Then,

ES1
3 2 4

1 705 1 5
/

. .
�

×

so ES1 = 1.35 m. Hence y1 = 1.2 m. Assume throat length = 2 × 1.35 = 2.7 m. Then,
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=Cv

Therefore,

y1
3 2 4

1 705 0 98 1 195 1 5
/

( . . . . )
=

× × ×

so y1 = 1.213 m. This is acceptable (y1 < yn + 0.35). If the first trial produces an unaccept-
able result, further trials must be undertaken.

The normal depth for the channel has been calculated earlier. It is necessary for the 
engineer to ascertain the following:

 1. Whether free discharge is attained with this depth.
 2. The downstream depth which corresponds to the modular limit. Here the ILRI 

method (Equation 13.24) is used.
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To solve the equation, V3 must be known. For a first approximation, assume ES3 = ES1. 
Hence, y3 = 0.48 m and V3 = 4.17 m/s. The hydraulic gradient is

S
Q n
A Rf 2 3

2 2

2 4 3− = /

In the exit transition, both width and depth of flow are varying. As an approximation, the 
cross-sectional area and hydraulic radius are calculated for the throat.
Critical depth in the throat is 0.9 m (=2/3 ES1). Thus,

Sf 2 3
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For a 28° exit angle, the length of the transition is 1 m for an expansion of 0.5 m; there-
fore, hf2−3 = 0.0031 m.

Also, for critical flow in the throat, V gy2 22 963= =. ( )m/s . From (13.24),

ES3 2 3
2

1 35
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.
.

/= − −
× ×

−

Therefore, ES3 = 1.31 m, and hence y3 = 0.5 m, V3 = 4 m/s, Fr3 = 1.806. Assuming that 
y4 is the (supercritical) depth of flow just downstream of the flume exit and that y5 is the 
(subcritical) depth downstream of the hydraulic jump, then, approximately y4 ≃ y3, and 
the hydraulic jump (conjugate depth) equation (Equation 5.28) is used to estimate y5. 
Hence, y5/y4 = 2.10, so at the modular limit, y5 = 2.1 × 0.5 = 1.05 m.

Naturally, this calculation could be repeated for a series of discharges to cover the 
whole operational range.

13.5 sPIllWays

The majority of impounding reservoirs are formed as a result of the construction of a dam. By 
its very nature, the streamflow which supplies a reservoir is variable. It follows that there will 
be times when the reservoir is full and the streamflow exceeds the demand. The excess water 
must therefore be discharged safely from the reservoir. In many cases, to allow the water simply 
to overtop the dam would result in a catastrophic failure of the structure. For this reason, care-
fully designed overflow passages – known as "spillways" (Figure 13.9) – are incorporated as part 
of the dam design. The spillway capacity must be sufficient to accommodate the "largest" flood 
discharge (the probable maximum flood or 1 in 10,000 year flood) likely to occur in the life of 
the dam. Because of the high velocities of flow often attained on spillways, there is usually some 
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form of energy dissipation and scour prevention system at the base of the spillway. This often 
takes the form of a stilling basin.

There are several spillway designs. The choice of design is a function of the nature of the 
site, the type of dam and the overall economics of the scheme. The following list gives a general 
outline of the various types and applications:

 1. Overfall and "ogee" spillways are by far the most widely adopted: they may be used on 
masonry or concrete dams which have sufficient crest length to obtain the required 
discharge.

 2. Chute and tunnel (shaft) spillways are often used on earthfill dams.
 3. Side channel and tunnel spillways are useful for dams sited in narrow gorges.
 4. Siphon spillways maintain an almost constant headwater level over the designed range 

of discharge.

Some typical designs are now considered.

13.5.1 gravity (ogee) spillways

These are by far the most common type, being simple to construct and applicable over a wide 
range of conditions. They essentially comprise a steeply sloping open channel with a rounded 
crest at its entry. The crest profile approximates to the trajectory of the nappe from a sharp-
crested weir. The nappe trajectory varies with head, so the crest can be correct only for one 
"design head" Hd. Downstream of the crest region is the steeply sloping "face", followed by the 
"toe", which is curved to form a tangent to the apron or stilling basin at the base of the dam. 

FIgure 13.9 Top of a gravity spillway. The vertical piers divide the spillway into three bays and also incorpo-
rate the pivots for the radial gates and the machinery for raising/lowering the gates (cp Figure 13.11). (Courtesy 
of Black & Veatch, Overland Park, KS.)
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The profile is thus in the form of an elongated "S" (Figure 13.10). Profiles of spillways have been 
developed for a wide range of dam heights and operating heads. A wealth of information is 
available in references published by the U.S. Bureau of Reclamation (1964, 1987) and the U.S. 
Army Waterways Experimental Station (1959). Spillways will here be considered mainly from 
the hydraulics standpoint.

The discharge relationship for a spillway is of the same form as for other weirs:

Q C gbH= ×constant d
3 2/

In practice, this is usually written Q = CbH3/2. C is not dimensionless, and its magnitude 
increases with increasing depth of flow. C usually lies within the range 1.6 < C < 2.3 in 
metric units (2.8 < C < 4.1 in ft-s units). The breadth, b, does not always comprise a single 
unbroken span. If control gates are incorporated in the scheme, the spillway crest is subdi-
vided by piers into a number of "bays" (Figure 13.11). The piers form the supporting struc-
ture for the gates. The piers have the effect of inducing a lateral contraction in the flow. In 
order to allow for this effect in the discharge equation, the total span, b, is replaced by bc, 
the contracted width:

b b knHc = −

where
n is the number of lateral contractions
k is the contraction coefficient, which is a function of H and of the shape of the pier

Slope of face = m:1

Axis of crest

Point of tangency
m

h

H

2
Toe

Face
1

1

Y= X n/K

X

Y

FIgure 13.10 "Ogee" spillway.
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In the following, some other important aspects of spillway hydraulics are summarised.

 1. If H < Hd, the natural trajectory of the nappe falls below the profile of the spillway crest, 
then there will therefore be positive gauge pressures over the crest. On the other hand, 
if H > Hd, then the nappe trajectory is higher than the crest profile, so negative pressure 
zones tend to arise. Frictional shear will accentuate this tendency, and cavitation may occur. 
However, in practice, this pressure reduction is not normally a serious problem unless 
H > 1.5Hd. Indeed, recent work suggests that separation will not occur until H → 3Hd.

 2. Conditions in the flow down the spillway face may be quite complex, since
 a. The flow is accelerating rapidly and may be "expanding" as it leaves a bay-pier 

arrangement
 b. Frictional shear promotes boundary layer growth
 c. The phenomenon of self-aeration of the flow may arise
 d. Cavitation may occur

For these reasons, the usual equations for nonuniform flow developed in Chapter 5 cannot really 
be applied. If it is necessary to make estimates of flow conditions on the spillway, then empirical 
data must be used. Each feature will now be examined in greater detail.

 1. In a region of rapidly accelerating flow, the specific energy equation (or Bernoulli’s 
equation) is usually applied. It is possible to obtain very rough estimates of the varia-
tion of V and y down the spillway on this basis; accuracy will be slightly improved if a 
head loss term is incorporated. Nevertheless, in the light of (2) and (3), conditions on 
the spillway are far from those which underlie the energy equations.

Reservoir
6

2

1

3

7

4

5

Dam

FIgure 13.11 Diagram of spillway layout. Key: 1, spillway crest/bay; 2, pier; 3, spillway face; 4, stilling 
basin; 5, armoured scour prevention bed; 6, section through control gate; 7, power station. N.B. This drawing is 
schematic only.
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 2. A boundary layer will form in the spillway flow, commencing at the leading edge of the 
crest. The depth of the boundary layer, δ, will grow with distance downstream of the 
crest. Provided that the spillway is of sufficient length, at some point, the depth, δ, will 
meet the free surface of the water (Figure 13.12).

The flow at the crest is analogous to the flow round any fairly streamlined body. This 
may imply flow separation, eddy shedding, or both. Such conditions may be instru-
mental in bringing about cavitation at the spillway face. There have been a number of 
reported incidents of cavitation in major dams.

 3. Aeration has been observed on many spillways. It entails the entrainment of substan-
tial quantities of air into the flow, which becomes white and foamy in appearance. 
The additional air causes an increase in the gross volume of the flow. Observations 
of aeration have led to the suggestion that the point at which aeration commences 
coincides with the point at which the boundary layer depth meets the free surface 
(Henderson, 1966; Keller and Rastogi, 1975; Cain and Wood, 1981). The entrain-
ment mechanism appears to be associated with the emergence of streamwise vor-
tices at the free surface. Such vortices would originate in the spillway crest region. 
A rough estimate of the concentration of air may be made using the following 
equations:

 C S q= +0 743 0 8760
1 5. log( ) ./ /  (13.25)

where
C = (volume of entrained air)/(volume of air and water)
S0 is the bed slope, or

 C x y= ( ) /
I I/ /2 3 74  (13.26)

Boundary layer

FIgure 13.12 Growth of a boundary layer on spillway.
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where xI and yI are measured from the point at which entrainment commences. C may 
vary considerably over the width of the spillway. Further information may be found in 
Novak et al. (2007).

 4. Cavitation arises when the local pressure in a liquid approaches the ambient vapour 
pressure. Such conditions may arise on spillways for a variety of reasons, especially 
where the velocity of flow is high (say V > 30 m/s). For example, if H > 3Hd, separated 
flow will probably arise at the crest.

Irregularities in the surface finish of the spillway may result in the generation of local regions 
of low pressure.

Cavitation has been observed in severely sheared flows (Kenn, 1971; Kenn and Garrod, 1981).
At the toe of the spillway, the flow will be highly supercritical. The flow must be deflected 

through a path curved in the vertical plane before entering the stilling zone or apron. This can 
give rise to very high thrust forces on the base and side walls of the spillway. A rough estimate 
of these forces may be made on the basis of the momentum equation.

The high velocity and energy of flow at the foot of the spillway must be dissipated; other-
wise, severe scouring will occur and the foundations at the toe will be undermined.

13.5.2 siphon spillways

A siphon spillway is a short enclosed duct whose longitudinal section is curved as shown in 
Figure 13.13a. When flowing full, the highest point in the spillway lies above the liquid level in 
the upstream reservoir, and the pressure at that point must therefore be sub-atmospheric; this 
is the essential characteristic of a siphon. A siphon spillway must be self-priming.

The way in which this type of spillway functions is best understood by considering what 
happens as the reservoir level gradually rises. When the water level just exceeds the crest 
level, the water commences to spill and flows over the downstream slope in much the same 
way as a simple ogee spillway. As the water level rises further, the entrance is sealed off from 
the atmosphere. Air is initially trapped within the spillway, but the velocity of flow of the 
water tends to entrain the air (giving rise to aeration of the water) and draw it out through 
the exit. When all air has been expelled, the siphon is primed (i.e., running full) and is there-
fore acting as a simple pipe. There are thus three possible operating conditions depending on 
upstream depth:

 1. Gravity spillway flow
 2. Aerated flow
 3. Pipe (blackwater) flow

13.5.2.1 Operational Problems with Siphon Spillways

The aerated condition is unstable and is maintained only for a short time while the siphon begins 
to prime, since (theoretically, at least) air cannot enter once the entry is covered. Therefore, in a 
simple siphon, a small change in H produces a sharp increase or decrease in the discharge through 
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the spillway. This can lead to problems if the discharge entering the reservoir is greater than the 
spillway flow but less than the blackwater flow, since the following cycle of events is set in train:

 1. If the spillway is initially operating with gravity flow, then the upstream (reservoir) 
level must rise.

 2. When the upstream level has risen sufficiently, the siphon primes and the spillway 
discharge increases substantially.

 3. The upstream level falls until the siphon de-primes and its discharge drops.

The cycle (1)–(3) is then repeated.
Obviously, this can give rise to radical surges and stoppages in the downstream flow. This 

problem can be overcome by better design.

Other potential problems encountered with siphon spillways are as follows:

 1. Blockage of spillway by debris (fallen trees, ice, etc.).
 2. Freezing of the water across the lower leg or the entry before the reservoir level rises to 

crest level.
 3. The substantial foundations required to resist vibration.
 4. Waves arising in the reservoir during storms may alternately cover and uncover the 

entry, thus interrupting smooth siphon action.

Problem 1 may be ameliorated by installing a trash-intercepting grid in front of the intake.
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FIgure 13.13 Siphon spillway: (a) basic siphon design and (b) air-regulated siphon.
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13.5.2.2 Discharge through a Siphon Spillway

Some of the principal discharge conditions may be estimated by combining some familiar con-
cepts, i.e., weir flow (Q = constant × H3/2), pipe flow (Q = constant × H1/2) and free vortex flow.

Thus, if Hd coincides with the onset of blackwater flow, then the hydraulic losses may be 
equated to the head difference as for normal pipe flow:
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λ

 
(13.27)

where
k1–k4 are the loss coefficients for entry, first and second bends, and exit, respectively
λ is the friction factor

If the heads and coefficients are known, the corresponding velocity (or discharge) may be found. 
It must be emphasised that, due to the fact that the spillway is such a short pipe, the fully 
developed pipe flow condition is not attained and the estimates based on this equation must be 
regarded as rough approximations only.

For satisfactory siphon operation, the pressure must nowhere approach the vapour pressure. 
It is therefore necessary to estimate the lowest pressure in the siphon. This will almost certainly 
occur in the flow around the first bend. Since the cross section of a siphon is large compared 
with the length and the head, the velocity and pressure distribution will be decidedly nonuni-
form. As a first approximation, the flow around the bend may be assumed to resemble a free 
vortex. The characteristic velocity distribution is then given by the equation

uR = constant

For this flow pattern, the lowest pressures coincide with the smallest radius. Therefore, apply-
ing the Bernoulli equation,

H
p
g

u
g

= +c c

ρ

2

2

(the subscript c refers to the spillway crest). Therefore,
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For the free vortex, uR u R gh R= = =constant c c c c2 , hence

u gh R R= 2 c c /
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Therefore, the discharge through an elemental strip at radius R is

δ δ δQ ub R gh R R b R= = 2 c c /( )

Thus, the total discharge is

 

Q gh R R b R gh R b R R
R

R

= =∫
c

o

c c c c o c/ d ln /2 2( ) ( )

 

(13.28)

ln denoting the natural (base e) logarithm.
If the required discharge and the bend radii are known, then the corresponding value of hc 

may be found. As a guide, hc should not be more than 7 m of water below atmospheric pressure 
at sea level to avoid formation of vapour bubbles.

The free vortex flow pattern will be modified in practice, due to the developing boundary layer 
in the spillway. The existence of the shear layer may tend to increase the likelihood of cavitation, 
as may any irregularities in the spillway surfaces, so great care is needed both in design and in 
construction. Because of the form of the spillway rating curves, the maximum discharge is usually 
assumed to coincide with the onset of blackwater flow. At flows higher than this, H increases more 
rapidly for a given increase in Q, with the consequent danger of overtopping the dam. Therefore, 
for reasons of safety, siphons are often used in conjunction with an auxiliary emergency spillway.

13.5.2.3 Design Improvements to Siphon Spillways

It has been pointed out that uncontrolled surging can be a problem. Two methods of improving 
the operation of a siphon installation are (a) the use of multiple siphons with differential crest 
heights and (b) air regulation.

For method (a), a series of siphons are installed. One siphon has the lowest crest height, a second 
has a slightly higher crest and so on. The siphons thus prime sequentially as the reservoir level rises 
and de-prime sequentially as the level falls. The system gives a much smoother H–Q characteristic.

Method (b) involves a modification to the intake (Figure 13.13b). The cowl is constructed 
with a carefully designed slot which admits controlled quantities of air when the head lies 
between the gravity flow and blackwater values. The operation of such a design is therefore as 
follows for a rising reservoir level (Figure 13.14):

a. Gravity flow for low heads discharge is estimated using the weir flow relationship.
b.  As the reservoir level rises further, air trapped inside the duct tends to be entrained 

and the pressure falls below atmospheric pressure. However, some air is drawn in 
through the air-regulating slot.

c.  A slight further increase in head leads to the entrainment of air trapped under the 
crown. Air drawn in at the air slot now mixes with the water to form a fairly homo-
geneous two-phase mixture, which is foamy in appearance.

d.  Blackwater flow sets in when the reservoir level seals off the air slot. Discharge can 
be estimated from Equation 13.27 for this condition (note that the two "K" values on 
Figure 13.14 are different).
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If the air slot is well designed, a stable discharge of water can be maintained for conditions (b) 
and (c). Air regulation is thus a simple means of automatically matching the siphon discharge 
to the incoming discharge. Accurate prediction of the rate of air entrainment (and hence of 
the siphon discharge characteristic) is difficult. Model testing is a necessary prelude to design, 
though even tests do not give completely reliable results. Research is currently proceeding to 
clarify the reasons for the discrepancies. For an initial (and rough) estimate of entrainment, the 
equation of Renner may be used (see Proceedings	of	the	Symposium	on	the	Design	and	Operation	
of	Siphons	and	Siphon	Spillways, BHRA 1975):

 

Q
Q

Kair 2Fr=
 

(13.29)

The value of K appears to depend on the angle between the deflected nappe and the hood, 
but an average value is 0.002. The Froude number refers to the flow at the toe of the 
deflector.

A large amount of information regarding design, modelling and operation of siphon spill-
ways has been published. The reader may refer to the Proceedings	 of	 the	 Symposium	 on	
the	Design	and	Operation	of	Siphons	and	Siphon	Spillways	BHRA (1975) and also to Head 
(1975), Ervine (1976), Ali and Pateman (1980), Ervine and Oliver (1980) and Novak et al. 
(2007).
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FIgure 13.14 Discharge-head characteristic for air-regulated siphon.
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13.5.3 shaft (Morning glory) spillways

This type of structure consists of four parts (Figure 13.15a):

A circular weir at the entry
A flared transition which conforms to the shape of a lower nappe for a sharp-crested weir
The vertical drop shaft
The horizontal (or gently sloping) outlet shaft

The discharge control may be at one of three points depending on the head:

 a. When the head is low, the discharge will be governed at the crest. This is analogous to 
weir flow and the discharge may therefore be expressed as

Q CLH= 3 2/

where L is usually referred to the arc length at the crest. C is a function of H and the 
crest diameter, and it is therefore not a constant. The magnitude of C is usually in the 
range 0.6–2.2, in SI units (1.1–4.0 in ft-s units).

Below the crest, the flow will tend to cling to the wall of the transition and of the 
drop shaft. The outlet shaft will flow only partially full and is therefore, in effect, 
an open channel.

Q = CLH

Piers

Horizontal shaft

Discharge(b)

(a)

H
ea

d

Vertical shaft

Plan

FIgure 13.15 Shaft spillway: (a) sectional elevation and (b) head discharge characteristic.
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 b. As the head increases, so the annular nappe must increase in thickness. Eventually, the 
nappe expands to fill the section at the entry to the drop shaft. The discharge is now 
being controlled from this section, and this is often referred to as "orifice control". The 
outlet tunnel is not designed to run full at this discharge.

 c. Further increase in head will induce blackwater flow throughout the drop and outlet 
shafts. The Q–H relationship must now conform to that for full pipe flow, and the weir 
will in effect be "submerged". The head over the weir rises rapidly for a given increase 
in discharge, with a consequent danger of overtopping the dam.

The complete discharge-head characteristic is therefore as shown in Figure 13.15b. The 
design head is usually less than the head required for blackwater flow. This is done to leave a 
margin of safety for exceptional floods. Even so, the discharge which can be passed by a shaft 
or siphon spillway is limited, so great care must be exercised at the design stage. An auxiliary 
emergency spillway may be necessary. It is also worth noting that as the flow enters the transi-
tion, it tends to form a spiral vortex. The vortex pattern may need to be minimised in order to 
maintain a smoothly converging flow, so anti-vortex baffles or piers are sometimes positioned 
around the crest. However, there are some cases where vortex flow may be beneficial (Novak 
et al., 2007). It may be undesirable for sub-atmospheric pressure to occur anywhere in the 
system, since this can lead to cavitation problems. To avoid such problems, the system may 
(a) incorporate vents, (b) be designed with an outlet shaft which is large enough to ensure 
that the outlet end never flows full or (c) have an outlet shaft with a slight negative slope, suf-
ficient to ensure that the outlet does not flow full (and can therefore admit air).

Some recent shaft spillways incorporate a bank of siphon spillways around the crest to reduce 
the rise in reservoir level for a given discharge. Trash grids must be installed around the entrance 
to a shaft spillway to exclude large items of debris.

13.6 stePPed sPIllWays

Stepped spillways have found a number of applications in dams around the world. By forming 
the face of the spillway as a series of steps, energy is dissipated as the water flows down. The 
size and cost of any other energy dissipating structure (such as a stilling basin) at the foot of the 
spillway is therefore reduced. The flow over the steps may be in the form of a series of nappes 
(similar to flow over a sharp-crested weir), or for larger discharges, it may form a stream which 
"skims" over the steps. The hydraulic behaviour and design of stepped spillways and channels is 
beyond the scope of a first text in hydraulics. However, readers who wish to pursue the subject 
further are referred to Chanson (1994).

13.7 energy dIssIPators

The flow discharged from the spillway outlet is usually highly supercritical. If this flow were left 
uncontrolled, severe erosion at the toe of the dam would occur, especially where the stream bed 
is of silt or clay. Therefore, it is necessary to dissipate much of the energy and to return the water 
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to the normal (subcritical) depth appropriate to the stream below the dam. This is achieved by 
a dissipating or "stilling" device. Typical devices of this nature are as follows:

 1. Stilling basin
 2. Submerged bucket
 3. Ski jump/deflector bucket

These are described (see Figure 13.16) in the following sections.

13.7.1 stilling Basin

A stilling basin consists of a short, level apron at the foot of the spillway (Figure 13.16a). It must 
be constructed of concrete to resist scour. It incorporates an integrally cast row of chute blocks 
at the inlet and an integral sill at the outlet. Some designs also utilise a row of baffle blocks part 
way along the apron.

The function of the basin is to decelerate the flow sufficiently to ensure the formation of a 
hydraulic jump within the basin. The jump dissipates much of the energy and returns the flow 
to the subcritical state. The chute blocks break the incoming flow into a series of jets, alternate 
jets being lifted from the floor as they pass over the tops of the blocks. The sill (or baffle blocks 
and sill) provides the resistance required to reduce energy and control the location of the jump. 
Baffle blocks are not usually used where the velocity of the incoming flow exceeds 20 m/s, due 
to the likelihood of cavitation damage.

Provided that the Froude number of the incoming flow (Fr2) exceeds 4.5, a stable jump can 
be formed. However, if 2.5 < Fr2 < 4.5, then the jump conditions can be less well defined and 
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FIgure 13.16 Energy dissipators: (a) stilling basin, (b) submerged bucket and (c) ski jump/deflector bucket.



481Hydraulic Structures

disturbances may be propagated downstream into the tailwater. Based on a combination of 
operational and empirical data, a number of standard stilling basin designs have been proposed.

A series of basin types was developed by the U.S. Bureau of Reclamation (1964, 1987) and 
published in the form of design charts and diagrams for each type. The following formulae are 
derived from the charts and permit a preliminary estimate of basin length to be made for three 
types. For more details, see U.S. Bureau of Reclamation (1987).

U.S.	Bureau	of	Reclamation	stilling	basins

 a. Type II stilling basin (for Fr2 > 4.5, V2 > 20 m/s) which has a length of 4.35y3

 b. Type III stilling basin (for Fr2 > 4.5, V2 < 20 m/s) which has a length of 2.75y3

 c. Type IV stilling basin (for 2.5 < Fr2 < 4.5) which has a length of 6.1y3

It is usually assumed that air entrainment makes little difference to the formation of the hydrau-
lic jump in a stilling basin.

The stage-discharge characteristic of the tailwater is a function of the channel downstream 
of the dam. The stilling basin should therefore give a hydraulic jump with a downstream depth-
discharge characteristic which matches that of the tailwater.

13.7.2 submerged Bucket

A submerged bucket is appropriate when the tailwater depth is too great for the formation of a 
hydraulic jump. The bucket is produced by continuing the radial arc at the foot of the spillway 
to provide a concave longitudinal section as shown in Figure 13.16b. The incoming high veloc-
ity from the spillway is thus deflected upwards. The shear force generated between this flow 
and the tailwater leads to the formation of the "roller" motions. The reverse roller may initially 
slightly scour the river bed downstream of the dam. However, the material is returned towards 
the toe of the dam, so the bed rapidly stabilises.

The relationship between the depths for the incoming and tailwater flows cannot readily be 
derived from the momentum equation. Empirical relationships of an approximate nature may 
be used for initial estimates, e.g.,
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where h is the dam height (Figure 13.10) and

tailwater depth b≈ 1 25. y

Some submerged buckets are "slotted". This improves energy dissipation but may bring about 
excessive scour at high tailwater levels.

Detailed design data may be obtained from the appropriate publications of the U.S. Bureau 
of Reclamation (1964, 1987).
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13.7.3 ski Jump/deflector Bucket

This type of dissipator has a longitudinal profile which resembles the submerged bucket (Figure 
13.16c). However, the deflector is elevated above the tailwater level, so a jet of water is thrown clear 
of the dam and falls into the stream well clear of the toe of the dam. Spillways may be arranged in 
pairs, and it is then usual for the designer to angle the jets inwards so that they converge and collide 
in mid-air. This breaks up the jets and is a very effective means of energy dissipation.

Example 13.5: Spillway and Stilling Basin Design

Design a gravity spillway and stilling basin to pass a design flood of 2100 m3/s. Dam base 
elevation = 268 m, dam crest elevation = 300 m, reservoir design water level = 306 m and 
C = 2.22 m½/s.

Solution

2100 2 22 3 2= . /bHd

For a first trial, assume Hd = 306 − 300 = 6 m

2100 2 22 63 2= . /b

Therefore, b = 64.36 − say 65 m. Applying the specific energy equation between the spill-
way crest (Station 1) and the foot (or toe) of the spillway (Station 2),

306 268 38
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2 65

2

2
2
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so y2 = 1.2 m. Therefore,
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×
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.
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and Fr2 = 7.84. A U.S. Bureau of Reclamation Type II stilling basin is appropriate.
If y3 is the depth downstream of the hydraulic jump, then

y
y

3

2

21
2

1 8 7 84 1 10 6= + + −( ) =( . ) .

therefore y3 = 12.72 m. The length of the basin is 4.35 × 12.72 = 55.33 m − say 55 m. The 
depth y3 should be compared with the tailwater rating for this flow. It may be necessary to 
adjust the elevation of the spillway apron to meet tailwater requirements.
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13.8 Control gates

Whenever a discharge has to be regulated, some form of variable aperture or valve is installed. 
These are available in a variety of forms. When gates are installed for channel or spillway regula-
tion, they may be designed for "underflow" or "overflow" operation. The overflow gate is appro-
priate where logs or other debris must be able to pass through the control section. Some typical 
gate sections are shown in Figure 13.17.

The choice of gate depends on the nature of the application. For example, the vertical gate 
(Figure 13.17a) has to be supported by a pair of vertical guides. The gate often incorporates 
roller wheels on each vertical side, so that the gate moves as smoothly as possible in the guides. 
Even so, once a hydrostatic load is applied, a considerable force is needed to raise or lower 
the gate. Furthermore, in severe climates, icing may cause jamming of the rollers. The radial 
(Tainter) gate (Figure 13.17b) consists of an arc-shaped face plate supported on braced radial 
arms. The whole structure rotates about the centre of arc on a horizontal shaft which transmits 
the hydrostatic load to the supporting structure. Since the vector of the resultant hydrostatic 
load passes through the shaft axis, no moment is applied. The hoist mechanism has therefore 
only to lift the mass of the gate. Tainter gates are economical to install and are widely used in 
overflow and underflow formats. Other gates (such as the drum or the roller gate) are expensive 
and have tended to fall out of use.

(a) (b)

(c)

FIgure 13.17 Control gates: (a) vertical gate, (b) radial (Tainter) gate and (c) drum gate.
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The hydraulic characteristics of gates are related to the energy equation, so for free discharge 
(Figure 13.18)

y
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V
g

1
1
2

2
2
2

2 2
+ = +

which can be rearranged in terms of Q:

Q by y
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y y
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FIgure 13.18 Flow past control gates. (a) Sectional elevation through vertical sluice gate. (b) Sectional eleva-
tion through radial gate.
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Now y2 = Cc yG. Furthermore, it is usual to express the velocity in terms of 2 1gy :

 
Q bC y gy

y
y y

=
+c G 2 1

1

1 2  
(13.30)

or

 
Q bC y gy= d G 2 1  

(13.31)

where

 
C

C
C y y

d
c

c G /
=

+1 1( )  
(13.32)

The quantity 2 1gy  should be regarded purely as a "reference velocity" and not as an actual 
velocity at any point in the system.

Thus, the magnitude of Cd depends on the gate opening (yG) and on the contraction of 
the jet, which in turn is a function of the gate geometry. For a vertical sluice gate under free 
discharge conditions, it has been found that Cc = 0.61 for 0 < (yG/ES1) < 0.5. However, when 
a radial gate is raised or lowered, the lip angle is altered, and the value of Cc must alter corre-
spondingly. An empirical formula for Cc has been evolved for free discharge through underflow 
radial gates, based on the work of a number of investigators:

 
Cc = − 





+ 
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0 36
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. .
θ θ

 
(13.33)

where θ is measured in degrees.
Clearly, under certain conditions, the outflow from an underflow gate may be submerged 

(Figure 13.19), i.e., when the downstream depth exceeds the conjugate depth to y2. An approxi-
mate analysis may then be made as follows, assuming that all losses occur in the expanding flow 
downstream of the gate between Stations 2 and 3. From the energy equation,
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(13.34)

Note that the hydrostatic term on the right-hand side is represented by the downstream depth 
y, not by y2. Between Stations 2 and 3, the momentum equation is applicable:
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(13.35)
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In most practical situations, y1 and y3 will be known, whereas y2 will have to be estimated from 
known values of yG and Cc.

Control gates are used for a range of applications, of which typical examples are regulation of 
irrigation flows and spillway flows.

13.8.1 regulation of Irrigation Flows

It is worth pointing out that for free discharge, supercritical conditions may occur under and 
downstream of the gate, so a protective apron with a stilling arrangement may be required to 
protect the stream bed.

13.8.2 spillway Flow

While it is cheapest and simplest to have an unregulated spillway, it is not always the best 
system. This is the case where a reservoir is to be used for flood attenuation as well as storage. 
Consider a reservoir sited above low-lying farmland. During heavy rainstorms, the overflow 
down an unregulated spillway might add to flooding problems downstream. However, a system 
of control gates may be installed along the spillway crest. During the storm, the gates would 
be closed, which would increase the reservoir storage capacity and shut off the spillways. This 
additional storage would be available to accommodate all or part of the incoming flood flow. 
The excess capacity may then be released in a controlled fashion after the effects of the storm 
have subsided.

Example 13.6: Discharge Control by Sluice Gate

An irrigation scheme is fed from a river by a diversion channel. The discharge into the system 
is controlled by an underflow vertical sluice gate. The irrigation channel is 4 m wide and is 
roughly faced with cemented rubble giving an estimated value of 0.028 for Manning’s n. 

y
y3

y2

y1

yG

FIgure 13.19 Submerged flow through an underflow sluice gate.
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The bed slope is 0.002. Estimate the required gate opening (yG) and the flow condition 
downstream of the gate if (a) the depth of flow in the river is 2 m and the irrigation demand 
is 11 m3/s and (b) the depth of flow in the river is 3 m and irrigation demand has fallen 
to 5 m3/s.

Solution

 (a) Q = 11 m3/s and y1 (assume same as river depth) = 2 m. Using Manning’s equa-
tion, estimate yn = 1.8 m = y3.

	 	 First	trial. Assume gate opening yG = 1.4 m, then y2 = Cc × yG = 0.61 × 1.4 = 0.854 m. 
Hence,

V2 23 22m/s and Fr= =
×

=.
.

. .
.

3 22
9 81 0 854

1 11

  Check conjugate depth relationship:

y
y

y3

2

3 2

0 854
1
2

1 8 1 11 1 1 147= = + × −( ) =
.

( . .)

  Conjugate value for y3 = 0.98 m, so submerged conditions exist downstream of 
gate. From the specific energy equation 13.34 (between Stations 1 and 2),
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  Therefore, y = 1.568 m.
From the momentum equation (13.35) (between Stations 2 and 3),
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	 	 Second	trial. Assume yG = 1.25 m. Then,

y C y2 0 61 1 25 0 7625= × = × =c G m. . .

  From the specific energy equation,
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  Therefore, y = 1.433 m.
  From the momentum equation,
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  which is sufficiently accurate.
Therefore, yG = 1.25 m, and outflow is submerged.

 (b) Q = 5 m3/s and y1 = 3 m. Q C by gy= d G 2 1 . Assume Cd = 0.6 for first approximation:

5 0 6 4 2 3= × × ×. y gG

  Therefore, yG ≃ 0.27 and

Cd
/

=
+ ×

=0 61
1 0 61 0 27 3

0 594
.

[( . . ) ]
.

  Hence,

Q g= × × × =0 594 4 0 27 2 3 4 92 3. . . m /s

  From Manning’s formula, yn = 1.05 m = y3.
Check whether discharge is free, using the conjugate depth relationship:

y C y2 0 61 0 27 0 165= × = × =c G m. . .

Fr2
2

2

5 86= =V
gy
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  Therefore,

y
y

3

2

21
2

1 8 5 86 1 7 8= + ×( ) −( ) =. .

  so
y3 7 8 0 165 1 287= × =. . . m

  which is greater than yn, so free discharge must occur.
The hydraulic jump will be a short distance downstream of the gate. An adequate 

length of apron would be required to prevent scour, or a stilling arrangement could 
be used to control jump location.
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13.9 lateral dIsCHarge struCtures

13.9.1 equations for lateral Flow

There are a few circumstances when it is necessary to discharge water into or out of a stream 
(Figure 13.20), typical instances being side weirs in sewers and side spillways. However, this 
presents the problem of a varying discharge in the stream. In turn, this implies that none of the 
equations encountered up to now is appropriate. The equations for such problems are usually 
based on the momentum principle, and the approach is now outlined.

The first case considered will be that of a lateral inflow of fluid (Figure 13.20a). The 
incoming fluid is assumed to enter the channel in a direction perpendicular to the direction 
of flow of the stream. A force must therefore be applied to the incoming fluid to accelerate it. 

Q + δQQ

Q
PS

u + δu

Q – δQ

u + δu

u

u

y + δyy

y

δx

δx

δz = (S0δx)

Slope = S0

Slope = S0

Slope = Sf

Slope = Sf

In�ow

Hydraulic gradient

Hydraulic gradient

(a)

(b)

FIgure 13.20 Lateral discharge: (a) lateral inflow and (b) lateral outflow.
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The total momentum in the stream must therefore be changed. The forces applied to the 
stream in the direction of flow are as follows:

 1. Hydrostatic pressure force = −ρgA δy (where A is the cross-sectional area of the stream)
 2. Gravity force component = ρgAS0 δx
 3. Friction force = ρgASf δx

The discharge, Q, in the stream will increase by δQ as it passes through a longitudinal element 
of length δx. Therefore, the rate of change of momentum will be

δ
δ

ρ δ δ ρ

ρ δ ρ δ

M
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Q Q u u Qu

u u

= + + −

= +

( )( )
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(ignoring products of small quantities). Now u = Q/A and (u + δu) = (Q + δQ)/(A + δA), so
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Force equals the rate of change of momentum, so
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Now, as A = by, δA/A ≃ δy/y. Substituting for δA in the momentum equation and dividing 
throughout by gA, taking the limit as δx → 0, and rearranging,
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(13.36)

The equation for the case of lateral outflow (Figure 13.20b) may be developed in a similar man-
ner. There is no loss of momentum in the fluid remaining in the stream, so the equation is
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(13.37)

The only difference between (13.36) and (13.37) is the coefficient of the third term of the 
numerator.
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The reader will have noticed that the earlier equations bear some resemblance to the gradu-
ally varied flow equation (5.38).

If the value of the coefficient (β) departs significantly from unity, then the equation must be 
modified accordingly:
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Producing a solution to either of these equations presents a number of problems. Both Q and y 
are variables. The control point is the channel section at the downstream end of the inflow or 
outflow structure, where the depth will be the normal depth of flow for the discharge at that 
point. The depth at the upstream end is initially unknown. One approach to such problems is 
a trial-and-error solution based on (13.36) or (13.37) in finite difference form (Example 13.7 
illustrates how this is applied). An alternative method has been developed by Balmforth and 
Sarginson (1978). This makes use of a Runge–Kutta fourth-order procedure. Either of these 
methods may be used as the basis for a computer program.

No mention has been made of the flow profile in the channel at the weir. It is possible that 
the flow might, for example, be supercritical, or partly supercritical and partly subcritical with 
a hydraulic jump. A helpful discussion is given by Balmforth in Number 14 of the "Wallingford 
Procedure" User Group Notes. This highlights the need to include a check on the Froude num-
ber of the flow in the channel.

Example 13.7: Side Weir

A rectangular channel is 2.5 m wide, has a bed slope of 0.002 and Manning’s n is 0.015. 
It is to incorporate a side weir. The design discharge in the channel upstream of the side 
weir is 5.96 m3/s and the side weir is to draw off 0.5 m3/s from the channel. The sill height 
is 0.84 m (measured above the channel bed) and the weir discharge coefficient, Cd, is 0.7. 
The energy and momentum coefficients are assumed to have a value of unity. Estimate 
the required length of the weir.

Solution

The solution procedure is as follows:

 1. Calculate the normal depth of flow for the channel section at the downstream end of 
the weir. This is the only known depth, so it is easiest to start the calculation here and 
"march" upstream.

 2. Select a step length Δx.
 3. The initial (downstream) value for y(y1) is known, and the value of y(yi+1) at the 

upstream end of the step has to be guessed.
 4. Compute the mean value of y(y = (yi + yi+1)/2) for the step, hence compute the cor-

responding channel cross-sectional area and wetted perimeter (A = by, P = b + 2y	).
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 5. Compute the flow over the weir for the step using Equation 13.2
  (ΔQ = 2/3Cd(2g)1/2(y − PS)3/2 Δx). Hence calculate Qi+1(=Qi + ΔQ), since the solution is 

proceeding upstream and Q(=(Qi + Qi+1)/2).
 6. Using the Chezy–Manning equation suitably rearranged, calculate

S n Q P Af =( )2 2 4 3 10 3/ //

 7. Substitute for Q, A, y, Sf, etc. in Equation 13.37 and obtain Δy. Hence calculate 
yi+1(=yi + Δy), compare the calculated value with the original (guessed) value and con-
tinue the iterative procedure until the values converge to a satisfactory degree of accuracy.

 8. Proceed to next step.

The solution to the problem has been undertaken on a calculator and is laid out in 
Table 13.1. The small difference between the design discharge and the calculated value 
upstream of the weir is reasonable in view of the step length and rounding errors. A weir 
crest length of 2 m would be a reasonable choice. The Froude number for the flow upstream 
of the weir is 0.634 and downstream of the weir is 0.638 so the flow is subcritical.

Following on from the example, the difficulties involved in producing a solution to a practi-
cal problem using the aforementioned methodology may be envisaged. The incoming discharge 
and the side weir outflow are usually known, so the discharge in the channel downstream of 
the side weir can be found, and hence the corresponding normal depth calculated. However, 
in a real design problem, neither the length nor the height of the sill would be known (in the 
example, the sill height has been given, to simplify matters). To start the calculation, it would 
be necessary to guess a sill height to produce a solution to (13.37) and to see if this produced 
the required discharge. If not then, a trial-and-error solution method would be used. The dif-
ficulties are increased if a hydraulic jump seems likely to form at some point along the weir. 

taBle 13.1 Solution to Example 13.7

xi yi y A P ΔQ Qi Sf Δy

0.0 1.061 5.46

1.068 2.671 4.637 0.1127 0.002 0.015

−0.5 1.076 5.573

1.085 2.711 4.669 0.1250 0.002 0.016

−1.0 1.092 5.698

1.101 2.753 4.702 0.1378 0.002 0.018

−1.5 1.110 5.836

1.120 2.800 4.740 0.1531 0.002 0.020

−2.0 1.130 5.990

Total weir discharge 0.5286 m3/s
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In the aforementioned example, the flow is subcritical throughout. It will also be noted that the 
depths do not vary greatly, so an initial estimate of the outflow over the weir could be made on 
the assumption that the depth was uniform. A computer program can be written to carry out 
this procedure, and there are also software packages which can be used.

13.10 outlet struCtures

Outlet structures are designed to release controlled volumes of water from a reservoir into 
the water supply, irrigation or other system. Such structures may be conveniently divided into 
groups according to either the form of the structure or the function of the system. For example, 
a given installation could be described equally well as a "gate controlled conduit" or as a "river 
outlet" and so on. Such structures may also be used to lower the reservoir level to permit dam 
maintenance, etc. Some typical cases are as follows:

 1. For low heads, it is possible (and economical) to use an open channel with a control 
gate. The upstream end usually incorporates fish/trash grids (this is true for virtually 
all outlet works).

 2. For low to medium heads, a simple conduit may be used with a gate valve to control 
discharge. Velocities at the outlet end may be great enough to warrant a stilling system.

 3. For higher pressures, a more robust conduit is required (often steel lined). The conduit 
may consist of a horizontal shaft or may incorporate a drop shaft entry. If a drop shaft 
is used, it is economical to arrange two intakes (for the spillway and outlet systems) 
concentrically on one drop shaft. The spillway tunnel and outlet conduit are then run 
separately.

Where the outlet system feeds a hydroelectric or pumping scheme, it is imperative that air 
entrainment is avoided. Large air bubbles in the flow may cause severe damage to hydraulic 
machines.

13.11 suMMary

A range of hydraulic structures has been considered. The range is by no means exhaustive. 
However, the various principles which have been applied will usually be capable of adaptation 
to other appropriate problems. It cannot be too strongly emphasised that our knowledge is still 
limited in many areas. Most of the solutions given earlier are approximate. In many instances, 
it will be important to commission model tests to confirm (or otherwise!) initial estimates. 
Readers who need more detailed information could initially consult the following references:

Weirs	and	flumes: Ackers et al. (1978), and the relevant BS/ISO publications.
Spillways	and	energy	dissipaters: U.S. Bureau of Reclamation (1964), Novak et al. (2007).
Control	gates: Lewin (2001).
Lateral	discharge	structures: Chow (1983), Jain (2001).
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Chapter 14

Computational Hydraulics

14.1  overvIeW

Many real processes in hydraulics involve continuous variations of conditions (e.g., river or tidal 
flow). Continuously varying processes may be represented in various ways (e.g., by scale mod-
els or electrical circuits); however, because of the worldwide availability of microcomputers, 
computational hydraulics has assumed an increasing role in research and design. Indeed, com-
putational hydraulics may be seen as the culmination of centuries of development in the study 
of fluid flows.

Computational hydraulics has been an area of rapid growth since the early 1960s, and a his-
tory of the process of development of the software and hardware may be found in Abbott (1991).

The earliest computer programs were, in essence, no more than computational versions 
of calculations that had previously been performed manually. The programs had to run on 
machines with limited memory (often less than 10 kB), slow processing speed and cumber-
some input/output devices. It was principally the demands of engineers involved in aeronautics 
and the space programs that led to the developments in microelectronics, and the associated 
progress towards compact, reliable computer hardware. In parallel with this, software engineers 
were quick to respond with more sophisticated programs so that by the early 1980s it was pos-
sible to produce good simulations of a range of real-world problems in hydraulics. Subsequent 
developments have been driven by market demand for user-friendly packages that can be pur-
chased off the shelf and operated by the staff of the purchasing organisation with a minimum 
of training. Even so, it is important that an engineer using such software should be aware of the 
assumptions that underlie it, the methods used, and the possible shortcomings.

By	the	end	of	this	chapter	you	should

 ◾ Understand the terms mathematical, numerical and computational model
 ◾ Understand how to transform a partial differential equation into a finite difference 

scheme
 ◾ Understand the importance of convergence, consistency and stability to a numerical 

scheme
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 ◾ Understand how to set up the partial differential equations representing a simple 
unsteady flow, discretise them and structure the corresponding program for a computer

 ◾ Understand how to set the initial and boundary conditions and provide the appropriate 
data for the program to run

 ◾ Understand the need to calibrate and verify computer models against field data

14.2  MatHeMatICal Models and nuMerICal Models

A computer is simply a tool for carrying out arithmetical operations at high speed, so in order 
to produce a computational model of a flow the problem has to be formulated in suitable terms.

The starting point is a mathematical model – a set of equations that mathematically describe 
the behaviour of the fluid (the equations are normally partial differential or integral equations). For 
many practical situations, analytical solutions for the equations are not available, so an alternative 
solution method is required. The numerical method substitutes an algebraic form of the original 
equations that can be solved using simple arithmetical procedures to yield the numbers that repre-
sent the flow (such as the mean velocity, or the depth of flow) at discrete points in time and space.

The basic steps involved in setting up a numerical model of a system may be summarised as 
follows:

 1. Define the nature of the problem.
 2. Reduce the problem to some suitable mathematical form (the governing equations that 

form the mathematical model).
 3. Make all possible simplifications consistent with adequate modelling (this implies some 

clear thinking about the relative importance of each aspect of the problem).
 4. Replace the simplified governing equations with finite difference or other finite  systems 

of equations.
 5. Set up a representation of the domain (normally some form of “grid”) in time and space.
 6. Define the boundaries of the domain and the conditions (of flow etc.) at those boundar-

ies (the “boundary conditions”).

A numerical model is the basis for a computer program that enables a computer to undertake 
the repetitive calculations necessary for producing solutions to the numerical model for many 
points in time and space. The program encodes the exact form and order of the arithmetical 
operations and the input and output routines. Once the program is compiled and working it 
must be calibrated. Good field data are needed for this, so that the required input data can be 
derived. Adjustments are then made to various parameters or subroutines in the program, until 
the output represents the behaviour of the real system to a satisfactory standard of accuracy. The 
calibrated model should be verified by means of a second (independent) data set to check that it 
behaves correctly. The model is then ready for its task of simulating the given physical process.

Three basic approaches are widely used to discretise and solve fluid flow problems: the finite 
difference, finite element and finite volume methods. Because of constraints in the length of 
this chapter, only the finite difference method will be covered here.

As an introductory step it is necessary to revisit the basic principles governing fluid 
flows (conservation of mass, momentum and energy), and to form differential equations. 
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Corresponding numerical forms of the equations may then be derived. The solutions to a num-
ber of hydraulics problems can then be investigated, and the advantages and disadvantages of 
computational modelling can be considered.

14.3  derIvatIon oF ConservatIon equatIons

Figure 14.1 shows a pair of diagrams of the same control volume “cut out” from a flowing 
liquid. The upper diagram indicates the inflows to and outflows from the control volume. 
Velocities may be changing in magnitude and direction, so they are resolved into x- and y- 
components for a two-dimensional flow. The lower diagram indicates the various forces acting 
on the liquid (only x-direction forces are shown, for clarity). The forces are: Pressure p, acting 
perpendicular to a surface, stress σ, acting perpendicular to a surface, shear stress τ acting 
parallel to a surface.

14.3.1  Continuity equation

Assuming that density is constant, flows into the volume must be balanced by outflows. 
Adopting the sign convention that inflow is negative, outflow positive:

 
− − + + ∂

∂






+ + ∂
∂







=υδ δ υ υ δ δ δ δx u y
y

y x u
u
x

x y 0

δy
δx

δx

δx

δy

δy

δy

δy δx

1

D

A B

C

u u

Assume density of
liquid is constant

ν

ν
τ

σ

p

σδy

τδx

pδy

∂u

∂v

∂τ

∂σ

∂p
∂x

∂x

∂y

∂y

∂x

+

+

+

+

+

FIgure 14.1 Derivation of conservation equations.
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With some rearrangement,
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Clearly it is the sum that must → 0. That is,
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This form of the continuity equation is not always the most convenient for practical use, 
because it may not be possible to determine the exact form of the functional relationship 
u =	 f(x), υ = f(y). It will be seen later that the continuity equation is often integrated and 
depth averaged.

14.3.2  equations for the acceleration of the Fluid

We need expressions for the total change in velocities with time and distance. What does this 
mean? In an unsteady river flow, we would find that velocity was varying with time at one point, 
and also that velocity varied as the flow moved downstream. There are therefore two “components” 
of acceleration. Applying the chain rule for partial derivatives (in the x-direction of flow),
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Total acceleration is an acceleration at a point plus an additional acceleration as a particle advects 
(moves). If acceleration is multiplied by the mass of the small volume, we obtain the rate of 
change of momentum for the x-direction:

 
∂

∂
= ∂

∂
+ ∂

∂
+ ∂

∂






M
t

x y u
u
x

u
y

u
t

x ρδ δ υ
 

(14.2)



499Computational Hydraulics

14.3.3  Forces and Momentum

Taking the x-direction, there are four sets of forces acting on the element:

 1. Normal stress due to the pressure of the surrounding fluid
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 2. Normal stresses due to velocity gradients in the fluid in the x-direction
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 3. Shear stress due to velocity gradients in the fluid in the y-direction
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 4. Body force (due to gravity, Coriolis force, etc.) acting on the element

 X x yδ δ  (14.6)

  Note that the subscripts refer to the direction of the stress: for example, τyx is in the 
x-direction and acts on a plane perpendicular to the y axis.

14.3.4  navier–stokes equation for laminar Flow

From Section 3.2 τ is proportional to μ and to the rate of shear strain, for a laminar flow. The normal 
stress σxx, being related to a velocity gradient, is also a function of μ. In 1845, the mathematician G. 
Stokes showed that
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(in which λμ is usually taken as equal to −2μ/3) and
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Combining Equations 14.2 through 14.5b yields the Navier–Stokes equation for the x-direction:
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with a corresponding equation for the y-direction.
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14.3.5  Continuity and navier–stokes 
equations for turbulent Flows

The outline of turbulence already given (see Section 3.4) indicates the difficulties in producing 
mathematical models of turbulent flows. The (unsteady) point velocity (u	=	f(t)) is represented as 
the sum of mean and fluctuating components (u = u– + u′). Since the time average of ′ = ′( ) =u u 0, 
the continuity equation for turbulent flow is
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However, in the momentum equation the additional turbulent shear stresses must be incorpo-
rated (e.g., see Equation 3.3). Following a similar process to that used to derive Equation 14.7a, 
the x-momentum Navier–Stokes equation becomes
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(14.7b)

For a complete derivation, see Schlichting et al. (1999).

14.3.6  treatment of the turbulent stresses

Turbulent stresses are very complex, and no completely satisfactory treatment exists. However, 
it is often adequate to use “equivalent” forms. For example,
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(where μT is often known as the “eddy viscosity”. The magnitude of μT for a given flow has to be 
evaluated, e.g., by the k–ε turbulence model [see Section 3.4]). The following substitutions can 
therefore be made for the turbulent shear terms:
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which is the form of the Navier–Stokes equations most often encountered. Note: This is for the 
x-direction, so there is another equation for the y-direction if the flow is a two-dimensional 
flow:

 
ρ υ∂

∂t
… etc.

Also, if the only significant body force is gravity, then X = Z = 0 and Y = −g = constant.

14.4  dIFFerentIal equatIons and FInIte 
dIFFerenCe sCHeMes

14.4.1  some Important Partial differential equations

An important family of equations that is often encountered in hydraulics is based on the 
 following equation:
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( f is some variable such as velocity or the concentration of a substance).
This can take three forms depending on the value of b2 − 4ac. If b2 − 4ac > 0 then a typical 

form is
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This is a hyperbolic equation, which can be applied to unsteady flows.
If b2 − 4ac = 0 then typically
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This is a parabolic equation, which is encountered in problems involving diffusion or decay of 
the magnitude of a property (such as heat or concentration).

Finally if b2 − 4ac < 0
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which is the Laplace (elliptic) equation and may be used for equilibrium flows.
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14.4.2  discretisation of differential equations

Because analytical solutions are not available for many of the equations we wish to solve, numer-
ical solutions are used. A numerical solution gives numbers that represent the behaviour of a 
variable, but can provide such numbers only for certain discrete locations in the space–time 
domain. The algebraic expressions that are used to form the numerical model are based on finite 
differences. Finite difference equations are approximations to the equivalent differential equa-
tions. Most finite difference expressions are based on Taylor series expansions.

To illustrate this take the equation y = f(x) = x3 + 3x2 + 5x + 3. We wish to evaluate the 
change to f(x) due to increasing x from x = 2 to x = 2.1 (i.e., Δx = 0.1). By substituting x = 2 we 
find that f(x) = 33, and for x = 2.1, f(x) = 35.991. Hence the increase in f(x) is 2.991. Now we 
will use a finite difference technique to see if we can obtain the same result (see Figure 14.2). 
First, we use the Taylor series expansion to produce:
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There are n + 1 terms on the right-hand side of this expression. If we assume that we can obtain an 
approximate result by taking only the first term on the right-hand side, we obtain f(x + Δx) = f(x). 
This gives the result f(x + Δx) = 33, but we already know that if x = 2.1 then f(x + Δx) = 35.991. 
The percentage error is (35.991 − 33) × 100/35.991 = 8.31%, which is clearly not acceptable.

Now we try using the first two terms on the right-hand side of (14.13):

 f x x f x
f x

x
x( ) ( )

( )+ = + ∂
∂

∆ ∆

where

 

∂
∂

= + +( )f x
x

x x x x
( ) ∆ ∆3 6 52

f (x)

∆x ∆x

x – ∆x x xx + ∆x

FIgure 14.2 Variation of f(x).
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Substituting x = 2, Δx = 0.1 yields a value of 2.9 for the second term: hence f(x + Δx) = 33 + 2.9 = 
35.9. This compares with the actual value of 35.991, so the percentage error is (35.991 − 35.9) × 
100/35.991 = 0.25%.

The magnitude of the error arises from the number of terms that were omitted, so it is 
known as a truncation	error.

14.4.3  Forward, Backward and Central differences

If we rearrange our Taylor expansion, we obtain the following:
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This shows how the partial differential term is being approximated. Looking at the top line 
of the first (finite difference) term, and comparing Figure 14.2, we are taking the difference 
between values of f(x) at (x + Δx) and at (x). Since f(x + Δx) represents the “latest” step in the 
calculation and f(x) is the previous step, this is known as a forward	difference.

An alternative approximation can be found by taking the difference between f(x) and the 
preceding value f(x − Δx) the corresponding Taylor expansion is
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from which
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which is a backward	difference.
If (14.14) and (14.16) are added then
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If (14.16) is subtracted from (14.14),
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(14.17) and (14.18) are known as central	differences.

Discretisation	“grids”. It is helpful to use a grid as a visual aid to illustrate the way in which the 
computation proceeds from node to node (Figure 14.3). Locations on the x axis are indicated by 
subscript i, and on the y axis by subscript j. Superscript n relates to the time. Differences may 
be forward, backward or central as discussed earlier.
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For example, a change in depth of water, h, with distance x at a given time t, could be 
expressed as
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etc.
In some cases, a “staggered grid” is used where (say) discharge is computed at i, i + 1 etc. but 

depth is computed at (i − 1/2), (i + 1/2) etc. (i.e., Δx is the same for both variables, but one grid 
is offset by “1/2”).

14.4.4  explicit and Implicit schemes

Take the parabolic equation (14.11). A simple finite difference scheme may be set up, based on 
a forward difference for the left-hand side, and a central difference for the right-hand side. Thus 
if f is decaying with time, (14.11) may be written
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FIgure 14.3 Use of grid to express location of a variable on x, y axes (time is a “fourth” dimension).
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To form the second-order differential take
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(omitting higher-order terms).
Hence, the finite difference form of (14.11) is
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and so the solution for fin+1 is
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This expresses the required (unknown) quantity fin+1 in terms of known quantities, and this is 
an example of an explicit solution method.

Now consider taking the solution for the spatial properties of function f based on the average 
of the values for the n and (n + 1) time levels. That is, taking the right-hand side of (14.21), fin+1 
now becomes
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If we wish to solve this finite difference equation, the problem that confronts us is that we only 
have values of f at time level n, so values at n + 1 are unknown. This type of scheme is known 
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as an implicit	scheme. Such schemes can actually be solved, but the solution involves a combi-
nation of matrix methods and successive approximations (essentially a structured “trial-and-
error” approach). This demands sophisticated computer programming. Some further notes on 
an implicit scheme will be found near the end of this chapter.

14.4.5  Behaviour of Finite difference 
schemes: requirements

There are a number of important points to be made about the nature and effects of using finite 
differences to represent differential equations. A satisfactory scheme must be consistent, con-
vergent and stable. This may be summarised in two statements:

A well-posed problem is one in which the solution to a partial differential equation exists, 
is unique, and is continuously dependent on the initial and boundary conditions.

and

Given a well-posed initial value problem and a finite difference approximation to it that 
satisfies the consistency condition, stability is the necessary and sufficient condition for 
convergence (the Lax theorem).

The issues covered by these statements are of considerable importance, and are also quite com-
plex. While it is impossible to cover them comprehensively here, it is important that they are 
understood.

Convergence. Convergence means that the numerical solution to a finite difference equation 
approaches a limiting form (equal to the analytical solution where this can be obtained) as Δx, 
Δt etc. → 0.

Consistency. Consistency means that the finite difference operators approach the differential 
equation as Δx, Δt etc. → 0.

Stability. It has already been shown that the representation of a partial differential equation by 
a finite difference expression implies the existence of a truncation error. In addition, computers 
have only a finite accuracy, so the computed solution will be taken only to a finite number of sig-
nificant figures: this means that there will be a rounding	error. The total error (er) is therefore the 
difference between the actual computer solution and the analytical solution of the partial differ-
ential equation. For the computer solution to be stable, it is necessary to ensure that e ei

n
i

n
r r

+ ≤1 1. 
If er grows larger as the computation progresses, then the solution becomes unstable.

With some mathematical manipulations we can produce the stability	criterion for a given 
finite difference equation. So, for example, take the case of numerical schemes for hyperbolic 
(unsteady flow) problems. It can be shown that the stability criterion takes the form Cr ≤ 1 
where Cr = cΔt/Δx. Cr is known as the Courant	number, and it will be encountered again fur-
ther on.

For a similar analysis of stability for parabolic equations, see Anderson (1995).
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14.4.6  Behaviour of Finite difference schemes: Problems

Instability. This may arise because

 1. The equation which forms the basis for the numerical scheme is excessively sensitive 
to change in an initial condition. This means that however accurate the calculations 
may be, the inevitable build-up of round-off and truncation errors will bring about 
unbounded and chaotic results. This is an “improperly posed” scheme.

 2. The incremental step length being used for computation is too great (see example 
14.2). This can be checked by means of the stability criterion.

Numerical	dissipation produces an effect which is analogous to an additional viscous term. This 
would, for example, cause an enhanced rate of decay in a numerical wave model.

Numerical	dispersion (see Section 8.1 for a definition of dispersion). The effect of this on the numer-
ical model of a wave is to propagate additional spurious oscillations near to a steep wave front.

Numerical	diffusion leads, for example, to a “spreading” of a wave form and a reduction in wave 
height.

All of the phenomena listed earlier are purely numerical, with no relationship to the real-
world situation being modelled.

All of these remarks on the behaviour of finite difference schemes deal with important mat-
ters. It is possible only to give a very short summary here. Readers are referred to Anderson 
(1995), Abbott and Basco (1989) or Novak et al. (2010) for more details.

14.5  Boundary CondItIons and InItIal CondItIons

14.5.1  Boundary Conditions

The conservation equations are general equations that, in discretised form, may be applied to 
any fluid flow. How then may these equations be made to provide specific numerical solutions 
for so many different types of flow? The answer to this lies in boundary	conditions, which define 
the system limits. For example, a reservoir at the upstream end of a pipeline may imply a con-
stant head at the entry to the pipe, which is the upstream boundary. As we shall see, there are 
two aspects of boundary conditions: one is the identification of the physical boundaries (such 
as reservoir, valve, weir); the other is the proper numerical specification of the behaviour of the 
fluid at the boundaries. The boundary data may be defined by

 1. The value of some function (such as the reservoir head) – this is known as a Dirichlet 
boundary condition

 2. The value of the derivative of some function (such as rate of change of discharge 
during closure of a valve in a pipeline) – this is known as the Neumann boundary 
condition

Sometimes a combination of Dirichlet and Neumann conditions is required.
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14.5.2  Initial Conditions

Initial conditions are simply numbers representing the conditions of flow throughout a system 
at some initial time (n = 0). These have to be included in the input data so that the calculation 
can start.

14.6  aPPlICatIons oF CoMPutatIonal HydraulICs

Four topics will now be approached from a computational modelling viewpoint. The first two 
have already received some coverage (the outflow from a tank is similar to the second part of 
Example 13.2 and the equations for flows in a surge tower have been developed in Section 
12.6). The numerical schemes are outlined and their use illustrated by the following examples. 
Overall the four topics are ordered progressively in terms of difficulty.

Example	14.1 (Outflow from a tank). This is solved in two ways:

 1. By direct integration.
 2. By using a numerical scheme as the basis for a computational model. This is run for 

four different incremental step lengths to indicate the effect on error generation.

Example	14.2 (Surge tower) The numerical scheme is set out in Equations 14.27 and 14.28. The 
first three steps in the solution have been calculated in full in the example. For the computation, 
two different incremental step lengths have been used to illustrate the effect on the stability of 
the solution.

The third topic is unsteady flows in rivers. Here, a numerical scheme is developed from first 
principles, problems with the scheme (especially instability) are stated. A better scheme is then 
given, which is used in the following example.

Example	14.3 (Translatory wave in a channel) this makes use of the scheme to test its behaviour 
for two step lengths in x and two step lengths in time. The effects on the downstream bound-
ary conditions and the inflow and outflow hydrographs are presented graphically. The use of the 
courant number is also demonstrated.

The final topic is compressible surge in pipelines and introduces the Method of Characteristics. 
The ground work for this has been done in Section 6.4 and here the partial differential equa-
tions are converted into their finite difference form for the computational model. (The Method 
of Characteristics itself can be applied to unsteady flows in open channels as well as in pipe-
lines and is widely used.) It is the most complex of the modelling techniques in this chapter. 
Furthermore, it will be seen that as well as upstream and downstream boundaries, there are also 
usually internal boundaries (such as pipe junctions and valves). A reasonable level of knowledge 
of computing is therefore required to set up the program, with its various subroutines.

Example	14.4 (Application of the method of characteristics). The model is applied to a simple 
pipeline. Two steps have been calculated in full, and the output from the computer run is pre-
sented graphically.

All of these examples are based on explicit schemes.
This section closes with a brief treatment of implicit schemes.
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14.6.1  gradually varying Head

Problems in this category of interest to civil engineers include the time required to draw down 
or fill a reservoir.

Example 14.1: Outflow from a Tank

A tank measures 5 m × 5 m in plan and has a rectangular thin-plate weir, width b = 200 mm. 
If the initial head of water over the weir is 75 mm, how long will it take for the water to 
drain down to a head of 25 mm over the weir? Take Cd = 0.65 (see Figure 14.4).

Solution

The problem is essentially an application of the continuity equation in modified form. 
Before proceeding, remember that the continuity equation is a general equation, which 
is “tailored” to this particular problem by means of the boundary conditions and initial 
conditions.

The initial conditions are h = 75 mm and the corresponding flow over the weir. The 
boundary conditions are at each of the six boundaries throughout the period during which 
the tank is draining down. These are

 1. The base of the tank, which is assumed impermeable and hence the boundary 
condition is that discharge through the base is zero (if relevant, the pressure is the 
hydrostatic pressure corresponding to the depth)

 2. The side walls: three of these are also impermeable (discharge across these 
boundaries is zero), but the fourth wall contains the weir, so the boundary condi-
tion here is the discharge over the weir corresponding to h (there will also be a 
hydrostatic pressure force on each wall)

 3. Sixth boundary: the water surface, which is assumed to be horizontal, and can 
therefore be represented by the elevation at a single point

Q

b

h

FIgure 14.4 Tank with weir.
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Note that the discharge across the weir boundary will vary as the tank drains down, so 
this boundary condition is part of the computation.

The continuity equation for the tank may be written as −Aδh = Qδt, where Q is the 
weir discharge at time t and A is the plan area of the tank (=5 × 5 = 25 m2). Hence,

 

− =A h
Q

t
δ δ

In the limit this becomes
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(14.23)

Therefore,
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2 0 3843 2 3 2. , an analytical solution can be found to the integral:
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Now the problem is approached in terms of a finite difference solution. Rearranging 

(14.23) and taking
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(14.24)

A decision has to be made about the value of h to be used to compute the flow over the 
weir for each step in the computation. One possibility is to use the head at the start of 
each time interval; however, this would give the maximum flow over the weir for that 
time interval. A better way is to use the mean value of h for the interval (i.e., (hn+1	+	hn)/2)).

Hence, the finite difference form of the differential equation is

 

h h
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or, in terms of Δt,
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which is the basis for the numerical scheme. To solve this, a decision has to be made about 
the magnitude of the increment in h, from which we find the corresponding value of Δt. 
The total time for draining down is ΣΔt. The scheme may be encoded as a program using 
any appropriate language.

Readers who are familiar with numerical methods may note that (14.26) may be stated 
in a modified form by taking h = (0.075 − y), so that
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This is the standard form for a second-order Runge–Kutta solution. Analysis shows that 
the error for this method is of order (Δy)2, as can easily be demonstrated by plotting (ΣΔt) 
against (Δh)2.

Note that, in the following results table, “NI” refers to the number of incremental 
steps, so as N1 reduces the step length increases and so does the error in drainage time.

Results

To test the behaviour of the numerical scheme, it has been run for different values of NI 
(50, 20, 10, 5), which yields the following:

NI ΔH(= hn − hn+1) (m) Time to Drain (s)

50 0.001 348.1

20 0.0025 347.9

10 0.005 347.2

5 0.01 344.5

The model is stable, consistent and convergent (note the growth of the error er as NI reduces).
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14.6.2  surge tower (Incompressible surge in Pipelines)

The basic equations of flow for the surge tower have been developed in Chapter 12 (see Equations 
12.6 through 12.8).

A numerical description of the motion in the surge tower may be obtained by solving 
(12.6b) and (12.7) simultaneously. A finite difference method is often used, and for this pur-
pose (12.7) is rearranged slightly. The flow in the pipeline may be positive (i.e., in the origi-
nal direction) or negative (in the reverse direction). The total resistance will always oppose 
motion, and accordingly the sign of each resistance term must be negative (for a “positive” 
flow) or positive (for a “negative” flow). To achieve this it is usual to write “±V |V |” instead 
of “V	2”. Thus, the friction loss term becomes ±KfV |V |/2g, where |V | is the modulus (i.e., the 
positive numerical value) while V may be positive or negative, depending on flow direction. 
Equation 12.7 now becomes
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and (12.6b) becomes
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where Kf = λL/D and KL is the local loss coefficient.
Hence, an explicit forward difference form may be derived (with ΔV	=	V n+1	−	V n etc.) as 

follows:
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Provided that V zn n, ST are known for a given pipeline, these equations may be evaluated to yield 
V zn n+ +1 1, ST  for a series of increments of time. The magnitude of Δt will influence the accuracy 
of the solution. For good accuracy Δt ≪ “periodic time”. While it is possible to perform such 
calculations on a simple hand calculator, the use of a programmable calculator or microcom-
puter is advisable for economy of time. The explicit technique outlined here is relatively simple 
to understand and to program, and thus forms a useful introduction for the newcomer. Other 
techniques (such as those based on the Runge–Kutta method) have been applied; also, a solu-
tion can be produced in one of the mathematics packages available for use on PCs.

A worked example follows to illustrate the technique. Three steps have been worked by hand 
calculator in order to show the method; however, the complete calculations are by computer.
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Example 14.2: Surge Tower

A hydroelectric scheme is served by a tunnel 3 m in diameter and 1.5 km long, with a 
reservoir at its upstream end. A surge tower of diameter 10 m is sited at the downstream 
end of the tunnel at the entry to the penstocks. The local loss coefficient for the entry to 
the surge tower is 0.785 (referred to flow velocity in the tunnel). The initial discharge is 
32 m3/s. The friction factor for the tunnel is 0.04. Estimate the peak upsurge height, and 
the periodic time, for a sudden and complete shutdown.

Solution

For Q = 32 m3/s, V0 = 4.53 m/s and hf 0 = 20.92 m

 K L D A Af ST    m   m= = = =λ / . .20 7 068 78 542 2

The boundary conditions for this problem are

 1. The upstream boundary, which is the reservoir for which h = constant (the datum 
level is taken at the top water level)

 2. The downstream boundary, which is the control valve, situated just downstream 
of the surge tower, for which Q = 32 m3/s before shutdown, Q = 0 after shutdown

 3. The water surface level in the surge tower (at which pressure is atmospheric)

The value for Δt must be selected. Its magnitude will affect the accuracy of the computations. 
To reinforce this point, two sets of computations have been performed, one with Δt = 2 s and 
the other with Δt = 50 s. The first three steps of the solution (for Δt = 2 s) are given next.

Step	1 (2s after closure). The data from t = 0 are used to predict conditions at Δt = 2 s. 
From (14.27),
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and from (14.28),
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Step	2 (t = 4 s)
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Step	3 (t = 6 s)

 

V n+ = + − +
×
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.

The output file from the computer program has been transferred to a spreadsheet for plot-
ting as shown (Figure 14.5). The type of differential equation used would lead one to expect 
a damped sinusoidal curve to result from the calculations. This is so for Δt = 2 s. However, 
the points representing the results for Δt = 50 s are significantly different. Clearly a problem 
of instability has been produced, because Δt is “large” compared with the periodic time of 
approximately 260 s. The errors generated at each successive step are clearly too great, and 
the results are useless. If a value Δt > 50 s were Used, the computation would terminate 
because of the generation of very large numbers (e.g., because of division by zero at a stage in 
the computation).

14.6.3  unsteady Flows in rivers

There are a number of open channel problems involving unsteady flows: that is, flows in which 
the velocity and depth of flow vary with time (examples are the passage of a flood wave along 
a river, or a tidal flow in an estuary). Few of these problems can be solved analytically, so they 
have to be solved numerically.

H
ea

d 
(m

)

Time (s)

∆t = 50 s
∆t = 2 s

FIgure 14.5 Surge tower: graph of head versus time.
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To illustrate the way in which a model is developed, and the assumptions and simplifications 
that have to be made, the case of a flood wave will be considered. For simplicity we shall assume 
that the river has a uniform rectangular cross section of width B throughout its length.

The momentum (Navier–Stokes) equation for a turbulent flow in the x (longitudinal) direc-
tion is
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(This is the same as Equation 14.7c, but omitting the body force.)
First, the viscous shear stress terms are assumed to be small compared with the turbulent 

shear terms. Second, it is often possible to ignore effects of vertical variations and simply to take 
“depth averaged” values, which are found by integration between the bed (at height y0) and the 
water surface (at height ys) and then dividing by the depth h = (ys – y0) thus:
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(14.30)

noting that

 1. u y qd =∫  (discharge per unit width) and q/h = U (depth averaged streamwise velocity);

 2. p = ρg(ys − y), therefore
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 3. The turbulence is assumed to be homogeneous, and shear stresses on vertical planes 
may be ignored, therefore the last term on the right-hand side may be simplified to
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The shear stress (τs) at the water surface is usually neglected. Recalling (from Chapter 5, 
Equation 5.5) that
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Equation 14.30 in depth-averaged form and divided by (ρg) becomes
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In this equation, all the terms are equivalent to gradients. The equation can be further simpli-
fied if the channel is regarded as being straight and of uniform rectangular cross section. The 
channel flow can then be treated as a simple one-dimensional flow, and average values for U, Ss 
and Sf can be taken. Also, V (the vertical velocity term) is assumed to be zero. Hence,
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where the channel cross section is more complex (e.g., where there is a main channel and flood 
plains) it is often better to use discharge rather than velocity. Equation 14.31a then becomes
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(14.31b)

The corresponding depth-integrated form for the continuity equation is based on the general 
concept that the difference between inflow and outflow causes any change in water surface 
level:
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(14.32a)

Again, this may be expressed in terms of Q and A:
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The simplest approach to computational modelling of the unsteady flow in a river is to base 
the solution on the triangular array of grid points shown in Figure 14.6. At t = 0 all conditions 
are known. At t = n, there might be a small change in boundary conditions at x = 0 (because 
of the increasing flow resulting from the rainfall), but conditions at all other points might be 
unchanged. At t = n + 1, there is a further small change in the boundary conditions. The effect 
of prior changes to conditions at t = n + 1, x = i etc. must be found. Taking known conditions at 
t = n and at x = 0, i, i + 1, we wish to compute (unknown) conditions at t = n + 1, x = i. Taking 
Equation 14.32a, the derivatives may be approximated:
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If the Chezy–Manning equation is rearranged,

 

S
U U n

R

i
n

i
n

i
n

f =
( )

+ +

+

1 1 2

1
4
3

t

x

δx

δt

i

n + 1

i + 1

n

0

Initial conditions

FIgure 14.6 Triangular array of grid points.
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Then, in finite difference form, Equation 14.31a becomes
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For convenience define

 

K
R

n g t

K K
U t U U

x
g tS g tS U

i
n

i
n

i
n

i
n

s i

A

B A

=
( )

=
−( )

+ − −

+

+ −

1
4
3

2

1 1
0

2

∆

∆
∆

∆ ∆ nn












Then, Equation 14.34 becomes
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Equations 14.33 and 14.35 are explicit equations, from which the (unknown) depth and veloc-
ity at time step n + 1 may be evaluated.

This type of scheme is relatively simple to derive and to program; unfortunately, its applica-
tion is not so simple. There are two major drawbacks:

 1. The scheme is extremely susceptible to instability (if energy dissipation and diffusion 
terms are omitted, the scheme is unconditionally unstable!).

 2. The downstream boundary condition has to be calculated from conditions at the previ-
ous grid point using an appropriate numerical technique (often based on the method of 
characteristics see Novak et al. 2010).

This is useful simply to illustrate the processes involved in developing a scheme. It is possible to 
develop a more stable explicit scheme, which will now be given.

Following Koutitas (1983) and using a centred grid (i.e., Q nodes are at i, i + 1, n, n + 1, but 
h nodes are at i – 1/2, i + 1/2, n − 1/2, n + 1/2, etc.), the continuity equation becomes
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So
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may be found explicitly. Turning to the momentum equation, stability is improved by 

replacing local values of quantities with averages over two nodes (Lax, 1954; Lax and Wendroff, 
1960). It is convenient to use the following notation for the averaged quantities:
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Hence, Equation 14.31b becomes
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Qi
n+1 may therefore be found explicitly. This scheme is now applied to the following problem.

Example 14.3: Translatory Wave in a Rectangular Channel

Determine the water surface profile through time, the maximum water depths and the out-
flow hydrograph for the following channel given the inflow hydrograph and assuming that the 
channel contains a step at the downstream boundary (such that critical depth is maintained).

Channel: rectangular width B = 10 m, length 10 km
Manning’s n = 0.025
Bed slope (S0) = 0.002 m/m
Initial depth of flow = 1.0 m

Inflow hydrograph (in addition to steady flow):

Time (h) 0 0.5 1.0 1.5 2.0 2.5

Discharge (m3/s) 0 50 37.5 25 12.5 0
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Solution

For the solution to proceed, the boundary conditions must be specified. At the upstream 
boundary Qi

n etc. = (inflow hydrograph + steady flow). At the downstream boundary (for 
critical flow), U gh=  and ∆ ∆Q A gh= . The problem of instability must be avoided, and 
to predict the limit of stability the Courant number, Cr (= cΔt/Δx) will be used. The stable 
limit is usually taken as Cr < 1; however, many schemes require lower values in practice. 
Instabilities can arise because the values for Δt or Δx are either too large, or from calcula-
tion of the boundary conditions. The solution has been produced using a program based 
on the scheme mentioned earlier, and the following investigations illustrate the behaviour 
of various aspects of the computational model.

Effect	of	boundary	conditions. To ensure that calculation of the downstream boundary 
conditions proceeds satisfactorily, Δx must be less than 100 m. The effect of using a 
greater value (Δx = 1000 m), with a constant value for Q (no flood wave) and Δt = 50 s, 
is shown in Figure 14.7a. Note the effect of the over-large Δx is to produce an instabil-
ity in the computation of the boundary condition. This manifests itself in the form of 
artificial waves.
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FIgure 14.7 Flood wave model: (a) unstable downstream boundary, Δx = 1000 m, Δt = 50 s; (b) inflow and outflow hydro-
graphs; (c) distribution of maximum water depth; (d) water surface profiles (each strip represents the computer-
generated estimate of the water surface profile at a given time, due to the passage of the flood wave); (d) shows 
the water surface profiles for different times in the passage of the wave.
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Effect	of	magnitude	of Δt. Having established the magnitude of Δx at 100 m, the effect of vary-
ing Δt is investigated. Figure 14.7b shows the inflow hydrograph, and the corresponding out-
flow hydrograph for Δt =12 s and 12.5 s. The wave speed c in the channel may be estimated 
using the fact that the normal depth for the maximum discharge (65 m3/s) is approximately 
2.56 m, and therefore c gh= = × =9 81 2 56 5 01. . . m s  in still water. Because the velocity 
of the water in the channel is not zero, the wave speed will be c ± U. Taking the maxi-
mum velocity near the downstream end as U = 65/(10 × 2.25) = 2.9 m/s, then the Courant 
number is Cr = (5.01 + 2.9)Δx/Δt ≤ 1. As Δx has been fixed at 100 m, we can see that the 
corresponding maximum value for Δt is 12.6 s. Figure 14.7b shows that the outflow hydro-
graph for Δt = 12 s is a smooth curve, and that magnitudes are reasonably in line with what 
might be expected. An increase in Δt to 12.5 s produces an unstable computation. Figure 
14.7c shows the corresponding distribution of maximum water depths for the same two 
time intervals (12 s, 12.5 s) with the unnatural peak for the 12.5 s interval.

Some interesting conclusions may be gleaned from this example. First, the attenuation of 
the flood peak is only 10% in 10 km (and this becomes less for steeper bed slopes). Second, the 
maximum depths correspond very closely to the normal depths at the peak discharges. Third, 
the speed of propagation is very closely estimated using the wave speed formula with the nor-
mal depth at maximum discharge.

In this case, therefore, the application of a steady flow model could have provided the nec-
essary information to a level of accuracy acceptable for some engineering purposes. However, 
this is not always the case, and careful consideration needs to be given to each individual study 
regarding an appropriate choice of computational model.

If the various models considered up to this point are reviewed, it will be seen that they are all 
based on the use of “averaged” conditions (mean velocity, etc.) at each point in the system. The fric-
tional effect of turbulent (or laminar) conditions on the flow has been simulated through the Darcy 
or Chezy–Manning formula. This has the merit of simplicity, but any detail (such as the variation 
of velocity or turbulence across a section) is lost. For some cases, this may not be important, but 
for other cases the simplifications may lead to significant errors in modelling system behaviour.

14.6.4  Compressible surge in Pipelines: the Method 
of Characteristics

In Chapter 6, the differential equations were formed representing conservation of mass and 
momentum for compressible flow in pipes. Slightly rearranged and divided by g Equation 6.16 
can be written
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and (6.17) is
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Note that Equations 6.16a and 6.17 are both equal to zero. If the momentum equation (6.17) 
is multiplied by some coefficient, C, and is then added to (6.16a), the resulting equation must 
still be equal to zero:
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This may be rearranged as
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Now it has been shown (see Section 14.3) that the total derivative for the acceleration of a fluid 
may be written as follows (if v = 0)
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then the first term in square brackets in Equation 14.38 is equivalent to dH/dt. Also, if
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then the second term in square brackets is equivalent to du/dt. Equation 14.36 can now be 
written
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Equation 14.39 is true only if
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for which
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(14.41)

If u ≪ c then
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d
x
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Equation 14.41 indicates that there are two lines representing the propagation of a disturbance, 
which can be plotted on a space–time plane (see Figure 14.8). One line has a slope of +c, the 
other a slope of −c. Also, Equation 14.39 is valid only if (14.41) is satisfied, and the solution 
of (14.39) is therefore valid only along the lines of propagation. The lines of propagation are 
known as characteristic	lines, or simply as “characteristics”. The line with a slope of +c is a posi-
tive characteristic and the line with a slope of −c is a negative characteristic. The zone enclosed 
between the x axis and the two characteristics is the zone of determinacy. Any event occurring 
outside that zone will not determine the properties of the system within the zone.

To see how this may be applied, suppose that conditions at the point n, i are known: that is, 
we have numerical values for the location i (distance along the pipeline), the time n and the cor-
responding head Hi

n and velocity ui
n. Then Equation 14.39 with C = +c/g is valid for any point 

along the positive characteristic. Similarly, if conditions are known for location i + 2 and time n, 
(14.39) can be used with C = −c/g, along the negative characteristic. These two equations may 
be solved at the point (i + 1, n + 1) where the positive and negative characteristics meet. Thus if 
conditions at (i + 1, n + 1) are unknown, and there are two unknown quantities H ui

n
i
n

+
+

+
+( )1

1
1
1, , then 

with the two equations (for the positive and the negative characteristic) these can be evaluated.
We have already encountered the problem of instability. A careful look at Figure 14.8 illus-

trates why instabilities may arise. As shown on the figure, Hi
n
+
+
1
1 lies at the junction of the two 

characteristics. However, the slopes of the lines are fixed (at ±c), so there is a corresponding 
fixed relationship between δx and the maximum possible value of δt. An increase in δt beyond 
that maximum would therefore take the computed point (i + 1, n + 1) outside the domain of 
determinacy (the calculation becomes a “leap into the unknown”). This approach to stability 
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FIgure 14.8 Characteristics.
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only indicates a basis for determining the limiting condition; many explicit schemes require 
much smaller time steps to maintain stable operation, as has been seen in the previous example.
Finite	difference	 form	of	 the	characteristic	equation. The characteristic Equation 14.39) may be 
stated in the finite difference form that is adopted for computer application:

 δ δ θδ λ δH C u u t C u u t D+ + + =sin /2 0  (14.42)

Because variations occur in space and time, the subscript and superscript notation referred to 
earlier is adopted. Thus, Hi
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Similarly for the negative characteristic, with δH H Hi
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Adding (14.43) and (14.44) and rearranging,
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while subtracting (14.43) from (14.44) yields
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Note that these equations are now explicit expressions for Hi
n
+
+
1
1 and ui

n
+
+
1
1 in terms of the known 

values for H, u, etc., at the preceding time step.

14.6.5  Characteristic equations for Boundary Conditions

The characteristic equations for some of the important boundaries are now derived.

Valve (Figure 14.9a). The valve is an orifice of variable area, and so Q C A gHd= ν 2  (where Av 
is the valve orifice area and H is the pressure head at the valve). In the following analysis, the 
superscript “o” refers to the fully open setting. Thus,
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where A A AR
o= ν ν. Hence, the pipeline velocity is
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where u and uo are the velocities in the pipe just upstream of the valve.
From Figure 14.9a, the valve is assumed to lie at the downstream end of the pipeline, and 

therefore the positive characteristic Equation 14.43 is applicable. Equations 14.43 and 14.47 are 
solved simultaneously. This yields the following result:
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So, conditions at time t + dt are computed from the (known) conditions at time t and before the 
commencement of closure.
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FIgure 14.9 Typical system boundaries. (a) Valve. (b) Dead end. (c) Reservoir.
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Dead	end (Figure 14.9b) This could be a closed valve or a stopped-off pipe: therefore ui+1 = 0. 
Like the valve, the dead end has a positive characteristic, so Equation (14.43 is used:
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Reservoir (Figure 14.9c) At the pipe–reservoir interface, the head must remain constant. The 
reservoir is here assumed to lie at the upstream end of the pipeline. A negative characteristic 
solution is therefore assumed, with stations i + 1 and i + 2 positioned so as to correspond to 
(14.44). In running the procedure on a computer, conditions at station i + 2 would already be 
calculated, and Hi+1 would be a known, constant =( )+Hi 1

o  magnitude, so Equation 14.46 may 
be arranged as
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Other types of boundary may also be encountered in practice. Wylie and Streeter (1993) or 
Ellis (2008) may be consulted for details.

Example 14.4: Application of the Method of Characteristics

A reservoir supplies water through a horizontal pipeline 1 km long and 500 mm internal 
diameter (Figure 14.10). The discharge is controlled by a valve at the downstream end of 
the pipeline. If the valve closes in 4 s and gives a linear retardation, estimate the pressure 
rise at the valve and at the mid-point of the pipe over an 8 s period. The reservoir head is 
100 m and the head at the valve before commencement of valve closure is 4.75 m. Friction 
factor λ = 0.012, and speed of sound c = 1000 m/s.

100 m

1000 m

500 mm dia.

FIgure 14.10 Reservoir and pipeline (Example 14.4).
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Solution

A time interval must first be adopted. The interval should normally be some convenient 
fraction of L/c. Here an interval of 0.5 s is used. This corresponds to the time for the shock 
wave to travel halfway along the pipe. (Note: i = 1 is reservoir boundary, i = 2 is pipe mid-
point, i = 3 is valve boundary.)

Initial conditions t = 0:

 
h

uo

f = − = × ×
× ×

100 4 75
0 012 1000

2 9 81 0 5
3

2

.
.

. .

So

 uo
3 8 824= . m s

Therefore,

 H H Ho o o
1 2 3100 52 38 4 75= = =m m m. .

 
C

c
g

= = ≈1000
9 81

100
.

Pipe is horizontal, so θ = 0.
First	step. t = 0.5 s after commencement of valve closure:

 Valve area reduction /= =0 5 4 0 125. .

Therefore,

 AR = 0 875.

Using Equation 14.48, determine the velocity at the valve (for the computer solution the 
valve is in effect assumed to close in a series of discrete “steps” or “jerks”, one step at each 
time interval):
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Notice that all the data for evaluating the equation are derived from conditions at the 
preceding time (t = 0).
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The pressure head is determined from Equation 14.43, because the valve is assumed to 
have a positive characteristic. Rearranging (14.43) into a suitable form,
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Because of the assumption about the step closure pattern at the valve, the first shock wave 
has only just been generated. Conditions at Stations 1 and 2 therefore remain as at the 
preceding time. Summarizing,
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Second	step. t = 1.0 s:

 Valve area reduction = =1 4 0 25/ .

Therefore,

 AR = 0 75.
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The shock wave that was generated at the valve at t = 0.5 s has just reached the  mid-point 
of the pipe. The velocity and head at the mid-point are evaluated using (14.45) and (14.46) 
as follows:
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Summarizing,
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Notes on Example 14.4

 1. This example has been set up to highlight certain aspects of surge analysis, and 
not as an example of good design. It would not normally be considered sensible to 
run a system with such high initial velocity, precisely because this would lead to 
surge problems.

 2. The solution has been completed by computer, and the results are presented in 
graphical form in Figure 14.11. Note the violent fluctuation in pressure. This 
would almost certainly cause a rupture in the pipeline system as shown.

A flowchart for the computer program is shown in Figure 14.12.

Water usually contains some dissolved gas (mainly air), which can come out of solution as 
bubbles if the pressure falls below a certain level. This may happen during the low-pressure 
phase of the surge cycle. Add to this the effects of variable water density and transmission/
reflection of shock waves due to features of the pipe system (valves, bends, etc.) and it follows 
that the simulation of an actual pipeline system is complex. Also, as a result, “real” character-
istics are not straight, but sinuous or curved. Ellis (2008) or Wylie and Streeter (1993) present 
details and solution methods to cover these situations.
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14.6.6  Implicit Finite difference schemes

It has been seen that a major limitation in the use of explicit schemes is the onset of instability. 
This restricts the magnitudes of Δt and Δx, and means that quite large numbers of calculations 
may be involved. With modern personal computers storage is not a barrier to the solution 
of flows in pipes and channels of uniform cross section. However, for flows in estuaries and 
along coasts (where a 2-D grid is often required) computer storage can give rise to difficul-
ties. “Implicit” solutions to finite difference equations can overcome these (see Section 14.4). 
Stability  analysis of implicit models shows that, provided the “weighting coefficients” used in 
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FIgure 14.11 Graphical representation of solution to Example 14.5: (a) variation of head with time; (b) varia-
tion of velocity with time.
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the equations are within specified ranges, the models are stable for any value of the Courant 
number. One example of such a scheme is due to Preissmann. Coverage of these more 
advanced models is beyond the scope of this chapter, and interested readers are referred to 
Novak et al. (2010).

14.7  ConCludIng notes

There are two broad categories of model used in hydraulics. Scaled physical models (see Section 
11.7) and computational models, both have their advantages and their disadvantages. Because 
some aspects of the physics may not be fully understood, or may be difficult to simulate, numer-
ical models have their own characteristics and limitations. Therefore, numerical models, like 

Read input data

Calculations of initial steady
�ow conditions in pipeline

Check
valve closed

Check
calculations are

completed

Output of calculated values

Calculation of velocity and
pressure at valve (or other
surge-initiating boundary)

Calculation of surge pressure
and velocity at each station

along pipeline

Calculation of boundary
conditions at upstream end
of pipe: boundary might be
reservoir, pipe branch etc.;

each boundary is
represented by an

appropriate subroutine

Yes

No

No

Yes

FIgure 14.12 Flowchart for computer program using method of characteristics.
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physical models, need to be checked and calibrated carefully against real-time prototype data 
to ensure that they are producing results that are of acceptable accuracy.

Models may be explicit, implicit or “semi-implicit” (a hybrid). The implicit methods have the 
advantage that stability can be maintained over larger time steps. The disadvantages are that 
programming is more complicated, the time required to solve each time step is slightly greater 
than for the explicit approach (though this is usually outweighed by the saving due to the abil-
ity to use larger or variable time steps), and truncation errors may therefore be large. Implicit 
schemes have not been as extensively developed as explicit schemes for modelling flood waves. 
Explicit schemes are easier to program, but suffer from the disadvantage of stability constraints. 
However, a well-designed explicit scheme does tend to give good conservation of the flood 
wave form.

The use of implicit techniques came into favour in the 1970s, when the speed and memory 
size of many commercially available computers were much more limited than now. However, 
the inexorable advance in computer processing speed means that the engineer can exercise more 
freedom of choice in the selection of the technique for solving a given problem. Nevertheless, 
the continuously increasing demands of engineers have led to corresponding developments in 
both techniques.

There are now many computer packages capable of modelling a wide range of hydraulic 
phenomena. Commercial packages are usually far more sophisticated than the models outlined 
here, involving input, output and graphics routines, as well as the “core” simulation routines. 
There are also useful equation-solving routines available on standard commercial software that 
can reduce the need for some programming.

14.8  suMMary

Computational hydraulics has been an area of rapid development since the 1960s. Nevertheless, 
care needs to be taken in selecting an appropriate model for a given application, and in recog-
nising the limitations of such models. The numerical or graphical output resulting from a com-
puter simulation should not be accepted uncritically, but must make physical sense and must be 
interpreted in the light of experience. The treatment of the subject in this chapter is necessarily 
brief and basic. Readers who wish to enhance their knowledge are, in the first instance, referred 
to the following.

A more detailed treatment of the basic elements can be found in Anderson (1995). More 
extensive coverage of techniques is given in Abbot and Minns (1998), and in Novak et al. 
(2010). The latter also covers physical as well as computational modelling. Ellis (2008) includes 
more details of the method of characteristics applied to surge in pipelines.
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Chapter 15

river and Canal engineering

15.1 IntroduCtIon

This chapter draws together various strands of knowledge which have been developed separately 
in the text together with some new concepts. Open channel flows of the steady, varying and 
unsteady types, hydrology and sediment transport all play a part in river engineering. The vast 
body of literature which has been produced over the last 100 years bears witness to the fascination, 
complexity and controversial nature of the subject. There is no complete theoretical approach to 
many of the problems, though various numerical models can help the engineer to make rough 
predictions, some of which are described in this chapter. Above all, the engineer concerned with 
river hydraulics must be a careful observer who uses his knowledge to cooperate with natural laws 
as far as is possible. Before any major modifications are made to the course of a river, it is usual 
to institute physical and/or numerical model studies as a check on the viability of the proposals.

Channels may be lined or unlined, artificial or natural (or may consist of various combina-
tions of these). Thus, there is the need for several approaches to design. These are described in 
the following sections.

By	the	end	of	this	chapter	you	should

 ◾ Understand the hydraulic design features of lined and unlined river channels and be 
able to apply the design equations

 ◾ Understand the key morphological features of natural river channels
 ◾ Understand the types of computational hydraulic models used for river flow simulation 

and be able to select the relevant model for a design application
 ◾ Understand the approaches to river engineering

15.2 oPtIMIsatIon oF a CHannel Cross seCtIon

In designing an artificial channel, cost is a prime consideration, so the engineer must use a 
channel whose geometry minimises the cost of excavation and lining. The uniform flow equation 
can be used to give some indication of the optimum section shape from a hydraulic viewpoint. 
Take the case of a channel of prismatic section (Figure 15.1).
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For uniform flow,

Q
n

A
P

S= 1 5 3

2 3 0
1 2

/

/
/

(Equation 5.9).

If n and S0 can be assumed to be constant, then for an economic section the value of A5/3/P2/3 
must be a maximum for a given value of A. Put another way, the requirement is for P to be the 
minimum value for a given value of A. From the geometry of the section,

 A by y= + 2/tanθ  (15.1)

 P b y= + 2 /sinθ  (15.2)

From (15.1)
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FIgure 15.1 Trapezoidal channel.
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Therefore, for the optimum section,
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Several considerations arise regarding these equations:

 1. It is readily shown that the optimum trapezoidal section may be defined as that shape 
which approaches most nearly to an enclosed semicircle whose centre of radius lies at 
the free surface.

 2. The aforementioned development took into account only hydraulic considerations. 
Thus, the area A is the area of flow, not the cross-sectional area of the excavation (the 
latter will naturally be greater than the former).

 3. If the channel is unlined and runs through erodible material, considerations of bank sta-
bility (Section 15.3) must also enter into the calculations. Furthermore, the bed slope 
S0 may not coincide with the natural stable slope in that material for the given flow.

 4. Where the channel is lined, lining methods and costs also play a determining role in 
deciding section shape.

 5. The slope of the local topography cannot be ignored, and this may be neither constant 
nor identical with the desired value for S0.

These points serve to emphasise the fact that estimates based on (15.3) represent an optimum 
section shape only from a very restricted viewpoint.

15.3 unlIned CHannels

Unlined channels may be natural or man-made and may pass through rocky and/or particulate 
geological formations. Given a fast enough current, any material will erode (as witness the 
action of fast-flowing streams in gorges). Where the stream boundaries are both particulate and 
non-cohesive (e.g., a river traversing an alluvial plain), erosion and deposition occur. The fun-
damental ideas relating to sediment transport have been developed in Chapter 9. These ideas 
find an application here. In understanding the processes which govern channel formation, the 
starting point must be the current patterns which occur in channels.

15.3.1 Current Patterns in Channels

Some mention has already been made of secondary flows (Section 5.4), but in view of their 
importance in determining the paths of natural watercourses, a further look at certain aspects 
is justified. In a straight watercourse, the pattern of secondary currents is usually assumed to 
be symmetrical. Consequently, the distribution of shear stress around the boundary should 
also be symmetrical and this, in turn, should theoretically give a symmetrical pattern of ero-
sion (or deposition) and lead to a symmetrical boundary shape in an erodible bed material. 
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However, when the flow traverses a bend, the secondary current patterns are changed. The 
velocity of an element of water near the channel centre at the surface will be higher than that 
of a second element near the channel bed (Figure 15.2). The centrifugal force on the first 
element is higher than that on the second, which implies that the force pattern is not in equi-
librium. The first element therefore tends to migrate outwards towards the bank, displacing 
other elements as it does so. This mechanism sets up a spiral vortex (Figure 15.3) around the 

Deposition

Erosion

FIgure 15.3 Secondary current pattern.

u1

u2

y

FIgure 15.2 Variation of velocity with depth, in channel.
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outside of the bend. The vortex causes an asymmetrical flow pattern which tends to erode 
material from the region near the outside of the bend and deposit it near the inside. This 
implies that the bend will tend to migrate outwards over a period of time. From observations, 
it would seem that secondary currents are seldom symmetrical, even in a straight channel. 
Furthermore, ground conditions are rarely homogeneous. Hence, the problem of predicting, 
let alone controlling, events. Even in an apparently straight channel, the line of maximum 
depth may not be straight. The actual current patterns are more complicated than this outline 
suggests; nevertheless, it gives an indication of the type of mechanism by which the alignment 
of an unlined watercourse changes with time. The centrifugal effects at the bend also cause 
a differential elevation of the water surface (superelevation) with higher levels at the outside 
of the bend than at the inside.

15.3.2 stable Channels and the “regime” Concept

An unlined channel exhibits multiple degrees of freedom, whereas the lined channel has only 
one (the depth). The unlined channel is subject to erosion and deposition, which may change 
the bed slope and the channel cross section and alignment. It is interesting that an artificially 
straight channel in an erodible bed is seldom stable. The flow will usually compel the course to 
“meander” (see Section 15.5). Therefore, the degrees of freedom of an erodible channel include 
depth, width, slope and alignment. A system with one degree of freedom will rapidly stabilise 
in a steady state (normal depth) for a given discharge. Stabilisation of a channel with multiple 
degrees of freedom may take a long time and, indeed, may in some cases never be quite attained. 
In other cases, “armouring” (Section 9.5: “Concluding notes on sediment transport”) will assist 
in the long-term stabilisation of the channel.

Where channels run through regions of fine-grained soils, in which irrigation may be vital, 
it is also vital to avoid excessive erosion of the precious topsoil. Such conditions are widespread 
throughout the Middle East and the Indian subcontinent, and, indeed, it was in India that some 
of the early work on the design of stable channels was initiated. A channel which does not 
exhibit long-term changes in geometry and alignment, and in which scour and deposition are 
in equilibrium, is said to be stable (or “in regime”). Three approaches have been developed to 
the design of stable channels with particulate boundaries: the “regime” approach, the “rational 
regime” approach and the “tractive force” approach.

15.4 desIgn oF staBle alluvIal CHannels

15.4.1 “regime” approach

This was probably originated by R. G. Kennedy towards the end of the nineteenth century. 
Kennedy studied a number of irrigation channels in the Punjab and developed a formula for the 
mean velocity VCR required for a stable channel:

V Ky KRn n
CR or= ( )
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Unfortunately, n is not a constant, but varies roughly between the limits 0.5 < n < 0.73. In 
common with many other “regime” formulae, the numerical coefficient K is not dimensionless, 
but is purely empirical. Some engineers have criticised the regime approach on precisely the 
grounds that it lacks any coherent theoretical framework.

Further work has been done since Kennedy1s formulae were published. Major contribu-
tors include Lacey (1953), Blench (1957, 1966), Simons and Albertson (1963), Nixon (1959), 
Charlton et al. (1978) and Hey (1986).

Blench suggested that the regime approach was primarily applicable to channels having the 
following characteristics:

 1. Steady discharge under subcritical flow conditions
 2. Steady sediment load (the sediment is therefore small, i.e., D50 ≪ y)
 3. Straight alignment
 4. Cross section in which B > 3y and the bank angle approximates to the “natural” angle 

of repose of the soil
 5. Bed and banks are hydraulically smooth
 6. Sufficiently long established to ensure that equilibrium has been attained and that the 

channel is stable

In a sense, (6) begs many questions and, indeed, it is questionable whether it is possible to pre-
dict the timescale for its fulfilment when designing an artificial channel.

Simons and Albertson extended the database for regime work using the information from 
India, adding data gathered from a number of North American rivers. They concluded that five 
channel types could be distinguished:

Type 1 – channels with sandy boundaries
Type 2 – channels with sandy bed and cohesive banks
Type 3 – channels with cohesive boundaries
Type 4 – channels with coarse non-cohesive boundary material
Type 5 – Type 2 channel with heavy load of fine silty sediment

A selection of their equations (in metric units) is given next (a complete list may be found in 
Henderson [1966]):
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The values for the various constants depend on the channel type. For example, a Type 2 channel 
would use

K K K n1 2 34 71  484 1 81 33= = = =. . . .0 0 0
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The foregoing remarks serve mainly to make the reader aware of the concepts of regime theory. 
A comprehensive list of the regime equations of Blench, Simons and Albertson and Hey and 
Thorne (in SI units) was published in the seventh book of a series of water practice manuals by 
the Institution of Water and Environmental Management (Brandon, 1987). In this book, clear 
guidance is also given on the proper application of regime equations, a topic as important as the 
equations themselves.

15.4.2 rational approach to Channel design

Stable channels are the result of quite complex interactions between fluid and sediment, some 
of which can currently be described by physical laws (e.g., the dynamic equation of unsteady 
flow) or by semi-empirical relationships (e.g., sediment transport equations). Regime equations 
are basically simple empirical relationships which may not take account of all the processes. 
Setting aside the plan and bed-form characteristics of channels, three principal variables may 
be considered – the width, depth and slope. If three so-called process equations could be found, 
then their simultaneous solution would provide the dimensions of width, depth and slope for a 
stable channel (e.g., a channel in regime). This is the principle of the rational approach to stable 
channel design.

As already intimated, two well-established process equations are available, namely flow 
equations and the sediment transport equations. However, these two process equations require 
a linking equation because they are not truly independent. This arises from the fact the mean 
bed shear stress determines the flow resistance and contributes to the sediment transporting 
capacity of the channel. In turn the mean bed shear stress is a function of the grain size (and 
bed forms) for alluvial channels.

A third process equation might involve a relationship between the cross-sectional variation 
of shear stress and the other two process equations. Such an equation is not currently available. 
However, another concept has been developed, which produces a third independent equation 
and hence facilitates a solution. The concept is known as the extremal hypothesis or variational 
principle. The hypothesis is that an alluvial channel will adjust its geometric properties such 
that its sediment transporting capacity is maximised or that its stream	power is minimised.

Using these principles, White et al. (1982) developed a rational approach to channel design. 
It is also described in Ackers (1983) together with other researchers’ efforts, and with com-
ments regarding its accuracy and applicability. In a later development, Bettess and White (1987) 
review their method and the work of others. This paper also contains a very useful critique and 
discussion of their results by other experts in the field.

The principal details of the White, Bettess and Paris method are as follows. First, they used 
(perhaps not surprisingly!) the Ackers and White sediment transport equations (described 
in Chapter 9). Second, they developed a linking equation between frictional resistance and 
sediment transport. Recalling Equation 9.25b for the Ackers and White particle mobility 
number, e.g.,
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then for fine sediments n tends to 1, a second particle mobility number Ffg (for fine sediments) 
may be deduced from these, e.g.,
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White et al. (1980) found that a linear relationship existed between Ffg and Fgr with a coefficient 
depending on the Ackers and White dimensionless grain size Dgr (Equation 9.25c). Following 
an extensive correlation exercise for a wide range of sediment sizes (from 0.04 to 10 mm), the 
following equation resulted:
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(15.5)

where A is a function of Dgr as defined in Equations 9.26a and 9.26d.
Equation 15.5 may be solved directly for velocity (V) and hence discharge (Q) if the depth 

and slope are prescribed in the following way. First, u gRS*( )= 0  may be calculated, then Dgr 
found for a particular grain size (and water temperature). Thus Ffg may be found and Equation 
15.5 solved for Fgr. Finally, Equation 9.25b is invoked to solve for V and Q. Hence, it may be 
appreciated (with a little thought) that Equation 15.5 links the frictional resistance of the chan-
nel to its sediment transporting capacity through the slope and grain size.

Returning now to the application of the variational hypothesis, White et al. (1982) devel-
oped a computer program to solve the previously mentioned equations. For given values of 
discharge, sediment concentration, bed material size and water temperature, they computed 
the width, depth, velocity and slope which maximised sediment transporting capacity at the 
prescribed value of sediment concentration. They then made extensive comparisons between 
field data and their predicted results for both sand and gravel bed channels, concluding that the 
method was applicable over a very wide range of conditions. Quoting from Ackers (1983), “The 
method (with respect to width) is least accurate for laboratory scale models and for very large 
irrigation canals but otherwise shows remarkably good agreement with the bulk of the irrigation 
system observations”. With this favourable result, tables for the design of stable alluvial channels 
were produced (White et al., 1981) covering discharges up to 1000 m3/s, sediment concentra-
tions from 10 to 4000 mg/L and sediment sizes from 0.06 to 100 mm.

In conclusion, the foregoing description of the rational approach to channel design represents 
a significant step forward on purely empirically based regime equations. Thus, consideration of 
its use is recommended, providing its limitations are properly accounted for. Research effort in 
this area is ongoing and the reader should expect further developments in the future.

15.4.3 “tractive Force” approach

This makes use of the tractive force equations for sediment transport (see Section 9.4). Most of the 
early work was based on the Du Boys equation; subsequently, the Shields equations were adopted. If 
the Du Boys equation is used, with the shear stress evaluated by the Chézy formula (τ = ρgRS0), then
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Note that SCR is the slope estimated to give the critical shear stress, it has no necessary connec-
tion with the slope Sc which would give critical flow (i.e., a uniform flow with Fr = 1).

Equation 9.3 may be used in conjunction with (15.6) to provide a simple tractive force design 
criterion.

Shearing action affects the banks as well as the bed. However, in Chapter 9, no explicit 
account was given of the effects of shear stress on the stability of channel banks. Clearly, this 
is an important aspect of channels with particulate boundaries, so a simple numerical model is 
now developed. In estimating the shear stress at the bank, account should be taken (if possible) 
of the secondary currents in the channel, especially in the vicinity of bends. Consideration of 
the forces acting on a particle resting on a bank (Figure 15.4a) leads to the following:

Force perpendicular to bank  cos= ′W θ

Therefore,

Resistance to motion  cos  tan= ′W θ φ

Forces parallel to bank are

 1. Due to the immersed weight of the particle (=W′ sinθ)
 2. Due to the drag force of the fluid on the particle (=FD)

The angle ϕ is the angle of repose.
All of these forces can be expressed in terms of the fluid shear force. At the threshold of 

movement,

τ φCR P/ tanD A W2 = ′

τ0 = 0.9ρgyS0 (max.)

(b)

τ0 = 0.75ρgyS0 (max.)

W
΄ c

osθ

W
΄ sin θ
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W ΄

θ

FD

Flow

FIgure 15.4 Force and shear stress in a channel: (a) forces on particle on river bank and (b) shear stress 
distribution.
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where Ap is the areal grain packing ratio defined in Chapter 9. Hence,
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Since both drag (or shear) and self-weight (W′ sinθ) components are combining to dislodge a 
grain, the shear (τbc) required to move the grain is less than τCR. In order to use the equation, it 
is necessary to estimate the shear stress at the bank. Figure 15.4b shows the shear distribution 
typical of a trapezoidal channel. The maximum bank shear stress is shown as 0.75 ρgyS0. The 
coefficient 0.75 is not a constant, but is a function of θ. The magnitude 0.75 departs significantly 
from 0.75 only when B/y < 2 and 45° < θ <90°.

The principles outlined earlier have been refined and extended, for example, by Lane and the 
US Bureau of Reclamation (Lane, 1953) in America.

Using a section through a canal (Figure 15.5a), the following result was derived:
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Thus, the stable bank profile has a sinusoidal form.
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The banks may be separated by a flat base (Figure 15.5b), but the shape of the bank is practi-
cally unaffected. This treatment may be further developed to yield estimates of the principal 
geometrical characteristics for a channel design. For example, with no flat base,

A yn= 2 2 /tanφ
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For channels of low to moderate width, (9.3) can then be used to determine the bed slope 
appropriate to a given sediment size.

The tractive force equations tend to be used for channels through coarse non-cohesive sedi-
ments for which the threshold criterion is significant (i.e., there may be little or no transport at 
low flows).

In recent years, a considerable amount of research has been focused on secondary currents 
and the distribution of boundary shear stresses in open channels. The reader’s attention is drawn 
to Hemphill and Bramley (1989) for a review of design practice.

15.5 MorPHology oF natural CHannels

This section covers the study of the processes which are involved in the formation of natural 
channels. A large number of variables may be involved, not all of which may be known. The 
first, and most obvious, point is that the discharge in a river may be highly variable with time, 
being a function of the climate, geology and topography of the area. This, in turn, implies a 
wide variability in the nature of the sediment transport processes. Floods may denude topsoil in 
some areas, deposit it elsewhere and so on. The river engineer is usually concerned with plan-
ning for the medium term, and the quality of the information available to assist in planning has 
improved in recent years.

y
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FIgure 15.5 Stable section shape: (a) sinusoidal and (b) section with flat bed.
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15.5.1 discharge

As there is no unique value of Q for a river, the question arises as to what value of Q is appropri-
ate for making engineering estimates. A number of approaches are possible, as can be seen by 
the following examples:

 1. The use of a numerical model for predicting the discharge hydrograph over a long 
period. Such an approach requires detailed information and computer analysis.

 2. The use of a single value of Q, known as the “dominant discharge”. This is defined in a 
number of ways by different researchers. For example, Ackers and Charlton define it as 
the steady discharge which would cause the same meander (bend) effect as occurs in 
the actual river. Alternatively, Henderson (following Leopold and Wolman) proposes 
that it is the discharge which would maintain a channel at its present cross section and 
which is not exceeded sufficiently often for berm build-up to occur on the banks.

 3. The use of the discharge which occurs when the channel runs full – the “bankfull” discharge.

15.5.2 “Braiding” and “Meandering”

The combined effect of currents and sediment transport is to modify the watercourse. Leopold 
and Wolman (1957) proposed that channels should be classed as straight, meandering (Figure 
15.6a) or braided (Figure 15.6b).

�alweg

(a) 

A

A a

L

Spits

(b)

FIgure 15.6 Meandering and braiding in natural channels: (a) meandering and (b) braiding.
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For the straight and meandering cases, a single watercourse is present, whereas the braided 
stream is subdivided by spits. Initially straight channels with particulate boundaries will mean-
der only if the slope and discharge exceed certain critical values, and will braid only beyond 
yet higher critical values. Note that the values of S0 and Q are not independent variables here. 
Broadly speaking, meandering is characteristic of lowland rivers with small slopes, and braiding 
is characteristic of the steeper upland reaches. Braiding appears to be a natural mechanism for 
dissipating energy and is associated with a degree of armouring.

It should not be assumed that braiding and meandering are always separate occurrences. A few 
rivers both braid and meander at certain points. Meanders may be characterised by their length, L, 
and amplitude, a (or radius r). They are probably brought into being (or at least strongly influenced) 
by the action of the asymmetrical spiral secondary current (see Section 15.3) which scours the outer 
bank and deposits at the inner bank at a bend. The river section is therefore asymmetrical at the 
bend (Figure 15.7a) and symmetrical at the intersection between one bend and the next (Section 
A-A in Figure 15.6a). This means that the point of greatest depth does not lie at the centreline of 
the channel, but swings towards the outside of the bends. This line is known as the “thalweg”.

This simple explanation of meanders does not command universal acceptance. Some engi-
neers have postulated that it is the influence of small surge waves superimposed on the main 
flow which initiates the formation of sediment bars at certain points. The deflection of the flow 
by the bar then leads to meander formation. Meander patterns are often present even in appar-
ently straight channels, since the thalweg is often found to swing from one side of the channel 
to the other, thus forming a series of “hidden bends”. Furthermore, the depth is not necessarily 
uniform. Measurements of depth often reveal alternating deeper and shallower zones (“pools” 
and “riffles”), which exhibit much the same frequency characteristics as meanders.

Several researchers have developed relationships for the geometrical characteristics of 
meanders. Some examples are
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These equations apparently indicate a series of stable relationships (between L and Q, for exam-
ple), but this disguises the complexities found in nature. Meander patterns may vary throughout 
the year at any one point, or they may vary from point to point due either to changes in the geo-
logical formation of the bed or to the entry of a tributary. Recent work has tended to emphasise 
the stochastic nature of the phenomenon (see, e.g., Einstein, 1971). Other researchers have also 
emphasised the influence of stream power (or energy) on channel formation (e.g., Lewin, 1981; 

(a) (b)

FIgure 15.7 River sections: (a) section at bend and (b) section at intersection between bends.
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Chang, 1984, pp. 106–121). Henderson (1966) proposed a criterion for the slope of a single 
watercourse (“straight” or meandering) in a coarse alluvial bed. In its metric form, the equation is

S D Q0 50
1 14 0 440 517= −. . .

where D50 is in metres and Q is in m3/s. Braided channels have bed slopes greatly in excess of 
the values derived from this equation.

Bettess and White (1983) proposed a new framework for the quantitative prediction of 
meandering and braiding. This emanated from their previous work on the rational approach to 
stable channel design. They proposed a basis for the necessary conditions for meandering and 
braiding to exist based on a comparison between the natural equilibrium slope of the stream 
and the slope of the valley in which it was situated.

Braiding is a feature of channels with steeper slopes, where flows have high energy. Therefore, 
the particulate banks are vulnerable to attack. It seems likely that the surplus energy is dissipated 
by erosion of the banks, which leads to a wider, shallower watercourse with sediment spits. Braiding 
may also occur where there is a heavy sediment load, or where the watercourse has (over a long 
time span) varied seasonally. The latter type is observable on shingle deltas at the foot of a moun-
tain range, where high discharges (snow melt) take a shorter route than low (summer) discharges.

15.6 CoMPutatIonal rIver ModellIng

In Chapter 14, the hydrodynamic equations for one-dimensional, unsteady, gradually varied 
flow (the Saint Venant equations) were derived and their numerical solution described.

What follows in the remainder of this section is a brief discourse on the uses and limitations of 
some current numerical models, highlighting the various aspects of the procedures which must be 
carried out for the successful application of such models to the solution of river engineering problems.

15.6.1 Model types and applicability

Typical model types currently used in practice may be categorised as follows in increasing order 
of complexity, and in terms of the typical application:

 1. Simple flood routing
 2. Steady one-dimensional (1D) flow
 3. Unsteady one-dimensional flow
 4. Steady and unsteady quasi two-dimensional (2D) flow
 5. Steady and unsteady two-dimensional flow
 6. Unsteady three-dimensional (3D) flow

Type 1 is typically used in hydrological studies to route multiple flood hydrographs through a 
river or storm water drainage system. It is based on a simplified version (either a diffusive wave 
or a kinematic wave approximation) of the unsteady one-dimensional Saint Venant equations 
(see Sections 14.6 and 10.7).
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Type 2 is typically used in determining increases in river stage within the main river chan-
nel occasioned by the introduction of some new river engineering works (e.g., backwater curves 
resulting from new bridges, weirs and intake structures). It uses the steady one-dimensional 
gradually varied flow equation (see Section 5.10).

Type 3 is typically used for determining the water level and discharge at various locations 
along the main channel of a river during floods. It uses the unsteady one-dimensional Saint 
Venant equations (see Section 14.6).

Types 4 and 5 are typically used to assess the water levels and discharges during floods 
in compound river channels where flow occurs in both the main channel and on the flood 
plains. The quasi-2D approach in type 4 is usually to couple a one-dimensional model of the 
main channel with a series of cells representing the flood plains, whereby each cell is mod-
elled as a level-pool reservoir with weir-type spilling to allow flow to enter or exit the cell. 
The momentum transfer between the main channel and flood plain is not represented and the 
flood plain flows are taken as one-dimensional, parallel to the main channel, which results in 
an approximate estimate of the flow behaviour. The steady and unsteady two-dimensional 
models overcome this approximation through the use of the depth-integrated Reynolds-
averaged Navier–Stokes (RANS) equations (refer to Section 14.3 for the general Navier–
Stokes equations). The steady flow version has been adopted by DEFRA/EA (2003) in the 
Conveyance Estimation System (CES) to improve the performance of the one-dimensional 
models traditionally used by engineers and where the main river channel is directly connected 
to a relatively narrow flood plain, without embankments (see Section 15.7). The use of the 
unsteady 2D models takes advantage of the increasing availability of digital ground elevation 
data but the computational run time is significantly longer than that of quasi-2D and 1D models. 
A full treatment of the derivation of the unsteady depth-integrated RANS equations and their 
numerical solution for 2D river modelling is outside of the scope of this chapter and can be 
found in Chaudhry (2008).

Type 6 may be used in specialist circumstances to assess local, small-scale flow features. 
However, the complexity of running the model and the long computational run times means 
that 3D modelling is not widely used in practice, and is subject to ongoing research and devel-
opment. The models solve the full 3D RANS equations subject to a chosen turbulence closure 
model. For an introduction to 3D modelling, see Novak et al. (2010).

15.6.2 advantages and limitations

Computational models essentially are full-scale representations of the prototype, in contrast to 
physical models which are scaled. However, they do not model all the physical processes and the 
prototype topography has to be schematised and discretised. Thus computational models have 
certain advantages over physical scaled models and have limitations in their use.

The main advantages of computational models are the following:

 1. They are generally less expensive than the equivalent physical scale model.
 2. Many alternative designs can be readily tested, quickly and cheaply.
 3. The models may be stored on electronic media for future use.
 4. The models do not suffer from any scaling effects.
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The main limitations of computational models are the following:

 1. They can only be applied where the main underlying physics of the flow are known and 
can be included in the model. (Note: local three-dimensional effects are often studied 
using physical scale models.)

 2. The minimum amount of topographical data required to obtain accurate results is 
difficult to quantify.

15.6.3 Model accuracy

Model accuracy is dependent on a large number of factors which need to be appreciated so that 
undue reliance is not placed on the predictive capacity of the model. Errors in computational 
models arise from a number of sources including

 1. Physical processes not described by the chosen equations
 2. The validity of the numerical schemes chosen to solve the equations
 3. Errors in the basic topographic and hydrological data
 4. The schematisation and discretisation procedures
 5. The calibration procedure

Thus, the final accuracy of any computational model is very difficult to quantify. Some sources 
of error may be minimised but others have to be accepted as model uncertainty and the results 
of the model viewed with this in mind.

Figures 15.8 and 15.9 illustrate typical cases where the physical processes are not rep-
resented in one-dimensional models and, consequently, two-dimensional models should be 
used. Figure 15.8a shows a river cross section with a rising flood in which water is transferring 
laterally from the main channel to the flood plains. Figure 15.8b shows a falling flood in which 
water from the flood plains is draining back into the main channel. In both circumstances, 
the water surface is not horizontal in reality, but is assumed horizontal in a one-dimensional 
model. Figure 15.8c shows a plan view of a rising flood when overbank flow is beginning. 
Here the flow is seen to have components in two directions. Again this is not represented in 
a one-dimensional model. Figure 15.8d shows flow at a stage well above bankfull. Whilst a 
one-dimensional model can approximate this particular case, the CES (DEFRA/EA, 2003) 
improves the representation.

Figure 15.9a and b show circumstances in which regions of slack water and eddy currents are 
generated. This may even result in localised reverse flow taking place. Again a one-dimensional 
model cannot reproduce these phenomena and a two-dimensional approach is required.

Turning next to the validity of the numerical schemes used in the model, it is not normally 
possible (or desirable) for a model user to adjust them. Thus, it is very important to choose 
a computational model with an established track record and pedigree. Developments and 
improvements in numerical modelling schemes are still taking place and the interested reader is 
referred to the further reading list described at the end of this section for more details. It may 
be said, however, that the well-established computational models do have robust numerical 
schemes which perform very well under most circumstances.
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Errors in the measurement of topographic data can be minimised by quality control of the 
survey and are generally within acceptable tolerances. However, gross errors do sometimes 
occur and these need to be eliminated either by quality control procedures at the data input 
stage (e.g., by plotting all the cross sections on the computer screen) or during the model cali-
bration procedure. Errors in the hydrological data are not so easy to eliminate and may, there-
fore, need to be catered for by a sensitivity analysis. For example, if say a 100-year return period 
flood hydrograph has been generated, it may be subject to quite wide confidence limits. Thus, it 
would be advisable to run the computational model with several flood hydrographs to establish 
the sensitivity of flood stage to flood discharge.

A–A

A

A

(b)(a)

(d)(c)

FIgure 15.8 Channel and valley flow in a one-dimensional model: (a) rising flood, (b) falling flood, (c) begin-
ning of overbank flow and (d) high flood valley flow. (After Cunge, J.A. et al., Practical Aspects of Computational 
River Hydraulics, Pitman, London, UK, 1980.)

(a) (b)

FIgure 15.9 Slack water and eddy currents generated by (a) a sharp bend and (b) an irregular channel.
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Finally, errors may be generated by an inadequate schematisation and discretisation of the 
river system and by an inadequate calibration. These two processes are key elements in the 
application of any computational model and are discussed separately in the next two sections.

15.6.4 schematisation and discretisation

Schematisation refers to the process whereby all the key features of the river system are repre-
sented by some computational procedure in the model. In the case of traditional one-dimensional 
models, this principally involves identifying all the positions of river and flood plain cross sec-
tions, and the location of weirs and bridges and the location of any lateral inflows.

Discretisation refers to the process whereby the cross-sectional data are input to the compu-
tational model as a set of spatial coordinates (from which all the hydraulic parameters are calcu-
lated). In one-dimensional modelling, the discretisation is simplified into channel cross sections 
at measured distances (sometimes referred to as chainages) apart. Each section is represented by 
a series of channel bed elevations at discrete horizontal distances measured from one edge of the 
section. Figure 15.10a is a plan view of a river valley, showing the main channel and flood plains, 
with the selected cross sections marked on the plan. Figure 15.10b shows how this topographic 
information is represented in a one-dimensional river model.

Several important (if obvious) remarks concerning this discretisation need to be made. First, 
the chosen cross sections need to be representative of the river reach. Thus, between cross sec-
tions there should not be any large changes in cross section. Second, the cross sections should be 
drawn normal to the general flow direction. This is not a problem for the main channel, but is 
uncertain on the flood plains when using a one-dimensional model. Third, it is very important 
that the discretised data preserve, as far as possible, both the river and flood plain reach lengths 
(and hence gradients) and the flood plain volumes. For fully two-dimensional models, a finer 
grid of x, y, z coordinates is required to represent the ground and channel bed elevations.

15.6.5 Calibration and verification

Calibration (of any computational model) consists of adjusting the model parameters such that 
the model predictions are, as near as possible, in agreement with measured field data. In the 
case of one-dimensional river models, the principal parameter to be adjusted is the friction 
coefficient (e.g., Manning’s n or roughness height ks) in each model river reach. Given the 
traditional use of such models in river engineering practice, there is substantial experience, 
particularly with the use of Manning’s n, that can be drawn upon (DEFRA/EA, 2003). For two-
dimensional models, however, the roughness coefficient at a grid point is only applicable to the 
local bed, rather than a given river cross section, and this is an area of ongoing research. To 
calibrate a river model, it is necessary to have recorded values of stage and discharge. Given that 
the friction coefficient may vary with stage, it is advisable to calibrate the model for a range of 
stages. Where flood levels are to be predicted, it is also important to obtain records of historical 
floods so that flood plain roughness and flooded areas can also be calibrated.

Once the model has been calibrated, it should also be verified by testing the model pre-
dictions against an independent data set of recorded stages and discharges. After the model 
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has been successfully calibrated and verified, it may then be used in a predictive capacity 
with reasonable confidence.

15.6.6 Modelling Bridges

In many river systems it will be necessary to model flow through bridges. Bridges come in many 
shapes and sizes and are often orientated at a skew angle to the main direction of the flow. 
Bridge crossings of rivers sometimes produce a substantial afflux defined as the increase in water 

(a)

(b)

FIgure 15.10 (a) Plan view of river and flood plain section lines. (b) Schematic representation of (a) for 1D 
and quasi-2D modelling. (After Samuels, P.G. and Gray, M.P., The FLUCOMP River Model Package. An Engineer’s 
Guide, HR Ltd Report Ex 999, HR Wallingford, 1982.)
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level upstream due to the presence of the bridge. It is very important to be able to predict this 
afflux with reasonable accuracy, particularly under flood conditions. A comprehensive investi-
gation of this problem was carried out by the US Bureau of Public Roads, and a design guide 
(Hydraulics	of	Bridge	Waterways) was published under the authorship of Bradley (1978). In this 
publication, calculation procedures together with a set of empirical coefficients are presented 
to enable the afflux to be calculated. The method incorporates procedures for allowing for the 
following circumstances:

 1. The constriction of flood plain flow at the bridge
 2. Bridge piers (size and shape)
 3. Flood plain eccentricity
 4. Skewed crossings
 5. Dual bridges
 6. Abnormal stage-discharge conditions

More recent research into the afflux at arch bridges has been summarised by Hydraulics Research 
(1988a). Furthermore, the hydraulic behaviour of culverts is applicable to many types of bridge 
opening and detailed guidance has been produced by CIRIA (2010). A comprehensive review of 
the techniques for analysing bridge hydraulics, including methods suitable for hand calculation, 
is available in Hamill (1999). The afflux estimation methods are incorporated into the com-
mercial 1D and 2D computational river models for the modelling of the influence of bridges on 
river levels during steady and unsteady flood flow simulations. Similarly, a stand-alone tool, the 
Afflux Estimation System, for estimating the steady 1D gradually varied flow profile upstream 
of a bridge has been developed for UK practice (JBA, 2006) and is available as part of the CES 
from Wallingford Software (2007).

15.6.7 Morphological Computational river Modelling

This constitutes a fascinating area of research which potentially has very significant practical 
applications. Due to the complexity of the problem, only limited progress has been made to date.

In essence, the problem is to be able to predict the morphological changes in a river system 
due to some river engineering scheme (e.g., to determine the effects of dam construction on 
the river both upstream and downstream). The solution requires coupling the hydrodynamic 
(flow) modelling approaches, as described in Section 15.6, with appropriate sediment transport 
equations (see Chapter 9) whilst allowing for the changing geometric boundary condition of the 
channel bed and banks. Common current practice is to assume a single phase flow whereby the 
sediment continuity equation (in terms of concentration of sediment) is coupled with the con-
tinuity and momentum equations for the water flow. This approach is only valid for relatively 
small sediment concentrations. Applying a two-phase flow approach should take account of the 
interaction between the water flow and the sediment movement, including the channel mor-
phological evolution. However, the mathematical representation of such sediment–flow interac-
tion is the subject of ongoing research as is the selection of the correct turbulence model to close 
the Navier–Stokes equations in this situation. Furthermore, there is a need for laboratory and 
field verification of such models.
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Here, a brief description of one one-dimensional morphological computational model is pre-
sented to illustrate a one-dimensional approach. The model is that of Bettess and White (1981), 
developed at the Hydraulics Research Station, UK, which predicts the change in bed level of a 
river over a number of years. They took as their flow model the one-dimensional unsteady grad-
ually varied flow equations given in Section 14.6. For sediment transport they used the Ackers 
and White equations given in Section 9.4 and used Equation 15.5 to link bed material size 
to frictional resistance and sediment transporting capacity (as previously described in Section 
15.4). A continuity equation for sediment movement (similar to the continuity equation for 
water flow) is also necessary (and was included). Finally, they developed a method for estimating 
the effect of sediment sorting. This is an essential feature of their model which allows for the 
fact that different sediment sizes are transported downstream at different rates, which in turn 
affects both the frictional resistance and sediment transport at any particular point in the river.

In their 1981 paper, they described the application of the model to two test cases. The first 
was a study of the downstream bed-level changes below a dam site. Comparison of the pre-
dicted bed level decreases below the dam with the observed decreases showed very good agree-
ment. Additionally, the model predicted armouring of the bed immediately downstream of the 
reservoir. The second test case was that of accretion of the bed level upstream of a Crump weir. 
Here, the predictions were compared with laboratory measurements. Again there was good 
agreement between measured and predicted values.

A more recent model of this type is that of Pender and Li (1996). This model is capable of 
simulating the transport, deposition and erosion of graded sediments for non-equilibrium con-
ditions (i.e., not in regime) under unsteady flow. The model employs a so called “fully coupled 
solution method”. This means that the changing channel properties produced by the sediment 
transport are accounted for in the unsteady flow equations as time progresses.

For a review of morphological computational models for predicting changes in river bed lev-
els over time due to the introduction of river engineering works, see Cao and Carling (2002a,b).

15.6.8 recent Commercial Models

Since the publication of Cunge et al. (1980), which is a classic text on computational river mod-
elling, numerical techniques have continued to evolve and the major American and European 
hydraulic research organisations have all developed river models, several of which are available 
commercially. The following list gives a selection.

1D and quasi-2D: CES (Wallingford Software, 2007), ISIS (Halcrow Group Ltd, 2012a), 
InfoWorks RS (Innovyze, 2012a), MIKE 11 (DHI Software, 2012a) and HEC-RAS (U.S. Army 
Corps of Engineers, 2010).

2D: ISIS-2D and TUFLOW (Halcrow Group Ltd, 2012a,b), InfoWorks RS 2D (Innovyze, 
2012b), MIKE 21 (DHI Software, 2012b), and TELEMAC-2D (Sogreah, 2012).

3D: TELEMAC-3D (Sogreah, 2012), MIKE 3(DHI Software, 2012c), CFX (Ansys Inc., 2012), 
and FLOW-3D (Flow Science Inc., 2012).

Details of these models can be accessed via the website (http://www.routledge.com/books/
details/9780415306096/)
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15.7 Flood dIsCHarges In CoMPound CHannels

15.7.1 Introduction

This topic is of one of the principal concerns of river engineers. Most natural river systems 
consist of a main channel and one or two associated flood plains. Where engineers have already 
intervened and created artificial channels, these also often take the form of a main channel and 
flood channels. When the river system is in flood, then the main channel is inundated and flow 
occurs on the flood plains. Where development has taken place on the flood plain (a very com-
mon occurrence), the consequences of flooding can be devastating both in terms of economic 
loss and, often tragically, loss of life. A raison	d’être of the river engineer is to protect life and 
property from the consequences of flooding. Hydraulically the river engineer must be able to 
assess, as accurately as possible, the relationship between stage and discharge at all points in the 
river system, so that appropriate flood protection or alleviation measures may be undertaken.

In Section 5.6, a method was described whereby the stage/discharge relationship could be 
evaluated for a compound channel. It was also stated that this method was only approximate 
and subject to wide margins of error. This is an unacceptable situation to river engineers and 
a considerable research effort has been devoted to this problem using the SERC flood channel 
facility described by Knight and Sellin (1987). What follows is a description of the problem as 
it is currently viewed and a summary of the research findings.

15.7.2 straight Compound Channels

The first stage of this research was concerned with flow in straight compound channels. 
Figure 15.11 shows what are believed to be the main mechanisms at work in a straight com-
pound channel. At the interface between the main channel and the flood channel, momen-
tum is transferred across the interface by turbulent shearing action. In the main channel 
significant secondary flow cells develop. The whole width of the compound channel is also 
subjected to shearing action in both the horizontal and vertical planes. Thus it may be appre-
ciated that any realistic method of stage/discharge assessment must account for lateral shear 
forces and secondary flow forces if an accurate solution is to be found.

A fundamental approach to this problem would be to try to solve the three-dimensional 
Navier–Stokes equations for steady but turbulent flow. To do this requires a knowledge of the 
distribution of the boundary shear stresses and the adoption of a suitable turbulence model 
(e.g., the Reynolds stress model or the Prandtl eddy model described in Section 3.4). Currently 
such an approach is subject to uncertainties regarding the necessary coefficients contained in 
the turbulence models. Two approaches to the problem are those described by Wark et al. 
(1990) and the model of Shiono and Knight (1991). The approach of Wark, Ervine and Samuels 
was to solve (numerically) a two-dimensional form of the Navier–Stokes equations for steady 
turbulent flow which allows for lateral shear.

In their notation this is given by
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or
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FIgure 15.11 Mechanisms of overbank flow in a straight compound channel. (After Shiono, K. and Knight, D.W., 
J. Fluid Mech., 222, 617, 1991.)
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and in which the bed shear term may be evaluated by application of the Manning and the 
Darcy–Weisbach formulae in the form

f
gn

H
= 8 2

1 3/ (i.e., by combining Equations 5.3, 5.6 and 5.8)

and the lateral shear term may be evaluated by relating the lateral eddy viscosity to bed rough-
ness generated turbulence as in the following equation:

υ λt u H= *

where
u* is the shear velocity = (τb/ρ)1/2

λ is the non-dimensional eddy viscosity (NEV)
ρ is the fluid density
τb is the bed shear stress

Thus, the numerical solution provides values of the depth mean velocity and longitudinal 
unit flow on a grid of points across the cross section.

The approach of Shiono and Knight has the same beginning in the Navier–Stokes equations 
but they have additionally allowed for secondary flows. Again, in their notation the three-
dimensional Navier–Stokes equation is given by
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A depth-averaged form of this equation as derived by Shiono and Knight has the following 
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where Γ is the secondary flow parameter for a straight compound channel

Γ = ∂
∂

 y
H UV d( )ρ

f is the Darcy–Weisbach friction factor
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Ud is the depth-averaged streamwise velocity
τb is the local bed shear stress
s is the channel side slope (1: s, vertical: horizontal)
λ is the dimensionless eddy viscosity coefficient given by
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This equation has been solved numerically and analytically for Ud and Tb for a number of trial 
cases for which either experimental data (using the SERC flood channel facility) or field mea-
surements had been taken. The model appears to provide very good correlation with measured 
stage/discharge curves, an example of which is shown in Figure 15.12.

An initial design guide, based on this work, includes a hand calculation method for modelling 
the stage/discharge relationship in straight two-stage channels (see Ackers, 1991, 1992, 1993). 
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FIgure 15.12 Lateral variation of depth-mean velocity at Montford. (After Knight, D.W. et al., Prediction 
of depth mean velocity and discharge in natural rivers with overbank flow, in Proceedings of the International 
Conference on Hydraulics and Environmental Modelling of Coastal, Estuarine and River Waters, University of 
Bradford, September, Gower, Aldershot, UK, pp. 419–428, 1989.)
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The method is algebraically complex and iterative. Here, only a short introduction to the method 
is given. First, a new parameter termed the coherence (COH) was defined, given by the ratio of 
the conveyance as a single channel to the sum of the conveyances of the main channel and the 
flood plain(s). This parameter is a good indicator of how the channel stage/discharge relationship 
relates to that of a single channel. At any particular flood stage the coherence can be readily cal-
culated from the conveyances, as given in Section 5.6. If this tends towards one, single-channel 
behaviour may be expected. If this value tends towards zero, then widely different behaviour to 
that of a single channel may be expected. A second parameter, named the discharge adjustment 
factor (DISADF) was then defined by KD = DISADF × KDB, where K is conveyance, D refers to 
the whole channel and DB to the sum of the main channel and the floodplain(s). This param-
eter is used to estimate the reduction in discharge at flood stages due to the interference effects 
between the main channel and the floodplain(s). By plotting DISADF against relative depth 
(ratio of difference between full depth/stage and bankfull depth/stage to bankfull depth/stage), 
Ackers found that four regions of flood plain flow exist. In region 1, with relatively shallow flood 
plain flow depths, the interference effect increases with depth. In region 2, at greater depths, 
interference reduces. In region 3, interference again increases. Finally in region 4, interference 
reduces until the channel acts as a single channel. The full procedure for calculating the actual 
discharge at any particular relative depth is most conveniently summarised in Appendix 1 of 
Ackers (1993). Suffice it to say here that the calculation involves an iterative determination of 
which region of flow is applicable and that different empirically derived equations are used for 
each region. In all cases, the actual discharge calculated is less than that found by neglecting the 
interference effect. A computational model tool, the CES, has subsequently been developed 
(DEFRA/EA, 2003) which includes meandering channels and is described in the following.

15.7.3 Curved and Meandering Compound Channels

The second stage of this research is concerned with flow in curved and meandering channels. 
Figure 15.13 illustrates flood flows in straight, curved and meandering compound channels.

It can be seen that when the main channel is curved or meanders, then additional flow inter-
actions between the main channel and the flood plains will exist, compared with the flows in 
a straight compound channel. Ervine et al. (2000) introduced a meandering coefficient, Cuv, in 
the secondary flow term in Shiono and Knight’s model such that

UV C U= uv d
2

where Cuv is an empirical function of the sinuosity, σ, and boundary roughness. The reach-
averaged sinuosity, σ, is defined as the ratio of the channel thalweg length to the valley length.

In terms of the longitudinal (streamwise) unit flow rate, q, the secondary flow term in Ervine 
et al.’s model takes the form
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FIgure 15.13 Flood flows in compound channel. (After Ramsbottom, D.M., Flood discharge assessment, 
Hydraulics Research, Report SR195, March, pp. 1–148, 1989.)
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In order to transfer between the two models (i.e., from a straight to a meandering compound 
channel), a linear scaling, α, of the secondary flow terms can be applied based upon the sinuos-
ity such that, for constant density,
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The model can be solved using the finite element method with the parameters, f, λ, Γ and Cuv 
determined empirically. This model constitutes the CES for which a comprehensive guide has 
been produced by DEFRA/EA (2003). Additional guidance on the application of the method 
is available in Knight et al. (2009) and McGahey et al. (2008, 2009). The technique has been 
incorporated into a number of commercial one-dimensional river models (Halcrow Group Ltd, 
2012a; Innovyze, 2012a). A stand-alone software implementation of the CES is available from 
Wallingford Software (2007) which includes a solver for estimating the steady 1D gradually 
varied flow profile in a compound channel. The CES software also contains a “roughness advi-
sor” to assist the user in identifying the appropriate Manning’s n which is converted to an 
equivalent friction factor, f.

15.8 rIver engIneerIng

15.8.1 traditional river engineering

Traditional river engineering consists of a range of constructional techniques including training, 
construction of embankments, docks, locks, dams, reservoirs, etc. Some of these techniques 
will now be reviewed.

15.8.2 training

Training is the technique of confining or realigning a river to a straight and more regular course 
than that which occurs in nature (Figure 15.14).

Groynes or
armouring system

FIgure 15.14 River training.
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In order to ensure long-term stability, the banks usually have to be protected or artificially 
armoured. A realignment usually presents a problem regarding the bed slope, since the req-
uisite change in level now has to take place over a shorter river length. The river will to some 
extent readjust itself in response to the training scheme. By protecting the banks, the number of 
degrees of freedom has been reduced, so the adjustment process will mainly affect the slope and 
the depth. The shortening of the channel path often results in erosion upstream and deposition 
downstream, as the channel seeks to restore its natural slope. If the engineer wishes to maintain 
the steeper slope, it may be necessary to armour the bed artificially. Armouring often consists 
of the dumping of stones, though on the outer banks short groynes, plastic sheeting or sheet 
piling may be installed. The engineer may use regime or tractive force equations (depending on 
the nature of the riverbed sediments) to estimate the required geometrical characteristics for 
a given bankfull discharge. A number of examples of river training schemes are illustrated in 
Jansen et al. (1979).

15.8.3 Flood alleviation Measures

Flood problems are usually most acutely felt along the lower reaches of rivers. In nature, these 
reaches often traverse vegetated floodplains. The floodplain provides a natural temporary stor-
age reservoir. However, once the plain becomes populated, steps must be taken to control the 
extent of flooding. This may be achieved by various methods, such as

 1. The construction of embankments (Figure 15.15)
 2. The construction of embankment walls (Figure 15.15)
 3. The construction of flood storage reservoirs (on or off the river line)

The first and second of these methods increase river storage capacity, but they also raise back-
water levels during the passage of a flood wave. The engineer must therefore beware of solving a 
problem in one place only to create another elsewhere. The use of reservoirs for routing purposes 
has been considered in Section 10.7. However, great care must be taken if a dam is to be con-
structed across the path of the watercourse. For example, if the incoming flow is carrying a heavy 
sediment load, much of the sediment will settle in the reservoir (cf. Example 9.3), progressively 
reducing its effective capacity. This may also imply erosion of the river bed further downstream. 
The dam will also have considerable implications for the backwater levels. Reservoir systems 

Embankment

Embankment
wall

River

FIgure 15.15 Flood protection.
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often combine a water storage or hydroelectric scheme with the routing function to maximise 
economic viability. Design calculations for any of these (or other) systems start from hydrological 
data and information regarding flood waves in the existing channel.

15.8.4 environmentally sound river engineering

Traditional river engineering practice may be thought of as providing a (hard) engineering solu-
tion to a site specific problem (e.g., a local flood alleviation scheme in response to a local con-
cern about flooding). Many of the concepts introduced and discussed in this chapter have been 
used in this context. However, the best of modern practice in river engineering is now radically 
different in both approach and content. Such an approach and its form and content may be 
encapsulated in the term environmentally sound river engineering. The purpose of this section 
is to introduce the reader to some of the newly emerging philosophies and to provide references 
to further reading, which it is essential to read if the modern philosophy is to be appreciated 
and understood. In a paper by Gardiner (1988), the principles of environmentally sound river 
engineering are propounded with a pioneering spirit. One of the principles that he expounds is 
that a holistic view must be taken of the whole river basin before local schemes can be properly 
assessed. This includes not only the traditional engineering subjects of hydrology, hydraulics 
and sediment transport but should also include other (environmental) topics such as river mor-
phology and geomorphology, wildlife, landscape, amenity and recreation, fisheries, navigation, 
water quality, groundwater, archaeology, angling, aquatic biology and river maintenance as well 
as any legislative or planning requirements.

Such a holistic view is highly commendable. It is, however, very difficult to achieve with-
out a new methodology for its implementation and the application of the techniques of cost/
benefit analysis, environmental impact assessment and sophisticated computational hydrau-
lic modelling. Additionally, the use of geographic information management techniques is 
highly desirable.

Gardiner expounded his philosophy and methodology using the acronym SPIRIT repre-
senting Structure, Planning, Iterative Refinement and Interactive Teamwork. The project team 
needs to have specialists from all the relevant disciplines already mentioned and the emphasis 
of SPIRIT is on pro-active group interaction with potential solutions to specific problems being 
iteratively refined within the overall plan. Post-project appraisal is also seen as an essential ele-
ment of the process to provide feedback. Thus, long-term policies, plans and schemes may be 
evolved holistically. Such an approach has been successfully applied by Thames Water Rivers 
Division, UK, as described by Gardiner, and has now become common practice in the United 
Kingdom through the development of catchment management plans.

Turning to more specific “environmentally friendly” river engineering techniques, a wealth 
of recommendations and case study material is now available. These may be thought of as mea-
sures to “work with nature” in a geomorphological sense and to protect and enhance the habitat 
of wildlife.

Brookes and Shields (1996) describe case studies of traditional river engineering schemes 
which have had disastrous consequences, details the effects of channelisation (physical and bio-
logical) and provides some very comprehensive recommendations regarding construction, miti-
gation, enhancement and restoration techniques which follow the principle of “working with 
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nature” without precluding engineered solutions. These techniques include recognizing that river 
meanders, pools and riffles and bankside vegetation need to be included in engineering designs.

Turning to wildlife and nature conservancy issues, three guides have been published spe-
cifically addressing these issues by the Royal Society for Protection of Birds and the Royal 
Society for Nature Conservation (Lewis and Williams, 1984), the Nature Conservancy Council 
(Newbold et al., 1983) and the Water Space Amenity Commission (1980).

In 1994, The	New	Rivers	and	Wildlife	Handbook was published (RSPB et al., 1994). This is an 
excellent source of reference which provides details of the wildlife on, in and around British riv-
ers and the necessary river corridor survey techniques to be employed to establish a baseline of 
existing habitats. It also describes a comprehensive range of river management and engineering 
techniques which are designed to promote environmental enhancement while providing flood 
alleviation. A large number of case studies are also included, which illustrate the practical appli-
cation of the techniques to a wide variety of rivers. In 1999, the Manual of River Restoration 
Techniques was published. This manual was inspired by the success of two comprehensive 
restoration projects and contains a wide range of techniques and their practical application. It 
continues to be updated and is available online (River Restoration Centre, 2002).

Finally, the role of fluvial geomorphology in river engineering is expertly reviewed by Sear et al. 
(2003) and Thorne et al. (2000). The implications for the hydraulics of such schemes and 
the methods of analysis are discussed in a report published by Hydraulics Research (1988b). 
A number of design guides for environmentally acceptable river engineering works have been 
produced, for example, channels (Ramsbottom and Fisher, 1996), revetments (Escarameia, 
1998), and river diversions (Fisher and Ramsbottom, 2001). Comprehensive guidance is avail-
able in the Fluvial	Design	Guide (Environment Agency, 2012) and in the Engineer	Manuals (U.S. 
Army Corps of Engineers, 2012).

15.9 suMMary

This chapter has introduced the key morphological features of natural river channels as a con-
sequence of sediment transport. The development of the science of river engineering has been 
reviewed including the assessment of the stability of lined and unlined channels. The range 
of design techniques includes the optimum hydraulic cross section, regime equations and the 
rational and tractive force approaches.

The types of computational hydraulic model available to the engineer have been presented 
with particular guidance on the selection and application for river engineering design. This 
includes an introduction to modelling the hydraulic capacity of bridges and river morphology. 
Further guidance on the theory and application of these river models can be found in Novak 
et al. (2010), JBA (2006) and Cao and Carling (2002a,b). The development of the analysis and 
modelling of flood discharges in compound channels has been explained and further details of 
the UK CES are available in DEFRA/EA (2003).

The techniques of river engineering have been reviewed in the context of environmentally 
acceptable practice. For a more comprehensive coverage of the field of sustainable river engi-
neering, the Fluvial Design Guide (Environment Agency, 2012) and the Engineer Manuals 
(U.S. Army Corps of Engineers, 2012) are valuable further reading for UK and US practice, 
respectively.
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Chapter 16

Coastal engineering

16.1 IntroduCtIon

The coastal zone has an important influence on the well-being of communities whose homes and 
industries lie along the coast. Coastal engineers are called upon to provide protection against 
storm or flood damage, to maintain or improve beaches and to construct ports or marinas. One 
of the major developments of the last two decades has been the use of computers to simulate 
coastal processes and to model the impact of engineering works. This has occurred in parallel 
with a better understanding of, and concern for, the environment.

The general principles of modern coastal management, briefly outlined later in this chapter, 
have also been largely developed over the last two decades. These principles can be applied in any 
part of the world, although there will always be a regional context which will mould the applica-
tion of the general principles. The many issues surrounding predicted climate change have added 
another layer of complexity to coastal management, which are now being seriously addressed in 
terms of future management. One key aspect of modern coastal management includes identifying 
and quantifying coastal hazards and climate change impacts to assess coastal vulnerability. This 
can best be achieved by carrying out a comprehensive risk assessment to assess system reliabil-
ity, using probability methods (see Reeve, 2009). Coastal management is then faced, inter	alia, 
with determining policies and practices for adaptation (e.g., no active intervention, managed 
 re-alignment, hard and soft engineering) in response to coastal vulnerability.

By	the	end	of	this	chapter	you	should

 ◾ Understand the action of waves on beaches and the resulting forms of coastal sediment 
transport

 ◾ Be able to calculate longshore transport and estimate shoreline evolution
 ◾ Understand coastal system behaviour, the concepts of shoreline management and its 

relationships to natural coastal processes
 ◾ Be aware of the coastal defence principles and the design of typical forms of coastal defences
 ◾ Be aware of the forms of wave modelling and its relevance to coastal engineering design
 ◾ Be aware of the effects of climate change on coastal management and the adaption 

measures that can be used
 ◾ Be aware of recent European developments in coastal engineering and management
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16.2 aCtIon oF Waves on BeaCHes

This may seem a strange point from which to start discussing coastal engineering works. 
However, it is appropriate because an understanding of natural coastal defence mecha-
nisms gives insights into suitable forms of engineering structures for coastal protection and 
sea defence.

Beaches form a natural coastal protection system. It is only when these are inadequate that 
further measures should be contemplated. Examples of such inadequacies include erosion of the 
coastline (which will result in encroachment on existing buildings and roads, etc.) and insuf-
ficient beach height (resulting in flooding by overtopping).

The action of waves on beaches depends on the type of wave and the beach material. For sim-
plicity, wave types are generally categorised as storm waves or swell waves (refer to Chapter 8) 
and beach materials as sand or shingle.

As waves approach the shore they break. Where the bed slope is small, the breaking com-
mences well offshore. The breaking process is gradual and produces a “surf zone” (see Section 
8.4), in which the wave height decreases progressively as waves approach the shore. Where the 
bed slope is steeper (say roughly 1 in 10), the width of the surf zone may be small or negligible, 
and the waves break by plunging. For very steep slopes, the waves break by surging up onto 
the shore.

The incoming breaker will finally impact on the beach, dissipating its remaining energy in 
the “uprush” of water up the beach slope. The water velocities reduce to zero and then form the 
“backwash”, flowing down the beach, until the next breaker arrives.

In the surf zone, the seabed will be subject to a complex set of forces. The oscillatory motion 
due to the passage of each wave produces a corresponding frictional shear, and both incoming and 
reflected waves may be present. The longshore current (Section 8.4) will also produce a shear 
stress. Finally, the bed slope itself implies the existence of a component of the gravitational force 
along the bed. On the beach itself forces are produced as a result of bed friction and the impact 
of the breaker.

16.3 sedIMent transPort

If the seabed and beach are of mobile material (sand or shingle), then it may be transported 
by the combination of forces outlined earlier. The “sorting” of beach material (with larger 
particles deposited in one position and finer particles in another) can also be explained. 
For convenience, coastal sediment transport is divided into two components: perpendicular 
to the coastline (cross-shore transport) and parallel to the coastline (longshore transport or 
“littoral drift”).

Whether beaches are stable or not depends on the rates of sediment transport over long peri-
ods. The transport rates are a function of the waves, wave breaking and currents. Waves usually 
approach a shoreline at some angle α. The breaking wave height and angle will vary with time 
(depending on the weather). Sediment may be transported by unbroken waves and/or currents; 
however, only transport due to breaking waves will be considered here, as this is the predomi-
nant process causing beach movement.
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16.3.1 Cross-shore transport on Beaches

Under constant wave conditions, any beach will tend to form an equilibrium beach slope on 
which the net sediment movement is zero. The equilibrium beach slope will increase with 
increasing grain size. Conversely, for a given grain size, the equilibrium beach slope will reduce 
with increasing wave steepness.

There are several known mechanisms of on- and offshore movement, which may be explained 
as follows. Under swell conditions, the wave heights are small and their period long. When the 
waves break, material is thrown into suspension and carried up the beach (as bed and suspended 
load) in the direction of movement of the broken wave (the uprush). The uprush water percolates 
into the beach, so the volume and velocity of backwash water is reduced. Sediment is deposited 
by the backwash when the gravity forces predominate. The net result is an accumulation of mate-
rial on the beach. In addition, the beach material is naturally sorted, with the largest particles 
being left highest on the beach and a gradation of smaller particles seaward. Under storm condi-
tions, the waves are high and steep fronted, and have shorter periods. Consequently, the vol-
umes of uprush are much larger, and the beach is quickly saturated. Under these conditions, the 
backwash is much more severe, causing rapid removal of beach material. Also, a hydraulic jump 
often forms when the backwash meets the next incoming wave. This puts more material into 
suspension, which is then dropped seawards of the jump. The net result is depletion of the beach.

Cross-shore transport is also affected by the wave shape and by undertow. In shallow water, 
waves become progressively more asymmetrical in form. Under the wave crests, the velocity is 
directed onshore and has a higher value than that under the troughs, which is directed offshore. 
However, the crest velocities persist for a shorter time than the trough velocities. Thus, finer 
sediment migrates offshore and coarser sediment onshore. A strong undertow can also be gen-
erated in the surf zone. This is an offshore-directed flow near the bed, which results from the 
near-surface onshore-directed flow caused by the breaking waves. These flows carry suspended 
sediment shorewards and bed load seawards.

On sand beaches, the material moved offshore is often deposited seawards of the breaker 
line as a sand bar. During storm conditions, the formation of such a bar has the effect of caus-
ing waves to break at a greater distance from the beach, thus protecting the beach head from 
further attack. The subsequent swell waves then progressively transport the bar material back 
onto the beach in readiness for the next storm attack.

Finally, the presence of long waves in the surf zone, briefly introduced in Section 8.4, can have 
a strong influence on surf zone sediment movements, producing complex three-dimensional 
features, such as beach cusps and bar systems (see Huntley et al., 1993 for further details).

From the foregoing, it can be appreciated that beaches are an excellent means of coastal 
protection. Provided that sufficient beach material is available, and that the building line is 
kept behind the upper limit of beach movement, no further defence is necessary. However, 
these remarks are applicable only to stable or accreting beaches. In locations where beaches are 
depleting, or where no natural beach exists, other measures are necessary.

16.3.1.1  Equilibrium Profiles and the Depth of Closure

The concept of an equilibrium profile is apparently at odds with the foregoing description of 
storm and swell profiles. However, if the profile is considered over a longer time period of the 
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order of years, rather than a timescale of the order of storm events or seasons, then it has been 
found that many ocean-facing coastlines exhibit a concave curve, which becomes more gently 
sloped with distance offshore. Bruun (1954) and later Dean (1991) showed that this profile 
could be described by the equation

 h Ax= 2 3/
 (16.1)

where h is the profile depth at a distance x from the shoreline, and A is a constant, which has 
been related to grain size by Dean (A = 0.21 D0.48 with D in mm). These equations predict that 
equilibrium beach slopes increase in steepness with increasing grain size. Dean also demon-
strated how the profile equation could be related to physical principles, as follows.

The starting point is the assumption that an equilibrium profile will be such that uniform 
energy dissipation per unit volume (De) will exist in the surf zone. Hence, we may write
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In shallow water,
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Assuming spilling breakers, then

 H h= γ  (16.4)

If Equations 16.4 and 16.3 are substituted into (16.2) and then (16.2) is integrated, with h = 0 
for x = 0, then the result is Equation 16.1, in which
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This is a constant whose value can be related to grain size, as stated earlier.
The depth of closure, dc, is defined as the vertical distance between the still water level and 

the water depth at which waves can no longer produce any measurable change in the seabed 
profile. Where suitable records exist, this depth can be determined from profile data. In the 
absence of such records, it has been shown to be of the order of 1.57Hs12, (Birkemeier, 1985), 
where Hs12 is the significant wave height with a frequency of occurrence of 12 h per year. Of 
course, the depth of closure is not really constant, but will vary with the incident wave condi-
tions. However, when considering timescales for morphological change, it is a useful parameter.

The concepts of an equilibrium profile and depth of closure have proved extremely useful in 
the design of beach nourishment schemes and in modelling shoreline evolution. Further details, 
their application in design and references to the original works may be found in the Beach	
Management	Manual (Rogers et al., 2010).
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16.3.1.2 Bruun Rule for Beach Erosion Resulting from Sea-Level Rise

This is a simple geometric expression for shoreline recession Δx, resulting from a rise in sea level ΔS, 
first proposed by Bruun (1962, 1983). The principle is that an initial equilibrium profile of length 
l for a given depth of closure dc will re-establish itself further landwards and higher by a depth ΔS 
after the sea-level rise (as the depth of closure remains constant). This implies that the material 
eroded on the upper part of the profile is deposited on the lower part of the profile. Hence,

∆ ∆xd Slc =

or

∆ ∆x
d

S= l

c

As l is in general much larger than dc, the shoreline recession will also be much larger than the 
rise in sea level.

16.3.1.3 Accretion/Erosion Predictors

Based on the analysis of field data, Kraus et al. (1991) established the following criteria to deter-
mine whether the beach profile was likely to erode or accrete, using the significant wave height 
(Hs) and period (T) to determine the wave steepness (So) and dimensionless fall velocity (Wo):

So/Wo
3 > 0.0014 Or Wo < 2.4 Accretion is highly probable

So/Wo
3 > 0.00027 Or Wo < 3.2 Accretion is probable

So/Wo
3 ≤ 0.00027 Or Wo ≥ 3.2 Erosion is probable

So/Wo
3 < 0.00054 Or Wo > 4.0 Erosion is highly probable

where

 
W

H
T

o
s=

νFS  
(6.13)

where νFS is the sediment fall velocity (see Chapter 9).

16.3.2 longshore transport (“littoral drift”)

To some extent, the mechanisms associated with transport of sand may be differentiated from 
transport of shingle. Thus, for a sand seabed, the oscillatory force due to the passage of a (break-
ing) wave will tend to stir the sediment into motion. The bed shear due to the longshore current 
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can then transport the sand. Conversely, for shingle beaches, sediment transport is pronounced 
when plunging breakers form, and significant energy is being dissipated. The particles may 
undertake short trajectories or move as bedload. As the flow in the uprush is perpendicular to 
the wave crest and in the backwash is perpendicular to the beach contours, the shingle describes 
a “sawtooth”, or zig-zag, path along the beach.

Littoral drift does not, of itself, cause beach accretion or depletion. These occur only when 
there is an imbalance of supply of material between one point and another along the coast. For 
example, the construction of a large breakwater (to protect a port or marina) or the installation 
of a new groyne system may reduce the longshore transport locally, and in consequence beaches 
further down the coast may be “starved” of material and be depleted.

16.3.2.1  Estimating Longshore Transport

An appreciation of the importance of beach processes is fundamental to good engineering 
design of coast protection works. Unfortunately, quantitative estimation of sediment transport 
rates is extremely difficult. Changes in beach volumes may be calculated from data derived 
from ground or aerial surveys. If surveys are carried out over several years, a trend for accretion 
or depletion may be discernible. This is not necessarily a direct measure of the longshore trans-
port rate along the coast. Rather it is an indication of any imbalances in the supply of sediment 
from one point to another. However, where marine structures are constructed that cut off the 
supply from further up the coast, comparisons of beach volumes before and after construction 
can give some indication of the longshore transport rates.

Direct measurement of longshore transport has been attempted using a variety of techniques, 
such as deposition of a tracer material (radioactive, dyed or artificial sediment) or installation of 
traps. Examples of field measurements may be found in Bruno et al. (1980), Chadwick (1989), 
and Kraus and Dean (1987). A comprehensive review of field data for longshore sediment trans-
port may be found in Schoonees and Theron (1993).

Various attempts have been made to enable engineers to predict longshore transport rates. 
Broadly speaking, there are two approaches. The first is to estimate the total rate of transport, 
and the second is to model the distribution of the transport rate across the surf zone.

The most widely used total transport formula is commonly known as the CERC equation 
(U.S. Army Corps of Engineers, 1984). The equation was derived from field measurements on 
sand beaches and has been developed over a number of years. The formula is intended to include 
both bedload and suspended load and is usually given in the form of
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where
QLS is the volumetric longshore transport (m3/s)
P is the power of the breaking wave (cf. Equations 8.7 through 8.9)
ps is the porosity
α is the angle between the wave front and the shoreline
ρs is the sediment density (kg/m3)
K is a dimensionless coefficient, which is a function of particle size
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For sand the value for K suggested in the Shore	Protection	Manual is 0.39 (using Hs for wave 
height); for shingle K would reduce to roughly 1/10th to 1/20th of that used for sand, depend-
ing on the particle size. See Van Wellen et al. (2000) for a recent review.

Following extensive laboratory tests and analysis of field data, Kamphuis (1990, 1991) 
proposed a total transport formula in the form

 Q H T m DLS sb P sin= × −6 4 10 24 2 1 5 0 75
50

0 25 0 6. ( ). . . .α  (16.6)

where
D50 is the mean grain size
Hsb is the significant wave height at breaking
m is beach slope
QLS is longshore transport rate in m3/annum
Tp is the peak wave period

While the transport of shingle on beaches takes place across a relatively narrow zone tra-
versed by the plunging breakers, sand transport may take place right across the surf zone. By 
means of a surf zone model, the hydraulic losses due to bed shear and wave breaking may be 
estimated for a series of points. If an appropriate transport equation is used, the correspond-
ing transport rate at each point may be found. This approach was pioneered by Bijker (1971), 
who adapted a transport formula originally developed for estimating sediment transport in 
rivers. However, this assumes that bed friction is the principal cause of transport. In the surf 
zone, energy is lost because of bed friction and wave breaking. For this reason, Morfett (1991) 
suggested that sediment transport could be related to the rate of energy dissipation, and devel-
oped a new transport formula based on this approach. Either of these two methods yields 
the distribution of sediment transport, and the total transport has to be found by numerical 
integration:

 
Q q xLS LSd= ∫  

(16.7)

where qLS is the sediment transport rate per unit width at a point.
The approaches of Bijker and Morfett use period-averaged values for the flow parameters. In 

effect this reduces the unsteady flow field to an equivalent steady state flow, which substantially 
simplifies the equations or numerical techniques used. Chadwick (1991a,b), amongst others, 
developed a model representing the depth-averaged unsteady flow field and the correspond-
ing instantaneous sediment transport across the surf zone. The period-averaged distribution of 
sediment transport may then be found, and hence the total transport via Equation 16.7. This 
subsequently led to the development of the Chadwick van Wellen equation for coarse grained 
beaches (see Van Wellen et al., 2000) given by
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Some of the most recent developments have used a Boussinesq model for surf zone hydrodynam-
ics coupled to various sediment transport equations. The interested reader is referred to Fredsoe 
and Deigaard (1992) in the first instance and to Lawrence et al. (2003) for a recent example.

16.4 sHorelIne evolutIon ModellIng

If a natural beach has an adequate supply of sand or shingle, then it may remain in stable equilib-
rium over an extended period (Figure 16.1a). However, if the sediment transport is intercepted 
(by a natural or artificial feature), then the beach will accrete on the updrift side of the feature 
(Figure 16.1b). For a large structure, such as a breakwater, it is possible that all sediment will be 
trapped and that the coastline on the downdrift side will be starved of sediment and will deplete. 
From a consideration of Equation 16.5, transport rate is a function of angle between the wave front 
and the beach contour. However, beach accretion alters the line of the beach contour – the angle 
α is no longer constant – so sediment transport rate will vary with position along the shoreline.

A simple mathematical model of this situation can be developed, based on the concept of an 
equilibrium profile extending to the depth of closure. Consider the element of beach between 
boundaries 1 and 2 in Figure 16.1b, shown in sectional elevation in Figure 16.1c. Applying the 
continuity equation, in a time interval δt the change in the volume of sediment in the element 
is equal to the volume entering less the volume leaving. Hence,
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where A is the cross-sectional area of the beach profile.
Simplifying,
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For an equilibrium profile any change in area must result in a horizontal movement of the pro-
file, δy, given by δA = (dc + db) δy, where db represents the beach berm height above the still 
water line plus the tidal range. Substituting in (16.8) gives
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Equation 16.9 can be rearranged into finite difference form in a number of ways. A simple 
explicit numerical scheme based on a staggered grid is

 
Y

d d
Q Q

x
t Yn t

LS LS
n t

n t n t
+ + +=

+
−





++
1 2 1 1 2

1 1
/ , / ,

( )
, ,

c b ∆
∆

 
(16.10)

where the subscript n refers to location (boundary line 1, 2, …) and t to time. As the values of Y 
alter, this will correspondingly alter α, which can be computed from the new Y values.
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FIgure 16.1 (a) Initial (equilibrium) condition QLS is constant. (b) Change in contour line at time t due to construc-
tion of groyne. (c) Definition sketch for a one-line model.
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The transport rate Q n tLS , +1 can be calculated (e.g., from Equation 16.5). Equations 16.10 
and 16.11 may be used as the basis for a computer program. This can be applied to a simple 
problem in which the waves approach the shore from one direction. The solution is started 
with initial values of Y and QLS at initial time t. The effect of the intercepting feature is to 
reduce Q n tLS , +1 , say to zero. The equations are solved sequentially for all boundary lines at t + Δt, 
t + 2Δt and so on.

Where the direction of the incident waves varies (as will be the case in most real situa-
tions), the aforementioned approach requires modifications. Some care is also needed in select-
ing the magnitudes of the distance and time differences (ΔL, Δt) to avoid problems of numerical 
stability.

This method gives the evolution of only one “typical” shoreline contour, and so it is 
known as a one-line model. For an example of the application of a one-line model to beach 
evolution, see Chadwick (1989). It has been assumed in the development of Equations 16.9 
and 16.10 that sediment transport is longshore only. There is likely to be on- and offshore 
transport, especially near the barrier feature. Also, in practice, the selection of a value for 
dc is not necessarily straightforward. To deal with the combination of longshore together 
with cross-shore transport, multi-line models have been developed (see Fleming, 1994b), 
but they require detailed information about the distribution of the sediment transport rates, 
which is not always available. However, for shingle beaches, a one-line evolution model can 
be used with a parametric beach profile model (Powell, 1990) to yield more detailed pre-
dictions. The Beach	Management	Manual (Rogers et al., 2010) provides further information 
and references.

16.4.1 Coastal Profile and Coastal area Models

Such models represent the most recent developments in attempting to predict shoreline evolution. 
Coastal profile models are restricted to the prediction of cross-shore profile development, whereas 
coastal area models attempt to predict the integrated effects of cross- and longshore movements. 
Such models generally contain one of a number of hydrodynamic models for waves and currents 
and a sediment transport model, based either on shear stress or energetics concepts, and allow 
for the bathymetry to develop over time in response to the driving forces on the sediments. Such 
models are referred to as morphodynamic	models. An excellent first source of reference for such 
models may be found in a special issue of Coastal	Engineering issued in 1993, entitled Coastal	
Morphodynamics:	Processes	and	Modelling.

A considerable amount of research has been carried out over the last 20 years to develop 
predictive numerical models of coastal evolution, as described by Sutherland in an article on 
the Coastal WIKI website (Sutherland, 2011). However, there are still major gaps in our under-
standing of long-term morphological behaviour, which means that modelling results are subject 
to a considerable degree of uncertainty. Southgate and Brampton (2001) provide a guide to 
model usage, which considers the engineering and management options and the strategies that 
can be adopted, while working within the limitations of a shortfall in our scientific knowledge 
and data.

Van Rijn et al. (2003) compared the results from coastal profile models with hydrodynamic 
and morphodynamic data on the timescale of storms and seasons. Profile models were shown 
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to be able to predict the cross-shore variation in significant wave height to within 10% and to 
predict offshore and longshore current speeds to within 40%. He suggested that profile mod-
els can also reasonably represent the movement of outer and inner sand bars on the timescale 
of storms but they cannot simulate the beach recovery process on the post-storm scale. More 
recent developments (see, e.g., Pedrozo et al., 2006) include the application of phase resolving 
near-shore numerical wave models.

16.5  natural Bays, Coastal Cells and sHorelIne 
ManageMent PlannIng

16.5.1 natural Bays

Where an erodible coastline exists between relatively stable headlands, a bay will form. The 
shape of such bays is determined by the wave climate and the amount of upcoast littoral drift. 
Silvester (1974) investigated the shape of naturally stable bays by a series of wave tank model 
experiments. His results indicated that, in the absence of upcoast littoral drift, a stable bay 
will form in the shape of a half heart, for any given offshore wave direction. These are called 
crenulated	bays. The reason why crenulated bays are stable is that the breaker line is parallel 
to the shore along the whole bay. Littoral drift is therefore zero. Silvester also gives a method 
of predicting the stable bay shape and its orientation to the predominant swell directions (see 
Section 16.7). A more recent work may be found in Hsu et al. (2010).

These results have several significant implications. For example, the ultimate stable shape 
of the foreshore, for any natural bay, may be determined by drawing the appropriate crenu-
lated bay shape on a plan of the natural bay. If the two coincide, then the bay is stable and will 
not recede further. If the existing bay lies seawards of the stable bay line, then either upcoast 
 littoral drift is maintaining the bay or the bay is receding. If the existing bay is landwards of the 
stable bay line, then the bay is unstable, which could be caused by installing new breakwaters 
or caused by profile erosion from extreme events. Also, naturally stable bays act as “beacons” 
of the direction of littoral drift. Silvester has scrutinised the coastlines of the world to identify 
crenulated bays, and hence has determined the directions of predominant swell and littoral 
movements. Where such movements converge at a point, large depositions and accumulation of 
coastal sediments may be expected. Finally, the existence of crenulated bays suggests a method 
of coastal protection in sympathy with the natural processes, by the use of artificial headlands. 
This is discussed further in Section 16.7.

16.5.2 Coastal Cells

The concept of a coastal cell follows on quite naturally from Silvester’s crenulated, stable bay. 
It is also of crucial importance to coastal zone management, allowing a rational basis for the 
planning and design of coastal defence schemes. The definition of a coastal cell is a frontage 
within which the longshore and cross-transport of beach material take place independently of 
that in adjacent cells. Such an idealised coastal cell is shown in Figure 16.2. Within such a cell, 
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coastal defence schemes can be implemented without causing any effects in the adjacent cells. 
However, a more detailed review of this concept reveals that a coastal cell is rather difficult to 
define precisely, depending on both the timescale and the sediment transport mode.

Three timescales may be considered useful: micro (for wave-by-wave events), meso (for 
storm events) and macro (for long-term morphological developments). For meso timescales, the 
local longshore drift direction can be the reverse of the macro drift direction, possibly allowing 
longshore transport from one cell to another. With regard to sediment transport, this may be 
as either bed or suspended load. Longshore transport of coarse material is predominantly by 
bedload across the active beach profile and largely confined to movements within the coastal 
cell. Conversely, longshore transport of fine material is predominantly by suspended load, which 
is induced by wave action but then carried by tidal as well as wave-induced currents, possibly 
across cell boundaries.

Despite the inherent fuzziness of the boundaries of a coastal cell, it is nevertheless a very useful 
concept for coastal zone management. In the United Kingdom, for example, the coastline of England 
has been divided into 11 primary cells with a series of subcells defined within each primary cell.

16.5.3 shoreline Management Planning

Many of the recent developments in coastal management have originated in the United Kingdom 
and other European coastal states and in North America. The United Kingdom in particular has 
an extremely varied coastal geomorphology, experiences large variations in waves, tides, water 
levels and currents and is relatively densely populated. It is perhaps not surprising therefore 
that many developments in coastal management have been initiated in the United Kingdom 
and embedded in central government policies for allocation of resources to coastal defences in 
the United Kingdom. The development of the first shoreline management plans in the United 
Kingdom, in the early 1990s, established a new standard for coastal management. This standard 
was greatly enhanced with a geomorphological emphasis on the publication of the Futurecoast 
project in 2002 (see Section 16.6). This stimulated the second generation of shoreline manage-
ment plans, now in progress (2010).

Beach deposits

Sediment transport

Dominant wave direction

Zero sediment transport

FIgure 16.2 Sediment transport within coastal cells.
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The aim of a shoreline management plan is to provide the basis for sustainable coastal defence 
policies within a coastal cell and to set objectives for the future management of the shoreline.

To fulfil this aim, four key components and their interrelationships need to be considered. 
These are the coastal processes, the coastal defences, land use and the human and built environ-
ment and finally the natural environment. An understanding of the interrelationships between 
coastal processes and coastal defence is fundamental to developing a sustainable defence policy. 
The need for coastal defence schemes arises from effects on land use, and the funding of such 
schemes relies on an economic assessment of whether the benefits of defence outweigh the costs 
of construction. Finally, the effects of defence schemes on the natural environment must be 
very carefully considered and an environmental assessment carried out. Environmental hazards 
and opportunities should be identified, and schemes should be designed to conserve or enhance 
the natural environment. Where conflicts arise between the needs for defence and conserva-
tion, these must be resolved by the environmental assessment. A key part of this assessment is 
the process of consultation with statutory bodies, local interest groups and the general public. 
Further details of the original UK practice may be found in the MAFF (1995) publication, 
Shoreline	Management	Plans.

An excellent summary of the approaches developed in the United Kingdom over the last 
20 years is given in Pontee and Parsons (2010). They also describe the supporting research pro-
grammes, funded by UK government sources, which have been specifically focused on end user 
requirements, aiming to bring together practitioners and academics to solve real-world prob-
lems, to consider regional and national scales and to ensure good dissemination of the research 
results.

They concluded that the delivery of more sustainable shoreline management has been made 
possible by the development of a strategic planning framework, informed by the research pro-
grammes noted earlier. They confirm that improvements in understanding of coastal processes, 
morphology and the mechanisms and consequences of defence failure have taken place, that 
new tools for data management and decision support have been developed and that assets at risk 
have been quantified on a national basis. They suggest that further improvements can be made 
in the availability of useable software tools and outputs and establishing better links with uni-
versity-led research and with practitioner-led research in other countries. They also conclude 
that in the face of climate change, limited budgets and the value placed on the natural environ-
ment, the current practice of hold the line policies are likely to become untenable. Thus, more 
emphasis will be placed on managed re-alignment or no active intervention. A comprehensive 
review of the development of shoreline management in the United Kingdom and the current 
best practice guidelines may be found in Reeve et al. (2011).

16.6 understandIng Coastal systeM BeHavIour

Within Coastal Engineering, there has been a strong focus upon littoral processes and this 
approach is frequently used as a basis for analysing coastal change and assessing future policy 
options and impacts. Whilst the littoral cell concept is a valid approach, it is only one aspect of 
coastal system behaviour and other factors also need to be taken into account when assessing 
future shoreline evolution. Therefore, in terms of making large-scale or longer-term predictions 
of coastal evolution, the cell concept can have a number of shortcomings.
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Analysis of coastal dynamics and evolution is difficult due to both the range of spatial and 
temporal scales over which coastal changes occur, and the complex interactions that result in 
shoreline responses of varying, non-linear and often unpredictable nature. There is also inter-
dependence between different geomorphic features that make up the natural system, such that 
the evolution of one particular element of the coast is influenced by evolution in adjacent areas. 
Often these influences extend in a number of directions, thereby further complicating the task 
of assessing change.

A major project, FUTURECOAST, was commissioned by the UK government 
Department for the Environment Food and Rural Affairs. It was carried out by consulting 
engineers, Halcrow, with results published in 2002. A “behavioural systems” approach 
was adopted by the FUTURECOAST project. This involved the identification of the 
different elements that make up the coastal structure and developing an understanding 
of how these elements interact on a range of both temporal and spatial scales. In this 
work it is the interaction between the units that is central to determining the behaviour. 
Feedback invariably plays an important role and changes in energy/sediment inputs that 
affect one unit can in turn affect other units, which themselves give rise to a change in 
the level of energy/sediment input.

Whilst the starting point for a behavioural system is the energy and sediment pathways, 
it is important to identify the causative mechanism as a basis for building a robust means of 
predicting the response to change. This must take account of variations in sediment supply 
and forcing parameters, such as tide and wave energy. However, it is also important to look 
for situations where the system response is to switch to a different state, for example, the 
catastrophic failure of a spit, or the switching of channels as a consequence of episodic storm 
events.

Key influences upon plan-form shape, and evolution, are the underlying geology and coastal 
forcing, e.g., prevailing wave activity. Large-scale shoreline evolution may be broadly considered 
in terms of those areas that are unlikely to alter significantly, i.e., hard rock coasts, and those 
areas that are susceptible to change, i.e., soft coasts.

The evolution of hard rock coasts is almost exclusively a function of the resistant nature of 
the geology, with the influence of prevailing coastal forcing on the orientation of these shore-
lines only occurring over very long timescales (millennia). Differential erosion may occur along 
these coastlines to create indentations or narrow pockets where there is an area of softer geol-
ogy, or faulting, which has been exploited by wave activity.

The evolution of softer shorelines is more strongly influenced by coastal forcing, although 
geology continues to play a significant role in both influencing this forcing (e.g., diffraction 
of waves around headlands) and dictating the rate at which change may occur. The plan-
form of these shorelines will, over timescales of decades to centuries, tend towards a shape 
whose orientation is in balance with both the sediment supply and the capacity of the 
forcing parameters to transport available sediment. In general, soft shorelines have already 
undergone considerable evolution. Some shorelines may have reached their equilibrium 
plan-form in response to prevailing conditions, whilst others have not and continue to 
change.

It is the softer shorelines that are most sensitive to changes in environmental conditions, such 
as climate change impacts, which may alter the coastal forcing. Such changes in conditions are 
not necessarily instantaneous and can take many decades or centuries to occur. Therefore, some 
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of the changes taking place at the shoreline over the next century may be a continuation of a 
response to events that occurred at some time in the past.

Further details of the FUTURECOAST project are summarised in Reeve et al. (2011). The 
results of the FUTURECOAST project were made available on CD and have been widely dis-
tributed in the United Kingdom.

16.7 Coastal deFenCe PrInCIPles

Coastal	defence is the general term used to cover all aspects of defence against coastal hazards. 
Two specific terms are generally used to distinguish between different types of hazard. The 
term sea	defence is normally used to describe schemes that are designed to prevent flooding of 
coastal regions under extremes of wave and water levels. By contrast, the term coast	protection 
is normally reserved to describe schemes designed to protect an existing coastline from further 
erosion.

There are two approaches to the design of coastal defence schemes. The first is referred to 
as “soft engineering”, which aims to work in sympathy with the natural processes by mimicking 
natural defence mechanisms. Such an approach has the potential for achieving economies while 
minimising environmental impact and creating environmental opportunities. The second is 
referred to as “hard engineering”, whereby structures are constructed on the coastline to resist 
the energy of waves and tides. Tables 16.1 and 16.2 show examples of hard and soft engineer-
ing techniques and where they are located with respect to the shoreline, for three types of 
coastline. These tables provide a guide as to where one might expect to find particular forms 
of coastal defence. Elements of hard and soft engineering are often used together to provide an 
optimal coastal defence scheme: for example, the combined use of beach feeding with groynes 
or breakwaters.

taBle 16.1 Location of Hard Engineering Schemes

Type of Coast Open Coast Bay
Breakwaters, barrages

Estuary

Low shore: Rock platform Shingle/Sand beaches Mud flats

groynes

Upper shore: Rocky/cliff Shingle ridge Marsh Sand dune

sea walls

Supra tidal: Cliff High backshore Low backshore Reclaimed marsh

Flood embankments

Hinterland: (Urban Industrial Agricultural Recreational Natural)

drainage
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16.7.1 Project design Framework

To determine an optimal coastal defence scheme, it is good practice to have a framework for the 
project design. Such a framework was first recommended by MAFF (1996) and is, in essence, of 
general applicability. It consists of six steps, which are shown in Table 16.3. Steps 2, 3 and 4 may 
well need to be iterative. Of particular note in the context of this section is step 2 (developing 
and appraising the options). Here, four stages in appraising the possible coastal defence options 
need to be considered. They are as follows:

 1. Do nothing: evaluate the consequences as a baseline against which other options can be 
measured.

 2. Do minimum: adopt a lower standard of protection and subsequent maintenance 
requirements.

 3. Sustain: maintain existing defences to sustain current defence.
 4. Improve: use new soft and/or hard defences to improve the current defence or retreat 

the line of defence.

In a later re-assessment of these options, they were modified in the 2006 DEFRA guidance 
providing the following four SMP policies available to shoreline managers:

 ◾ Hold	 the	existing	defence	 line by maintaining or changing the standard of protection. 
This policy should cover those situations where work or operations are carried out 
in front of the existing defences (such as beach recharge, rebuilding of the toe of a 
structure, building offshore breakwaters, etc.) to improve or maintain the standard of 
protection provided by the existing defence line.

taBle 16.2 Location of Soft Engineering Schemes

Type of Coast Open Coast Bay
stable bays

Estuary

Low shore: Rock platform Shingle/Sand beaches Mud flats

Beach feeding

Upper shore: Rocky/cliff Shingle ridge Marsh Sand dune

set back

Supra tidal: Cliff High backshore Low backshore Reclaimed marsh

dune building, cliff drainage

Hinterland: (Urban Industrial Agricultural Recreational Natural)

drainage
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 ◾ Advance	the	existing	defence	line by building new defences on the seawards side of the 
original defences. This applies only to policy units where significant land reclamation 
is being considered.

 ◾ Managed	re-alignment by allowing the shoreline to move backwards or forwards, with 
management to control or limit the movement (such as reducing erosion or building 
new defences on the landwards side of the original defences).

 ◾ No	active	intervention where there is no investment in coastal defences or operations.

16.8 Coastal deFenCe teCHnIques

This section contains an introduction to the principal forms of coastal defence. The approach 
taken is to outline the theory behind the technique, provide some details of the design and draw 
attention to the potential environmental impacts and opportunities. The reader’s attention is 
again drawn to Tables 16.1 and 16.2, which show where each of these techniques is generally to 
be found. Further details, particularly concerning the environmental impacts and opportuni-
ties, may be found in MAFF (1993).

taBle 16.3 Project Design Framework

Step 1 Preliminary thinking

 ◾ The perceived problem

 ◾ Awareness, evaluation and consultation

Step 2 Developing and appraising the options

 ◾ Consultations

 ◾ Environmental information

 ◾ Scheme options

 ◾ Informal environmental appraisal

 ◾ Shortlist of options

Step 3 Choosing the preferred option

 ◾ Ranking of options

 ◾ Formal environmental assessment

Step 4 Design and planning

 ◾ Environmental considerations

Step 5 Operational phase

Step 6 Post-project evaluation
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16.8.1 artificial Headlands

Silvester’s experimental and field work on the stability of natural bays has already been dis-
cussed (see Section 16.5). Figure 16.3 summarises his results in graphical form. For any given 
angle of wave approach, β, there is a fixed ratio of bay indentation a to bay length b, which is 
known as the indentation	ratio, a/b. These results suggest a method of coastal protection on a 
grand scale. If two artificial headlands are formed on an eroding coastline, then a new stable 
bay should form between them. Figure 16.4 shows how the technique can be extended by 
the construction of a sequence of artificial headlands. Thus, by this simple expedient, whole 
sections of coastline may be stabilised in one scheme. Such schemes have been constructed: 
for example, in Singapore (Silvester and Ho, 1972). In the United Kingdom, Muir Wood and 
Fleming (1981) describe another scheme at Barton on Sea, where artificial headlands have 
been used.

However, for a variety of reasons, this method of coastal protection has not gained great 
popularity. Perhaps the most significant of these reasons is the uncertainty of the bay stability in 
conditions where there is a large degree of variability in swell wave direction, and where storm 
attack comes from a variety of directions. Fleming (1994a) provides an excellent summary of 
the use of artificial headlands and describes the key references concerning the theories devel-
oped to date. Hsu et al. (2010) provide details of the more recent recommended equations for 
the prediction of crenulate-shaped bays, now referred to as the parabolic bay shape equation. 
A software package (MEPBAY) has also been developed for ease of application. It is available as 
a free download from the world wide web.
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FIgure 16.3 Crenulated bays and the indentation ratio.
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The environmental impacts of the introduction of artificial headlands include the cre-
ation of a new shoreline, which may significantly alter existing habitats. Also, the creation 
of a new coastal cell will significantly alter littoral drift, possibly causing downcoast erosion. 
The environmental opportunities include the creation of new stable yet dynamic beaches, 
which may be used for recreation. Also, the artificial headlands may offer a new home to 
marine life.

16.8.2 Breakwaters and rip-rap

Breakwaters are often used in harbour works to form the primary means of protection from 
storm attack. They are also used offshore to protect a coastline by creating a zone of reduced 
wave energy at the shoreline, as shown in Figure 16.5. Wave energy is dissipated by the break-
waters themselves and is dispersed by diffraction and refraction shorewards of the breakwa-
ters. These processes and the wave-induced currents in the lee of the structures promote the 
formation of salients or tombolos. A salient (as shown in Figure 16.5) will reduce longshore 
transport, which is often preferable to the effect of a tombolo (in which the shoreline attaches 
to the breakwater), and will prevent longshore transport. It is therefore very important to be 
able to predict whether a salient or a tombolo will form. This can be achieved by the use of 
empirical rules, the application of a morphodynamic model or a physical model study. An 
evaluation of these techniques using field data may be found in Axe et al. (1997). Such meth-
ods are summarised by Fleming (1994a) and some more recent research may be found in Ilic 
et al. (2005a,b).

Submerged breakwaters can also be used, which may be more cost-effective.
Many breakwaters are constructed using large blocks of rock (the “armour units”) placed 

randomly over suitable filter layers. More recently, rock has been replaced by numerous 
shapes of massive concrete blocks (e.g., dolos, tetrapod and cob). Many of these shapes have 

Original shoreline

Ultimate equilibrium
shoreline without

arti�cial headlands Shoreline resulting from
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headlands

Predominant wave direction
Arti�cial headland

FIgure 16.4 Creation of stable bays using artificial headlands.



588 Aspects of Hydraulic Engineering

been patented. A typical breakwater is shown in Figure 16.6a, and concrete armour units 
in Figure 16.6b.

The necessary size of the armour units depends on several interrelated factors. Traditionally, 
the Hudson formula has been used. This was derived from an analysis of a comprehensive series 
of physical model tests on breakwaters with relatively permeable cores and using regular waves. 
The formula is given by

M
H

K
r

50

3

3= ρ
αD cot∆

where
M50 is the required median mass of the armour unit
ρr is the density of the armour unit
H is the design wave height (normally taken as Hs)
Δ is the relative buoyant density = (ρr − ρw)/ρw

α is the structure slope angle
KD is a non-dimensional constant

The corresponding nominal diameter of rock is determined as Dn50 = (M50/ρr)1/3.
The value of KD is determined principally by the type of armour unit, but its value is also 

affected by whether the waves incident on the structure are breaking or nonbreaking, and 
whether the structure trunk or head is being considered. For rock, its value is approximately 
1–3, whereas for the “best” concrete armour units it may be in excess of 10. These values are 

FIgure 16.5 Aerial view of the Elmer offshore breakwater scheme.
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also based on what Hudson referred to as the “zero damage” criterion, which allows up to 5% of 
the armour units to be displaced at the design wave height. Full details of the Hudson equation 
and its application in design may be found in the Shore	Protection	Manual (U.S. Army corps of 
Engineers, 1984).

It should be noted that the Shore	 Protection	 Manual (1984) was once considered to be a 
standard reference document. However, it has been re-drafted over the past decade in order 
to incorporate the wealth of developments that have taken place, but is still incomplete. It has 
been renamed as the Coastal	Engineering	Manual and can be found on the website at http://chl.
erdc.usace.army.mil/cem

More recently (1985–1988), the Hudson equation has been superseded by Van der Meer’s 
equations for rock breakwaters. These equations were also developed from an extensive series 
of physical model tests. In these tests, random waves were used, and the influence of wave 
period and number of storm waves, N, was also considered. A new damage criterion, Sd, and 
a notional core permeability factor, P, were developed. The equations are for use where the 
structure is placed in deep water with the waves either breaking on the structure or causing 
surging.

Armour units

Primary underlayer

Concrete

Core

Secondary underlayer

(a)

(b) Dolos TetrapodCob

FIgure 16.6 A typical breakwater: (a) cross section and (b) armour blocks.
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For plunging waves,
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The transition from plunging to surging waves is given by
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and Dn50 is the nominal rock diameter = (M50/ρrg)1/3.
The value of Sd corresponding to Hudson’s zero damage is termed the initial damage, and 

has a value of between 2 and 3. The value of notional permeability P lies between 0.1 and 
0.6, corresponding to an impermeable core and no core, respectively. The maximum number 
of waves, N, should not exceed 7500, after which the structure should have reached an equi-
librium. Further details of these equations and their application to design may be found in 
Reeve et al. (2011) and a complete professional engineers’ reference work in The	Rock	Manual 
(2007).

A rip-rap revetment consists of rock or stone placed on filter layers of finer material, and as 
such is similar to a breakwater. It is normally used to stabilise a shoreline where a beach does 
not exist. Also, rip-rap is often used as toe protection to sea walls. Details of the design (e.g., 
slopes, stone sizing, filter layers, wave run-up) are also given in Reeve et al. (2011) and a com-
plete professional engineers’ reference work in The	Rock	Manual (2007).

Environmental impacts of offshore breakwater schemes include reduced wave energy 
at the shoreline, the creation of a new biologically inert shoreline (due to new sediment 
deposition), the possible destruction of existing shoreline life, a reduction of upper and 
supra shore inundation affecting the local ecology, visual intrusion, limiting access to the 
sea, creation of a safety hazard (for navigation and recreation) and affecting longshore trans-
port. Environmental opportunities include the creation of new beaches, the creation of new 
habitats for marine life and the creation of shoreline recreation activities. Clearly, a careful 
environmental assessment should be undertaken to establish the merits of such a means of 
coastal defence!
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16.8.3 groynes

Groynes are shore protection structures used to control longshore transport. They act by alter-
ing the natural orientation of the beach line and intercept the wave-induced longshore currents. 
This occurs because, within a groyne bay, material is transported from one end of the bay to 
the other by longshore transport, thus re-aligning the beach line to the incident wave crests and 
hence progressively reducing longshore transport within their zone of influence. They have little 
direct effect on cross-shore movements. They are most effective on shingle beaches, where they 
are often used to stabilise eroding beaches in conjunction with beach recharge (when there is 
insufficient local sediment supply). Fleming (1994a) provides some very good examples of the 
use of groynes in a variety of circumstances, which are shown in Figures 16.7 and 16.8.

Predominant wave direction

(b)

Potential longshore
swing restrained

Range of possible
wave directions

Longshore drift

(a)

FIgure 16.7 Uses of groynes: (a) arrest of alongshore drift by a groyne system and (b) use of groyne system 
in bay.
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These structures have in the past been commonly constructed of wooden posts driven into 
the beach, with wooden planks attached between the piles. Such groynes are termed “perme-
able”, as they allow water to flow through them. More recently, rock groynes have been used.

The layout of a groyne system is governed by their length, spacing, height and orientation to 
the beach line. Until recently the interrelation of these parameters was largely based on empirical 
rules or observation. As a general guide, the following empirical rules may be used.

 1. The length is normally taken as the distance between beach head and the low water 
line (for ease of construction and low cost).

 2. The height is between 0.5 and 1.0 m, or sufficient to accommodate the difference in 
height between storm and swell profiles.

 3. The spacing is between one and three times the length.
 4. The orientation is at right angles to the beach head.

Predominant wave direction

Recycled from zone of accumulation

Potential longshore drift

(a)

Artificially nourished by bypassing

Predominant wave direction(b)

FIgure 16.8 Use of groyne system on nourished beach: (a) changes in shoreline orientation and (b) arrest of 
downdrift erosion.
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In 1990, CIRIA published a new design guide and data as to the performance of existing groyne 
systems (CIRIA, 1990a,b), and a very useful summary of a rational approach to the design of 
groyne systems is given in Fleming (1994a).

Environmental impacts of groyne systems include possibly causing downdrift erosion, 
modifying the position of the beach line and its orientation, visual intrusion, reducing access 
to shoreline and introducing a safety hazard to beach users. Wooden groynes should also 
be made from sustainable forestry sources. Environmental opportunities include the recre-
ational benefits of windshelter, sunbathing and privacy, and they also provide a habitat for 
marine life.

16.8.4 Beach nourishment

Beach nourishment may be used as an alternative to, or in conjunction with, groynes and off-
shore breakwaters. Its purpose is to renourish the beach that forms the natural defence and 
protection. It is not usually necessary to sort the material, or to place it to a particular gradient, 
because wave action will sort and distribute it along the beach. The economics of nourishment 
schemes will depend on the rate of beach depletion (as distinct from the rate of littoral drift) 
and the source (and hence cost) of the supply material. In the cost–benefit study, due account 
must be taken of the recurrent annual costs in maintaining the beach material. The Beach	
Management	Manual (Rogers et al., 2010) provides comprehensive advice and guidance on all 
these matters.

Although beach nourishment may appear at first sight to offer the most “natural” solution 
to a coastal defence problem, it is not devoid of environmental impacts. During construction, 
there can be considerable disturbance to the shoreline, either from the use of the heavy machin-
ery necessary to deliver and place the new material or from the large volumes of pumped water 
if the material is delivered in barges and pumped ashore. Washout of fine material (and the 
possible presence of toxic materials) from the imported beach material can have a deleterious 
effect. It is also necessary to consider the effects on the donor site of removing the recharge 
material. After construction, the beach is likely to form a new equilibrium profile, which will 
be steeper than the original if the source material is coarser than the existing material and vice 
versa if it is finer. Nevertheless, beach nourishment is regarded as one of the most environmen-
tally friendly methods of coastal defence, if used correctly. It offers the opportunity to restore 
a natural shoreline at sites previously protected by hard defences, potentially providing both 
ecological and recreational benefits.

16.8.5 sea Walls

Traditionally, sea walls have been the dominant form of coastal defence to the upper shore. At 
first sight they appear to offer a sure means of defence and protection. However, with a little 
forethought, it should be evident that they can be far from satisfactory and should be used only 
when all other measures have been considered.

Vertical sea walls will reflect virtually all of the incident wave energy (refer to Chapter 8). 
This sets up a short-crested wave system adjacent to the wall, doubling the wave heights and 
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potentially causing severe erosive action at the sea bed. Consequently, the wall foundations 
can be quickly undermined unless very substantial toe protection is provided. Immediately 
downcoast of the sea wall, the short-crested wave system can cause further erosion, and 
this leads to a temptation to extend the sea wall. Any beach material in front of the sea 
wall can be rapidly removed downcoast under storm attack, removing any natural defence 
mechanism and allowing larger waves to attack the wall. However, it is also true to say that 
beaches in front of sea walls can also recover quickly after a storm event. Perhaps surpris-
ingly, the effects of sea walls on beaches are still a matter of controversy and research (see 
Sutherland et al., 2003).

The forces exerted on a sea wall by wave action can be considered to be composed of three 
parts: the static pressure forces, the dynamic pressure forces and the shock forces. The shock 
forces arise from breaking waves trapping pockets of air, which are rapidly compressed. As a 
result, very high localised forces will exist. Thus, sea walls must have a high structural strength, 
and their construction materials must be able to withstand the shock forces.

Modern designs of sea walls have tended to alleviate some of the problems associated with 
vertical sea walls (Figure 16.9). First, the wall is given a sloping face to reduce reflection. 
Second, a curved wave wall is placed at the top of the sea wall to deflect waves downwards, 
and thus dissipate reflected wave energy by turbulence. Finally, one of the various forms of 
rip-rap protection to the toe of the wall is provided. Such sea walls are expensive to con-
struct, and the efficacy of the initial design should be tested by physical modelling before 
the design is finalised. A review of the hydraulic design of sea walls is given in Thomas and 
Hall (1992).

The environmental impacts of beach erosion in front of the structure (possibly leading to 
structural collapse) and terminal scour have already been described. Additionally, the following 
can also be added: visual intrusion, (possibly) inhibiting access to the shoreline, the masking of 
supra-shore features, such as geological or archaeological sites, and reducing habitats for flora 
and fauna. The environmental opportunities are few, but sea walls can provide recreational 
benefits by (conversely) providing access to and along the shoreline.

16.8.6 Managed retreat

This is a recently developed (and controversial) concept in response to concerns about global warm-
ing and the predicted sea-level rise. It is most commonly associated with flood defence of inter-tidal 
cohesive shores (mud flats and salt marshes in estuaries) and is illustrated in Figure 16.10.

FIgure 16.9 Typical form of a sea wall.
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The existing flood defences are moved landwards rather than raised, resulting in a widening 
of the inter-tidal profile, which absorbs wave energy and tidal flood volumes and reduces the 
cost of relocated flood banks. Its major environmental impact is the loss of land, but this must 
be weighed against the environmental opportunity to increase the inter-tidal habitat.

16.9 Wave ModellIng

This section is concerned with wave transformation modelling. Such modelling is often required 
in order that local coastal processes may be understood, that the most appropriate forms of 
coastal defence can be determined and that such coastal defence schemes may be properly 
designed.
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FIgure 16.10 Managed retreat for flood defence.
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The reader may need to refer back to Chapter 8 for details of the wave transformation 
processes.

The processes that need to be considered for inclusion in numerical wave transformation 
models are first stated, and then the main classes of model that have been developed and applied 
over the last 20 years or so are described. None of these models is currently capable of simulat-
ing all the processes simultaneously. The circumstances under which they may be applied are 
therefore pointed out and their inherent limitations highlighted.

In transitional water depths, the processes of refraction, shoaling, diffraction, reflection, 
wave–current interaction, set-down and frictional dissipation of wave energy need to be consid-
ered. These are most easily modelled by using a monochromatic wave model in which the sea 
state is represented by a representative wave height, period and direction. Such models usually 
rely on linearised representations of the processes. This implies that higher-order and cross-
product terms in the governing partial differential equations are neglected. The introduction of 
a random (and directional) sea state complicates the matter, producing the non-linear processes 
of wave–wave interaction and long-wave generation due to wave groups. In shallow water, waves 
progressively steepen and become asymmetrical in profile, which necessitates the application of 
non-linear wave theory for correct prediction. Within the surf zone, the additional processes of 
wave breaking, wave-induced currents, set-up and free long-wave generation need to be consid-
ered. Currently it has not proved possible to incorporate all these processes in a single model. 
Such a model would probably be undesirable in any case. One reason for this is that the avail-
able computing power is insufficient to be able to model large coastal areas. No doubt this will 
cease to be an issue in the near future. More significantly, our understanding of the underlying 
physics is still incomplete, and numerical model development lags behind some of the known 
physical processes.

16.9.1 Forward-tracking ray Models

These are essentially computerised versions of the graphical ray-tracing techniques described 
in Chapter 8 and were the earliest models to be used in coastal engineering studies. They are 
based on the wave conservation equations in wave ray form, also described in Chapter 8. The 
model output consists of a set of wave rays across the model domain (any local bathymetry) 
for a particular wave period and direction, specified at the model offshore boundary. The 
refraction and shoaling coefficients can therefore be calculated at any point along the wave 
rays, and thus wave heights can also be determined at such points. The models can thus be 
used to give a good picture of the variation of wave height and direction along a shoreline. 
However, they suffer from the formation of caustics (rays crossing) and “dead” regions (sub-
stantial divergence of wave rays) induced by the local bathymetry. Caustics and dead regions 
are often unrealistic, and in reality diffraction would occur, a process not included in the 
models. Current refraction, reflection and bottom frictional losses have been incorporated in 
more recent models. Offshore directional spectra can be incorporated by linear superposition 
of components (as described in Section 8.5), but they are not very efficient for determining 
an inshore directional spectrum at a specific location, and non-linear processes cannot be 
simultaneously incorporated.
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16.9.2 Backtracking ray Models

These were developed to overcome the problem of caustics and to determine the inshore direc-
tional spectrum at a specific location. They are based on the principle of ray reversibility, which 
means that the wave ray can be determined in the reverse direction, starting the calculations 
from the shoreline and working back out to sea. The procedure involves backtracking fans of 
rays out to sea using a sequence of directional and frequency intervals. At the offshore bound-
ary, resultant ray directions are grouped. The inshore directional spectrum at the point of inter-
est can then be calculated for any given offshore spectrum.

16.9.3 Finite difference refraction Models

These models determine the wave height and direction at a series of grid points in which the solu-
tion marches forward towards the shoreline. They are based on the wave conservation equations in 
Cartesian coordinates, also described in Chapter 8. They can incorporate an offshore directional 
spectrum, current refraction, bottom friction and breaking. They suffer from the same drawbacks 
as the forward-tracking ray model, but caustics are smoothed if a directional spectrum is used.

16.9.4  Finite difference Combined refraction 
and diffraction Models

These models are a more modern development due to Yoo and O’Connor (1986). This uses a 
wave ray type of solution, but includes diffraction. It is a very powerful technique for use over 
large sea areas, as ray techniques require only spatial resolution of bathymetry, not wavelength. 
It has been extended to include wave–current interaction, bottom friction and wave breaking, 
but not reflection.

16.9.5 Mild slope equation and Model systems

This is a full wave model for refraction, shoaling, diffraction and reflection over irregular 
bathymetry. It has also been extended to include wave–current interactions, bottom friction 
and wave breaking. As suggested by the name its principal restriction is to mildly sloping bot-
tom topography (1 in 3 is acceptable). It was first derived by Berkhoff (1972) in elliptic form 
(see Section 8.3 for the equation). The model requires a small grid size (<1/10 of the wave-
length) and hence has required a very large computational time for large sea areas. The equa-
tions are valid only for harmonic and steady state solutions, and thus cannot be used to predict 
the development of wave fields in space and time. A simplified parabolic form of the mild slope 
equation derived by Radder (1979) is computationally less demanding than the elliptic form, 
but cannot include wave reflection and is restricted to wave directions not too oblique to the 
grid. It is, however, valid for transient and non-harmonic solutions.
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Subsequently, solutions including wave–current interaction, bottom friction and wave 
breaking were derived by Booij (1981). A hyperbolic form of solution, which includes reflec-
tion but is computationally less demanding than the elliptic form, was derived by Copeland 
(1985). Further refinements in computational schemes continue to date. Various versions 
of the mild slope equation are now used by the major companies providing wave transfor-
mation modelling services; see, for example, the Danish Hydraulic Institute’s MIKE 21 
modelling suite.

16.9.6 Boussinesq equations and Model systems

This system of equations represents a solution of the time-dependent, vertically integrated 
equations of conservation of mass and momentum for shallow water waves (H/L0 < 0.22), for 
which the horizontal velocity is assumed uniform with depth. They do, however, include the 
effect of vertical accelerations, and hence some non-linear effects are automatically included. 
They can reproduce the combined effects of shoaling, refraction, diffraction and reflection of 
directional, irregular, finite amplitude wave propagation over complex bathymetries. They are 
computationally very complex, requiring large computing resources, and their application is 
currently restricted to small areas of interest, typically harbours and small coastal areas. Most 
recently, such models have been extended to predict surf zone waves and currents.

16.9.7  some sources of Further reference 
for Coastal Wave Modelling

This subject is very complex and requires a considerable period of study to gain a good under-
standing of the processes and models. It is an area in which a great deal of research has been 
carried out in the last 20 years, and new developments continue apace. An authoritative 
review of wave transformation processes in the near-shore zone is that of Hamm et al. (1993), 
which discusses the (1993) state of the art and highlights current research directions. More 
recently, HR Wallingford have reviewed both wave transformation models and non-linear 
surf zone models (Dodd and Brampton, 1995; Dodd et al., 1995). They concluded that wave 
transformation models were sufficiently advanced and suitable for engineering design, but 
that non-linear surf zone models required further development. In particular, Boussinesq-
type models still required development for their application to the prediction of sediment 
transport in the surf and swash zones. This has now been achieved (see, e.g., Pedrozo et al., 
2006). An excellent review of surf zone hydrodynamics and models is that of Svensen and 
Putrevu (1996).

16.10 adaPtatIon to ClIMate CHange

Alongside the developments in coastal engineering and management, described in this chap-
ter, there has also been a rapidly evolving science base concerning global warming and climate 
change, most notably carried out and documented under the auspices of the Intergovernmental 
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Panel on Climate Change (2010) and the UK Hadley Centre (2010). Readers are recommended 
to study these two websites, which contain a vast reserve of knowledge concerning the sup-
porting science, proposals for adaptation and the latest climate change predictions and policy 
recommendations.

As noted in Chapter 8, since 1990, the IPCC has produced a series of reports, including four 
Assessment Reports in 1990, 1995, 2001 and 2007. The fourth Assessment Report consists of 
four volumes:

 1. Working	Group	I	Report:	The	Physical	Science	Basis: This volume presents the science 
of climate change. It looks at the factors that drive climate change, analyzes the past 
climate and predicts future climate conditions and detects and attributes the influence 
of human activity on recent climate. The six years since the IPCC’s Third Assessment 
Report saw large amounts of new data, the development of improved analysis tech-
niques, advances in the representation of physical processes in climate models and 
greater investigation of uncertainty in model results. The scientific implications of 
these are discussed in this report.

 2. Working	Group	II	Report:	Impacts,	Adaptation	and	Vulnerability: This volume considers 
the environmental, social and economic consequences of climate change and potential 
responses. It considers the sensitivity, adaptive capacity and vulnerability of natural 
and human systems to climate change. It also addresses the potential impacts and adap-
tation options at regional and global scales.

 3. Working	Group	III	Report:	Mitigation	of	Climate	Change: This volume describes poten-
tial means of mitigating the effects of climate change. It considers the technological 
and biological options to mitigate climate change, their costs and ancillary benefits, the 
barriers to their implementation. It also discusses policies, measures and instruments 
to overcome the barriers to implementation.

 4. The	 AR4	 Synthesis	 Report: This volume is based on the assessment carried out by 
the three Working Groups of the IPCC. It provides an integrated view of climate 
change and provides a synthesis intended for policymakers. It illustrates the impacts 
of global warming, discusses means by which society could adapt to mitigate the con-
sequences of climate change and presents an analysis of costs, policies and technolo-
gies to achieve this.

Some of the main environmental conclusions drawn from the fourth report are as follows:

 ◾ The 100-year linear trend (1906–2005) of 0.74 [0.56–0.92]°C is larger than the 
corresponding trend of 0.6 [0.4–0.8]°C (1901–2000) given in the Third Assessment 
reports.

 ◾ Eleven of the last twelve years (1995–2006) rank among the twelve warmest years in 
the instrumental record of global surface temperature (since 1850).

 ◾ The linear warming trend over the 50 years from 1956 to 2005 (0.13 [0.10–0.16]°C 
per decade) is nearly twice that for the 100 years from 1906 to 2005.

 ◾ Global average sea level rose at an average rate of 1.8 [1.3–2.3] mm per year over 
1961 to 2003 and at an average rate of about 3.1 [2.4–3.8] mm per year from 1993 
to 2003.
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 ◾ Average Northern Hemisphere temperatures during the second half of the twentieth 
century were very	likely higher than during any other 50-year period in the last 500 
years and likely the highest in at least the past 1300 years.

 ◾ Observations since 1961 show that the average temperature of the global ocean has 
increased to depths of at least 3000 m and that the ocean has been taking up over 80% 
of the heat being added to the climate system.

As far as planning for sea-level rise is concerned, the IPCC has identified three alternative 
responses (IPCC 1990, 1992):

 ◾ Protection
 ◾ Accommodation
 ◾ Retreat

These have not been altered in the latest round, which discussed economic and policy develop-
ment options in much greater detail.

In November 2009, the Copenhagen Diagnosis (2009) (referred to in Chapter 8) included 
the following headlines in the executive summary:

 ◾ Global carbon dioxide emissions from fossil fuels were 40% higher than those in 
1990.

 ◾ Over the past 25 years temperatures have increased at a rate of 0.19°C per decade, in 
very good agreement with predictions based on greenhouse gas increases.

 ◾ A wide array of satellite ice measurements demonstrate beyond doubt that both 
Greenland and Antarctic ice-sheets are losing mass at an increasing rate.

 ◾ Summertime melting of Arctic sea-ice has accelerated far beyond expectations of 
 climate models and its area during 2007–2009 was about 40% less than the average 
prediction from IPCC AR4 climate models.

 ◾ Satellites show recent global sea-level rise (3.4 mm/year over the past 15 years) to be 
about 80% above past IPCC predictions (of glaciers and ice caps).

 ◾ By 2100 global sea level is likely to rise to at least twice as much as projected by 
Working Group 1 of IPCC AR4.

Concerns over the effects of climate change on our coastlines were also investigated in depth 
by the UK government’s project Foresight (2004): Future Flooding. The aim of this project was 
to use the best available science to provide a challenging vision for flood and coastal defence in 
the UK between 2030 and 2100 and so inform long-term policy. The key Foresight messages 
were the following:

 ◾ If we continue with existing policies, in virtually every climate scenario considered, the 
risks of flooding and erosion grow very substantially.

 ◾ The risks need to be tackled across a broad front. Reductions in global emissions would 
reduce the risks greatly. However, this is unlikely to be sufficient. Hard choices need 
to be taken – we must either invest	more	in	sustainable	approaches to flood and coastal 
management or	learn	to	live	with	increased	flooding.
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The Foresight project made some recommendations for coastal research, related to climate 
change issues, which are reproduced here:

 ◾ Waves: More research is required to improve understanding of how climate change may 
influence the offshore wave regime in terms of magnitude, frequency and, importantly, 
direction. This should include analysis of a range of climate models and be combined 
with analysis of changes to surges to generate consistent scenarios. To be of most use, 
this needs to be at a resolution that identifies variations around the coast.

 ◾ Surges: Given the large uncertainty for this driver, and its potential significance in 
terms of increased flood risk, it is important that it receives further research. The 
limited number of model runs of future surge characteristics needs extending, with 
an emphasis on extreme events and a better analysis of the natural variability of surges 
versus the magnitude of climate change. More fundamentally, the conflicting results 
from different climate models need more detailed comparison and analysis to study 
the causes of these differences. This should be combined with analysis of the Waves 
driver to develop consistent changes across drivers, and establish a range of better 
scenarios.

 ◾ Relative	sea-level	rise: Planning for sea-level rise would benefit greatly from probabilis-
tic forecasts for future sea levels, as opposed to the scenarios presently available. This 
work should include the probability of all the three components of sea-level rise and 
will require a better understanding of the causes of the spatial pattern of change due to 
meteo-oceanographic factors.

 ◾ Coastal	morphology	and	 sediment	 supply: Our ability to predict changes in this driver 
is hampered by a lack of good long-term data sets. Thus, it is difficult to observe long-
term trends and to calibrate and validate long-term models with accuracy. In addition, 
there are uncertainties in determining the behaviour of coastal morphology beyond that 
observed in the data. Research agenda designed to overcome this would prove invaluable.

Much of this proposed research remains to be done (2011).

16.11  reCent euroPean develoPMents In Coastal 
engIneerIng and ManageMent

Turning now to a European perspective, there is probably no other region of the world where so 
much effort is spent on coastal management and coastal research, where the number of organi-
sations involved is very high. Throughout the EU there are more than 300 institutes for coastal 
and marine research, employing over 10,000 scientists. An even larger number of organisations 
deal with policy and managerial issues related to the coastal zones and adjacent seas.

In this context, a significant recent development has been the formation and work of the 
ENCORA networking project, between 2006 and 2009. ENCORA stands for European 
Network on Coastal Research, a Coordination Action co-funded by the EU 6th Framework 
Programme. Its purpose was to facilitate sharing of knowledge and experience among research-
ers, practitioners and policy makers, to produce a European wide knowledge base and to make 
recommendations for critical future research for coastal zone management.
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The mechanisms developed to achieve these objectives were twofold. ENCORA initiated 
national coastal networks, which were established in 13 EU countries and set up 10 thematic 
networks. The national networks facilitated sharing knowledge and experience among scien-
tists, policymakers and practitioners in each country. The thematic networks each addressed a 
particular field within coastal management and were led by institutes with outstanding exper-
tise in this field. This EU project resulted in two major new outputs, the Coastal Wiki and 
the European Action Plans, which are now briefly described. Further details may be found in 
Dronkers et al. (2008) and at the ENCORA website (see coastal Wiki, 2010).

The Coastal Wiki can be considered as a professional Internet encyclopaedia that guarantees 
high-quality information. It is based on the Wikipedia concept and uses the same software. The 
strength of this concept is its capacity to highlight relationships, to reveal context, to enhance 
feedback and peer review and to guide users in a simple and natural way through related  topics. 
Non-experts (policy makers, general public) can find a comprehensive overview of new insights 
gained in EU research projects, with links to articles providing information on the general 
context and other related topics. Experts (scientific stakeholders, practitioners) can find spe-
cific up-to-date knowledge and experience, including information on tools and practices. By 
connecting disparate knowledge sources the Coastal Wiki provides up-to-date, coherent, reli-
able and comprehensive information. The ENCORA theme networks contributed a substantive 
body of information to the Coastal Wiki, which currently (2012) contains about 1700 articles 
and is continuously updated by authorised expert users. The Coastal Wiki can thus be seen to 
be a very valuable resource for all those engaged in coastal management.

ENCORA also initiated the European Action Plan (ENCORA, 2008), identifying major 
shortcomings in knowledge and technology that currently hamper the implementation of sus-
tainable coastal and marine management. The Action Plan outlines a long-term perspective for 
re-structuring the capacity for knowledge production and application in the coastal and marine 
fields. Four major actions were proposed, as follows:

Action I

The Concerted development of a European network of Coastal Observatories

Action II

The Concerted development of a European network of Capacity Building Centres

Action III

Modelling of coastal and estuarine morphological processes

Action IV

Development of tools for evaluating pollution risks and impacts

The recommendations go further than the usual project-based cooperation. The action 
plan calls for a fundamental change in the way knowledge is produced and applied in the 
coastal and marine fields and it implies a revision of the relationships between science, policy 
and practice in the member states and European Institutions. It was suggested a much closer 
interaction is required to strengthen our capacity to deal with the challenges set by climate 
change, development pressure and trends in environmental quality and extreme events. 
Science policy cooperation was considered essential for informing the public and for creating 
a sense of urgency. It was also considered that the recommended actions for creating networks 
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of Coastal and Marine Observatories and Capacity Building Resource Centres would only be 
effective if full advantage is taken of the European scale.

Clearly, these four proposed actions have much in common with the work described earlier 
in this chapter, but ENCORA found that such actions had not been widely accepted or applied 
across the whole of Europe. The four actions send a clear signal, Europe wide, to set a high stan-
dard for coastal management and to identify Europe-wide issues for future research.

16.12 ConCludIng reMarKs

Over the last 20 years, there have been rapid and significant developments in coastal science, 
engineering and management. The concepts embedded in shoreline management plans are 
now well established. Recent emphasis in coastal management has shifted to using a risk-based 
approach founded on probability principles and has started to address the longer-term issues 
(up to 100 years), including how to deal with flooding and erosion and the effects of climate 
change. The adaptation strategies of no active intervention and managed re-alignment are likely 
to become much more prevalent, in preference to hard and soft engineering. Future develop-
ments are likely to include a growing use of web-based knowledge and information systems 
and GIS-based decision support tools, supported by ever more detailed localised field data and 
better predictive modelling tools. A paradigm shift in thinking has already begun and leads us 
into new uncharted waters.

16.13 suMMary

Within the confines of this chapter it has only been possible to summarise some of the main 
aspects of coastal engineering and management. Emphasis has been placed on describing the 
relevant processes and assessing the most appropriate engineering measures within the context 
of shoreline management planning. Emphasis has also been placed on considering the environ-
mental impacts and opportunities of coastal defence techniques. For readers whose interest has 
been stimulated in this subject, a much more extensive treatment may be found in the text 
Coastal	Engineering by Reeve et al. (2011).
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Postscript

In this book, we have tried to juxtapose theoretical concepts and empirical results in a man-
ner which is useful to civil engineers. We would strongly emphasize here that there are other 
aspects which must be considered if a knowledge of hydraulics is to be applied to the solution 
of engineering problems.

Engineering is essentially concerned with the provision of technological means for satisfying 
the physical requirements of mankind. Hence, engineers are not principally concerned with 
ascertaining scientific truths, per se, but in applying them to the benefit of mankind. To achieve 
this aim, the successful engineer will possess a thorough theoretical grounding, coupled with 
the ability to translate this into schemes which are practical, economical and environmentally 
sound.

A good civil engineer must observe and understand those natural processes which may be 
relevant to a given scheme (there is no excuse for shoddy analysis here), must appreciate the 
limitations of the theoretical concepts which are to be applied and must have the breadth of 
vision to distinguish between the general (i.e., universal principles) and the particular (that 
which is valid only for one case) in any scheme.

These qualities are not acquired merely by reading textbooks or even by obtaining an engi-
neering degree. Experience is also essential, though useful experience is not to be measured in 
years, but in the growth of one’s ability to draw out general principles from each project, and to 
apply these appropriately in the future. Good engineers thus develop a sense of intuition and a 
judgemental capacity which enables them to weigh alternatives and reject unsuitable proposals 
before embarking on a detailed analysis. Such qualities are priceless when one has to break new 
ground (in research, design or construction), or when investigating the occasional major failure 
where application of current knowledge has proved to be insufficient.

It is our hope that student readers will be inspired to become good engineers and that this 
book will have helped them on their way.
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appendix a: Moments of area

One very common phenomenon in engineering is that of a pressure or stress which is  distributed 
continuously, but not uniformly, over a surface. Typical examples are found in hydrostatics and 
in the bending of beams or columns. The intensity of pressure p (or stress σ) is often linearly dis-
tributed in one direction (Figure A.1a and b). That is to say, p (or σ) is proportional to distance 
(y, say) from a specified axis, so p (or σ) = Ky.

The hydrostatic force, δF, acting on a small element of area is given by

δ δ δF p A Ky A= =

The force on the whole area is obtained by integration

F Ky dA K KAy= = × =∫ first moment of area( )

where y is the distance from surface of liquid to the centroid.
The moment of the force about the axis O–O is obtained by taking the product of force and 

distance from O–O. For the element,

δ δ δ δM Fy p Ay Ky A= = = 2

Hence, the moment taken over the whole area is

M Ky A K= = ×∫ 2d second moment of area( )

The second moment of area is denoted by I.



610 Appendix A: Moments of Area610 Appendix A

Both the first and second moments of area are simply functions of the geometry of the sur-
face and position of the axis relative to the centroid. If the axis passes through the centroid, 
then the second moment has a particular value, I0, for any given shape. Thus, for a rectangle 
(Figure A.1c)
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FIgure a.1 Definition diagrams for moments of area. (a) Hydrostatic pressure distribution. (b) Stress distribution 
in beam. (c) Rectangular surface. (d) Moment about axis X–X.
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Y2/12 may be regarded as the square of the length of a lever arm.
If the second moment of area about any other axis is required, then the above equations can 

be modified appropriately. For many common cases the arbitrary axis is parallel to O–O. Thus, 
for a rectangle (Figure A.1d), the second moment of area of an element about axis X–X is given 
by
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The second term → 0, so

I I AyX X− = +0
2

where A	=	BY.
This is a statement of the Parallel Axis Theorem.
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