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Preface

With an emphasis on applications of computational models for solving modern
challenging problems in biomedical and life sciences, this book aims to bring collec-
tions of articles from biologists, medical/biomedical and health science researchers
together with computational scientists to focus on problems at the frontier of
biomedical and life sciences. The goals of this book are to build interactions of
scientists across several disciplines and to help industrial users apply advanced com-
putational techniques for solving practical biomedical and life science problems.

This book is for users in the fields of biomedical and life sciences who wish
to keep abreast with the latest techniques in signal and image analysis. The book
presents a detailed description to each of the applications. It can be used by those
both at graduate and specialist levels.

We have included 14 chapters in this book. Some of the chapters are extensively
revised versions of papers that were presented at the International Symposium on
Computational Models for Life Sciences held on 27–29 November 2013 in Sydney,
Australia. There are two main parts in the book: signal and image analysis issues
within the subjects of the book.

In the first part of the book, Chap. 1 presents a novel visualisation strategy
tailored for proteomics data. A dataset is visualised showing phosphorylation events
in response to insulin that leads to new insights into the insulin response pathway.
A strategy for web-based presentation of data is also described. Chapter 2 proposes
a new approach for the modelling of testosterone regulation to identify all model
parameters from the hormone concentrations of testosterone and luteinizing hor-
mone. Simulation results are described to reveal behaviour similar to clinical data.
Chapter 3 proposes two distinct hybrid algorithms that combine efficient sequential
change-point detection procedures with the Cross-Entropy method. Results show
effectiveness of the described method. In Chap. 4, two methods for distinguishing
between healthy controls and patients diagnosed with Parkinson’s disease by means
of recorded smooth pursuit eye movements are presented and evaluated. The results
are indicative of the potential of the presented methods as diagnosing or staging
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vi Preface

tools for Parkinson’s disease. Chapter 5 presents an approach for the identification
of the Reichardt elementary motion detector model. A pool of spatially distributed
elementary motion detectors is considered, and a way of designing the visual stimuli
for a certain order of spatial resolution is suggested. Chapter 6 discusses on the
complexity ensemble measures for gait time series analysis that could have a signifi-
cantly wider application scope ranging from diagnostics and early detection of phys-
iological regime change to gait-based biometrics. Chapter 7 presents the develop-
ment of a motion capturing and load analyzing system for caregivers aiding a patient
to sit up in bed. The difference between the performances of the two types of care-
givers were found: the professional adopted a posture that was safe and did not stress
the lumbar vertebrae, whereas the layperson tended to adopt an unsafe posture.
Chapter 8 proposes an unsupervised multi-scale K-means algorithm to distinguish
epileptic EEG signals and identify epileptic zones. The experimental results demon-
strate that identifying seizure with multi-scale K-means algorithm and delay per-
mutation entropy achieves higher accuracy than that of K-means and support vector
machine. Chapter 9 presents a method for the tracking of EEG activity using motion
estimation in brain topomaps to understand the mechanism of brain wiring. Authors
demonstrate that it is possible to track the path of a signal across various lobes.

In the second part of the book, Chap. 10 presents an approach to processing ultra
high-resolution, large-size biomedical imaging data for the purposes of detecting
and quantifying vasculature and microvasculature. The results on cerebral and liver
vasculatures of a mouse captured at the Shanghai Synchrotron Radiation Facility
are presented. Chapter 11 describes a novel way of carrying out image analysis,
reconstruction and processing tasks using cloud based service provided on the
Australian National eResearch Collaboration Tools and Resources infrastructure.
The toolbox is available on the web. Chapter 12 presents an investigation into how
Massey University’s Pollen Classifynder can accelerate the understanding of pollen
and its role in nature. Chapter 13 presents a digital image processing and analysis
approach for activated sludge wastewater treatment. Chapter 14 presents a complete
system for 3D reconstruction of roots grown in a transparent gel medium or washed
and suspended in water.

We thank all the authors for their contributions to this edited book. We also thank
Dan Hills and Susan McMaster from CSIRO Contracts and Legal for their help with
the Publishing Agreement between Springer and CSIRO. We are grateful to Dr.
Thijs van Vlijmen, Sara Germans-Huisman, Magesh Kaarthick Sundaramoorthy,
and other editors at Springer and S. Madhuriba at SPi Technologies India Private
Ltd. for their help and great support from the beginning to the production of this
book. Materials from the American Institute of Physics (AIP) Publishing that are
used by some authors are acknowledged and credits are given in the respective
chapters within this book.

Sydney, Australia Changming Sun
Tomasz Bednarz

Aizu, Japan Tuan D. Pham
Sydney, Australia Pascal Vallotton

Dadong Wang
July 2014
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Chapter 1
Visual Analytics of Signalling Pathways
Using Time Profiles

David K.G. Ma, Christian Stolte, Sandeep Kaur, Michael Bain,
and Seán I. O’Donoghue

Abstract Data visualisation is usually a crucial first step in analysing and exploring
large-scale complex data. The visualisation of proteomics time-course data on post-
translational modifications presents a particular challenge that is largely unmet by
existing tools and methods. To this end, we present Minardo, a novel visualisation
strategy tailored for such proteomics data, in which data layout is driven by
both cellular topology and temporal order. In this work, we utilised the Minardo
strategy to visualise a dataset showing phosphorylation events in response to insulin.
We evaluated the visualisation together with experts in diabetes and obesity, which
led to new insights into the insulin response pathway. Based on this success, we
outline how this layout strategy could be automated into a web-based tool for
visualising a broad range of proteomics time-course data. We also discuss how the
approach could be extended to include protein 3D structure information, as well
as higher dimensional data, such as a range of experimental conditions. We also
discuss our entry of Minardo in the international DREAM8 competition.

Keywords Visual analytics • Signalling pathways • Proteomics
• Temporal data • Graph layout • Phosphorylation • Insulin response
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4 D.K.G. Ma et al.

1.1 Introduction

Computationally aided data visualisation is helpful for analysing and exploring
large-scale complex data as it allows computational abilities, such as large memory
capacities and fast calculations, to be combined with human abilities, such as high-
bandwidth visual perception and creativity, to address the task of understanding
such data [19]. With the emergence of large-scale and high-dimensional datasets in
molecular systems biology, the task of data visualisation has become increasingly
important [28].

Current high-throughput technologies typically enable thousands of molecules to
be tracked simultaneously. One such high-throughput method uses mass spectrom-
etry to enable the quantification of the phosphorylation state of each protein in a
cell’s proteome. In typical experiments of this type, cells are initially stimulated
with an agent (e.g., insulin, glucose, or a range of inhibitor molecules) and the
response is measured at discrete points in time. The temporal order of such time-
series experiments offers great potential to prioritise paths in the resulting dense
protein interaction graphs [11].

In order to understand biomolecular systems it is essential to understand how
the interactions of their component molecules result in the overall changes in cell
physiology – for example, how a fat cell initially starved of glucose switches to
active uptake and processing of glucose upon stimulation by insulin. The most
common approach used to gain an understanding of such events is to draw graphs
of signalling pathways [14]. These pathway maps definitely have their limitations:
for example, as explained by Kitano [20], they could be thought of as analogous to
static road maps, when what we really wish to know are the traffic patterns, why
such patterns emerge and how we can control them. Nonetheless, visualisations of
pathway maps are an important first step.

There are several initiatives worldwide aimed at consolidating all human knowl-
edge about biological systems into a single, searchable database and with the results
presented in the form of interactive pathways graphs. Currently however there is
no consensus about a single ‘best’ approach – instead, there are a large number
of different databases, each with a tailored visualisation system. Some of the more
widely used resources of this kind include Pathway Commons [6], KEGG [18],
PANTHER [25], BIOCARTA [27], and Reactome [24].

When considering new data from high-throughput experiments, a common
strategy is to visually overlay these data onto existing pathway graphs extracted
from one of the above resources. A wide variety of methods and tools have
been developed to facilitate overlaying experimental data onto pathways, including
Pajek [3], BiologicalNetworks [1], Medusa [31], as well as many plug-ins to the
Cytoscape framework [36]. A recent review of such methods for ‘omics’ data is
provided by Gehlenborg et al. [14]. However, as noted in [14], the major challenge
for visualisation methods is how to benefit from the explosion in dataset scale
and complexity without overwhelming the user. This is a difficult problem which
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currently has no obvious general solution, but we suggest the answer should lie
in how context may be used in visualisation. The contribution of this paper lies in
the adoption of a novel visual metaphor that can illustrate significant temporal and
potentially causal relationships in high-throughput data on cell signalling pathways.

1.1.1 Challenges in Visualising High-Throughput Time-Series
Post-translationally Modified Proteomic Datasets

The biology of the post-translational modification of proteins presents some impor-
tant issues for visualisation. Firstly, there are many different types of such modi-
fications that we may require to be visualised (e.g., phosphorylation, methylation,
sumoylation, etc.). Since different modifications are typically implicated in different
functional roles, indications of these differences could be critical for successful
visualisation.

Secondly, most of the current network-based visualisation tools for high-through-
put datasets have been designed for gene expression. However, it is not always
possible to simply reuse such tools for proteomics datasets that incorporate post-
translational modifications. For example, when viewing time-series transcriptomic
datasets, we are usually interested in the expression levels of whole RNA molecules
over time – for such data, time-profile information is often added to a network
view by adding colouring or a pattern to each node or edge [14, 35]. However
for proteomics datasets showing post-translational modifications a more detailed
representation is required, since we are typically interested in the abundance levels
of multiple residues within each protein.

As an example, we recently conducted a pilot user study [21] to evaluate the
reuse of the Cytoscape plug-in ‘Cerebral’ [2] to visualise the proteomic dataset of
Humphrey et al. [15]. Cerebral was initially designed for use with gene expression
data – we found that although several aspects of this tool were of benefit, overall
the layout and representation concepts of the tool were not well suited to visualising
post-translational modifications.

A general problem faced by omics visualisation tools is the challenge of facilitat-
ing simultaneous visualisation of multiple kinds of experimental data. For example,
how can high-throughput time-series data on post-translational modifications be
visualised in an coherent and integrated way with other data, such as abundance
level for transcripts or protein?

Evidence of the growing recognition of the need and importance of this type of
integrated omics visualisation comes in the form of the latest iteration of the inter-
national DREAM (Dialogue for Reverse Engineering Assessments and Methods)
competition. The DREAM8 Sub-challenge 3: “Visualisation of high-dimensional
time-course on breast cancer proteomics data” was designed to facilitate research
on novel tools for this purpose.
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1.1.2 Aims

In this paper we outline the elements of the Minardo visualisation concept (Fig. 1.1)
that we developed recently to address the above challenges – Minardo is based on
using cell topology combined with temporal ordering as the key layout contexts
used to organize how the data is depicted. In this study, we worked with an experi-
mental research group that is applying state-of-the-art methods in high-throughput
experimental proteomics to study the time course of protein phosphorylation events
in human cells in vitro following stimulation by insulin [15], as part of a broader
project on diabetes and obesity. The group had already applied a wide range of
existing analysis and visualisation tools to these data, although relatively few tools
were specifically tailored for time-course phosphophorylation data. The group’s
key unmet requirement was for a system that would enable visual exploration of
networks representing insulin response, which could be interactively overlaid firstly
with phosphophorylation time-course data, and that later could also include data on
RNA and protein abundance.

To address this need, we first tried several existing visual analytics approaches
with the goal of representing the data to gain new insight. From discussion of
the merits and weaknesses of these existing approaches with our experimental
collaborators we used this feedback, together with visual analytics principles,
to develop an improved general layout strategy specifically for time-series post-
translationally modified proteomic data.

We called our layout strategy “Minardo” as a play on words, as the layout was
partly inspired by the well-known information graphic published by Minard in
1869.1 A key innovation that comes from this inspiration is the ability to combine
aspects of network-based structure with temporally ordered event profiles.

As discussed in [21], the Minardo approach has proved helpful, having revealed
several inconsistencies with the previously published interpretation of this dataset,
and suggested several new insights into the timing and order of events underlying
the insulin response pathway.

While the current layout has been constructed specifically for analysing phospho-
rylation data related to insulin response, aspects of the layout have clear potential
to be generalised to help with analysing a broader range of systems biology data.
Thus, we are doing ongoing work aimed at developing the Minardo layout strategy
into a general tool.

The remainder of this paper is structured as follows. In Sect. 1.2 we describe
how to create the Minardo layout and how to connect it interactively with a
heat map visualisation of the same data. Section 1.3 presents results from a
user study to evaluate Minardo, and our entry using Minardo into the DREAM8
visualisation challenge. In Sect. 1.4 we discuss implications of this approach and
outline directions for future work. Section “Conclusions” concludes the paper.

1This famous graphic shows Napoleon’s disastrous Russian campaign of 1812 – the graphic is
regarded as an exemplar by many data visualisation specialists [4].
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1.2 Methods

Our visualisation strategy consists of two main components – the Minardo layout,
and a heat map – both of which are connected to support interactive data exploration.
This is shown in Fig. 1.1, using the insulin response dataset of Humphrey et al. [15].

The Minardo layout depicts a cellular topology, divided into regions that repre-
sent the time points of the time course data. Note that although time points typically
denote discrete values fixed by the experimental protocol (e.g., 0, 15, 30 s, etc.), the
Minardo layout allows placement of events ordered along a continuous time scale
in cases where continuous data are available (e.g., either directly from experiments
that measure continuous time values, or perhaps estimated by interpolation from
discrete data). The tracks across time points indicate individual proteins or protein
complexes that are active (in terms of events in the dataset) over multiple time
points. Since screen real estate is limited, only a limited number of tracks can be
displayed at the same time. In many cases the number of tracks that can be shown
will be insufficient to show all proteins active across multiple time points – thus,
some criteria will need to be applied to select which proteins are to be displayed on
the available tracks. A natural criterion is the level of activity of a protein, as this
suggests its importance, although other criteria could also be applied.

Causal relationships between different proteins within a time point are depicted
using directed edges running perpendicular to the tracks; for the insulin response
dataset [15], these relationships link a kinase to its phosphorylation substrate. The
actual protein residue number of the phosphorylated amino acid – known as the
phosphosite – is shown colour-coded in Fig. 1.1.

In the rest of this section we describe in further detail the method and the
design decisions used to create the layout. We also describe the heat map, and the
procedures used to link the layout to the heat map, as well as the implementation
procedures used to make the visualisation interactive.

1.2.1 Phosphorylation Dataset for Insulin Response

We worked with members of the James laboratory2 at the Garvan Institute of
Medical Research, a world-leading laboratory in applying experimental systems
biology to study diabetes and obesity. They recently published a study of the
time course of protein phosphorylation events occurring in vitro in mouse 3T3-L1
adipocyte cells – cells derived from brown adipose (fat) tissue – after ‘feeding’ (i.e.,
stimulation by insulin and glucose) [15].

The cell used in the experiment was initially in a starved state, then stimulated
with insulin and glucose. The cells were lysed at 0, 15, 30 s and 1, 2, 5, 10, 20
and 60 min after stimulation. Mass spectrometry was then used to measure the

2http://www.jameslab.com.au

http://www.jameslab.com.au
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phosphorylation state of all detectable Serine (S), Threonine (T) and Tyrosine (Y)
amino acid residues [9], resulting in a final set of time profiles for 7,897 phospho-
sites that were judged to be of good quality – an average of about 6.5 phosphosites
per protein [15].

Humphrey et al. then used unsupervised fuzzy C-means clustering to organise
the time profiles for each phosphosite into groups [15]. They also conducted an
extensive literature survey to identify the kinases responsible for a subset consisting
of 104 of the phosphosites judged to be most significant, based on prior knowledge
of the response pathway. These data – presented in Fig. 5 of Humphrey et al. [15] –
were used as the starting point for our work, with the goal of re-analysing and
organising these data to provide greater insight into underlying biological processes.

1.2.1.1 Data Representation

The phosphorylation time-series data from Humphrey et al. [15] were generated
by the MaxQuant software [10]. We obtained these data as a comma-separated
text file, which contained the ratios of the absolute values of observed levels of
phosphorylation for each phosphosite at each time-point to a basal level. The basal
level represented the phosphorylation levels in starved cells, and the time-points
represented the phosphorylation levels after that amount of time has elapsed since
stimulation with insulin and glucose. The dataset consisted of triplicate measure-
ments of phosphorylation levels for each of the nine time-points. Phosphorylation
levels at time zero were set to 1.0, and the phosphorylation level at each subsequent
time point was the ratio of that point’s abundance to its basal level (for more
information, see the Methods section of Humphrey et al. [15]).

1.2.2 Heat Map of the Time-Series Data

To display the complete time-course data, we used a traditional heat map. We
utilised three colour scales, red, green, and blue to represent Serine, Threonine
and Tyrosine residue phosphosites, respectively. The heat map depicted only those
profiles which were also present in the Minardo layout.

In order to create the heat map, we averaged the triplicate values at each time-
point, then we linearly rescaled the resulting time profile, setting the lowest level
of activation achieved across the time-series to 0 % and the highest level to 100 %.
Finally, we used the JavaScript library D3.js [5] to create an interactive heat map
visualisation of these data.

1.2.2.1 Selecting a Single Time Point for Each Phosphorylation

Using the re-scaled data, we devised a method for consistently selecting a single rep-
resentative time-point for each phosphosite. Based on an analogy to the Michaelis
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constant [26] in enzyme kinetics, we estimated the time at which each phosphosite
first transitions from either below its 50 % level to above, or vice versa in the case of
a dephosphorylation event. We took this to be the first activation time, and marked
it on the heat map using either an up or down arrow to indicate phosphorylation or
dephosphorylation, respectively.

This induces a linear (total) ordering on the data, where each phosphosite’s time
course is denoted by its estimated first activation time. Note also that the activation
times estimated by this method have continuous values, hence effectively increasing
the temporal resolution of the dataset, which is also useful for constructing the
Minardo layout.

1.2.3 The Minardo Layout

The Minardo layout was constructed using a number of graphic design principles,
combined with user feedback, and drawing from concepts used in existing tools,
such as the Cerebral plug-in [2]. The visual channels used – primarily position,
hue, and connection – were chosen to effectively convey key information with low
cognitive load [7, 38].

Position is usually the most powerful visual channel [22] hence in Minardo we
have used the X and Y axis to show time and sub-cellular topology, as they are key
features of the dataset. We created a schematic cell in Adobe Illustrator, mapping
time in an arc around the cell and adding intervals to represent the time points used to
derive the experimental data (Fig. 1.1). With a single first activation time identified
for each phosphosite, phosphorylation events could be placed unambiguously within
one specific time interval on the diagram. We also arranged the cell topology such
that the regions for each time interval contain extracellular space, cytoplasm, and
nuclear space, allowing for positioning proteins based on their subcellular location.

Rather than laying out the consecutive time intervals in one direction (e.g., along
the X or Y axes), we have taken inspiration from Charles Joseph Minard’s classic
flow map of Napoleon’s March [4] and wrapped the flow of time around the cell
topology, creating an overall aspect ratio that allows the entire diagram to more
easily fit the landscape orientation of most computer displays. Wrapping time in
this way also allow connections from later to earlier time points, providing clear
representation of feedback loops.

Lines with arrows were used to indicate kinases and their target phosphosites.
In the current dataset there are 104 such connections. To overcome the typical
‘hairball’ problem that occurs with networks of this size and larger, we reduced
clutter by using tracks to represent ‘promiscuous’ proteins or complexes, i.e., those
involved in multiple phosphorylation events at multiple time-points. This is similar
to the concept of hubs, or high-degree nodes of a network, but modified to account
for the time-series dataset.

Hue was used consistently in the network and heat map, with red, green, and
blue used to represent Serine, Threonine and Tyrosine residues. Yellow was used
to highlight items selected by the user. The default highlight was Yellow only,
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and it showed the relevant kinases and phosphorylation events on the track, or the
phosphates currently being brushed over. “Show Targets” is a toggle button, which
turns Teal when switched on, indicating to the user that phospho-targets are now
being shown with a Teal highlight.

The layout was saved in SVG format and imported in an HTML page with the
heat map. JavaScript was used to implement brushing and linking between the two
representations.

1.3 Results

Our implementation of the Minardo layout and heat map applied to the insulin
response phosphorylation time course data [15] resulted in a single HTML file,
which is included in the supplementary information (http://odonoghuelab.org/
Minardo.zip). A screen shot of this HTML file can be seen in Fig. 1.1. Two distinct
components are clearly seen in this figure, the heat map and the Minardo Layout.
The HTML files supports interactivity between these components via brushing and
linking. For example, hovering over a protein (in either the heat map or the Minardo
layout) automatically highlights all occurrences of the protein name in the HTML
document. Text searching of the HTML document can also be done, using standard
browser functionality, resulting in highlighting of all proteins with names that match
the search term.

In the Minardo layout, the insulin response network (taken from Fig. 5 of
Humphrey et al. [15]) has been overlaid on a typical cellular topology. This cellular
topology has been divided into a number of time-points as present in the dataset – in
this case, nine time points. It shows the temporal order of phosphorylation events,
with arrows identifying each kinase and, its substrate phosphosite. The proteins
Akt, Irs1, AS160, p70S6K, Erk1 and Erk2, and the complexes Gsk, mTORC1
and mTORC2, play roles across multiple times and so have been indicated with
white tracks running parallel to the cellular membrane. For each of the protein
phosphorylation sites featured in the Minardo layout, an entry has been created in
the interactive heat map, showing its normalised abundance levels detected across
each of the time points. The HTML allows sorting the heat map in multiple ways
including by residue type, by UniProt identifier [23], by identified time of first
regulation, and many more.

1.3.1 Evaluation of the Minardo Visualisation Strategy

We conducted an informal user study with experts in the field of diabetes and
obesity studying insulin response at the Garvan Institute [17]. During the study,
the interactive HTML file was disseminated to the users by making it available
within the organisation’s intranet. Users were asked to freely explore the use of
the visualisation strategy and provide feedback.

http://odonoghuelab.org/Minardo.zip
http://odonoghuelab.org/Minardo.zip
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To summarise the results of this study, the users judged the Minardo visualisation
favourably. They found the brushing and linking feature between the heat map and
the network to be very helpful for interpreting the data in detail. The most positive
feedback, however, was that the new layout helped them gain new insights into the
underlying bio-molecular processes. These new insights are detailed in our related
work in Ma et al. [21]. The validations of these insights are underway, with a joint
publication with the biologists in preparation.

1.3.1.1 Requested Features

In this study, the users requested a number of features not yet supported by our
current Minardo implementation.

First and foremost was the ability to easily select which phosphorylation sites are
used to construct the layout. The current dataset shows only 104 of the 7,897 high
quality phosphorylation sites that were present in the original dataset – these 104
sites were selected by Humphrey et al. [15] as they were believed to be the most
important. Nonetheless, the users would like the facility to examine other subsets of
phosphosites using the Minardo layout.

A second requested feature was the ability to interactively edit the network in
order to change the assignment of kinases to targets. A third requested feature
was the ability to add additional data (or datasets), such as multiple experimental
conditions or the presence of various chemical inhibitors. Finally, users requested
that the facility to search proteins by name be extended so as to match different
synonyms for the same protein – this would be very useful since many proteins
used in this study are known by multiple names (e.g., As160, Kiaa0603, Tbc1d4 all
refer to the same protein).

1.3.2 Minardo in the International DREAM8 Competition

The aim of the DREAM8 ‘visualisation of high-dimensional time-course on
breast cancer proteomics data’ sub-challenge was to propose novel strategies to
visualise high-dimensional molecular time-course data. The datasets provided for
the competition featured phosphorylation proteomics data, for approximately 45
phosphosites, at seven time points, under eight stimulus conditions. Data was also
given for a control, and under conditions in which the phosphorylation ability of 3
crucial kinases was inhibited.

We entered Minardo in this competition. All of its features as described above
were presented, however additional modifications were proposed to its workflow
to enable comparison between multiple different experimental conditions (stimuli,
inhibitor or control). Figures 1.2 and 1.3 show the main visualisations in the
proposed Minardo workflow when visualising a single set of conditions and when
comparing between two conditions.
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1.3.2.1 Proposed Workflow

We envisioned three visualisation scenarios: visualising a single set of conditions
(cell line, stimulus and inhibitor or control), visually comparing two such sets of
conditions, and comparing three or more sets of conditions.

When visualising a single set of conditions, the Minardo visualisation strategy
remains unchanged, that is, it is as we have described it in this paper so far.
Figure 1.2 shows this scenario for the competition data, with the only addition the
‘check-boxes’ which allow selection of any particular condition.

When two conditions are selected, we expect that key change between the two
conditions would be the difference in the timings of phosphorylation events. As
such, to visualise this, we propose checkboxes that allow the user to either ‘Show
differences’, ‘Show similarities’, or ‘Show all’. This could modify the nodes in the
main network to selectively highlight the nodes responding differently under the two
conditions. As such, each phosphorylation event could be represented by two nodes,
indicating the shift in timing for each event between the different conditions, with
the nodes connected by track which includes an arrowhead indicating the direction
of change in timing. Alternatively, node colour could also be used to indicate the
time shift from earlier to later events. For example, red could be used to indicate
nodes having moved earlier in time, and blue could be used to indicate nodes having
moved later in time (right of Fig. 1.3).

When visualising two conditions, we also propose displaying two sets of heat
maps corresponding to the two conditions, where the rows corresponding to a
particular phosphorylation site are aligned next to each other to enable easy
comparison. Figure 1.3 shows the proposed workflow for this scenario.

Finally, when three or more conditions are selected, our entry proposed coupling
the Minardo layout with a standard dimension reduction method, such as principal
component analysis, that can provide an abstract, high-level overview of how the
conditions compare, and – by brushing and linking – allow the user to easily drill
down to investigate either single conditions, or compare two sets of conditions.

The DREAM8 competition was useful in providing a realistic set of multidimen-
sional experimental data. These data provided the impetus for us to extend our plans
for Minardo to accommodate such a scenario. Our entry was judged positively by
other entrants in the DREAM8 competition, with an overall rank of 6 out of the
14 total submissions. However, to our knowledge the Minardo layout was the only
novel visualisation metaphor proposed amongst the DREAM8 submissions.

1.4 Discussion and Further Work

The Minardo layout is a novel visual analytics approach for time-series data,
such as phosphorylation response profiles – we are continuing to test and extend
this approach. Thus far, our first implementation of Minardo layout strategy has
proven effective in providing a framework for re-interpreting the time course of
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phosphorylation events following insulin stimulation. Minardo specifically includes
protein sub-cellular localisation as part of the layout, and we have found this greatly
aided in interpreting the biological significance of the data.

A key principle behind the Minardo layout is that it enables visualising time along
with changes in the network. This allows for spatial and temporal reasoning about
the separate stages of the experiment, thus effectively subdividing the entire dataset
into more manageable chunks.

A second key element of the visualisation is that promiscuous proteins and
complexes – i.e., those involved in multiple phosphorylation events at multiple
time-points – are represented as tracks running parallel to the cellular membrane
and spanning multiple time intervals. These tracks are represented in a form that is
visually very distinct from the edges that represent phosphorylation events, with
the result that this makes these important hub proteins highly visible. This also
results in a graph with no apparent edge crossing, as can be seen in Fig. 1.1, a
very beneficial outcome for helping users understand and interpret information in
graphs [8]. The use of such ‘tracks’ has some similarity with the use of lines in a
parallel co-ordinate plot [16], which represents a single point of information that
has values across multiple axes.

The third key principle is the use of the ‘first activation time’, which is used
to map each phosphorylation site to a single time point on the layout. This is a
significant simplification compared to the full time course data, which greatly helps
users in interpreting the data. However, when needed the complete time course data
is easily accessible to the user; it is visualised in the heat map, and is connected to
the Minardo layout by interactive brushing and linking.

1.4.1 Minardo as a Web-Based Tool

In its current state, the Minardo layout has been created by searching various
resources and gathering information on the various components, such as the
network components, the sub-cellular localisations of phosphorylation events and
the proteins, individually, to manually assemble the visualisation. However, in order
for it to be a tool reusable for visualising data on various different bio-molecular
systems, many of its tasks will require automation. We envisage several key steps
will be required to automate this:

1. Selection of most significant phosphosites;
2. Identification of potential kinases for each phosphorylation events;
3. Sub-cellular localisation of proteins and phosphorylation events.

For selecting the most significant phosphorylation events, several metrics could
be developed to analyse each experimental dataset and find the phosphosites
undergoing the most significant changes in phosphorylation state (e.g., identifying
the sites showing most variation across the time course of the experiment). In addi-
tion, these metrics could be supplemented with knowledge derived from common
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pathway and network database resources such as KEGG, Pathway Commons,
BIOCARTA and NetworKIN. For the dataset used in this study, this knowledge was
used to filter the total of nearly 8,000 sites down to just 104 – a key next step for
Minardo would be to automated this process, for example, using scoring functions to
rank proteins in order of importance, based on connectivity in previously determined
networks and pathways.

For the identification of potential kinases, we propose the use of the above
common pathway resources, as well as resources more specifically focused on
phosphorylation data, such as Phospho.ELM [13].

Finally, for determining the sub-cellular localisation of each phospho-event, we
propose the use of specialist cellular localisation databases, such as LOCATE3

or COMPARTMENTS [32], that consolidate observed and predicted location
information for large numbers of proteins.

Automation of these steps would enable Minardo to be extended into a reusable
web-based tool, where users can upload, high throughput data, and visualise the data
in ‘context’, as well as perform analysis.

1.4.2 Lessons from the Usability Study

Taking into account the feedback obtained from the pilot user study in this work,
we plan to extend Minardo, making it more interactive – in particular, to enable
user selection of phospho-events – as well as introducing editability, allowing
users to reassign the connections between kinases and their target phosphoproteins.
However, depending on how these functionality are implemented, there can be
important issues to deal with, such as identifying and visualising potential network
inconsistencies.

In addition, we plan to address the protein synonym issue identified by using
the Reflect resource [30], a widely-used system that maintains a community-edited
dictionary of protein synonyms.

1.4.3 Using 3D Structure Information

In our initial Minardo layout (Fig. 1.1), phosphosites are only represented using
protein name and residue numbering. This helps create a clean, sparse layout, but in
some cases it can be useful to see more detail about a protein. For example, seeing
an image corresponding to a protein’s 3D structure – when known – can often give
biologists insight into its function [29]. To test the utility of such representations, we
calculated images for all proteins in the dataset, using residue colouring to indicate

3http://locate.imb.uq.edu.au/

http://locate.imb.uq.edu.au/
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Fig. 1.4 Shown is a segment of Minardo layout with 3D structure images added for proteins.
Phospho-residues are coloured using the same scheme as in the heat map, i.e., red D serine, blue
D tyrosine, and green D threonine

the location of each phosphosite, then tried adding these images to the network
layout. Space filling 3D models were generated using QuteMol [39] from Protein
Database (PDB) files, using the PSSH database [34] to find solved structures that are
most closely related to our protein of interest. Each 3D model was manually rotated
so that the final 2D view shows all phosphosites, if possible. Figure 1.4 shows the
results of adding such images to one region of the layout.

Phosphosites are usually solvent accessible, and visualising them on 3D struc-
tures can give insight that helps validate them as substrates [40]. Thus, enhancing
the visualisation in this way can assist users in a more detailed interpretation of the
experimental dataset.

However, we found a key limitation of this approach, which is that many of the
phosphosites occur in regions that have no detectable sequence similarity to proteins
with known structure – for the complete dataset, this occurs in about half of the
104 sites. This is consistent with the observation that many phosphosites occur in
intrinsically disordered region, which are hard to determine structurally [8].
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1.4.4 Going Beyond Static Roadmaps

Lastly, to enable network analysis, we also plan to investigate combining our
visualisation strategy with more advanced qualitative modelling methods, adding
constraints determined from prior biological knowledge and applying machine
learning to reverse engineer functional events in the signalling pathway. The
problem of inducing an underlying phosphorylation network based on datasets
such as those used in this work can be facilitated using intrinsically qualitative
formulations, for example, by reducing the number of parameters that need to be
determined from the data.

Such formulations allow the use of well-established methods such as Petri Nets to
determine properties of states and trajectories, such as the identification of cycles,
or unreachable states [12]; in addition, they enable the use of network inference
algorithms to reverse engineer hypothesised systems models from data [37].

We are interested in applying such methods to identify from a very large space
of phospho-forms those forms most likely to be present in the data, by extending
existing techniques that can make use of such constraints [33] to a knowledge-based
framework.

1.4.5 Visualisation for Multiple Experiments

As outlined in Sect. 1.3.2 describing our entry in the DREAM8 competition for a
proposed workflow to enable comparison of networks under multiple experimental
conditions, Minardo’s unique features can have several advantages that can be
leveraged in such settings. As further work we will investigate how best to
implement the proposed extensions to Minardo for the multiple experiment setting.

1.4.6 Limitations

One limitation of the current design is that the order of events shown within one
time interval imply a linear ordering in time, which can be too restrictive and, in
general, incorrect. In future versions, we plan to investigate strategies to address
this limitation, e.g., basing order of placement within an interval on more precise
estimates derived from the time-series data.

While the Minardo layout appears to be an improvement on existing solutions
to proteomics time-series data, it currently does not address the harder and more
general problem of how to integrate data from other experiments, such as measure-
ments of protein and transcript abundance. As a further extension of this work, we
plan to test if our approach can accommodate some of the existing approaches to
visualising these additional data, such as node colouring or decoration [19].
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Conclusions
The Minardo layout provides a novel combination of principles from visual
analytics in a customised layout loosely based on cell topology, but strictly
ordered first by time, then by causality. This gives life scientists a familiar
and helpful frame of reference for organising and interpreting proteomics
time-course data. The layout has proven to be useful, leading to new insight
into the insulin response pathway. Following the success of our initial
research prototype, we are working on generalising the Minardo layout to
accommodate similar datasets related to other signalling pathways.
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Chapter 2
Modeling of Testosterone Regulation
by Pulse-Modulated Feedback

Per Mattsson and Alexander Medvedev

Abstract The continuous part of a hybrid (pulse-modulated) model of testosterone
(Te) feedback regulation in the human male is extended with infinite-dimensional
and nonlinear blocks, to obtain the dynamics that better agree with the hormone
concentration profiles observed in clinical data. A linear least-squares based
optimization algorithm is developed for the purpose of detecting impulses
of gonadotropin-releasing hormone (GnRH) from measured concentration of
luteinizing hormone (LH). The estimated impulse parameters are instrumental in
evaluating the frequency and amplitude modulation functions parameterizing the
pulse-modulated feedback. The proposed approach allows for the identification of
all model parameters from the hormone concentrations of Te and LH. Simulation
results of the complete estimated closed-loop system exhibiting similar to the
clinical data behavior are provided.

Keywords Endocrine systems • Modeling • Impulse detection • Pulsatile
feedback • Testosterone regulation • Time delay • Impulsive systems

2.1 Introduction

Hormones are signaling substances of endocrine systems that regulate many aspects
in the human body, e.g., metabolism, growth and reproductive processes.

In mathematical modeling of endocrine systems, approaches of different com-
plexity level can be taken, depending on the goal of modeling. A plausible way
to obtain a simulation model would be then to derive it from the fundamental
principles of biology, biochemistry, and physics. This approach has been used in,
e.g., modeling of the glucose-insulin feedback system in type 1 diabetes [23], or
in simulating the mechanisms of the human menstrual cycle [28]. However, since
endocrine systems usually consist of several glands or cites interacting by means
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Fig. 2.1 Schematic diagram
of the male hypothalamo-
piuitary-gonadal system.
Arrows denote feedforward
(stimulatory (C)) and
feedback (inhibitory (�))
actions
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of hormones, such models are usually of high dimension and very cumbersome to
develop. The complexity of the resulting models also makes it hard to populate them
with credible parameter values as well as calibrate them to fit biological data.

In order to obtain insights into the principles of biological feedback via mathe-
matical analysis, a modeling approach where only the most essential characteristics
and interactions in the system are included appears to be useful. Techniques from
system identification [30] can consequently be used to estimate the parameters of the
model in a systematic way, yielding a relatively simple model that yet can accurately
describe how the hormone concentrations vary with time.

In the endocrine system of testosterone (Te) regulation in the male, schematically
depicted in Fig. 2.1, essential roles are played by the luteinizing hormone (LH) and
the gonadotropin-realising hormone (GnRH). GnRH is secreted in an episodic and
pulsatile manner in the hypothalamus and stimulates the secretion of LH into the
blood by the pituitary gland. LH stimulates in turn the secretion of Te in the testes.
The endocrine (negative) feedback is then closed by Te inhibiting the secretion of
both GnRH and LH [33].

Understanding testosterone regulation is important in, e.g., the treatment of
prostate cancer and reproductive failure. There have also been studies showing
that the regulatory processes in the GnRH-LH-Te axis are involved in aging and
obesity [33].

The structure and function of the pulsatile feedback implemented via GnRH in Te
regulation is similar to the action of releasing hormones in other endocrine systems.
Typical examples in the human organism that fall into this group are the systems
regulating the female sex hormone (estrogen), the stress hormone (cortisol), the
growth hormone, insulin, adrenal and parathyroid hormones and some others.

Taking advantage of the relatively simple structure of the GnRH-LH-Te axis,
a reductionist approach was taken in, e.g., [29], where a qualitative mathematical
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construct describing the male reproductive system was suggested. The model
in [29], called the Smith model, can be expressed by the following three, generally
nonlinear, ordinary differential equations

PR D f .T / � B1.R/;

PL D G1.R/ � B2.L/; (2.1)

PT D G2.L/ � B3.T /;

where R.t/, L.t/ and T .t/ represent the serum concentration of GnRH, LH and Te
respectively. The non-negative functions B1; B2; B3 describe the clearing rates of the
hormones and f; G1; G2 specify the rates of their secretion. Instead of portraying all
the complex interactions between the constituting parts of the endocrine system,
the Smith model captures only the main features to match the then available
mathematical tools.

Naturally, only self-sustained periodical solutions (or chaos) are biologically
feasible behaviors of the autonomous model above. The dynamical properties
of (2.1) have been studied analytically to great extent for different choices of the
functions Bi , Gi , and f . It is relatively common to approximate Bi and Gi by
linear functions, so that

Bi .x/ D bi x; bi > 0; i D 1; 2; 3I
Gi .x/ D gi x; gi > 0; i D 1; 2:

(2.2)

In [29], sufficient conditions for (2.1) and (2.2) to have stable periodic solutions are
given. When f .x/ is chosen to be a Hill function,

f .x/ D K

1C ˇx�
; (2.3)

it was shown in [13] that a necessary condition for a periodic solution is that � > 8.
In [27] and [15], it is argued that such a high value of the Hill function order is
unrealistic. Indeed, already for � � 4, the Hill function in (2.3) highly resembles a
relay characteristic that lacks a proper biological justification.

To resolve the above issue, several attempts have been made to extend the
Smith model in such a way that the solutions oscillate for a broader range of the
parameters, mostly by introducing special types of nonlinear feedback and time
delays. Yet, the Smith model of testosterone regulation in the formulation of [27] is
proven to be asymptotically stable for any value of the time delay under a nonlinear
feedback in the form of a first-order Hill function [12]. However, by introducing
a non-smooth feedback such as piece-wise linear (affine) nonlinearities, multiple
periodical orbits and chaos arise in the Smith model [1, 31]. Multiple delays in the
Smith model under a second-order Hill function feedback are also shown to lead to
sustained nonlinear oscillations in some subspaces of the model parameters [11].
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The main adverse property of the classical (differential) Smith model is the
equilibrium point of the model dynamics that has to be rendered unstable in order
for the system to oscillate. Therefore, in [7], a generalization of the above Smith
model was proposed, where the feedback function f .T / is replaced by a pulse
modulation operator, to capture the well-known pulsatile nature of GnRH secretion.
This version of the Smith model does not have any equilibria. A similar solution
with pulse modulation was earlier implemented in the simulation model of the
human menstrual cycle [28]. A more general perspective on the pulse-modulated
mechanisms in endocrine regulation is provided in [35].

A further improvement of the model in [5] was the introduction of a time delay
between LH and Te, to account for the transport phenomena and the time necessary
for the secretion of Te in testes. The resulting hybrid and time-delayed model
still lends itself to mathematical analysis, and much is already known about its
behaviors [6, 26]. It generally exhibits periodical solutions in a wide periodicity
range as well as deterministic chaos. The concentration profiles of GnRH and LH
produced by the model are consistent with experimental data. For instance, the
time-delayed model was successfully used in [16] to estimate GnRH impulses,
given measured concentrations of LH. Yet, it seems to be hard to select the closed-
loop model parameters in such a way that the simulated Te concentration evolves
similarly to the measurements. One reason for this is that, in the model, the secretion
of Te never saturates.

In the pulse-modulated Smith model of [7] and [5], the functions B1; B2; B3; G1

and G2 were approximated by linear functions, as in (2.2), to facilitate the analysis.
Yet, the linear approximations of the secretion functions in (2.1) is, as noted in [3],
a gross idealization since, e.g., the saturation of G2 seems to play an important
role in the dynamical behavior of Te, according to the analysis of clinical data
in [25]. In [19], a more sophisticated model, where G1 and G2 are chosen to
be nonlinear saturating functions, is presented. This formulation was also used to
extend the model in [5], resulting in a new set of equations that is presented below
in Sect. 2.2. Another data-driven and biologically motivated mathematical model
for Te regulation has been studied in [19]. Here the saturation of secretion rates
is an integral part of the dynamics (Michaelis-Menten kinetics) and the hormone
trends fit the measurements well. However, the model is not equipped with a pulse-
modulated feedback mechanism and its closed-loop dynamics have not been studied
analytically.

When a model structure is selected, the parameters of the model can be
determined from measured data by means of system identification algorithms. For
this end, techniques from statistics and optimization can be used. In humans, GnRH
concentration is typically not measured for ethical reasons. Therefore, the GnRH
pulses have to be estimated from measured LH and Te concentrations instead. A
state-of-the-art tool for the estimation of hormone profiles in pulsatile endocrine
systems is AutoDecon described in [18] and freely available on-line. However, this
advanced software is tailored to a certain type of open-loop dynamical model and
cannot be readily used for other purposes. Therefore, the development of estimation
techniques suitable for pulse-modulated (hybrid) models is very much motivated.
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In this chapter, the model analyzed in [5] is extended in view of the results
reported in [19]. Furthermore, a novel method for estimating GnRH impulses from
clinical LH data is introduced and its performance is evaluated. Some initial results
on identifying the LH feedforward action on the secretion of Te are also given.
Finally, simulation results for the closed-loop system are provided demonstrating
good agreement with biological evidence.

2.2 A Pulse-Modulated Mathematical Model of Testosterone
Regulation

It is well known [9] that GnRH is released episodically by hypothalamic neurons
in modulated secretory bursts. This is not directly reflected by the classical Smith
model in (2.1) where the resulting pulsatile temporal profile of the involved
hormones is interpreted as smooth nonlinear oscillations. Detailed mathematical
descriptions of the GnRH pulses are available, see, e.g., [8]. However, for the
purpose of capturing the biologically implemented feedback mechanism, an element
implementing pulse-amplitude and pulse-frequency modulation is sufficient, as
explained in [35]. Then the problem with the lack of sustained oscillations discussed
in Sect. 2.1 can be effectively avoided [7].

Let tk , k D 0; 1; 2; : : : be the times when a GnRH pulse is released in the
bloodstream, and let �k represent the size of the pulse number k. Then a pulse
modulated model of testosterone regulation can be written in a state-space form
with x 2 R

3, and x1 D R.t/, x2.t/ D L.t/, x3.t/ D T .t/, as

Px.t/ D
2
4
�b1 0 0

g1 �b2 0

0 g2 �b3

3
5 x.t/; if t ¤ tk (2.4)

x.tC
k / D x.t�

k /C �k

2
4

1

0

0

3
5 ; if t D tk (2.5)

where b1; b2; b3; g1 and g2 are the positive parameters as in (2.2). The firing times
tk and the impulse weights �k are then given by the recursion

tkC1 D tk C �k; �k D ˚.x3.t//; �k D F.x3.t//; (2.6)

where ˚.�/ is a frequency modulation characteristic and F.�/ is an amplitude
modulation characteristic.

The model in (2.4)–(2.6) is referred to as the pulse-modulated Smith model,
and was analyzed in detail in [7]. It constitutes a hybrid systems that evolves
in continuous time according to (2.4), but undergoes momentous jumps in the
continuous state vector at discrete points governed by (2.5). The latter phenomenon
corresponds to the secretion of a GnRH impulse.
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The dynamics of (2.4)–(2.6) are thoroughly studied and known to exhibit
oscillating solutions that are either periodic or chaotic [36]. However, as discussed
in [19], the LH feedforward on Te should be exerted via a time average of the LH
concentration, and is expected to saturate for high concentrations of LH. Also, the
basal secretion of the hormones should be added to the model, as well as the time it
takes for LH to travel from the pituitary to the testes should be taken into account.
In order to describe this mathematically, let HL.t/ be a time average of LH, i.e.,

HL.t/ D 1

`

Z t

t�`

x2.s/ ds; (2.7)

where ` is the length of the sliding window on which the average value of x2 is
calculated. Also let ZT .t/ be the secretion rate of Te at time t . Then

ZT .t/ D g2˚L.HL.t � �//; (2.8)

where ˚L.�/ is a saturating function, and � represents the time it takes for LH to
travel to the testes.

Now the model can then be summarized as

Px.t/ D A0x.t/C A1˚L.HL.t � �//C ˇ; if t ¤ tk (2.9)

x.tC
k / D x.t�

k /C �kB; if t D tk (2.10)

where

A0 D
2
4
�b1 0 0

g1 �b2 0

0 0 �b3

3
5 ; A1 D

2
4

0 0 0

0 0 0

0 g2 0

3
5 ; B D

2
4

1

0

0

3
5

and the vector ˇ 2 R
3 describes the basal secretion of the hormones. Therefore, the

basal secretion is seen as a constant signal exogenous to the endocrine regulation
loop. The impulse times tk and weights �k are still given by (2.6). This model was
first introduced in [25].

The frequency and amplitude modulation functions ˚.�/, and F.�/, as well as the
saturating function ˚L.�/, are here assumed to be Hill functions of the form

˚.y/ D k1 C k2

.y=h/p

1C .y=h/p
;

F.y/ D k3 C k4

1C .y=h/p
; (2.11)

˚L.HL/ D .HL=hL/pL

1C .HL=hL/pL
;
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where p; pL 2 N
C are the (positive integer) orders of the Hill functions and

k1; k2; k3, k4, h, hL 2 R
C. Notice that all three functions in (2.11) are monotone

and bounded.

2.3 Parameter Estimation

Given the model defined in Sect. 2.2, it is of interest to estimate the unknown
parameters using experimental data. This is usually called model calibration and
is carried out by algorithms developed in system identification [30].

In the case of the GnRH-LH-Te axis in the human male, the data usually
consist of the LH and Te concentrations measured at certain instants over time.
The concentration of LH and Te can be assessed from blood samples and are often
measured every 10 min or similar. GnRH is usually not measured in the human,
since it is not possible to do so in a non-invasive way, see, e.g., [22].

The unknown parameters in the model expressed by (2.9)–(2.10) are the con-
stants b1; b2; b3; g1 and g2 in the matrices A0 and A1. The nonlinear functions
in (2.11) also contain unknown quantities.

To the best of knowledge of these authors, there presently exists no method for
identifying the hybrid feedback system in (2.9)–(2.10). For this reason, only the
open-loop system dynamics are considered here and the pulse modulation functions
are not explicitly identified from data. Nevertheless, estimates of the unknown
parameters in (2.11), as will be shown further, can be readily obtained from the
estimates of the weights �k and the firing times tk of the GnRH pulses.

2.3.1 Estimating the GnRH Impulses

Since the GnRH concentration is in practice an unobserved signal in (2.9), it is of
interest to estimate the GnRH impulse times and weights from measured LH data.
The half-life times b1 and b2 of GnRH and LH, respectively, are also considered to
be unknown here, so these parameters have to be estimated in some way. Naturally,
it is known from biochemistry to what range of values these quantities belong in
vitro but they are also known to be subject to significant inter-individual variation
in vivo.

Before going into details about the estimation procedure, notice first that it is
enough to study the first two states of x in (2.9) when the effect of an GnRH impulse
on LH is considered. Thus, introduce the reduced (continuous) state vector Qx.t/ D�
x1.t/ x2.t/

�T
. Also notice that the jump in the state-vector at time tk , as in (2.10),

equivalently can be represented as an input to the system in the form of a delayed
Dirac delta impulse, ı.t � tk/. Therefore, it follows from (2.9) to (2.10) that

PQx D QA Qx C QB�.t/C Q̌; (2.12)

x2.t/ D QC Qx.t/; (2.13)
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where

QA D
��b1 0

g1 �b2

�
; QB D

�
1

0

�
; Q̌ D

�
ˇ1

ˇ2

�
; QC D �0 1

�
; (2.14)

and

�.t/ D
1X

kD0

�nı.t � tk/: (2.15)

Equations (2.12) and (2.13) can be seen as a linear time invariant (LTI) system with
the input vector QB�.t/Cˇ. If (2.12) is subject to the initial condition Qx.to/ D Qxo D�
xo;1 xo;2

�T
, then the solution to the differential equations in (2.12) is [14]

x2.t/ D QC
�

e QA.t�to/ Qxo C
Z t

to

e QA.t�s/. Q̌ C QB�.s//ds

�
:

By evaluating the integral, the expression above can be rewritten as

x2.t/ D QCe QA.t�to/ Qxo C QC QA�1
�

e QA.t�to/ � I
	 Q̌ C

1X
kD0

g1�kz.t � tk/; (2.16)

where

z.t/ D e�b2t � e�b1t

b1 � b2

H.t/;

and H.�/ is the Heaviside step function.
From (2.16), it can be seen that the unknown parameter g1 always appears in a

product with other unknown parameters, e.g., the impulse weights �k [16]. For this
reason it is not possible to uniquely determine g1 from measured data. Similarly, it
is in practice not possible to separate ˇ1 from ˇ2 when the data are collected from
the closed-loop system. This makes sense intuitively: Since the basal secretion rate
of GnRH is unknown, it is not possible to distinguish between the basal secretion
of LH and the LH secreted due to basal GnRH secretion. For these reasons it will
be assumed that g1 D 1 and ˇ1 D 0. Thus, any estimated GnRH signal should be
considered as a virtual signal, providing information about the GnRH firing times
tk and the ratios between the weights �k . However, the actual concentrations might
differ in the real system.

2.3.1.1 Estimating Firing Times and Weights

A method for identifying the GnRH pulse parameters in (2.12) was proposed in [17].
However, the method, in its present form, is restricted to the identification of two
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impulses at a time. A general method for estimating unknown input impulses was
also developed in [24], but it assumes continuous access to the output data, and is
therefore hard to apply directly to LH data where the sampling is typically slow
(e.g., 10 min).

In this section a method that can estimate GnRH impulses from longer and under-
sampled datasets, originally introduced in [25], is described. In this method the
specific structure of (2.12)–(2.13) is directly used to recover information on the
GnRH pulses.

Now assume that the elimination rates of GnRH and LH, i.e., b1 and b2, are
known. Exactly how these can be found is discussed in Sect. 2.3.1.2. Also assume
that b1 > b2, i.e., that the elimination of GnRH is faster than the elimination of LH.
This is clearly the case in the GnRH-LH-Te axis, see, e.g., [19].

Now let Ot0; Ot1; : : : ; Otm be the times when the LH concentration is measured, i.e.,
the instants when the blood samples are taken. Also let t1; : : : ; tn be the all the
impulse times in the interval .0; Otm/, i.e., t1; : : : ; tn denotes all times when a GnRH
impulse is released from the hypothalamus during the measurement period.

The goal is then to recover the impulse times tk and impulse weights �k , k D
1; : : : ; n, from the measured LH concentrations x2.Otl /, l D 1; : : : ; m.

A common way to estimate unknown parameters is to find parameters that
minimize the square of the error between measured data and the output produced
by the model. The problem with doing so in the present case is that the number
of impulses, as well as the impulse times, are unknown. This makes the problem
non-convex, so that no general method for finding a global minimum exists.

However, if it is, to start with, assumed that impulse times are known then it
turns out that the impulse weights �k can be estimated by solving a nonnegative
linear least-squares optimization problem. To see this, let

zi D
h
.1 � e�b2 Oti /=b2 e�b2 Oti z.Oti / z.Oti � t1/ � � � z.Oti � tn/

i
; Z D �zT

1 � � � zT
m

�T
;

G D �ˇ2 xo;2 xo;1 �1 � � � �n

�T
; and Y D �x2.Ot0/ � � � x2.Otm/

�
:

Recalling from Sect. 2.3.1 the assumptions that g1 D 1 and ˇ1 D 0, it follows that

QCe
QA.t�to/ Qxo D xo;1z.t � to/C xo;2e�b2.t�to/;

QC QA�1
�
e

QA.t�to/ � I
	 Q̌ D 
1 � e�b2.t�to/

�
ˇ2

b2
:

With the data vector Y given by (2.16), it is now straightforward to validate that

ZG D Y:

Thus, the impulse weights, initial conditions and basal secretion levels can all be
found by solving a system of linear algebraic equations. However, as Y consists of
measured data, it usually corrupted by disturbances due to measurement noise etc.,
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so that the system of linear equations above might not have a solution. In this case,
the following optimization problem has to be solved instead

min
G

kZG � Y k22 ;

s.t. G � 0;

(2.17)

where the inequality in the constraint is understood element-wise and follows from
the biology of the system. This is a nonnegative least-squares optimization problem
and can be solved efficiently with standard methods, see, e.g., [2].

The problem now is that the impulse times tk are unknown. A practical technique
that can then be utilized is to create a grid in the interval .Ot0; Otm/, and assume that
the impulse times belong to this grid. Provided there are grid points close enough to
the true impulse times, the solution to (2.17) will hopefully assign positive impulse
weights to the grid points close to the true impulse times and zero impulse weights
to the other grid points. The question is still, how should the grid points be chosen?
One approach that works out well in the case studied here is to follow the following
algorithm.

Algorithm 1
1. Solve (2.17) with all grid points equal to the sampling times.
2. If two consecutive grid points Otl and OtlC1 have been assigned the non-zero weights
O�l and O�lC1, replace those impulses with one impulse fired at the time

tk D Otl C 1

b2 � b1

ln

 
1C
O�lC1



eb2� � eb1�

�
O�l C O�lC1eb1�

!

and with the impulse weight

�k D e�b1.tk�Otl /
� O�lC1eb1� C O�l

	
;

where � D OtlC1 � Otl .
To motivate Algorithm 1, assume first that the data vector Y is generated from (2.16)
exactly and contains no disturbances. In the algorithm, the grid points are chosen
equal to the sampling times and (2.17) is used to find an optimal set of impulse
weights. It is straightforward to show that when the data vector Y is generated
from (2.16) without disturbances, then, with this set of grid points, the optimal
solution to (2.17) results in the cost function equal to zero.

Finally, if two consecutive grid points received non-zero impulse weights, those
impulses are combined into a single impulse in between the two grid points. It can
be shown that this merging of impulses will not change the solution of (2.16) at
the sampling times, even if the solution changes between them. Hence the resulting
error (and the cost function) will still be the same. In the case of no disturbances,
it thus follows that the cost function after the merging of impulses is still zero. If it
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additionally assumed that there are at least three sampling times in between any two
impulses in (2.16), then there will be no ambiguity about how the impulses should
be merged. From the above discussion, the following proposition can be proven.

Proposition 1 Assume that the elements of Y are generated according to (2.16),
it holds that b1 > b2 > 0, and that there are at least three sampling instances
in between any two firing times. Then Algorithm 1 yields the true firing times and
impulse weights.

Notice here that the assumption about three sampling times in between any two
firing times is only needed to guarantee the uniqueness of the solution. Algorithm 1
is feasible even when the firing times are closer to each other and it will produce an
optimal solution in the least-squares sense.

In real data, however, the measurements comprising Y will be corrupted by
disturbances. In that case, following Algorithm 1 will typically result in solutions
where every grid point is assigned a non-zero impulse weight. If the data are, for
instance, sampled every 10 min, this is not biologically reasonable since there is
usually more than 1 h between two GnRH impulses in the true system, see, e.g., [20].
The reason why the algorithm behaves this way is that the cost function can be
improved by fitting, e.g., the measurement noise by adding false impulses.

A way to alleviate this problem is to constrain the solutions to (2.17) in such a
way that at most r 2 N

C grid points are assigned a non-zero impulse weight. That
is, the solution of the optimization problem is restricted to a sparse set of non-zero
impulses weights. However, the resulting optimization problem is in general very
hard to solve. Instead, the sparsity constraint can be efficiently enforced by putting
a constraint on the sum of the (positive) impulse weights, i.e., the l1-norm, see [32].
This results in the following optimization problem

min
G

kZG � Y k22 ;

s.t.
X

�k < �max;

G � 0;

(2.18)

that can be solved efficiently by existing methods, see [2]. The optimal solutions
of (2.18) are not in principle guaranteed to be sparse, but they often are. In the case
studied here, i.e., estimating GnRH impulses from LH data, it is usually possible to
find a value of �max that gives sparse solutions with a good fit, as will be seen in the
forthcoming sections.

2.3.1.2 Estimating the Parameters

In order to find the GnRH impulses as in Sect. 2.3.1.1, the parameters b1 and b2

in (2.14) are needed. That is, the linear system in (2.12)–(2.13) has to be identified.
If both the input �.t/ and the output x2.t/ were known, then methods from system
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identification of linear systems would be directly applicable, see [30]. However, this
is not the case here since the impulse times, and thus the input function �.t/, are
unknown.

According to [19], the parameters b1 and b2 should satisfy the bounds

0:23 min�1 � b1 � 0:69 min�1;

0:0087 min�1 � b2 � 0:014 min�1:
(2.19)

A simple method to pick an estimate of these parameters is thus to chose a fine grid
over the intervals in (2.19). Then, for each combination of b1 and b2 on these grids, a
set of impulses is computed as in Sect. 2.3.1.1. Finally the parameter pair that gives
the smallest squared error is picked as an estimate of b1 and b2. This is the method
used in [25], and it is also used in Sect. 2.4 to estimate the GnRH impulses from
clinical LH data. An alternative to this very practical approach is a Laguerre domain
identification technique suggested in [17].

2.3.2 Estimating the Testosterone Dynamics

Finally, the dynamics from LH to Te have to be identified. From (2.9) to (2.10), it
follows that

PT .t/ D Px3.t/ D �b3x3.t/C g2˚L.HL.t � �//C ˇ3: (2.20)

This system can thus be seen as a Hammerstein system with the input signal
HL.t � �/, i.e., a system that consists of a static nonlinearity followed by a linear
system. A common method for identification of Hammerstein systems is to intro-
duce overparameterization and transform the model into a linear multiple-input-
single-output system [4]. However, this method introduces several new parameters
and can lead to highly uncertain estimates for small datasets. Methods for recursive
Hammerstein identification that do not resort to model overparameterization are
presented in [10].

However, for the purpose of illustration, the method used here is to simply grid
over a domain of the unknown parameters hL, pL, � and ` in the nonlinear part
of (2.20). For each combination of nonlinear parameters, the parameters b3, b2 and
ˇ3 as well as the initial conditions, are determined with the ordinary least-squares
method, see [30].

2.4 Experimental Results

The methods developed in this chapter have been tested on LH and Te concen-
trations measured in 18 healthy human males. The data were collected for 17 h
and sampled every 10 min, see [21] for a description of the data and experimental
protocol.
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Fig. 2.2 Result of GnRH impulses estimation. Upper row shows the estimated virtual GnRH
levels for each patient. Bottom row shows the estimated LH levels (solid line), together with the
measured data (dashed line with dots at each sampling time). The data in the left column are from
a patient that is 27 years old, and in the right column from a 40 years old patient (Reprinted with
permission from [25]. Copyright 2013, AIP Publishing LLC)

For all patients, the LH data were well explained by the model in (2.12), with a
sparse set of 4-10 impulses in 1,000 min which appears to be biologically feasible.
For illustration, the results of two patients are shown in Fig. 2.2.

To test the identification of the testosterone dynamics, the mathematical model
in (2.20) was simulated with the measured LH as input. It should be noted that
such a simulation cannot be considered a complete estimation of the testosterone
concentration since it only captures the Te secreted due to the LH feedforward signal
and the constant basal secretion. In the actual endocrine system, the concentration
of Te is also involved in other regulations and events outside the GnRH-LH-Te loop,
both of endocrine and non-endocrine nature [37]. However, the simulation results
with measured LH data indicate that the simulated Te concentration still follows the
general trend in the corresponding measured Te data. For illustration, the result for
the same two patients as above are shown in Fig. 2.3. Yet, the identification of Te
still needs to be studied in more detail, both when it comes to the model structure
and the identification methods.

2.5 Simulations of the Closed-Loop System

In this section, the complete model described by (2.9)–(2.11) is simulated. In fact,
the authors have failed to find in the literature any other identified from data model
of the GnRH-LH-Te axis that is tested in closed loop. The model parameters are
estimated from of the LH and Te data collected from the same 27 years old and
a 40 years old healthy individuals as mentioned before. The modulation functions
in (2.6) were then chosen so that the minimum and maximum time between impulses
corresponded to the minimum and maximum inter-impulse times in the estimated
GnRH data.
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Fig. 2.3 Result of Te dynamics identification. The upper row shows the measured LH data that
are used as input. The bottom row shows measured Te (dashed line) together with Te concentration
given by simulation of the model (solid line). The left column corresponds to data from a 27 years
old patient, and the right column from a 40 years old patient (Reprinted with permission from [25].
Copyright 2013, AIP Publishing LLC)
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Fig. 2.4 Simulation of the closed-loop system. Left column: simulation; right column: measured
data in a 27 years old patient (Reprinted with permission from [25]. Copyright 2013, AIP
Publishing LLC)

To imitate the clinical conditions, the simulated data were sampled every 10 min
with white Gaussian measurement noise added. Figures 2.4 and 2.5 compare the
results of the closed-loop simulation with the experimental data that the parameters
were estimated from. Since the modulation functions in the feedback are not
formally identified from measurements, it cannot be expected that the simulated
data and the real data should look exactly the same. However, it can be seen that the
simulated and real data in many ways exhibit similarity. For example, the numbers
of impulses are about the same, the hormone concentration are of the same level, etc.

One important difference is that the amplitude of the LH pulses seem to vary
more over time in the real data which phenomenon can be attributed to a prominent
circadian rhythm in Te concentrations [34]. Circadian rhythm can be incorporated
by several means in the model developed in this chapter. For example, the amplitude
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Fig. 2.5 Simulation of the closed-loop system. Left column: simulation; right column: measured
data in a 40 years old patient (Reprinted with permission from [25]. Copyright 2013, AIP
Publishing LLC)

Fig. 2.6 Simulation over
48 h, with simulated circadian
rhythm (Reprinted with
permission from [25].
Copyright 2013, AIP
Publishing LLC)

modulation function could depend on time in a periodic manner. However, to study
such slow periodic behavior, it would be desirable to investigate datasets that span
over at least two full days. Figure 2.6 presents a simulation example with the
same parameters as in Fig. 2.4, except that the amplitude modulation functions is
multiplied by a sinusoid function with a period of 24 h.

Conclusions and Future Work
An extension of a hybrid mathematical model of testosterone regulation is
suggested, together with an algorithm for estimating the firing times of GnRH
impulses from time series of measured LH concentrations.

(continued)
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Tests on hormone data collected in healthy human males indicate that the
model explains the experimental LH concentration profile very well with
a sparse set of GnRH impulses. An initial study on system identification
of the testosterone dynamics is also presented. It is demonstrated that the
model captures the excursions in the Te secretion caused by the alternations
of LH concentration. However, further research into the Te secretion model
structure, along with more refined identification methods, are still needed.

With the parameter estimates obtained by identification from experimental
data, the simulated complete closed-loop system exhibits behaviors similar to
clinical data. Yet formal methods to identify the modulation functions in the
feedback from Te to GnRH are still needed. Also, the circadian rhythm should
be incorporated into the modulation functions to enhance model fidelity. To
achieve these goals, new clinical experiments have to be performed.
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Chapter 3
Hybrid Algorithms for Multiple Change-Point
Detection in Biological Sequences

Madawa Priyadarshana, Tatiana Polushina, and Georgy Sofronov

Abstract Array comparative genomic hybridization (aCGH) is one of the tech-
niques that can be used to detect copy number variations in DNA sequences in
high resolution. It has been identified that abrupt changes in the human genome
play a vital role in the progression and development of many complex diseases.
In this study we propose two distinct hybrid algorithms that combine efficient
sequential change-point detection procedures (the Shiryaev-Roberts procedure and
the cumulative sum control chart (CUSUM) procedure) with the Cross-Entropy
method, which is an evolutionary stochastic optimization technique to estimate
both the number of change-points and their corresponding locations in aCGH data.
The proposed hybrid algorithms are applied to both artificially generated data and
real aCGH experimental data to illustrate their usefulness. Our results show that
the proposed methodologies are effective in detecting multiple change-points in
biological sequences of continuous measurements.

Keywords Cross-entropy method • Change-point modelling • aCGH data •
DNA sequences • Copy number variation • Sequential change-point analysis •
Shiryaev-Roberts procedure • Cumulative sum procedure • Combinatorial
optimization • Stochastic optimization
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3.1 Introduction

Change-point problems (or disorder problems, break-point problems) are used
to model heterogeneity in sequences of observations. This is essential in order
to understand the underlying properties of a process as a part of the statistical
diagnosis of data. Primarily it serves the purpose of checking and validating the
homogeneity assumption of the data, which is one of the main assumptions in
statistical modelling. Thus, accounting for these changes facilitates more improved
and reliable estimates for unknown parameters. This is an imperative step in
statistical modelling directly associated with the decision making process. Change-
point detection problem has received increasing attention due to these reasons
and has attracted wide range of applications in many scientific streams. These
change-point models are employed in health informatics, financial and economic
data analysis, signal processing, oceanographic studies, quality control, surveillance
analysis, etc.

In health informatics, detection and characterization of genomic structural
variations are essential in identifying disease causing genes that have functional
importance in exemplifying genome-wide complex diseases, such as cancer, autism,
immune disorders, etc. These structural variations in the human genome can be
acquired somatically in the lifespan as well as be inherited through germline.
Copy number variation (CNV) is one of the common and major types of structural
variations in the human genome. CNV is defined as a DNA segment that is 1 kb
or larger and present at variable copy number in comparison with a reference
genome [9]. It is identified in multiple studies that CNV plays an important role
in genetic susceptibility to common diseases [27, 40]. There are multiple platforms
and procedures built to detect CNV in different perspectives [3, 12, 20, 55]. The
array comparative genomic hybridization (aCGH) is a popular and a widely used
methodology to detect CNVs in genome-wide studies. It is developed on the
principles of the conventional comparative genomic hybridization (CGH) tech-
nique [14], which produces a map of DNA sequence copy number with respect
to the chromosomal location. The CGH technique was firstly developed to detect
copy number changes in solid tumors. In CGH experiments, the differentially
labeled test and control genomes are hybridized to metaphase chromosomes. The
fluorescent signal intensity of the test DNA relative to the reference DNA along the
chromosome is linearly plotted to identify CNVs. The aCGH technique uses slides
arrayed with small segments of DNA as the targets for analysis [20] in contrast to the
use of metaphase chromosomes in CGH. The aCGH technique offers high resolution
for CNV detection. Moreover, simultaneously detection of different alterations types
is one of the advantages of the CGH technique [51]. Furthermore, it has been
proven that aCGH is a powerful tool for detecting submicroscopic chromosomal
abnormalities in individuals with idiopathic mental retardation and various birth
defects.
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There is a large amount of literature on CNV detection in aCGH data. A method
based on fitting a mixture of three Gaussian distributions corresponding to gain, loss
and normal regions is considered in [11]. Later, a test based on moving averages
proposed in [26] to compute a threshold level to detect CNVs. In [24], a modified
version of the circular binary segmentation [41] introduced. Their methodology is
termed as circular binary segmentation (CBS) method. A test based on the maximum
of a likelihood ratio is used in the CBS to detect CNVs. The method discussed
in [24] is employed in the popular DNAcopy R package [36, 53]. Different methods
based on hidden Markov models (HMMs) introduced in [40, 46]. Furthermore,
a fast Bayesian change-point detection method based on the product partition
models [1] introduced in [7] and it is deployed in the bcp R package [6]. A different
approach for the problem discussed in [22] which uses the “lars” algorithm [5] and
a generalized version [54] of the BIC [39] to estimate change-points in aCGH data.
The methodology is freely available in the cumSeg R package [21]. Recently, a
Pruned Exact Linear Time (PELT) method is introduced in [17]. The changepoint
R package [16] employs the methods discussed in [17]. Readers are referred to [19]
for a detailed review on the segmentation methods on aCGH data.

Detection of CNVs falls into the posteriori (retrospective or off-line) class of
change-point problems. In the posteriori change-point problem the data set is fixed
and it is not getting changed periodically as in the sequential (quickest or on-line)
change-point problem. There exists an extensive literature on both of these main
classes of change-point problems. Readers are referred to [2,15,23,31,32,34,47,48]
for a detailed review on some of the techniques. The quickest change-point problem,
a sequence of random variables is observed on-line, that is, the future observations
are not known. Initially, we assume that the sequence considered is in so-called
“controlled” state. But at some unknown moment a breakage occurs and the
sequence runs “out of control”. The objective of sequential change-point analysis is
to detect this breakage (change-point) as soon as possible with a minimum number
of false alarms. There are two well-known sequential procedures discussed in the
literature: the Shiryaev-Roberts (SR) procedure [37,42–44] and the Cumulative Sum
(CUSUM) procedure [25].

The process of change-point analysis in both the retrospective and sequential
change-point methods deals with two main issues: detecting number of change-
points and estimating their locations. In this chapter, we propose novel hybrid
algorithms that combine sequential change-point techniques and the Cross-Entropy
(CE), which is a model based stochastic optimization technique. We emphasize that
the hybrid algorithm in [31] is based on a genetic algorithm and a local search
procedure, whereas the proposed method uses sequential change-point techniques
and the CE algorithm. Our method utilizes a sequential change-point detection
methodology to provide initial estimates on the number as well as the locations
of the change-points. Based on the initial estimates the CE method is initiated
to optimize the solution to provide more accurate estimates of the number as
well as their corresponding locations. We propose two new algorithms within
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this framework. The first approach, which combines the SR procedure and the
CE method, will be referred as the “SR-CE”. The second approach combines
the CUSUM procedure and the CE method. We will refer to this method as the
“CUSUM-CE”. In this study, we apply the proposed algorithms to aCGH data in
order to detect CNVs. Notice that the new hybrid algorithms can easily be extended
or modified to solve change-point problems in other research fields.

This chapter is organized as follows. First, we describe the multiple change-
point problem. Then we provide details on the proposed hybrid algorithms, quickest
change-point detection methods and the CE method. In the numerical results
section, we present results on simulated data and two publicly available real datasets.
Finally, in the discussion and conclusions section, we consider the strengths and
limitations of the proposed methodology and conclude the chapter with future
research directions.

3.2 Multiple Change-Point Problem

Let us consider a sequence of observations X D .x1; x2; : : : ; xL/ of length L,
in which the xi ’s are independently distributed Gaussian random variables. A
segmentation of the sequence is specified by the number of change-points N and
the corresponding locations of the change-points C D .c1; c2; : : : ; cN /, where
1 D c0 < c1 < � � � < cN < cN C1 D L C 1. A change-point is defined as a
boundary between two adjacent segments in this context. The value of ci is the
sequence position of the rightmost character of the segment to the left of the i -th
change-point. The segments are numbered from 0 to N as there will be one or more
segments than the number of change-points. The model assumes that within each
segment the observations are distributed as normal with mean �i , i D 0; 1; : : : ; N

and variance �2. Both mean and variance are not known in advance and maximum
likelihood method is used to obtain estimates. The joint distribution of x conditional
on N , C D .c1; c2; : : : ; cN /, � D .�0; �1; : : : ; �N /, and �2 is given by:

f .X j N; C; �; �2/ D
NY

nD0

2
4

cnC1�1Y
iDcn

1p
2	�2

exp

�
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2�2
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The corresponding log-likelihood of the model is
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!2#
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where the length of the n-th segment is defined as �n D cnC1 � cn.
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3.3 Framework of the Algorithms

The proposed algorithms combine a sequential procedure with the CE method to
detect multiple change-points in biological sequences of continuous measurements.
We consider both the SR procedure and CUSUM procedure to combine with the CE
method to form a hybrid framework to detect multiple change-points. In general, the
SR-CE and CUSUM-CE hybrid algorithms can be summarized as follows:

1. Run a sequential procedure (either SR or CUSUM) along the sequence of
observations to obtain initial estimates for the number (N ) as well as the locations
(C) of change-points.

2. Based on the estimates of N and C, initiate the CE algorithm to obtain an
optimized locations of change-points.

3. For all pairs of adjacent segments, perform a two sample t-test to identify
the least important change-point that associated with the highest p-value with
respect to the significance level (˛). The p-values are adjusted on the Bonferroni
correction [45] to control the family wise error rate in multiple hypothesis testing.
Thus, we eliminate the least significant change-point from the solution and
update the solution vector with the other estimates.

4. Initiate the CE algorithm with the new set of change-point locations.
5. Repeat steps 3 and 4 until all change-points found are significant. Return C:

the vector of change-point locations. The length of this vector is the number of
change-points.

3.3.1 Quickest Change-Point Detection

The sequential change-point problem can be described in mathematical terms as
follows. Let fXngn�1 be independent random variables which are observed sequen-
tially, one by one. Suppose that initially the sequence is in so-called “controlled”
state for n D 1; 2; : : : ; ��1, that is, the random variables are distributed with f0.x/,
a common normal probability density function with mean �0 and variance �2. At
some unknown moment � a breakage occurs and the observed sequence runs “out
of control”, which means that after the breakage (change-point) the probabilistic
characteristics of the sequence are changed. From moment � we observe random
variables with f1.x/, f1.x/ ¤ f0.x/, another normal probability density function
with mean �1 and variance �2. Our objective is to detect the change-point as soon
as feasible and with as few as possible false alarms. In other words, in the sequential
change-point problem, we would like to detect the moment � as quickly as possible
after it has occurred and, at the same time, we would like to keep the rate of false
alarms at a low predefined level.

There are two main cases in the sequential change-point problem [49]. In the
simplest situation, we know the probability density functions before and after the
breakage, which may be unrealistic assumption. In the second case, we assume that
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the f0.x/ is known before the change-point, whereas the f1.x/ is unknown. In what
follows we assume that the �0 is known (it can be estimated from an archive of data)
and the �1 is unknown and must be estimated from the data, the �2 is fixed. For the
sake of simplicity of the formulas below (and without loss of generality), we can
assume that �0 D 0 and �2 D 1.

We have two statistical hypotheses: the null hypothesis H0: there is no change-
point versus the alternative hypothesis H1: a breakage happens at time � D
k � 0. The sequential decision rule can be constructed as follows. Let Xn D
.X1; X2; : : : ; Xn/ be a vector of the first n � 1 values. The probability density
functions of Xn under either of these hypotheses are given by

p.Xn j H0/ D
nY

j D1

f0.Xj /;

p.Xn j H1/ D
k�1Y
j D1

f0.Xj /

nY
j Dk

f1.Xj /; k � n:

Then we can calculate the likelihood ratio, which can be used to test H0 versus H1,
as follows

LRk D
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2
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j Dk Xj

�2
2.n � k C 1/
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;

where O�1 D Pn
j Dk Xj =.n � k C 1/, is an estimate of the �1 based on the last

n � k C 1 observations.
There are two common characteristics of a sequential detection procedure: the

average run length (ARL) to false alarm (the expected number of values to an alarm
assuming that there is no breakage) and the average delay to detection (the expected
delay between a change and its detection). The objective is to find a sequential
procedure that minimizes the average detection delay with restriction on the ARL
to false alarm.

In this chapter, we consider two main procedures: the Shiryaev-Roberts (SR)
procedure [37, 42–44] and the CUSUM procedure [25]. Various probabilistic
properties of these methods are discussed in [28–30].

The SR procedure stops and raises an alarm at time

TASR D inffn � 1 W Rn � ASRg;

where

Rn D
nX

kD1

LRk D
nX

kD1

exp

( 
Pn
j Dk Xj

�2
2.n � k C 1/

)
; n D 1; 2; : : :

is the SR statistic, and ASR is a positive threshold that controls the false alarm rate.
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The stopping time of the CUSUM procedure is defined by

TAC D inffn � 1 W Wn � AC g;
where

Wn D max
1�k�n

LRk D max
1�k�n

exp

( 
Pn
j Dk Xj

�2
2.n � k C 1/

)
; n D 1; 2; : : :

is the CUSUM statistic, and AC is an unknown threshold that controls the false
alarm rate in the CUSUM procedure.

In order to identify the thresholds ASR and AC we generate an artificial sequence
with a single change-point and apply the SR and the CUSUM procedures for the
sequence. We assume that the first several observations are in “controlled” state.
Therefore, the estimates of the initial (unknown) parameters of the probability
density function f0.x/ can be obtained using these first observations. In this study,
we consider random observations with normal distribution Normal.�0; 1/ before
the change-point and with Normal.�1; 1/ after the change-point, where �0 D 0,
�1 D 1. We use 2,000 as the length of the sequence and 100 as the number of
observations utilized for estimating the parameters of the initial distribution. After
simulating this experiment 2,000 times, it is clear that the threshold ASR should be
quite large (see Table 3.1). For instance, if ASR D 5;000, then the probability of
detecting the true change-point is 0.739.

Note that p, the probability of detecting the true change-point, increases as the
threshold ASR increases (see Fig. 3.1). We can conclude that for long sequences
we should use large values of the threshold ASR, for example, ASR > 5;000, in
order to detect the change-point with a high probability. Figure 3.2 shows the overall
processing time(s) with respect to different threshold values, ASR.

Since the estimates of the positions of the change-points will be used as the
initial values for the CE method, we should emphasize that these estimates are found
with some delay. Tables 3.2 and 3.3 show how the ARL depends on the value of
�1 ��0. These tables also demonstrate that the ARL is significantly large for small
differences between �1 and �0. Note for rather long sequences this delay is not an
issue whereas for relatively short sequences we should use a higher value of the
ASR and reduce the length of the region used for estimating unknown parameters of
f0.x/.

Table 3.1 The average run length (ARL), CPU time and the probability of detecting the true
change-point for different values of the threshold ASR (Reprinted with permission from [35].
Copyright 2013, AIP Publishing LLC)

A 700 800 900 1,000 2,000 3,000 4,000 5,000 6,000 7,000

p 0.411 0.432 0.472 0.493 0.629 0.679 0.715 0.739 0.765 0.779

ARL 108 107 109.3 109 110.5 112.8 113.2 115.7 113.5 116.7

CPU time (s) 0.23 0.39 0.58 0.65 0.82 1.07 1.21 1.34 1.46 1.48
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Fig. 3.1 The probability of detecting the true change-point depending on the value of the threshold
ASR (Reprinted with permission from [35]. Copyright 2013, AIP Publishing LLC)
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Fig. 3.2 CPU time depending on the value of the threshold ASR (Reprinted with permission
from [35]. Copyright 2013, AIP Publishing LLC)

Table 3.2 The ARL and CPU time for different values of �1 � �0, ASR D 5;000 (Reprinted with
permission from [35]. Copyright 2013, AIP Publishing LLC)

�1 � �0 0:25 0:5 0:75 1 1:25 1:5 1:75 2 5 7

ARL 324:9 162:9 125:7 115:7 109:5 103:7 103:0 102:4 99:2 95:0

CPU time (s) 2:10 1:94 1:65 1:39 1:13 1:02 0:92 0:94 0:87 0:85
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Table 3.3 The ARL and CPU time for different values of �1 � �0, ASR D 7;000 (Reprinted with
permission from [35]. Copyright 2013, AIP Publishing LLC)

�1 � �0 0:25 0:5 0:75 1 1:25 1:5 1:75 2 5 7

ARL 351:8 172:7 129:7 116:7 108:7 107:4 106:2 105:5 102:1 99:0

CPU time (s) 2:47 2:03 1:82 1:46 1:31 1:27 1:15 0:98 0:94 0:88

Table 3.4 The average run length (ARL) and the probability of detecting the true change-point
for different values of the threshold AC (Reprinted with permission from [35]. Copyright 2013,
AIP Publishing LLC)

A 1,000 5,000 7,000 10,000 12,000 15,000 18,000 19,000 20,000 21,000

p 0.269 0.583 0.642 0.672 0.701 0.694 0.728 0.743 0.752 0.748

ARL 101.1 101.7 111.4 112.6 110.5 112.3 114.3 114.2 115.5 115.4

CPU time (s) 0.63 1.17 1.26 6.047 1.34 1.54 1.48 1.48 1.49 1.53
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Fig. 3.3 The probability of detecting the true change-point depending on the value of the
threshold AC

We repeat the same simulation for the CUSUM procedure. Using the simulated
sequences, we estimate the threshold AC (note that AC is significantly larger than
ASR) (see Table 3.4). For large values of AC the probability of detecting the true
change-point increases very slow. Figure 3.4 shows the overall processing time(s)
with respect to different threshold values, AC . It is customary that the value of the
False Discovery Rate (FDR) less than 0.25 is used as a popular threshold [50].
We use higher values of AC and ASR, since the probabilities of detecting the true
change-point in the both cases are larger than 0.75 (Figs. 3.1 and 3.3).
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Fig. 3.4 CPU time
depending on the value of the
threshold AC
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3.3.2 The Cross-Entropy Method

The Cross-Entropy (CE) method [38] is a model-based evolutionary stochastic
optimization framework which was originally developed as a method to estimate
rare event probabilities. It can be used to solve both estimation and optimization
problems. The CE method is developed on the basis of the Kullback-Leibler
divergence [18]. The process of multiple change-point detection can be viewed as
a combinatorial optimization problem. In the context of combinatorial optimization
problems, the CE method is an iterative procedure that starts with a parametrized
sampling distribution from which M number of random samples generated. Then,
each combinatorial arrangement is scored for its performance using an objective
function F . A fixed number of best performing combinatorial arrangements are
selected based on the performance score and it is referred as the elite sample. We
define the size of this elite sample as Melite . Let us define Melite D � �M , where
� is the elite sample fraction. The elite sample is used to update the parameters of
the sampling distribution based on a smoothing rule. This process is iterated until
a stopping criterion (SC) is met or user defined number of iterations. The sampling
distribution eventually converges to a degenerate distribution about a locally optimal
solution, which ideally will be globally optimal [4].

There are few parameters that have to be specified prior to the initialization of the
CE method in the context of multiple change-point problem. They are the minimum
aberration width (h), lower and the upper limit for the search space of number of
change-points (let us define the lower limit as Nmin and upper limit as Nmax), sample
size M , elite sample fraction �, smoothing parameter vector ˇ and a cut-off value for
the SC ("). In this study, truncated normal distribution is utilized as the parametrized
sampling distribution to simulate locations of the change-points based on the user
defined minimum aberration width h. We simulate M D 200 number random
solutions. The value of � is considered as 0:05, smoothing parameter values of ˇ and
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 [8] is used for � and � respectively and " is set as 0:01. The performance function
used in the study is the model log-likelihood based on the simulated change-point
locations.

Based on these user defined set of parameters and the initial estimates from a
sequential method, the CE algorithm can be summarized as below:

1. Set the change-point locations obtained from a sequential procedure as the initial
values for the mean vector �0 and set all components of the standard deviation
vector .� 2/0 as 52 in order to simulate locations from the truncated normal
distribution. Both vectors of parameters are N -dimensional. Set t D 0.

2. Increase t by 1. Simulate a random sample C.1/; C.2/; : : : ; C.M/ from
Normal.�t�1; .� 2/t�1/ distribution, where C.i/ D .c

.i/
1 ; c

.i/
2 ; : : : ; c

.i/
N /, i D 1; 2,

: : : , M .
3. For each i D 1; 2; : : : ; M order c

.i/
1 ; : : : ; c

.i/
N from smallest to largest and set

C.i/ D .c
.i/
1 ; c

.i/
2 ; : : : ; c

.i/
N /, where C.i/ is the change-point vector as defined

earlier.
4. Evaluate the log-likelihood function (the performance score) of each C.1/; C.2/;

: : : ; C.M/. Obtain the elite sample, which is the best performing combinations of
the change-point locations. Melite is the size of the elite sample.

5. For all j D 1; 2; : : : ; N calculate maximum likelihood estimates of the mean
and the standard deviation O�t D . O�1; O�2; : : : ; O�N /t , . Q� 2/t D . Q�2

1 ; Q�2
2 ; : : : ; Q�2

N /t

by using the elite sample. Based on the smoothing rule update the parameters in
the truncated normal distribution as below,

�t D ˇ O�t C .1 � ˇ/ O�t�1
; .� 2/t D 
. Q� 2/t C .1 � 
/. Q� 2/t�1:

6. If the stopping criterion (SC) is met, then stop the process and identify the com-
bination of the locations of change-points C.i/ that optimizes the performance
function. Otherwise set t D t C 1 and iterate from step 2. In this study, we
use a SC based on the Mean Absolute Deviation (MAD) [10], which is a robust
measurement on dispersion.

SC is: Stop the process if max
j

MADj < ", for all j D 1; 2; : : : ; N .

where

MADj D Median
iD1;2;:::;M

ˇ̌
ˇc.i/

j �Median
�
c

.1/
j ; c

.2/
j ; : : : ; c

.M/
j

	ˇ̌
ˇ

for all j D 1; 2; : : : ; N .

3.3.2.1 Bonferroni Correction for Multiple Hypothesis Testing

The Bonferroni correction is a conservative method that can be used to control
the overall significance level (˛) or the family wise error rate (FWER) when
conducting multiple hypotheses tests. If T1; T2; : : : ; Tn is a set of n statistics with
corresponding p-values P1; P2; : : : ; Pn for testing hypotheses H1; H2; : : : ; Hn, the



52 M. Priyadarshana et al.

general Bonferroni multiple test procedure is performed by rejecting Hi W i D
1; : : : ; n if the p-value (Pi ) is less than or equals to ˛=n [45]. Thus, the Bonferroni
inequality,

P

(
n[

iD1

�
Pi � ˛

n

	)
� ˛ .0 � ˛ � 1/

ensures that the probability of rejecting at least one hypothesis when all are true is
no greater than the significance level ˛, which is the type I error rate.

3.4 Numerical Results

We include results of numerical experiments to validate and assess the proposed
hybrid algorithms. First, an artificially generated data set is considered with different
signal-to-noise ratio (SNR) values as well as with different segment widths. The
SNR is defined as the segment mean divided by the standard deviation of the
Gaussian noise in the process as considered in [19]. Finally, two of the well-known
publicly available real aCGH data sets are considered to further demonstrate the
effectiveness of the proposed methodology.

In order to assess the performance of the proposed SR-CE and CUSUM-CE
algorithms over the standard CE method [33] a comparison study is carried out;
which is the primary focus of this study. The variant of the CE method discussed in
this study utilizes a multi-core architecture based parallel implementation in the R
statistical software [36]. Furthermore, for the completeness of the study, we compare
the results obtained through the proposed methodology with another four well
established change-point detection methods in the literature: DNAcopy [53], bcp [6],
changepoint [16] and cumSeg [21]. In all of these methodologies we consider the
default parameter values in the respective algorithms [19], as most user will be
exercising.

3.4.1 Results on Artificially Generated Data

Let us consider a random sequence of length 3;500 with 10 abrupt change-points
which results in having 11 segments. The standard deviation of the Gaussian noise
is set as 1 in all the segments. Table 3.5 shows the parameter values used for the
simulation study.

We follow the general work flow discussed in the framework of algorithms. First,
based on a sequential procedure initial estimates of the change-point locations are
obtained. Second, the CE algorithm is initiated based on these pre-estimates. We
utilize the parameter values for the CE algorithm as described earlier with the
smoothing parameters ˇ D 1 and 
 D 1. A significance level (˛) of 0:001 [13]
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Table 3.5 Parameter values for the simulation study

Segment
1 2 3 4 5 6 7 8 9 10 11

Length 200 550 150 250.0 500 250 400 600 200.0 150.0 250

SNR 0 2 4 2.5 0 2 3 4 2.5 3.5 1

Meana 0 2 4 2.5 0 2 3 4 2.5 3.5 1
aSNR=Mean/S.D., Standard Deviation is set as 1

Table 3.6 Initial estimates of locations and processing time of SR-CE and CUSUM-CE methods

Sequential
procedure Initial estimates for locations Avg. proc. time (s)

SR 207, 422, 585, 755, 908, 1,058, 1,154, 1,509, 1,653,
1,910, 2,094, 2,310, 2,749, 2,914, 3,107, 3,205, 3,259

0.394

CUSUM 209, 755, 910, 1,154, 1,578, 1,654, 1,926, 2,308, 2,914,
3,107, 3,207, 3,262

0.923

is considered in the two sample t-test to assess the statistical significance of the
identified change-points. The Bonferroni correction is used to control the family
wise error rate in multiple hypothesis testing [45]. In the standard CE method, we
set Nmin as 1 and Nmax as 20 as the search space for the number of change-points.

Table 3.6 shows the initial estimates for the locations obtained by the two
sequential procedures. It is observed that both methods have over estimated the
true number of change-points as expected, even though the processing time for
both methods are less than a second. The mean profile plots of the original data,
hybrid algorithms and the other methods are shown in Fig. 3.5. It is observed that
the proposed SR-CE and CUSUM-CE procedures have correctly identified the true
number of change-points (N D 10) as compared to the marginal over estimation
(N D 12) given by the CE method. Except for the cumSeg method all other methods
have over-estimated number of change-points, where the former method has under
estimated the number of change-points. We observed that the over-estimation
problem in changepoint and in bcp is severe than the other competing methods.
However, when considering the average root mean square error (RMSE) both the
proposed procedures and the general CE method have effectively segmented data
with almost overlapping mean profiles. Table 3.7 shows the summary statistics on
the performance of the proposed methods with the standard CE method.

Both of the proposed methods and the CE method have resulted with lower
average RMSE rates. The SR-CE gives the lowest average RMSE rate with an
approximate average improvement of 10 % over the CE method. The notable
performance achievement in the proposed procedures when compared to the CE
method is on the overall processing time. It is observed that both SR-CE and
CUSUM-CE have performed significantly better than the general CE method, which
even utilizes a multi-core architecture based parallel implementation. Among the
two proposed methods, CUSUM-CE procedure performs better than the SR-CE
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Fig. 3.5 Mean profile plots of the proposed algorithms and the other methods for the artificial data
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Table 3.7 Summary statistics on the performance of hybrid frameworks and the CE method

SR-CE CUSUM-CE CE method

Average RMSE 0.083 0.094 0.092

Median processing time (s)a 19.868 11.419 37.977
aRelative to a 2.3 GHz Intel Core i7 processor (Mac OS X 10.9) with 8 GB RAM.

Table 3.8 Initial estimates of
change-point locations for the
chromosomes 1, 3 and 7 of
the GM03563 cell line data

Chromosome
Procedure 1 3 7

SR 122 57 131

CUSUM 81 59 161

when considering the overall processing time. The SR-CE procedure gives a
significant improvement of around 91 %, while CUSUM-CE the improvement is
more than two-folds (233 %) as compared to the processing time of the CE method.

3.4.2 Results on Real Data

3.4.2.1 Fibroblast Cell Lines Data

This example considers a cDNA microarray-based CGH data of fibroblast cell
lines which was originally discussed in [46]. The data set it is freely available
to download at http://www.nature.com/ng/journal/v29/n3/suppinfo/ng754 _S1.html.
The data set consists of a single experiment on 15 fibroblast cell lines and it has
already been discussed by several authors [22, 53] in the literature. We analyze the
data in the fibroblast cell line GM03563 with respect to the chromosomes 1; 3 and
7. By spectral karyotyping, real alteration (a single change-point) is only found in
chromosome 3 out of the considered chromosomes.

By utilizing the SR and CUSUM procedures, we obtain initial estimates of the
change-point locations for the chromosomes 1; 3; 7 as in Table 3.8 separately. We
initiate the CE algorithm with the same set of parameters considered in the artificial
data example for all three chromosomal level data of GM03563 cell line. The
standard CE method is initiated with the default parameter set with Nmin D 1 and
Nmax D 10. Figure 3.6 shows the array CGH profiles for the three chromosomes
based on the proposed methods as well as the other competing methods. In
chromosome 1, both the proposed hybrid methods have correctly identified the true
number of change-points as “zero”, as opposed to a single change-point estimation
given by the CE method. For chromosomes 3 and 7, both the proposed algorithms
and the CE method have given the same results estimating the correct number as
well as the locations of the change-points. Considering the performances of the
other methods, all other methods except for the changepoint have failed to estimate
the number of change-points as zero for the chromosome 1. In fact all of them have
over-estimated the true number. In general, the bcp method tends to over-estimate
the true-number of change-points.

http://www.nature.com/ng/journal/v29/n3/suppinfo/ng754
_S1.html
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Fig. 3.6 Array CGH profiles for the chromosomes 1, 3 and 7 in GM03563 cell line

Table 3.9 Processing time
(s) for the GM03563 cell line
data

Chromosome

Method 1 3 7

SR-CE 0:079 0:126 0:112

CUSUM-CE 0:124 0:072 0:069

CE 2:533 2:435 3:151

Table 3.9 shows the overall processing time. It is observed that both the proposed
procedures are highly computationally efficient than the CE method. Furthermore,
on average CUSUM-CE procedure is faster than the SR-CE procedure.
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Table 3.10 Initial estimates of change-point locations for the chromosomes 3, 5, 9 and 13 of
MDA157 cell line data

Chromosome
Procedure 3 5 9 13

SR 83, 174, 280, 387 84, 180, 250, 328 126, 181 97

CUSUM 82, 146, 326 60, 144, 234, 328 129, 169 86

Table 3.11 Processing time (s) for MDA157 cell line data

Chromosome

Method 3 5 9 13

SR-CE 1.145 1.108 0.184 0.071

CUSUM-CE 0.643 0.994 0.251 0.071

CE 4.426 3.922 4.462 3.036

Fig. 3.7 Array CGH profiles for the chromosomes 3, 5, 9 and 13 in MDA157 cell line
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3.4.2.2 Breast Tumor Data

In this example we consider the breast cancer cell line (MDA157) data which was
originally discussed in [27]. The cDNA microarray CGH was profiled across 6,691
mapped human genes in 44 breast tumor samples and 10 breast cancer cell lines.
This dataset is discussed in the [52] and [22] and can be downloaded from http://
www.pnas.org/content/99/20/12963/suppl/DC1.

We apply our proposed algorithms as well as the other methods on chromosomes
3, 5, 9 and 13 data to estimate the underlying copy number variations. Initial
estimates for the locations are given in Table 3.10 and overall processing time
(in seconds) is given in Table 3.11. Figure 3.7 shows the aCGH profile plots for
all the chromosomes. We observe that the proposed two procedures have behaved in
a similar way in all chromosomes. Also, except for the chromosome 5, in all other
cases CE method has also performed similar to SR-CE and CUSUM-CE procedures.
In chromosome 9, changepoint method has not detected any change-points, whereas
bcp has highly over-estimated the number of change-points. In general, our methods
have similar profiles to cumSeg and DNAcopy procedures.

Discussions and Conclusions
We have proposed two novel hybrid algorithms (SR-CE, CUSUM-CE)
that utilize powerful sequential change-point detection techniques (SR and
CUSUM procedures) and a model based stochastic optimization technique
(CE method) to estimate both the number and the locations of change-
points in biological data of continuous measurements. This is the first-of-its
kind implementation in the change-point literature that utilize on-line change
point detection techniques to obtain initial estimates for a posteriori change-
point problem and merge them with a model based stochastic optimization
method (CE) to further improve the estimates on both the number and their
corresponding locations. We compare the performance of the proposed hybrid
algorithms with the standard CE algorithm, which does not use results from
the sequential techniques as an input. Furthermore, for the completeness we
have further compared our procedures with four other established change-
point techniques. The effectiveness of the proposed methodology is assessed
both in terms of artificially generated and real data. In all of the studies, it was
found that the hybrid methods perform significantly better than the standard
CE method both in terms of the precision and the processing time. In the
standard CE method processing time is considered as one of the drawbacks
in its implementation. Thus, incorporating sequential techniques has solved
not only this critical issue for a greater extent, but also it has improved
the detection power as well. Furthermore, use of the sequential techniques
provide an upper limit for the search space for the number of change-points
in the CE method. In the standard CE method user has to define these lower
and upper search limit unknowingly. Thus, sequential techniques provide an

(continued)

http://www.pnas.org/content/99/20/12963/suppl/DC1
http://www.pnas.org/content/99/20/12963/suppl/DC1
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important support for the standard CE method to perform more efficiently.
While the results of this work are encouraging, there are plenty of avenues
available as future research directions. In our study, it was identified that
the sequential procedure is sensitive to the aberration width (i.e., segment
width) resulting to favour analysis of longer sequences over the shorter
sequences. Therefore, a versatile implementation of the methodology is worth
for probing, which will work effectively in short as well as long sequences
of data. Finally, the proposed procedures only developed to detect changes in
mean levels of continuous measurements. We hope to extend these procedures
to detect changes in the variance as well.
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Chapter 4
Stochastic Anomaly Detection in Eye-Tracking
Data for Quantification of Motor Symptoms
in Parkinson’s Disease

Daniel Jansson, Alexander Medvedev, Hans Axelson, and Dag Nyholm

Abstract Two methods for distinguishing between healthy controls and patients
diagnosed with Parkinson’s disease by means of recorded smooth pursuit eye
movements are presented and evaluated. Both methods are based on the principles
of stochastic anomaly detection and make use of orthogonal series approximation
for probability distribution estimation. The first method relies on the identification
of a Wiener model of the smooth pursuit system and attempts to find statistically
significant differences between the estimated parameters in healthy controls and
patients with Parkinson’s disease. The second method applies the same statistical
method to distinguish between the gaze trajectories of healthy and Parkinson
subjects tracking visual stimuli. Both methods show promising results, where
healthy controls and patients with Parkinson’s disease are effectively separated in
terms of the considered metric. The results are preliminary because of the small
number of participating test subjects, but they are indicative of the potential of the
presented methods as diagnosing or staging tools for Parkinson’s disease.
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4.1 Introduction

This chapter deals with mathematical modeling and identification of the human
smooth pursuit system (SPS) and the application of the models to motor symptom
quantification in Parkinson’s disease (PD).

The SPS is a complex neuromuscular system governing smooth pursuit eye
movements (SPEM), and the task is to keep a moving target in the visual field
[16, 21]. Attempting to initiate smooth pursuit without a moving visual stimulus
is difficult and usually results in a series of saccades that are swift simultaneous
movements of both eyes. Saccades and smooth pursuit are the two ways in which
humans can shift gaze [3].

The oculomotor system, and thus also the SPS, is impaired in a wide variety of
neurological diseases [1, 5, 14, 16, 19]. In particular, PD is known to be associated
with deficit in SPEM control [16]. Diagnosing and quantifying the disease is done by
interview and clinical observation which requires hours of interaction between the
patient and a qualified clinician [18]. Acquiring a better understanding of the SPS
cast in mathematical models may be a first step towards developing a technology
that allows for fast and automatic PD staging.

Studying the SPS requires means for eye movement measurement. The two most
common techniques for eye movement registration are electrooculography (EOG)
and video eye tracking. In EOG, electrodes are placed around the eye to measure
the potential differences produced by the retina as it turns. Assuming that the resting
potential is constant, the recorded potential is a measure of the eye’s position.
Video eye tracking uses one or more cameras, usually infrared, together with image
analysis algorithms to locate the pupils and to determine the gaze direction. Video
eye tracking is non-invasive, but the resolution is lower than in EOG.

Lately, the increased performance and accessibility of eye tracking technologies
have generated a great deal of interest in the commercial sector. Examples are found
in market research, gaze-based interaction, sports education etc. However, most
applications use the eye tracker output directly and in a static manner, with interest
only in where the subject is looking at a given time. This chapter presents an effort
towards developing more sophisticated data analysis techniques in an attempt to
extract previously hidden information from the eye tracking data and to open up for
new more advanced applications.

The SPS relates gaze direction to visual stimuli and may thus be viewed as a
dynamical system with an input and an output signal [7]. Modeling any dynamical
system can be done in one of three ways: white-box modeling, grey-box modeling,
or black-box modeling.

White-box modeling requires complete knowledge of the system to be modeled.
The models are based on first principles and derived from physical laws. Although
very useful, white-box models are relatively uncommon due to the exceeding
complexity of most processes in nature.

Grey-box modeling requires partial knowledge of the system to be modeled.
Through certain insight into the system, a semi-physical description of it can be
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obtained, where one or more of the model parameters have been assigned physical
meaning. Grey-box models are important tools and are widely used to predict and
evaluate the behavior of countless processes in a range of industrial and scientific
applications.

In black-box modeling, a general model structure is assumed without any
physical meaning in the parameters. There is a number of common black-box
structures for both linear and nonlinear systems. Black-box models provide simple
means of evaluating the dynamics of a system at low computational cost and without
the need for any deeper understanding of its nature.

In the case of the SPS, white-box modeling is a near impossible task due to
the vast complexity of the feedback loop; the interaction between the eyes and the
brain, which is affected by the not easily modeled human consciousness. Instead,
this chapter considers parametric and non-parametric black-box models to portray
the SPS.

This chapter will first present brief overviews of the extraocular system, SPEM,
eye-tracking techniques, and Parkinson’s disease to provide a background for the
following modeling and experimental work. Then, some probability theory basics,
including probability density estimation, are given, followed by descriptions of the
two methods for SPS characterization. A way of designing sufficiently exciting
visual input signals is then derived and the experiment setup is presented. Finally,
the chapter is concluded by some results and a discussion.

4.2 The Extraocular Muscles

There are six muscles governing the movement of the eye, referred to as the
extraocular muscles. Four of the muscles control the movement of the eye in the
four directions: up, down, left and right. The remaining two muscles control the
adjustments in gaze direction involved in counteracting head movements. The four
muscles controlling standard eye movement are the superior, inferior, lateral and
medial recti. The two remaining muscles are the superior and inferior oblique. The
primary action of the superior and inferior recti are elevation (upward movement)
and depression (downward movement) respectively and those of the lateral and
medial recti are abduction (away from the median sagittal plane of the body) and
adduction (towards the sagittal plane). Figure 4.1 shows the right eye with its
accompanying extraocular muscles.

4.3 Smooth Pursuit

The two ways in which humans can voluntarily shift gaze are SPEM and sac-
cades [16]. Saccades are discrete movements that quickly change the orientation
of the eyes, thereby translating the image of the object of interest from an eccentric
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Fig. 4.1 The extraocular
muscles of the right eye

retinal location to the fovea (the center of the retina responsible for sharp central
vision). Smooth pursuit is a continuous movement that slowly rotates the eyes to
track the motion of an object and to keep it within the visual field. SPEM are
governed by SPS. Smooth pursuit is primarily driven by visual motion which makes
it difficult for most individuals to initiate it without a moving target. The maximum
angular velocity of the eyes during smooth pursuit is about 80–100 ı/s [17]. For
targets with exceeding velocities, the SPS passes the control to the saccadic system.
Research has shown that direction-selective, motion-sensitive cells in the primary
visual cortex estimate target angular velocity [19] and that the SPS acts as a velocity
servo; in that it tries to minimize the angular velocity error between the gaze and the
target [21]. Any stationary error in angular position will be left uncorrected by this
mechanism.

There are several research papers on quantifying the SPS in an attempt to use
SPEM as a biometric [2, 13]. Most papers on the subject are published in medical
journals and apply straightforward and facile techniques for data analysis. The
Smooth Pursuit Gain (SPG), the ratio between the eye velocity and the stimuli
velocity, has been used as a measure for characterizing the SPS [14, 16]. Since the
SPG is nothing but the steady-state angular velocity gain, it is merely one point in
the frequency response of the SPS and may thus not be an exhaustive metric.

4.4 Eye Tracking

Eye tracking is the process of measuring either the point of gaze or the motion of
the eye relative to the head. The two most common techniques for eye movement
registration are EOG and video eye tracking. In EOG, electrodes are placed
around the eye to measure the potential differences produced by the retina as it
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Fig. 4.2 EOG electrodes
placed around the eyes to
measure the potential
differences produced when
the eye turns

turns (see Fig. 4.2). Assuming that the resting potential is constant, the recorded
potential is a measure of the eye’s angular position. The signal acquired from an
EOG measurement is called the electrooculogram. Because the EOG relies on the
potential differences produced by a shift in the angular position of the retina, it
is possible to use EOG even when the eyes are closed and it can thus be used in
sleep studies. A drawback of the EOG is the fact that the resting potential is often
not constant, resulting in nonlinear trends in the recorded data. Another drawback
is the somewhat daunting task of placing the electrodes which also induces some
discomfort in the test subject due to the need for a thorough scrubbing where the
electrodes are to be placed.

Video eye tracking uses one or more cameras, usually infrared, together with
image analysis algorithms to locate the pupils via the corneal reflections and to
determine the gaze direction. Video eye tracking is non-invasive and quick, but
a simple calibration procedure of the individual is needed before using the eye
tracker. When more than one camera is utilized, the images from the different
cameras can be combined to form a 3D environment, allowing for accurate tracking
of the position and orientation of the head, which greatly improves the gaze direction
measurements.

In the presented experiment, a two-camera video eye tracking system from Smart
Eye AB, Sweden is used. The eye tracker output yields the number of centimeters
(horizontal and vertical components separately) from the monitor center to the point
where the gaze vector intersects the monitor. The system samples the gaze direction
at 60 Hz. Figure 4.3 is a screenshot from the eye tracking software showing how the
algorithms have found the gaze direction and orientation of the head.

4.5 Parkinson’s Disease

PD is a degenerative disorder of the central nervous system. The cause of the disease
is attributed to degeneration of dopaminergic neurons from the substantia nigra [12].
Impairment of the substantia nigra to synthesize dopamine causes a progressive
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Fig. 4.3 A screenshot from
the eye tracking software

depletion of this significant neurotransmitter for the putamen and caudate nucleus.
The progression of PD is characterized by tremor during rest, abnormal gait,
muscular rigidity and impaired balance [12].

Currently, the status of PD in a patient is evaluated through the Unified
Parkinson’s Disease Rating Scale (UPDRS) that is qualitatively interpreted by
a clinician [20]. Knowledge of the current status of the disease in a patient is
important for the selection and dosage of drug therapy. There are two major issues
with the scale. The process of observing and interviewing the patient to determine
the UPDRS result is time-consuming and often tiring for both the patient and
the clinician. Moreover, since the scale is qualitatively interpreted there may be
variation among the subjective decisions of different clinicians. Hence, it is of great
interest to find means for quick and objective quantification of the PD status in a
patient.

It has been shown that the SPS is negatively affected by PD and that the
severity of the impairment is related to the progression of the disease [16, 18, 26].
Consequently, acquiring a full understanding of the SPS may be a first step towards
developing a technology that allows for fast and automatic PD staging.

4.6 Probability Density Estimation

Probability density function (PDF) estimation from data is a broad topic and
several different techniques exist. The most straightforward PDF estimator is the
histogram that requires a relatively large sample size to yield a good approximation.
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Two other methods are used in this chapter: kernel density estimation (KDE) which
approximates the density function by a normalized sum of kernel functions, and
an orthogonal series approximation (OSA) approach where the density function is
expanded in terms of an orthonormal basis.

4.6.1 Stochastic Variables

Given a stochastic variable X of dimension M with distribution D, a sample from
D is a set of observations fxigNiD1, where xi 2 R

M are realizations of X . From the
sample, information about the underlying distribution can be extracted. For instance,
the sample mean

O� D 1

N

NX
iD1

xi ; (4.1)

and covariance

Ȯ D 1

N � 1

NX
iD1

.xi � O�/.xi � O�/T ; (4.2)

are unbiased estimators of the true mean and covariance of the distribution.
The PDF of the distribution, denoted by f .x/, may also be estimated from the

sample, however this is a more demanding task.

4.6.2 Kernel Density Estimation

The kernel approximation of the PDF f .x/ is given by

Of .x/ D 1

N jH j1=2

NX
iD1

�.H �1=2.x � xi //; (4.3)

where � is the chosen kernel function which is symmetric and integrates to one [24].
The parameter H 2 R

M�M is known as the bandwidth of the kernel, and it is
symmetric, positive definite, and acts as a smoothing parameter. If H is equal to hI ,
where I is the identity matrix, a high value of h will give a smooth estimate, with
low variance but high bias. Conversely, a low value of h gives higher variance but a
low bias of the estimate. Choosing H appropriately for a specific application must
usually be done through experiment.
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4.6.3 Orthogonal Series Approximation

The KDE method has the drawback that the approximation requires N terms, which
is often a large number. An alternative to the kernel estimator is the orthogonal series
estimator [22, 23] which has the capability of capturing the shape of the PDF using
far fewer terms than the kernel estimator. Assume that X is supported in the domain
Q, i.e., P.X 2 Q/ D 1. If f is square integrable (f 2 L2.Q/), the density may be
approximated with any desired accuracy by a truncated orthogonal series

Of .x/ D
X
j 2J

cj 'j .x/; x 2 S; (4.4)

where

cj D
Z

Q

f .x/'j .x/dx; (4.5)

J is a finite set of M -tuples of integers and f'j .x/; j D 0; : : : ;1g is an
orthonormal basis. The largest integer in each dimension in J gives the highest
order of that dimension and must be chosen by the user. The highest order in
each dimension decides the number of the basis functions that will be used in the
approximation. Note that because f is a probability density, the coefficients in the
above mentioned partial sum can each be written as the expectation

cj D
Z

Q

f .x/'j .x/dx D Ef'j .X/g: (4.6)

Hence, estimating cj can be done via the sample mean

Ocj D 1

Ns

NsX
iD0

'j .xi /; (4.7)

where .x1; x2; : : : ; xNs /, xi 2 R
M are observations of the underlying stochastic

variable.
Here, all considered distributions are of dimension two and the orthonormal basis

is chosen to be

f'n1; n2.x/g D
np

det.� /�n1;n2 .� .x � �//
o

; (4.8)

where f�n1; n2g is the complete set of two-dimensional Hermite functions. The
vector � 2 R

N and the matrix � 2 R
N �N are user parameters for scaling and

translating the functions.
The Hermit functions, f�n1; n2.x/g, x 2 R

2, are given by
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�n1; n2.x/ D 1p
2n12n2n1Šn2Š	

e�.xT x/=2 QHn1; n2.x/; (4.9)

where

QHn1; n2.x/ D 2
n1Cn2

2 Hn1; n2.
p

2x/ (4.10)

are the physicists’ Hermite polynomials [15] and

Hn1; n2.x/ D .�1/n1Cn2e.xT x/=2 @n1

@x
n1

1

@n2

@x
n2

2

e�.xT x/=2 (4.11)

are the probabilists’ Hermite polynomials [15].
The choice of the user parameters � and � will depend on the data. The vector

� is chosen to be the sample mean of the observations xi , i.e.,

� D 1

Ns

NsX
iD1

xi :

This choice of � reduces the number of the Hermit functions required in the
truncated series to achieve a given estimation error [22]. If � is chosen as a
diagonal matrix, its diagonal elements will decide the width of the functions in
the corresponding dimension. The choice of the diagonal elements should be based
on the variance of the considered observations in each dimension. Choosing the
functions to be too narrow will increase the required function order for accurate
estimation, and choosing the functions to be too wide will smudge the estimated
distribution, reducing the significance of single observations.

4.6.4 Finding the Outlier Region

Assume that an observation, x 2 R
M , is made and that it must be determined

whether it is likely to be an observation of a given random variable X , or not. A
hypothesis test with the null hypothesis:

• H0: x is an observation of X

must be carried out. One way to do this is to define an outlier region S of the random
variable, being the set of all possible observations deemed unlikely to come from
the considered distribution, i.e., all x for which H0 is rejected. The probability that
an observation of X lies in S should be low. Define ˛ such that

P.X 2 S/ D
Z

S

f .x/dx D ˛: (4.12)
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Consequently, ˛ is the probability with which an observation of the considered
random variable is deemed (incorrectly) to be from some other distribution. The
choice of ˛ will influence the size of the outlier region S .

A method for checking whether a given observation is an outlier (lies in S ) is
derived and described in detail in [11], but will only be outlined here. Finding the
outlier region, S of a PDF f , can be done numerically by carrying out the following
steps:

• Evaluate f for the finite set of uniformly spaced grid points fxigLiD1 to obtain
ffigLiD1.

• Let ff.i/gLiD1 be ffigLiD1 sorted in ascending order.
• Find K such that

PK
iD1 f.i/ � ˛

A
<
PKC1

iD0 f.i/, where A is the area of a grid
element.

• An approximation OS of S is then given by

OS D fxi W f .xi / � f.K/ D 
T g: (4.13)

4.7 Non-parametric Method

The non-parametric method for distinguishing between individuals on the basis of
their eye movements comprises two parts. First, by presenting the same stimulus
trajectory to a test subject multiple times, a set of output trajectories is obtained.
The trajectories can be seen as observations of a trajectory distribution, the PDF of
which can be estimated from data. Then, independently acquired datasets, possibly
from a different individual, are tested against the estimated distribution. The test
determines whether or not the distribution and the recorded data pertain to the same
individual.

Assume that Ns datasets of eye movements are recorded from a test subject
tracking the same trajectory of the visual stimulus multiple times on different
occasions. Due to the complex nature of the oculomotor system, the response to a
visual stimulus will not be the same for repeated exposures. Hence, the Ns datasets
will not be equal. For each of the Nt time instances at which the gaze direction is
sampled, there will be Ns data points, one from each set of recorded eye movements.
Since horizontal and vertical gaze direction coordinates are logged separately, the
data points will have two components.

The data points at time instance k will be seemingly random with some expected
value, and can thus be seen as Ns observations of a two-dimensional stochastic
variable, X.k/. Note that there will be one stochastic variable per time instance.
The distribution of X.k/ for each k can be estimated from data.

The distribution of X.k/ will depend on the trajectory of the visual stimulus, but
also on the individual tracking it. If the PDF of X.k/ for k D 1; 2; : : : ; Nt is known
for an individual, i.e., if an eye tracking profile has been established for that person,
it is possible to determine whether a given dataset is likely to come from the same
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subject or not. For each of the Nt time instances, a hypothesis test with the null
hypothesis that the data are indeed observations of X.k/ can be carried out. If the
number of time instances at which the deviation of the data from the considered
distribution is high, the dataset is deemed to not be from the considered eye tracking
profile. The approach generalizes in a straightforward manner to the case of a group
of test subjects sharing a property, such as healthy persons or persons of a certain
age.

In practice, the distributions of X.k/, k D 1; 2; : : : ; Nt , are not known, but can
be estimated from data. The simplest way is to use the histogram. However, since
the data are two-dimensional, a large number of data points is needed to achieve
sufficiently small bin widths for reliable statistical testing. To acquire a large number
of data points, a test subject would have to track the same visual stimulus a large
number of times, which would be time-consuming and tedious. Therefore, OSA and
KDE are used for PDF estimation instead.

In this chapter, the described method is used to distinguish healthy test subjects
from test subjects with Parkinson’s disease. PDFs constituting the trajectory distri-
bution for healthy subjects are estimated and tested against eye movement data of
subjects with Parkinson’s disease.

4.8 Parametric Method

In the parametric method, the SPS is modeled as a dynamical system. By identifying
the model for several datasets from healthy individuals, the distribution of the model
parameters,  , can be estimated using KDE or OSA. Once a PDF for the values of
 characteristic of healthy subjects has been established, independently acquired
parameter values can be tested against it. Values of  deviating from the PDF
indicate that the corresponding test subject is unhealthy.

Mathematical modeling of the SPS is a complicated task. The grey-box model
used in [9] is accurate and its parameters have physical and biological meaning.
However, due to the model complexity, identification is computationally demanding
and theoretical evaluation, such as the investigation of statistical stationarity and
stability, is difficult.

One important feature of the present work is SPS input design. It is desirable to
obtain a model that is easy to work with, but still captures the overall behavior of
the system adequately. A linear black-box model may seem as an appropriate first
candidate for the task. However, as is revealed in [9], linear models are unable to
accurately predict the amplitudes of the SPS output. A nonlinearity must be included
in the model in order for the model output to comply with data. A simple approach to
alleviate this problem is to augment the linear model with a static output nonlinearity
to yield a Wiener model. The Wiener model consists of a linear dynamical block in
cascade with a static nonlinear function as shown in Fig. 4.4. The SPS is a multiple-
input-multiple-output (MIMO) system because both the input and output consist
of horizontal and vertical components. For simplicity, the SPS is here assumed to
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linear
dynamics nonlinearity

input outputstatic

Fig. 4.4 The structure of a Wiener system

be represented by two single-input-single-output (SISO) systems in parallel, one
governing the horizontal and one the vertical movements of the eyes, and thus
neglecting any coupling between the two.

Here, the linear block is assumed to be a time-invariant ARX-structure given by

.1C a1q�1 C a2q�2 C a3q�3/x.n/ D bq�4s.n/C e.n/; (4.14)

where x.n/ is the output at time nTs , s.n/ is the input at time nTs , e.n/ is zero-
mean white Gaussian noise with variance �2,  D Œa1; a2; a3; b�T is the parameter
vector of the model, q is the forward time shift operator, and Ts is the sampling time.
The output of the linear block is fed to a static nonlinearity, which in this study is
for simplicity chosen to be a continuous piecewise-linear function. The resulting
Wiener model of the horizontal or vertical components of the SPS is given by

�
.1C a1q�1 C a2q�2 C a3q�3/x.n/ D bq�4s.n/C e.n/;

y.n/ D f .x.n// ;
(4.15)

where y.n/ is the gaze direction at time nTs and f .x/ is the static nonlinearity.
For details on the choice of the linear dynamics and the static nonlinearity, please
refer to [8]. The unknown parameters to be estimated in this model are  and the
parameters of f .

Identification of the model is carried out using the methods presented in [27].

4.9 Visual Stimuli

Visual stimuli are generated to have sufficient spectral and amplitude excitation for
accurate identification of model (4.15). In practice, the stimuli are presented to the
test subject as smooth random movements of a white circle in a 25 � 25 cm2 black
background window on a computer monitor. Horizontal and vertical components
of each stimulus are generated separately as real-valued sequences. To ensure
sufficient temporal excitation for identification of the dynamical part of (4.15), the
sequences are required to have a desired (Fourier) spectral density d . Identification
of the static nonlinearity in (4.15) requires the input to contain information for
all possible amplitudes within the dynamic range, in this case limited by the
size of the computer window. Sufficient amplitude excitation is more difficult to
impose. The problem is addressed in [8] by constraining the sequences to have a
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certain peak-to-average-ratio (PAR). If the vector 2-norm of s, denoted by k � k, is
constrained to be equal to

p
N , the PAR can be written as

PAR.s/ D maxn jsnj2
1
N

PN
nD1 jsnj2

D max
n
jsnj2: (4.16)

With ksk2 D N , the upper bound for the PAR is N . The sequence s representing
each component (horizontal and vertical) of the visual stimulus is generated as
follows.

Let s.t/ be the sought continuous input signal over the time interval Œ0; Tp�.
Discretisize the interval in N steps by 0 D t0 < t1 < � � � < tN �1 < Tp . The discrete
version of the signal is then sn D s.tn/, n D 0; : : : ; N�1. Let s D Œs0 s1 : : : sN �1�T

be the signal written in a vector form. Assume that there is some desired power
spectral density (PSD) d D Œd0 d1 : : : dNf �1�T that the spectrum of s has to be
as close to as possible in the least-squares sense. It is also desired for s to have a
maximum allowed PAR.

The following optimization problem can be formulated to obtain an s with the
two properties mentioned above:

min
s
D

N �1X
pD0

jjzpj �
q

dpj2

s:t: ksk2 D N

PAR.s/ � �
(4.17)

where � is some maximum allowable PAR and z D Œz0 z1 : : : zN �1�T is the Fourier
domain representation of s which can also be written as z D FH s, where �H denotes
the conjugate transpose operator. FH is the Fourier matrix given by

FH D 1p
N

2
666664

1 1 : : : 1

1 ! : : : !N �1

1 !2 : : : !2.N �1/

:::
:::

: : :
:::

1 !N �1 : : : !.N �1/.N �1/

3
777775

N �N

(4.18)

with ! D e�2	i=N . The minimization problem expressed by (4.17) is equivalent to

min
s;'

N �1X
pD0

jzp �
q

dpei'p j2

s:t: ksk2 D N

PAR.s/ � �
(4.19)
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where ' D Œ'0 '1 : : : 'N �1�T is a vector of auxiliary variables and 'n 2 Œ�	; 	�,
as proven in [6]. Rewriting the problem in a more convenient vector form yields

min
s;'

f D kFH s � vk2 (4.20)

s:t: ksk2 D N

PAR.s/ � �;
(4.21)

where v D Œ
p

d0ei'0
p

d1ei'1 : : :
p

dN �1ei'N �1 �.
The minimization problem in (4.20) can be solved in a cyclic way. Fix s to any

real sequence and compute the v that minimizes f . The value of v that minimizes
f for a fixed s is obtained by letting

'p D arg.the pth element of FH s/; (4.22)

where arg.�/ denotes the complex argument. Next fix v and write the minimization
problem as

min
s
ks � Fvk2 (4.23)

s:t: ksk2 D N

PAR.s/ � �
(4.24)

where the fact that FH F D I, where I is the unitary matrix, was used to rewrite
the criterion function. Problem (4.23) has been called the “nearest-vector” problem
and can be solved using the methodology in [25]. To disregard the PAR constraint,
� can be set to N , which is the maximum possible PAR for any sequence with the
norm equal to

p
N . Iterating between (4.22) and (4.23) until convergence gives

a signal s satisfying the design specifications. The design procedure is outlined
in Algorithm 1. The algorithm has the property of monotonically decreasing the
criterion as the iteration proceeds [4].

Algorithm 1 Minimization of the criterion in (4.20)

1. Initialize s to a random vector s0. Iterate Step 2 and Step 3 below, for i D
0; 1; : : : until convergence.

2. 'i D arg min FH si

3. Let siC1 be the solution to the nearest-vector problem solved in [25] and set
i  i C 1.

end

Selecting d and � is not straightforward and appropriate values must be
determined experimentally. Here, the spectral density d is chosen so that s has a
fixed amount of energy for all frequencies below a certain cut-off frequency fc ,
and no energy for frequencies above it. A larger fc implies a stimulus with higher
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average velocity. Mathematically, this choice of d can be expressed with the help of
the sampling frequency, fs , and the number of samples, N as

dp D

8̂
ˆ̂<
ˆ̂̂:

fs

2fc
if 0 � p < N

fc

fs

0 if N
fc

fs
� p <

N.fs�fc/

fs

fs

2fc
if N.fs�fc/

fs
� p � N

: (4.25)

The sequence d is made symmetric around its center in order for the corresponding
time domain sequence to be real-valued. The constant value of the spectrum for
frequencies smaller than fc is chosen so that the total signal energy is indeed N , as
was required in (4.17).

The maximum allowable PAR, �, is chosen to give an amplitude distribution of
s that is as close to a uniform one as possible over the dynamic range.

Problem (4.17) is solved two times with different initial values of s to yield inde-
pendent horizontal and vertical components of the stimulus. The two components
are then combined to form the two-dimensional visual input.

4.10 Experiment

Gaze direction data of test subjects attempting to track the moving circle on a
computer monitor were recorded using a video-based eye tracker from Smart Eye
AB, Sweden. Test subjects were placed 50 cm from the monitor with the monitor
center at eye height. The eye tracker output is the distance in centimeters (horizontal
and vertical components separately) between the monitor center and the point where
the gaze direction line intersects the plane of the monitor. Eye-tracking data were
sampled at a sampling frequency of fs D 60 Hz.

Stimuli of length N D 1;560 samples (about 26 s) were generated using the
presented stimulus generation method with fc D 1 Hz and � D N=10. The stimuli
were then displayed to test subjects of different ages. The conducted experiment
involved four healthy test subjects:

• H1: Man, 26 years old
• H2: Man, 27 years old
• H3: Man, 54 years old
• H4: Man, 64 years old

and five test subjects diagnosed with Parkinson’s disease:

• P1: Woman, 57 years old
• P2: Man, 71 years old
• P3: Woman, 73 years old
• P4: Man, 66 years old
• P5: Man, 67 years old
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4.11 Results

4.11.1 Non-parametric Method

Two-dimensional PDFs describing gaze direction at each time instant were esti-
mated from 20 datasets of both H1 and H3 using OSA. Datasets from all test subjects
were then used to compare with the estimated distributions, i.e., to test whether they
were observations from the distributions in question or not. The datasets of H1 and
H3 used to test against the estimated distributions were independent and not utilized
in the OSA estimation.

For the estimation of OSA, the user parameter � in (4.8) was chosen to be the
sample mean of the observations. � in (4.8) was selected to be a diagonal matrix
with diagonal elements ri D 2

O�i
, i D 1; 2, where O�i is the sample standard deviation

in each dimension of the considered sample of observations, i.e., of the horizontal
and vertical data in each time instant. This choice of � was made experimentally
and shown to give the most satisfactory results. The highest order of the Hermit
functions was set to four in each dimension. Using higher orders showed little or no
improvement in the obtained results.

A heat map over an excerpt of the estimated trajectory distribution of H1 overlaid
by the gaze trajectory of P1 is depicted in Fig. 4.5. It is apparent that the trajectory
of P1 deviates from the mean trajectory of H1 at several time instants.

Table 4.1 shows the mean number of outliers at the 0:05 significance level in the
datasets of different test subjects when comparing to the distribution estimates of
H1 and H3, respectively.
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Fig. 4.5 Heat map of the estimated trajectory distribution of H1. Red indicates high values. The
blue line shows a trajectory of P1 attempting to track the same stimulus (Reprinted with permission
from [10]. Copyright 2013, AIP Publishing LLC)
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Table 4.1 The average number of outliers, m, at the 0:05 significance level in the datasets of
different test subjects when comparing to the distribution estimates of H1 and H3. The numbers
are given as percent of the total number of samples in the dataset (Reprinted with permission
from [10]. Copyright 2013, AIP Publishing LLC)

H1 H3

Subject m (%) Subject m (%) Subject m (%) Subject m (%)

P1 48.1 H1 0.6 P1 32.1 H1 11.7

P2 61.4 H2 14.3 P2 57.7 H2 8.1

P3 58.2 H3 26.3 P3 57.9 H3 1.1

P4 54.4 H4 39.6 P4 46.1 H4 20.9

P5 53.9 P5 46.6

The entries in Table 4.1 give the amount of time during which the gaze direction
of the test subjects deviated significantly from the mean trajectory of H1 and H3,
respectively.

It is evident from Table 4.1 that the trajectories of the Parkinson patients deviate
from the mean trajectories of the healthy subjects. It should also be noted that the
trajectories of H1 and H3 show little deviation from the mean trajectories estimated
from their own datasets, despite the fact that the sets used to test were not included
in the distribution estimation.

4.11.2 Parametric Method

The parameters of (4.15) were estimated for the horizontal part of 10 eye-tracking
datasets of each test subject. The parameter estimates were used together with OSA
to approximate the distribution of the parameters in each test subject. In order to
facilitate visual presentation, only the parameters a1 and b were considered in the
distribution estimation.

Figure 4.6 shows the boundary of the outlier regions of the distribution estimates.
It can be seen that the parameters of Parkinson patients differ significantly from the
corresponding parameters for the healthy controls.

Discussions and Conclusions
This chapter evaluates possibilities of distinguishing between patients diag-
nosed with Parkinson’s disease and healthy controls on the basis of their
recorded eye movements. The two suggested methods, one parametric and
one non-parametric, rely on probability density function approximation
and stochastic anomaly detection. The non-parametric method only shows
the parts of a stimulus trajectory that deviate from a normal gaze profile
established from data. The parametric method attempts to quantify the whole

(continued)
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trajectory in terms of a few model parameters and can provide insights into
the nature of the observed changes in the SPS.

Table 4.1 summarizes the results showing that the gaze trajectories of
test subjects with Parkinson’s disease deviate notably from those of healthy
controls. The inter-subject variance between healthy individuals is much less
than that between healthy individuals and Parkinson patients, despite the age
spread between the healthy subjects.

Figure 4.6 indicates that the parameters, and thereby also the dynamics, of
the SPS in individuals with Parkinson’s disease differ from those in healthy
individuals.

The parameters of the SPS of the healthy controls vary depending on age,
as can be seen in Fig. 4.6. However, it is also made apparent that deviations
in the parameters due to Parkinson’s disease are larger than the deviations
due to age. The parameters of healthy and Parkinson subjects lie in different
parameter domains even when the compared subjects are of similar age.

The results presented above indicate that there indeed are profound
differences between the smooth pursuit eye movements of the considered
individuals with Parkinson’s disease and the healthy individuals. Although
the number of participating test subjects in this study is small, and although
no effort is made herein to explain the medical reason for the deviating
parameters and gaze trajectories in Parkinson subjects, these results are still
indicative of the potential of the presented methods and encourage future
research to further investigate the methods as tools for diagnosing or staging
of Parkinson’s disease.
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Fig. 4.6 The outlier regions of the estimated parameter distributions for different test subjects.
Dashed lines are associated with test subjects with Parkinson’s disease and solid lines with healthy
controls (Reprinted with permission from [10]. Copyright 2013, AIP Publishing LLC)
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Chapter 5
Identification of the Reichardt Elementary
Motion Detector Model

Egi Hidayat, Alexander Medvedev, and Karin Nordström

Abstract The classical Hassenstein-Reichardt mathematical elementary motion
detector (EMD) model is treated analytically. The EMD is stimulated with drifting
sinusoidal gratings, which are often used in motion vision research, thus enabling
direct comparison with neural responses from motion-sensitive neurones in the fly
brain. When sinusoidal gratings are displayed on a cathode ray tube monitor, they
are modulated by the refresh rate of the monitor. This generates a pulsatile signature
of the visual stimulus, which is also seen in the neural response. Such pulsatile
signals make a Laguerre domain identification method for estimating the parameters
of a single EMD suitable, allowing estimation of both finite and infinite-dimensional
dynamics. To model the response of motion-sensitive neurones with large receptive
fields, a pool of spatially distributed EMDs is considered, with the weights of the
contributing EMDs fitted to the neural data by a sparse estimation method. Such
an EMD-array is more reliably estimated by stimulating with multiple sinusoidal
gratings, since these provide higher spatial excitation than a single sinusoidal
grating. Consequently, a way of designing the visual stimuli for a certain order of
spatial resolution is suggested.

Keywords System identification • Insect vision • Motion detector • Spatial
excitation • Visual stimuli

5.1 Background

Biological visual systems are generally accepted to compute local motion via so-
called elementary motion detectors (EMDs; for recent review, see [2]). In the fly
optic ganglia, lobula plate tangential cells (LPTCs) are believed to spatially pool
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the output from many EMDs (see e.g., [5]). The physiology of LPTCs, and the
behavioral output of insects, closely match the predictions of the EMD [1]. Note,
however, that the biological evidence does not come from recordings of individual
EMDs, but indirectly from the spatially pooled neural or behavioural output.

Even though insect visual systems have been studied for decades, the math-
ematical tools for parameter estimation of the EMD model based on the solid
principles of system identification are still lacking. To the authors’ knowledge,
system identification has rarely been applied to insect vision before. Black-box
(quadratic) Volterra models with white input have been studied in e.g., [11, 13].
However, the relation of these models to the notion of EMD is not clear as the
identification result is obtained in terms of Volterra kernels. Besides, the necessity
of white noise stimuli is excessive and restrictive. Note that this chapter does not
advocate the use of the classical Reichardt EMD model over other motion detection
constructs, but simply provides mathematical tools for system identification of the
former, as well as addresses the design of adequate visual stimuli. The developed
methods are generalizable to more advanced EMD models such as the switched
ones.

The main contributions of this chapter are as follows. The classical EMD model
is revisited and a general closed-form expression for its output is derived. It is shown
that in the case of non-symmetrical EMD dynamics and single harmonic input,
the Fourier spectrum of the output contains both a single and double frequency
of the input. In a symmetrical EMD, the double-frequency terms are cancelled.
For an EMD identification approach based on Laguerre domain representation of
the involved signals, it is demonstrated that both finite and infinite-dimensional
dynamics of the linear block of the EMD model can be estimated from a pair of
input-output pulses. Spatial excitation properties of multiple sinusoidal gratings are
studied and a way of designing such for a given excitation order is provided. The
latter result enables unambiguous estimation of the EMD weights in a layer model.

5.2 Mathematical Model of EMD

The mathematical model of EMD [7] can be summarized as follows:

vC.t/ D
Z t

0

wC.t � /uC./ d; v�.t/ D
Z t

0

w�.t � /u�./ d;

y.t/ D vCu� � v�uC; (5.1)

where uC and u� are the scalar inputs of the EMD, y is the output, and wC and w�
are the impulse responses of the low-pass filters in the input channels. Both wC and
w� are assumed here to be finite-dimensional, to simplify calculations.

Introduce two vectors: vT D �
vC v�� I uT D �

uC u�� and the (unitary) skew-
symmetric matrix
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Q D
�

0 1

�1 0

�
:

Then the EMD output can be represented as y D vT Qu; which expression is a
skew-symmetric bilinear form with the Laplace transform

Y.s/ D L fy.t/g D 1

2	j

Z Cj 1

�j 1
V T .p/QU.s � p/ dp:

Here and further on, the capital letters represent, as usual, the Laplace transforms of
the corresponding time-domain signals. Denoting w.�/ D diag

�
wC.�/; w�.�/� ; the

filtered input of the EMD in Laplace domain reads V.s/ D W.s/U.s/:

Introduce Nw.�/ D QT w.�/; and let the integrand in the expression above vanish at
an infinite arc in the left half-side of the complex plane. This assumption is justified
by the experimentally observed overall low-pass dynamics of the EMD. Then, it
follows that

Y.s/ D 1

2	j

I
˝

U T .p/ NW T .p/U.s � p/ dp; (5.2)

where ˝ includes all the singularities of the integrand inside the left half-side of
the complex plane. Notice that the contour integral has to be calculated over the
singularities of the linear part of the EMD, as well as the singularities of the Laplace
transform of the EMD input and its s-shifted version.

Making use of the assumption that w.t/ is the impulse response of a finite-
dimensional linear system, write

w.t/ D diag
�
C C exp.ACt /BC; C � exp.A�t /B�� ;

where .AC; BC; C C/ and .A�; B�; C �/ are minimal realizations of the transfer
functions C C.pI � AC/

�1
BC and C �.pI � A�/�1B�, correspondingly, with

AC 2 R
nC�nC

and A� 2 R
n��n�

.
To obtain a time domain expression of (5.2), the contour integral is solved by

applying Cauchy’s residue theorem. Rewrite (5.2) as Y.s/ D Y C.s/ � Y �.s/ with

Y C.s/ D 1

2	j
C C

I
˝

.pI � AC/
�1

U C.p/U �.s � p/ dp BC; (5.3)

Y �.s/ D 1

2	j
C �

I
˝

.pI � A�/�1U �.p/U C.s � p/ dp B�: (5.4)

To evaluate the integrals above, the signal shape of the input has to be known. In
biological motion vision research, drifting sinusoidal gratings are often used as
stimuli. The results below will be specialized to this practically important case.
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5.2.1 Single Frequency Sinusoidal Signal

The spatial sampling of the EMD manifests itself in the form of a phase shift
between the two inputs. In the case of one sinusoidal signal of frequency ! passing
from one input to another, the movement results in a phase shift ı whose value
depends on the velocity of the movement and the spatial separation of the involved
photoreceptors, i.e., uC.t/ D sin.!t/; u�.t/ D sin.!t C ı/: The output signal for
each block is given as follows:

yC.t/DC C.!2I C .AC/2/�1


! sin.!t C ı/ exp.ACt /

� 1
2
! .sin.2!t C ı/C sin.ı// I C 1

2
AC .cos.2!t C ı/ � cos.ı//

�
BC;

(5.5)

y�.t/DC �.!2I C .A�/2/�1


.A� sin.ı/C ! cos.ı/I / sin.!t/ exp.A�t /

� 1
2
! .sin.2!t C ı/ � sin.ı// I C 1

2
A� .cos.2!t C ı/ � cos.ı//

�
B�:

(5.6)

By inspection of the expressions above, it becomes clear that the resulting output
is composed by two frequency components. The first component has the same
frequency as the input signal. This component appears only in the transient and will
eventually decay due to the converging exponential factor. The second component
has the double frequency compared to that of the input signal. This component
constitutes the steady-state solution of the EMD model.

5.2.1.1 Symmetrical and Non-symmetrical EMD Model

The EMD model considered in biological motion vision is typically symmetrical,
i.e., wC.�/ and w�.�/ in (5.1) are identical [3]. In this situation, the EMD output
in (5.5) and (5.6) is reduced to

y.t/DC.!2I C A2/�1




! cos.!t/I � A sin.!t/
�

exp .At/ � !
�
B sin.ı/;

which agrees with the one given in [3]. In the symmetrical structure, the terms
related to the double-frequency cancel each other, thus leaving the steady-state
solution independent of the time variable. For a non-symmetrical structure, the
double-frequency component would persist in the steady-state solution, though this
is often disregarded [14]. Notably, early publications, e.g., [13], observed, without
a mathematical derivation, that the double-frequency harmonics have significant
impact on the output signal, in line with what has been shown in the previous
section.
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5.2.2 EMD Response to a L2 Pulse

Sinusoidal gratings are often used in motion vision research. These can be displayed
to the animal using a range of different display systems, such as DLP projectors,
LCD screens, LED arenas or CRT monitors. When using a display with a limited
refresh rate, such as a CRT monitor, the sinusoidal grating will be displayed as a
change of luminance on the screen, and simultaneously modulated by the screen
refresh rate. Figure 5.1a shows the resulting luminance change as a function of time
at one pixel of the screen (measured by a photodiode transducer) when displaying
a 20 Hz sinusoidal grating on a 160 Hz CRT monitor. The pulsatile high frequency
component that appears throughout the photodiode measurement corresponds to the
refresh rate of the monitor.

Each input pulse of the visual stimulus sequence evokes a corresponding pulse
in the output of the EMD. Thus, both pulses can be thought of as signals that belong
to L2, i.e., functions integrable with square. In this class of signals, identification in
the Laguerre domain, cf. [8], is suitable and therefore considered in this chapter.
Furthermore, biological systems often generate highly variable responses. Such
variability can be seen in the neural data. Despite being excited by four cycles of
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Fig. 5.1 Input and output signal forms. (a) Photodiode measurement of sinusoidal grating (20 Hz,
wavelength 50 pixels) displayed on a 160 Hz CRT monitor. (b) Intracellular response of a motion
sensitive neurone in the fly brain to the stimulus in panel (a). Note that the screen refresh rate at
160 Hz is much more apparent in the neural data, than the sinusoidal motion 20 Hz (Reprinted with
permission from [10]. Copyright 2013, AIP Publishing LLC)
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identical input (Fig. 5.1a), the neural response is highly variable (Fig. 5.1b). The use
of Laguerre domain identification helps to circumvent the effects of such biological
variability on the accuracy of the parameter estimates by utilizing one pair of pulses
at a time.

5.3 Identification Approach

The data shown in Fig. 5.1b, are recorded from an LPTC in the fly brain. As
mentioned above, these tangential neurons are believed to spatially pool the output
from many local EMDs. The identification process of EMDs from neural recordings
considered below comprises two stages. The first stage handles the estimation of
the dynamics of the single EMD model, while the second stage estimates the
interconnection structure between the contributing individual EMDs in the layer
that are believed to contribute to the response of an LPTC.

5.3.1 Identification of a Single EMD

The method for identification of the EMD model by means of Laguerre functions
was introduced in [9]. It utilizes the representation of input and output signals in
terms of the Laguerre spectra, and also the representation of the EMD dynamics in
the Laguerre domain.

The Laguerre spectrum of a signal is obtained by evaluating the inner functional
product in L2 between the signal itself and the Laguerre functions. The continuous
Laguerre function of order k is given by

`k.t/ D p2˛e�˛t

kX
nD0

 
k

n

!
.�2˛t/n

nŠ
;

where ˛ > 0 is the Laguerre parameter.
It is shown in [9] that the original nonlinear EMD model can be identified

by solving a linear problem that expresses the relationship between the Markov
parameters of the linear blocks in Laguerre domain and the Laguerre spectrum of
the output signal

Yq D ˘q�k; Yq D
�
y0 : : : yq

�T
; (5.7)

where �k is a vector of the Markov parameters of the linear blocks in Laguerre
domain, and yi are the Laguerre coefficients of y for i 2 f0; qg. The matrix ˘q is

given by ˘q D
�
˝0 : : : ˝q

�T
, where ˝i D

p
2˛
�
.U C

k /T .U �
k /T

�
�i ; i D f0; qg:
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The terms U C
k and U �

k define the Laguerre spectra of the input signals. The matrix
�q is calculated as a linear combination of the input signals spectra

�q D
���q � �

k

�q � C
k

�
;

where � C
k and � �

k are the lower triangular Toeplitz matrices consisting of the
Laguerre coefficients of the respective input signals and the matrix

�q D

2
64

C00q � � � C0kq

:::
:::

Ck0q � � � Ckkq

3
75 ;

comprises the constants given by

Cmnq D2

3

mX
rD0

nX
sD0

qX

D0

�
�2

3

�rCsC

 

m

r

! 
n

s

! 
q




! 
r C s C 


r; s; 


!
; (5.8)

with

 
r C s C 


r; s; 


!
D .r C s C 
/Š

rŠsŠ
Š
:

Notice that �q can be evaluated once and for all since it is independent both
of the input-output data and the dynamics of the EMD. For more details on the
identification approach, see [9].

5.3.1.1 Pure Time-Delay Model

The linear blocks in the EMD model are often considered to be pure time-delays [1].
This assumption can be enforced in system identification via a finite-dimensional
approximation of the time-delay operator by, e.g., Padé or Laguerre series [4,6,12].
The approximation approach imposes a certain structure of the dynamics of the
linear part and results in a grey-box identification setting. When finite-dimensional
dynamics are identified, an estimate of the time delay can be evaluated from the
relationships between the approximations terms. A direct approach to time delay
dynamics identification is suggested here instead.

Let the linear block w.�/ represent the pure time-delay operator, i.e., v.t/ D u.t�
td /, with a time-delay td . The output of the linear block in Laguerre domain can then
be written as [4] V o

k D ˚o
k �k; where the regression matrix ˚o

k is given by

˚o
k D

�
'o

0 : : : 'o
k

�T
; 'o

k;lC1 D

8̂
<
:̂

uo
k l D 0;
.�2/l

lŠ.l�1/Š

Pk�l
iD0

.k�i�1/Š

.k�i�l/Š
ui k � l > 0;

0 l > k;
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and the parameter vector �k is defined as

�k D
�
0 : : : k

�T
; i D .˛td /i�1e�˛td ; i 2 f0; kg:

The superscript .�/o means either .�/� or .�/C.
Since the relation between the outputs of the linear blocks and the EMD output

still holds, only a simple modification in the identification approach is required to
identify an EMD with pure-time delay linear blocks. Replacing � o

k and �k with
˚o

k and �k will give the relation between the time-delay operator and the Laguerre
coefficients of the EMD output as

yq D
p

2˛
�
.U C

k /T .U �
k /T

� Q�q�k; where Q�q D
���q ˚�

k

�q ˚C
k

�
:

Hence, the linear relationship between the EMD output Laguerre spectrum and the
delay parameter vector �k can be derived in similar manner as in (5.7).

5.3.2 Identification of a Layer of EMDs

Despite recent advances in understanding motion detection in insect vision using
genetic tools in Drosophila [2] it is still impossible to record the output of a single
EMD. However, a signal that corresponds to the weighted sum of the outputs of
many EMDs can be measured in fly LPTCs, such as in Fig. 5.1b. Therefore, systems
of multiple EMDs subject to visual stimulation have to be considered in order to
apply system identification to experimental data.

It is assumed that the EMDs are uniformly spatially distributed in a flat layer
and all possess identical dynamics as in (5.1). Under this assumption, the EMDs are
exposed to spatially identical visual input, albeit shifted in time.

Let y.t; n/ denote the output of the n-th EMD in the layer, then the measured
signal of the EMD-layer output is therefore modeled as

yN .t/ D
NX

j D1

gj y.t; j / D
NX

j D1

gj y.t � �j /; (5.9)

where gj ; �j ; j D 1; : : : ; N are unknown constants characterizing the contribution
of an individual EMD. With sparse estimation in mind, the following optimization
problem can be formulated to calculate the estimates of the EMD weights gj and
time delays �j :

Œ Og; O�� D arg min
g;�

MX
iD1

�
y.ti / �

NX
j D1

gj Oy.ti � �j /

�2

; (5.10)

s.t.
NX

j D1

jgj j1 < ":
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The constraint in (5.10) penalizes over-parametrized signal models and helps to
keep the number of participating EMDs (i.e., N ) as low as possible. Optimization
problems as in (5.10) are considered to be difficult to solve. One possible approach is
to compute a suboptimal solution to the problem by assuming that �j ; j D 1; : : : ; N

are commensurate or belong to a given grid set. Lowering the threshold value for
the weights results in a reduction of the number of the contributing EMDs.

5.3.2.1 Identifiability Properties for EMD-Layer Estimation

The expression for the output of EMD-layer in (5.9) is derived based on the
assumption that there are N spatially distributed contributing EMDs in the layer.
Clearly, two EMDs receiving the same input cannot be distinguished among since
they possess identical dynamics. In order to obtain a unique solution for N

unknowns, at least N linearly independent equations are required. The excitation
order of the stimulus in terms of spatial distribution plays an important role in
preventing the linear dependency between the individual EMD outputs. Here, a
study of the spatial excitation order of a sinusoidal grating is presented.

Single Frequency Sinusoidal Grating

The sinusoidal grating stimuli exciting the two input channels of the n-th EMD in a
layer are described as follows:

uC.t; n/ D c0 C c1 sin.!t C � C Qnı/; u�.t; n/ D c0 C c1 sin.!t C � C nı/;

with Qn D n � 1. The stimuli are thus parametrized in terms of the frequency ! and
the phase shift �. The weights c0 and c1 represent the mean luminance of the pattern
and the pattern contrast of the grating used in fly experiments. The constant ı is the
phase difference between the two input channels resulting from the temporal delay
between the channels � that is described by

ı D �!�:

Without loss of generality, an EMD with a first-order linear block is treated. For
the symmetrical EMD model with the linear block transfer function

W.s/ D K

s C a
;

the EMD output is given by

y.t; n/ D yt .t; n/C ys.t; n/;
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where yt .t; n/ and ys.t; n/ represent the transient and the steady-state response,
respectively. It can be shown by a straightforward calculation that the transient
response is

yt .t; n/ D 2c1K sin
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(5.11)

while the steady-state response is given by

ys.t; n/ D 2c1K sin
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: (5.12)

From (5.11) and (5.12), it is seen that the n-th EMD’s response to a sinusoidal
grating comprises three linearly independent elements with respect to n. Since the
decay rate of the transient EMD response is relatively high due to the fast linear
dynamics, this identifiability analysis focuses on the steady state response.

To simplify the computations, define Qys.t; n/ as a normalized version of (5.12)
such that

Qys.t; n/ DQc � sin.!t C Q�/ sin.nı/C cos.!t C Q�/ cos.nı/; (5.13)

where

Qys.t; n/ Dys.t; n/
a
p

a2 C !2
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:

From (5.9) and (5.13), the normalized EMD-layer steady-state output is

QyN;s.t/ DQc
NX

nD1

gn � sin.!t C Q�/

NX
nD1

gn sin.nı/C cos.!t C Q�/

NX
nD1

gn cos.nı/:
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The expression above can be represented in a matrix form as

Y D ��;

� D QcJ � Qfs ˝ zs C Qfc ˝ zc;

where J is an .MC1/�N matrix of unit elements,˝ the tensor product of vectors,
and

Qfs D
�
sin. Q�/ sin.!T C Q�/ : : : sin.M!T C Q�/

�T

Qfc D
�
cos. Q�/ cos.!T C Q�/ : : : cos.M!T C Q�/

�T

zs D
�
sin.ı/ sin.2ı/ : : : sin.Nı/

�T

zc D
�
cos.ı/ cos.2ı/ : : : cos.Nı/

�T
:

The vector Y stands for the EMD-layer steady-state output vector and the vector �

is comprised of the weights of the participating EMDs

Y D � QyN;s.0/ QyN;s.T / : : : QyN;s.MT /
�T

;

� D �g1 g2 : : : gN

�T
:

The rank of � determines the largest number of EMD weights that can be uniquely
estimated from Y . As it always holds that rank � � 3, one concludes that only
three EMDs can be uniquely distinguished among by means of a one-frequency
sinusoidal grating, i.e., n � 3 .

Sum of Sinusoidal Gratings

It has been shown in Sect. 5.3.2.1 that a single-frequency sinusoidal grating
stimulus, such typically used in motion vision experiments is not sufficient for
identifying a large number of participating EMDs in a layer. This is important
since hundreds of EMDs are expected to contribute to responses recorded in LPTCs
and behaviour. To enable an unambiguous estimation of an EMD layer, the stimuli
therefore have to possess a high spatial excitation order. One feasible solution is to
use a stimulus composed of the sum of several sinusoidal gratings. This is well in
line with Fourier series as a means of representing bounded periodical signals.

For r sinusoidal gratings, the input signals to the n-th EMD are defined as
follows:

uC.t; n/ D c0 C
rX

iD1

ci sin.!i t C �i C Qnıi /;

u�.t; n/ D c0 C
rX

iD1

ci sin.!i t C �i C nıi /
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To avoid unnecessary cumbersome expressions, the derivation below is carried out
for the case of r D 2, but it can in a straightforward manner be generalized for an
arbitrary r by expanding the involved sums.

Similarly to the single-frequency case, the EMD response to a sum of sinusoidal
gratings comprises a transient and a steady-state component. The transient response
can be written as
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while the steady state response reads as
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(5.14)
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Once again, neglecting the transient component that vanishes at a high convergence
rate, the main focus of the analysis is on the sustained steady-state response of the
EMD. Introduce the following notation
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With the definitions above, the expression in (5.14) can be represented in a more
compact form as follows
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(5.15)

with r D 2. Equation (5.15) reveals the general structure of the steady state response
of the n-th EMD to the sum of r sinusoidal gratings. The spatial excitation order
corresponds to the number of linearly independent functions of n in (5.15), which
quantity is easily seen to be at most 2r2 C 1. By inspection of (5.15), it follows
that the number of independent components of the output falls under the this bound
whenever

!C
i;j ; !�

i;j 2 f!i ; i D 1; : : : ; rg:

5.3.2.2 Spatial Excitation of a Sum of Sinusoidal Gratings: An Example

In the study of the sum of sinusoidal gratings, the excitation problem is considered in
two dimensions with the spatiotemporal signal as a function of time (the variable t )
and space (the variable n). The transformation from the spatial distance to the phase
shift of an individual sine wave determines the excitation order of the stimulus. Here,
two cases are presented to illustrate the significance of the phase shift formulation.

• Stimulus Type 1: Constant time interval between two locations (Fig. 5.2, top
panel). In this case each sine wave is characterized by a unique spatial wave-
length. For instance, to propagate as far as 100 pixels within 1 s, a sine wave
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Fig. 5.2 Propagation of two sine wave grating stimulus. Top row: stimulus of Type 1 – constant
time interval. Bottom row: stimulus of Type 2 – constant phase shift

with frequency of 10 Hz needs spatial wavelength of 10 pixels, while a sine wave
with frequency of 20 Hz requires spatial wavelength of 5 pixels. For this stimulus
type, the input to the second input channel of the n-th EMD is then given by

u�.t; n/ D
rX

iD1

sin.!i t C nıi /

D
rX

iD1

sin.!i .t � n�//

which gives ıi D �!i � .
• Stimulus Type 2: Constant spatial wavelength (Fig. 5.2, bottom panel). In this

case each sine wave is characterized by the time interval elapsed while the
wave travels between the two locations. For example, to propagate as far as
100 pixels with spatial wavelength of 10 pixels, a sine wave with frequency of
10 Hz will need 1 s, while a sine wave with frequency of 20 Hz will take 0.5 s.
For this stimulus type, the input to the second channel on the n-th EMD is then
described as

u�.t; n/ D
rX

iD1

sin.!i t C nıi /

D
rX

iD1

sin.2	fi .t � n�i //
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�
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;

which results in ıi D �2	d=�.

Clearly, for a stimulus of Type 2, the choice of !i does not have any effect on
ıi . Using such a stimulus, the number of linearly independent components in (5.15)
will be greatly reduced as, for any i , ıi D ı and ı�

i;j D 0. Therefore, the output
signal obeys

ys.t; n/ DQc C
rX

iD1

Qci cos.!i t C nı C Q�i /C
r�1X
iD1

rX
j DiC1

Qc�
i;j sin.!�

i;j t C Q��
i;j /:

The above expression comprises three linearly independent functions at most,
whose structure yields the same spatial excitation order as stimulating with a single
sinusoidal grating.

5.3.2.3 Visualization

Graphical illustrations of the two stimulus types are provided here to support the
theoretical discussion in the preceding section. The temporal frequencies of the
sinusoidal gratings are selected to be 5 and 20 Hz and the patch size is set to
200 � 200 pixels. Figure 5.2 depicts the resulting 2D screenshots at four different
times. The figures in the top row show that the Type 1 stimulus produces a
continuous pattern moving in one direction at a constant velocity. The frequencies
and weights of the sine waves create spatial variability in the pattern. The figures
in the bottom row show the corresponding images generated with the stimulus of
Type 2. In this type of stimulus, each sine wave drifts across the patch at its own
unique velocity. In this case, the four screenshots show that the stimulus is visualized
as a modulation of several sine waves.

In Fig. 5.3, the two stimulus types are compared by the local luminance change
at three spatially separated locations (illustrated with different colours). The three
locations are separated by six pixels in the direction of motion. The top plot shows
that in the Type 1 stimulus, an identical luminance signal is simply delayed between
the three locations. However, the bottom plot reveals that the Type 2 stimulus
generates similar waveforms at different locations. Therefore, the EMDs in the layer
receive similar excitation and cannot be discriminated between. As an immediate
result, the layer structure represented by the weights of the contributed EMDs cannot
be uniquely estimated.
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Fig. 5.3 Input signals at three different locations using two different formulations for visual
stimulation with a sum of sine waves

To test the efficacy of the above described types of visual stimuli, a layer
of 50 individual EMDs with randomly selected weight values is simulated. The
performance of the layer estimation by solving the sparse optimization problem in
(5.10) is evaluated with stimuli of the two types. As seen in the top plot in Fig. 5.4,
the weight estimation in Type 1 improves substantially with the number of sine
waves in the stimulus. The spatial excitation order of the signal with r D 5 is
2r2 C 1 D 51, which is sufficient for unambiguous estimation of the weights of all
the 50 EMDs constituting the layer.

The bottom plot in Fig. 5.4 demonstrates that with the stimulus of Type 2, the
weight estimates do not improve with the number of sine waves. This simulation
confirms the statement above about the weak spatial excitation ability of the stimuli
of Type 2.
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Fig. 5.4 Weight estimation performance comparison using sum of sine waves of Type 1 (top
panel), or Type 2 (bottom panel). The layer has 50 individual EMDs with randomly selected weight
values. The curves overlap on top of each other for r = 1,2,3,4,5 for the bottom panel. It is clear
that increasing the number of sine waves r improves the estimation using stimulus Type 1, but not
Type 2

5.4 Experiments

During experiments, Eristalis hoverflies were immobilized with a bee’s wax and
resin mixture. Recordings were performed intracellularly from Horizontal System
(HS) neurons (a type of LPTC) in the left lobula plate using sharp aluminosilicate
electrodes pulled on a Sutter P-100 electrode puller (Sutter Instruments, USA). The
signal was amplified using a BA-03X amplifier (npi electronic, Germany), with
50 Hz mains disturbance reduced with a HumBug (Quest Scientific, Canada). The
signal was digitized at 10 kHz using a NiDAQ 16 bit data acquisition card (National
Instruments, NI USB-6210) with the data acquisition toolbox in MATLAB (The
MathWorks, USA).

The hoverfly was placed in front of an RGB CRT monitor with a refresh rate of
160 Hz, a mean illuminance of 135 Lx, and a spatial resolution of 640 � 480 pixels
(Fig. 5.5a). This corresponds to ca. 100�75 ı of the hoverfly’s field of view. Stimuli
were generated with custom software (http://www.flyfly.se) using the psychophysics
toolbox (http://psychtoolbox.org) in MATLAB. The stimulus consisted of sinusoidal

http://www.flyfly.se
http://psychtoolbox.org
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Fig. 5.5 (a) Electrophysiological measurement of HS neurons in a hoverfly placed in front of
a 160 Hz CRT monitor. Intracellular electrodes were inserted into the left lobula plate while
sinusoidal gratings were displayed on the CRT monitor. (b) Distribution analysis on the response
of the HS neuron over one period of the stimulus (20 Hz). The bold line corresponds to the mean
value over the time axis, while grayscale areas represent the 95, 85, and 75 % confidence regions
(Reprinted with permission from [10]. Copyright 2013, AIP Publishing LLC)

full-contrast, full-screen gratings with a wavelength of 50 pixels, moving at 20 Hz.
All stimuli were shown for 2 s. Between trials the screen was left at mean luminance
for a minimum of 4 s.

5.4.1 Periodicity in the Experimental Data

Figure 5.1 depicts the measured input and output signal of the system. Figure 5.1a
shows the time evolution of the luminance at one pixel of the screen measured by
a photodiode transducer. The pulsatile high frequency component that is visible
throughout the measured data corresponds to the refresh rate of the monitor
(160 Hz). Figure 5.1b depicts the measured signal from a HS neuron in response
to the visual stimulus in Fig. 5.1a. Apparently, the periodic behavior of the input
signal is not faithfully preserved in the measured output. There may be several
explanations to this phenomenon. First, the measured neural response represents a
pooled output of a population of EMDs with a possibility of other visual input than
the experimenter-generated stimuli. Second, other non-visual signals can influence
the recorded neural activity.

The measured output is non-periodic but yet dominated by a sequence of pulses
that occur approximately at the refresh rate of the screen. In the example here, the
same experiment was repeated three times, each run covering 1 s. Thus, in total,
60 realizations of one period of the stimulus were collected. As an illustration of
the neural variability, the distribution at each sampling instant are evaluated based
on Gaussian distribution, and the result is presented on Fig. 5.5b. The periodicity
pattern caused by the CRT monitor’s refresh rate is clearly visible in the averaged
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LPTC data. The lower amplitude of the first two pulses in the HS mean may indicate
the presence of a slow transient component at the beginning of every period of the
stimulus.

5.4.2 Identification of a Single EMD

The first stage of the identification algorithm is to estimate the parameters of the
linear block in the single EMD model. The linear dynamics are assumed to be of
first order. In the identification setup, the photodiode measurement constitutes the
input signal to the first channel uC, while the second input u� is a delayed version
of uC, see Fig. 5.6a (upper plots). The delay is assumed to be small enough so that
u� vanishes before the next pulse appears at uC. In this example, the delay is set to
10 sampling instants. An alternative method to find the delay value is gridding over
an interval of plausible time delays.

As the output signal, a single pulse from the HS neuron data is considered. As
mentioned at the beginning of this chapter, this signal does not correspond to the
output of a single EMD but rather to the pooled response of a number of spatially
aligned EMDs. For comparison, identification is also performed with the mean data
as the output signal. The identification results in Fig. 5.6a (lower plots) show that the
estimated model fits the leading edge of the output pulse well but decays faster than
the actual data. The estimated transfer functions of the linear blocks are OWR.s/ D
3;071

sC426
for estimation from raw experimental data and OWM .s/ D 2;275

sC392
from the mean

data.
Figure 5.6b shows how the assumed dynamical order of the linear blocks of the

model affects the identification results. The estimated model fits the HS response
better with higher order models. However, the pure time-delay model (infinite
dimensional) yields the worst fit compared with the first and second order models.
Nevertheless, the leading edge of the signal is captured reasonably well.

5.4.3 Identification of a Layer of EMDs

As mentioned earlier, the measured LPTC response corresponds to the pooled
output of multiple EMDs. This explains why the estimated single EMD model
shows good results at approximating the leading edge of an output pulse but does
not capture the rest of the signal. To improve the fit performance, multiple EMDs
are considered. The number of contributing EMDs and their weights are evaluated
by solving the sparse optimization problem formulated by (5.10).

Figure 5.7 shows the identification results with contribution of multiple EMDs
as expressed in model (5.9). The four estimated models are obtained using the first
order model and the second order model on raw experimental and mean data. The
upper plots depict the fit performance, while the lower plots provide the estimated
weights of contributing EMDs. In this example, the shift between the contributing



102 E. Hidayat et al.

0 20 40 60
0

0.005

0.01

0.015

0.02

y(
t)

Estimation of EMD on real data

0 20 40 60
0

0.005

0.01

0.015

0.02

y(
t)

Estimation of EMD on mean data

True output

Estimated output

0 20 40 60
0

0.02

0.04

0.06

0.08
u+(t)

0 20 40 60
0

0.02

0.04

0.06

0.08

time (10−4sec)time (10−4sec)

time (10−4sec) time (10−4sec)

u−(t)

Single EMD identification

0 10 20 30 40 50 60
−2

0

2

4

6

8

10

12

14

16
x 10−3

time (.10−4sec)

y(
t)

Estimation of single EMD

True output
1st order
2nd order
Pure time−delay

Comparison of different models

True output

Estimated output

a

b

Fig. 5.6 Identification results: (a) Identification of the single EMD model. Upper plot: The input
signals of the EMD model, u� is a delayed version of uC. Lower plots: identification result for
the single EMD model using the measured data and mean data as output signal. (b) Comparison
of identification results using different models for the linear blocks (Reprinted with permission
from [10]. Copyright 2013, AIP Publishing LLC)
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Fig. 5.7 Identification results with consideration of multiple EMDs. Upper plot: Comparison of
the estimated models using the measured data and the mean data. Lower plot: The estimated
weights of the contributing EMDs evaluated from the measured data and the mean data. (a) Using
first order model. (b) Using second order model (Reprinted with permission from [10]. Copyright
2013, AIP Publishing LLC)
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EMDs is assumed to be 10 sampling instants (0.1 ms), which is not biologically
feasible, but is suitable for the conceptual model. As it is shown in (5.10), a lower
sparsity level of the weights can be achieved at the expense of fit degradation.

For identification with real data, the second order model still gives better fit
performance compared to the first order model. However, the difference of the
fit performance between first order and second order model for identification on
mean data is negligible. This is due to the fact that the mean data obtained through
averaging reduce high frequency dynamics. It is also worth mentioning that the
positive weights constraint causes poor fit for the first few samples of the data.

Notice that the spatial identifiability analysis of Sect. 5.3.2 applies here only
approximately since the actual stimulus to the fly eye is not a sinusoidal grating,
but rather a sequence of frame rate pulses whose amplitudes are modulated by the
sine wave. Yet, by inspection of the weight plots in Fig. 5.7a, it is easy to conclude
that the spatial excitation properties of the modulated sine wave allow for estimation
of three spatially distributed EMDs.

Conclusions
The classical EMD model in insect vision has been studied under sinusoidal
and pulsatile input. The phenomenon of double-frequency harmonics in the
output signal Fourier spectrum in the non-symmetrical EMD model under
single tone excitation has been explained. Since the experimentally measured
neural response is a result of pooling the outputs of a relatively large number
of spatially distributed EMDs, a model for an EMD layer is suggested and
estimated by means of a standard sparse estimation algorithm. To enable
an unambiguous EMD layer estimate, the spatial excitation properties of
stimulating with multiple sinusoidal gratings have been studied. A way of
designing such stimuli with a guaranteed spatial excitation order is suggested
and validated in a simulation example. A complete EMD layer identification
approach based on Laguerre-domain signal representation and sparse opti-
mization has thus been proposed and implemented on laboratory data from
hoverfly LPTCs.
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Chapter 6
Multi-complexity Ensemble Measures
for Gait Time Series Analysis: Application
to Diagnostics, Monitoring and Biometrics

Valeriy Gavrishchaka, Olga Senyukova, and Kristina Davis

Abstract Previously, we have proposed to use complementary complexity
measures discovered by boosting-like ensemble learning for the enhancement
of quantitative indicators dealing with necessarily short physiological time series.
We have confirmed robustness of such multi-complexity measures for heart rate
variability analysis with the emphasis on detection of emerging and intermittent
cardiac abnormalities. Recently, we presented preliminary results suggesting that
such ensemble-based approach could be also effective in discovering universal
meta-indicators for early detection and convenient monitoring of neurological
abnormalities using gait time series. Here, we argue and demonstrate that these
multi-complexity ensemble measures for gait time series analysis could have
significantly wider application scope ranging from diagnostics and early detection
of physiological regime change to gait-based biometrics applications.
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6.1 Introduction

Development of new technologies has provided inexpensive and unobtrusive means
of collecting multi-scale physiological data and led to continuous improvements in
clinical instrumentation. Sophisticated portable and wearable systems for real-time
collection of physiological data have also become affordable for routine individual
use. Increased availability of high-resolution data provides new opportunities for
quantitative diagnostics, early abnormality detection, and convenient monitoring.

Analysis techniques compatible with necessarily short time series are essential
for many applications. However, it is challenging to construct universal measures
or indicators for robust quantification of physiological states from short time
series. In express diagnostics, preventive monitoring, and personalization of medical
treatment, it is important to find and correctly interpret quantitative measures
capable of detecting emerging and transient abnormalities and other subtle regime
changes.

Variability analysis of physiological time series provides a generic framework
for robust discrimination between normal and abnormal states [14, 20, 32, 35, 39].
The well known application of this methodology is heart rate variability (HRV)
analysis approved as one of the modalities for cardiac diagnostics [14, 32, 35, 39].
Compared to traditional electrocardiography (ECG) analysis the method is more
robust to noise because it relies only on the interbeat interval signal (RR data)
which is very important for analysis of the data from portable and wearable devices.
Moreover it is able to detect cardiac and non-cardiac (e.g., emotional) abnormalities
lacking well-defined ECG form patterns.

Variability analysis is usually based on nonlinear dynamics (NLD) complexity
measures and advanced linear indicators. Unfortunately, the accuracy and stability
of such variability measures tend to decrease significantly when the analysis is
performed on shorter data segments [11,14,20,32,35,39]. This limitation diminishes
the predictive capability of these measures for early detection of both short-lived
precursors of emerging physiological regimes and abnormalities with transient
patterns.

Recently we have demonstrated that performance of HRV indicators dealing with
short time series could be significantly improved through optimal combination of
complementary complexity measures, using boosting-like ensemble learning [11,
12]. Such an approach is especially important for early detection of emerging
abnormalities and other regime changes where other techniques could often fail.

ECG time series is an important diagnostic and monitoring modality for cardiac
abnormalities and related state changes. However, alternative physiological data
channels could be informative for other abnormalities. For example, due to advances
in technology, gait time series can be easily collected with wearable clinical
equipment as well as with general-purpose portable devices such as smartphones
where built-in accelerometers are now part of standard configuration. Similar to RR
data, measurement of gait stride intervals is very tolerant to noise since only peak-
to-peak periods of otherwise complex time series are required.
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Variability metrics of gait stride intervals are known to be sensitive to changes
in neurological functions associated with aging and development of certain neu-
rological diseases [10, 15, 17, 26]. Long-range correlation and other measures of
stride-interval dynamics could be effective in detecting neurological abnormalities
and in quantification of their severity [10,15,17,26]. These include Parkinson’s (PD)
and Huntington’s (HD) diseases, amyotrophic lateral sclerosis (ALS), and others.

Remaining challenges in treatment and diagnostics of ALS, PD, HD and other
neurological abnormalities maintain significant interest in unobtrusive modalities
capable of early diagnostics and robust monitoring of such abnormalities. Therefore,
variability indicators computed from stride-interval time series could provide
convenient and robust tool for early diagnostics and monitoring of neurological
abnormalities. A generic set of NLD complexity measures and linear indicators used
in HRV analysis can be directly applied to gait quantification after recalibration.

However, similar to HRV analysis, accuracy of NLD measures and advanced
linear indicators could significantly deteriorate when applied to shorter segments
of gait time series. Therefore, such indicators would have serious limitations in
detecting early intermittent signatures of neurological abnormalities as well as in
monitoring effectiveness of medical treatment and its optimization.

In this work we suggest that multi-complexity measures discovered by boosting-
like ensemble learning could be effective for early diagnostics and monitoring
of neurological abnormalities even when applied to short segments of gait stride
intervals. We illustrate validity of our approach using real gait data of normal
subjects and patients with ALS, HD and PD. Similarly, we demonstrate capability of
multi-complexity ensemble indicators of detecting slow regime changes using gait
time series collected from healthy children and teens of different age groups (from
3 to 14 years old). Finally, we present analysis of long gait time series from ten
healthy adults suggesting possible application of our meta-indicators in gait-based
biometrics. All presented results are based on real gait data available at http://www.
physionet.org. Current work provides significant extensions and generalizations of
our preliminary results previously reported in [13].

6.2 Variability Analysis of Physiological Time Series:
Advantages, Challenges and Multi-complexity
Generalization

Majority of NLD measures and linear indicators used for variability analysis require
long time series to achieve desired accuracy and stability. For example, many HRV
indicators require long time series for stable calculation [14, 32, 39] which could
drastically restrict their application scope. Similar restrictions are also relevant
for stride-interval analysis. For example, recommendation in one of the recent
study [10] is to use segment of at least 600 stride intervals for variability-based
diagnostics. Nevertheless, indicators have to be computed on short segments in

http://www.physionet.org
http://www.physionet.org
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order to capture early signs of developing and/or intermittent abnormalities or to
detect subtle initial effects of treatment procedures. Indeed, indicator computed on
a long time series will average out these short-lived effects and will fail to detect
them.

The well-known NLD indicators applicable for HRV and gait analysis are based
on detrended fluctuation analysis (DFA) [27], multi-scale entropy (MSEn) [9],
and multi-fractal analysis (MFA) including MFA extension of DFA [22]. The
discriminative-ability preservation conclusion extends to advanced linear indicators
based on power spectrum analysis of the RR time series [35]. We also successfully
used power spectrum measure as one of the base indicators for stride-interval
analysis.

DFA was proven to be useful in revealing the extent of long-range correlations
in time series including HRV applications [27] and diagnostics of neurological
abnormalities [10, 15, 17, 26]. First, the investigated time series of length N is
integrated. Next, the integrated time series is divided into n boxes. All boxes
have the same length. In each box, a least-square line is fitted to the data with
y-coordinate denoted by yn.k/ (representing the trend in that box). Finally, the
integrated time series, y.k/, is detrended as follows:

F.n/ D
vuut 1

N

NX
kD1

Œy.k/ � yn.k/�2: (6.1)

A linear relationship on the plot of log F.n/ vs. log n indicates power law (fractal)
scaling characterized by a scaling exponent ˇ (slope of the fitted straight line) which
is used as HRV indicator.

Multi-scale entropy (MSEn) method [9] has been introduced to resolve limita-
tions of traditional single-scale entropy measures. First, a coarse-graining process
is applied to the original time series, xi . Multiple coarse-grained time series
are constructed by averaging the data points within non-overlapping windows of
increasing duration, � :

y
.�/
j D

1

�

j�X
iD.j �1/�C1

xi ; (6.2)

where � represents the scale factor and j D 1; : : : ; N=� . The duration of the coarse-
grained time series is N=� . Next, entropy is calculated for each time series and
plotted as a function of the scale factor. Different signatures of this function’s curve
including originally suggested entropy difference between two scales [9] can serve
as HRV and other physiological indicators.

HRV indicators based on frequency-domain analysis are often superior in
accuracy and stability to the time-domain linear indicators. One of the widely
accepted indicators of this type in HRV analysis is a power spectrum ratio of the
low-frequency band (0.04–0.15 Hz) to the high-frequency band (0.4–0.15 Hz) [35].
Due to irregularity of the time grid of the RR time series, it is convenient and more
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accurate to use a Lomb periodogram for power spectrum calculations instead of
Fast Fourier Transform (FFT) [28]. In certain regimes, the accuracy of such power
spectrum indicators could be comparable to the best NLD approaches. As discussed
in the next section, similar power spectrum measures can also be successfully used
as base indicators for stride-interval analysis.

Recently we have illustrated that challenges of variability analysis, when applied
to short time series, could be overcome by using a classification framework based
on boosting-like ensemble learning techniques that are capable of discovering
robust multi-component meta-indicators from a combination of existing variability
measures and other incomplete empirical knowledge [11, 12]. Unlike most other
combination techniques, the use of boosting is capable of discovering an ensemble
of complementary models that has both significantly lower bias (higher accuracy)
and lower variance (better stability) compared to each individual model. Potentially
more flexible data-driven models (e.g., neural networks) are often unstable due
to training data incompleteness, intrinsic non-stationarity, and low signal-to-noise
ratio. In addition, such “black-box” systems lack interpretability. In contrast, meta-
indicators, discovered by boosting, combine accuracy, stability, and interpretability
because they are constructed from the well-understood low-complexity base models.

A typical boosting algorithm such as AdaBoost [4, 30] for the two-class classifi-
cation problem starts with equal and normalized weights for all training data. Base
classifiers, ht .x/, are trained using a weighted error function and the optimal one
is chosen at each iteration t . Here x is an input vector. Data points misclassified
by the current interation’s best model are penalized by the weight-factor adjustment
(increase) for the next iteration. Therefore, on each iteration, the algorithm focus
is on harder-to-classify samples. The final meta-model, given below, classifies the
unknown sample as classC1 when H.x/ > 0 and as �1 otherwise:

HT .x/ D
TX

tD1

˛t ht .x/: (6.3)

Here, the constants ˛t are the sequence of combination coefficients obtained, and
T is the total number of iterations. Regime adjustments together with important
regularization procedures also can be introduced to the original boosting algorithm
in several ways [18].

A natural choice of base models could be low-complexity base classifiers, where
each of the classifiers uses just one complexity measure, ˇi , out of several available
choices:

y D h.ˇi Œpi �; 
/: (6.4)

Here 
 is a threshold level (decision boundary) and pi is a vector of adjustable
parameters of the chosen measure. In our case, ˇi may correspond, for example,
to either a DFA scaling exponent, a slope of MSEn curve, or a power spectrum
ratio. Applying boosting steps to a set of such base classifiers (6.4) with different
measures ˇi and optimizing over .pi ; 
/ on each boosting iteration, we obtain a
meta-classifier (6.3).
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Additionally, many different physiological regimes, quantified by individual base
classifiers from the ensemble, are implicitly encoded in such multi-complexity
meta-indicators. In our recent publications [33, 34] we referred to this utilization
of ensemble internal structure as ensemble decomposition learning (EDL). We also
outlined possible practical application of EDL concept using one of the single-
example learning (SEL) frameworks.

The EDL technique can be summarized as follows. Boosting constructs local
experts hi .x/ for different implicit regimes or domains of a whole feature space,
which ensures good global performance of the final ensemble. Therefore, partial
information of wide variety of dynamical regimes becomes implicitly encoded in
the obtained ensemble of classifiers. However, only aggregated output is used for
normal-abnormal classification, while the rich internal structure of the ensemble is
completely ignored. Extraction of this underutilized knowledge could be formalized
in terms of ensemble decomposition learning (EDL) [33]. Formally, one can
introduce ensemble decomposition feature vector as follows:

D.x/ D Œ˛1h1.x/; ˛2h2.x/; : : : ; ˛T hT .x/�: (6.5)

Each sample after ensemble classification procedure can be represented by this
vector. Although each individual component of this feature vector may not contain
explicit and usable information, collectively, these values may provide detailed and
informative state representation of the considered system which is not accessible in
the aggregated form given by H.x/.

Later, we have also pointed out that, besides particular SEL framework, one can
effectively utilize this fine-grain knowledge by using EDL metrics in different types
of instance-based learning (IBL) and clustering algorithms including graph-based
techniques [34]. For example, we have found that the length change of the minimum
spanning tree (MST), constructed using ensemble distance metrics, could provide
an early indication of the emerging physiological regimes. All provided illustrations
were based on real data for several cardiac abnormalities.

MST representation is motivated by the human perception which organizes
information with the most economical encoding. A spanning tree is a connected
graph containing all vertices of the original graph without loops, i.e., there exists
only one path connecting any two pairs of nodes in the graph. If the edges of the
graph are weighted, the spanning tree length is defined as the sum of the weights
of its edges. MST is a spanning tree with minimal length among all spanning trees
connecting the nodes of the graph. MST of the graph can be derived with Prim’s
or Kruskal’s algorithm [36] with subsequent removal of several longest edges to
generate clusters.

Advantages of graph-based representation such as MST have been recently
demonstrated in financial applications [23, 25, 37]. Similarly, MST representation
can be used to capture essential dependencies and differences between physiological
states quantified by the EDL vector. If the length of time series permits computation
of N EDL vectors from N consecutive segments of physiological time series,
information from N.N�1/=2 numbers of distance matrix dij , the distances between
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EDL vectors i and j given by (6.5), defined as l1 or l2 norm in T -dimensional
space, will be represented with .N � 1/ edges of MST which can be used for
intuitive cluster visualization and analysis. Besides effective clustering, EDL-based
MST representation also offers informative aggregated measure such as normalized
tree length that could be a sensitive indicator of emerging new regimes or regime
changes:

L D 1

N � 1

X
dij 2T

dij ; (6.6)

where .N � 1/ is the number of edges present in MST. Indeed, even in the
very early stage when a new regime begins manifesting itself only on short
intermittent segments, MST length (6.6) will increase because the distance dij

between EDL vectors of existing and new regimes is significantly higher than the
distance between EDL vectors describing the same regime. This could be used for
preventive monitoring of healthy subjects as well as for side effects detection in the
beginning of new therapy or drug treatment. The described approach is different
from EDL-SEL framework mentioned before. Indeed, no EDL vectors associated
with particular abnormalities are required and any emerging regimes different from
current ones will be detected.

6.3 Diagnostics and Monitoring of Neurological
Abnormalities

Several neurologic disorders include abnormalities of movement and gait as promi-
nent symptoms. Huntington’s disease is a debilitating and ultimately fatal neurode-
generative disease with an autosomal dominant inheritance pattern. A good family
history, symptom history, and physical exam can suggest the diagnosis, which can be
then confirmed by molecular tests looking for CAG (codon that codes for the amino
acid glutamine) triplet repeats in the Huntington gene [24]. The challenge lies in
diagnosing clinical disease onset in an individual who is known to have the genetic
abnormality, when classical movement abnormalities may be less prominent [3]. In
addition, a key component of active research into potential therapeutic approaches
is the ability to monitor symptomatic response in a reliable manner. Currently
the United Huntington’s Disease Rating Scale is used for this purpose. However,
administration of the entire scale is time-consuming. Furthermore, certain items
assessed have better discriminatory function than others [38].

Parkinson’s disease is another neurologic movement disorder. Diagnosis relies on
typical symptoms of motor impairment by physical exam and patient history, after
excluding other causes through laboratory and imaging evaluations. A definitive
genetic test is not applicable in most cases. Specific medications are available to
treat the symptoms of the disease, but making the accurate diagnosis is essential.
Patients presenting with gait disturbance as their main initial symptom can have
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a significant delay in diagnosis (compared to those who present with a tremor),
which in turn delays therapy [8]. Automated gait analysis, as opposed to more
subjective clinical assessment, has been shown to be of potential use in diagnosing
and following Parkinson’s disease [21].

ALS is another progressive neurodegenerative disorder, caused by degeneration
of motor neurons which leads to muscle weakness and atrophy. The presenting
symptoms depend on which muscles are affected first. Electrophysiological testing,
which can be invasive and painful, plays a role in early diagnosis of ALS and
differentiation from treatable causes of weakness [5]. However, both in clinical
practice and research, a less invasive yet reliable method of assessing disease
progression and response to treatment is necessary.

Here we demonstrate that single indicators based on NLD complexity measures
could partially preserve their discrimination ability (normal vs. abnormal) even
on short segments of gait time series: down to �100 stride intervals or even
shorter. Nevertheless, the reduced accuracy may not be sufficient for many prac-
tical applications. However, combination of complementary complexity measures
using boosting-like algorithms can significantly increase accuracy and stability of
indicators operating on short segments of gait time series. Such multi-complexity
measures could be effective for early detection and monitoring of wide range of
neurological abnormalities.

To illustrate capabilities of our ensemble-based indicator, we use gait data
collected from normal subjects and patients with ALS, HD and PD that are
available at http://www.physionet.org. This data set includes gait time series from
15 patients with PD, 20 patients with HD, 13 patients with ALS, and 16 healthy
subjects. Each time series consists of up to 300 stride intervals. We use segments
as short as 128 stride intervals for calculation of DFA (6.1), MSEn (6.2) and power
spectrum measures that are used in base classifiers (6.4). Due to data limitation,
total number of segments is increased in the training phase by overlapping. Also,
since low-complexity base classifiers are used, we do not find any significant signs
of overfitting on out-of-sample data. In the following, performance metrics are
computed on all available data.

We should note that previously reported preliminary results [13] were based on
indicator calculation from 128 left-only or right-only stride intervals. While such
approach is also valid and could be preferable in some cases (e.g., when one leg has
certain problems), here we employ the more natural and practical approach by using
segments with both left and right stride intervals. This also means that previous
results based on 128 left-only or right-only intervals really used time series segments
corresponding to 256 stride intervals. In contrast, the current study is based on the
shorter segments consisting of 128 intervals.

We apply AdaBoost to discover ensemble meta-indicator given by (6.3) which
consists of complementary base classifiers (6.4). The classifier from the first
boosting iteration is the best single classifier. In our case, it always happens
to be DFA-based classifier. To illustrate discrimination ability of the best single
complexity measure, we compute DFA exponents for all 128-interval segments of

http://www.physionet.org
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Fig. 6.1 Single DFA measure computed on each of 128-interval segments of stride data from
normal control group and patient groups with ALS, HD and PD

stride time series from different groups of patients and summarize them as the box
plot in Fig. 6.1. Here we use modified box plot from R with all default settings. Thick
horizontal segments represent median, while segments below and above represent
25th and 75th percentiles, respectively. Dashed lines extend to max/min points if
they are inside the range obtained by adding the difference between 75th and 25th
percentiles scaled by 1.5–75th percentile and subtracting the same value from 25th
percentile. Otherwise, points outside this range are plotted as circles.

It is evident from Fig. 6.1 that medians of all abnormal groups (ALS, HD,
PD) are clearly below the median of the healthy group. This confirms remaining
discrimination ability of a single indicator even for short stride-interval segments.
However, there is significant overlapping between normal and abnormal groups
even for ranges defined by 25th–75th percentiles. Therefore, normal/abnormal
discrimination accuracy of a single measure is quite limited.

However, boosting-based combination of complementary complexity measures
could drastically increase accuracy of meta-classifier given by (6.3). Box plot of the
aggregated ensemble measure (6.3) computed on 128-interval segments for each
group of patients is shown in Fig. 6.2. Now, not only medians of ALS, PD, and HD
groups are well below healthy group, but also 25th–75th percentile ranges of all
abnormal groups do not overlap with healthy group. Thus, accuracy of the multi-
complexity ensemble indicator is significantly increased.

A more formal comparison of the best single measure vs. ensemble indicator
is presented in Fig. 6.3. Here we plot detection rates for three reasonable false
alarm rates: 10, 20 and 30%. It is clear that boosting-based combination of
individual complexity measures can increase detection rate by 40–50%. Such
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Fig. 6.2 Aggregated ensemble measure computed on each of 128-interval segments of stride data
from normal control group and patient groups with ALS, HD, and PD
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Fig. 6.3 Abnormality detection rates for a given false alarm rate: the best single measure vs.
ensemble of multi-complexity measures
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dramatic performance improvement suggests that such meta-indicators based on
multiple complexity measures could be a reasonable choice for early detection and
monitoring of various neurological abnormalities.

6.4 Detection of Emerging Physiological States
and Regime Changes

Early detection of emerging physiological state or slow regime changes is often
more challenging than accurate diagnostics of the developed abnormality. Indeed,
many discriminative features used in diagnostics are not yet present when abnor-
mality is in early development stage. Similar challenges are also typical for early
detection of changes during personalization of drug treatment or therapy.

High detection rates with acceptable false alarm rates shown in Fig. 6.3 illustrate
ability of the multi-complexity meta-classifier to discriminate between gait time
series from normal subjects and subjects with various developed abnormalities.
Implicitly, this also suggests potential ability to detect early signs of the developing
abnormality and other regime changes. However, direct illustration based on data
with emerging or intermittent pathologies could be more convincing. While we
are not aware of any large open-access databases capturing slow development of
neurological abnormalities, other gait databases can be used for illustration of slow
physiological regime changes. One of them is gait maturation database first analyzed
by Hausdorff et al. [16] and now available at http://www.physionet.org.

Gait maturation database is a collection of gait time series from 50 children of
various age groups: from 3 to 14 years old. For each subject, time series is up to 500
stride-intervals long. It is known that in very young children, immature control of
posture and gait results in unsteady locomotion [16]. In children �3 years old, gait
appears relatively mature. However, as suggested in [16], the dynamics of walking
changes continues beyond this age. This was confirmed by quantitative analysis of
50 children from gait maturity database [16]. Single time- and frequency-domain
measures as well as DFA-based measures have been used in that study. It was
demonstrated that, while gait in younger age groups resembles that of adults with
neurological abnormality, it continuously matures and approaches the dynamical
range of healthy young adults as age increases.

In the analysis of gait maturation data, Hausdorff et al. [16] calculated indicators
using significantly long segments (at least 256 stride intervals), and there was still
wide overlap of indicator values among different age groups. Such overlap could
only increase for shorter segments. This overlap is not critical for the main objective
of the analysis presented in [16]. Indeed, the authors demonstrated statistically
significant trend of gait characteristics approaching those of healthy adults when
children age increases. However, for early detection of slow regime change due to
developing abnormality or initial treatment effects, insufficient discrimination of
single indicators could make them useless in practice.

Thus, gait maturation database offers convenient real-life data to demonstrate
advantages of multi-complexity ensemble measures over single indicators in detect-

http://www.physionet.org
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ing emerging physiological states and slow regime changes. For this purpose,
we compare the best single indicator (DFA) and ensemble of multi-complexity
measures discovered in the normal-abnormal classification problem in the previous
section. It is important to note that none of the gait maturation data were used in the
training phase.

We applied these indicators to short (128-interval) segments from different age
groups and summarized results as box plots in Figs. 6.4 and 6.5.

<5yr 5−10yr 10−14yr

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

In
di

ca
to

r 
V

al
ue

Fig. 6.4 Single DFA measure computed on each of 128-interval segments of stride data from three
different age groups of healthy subjects
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Fig. 6.5 Aggregated ensemble measure computed on each of 128-interval segments of stride data
from three different age groups of healthy subjects
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Figure 6.4 demonstrates that single DFA indicator is not capable to detect any
clear trend in gait dynamics evolution as children age increases. On the other
hand, as evident from Fig. 6.5, aggregated output, H.x/, of the multi-complexity
ensemble indicator shows clear trend towards gait dynamics of healthy adults as age
increases. Remember that the range of probability-like output, H.x/, is Œ�1;C1�,
with healthy state corresponding to positive numbers. Therefore, aggregated output
of multi-complexity ensemble measures could be a promising metric for early
detection of subtle and/or slow changes in gait dynamics.

6.5 Biometrics Based on Gait Time Series Analysis

In the previous section, we have demonstrated that multi-complexity ensemble
measures, obtained as binary classifiers for normal-abnormal diagnostics problem,
could have much wider application scope. Indeed, the aggregated ensemble output
could be a sensitive and robust indicator of physiological regime changes. In
addition, as shown previously in the context of cardiac abnormalities, multi-
complexity ensembles could be also used for multi-class discrimination and rare-
state quantification using EDL representation [33, 34]. Similar approach could
be also effective for physiological state discrimination based on gait time series.
Gait-based biometrics is an example of such practical problem where effective
discrimination among multiple physiological states or classes is crucial.

Recently, gait recognition has become a topic of interest within the computer
vision applications, due to its growing importance as a biometric modality [2,
6, 29]. An important motivation for gait recognition research has been provided
by psychophysical experiments with Moving Light Displays (MLDs) pioneered
by Johansson [19]. Johansson’s experiments demonstrated the ability of humans
to recognize the type of movement of a person solely from observing the 2D
motion pattern generated by light bulbs attached to the person. Similar experiments
indicated that even the identity of a familiar person, as well as the gender of the
person, might be recognizable from MLDs [1]. These experiments provided insight
into motion perception in the human visual system and suggested that motion
patterns generated by the human gait encode information that could be unique for
the moving person.

The fact that each person seems to have a distinctive (idiosyncratic) way
of walking is hardly surprising from a biomechanics standpoint [40]. Human
ambulation consists of synchronized integrated movements of hundreds of muscles
and joints in the body. Although these movements follow the same basic pattern for
all humans, they seem to vary from one individual to another in certain details such
as their relative timing and magnitudes. Much research in biomechanics and clinical
gait analysis is devoted to the study of the inter-person and intra-person variability
of gait, mainly to determine normal vs. pathological ranges of variation. There is
an increased interest in gait as a biometric, mainly due to its non-intrusive and
non-concealable nature as well as possibility of remote biometrics. Considerable
research efforts are being devoted in the computer vision community to characterize
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and extract gait dynamics automatically from video [2, 6, 29]. Biometric systems
for human identification at a distance are in increasing demand in various real-life
applications. Many biometric modalities such as face recognition, iris, fingerprints,
palm prints, and hand geometry have been systematically studied and employed
in many practical systems. However, these approaches suffer from two main
disadvantages: (1) high failure rate when only low resolution images and pictures
taken at a distance are available, and (2) necessity of subject cooperation for accurate
results. For these reasons, innovative biometric recognition methods for human
identification at a distance have significant potential and appeal for surveillance and
forensic applications [6].

The most common categories of gait recognition, currently used and discussed
in the literature, are appearance-based and model-based approaches [2, 29]. Among
the two, the appearance-based approaches suffer from changes in the appearance
owing to the change of the viewing or walking directions [2, 29]. Model-based
approaches extract the motion of the human body by means of fitting their models to
the input images. Model-based approaches are view- and scale-invariant as well as
take into account the kinematic characteristics of walking manner [2,29]. In general,
a gait is considered as being composed of a sequence of kinematic characteristics of
human motion and most systems in existence recognize it by the similarity of these
characteristics.

However, for accurate recognition, both approaches require significant amount
of details to be extracted from sequential video images. Unfortunately, in many
practical cases the quality of available video may be poor due to insufficient lighting,
covering of motion details by cloth, and other reasons. In such circumstances,
one of the gait characteristics that could still be extracted is time period between
consecutive steps. This is similar to RR intervals that could be quite accurately mea-
sured even from very noisy ECG time series and still used for cardiac diagnostics
unlike ECG waveforms. Therefore, multi-complexity ensemble measures for gait
time series analysis could be potentially employed as complementary approach in
biometric applications, especially in cases where quality of the video prohibits usage
of more traditional techniques.

Besides remote gait-based biometrics from video sequences, gait recognition
from accelerometer data, that are currently available in all standard smartphones
and other wearable devices, becomes comparably important [7]. Indeed, remote
acquisition of accelerometer time series could be used to identify the person
currently carrying the phone and in related applications. Until now, the most
common approaches to analyze such time series included direct feature extraction
using wavelet transform or similar techniques with subsequent application of
standard classification algorithms [7]. However, when quality of time series is poor,
it would be beneficial to extract the most robust feature such as stride interval time
series with subsequent application of suitable techniques for further analysis. Again,
multi-complexity measures discussed in this paper could be applicable to this set of
gait-based biometric problems.

Success of multi-complexity measures in normal-abnormal classification does
not warranty its effectiveness in gait-based biometrics. Indeed, stride-interval
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dynamics is quite different in healthy subjects and patients with neurological
abnormalities. This explains success in binary “normal-abnormal” classification.
However, differences between same-class (e.g., healthy) subjects could be much
more subtle. Also, here we are dealing with multi-class classification problem that
is often significantly more challenging than binary (2-class) classification. Nev-
ertheless, our preliminary results presented below indicate that multi-complexity
ensemble measures could differentiate between different individuals using their
stride interval time series. This suggests applicability of our approach to gait-based
biometrics problems discussed above. Our results are based on the analysis of gait
time series from ten healthy subjects available at http://www.physionet.org. This
database consists of 3:5 � 104 stride intervals.

Multi-class classification algorithms are generally based on the reductions to the
binary case. A common choice, applicable to both single classifiers and boosting
algorithms, is “one-against-all” reduction where separate classifiers for each of
the considered classes are built [31]. After test sample is presented to such set of
classifiers, the sample is considered belonging to the class for which probability-like
output of the corresponding classifier is the largest among all available classifiers.

First, we demonstrate possibility of discrimination among subjects based on
ensembles of multi-complexity measures that are built using “one-against-all”
approach. We apply our framework to build ten ensemble classifiers given by (6.3)
corresponding to each of the ten healthy subjects. In the test phase, we present data
from each of the subjects to this set of ten classifiers. If multi-complexity measures
are capable to discriminate among different subjects, the maximum output (up to
C1) should be obtained from the classifier corresponding to the subject whose data
are currently presented. In other words, the output differences between the classifier
corresponding to the subject of the presented data and all other classifiers (total, 9
numbers) should be positive with values up to C2. This is exactly what we observe
in Fig. 6.6 where results of our multi-class classification test are presented. Indeed,
all data points, except one, are positive numbers. Therefore, these preliminary
results suggest effectiveness of multi-complexity measures in the context of “one-
against-all” multi-class classification that can be used in gait-based biometrics.

While “one-against-all” multi-class classification is valid approach to gait-based
biometrics, it has important limitations. Indeed, it is applicable only to limited
number of classes (individuals) since the data from each class (individual) should
be available in training phase to build classifiers for each class. Therefore, other
individuals that are not present in training data cannot be identified. However, in
many important practical cases one would be interested to measure the similarity
between two gait time series to conclude whether these time series belong to the
same individual or not. Such similarity metrics should be robust enough to work for
individuals that are not included in the training phase. This is possible if, instead of
aggregated outputs of boosting-based classifiers, one uses EDL vectors (6.5) of the
ensemble classifiers.

Here we describe and test one of the possible EDL-based frameworks for gait-
based biometrics. Previously, in the context of cardiac abnormalities, we have
shown that normalized MST tree length (6.6) computed from distance matrix of

http://www.physionet.org.
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Fig. 6.6 Difference between median of the aggregated outputs of the current subject classifier
and medians of outputs from other subjects classifiers computed on 128 stride interval segments.
All classifiers are computed using current subject data. Calculations repeated for each ten healthy
subjects

consecutive EDL vectors could be used as sensitive indicator of emerging patterns
and slow regime changes [34]. The same approach can be used in EDL-based
biometrics with slight modification. Here, instead of using distance metrics of EDL
vectors from the same individual, we can create cross-subject distance (proximity)
matrix where distances between all EDL vectors of one subject (individual) and all
EDL vectors of another subject (individual) are computed. Then we still apply MST
technique for low-dimensional representation of such matrix and compute MST
tree length as an aggregated measure of EDL-based distance or proximity measure
between two individuals.

Operationally, such EDL-based biometrics framework can be implemented as
follows. Given gait time series from N subjects (individuals), we build N multi-
complexity ensembles as in “one-against-all” multi-class classification approach.
Then, we combine N EDL vectors of these classifiers to obtain one multi-feature
EDL vector. Such EDL vector can be applied not only to N subjects used in training
but to quantify proximity of any two gait time series. Indeed, even for relatively
small number of individuals used in training, their EDL vectors provide rich multi-
feature (multi-regime) representations that can be generically applied to quantify
any gait time series.

For demonstration of the effectiveness of such EDL-based approach, we apply
it to the same gait database of ten healthy individuals as in “one-against-all” multi-
class classification discussed earlier. We combine ten EDL vectors into a single
EDL vector that should capture large number of different micro-regimes and their
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combinations. In testing phase, we compute consecutive EDL vectors from gait time
series of a subject that needs to be identified. Then, we compare these consecutive
EDL vectors with EDL vectors of reference subjects by construction MST tree
from cross-subject proximity matrix and computing MST tree length (6.6). The
lowest MST tree length among reference subjects will identify the tested subject.
Please note that the set of reference subjects can be increased without retraining for
obtaining new EDL vector.

In our series of tests we use gait data from each of ten subjects for EDL-based
identification. In all ten tests, the minimum MST tree length correctly identifies
tested individual. Details of six out ten tests are presented in Fig. 6.7. We see that
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Fig. 6.7 Normalized MST length computed from the cross-subject proximity matrix. Proximity
matrix is defined as l2 distance between all pairs of EDL feature vectors computed on 128
stride interval segments. Red column indicates current reference subject whose proximity to other
subjects including himself is measured by MST length
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the lowest MST tree length points to the correct reference subject, i.e., if data from
the n-th subject is presented, the lowest MST tree length will be obtained from
cross-subject proximity matrix with the n-th reference individual. Thus, our results
provide preliminary indication that generic high-dimensional feature vector can be
constructed using training data from reasonable number of individuals and used in
the wide range gait-recognition applications without any additional retraining.

Conclusions
We have demonstrated that boosting-based combination of multi-complexity
measures could significantly improve quantitative analysis of short gait time
series and could be applied for early detection of neurological abnormalities
and their monitoring. Our conclusions are illustrated on real gait data from
healthy subjects and patients with several neurological abnormalities. We
have also demonstrated that multi-complexity ensemble measures can be
effective in early detection of slow physiological regime changes and in gait-
based biometric applications. More detailed analysis of our ensemble-based
multi-complexity indicators on larger gait data sets is warranted.
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Chapter 7
Development of a Motion Capturing and Load
Analyzing System for Caregivers Aiding
a Patient to Sit Up in Bed

Akemi Nomura, Yasuko Ando, Tomohiro Yano, Yosuke Takami, Shoichiro Ito,
Takako Sato, Akinobu Nemoto, and Hiroshi Arisawa

Abstract This research was carried out to analyze the actions of caregivers when
aiding a patient to sit up in bed. The new system showed that three dimensional
analysis could be performed even on points on the subjects’ bodies that were hidden
from view. We also developed a method to estimate the load on the lumbar region
of caregivers based on the kinetic analysis of the human body. Using this system we
were able to evaluate the performance of both lay and professional caregivers. We
found a clear difference between the performances of the two types of caregivers,
and noted that the professional adopted a posture that was safe and did not stress the
lumbar vertebrae, whereas the layperson tended to adopt an unsafe posture.

Keywords Motion capture system • Kinetic analysis • Kinematic analysis •
Link-segment human model • Care for patients to sit up

7.1 Introduction

Because of the ever-growing number of aged people needing nursing care in
Japan and elsewhere, there is a pressing need to reduce the burdens imposed upon
their caregivers. To prevent such patients from being confined to their bed, it is
necessary to make it possible for them to use wheelchairs. From the point of view of
information engineering, the human body is a multi-jointed entity with a high degree
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of freedom when taking into account the patient and the caregiver. It is very difficult
to design a system based on kinematics and kinetics to reduce the caregiver’s burden.

The importance of evaluating the acts of caregiving is well recognized, and the
load imposed on the lumbar region when moving a patient from bed to wheelchair
has been analyzed biometrically using motion capture techniques [2, 3, 5, 7].
However, since the patient and caregiver are in intimate contact during this act,
previous studies have not been able to analyze the act in three dimensions. Such
studies have used only two-dimensional models, without taking into account the
rotation and lateral bending of the bodies [1, 4, 8–10]. These factors have not
been studied with a three-dimensional model. To do a three-dimensional analysis,
a motion capture system employing several cameras is needed, and a number of
markers must be applied to the subjects. Furthermore, analysis cannot be done if the
markers become hidden.

For this reason, our aim has been to observe helping a patient sit up in bed and to
develop a system that permits three-dimensional analysis of even parts of the scene
that are not visible, and further, to use the system to evaluate the load imposed
upon a nurse and an adult layperson when performing this action. In this chapter
we describe a combination of motion capture apparatus with multifunction sensors
(combination of tri-axial acceleration sensor and geomagnetic sensor) which we
used to aid a patient to sit up in bed and move to a wheelchair.

7.2 The Fundamental Principals of Using Motion Capture to
Analyze the Parts of an Action not Visible to the Camera

The actions of standing and sitting have been analyzed by existing optical motion
capture methods. To do this a number of markers must be attached to the body of the
subject, and at least two cameras must be set at different angles and synchronized
to take a rapid series of frames. The position of each marker is then obtained by a
Direct Linear Transformation method and analysis is performed. This is effective in
actions like standing up, where most of the markers are not hidden. In actions like
moving a patient or aiding a patient to sit up, the bodies of the caregiver and the
patient are very close to each other. In such cases many of the markers are hidden
and the motion capture system cannot work effectively.

In order to analyze the movements of two human bodies even if they are close, we
propose the following system. Figure 7.1 illustrates the concept of the system. With
this system, the actions of the caregiver are analyzed. The caregiver puts his/her
upper arm deeply under the back of a patient lying face upward and aids the patient
to sit up. At this time the caregiver’s arms are not visible to the camera, and a load
is imposed upon the arms.

In order to analyze this hidden area, we devised the following method. First we
construct a link-segment model consisting of 16 segments and 14 joints. The length,
width, and points of rotation of each part are identified on the body of the caregiver.
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Fig. 7.1 Development of a physical motion and load analysis system

Using the link-segment model we attach markers to all parts except the upper
arm and the forearm. On both right and left sides we attach multifunction
sensors to the parts of the upper arm and forearm where the sensors will not
interfere with the patient during performance of the action. We will give the
specifications of the multifunction sensors later. This condition is shown in
Fig. 7.2.

We determine the three-dimensional location (on the model) of the markers
from the trunk to the shoulders, on the legs, and on the head. Regarding the upper
arms and forearms, we estimate the spatial location of the markers (three degrees
of freedom) using data from the multifunction sensors (Fig. 7.3). This is possible
because the size of the body joints and their location on the body are known. The
concept of our measuring system is shown in Fig. 7.4.

In this way the markers attached to the parts of the body model, exclusive of
the upper arm and forearm on both right and left sides, can be determined (the
markers are recorded with a motion-sensitive camera, Fig. 7.5). Then, if the upper
arm segment that rotates around the shoulder joint and the forearm segment that
rotates around the elbow joint are estimated and their location in space is determined
by their rotation around the three axes of X, Y, and Z (i.e., three degrees of freedom),
a three-dimensional (six degrees of freedom) position can be determined. We
attempted to do this with multifunction sensors that are able to sense the direction
of the magnetic field of the earth.
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Fig. 7.2 The multifunction sensors to the upper body

Figures 7.6 and 7.7 illustrate this principle. Because gravitational acceleration
is always in a vertical direction, a multifunction sensor can determine deviation
from the vertical. When the rotation of the earth’s magnetic field is added, a three-
dimensional position can be sensed.

In this way, without impeding movement, the position of the body can be
analyzed in a short time using only a few markers and multifunction sensors attached
to the body and analyzing the results with image editing software and a model of
the human body. In the present environment that we constructed, we emphasized
kinematics and left kinetics for another time. We had the caregiver stand on a force
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Fig. 7.3 Markers

Fig. 7.4 Overview of the experiment

plate and estimated the stress put on the whole body from the force measured on
the plate. In this way we analyzed the movements of a nurse or adult layperson and
tested the system.

y D z
uH

f

x D z
uL

f
� b

2
(7.1)
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Fig. 7.5 Parallel axis
cameras
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Fig. 7.6 Calculation of 3D positions (Reprinted with permission from [6]. Copyright 2013, AIP
Publishing LLC)

Fig. 7.7 Measuring distance
using parallax (Reprinted
with permission from [6].
Copyright 2013, AIP
Publishing LLC)
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or
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3D locations were expressed as follows.

z D f � b � r
uL � uR

8<
:

f : focal distance
b: baseline distance
r : conversion ratio of pixels to mm

(7.3)

Since f , b and r are constants, depth z can be calculated. If depth and parallax
are known, the product of f , b and r can be calculated.

C D f � b � r

depth D C

parallax
(7.4)

Figure 7.8 shows a multifunction sensor. These sensors output acceleration,
angular speed, and the earth’s magnetic field. Transmission is by Bluetooth. When
an object is immobile, the angle is calculated from gravitational acceleration and
orientation of the magnetic field (Fig. 7.9). Figure 7.10 shows an example of the
data from the sensors.

Fig. 7.8 A multifunction
sensor. This sensor is
combination of tri-axial
acceleration sensor and
geomagnetic sensor
(Reprinted with permission
from [6]. Copyright 2013,
AIP Publishing LLC)
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Fig. 7.9 Calculating the
angle (Reprinted with
permission from [6].
Copyright 2013, AIP
Publishing LLC)

Fig. 7.10 Output data of the sensors

7.3 Detection and Analysis of the Motion of Aiding
a Person to Sit Up

From the above discussions, we have constructed a prototype system and carried out
experiments to confirm the appropriateness and efficacy of the proposed method.
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Fig. 7.11 Aiding a patient to sit up in bed (Reprinted with permission from [6]. Copyright 2013,
AIP Publishing LLC)

7.3.1 Subjects

The subjects were three healthy adults with no history of lumbago; one patient
(male, aged 21, height 176 cm, weight 64 kg); two caregivers, one of whom was
an adult layperson (male, aged 23, height 178 cm, weight 71:5 kg) and the other a
professional nurse (female, aged 36, height 159 cm, weight 47:5 kg).

We defined “professional nurse” as a clinical nurse (including one with teaching
experience) with more than 7 years of experience and who had taught aiding
patients’ movements on a daily basis.

Aiding a patient to sit up in bed was done as follows. The patient is lying supine
in bed. The caregiver puts one upper arm under the patient’s back and grasps the
patient’s elbow with his hand to aid the patient to sit up (Fig. 7.11).

7.3.2 Experimental Parameters

We used the same kind of bed that the hospital uses (Paramount 91). The height of
this bed is adjustable. We set the height at 50 cm from the floor. To make the markers
visible and to avoid glare we used black sheets. On the day before the experiment
the subjects ate regular meals and had a good night’s sleep.

The patient lay supine on the bed and the lay caregiver helped the patient sit
up three times in whatever way he thought suitable. Next the professional nurse
performed the same action three times in approved fashion. A 10-min interval was
allowed between each action to avoid the danger of fatigue.
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7.3.3 Measurements

For the experiments we used two pairs of CCD cameras, one personal computer, four
multifunction sensors (small multifunction sensors, TSND121, ATR Pro-motions
Inc.), and one 350 thousand pixel CMOS camera (DFK22 AUCO3, Argo Co. Inc.).

The multifunction sensors were attached to the non-dominant limb of the
caregiver, one on the outside of the upper arm 10 cm below the shoulder, and one on
the forearm 5 cm from the elbow, and their tracks were recorded during the sitting-
up process. The experiments were recorded on two DVDs.

The caregivers were allowed to speak freely to the patient. At the conclusion of
the experiments, the patient was queried regarding his/her physical and mental stress
during the process of sitting up.

7.3.4 Results

With the present method of calculation, the posture of the entire body can be
envisioned, and the following differences were noted between the professional
person and the layperson.

7.3.4.1 The Manner of Using the Entire Body

The lay caregiver attempted to raise the patient using only the strength of his arm,
but the professional pulled the patient toward herself as if embracing the patient
and raised the patient to a sitting position. Since the lay caregiver used only his
arm, the upper arm was almost perpendicular to the ground. On the other hand the
professional flexed her knees and squatted, so that her shoulder, elbow, and wrist
were at almost the same height (Fig. 7.12).

Fig. 7.12 The difference in posture of a lay caregiver and of a professional immediately after
raising a patient to a sitting position. Layperson (left) and professional nurse (right) (Reprinted
with permission from [6]. Copyright 2013, AIP Publishing LLC)
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Table 7.1 The results of experimentally aiding a patient to sit up in bed (Reprinted with
permission from [6]. Copyright 2013, AIP Publishing LLC)

Layperson Professional nurse

Height of shoulder, elbow and wrist above the floor 126.3/98.8/113.6 cm 105.1/96.7/103.9 cm

Angle of lumbar joint All directions 36:7ı 11:6ı

immediately after raising patient Inclined forward 36:4ı 4:4ı

7.3.4.2 Angle of the Lumbar Vertebrae

Table 7.1 shows the results of experimentally aiding a patient to sit up in bed. When
the angle of the pelvis and the abdomen were calculated at the end of the action, it
was 36.7ı (36.4ı when inclined forward) for the lay caregiver, but only 11.6ı (4.4ı
when inclined forward) for the professional (Table 7.1). The lay caregiver bent the
lumbar vertebrae deeply, whereas in the professional they were almost straight. The
body of the lay caregiver was inclined deeply forward, exerting a load on the lumbar
vertebrae.

7.3.4.3 The Patient’s Impressions of the Caregivers

The patient was interviewed at the end of the experiments, with the following results.
The lay caregivers were given no instructions, but had to just follow their own
instincts, relying only on strength, so he found that worrisome. The professional
acted after being given sufficient instructions and after having received the patient’s
consent. The patient sat up without effort, or as if he had not received aid at all. He
found no cause for worry regarding the professional.

7.3.5 Discussion

Using our newly developed system, we analyzed the actions of a layperson and
a professional nurse, and evaluated their burdens. Since these experiments placed
emphasis on kinematics, difference between the postures of the professional person
and the layperson could be noted. In other words, the professional adopted a
posture that did not place stress on the lumbar vertebrae, but the layperson adopted
a dangerous posture. The patient also was aware of the difference between the
two types of caregivers, and experienced both physical and psychological anxiety
regarding the layperson.
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7.4 Evaluation (Kinetic Analysis) of the Burden of Nursing
Care in Relation to the Use of a Force Plate
and a Human Model

In the previous section we analyzed only the kinematics of the motion of the human
body. In this section we will discuss the kinetics of the physical burden on the
caregiver’s body.

The National Institute for Occupational Safety and Health (NIOSH) sets the per-
missible force bearing on the lumbar vertebrae during work at 3,400 Newtons (N).
We measured experimentally the lumbar burden, and for its evaluation we measured
the force brought to bear on the lumbar vertebrae and the shearing force which is
the cause of lumbago.

7.4.1 Purpose

To measure the burden on the lumbar vertebrae when a professional nurse and a
layperson attempt to aid a patient to sit up in bed.

7.4.2 Methods

7.4.2.1 Subjects

A professional nurse without a history of lumbago (age 60, height 158 cm, weight
58 kg), and one layperson without a history of lumbago (age 22, height 176:0 cm,
weight 69:0 kg); and one patient (age 22, height 174:0 cm, weight 61:0 kg).

7.4.2.2 Ethical Considerations

The potential subjects were given orally an explanation about the purpose of
the experiments, how they were to be performed, how the subjects were free to
participate, and a promise of confidentiality. Those who agreed to participate did
so in writing and received in writing an explanation of the purpose, significance,
methods, safety, and promise of confidentiality.

7.4.2.3 Experimental Methods

LED markers were attached to the caregivers. The markers were attached to points
on the surface of the body where the underlying bones could be palpated.
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Fig. 7.13 Experiment scene (upper photos: a layperson, lower photos: a professional nurse)

Each caregiver stood on force plates (Kisllar 9286A) on the floor and attempted
to raise the supine patient into a sitting position. Each foot of the caregiver pressed
on a separate plate. The markers were photographed in 3 dimensions from 2 angles
with 2 parallel axis cameras. To remove influences of magnetic field sensing by
multifunction sensors due to metal frame, we used the wooden bed. The wooden
bed was set at a height of 40 cm from the floor (Fig. 7.13).

7.4.2.4 Measuring the Moment of the Lumbar Joints and the Shearing
Stress Brought to Bear on the Lumbar Vertebrae

We calculated the moment of the lumbar joints from the inverse dynamics of the
position of the markers and the pressure on the force plates. Inverse dynamics form
a pair with forward dynamics. Forward dynamics calculates the movement (change
of position, speed, acceleration, and angle of joints) of a body from the parallel
forces and torque acting on a body. Inverse dynamics calculates whether a body has
moved at a given time point from the parallel forces and torque that are presumed
to be acting on a body.
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The pain of lumbago is said to arise between lumbar vertebrae 4 and 5, or
between 5 and the sacral vertebrae. In the present experiments we chose the moment
of lumbar vertebra 5 as the center of rotation.

In the present experiments we used inverse dynamics with the Newton-Euler
method to calculate the stress imposed on the lumbar region.

7.4.3 Results

The shearing stress and the pressure on the lumbar vertebrae and shown in Figs. 7.14
and 7.15. In the layperson immediately after raising the patient, shearing stress
jumped to above 350 N and peaked at 480 N. It was only half of this (150 � 240 N)
in the professional nurse (Figs. 7.14 and 7.15). Compressive force in the professional
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Fig. 7.14 The compressive force and the shearing force of the layperson during the experiment
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experiment
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nurses remained steady at 190 � 350 N from the beginning to completion of the
action, but fluctuated wildly from 100 � 500 N in the layperson.

7.4.4 Discussion

In the nurse compressive force was high, but shearing force was weak. Consequently
there was little danger of getting lumbago from raising a patient to a sitting position.
On the other hand, shearing forces were strong in the layperson and compressive
force was weak, stressing the lumbar region and causing shearing at the joints. This
may be due to the differences in the way body mechanics is taught in nursing school.
Even experienced nurses do not always perform actions protective of the lumbar
region. This may be why lumbago is of frequent occurrence in nurse. With our
analysis of the kinematics of the lumbar vertebrae angles in the present experiments,
we have shown the difference between beginners and experienced nurse. Together
with our data on kinetics, steps can be taken to reduce the frequency of lumbago in
nurse and to assure the comfort of patients.

Concluding Remarks and Future Problems
The present research was carried out to analyze the actions of caregivers
when aiding a patient to sit up in bed. The new system showed that
three dimensional analysis could be performed even regarding points on the
subjects’ bodies that were hidden from view. Using this system we were able
to evaluate the performance of both lay and professional caregivers. We found
a clear difference between the performances of the two types of caregivers,
and noted that the professional adopted a posture that was safe and did not
stress the lumbar vertebrae, whereas the layperson adopted an unsafe posture.
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Chapter 8
Classifying Epileptic EEG Signals with Delay
Permutation Entropy and Multi-scale K-Means

Guohun Zhu, Yan Li, Peng (Paul) Wen, and Shuaifang Wang

Abstract Most epileptic EEG classification algorithms are supervised and require
large training datasets, that hinder their use in real time applications. This chapter
proposes an unsupervised Multi-Scale K-means (MSK-means) algorithm to distin-
guish epileptic EEG signals and identify epileptic zones. The random initialization
of the K-means algorithm can lead to wrong clusters. Based on the characteristics
of EEGs, the MSK-means algorithm initializes the coarse-scale centroid of a cluster
with a suitable scale factor. In this chapter, the MSK-means algorithm is proved
theoretically superior to the K-means algorithm on efficiency. In addition, three
classifiers: the K-means, MSK-means and support vector machine (SVM), are
used to identify seizure and localize epileptogenic zone using delay permutation
entropy features. The experimental results demonstrate that identifying seizure with
the MSK-means algorithm and delay permutation entropy achieves 4:7 % higher
accuracy than that of K-means, and 0:7 % higher accuracy than that of the SVM.

Keywords Unsupervised learning • Delay permutation entropy • MSK-means
• SVM • Seizure detection • Epileptogenic focus location

8.1 Introduction

Epilepsy is a prevalent neurological disorder stemming from temporary abnormal
discharges of the brain electrical activities and leading to unprovoked seizures.
About 1 % population in the world are diagnosed as epilepsy [19]. Fortunately,
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EEG recordings can show the brain electrical activity information and provide valu-
able insight into disorders of the brain. EEG signals are considered as important data
in diagnosing epilepsy and predicting epilepsy seizures. However, the traditional
visual inspection by analysts is time-consuming, error prone and not sufficient
enough for reliable detection and prediction. The randomization nature of epilepsy
seizures and their large EEG recording datasets make epileptic EEG classification
more difficult. Hence, an automatic epileptic classification system is becoming more
and more on demand.

Epileptogenic zone (EZ) is a cortical area indispensable for the generation of
seizures. Resection of the EZ is the most direct and effective means to drug-resistant
patients [10]. Identifying the EZ is regarded as a prerequisite for successful surgical
treatment [24]. Epileptologists analyse features from video EEG, intracranial EEG
(iEEG), magnetoencephalography [31], positron emission tomography or single-
photon emission signals [15] to detect which areas of the cortex induces seizures
during ictal state. Among them, the iEEG signals recorded from surface of the
brain are widely used by experienced epileptologists. The EZ has high interelec-
trode template similarity based on frequency entropy template from 96 electrodes
iEEG [7]. Time-variant connectivity analysis method was used to localize the ictal-
onset zone from iEEG recordings [29]. Frequency domain source imaging approach
was applied to identify epileptogenic zones in patients with secondary generalized
epilepsy [8]. Because seizures often occur randomly and patients look and feel
normal during seizure-free intervals, it is possible to have an extended normal period
(5–10 days) before catching a seizure. The time-consuming process also increases
the risk of infection.

Most of traditional automatic epileptic classification systems use supervised
learning classifiers, such as artificial neural networks (ANN), support vector
machines (SVMs) and decision trees. Guo et al. [11] applied wavelet discrete
transform features and an ANN for discriminating ictal EEGs from normal EEGs.
Nicolaou and Georgiou [20] employed permutation entropies (PE) and SVMs to
determine the seizure from EEG signals. Subasi [28] fed wavelet features to a
fuzzy classifier to identify seizure from EEG signals. Siuly et al. [25] proposed a
clustering technique to classify ictal and healthy EEGs. Song and Liò [26] classified
ictal, inter-ictal and normal EEGs by features based on sample entropy (SE) and an
extreme learning machine algorithm. Zhu et al. [32] implemented visibility graph
(VG) based features and a discriminant classifier to identify ictal EEGs from healthy
EEGs. However, an automatic epileptic classification system normally requires large
sets of data to train a classifier, and to improve the accuracy. Meanwhile, all the data
are normally required in a specific format to meet certain conditions. For example,
the number of data segments/epochs should be the same in the training data and
testing data. Besides, the target categories for all the data segments in the training
set rely on the labels obtained manually by experts. All these limitations impede the
current supervised epileptic EEG classification techniques from being used.

K-means clustering is a popular unsupervised learning method which was first
presented by MacQueen [17]. It consists of two simple steps: the first step is to
randomly choose k centroids for k clusters. The second step is to separate the
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input data into k disjoint clusters according to the distance between each data
instance and the k chosen centroids. Its simplicity and fast clustering make it easy
to implement. However, if some data points belonging to the same cluster are
incorrectly assigned into other disjoint clusters during the first step, it may lead to
wrong classification results. Recently, Vattani [30] showed that the running time
of the K-means algorithm increases exponentially when the data size increases.
To solve the cluster initialization issue, Arthur and Vassilvitskii [4] proposed a
K-means++ algorithm and improved the classification accuracy by initializing the
centroids one by one. Bahmani et al. [5] reported that the K-means++ did not work
well on large sets of data because it relies too much on the central point initialization.
Liu et al. [16] presented an improved radius K-means algorithm to improve the
accuracy for clustering network datasets.

The delay permutation entropy (DPE) is proposed to extract features from
single channel EEG signals in this chapter. The optimal delay factor is obtained
from comparing the performance from zero to 50 delay lags. The extracted DPE
features are then forwarded into a multi-scale K-means (MSK-means) classifier to
discriminate epileptic EEGs from healthy EEGs and to identity the epileptogenic
zone signals from non-epileptogenic zone signals. The experimental results showed
that the DPE features with MSK-means algorithms could distinguish epileptic EEGs
and localize epileptic zone effectively.

This chapter is organized as follows: In Sect. 8.2, the experimental dataset
is introduced. The traditional K-means algorithm and the proposed MSK-means
method are described in Sect. 8.3. In Sect. 8.4, the comparison results of the K-
means, MSK-means and SVM with the DPE features to identify epileptic EEG are
presented. Classifying EEG signals from epileptogenic zone with DPE from non-
epileptogenic area are shown in Sect. 8.5.

8.2 Experimental Data

There are two databases used in this chapter. The first one was described by
Andrzejak et al. [1], which was digitized at 173.61 samples per second from a 12-bit
A/D convertor. The band-pass filter setting was 0.53–40 Hz. The whole database is
made up of five EEG datasets (denoted as sets A-E), each containing 100 single-
channel EEG signals from five separate classes and 4,097 data points. Sets A and
B were recorded from five healthy volunteers with eyes opened and eyes closed,
respectively. Sets C and D were recorded from the EEGs of epileptic patients during
seizure-free intervals from the opposite hemisphere of the brain and within the
epileptogenic zone, respectively. Set E contains the seizure activity EEGs.

The second were obtained from a public Bern-Barcelona EEG database [3]
collected from ten patients. The database includes two distinct sets: one comes from
epileptogenic zone (set F) and the other is recorded from brain areas that were not
involved in seizure onset (set N). The sample rate is 512 Hz if the number of record
is less than 64 channels. Otherwise, it is 1,024 Hz. Each data contains two signals,
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signal x is the patient’s focal EEG channel and signal y is the neighboring channel
of the epileptogenic zone. Each signal in each recording has 10,240 data points.
The detailed description and usage of this database can be found in [2]. This study
divides the Bern-Barcelona EEG database into two sub datasets. The number of
recordings in these sets are 100 and 4,500 respectively. The small set is named #50

which is the sample data used by [2], and the large set is denoted as #750.

8.3 Methodology

The proposed epileptic classification system is shown in Fig. 8.1. The extracted
features based on delay permutation entropy from the raw EEG data are directly
transferred to a MSK-means classifier for epilepsy classification. The K-means clus-
tering algorithm and the SVM classifier in Fig. 8.1 are used for comparison purpose.

8.3.1 K-Means Algorithm and K-Means++ Algorithm

Given a set of observations X D .x1; x2; : : : ; xn/, the K-means clustering technique
aims to partition n observations into k sets .k � n/ C D .c1; c2; : : : ; ck/ based on
the Euclidean distance. The Euclidean distance between the i th data point and the
j th centroid is defined as follows:

d.xi ; cj / D
vuut

kX
j D1

.xi � cj /2 (8.1)

The central point of a cluster is recomputed as:
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Fig. 8.1 The structure of the proposed epileptic EEGs classification system
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The K-means algorithm minimizes the within-cluster sum of squares by Lloyd
iteration to make the data of the same cluster more compact and dependent:

! D
kX

j D1

jCj jX
iD1

d.xj ; ci / (8.3)

The main idea of the K-means algorithm is to randomly choose k observations as
the cluster central points (centroids) and assign all the remaining data to their nearest
centroids based on Eq. (8.1). Then the new centroid of each cluster is calculated
using Eq. (8.2). The algorithm converges when the new centroids are same as the old
centroids. The randomness of initialization is error prone if some data points from
the same class are assigned to different cluster centroids. The K-mean++ algorithm
proposed by Arthur and Vassilvitskii [4] improves the initialization by the following
algorithm:

Algorithm 1. K-means++ algorithm init
Input: X, k
N=number of X
C=randomly choose a point from X
While |C|<k begin

Dist [1...n]=the distance between X and C
U=sum(Dist[1...n])
J=1
Do begin U=U-Dist[j], j=j+1 end while U>0
C=C union X[j]

end while

The K-means++ algorithm needs additional computation time for initializing
centroids. However, the time complexity of both K-means and K-means++ algo-
rithms are NP-hard in [4].

8.3.2 Multi-scale K-Means (MSK-Means) Algorithm

The scale of initialization of both K-means and K-means++ is small and limited to
the data size, which is not suitable for large sizes of EEG signals. In this chapter, an
MSK-means algorithm is proposed to improve the performance by optimizing the
cluster initialization.

The concept of multi scale analysis of time series was first proposed by Costa
et al. [9]. The multi scale technique transfers one dimensional time series fxtgtD1;:::;n

into another time series fytgtD1;:::; n
�

with a different scale. Here � is a scale factor.
The transformation formula is as follows:

y D 1

�

j�X
iD.j �1/�C1

xi ; 1 � j � n

�
(8.4)
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Based on Eq. (8.4), the original algorithm is adjusted as:

Algorithm 2. MSK-means init
Input: X, k, and scale factor
Y construct according to above eq. and scale factor
Med=K median positions of Y
C=empty set
I=1
While (i<k)

C[i] = random a point in Med[i:i+1]
end

Similar to the K-means++ algorithm, the MSK-means algorithm only improves
the initialization part of the K-means algorithm. Lloyd repeat is conducted with
the scaled time series Y instead of the original times series X . The computational
complexity of the MSK-means algorithm is as follows.

Theorem 8.1 ([34]) Let us assume that n is the number of the datasets, d is the
number of iterations, k is the number of clusters and � is a parameter, the time
complexity of the MSK-means algorithm is O.maxf ndk

�
; ng/.

Proof In the MSK-means algorithm, the time complexity of Eq. (8.4) is n. It
indicates that the complexity of k median value is n

�
. The time complexity of

Lloyd repeat is O. ndk
�

/. The time complexity of the MSK-means algorithm is
O.maxf ndk

�
; ng/. ut

According to Theorem 8.1, the time complexity of the MSK-means algorithm
can be O.n/ when � is large enough, which means it can be of higher efficiency
than both the K-means and K-means++ algorithms. The relation of � and the time
complexity of the multi-scale K-means algorithm is discussed in Sect. 8.4.

8.3.3 Delay Permutation Entropy

In general, EEG time series is nonlinear and complicated. The amplifies of the two
EEG time series are possibly different even for a same test subject when these two
signals are sampled at different times. To reduce the disturbances of white noise, per-
mutation entropy [6] is used for the permutation symbols to substitute the raw EEG
data points to calculate the entropy. The DPE improves the nonlinear detection per-
formance of PE for moving-average processing time series by Matilla-García [18].
Given a time series fxigiD1;2;:::;n, the DPE algorithm is outlined as follows [18].

1. Convert the time series X into an m dimensions sequence of vectors Xm using
time delay � embedding by:

Xmftg D fxt ; xtC�; : : : ; xtC.m�1/�g I 1 � t � .n �m�C 1/ (8.5)

where 2 � m < n.
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Fig. 8.2 Six possible ordinal patters for m=3

2. Let jk 2 ft; t C �; : : : ; t C .m� 1/�g, and then arrange each vector of Xm to an
increasing order.

X 0
mftg D fxtCj1 ; xtCj2 ; : : : ; xtCjmg I 1 � t � .n �m�C 1/ (8.6)

Let 	 D fj1; j2; : : : ; jmg, then 	i is a symbol of mŠ possible permutations of
a vector f1; 2; : : : ; mg. As shown in Fig. 8.2, for m D 3, there are six possible
ordinal patterns between X3.t/ D fxt ; xtC�; xtC2�g.

For example, if X3.t/ D f6; 3; 11g, then 	3 D f2; 0; 1g.
3. From i D 1 to n �m�C 1 calculate each Xmftg into a symbol 	i .
4. Let p.	i ; �/ be the probability distribution of 	i .
5. Calculate the Shannon entropy of all the symbols

h.X; m; �/ D �
n�m�C1X

j D1

p.	; �/ ln.	; �/ (8.7)

Eq. (8.7) is derived from Shannon entropy, so it reflects the regularity of the time
series fxigiD1;2;:::;n. The values of DPE are � h.X; m; �/ � ln.mŠ/ [18].

The smaller h.X; m; �/ is, the more regular the time series are, such as an
increment, decrement or periodicity. When h.X; m; �/ is zero, the time series is
a constant value. On the contrary, the bigger h.X; m; �/ is, the time series are in
a more random order. All the values of long enough time series are independent to
each other without any rules to follow when h.X; m; �/ is close to the ceiling ln.mŠ/.

In order to compare different values of DPE associated with different m, one of
the method is to normalize the DPE with a factor m � 1. The permutation entropy
of each symbol is defined as follows:

h.X; m; �/ D �1

m � 1

n�m�C1X
j D1

p.	; �/ ln.	; �/ (8.8)

There is also another normalization method, which is demonstrated as follows:

h.X; m; �/ D �1

ln.mŠ/

n�m�C1X
j D1

p.	; �/ ln.	; �/ (8.9)

Eq. (8.9) is always less than or equals to one.
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8.3.4 Detecting Nonlinear Structure with DPE

The minimum of h.X; m; �/ is zero when the input signals is a constant. However,
even when signals appear to be not so regular, particular value of � could make the
value of h.X; m; �/ as zero. For example, given X D .8; 4; 1; 9; 6; 3; 11; 7; 6/, then
h.X; 2; 1/ is 0.24, when � D 3, h.X; 2; �/ becomes zero and h.X; 2; 4/ is 0.29.
Therefore, the lag � D 3 represents the fixed delay factor of a given signal.

Matilla-García and Ruiz proposed a theorem as follows.

Theorem 8.2 ([18]) Let fxigiD1;2;:::;n be the stationary time series and h.X; m; �/

is defined in Eq. (8.7) for a fixed embedding dimension m > 2, with m 2 N . If the
most relevant lag of the time series fxigiD1;2;:::;n is �0 then the following equation
holds

h.X; m; �0/ � min.h.X; m; �// (8.10)

In this study, we extend Theorem 8.2 to the following lemma.

Lemma 8.1 h.X; m; �0/ � min.h.X; m; �// holds when m � 2 and � < n�m�1.

According to the PE algorithm in [6], PE is a special case of DPE when � D 1.
During this study, it assigns m D 4 to identify the seizure and m D 3 to
recognize EZ.

8.3.4.1 Support Vector Machine

To compare the performance of the unsupervised MSK-means algorithm with the
supervised classifiers, the support vector machine (SVM) is selected to conduct
the binary classification. The SVM has been successfully used in epileptic EEG
classification [20,34]. It can perform both linear space discrimination and nonlinear
classification by choosing different “kernel” functions which can be linear, poly-
nomial kernel, radial basis function (RBF) and sigmoid. In this chapter, the SVM
algorithm with RBF kernel is used from the R package e1071 [13].

8.4 Experiments for Detecting Seizures

To evaluate the performance of the MSK-means algorithm presented in Sect. 8.3,
C programming language is used, while the SVM and K-means algorithms are
implemented by the R package e10171 and stats package, respectively. The experi-
ments include three parts: (1) evaluating the delay lag � and DPE indices based on
different groups of EEG; (2) evaluating the accuracy for classifying epileptic EEGs
and healthy EEGs with different � and DPEs; and (3) comparing the accuracy level
of the K-means, SVM and MSK-means for identifying seizures. For experiments
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Fig. 8.3 The relation between delay lag � and the DPE indices for m D 7 for five groups of EEG
signals

(1) and (2), the DPE indices are changed from 1 to 30. During these experiments,
each EEG recording is divided into four equal epochs, and a total of 4,000 new EEG
segments are produced. During the SVM classification processing, the extracted
features of odd EEG segments are used in the training dataset while those of even
epochs are used in the testing dataset.

8.4.1 Evaluating Delay Lag for Exact Order m

This section serves to evaluate DPE of the delay lag � associated with five EEG
groups. Figure 8.3 shows the relation between delay lag � and the DPE indices.

Based on Fig. 8.3, the DPE indices associated with epileptic EEG are close when
delay lag � is larger than 20. The healthy EEGs (sets A and B) become horizontal
shape after � > 5. Our findings agree with the results from Popov and Avilov [23]:
Comparing DPE indices from healthy EEGs with those associated with epileptic
EEG, the epileptic EEG signals are more regular than healthy because DPE indices
on healthy is large from � D 1 to � D 30.

8.4.2 Accuracy of Detecting Seizures with Different � DPE

In this section, we use the K-means, MSK-means and SVM algorithms to discrim-
inate seizure EEGs (set E) from interictal EEGs (sets C and D). The results are
demonstrated in Fig. 8.4. In order to obtain good performances, the values of scale
factor � of MSK-means are selected as eight; and � changed from 1 to 30.

Figure 8.4 shows that the accuracy of the MSK-means algorithm with � D 8

archives 100:0 % when � D 1. From � D 7 to � D 25, the accuracies with MSK-
means is better than K-means and SVM. The peak of accuracy of SVM is 92:0 %
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Fig. 8.4 Identifying seizure EEG (set E) and inter-ictal EEG (sets C and D) with different � DPE
and three classifiers

Table 8.1 The average 10-times classification accuracy and execution time of the three algorithms
with different pairs of datasets (� D 10, n D 1;024) with DPE features

SVM K-means MSK-means
Data groups
(set)

Accuracy
(%)

Time
(ms)

Accuracy
(%)

Time
(ms)

Accuracy
(%)

Time
(ms)

A vs. E 99.3 30 95.3 20 100.0 20

B vs. E 95.0 35 79.3 20 90.0 20

C vs. E 97.5 35 90.3 20 100.0 20

D vs. E 93.5 40 76.5 25 92.5 20

(A,B,C,D) vs. E 95.7 70 81.6 35 90.0 35

when � D 1. Because accuracies just use only one dimension features, which imply
that the healthy EEG and epileptic EEG could be effectively distinguished by DPE
with a fixed delay lag.

8.4.3 Identifying Seizures from Other Sets

In this section, the performances of the K-means, SVM and MSK-means algorithms
for different pairs of datasets are presented. Four same size of datasets containing
1;024 epochs and the seven DPE indices (� D 1–7) extracted features from each
epoch are used. The results are shown in Table 8.1.

From Table 8.1, the classification accuracy for the pair of A vs. E can archive
100 % using the DPE indices and MSK-means classifier, while the performance of
pair (A,B,C,D) vs. E is minimally improved over that of SVM classifier. However, it
can be further improved by changing the � selection (e.g., it achieves 96 % accuracy
when � D 40).

The classification accuracies on the epileptic EEG database from different
literature are presented in Table 8.2.
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Table 8.2 The classification accuracy by the MSK-means and other existing methods

Features
Researchers (epochs length) Classifier Datasets Accuracy (%)

Polat and Güneş [22] PSD (n = 256) Decision Tree A,E 98.7

Guo et al. [11] DWT (n = 4,097) ANN A, E 99.6

Nicolaou and PE (n = 1,024) SVM A, E 93.4

Georgiou [20] C, E 88.8

Zhu et al. [34] Entropy (n=1,024) MSK-means A, E 100.0
aOrhan et al. [21] DWT and K-means ANN A, E 100.0

(n = 4,097) (A,B,C,D), E 99.6

The proposal method DPE (n = 1,024) MSK-means A, E 100.0

C, E 100.0

(A, B,C,D), E 96.0
aThe K-means algorithm was used by Orhan et al. [21] as a feature extraction method instead of a
classifier

Based on Tables 8.1 and 8.2, the proposed MSK-means method has better
performance in distinguishing the epileptic EEGs from healthy EEGs, especially
in identifying the epileptic EEGs from normal EEGs. Without clinical history data
records, it is impossible for a supervised algorithm to conduct classifications, while
the MSK-means algorithm can work well because it is unsupervised.

8.5 Experiments for Detecting Epileptic Zone

To evaluate the performance of the methods in Sect. 8.3, the DPE features are anal-
ysed on epileptogenic zone and nonepileptogenic zone. The experiments include
two parts: (1) analysing DPE index associated with epileptic iEEGs under different
delay lags; (2) evaluating classification accuracy of the DPE features by different
lags on two different sizes of datasets. Both experiments investigate the datasets
#50 and #750 and the value of � ranges from 1 to 50.

8.5.1 Statistical Analysis of Relation Between DPE Index
and �

Figure 8.5 shows the relation between different � and the DPE index associated
with channel x of epileptogenic zone iEEG and non-epileptogenic area iEEGs on
two datasets. In order to evaluate the relation between the DPE index and �, the
value of � changes from 1 to 50.

To make the relation between DPE index and � more clear, comparison between
DPE index of epileptogenic iEEG and those of non-epileptogenic signal are
employed with the Student’s test. Two ranges of � are measured based on dataset



154 G. Zhu et al.

λ

D
P
E

 i
nd

ex

N #50
F #50
N #750
F #750

0.
38

0.
34

0.
30

50403020100

Fig. 8.5 The relation between the DPE index and � on iEEG channel x

0
λ

A
cc

ur
ac

y 
of

 i
de

nt
if
yi

ng
 E

Z

MSK−means
K−mean
SVM

5040302010

0.
9

0.
8

0.
7

0.
6

0.
5

Fig. 8.6 The relation between accuracy and � of DPE on iEEG channel x for the identification of
epileptogenic and nonepilptogenic

#750. The first range is from 1 to 30, the statistical DPE indices between sets F and
N are not significantly different (p D 0:08). The second range is from 5 to 30, and
the statistical difference are considered significant (p D 0:01).

8.5.2 Relation Between � and Classification Accuracy

This section investigates the relation between classification accuracy and � when
one dimension DPE index is applied to identify the epileptogenic iEEG. Firstly,
each recorded signal x is extracted with DPE indices when � changing from 1 to
50. For set #50, a total of 100 by 50 dimensional DPE features are extracted, and
for set #750, a total of 4,500 by 50 dimensional DPE indices are also extracted.
Each dimensional feature is forwarded into a K-mean, MSK-means and SVM to
conduct classification, where the odd indices of instances are used for training and
the remaining features are used for testing. Finally, the relation of the accuracies and
� on two EEG datasets are obtained and illustrated in Fig. 8.6.

Based on Fig. 8.6, the maximum accuracy is 93 % for the EEG set #750 and �

is selected as 18 when MSK-means classifier (� D 8) is applied. It is clear that
the accuracies of MSK-means is better than SVM and K-means when � is located
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Table 8.3 Classification
accuracy with PE features
and SVM (half for training
and others for testing)

Set F Set N

Set F 642 435

Set N 483 690

Table 8.4 Classification
accuracy with DPE index
(� D 21) and MSK-means
(� D 8)

Set F Set N

Set F 269 13

Set N 26 254

between 6 and 30. To be more clear, a confusion matrix between the experts scoring
and SVM based on PE (� D 1 of DPE) is shown in Table 8.3. The accuracy is 59 %.

The confusion matrix based on the DPE index (� D 18) with MSK-means
classifier is shown in Table 8.4.

The accuracy in Table 8.4 is 93 %. According to Tables 8.3 and 8.4, the
classification accuracy based on DPE index is 34 % higher than those based on
PE and SVM. Compared to previous work [33], which is just 84 % the maximum
accuracy based on SVM classifier with 50 tested recordings, this result is higher
accuracy. Four thousand and five hundred testing recording shows that the result is
more robust. More importantly, the highest accuracy based on the DPE index in this
study is higher than the existing recorded results, which is 50–80 % [12, 14, 27].
This proposed method exhibits that DPE indices and MSK-means classifier can be
potentially applied in epileptogenic focus location based on the iEEG signals.

Conclusions
Unsupervised classification algorithms play an important role in epilepsy
detection. The proposed MSK-means algorithm in this study optimizes the
initialization stage to improve the classification performance. Both theory and
experimental results show that the complexity of the MSK-means algorithm
is less than that of the K-means. This study also demonstrates that the MSK-
means algorithm improves the classification accuracy by 4:7 % over the
K-means, and has 0:7 % higher accuracy with 50 % less execution time than
the SVM classifier using the half of the data as the training set. Hence, the
MSK-means algorithm can be used efficiently for time series analysis and
EEG classification.

In addition, the DPE index is applied to localize the epileptogenic zone
from a public iEEG databases. The optimal delay factor of DPE are selected
by analysing the different DPE indices between epileptic zone and non-
epileptic zone from delay lag 0 to 50, then all DPE indices are forwarded
to a K-means, MSK-means and SVM to identify the epileptogenic zone. The
classification results show that the accuracy of detecting epileptogenic zone
with the DPE index and MSK-means is higher than 93 % when the delay lag

(continued)
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is 18. Hence, the DPE index can be a potentially suitable candidate for diag-
nostic protocol for epileptic EEG processing, especially with MSK-means
classifiers. An implementation for R package of the DPE and MSK-means
algorithms can be found in the MDPE R package (http://brain-graph.appspot.
com/).
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Chapter 9
Tracking of EEG Activity Using Motion
Estimation to Understand Brain Wiring

Humaira Nisar, Aamir Saeed Malik, Rafi Ullah, Seong-O Shim,
Abdullah Bawakid, Muhammad Burhan Khan, and Ahmad Rauf Subhani

Abstract The fundamental step in brain research deals with recording
electroencephalogram (EEG) signals and then investigating the recorded signals
quantitatively. Topographic EEG (visual spatial representation of EEG signal) is
commonly referred to as brain topomaps or brain EEG maps. In this chapter, full
search block motion estimation algorithm has been employed to track the brain
activity in brain topomaps to understand the mechanism of brain wiring. The
behavior of EEG topomaps is examined throughout a particular brain activation
with respect to time. Motion vectors are used to track the brain activation over the
scalp during the activation period. Using motion estimation it is possible to track
the path from the starting point of activation to the final point of activation. Thus it
is possible to track the path of a signal across various lobes.
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9.1 Introduction

The motion information that is being extracted from a sequence of 2D images
has a number of applications in the field of image processing, medical image
investigation/analysis, object tracking, remote sensing, and video compression.
Estimating the motion present in a video sequence using the motion vectors (MV) is
called motion estimation. Hence using motion estimation it is possible to track the
motion of an individual object or a group of objects in a video sequence [4, 9, 12].
Electroencephalography (EEG) is the recording of electrical activity along the scalp.
The flow of current due to firing of neurons in the brain results in the voltage
fluctuation that is measured as EEG. The visual image of brain changes with the
change in the activation of brain. It means that images of brain taken at regular
intervals will be different. Hence if consecutive brain images are acquired then we
can observe the changes in the images. The changes in the images may correspond
to some motion pattern that may be tracked or estimated. Hence, motion estimation
techniques can be used to detect the changes in activation. The spatio-temporal
correlation between consecutive frames in the sequence can be exploited to find the
direction of motion and hence the flow of signal across various lobes in the human
brain.

In this chapter, we are focusing on the motion vectors that are created from
the EEG signal movement due to brain activity in the topomap sequence, and
exploit these motion vectors for further analysis. Our video sequences will consist
of topomaps generated from the EEG data in our experiments. Our key contribution
is to exploit motion estimation algorithms for brain topomap analysis so that we
can understand the mechanism of signal flow in the brain under certain activity.
We will use full search (FS) block matching algorithm (BMA) for estimating
the motion as this algorithm gives good estimation. Optical flow techniques are
also used for motion estimation. However, we did not consider them due to their
high computational complexity because they cannot be used for many real time
applications of EEG. Although full search motion estimation algorithm has high
computational complexity too, there are a large variety of BMA methods with very
low computational complexity that are suitable for real time applications. The aim
of this chapter is to provide the proof of concept for tracking EEG activity using FS
BMA method. In future, we plan to utilize and optimize fast BMA techniques for
real time processing.

Thus our goal in this chapter is three-fold: First to analyze the behavior of
different brain lobes throughout a particular brain activity with respect to time. This
can be done by tracking the path of motion across the brain lobes using motion
vectors. Secondly, to track the paths followed by EEG signals during the overall
activity and thirdly, to select the optimal path followed. For this purpose, we employ
the full search BMA, which is the best among all other BMAs with respect to
accuracy.

We organize the rest of the chapter as follows. In Sect. 9.2, we will explain the
EEG signals and brain topomaps respectively. In Sect. 9.3, we will discuss motion
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estimation and compare some fast motion estimation techniques. In Sect. 9.4, we
will analyze topomaps using full search algorithm. Results and discussions will be
presented in Sect. 9.5. This is followed by conclusion and references.

9.2 EEG Signals

EEG signals are obtained by recording the electrical activity of the brain. EEG is
recorded by EEG machines, which include electrodes, amplifiers, filters, recording
units, and displaying devices. The electrical activity recorded is the reflection of
activity from the brain structure underneath the cortex [19]. In 1929; Hans Berger
made the first recording from the human scalp, while in 1870, similar studies were
carried out on animals. The nerve cells in the brain continuously create small
electrical signals called action potentials. The nerve cells transmit the information
throughout the body electrically. With the help of neurotransmitter, the action
potentials move from one cell to another across a synaptic gap. The electrodes
pick up the small electrical brainwaves produced by the cells and pass through
the amplifier that amplifies them enough to be displayed. Different EEG machines
may have different number of channels, e.g., 8, 16, 24, 64, 128 etc. Different mind
states have different EEG activations e.g., sleep, alertness, dreaming etc. which are
associated with different brain waves, such as, theta, alpha, delta, beta, and gamma.
EEG activity is measured in micro-volts and main frequencies of interest are up to
100 Hz. Different brain rhythms have different frequencies and amplitude [1], that
are explained as follows:

Delta waves (<4 Hz): These waves have the highest amplitudes and lowest fre-
quencies. These are primarily associated with deep sleep.

Theta waves (4–8 Hz): These waves are observed in the adults and older children
when there are memory intensive activities. This pattern also appears in deep
meditation and light sleep. It also includes rapid eye movement (REM) sleep
state.

Alpha waves (8–14 Hz): Alpha waves are associated with wakefulness, closing the
eye, effortless alertness, and creativity.

Beta waves (14–30 Hz): These waves are found only in normal adults. These waves
correlate with active attention, active thinking, solving critical problems or focus
on the outside world. Therefore, these are also known as a Sensory Motor
Rhythm.

Gamma waves (>30 Hz): These waves are associated with high-level information
processing. Usually, these are not of medical interest and often filtered out from
EEG signals.

Various applications of EEG have been identified in the existing brain research
like biomedical data analysis, brain computer interface, and military applications
[3, 7, 16]. The most common application of EEG in medicine is to identify the
diseases like seizure disorder, head injuries, and brain tumors etc. EEG analysis also
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helps us in solving problems like sleep disorder, changes in behavior, psychological
and stress related diseases etc. EEG can also be used for quantitative measurement
of brain activities before liver or heart transplantation.

9.3 EEG Topomaps

Brain mapping is the visual-spatial illustration of biological properties of brain
known as topographic maps or topomaps [10,17]. The parameter under study is plot-
ted onto a picture of the brain. Amplitude at a given frame is usually represented as
strength/intensity, and amplitudes at undetermined frames are estimated to present
a smooth display. Features of EEG are highlighted by using these displays, which
are referred as EEG topomaps. The brain topomaps should not be confused with
cortical mapping of brain that is acquired by direct electrical cortical stimulation
or with the brain mapping that is acquired by applying neuro imaging techniques.
There is no direct relationship of EEG with these techniques. Brain is divided into
different lobes based on its functions as is given in Fig. 9.1. One of the twenty-nine
topomaps of the brain that have been used in our experiments is shown in Fig. 9.1.
The four lobes are represented by different colors for the purpose of illustration
only. The four lobes are frontal, parietal, temporal (left temporal region (LTR), right
temporal region (RTR)), and occipital. The deep fold between frontal and parietal
lobes is referred to as central motor region (CMR). The location and function of
various lobes are as follows:

• Frontal lobe is ahead of the central sulcus and is responsible for planning,
thinking, and emotions.

• Parietal lobe is behind the central sulcus and is involved in sensation of
temperature, taste, touch, pain, pressure, etc.

• Temporal lobe is below the lateral fissure, and is responsible for the auditory
sense. Specific tones and the sound strength is recognized by temporal lobe.
Auditory damage and deafness can occur due to tumor or accidental injuries
in this area. In addition, this area plays a vital role in emotion processing and
memory.

• Occipital lobe is located behind the parietal and temporal lobes and deals with
visual information processing. Because of its location, this lobe is less susceptible

Fig. 9.1 (a) Brain topomap.
(b) The corresponding map
with different brain lobes

Pre-Frontal

Occipital

CMR

Frontal

Parietal
RTRLTR

a b
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to injuries, however significant trauma in this area may result in visual perceptual
system disorder or even complete blindness.

• Central lobe/CMR is in the central area, i.e., located at the intersection of the
cerebral hemisphere with the brain stem. CMR separates the frontal lobe from
the parietal lobe. This is responsible for emotional and sexual aspects.

9.4 Motion Estimation

Motion estimation refers to the estimation of the displacement from one frame
to another frame in the image sequences. Consecutive video frames are spatially
and temporally correlated with each other. The estimation of displacement is
done by obtaining the motion vector. These estimated motion vectors eventually
represent the estimated motion between the consecutive frames. Hence the temporal
redundancy between the consecutive frames is eliminated by employing motion
estimation and compensation. The spatio-temporal correlation and the directions
of motion vectors are used to estimate the motions in the video [13–15]. In a
normal video, motion can be a complex combination of rotation and translation.
It is quite difficult to estimate these motions and may require large amount of
processing [2]. However, translational motion is easily estimated and is used
successfully for motion compensation. In this research unlike the traditional video,
we use the topomaps of EEG to represent video sequences, which is a complex
combination of scaling, i.e., expansion and shrinking, along with slight translation,
rotation and shifting. The motion vectors in case of EEG topomaps will represent
expansion and contraction of the regions instead of object movements in the normal
video.

The two commonly used techniques for motion estimation are pel-recursive
algorithms (PRA) [11] and block matching algorithms (BMA) [5]. PRAs are based
on individual pixels while BMAs are based on rectangular blocks where all the
pixels within a block are assumed to have the same motion activity. PRAs are
computationally complex while BMAs are fast and suitable for simple realization.

In block matching based motion estimation (BBME), the current frame is
partitioned into square blocks of pixels and the best match of these blocks is
found inside the reference frame using a predefined distortion criterion. The best
match is then used as a predictor for the block in the current frame, whereas
the displacement between the two blocks is usually defined as the motion vector
(MV), which is associated with the current block [14]. Full search (FS) is the most
straightforward and optimal BMA which searches exhaustively inside the search
window to find the MV. Despite very heavy computations required in FS it is widely
used in video coding applications due to its simplicity. Several fast block matching
motion estimation algorithms have been proposed so far. These fast algorithms
involve approaches like unimodal error surface assumption (UESA), variable search
range instead of fixed one, methods using multi-resolution, spatial and temporal
correlation of MVs, pixel decimation etc.
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9.4.1 Full-Search (FS) Block Matching Algorithm

This BMA is very simple but it involves high computational cost, where the cost
function is calculated at each possible location in a search window. There are many
fast BMAs but we have to make a trade-off between efficiency and image quality.
In this research, our main focus is to obtain accurate motion vectors. Hence the
computational cost of FS is acceptable. The block within the search window used
in FS is depicted in Fig. 9.2 and the block diagram for FS is given in Fig. 9.3. The
current frame is divided into blocks of size N � N , and for every block in the
current frame, the previous (reference) frame is searched within the search space
to find out the closest match as shown in Fig. 9.3. The parameter p is the search
range. Figure 9.4 shows the blocks and the corresponding search area for N D 3

and p D 2. In Fig. 9.4, m.i; j / and s.i; j / represent each pixel in the block and
search area respectively. The search area consists of .N C 2p/� .N C 2p/ pixels.

In order to measure the similarity between current frame block and a candidate
block of the reference frame, various distortion measure criteria may be used, such
as minimum mean square error (MSE), minimum mean absolute difference (MAD),
or minimum sum of absolute differences (SAD). Some of the distortion measures
are defined as follows:

MSE D 1

N 2

N �1X
iD0

N �1X
j D0

.Cij �Rij /2 (9.1)

MAD D 1

N 2

N �1X
iD0

N �1X
j D0

jCij �Rij j (9.2)

Fig. 9.2 Search window for
FS block motion estimation
algorithm
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Fig. 9.3 Block diagram for a full search algorithm
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where N is the size of block, Cij and Rij are the pixels that are compared in the
current and reference blocks respectively.

Structural similarity index measure (SSIM) and peak signal to noise ratio (PSNR)
are used to evaluate the performance of the BMAs. The higher PSNR means the
better match and vice versa. FS gives highest PSNRs as compared to all other
BMAs. PSNR and SSIM are defined as follows:

PSNR D 10 log10

2552

MSE
(9.3)

SSIM.x; y/ D .2�x�y C c1/ .2�xy C c2/

.�2
x C �2

y C c1/ .�2
x C �2

y C c2/
(9.4)

where x and y are two windows of size N �N , and �x and �y are the average of x

and y respectively. �2
x and �2

y are the variances of x and y respectively. c2 D .k2L/2

with L being the maximum value, i.e., 2#bits , and k1 D 0:01 and k2 D 0:03 by
default.

There is no precise rule to select either PSNR or SSIM measurement for
evaluating the image/frames quality. PSNR is the peak signal to noise ratio whereas
SSIM shows the similarity measurements between two frames. The PSNR between
the compensated and the corresponding reference frame has been calculated. The
compensated frames are generated by using motion vectors of original and the
reference frames.

The followings are a brief overview of fast motion estimation algorithms.

9.4.2 Three Step Search (TSS) Algorithm

TSS was introduced by Koga et al. in 1981, and become very popular for its
simplicity, robustness and near to optimal solution [6]. This algorithm is one of
the earliest BMAs. In this BMA, an initial step size is selected and eight points at a
distance of selected step size around the search centre are selected for comparison.
In the next step, the step size is bisected and the centre is moved to the point with
the minimum cost/distortion. This procedure is repeated until the step size becomes
equal to one. The main problem with TSS is the use of uniformly allocated checking
point pattern in the first step, where eight points around the center point at the
distance of fixed step size are chosen for comparison. Hence TSS is inefficient for
small motion estimation.

9.4.3 New Three Step Search (NTSS) Algorithm

In TSS, the step size in the first step is large and is not capable of detecting
small motion. This problem is solved in NTSS that employs the center-biased
checking point pattern in the first step. NTSS has better results than TSS and the
computational complexity is reduced by adopting a half-stop search technique [8].
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9.4.4 Four Step Search (FSS) Algorithm

FSS adopts a center biased search pattern with a nine point comparison in the first
step. In the next steps either three or five points are selected based on the minimum
distortion in the previous step. The search is stopped if the search center is chosen
as the minimum distortion point and step size is reduced to 1. In the last step eight
points are searched [18].

9.4.5 Diamond Search (DS) Algorithm

This algorithm is very similar to FSS, but the search point pattern is changed
to diamond from square. The number of search steps is unlimited. Two different
patterns are used in DS: large diamond search pattern (LDSP) and small diamond
search pattern (SDSP) [20]. DS algorithm outperforms the TSS and FSS algorithm.
It produces very similar results to NTSS but the computational cost is reduced in DS.

9.4.6 Two Dimensional Logarithmic Search (TDLS) Algorithm

TDLS is very similar to TSS. It requires more steps than TSS but it can be more
accurate, especially in the case of large search window [5]. TDLS is explained as
follows: Pick an initial step size and look at the central point and the four points
at some pre-defined distance from central point on both axes. If the best match
is at the centre then decrease the step size to half otherwise the best match will
become the centre and the same procedure is repeated. When the step size becomes
one, eight neighboring points are chosen for the search and the best among them is
picked.

9.4.7 Orthogonal Search Algorithm (OSAlg)

OSAlg is an amalgam of TSS and TDLS. The optimal point is found by searching
the vertical pattern and horizontal pattern respectively [5]. The procedure of OSAlg
is described as follows: Two points at a pre-defined distance from the search center
are picked in the horizontal direction and a point with minimum distortion is chosen.
The center is moved to this point. Then two points at the same step size from the
centre are chosen in the vertical direction and the point with the minimum distortion
is chosen. The procedure is continued till the step size is one.

Figure 9.5 shows a comparison of FS and several fast ME algorithms in terms
of PSNR. From the comparison it is clear that FS performs better than all fast
algorithms in terms of the picture quality. Hence in the rest of the chapter we will
only discuss results with FS algorithm for the brain topomaps analysis.
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9.4.8 Tracking Brain Activity Using FS Motion
Estimation Algorithm

In this chapter, we are using FS block matching algorithm to track the pattern
of activity in the EEG topomaps and investigate these patterns. By applying the
FS algorithm, the motion vectors are identified in their respective search spaces.
Assume that during a certain activity, the activation starts from the occipital lobe
(originating area) and goes towards the frontal lobe (target area) in a particular
direction. Initially there may be several movements in several directions from the
starting area to the target area. At every frame, we check the status of these directions
by the help of motion vectors. In most cases the motion vectors cross the boundaries
of the lobes while moving towards the target area. In this way, we can track the
EEG signals throughout the activity. Secondly, we track the optimum route from the
starting area to the target area. The optimum route is estimated based on number of
frames it takes to reach the final destination. If the motion is trapped in an area,
then those motion vectors are not considered for calculating the path followed.
The length of the path, from starting point to final point, is based on those motion
vectors that point away from the local area and are called candidate motion vectors
(CMVs). Starting from the CMV all the vectors are counted in calculating the length
of the path. It means that we may ignore only those vectors which are trapped in the
starting area; otherwise, they are considered.

9.5 Experimental Setup and Data Acquisition

The EEG topomaps have been collected using a 128 channel EGI (Electrical
Geodesics, Inc.) EEG machine. The resolution is 24 bits per sample at a sampling
rate of 250 samples per second. This data was collected from one subject while
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performing two different experiments. In the first case a simple mathematical
problem is solved, by seeing the problem on the computer screen. The area of the
brain that is used for this problem is occipital where the subject process what he
sees on the screen. The language areas (the very left temporal, surrounding the left
ear) are also used while performing the mathematical calculation.

For the second experiment the EEG data was recorded while the subject was
pressing the ENTER button of the keyboard by seeing a blue box on the screen.
Thus, the activation is expected to start from the occipital lobe. The recorded data
was then converted into the topographic format, i.e., EEG topomaps.

The experiments are performed on 29 topomaps (frames). The sequence of these
frames collectively represents a 5 s video, where each frame takes 172.4 ms. The
frame difference between the reference and current frame is set to 2. The frame size
is 256� 256 pixels, the block size is set to 8� 8 and the search window size p is set
to 7 in our experiments for the FS algorithm. The algorithms have been simulated
using MATLAB programming language.

9.6 Discussion of Results

One of the topomaps (frames) and its corresponding predicted frame is shown in
Fig. 9.6. The motion vectors show the direction of EEG signals between the two
frames, i.e., at a time interval t and time interval t C 1. It can be observed that
there are several movements within a frame interval. The motion vectors show the
direction of brain activation from one location to another.

In the ordinary video, the objects are usually moving, and the major parts of
the frame are not moving. However, in EEG topomaps, most parts of the frame are
moving and these movements are quite complex as compared to the movements
of objects in common video. In topomaps, most of the areas are expanding and
shrinking. Figure 9.6c shows many vectors, where some of the vectors indicate the
shrinking and some of them indicate the expansions within the frame. Figure 9.7
shows the brain topomaps with and without background for frame 2, 12, and 22 out
of 29 frames. The lower row clearly indicates the motion vector positions/directions
with respect to the lobes. These vectors show the movement of EEG activity through
different lobes.

Figure 9.8 shows the movement of the motion vectors, where each vector is
tracked from the starting point to indicate the path followed throughout the activity.
Each vector is under consideration individually with respect to its location. It is
observed from Fig. 9.8 that in some areas, the movement is trapped within the local
region for partial duration, or entire duration of activation. This trapping can be
either in the initial, final, or in the middle stage of activation. We are taking into
account all the paths from the starting points to the target points. Figure 9.8a–h
show different paths followed by the respective motion vectors. At this stage, we are
considering every type of movement either local or not. Later on, we will exclude the
movements within the local area. These local movements are ignored, because we
are interested in those movements that result in the crossing of signal to another lobe.
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Figure 9.8d, f shows that the motion is trapped on the border of the topomap.
Thus, it is very important to discriminate such type of vectors from all other vectors.
The vectors starting from a single location (individual path) have been taken under
consideration in each frame instead of showing all the vectors as shown in Fig. 9.9.

Movements within the local area are ignored and inter lobe movements are
considered for analyzing the vectors with respect to time. The path with lesser
number of candidate motion vectors (CMVs) is selected as a optimal path. The
optimal routes from the starting point to the ending points are based on counting the
time intervals while ignoring the vectors lying in the local area.

Conclusions
In this chapter, we have used full search (FS) block motion estimation (BME)
algorithm to analyze and track the motion in the EEG topomaps that result
from brain activation based on the stimuli. Using the motion vectors, we

(continued)
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examine the behavior of the brain and can specify the areas of the brain
that are activated because of the stimulus. Further, we can track the path
followed by individual vectors that represent the brain activation path. Finally
we have tracked the optimal path followed during an activity. Hence using FS
algorithm we are able to illustrate the movements in the brain under certain
activity and can display these movements using motion vectors. In addition
we can also follow the path throughout the activity. Finally we may be able
to select the optimal path for a certain activity. Hence this research can help
to understand the mechanism of the information flow in the brain which can
lead to the development of brain computer interface systems.
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Chapter 10
Towards Automated Quantitative Vasculature
Understanding via Ultra High-Resolution
Imagery

Rongxin Li, Dadong Wang, Changming Sun, Ryan Lagerstrom, Hai Tan,
You He, and Tiqiao Xiao

Abstract This chapter presents an approach to processing ultra high-resolution,
large-size biomedical imaging data for the purposes of detecting and quantifying
vasculature and microvasculature. Capturing early signs of any changes in vascu-
lature may have significant values for early-diagnosis and treatment assessment
due to the well understood observation that vascular changes precede cancerous
growth and metastasis. With the advent of key enabling technologies for extremely
high-resolution imaging, such as synchrotron radiation based computed tomogra-
phy (CT), the required levels of detail have become accessible. However, these
technologies also present challenges in data analysis. This chapter aims to offer
some insights as to how these changes might be best dealt with. We argue that the
necessary steps in quantitative understanding of vasculatures include targeted data
enhancement, information reduction aimed at characterizing the linear structure of
vessels, and quantitatively describing the vessel hierarchy. We present results on
cerebral and liver vasculatures of a mouse captured at the Shanghai Synchrotron
Radiation Facility (SSRF). These results were achieved with a processing pipeline
comprising of our empirically selected component for each of the above steps.
Towards the end, we discuss how alternative and additional components may be
incorporated for improved speed and robustness.
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10.1 Introduction

Detection of malignant tumor growth at an early stage is crucial to satisfactory
prognosis and patients’ survival. Equally important is the assessment of the efficacy
of various treatment modalities, including pharmaceutical (particularly angiogenesis
inhibitors or anti-angiogenic agents), surgical, chemotherapeutical and radiation
interventions. For both these purposes, the accurate assessment of vascular and
microvasculature changes (such as microvasculature angiogenesis) can play a
critical and indispensable role. This is because, as is well understood, tumor
growth and metastasis require markedly increased amounts of nutrients, and are
thus preceded and accompanied by angiogenesis and neovascularization [17]. It is
plausible to stipulate that any changes in vasculature are likely to be minute in the
early stages, and require a high resolution image for the detection and measurement
of any subtle proliferation of a network of blood vessels that may penetrate
into cancerous growths. Synchrotron radiation-based micro-computed tomography
(SR-�CT) allows researchers to obtain 3D vascular tree at a micron-level resolution.
However, most of them are qualitative description rather than quantitative analysis,
which is still a world-wide challenge. There is a lack of software suitable for the
automated quantitative analysis of 3D angiogenesis, especially for the analysis of
microvasculature where the large size of each of the 3D image dataset needs to be
processed within acceptable timeframes.

Informative visualization of the vasculature is a major step towards the aforemen-
tioned detection and assessment; however, objectivity, reliability and reproducibility
cannot be achieved without quantitative information. This chapter is devoted to
quantifying the vessel system in a number of information dimensions so that any
changes can be readily detected by computers. Figure 10.1 illustrates the flow of the
processing steps.

10.2 Ultra High-Resolution Imagery

10.2.1 Data Acquisition Protocol

SR-�CT can achieve a micron-level resolution, making microvasculature accessi-
ble with digital imaging. This makes accurate quantification of microvasculature
changes feasible.

As part of a study to better evaluate this feasibility, as well as assess its potential
in early diagnosis and treatment evaluation, multiple sets of liver and brain images of
mice were captured at the Shanghai Synchrotron Radiation Facility (SSRF). Detail
of the data acquisition protocol is given below.

The image datasets used in this chapter include cerebral and liver vasculatures of
mice. The cerebral vessels were effectively perfused by Microfil. The cerebral vas-
culature images were acquired with the following experimental parameters: 13 keV
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Fig. 10.1 Diagram of the
processing flow
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for the energy, 3.7 �m/pixel for the resolution, sample-to-detector distance (SDD)
30 cm. Mice bearing liver xenograft models were used to capture liver vasculatures.
The liver orthotopic tumor xenograft models were established by implantation
of HCCLM3-RFP tumor cells. The liver blood vessels were Heparinized saline
perfused. There was no contrast agent used in the imaging. The experimental
parameters were: 15 keV for the energy, 9 �m/pixel for the resolution, and 1 m for
the SDD.

10.2.2 Significance of High Image Resolution

One of the advantages of having an ultra high resolution for biomedical purposes is
that minute details, such as those significant to detecting or quantifying neovascu-
larization, become considerably more accessible than otherwise. To illustrate this,
a 3D visualization of the vasculature of a mouse brain, as captured at the SSRF, is
presented in Fig. 10.2.
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Fig. 10.2 An example of
accessible details in ultra
high-resolution imagery: a
3D visualization of the
vasculature of a partial mouse
brain captured at SSRF

10.3 Methods and Algorithms

10.3.1 Noise Levels and Linear-Structure Enhancement

The ultra high-resolution images that synchrotron radiation is capable of producing
carry undesirable side-effects. Most noticeably, these include ring-like artifacts and
high-level imaging noise, particularly those that coincide with, or are in proximity
to, the inherent structure of interest (which are, in our case, the vessels).

Notwithstanding the more recent variants, the original vessel likelihood measure
(referred to as vesselness) as proposed by Frangi et al.’s seminal work [5] is still
widely used for locating vessels. Our current linear structure enhancement is based
on the method described in [5]. Our work on 2D linear feature enhancement [20]
will be extended to 3D in future work. One example of our test results is shown in
Fig. 10.3.

In the pre-processing stage, the binary images were obtained by threshold-
ing, where an automatic threshold selection approach that minimizes intra-class
variance, generally known as Otsu’s method [15,19], was employed for the contrast-
enhanced cerebral images. Manual adjustments were needed for low-contrast
images; however, it is hoped that when the above-mentioned enhancement becomes
fully functional in 3D, the pre-processing stage will also become automated on all
types of images.
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Fig. 10.3 Sub-image of a
single synchrotron image
slice before (above) and after
(below) the enhancement (the
intensity has been inverted for
the enhanced image for
display purposes)

10.3.2 Dimensionality Reduction by Skeletonization

In the analysis of vessel systems, the need to produce a hierarchical representation
is ever present [12]. As an approach to representing and characterizing the linearity
of vessels, skeletonization is typically required as a dimensionality reduction
measure.
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In general, skeletonization approaches on binary images can be discussed in two
broad categories, divided along the line of whether or not image-weighted distances
play a primary role in the process. In the category where such distances are used,
skeletons are classically computed as part of the Voronoi diagrams [6]. Alternatively,
they can be regarded as comprising of singular points (i.e., discontinuities in the first
order derivatives) or regional maxima in a distance map [2, 16], where the image-
weighted distance measure can be Euclidean or otherwise (for speed considerations
a Chamfer metric is often employed [14]). A third approach is to administer
simulated wave propagation with the speed dependent on image information [1,18].
The propagating waves can be initiated either inside [13] or outside the structure of
interest. If started outside, this operation is also referred to as the grass fire transform
(GFT) [3, 11].

Where distances are either not being used, or only playing a supporting role,
the approaches are generally called topological thinning, referring to the process in
which voxels or pixels not affecting the topology of the underlying structure are
iteratively removed [4], resulting in a morphologically thinned object of the original
binary image. The decision as to whether or not to remove a voxel is typically
conditioned upon a set of criteria, such as that the voxel is on the boundary of the
object under consideration, that its removal will not alter the topology of either the
object or the background, and it is non-terminal so that its deletion will not shorten
the linear structure. Algorithms have been proposed to accelerate the process and
improve the symmetricity of the process. These include the ordering of the voxels
by their distances to the background, and the octree algorithm used to retrieve and
organize a complete set of boundary voxels.

While demonstrating superior performance in terms of speed, distance map based
approaches do not preserve any topological information in the process. The end
results are typically a set of locations, without explicit topological information.
However, a skeleton generally needs to incorporate topological information, in
addition to location information. Therefore, the possibility of introducing errors in
a post-processing stage, while attempting to recover the topological information
(e.g., by linking voxels in proximity) cannot be discounted.

For guaranteed faithfulness down to the voxel level to the original topology of
vasculature, a procedure based on the topological thinning [9,10] was chosen, which
essentially comprises conditional erosions. The actual implementation performs
three essential tests at each iteration for each point under consideration: whether
the point is lying on the surface of an object, whether it is a simple point, and
whether it is non-terminal. The first criterion is the most crucial to the efficiency
of the entire algorithm [7, 10]. That is, how many boundary points can be retrieved
on each application of the greedy retrieval step. The implementation [7, 8] is one
based on a kernel, and has been demonstrated to discover all surface points upon
each application [10].
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10.3.3 Quantitative Understanding of the Vasculature
Hierarchy

The quantitative understanding module in the pipeline described here performs
derivation of a vessel hierarchy. The skeleton of the blood vessels shown in Fig. 10.4
is split into segments and then a tree analysis is conducted. This analysis is based
on the tree structure of vessel systems, as conceptually illustrated in Fig. 10.5.

This module is a modification and 3D extension of a previously published work
dedicated to neurite analysis in 2D [21–23]. Vessel-segment trees are constructed by
a process akin to region growing on a graph, or a marker controlled morphological

Fig. 10.4 A 3D visualization
of the skeletonized cerebral
vasculature (as shown in
Fig. 10.2) from the partial
mouse brain captured at
SSRF

Fig. 10.5 A conceptual
illustration of the hierarchical
nature of a vessel system,
with a main artery in the
centre of the graph
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watershed transform, where the edges are vessel bifurcations and the nodes are the
skeleton segments. This process begins with segments that touch the main entry
arteries, which can be identified either by a manual click or by a morphological
process that searches for the thickest vessel within a designated volumetric area.

To delineate 3D vessel segments, which constitute the tree branches and on
which the average thickness is measured, all the junctions and bifurcations are
removed prior to the tree-structure parsing. Furthermore, very short segments,
deemed insignificant, are also deleted.

As with the marker controlled morphological watershed transform, a priority map
is needed to determine the order for the ‘flooding’ process. In the current context,
each segment is given a priority value that is proportional to the average thickness
of the segment. That is, the thicker the segment, the higher its priority. Starting
at the main entry point (and, where necessary, restarted from the locations of the
deleted junction branch points, which are analogous to the seeds in the marker-based
watershed transform), the tree progressively grows primary, secondary, tertiary, and
other levels of branches. Branches at each level of the hierarchy are assigned the
same, unique label. Following the above parsing of the tree hierarchy, statistics in
terms of quantitative properties such as the lengths and widths are produced and
compiled into a table.

10.4 Results

In this section, we present the results of the quantification of vessel systems.
Figure 10.6 demonstrates the segmented liver vasculature of a mouse, and Fig. 10.7
shows the segmented, labeled cerebral vascular trees of a mouse. Tables 10.1
and 10.2 show the quantitative analysis results for the liver and cerebral vascular
trees, respectively.

Tables 10.1 and 10.2 include both an image-wide summary and vessel tree-
based measurements. The image-wide summary, given at the top part of each table,
includes the following statistics:

Fig. 10.6 3D visualisation of the segmented liver vasculature of a mouse
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Fig. 10.7 Segmented and labeled cerebral vasculature of a mouse. (a) Labeled vasculature tree;
(b) Labeled branch layer structure

1. Total length – the total length of all blood vessels (in voxels)
2. Total number of vessel segments – a segment is a linear structure between

branching/junction points
3. Length of the longest vessel from marker – the length (in voxels) of the longest

vessel from the marker to the end of the most distant segment
4. Total number of extreme branches – the number of terminating vessel segments
5. Total number of branch points – the number of points where a vessel structure

splits into two or more branches

The vessel-tree based measurements include:

1. Tree label – sequential number of all vessel trees from the marker in the vascular
structure

2. Total length – sum of the length of all the vessel branches of the tree
3. Length of longest vessel from marker – the length (in voxels) of the longest path

from the marker to the end of the most distant vessel segment
4. Max branch layer – the highest level of branching for the tree
5. Mean branch layer – the mean level of branching for the tree
6. Number of branch points – the number of points where a vessel structure splits

into two or more branches
7. Number of vessel segments – the number of segments where a segment is a linear

structure between two neighbouring branching points.
8. Number of extreme branches – the number of terminating vessel segments
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Table 10.1 Statistics of the mouse liver vasculature

Total
length

Total number of
vessel segments

Length of longest
vessel from marker

Total number of
extreme branches

Total number of
branch points

19,338.1 4,204 285.30 1,737 932

Tree
label

Total
length

Length of
longest vessel
from marker

Max
branch
layer

Mean
branch
layer

Number
of branch
points

Number
of vessel
segments

Number
of extreme
branches

1 4:08 4:08 1 1 0 1 1

2 16:42 16:42 1 1 0 2 1

3 13:99 13:99 1 1 0 1 1

4 15:14 15:14 1 1 0 1 1

5 9:06 9:06 1 1 0 1 1

6 2:23 2:23 1 1 0 1 1

7 4;498:07 285:30 16 9.64 182 1;248 437

8 5:49 5:49 1 1 0 1 1

9 30:85 14:82 2 1.71 1 7 4

10 20:98 20:98 1 1 0 1 1

11 48:92 25:01 3 2 3 12 6

12 1;565:71 123:54 9 5.79 72 227 121

13 11;764:10 206:93 18 7.90 606 2;498 1;060

14 3 3 1 1 0 1 1

15 5:26 5:26 1 1 0 1 1

16 1;073:64 111:53 9 4.86 56 160 81

17 261:05 87:93 5 2.39 12 41 18

The total length of all branches of a tree (the second column), together with the
statistics of the numbers of branch layers – given in the last five columns (the fourth
to the eighth) of Table 10.1, have particular significance in detecting tumor growth.
In the case presented here, the vessels belonging to the tree numbered 13 have a total
of 11,764.10 mm in length, 18 maximum branch layers and 7.90 average layers.
These make it the most note worthy amongst the 17 vessel trees, ranked just above
the similarly complex tree number 7. In Table 10.2, the most significant trees are
those numbered 6 and 34.

While it may not always be achievable to accurately register longitudinal images
of the same patient (or experimental subject), the presence of such structurally
riches sub-systems make direct comparisons feasible. Such comparison between
longitudinal samples are crucial to detecting any such changes and, by extension,
the possibility of tumor growths.
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Table 10.2 Quantitative analysis results of the mouse cerebral vasculature

Total
length

Total number of
vessel segments

Length of longest
vessel from marker

Total number of
extreme branches

Total number of
branch points

79,639.5 7,255 2,337.88 2,293 2,421

Tree
label

Total
length

Length of
longest vessel
from marker

Max
branch
layer

Mean
branch
layer

Number
of branch
points

Number
of vessel
segments

Number
of extreme
branches

1 65:10 65:10 1 1 0 1 1

2 31:77 31:77 1 1 0 1 1

3 145:59 71:98 3 2:28 4 28 11

4 46:86 46:86 1 1 0 1 1

5 30:25 30:25 1 1 0 1 1

6 47;615:20 2;007:31 39 21:23 1;449 4;317 1;377

7 53:71 53:71 1 1 0 1 1

8 188:78 66:80 3 2:35 4 28 9

9 225:00 132:52 6 3:47 8 19 6

10 36:85 26:02 2 1:60 1 5 2

11 42:22 26:36 3 1:87 2 8 4

12 218:34 105:71 3 1:86 8 23 9

13 55:97 28:95 3 1:88 2 9 4

14 3 3 1 1 0 1 1

15 5:29 5:29 1 1 0 1 1

16 78:85 71:05 2 1:25 1 4 2

17 6:81 6:81 1 1 0 1 1

18 158:90 46:50 6 3:5 8 22 4

19 98:27 45:68 2 1:5 2 6 1

20 44:54 38:19 2 1:25 1 4 1

21 7:04 7:04 1 1 0 1 1

22 120:43 34:31 4 2:18 4 22 8

23 39:08 39:08 1 1 0 1 1

24 3 3 1 1 0 1 1

25 24:49 24:49 1 1 0 2 0

26 26:91 26:91 1 1 0 1 1

27 98:60 98:60 1 1 0 1 1

28 65:27 54:05 2 1:25 1 4 1

29 38:93 38:93 1 1 0 1 1

30 41:38 41:38 1 1 0 1 1

31 134:36 121:09 2 1:4 2 5 2

32 331:26 170:67 3 2:02 10 37 15

33 40:61 37:10 2 1:33 1 3 2

34 29;428:60 2;337:88 44 26:96 912 2;689 816

35 24:41 24:41 1 1 0 1 1

36 36:20 25:42 2 1:33 1 3 2

37 27:31 27:31 1 1 0 1 1
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Discussions and Conclusions
An approach has been presented to bringing new insights into the quantitative
assessment of angiogenesis, and to analysing and detecting tumour angiogen-
esis at its early stage that could lead to tumor malignancies. Vascular trees are
highly branching, asymmetric and non-homogeneous structures comprised
of tapering vessels. In this study, the quantification of branching structure
concerns the extracting of the statistical and geometric features of individual
vascular segments. Some existing studies treated the structure of vascular tree
as a global entity, lacking the branching structure analysis of local vessel
segments such as vessel bifurcations. Besides reporting the global features
of a vascular tree, such as vessel density, total length and diameter, the
detailed branching structure reported in this chapter, including number of
branching layers, number of branching points, number of vessel segments
etc. will help quantify the subtle bifurcations. This is essential in detecting the
microvascular tree changes which may lead to tumor formation and growth.

There are several challenges in this study, including the quantification of
branching structure of dense microvascular trees, and processing large 3D
image datasets. This chapter addressed the quantification of the branching
structure. The microvascular tree analysis is a compute-intensive task requir-
ing high performance computing. In the future, we will aim to resolve the
problems associated with the processing of large 3D image datasets.
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Chapter 11
Cloud Based Toolbox for Image Analysis,
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Abstract This chapter describes a novel way of carrying out image analysis,
reconstruction and processing tasks using cloud based service provided on the
Australian National eResearch Collaboration Tools and Resources (NeCTAR)
infrastructure. The toolbox allows users free access to a wide range of useful blocks
of functionalities (imaging functions) that can be connected together in workflows
allowing creation of even more complex algorithms that can be re-run on different
data sets, shared with others or additionally adjusted. The functions given are in
the area of cellular imaging, advanced X-ray image analysis, computed tomography
and 3D medical imaging and visualisation. The service is currently available on the
website www.cloudimaging.net.au.
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Keywords Cloud computing • Cloud based imaging • Image analysis • Image
processing • Image reconstruction

11.1 Introduction

Imaging technologies, especially in the biomedical areas, have seen tremendous
progress in the past decades. There are about 40,000 magnetic resonance imaging
(MRI) scanners in operation worldwide providing image contrasts and resolution
never achieved before. Computed tomography (CT), positron emission tomography
(PET), and microscopy are other modalities becoming fundamental tools for many
scientific areas [8,20,23]. CSIRO (www.csiro.au) is involved in many collaborative
projects and clinical studies, such as the synchrotron based X-ray microscopy and
micro-spectroscopy, providing exquisite details down to the sub-cellular structures
resolution.

The primary goal of this work was to provide improved access to the
existing biomedical image processing and analysis software packages to nation-
wide research communities via remotely accessible user-interfaces, which is
supported and carried out on the NeCTAR [21] supported cloud infrastructures
(www.nectar.org.au). These software packages have been developed over the last
10–15 years by CSIRO scientists and software engineers, and they include:

• HCA-Vision [17]: developed for automating the process of quantifying cell
features in microscopy images. It can reproducibly analyse complex cell mor-
phologies. It has considerable value in particular for the pharmaceutical and
neuroscience research community.

• MILXView [19]: 3D medical image analysis and visualisation platform increas-
ingly popular with researchers and medical specialists working with MRI, PET
and other types of medical images. A suite of functions has been developed for
viewing and processing 3D and 4D medical data. Several advanced processing
pipelines also exist, such as a fully automated brain morphometry estimate from
MRI.

• X-TRACT [26]: developed for advanced X-ray image analysis and computed
tomography currently in use on the Multi-modal Australian ScienceS Imaging
and Visualisation Environment cluster (MASSIVE, see www.massive.org.au) at
the Australian Synchrotron, the Australian National University (ANU, see www.
anu.edu.au) and at the Shanghai Synchrotron (ssrf.sinap.ac.cn/english/) in China.
X-TRACT implements a large number of conventional and advanced algorithms
for 2D and 3D X-ray image reconstruction and simulation.

The service unifies those software packages for image analysis, processing
and reconstruction. Each function is provided as a building block, which can
be assembled together in a graphical workflow environment, using the Galaxy
package [13–15,22] (galaxyproject.org). By providing user-friendly access to cloud
computing resources and new workflow-based interfaces, our solution enables the
researchers to carry out many challenging image analysis and reconstruction tasks.

www.csiro.au
www.nectar.org.au
www.massive.org.au
www.anu.edu.au
www.anu.edu.au
ssrf.sinap.ac.cn/english/
galaxyproject.org
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The main focus at this stage is on algorithms and solutions primarily for biomedical
image processing and analysis; however, the tools being developed have no inherent
technical restriction and can be extended to support a wide variety of fields of
scientific research, such as [2, 7, 24].

11.2 Software Architecture

The cloud-base image analysis and processing toolbox [9] comprises a collection
of physical and virtualized resources connected through networks, including the
NeCTAR research cloud Infrastructure as a Service (IaaS), cloud enabled image
analysis and processing Platform as a Service (PaaS), and CSIRO developed image
analysis Software as a Service (SaaS). Figure 11.1 presents a high-level architectural
view of the system.

11.2.1 Platform as a Service

The image analysis and processing platform (PaaS) represents the development and
runtime environment where the image analysis and processing tools are executed.
The platform also provides the basic management features of a single node and

Fig. 11.1 System architecture (VL D Virtual Laboratory, IAW D Image Analysis Workflow)
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Fig. 11.2 Workflows use case

leverages all the other operations on the services that it is hosting. The platform
encapsulates a layer of software and provides it as a service that can be used to
build high level image analysis and reconstruction services. Figure 11.2 shows the
workflows of a use case.

11.2.2 Software as a Service

The SaaS layer features three applications offered as a service on demand. A single
instance of the tools extracted from each of the image analysis packages runs on
the cloud and services multiple end users. The software packages include HCA-
Vision [17], X-TRACT [26], and MILXView [19] that were mentioned earlier.
There are no technical restrictions to run the service on other cloud infrastructures
[3, 16, 18].

11.3 Launch of the Service

To facilitate end users’ easy access to the NeCTAR research cloud, the cloud utilises
the Australian Access Federation Registry AAF [1] to provide a web portal based
single sign-on for users with the same login credentials that they use for login to
their institutional networks (universities or research facilities).

To launch CSIRO Cloud-based Image Analysis and Processing Toolbox
[5, 6, 11, 12], start any web browser and type the following web address:
cloudimaging.net.au. Figure 11.3 shows the web page that pops up.

cloudimaging.net.au


11 Cloud Based Toolbox for Image Analysis, Processing and Reconstruction Tasks 195

Fig. 11.3 Dasboard of the imaging service available under cloudimaging.net.au

Click the Blog [10] link (cloudimaging.blogspot.com.au), you will be able
to access the blogs of the toolbox, and click Demos (www.youtube.com/user/
CloudImaging), you will see videos showing how to use the toolbox. Click the
“project’s free server” web link (galaxy.cloudimaging.net.au) at the bottom left of
the home page to bring up the Login page.

Type your email address and password which are the same as you used for
logging into your institutional network, click Login to login to the cloud. The web
portal will be shown in Fig. 11.4 and the user will have access to the following listed
functions:

• Get Data – For a user to upload images, upload and merge multiple files into a
single dataset, or split a multiple file dataset into standard files.

• Cellular Imaging – The cellular image analysis tools include automated solutions
for cell image analysis. They include automated nucleus detection, cytoplasm
detection, cell detection, dots and linear feature detection within a cell, retrieving
statistical features of dots, lines, cytoplasm, cells etc.

• Medical Imaging – The medical image analysis toolbox comprises a suite of
functions for processing and visualizing 3D and 4D medical images, such as
image normalization, atlas registration, bias field correction, partial volume esti-
mation, brain topology correction, cortex thickness estimation, cortical surface
extraction, biomarker mapping on cortical surface, etc.

cloudimaging.net.au
cloudimaging.blogspot.com.au
www.youtube.com/user/CloudImaging
www.youtube.com/user/CloudImaging
galaxy.cloudimaging.net.au


196 T. Bednarz et al.

Fig. 11.4 Main homepage encapsulating all the functionalities

• CT Reconstruction – Tools for CT reconstruction include sinogram creation,
ring artifact removal, dark current subtraction, flat field correction, positional
drift correction, data normalization, filtered back-projection (FBP) parallel-beam
CT reconstruction, Feldkamp-Davis-Kress (FDK) cone-beam CT reconstruction,
automated detection of the centre of rotation in a CT scan, CT reconstruction
filters, region of interests reconstruction, etc.

• Image Filters – This category contains image processing filters, including generic
procedures and algorithms that are performed without a priori knowledge about
the specific features of an image. Implemented filters include: Emboss, Sharpen,
Min, Edge Enhance, Contour, Max, Invert, Median, Edge Enhance More, Detail,
Blur, Smooth, Smooth More, Mode, and Find Edges.

• Image Operations – These tools include basic arithmetic and logical operations
between a pair of images or between an image and a constant, performed pixel-
wise.

• Image Tools – Tools include more general category and functions: Image Tileify,
Image Resize, Image Rotate, and Image Filmify.

11.4 Supported Functions

Supported and available functions in the biomedical space are listed below.
Table 11.1 lists the supported and available tools for cellular image analysis;
Table 11.2 shows a list of medical imaging tools; and Table 11.3 lists available tools
for CT reconstruction functionality.

Figure 11.5 depics applications of MILXView software for image registration
(overlaying various image modalities) and capability for studying of atrophy pattern
characteristics of diseases such as the Alzheimer’s disease.

Figure 11.6 shows the capability of X-TRACT software [26] (which is part
of the cloud imaging project): reconstructed insect (3D) and a sample input
sinogram. The standalone software has a rich graphical user interface and tools
for 2D image display and manipulation. X-TRACT can simulate a variety of
phase-contrast imaging modes and can perform phase retrieval using a number
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Table 11.1 List of cellular imaging tools available in the cloud-based image analysis and
processing toolbox

Name of the tool Description

Find cytoplasm from nucleus donut Identify cytoplasm as a donut-like region around a
nucleus

Detect dots Detect dot-like structures in a 2D image

Create donut around a nucleus Create a donut-like region around a cell nucleus

Objects statistics Compute statistics of objects in a binary or labelled
image

Detect nuclei from cytoplasm holes Detect nuclei from absence of stain of cytoplasm

Detect lines Detect linear features in an image

Arithmetic operations with two images Add, subtract, multiply, and divide two images

Detect nuclei Detect nuclei in a 2D microscope image

Detect cells Detect cells with or without using a nucleus image
as a mask

Overlay image with labelled mask Create a colourful overlay image from an original
image and a labelled mask

Statistics for lines Compute statistics for lines in an image

Detect neurites Detect neurites in a 2D microscope image

Label objects Label objects in a binary image from 1 to N where
N is the number of objects

Filter objects by morphology Filter objects in an image by their morphological
properties

De-clump touching objects Separate any merged objects such as merged
nuclei or cells

Statistics for dots Compute statistics for dots in the image

Detect neurons Detect neurons from a neurite outgrowth image
with or without using a nucleus image as a mask

Logical operations with two images Logical operations with two images such as AND,
OR, and XOR

Extract image channel Extract red, green or blue channel from a color
image

of different methods. The program can also simulate polychromatic tomographic
projections in parallel and cone-beam modes, where the sample is represented as
a stack of 2D slices with a known spatial distribution of real and imaginary parts
of the refractive index, or a distribution of known material components. X-TRACT
contains algorithms for parallel-beam and cone-beam CT reconstruction.

11.5 Workflows

The image analysis and processing platform represents the runtime environment
where above listed image analysis and processing tools are executed. The functions
could be lined up and connected together to create execution pipeline, as shown in
Fig. 11.7.
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Table 11.2 List of medical imaging tools available in the cloud-based image analysis and
processing toolbox

Name of the tool Description

Extract 2D slices Extract 2D slices from a 3D image so a user can view
the data they have uploaded

Image registration Aligning 2 datasets, from different co-ordinate
systems, together

Image segmentation Segment the image into multiple areas for further
analysis

Cortical thickness estimation (CTE) Quantify loss of grey matter in cortex

CTE surface Used to transfer CTE results to a common template
mesh for comparison with populations

Reorient images Reorient images in the space

Standard uptake value ratio (SUVR) Normalise intensity of a PET image

Partial volume correction (PVC) De-blurring of images

Table 11.3 List of CT reconstruction tools available in the cloud–based image analysis and
processing toolbox

Name of the tool Description

CT reconstruction Create a slice from a sinogram. X-ray projection data must first be
converted into sinograms before CT reconstruction can be carried
out. Each sinogram contains data from a single row of detector
pixels for each illuminating angles. This data is sufficient for the
reconstruction of a single axial slice (at least, in parallel-beam
geometry). See Fig. 11.6

Center of rotation Automated calculation of the centre of sample rotation in a CT
scan from experimental X-ray projections, sinograms or
reconstructed axial slices

Sinogram creation and
preprocessing

Create sinograms from projections

FTP functions Dataset must be copied to FTP folder before using FTP client for
downloading

Fig. 11.5 Applications of MILXView: (left) Brain tumor – PET scan and MRI overlaid; (middle)
CT scan of a prostate of a patient overlaid with radiation dose; (right) Generated 3D view of a
brain allowing study of atrophy pattern characteristics of diseases such as the Alzheimer’s disease
(Reprinted with permission from [4]. Copyright 2013, AIP Publishing LLC)
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Fig. 11.6 X-TRACT
capabilities. Top: insect,
reconstruction and rendering
by Sherry Mayo of CSIRO.
Bottom: sample input
sinogram

Fig. 11.7 Sample CT reconstruction workflow

The workflows could then be stored in the cloud and shared with others.
Parameters can also be tuned. They can be reused in the future and be re-run on
different datasets. Figure 11.8 shows an example workflow that counts primary
neurite branches. Figure 11.9 shows subset of the input image and result of tool
execution. The toolbox provides different viewers, allowing displaying outcomes of
the processing steps in 2D or 3D (see Fig. 11.10).

11.6 Use Case: Detecting Neurites

Cellular imaging attracts the interests of both pharmaceutical industry and
academia. Researchers can use the cellular image analysis tools to carry out high
content analysis for their biomedical research. The image analysis tools provided
in the cloud-based services can help them to conduct automated measurement of
cell morphology and analysis of cellular responses in individual cells treated with
different chemical compounds.
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Fig. 11.8 Workflow for counting primary neurite branches

Fig. 11.9 Left: subset of the input image; right: lines with binary mask for neurite output

Typical input dataset looks like the one in Fig. 11.11. We want to automatically
detect neurites in the picture. We carry out the detection in just a few steps using
available functions:

• Upload data: Tools Panel! Get Data! Upload File (Fig. 11.11).
• Detect neurites: Cellular Imaging ! Detect Neurites ! Set Parameters !

Execute (Figs. 11.12 and 11.13).
• Display the neurites on top of the input image: Cellular Imaging ! Overlay

Image with Labelled Mask! Set Parameters! Execute (Fig. 11.14).



11 Cloud Based Toolbox for Image Analysis, Processing and Reconstruction Tasks 201

Fig. 11.10 Realtime 3D visualisation capability (WebGL based viewer [25])

Fig. 11.11 Neurite outgrowth image uploaded to the cloud. Uploaded dataset is seen on the right-
hand panel. When a user clicks on the Eye icon, the image is displayed in the center view as seen
in this figure
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Fig. 11.12 Neurite detection parameters. The user can specify different parameters in the forms
provided to almost every function. After parameters are set, a user clicks on Execute to run the
function on the specified dataset in the cloud

Fig. 11.13 Neurites detected. After the functions are executed, the user can display the output of
the operation by clicking on the Eye icon
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Fig. 11.14 Overlaid image showing the detected neurites on top of the neurite outgrowth image
(for checking whether the result is properly aligned with the input image)

Fig. 11.15 Workflow created from astrocyte analysis history (a user can create history automati-
cally – it is extracted using operations he or she executed earlier one by one)

The operations we carry out can be saved as a workflow. This workflow can be
later used to recreate the operations on different datasets, or can be easily shared
with others. Figure 11.15 shows a sample workflow created from astrocyte analysis
history.
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Conclusions
As datasets increase in size and complexity there is a significant burden
placed upon existing hardware, infrastructure, and maintenance. Institutions
are forced to spend heavily to upgrade and maintain hardware in order to
increase productivity, by reducing processing times and increasing storage
capacity. In this chapter we present a generic cloud framework that allows
users access to complex pipelines such as those needed to process biomedical
imaging data in a cloud environment.

The cloud can be hosted by a remote organisation, such as NeCTAR,
thus relieving the institution of its expensive hardware and maintenance, and
providing a possibly infinite number of machines for processing and data
storage. It promotes collaboration, as users are able to access the tools and
data from anyway in the world given the appropriate security credentials and
an internet connection.

This work describes in general our imaging tools that are now available on
the NeCTAR infrastructure under the following link: www.cloudimaging.net.
au. Please refer to the user manual (goo.gl/99mEPV) for detailed description
of the functionalities.
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for the project RT035 Cloud Based Image Analysis and Processing Toolbox.
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Chapter 12
Pollen Image Classification Using the
Classifynder System: Algorithm Comparison
and a Case Study on New Zealand Honey

Ryan Lagerstrom, Katherine Holt, Yulia Arzhaeva, Leanne Bischof,
Simon Haberle, Felicitas Hopf, and David Lovell

Abstract We describe an investigation into how Massey University’s Pollen
Classifynder can accelerate the understanding of pollen and its role in nature.
The Classifynder is an imaging microscopy system that can locate, image and
classify slide based pollen samples. Given the laboriousness of purely manual image
acquisition and identification it is vital to exploit assistive technologies like the
Classifynder to enable acquisition and analysis of pollen samples. It is also vital that
we understand the strengths and limitations of automated systems so that they can be
used (and improved) to compliment the strengths and weaknesses of human analysts
to the greatest extent possible. This article reviews some of our experiences with the
Classifynder system and our exploration of alternative classifier models to enhance
both accuracy and interpretability. Our experiments in the pollen analysis problem
domain have been based on samples from the Australian National University’s
pollen reference collection (2,890 grains, 15 species) and images bundled with the
Classifynder system (400 grains, 4 species). These samples have been represented
using the Classifynder image feature set. We additionally work through a real world
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case study where we assess the ability of the system to determine the pollen make-up
of samples of New Zealand honey. In addition to the Classifynder’s native neural
network classifier, we have evaluated linear discriminant, support vector machine,
decision tree and random forest classifiers on these data with encouraging results.
Our hope is that our findings will help enhance the performance of future releases
of the Classifynder and other systems for accelerating the acquisition and analysis
of pollen samples.

Keywords Pollen • Palynology • Image analysis • Statistical classification •
Automation • Machine learning

12.1 Introduction

Palynologists study samples of particulates such as pollen grains to gain an
understanding of the environment under which they are produced. Among other
things palynology enables vegetation and climate reconstruction for the assessment
of climate change and biodiversity [12, 29]. It also underpins the science in areas
from allergy research to plant reproductive biology [22, 25].

Pollen grains, the microscopic bodies produced by plants as part of their
reproductive cycle, exist in a wide range of morphologies. Pollen morphology is
typically unique at the family level, but in some cases unique characteristics are
present down to the genus or even species level. This morphological diversity makes
pollen a particularly powerful tool in many branches of science, as it allows the
pollen grains to be traced back to the plants that produced them. Palynology, the
study of pollen grains (and spores and other microscopic biological particulates) is
harnessed in many applications including:

• Reconstructing past vegetation for the purposes of investigating climate change
[12], palaeoecology [29], biodiversity [25] and human activities [22].

• Allergy research and pollen forecasting for sufferers of seasonal allergic rhini-
tis [6].

• Determining the floral origins of honey [17, 26].
• Plant reproductive biology [16].
• Oil prospecting [15].
• Establishing plant taxonomic relationships [5].
• Forensic science [3].

However, the analysis of pollen is a slow and laborious task that involves man-
ually preparing samples, locating and identifying pollen grains under a microscope
and finally, quantifying the abundance of various species present in any sample.
This is typified by an example of recent work on lake sediments from the tropical
Andes, which produced a high-resolution record of vegetation and climate change
spanning the past 200 ka [12]. This exceptional record showed that climate changes
in the tropics over this time period were synchronous with those in the high latitude
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regions of the northern and southern hemispheres. This work has thus made a
major contribution to our understanding of global climate dynamics. However, to
produce this impressive pollen record required the analysis of in excess of 5,000
pollen samples. Even with six highly trained analysts counting full-time, it took a
whole year before the dataset was available. Since the late 1960s the palynology
community has recognized the need for automation and the role it could play in
accelerating the science in these areas [10, 30]. Automation would not only make
obtaining the ‘standard’ or ‘minimum’ datasets required for the various fields listed
above quicker and cheaper to obtain through reduced human labour hours, it is also
envisaged to considerably expand the scope of pollen analysis to well beyond what
is currently possible, through:

• Increasing the volume of material analysed, i.e., more pollen grains counted per
sample, more samples counted, and more sites sampled (where relevant).

• Enhanced objectivity and consistency (i.e., minimising intra- and inter-analyst
variations in identification – aka ‘human error’).

• Higher taxonomic resolution – facilitated by the potential for machines to be
more sensitive to subtle morphological variation than the human eye.

There have been several efforts towards developing systems for automated pollen
analysis. The majority of these employ a combination of image processing of light
microscope or SEM images, with some sort of statistical or machine learning-
based classifier e.g., [8, 11, 28]. Some more recent approaches have applied other
technologies including flow cytometry [24], FT-IR [7], and laser scattering [18].
Nearly all of these such systems are directed towards airborne pollen monitoring
associated with allergy research.

The ‘Classifynder’ (www.classifynder.com) developed by Massey Univer-
sity [14], integrates the hardware and software required to locate, image and classify
slide-based pollen samples. It combines technologies from microscopy, robotics,
pattern recognition, image processing and data science to form a complete, stand
alone automated pollen analysis system which can be applied in any palynology lab
where conventional slide-based pollen analysis is performed.

Typically, a palynologist would build up an image library of various pollen
species using the Classifynder to gather images of pollen grains from a set of
training or reference slides, manually classifying the images into training folders.
This library is then used to train the classifier. The composition of the library will
depend on the research focus of the analyst. For example, an aeropalynologist
interested in seasonal changes in airborne pollen load would build up a library
composed of common wind pollinated plants (i.e., pine, oak, birch, grasses,
ragweed) and use this to train a classifier for use on samples of airborne pollen.
In contrast, the library of a melissopalynologist interested in the floral origins of
honeys would consist of pollen of common nectar-producing plants (i.e., clover,
borage, thyme).

The choice of classifier is a very important issue not only in terms of accuracy,
but interpretability of results. In palynology Stillman and Flenley [30] recognized
a need to investigate classifier choice as early as 1996. When the existing literature

www.classifynder.com
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on attempts at automated palynology is examined, the highest success rates (100 %
for 13 taxa) have been achieved with a neural network classifier [20], which is the
justification for its use in the Classifynder system.

However, there are a number of possible shortcomings with the neural network
approach. Because the native neural net strategy does not provide a measure of
error for each pollen grain classification, there is no way to streamline a review of
classification results. Being able to review (and correct) very obvious misclassifi-
cations (such as when a particular species is not in the library or the corruption of
a grain observation) would allow for quick improvements in classification results
and accelerate the phenotyping process. Therefore, despite the previous success of
neural networks in pollen classification in experimental settings, there is a clear need
to investigate if other classifiers are potentially more suitable for ‘routine’ automated
classification, where unknown grains or corrupt observations are likely to be more
common.

This chapter documents two comparative investigations of classifier performance
on Classifynder-generated image sets. The first investigation assesses five classifiers
that are typically used in modern data analytics, with regard to both accuracy of
classification and interpretability of resulting classifications: neural networks [13];
linear discriminant analysis [9]; support vector machines [4]; decision trees [1];
and random forests [2]. The second investigation compares the performance of
two of these classifiers (neural network and linear discriminant analysis) on sets
of images of pollen from New Zealand honey samples. Honey pollen analysis is
viewed as an ideal test application for an automated palynology system for a number
of reasons:

• Samples are largely free from deformed or broken grains
• Minimal non-pollen debris present.
• Typically limited number of taxa present in a sample, depending on region of

origin.

This is in contrast to other types of samples (e.g., fossil samples from ancient
sediments) where broken or damaged pollen grains and non-pollen debris are
common, and diversity can be high. Furthermore, pollen analysis of honey is
becoming increasingly important in the agricultural and biosecurity sectors. Pollen
analysis potentially provides a method of quality control which is particularly
important for ‘boutique’ honeys which command premium prices [26]. Likewise,
‘honey forgery’ and disguising country of origin of honeys has become more
prevalent, following the placement of import bans on major honey producers such
as China [26].

12.2 Data

The Classifynder’s digital microscopy and software system produces 43 character-
istic features for each pollen grain detected in a microscopy slide. The camera scans
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the slide in low resolution looking for candidate pollen grains. Candidate grains
are at this point assessed as to whether they are debris or genuine pollen grains.
Once a candidate is deemed to be a genuine pollen grain, a high resolution image is
taken at nine different focal depths and a composite image is created. The composite
image is converted into hue, lightness and saturation space. Using only the lightness
values, the pollen grain is segmented from the background by an edge detector
followed by filling the interior. Image feature measurements are then computed from
the segmented shape and the lightness values within the shape. The image feature
categories, and the number of features are: Geometry (3), Histogram (2), Moments
(7), Grey Level Co-occurrence Matrix (5), Grey Gradient Co-occurrence Matrix
(12), Gabor (8), and Wavelets (6). More details of these image features are available
in Zhang et al. [33].

Two datasets were available to us to gain a better understanding of the classifi-
cation capabilities of the Classifynder. The first was provided by Massey University
and contains 400 pollen grain images from 4 different species. This data set comes
bundled with the Classifynder system to help users gain an understanding of how
the analysis part of the system operates. The second was provided by the Australian
National University from their pollen reference collection and contains 2,980 pollen
images from 11 species. The 11 species were selected as common to the Canberra
region in Australia. Table 12.1 summarises the data set while Fig. 12.1 shows
example images from all species.

Initial exploratory analysis was carried out to assess the correlation structure
between the image feature measurements and to see if there were outlying obser-

Table 12.1 A summary of data used in this chapter. The first column is the species name. The
second column is the data source, ARC Australian National University Reference Collection and
CTS Classifynder Test Set. Column three is an abbreviation for species. The final column is the
number of image samples (Reprinted with permission from [19]. Copyright 2013, AIP Publishing
LLC)

Species name Source Abbreviation #Images

Acacia ramoissima ARC AR 77

Atriplex raludosa ARC AP 341

Brachyglottis huntii CTS AS 100

Casuarina littoralis ARC CL 172

Disphyma papillatum CTS DI 100

Dracophyllum arboreum CTS DR 100

Euphorbia hirta ARC EH 172

Eucalyptus fasciculosa ARC EF 192

Isoetes fusilla ARC IP 715

Myrsine chathamica CTS MY 100

Nothofagus cunninghamii ARC NC 113

Nothofagus discoidea EV ARC NE 172

Nothofagus ciscoidea PV ARC NP 504

Olearia algida ARC OA 121

Phyllocladus aspleniifolius ARC PA 122
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Fig. 12.1 Sample images from various species. (a) Acacia ramoissima, (b) Nothofagus discoidea
EV, (c) Euphorbia hirta, (d) Atriplex paludosa, (e) Drocophyllum arboreum, (f) Brachyglottis
huntii, (g) Eucalyptus fasciculosa, (h) Nothofagus cunninghamii, (i) Isoetes pusilla, (j) Phyl-
locladus aspleniifolius, (k) Nothofagus discoidea PV, (l) Disphyma papillatum, (m) Casuarina
littoralis, (n) Olearia algida, and (o) Myrsine chathamica (Reprinted with permission from [19].
Copyright 2013, AIP Publishing LLC)

vations amongst the data. To investigate the correlation structure of our feature set,
all observations with labelled species were considered. Looking at the correlation
structure and ignoring the species labels could disguise potential discriminability,
so correlation between features was examined within species and the minimum over
species considered. Using this conditional correlation type approach, it was found
that within species correlation differed from overall correlation for one species only,
Myrsine chathamica. The conditional correlation between seven grey gradient co-
occurrence matrix (GGCM) texture measures was 0.98 or above, while the two
first level wavelet features was also 0.98. With the data sets we have, removing
five of the GGCM features and one of the first level wavelet features may lead to
more simple classification models with improved parameterisations. We assessed
classifier performance with and without removing correlated features.

The influence of outliers on classification depends on the classifier. In an attempt
to identify potential outliers in our training sets, we first scaled each variable
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Fig. 12.2 Five sample outlying images from different image features. (a) Geometry, (b) His-
togram, (c) Moments, (d) Grey Level Co-occurrence Matrix, and (e) Gabor (Reprinted with
permission from [19]. Copyright 2013, AIP Publishing LLC)

to have zero mean and unit standard deviation. We found 20 observations with
absolute value greater than 10 standard deviations from zero. A selection of five
outlying images is shown in Fig. 12.2. They are based on geometry (NC), histogram
(IP), moments (EF), GLCM (NC) and Gabor (MY). Because we found just 20
observations from 3,290 that could be characterised as outliers we take the approach
of not discarding outliers as the impact on classifier accuracy would be minor.

12.3 Classification Models

Here we assess five classification models on the labelled species images: neural net-
works (NN), linear discriminant analysis (LDA), support vector machines (SVM),
decision trees (DT) and random forests (RF). This selection of models was chosen
to span linear, non-linear and tree based classifiers and represents a typical set of
tools a data analyst might use to investigate classification problems in, for example,
the data mining area. The analyses were performed in the statistical programming
language R [27] where the classifiers are available in the nnet, MASS, kernlab, rpart
and randomForest packages.

Our motive for comparing the classifiers is to ascertain whether there is a
particular classifier that is especially well suited to pollen data compared to others.
The developers of the system have indicated that one of the shortcomings of the
neural net is the inability to measure the strength of individual classifications for the
purpose of assisted reviewing. With this in mind, a question of particular relevance
is how a simple linear classifier (where per observation diagnostics are available)
compares to a ‘black box’ classifier like a neural net.

Our strategy for assessing classifier performance begins by choosing one of
the three data sets: the Classifynder test set (CTS), the ANU reference collection
(ARC) or the combination of both (COMB). From there we consider a data set
where all feature measurements were included (FF) and also when correlated feature
measurements were removed (LF). Once the data set was determined, all feature
measurements were scaled to have zero mean and unit variance. The data set was
then randomly split into equally sized training and test sets. Then each of the five



214 R. Lagerstrom et al.

classifier models was built using the training data. Confusion matrices were formed
based on the test set and an error measure computed. A performance measure was
defined as the number of correct classifications divided by the total number of image
observations. The test data was then used for training and the training data for testing
in a two-fold cross validation. This process was repeated ten times and the average
performance measure and confusion matrix calculated.

The neural network used was the feed-forward with single hidden layer network.
The number of units in the hidden layer was set to 3, initial random weights set to
0.1 with decay 0.0005 and the maximum number of iterations equal to 600. The
linear discriminant analysis model used all of the input features (i.e., we did not
attempt dimension reduction via principal components or other means). The support
vector machine used the C classification model. A Gaussian radial basis kernel was
employed with a sigma equal to 0.1 while the cost of constraints violation parameter,
C, was set to 10. For the decision tree model, no surrogates were used in the splitting
process. For the random forest model, the number of trees parameter was set to 500
while the number of variables randomly sampled as candidates at each split was set
to 3.

12.4 Model Performance

Model performance for the five classifier models on the six data sets is summarized
in Table 12.2. The most obvious issue at first glance is the poor relative performance
of the DT model on the ARC and COMB data sets. The DT model’s performance
is comparable to the other models on the CTS data. This may indicate the DT
model is not suitable for classification when the number of species is larger. Of
the other models, the LDA, SVM and NN models have the best performance over
the six data sets. The SVM model outperforms the others on the both forms of the
ARC data while the LDA approach outperforms the others on the both forms of the

Table 12.2 This table summarizes the performance of the five classification models over the six
data sets. The performance measure is the sum of the diagonal elements of the corresponding
confusion matrix divided by the number of observations. The underlined elements correspond to
the best performance for each data set (Reprinted with permission from [19]. Copyright 2013, AIP
Publishing LLC)

Data NN LDA SVM DT RF

ARC FF 0.80 0.82 0.83 0.74 0.81

LF 0.79 0.83 0.84 0.74 0.82

CTS FF 0.97 0.96 0.93 0.94 0.95

LF 0.97 0.98 0.93 0.93 0.96

COMB FF 0.80 0.84 0.82 0.75 0.83

LF 0.80 0.83 0.82 0.74 0.82
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Table 12.3 Full confusion matrix for the NN model on the COMB FF data. The rows correspond
to ground truth while the columns represent the classifications results (Reprinted with permission
from [19]. Copyright 2013, AIP Publishing LLC)

AP AR AS CL DI DR EF EH IP MY NC NE NP OA PA

AP 87 0 0 2 0 0 3 4 0 0 0 0 0 3 1

AR 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0

AS 1 0 79 0 2 12 0 2 0 0 0 4 0 0 0

CL 0 0 0 49 0 0 0 0 34 1 0 0 15 2 0

DI 0 0 0 0 98 0 0 0 0 2 0 0 0 0 0

DR 0 0 4 0 3 93 0 0 0 0 0 0 0 0 0

EF 3 0 0 0 0 0 80 0 11 0 0 2 0 1 3

EH 0 0 0 1 0 0 0 93 0 4 0 2 0 1 0

IP 1 0 0 2 0 0 2 1 88 0 1 2 1 2 1

MY 4 0 2 0 11 0 0 1 0 80 0 0 2 0 0

NC 0 0 0 0 0 0 0 2 4 0 86 2 4 3 0

NE 1 0 0 6 0 0 0 2 8 0 0 74 9 0 0

NP 0 0 0 2 0 0 0 0 2 0 0 2 93 0 0

OA 3 0 0 0 0 0 3 0 36 0 0 0 0 57 3

PA 7 0 0 5 0 0 7 3 63 0 0 1 0 10 4

COMB data and the reduced feature form of the CTS data. However, in terms of the
performance measure with this data, the difference between models is slight, apart
from the DT model.

A full confusion matrix for the NN model on the COMB data with all features
is shown in Table 12.3. The values in the table are percentages with rows
corresponding to the truth and columns to classification results, so the sum for a
particular row should be 100. The NN model is used natively in the Classifynder
system. Firstly, looking at the diagonal elements, the CL, OA and PA species are
poorly classified with success rates under 60 % and PA in particular at 4 %. These
3 species are most frequently confused with the IP species which has the highest
number of observations, 715, in the data. The number of observations for CL, OA
and PA are 172, 121 and 122 respectively. The morphology and texture of the images
from these species are the most similar amongst the species in the data set. Similar
observations can be made from the confusion matrices for the SVM and RF models
and so their confusion matrices are not displayed here. Table 12.4 shows the full
confusion matrix for the LDA model on the COMB data. The two species with
the lowest classification accuracy are PA with 69 % and IP with 72 %. The high
number of IP observations accounts for most of the model’s overall classification
error. Another feature of the confusion matrix is that all species other than AR
are confused with the PA species. Despite this, the error is more balanced between
species which would appear to be a desirable result.
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Table 12.4 Full confusion matrix for the LDA model on the COMB FF data. The rows correspond
to ground truth while the columns represent the classifications results (Reprinted with permission
from [19]. Copyright 2013, AIP Publishing LLC)

AP AR AS CL DI DR EF EH IP MY NC NE NP OA PA

AP 84 0 0 0 0 0 4 3 1 0 0 1 0 2 5

AR 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0

AS 0 0 92 0 0 5 0 0 0 0 0 0 0 0 3

CL 0 0 0 78 1 0 3 0 10 0 0 0 2 0 5

DI 0 0 0 0 98 0 0 0 0 0 0 0 0 0 2

DR 0 0 9 0 0 88 0 0 0 0 0 0 0 0 3

EF 1 0 0 3 0 0 83 0 4 0 0 0 0 5 5

EH 0 0 0 0 0 0 0 94 1 0 0 0 0 2 3

IP 1 0 0 7 0 0 3 0 72 2 0 4 0 3 8

MY 0 0 0 0 0 0 0 2 0 93 0 0 0 0 6

NC 0 0 0 4 0 0 0 1 0 1 81 2 12 0 1

NE 0 0 0 10 0 0 0 0 4 0 0 77 7 0 2

NP 0 0 0 3 0 0 0 0 2 0 0 2 92 0 0

OA 4 0 0 0 0 0 0 0 1 0 0 0 0 89 6

PA 2 0 0 4 3 0 0 0 11 0 0 3 2 7 69

12.5 Semi Automated Performance Enhancement

In practice, the classification results need not be the end point of an investigation.
Typically a palynolgist would review and adjust the classification results. The LDA
model presents a simple means for assisting the review stage. LDA works by
transforming the data into an optimal space for discrimination. For each species,
a mean value for each discriminant is then calculated. The model then measures the
Mahalanobis distance between a sample and the set of mean discriminants for each
species, with the lowest distance informing the choice of species for classification.
This distance itself provides a measure of how far from the training data a particular
sample is. Taking the ratio of lowest over the second lowest distance score gives
a measure of how ‘borderline’ a classification decision is. So, for example, a ratio
close to 0 would indicate a strong decision while a value close to 1 would indicate
possible confusion. Table 12.5 shows the top 20 classification results for the LDA
model on the COMB FF data ranked on decreasing values of this ratio. It shows that
out of the 20 results only 4 are correctly classified. So in the context of reviewing the
data, if a user were to sort their observations based on the ratio, they could easily
and efficiently adjust decisions for the most borderline cases. The ratio is similar
in spirit to the posterior probability which can be calculated for the LDA models
and the RF models. For each classification, a posterior probability is assigned for
each class. It is then possible to use this to rank the data in a similar fashion to
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Table 12.5 Worst 20
classification results for the
LDA model on the COMB FF
data based on distance ratio
(Reprinted with permission
from [19]. Copyright 2013,
AIP Publishing LLC)

Predicted species Species Distance Ratio

NP CL 3.86 0.99

DI CL 13.84 0.99

PA IP 3.72 0.99

NE MY 7.43 0.99

AS DR 6.79 0.99

OA IP 2.60 0.99

OA EF 4.08 0.99

NP NE 4.99 0.99

CL IP 3.85 0.99

EH PA 3.44 0.99

IP IP 5.21 0.99

IP IP 4.21 0.99

CL IP 2.72 0.99

PA PA 2.48 0.99

PA IP 2.16 0.99

EH AP 3.85 0.99

NP NP 3.28 0.99

IP NP 3.88 0.99

IP EF 3.45 0.99

PA OA 6.58 0.99

the ranking, noting that a posterior probability close to 1 corresponds to a strong
decision. This would allow the user to use the RF model to perform a similar type
of assisted review.

Another, more automated approach is to simply exclude a proportion of the
classification results based on the ratio. For example, after ranking the results on
decreasing values of the ratio, one can exclude the worst N percent of the results.
For the LDA model on the COMB FF data, if we exclude 20 % of the results based
on this strategy, the overall performance of the classifier increases to 0.94. This
compared to the performance 0.84, when all data is used, is a significant increase. If
we excluded 50 % of the data the performance increases to 0.99. However, when
one examines the confusion matrix corresponding to only 50 % of the data, the
relative proportions of the species are modified in a reasonably substantial way.
For example, the IP, NP and AP species account for 18, 15 and 10 % of the species
present in the COMB FF data, respectively. When we exclude the worst 20 % of the
data, the relative percentages are 16, 16 and 11 which is not too dissimilar. However,
when we exclude 50 % of the data, the relative percentages are 5, 23 and 13 which is
very different to the known abundances. So if the goal of a palynologist is to study
relative abundance of species in a sample, one would need to find an appropriate
percentage for exclusion which would preserve relative abundance.
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12.6 Case Study: New Zealand Honey

In this section we work through a real world case study to demonstrate the use of the
Classifynder and how various classification strategies employing neural networks
and linear discriminant analysis can be incorporated into the workflow.

12.6.1 Data and Methods

The data source for this section is a suite of slides containing pollen extracted
from 45 different New Zealand honeys. The pollen composition of these slides has
already been determined through manual counting, with the results presented (as
proportions) by Mildenhall and Tremain [23]. Across the 45 samples, Mildenhall
and Tremain recognize 21 common pollen types, however, the individual classifica-
tions at the image level are unavailable. The slides also contain Lycopodium marker
spores, which are added to determine pollen concentration per gram of honey [31].
A subset of slides were selected to supply images for a library. These slides were
scanned on the Classifynder and the resulting images manually classified and sorted
into folders to create a master set (Table 12.6). Insufficient numbers of images were
obtained for 5 of the 21 common honey pollen types, preventing the generation of
a library class for these types. The final library thus contained images of 17 taxa
(Table 12.6 and Fig. 12.3). The image set for each taxon was divided into two,
with one half to be used for training the classifiers, and the other half for testing.

Table 12.6 Number of
images in the library. Divide
by 2 to give the number of
images used in the training set

Taxon Abbreviation #Images

Asteraceae AS 274

Coprosma CP 81

Echium EC 40

Geniostoma GE 94

Griselinia GR 97

Ixerba brexiodes IX 104

Knightia excelsa KN 184

Leptospermum/Kunzea type LE 314

Lotus LO 250

Lycopodium LY 325

Metrosiderous ME 300

Poaceae PO 49

Quintinia QU 300

Salix SA 239

Taraxacum TA 155

Trifolium TR 182

Weinmannia WE 300
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Fig. 12.3 Representative images of the 17 pollen types. Images from different angles are
presented for selected pollen types. a: Asteraceae (AS), b: Coprosma (CO), c: Echium (EC), d,
e: Geniostoma (GE), f: Griselinia (GR), g: Ixerba brexiodes (IX), h, I: Knightia excelsa (KN), j,
k: Leptospermum/Kunzea type, l: Lotus (LO), m, n: Lycopodium (LY), O, p: Metrosideros (ME),
q: Poaceae (PO), r: Quintinia (QU), s: Salix (SA). t: Taraxacum (TA), u: Trifolium (TR), v:
Weinmannia (WE)

This training and testing set was used to train and test both the Classifynder neural
network classifier and the LDA classifier.

The software of the Classifynder trains the neural network by splitting the
training set provided to it and first training itself on half of this test set. It then tests
its performance on the other half of the training set. It then takes any misclassified
images and adds them to its training set file and retests itself in an attempt to improve
performance of the neural network.

Once this automated training and testing was complete, the neural network was
tested on the separate manually generated test set. Classification accuracy on the
training set was 89 %. The LDA classifier was also applied to the training and test
sets also achieving an accuracy of 89 %.

Once trained, both classifiers were applied to image sets gathered from three
different slides from the original 45 slide set, none of which had been used as
a source of images for training and testing. The three slides contain a different
combination and number of the 17 taxa in the training set. These three slides
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were scanned on the Classifynder. The Classifynder software sourced preliminary
morphological limits from the neural network for use in identifying pollen grains on
the slides at low magnification. These were then imaged using the high resolution
camera. The resulting image sets were then classified by the two different classifiers
(Classifynder NN and LDA).

12.6.2 Performance Assessment

In assessing the performance of the classifiers, allowances had to be made for the
fact that these ‘real world’ datasets contained numerous images that were of objects
not present in the training set. These images fell into one of several categories
described in Table 12.7.

When assessing the accuracy of the classifications (i.e., proportion of images
correctly classified), images assigned to these categories by the analyst were omitted
from the calculations. Because both classifiers are forced, they have to classify
every image as something within the training set. Therefore, because these types
of image were not included in the training set, it is not reasonable (or in many
cases possible) to expect correct classification. Although, in some cases images of
clumps comprising grains of the same taxon were correctly classified as that taxon.
Likewise, images of clumps of different taxa were sometimes classified as one of
the taxa in the clump. But because at this stage there is no mechanism to adequately
deal with clumps (i.e., recognizing multiple grains in the one image) we have chosen
to omit these altogether.

As discussed earlier, in contrast to the NN, the LDA provides an indication of the
strength of the classification of each image and these scores potentially provide a
basis to further improve the results of the classification. The majority of incorrectly
classified images have very high (i.e., weak) classification strength scores. When
examining these, many are images which belong to the clumps, unknown, other or
junk categories. One possible option to improve the classification is to automatically

Table 12.7 Descriptions of types of images obtained from the sample slide which were not
included in the training set

Pollen type Description

Other pollen Images of rare types of pollen which were not present in the training set

Unknown pollen Images of pollen grains in which the pollen grain was not able to be
identified (due to either pollen quality pollen grain, or low-quality image)

Non-pollen Image of an object that was not pollen

Clumps Groups of two or more objects (usually pollen, occasionally includes junk),
further subdivided into:

• Clumps which contain the taxon the image was classified as
• Clumps composed entirely of the taxon the image was classified as
• Clumps not containing the taxon the image was classified as
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Table 12.8 Classification accuracy and performance

#Taxa Classifynder NN LDA ALL LDA 80 % LDA 50 %

Slide 2 14 80.4 % 68.4 % 73.5 % 80.8 %

Slide 12 9 76.8 % 79.6 % 88.8 % 96.7 %

Slide 26 10 74.3 % 81.2 % 86.2 % 93.4 %

Table 12.9 Comparison between proportions generated by original manual human counts (H)
and manually corrected Classifynder scanning and classification (CF). The number of images were
1,587, 2,415 and 3,951 for Slide 2, 12 and 26 respectively

AS CP EC GE GR IX KN LE LO ME PO QU SA TA TR WE

Slide 2

H 1.1 – – – – 5.3 2.1 – 14.9 1.1 1.1 5.3 3.2 64.9 1.1

CF 2.1 0.1 0.0 0.2 0.0 5.1 0.4 0.6 20.6 0.5 0.5 0.1 2.9 8.3 54.9 3.7

Slide 12

H – – – – – – – – 1.0 94.9 – – – – 1.0 2.0

CF 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 95.5 0.0 0.8 0.0 0.2 0.3 2.6

Slide 26

H – – – – – – – 40.8 24.5 – – – – – 26.5 –

CF 0.2 0.1 0.0 0.0 0.0 0.1 0.0 40.3 22.8 0.0 0.0 0.0 0.0 1.1 28.4 0.1

ignore or disregard a portion of images with the highest (weakest) classification
strength scores. We have assessed this approach with two subsets of the LDA
classification of the initial complete image set, which take the top 80 % (LDA80)
and top 50 % (LDA50) of the classified images, based on their classification strength
scores, and then calculated the proportions for these in the same way as was done
with the previous classifications. Results are presented in Table 12.8.

After assessing classification accuracy, any incorrectly classified images were
sorted into their correct categories manually by a human palynologist, and the
proportions of the different taxa as detected by the Classifynder’s imaging systems
calculated. These are presented in Table 12.9, and compared with the original human
counts of the samples/slides, as presented in [23]. This data is a measure of how
well the Classifynder can find and image the pollen using the basic morphological
information extracted from the neural network, but it still has an element of manual
classification through the correcting of misclassifications.

These proportions are calculated by taking the sum of all images of single pollen
grains (i.e., no clump images) of a taxon (whether correctly classified or not) and
dividing it by the sum of all images of single pollen grains, excluding images of
non-pollen, clumps, and unknown, and also Lycopodium spores. Images of clumps,
unknowns, other pollen and junk are also excluded, for the reasons mentioned earlier
Lycopodium is excluded because the number of Lycopodium grains in each slide
was not originally presented by Mildenhall and Tremain [23]. Lycopodium spores
are added to honey samples to aid in determination of pollen concentration and their
abundance has no bearing on floral composition of honey.
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For slides 12 and 26, the proportions are very similar. Such minor differences
between these values and those presented in [23], including the presence of
additional taxa in very small amounts (e.g., AS in slide 12 and Cop in slide 26) in
the Classifynder scan can be explained by differences in the area of slide examined
and number of grains counted. Human analysts complete traverses of the slide,
often separated by one or more fields of view (i.e., Fig. 1, page S20 [32]), until a
target number is reached, in this case 500 grains [23]. The Classifynder examines
every single object within a 1 cm squared area about the centre of the slide. The
total number of grains examined here is typically 3–7 times that of the human
counts, technically making them more statistically robust. Therefore, it is likely
that minor variation between the human and machine generated proportions will
be encountered. When the 95 % confidence intervals are calculated for the human
counts (following the method of [21], and assuming a total count of 500 grains), the
Classifynder counts fall within these limits.

The degree of difference between the original human counts and the Classifynder
counts is much greater for slide 2, with the Classifynder values lying outside the 95.

The raw proportions produced by the classifiers (i.e., any misclassifications left
uncorrected) are also compared with the two sets of ‘true proportions’ for each
slide in Table 12.10. These proportions are calculated by taking the total number of
images classified as a taxon, whether correct or not, is then divided by two different
totals to give two sets of proportions. The first total includes all images captured,
including clumps, non-pollen, other and unknown pollen, but excludes images of
Lycopodium spores (for reasons discussed previously). The second total excludes
images of clumps, non-pollen, other pollen, unknown pollen, and Lycopodium. The
purpose of these two different totals is to investigate what impact the presence of
junk, clumps and unrecognizable pollen has on the raw results and to determine
whether there are any taxa which these types of images are more likely to be
classified as.

The root mean square error calculated is also presented to provide an additional
indication of the success of each classification.

12.6.3 Discussion

The first point of interest from Table 12.8 is that the LDA performs slightly better
than the NN on 2 out of the 3 slides. When the best 80 and 50 % sets are considered,
the LDA performance is significantly better than that of the NN. However, this is
not true for slide 2 where the performance of the LDA is only comparable to the NN
when the best 50 % of the data is retained. It is unclear why this difference occurs.
One possibility is that the number of taxa present in slide 2, based on human counts,
is larger (10 for slide 2 compared with, 5 and 3 for slides 12 and 26) and has an
impact on classification, although, our initial assessments of classifier performance
(in Table 12.2 for example) suggest comparable performance for a relatively similar
number of classes.
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Table 12.10 Proportions of taxa. H and CF as per Table 12.9. N D Classifynder Neural Network,
L D Linear Discriminant Analysis, L80 and L5 = LDA sets with top 80 and 50 % highest
classification strength scores, respectively. * denotes proportions calculated without clumps, non-
pollen, unknown, and other pollen images. RM = Root Mean Square Error. Proportion falling
outside of the 95 % confidence limits are underlined

AS CP EC GE GR IX KN LE LO ME PO QU SA TA TR WE RM

Slide 2

H 1.1 – – – – 5.3 2.1 – 14.9 1.1 1.1 – 5.3 3.2 64.9 1.1

CF 2.1 0.1 0.0 0.2 0:0 5.1 0.4 0.6 20.6 0.5 0.5 0.1 2.9 8.3 54.9 3.7

N 0.7 1.3 0.4 0.9 10:4 4.9 1.7 4.5 17.1 10.9 0.5 1.8 2.4 5.7 35.9 1.0 6.3

N* 0.9 0.7 0.2 0.6 8:3 4.5 0.4 2.3 21.4 3.1 0.4 2.1 3.0 7.5 43.8 0.8 3.7

L 1.5 0.0 2.0 2.2 20:4 4.3 1.8 4.2 12.1 11.3 0.3 2.8 2.4 6.6 26.6 1.2 9.5

L* 1.5 0.0 0.8 1.8 18:3 4.7 0.9 2.4 18.3 3.4 0.3 0.9 3.1 8.3 33.7 1.4 7.1

L8 1.2 0.1 1.9 2.1 17:5 4.8 1.4 4.3 15.1 10.9 0.3 2.7 2.3 7.5 26.6 1.2 8.9

L8* 1.6 0.0 0.8 1.7 14:4 5.1 0.8 2.4 21.8 2.7 0.3 0.7 3.2 9.8 33.0 1.6 6.6

L5 1.5 0.1 1.9 1.4 12:5 6.5 1.0 2.7 24.5 7.7 0.4 2.2 3.4 11.1 21.7 1.4 9.2

L5* 1.9 0.0 1.0 1.2 8:3 6.4 0.7 1.5 32.1 1.2 0.5 0.5 4.5 14.1 24.4 1.7 8.6

Slide 12

H – – – – – – – – 1.0 94.9 – 1.0 – – 1.0 2.0

CF 0.1 0.0 0.0 0.0 0:0 0.0 0.0 0.0 0.3 95.5 0.0 0.8 0.0 0.2 0.3 2.6

N 0.2 0.2 0.8 0.8 1:4 0.2 1.5 18.9 2.0 65.4 0.6 2.3 0.4 0.6 2.7 2.3 8.9

N* 0.2 0.0 0.7 0.8 1:1 0.0 0.5 19.9 2.1 69.0 0.1 2.3 0.3 0.4 0.4 2.2 8.3

L 0.5 0.2 7.8 2.6 0:8 1.1 1.3 7.2 0.4 67.6 0.6 3.5 0.5 2.1 1.8 2.0 7.6

L* 0.1 0.0 8.1 2.2 0:4 0.9 0.2 7.6 0.5 73.0 0.1 3.7 0.1 0.6 0.3 2.1 6.4

L8 0.1 0.2 4.4 1.3 0:7 1.0 0.8 4.5 0.4 79.4 0.2 2.1 0.1 1.2 1.1 2.2 4.4

L8* 0.0 0.1 4.5 1.2 0:3 0.9 0.1 4.6 0.4 82.9 0.0 2.1 0.0 0.5 0.3 2.3 3.6

L5 0.0 0.2 1.4 0.3 0:4 0.7 0.2 1.4 0.4 89.9 0.0 0.8 0.0 0.9 0.5 2.9 2.3

L5* 0.0 0.1 1.4 0.2 0:0 0.7 0.0 1.4 0.4 91.2 0.0 0.8 0.0 0.5 0.4 3.0 4.4

Slide 26

H – – – – – – – 40.8 24.5 – – – – – 26.5 –

CF 0.2 0.1 0.0 0.0 0:0 0.1 0.0 40.3 22.8 0.0 0.0 0.0 0.0 1.1 28.4 0.1

N 0.1 2.0 1.4 4.9 1:5 0.4 1.3 28.3 15.1 18.4 7.2 0.4 0.2 0.7 17.0 1.2 6.6

N* 0.1 1.2 1.6 2.7 1:7 0.1 0.3 29.9 18.2 14.5 7.3 0.4 0.0 0.8 19.9 1.2 5.2

L 0.3 0.6 5.5 4.5 3:6 0.9 1.1 35.4 14.5 3.7 6.0 0.4 0.3 1.9 20.2 1.0 3.9

L* 0.1 0.2 5.3 1.4 3:8 0.6 0.3 38.0 17.6 1.2 6.5 0.3 0.0 1.1 22.6 0.9 2.7

L8 0.1 0.6 3.2 4.6 2:8 0.7 0.7 36.8 15.9 3.4 6.5 0.1 0.2 1.2 22.3 0.7 3.1

L8* 0.0 0.2 3.5 1.2 2:8 0.5 0.2 39.4 18.4 0.8 6.9 0.1 0.0 1.1 24.1 0.7 2.0

L5 0.1 0.3 1.0 4.9 1:9 0.5 0.2 37.0 17.6 2.3 8.4 0.0 0.2 1.5 23.9 0.3 2.4

L5* 0.0 0.0 1.1 1.0 1:7 0.3 0.0 40.3 19.6 0.0 9.0 0.0 0.0 1.5 25.1 0.2 1.4

Another notable issue is highlighted in Table 12.10. When proportions are
compared with the manual classifications, the majority are outside the 95 %
confidence limits (for the human counts). Further to this, there are many instances
where images have been classified as taxa which are not actually present in the
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sample (i.e., ‘false positives’). In some cases these false positives comprise in
excess of 20 % of the total (i.e., ‘LDA’ classification for slide 2 in Table 12.10).
False positives are particularly problematic to the ideal goal of applying automated
classification to routine/commercial honey pollen analysis. Obviously, it is far from
satisfactory to have the proportions of the taxa present in the sample incorrect.
But reporting the presence of species in a sample which aren’t actually there
(or completely omitting types which are present) adds an additional layer of
complication. Often, certain pollen types are specific to a particular geographic
region, and presence/absence information (regardless of abundance) can be used to
trace where a honey sample has come from. Therefore false positives/negatives can
further influence the interpretation of the results, beyond just determining the nectar
contributions. Even though reducing the images sets based on classification strength
scores improves classification accuracy overall, it does not deal to the problem of
false positives, with 3.7 % FP remaining in slide 26 (L5*).

In all cases, ignoring the images of clumps, unknowns, other and junk has
resulted in proportions closer to actual (i.e., lower RMSE), indicating that these
are in part responsible for inaccurate results. However, when the proportions for
the classifications with reduced images calculated against the sum excluding the
clumps, unknowns, other and junk are examined, the proportions are still outside
the 95 % confidence limits in most cases. This indicates that not all error can be
explained by the presence of these types of images, and that some of the error is still
resulting from confusion. Some of the most common confusions in both the NN and
LDA classifications (excluding clumps, junk, etc.) are between the following:

• ‘LE’, ‘EC’, ‘LO’ and ‘ME’ (e.g. slides 12 and 26)
• ‘TR’, ‘GE’, ‘GR’ and ‘ME’ (e.g. slides 2 and 26)

Confusions of images as EC, GE or GR are responsible for many of the false
positive instances discussed earlier. Confusions between LE, EC, and LO seem
logical, due to the similarities in size (Fig. 12.1). Likewise, confusions between LE
and ME are likely related to overall morphological similarity, even though there is a
reasonable size difference. Also, in the case of slide 12, ME was by far the dominant
pollen type, so therefore it is likely to be best represented in misclassifications. TR
and GR pollen types are also morphologically similar (Fig. 12.3), although less so
with GE. Many of these more common confusables have relatively low numbers of
images in their training sets (Table 12.6). Perhaps notably, EC, GE and GR, none
of which are actually present in any of the samples all have less than 50 images in
their training sets. Likewise, TR, which is a dominant pollen type in 2 out of the 3
slides has only 92 images in its training set. Therefore, confusions between TR, GR
and GE may be explained by undertraining. LE, LO and ME have higher numbers
in their training sets (greater than 120) so undertraining is likely not the problem
for confusions between these three, but can explain confusions between them
and EC.
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Conclusions
We investigated the classification possibilities of data generated by the Clas-
sifynder, an automated imaging system for analysing pollen which can locate,
image and classify slide based pollen samples. Given pollen’s importance,
abundance and diversity in nature, it is vital that automated systems for
pollen analysis are developed and used in order to overcome the burdens
of a historically manually intensive process. We looked at linear models,
non linear classification and tree based classifiers from a performance and
interpretability point of view. Our findings suggest that in terms of perfor-
mance, the various models achieved reasonably similar results. However, we
also discussed how a conceptually simple classifier like linear discriminant
analysis can be exploited to review classification results in a semi-automated
or automated manner. By ordering the classification results based on a metric
describing how borderline a classification result is, users can efficiently delete
or adjust results where classification is questionable. We also outlined an
approach to automating this process by sub-setting the results based on this
ordering. The benefits of taking this approach not only allow palynologists to
increase their accuracy and confidence in their findings, but also accelerate
the pollen phenomics process.
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Chapter 13
Digital Image Processing and Analysis
for Activated Sludge Wastewater Treatment

Muhammad Burhan Khan, Xue Yong Lee, Humaira Nisar, Choon Aun Ng,
Kim Ho Yeap, and Aamir Saeed Malik

Abstract Activated sludge system is generally used in wastewater treatment plants
for processing domestic influent. Conventionally the activated sludge wastewater
treatment is monitored by measuring physico-chemical parameters like total sus-
pended solids (TSSol), sludge volume index (SVI) and chemical oxygen demand
(COD) etc. For the measurement, tests are conducted in the laboratory, which take
many hours to give the final measurement. Digital image processing and analysis
offers a better alternative not only to monitor and characterize the current state of
activated sludge but also to predict the future state. The characterization by image
processing and analysis is done by correlating the time evolution of parameters
extracted by image analysis of floc and filaments with the physico-chemical
parameters. This chapter briefly reviews the activated sludge wastewater treatment;
and, procedures of image acquisition, preprocessing, segmentation and analysis
in the specific context of activated sludge wastewater treatment. In the latter part
additional procedures like z-stacking, image stitching are introduced for wastewater
image preprocessing, which are not previously used in the context of activated
sludge. Different preprocessing and segmentation techniques are proposed, along
with the survey of imaging procedures reported in the literature. Finally the image
analysis based morphological parameters and correlation of the parameters with
regard to monitoring and prediction of activated sludge are discussed. Hence it
is observed that image analysis can play a very useful role in the monitoring of
activated sludge wastewater treatment plants.
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Keywords Wastewater treatment • Activated sludge • Abnormal conditions •
Image segmentation • Morphological parameters

13.1 Introduction

Image processing and analysis techniques have been widely employed to charac-
terize and monitor the activated sludge system of wastewater treatment plant in the
last decade. Initially image analysis was used to find correlation between parameters
extracted and physical parameters (such as sludge volume index and mixed liquor
suspended solid) of the system in filamentous bulking [1]. Later the parameters
were used to characterize states (normal and abnormal) by extending the correlation
for some of other possible states [26]. In the literature, more attention has been
given to image analysis to extract parameters as compared to image processing
techniques to enhance the image, and add precision and accuracy to the image
analysis parameters. In this chapter, a brief review of image acquisition systems,
image processing and analysis techniques used for activated sludge system has been
presented. The main objective is to explain and assess the effectiveness of image
processing and analysis techniques in characterizing and monitoring of activated
sludge system. In this chapter, bright field microscopy has been considered, although
the techniques and algorithms may be modified and used for other types of
microscopic examinations accordingly.

The image processing involves image acquisition, image processing and extrac-
tion of qualitative and quantitative parameters using image analysis techniques
without human involvement. The evolution of computation capability of computers
and imaging system has facilitated the use of image processing in many applica-
tions other than wastewater treatment. These include analysis of MRI (magnetic
resonance imaging) [7], X-ray tomography, ultrasound imaging [33], geographical
images [12], study of algal cells and muscle fibers [23, 24].

The chapter contains the following main sections:

• Introduction to activated sludge (AS) systems in wastewater treatment plants
(WWTP) and its characterization of different states

• Image acquisition, preprocessing, segmentation and analysis for AS WWTP

13.2 Introduction to as Systems in WWTPs

As awareness about the role of micro-organisms in different type of diseases and
toxic substances increased, the need of wastewater treatment plants arose, which
are now quite wide spread. With the start of wastewater treatment practice at
the beginning of twentieth century [4], 21,594 publicly owned treatment works
(POTWs) have been providing the services of wastewater collection, treatment,
and disposal to 226.4 million people in US by 2008 [6]. Wastewater coming
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Table 13.1 Sources of toxic waste [4]

Industry Toxins

Coal processing Phenolic compounds, ammonia, cyanide

Petrochemical Oil, petrochemicals, surfactants

Pesticide, pharmaceutical, Toxic metals such as cadmium,
and electroplating copper, nickel, zinc

from domestic sewage or food industry contains non-toxic constituents, whereas
the wastewater originating from industries contains toxic substances enlisted in
Table 13.1. The domestic wastewater comprises of 40–60 % proteins, 25–50 %
carbohydrates, 10 % fats and oils, a large number of trace organic compounds of
urea, pesticides, surfactants, phenols and priority pollutants, and metals, nonmetals,
benzene and chlorinated compounds [4]. The major part of organic containments
is biodegradable and constituted of proteins, amino acids, peptides, carbohydrates,
volatile and fatty acids and their esters [8, 28].

13.2.1 Characterization of Wastewater

There have been a different set of parameters to characterize the organic and
inorganic content of wastewater for different perspectives. For example, SVI is a
good indicator of settle-ability. The following are the parameters often found in
literature to characterize wastewater and/or activated sludge.

13.2.1.1 Odor

Some of the organic and inorganic compounds which may cause odor are:

• Geosmin (produced by bacteria doing decomposition)
• Methyl-isobarneol (MIB) (produced by bacteria doing decomposition)
• Iron
• Manganese
• Hydrogen sulphide

General classes of odors, called the reference odors, are:

• Spicy
• Flowery
• Earthy
• Grassy
• Vegetable
• Musty
• Chemical
• Disagreeable
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13.2.1.2 Turbidity

Turbidity is the murkiness, cloudiness or haziness of wastewater resulted from col-
loidal suspended solids, suspended solids and micro-organisms; and, it is measured
by light scattered by the suspended particles, in nephelometric turbidity unit (NT).

13.2.1.3 PH

PH is a measure of acidity, caused by CO2, metals salts, chlorine and acids; and, is
used to assess coagulation, stabilization and softening of wastewater.

13.2.1.4 Dissolved Oxygen

Dissolved oxygen (DO) is the oxygen dissolved in wastewater, resulted from:

• Diffusion from air
• Aeration of wastewater
• Product of photosynthesis

The oxygen is used by micro-organisms for decomposition and needed for some
organisms to stay alive inside and outside the flocs. It is measured by DO meter
fitted with oxygen sensing probes.

13.2.1.5 Biochemical Oxygen Demand

Biological Oxygen Demand (BOM) is a measure of oxygen required by micro-
organisms to decompose organic (carbonaceous BOM) and inorganic (nitrogenous
BOM) matter in wastewater [4]. High BOM implies more content of matter to be
decomposed, more growth of microbes and consequently, low DO.

13.2.1.6 Chemical Oxygen Demand

Chemical Oxygen Demand (COD) is a measure of oxygen required to oxidize
organic carbon in wastewater completely. High COD implies more content of
organic matter to be oxidized. If COD is much greater than BOM, it means the
sample contains large amount of not-easily-biodegradable organic matter [4].

13.2.1.7 Total Organic Carbon

Total organic carbon (TOC) is the concentration of carbon atoms bound within
organic content of wastewater. TOC is used to detect organic content in wastewater
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plant effluent to assess quality of water for public health. It is measured by
oxidation of the sample, and determining the CO2 released by non-dispersive
infrared detector [4].

13.2.1.8 Total Solids

Total solids (TVS) is the sum of organic and inorganic dissolved, settle-able and
suspended solids.

13.2.1.9 Total Suspended Solids

Total suspended solids (TSSol) is a measure of organic and inorganic suspended
solids including microbes.

13.2.1.10 Volatile Suspended Solids

Volatile suspended solid (VS) is the organic constituent of TSSol, which includes
inorganic matter and dead or alive microbes.

13.2.1.11 Food to Micro-organisms Ratio

Food to micro-organism ratio (F:M) is the ratio of organic load and volatile
suspended solid. In other words, it is proportional to the ratio of COD (or BOM)
and VS. The standard procedures to measure the above parameters and others have
been rigorously explained in [3].

13.2.2 Wastewater Treatment Processes

The main objectives which are to be achieved in wastewater treatment are as
follows:

• Decomposition of organic and inorganic content (proteins, carbohydrates and
fats) into low energy inorganic substances (water, nitrate, sulphate) by microbes

• Removal or modification of the low energy inorganic substances
• Removal of micro-organisms
• The effluent water should be least possible murky and contains no substances

which are harmful to health and environment
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Wastewater treatment operations are classified into three broad groups [35]:

• Physical: screening, sedimentation, filtration and flotation
• Chemical: disinfection, adsorption, and precipitation
• Biological: biodegradation and removal of nutrients

A wastewater treatment plant may consist of the following stages [17]:

• Preliminary treatment: Preliminary treatment involves removal of debris and
coarse material of larger size which may clog the equipment of the wastewater
treatment plant.

• Primary treatment: It may include the physical processes of screening, grit
removal, flotation and sedimentation (primary clarifier).

• Secondary treatment: This stage may comprise of biological processes (such as
aerobic and/or anaerobic process, trickling filter, rotating biological contactors
and aeration tank), physical process of sedimentation (secondary clarifier) and
chemical (such as disinfection).

• Tertiary (advanced) treatment and disinfection: This step is meant to remove
suspended and dissolved solids left after the secondary treatment and give
high quality effluent. This may include nitrogen removal (nitrification-
denitrification, selective ion exchange, breakpoint chlorination, gas stripping,
overland flow), phosphorous removal (chemical precipitation), suspended solids
removal (chemical co-angulation, filtration), dissolved solids removal (reverse
osmosis, electro dialysis, distillation) and, organic and metal removal (carbon
adsorption).

Both aerobic and/or nonmelodic processes are being used in secondary wastewater
treatment for domestic and industrial influent, depending upon the nature of its
nature. Influent with greater amount of biodegradable material is treated with
aerobic process and that with less amount of the material with anaerobic process. As
the main objective here is about activated sludge aerobic WWTP, so the description
of anaerobic wastewater treatment has been avoided here.

13.2.3 Aerobic Wastewater Treatment

Aerobic wastewater treatment, also termed as activated sludge process, uses a
suspended growth of micro-organisms to oxidize organic and certain inorganic
matter to CO2, H2O, NH4C and new biomass. Air for the oxidation comes from
diffusion or mechanical aerator. The microbes form flocs which settle in the
secondary clarifier. So the activated sludge process essentially consists of Aeration
tank and clarifier as shown in Fig. 13.1.

In aeration tank, effluent and return activated sludge from secondary clarifier are
mixed to form mixed liquor. The recycling process increases the mean cell residence
time (MART) much greater than the hydraulic retention time (HART), thereby
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Aeration Tank
Clarifier Effluent

Excess
Sludge

Return Activated Sludge

Primary
Effluent

Fig. 13.1 Activated sludge system (Adapted from [4])

utilizing the microbes more effectively to oxidize organic matter in relatively short
time [4]. In sedimentation tank or clarifier, the flocs formed by micro-organisms
after oxidation settle to form sludge. A portion of sludge is returned to the aeration
tank as return activated sludge (RAS). There are other variants of aeration such as
extended or step aeration etc.; but their description has been avoided here in order
to keep the description brief.

Following are some definitions specific to activated sludge process [4]:

• Mixed Liquor Suspended Solids: Total suspended solids (TSSol) in the aeration
tank is termed as mixed liquor suspended solids (MLSS).

• Mixed Liquor Volatile Suspended Solids: Voltile suspended solids (VS) in
aeration tank is called mixed liquor volatile suspended solids (MLVSS).

• Food to Micro-Organism Ratio: Food to micro-organism ratio (F:M) for acti-
vated sludge process is given by

F WM D Q � BOD

V �MLVSS
.gBoD=gMLVSS=day/ (13.1)

where Q is primary effluent rate in million gallons per day (MGD), and V is
volume of aeration tank in gallons.

• Hydraulic Retention Time: Hydraulic retention time (HART) is the mean time
the primary effluent stays in the aeration tank. It is given by

HRT D V

Q
.day/ (13.2)

• Sludge Age or Mean Cell Retention Time: Sludge age or mean cell retention
time (MART) is the mean residence time micro-organisms in the activated sludge
system.

MCRT D MLSS � V

Se �QC Sw �Qw
.day/ (13.3)

where Se is suspended solids in primary effluent, Sw is suspended solids in
wasted sludge and Qw is the rate of wasted sludge measured in (MGD).
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• Sludge Volume Index: Sludge volume index (SVI) which is reciprocal of another
parameter called sludge density index) is defined as the volume in mL occupied
by 1 g of activated sludge preceded by settling of the mixed liquor for 30 min. It
is determined by using the following formula:

SVI D SSV30 � 1;000

MLSS
.mL=g/ (13.4)

where SSV30 is volume of settled sludge in Imhoff cone containing 1 L sample of
mixed liquor noted after 30 min. Activated sludge with low SVI and high sludge
density index (SDI) has better settleability.

13.2.3.1 Abnormal Conditions

The following are the abnormal conditions which may occur in activated sludge
process [4]:

• Dispersed Growth: Dispersed growth is characterized by high turbidity of
primary effluent, disability of bacteria to flocculate, and dispersion of micro-
organisms as small clumps; and, may be caused by high BOM, less DO, and/or
toxicity.

• Viscous or Zoogleal or Non-filamentous Bulking: This kind of bulking is
characterized by reduced settling and compaction rate; and, is resulted from
excess of polysaccharides produced by bacteria.

• Pinpoint Flocs: The abnormal condition of pinpoint flocs or pin flocs is rec-
ognized by low sludge volume index (SVI), turbid effluent and small, compact,
weak and roughly spherical flocs [4]; and, it is caused by lack of filamentous
bacteria which act as backbone in forming the flocs.

• Rising Sludge: The abnormal condition of rising sludge or blanket rising occurs
by excessive denitrification in anoxic zone of the secondary treatment where
aeration tank is replaced by a sequence of anaerobic-anoxic-aerobic in order
to remove nitrogen and phosphorus. The activated sludge flocs get attached to
the nitrogen and float on the surface in secondary clarifier, ultimately leading to
increased turbidity, high BOM and less settling ability.

• Filamentous Bulking: Filamentous bulking is caused by overgrowth of filamen-
tous bacteria. Though the bacteria act as backbone in forming the flocs but their
excess growth affects the settling ability and compactness of the flocs, resulted
into high SVI and clear supernatant.

• Foaming or Scum formation: Foaming may be caused by non-biodegradable
surfactants or detergents (white, frothy, billowing foam), or filamentous micro-
organisms (thick, brown, stable foam). The micro-organisms which may cause
the foaming are Nocardia, Microthrix Parvicella or type 1683. The foaming may
also result into overflow of solid into settling tank or walkways [10].
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A dichotomous key for identification of different type of filamentous bacteria has
been referred frequently in literature [4,13] and the identification may lead to detec-
tion of the abnormal condition using microscopy and associated image analysis.

13.3 Image Processing and Analysis

In this section, first we shall give a critical overview of the existing work in image
processing and analysis, that deals with the treatment of activated sludge wastewater
treatment plants. Second, we shall discuss our preliminary work.

13.3.1 Image Acquisition

The digital image processing and analysis of activated sludge wastewater treatment
plant is divided into four phases [21]: sample collection and preparation of slides,
image acquisition, image processing and analysis. The samples to be analyzed
by image processing and analysis are collected from aeration tank of WWTP
and the slides are prepared according to the intended microscopy technique like
bright field, epifluorescene, confocal laser scanning microscopy (CLSM) etc. The
techniques of microscopy, which have been used for activated sludge samples, have
been recently surveyed in quite detail by [26]. In Table 13.2, image acquisition
procedures reported in the literature have been enumerated from selected research
papers in order to give an overall picture. Bright field and phase contrast microscopy
are more frequently used as compared to other techniques. Mesquita et al. used
epifluorescence microscopy alongwith bright field microscopy to characterize four
abnormal conditions of activated sludge system [25]; and Chu et al. employed
CLSM to analyze the internal structure of floc [5]. Hence, there is no consensus
that which type of microscopic image acquisition technique can give better results
for the intended application of detection of abnormal conditions in WWTPs. In fact,
it may depend on the intended study and abnormal condition being considered.

In the literature different sample sizes and number of images have been consid-
ered for microscopy especially for bright field and phase contrast microscopy; and
in addition, most of the papers do not mention the sample size that is required for
consistent and meaningful results. Heine et al. considered 20 images per slide but
they did not mention the sample size and number of slides per sample [11]. Jenne
et al. standardised that 50 images per sample are enough [15]. Though he established
that hypothesis for the study of floc and filament counts only and did not mention
the sample size for their study, the criteria of 50 images per sample was considered
for morphological analysis as well by many authors [25, 26, 30].
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Table 13.2 Selected work on image acquisition with plant nature

Authors Nature of plant Image acquisition

Jenne et al. [15] Brewery WWTP • Phase contrast microscopy
• CCD video camera
• Image acquisition covered humanly identi-

fied 100 flocs and 100 filaments

Heine et al. [11] 3 Lab-scale replica • Bright field
• CCD video camera
• 10� magnification of microscope objective
• Image acquisition covered 20 images per

sample

Yu et al. [37] Experimental setup • Bright field
• CCD video camera
• Online digital system analysis system was

built with micro-lense and a magnetic
pump, for online measurements

Sikora and Smolka [32] Not mentioned • Bright field
• CCD video camera

Chu et al. [5] WWTP • Phase contrast
• CCD video camera
• Confocal laser scanning microscope

(CLSM)
• Fluorescence in situ hybridization (FISH)

Jina et al. [16] 7 WWTPs • Phase contrast
• CCD video camera

Mesquita et al. [25] Experimental setup • Phase contrast
• Epifluorescene microscopy
• CCD video camera

Table 13.3 Review of sample sizes, area of coverslip and image resolution

Authors Sample size (�L)
Size of coverslip
(mm � mm) Resolution (pixels)

Amaral and Ferreira [1] 50 24 � 24 786 � 576

Mesquita et al. [27] 25 20 � 20 1;300 � 1;030

Amaral et al. [2] 10 20 � 20 1;360 � 1;024

As far as image acquisition is concerned, generally microscope from Olympus or
Carl Zeiss have been used; and, the software and procedures used are standardised
by the respective commercial supplier. For example, in our work, we used ZEN Lite
software with Carl Zeiss microscope. Most of the research papers did not mention
the image resolution, and format although multiple options are available with the
cameras and image acquisition softwares. Table 13.3 shows some selected papers
with sample sizes, area of coverslip and image resolution. For the image acquisition
done for the images used in the examples, 30 �L sample was used with coverslip
size of 22 � 22 mm and resolution 2;560 � 1;920 pixels.
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13.3.2 Image Preprocessing

The phase of image processing includes image preprocessing (noise removal and
image enhancement) and image segmentation. Image segmentation is a traditional
problem of image processing. A good segmentation leads to useful information
extraction in image analysis phase. In the literature, floc area and filament length are
considered to be two most important parameters to identify a number of abnormal
conditions of activated sludge wastewater treatment plant [2]. So, different image
processing techniques have been suggested to identify flocs and filaments in the
subsequent portion of this chapter. The techniques are described and discussed in the
specific context of activated sludge wastewater treatment plant with main interest in
flocs and filaments.

13.3.2.1 Background Subtraction

Averaging of images is done to remove background noise. However, as the process is
followed by z-stacking, only one of the z-stacked images is included in the averaging
for background subtraction. Furthermore, the images selected to be averaged should
have flocs located at different locations. The images with larger number of flocs and
filaments are not expected to be improved with background correction. For example
if the flocs in all the images are positioned at the center, the averaged background
image will contain the floc like structure at the center as noise. Figures 13.2 and 13.3
show an example of background subtraction.

Fig. 13.2 Images before background subtraction

Fig. 13.3 Images after background subtraction
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13.3.2.2 Z-Stacking

Z-stack is a collection of images taken at different focal planes during microscopy.
It is needed because of shallow depth of field of microscope with the objective
of very high magnification. The z-stack images can be fused together to re-
construct a 3-D image of the sample [9], and to make all-in-focus image by some
projection method [34]. This technique has not been reported in the literature for the
microscopy of activated sludge wastewater treatment.

In context of activated sludge, some filaments or portion of filaments lie in
different focal planes. In order to determine precise length of the filaments, z-
stacking can be used. Similar is the case with flocs. We observed in our experiments
that three or four images were enough to cover all flocs and filaments. Such z-
stacking can be done manually in microscopes. However, highly sophisticated
microscopes with feature of z-stacking are available. For a concentrated sample,
more images are expected to be needed for precise calculations. Figure 13.4 shows
two background subtracted images and their z-stacked images. The z-stacking was
carried out using three methods, i.e., maximum intensity, sum slices and standard
deviation projection method for the sake of comparison. The comparison becomes

Fig. 13.4 (a) and (b) background subtracted images; z-stacking using (c) maximum intensity
projection, (d) sum projection and (e) standard deviation projection; (f)–(h) variance filtering of
(c)–(e) respectively
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more explicit by using the variance filter for edge detection. Figure 13.4 obviates
the fact that standard deviation projection gives the best result if variance filter is
used in the later stages of image processing.

13.3.2.3 Image Stitching/Virtual Slide

Image stitching is the process of combining multiple images to form a panorama
image. This method has been used for medical applications to make virtual slide
and cover a larger part of an object or overall view of the sample [22, 29, 36]. This
technique is also never reported in context of activated sludge wastewater treatment;
although it can be quite useful in subjective as well as image analysis based
quantitative identification of the state of the wastewater plant. Several algorithms
have been proposed for image stitching for development of virtual slide but the
discussion is beyond the scope of this chapter. We have introduced the virtual slide
preparation by using the method provided as the plugin for the software ImageJ [31].
In order to explain the concept through an example, four images of a concentrated
sample were acquired randomly maintaining the overlap. Then the four images were
stitched through the plugin of ImageJ. The images to be stitched and the result of
the stitching is shown in Fig. 13.5 where the locations of the images a to d are top
left, top right, bottom left and bottom right respectively.

13.3.3 Image Segmentation

It has been observed during literature review that most of the time, the description of
image processing and analysis techniques employed for activated sludge wastewater

Fig. 13.5 (a–d) images to be stitched, (e) the stitched image



240 M.B. Khan et al.

Table 13.4 Selected work on image segmentation for AS

Authors Tasks done

Jenne et al. [14] • Segmentation procedure: Histogram based thresholding (Inter-
means algorithm)

• Monitoring of total filament per image and mean form factor of
flocs

Heine et al. [11] • Image enhancement is done by histogram balance or median
filtering

• Segmentation is done by edge detection algorithm by calculation
of local extrema of two dimensional intensity function of image
resulting into gradient image. The procedure is followed by
thresholding

• Segmentation is also carried out by thresholding, followed by
labeling

Sikora and Smolka [32] • One segmentation approach is analysis of low spatial frequency
component and thresholding of the smoothed image. The tech-
nique performed poorly because of irregular illumination

• Separate detection steps were as follows:

– Variance operator (to segment flocs) ! thresholding
– Laplacian operator (to segment filaments) ! thresholding
– Joint detection (texture discrimination operation): edge detec-

tion (Canny’s algorithm) ! fractal dimension ! two-level
thresholding

Perez et al. [30] • Only flocs were studied
• Background correction ! histogram equalization ! median

filtering ! segmentation (dilation, closing, filling, erosion) !
XOR (with binary image with flocs contour) ! (opening, ero-
sion) ! XOR ! analysis

Lee et al. [19] • Watershed algorithm was used for segmentation of flocs
• 90–100 % quantification efficiency is achieved

treatment is very short and superfluous making the results irreproducible. Some of
the research work that explains the image segmentation is tabulated in Table 13.4.
We shall also discuss some different possible procedures other than those mentioned
in the research papers given in Table 13.4. First of all, the previously presented
example in the section of z-stacking will be extended progressing towards sugges-
tion of a simple segmentation algorithm for flocs and filaments.

A necessary part of image segmentation is thresholding. Jenne et al. used inter-
means algorithm for thresholding [14]. Many thresholding algorithms are available
in literature. In the following example, we used 16 global thresholding algorithms
and Li thresholding [20] was subjectively found the best for further processing.

Extending the last example, the z-stacked image from max intensity projection
is segmented as shown in Fig. 13.6. First of all, Li thresholding algorithm [20] was
used globally as it preserved the filaments. But one of the three filaments could
not be preserved well and got lost in the debris removal step. Then intermode
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Fig. 13.6 Steps for algorithm for the example

thresholding was used, which retained the flocs only. The floc is XORed with the
floc with filament to get the filaments only as shown in Fig. 13.6. The advantage of
the procedure is the filaments which are attached to the flocs are segmented. The
missing filament can be included by selecting some other suitable thresholding. But
the procedure preserves the filaments attached to the flocs only as it considers the
floc and filament the same object and considers other remotely located filaments
as debris. As a conclusion, the techniques works fine only for specific images
with filaments attached to the flocs. The technique can be used along with other
procedures which segment remotely located filaments and flocs and miss the flocs
attached to the flocs.

In order to improve the procedure described in the last example, a new algorithm
was suggested with the flow diagram given in Fig. 13.7. For better segmentation,
the ‘floc and filament’ image is obtained in one step by performing H-minima
transform through the grayscale original image (hereby onwards referred to as
the original image). H-minima transform eliminates regional minima in images
that have a depth that is less than a given value. Continuing onwards from the
last procedure, median filtering which replaces the center pixel’s intensity value
in the filtering window with the median value of all the points within the window is
applied to the resultant image to eliminate the filament objects. Then, morphological
erosion is performed to bulk up the remaining objects. Next, complementing the
image produces the ‘floc’ image. The addition of the ‘floc’ image and the ‘floc and
filament’ image produces the ‘filament’ image. Binary conversion is then done via
a value chosen by the Otsu thresholding method. At this point, the morphological
parameter of roundness is utilized to eliminate the segmented binary pixels that are
not sufficiently elongated. The remaining regions construe the segmented filaments.
The resulting segmentation is depicted in the images given in Fig. 13.8.
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H-minima Transform

Original Grayscale
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Binary Conversion

Morphological Parameter "Filtering"
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Compliment

Original Grayscale

H-minima Transform

Median Filtering

Binary Conversion

Area Opening (Flocs)

a

b

Fig. 13.7 (a) Filament segmentation; (b) Floc segmentation [18]

13.3.4 Image Analysis

In order to monitor and predict the state of activated sludge wastewater treatment
plant, image analysis has been used for a number of abnormal conditions. Recently,
Mesquita et al. used image analysis procedure to identify three abnormal condi-
tions [25]. Monitoring and prediction of state of the activated sludge by image
analysis is not established subjectively, but by finding the correlation with physico-
chemical parameters of the plant and the morphological parameters extracted
through image analysis [2, 14]. There were two types of approaches found in
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Fig. 13.8 Left to right, top to bottom, original grayscale image, superimposed filament segmenta-
tions, floc segmentation, filament segmentation

the literature about the monitoring of AS: one by finding the direct correlation
between physico-chemical and image analysis parameters [1], second by “indirect”
correlation by identifying coefficients of auto-regressive exogenous (ARX) model
or by training the neural network [37]. As far as prediction is concerned, it is based
upon the idea that properties of flocs and filaments undergo change more readily as
compared to the states of the plant [11].

As shown in Table 13.5, the image analysis has been carried out broadly to
differentiate between filaments and flocs, and morphological characterization of
flocs. The correlation has been tried to find out between time evolution of physico-
chemical and morphological parameter. The morphological parameters identified
have been mentioned for the respective papers. The image analysis has been
carried out in the literature without assessing the image processing algorithms. It
is expected that properly assessed segmentation techniques with known probability
of error can improve the correlation and help find good correlation with other
morphological parameters not found suitable in the literature.
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Table 13.5 Selected work on image acquisition with plant nature

Authors Tasks done

Jenne et al. [15] • Five simple shape descriptors are evaluated for humanly identified
100 flocs and 100 filaments

• Humanly identified discriminating levels for each descriptor to
differentiate floc and filaments, and determined corresponding
percentage error

• Radius of gyration is considered the best to differentiate between
flocs and filaments

• Determined required number of images of the same sample for the
task of counting flocs and filaments. Mean number of flocs and
filaments converge after 50 images. With 95 % confidence level,
100 images were taken

Jenne et al. [14] • This paper extends the above paper by doing characterization of
flocs and filaments along with quantification

• Global features extracted: number of floc and filament and their
total area

• Local features: size measures and shape descriptors
• Size measures (local): area, length, breadth, and perimeter
• Shape descriptors (local): roundedness, form factor, reduced

radius of gyration
• Comparison of evolution of SVI and that of local and global

features have been made
• Monitoring of total filament per image and mean form factor of

flocs can be used to predict filamentous bulking

Heine et al. [11] • Correlation between sludge volume index and filament fraction
• Comparison of evolution of two aeration tank with one mechan-

ically treated: obviating the need of early detection and counter-
measure in case of bulking

• Evolution of fraction of microflocs with and without toxic sub-
stances

• This paper partially reasons to directly relate the abnormal con-
dition of bulking and toxics to the image analysis parameters like
fraction of flocs and fraction of subflocs, without bringing in the
physico-chemical parameters

• Floc characterization is done by floc size, floc size distribution,
structure of flocs and shape of flocs

• Important survey line: “flocs have strong influence on SVI, floccu-
lation, dewatering ability; and, they are influenced by sludge load,
sludge age, the nature of substrate, for example toxic substances
or the C:N:P ratio”

• An important line: “characteristics of flocs respond very fast to
the changes in operation conditions or operation failures”

(continued)
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Table 13.5 (continued)

Authors Tasks done

Yu et al. [37] • Online digital system analysis system was built
• Particle size distribution is monitored using laser particle size ana-

lyzer and using digital image analysis by considering equivalent
diameter

• Pre dominant particle size is 10–40 �m
• Particle size distribution from particle analyzer and digital image

analysis (DIA) are different in peaks but almost the same in shape
• Find a linear relationship between fractal dimension and SS

precipitation efficiency
• By combining DIA result and artificial neural network (ANN), SS

concentration and precipitation efficiency are predicted precisely:
16 sums of 16 different particle sizes were used as input to ANN

• Identified that correlation between particle area/volume and SS is
nonlinear as the density is not constant

Sikora and Smolka [32] • Occasionally spots not belonging to filaments were found in
segmented image

• Filamentous bacteria were detected with very few discontinuities.
Floc detection omitted some small spots inside them which can
be removed by mathematical morphology

Jina et al. [16] • The characterization of flocs is carried out using morphological,
physical, chemical and extracellular polymeric substances (EPS)

• Morphological parameters: floc size, filament index, fractal
dimension

• Different sludges had different floc sizes and morphology
• Flocs with high number of filaments were also large and have

relatively lower values of fractal dimensions (Df ) and high
capacity of water binding

Amaral and Ferreira [1] • There had always been filamentous bulking throughout the exper-
iments; the relation might not valid for other modes of the plant

• Morphological parameters considered:

– Total aggregate number (not cut off by image boundaries)
– Aggregates’ mean area
– Total aggregates area
– Extent (area ratio of object and bounding box)
– Eccentricity
– Convexity (Perimeter ratio of object and convex)
– Roundedness
– Compactness
– Solidity

(continued)



246 M.B. Khan et al.

Table 13.5 (continued)

Authors Tasks done

Amaral and Ferreira [1] • Morphological parameters considered (Cont.):

– Total aggregate number (not cut off by image boundaries)
– Mean filamentous bacteria length to aggregate mean area ratio
– Total filamentous bacteria length to aggregate total area ratio
– Total filament length to total suspended solid ratio

• All above parameters are summed up to few parameters: TL/TA,
L/A, TA, solidity, eccentricity and convexity

• Linear relation observed are SVI–TL/TSSol and TSSol–TA

Mesquita et al. [25] • Three abnormal and two normal conditions were established in
the experimental setup:

– Filamentous Bulking
– Zoogleal bulking
– Pinpoint flocs
– Normal condition

• First, distinct patterns of SVI and MLSS are identified for the
abnormal and normal conditions respectively

• Correlation between ln(TL/TA) and TL/MLSS was found for four
conditions

• TA/Vol and TL/Vol were sketched separately for the four condi-
tions

• Damaged and viable bacteria are identified and differentiated
on the basis of gram� and gramC bacteria using fluorescence
microscopy

Conclusions and Future Directions
A brief introduction of activated sludge wastewater treatment system has been
presented, followed by review of existing image acquisition, preprocessing,
segmentation and analysis techniques for characterization and monitoring of
activated sludge flocs and filaments. Z-stacking and image stitching were
suggested as a part of preprocessing. Different segmentation techniques
are proposed, besides the review of techniques found in literature. For
future work, optimal combination of the image processing techniques is
needed for activated sludge wastewater treatment. A framework is required
to characterize different image segmentation techniques used for activated
sludge in terms of performance metric and capability to correlate well with the
physico-chemical parameters. In future we also plan to use image processing
and analysis to identify and predict abnormal conditions in activated sludge
WWTPs.



13 Digital Image Processing and Analysis for Activated Sludge Wastewater Treatment 247

Acknowledgements This work is supported by EScience Research Fund Grant funded by
Ministry of Science, Technology and Innovation (MOSTI), Government of Malaysia (Project No.
06-02-11-SF0139).

References

1. A.L. Amaral, E.C. Ferreira, Activated sludge monitoring of a wastewater treatment plant using
image analysis and partial least squares regression. Anal. Chim. Acta 544(1–2), 246–253
(2005)

2. A.L. Amaral, D.P. Mesquita, E.C. Ferreira, Automatic identification of activated sludge
disturbances and assessment of operational parameters. Chemosphere 91(5), 705–710 (2013)

3. American Public Health Association, Standard Methods for the Examination of Water and
Wastewater, 20th edn. (American Public Health Association, Washington, DC, 1998)

4. G. Bitton, Wastewater Microbiology (Wiley, Hoboken, 2005)
5. C.P. Chu, D.J. Lee, J.H. Tay, Bilevel thresholding of floc images. J. Colloid Interface Sci.

273(2), 483–489 (2004)
6. EPA, Clean watersheds needs survey 2008, report to congress. Technical report, 2008
7. P.A. Fowler, C.E. Casey, G.G. Cameron, C.H. Knight, M.A. Foster, Cycling changes in

composition and volume of breast during the menstrual cycle, measured by magnetic resonance
imaging. Br. J. Obstet. Gynecol. 97(7), 595–602 (1990)

8. W. Giger, P.V. Roberts, Characterization of persistent organic carbon, in Water Pollution
Microbiology, ed. by R. Mitchell (Wiley, New York, 1978), pp. 135–175

9. A. Giusti, P. Taddei, G. Corani, L. Gambardella, C. Magli, L. Gianaroli, Artificial defocus
for displaying markers in microscopy z-stacks. IEEE Trans. Vis. Comput. Graph. 17(12),
1757–1764 (2011)

10. T. Glymph, Wastewater Microbiology: A Handbook for Operators (American Water Works
Association, Denver, 2005)

11. W. Heine, I. Sekoulov, H. Burkhardt, L. Bergen, J. Behrendt, Early warning system for
operation failures in biological stages of WWTPs by online image analysis, in IWA Conference,
Berlin, 2001

12. G.W. Horgan, A.M. Creasey, B. Fenton, Superimposing two-dimensional gels to study genetic
variation in malaria parasites. Electrophoresis 13(11), 871–875 (1992)

13. D. Jenkins, M.G. Richard, G.T. Daigger, Manual on the Causes and Control of Activated
Sludge Bulking, Foaming, and Other Solids Separation Problems (Water Research Commis-
sion, Pretoria, 1984)

14. R. Jenne, E.N. Banadda, N. Philips, V.J.F. Impe, Image analysis as a monitoring tool for
activated sludge properties in lab-scale installations. J. Environ. Sci. Health Tox Hazard Subst
Environ. Eng. 38(10), 2009–2018 (2003)

15. R. Jenne, C. Cenens, A.H. Geeraerd, J.F. Impe, Towards on-line quantification of flocs and
filaments by image analysis. Biotechnol. Lett. 24(11), 931–935 (2002)

16. B. Jin, B.-M. Wilén, P. Lant, Impacts of marphological, physical and chemical properties of
sludge flocs on dewaterability of activated sludge. Chem. Eng. J. 98(1–2), 115–126 (2004)

17. K.D. Kerri, Water Treatment Plant Operation (A Field Study Training Program), vol. 1, 6th
edn. (University Enterprises, Inc./California State University, Sacramento, 2008)

18. X.Y. Lee, M.B. Khan, H. Nisar, K.H. Yeap, C.A. Ng, A.S. Malik, Morphological analysis of
activated sludge flocs and filaments, in IEEE International Instrumentation and Measurement
Technology Conference, Uruguay, 2014

19. X.Y. Lee, H. Nisar, K.H. Yeap, An approach for the segmentation and quantification of
activated sludge floc blobs. Adv. Sci. Lett. 19(5), 1372–1376 (2013)

20. C.H. Li, P.K.S. Tam, An iterative algorithm for minimum cross entropy thresholding. Pattern
Recognit. Lett. 19(8), 771–776 (1998)



248 M.B. Khan et al.

21. E. Liwarska-Bizukojc, Application of image analysis techniques in activated sludge wastewater
treatment processes. Biotechnol. Lett. 27(19), 1427–1433 (2005)

22. B. Ma, T. Zimmermann, M. Rohde, S. Winkelbach, F. He, W. Lindenmaier, K.E. Dittmar, Use
of autostitch for automatic stitching of microscope images. Micron 38(5), 492–499 (2007)

23. C.A. Maltin, S.M. Hay, M.I. Delday, G.E. Lobley, P.J. Reeds, The action of the ˇ-agonist clen-
buterol on protein metabolism in invertated and denervetated phasic muscles. Biotechnology
261(3), 965–971 (1989)

24. N.J. Martin, H.J. Fallowfield, Computer modeling of algal waste treatment systems. Water Sci.
Technol. 21(12), 1657–1660 (1989)

25. D.P. Mesquita, A.L. Amaral, E.C. Fareira, Identifying different types of bulking in an activated
sludge system through quantitative image analysis. Chemoshpere 85(4), 643–652 (2011)

26. D.P. Mesquita, A.L. Amaral, E.C. Fareira, Activated sludge characterization through
microscopy: a review on quantitative image analysis and chemometric techniques. Anal. Chim.
Acta 802, 14–28 (2013)

27. D.P. Mesquita, O. Dias, R.A. Elias, A.L. Amaral, E.C. Ferreira, Dilution and magnification
effects on image analysis applications in activated sludge characterization. Microsc. Microanal.
16(5), 561–568 (2010)

28. H.A. Painter, M. Viney, Composition of domestic sewage. J. Biochem. Microbiol. Technol.
1(2), 143–162 (1959)

29. B. Patel, T.S. Douglas, Creating a virtual slide map from sputum smear images for region-of-
interest localisation in automated microscopy. Comput. Methods Programs Biomed. 108(1),
38–52 (2012)

30. Y.G. Perez, S.G.F. Leite, M.A.Z. Coelho, Activated sludge morphology characterisation
through an image analysis procedure. Braz. J. Chem. Eng. 23(3), 319–330 (2006)

31. S. Preibisch, S. Saalfeld, P. Tomancak, Globally optimal stitching of tiled 3D microscopic
image acquisitions. Bioinformatics 25(11), 1463–1465 (2009)

32. M. Sikora, B. Smolka, Feature analysis of activated sludge based on microscopic images, in
Canadian Conference on Electrical and Computer Engineering, Toronto, 2001

33. G. Simm, Selection for lean meat production in sheep, in Recent Advances in Sheep and Goat
Research, ed. A. W. Speedy (CAB International, 1992), pp. 193–215

34. H. Su, F. Xing, J.D. Lee, C.A. Peterson, L. Yang, Learning based automatic detection of
myonuclei in isolated single skeletal muscle fibers using multi-focus image fusion, in 2013
IEEE 10th International Symposium on Biomedical Imaging (ISBI), San Francisco, 2013,
pp. 432–435

35. G. Tchobanoglous, F.L. Burton, Wastewater Engineering: Treatment, Disposal and Reuse, 4th
edn. (McGraw-Hill, Boston, 2003)

36. F. Yang, Q.-H. Fan, Z.-S. Deng, A method for fast automated microscope image stitching.
Micron 48, 17–25 (2013)

37. R.-F. Yu, H.-W. Chen, W.-P. Cheng, M.-L. Chu, Simultaneously monitoring the particle size
distribution, morphology and suspended solids concentration in wastewater applying digital
image analysis (DIA). Environ. Monit. Assess. 148(1–4), 19–26 (2009)



Chapter 14
A Complete System for 3D Reconstruction
of Roots for Phenotypic Analysis

Pankaj Kumar, Jinhai Cai, and Stanley J. Miklavcic

Abstract Here we present a complete system for 3D reconstruction of roots grown
in a transparent gel medium or washed and suspended in water. The system is
capable of being fully automated as it is self calibrating. The system starts with
detection of root tips in root images from an image sequence generated by a
turntable motion. Root tips are detected using the statistics of Zernike moments
on image patches centred on high curvature points on root boundary and Bayes
classification rule. The detected root tips are tracked in the image sequence using a
multi-target tracking algorithm. Conics are fitted to the root tip trajectories using a
novel ellipse fitting algorithm which weighs the data points by its eccentricity. The
conics projected from the circular trajectory have a complex conjugate intersection
which are image of the circular points. Circular points constraint the image of
the absolute conics which are directly related to the internal parameters of the
camera. The pose of the camera is computed from the image of the rotation axis
and the horizon. The silhouettes of the roots and camera parameters are used to
reconstruction the 3D voxel model of the roots. We show the results of real 3D
reconstruction of roots which are detailed and realistic for phenotypic analysis.

Keywords Root phenotyping • Root segmentation • 3D reconstruction of roots •
Root tip detection • Tracking • Ellipse fitting • Zernike moments

14.1 Introduction

Root system architecture (RSA) is a fundamental component of agricultural and
natural ecosystem productivity [10,16,20,38]. Several researchers [40,46] highlight
the role of genes in regulating root growth rate and branching. Thus, an auto-
mated root tip detection and 3D reconstruction procedure, applied across genetic
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varieties, has the potential to be a crucial plant physiological tool. There has been
several approaches using image processing and 3D reconstruction for quantitative
analysis of RSA [9, 37, 54]. Lobet et al. in [37] proposed a semi-automated
image processing technique to streamline the quantitative analysis of growth and
structure development of complex root systems. Their software, SmartRoot, is
an operating system-independent freeware, based on ImageJ and relies on cross
platform standards for communication with data-analysis. Clark et al. [9] developed
a high-throughput phenotyping method for the tracking of 3D root traits during
seedling development. Their platform has high flexibility and capacity to measure
root traits at high spatial and temporal resolution. However, most of the root features
are manually selected by the user and are thus at best semi-automated. In [54],
Ying et al. presented a scheme for high resolution, 3D root reconstruction using the
concept of visual hull.

In this chapter we present a complete system for 3D reconstruction of roots
grown in transparent gel medium or roots that are grown in soil or sand, washed and
suspended in water for imaging. Such a complete system, which does self calibration
and is capable of automation, is not possible by just integration of already available
image processing and computer vision algorithms. The feature detectors have to
be especially designed and trained for this application. Thus this chapter addresses
several fundamental problems of image processing and computer vision.

One fundamental problem in computer vision is that of achieving effective
automatic pattern recognition, localization of desirable features and matching those
features across images that are spatially and temporally separated. By solving this
problem one can resolve a number of issues arising in applications to 3D recon-
struction, tracking, registration, object recognition, to name a few. The definition
of a desirable feature in most cases is context and application dependent [32].
A universal approach to feature detection and matching is highly unlikely to be
successful. However, even if a method for widespread use could be developed,
it is debatable whether it would be uniformly successful for all applications of
computer vision and image processing, as the number of possible different types of
desirable features is uncountable. Figure 14.1a shows an example of scale-invariant
feature transform (SIFT) feature detection and matching [47] on two root images of
the same root viewed from two different directions. Figure 14.1b shows an example
of the proposed root tip detector and matching on the images of the same root. It is
now well accepted that the context of an application has a significant influence on the
choice of approach to take. With this in mind, we consider the problem of detecting
root tips in images of roots of plants grown in gellan gums or suspended in a
transparent medium. We propose a method of detecting root tips in 2D images based
on extremal curvature scale space and the use of the statistics of Zernike moments.
Our motivation for seeking to detect root tips is the essential role it plays in a
program for tracking root growth development, spatially and temporally, time series
images of plant roots. We chose to utilize Zernike moments (ZMs) because of their
nice properties of orthogonality, rotational invariance, and demonstrated effective
application to bilevel images. Teague in [45] writes that ZMs furnish an optimal
means to codify the essential features of an image object that are independent of
image size, centroid and relative angular orientation. Application of ZMs to bi-level
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Fig. 14.1 (a) Example of
SIFT feature detection and
matching applied to root
images of same root imaged
from different directions. (b)
Example of root tip detection
and matching applied to root
images of the same root with
the proposed method

64� 64 images of characters of the English alphabet has been quite successful [28].
In results we achieve as high as 100 % true detection rate at the cost of less than
2.5 % false alarm rate. On the other hand, with support vector machine we achieve
100 % true detection at the false alarm rate of 37.0 %. Detected root tips are tracked
in the image sequence generated by the turntable motion. The roots are imaged
by a camera rotating about an axis of rotation or the camera is stationary and the
roots rotate about a fixed axis. The detections are matched across spatially separated
images by co-relation of image patch around tips and nearest neighbour data associ-
ation. We used a graph based algorithm similar to that proposed in [31], for tracking
and track initialization. To the trajectories of root tips ellipse fitting is applied.

Ellipse fitting is another fundamental problem in computer vision and image
processing. For example, ellipse or conic fitting was used to calibrate catadioptric
cameras in [11] and [49], to calibrate pin hole camera for the geometry of single
axis rotatory motion [22], in the segmentation of cells in microscopic images [4],
segmentation of grains in [52] and in the study of galaxies in astrophysics in [41].
We use the ellipse fitting result to self calibrate the imaging sensor similar to the
approach used in [23].

Previous approaches to conic fitting have all focused on minimizing a distance
function to obtain the best fit to point data. An algebraic distance error was
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minimized in [13] and a numerically stable version of the same was presented
in [15]. A geometric distance error measure was directly minimized in [1, 2]
and by maximum likelihood estimation in [8, 43]. In contrast, Kanatani proposed
hyperaccuracy methods for ellipse fitting in [26] and [27], while Yu et al. in [50]
proposed a new distance metric based on the intrinsic properties of ellipses. The new
distance function had a clear geometric interpretation and was less computationally
intensive than the geometric error. However, none of the above methods considered a
non-uniform weighting of the error distance measure to account for the eccentricity
of data points. Data points that are more distant from the ellipse center are
considered more eccentric than data points which are closer. A mathematical
definition of eccentricity is presented in Sect. 14.6. One method that considers
weighting in the distance error measure calculation to make the fit more robust was
adopted in [50]. Although somewhat related to the method proposed here, theirs
involved a specific novel distance error measure based on the intrinsic properties of
the ellipse. Our method is different from theirs as we do not propose a new error
measure; instead we propose a preprocessing method of point data to which an
ellipse has to be fitted. Our preprocessing is analogous to the resampling algorithm
of particle filters where samples (data points) having more weight are repeated and
samples with insignificant weights are dropped. After resampling of data points any
ellipse fitting algorithm can be applied.

Turntable sequence of images for 3D reconstruction by self calibration is an
important topic of research and development in computer vision. Here we focus
on Euclidean 3D reconstruction of roots by self calibration for their phenotypic
analysis. Self calibration of single axis turntable sequence has been carried out either
by silhouette based approaches [14, 19, 39, 42, 51, 53] or by feature point tracking
methods [6, 12, 24, 25].

Silhouette based methods are more suited for smooth, compact objects with
negligible protrusions, and/or no texture on which to detect reliable point features in
most of the images of the sequence. For silhouette based approach Zhang and Wong
in [51] proposed a novel relation between imaged circular points i; j and vanishing
point vx , the axis of rotation ls and horizon lh and scale factor �, the image invariants
of single axis motion;

i; j v vx ˙ j�.ls � lh/ (14.1)

The constrain of circular points on the imaged absolute conics (ICA) !,
i!iT D j!jT D 0, and pole polar relationship ls v !vx , were used to compute
! and then the internal parameters of the camera K was obtained by the Cholesky
decomposition of ! [17]. Mendonça et al. in [39] used the symmetry properties of
the surface of revolution swept out by the rotating object to obtain the image of the
rotation axis and the homography relating epipolar lines in two views. Geometric
constraints on images of the rotating object are used to obtain the image of the
horizon and hence the epipolar geometry of the sequence. Here the imaging set
up have been designed for the biologist to get a clear view of the roots and its
architecture, which some times leads to degenerate case of [39]. The set up also
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avoids the specular reflection from the gellan gum container which causes problems
with segmentation. Forbes et al. in [14] introduced a silhouette based method for
auto calibration and 3D reconstruction of objects imaged in a twin mirror set-up.
Unfortunately the geometry of root structure is such that a twin mirror set up cannot
be used to image unoccluded silhouettes in all the multiple reflections. Zhang et al.
in [53] related the twin mirror set-up to the circular motion and proposed methods
of estimating the circular points i; j and image of the rotation axis ls of the twin
mirror set up and hence auto calibration of the camera.

In [12], Fitzgibbon et al. recovered the image invariants of single axis motion
and rotation angles from the fundamental matrices and trifocal tensors of adjacent
views. The fundamental matrices and trifocal tensors were computed by detection
and tracking of corner features on the image sequence. The initial estimates of
image invariants were optimized by bundle adjustment. Jiang et al. [23, 25], fitted
conics to the trajectory of the feature points and using the concept of projective
geometry computed the circular points from the complex conjugate intersection of
the conics. During conic fitting they applied the homography constraint, which maps
the circles of the 3D space to the conics in the image plane. Jiang et al. in [24]
proposed a method of computing the circular points from minimal two points and
their correspondence in four images of the circular motion image sequence. A planar
homography was computed from the set of points and the two eigenvectors of this
homography were shown to be the images of the circular points.

Zheng et al. in [54] proposed a detailed 3D reconstruction of plant roots from
turntable image sequence. They made three novel contributions: (1) Background of
the root images where modelled by a harmonic function to get better segmentation
of the roots, (2) Regularized visual hull which reduces the effect of jittering and
refraction by ensuring consistency with one of the 2D image, and (3) Guarantee
connectedness in the 3D reconstruction by minimization of a global error term. The
method assumes that the internal and external parameters of the cameras are known.
Camera calibration is not discussed in their paper. However our system is capable
of self calibration and thus can be fully automated.

Hence forth the chapter is organized as follows: In Sect. 14.2 we briefly
describe the various modules and processing stages of the system. First we
briefly describe the root segmentation process in Sect. 14.3 and then in Sect. 14.4
we describe the root tip detection methodology, then we talk about root tip tracking
in Sect. 14.5. In Sect. 14.6 we explain our ellipse fitting method. Then we talk about
camera calibration in Sect. 14.7 and in Sect. 14.8 we show results of the different
processing modules and the final results of 3D root reconstruction and finally we
conclude with a brief summary and some ideas of future work.

14.2 System Design

The process pipeline and flow of data for the proposed system is shown in Fig. 14.2.
Digital image of the root is acquired from a camera by imaging the root in a
transparent medium on a turntable. An adaptive thresholding algorithm is applied to
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Fig. 14.2 Block diagram schematic of the proposed 3D root reconstruction system

segment the root from its background. On the bi-level image the root tip detection
algorithm is applied. The detected root tips are matched across images and tracked in
the image sequence generated by turntable motion. Roots which have been tracked
in more that 75 % of the images of the turntable sequence are fitted with ellipses.
The intersection of these ellipses is used to compute the image of the circular points
and also to compute the invariants of the turntable motion, this leads to camera
calibration. With camera parameters and the silhouette obtained by segmentation,
visual hull reconstruction of the 3D roots are obtained.

14.3 Root Segmentation

Digital images of roots either grown in gellan gum or washed and suspended
in water are converted from colour (RGB) or gray to a bi-level foreground –
background image. Where foreground are the root pixels and background are the
non-root pixels. There are several methods for segmentation that can be used
[29,30], however in this chapter we have used the method of adaptive thresholding.
In this method an image is subdivided into smaller blocks. Within each block
mean pixel intensity is computed and pixels lower than an offset to the mean are
considered root pixels and rest of the other pixels are classified as background pixels
(Fig. 14.3).

14.4 Root Tip Detection

Bi-level, foreground-background image I.x; y/ obtained above is processed for
corner detection by the method proposed in [18] by He and Yung. The method is
based on global and local curvature properties of the contour obtained by applying
Canny edge detector to I.x; y/. Figure 14.4b shows the result of application of this
corner detection method. It is noteworthy that the corner detection procedure results
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Fig. 14.3 (a) A gray scale photo of a root; (b) a bi-level segmented image of the same

Fig. 14.4 (a) Edge map obtained from the bi-level image. The image has been inverted for better
visibility. (b) Results of the corner detection method that detects all high curvature points

in the identification of corners that are either root tips, root branch points, or root
cross over points. To eliminate the non-root tip corners we have used a statistical
learning approach based on the statistics of Zernike moments for image patches
centred around the corners. An image patch I c.x; y/ of size N � N centred on
detected corners are used to compute the Zernike moments both for training and
classification of the patch as root-tip or non-root-tip. From a set of labelled training
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Fig. 14.5 Sample of the bi-level image patches of class non root tip and root tip obtained after
preprocessing. These manually classified images patched are used to learn the class conditional
densities of the feature vectors (Zernike moments) using GMM

data a sample of which is shown in Fig. 14.5, a Gaussian mixture model (GMM),
for the statistics of Zernike moment for different classes are learnt. See [34] for
details on Zernike moments and GMM parameter estimation. For classification after
training following Bayes rule is adopted as it guarantees optimality.

From the training data the class conditional density p.zq=rc/ the density
distribution of Zernike moment zq given that the image patch is of class root tip
(rc) is learnt. Similarly the class conditional density p.zq=nrc/ for non root tip
(nrc) class is learnt.

p.zq=rc/ D
KX

kD1

wrc
k g.zqI�rc

k ; ˙rc
k /

p.zq=nrc/ D
KX

kD1

wnrc
k g.zqI�nrc

k ; ˙nrc
k / (14.2)

For the purpose of classifying an image patch I c.x; y/ or testing the classifi-
cation algorithm, the magnitudes of the nth order Zernike moments are computed.
Using Bayes rule the density of class root tip given the Zernike moments is obtained
as follows:

p.rc=zq/ D p.zq=rc/p.rc/

p.zq/
(14.3)

Similarly using Bayes rule the density of class nrc given Zernike moment zq is

p.nrc=zq/ D p.zq=nrc/p.nrc/

p.zq/
(14.4)
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To the above conditional density distribution we apply the Neyman-Pearson
criteria [21] which leads to an optimal classification criteria. A variable � is defined
which is

� D p.rc=zq/

p.nrc=zq/
D p.zq=rc/p.rc/

p.zq=nrc/p.nrc/
(14.5)

For a given set of training data p.rc/ D 1�p.nrc/ is fixed and hence p.rc/=p.nrc/

is a constant and can be taken to the left hand side of Eq. (14.5) which leads to a
further new variable

�� D �
p.nrc/

p.rc/
D p.zq=rc/

p.zq=nrc/
(14.6)

If �� is greater than an empirical threshold �th then the image patch I c.x; y/

and hence the corresponding corner is classified as root tip otherwise it is classified
as non root tip. To generate the ROC plots the threshold, �th, was varied within a
sufficiently wide range. The true and false detection rates were computed for each
such value of �th. We thus generated ROC curves for different orders of Zernike
moments and for different numbers of Gaussians in the GMM. The ROC curves for
the results of classification by this method are shown in Sect. 14.8 and compared
with SVM [7] classification.

14.5 Root Tip Tracking

For tracking of the root tips we have used the method of multi-target tracking
described in [33]. The method cooperatively combines Kalman filter-based motion
and region tracking with a nearest neighbour data association algorithm. The track-
ing system is fully automated requiring no manual input of any kind for initialization
of tracking. The target track initialization problem is formulated as computation
of shortest paths in a directed and attributed graph using Dijkstra’s shortest path
algorithm. This scheme correctly initializes multiple root-tip trajectories for tracking
even in the presence of clutter and detection errors which occur in detection of root
tips. To make the tracking problem simple and fast we have tracked only the seminal
roots and not the lateral roots. Once the trajectory of the primary/seminal root tips
has been obtained an ellipse fitting is applied to the trajectory points. Figure 14.6a
shows an example of root tip detection and Fig. 14.6b shows the tracking of these
root tips across the 72 image sequence obtained from the turntable rotation. Here
we have focused on tracking the primary root tips whose detections are shown with
blue asterisks in Fig. 14.6a.
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Fig. 14.6 Detection and tracking of root tips and ellipse fitting to the trajectories of the root tips
are shown in these images. Due to high eccentricity of ellipses the errors in ellipse fitting are large
and will lead to significant errors in estimating the image invariants of the single axis motion just
by feature tracking. Therefore we propose an improved ellipse fitting method, where data points
from the trajectory are pre-processed so that data points with higher eccentricity are replicated to
improve the ellipse fitting results (Images courtesy of [36])

14.6 Ellipse Fitting

The eccentricity of an ellipse is defined by � D
q

a2�b2

a2 , where a is the semi-
major axis and b is the semi-minor axis of the ellipse and 0 � � < 1. The value
� D 0 corresponds to a circle and the value � D 1 corresponds to a straight line.
To measure the eccentricity of data point sets to which an ellipse is to be fitted, we
introduce the following pointwise eccentricity variable:

� D da

db C da

; (14.7)

where da is the orthogonal distance of a data point to the minor axis and db is the
orthogonal distance to the major axis. This variable, whose values range between 0

and 1, takes on larger values for data points that are more distant from the minor
axis than from the major axis. In [35] an interesting observation is reported, that
is data points with higher eccentricity have higher root mean square error (RMSE)
when compared with data points with lower eccentricity. Thus if the contribution
of data points with higher eccentricity are increased compared to those with low
eccentricity, better ellipse fitting can be obtained. This is achieved by resampling
data points such that data points with high eccentricity are repeated.

Resampling is a process used in particle filters to avoid the problem of particle
degeneration [3]. In this process the particles having greater weight are repeated and
particles with insignificant weights are dropped, with the overall number of particles
being preserved. Algorithm 1 gives the pseudo code for this method. In the present
application, we adopt the same concept to have multiple replicates of those data
points having high point wise eccentricity values. A weight is assigned to each data
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point r using the weight function wr D e�r
, where �r D

�
da

dbCda

	r

. The resampling

algorithm described in Algorithm 1 is applied to the data points after the weights
have been normalized to sum to unity wr

n D wr=
PR

rD1 wr .

Algorithm 1 Given R particles/data points Xr
n and their weights wr

n compute new
set of particles/data points Xs

n and equal weights ws
n

1. Initialize the cumulative sum of weights (CW) c1 D w1
n

for r D 2 W R do
construct CW: cr D cr�1 C wr

n

end for
2. Start at the base of CW: r D 1

3. Draw a starting point �1 D f0; R�1g
for s D 1 W R do

Move along CW �s D �1 CR�1.s � 1/

while .�s > cr/ do
r D r C 1I

end while
4. Reassign particles : Xs

n D Xr
n

5. Reassign weight : ws
n D N �1

6. Reassign parents : rs D r

end for

end

In our application of the resampling algorithm, the number of input data points
and output data points can be changed. In fact better ellipse fitting results are
obtained when the number of output data points exceeds the number of input data
points. We adopted the strategy of keeping all data points and replicating those
points having higher weights. For replication the data points were interpolated
between current parent point and the previous neighbour of the point. The number of
replication is a function of the weight of the parent point. To compute the weights of
data points a knowledge of the major and minor axis is required. In the experiment
with real data set for the example shown in Sect. 14.8 and Fig. 14.11, an estimate
of the major and minor axes is obtained by taking means of the ellipse parameters
obtained by the methods used for ellipse fitting. The estimation of the eccentric
weight of data points is not sensitive to small errors in the estimate of minor and
major axes.

14.7 Camera Self Calibration

The value of the image of the rotation axis ls is initialized by the line which best fits
the poles of the ellipses fitted to the trajectories of the root tips. In a real perspective
image of circular motion it is not possible to have four real intersection points for
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the conics fitted to the trajectories of the feature points. When a pair of conics have
two real intersection points then the other pair of complex conjugate intersection
points are the image of the circular points i; j. Let say i D ŒaC ib; c � id; 1�T then
j D Œa � ib; c C id; 1�T . The line passing through the circular points is the image
of the horizon lh. Thus

lh D i � j (14.8)

Complex conjugate intersection of each pair of conics gives an estimate of a; b; c; d

which specifies the circular points. If there are Q number of conics in a circular

motion sequence then there will be

�
Q

2

�
estimates of a; b; c; d . In our approach we

histogram the computed values of a; b; c; d and take the modes of the histogram to
be the estimates of a; b; c; d and hence of the circular points i; j. From the estimates
of the image invariants of the single axis motion and the feature point tracking we
have to derive the parameters of internal calibration of the camera the K matrix and
the poses of the camera which will be used to reconstruct the visual hull of the roots
from its silhouettes.

14.7.1 Internal Calibration

To estimate the internal parameters of the camera we assume the camera to have
zero skew and its pixels to be square. For a camera with zero skew and square pixels
the image of absolute conics (IAC) ! is of the following form [17]

! D
2
4

!1 0 !2

0 !1 !3

!2 !3 !4

3
5 (14.9)

and the matrix for internal parameters of the camera is

K D
2
4

f 0 x0

0 f y0

0 0 1

3
5 : (14.10)

The pair of circular points constraints ! by the following equality i!iT D j!jT D
0. This constraint is not sufficient to compute all the elements of ! as i and j
are complex conjugates of each other. The added constraint from the vanishing
points vT

z !vy D vT
y !vx D vT

x !vz D 0 and the constraint from the pole polar
relationship ls D !vx and lh D !vy are sufficient to compute ! in a least square
sense using SVD. The relationship of ! to the internal parameters of a camera
K is ! D .KKT /�1 [17, 51]. By applying Cholesky decomposition to !�1 [17]
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one can obtain an upper triangular matrix for K of the from

2
4

k11 k12 k13

0 k22 k23

0 0 k33

3
5. In

carrying out the Cholesky decomposition we experienced that usually k12 ¤ 0 and
k11 ¤ k22, which is the desirable form for K in Eq. (14.10), for a zero skew square
pixel camera. When K is of the form in Eq. (14.10) then .KKT /�1 is of the from

.KKT /�1 D 1

f 4

0
@

f 2 0 �f 2x0

0 �f 2 �f 2y0

�f 2x0 �f 2y0 f 4 C f 2x2
0 C f 2y2

0

1
A : (14.11)

In our implementation we solved for f; x0; y0 by equating the elements of the above
matrix to that of element of ! as in Eq. (14.9).

14.7.2 Camera Pose Estimation

A projective camera matrix P transform a point in 3D to a point in the image plane
and is of the form

P D KRŒIjt� (14.12)

For the geometry of the reference camera C0, the projection matrix is of the form

P0 D KR

2
4

1 0 0 0

0 1 0 0

0 0 1 tz

3
5 (14.13)

where tz is the location of the camera centre on the Z-axis and R is the rotation
matrix of the form .r1; r2; r3/, which describes the initial orientation of the
camera [48]. Its columns can be recovered as

r1 D K�1vx

jK�1vx j ; r3 D K�1vz

jK�1vzj ; and r2 D r1 � r3: (14.14)

The projection matrix of camera rotated from the reference camera by i is given by

Pi D KR

2
4

cos i 0 sin i 0

0 1 0 0

� sin i 0 cos i tz

3
5 (14.15)

To estimate i from the image features we applied Laguerre’s formula as used
in [23] and computed from the trajectories of the feature points.
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14.8 Results

In our classification experiments the principle order nmax of the Zernike moments
is varied from 2 through to 12 in steps of 2 for a fixed number of Gaussians K

in the GMM density model. The order 0 and 1 are omitted due to the nature of
preprocessing applied in our experiments. The lower order moments capture the
overall (generic) shape information, while the higher order moments capture the
detailed (specific) shape information. The value of �th is varied from 0.0 to 900,000
and each point on the ROC curve is the True detection rate and False alarm rate
computed for a particular value of �th. Figure 14.7 shows the plot of the ROC curves
for K D 4 and different values of the Zernike moments.

Figure 14.8 shows the ROC curves for nmax D 8 and K D f2; 4; 6; 8; 10g. In
this plot we observe that the classification results improves with initial increase in
the number of Gaussians K in the GMM for the class conditional densities. The
best ROC curve is for K D 6 with the quality of the curve deteriorating with
further increase in the value of K. To find out which combination of the principal
order of the Zernike moments, nmax, and the number of Gaussians in the GMM, K,
gives the best classification results we plotted the area under (AU) the ROC curves
as a function of K for different values of nmax. This plot is shown in Fig. 14.9.

Fig. 14.7 ROC curves for the classification results using the proposed classification method. The
number of Gaussians K in the GMM is 4 for principle Zernike moments nmax D f2; 4; 6; 8; 10; 12g
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Fig. 14.8 ROC curves for the classification results using the proposed classification method.
The principal Zernike moments nmax D 8 and the number of Gaussians K in the GMM are
f2; 4; 6; 8; 10g

The highest peaks in this graph occur for the combinations of fnmax; Kg D f6; 8g
and fnmax; Kg D f8; 6g, respectively, giving the best performance combinations.
The areas under the ROC curves for these combinations are 0.9972. As K is further
increased, the performance of classification deteriorates and the convergence of the
EM algorithm becomes unstable for high values of K. The high values of K we can
experiment with also depends upon the size of the training dataset. At present our
dataset consists of about 1,500 non-root tip patches and 500 root tip patches.

To quantitatively compare our results with support vector machine (SVM)
classification results. Using the same data set an SVM was trained for classification
where the parameters of the SVM has been optimized using cross validation. We use
the same feature, Zernike moments in SVM as the choice of feature may affect the
classification results and hence the comparison will not be a valid one if different
feature is used for classification using SVM. Figure 14.10 show the ROC curves for
the SVM classification results for different values of nmax Here the true detection
rate (TDR) of 100 % is was achieved at the false detection rate (FDR) of 37 % for
nmax D 2. The classification rate for lower nmax are better than for the higher values
of nmax.

To investigate the effectiveness of the ellipse fitting method we show some
qualitative results on real data (for quantitative evaluation please refer to [35]).
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Fig. 14.9 Plot of the area under the curve for the classification results using the proposed method.
Best performance is achieved for the combination principal Zernike moment order nmax D f6; 8g
and number of Gaussian in the GMM K D f8; 6g. The area under the ROC for this combination
are 0.9972

Resampling was applied as a precursor to the five different ellipse fitting methods:
CGIP-1979 [5], PAMI-1999 [13], WSCG-1998 [15], PAMI-1991 [44], and ECCV-
2012 [43]. The data set used for qualitative testing the proposed algorithm comes
from trajectories of root tips. The trajectory of a single root tip traces out an ellipse
in the image plane. Ellipse fitting is then applied to the set of detected root tips in
the 72 different positions. Figure 14.11 shows the results of this fitting. The small
regions (a), (b), (c) of Fig. 14.11 are magnified for better visualization. The left hand
subplots are the results of fitting before resampling, while the right hand subplots
show the results after resampling. There is significant improvement in the results
of ellipse fitting after resampling of data points. An arrow marker is inserted in the
images to highlight the improvement in the results, especially for the PAMI-1999
method.

In the results we show the 3D reconstruction and modelling of a corn root at its
different stages of development and also when different number of images are used
for reconstruction of the root. Figure 14.12 shows the reconstruction of the RSA
at: day 6 (a), day 10 (b), day 14 (c), and day 18 (d). These reconstructions are
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Fig. 14.10 ROC curves for the classification results using the SVM cross validation method for
different values of the principle Zernike moments nmax D f2; 4; 8; 12; 16g. Better ROC curves are
obtained for lower values of nmax

sufficiently detailed and truly portrays the complex 3D structure of RSA. Models in
these roots have been developed using all 72 images from the turntable image
sequence. Figure 14.13 shows the reconstruction of the root with different number
of images used for 3D reconstruction: 12 images Fig. 14.13a, 24 images Fig. 14.13b,
36 images Fig. 14.13c, 48 images Fig. 14.13d, 60 images Fig. 14.13e and 72 images
Fig. 14.13f. The results are when the plant is at day 14th of its growth. There are
subtle differences in these 3D models of the root. As the number of images in the
3D reconstruction are increased the fine structures of the RSA are captured and
represented in the 3D model. This can be noted by observing the longest seminal
root in these models. This seminal root is longest and more vividly captured in
Fig. 14.13f than the other images. The stoutness of the models from Fig. 14.13a–f
seems to decrease.
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Fig. 14.11 Results of ellipse fitting of a real data set after resampling. The main figure shows
first the origin (root tip tracking) of a real data set, plus overall results of ellipse fitting. Subplots
show magnified views of small regions (a), (b), and (c). Left-hand subplots are results prior to
resampling. Right-hand subplots are results subsequent to resampling. An equal length arrow is
included in both sets to highlight the obvious improvements
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Fig. 14.12 (a, b, c, d) are the results of 3D reconstruction for day 6, 10, 14, 18 of the growth
of corn roots. The results by the proposed method are detailed enough for phenotyping analysis
(Images courtesy of [36])

Fig. 14.13 (a, b, c, d, e, f) are the results of 3D reconstruction with 12, 24, 36, 48, 60, 72 number
of images respectively, from the turntable sequence. The images are from the day 14 growth stage
of the corn plant (Images courtesy of [36])
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Conclusions
In this chapter we have presented a complete system for 3D reconstruction
and analysis of roots grown in transparent gellan gum medium. Although not
a natural environment for growing plants, never the less it represents a useful
strategy for phenotyping roots and studying the 3D structure using relatively
in-expensive techniques. Visual sensors (digital) cameras are much cheaper
to procure, operate, and maintain than 3D CT X-ray scanners, MRI, or even
Lidar. We have demonstrated the successful working of the proposed method
on corn roots. Detailed reconstruction of the roots where obtained with 72
images. The root growth rate is observed to be almost linear with time, which
is well in line with current theories for plants in biology that is a plant in its
early stage of growth has almost a linear growth rate of biomass. Increasing
the number of images for 3D reconstruction improves the accuracy of 3D
model although it decreases the observed volume. This empirical finding is
consistent with the theory of space carving which states that the volume of
reconstruction decreases monotonically with increasing number of images
from different view points. In our future experiments we will also consider
the effect of changing viewing angles. We will also report on the issues due to
refraction of light through gellan gum and its impact on 3D reconstruction.

References

1. S.J. Ahn, W. Rauh, H.-J. Warnecke, Least-squares orthogonal distances fitting of circle, sphere,
ellipse, hyperbola, and parabola. Pattern Recognit. 34(12), 2283–2303 (2001)

2. S.J. Ahn, W. Rauh, H.S. Cho, H.-J. Warnecke, Orthogonal distance fitting of implicit curves
and surfaces. IEEE Trans. Pattern Anal. Mach. Intell. 24(5), 620–638 (2002)

3. S. Arulampalam, S. Maskell, N. Gordon, T. Clapp, A tutorial on particle filters for on-line non-
linear/non-Gaussian Bayesian tracking. IEEE Trans. Signal Process. 50(2), 174–188 (2002)

4. X. Bai, C. Sun, F. Zhou, Splitting touching cells based on concave points and ellipse fitting.
Pattern Recognit. 42(11), 2434–2446 (2009)

5. F.L. Bookstein, Fitting conic sections to scattered data. Comput. Graph. Image Process. 9,
56–71 (1979)

6. X. Cao, J. Xiao, H. Foroosh, M. Shah, Self-calibration from turn-table sequences in presence
of zoom and focus. Comput. Vis. Image Underst. 102(3), 227–237 (2006)

7. C.-C. Chang, C.-J. Lin, LIBSVM: a library for support vector machines. ACM Trans. Intell.
Syst. Technol. 2, 27:1–27:27 (2011)

8. W. Chojnacki, M.J. Brooks, A. van den Hengel, D. Gawley, On the fitting of surfaces to data
with covariances. IEEE Trans. Pattern Anal. Mach. Intell. 22, 1294–1303 (2000)

9. R.T. Clark, R.B. MacCurdy, J.K. Jung, J.E. Shaff, S.R. McCouch, D.J. Aneshansley,
L.V. Kochian, Three-dimensional root phenotyping with a novel imaging and software
platform. Plant Physiol. 156(2), 455–465 (2011)

10. I. De Smet, P.J. White, A.G. Bengough, L. Dupuy, B. Parizot, I. Casimiro, R. Heidstra,
M. Laskowski, M. Lepetit, F. Hochholdinger, X. Draye, H. Zhang, M.R. Broadley, B. Péret,
J.P. Hammond, H. Fukaki, S. Mooney, J.P. Lynch, Ph. Nacry, U. Schurr, L. Laplaze, P. Benfey,
T. Beeckman, M. Bennett, Analyzing lateral root development: How to move forward. Plant
Cell 24(1), 15–20 (2012)



14 A Complete System for 3D Reconstruction of Roots for Phenotypic Analysis 269

11. F. Duan, L. Wang, P. Guo, Ransac based ellipse detection with application to catadioptric
camera calibration, in ICONIP 2010, Sydney, pp. 525–532

12. A.W. Fitzgibbon, G. Cross, A. Zisserman, Automatic 3D model construction for turn-table
sequences, in Proceedings of the European Workshop on 3D Structure from Multiple Images of
Large-Scale Environments, SMILE’98, Freiburg (Springer, London, 1998), pp. 155–170

13. A. Fitzgibbon, M. Pilu, R.B. Fisher, Direct least square fitting of ellipses. IEEE Trans. Pattern
Anal. Mach. Intell. 21(5), 476–480 (1999)

14. K. Forbes, F. Nicolls, G. De Jager, A. Voigt, Shape-from-silhouette with two mirrors and
an uncalibrated camera, in Proceedings of the 9th European Conference on Computer Vision
(ECCV), Graz, 2006, pp. 165–178

15. R. Halir, J. Flusser, Numerically stable direct least squares fitting of ellipses, in Proceedings of
the 6th International Conference in Central Europe on Computer Graphics and Visualization
WSCG’98, Plzen, 1998, pp. 125–132

16. G. Hammer, Z. Dong, G. Mclean, A. Doherty, C. Messina, J. Schussler, C. Zinselmeier,
S. Paszkiewicz, M. Cooper, Can changes in canopy and/or root system architecture explain
historical maize yield trends in the U.S. corn belt? Crop Sci. 49, 299–312 (2009)

17. R.I. Hartley, A. Zisserman, Multiple View Geometry in Computer Vision, 2nd edn. (Cambridge
University Press, 2004). ISBN: 0521540518

18. X.C. He, N.H.C. Yung, Corner detector based on global and local curvature properties. Opt.
Eng. 47(5), 057008 (2008)

19. C. Hernandez, F. Schmitt, R. Cipolla, Silhouette coherence for camera calibration under
circular motion. IEEE Trans. Pattern Anal. Mach. Intell. 29(2), 343–349 (2007)

20. A. Hodge, G. Berta, C. Doussan, F. Merchan, M. Crespi, Plant root growth, architecture and
function. Plant Soil 321(1–2), 153–187 (2009)

21. A.K. Jain, S. Prabhakar, L. Hong, S. Pankanti, Filterbank-based fingerprint matching. IEEE
Trans. Image Process. 9, 846–859 (2000)

22. G. Jiang, L. Quan, Circular motion geometry using minimal data. IEEE Trans. Pattern Anal.
Mach. Intell. 26, 721–731 (2004)

23. G. Jiang, H.-T. Tsui, L. Quan, A. Zisserman, Single axis geometry by fitting conics, in
Computer Vision – ECCV 2002, Copenhagen, ed. by A. Heyden, G. Sparr, M. Nielsen,
P. Johansen. Volume 2350 of Lecture Notes in Computer Science (Springer, Berlin/Heidelberg,
2002), pp. 537–550

24. G. Jiang, L. Quan, H.-T. Tsui, Circular motion geometry by minimal 2 points in 4 images, in
Ninth IEEE International Conference on Computer Vision, Nice, vol. 1, 2003, pp. 221–227

25. G. Jiang, H.-T. Tsui, L. Quan, A. Zisserman, Geometry of single axis motions using conic
fitting. IEEE Trans. Pattern Anal. Mach. Intell. 25(10), 1343–1348 (2003)

26. K. Kanatani, Ellipse fitting with hyperaccuracy. IEICE Trans. Inf. Syst. 89, 2653–2660 (2006)
27. K. Kanatani, P. Rangarajan, Hyperaccurate ellipse fitting without iterations, in VISAPP (2),

Angers, 2010, pp. 5–12
28. A. Khotanzad, Y.H. Hong, Invariant image recognition by Zernike moments. IEEE Trans.

Pattern Anal. Mach. Intell. 12, 489–497 (1990)
29. P. Kumar, K. Sengupta, A. Lee, A comparative study of different color spaces for foreground

and shadow detection for traffic monitoring system, in IEEE 5th International Conference on
Intelligent Transportation Systems, Singapore (IEEE, 2002), pp. 100–105

30. P. Kumar, S. Ranganath, W.M. Huang, Queue based fast background modelling and fast
hysteresis thresholding for better foreground segmentation, in The Fourth International
Conference on Information, Communications and Signal Processing, Singapore, vol. 2, 2003,
pp. 743–747

31. P. Kumar, S. Ranganath, K. Sengupta, W. Huang, Co-operative multi-target tracking and
classification, in Computer Vision – ECCV 2004, Prague, ed. by T. Pajdla, J. Matas. Volume
3021 of Lecture Notes in Computer Science (Springer, Berlin/Heidelberg, 2004), pp. 376–389

32. P. Kumar, S. Ranganath, W.M. Huang, K. Sengupta, Framework for real time behavior
interpretation from traffic video. IEEE Trans Intell Transp. Syst. 6(1), 43–53 (2005)



270 P. Kumar et al.

33. P. Kumar, S. Ranganath, K. Sengupta, W. Huang, Cooperative multitarget tracking with effi-
cient split and merge handling. IEEE Trans. Circuits Syst Video Technol. 16(12), 1477–1490
(2006)

34. P. Kumar, J. Cai, S. Miklavcic, Automated detection of root crowns using Gaussian mixture
model and bayes classification, in International Conference on Digital Image Computing
Techniques and Applications (DICTA), Fremantle, 2012, pp. 1–7

35. P. Kumar, J. Cai, S. Miklavcic, Improved ellipse fitting by considering the eccentricity of
data point sets, in Proceedings of IEEE International Conference on Image Processing (ICIP),
Melbourne, 2013, pp. 815–819

36. P. Kumar, J. Cai, S. Miklavcic, 3D reconstruction, modelling and analysis of in situ root system
architecture, in 20th International Congress on Modelling and Simulation, Adelaide, 1–6 Dec
2013, pp. 517–523

37. G. Lobet, L. Pagès, X. Draye, A novel image-analysis toolbox enabling quantitative analysis
of root system architecture. Plant Physiol. 157(1), 29–39 (2011)

38. J. Lynch, Root architecture and plant productivity. Plant Physiol. 109, 7–13 (1995)
39. P.R.S. Mendonça, K.-Y.K. Wong, R. Cipolla, Epipolar geometry from profiles under circular

motion. IEEE Trans. Pattern Anal. Mach. Intell. 23, 604–616 (2001)
40. M.A. Moreno-Risueno, J.M. Van Norman, A. Moreno, J. Zhang, S.E. Ahnert, P.N. Benfey,

Oscillating gene expression determines competence for periodic arabidopsis root branching.
Science 329(5997), 1306–1311 (2010)

41. M. Sarzi, H. Rix, J.C. Sheilds, G. Rudnick, D.H. McIntosh L.C. Ho, A.V. Filippenko,
W.L.W. Sargent, Supermassive black holes in bulges. Astrophys. J. 550(1), 65–74 (2001)

42. S.N. Sinha, M. Pollefeys, L. McMillan, Camera network calibration from dynamic silhouettes,
in Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, Washington, DC, vol. 1, 27 June–2 July 2004, pp. I-195–I-202

43. Z.L. Szpak, W. Chojnacki, A. van den Hengel, Guaranteed ellipse fitting with the sampson
distance, in ECCV (5), Florence, 2012, pp. 87–100

44. G. Taubin, Estimation of planar curves, surfaces, and nonplanar space curves defined by
implicit equations with applications to edge and range image segmentation. IEEE Trans.
Pattern Anal. Mach. Intell. 13(11), 1115–1138 (1991)

45. M.R. Teague, Image analysis via the general theroy of moments. J. Opt. Soc. Am. 70(8), 920–
930 (1980)

46. J. Traas, T. Vernoux, Oscillating roots. Science 329(5997), 1290–1291 (2010)
47. A. Vedaldi, B. Fulkerson, VLFeat: an open and portable library of computer vision algorithms

(2008). http://www.vlfeat.org/
48. K.-Y.K. Wong, G. Zhang, C. Liang, H. Zhang, 1D camera geometry and its application to the

self-calibration of circular motion sequences. IEEE Trans. Pattern Anal. Mach. Intell. 30(12),
2243–2248 (2008)

49. X. Ying, Z. Hu, Catadioptric camera calibration using geometric invariants. IEEE Trans.
Pattern Anal. Mach. Intell. 26, 1260–1271 (2004)

50. J. Yu, S.R. Kulkarni, H.V. Poor, Robust ellipse and spheroid fitting. Pattern Recognit. Lett.
33(5), 492–499 (2012)

51. H. Zhang, K.-Y.K. Wong, Self-calibration of turntable sequences from silhouettes. IEEE Trans.
Pattern Anal. Mach. Intell. 31(1), 5–14 (2009)

52. G. Zhang, D.S. Jayas, N.D. White, Seperation of touching grain kernels in an image by ellipse
fitting algorithm. Biosyst. Eng. 92(2), 135–142 (2005)

53. H. Zhang, L. Shao, K.-Y.K. Wong, Self-calibration and motion recovery from silhouettes with
two mirrors, in Proceedings of the Asian Conference on Computer Vision, Daejeon, 2012,
pp. 1–12

54. Y. Zheng, S. Gu, H. Edelsbrunner, C. Tomasi, P. Benfey, Detailed reconstruction of 3D plant
root shape, in ICCV, Barcelona, 2011, pp. 2026–2033

http://www.vlfeat.org/


Index

A
aberration width, 59
abnormalities, 108
abnormality detection, 108
abundance, 221
abundance levels, 5, 11
acceleration sensor, 128
accelerometer data, 120
activated sludge, 229
AdaBoost, 114
adaptive thresholding, 254
adjacent segments, 45
aeration tank, 235
airborne pollen, 209
algebraic distance, 251
allergy research, 208
amplitude excitation, 74
angiogenesis, 178, 188
angular velocity, 66
anomaly detection, 79
artificial neural networks, 144
auto calibration, 253
average run length, 46

B
background correction, 237
basal secretion, 28
basal secretion levels, 31
basal secretion rate, 30
bifurcations, 184
binary classification, 150
biodiversity, 208

black-box modeling, 64
block matching algorithm, 160, 163
blood vessels, 178, 183, 185
Bonferroni correction, 51
brain mapping, 162
branch layers, 186
branch points, 255
branches, 185
branching structure, 188
break-point problems, 42
breakage, 45
bright field microscopy, 228
brushing and linking, 15
bundle adjustment, 253

C
camera calibration, 253, 254
camera matrix, 261
cardiac diagnostics, 108
caregivers, 141
Cauchy’s residue theorem, 85
causal relationships, 8
causality, 20
cell topology, 6, 20
cellular membrane, 11, 16
cellular topology, 8, 11
central vision, 66
Chamfer metric, 182
change-point detection, 43
change-point locations, 51
change-point problems, 42
change-point vector, 51

© Springer International Publishing Switzerland 2015
C. Sun et al. (eds.), Signal and Image Analysis for Biomedical and Life Sciences,
Advances in Experimental Medicine and Biology 823,
DOI 10.1007/978-3-319-10984-8

271



272 Index

change-points, 53
checkboxes, 15
chromosomal location, 42
circadian rhythm, 36
circular binary segmentation, 43
circular points, 252–254, 260
classification accuracy, 215
classification error, 215
classifier, 209
Classifynder, 209
climate change, 208
closed-form expression, 84
closed-loop system, 30, 38
cloud computing, 192
cloud environment, 204
clustering, 144
combinatorial optimization, 50
comparative genomic hybridization, 42
complexity measures, 108
computed tomography, 177, 192
concentration profiles, 26
confusion matrix, 155
conic fitting, 251
conics, 253
connected graph, 112
connectivity analysis, 144
copy number, 42
copy number variation, 42, 58
corner detection, 254
cross-subject distance, 122
cross-subject proximity matrix, 124

D
data visualisation, 4
decision trees, 144
deep sleep, 161
delay lag, 151
delay permutation entropy, 145
detrended fluctuation analysis, 110
Dijkstra’s shortest path, 257
dimensionality reduction, 181
Direct Linear Transformation, 128
disorder problems, 42
dispersion, 51
displacement, 163
distance map, 182
distance matrix, 112
distortion measure, 164
disturbances, 33
double-frequency harmonics, 86
downward movement, 65
DPE indices, 151
dynamic range, 74

E
eccentricity, 252, 258
ECG, 108
edge detector, 254
EEG, 144
EEG recordings, 144
electroencephalography, 160
electrooculogram, 67
electrooculography, 64
elementary motion detectors, 83
elimination rates, 31
elite sample, 50, 51
ellipse fitting, 251, 252, 258, 259, 263
EM algorithm, 263
endocrine regulation loop, 28
endocrine system, 23, 25, 26, 35
enhancement, 177
ensemble classification, 112
ensemble decomposition learning, 112
ensemble distance metrics, 112
ensemble indicators, 109
ensemble learning, 108, 111
ensemble measure, 115, 117
epilepsy, 143
epilepsy classification, 146
epilepsy detection, 155
epilepsy seizures, 144
epileptogenic zone, 144, 145, 155
epipolar lines, 252
experimental protocol, 34
extraocular muscles, 65
eye movements, 64, 72, 80
eye tracker, 67, 77
eye tracking, 64

F
family wise error rate, 51
feature space, 112
feature vector, 124
feedback loop, 65
feedback mechanism, 27
filament length, 237
firing times, 33
floc area, 237
flocs, 234
flow cytometry, 209
flow map, 10
force plate, 131, 139
Fourier matrix, 75
Fourier spectrum, 84, 104
frequency-domain analysis, 110
full search, 159, 160, 163, 170
full search algorithm, 161, 165



Index 273

fundamental matrices, 253
fuzzy C-means, 9

G
gait dynamics, 119
gait recognition, 120
gait stride intervals, 108
gait time series, 119, 122, 124
gait-based biometrics, 109, 120
Gaussian mixture model, 256
gaze, 64
gaze direction, 64, 67, 72, 74
gaze trajectory, 78, 80
gene expression, 5
genetic algorithm, 43
genus, 208
geomagnetic sensor, 128
geometric distance, 252
global climate dynamics, 209
global minimum, 31
grass fire transform, 182
grey-box modeling, 64
grid points, 32

H
H-minima, 241
Hammerstein systems, 34
harmonic input, 84
head movements, 65
heart rate variability, 108
heat map, 6, 8–11, 18
Hermite functions, 70
hidden Markov models, 43
hierarchical representation, 181
high-throughput, 4
Hill function, 25
homography, 253
honey pollen analysis, 210
hormone concentration, 36
hormone profiles, 26
hormones, 28
HRV, 108
human ambulation, 119
Huntington’s disease, 109
hybrid feedback system, 29
hypothalamic neurons, 27
hypothalamus, 24, 31

I
identification, 64
identification algorithm, 101

image features, 211
image invariants, 253
image stitching, 239
imaged absolute conics, 252
imaged circular points, 252
impulse responses, 84
impulse weights, 30–32
initial conditions, 31
insect vision, 104
insect visual systems, 84
insulin response, 6, 11
insulin response pathway, 20
interactive pathways graphs, 4
intrinsic properties, 252
inverse dynamics, 139

J
junctions, 184

K
Kalman filter, 257
kernel density estimation, 69
kernel estimator, 70
kernel functions, 69
kinematic characteristics, 120
kinematics, 128, 137
kinetics, 128
Kruskal’s algorithm, 112

L
Laguerre domain, 84, 87, 88
Laguerre functions, 88
Laplace transform, 85
least-squares, 31
linear algebraic equations, 31
linear discriminant analysis, 210
linear dynamics, 101
linear feature detection, 195
linear feature enhancement, 180
linear structure, 182, 185
linear structure enhancement, 180
link-segment model, 128
Lloyd iteration, 147
locomotion, 117
lumbago, 138
lumbar burden, 138
luteinizing hormone, 24

M
magnetoencephalography, 144
Mahalanobis distance, 216



274 Index

mathematical modeling, 64
maximum angular velocity, 66
measurement noise, 31
meta-indicators, 111
metastasis, 177
micro-computed tomography, 178
micro-organisms, 228
microarray, 58
microscopic bodies, 208
microvasculature, 177, 178
Minardo, 6, 11, 15, 17
minimum aberration width, 50
minimum spanning tree, 112
model calibration, 29
model fidelity, 38
modulation functions, 38
momentous jumps, 27
monitoring, 108
morphological analysis, 235
motion capture, 128
motion detection, 90
motion estimation, 160, 163, 170
motion information, 160
motion patterns, 119
motion vector, 163
motion vectors, 160, 168
motor impairment, 113
motor symptom quantification, 64
MSK-means, 143, 145, 146, 148, 150, 151,

153, 155
multi-class classification, 121, 122
multi-complexity measures, 109
multi-fractal analysis, 110
multi-resolution, 163
multi-scale, 108
multi-scale entropy, 110
multiple change-points, 45
multiple sinusoidal gratings, 84
multiple-input-multiple-output, 73

N
nectar contributions, 224
neovascularization, 178
network analysis, 19
network layout, 18
neural network, 210
neural response, 100
neurite analysis, 183
neurologic disorders, 113
neurological abnormalities, 114
neurological diseases, 64, 109
neurological disorder, 143
neuromuscular system, 64

Newton-Euler method, 140
non-pollen debris, 210
nonlinear oscillations, 27
normal distribution, 47
normalized tree length, 113

O
open-loop, 29
ordinary least-squares, 34
orthogonal distance, 258
orthogonal series approximation, 69
orthogonal series estimator, 70
orthonormal basis, 69
over-estimation, 53
overparameterization, 34

P
palynology, 208
Parkinson’s disease, 109
pathway, 4
pathway graphs, 4
peak signal to noise ratio, 166
peak-to-average-ratio, 75
pel-recursive algorithms, 163
performance metrics, 114
permutation entropy, 144, 148
Petri Nets, 19
phase shift formulation, 95
phase-contrast imaging, 196
phenotypic analysis, 252
phosphorylation, 4
phosphorylation events, 15, 16
phosphorylation levels, 9
phosphorylation site, 12, 16
photodiode transducer, 87, 100
pituitary, 28
pituitary gland, 24
pixel decimation, 163
planar homography, 253
plant reproductive biology, 208
plausible time delays, 101
pollen, 225
pollen analysis, 209
pollen grains, 208–210
pollen morphology, 208
pollen record, 209
pollen species, 209
portable devices, 108
post-translational modifications, 5
posterior probability, 216
postures, 137
power spectrum, 111



Index 275

power spectrum ratio, 110, 111
Prim’s algorithm, 112
primary visual cortex, 66
priority map, 184
probability density estimation, 65
probability density function, 45, 68
product partition models, 43
progressive depletion, 68
protein abundance, 6
proteome, 4
proteomics, 6
proximity measure, 122
pulsatile feedback, 24
pulse modulation functions, 29

Q
quality control, 210
quantitative diagnostics, 108

R
rapid eye movement, 161
rare event probabilities, 50
region growing, 183
regional maxima, 182
relative abundance, 217
reproductive cycle, 208
robust measurement, 51
ROC curve, 262
root features, 250
root growth, 250
root segmentation, 253
root system architecture, 249
root tips, 250
root traits, 250

S
saccades, 64, 65
saccadic system, 66
sample entropy, 144
sampling frequency, 77
saturating function, 28
scalp, 160
search window, 164
second order model, 104
secretion, 24
secretion functions, 26
seizure disorder, 161
seizures, 143
self calibration, 252
Shannon entropy, 149
shearing stress, 140

shortest paths, 257
signal-to-noise ratio, 52, 111
signalling pathways, 5, 20
silhouette, 254
single tone excitation, 104
single-input-single-output, 74
singular points, 182
sinogram, 198
sinusoid function, 37
sinusoidal gratings, 85, 87, 94
skeletonization, 181
skeletons, 182
sleep disorder, 162
sludge system, 228
sludge volume index, 228
Smith model, 25, 27
smooth pursuit, 66, 80
smooth pursuit system, 64
software packages, 192
spanning tree, 112
sparse optimization problem, 98
sparsity constraint, 33
spatial excitation properties, 104
spatial sampling, 86
spatio-temporal correlation, 160
species, 208
spectral density, 74
spectral karyotyping, 55
spectrometry, 4
spores, 208
stochastic optimization, 58
stopping criterion, 50
stoutness, 265
stride-interval segments, 115
structural similarity index measure, 166
Student’s test, 153
sub-cellular localisations, 16
sub-cellular structures, 192
substantia nigra, 67
support vector machines, 144
sustained oscillations, 27
synchrotron radiation, 177, 180
system identification, 29, 84

T
taxa, 220
taxonomic resolution, 209
testes, 28
testosterone, 24
testosterone dynamics, 35, 38
testosterone regulation, 27
threshold selection, 180
time complexity, 148



276 Index

time-profile, 5
toolbox, 195
topological information, 182
topological thinning, 182
topomap, 160, 162, 167
tracking, 257
trajectory distribution, 78
transcript abundance, 19
transfer functions, 101
tree analysis, 183
tree hierarchy, 184
tree-based measurements, 184
tree-structure parsing, 184
trifocal tensors, 253
triplicate measurements, 9
truncated normal distribution, 51
truncated orthogonal series, 70
tumor growth, 178, 186
turbidity, 230
turntable, 253
turntable motion, 251, 254

U
unsupervised learning, 144
upward movement, 65

V
vanishing point, 252, 260
variability analysis, 108
variability indicators, 109
variability metrics, 109
vascular tree, 178, 184
vasculature, 177, 182
vessel density, 188
vessel hierarchy, 183
vessel segments, 184, 185
vessel structure, 185

vessel systems, 181, 183
vessel trees, 186
vessels, 177
video sequence, 160
virtual slide, 239
visibility graph, 144
visual analytics, 6, 20
visual field, 64
visual hull, 250, 260
visual hull reconstruction, 254
visual input, 77
visual metaphor, 5
visual stimulation, 90
visual stimulus, 64, 72, 73, 75
visualisation, 4, 19
Volterra kernels, 84
Voronoi diagrams, 182

W
wastewater treatment, 228
watershed transform, 184
wave propagation, 182
wavelet, 144
wearable systems, 108
weight-factor adjustment, 111
wheelchair, 128
white-box modeling, 64
Wiener model, 73
workflow, 15, 203

X
X-ray, 192

Z
z-stack, 238
Zernike moments, 250, 255, 262


	Preface
	Contents
	Contributors
	Acronyms
	Part I Signal Analysis
	1 Visual Analytics of Signalling Pathways Using Time Profiles
	1.1 Introduction
	1.1.1 Challenges in Visualising High-Throughput Time-Series Post-translationally Modified Proteomic Datasets
	1.1.2 Aims

	1.2 Methods
	1.2.1 Phosphorylation Dataset for Insulin Response
	1.2.1.1 Data Representation

	1.2.2 Heat Map of the Time-Series Data
	1.2.2.1 Selecting a Single Time Point for Each Phosphorylation

	1.2.3 The Minardo Layout

	1.3 Results
	1.3.1 Evaluation of the Minardo Visualisation Strategy
	1.3.1.1 Requested Features

	1.3.2 Minardo in the International DREAM8 Competition
	1.3.2.1 Proposed Workflow


	1.4 Discussion and Further Work
	1.4.1 Minardo as a Web-Based Tool
	1.4.2 Lessons from the Usability Study
	1.4.3 Using 3D Structure Information
	1.4.4 Going Beyond Static Roadmaps
	1.4.5 Visualisation for Multiple Experiments
	1.4.6 Limitations

	References

	2 Modeling of Testosterone Regulation by Pulse-ModulatedFeedback
	2.1 Introduction
	2.2 A Pulse-Modulated Mathematical Model of Testosterone Regulation
	2.3 Parameter Estimation
	2.3.1 Estimating the GnRH Impulses
	2.3.1.1 Estimating Firing Times and Weights
	2.3.1.2 Estimating the Parameters

	2.3.2 Estimating the Testosterone Dynamics

	2.4 Experimental Results
	2.5 Simulations of the Closed-Loop System
	References

	3 Hybrid Algorithms for Multiple Change-Point Detection in Biological Sequences
	3.1 Introduction
	3.2 Multiple Change-Point Problem
	3.3 Framework of the Algorithms
	3.3.1 Quickest Change-Point Detection
	3.3.2 The Cross-Entropy Method
	3.3.2.1 Bonferroni Correction for Multiple Hypothesis Testing


	3.4 Numerical Results
	3.4.1 Results on Artificially Generated Data
	3.4.2 Results on Real Data
	3.4.2.1 Fibroblast Cell Lines Data
	3.4.2.2 Breast Tumor Data


	References

	4 Stochastic Anomaly Detection in Eye-Tracking Data for Quantification of Motor Symptoms in Parkinson's Disease
	4.1 Introduction
	4.2 The Extraocular Muscles
	4.3 Smooth Pursuit
	4.4 Eye Tracking
	4.5 Parkinson's Disease
	4.6 Probability Density Estimation
	4.6.1 Stochastic Variables
	4.6.2 Kernel Density Estimation
	4.6.3 Orthogonal Series Approximation
	4.6.4 Finding the Outlier Region

	4.7 Non-parametric Method
	4.8 Parametric Method
	4.9 Visual Stimuli
	4.10 Experiment
	4.11 Results
	4.11.1 Non-parametric Method
	4.11.2 Parametric Method

	References

	5 Identification of the Reichardt Elementary Motion Detector Model
	5.1 Background
	5.2 Mathematical Model of EMD
	5.2.1 Single Frequency Sinusoidal Signal
	5.2.1.1 Symmetrical and Non-symmetrical EMD Model

	5.2.2 EMD Response to a L2 Pulse

	5.3 Identification Approach
	5.3.1 Identification of a Single EMD
	5.3.1.1 Pure Time-Delay Model

	5.3.2 Identification of a Layer of EMDs
	5.3.2.1 Identifiability Properties for EMD-Layer Estimation
	5.3.2.2 Spatial Excitation of a Sum of Sinusoidal Gratings: An Example
	5.3.2.3 Visualization


	5.4 Experiments
	5.4.1 Periodicity in the Experimental Data
	5.4.2 Identification of a Single EMD
	5.4.3 Identification of a Layer of EMDs

	References

	6 Multi-complexity Ensemble Measures for Gait Time Series Analysis: Application to Diagnostics, Monitoring and Biometrics
	6.1 Introduction
	6.2 Variability Analysis of Physiological Time Series: Advantages, Challenges and Multi-complexity Generalization
	6.3 Diagnostics and Monitoring of Neurological Abnormalities
	6.4 Detection of Emerging Physiological States and Regime Changes
	6.5 Biometrics Based on Gait Time Series Analysis
	References

	7 Development of a Motion Capturing and Load Analyzing System for Caregivers Aiding a Patient to Sit Up in Bed
	7.1 Introduction
	7.2 The Fundamental Principals of Using Motion Capture to Analyze the Parts of an Action not Visible to the Camera
	7.3 Detection and Analysis of the Motion of Aiding a Person to Sit Up
	7.3.1 Subjects
	7.3.2 Experimental Parameters
	7.3.3 Measurements
	7.3.4 Results
	7.3.4.1 The Manner of Using the Entire Body
	7.3.4.2 Angle of the Lumbar Vertebrae
	7.3.4.3 The Patient's Impressions of the Caregivers

	7.3.5 Discussion

	7.4 Evaluation (Kinetic Analysis) of the Burden of Nursing Care in Relation to the Use of a Force Plate and a Human Model
	7.4.1 Purpose
	7.4.2 Methods
	7.4.2.1 Subjects
	7.4.2.2 Ethical Considerations
	7.4.2.3 Experimental Methods
	7.4.2.4 Measuring the Moment of the Lumbar Joints and the Shearing Stress Brought to Bear on the Lumbar Vertebrae

	7.4.3 Results
	7.4.4 Discussion

	References

	8 Classifying Epileptic EEG Signals with Delay Permutation Entropy and Multi-scale K-Means
	8.1 Introduction
	8.2 Experimental Data
	8.3 Methodology
	8.3.1 K-Means Algorithm and K-Means++ Algorithm
	8.3.2 Multi-scale K-Means (MSK-Means) Algorithm
	8.3.3 Delay Permutation Entropy
	8.3.4 Detecting Nonlinear Structure with DPE
	8.3.4.1 Support Vector Machine


	8.4 Experiments for Detecting Seizures
	8.4.1 Evaluating Delay Lag for Exact Order m
	8.4.2 Accuracy of Detecting Seizures with Different λ DPE
	8.4.3 Identifying Seizures from Other Sets

	8.5 Experiments for Detecting Epileptic Zone
	8.5.1 Statistical Analysis of Relation Between DPE Index and λ 
	8.5.2 Relation Between λ and Classification Accuracy

	References

	9 Tracking of EEG Activity Using Motion Estimation to Understand Brain Wiring
	9.1 Introduction
	9.2 EEG Signals
	9.3 EEG Topomaps
	9.4 Motion Estimation
	9.4.1 Full-Search (FS) Block Matching Algorithm
	9.4.2 Three Step Search (TSS) Algorithm
	9.4.3 New Three Step Search (NTSS) Algorithm
	9.4.4 Four Step Search (FSS) Algorithm
	9.4.5 Diamond Search (DS) Algorithm
	9.4.6 Two Dimensional Logarithmic Search (TDLS) Algorithm
	9.4.7 Orthogonal Search Algorithm (OSAlg)
	9.4.8 Tracking Brain Activity Using FS Motion Estimation Algorithm

	9.5 Experimental Setup and Data Acquisition
	9.6 Discussion of Results
	References


	Part II Image Analysis
	10 Towards Automated Quantitative Vasculature Understanding via Ultra High-Resolution Imagery
	10.1 Introduction
	10.2 Ultra High-Resolution Imagery
	10.2.1 Data Acquisition Protocol
	10.2.2 Significance of High Image Resolution

	10.3 Methods and Algorithms
	10.3.1 Noise Levels and Linear-Structure Enhancement
	10.3.2 Dimensionality Reduction by Skeletonization 
	10.3.3 Quantitative Understanding of the Vasculature Hierarchy

	10.4 Results
	References

	11 Cloud Based Toolbox for Image Analysis, Processing and Reconstruction Tasks
	11.1 Introduction
	11.2 Software Architecture
	11.2.1 Platform as a Service
	11.2.2 Software as a Service

	11.3 Launch of the Service
	11.4 Supported Functions
	11.5 Workflows
	11.6 Use Case: Detecting Neurites
	References

	12 Pollen Image Classification Using the Classifynder System: Algorithm Comparison and a Case Study on New Zealand Honey 
	12.1 Introduction
	12.2 Data
	12.3 Classification Models
	12.4 Model Performance
	12.5 Semi Automated Performance Enhancement
	12.6 Case Study: New Zealand Honey
	12.6.1 Data and Methods
	12.6.2 Performance Assessment
	12.6.3 Discussion

	References

	13 Digital Image Processing and Analysis for Activated Sludge Wastewater Treatment
	13.1 Introduction
	13.2 Introduction to as Systems in WWTPs
	13.2.1 Characterization of Wastewater
	13.2.1.1 Odor
	13.2.1.2 Turbidity
	13.2.1.3 PH
	13.2.1.4 Dissolved Oxygen
	13.2.1.5 Biochemical Oxygen Demand
	13.2.1.6 Chemical Oxygen Demand
	13.2.1.7 Total Organic Carbon
	13.2.1.8 Total Solids
	13.2.1.9 Total Suspended Solids
	13.2.1.10 Volatile Suspended Solids
	13.2.1.11 Food to Micro-organisms Ratio

	13.2.2 Wastewater Treatment Processes
	13.2.3 Aerobic Wastewater Treatment
	13.2.3.1 Abnormal Conditions


	13.3 Image Processing and Analysis
	13.3.1 Image Acquisition
	13.3.2 Image Preprocessing
	13.3.2.1 Background Subtraction
	13.3.2.2 Z-Stacking
	13.3.2.3 Image Stitching/Virtual Slide

	13.3.3 Image Segmentation
	13.3.4 Image Analysis

	References

	14 A Complete System for 3D Reconstruction of Roots for Phenotypic Analysis
	14.1 Introduction
	14.2 System Design
	14.3 Root Segmentation
	14.4 Root Tip Detection
	14.5 Root Tip Tracking
	14.6 Ellipse Fitting
	14.7 Camera Self Calibration
	14.7.1 Internal Calibration
	14.7.2 Camera Pose Estimation

	14.8 Results
	References


	Index

