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Foreword

The	 teacher	 called	 on	 a	 nine-year-old	 boy	 who	 marched	 firmly	 to	 the
blackboard	upon	which	was	a	list	of	numbers	a	yard	long.	Standing	on	tiptoe	to
reach	the	top,	he	arrived	at	the	total	with	what	seemed	the	speed	of	light.
A	 small	 girl	 with	 beribboned	 braids	 was	 asked	 to	 find	 the	 solution	 of

735352314	times	11.	She	came	up	with	the	correct	answer–8088875454–in	less
time	than	you	can	say	multiplication	table.	A	thin,	studious-looking	boy	wearing
silver-rimmed	spectacles	was	told	to	multiply	5132437201	times	452736502785.
He	 blitzed	 through	 the	 problem,	 computing	 the	 answer–
2323641669144374104785–in	seventy	seconds.
The	class	was	one	where	 the	Trachtenberg	system	of	mathematics	 is	 taught.

What	 made	 the	 exhibition	 of	 mathematical	 wizardry	 more	 amazing	 was	 that
these	were	children	who	had	repeatedly	failed	in	arithmetic	until,	in	desperation,
their	parents	sent	them	to	learn	this	method.
The	late	Jakow	Trachtenberg,	founder	of	the	Mathematical	Institute	in	Zurich,

Switzerland,	and	originator	of	the	startling	new	system	of	arithmetic,	was	of	the
firm	opinion	that	everyone	comes	into	the	world	with	“phenomenal	calculation
possibilities.”
The	 Trachtenberg	 method	 is	 not	 only	 speedy	 but	 simple.	 Once	 one	 has

mastered	 the	 rules,	 lightning	 calculation	 is	 as	 easy	 as	 reading	 a	 story.	 It	 looks
like	magic,	but	the	rules	are	based	on	sound	logic.
Trachtenberg,	 a	 brilliant	 engineer	 with	 an	 ingenious	 mind,	 originated	 his

system	of	simplified	mathematics	while	spending	years	in	Hitler’s	concentration
camps	as	a	political	prisoner.	Conceived	in	tragedy	and	amidst	brutal	hardships,
this	striking	work	cannot	be	separated	from	the	life	of	its	originator	for	it	is	quite
possible	 that	 had	 Professor	 Trachtenberg’s	 life	 run	 a	 more	 tranquil	 course	 he
might	 never	 have	 conceived	 the	 system	which	 has	 eliminated	 the	 drudgery	 so
often	associated	with	arithmetic.
The	 life	 of	 Trachtenberg	 is	 as	 fascinating	 and	 astounding	 as	 his	 brilliant

mathematical	 system	which	many	experts	believe	will	 eventually	 revolutionize
the	teaching	of	arithmetic	in	schools	throughout	the	world.



A	Russian,	born	 in	Odessa,	June	17,1888,	Jakow	Trachtenberg	early	showed
his	genius.	Graduating	with	highest	honors	from	the	famous	Berginstitut	(Mining
Engineering	 Institute)	 of	 St.	 Petersburg,	 he	 entered	 the	 world-renowned
Obuschoff	shipyards	as	a	student-engineer.	While	still	 in	his	early	 twenties,	he
was	named	Chief	Engineer.	In	those	Czar-ruled	days,	there	were	ambitious	plans
to	 create	 a	 superlative	 navy	 and	 11,000	 men	 were	 under	 Trachtenberg’s
supervision.
Though	 he	 headed	 the	 Obuschoff	 shipyards,	 Trachtenberg	 was	 a	 dedicated

pacifist.	 At	 the	 outbreak	 of	 World	 War	 I	 he	 organized	 the	 Society	 of	 Good
Samaritans	 which	 trained	 Russian	 students	 to	 care	 for	 the	 wounded–a	 work
which	received	special	recognition	from	the	Czar.
The	murder	of	the	imperial	family	in	1918	put	an	end	to	the	Russian	dream	of

a	 grandiose	 navy.	 It	 also	 ended	 Trachtenberg’s	 personal	 hope	 of	 a	 happy,
peaceful	life.	Hating	brutality	and	violence,	Trachtenberg	became	their	victim.
As	 the	 revolutionaries	 swept	 right	 across	 Russia,	 Trachtenberg	 spoke	 out

fearlessly	against	the	savagery	and	lawlessness.	The	criticism	imperiled	his	life.
Early	 in	 1919,	 he	 learned	 that	 he	 was	 slated	 to	 be	 murdered.	 Dressed	 as	 a
peasant,	 walking	 at	 night,	 hiding	 out	 through	 the	 day,	 he	 made	 his	 way	 into
Germany.
Berlin,	with	 its	 beautiful	wide	 streets,	 its	 cold,	 sparkling,	weather,	 reminded

him	of	St.	Petersburg	and	became	his	home.	In	a	tiny	room	at	an	unpretentious
address,	 he	 started	 life	 anew	 and	 made	 friends	 with	 the	 bitter,	 disillusioned
young	intellectuals	of	the	postwar	era.	He	became	their	leader.	As	the	editor	of	a
magazine,	 he	 often	 spoke	 for	 this	 group	 when	 he	 urged	 Germany	 towards	 a
future	of	peace.
Trachtenberg	 married	 a	 beautiful	 woman	 of	 the	 aristocracy.	 His	 reputation

grew	as	he	wrote	 a	number	of	 critical	works	on	Russia	 and	 compiled	 the	 first
reference	book	on	Russian	industry.	He	was	looked	upon	as	Europe’s	foremost
expert	on	Russian	affairs.	His	inventive	mind	set	itself	another	task.	He	devised	a
method	 of	 teaching	 foreign	 languages	 which	 is	 still	 used	 in	 many	 German
schools.
The	upheaval	of	his	early	years	seemed	to	have	been	left	behind.	But	with	the

coming	of	Hitler,	Trachtenberg’s	 life	once	more	took	on	the	familiar	pattern	of
strife.	 Courageously,	 he	 spoke	 out	 against	 fascism.	 Trachtenberg’s	 reputation
was	 such	 that	 Hitler	 at	 first	 chose	 to	 overlook	 his	 attacks.	 But	 when
Trachtenberg’s	accusations	grew	more	pointed,	Hitler	marked	him	for	oblivion.
In	 1934,	 knowing	 if	 he	 remained	 in	 Germany	 he	 would	 be	 liquidated,



Trachtenberg	once	more	fled	for	his	life.	Accompanied	by	his	wife,	he	escaped
to	Vienna	where	he	became	editor	of	an	international	scientific	periodical.
While	the	world	was	preparing	for	war,	Trachtenberg,	to	further	the	cause	of

peace,	wrote	Das	Friedensministerium	 (The	Ministry	 of	 Peace),	 a	widely	 read
work	which	brought	him	the	plaudits	of	such	statesman	as	Roosevelt,	Masaryk,
and	Van	Zeeland.
But	 all	 over	 the	world	 peace	was	 dying.	The	Germans	marched	on	Austria.

Trachtenberg’s	 name	 headed	 Hitler’s	 most-wanted	 list.	 He	 was	 seized	 and
thrown	into	prison.
He	managed	to	escape	to	Yugoslavia	where	he	and	his	wife,	Countess	Alice,

lived	like	hunted	animals,	rarely	venturing	out	during	the	day,	making	no	friends
or	acquaintances.	But	his	freedom	was	brief.	He	was	awakened	one	night	by	the
heavy	pounding	of	fists	on	the	door–the	Gestapo	was	calling.	Hitler’s	men	had
caught	up	with	him.
He	 was	 shipped	 in	 a	 cattle	 car	 to	 a	 concentration	 camp–one	 noted	 for	 its

brutality.	The	 slightest	variance	 from	 the	 rules	 resulted	 in	outrageous	 forms	of
punishment.	 Daily	 the	 ranks	 of	 the	 prison	 were	 decimated	 by	 the	 ruthlessly
random	selection	of	victims	for	the	ovens.
To	keep	his	 sanity,	Trachtenberg	moved	 into	a	world	of	his	own–a	world	of

logic	and	order.	While	his	body	daily	grew	more	emaciated,	and	all	about	him
was	 pestilence,	 death,	 and	 destruction,	 his	 mind	 refused	 to	 accept	 defeat	 and
followed	paths	of	numbers	which,	at	his	bidding,	performed	miraculous	feats.
He	did	not	have	books,	paper,	pen,	or	pencil.	But	his	mind	was	equal	 to	 the

challenge.	Mathematics,	he	believed,	was	the	key	to	precise	thinking.	In	happier
times,	he	had	found	it	an	excellent	recreational	outlet.	In	a	world	gone	mad,	the
calm	 logic	 of	 numbers	 were	 like	 old	 friends.	 His	 mind,	 arranging	 and	 re-
arranging,	found	new	ways	of	manipulating	them.
He	 visualized	 gigantic	 numbers	 to	 be	 added	 and	 he	 set	 himself	 the	 task	 of

totaling	 them.	 And	 since	 no	 one	 can	 remember	 thousands	 of	 numbers,	 he
invented	a	fool-proof	method	that	would	make	it	possible	for	even	a	child	to	add
thousands	of	numbers	together	without	making	a	mistake-without,	 in	fact,	ever
adding	higher	than	eleven.
During	his	long	years	in	the	living	hell	of	the	concentration	camp,	every	spare

moment	was	spent	on	his	simplified	system	of	mathematics,	devising	shortcuts
for	 everything	 from	multiplication	 to	 algebra.	 The	 corruption	 and	 misery,	 the
cries	from	clammy	cells	and	torture	chambers,	the	stench	of	ovens,	the	atrocities,
and	 the	constant	 threat	of	death,	 faded	as	he	doggedly	computed	mathematical



combinations–reckoning	 rules,	 proving	 and	 proving	 again,	 then	 starting	 over
again	to	make	the	system	even	simpler.
The	hardships	acted	as	a	 spur	 to	his	genius.	Lacking	paper,	he	 scribbled	his

theories	on	bits	of	wrapping	paper,	old	envelopes,	 the	backs	of	carefully	saved
German	work	 sheets.	Because	 even	 these	 bits	 of	 paper	were	 at	 a	 premium	 he
worked	everything	in	his	head,	putting	down	only	the	finished	theories.
Today	those	using	 the	Trachtenberg	method	find	 it	so	easy	 that	all	problems

can	be	worked	in	the	head	and	only	the	answers	put	down.
Shortly	after	Easter	in	1944,	Trachtenberg	learned	he	was	to	be	executed–the

decree	 had	 come	 from	 above	 and	 was	 no	 longer	 speculation	 or	 foreboding.
Trachtenberg	faced	the	fact,	then	lost	himself	in	his	own	world.	Calmly	he	went
on	working–juggling	equations,	reckoning	formulae,	working	out	rules.	He	had
to	get	his	system	finished!	To	a	fellow	prisoner,	he	entrusted	his	work.	He	had
been	in	prison	almost	seven	years.
Madame	Trachtenberg,	who	had	never	been	far	from	the	concentration	camp,

learned	of	the	death	sentence.	Parting	with	the	last	of	her	jewels	and	money,	she
bribed	 and	 coerced	 and	 managed	 to	 have	 him	 transferred	 surreptitiously	 to
another	camp	just	before	the	sentence	was	to	be	carried	out.
He	was	sent	to	Leipzig	which	had	been	heavily	bombed	and	everything	was	in

a	state	of	chaos.	There	was	no	food,	no	heat,	no	facilities.	In	the	dismal	barracks,
the	 rising	 tiers	 of	 hard	 bunks	were	 so	 crowded	 it	was	 impossible	 to	 lie	 down.
Morale	had	never	been	so	low.	Often	the	dead	lay	for	days,	the	inmates	too	weak
to	dig	graves	and	the	guards	too	panicky	to	enforce	orders.
In	 the	 confusion,	 a	determined	man,	willing	 to	 risk	his	 life,	 could	 escape	 to

freedom.	 Trachtenberg	 took	 the	 chance	 and	 crawled	 through	 the	 double	 wire
fences	 in	 the	dead	of	night.	He	 joined	his	wife,	who	had	devoted	all	her	 time,
strength,	and	money	in	trying	to	help	him.	But	Trachtenberg	had	no	passport,	nor
papers	of	any	kind.	He	was	a	stateless	citizen,	subject	to	arrest.
Once	 again,	 he	 was	 taken	 into	 custody.	 A	 high	 official	 who	 knew	 of

Trachtenberg’s	work,	 sent	 him	 to	 a	 labor	 camp	 in	Trieste.	Here	 he	was	 put	 to
work	breaking	rock,	but	the	weather	was	milder	and	the	guards	not	so	harsh.
Quietly,	Madame	Trachtenberg	bribed	guards	to	take	messages	to	her	husband

and	 an	 escape	 was	 again	 arranged.	 On	 a	 starless	 night	 early	 in	 1945,
Trachtenberg	climbed	a	wire	fence	and	crawled	through	the	long	grass	as	guards
stationed	 in	 watch	 towers	 shot	 at	 him.	 It	 was	 his	 last	 escape.	 Madame
Trachtenberg	waited	 for	 him	 at	 the	 appointed	 place.	 Together	 they	made	 their
way	across	the	border	to	Switzerland.



In	 a	 Swiss	 camp	 for	 refugees	 he	 gathered	 his	 strength.	His	 hair	 had	 turned
white	and	his	body	was	feeble,	but	the	years	of	uncertainty	and	despair	had	left
him	undefeated.	His	eyes,	a	clear,	calm	blue	was	still	valiant.	His	eagerness	and
warmth,	his	intense	will	to	live,	were	still	part	of	him.
As	he	 slowly	 convalesced,	 he	perfected	his	mathematical	 system	which	had

kept	him	from	losing	his	mind,	which	had	enabled	him	to	endure	the	inquisition
of	the	Gestapo,	and	which	now	enabled	him	to	start	a	new	life.
It	was	to	children,	whom	Trachtenberg	loved,	that	he	first	taught	his	new	and

simplified	way	of	doing	arithmetic.	He	had	always	believed	 that	everyone	was
born	rich	 in	 talents.	Now	he	set	out	 to	prove	 it.	Deliberately	he	chose	children
who	were	doing	poorly	in	their	school	work.
These	were	children	used	to	failure,	shy	and	withdrawn;	or	the	other	extreme,

boastful	 and	 unmanageable.	 All	 of	 them	 were	 unhappy,	 badly	 adjusted
youngsters.
The	 children’s	 response	 to	 the	 new,	 easy	 way	 of	 doing	 arithmetic	 was

immediate.	 They	 found	 it	 delightfully	 like	 a	 game.	 The	 feeling	 of
accomplishment	soon	made	them	lose	their	unhappy	traits.
Equally	important	were	the	by-products	the	pupils	garnered	while	learning	the

new	system.	As	 these	youngsters	became	proficient	 in	handling	numbers,	 they
achieved	 a	 poise	 and	 assurance	 that	 transformed	 their	 personalities	 and	 they
began	to	spurt	ahead	in	all	their	studies.	The	feeling	of	accomplishment	leads	to
greater	effort	and	success.
To	prove	 the	point	 that	anyone	can	 learn	 to	do	problems	quickly	and	easily,

Trachtenberg	 successfully	 taught	 the	 system	 to	 a	 ten-year-old–presumably
retarded–child.	Not	 only	 did	 the	 child	 learn	 to	 compute,	 but	 his	 IQ	 rating	was
raised.	Since	all	problems	are	worked	in	the	head,	he	acquired	excellent	memory
habits	and	his	ability	to	concentrate	was	increased.
In	1950,	Trachtenberg	founded	the	Mathematical	Institute	in	Zurich,	the	only

school	of	its	kind.	In	the	low,	spreading	building	that	houses	the	school,	classes
are	 held	 daily.	 Children	 ranging	 in	 age	 from	 seven	 to	 eighteen	 make	 up	 the
daytime	 enrollment.	 But	 the	 evening	 classes	 are	 attended	 by	 hundreds	 of
enthusiastic	men	 and,	women	who	 have	 experienced	 the	 drudgery	 of	 learning
arithmetic	in	the	traditional	manner.	With	a	lifetime	of	boners	back	of	them,	they
delight	 in	 the	 simplicity	 of	 the	 new	method.	 Proudly,	 they	 display	 their	 new-
found	mathematical	brilliance.	It	is	probably	the	only	school	in	the	world	where
students–both	day	and	evening–arrive	a	good	half	hour	before	class	is	called	to
order.



What	is	the	Trachtenberg	system?	What	can	it	do	for	you?
The	Trachtenberg	system	is	based	on	procedures	radically	different	from	the

conventional	methods	with	which	we	 are	 familiar.	There	 are	 no	multiplication
tables,	 no	 division.	 To	 learn	 the	 system	 you	 need	 only	 be	 able	 to	 count.	 The
method	is	based	on	a	series	of	keys	which	must	be	memorized.	Once	you	have
learned	them,	arithmetic	becomes	delightfully	easy	because	you	will	be	able	to
“read”	your	numbers.
The	 important	 benefits	 of	 the	 system	 are	 greater	 ease,	 greater	 speed,	 and

greater	 accuracy.	 Educators	 have	 found	 that	 the	 Trachtenberg	 system	 shortens
time	for	mathematical	computations	by	twenty	per	cent.
All	 operations	 involving	 calculations	 are	 susceptible	 to	 error	 whether	 by

human	 or	 mechanical	 operation.	 Yet	 it	 has	 been	 found	 that	 the	 Trachtenberg
system,	which	has	a	unique	 theory	of	checking	by	nines	and	elevens,	gives	an
assurance	of	ninety-nine	per	cent	accuracy–a	phenomenal	record.
The	great	practical	value	of	this	new	system	is	that,	unlike	special	devices	and

tricks	 invented	 in	 the	past	 for	 special	 situations,	 it	 is	a	complete	system.	Much
easier	 than	conventional	 arithmetic,	 the	Trachtenberg	 system	makes	 it	 possible
for	 people	with	 no	 aptitude	 for	mathematics	 to	 achieve	 the	 spectacular	 results
that	 we	 expect	 of	 a	 mathematical	 genius.	 Known	 as	 the	 “shorthand	 of
mathematics,”	it	is	applicable	to	the	most	intricate	problems.
But	perhaps	the	greatest	boon	of	this	new	and	revolutionary	system	is	that	it

awakens	new	interest	in	mathematics,	gives	confidence	to	the	student,	and	offers
a	 challenge	 that	 spurs	 him	 on	 to	 mastering	 the	 subject	 that	 is	 today	 rated	 as
“most	hated”	in	our	schools.
Prof.	Trachtenberg	 believed	 the	 reason	most	 of	 us	 have	 difficulties	 juggling

figures	is	not	that	arithmetic	is	hard	to	comprehend,	but	because	of	the	outmoded
system	by	which	we	are	taught–an	opinion	which	is	born	out	by	many	educators.
A	year-long	survey	conducted	by	the	Educational	Testing	Service	of	Princeton

University	 revealed	 that	 arithmetic	 is	one	of	 the	poorest-taught	 subjects	 in	our
schools	and	noted	that	there	has	been	little	or	no	progress	in	teaching	arithmetic
in	 this	 country	 in	 the	 past	 century;	 that	 the	 important	 developments	 that	 have
taken	 place	 in	 mathematical	 science	 since	 the	 seventeenth	 century	 have	 not
filtered	down	into	our	grade	and	high	schools.	And	the	results,	says	the	report,
are	devastating.	In	one	engineering	school,	seventy-two	per	cent	of	the	students
were	found	so	inadequate	mathematically	that	they	had	to	take	a	review	of	high-
school	mathematics	before	they	could	qualify	for	the	regular	freshman	course.
This	 is	 particularly	 tragic	 today	 when	 there	 is	 an	 urgent	 need	 for	 trained



scientists	 and	 technicians	 with	 a	 firm	 grasp	 of	 mathematics.	 The	 revulsion	 to
mathematics	 which	 educators	 say	 plays	 such	 a	 strong	 role	 in	 determining	 the
careers	 of	 young	 people,	 begins	 at	 the	 level	 of	 the	 elementary	 and	 secondary
schools.	It	is	at	this	stage	that	the	would-be	engineers	and	scientists	of	tomorrow
run	afoul	of	the	“most	hated	subject.”	From	then	on,	arithmetic	is	left	put	of	their
curriculum	whenever	possible.
The	Trachtenberg	 system,	which	 has	 been	 thoroughly	 tested	 in	 Switzerland,

starts	at	the	real	beginning–in	basic	arithmetic	where	the	student	first	encounters
difficulties	and	begins	to	acquire	an	emotional	attitude	that	will	cripple	him	in	all
his	mathematical	work.
The	 ability	 to	 do	 basic	 arithmetic	 with	 the	 spectacular	 ease	 which	 the

Trachtenberg	 system	 imparts,	 erases	 the	 fear	 and	 timidity	 that	 so	 hinder	 the
student	 when	 faced	 with	 the	 impressive	 symbolism,	 the	 absoluteness	 of
mathematical	rigor.	It	is	this	emotional	road-block,	not	inability	to	learn,	that	is
the	real	reason	why	so	many	students	hate	mathematics,	say	the	experts.
That	short	cuts	make	arithmetic	easier	to	grasp	and	more	palatable	was	proved

conclusively	 by	 the	 armed	 forces	 during	 the	 last	 war.	 Bombardiers	 and
navigators	 taking	 refresher	 courses	 in	 higher	 mathematics	 were	 able	 to	 cram
several	years’	work	into	a	few	months	when	it	had	been	simplified.
In	 Zurich,	 medical	 students,	 architects,	 and	 engineers	 find	 that	 the

Trachtenberg	system	of	simplified	mathematics,	enables	 them	to	pass	 the	strict
examinations	necessary	to	complete	their	training.	One	of	Switzerland’s	leading
architects	was	enabled	to	continue	with	his	chosen	career	only	after	attending	the
Institute	where	he	learned	the	Trachtenberg	method.
In	Switzerland	when	people	speak	of	the	Mathematical	Institute,	they	refer	to

it	as	the	“School	for	Genius.”
In	 an	 impressive	 test	 recently	 held	 in	 Zurich,	 students	 of	 the	 Trachtenberg

system	were	pitted	against	mechanical	brains.	For	a	full	hour	the	examiner	called
out	 the	problems–intricate	 division,	 huge	 additions,	 complicated	 squarings	 and
root	findings,	enormous	multiplications.
As	 the	machines	 began	 their	 clattering	 replies,	 the	 teenage	 students	 quickly

put	down	the	answers	without	any	intermediate	steps.
The	students	beat	the	machines!
The	students	who	proved	as	accurate	as	and	speedier	than	the	machines	were

not	geniuses.	It	was	the	system–short	and	direct–which	gave	them	their	speed.
But	it	is	not	only	in	specialized	professions	that	a	knowledge	of	arithmetic	is

necessary.	Today,	in	normal	everyday	living,	mathematics	plays	an	increasingly



vital	 role.	 This	 is	 particularly	 true	 in	 America	 where	 we	 live	 in	 a	 welter	 of
numbers.	Daily	 the	average	man	and	woman	encounters	 situations	 that	 require
the	use	of	figures–credit	transactions,	the	checking	of	monthly	bills,	bank	notes,
stock	 market	 quotations,	 canasta	 and	 bridge	 and	 billiards	 scores,	 discount
interest,	lotteries,	the	counting	of	calories,	foreign	exchange,	figuring	the	betting
odds	 on	 a	 likely-looking	 steed	 in	 the	 fourth	 race,	 determining	 the	 chances	 of
getting	a	flush	or	turning	up	a	seven.	And	income	taxes,	among	other	blessings,
have	brought	the	need	for	simple	arithmetic	into	every	home.
The	 Trachtenberg	 system,	 once	 learned,	 can	 take	 the	 drudgery	 out	 of	 the

arithmetic	that	is	part	of	your	daily	stint.
The	 Swiss,	 noted	 for	 their	 business	 acumen,	 recognizing	 the	 brilliance	 and

infallibility	of	 the	Trachtenberg	system,	 today	use	 it	 in	all	 their	banks,	 in	most
large	business	firms,	and	in	 their	 tax	department.	Mathematical	experts	believe
that	within	the	next	decade	the	Trachtenberg	system	will	have	as	far-reaching	an
effect	on	education	and	science	as	the	introduction	of	shorthand	did	on	business.
Published	in	book	form	for	the	first	time,	this	is	the	original	and	authoritative

Trachtenberg	system.	As	you	go	 through	 the	book	you	will	note	 that	Professor
Trachtenberg	 incorporated	 into	 his	 system	 a	 few	 points	 that	 were	 not	 original
with	 him.	 These	 are	 on	matters	 of	 secondary	 importance	 and	 are	 used	 for	 the
purpose	of	greater	simplification.	To	keep	the	record	straight,	we	call	attention	to
these	points	when	they	occur	in	the	text.
The	authors	believe	that	anyone	learning	the	rules	put	forth	here	can	become

proficient	in	the	use	of	the	Trachtenberg	system.



The	Trachtenberg	Speed	System	of	Basic
Mathematics



CHAPTER	ONE
Tables	or	no	tables?

BASIC	MULTIPLICATION
The	 aims	 of	 the	 Trachtenberg	 system	 have	 been	 discussed	 in	 the	 foreword.

Now	let	us	look	at	the	method	itself.	The	first	item	on	the	agenda	is	a	new	way
to	 do	 basic	 multiplication:	 we	 shall	 multiply	 without	 using	 any	 memorized
multiplication	 tables.	Does	 this	 sound	 impossible?	 It	 is	 not	 only	 possible,	 it	 is
easy.
A	word	of	explanation,	though:	we	are	not	saying	that	we	disapprove	of	using

tables.	Most	people	know	the	 tables	pretty	well;	 in	 fact,	perfectly,	except	 for	a
few	doubtful	spots.	Eight	times	seven,	or	six	times	nine	are	a	little	uncertain	to
many	of	us,	but	the	smaller	numbers	like	four	times	five	are	at	the	command	of
everyone.	We	approve	of	using	this	hard-won	knowledge.	What	we	intend	to	do
now	is	consolidate	it.	Later	in	this	chapter	we	shall	come	back	to	this	point.	Now
we	wish	to	do	some	multiplying	without	using	the	multiplication	tables.
Let	us	look	at	the	case	of	multiplying	by	eleven.	For	the	sake	of	convenience

in	explaining	it,	we	first	state	the	method	in	the	form	of	rules:

MULTIPLICATION	BY	ELEVEN
1. The	last	number	of	the	multiplicand	(number	multiplied)	is	put	down	as

the	right-hand	figure	of	the	answer.

	
2. Each	 successive	number	of	 the	multiplicand	 is	added	 to	 its	neighbor	at

the	right.

	
3. The	 first	 number	 of	 the	multiplicand	becomes	 the	 left-hand	number	 of

the	answer.	This	is	the	last	step.

	
In	 the	 Trachtenberg	 system	 you	 put	 down	 the	 answer	 one	 figure	 at	 a	 time,

right	 to	 left,	 just	as	you	do	 in	 the	system	you	now	use.	Take	an	easy	example,



633	times	11:	
The	answer	will	appear	under	the	633,	one	figure	at	a	time,	from	right	to	left,	as
we	apply	the	rules.	This	will	be	our	form	for	setting	up	the	work	from	now	on.
The	 asterisks	 above	 the	multiplicand	 of	 our	 example	will	 quickly	 identify	 the
numbers	being	used	in	each	step	of	our	calculation.	Let	us	apply	the	rules:
First	Rule
Put	down	the	last	figure	of	633	as	the	right-hand	figure	of	the	answer:

Second	Rule
Each	successive	figure	of	633	is	added	to	its	right-hand	neighbor.	3	plus	3	is	6:

	
Apply	the	rule	again,	6	plus	3	is	9:

	
Third	Rule

The	first	figure	of	633,	the	6,	becomes	the	left-hand	figure	of	the	answer:

The	answer	is	6,963.

	
Longer	 numbers	 are	 handled	 in	 the	 same	 way.	 The	 second	 rule,	 “each

successive	number	of	the	multiplicand	is	added	to	its	neighbor	at	the	right,”	was
used	twice	in	the	example	above;	in	longer	numbers	it	may	be	used	many	times.

Take	the	case	of	721,324	times	11:	
First	Rule
The	 last	 figure	of	721,324	 if	put	down	as	 the	 right-hand	figure	of	 the	answer:	



Second	Rule
Each	successive	figure	of	721,324	is	added	to	its	right-hand	neighbor:

Third	Rule
The	first	figure	of	721,324	becomes	the	left-hand	figure	of	the	answer:

	
The	answer	is	7,934,564.

	
As	you	see,	each	figure	of	the	long	number	is	used	twice.	Once	it	is	used	as	a

“number,”	and	then,	at	the	next	step,	it	 is	used	as	a	“neighbor.”	In	the	example
just	above,	the	figure	i	(in	the	multiplicand)	was	a	“number”	when	it	gave	the	4
of	the	answer,	but	it	was	a	“neighbor”	when	it	contributed	to	the	3	of	the	answer

at	the	next	step:	
Instead	 of	 the	 three	 rules,	 we	 can	 use	 just	 one	 if	 we	 apply	 it	 in	 a	 natural,



common-sense	manner,	the	one	being	“add	the	neighbor.”	We	must	first	write	a
zero	in	front	of	the	given	number,	or	at	least	imagine	a	zero	there.	Then	we	apply
the	 idea	 of	 adding	 the	 neighbor	 to	 every	 figure	 of	 the	 given	 number	 in	 turn:	

This	example	shows	why	we	need	the	zero	in	front	of	the	multiplicand.	It	is	to
remind	 us	 not	 to	 stop	 too	 soon.	 Without	 the	 zero	 in	 front,	 we	 might	 have
neglected	to	write	the	last	6,	and	we	might	then	have	thought	that	the	answer	was
only	963.	The	answer	is	longer	than	the	given	number	by	one	digit,	and	the	zero
in	front	takes	care	of	that.

	
Try	one	yourself:	441,362	times	11.	Write	it	in	the	proper	form:

If	you	started	with	the	2,	which	is	the	right	place	to	start,	and	worked	back	to	the
left,	adding	the	neighbor	each	time,	you	must	have	ended	with	the	right	answer:
4,854,982.
Sometimes	you	will	add	a	number	and	its	neighbor	and	get	something	in	two

figures,	like	5	and	8	giving	13.	In	that	case	you	write	the	3	and	“carry”	the	1,	as
you	are	accustomed	to	doing	anyway.	But	you	will	find	that	in	the	Trachtenberg
method	you	will	never	need	to	carry	large	numbers.	If	there	is	anything	to	carry
it	 will	 be	 only	 a	 1,	 or	 in	 later	 cases	 perhaps	 a	 2.	 This	 makes	 a	 tremendous
difference	when	we	are	doing	complicated	problems.
It	 is	sufficient	 to	put	a	dot	for	 the	carried	1,	or	a	double	dot	for	 the	rarer	2:	

Try	this	one	yourself:	715,624	times	11.	Write	it	out:

There	is	a	1	to	carry	under	the	5	of	the	long	number.

	



The	correct	answer	to	this	problem	is	7,871,864.

	
In	the	very	special	case	of	long	numbers	beginning	with	9	followed	by	another

large	figure,	say	8,	as	in	98,834,	we	may	get	a	10	at	the	last	step.	For	example:	

MULTIPLICATION	BY	TWELVE
To	multiply	any	number	by	12,	you	do	this:

	
Double	each	number	in	turn	and	add	its	neighbor.

	
This	is	the	same	as	multiplying	by	11	except	that	now	we	double	the	“number”
before	we	add	its	“neighbor.”	If	we	wish	to	multiply	413	by	12,	it	goes	like	this:
First	step:

Second	step:

Third	step:

Last	step:

The	 answer	 is	 4,956.	 If	 you	 go	 through	 it	 yourself	 you	 will	 find	 that	 the
calculation	goes	very	fast	and	is	very	easy.

	



Try	one	yourself:	63,247	times	12.	Write	it	out	with	the	figures	spaced	apart,
and	put	each	figure	of	the	answer	directly	under	the	figure	of	the	63,247	that	it
came	from.	This	is	not	only	a	good	habit	because	of	neatness,	it	also	is	worth	its
weight	 in	 gold	 as	 a	 protection	 against	 errors.	 In	 the	 particular	 case	 of
Trachtenberg	multiplication,	we	mention	it	because	it	will	identify	the	“number”
and	the	“neighbor.”	The	next	blank	space	in	the	answer,	where	the	next	figure	of
the	answer	will	go,	 is	directly	below	 the	“number”	 (in	 this	 example	 the	 figure
that	 you	 must	 double).	 The	 figure	 to	 its	 right	 is	 the	 “neighbor”	 that	 must	 be
added.	 The	 example	 works	 out	 in	 this	 way:	

until	you	end	up	with:

MULTIPLICATION	BY	FIVE,	BY	SIX,	AND	BY	SEVEN
All	 these	multiplications–5,	6,	 and	7–make	use	of	 the	 idea	of	“half”	a	digit.

We	put	“half”	in	quotation	marks	because	it	is	a	simplified	half.	We	take	half	the
easy	way,	by	 throwing	away	fractions	 if	 there	are	any.	To	 take	“half”	of	5,	we
say	2.	 It	 is	 really	2½,	but	we	won’t	use	 the	 fractions.	So	“half”	of	3	 is	1,	 and
“half”	of	1	is	zero.	Of	course	“half”	of	4	is	still	2,	and	so	with	all	even	numbers.
This	step	is	to	be	done	instantly.	We	do	not	say	to	ourselves	“half	of	4	is	2”	or

anything	like	that.	We	look	at	4	and	say	2.	Try	doing	that	now,	on	these	digits:	

The	 odd	 digits,	 1,	 3,	 5,	 7,	 and	 9,	 have	 this	 special	 feature	 of	 dropping	 the
fractions.	The	even	digits,	0,	2,	4,	6,	and	8,	give	the	usual	result	anyway.

MULTIPLICATION	BY	SIX
Now	let	us	try	out	this	business	of	“half.”	Part	of	the	rule	for	multiplying	by	6



is:
To	each	number	add	“half”	of	the	neighbor.

	
Let	 us	 assume	 for	 the	 moment	 that	 this	 is	 all	 we	 need	 to	 know	 about

multiplying	by	6	and	work	out	this	problem:	
First	step:	4	is	the	first	“number”	of	the	long	number,	and	it	has	no	neighbor	so

there	is	nothing	to	add:	
Second	step:	 the	second	number	is	 the	8,	and	its	neighbor	is	 the	4,	so	we	take

the	8	and	add	half	the	4(2),	and	we	get	10:	
Third	step:	 the	next	number	 is	 the	zero.	We	add	 to	 it	half	 its	neighbor,	 the	8.

Zero	plus	4	is	4,	and	add	the	carry	(1):	
Repeat	this	last	step	with	the	2,	the	2,	the	6,	and	the	zero,	in	turn:

Would	 you	 like	 to	 see	 how	 easy	 it	 is?	 Try	 it	 yourself	 on	 these	 two

multiplications:	
The	 answer	 to	 the	 first	 problem	 is	 26,424.	 The	 answer	 to	 the	 second	 one	 is
172,130,544.
What	we	have	done	gave	 the	correct	 answer	 in	 these	problems.	However,	 it

was	not	quite	the	full	rule	for	multiplying	by	6.	The	full	rule	is:
To	each	“number”	add	half	the	neighbor;	plus	5	if	“number”	is	odd.

	
“If	 odd”	means	 if	 the	 “number”	 is	 odd,	 it	makes	 no	 difference	whether	 the

“neighbor”	is	odd.	We	look	at	the	“number”	and	see	whether	it	is	odd	or	even.	If
it	is	even	we	merely	add	to	it	half	of	the	neighbor.	If	it	is	odd,	we	add	5	to	it	and
“half”	 of	 the	 neighbor,	 as	 we	 did	 just	 above.	 For	 instance:	

The	 figures	 3	 and	 5,	 are	 odd.	 We	 see	 that	 as	 soon	 as	 we	 look	 at	 the
multiplicand.	When	we	come	to	work	on	the	3	and	the	5	we	shall	have	to	add	an



extra	5,	simply	because	of	their	oddness.	It	goes	like	this:
First	step:

Second	step:

Third	step:

Fourth	step:

Fifth	step:

Sixth	step:

Last	step:

The	answer	is	2,658,312.	Of	course,	all	 this	explanation	is	only	for	the	sake	of
the	greatest	possible	clarity	 in	 showing	 the	method	 for	 the	 first	 time.	 In	actual
practice,	it	goes	fast	because	the	step	of	adding	half	the	neighbor	is	a	very	simple
one.	With	only	a	reasonable	amount	of	practice	it	becomes	more	automatic	than
conscious.



	
You	 will	 see	 this	 more	 clearly,	 perhaps,	 if	 you	 go	 through	 these	 two	 for

yourself:	
The	 answer	 to	 the	 first	 problem	 is	 49,404.	 The	 answer	 to	 the	 second	 one	 is
37,501,128.

	
The	 numbers	 that	 we	 have	 multiplied	 by	 6	 were	 long	 numbers.	Would	 the

method	still	work	if	we	tried	to	multiply	single	digits,	such	as	8	times	6?	Yes,	it
would,	 and,	 in	 fact,	 no	 change	 at	 all	 is	 needed.	Try	8	 times	6,	 using	 the	 same

procedure:	
When	the	number	being	multiplied	is	an	odd	digit,	like	7,	we	must	add	the	5	at

the	 first	 step.	Of	 course,	we	 do	 not	 add	 it	 at	 the	 second	 step,	 because	 zero	 is

considered	to	be	an	even	number:	
Most	people,	probably,	feel	that	they	know	the	multiplication	table	for	six	by

heart.	More	than	half	of	the	non-mathematical	people,	perhaps,	have	a	feeling	of
confidence	about	it,	even	in	cases	where	such	confidence	is	not	justified.	That	is
not	the	point	here.	The	techniques	used	in	this	multiplication	method	are	going
to	be	used	again	 later	 in	 somewhat	more	complicated	 situations,	 and	 they	will
then	be	needed	aside	from	any	memorized	tables.	The	best	way	to	bring	in	these
new	 processes	 is	 to	 do	 it	 on	 relatively	 familiar	material.	 That	 is	 what	 we	 are
doing	now.
Also	(and	this	is	more	important	than	it	may	sound),	it	is	the	way	to	start	off

on	proper	mental	habits	of	calculation.	We	have	all	heard	criticism	of	the	reading
habits	of	the	average	man,	and	about	clinics	which	develop	fast	reading	abilities.
The	 critics	 say	 that	 too	many	people	 have	 the	habit	 of	 reading	 letter	 by	 letter,
spelling	out	whatever	they	are	reading,	or	at	least	doing	so	to	a	great	degree.	We
are	urged	to	develop	the	habit	of	reading	by	recognizing	a	whole	word	or	phrase
at	a	time.	Other	points	are	brought	up,	too.	They	all	amount	to	this:	most	people



read	badly	to	the	extent	that	they	have	inefficient	habits	of	reading.
Something	 along	 the	 same	 general	 line	 is	 true	 in	 arithmetic.	 A	 person	 has

fallen	into	certain	bad	habits	in	the	way	that	he	goes	about	doing	arithmetic,	and
the	result	is	that	he	wastes	some	of	his	time	and	his	energy.	Only	those,	such	as
accountants,	who	spend	most	of	their	time	working	with	figures	eventually	work
out	 the	proper	procedures	 for	 themselves.	The	 rest	of	us,	even	 though	we	may
not	be	occupied	with	calculations	as	our	livelihood,	can	still	learn	these	methods
with	a	little	effort	and	practice.	Some	of	this	material	is	indicated	in	this	chapter
and	the	next.
One	of	 these	mental	 steps,	a	very	simple	one,	was	mentioned	already,	when

we	 were	 talking	 about	 using	 “half”	 the	 neighbor.	 We	 did	 a	 little	 practice	 at
looking	at	 a	 single	 figure,	 like	2	or	8,	 and	 saying	 immediately	1	or	4,	without
going	through	any	mental	steps.	The	answer	should	come	into	the	mind	as	soon
as	we	see	the	2	or	the	8,	as	though	it	were	a	reflex	action.	The	reader	would	do
well	to	go	back	to	the	figures	offered	for	exercise	and	do	them	again.
Another	of	 the	correct	mental	 steps	 is	 saying	 to	ourselves	only	 the	 result	of

adding	the	neighbor,	or	half	the	neighbor,	like	this:	
The	8	is	the	6,	plus	half	the	4.	But	do	not	say	“half	of	4	is	2,	and	6	and	2	is	8.”
Instead,	look	at	the	6	and	the	4,	see	that	half	of	4	is	2,	and	say	to	yourself	“6,	8.”
At	first	this	will	be	difficult,	so	it	may	be	better	to	say	to	yourself	“6,	2,	8.”
2
Another	point	that	needs	practice	is	the	step	of	adding	the	5	when	the	number

(not	the	neighbor)	is	odd.	Take	this	case:	
The	zero	is	the	zero	of	10,	as	the	dot	shows,	and	the	10	is	3	plus	the	5	(because	3
is	odd)	plus	2	(half	of	4).	The	correct	procedure,	at	first,	 is	to	say	“5,	8,	2,10.”
After	some	practice	this	way,	it	should	eventually	be	cut	down	to	“8,	10.”	The	5
that	comes	in	because	3	is	odd	should	be	added	first,	otherwise	we	may	forget	to
add	it.
In	 the	 same	way,	when	 there	 is	 a	 dot	 for	 a	 carried	 1,	 this	 should	 be	 added

before	we	add	the	neighbor	(for	times	11)	or	half	the	neighbor	(for	times	6).	If
we	 try	 to	 leave	 the	carried	1	 till	 after	we	add	 the	neighbor	we	will	 sometimes
forget	it.	In	the	example	just	above,	the	next	figure	of	the	answer	is	found	like

this:	



We	look	at	the	6	and	say	“7,”	adding	the	dot;	then	we	say	“8,”	adding	“half”	the
3.	At	first	it	is	better	to	look	at	the	6	and	say	“7,”	adding	the	dot,	then	say	“1”	for
“half”	of	3,	then	“8,”	and	we	write	the	8.
When	 there	 is	a	dot	and	also	a	5	 to	be	added	 (because	of	oddness),	 say	“6”

instead	of	“5”	and	then	add	the	number	itself.	This	cuts	out	a	step	and	is	easy	to
get	used	to.
Take	 a	 pencil	 and	 try	 to	 use	 only	 the	 correct	mental	 steps	 as	 you	 do	 these

examples–the	answers	follow:
Times	Eleven	(add	the	neighbor):
		1.	0	4	2	3	2
		2.	0	4	7	4	9	2

	
Times	Twelve	(double	and	add	the	neighbor):
		1.	0	4	2	3	2
		2.	0	4	7	4	9	2

	
Times	Six	(add	5,	if	odd,	and	half	the	neighbor):
		5.	0	2	2	2	2
		6.	0	2	0	0	4
		7.	0	4	2	3	2
		8.	0	4	7	4	8
		9.	0	2	9	0	6
10.	0	5	2	4	4
11.	0	3	4	6	5
12.	0	4	1	1	1

	
The	answers	are:

	
		1.	46,552
		2.	522,412
		3.	50,784
		4.	569,904
		5.	13,332
		6.	12,024
		7.	25,392
		8.	28,488
		9.	17,436



10.	31,464
11.	23,190
12.	24,666

MULTIPLICATION	BY	SEVEN
The	rule	for	multiplying	by	seven	is	very	much	like	that	for	six:

	
Double	the	number	and	add	half	the	neighbor;	add	5	if	the	number	is	odd.

	
Suppose	we	wish	to	multiply	4,242	by	7.	There	are	no	odd	digits	in	this	number,
so	we	shall	not	need	to	add	the	extra	5.	For	this	example,	the	work	goes	the	same
as	for	six,	except	that	now	we	double:
First	step:

Second	step:

Third	step:

Fourth	step:

Last	step:

Here	is	an	example	containing	odd	digits.	The	3	and	1	are	both	odd:

	



First	step:

Second	step:

Third	step:

Fourth	step:

Last	step:

The	correct	mental	steps	are:
(1) Say	“1”	for	the	dot,	if	there	is	a	carried	1.
(2) Look	at	the	next	number	to	work	on	and	notice	whether	it	is	odd.	If	it	is,

add	5	to	the	carried	1,	saying	“6,”	or	say	“5”	if	there	was	no	dot.
(3) Looking	at	the	number	and	doubling	it	mentally,	we	say	the	sum	of	the	5

and	this	doubled	figure.	If	the	figure	is	3,	for	instance,	we	say	“5,”	then	we	say
“11,”	because	doubling	the	3	to	get	6	and	adding	it	to	the	5	can	be	done	in	one
step.
(4) Looking	at	the	neighbor,	say	6	for	example,	we	add	half	of	it	to	what	we

have	already.	We	were	saying	just	now	that	we	had	11.	If	the	neighbor	is	6,	we
next	say	“14.”

	
Let	us	take	this	process	a	little	at	a	time.	The	mental	training	involved	in	doing

this	sort	of	thing	is	very	valuable	because	it	develops	the	ability	to	concentrate,



and	 concentration	 is	 practically	 the	 whole	 secret	 of	 success.	 It	 cannot	 be
developed	 all	 at	 a	 time,	 however,	 and	we	 can	 help	 ourselves	 by	 using	 several
distinct	stages	in	the	following	way:
First:	Look	at	each	of	 the	following	figures	and	immediately,	without	going

through	any	 intermediate	steps,	say	aloud	 twice	 that	number	 (looking	at	3,	say
instantly	 “6”	 without	 saying	 “3”	 at	 all):	

Second:	In	each	of	the	following	pairs	of	numbers,	look	at	the	left-hand	figure
and	say	aloud	its	double	(look	at	3	and	say	“6”),	then	add	its	neighbor	(for	the
pair	 3	 4	 say	 “6,	 10”).	 This	 is	 the	 fast	 way	 to	 multiply	 by	 12:	

Third:	In	each	of	the	following	pairs	of	numbers,	look	at	the	left-hand	figure
and	say	aloud	its	double,	then	add	half	its	neighbor	(look	at	2	6,	say	“4,	7.”	This
is	 “times	 7”	 for	 even	 numbers:	

Fourth:	For	each	of	the	following	numbers,	look	at	the	number	and	say	“5,”
then	say	5	plus	the	double	of	the	number	(looking	at	3,	say	“5,	11.”):

	
Now	go	through	it	again!

	
Fifth:	In	each	of	the	following	pairs	of	numbers,	look	at	the	left-hand	number,

say	 “5,”	 then	 say	 5	 plus	 the	 double	 of	 the	 number	 as	 we	 just	 did,	 then
immediately	add	half	the	neighbor	and	say	the	result	of	adding	this	half	(for	3	4,
say	 “5,	 11,	 13”);	 this	 is	 times	 7	 for	 odd	 numbers:	

Now	see	how	fast	you	can	multiply	by	7.	Try	first	these	numbers	which	are	all
even,	so	that	 there	are	no	5’s	to	add,	you	only	double	the	number	and	add	half

the	neighbor:	



Then	we	 finish	 up	with	 numbers	 containing	 some	 odd	 digits	which	 have	 to
have	5’s	added	in:

MULTIPLICATION	BY	FIVE
The	rule	for	multiplying	by	5	is	like	those	for	6	and	for	7,	but	simpler.	Instead

of	adding	in	the	“number”	as	we	do	for	6,	or	doubling	it	as	we	do	for	7,	we	use
the	“number”	only	to	look	at.	We	look	at	it	and	see	whether	it	is	odd	or	even.	If	it
is	odd	we	add	in	the	5,	as	before:

Half	the	neighbor,	plus	5	if	the	number	is	odd.

	
Suppose	we	wish	to	multiply	426	by	5:

Now	if	we	had	an	odd	digit	in	the	multiplicand	we	would	add	5:



This	is	easy	to	do.	There	is	very	little	figuring	involved.	It	seems	rather	odd	at
first,	though,	because	of	the	little	mental	twist	that	you	have	to	do:	you	use	the
neighbor,	rather	than	the	digit	at	the	place	where	you	are	working.	Actually	it	is
good	practice	in	keeping	one’s	place.	Later	on,	in	multiplying	one	long	number
by	another	long	number,	we	shall	find	that	a	certain	amount	of	concentration	is
needed	 to	 remember	 where	 we	 are	 in	 the	 number	 we	 are	 multiplying.	 This
multiplication	method	for	5	is	a	little	preliminary	practice.
Try	these,	multiplying	by	5	as	just	described:

	
1.	0	4	4	4
2.	0	4	2	8
3.	0	4	2	4	8	8	2
4.	0	4	3	4
5.	6	4	7
6.	0	2	5	6	4	1	3
7.	0	1	4	2	8	5	7

	
The	answers	are:

	
1.	2,220  4.	2,170 6.	1,282,065
2.	2,140  5.	3,235 7.	714,285
3.	2,124,410

MULTIPLICATION	BY	EIGHT	AND	NINE
For	multiplying	by	8	and	9	we	have	a	new	mental	 step,	which	gives	 further

mental	 training.	 The	 new	 step	 consists	 of	 subtracting	 the	 “number”	 from	 9	 or
from	10.	Suppose	we	wish	to	multiply	4,567	by	either	8	or	9;	in	both	cases,	the
first	step	will	be	to	subtract	the	right-hand	figure	of	the	long	number	(the	7)	from
10.	We	begin	by	looking	at	the	right-hand	end	of	the	4,567	and	saying	“3.”	We
should	 not	 go	 through	 the	 step	 of	 saying	 “7	 from	 10	 is	 3,”	 it	 should	 be	 an
immediate	reaction.	We	look	at	 the	7	and	say	“3.”	See	how	fast	your	reactions
are–look	at	each	of	the	following	digits	and	call	out	instantly	the	result	of	taking
it	from	10:

7,	6,	9,	2,	8,	1,	7,	4,	2,	3,	9,	6,	5,	3,	1,	9
	

Part	of	the	time	we	shall	need	to	take	the	“number”	from	9,	instead	of	10.	In



that	case	we	would	look	at	7,	for	instance,	and	say	instantly	“2.”	Try	this	on	the
following	digits,	as	fast	as	you	can:

7,	8,	2,	4,	9,	5,	1,	7,	2,	0,	3,	8,	6,	5,	1,	0
	

Now	you	can	multiply	easily	and	rapidly	by	9	without	using	the	multiplication
tables.	The	best	way	to	make	it	clear	is	to	state	a	rule,	which	you	will	not	need	to
memorize	 because	 it	 will	 fix	 itself	 in	 your	mind	 by	 a	 little	 practice.	 The	 rule
would	go	like	this:

Multiplication	By	Nine
	

1. Subtract	 the	right-hand	 figure	of	 the	 long	number	 from	ten.	This	gives
the	right-hand	figure	of	the	answer.

2. Taking	each	of	the	following	figures	in	turn,	up	to	the	last	one,	subtract	it
from	nine	and	add	the	neighbor.

3. At	the	last	step,	when	you	are	under	the	zero	in	front	of	the	long	number,
subtract	one	from	the	neighbor	and	use	that	as	the	left-hand	figure	of	the
answer.

	
Of	course,	in	all	these	steps	it	is	understood	that	if	there	is	a	dot	(a	carried	one),
you	have	to	add	it	in	as	usual.

	
Here	is	an	illustration	of	how	it	works	out:	8,769	times	9.

	

	
First:	Take	the	9	of	8,769	from	10,	and	we	have	the	1	of	the	answer.
Second:	Take	the	6	from	9	(we	have	3)	and	add	the	neighbor,	9;	the	result	is

12,	so	we	write	a	dot	and	2.
Third:	7	from	9	is	2,	the	neighbor	(6)	makes	it	8,	and	the	dot	makes	it	9.
Fourth:	8	from	9	is	1,	and	the	neighbor	makes	it	8.
Fifth:	This	is	the	last	step;	we	are	under	the	left-hand	zero.	So	we	reduce	the

left-hand	figure	of	8,769	by	one,	and	7	is	the	left-hand	figure	of	the	answer.
	

Try	this	one	yourself:	8,888	times	9.



	
0	8	8	8	8	×	9

	
It	ends	in	a	2	because	8	from	10	is	2.	There	are	no	dots	in	this	case,	no	carrying,
and	 the	 left-hand	 figure	 is	 a	 7,	 namely	 the	 left-hand	 8	 less	 1.	 So	 the	 correct
answer	is	79,992.

	
Here	are	a	few	to	practice	on,	at	first	easy	ones,	then	harder	ones;	the	answers

follow:
1.	0	3	3
2.	0	9	8	6	5	4
3.	0	8	6	7	3	3
4.	0	6	2	6
5.	0	8	0	5
6.	0	7	7	5	4	9	6	5

	
Answers:
1.	297
2.	887,886
3.	780,597
4.	5,634
5.	7,245
6.	69,794,685

Multiplication	By	Eight
	

1. First	figure:	subtract	from	ten	and	double.

	
2. Middle	figures:	subtract	from	nine	and	double	what	you	get,	then	add	the

neighbor.

	
3. Left-hand	 figure:	 subtract	 two	 from	 the	 left-hand	 figure	 of	 the	 long

number.

	
Multiplying	by	8	is	the	same	as	multiplying	by	9	except	for	the	doubling,	and

except	that	at	the	last	step	you	take	2,	not	1,	from	the	left-hand	figure	of	the	long



number.	It	goes	like	this:	
This	2	comes	from	taking	the	9	from	10	and	doubling.	Then	the	8	of	789	is	one
of	the	“middle	number”	type	so	we	take	the	8	from	9	and	double	and	we	add	the

neighbor:	
The	7	is	also	a	“middle”	number;	we	are	not	at	the	end	until	we	reach	the	zero	in
front	of	789.	So	for	7	we	double	2	(7	from	9	is	2),	and	this	4	is	added	to	the	8:	

Finally	the	left-hand	7	is	reduced	by	2	to	give	5	(plus	the	carried	dot,	of	course):	

Notice	 how	 much	 simpler	 and	 easier	 this	 really	 is,	 once	 the	 method	 has
become	familiar,	 than	conventional	multiplication.	By	the	conventional	method
we	must	 not	 only	 be	 sure	 of	 the	 multiplication	 tables	 (and	many	 persons	 are
unsure	of	the	8	times	7,	8	times	8,	and	8	times	9	that	we	need	here),	we	must	also
carry	7,	then	7	again,	giving	rise	to	possible	errors.	In	contrast,	the	non-table	way
requires	carrying	only	a	1.
Of	 course,	 the	 method	 is	 not	 really	 mastered	 until	 it	 can	 be	 used	 without

thinking	 of	 any	 “rules.”	 A	 little	 practice	 makes	 the	 procedure	 sufficiently
automatic	to	accomplish	this.	Half	an	hour,	or	an	hour,	to	practice	this	method	is
actually	very	little	practice	indeed	when	we	compare	it	to	the	hours	of	repeated
drill	that	children	in	school	devote	to	learning	the	multiplication	tables.

	
Try	these	for	practice,	multiplying	each	number	by	8:

The	same	process	works	equally	well	on	single-figure	numbers.	Suppose	we
are	multiplying	by	9	(no	doubling!)	and	we	wish	to	multiply	the	number	7.	There
is	no	“middle”	number,	so	we	subtract	the	7	from	10	as	our	usual	first	step,	then

we	subtract	1	from	the	7	as	our	usual	last	step.	It	looks	like	this:	



These	single-digit	numbers	form	a	simple	pattern,	like	this:

Similarly	we	can	think	of	multiplying	by	8,	only	it	is	‘from	10”	doubled	and

“subtract	2”:	
With	8	we	would	have	to	carry	a	1	if	we	multiplied	the	smaller	digits	(1	to	5)

this	 way.	 But	 this	 is	 not	 usually	 necessary	 because	 we	 all	 know	 the
multiplication	tables	for	these	small	numbers.	It	is	only	at	the	higher	numbers	(7
times	8),	that	people	are	likely	to	have	a	little	trouble.	For	these,	the	diagram	for
8	works	without	carrying.	For	9	there	is	never	anything	to	be	carried.
Anyone	who	has	trouble	with	the	multiplication	tables	can	use	these	diagrams

to	 fix	 the	 uncertain	 parts	 in	 his	 memory.	We	 need	 not	 go	 through	 the	 actual
calculation	 each	 time.	 If	 one	 writes	 these	 diagrams	 out	 a	 few	 times,	 or	 even
visualizes	them,	they	will	provide	a	background	for	the	fact	that	7	times	9	is	63,
and	so	on.	A	background	is	all	that	is	really	needed.	Only	isolated	facts	are	hard
to	 remember.	Suppose,	 for	 instance,	 that	 for	several	months	you	have	not	seen
someone	who	used	 to	be	 a	 close	 friend.	You	may	not	 remember	his	 telephone
number,	 because	 telephone	 numbers	 are	 isolated	 facts.	 But	 you	 will	 probably
remember	 the	 telephone	exchange,	because	 the	exchanges	have	a	pattern:	 they
are	 assigned	 according	 to	 the	 district	 of	 the	 city	where	 he	 lives,	 and	 you	will
remember	approximately	where	he	 lives.	Fitting	a	 fact	 into	 any	 sort	of	pattern
will	fix	it	in	the	mind.	In	the	case	of	mathematics,	the	best	pattern	is	a	derivation
of	the	fact.	A	mathematician	does	not	remember	a	theorem	“cold”	as	a	pure	act
of	memory.	Usually	a	sketchy	idea	of	 the	proof	or	derivation	of	 the	theorem	is
attached	 to	 the	 idea	 of	 the	 theorem	 itself.	 That	 is	 what	 will	 happen	 if	 one
practices	with	the	diagrams.	When	7	times	9	is	called	for,	“63”	will	come	to	the



forefront	 of	 the	 consciousness,	 and	 in	 the	 background	 the	 diagram	 will	 be
present	to	prompt	it.

MULTIPLICATION	BY	FOUR
Most	 people,	 even	 the	 least	 mathematical,	 feel	 confident	 of	 their	 ability	 to

multiply	 by	 4.	 For	 the	 sake	 of	 completeness,	 however,	 we	 show	 now	 how	 it
could	be	done	by	a	procedure	similar	to	the	ones	we	have	been	considering.
We	do	this	by	combining	two	ideas	that	we	have	already	had.	The	first	one	is

multiplication	by	9,	as	we	saw	above,	and	 the	second	one	 is	 taking	“half”	 (the
smaller	half),	and	adding	5	if	odd.	To	be	precise,	multiplying	by	4	is	the	same	as
multiplying	by	9	except	for	one	 thing:	 instead	of	“adding	 the	neighbor,”	as	we
did	with	9,	we	now	add	“half”	the	neighbor,	plus	5	if	the	number	is	odd,	as	usual.
Stated	in	full	this	means:
1. Subtract	the	right-hand	digit	of	the	given	number	from	ten,	and	add	five

if	that	digit	is	odd.

	
2. Subtract	each	digit	of	the	given	number	in	turn	from	nine,	add	five	if	the

digit	is	odd,	and	add	half	the	neighbor.

	
3. Under	the	zero	 in	front	of	 the	given	number,	write	half	 the	neighbor	of

this	zero,	less	1.
	

Example	1:	20,684	times	4
	

First	step:	Subtract	the	4	of	20,684	from	10:

Second	step:

Third	step:



Fourth	step:

Fifth	step:

Last	step:

Example	2:	We	did	not	need	to	“add	5”	in	Example	1,	because	all	the	digits	of
20,684	happen	to	be	even.	Here	is	a	case	where	some	are	odd.	Multiply	365,187
by	4.

	
First	step:

Second	step:

Third	step:

Fourth,	Fifth,	and	Sixth	steps:	We	repeat	as	before.	Remember	that	3	and	5	are



odd,	and	call	for	the	added	5:	
Last	step:

For	practice,	 if	 this	 is	desired,	we	may	apply	these	methods	to	the	following
examples:
1.	0	2	6	8	8	×	4
2.	0	8	6	0	4	4	2	×	4
3.	0	2	4	7	8	4	7	×	4
4.	0	5	4	6	1	8	×	4

	
Answers:	1.	10,752 2.	3,441,768 3.	991,388 4.	218,472

	
Only	a	very	little	practice	is	required	to	make	this	become	easy,	as	compared

to	 the	 practice	 given	 to	 the	 multiplication	 tables.	 After	 a	 few	 hours,	 the
operations	come	to	us	quite	naturally.

MULTIPLICATION	BY	OTHER	DIGITS
Multiplication	By	Three

Multiplying	 by	 3	 is	 similar	 to	multiplying	 by	 8	 but	 with	 a	 few	 exceptions.
Instead	 of	 adding	 the	 neighbor,	 as	 we	 did	 for	 8,	 we	 now	 add	 only	 “half”	 the
neighbor.	It	is	understood,	of	course,	that	we	also	add	the	extra	5	if	the	number	is
odd.	Adding	half	the	neighbor	always	carries	with	it	the	extra	5	for	odd	numbers.
Multiply	2,588	by	3.

	
1. First	figure:	subtract	from	ten	and	double.	Add	five	if	the	number	is	odd.

	
2. Middle	figures:	subtract	the	number	from	nine	and	double	what	you	get,

then	add	half	the	neighbor.	Add	five	if	the	number	is	odd.

	
3. Left-hand	figure:	divide	the	left-hand	figure	of	the	long	number	in	half;

then	subtract	two.



	
First	step:

Second	step:

Third	step:

Fourth	step:

Last	step:

At	the	last	step	we	obtain	the	left-hand	digit	of	the	answer	from	the	leftmost
digit	of	 the	given	number,	as	always.	In	multiplying	by	8	we	obtained	this	 last
figure	 of	 the	 answer	 by	 reducing	 the	 leftmost	 digit	 of	 the	 given	number	 by	 2.
Now	in	multiplying	by	3	we	reduce	half	of	that	digit	by	2.	Sometimes,	as	in	the
example,	half	of	the	leftmost	digit	is	only	1,	and	sometimes	it	is	zero.	In	every
such	 case	 it	 is	 also	 true	 that	we	 have	 a	 carried	 1	 or	 a	 carried	 2,	 so	when	we
reduce	by	2	we	have	zero.	The	example	illustrated	this.

	
Multiplication	By	Two

	
Multiplying	by	2	is	of	course	trivial.	In	terms	of	our	procedures,	we	multiply

each	digit	of	the	given	number	in	turn	by	2,	and	we	do	not	use	the	neighbor.	(We
can	double	a	number	by	adding	it	to	itself,	so	even	the	times	2	table	need	not	be



memorized.)
Multiplication	By	One

	
Multiplying	by	1	does	not	change	a	number.	Any	number,	of	any	length,	when

multiplied	by	1	remains	itself:	17,205	times	1	is	17,205,	for	instance.	Hence,	the
rule	would	be:	copy	down	each	digit	of	the	given	number	in	turn.

	
These	last	few	rules,	for	multiplying	by	the	small	digits,	have	been	included

here	mainly	for	the	sake	of	completeness.
It	 is	important	to	notice,	however,	that	in	all	cases,	for	multiplication	by	any

digits,	 the	 operations	 really	 required	 are	 few	 in	 number	 and	 all	 are	 simple.
Subtracting	from	9,	doubling,	 taking	“half,”	and	adding	the	neighbor–these	are
the	only	operations	involved.	Practicing	for	an	hour	or	two	will	make	them	seem
natural	and	automatic.
That	is	why	Professor	Trachtenberg	believed	that	the	methods	of	this	chapter

would	be	particularly	helpful	to	children.	Long	before	they	can	memorize	all	the
multiplication	tables,	they	can	be	using	these	new	methods	with	ease.	Of	course,
this	also	enables	them	to	perform	any	multiplication	with	numbers	of	any	length.
Each	one-digit	multiplication,	by	the	rules	above,	gives	a	partial	product	in	the
conventional	 setup,	 and	 the	 total	 is	 found	 by	 adding	 columns	 as	 usual:	

Thus,	a	child	who	has	only	just	learned	to	do	the	simplest	kind	of	addition	and
subtraction	can	almost	immediately	perform	long	multiplications.

	
Note:	 Adults,	 also,	 are	 always	 taught	 the	 methods	 of	 this	 chapter	 in	 the

Trachtenberg	 system.	 For	 adults,	 the	 purpose	 is	 different.	 They	 have	 already
spent	hundreds	of	hours,	in	their	youth,	memorizing	the	multiplication	tables	and
know	most	of	them	very	well.	This	new	method	fills	the	gaps.	The	psychological
effect	of	looking	at	the	matter	from	a	new	point	of	view	is	such	that	it	fixes	the
doubtful	parts	of	the	tables	firmly	in	their	minds.	Furthermore,	as	we	mentioned
previously,	the	novelty	of	this	method	awakens	a	fresh	interest	in	the	subject,	and
that	in	itself	is	half	the	battle.	The	experience	of	the	Trachtenberg	Institute	over	a



thirteen-year	period	demonstrates	the	importance	of	these	points.

SUMMARY
Rules	will	 not	 be	 needed	 after	 a	 reasonable	 amount	 of	 practice.	 The	 act	 of

working	out	examples	makes	the	process	become	semi-automatic,	and	that	is	the
best	way	to	learn	it.	Nevertheless,	for	the	convenience	of	any	who	may	desire	it,
we	 repeat	 here	 the	 methods	 presented	 in	 this	 chapter.	 It	 is	 understood	 in	 the
statement	of	 these	 rules	 that	 the	“number”	 is	 that	digit	of	 the	multiplicand	 just
above	 the	 place	 where	 the	 next	 digit	 of	 the	 answer	 will	 appear,	 and	 the
“neighbor”	is	the	digit	immediately	to	the	right	of	the	“number.”	When	there	is
no	neighbor	(at	 the	right-hand	end	of	 the	given	number),	 the	neighbor	 is	zero–
that	is,	it	is	ignored.	Also,	a	zero	is	to	be	written	in	front	of	the	multiplicand	to
remind	us	that	a	digit	of	the	answer	may	appear	there.

TO
MULTIPLY
BY THE	PROCEDURE	IS	THIS:

11 Add	the	neighbor.
	

12 Double	the	number	and	add	the	neighbor.
	

6 Add	5	to	the	number	if	the	number	is	odd;	add	nothing	if	it	is	even.	Add	“half”	the	neighbor
(dropping	fractions,	if	any).

	
7 Double	the	number	and	add	5	if	the	number	is	odd,	and	add	“half”	the	neighbor.

	
5 Use	“half”	the	neighbor,	plus	5	if	the	number	is	odd.

	
9 First	step:	subtract	from	10.

	
Middle	steps:	subtract	from	9	and	add	the	neighbor.
Last	step:	reduce	left-hand	digit	of	multiplicand	by	1.

	
8 First	step:	subtract	from	10	and	double.

	
Middle	steps:	subtract	from	9,	double,	and	add	the	neighbor.
Last	step:	reduce	left-hand	digit	of	multiplicand	by	2.

	
4 First	step:	subtract	from	10,	and	add	5	if	the	number	is	odd.

	
Middle	steps:	subtract	from	9	and	add	“half”	the	neighbor,	plus	5	if	the	number	is	odd.
Last	step:	take	“half”	the	left-hand	of	the	multiplicand	and	reduce	by	1.

	
3 First	step:	subtract	from	10	and	double,	and	add	5	if	the	number	is	odd.

	
Middle	steps:	subtract	from	9	and	double,	add	5	if	the	number	is	odd,	and	add	“half”	the
neighbor.
Last	step:	take	“half”	the	left-hand	digit	of	the	multiplicand	and	reduce	by	2.



	
2 Double	each	digit	of	the	multiplicand	without	using	the	neighbor	at	all.

	
1 Copy	down	the	multiplicand	unchanged.

	
0 Zero	times	any	number	at	all	is	zero.



CHAPTER	TWO
Rapid	multiplication	by	the	direct	method
In	Chapter	One	we	 saw	how	basic	multiplication	 can	be	 performed	without

the	 conventional	multiplication	 tables.	 By	means	 of	 these	 new	 ideas	 we	 have
been	able	 to	 refresh	our	knowledge	of	 the	 tables	and	 to	clear	up	any	uncertain
spots	 that	 might	 have	 existed.	 We	 should	 now	 have	 more	 confidence	 in	 our
ability	to	use	the	tables	quickly	and	accurately	whenever	we	wish	to	do	so.
With	 this	new	approach	to	basic	multiplication	we	have	become	accustomed

to	using	a	pair	of	digits	in	the	multiplicand	to	give	each	figure	of	the	answer.	The
“number,”	you	will	recall,	is	the	digit	just	above	the	blank	space	where	the	next
digit	 of	 the	 answer	will	 appear;	 the	 “neighbor”	 is	 the	digit	 of	 the	multiplicand
immediately	 to	 the	 right	 of	 the	 “number.”	 Such	 number-neighbor	 pairs,	 in	 the
position	mentioned,	will	be	used	again	in	this	chapter	but	with	a	variation.
We	 are	 now	 ready	 to	 take	 the	 next	 step	 in	 our	 method	 of	 condensing	 the

multiplication	process.	We	shall	learn	how	to	multiply	any	number	by	any	other
number	no	matter	how	long	they	are,	and	arrive	at	an	immediate	answer	without
any	 intermediate	 steps.	 The	 condensed	 form	 of	 multiplying	 625	 by	 346,	 for
instance,	will	look	like	this:

We	are	going	to	learn	how	to	do	multiplication	in	this	form.	Nothing	else	will
be	written	down.	The	usual	three	rows	of	intermediate	figures	will	not	be	used.
We	 shall	 write	 down	 the	 problem,	 whatever	 it	 may	 be,	 and	 then	 we	 shall
immediately	write	the	answer.
We	 have	 two	 ways	 of	 accomplishing	 this.	 Each	 has	 its	 own	 advantages	 in

certain	 situations,	 yet	 both	 of	 them	 are	 always	 capable	 of	 supplying	 the	 right
answer.	Fortunately,	they	have	a	great	deal	in	common	so	it	is	easy	to	learn	both.
In	the	present	chapter	we	are	going	to	consider	the	one	that	we	call	the	“direct”
method	 of	 multiplication.	 It	 is	 most	 appropriate	 when	 the	 numbers	 to	 be
multiplied	contain	small	digits,	like	l’s,	2’s,	and	3’s.	Then	in	the	next	chapter	we
shall	use	the	other	method,	which	we	call	“speed	multiplication.”	It	consists	of
the	 direct	 method	 plus	 a	 new	 feature.	 This	 added	 feature	 takes	 care	 of	 the
difficulties	we	meet	in	numbers	containing	large	digits	such	as	987	times	688.
Either	method	can	be	used	in	any	given	problem.	Both	methods	always	give



the	 right	 answer.	 Just	 now	 we	 mentioned	 a	 reason	 for	 preference,	 but	 it	 is
entirely	a	matter	of	 convenience,	 and	 in	a	particular	 case	you	would	make	 the
choice	according	to	your	personal	judgment.
Incidentally,	 it	may	be	mentioned	 that	something	 like	 the	direct	method	was

probably	 used	 by	 mathematical	 speed	 performers	 before	 the	 Trachtenberg
system	 was	 introduced.	 These	 “mathematical	 wizards,”	 who	 astonished
audiences	 by	 spectacular	 feats	 of	 mental	 calculation,	 were	 usually	 rather
secretive	 about	 their	 techniques	 but	 it	 seems	 they	 must	 have	 used	 something
similar	to	our	direct	method–perhaps	with	variations.
Let	us	begin	with	a	simple	example	of	the	direct	method	and	work	up	to	more

complicated	cases,	meaning	that	we	shall	first	multiply	a	relatively	small	number
by	another	relatively	small	number.

SHORT	MULTIPLICANDS:	TWO	DIGITS	BY	TWO	DIGITS
Suppose	we	wish	to	multiply	23	by	14.	We	write	it	out	in	this	form:

When	multiplying	by	a	two-digit	multiplier,	we	always	put	two	zeroes	in	front	of
the	multiplicand,	as	shown	above.
The	answer	will	be	written	under	 the	0023,	one	digit	at	a	 time,	beginning	at

the	right.	That	is	to	say,	we	shall	write	the	last	digit	of	the	answer	under	the	3,
and	fill	in	the	rest	of	the	answer	one	digit	at	a	time	to	the	left.

	
First	step:	Multiply	the	right-hand	figure	of	the	multiplicand,	the	3	of	23,	by

the	right-hand	figure	of	the	multiplier,	the	4	of	14.	For	the	answer	we	put	down
the	2	of	12	and	carry	the	1	(use	a	dot”):

Second	step:	We	obtain	 the	next	 figure	of	 the	 answer,	 the	one	 that	 is	 to	go
under	 the	 2	 of	 23,	 by	 finding	 two	 numbers	 (two	 partial	 products)	 and	 adding
them	together.	The	first	of	these	two	is	8,	which	comes	from	2	times	4:



The	 second	 of	 the	 two	 partial	 products	 is	 obtained	 by	 multiplying	 the	 other
figures,	3	and	1:

Now	add	the	two	partial	products	together:	8	plus	3	is	11.	This	is	what	we	want.
But	we	must	add	the	carried	1,	so	the	next	figure	of	the	answer	is	12;	that	is,	a
written	2	and	a	carried	1:

Last	step:	Multiply	 the	 left-hand	 figure	of	 the	multiplicand,	 the	2	of	23,	by
the	left-hand	figure	of	the	multiplier,	the	1	of	14:

In	this	example	we	do	not	need	to	use	the	left-hand	zero	that	we	wrote	in	front.	It
is	there	to	make	room	for	a	carried	figure	whenever	there	happens	to	be	a	figure
of	10	or	over.	In	this	example	we	had	only	a	3.
The	second	step	is	the	new	one.	We	used	two	figures	to	get	one	figure	of	the

answer.	We	added	the	partial	product	8	and	the	partial	product	3,	and	had	11	to
use	in	our	answer.
The	8	and	the	3	came	from	multiplying	two	pairs	of	figures	which	we	will	call
the	“outside	pair”	and	the	“inside	pair.”

The	rule	for	finding	these	pairs	is	this:	the	figure	of	the	multiplicand	that	we
are	 working	 on	 at	 the	moment,	 (that	 is	 to	 say,	 the	 figure	 just	 above	 the	 next
figure	of	 the	answer	 to	be	 found,)	 is	part	of	 the	“outside	pair;”	 in	 the	example
above,	it	is	the	2	of	23.	The	other	figure	of	this	“outside	pair”	is	the	right-hand



figure	of	the	multiplier,	because	that	is	the	outside	one;	the	4	of	14	above.	The
other	pair,	the	“inside	pair”	3	and	1,	is	made	up	of	the	two	figures	immediately
inside	the	pair	of	figures	that	you	have	just	used;	the	3	of	23	and	the	1	of	14.
The	“outside	pair”	 and	“inside	pair”	will	be	used	 frequently,	 so	 let	us	make

clear	what	they	are	by	these	three	examples:

Take	the	case	of	38	times	14:
	

0	0	3	8	×	14
	

First	step:	The	first	thing	we	do	is	multiply	8	by	4	and	get	32.	We	put	down
the	2	and	carry	the	3.

Second	 step:	 To	 find	 the	 next	 number	 we	 now	 use	 the	 outside	 and	 inside
pairs.	The	 figure	 of	 38	 that	we	 are	 now	working	on	 is	 the	 3,	 because	 the	 3	 is
directly	above	the	place	where	the	next	figure	of	our	answer	will	appear.	So	this
3	is	part	of	the	outside	pair.	What	is	the	other	figure	of	the	outside	pair?	It	is	one
of	the	figures	of	14,	and	obviously	it	has	to	be	4.	That	is	the	outside	figure	of	the
14.	The	inside	pair	comes	just	inside	those	two	(8	and	1):

Now	multiply:	3	times	4	is	12,	and	8	times	1	is	8.	Add	these	two	partial	products,
the	12	and	the	8,	and	you	have	20.	A	carried	3	must	be	added	in,	so	the	result	is
23.	Put	down	the	3	and	carry	the	2.

Last	step:	Multiply	the	two	left-hand	figures,	the	3	of	38	and	the	1	of	14.	This
gives	3.	The	carried	2	makes	it	5:



Here	are	two	examples	worked	out,	but	shown	in	short	form.	The	underlined
figures	 are	 carried	 figures.	 See	 if	 you	 can	 figure	 out	 for	 yourself	 where	 the
numbers	shown	in	the	“work”	line	came	from:

For	your	own	satisfaction	you	may	like	 to	 try	one	or	 two	like	 these	by	your
own	efforts.	Here	are	several,	with	the	answers	following:

	
1.	0	0	3	1	×	1	5
2.	0	0	1	7	×	2	4
3.	0	0	7	3	×	6	4
4.	0	0	3	4	×	2	1
5.	0	0	4	2	×	2	6
6.	0	0	4	8	×	5	2

	
Answers:	1.	465 2.	408 3.	4,672 4.	714 5.	1,092 6.	2,496

	
If	you	reflect	on	what	you	have	just	been	doing,	you	will	see	that	it	is	a	very

natural	procedure.	You	have	been	multiplying	 two	 two-digit	numbers	 together.
To	 do	 this,	 you	 have	 been	 finding	 the	 right-hand	 digit	 of	 the	 answer	 by
multiplying	the	two	right-hand	digits,	as	with	23	times	14	you	multiplied	3	by	4.
To	find	the	left-hand	digit	of	the	answer	you	multiplied	the	two	left-hand	digits,
as	with	23	times	14	you	multiplied	2	by	1.	In	between,	to	get	the	middle	figures



of	 the	answer,	you	used	 the	outside	and	 inside	pairs.	Each	pair	consists	of	 two
digits	that	are	multiplied	together,	so	each	pair	gives	one	number,	and	these	two
numbers	are	added	to	find	part	of	the	answer.
We	are	going	to	use	these	inner	and	outer	pairs	again	in	what	follows.	In	fact,

we	shall	use	them	to	a	greater	extent.	Of	course,	in	doing	a	problem	yourself	you
do	not	need	 to	write	out	 the	pairs	by	drawing	curved	 lines	 touching	 the	digits.
That	was	done	in	the	early	paragraphs	only	to	explain	what	was	meant.	In	actual
work	it	is	possible	to	identify	the	outside	pair	by	the	fact	that	it	contains	the	digit
of	the	multiplicand	directly	above	the	next	blank	space,	that	is,	the	place	where
the	next	 figure	of	 the	answer	will	appear.	The	 inside	pair	 is	 the	pair	of	 figures
just	inside	the	two	figures	of	the	outside	pair,	as	the	curved	lines	showed	in	the
diagram.

LONG	MULTIPLICANDS
When	the	multiplicand	is	a	long	number,	all	we	need	to	do	is	repeat	the	second

step	as	many	times	as	the	long	number	requires.	For	instance,	suppose	you	wish
to	 multiply	 312	 by	 14.	 This	 is	 only	 three	 digits	 instead	 of	 two,	 but	 it	 will
illustrate	the	point:

	
First	step:	Multiply	the	right-hand	digit	of	312	by	the	right-hand	digit	of	14:

Second	step:	Now	use	the	outside	and	inside	pairs.	The	next	figure	we	work
on	is	the	1	of	312.	It	is	the	figure	directly	above	the	place	where	the	next	digit	of
the	answer	will	go.	So	the	1	of	312	is	part	of	the	outside	pair:

Third	step:	This	is	the	second	step	over	again,	except	that	we	move	the	pairs.
That	is,	we	have	different	pairs	of	numbers.	But	it	is	still	true	that	the	next	figure
we	 use	 of	 312,	 the	 one	 directly	 above	 the	 next	 space	 to	 fill	 in,	 is	 part	 of	 the



outside	pair.	In	this	example,	3	is	part	of	our	new	outside	pair.	So	we	have:

Last	step:	To	 find	 the	 left-hand	 figure	of	 the	 answer,	multiply	 the	 two	 left-
hand	figures	together,	3	times	1,	and	add	the	carried	1:

Later	on	we	shall	need	to	extend	the	curved	lines	over	the	zeroes	in	front	of
the	multiplicand.	Let	us	do	it	here,	just	to	see	how	it	works.	Remember:

	
ANY	NUMBER	TIMES	ZERO	IS	ALWAYS	ZERO

	
In	multiplying,	 zero	 “annihilates”	 every	 other	 number.	A	million	 times	 zero	 is
zero.	Use	this	fact,	and	do	the	last	step	as	if	it	were	a	middle	step:

The	outside	pair,	zero	times	4,	gives	zero.	The	inside	pair,	3	times	1,	gives	3.
Zero	plus	3	is	3.	Adding	the	dot,	we	get	4,	the	same	answer	that	we	had	before–it
has	to	be	the	same	because	that	is	the	right	answer.	This	shows	that	we	can	do
the	 last	step	by	 the	same	method	as	 the	second	and	 third	steps;	 that	 is,	we	can
find	 it	by	using	outside	and	 inside	pairs,	 instead	of	using	a	special	 rule	 for	 the
last	step.



Every	time	we	show	a	line	of	figures	and	mark	it	“work,”	it	is	understood	that
in	actual	practice	 this	work	would	be	done	mentally.	We	have	shown	the	work
explicitly	 for	 the	purpose	of	explanation	only.	When	you	work	a	problem,	you
will	 do	 it	 by	 writing	 only	 the	 two	 figures	 that	 you	 wish	 to	 multiply	 and	 the
answer.
The	examples	we	had	just	now	show	again	how	the	outside	pair	is	placed.	It	is

always	 determined	 by	 the	 fact	 that	 it	 contains	 the	 figure	 of	 the	 multiplicand
which	is	immediately	above	the	next	figure	of	the	answer	to	be	found:

The	 other	 end	 of	 the	 line	 must	 go	 to	 the	 right-hand	 figure	 of	 the	 two-digit
multiplier,	because	that	is	an	“outside”	digit.	Then	the	inside	pair	is	made	up	of
the	two	figures	just	inside	of	the	ones	that	we	have	used.
In	 actual	 use,	 you	 will	 probably	 find	 that	 it	 is	 a	 good	 idea	 to	 mark	 the

positions	of	 the	figures	 in	 the	outside	and	 inside	pairs	by	covering	parts	of	 the
numbers	with	your	fingers.	This	is	really	very	little	trouble,	and	it	prevents	errors
that	might	occur	from	losing	your	place	momentarily.	In	the	case	of	three	digits
times	two	digits,	like	312	times	14,	there	is	not	much	danger	of	losing	the	place,
but	soon	we	shall	be	looking	at	much	longer	numbers.	In	any	case,	it	is	certainly
advisable	to	write	the	figures	clearly	and	spaced	apart,	and	to	write	the	answer
directly	under	the	figure	it	belongs	to.	Neatness	is	an	aid	in	avoiding	unnecessary
errors.	 It	 applies	 not	 only	 to	 what	 we	 are	 doing	 here,	 but	 to	 conventional
multiplication,	to	any	kind	of	division,	and	to	addition	and	subtraction.	Neatness
is	a	good	habit	to	develop.

	
Here	 is	 a	 way	 to	 check	 yourself	 on	 how	 well	 you	 understand	 the	 method.

Below	is	the	completed	example	of	the	multiplication	of	311	by	23.	The	answer
is	 under	 the	 311,	 and	 a	 line	 of	 work,	 supposedly	 mental,	 will	 be	 under	 the
answer.	Now	cover	both	answer	and	work	with	a	scrap	of	paper,	and	calculate
the	right-hand	figure	of	the	answer,	mentally.	Move	the	paper	far	enough	to	see
the	 first	 figure	 of	 the	 answer,	 and	 you	will	 know	whether	 you	 are	 right.	Then
calculate	mentally	the	next	figure	of	the	answer,	and	when	you	have	it,	move	the
paper	just	enough	to	expose	this	next	figure	and	see	whether	you	are	right.	If	you
are	not,	move	the	paper	to	expose	the	“work”	line	for	that	figure,	and	you	will
see	where	the	figure	came	from.	In	this	“work”	the	figures	under	each	other	are



to	be	added	together	to	get	the	figure	of	the	answer:

THE	ZEROES	IN	FRONT
In	the	examples	we	have	seen	so	far,	we	had	two	zeroes	in	front	of	the	number

to	be	multiplied,	but	one	would	have	been	enough	as	it	turned	out.	Sometimes,
though,	we	need	two	zeroes	in	front.	Consider	this	example:

This	time	we	had	a	number	under	the	second	zero,	the	one	all	the	way	to	the	left.
Notice,	though,	that	the	number	is	simply	the	dot	(or	carried	1).	The	figures	of
31	 gave	 nothing,	 because	 they	 were	 both	 annihilated	 by	multiplying	 by	 zero.
Only	the	carry	remained.
That	explains	why	we	did	not	need	two	zeroes	in	our	previous	examples.	One

zero	 in	 front	 of	 the	multiplicand	was	 sufficient,	 because	 there	was	 nothing	 to
carry	at	the	last	step.

	
GENERAL	RULE:	When	multiplying	by	a	multiplier	of	any	length,	put

as	many	zeroes	before	the	multiplicand	as	there	are	digits	in	the	multiplier.

	
Sometimes,	as	we	saw,	we	don’t	need	all	 the	zeroes,	but	 following	 the	rules

will	never	do	any	harm.	If	we	go	ahead	and	try	to	use	two	places	when	we	need
only	one,	we	shall	merely	find	that	at	the	last	step	we	have	nothing	to	write.
So	 far	 we	 have	 considered	 only	 two-or	 three-digit	 multiplicands,	 but	 long

numbers,	 like	241,304,	are	handled	by	 the	same	method.	We	simply	repeat	 the
action	of	multiplying	together	two	pairs	of	digits	and	adding	the	results.	Suppose



you	wish	to	multiply	241,304	by	32:

This	is	as	far	as	we	have	gone	previously,	using	three	digits	in	the	multiplicand.
The	next	step	is	done	in	the	same	manner:

Of	course,	we	add	together	the	2	and	the	9,	and	this	11	is	the	next	figure	of	the
answer.	We	write	1	as	part	of	the	answer	and	carry	1	by	writing	a	dot.	Then	we
continue	moving	 to	 the	 left.	The	next	pairing	 is	done	by	using	4,1	against	3,2,
and	it	gives	us	4	times	2	plus	1	times	3.	The	complete	solution	is	this:

The	zero	farthest	to	the	the	left	is	not	used.	This	is	one	of	the	cases	where	there
is	nothing	to	carry	at	the	last	step,	so	there	will	be	nothing	to	write	under	this	last
zero.	We	 showed	 it	 only	 for	 the	 sake	 of	 completeness.	 The	 rule	 calls	 for	 two
zeroes	when	the	multiplier	has	two	figures.	One	zero	is	wasted	here,	but	after	all,
what	does	a	zero	cost?	Nothing!
Here	is	a	little	“thought-problem”:	You	should	be	able	to	answer	it	without

doing	any	direct	calculation.	Now	that	you	know,	from	one	of	our	examples,	that
311	times	23	is	7,153,	what	is	31,100	times	23?	The	only	difference	is	that	now
we	 have	 two	 zeroes	 at	 the	 end	 of	 the	multiplicand.	What	 is	 the	 answer	 now?
Decide	before	you	read	the	next	paragraph.
The	answer,	as	you	no	doubt	said	to	yourself,	is	715,300.	The	extra	two	zeroes

at	 the	 end	of	 the	multiplicand	have	 come	over	 into	 the	 answer.	This	 is	 always



true.	Any	zeroes	that	may	be	tagged	on	at	the	end	of	any	multiplicand–no	matter
how	 many	 zeroes	 or	 what	 the	 multiplicand	 may	 be–must	 be	 carried	 down
directly	into	the	answer,	at	the	end	of	the	answer.
Which	of	the	four	possible	ways	did	you	use	to	decide	on	this?	Perhaps	you

were	clever	enough	to	use	more	than	one	of	them	at	the	same	time.	In	any	case,
here	are	the	four	ways:

	
(1) Guess-work.	 This	 is	 a	 rather	 rude	 word,	 so	 you	 may	 prefer	 one	 of	 the

synonyms.	 Non-mathematicians	 usually	 refer	 to	 this	 as	 “common-sense.”
Mathematicians	 refer	 to	 it	 as	 “mathematical	 intuition.”	 Under	 either	 name	 it
frequently	gives	the	wrong	answer,	but	often	enough	it	works.

	
(2) Memory.	 From	 your	 school	 days	 you	may	 have	 remembered	 how	 such

things	 should	go.	 If	 the	memory	was	vague	 it	 counts	as	half	memory	and	half
“common-sense.”

	
(3) Multiplication	by	zero.	We	know	that	zero	times	any	number	is	still	zero.

Obviously,	when	we	 start	multiplying	 the	23	 into	 the	 two	zeroes	 at	 the	 end	of
31,100,	 we	 keep	 on	 getting	 zeroes	 until	 we	 hit	 the	 right-hand	 1	 of	 31,100.
Adding	two	zeroes	is	still	zero.	We	get	nothing	different	from	zero	until	we	start
in	on	the	311	part	of	31,100,	and	then	we	get	the	same	thing	as	311	times	23.

	
(4) Rearrangement	of	factors.	This	is	the	method	that	a	mathematician	would

use.	The	basic	idea	is	that	when	we	multiply	together	more	than	two	numbers,	it
does	not	make	any	difference	how	we	group	 them,	as	 long	as	we	use	 them	all
eventually	 in	 multiplying.	 For	 instance,	 take	 2	 times	 3	 times	 4.	 Doing	 it	 the
straightforward	way,	we	would	say	2	 times	3	 is	6,	 then	6	 times	4	 is	24,	so	 the
result	is	24.	But	we	could,	if	we	wished,	begin	by	multiplying	the	3	by	the	4:	2
times	 3	 times	 4	 is	 2	 times	 12,	which	 is	 again	 24.	 Further,	we	 could	 rearrange
them:	2	times	3	times	4	is	the	same	as	2	times	4	times	3,	or	8	times	3.	Again	the
result	is	24.
Now	apply	this	to	the	case	of	31,100	times	23.	We	think	of	it	as	311	times	100

times	23.	Rearrange	 the	numbers:	 this	 is	 the	 same	 as	 311	 times	23	 times	100.
This	 tells	us	 to	multiply	311	by	23,	which	 is	our	previous	example,	and	which
gives	us	the	already	known	answer	of	7,153.	Then	we	still	have	to	multiply	by



the	100.	But	multiplying	any	number	by	100	merely	has	the	effect	of	placing	two
zeroes	at	the	end	of	the	number.	So	we	put	two	zeroes	at	the	end	of	7,153,	and
the	result	is	715,300,	as	before.

	
The	 advantage	of	 this	 fourth	method	 is	 that	 it	 tells	 us	what	 to	 do	 in	 certain

other	cases	also.	Suppose	that	the	two	zeroes	were	at	the	end	of	the	23.	We	are
multiplying	311	by	2,300.	The	 same	 reasoning	 as	 in	Paragraph	4,	 tells	 us	 that
these	 two	zeroes	must	go	at	 the	end	of	 the	answer.	Again	we	have	715,300.	In
fact,	 if	one	zero	were	on	 the	311	and	 the	other	on	 the	23,	 so	 that	we	multiply
3,110	 by	 230,	 both	 zeroes	 go	 at	 the	 end	 of	 the	 answer,	 and	 again	 we	 have
715,300.

	
RULE:	Collect	all	zeroes	at	the	end	of	the	multiplicand	and	at	the	end	of

the	multiplier	and	put	 them	at	 the	 end	of	 the	answer.	Then	go	ahead	and
multiply	without	paying	any	further	attention	to	them.

	
For	instance,	this	was	our	first	example:

Suppose	 we	 wished	 to	 multiply	 230,000	 by	 140;	 what	 would	 the	 answer	 be?
Simply	 do	 the	 example	 as	 before,	without	 the	 zeroes,	 then	 collect	 all	 the	 five
terminal	zeroes	and	write	them	after	your	answer:

The	answer	is	32,200,000.

THREE-DIGIT	MULTIPLIERS
So	far,	we	have	been	multiplying	various	numbers	by	multipliers	consisting	of

only	two	digits.	The	multiplicand	may	have	been	long,	like	the	241,304	of	one
example,	but	 the	number	 it	was	multiplied	by	was	a	number	of	 two	figures;	 in
the	example	it	was	32.	How	shall	we	multiply	various	numbers	by	a	three-digit
multiplier?
Let	us	 take	an	illustration:	213	times	121.	The	multiplier	has	 three	digits,	so

we	write	three	zeroes	in	front	of	the	multiplicand:



	
0	0	0	2	1	3	×	1	2	1

	
This	 agrees	with	 the	 rule	 that	we	mentioned	 before,	 of	 placing	 in	 front	 of	 the
left-hand	 number,	 or	 multiplicand,	 as	 many	 zeroes	 as	 there	 are	 digits	 in	 the
multiplier	(sometimes	one	of	these	zeroes	will	be	wasted,	as	happened	before).
Then	we	take	the	work	in	steps,	finding	one	figure	of	the	answer	at	each	step.

	
First	step:

Second	step:

So	far,	in	these	first	two	steps,	we	have	done	only	what	we	did	in	the	preceding
section.	The	calculation	so	far	is	 the	same	as	if	we	were	multiplying	13	by	21,
instead	of	213	by	121.

	
Third	 step:	 This	 is	 new:	 we	 obtain	 the	 next	 figure	 of	 the	 answer	 by	 adding
together	three	pairs	of	numbers,	instead	of	two:

The	way	the	“work”	is	done	can	be	seen	from	the	manner	in	which	the	numbers
have	been	printed.	To	make	it	clearer	we	can	draw	curves	for	the	“outside”	and
the	“inside”	pairs	as	we	did	before,	but	now	we	have	a	“middle”	pair	as	well:



The	outermost	line	connects	the	2	of	213	with	the	last	1	of	121.	So	the	outside
pair	 gives	 2	 times	 1	 as	 its	 contribution	 to	 the	 answer.	We	move	 inward.	 The
middle	line	connects	the	1	of	the	213	with	the	2	of	121,	and	we	have	1	times	2.
That	 is	 the	 second	 contribution	 to	 the	 answer.	 The	 third	 and	 last	 contribution
comes	 from	 the	 innermost	 line	 which	 gives	 us	 3	 times	 1.	 Adding	 these	 three
contributions,	we	have	2	plus	2	plus	3,	which	is	7,	the	next	figure	of	the	answer.
The	outermost	pair,	2	and	1,	is	identified	by	the	same	rule	as	before:	the	figure	of
the	multiplicand	directly	above	the	next	space	where	the	answer	is	to	be	found	is
part	of	the	outside	pair.	The	other	figure	of	this	pair	is	the	last	digit	of	121.	The
figures	 next	 to	 these	 form	 the	 middle	 pair	 and	 the	 remaining	 figures	 are,	 of
course,	the	inner	pair.
The	rest	of	the	work	consists	of	repeating	this	step	with	three	curved	lines,	but

moving	the	lines	over	toward	the	left:

	
Fourth	step:

Last	step:

This	 is	 the	 last	 step	 in	 this	particular	 example	because	we	have	 just	 found	 the



figure	2	with	nothing	to	carry.	There	is	a	zero	in	front	of	the	answer	for	the	sole
purpose	 of	 taking	 care	 of	 a	 carried	 figure	 at	 the	 last	 step,	 but	 now	 we	 have
nothing	to	carry	so	we	have	finished.	The	answer	is	25,773.
Of	 course,	 this	 example	 has	 seemed	 rather	 long	 simply	 because	 it	 was

stretched	out	with	detailed	explanations.	In	actual	practice	it	goes	fast.	Following
is	one	in	a	form	closer	to	actual	work.	Underlining	the	figures	takes	the	place	of
pointing	with	 the	 fingers	 and	 “moving	 inward”	 to	mark	 the	outside	 and	 inside
pairs.	The	two	figures	with	a	single	line	under	them	are	to	be	multiplied	together,
those	doubly	underlined	are	to	be	multiplied,	and	those	triply	underlined	are	to
be	multiplied:

	
First	step:

Second	step:	(of	course,	in	a	practical	problem	we	would	not	write	the	numbers
over	again!)

Third	step:

Fourth	step:

Last	step:

This	is	the	last	step	because	there	is	nothing	carried	(no	dot).	If	there	were	a	dot
we	would	put	a	1	under	the	left-hand	zero.	If	there	were	a	double	dot	(a	carried
2),	we	would	put	a	2	under	the	leftmost	zero.	As	it	is,	however,	the	calculation	is
finished	and	the	answer	is	34,428.



	
Remember,	zero	times	any	number	is	zero.

	
Finally,	you	can	see	how	easily	a	problem	goes	in	actual	work	by	doing	one

yourself:
	

0	0	0	2	0	3	×	2	2	1
	

You	start	by	multiplying	the	3	of	203	by	the	1	of	221,	as	you	no	doubt	did.	Then
you	multiply	the	0	3	against	the	2	1	of	221	in	inside	and	outside	pairs	and	add
the	 two	 results;	 and	 so	 on.	 The	 answer,	 as	 you	 have	 probably	 discovered,	 is
44,863.

	
For	practice,	 if	you	wish,	you	can	make	up	examples	of	your	own	and	work

them.	It	will	make	it	easier	if	you	do	a	few	with	two-digit	multipliers	first,	like
23	or	31,	and	then	afterward	use	three-digit	multipliers.
This	method	can	be	used	successfully	with	numbers	of	any	length.	However,

when	 a	 long	 number	 contains	many	 large	 digits,	 as	 9,869	 does,	we	 shall	 find
ourselves	“carrying”	rather	large	numbers	when	using	the	method	of	this	chapter.
That	is	why	we	favored	the	smaller	digits	like	2	and	3	in	the	examples	we	have
been	doing.	If	you	wish	to	try	one	or	two	problems	with	large	digits	you	will	be
in	a	better	position	to	appreciate	the	“speed	multiplication”	of	the	next	chapter,
which	will	require	us	to	carry	only	l’s	and	2’s.	In	the	meantime,	the	method	of
this	chapter	works	very	conveniently	on	small-digit	numbers	and,	in	addition,	it
is	an	indispensable	part	of	the	next	chapter.

MULTIPLIERS	OF	ANY	LENGTH
For	longer	multipliers	we	use	the	same	principles.	Four-digit	multipliers,	like

3,214,	work	 in	 this	way:	each	figure	of	 the	answer	 is	 found	by	adding	up	four
pieces.	Each	of	these	four	pieces	is	the	result	of	multiplying	two	digits	together.
What	two	digits?	Those	at	the	ends	of	a	curved	line;	in	other	words,	outside	and
inside	pairs.	Take	the	example	2,103	times	3,214:



The	picture	shows	the	four	pairs	 that	we	would	use	at	a	stage	halfway	through
the	calculation.	At	that	stage	we	would	say	“2	times	4	is	8,	plus	1	times	1	is	9,
plus	zero	is	9,	plus	9	is	18.”	There	are	four	zeroes	in	front	because	3,214	consists
of	 four	 figures.	 The	 leftmost	 zero	will	 not	 be	 needed	 unless	 there	 is	 a	 carried
figure	at	the	last	step;	it	is	there	just	in	case.	Here	is	how	the	work	would	go:

	
First	step:

Second	step:

Third	step:

Fourth	step:

Fifth	step:

Sixth	step:

Seventh	step:



There	 is	nothing	 to	carry,	and	 the	pairs	of	digits	will	all	give	zero,	so	we	have
finished.	The	answer	is	6,759,042.	From	this,	it	is	clear	how	we	would	proceed
with	multipliers	of	any	length.

SUMMARY
In	 this	 chapter	we	 have	worked	with	 two-digit	 numbers	multiplied	 by	 two-

digit	 numbers,	 like	 31	 times	 23;	 then	 with	 larger	 multiplicands	 and	 two-digit
multipliers,	 like	 32,405	 times	 42;	 and	 then	 with	 both	 multiplicands	 and
multipliers	of	 any	 length,	 like	32,405	 times	422.	 In	all	 these	cases,	we	get	 the
right-hand	figure	of	the	answer	by	multiplying	together	the	right-hand	figures	of
the	two	numbers.	In	all	cases,	we	get	the	middle	figures	of	the	answer	by	using
outside	and	inside	pairs	and	adding	the	results.	Finally,	we	can	get	the	left-hand
figure	or	figures	of	the	answer	by	writing	zeroes	in	front	of	the	multiplicand	and
applying	the	outside	and	inside	pairs	to	these	zeroes;	we	write	as	many	zeroes	as
there	are	digits	in	the	multiplier.
You	can	 test	yourself	 if	you	wish,	and	at	 the	same	 time	make	 the	procedure

more	vivid	in	your	mind,	by	doing	the	following	practice	examples:
	

		1.	31	×	23
		2.	33	×	41
		3.	63	×	52
		4.	413	×	24
		5.	224	×	32
		6.	705	×	25
		7.	511	×	61
		8.	341	×	63
		9.	4133	×	212
10.	31522	×	3131

	
Answers:	1.	713 2.	1,353 3.	3,276 4.	9,912 5.	7,168
6.	17,625 7.	31,171 8.	21,483 9.	876,196 10.	98,695,382

CHECKING	THE	ANSWER
The	following	method	of	checking	our	answer	was	not	invented	by	Professor

Trachtenberg,	but	was	 incorporated	 into	his	system	because	 it	 is	so	simple	and
convenient.	It	has	been	known	to	mathematicians	for	hundreds	of	years,	yet	it	is



not	widely	known	to	the	layman	and	seems	to	be	little	used	in	everyday	life.	For
that	 reason	we	shall	explain	 it	under	 the	name	of	 the	“digit-sum	method.”	The
essence	is	that	we	add	the	digits	across	each	number,	as	in	the	next	paragraph.
A	digit	 is	 any	one	of	 the	 single-figure	numbers,	 1	 through	9.	Zero	 is	 also	 a

digit.	So	any	number	at	all	is	made	up	of	certain	digits.	The	“digit-sum”	is	what
we	get	when	we	add	the	digits	across	the	number,	like	this:

But	hereafter,	we	shall	always	understand	that	the	digit-sum	has	been	reduced	to
a	single	figure	by	adding	across	again	when	necessary.	For	instance,	suppose	the
number	is	6,324.	We	shall	have:

So	the	digit-sum	of	6,324	is	6.	In	other	words	we	shall	work	with	reduced	digit-
sums.	We	do	so	because	it	will	make	the	work	easier	in	the	next	step.
As	a	check	in	multiplication	we	need	to	find	three	digit-sums:	the	digit-sum	of

the	 multiplicand,	 the	 digit-sum	 of	 the	 multiplier,	 and	 the	 digit-sum	 of	 the
product.	 For	 instance,	 suppose	 we	 have	 done	 this	 multiplication	 and	 wish	 to
check	it:

Three	numbers	are	involved,	the	two	that	are	multiplied	and	the	answer.	We	find
the	digit-sum	of	each	one:

The	rule	for	checking	the	work	is	this:

	
The	digit-sum	of	the	product	should	be	equal	to	the	digit-sum	of	the
product	of	the	digit-sums	of	the	multiplier	and	multiplicand.

	



If	they	are	not	equal	there	is	something	wrong.	In	our	example	the	digit-sum	of
the	product,	6,324,	is	6.	This	ought	to	be	equal	to	the	digit-sum	of	the	product	of
the	other	two	digit-sums.	Is	it?	We	can	tell	by	multiplying:	6	times	4	is	24,	which
reduces	to	6.	We	have	6	again,	so	the	work	checks.
The	multiplication	of	 these	digit-sums	 is	always	very	easy,	because	 they	are

only	single	figures.	The	check	goes	along	parallel	to	the	original	multiplication:

Short-cuts
We	can	save	ourselves	some	 trouble	 in	adding	 the	digits	across	a	number	 to

find	the	digit-sum.	It	is	especially	worthwhile	in	finding	the	digit-sum	of	a	very
large	number.	Here	are	the	timesavers:

	
(1) Reduce	 to	 a	 single	 figure	 as	 you	 go	 along,	 don’t	 wait	 until	 the	 end.

Suppose	 you	 are	 finding	 the	 digit-sum	 of	 252,311.	 Start	 at	 the	 left	 and	 add
across:	 2	 plus	 5	 plus	 2	 and	 so	 on.	 Say	 to	 yourself	 only	 the	 totals,	 which	 are
running	 totals:	 2,	 7,	 9,	 12	…	 and	 now	 “reduce	 to	 a	 single	 figure	 as	 you	 go
along.”	Reduce	 this	12	 to	3	 (1	plus	2).	Go	ahead	with	 this	3	and	add	 to	 it	 the
remaining	 two	 digits	 of	 our	 example:	 3,	 4,	 5.	 The	 digit-sum	 is	 5.	 This	 is	 less
trouble	than	adding	2	plus	5	plus	2	plus	3	plus	1	plus	1	equals	14,	then	1	plus	4
equals	5.	In	a	very	long	number	it	can	save	a	good	deal	of	time.	For	instance,	the
digit	 sum	 of	 6,889,567	 is	 4.	 Reducing	 as	 you	 go	 along,	 you	 would	 say	 to
yourself	“6,	14,	is	5,	13,	is	4,	13,	is	4,	9,	15,	is	6,	13,	is	4.”	Otherwise,	you	would
have	to	add	all	the	way	up	to	the	49.
(2) Disregard	9’s.	If	the	number	that	you	are	adding	across	happens	to	contain

a	9,	or	several	9’s,	pay	no	attention	to	them,	leave	them	out	of	the	addition.	You
will	reach	the	same	result	as	if	you	had	added	them	in.	This	may	seem	odd,	but	it
is	always	true.	The	digit-sum	of	9,399	is	3;	we	ignore	the	9’s.	If	you	add	them	in
you	will	have	a	total	of	30,	then	reduce	it:	3	plus	zero	is	3.	Furthermore,	if	you
happen	to	notice	two	digits	that	add	up	to	9,	you	may	ignore	both	of	them:	the
digit-sum	of	81,994	is	4,	because	8	plus	1	is	9,	and	the	9’s	don’t	count.	It	is	only
safe	to	do	this	if	the	two	that	add	to	9	are	touching,	or	at	least	close	together.	If
they	are	not,	you	may	forget	that	you	have	decided	to	ignore	them	and	add	one
of	them	in.

	



This	method	of	checking	will	be	useful	in	the	next	chapter.	It	can	also	be	used
on	any	practice	problems	that	you	may	make	up	for	yourself	on	the	method	of
this	chapter,	and	it	will	be	used	in	calculations	other	than	multiplication.



CHAPTER	THREE
Speed	multiplication–“two-finger”	method
As	we	 saw	 in	 the	 last	 chapter,	 an	 important	 advantage	 of	 the	 Trachtenberg

system	is	that	we	are	able	to	multiply	any	number	by	any	other	number	and	write
down	the	answer	immediately.	We	do	not	write	down	the	intermediate	figures	as
in	conventional	multiplication.	The	direct	method	we	have	just	learned	is	one	of
general	application–it	can	be	used	in	multiplying	any	two	numbers	together.	But,
in	 many	 cases,	 it	 needs	 a	 further	 improvement	 which	 is	 the	 subject	 of	 this
chapter.	When	we	have	numbers	made	up	mostly	of	the	larger	digits,	as	in	978
times	 647,	we	 are	 likely	 to	 have	 large	 numbers	 to	 add	 up	mentally	 and	 large
numbers	to	carry.	The	further	improvement	of	the	method	consists	of	eliminating
these	inconveniently	large	numbers	from	our	mental	work.	We	do	this	by	adding
to	 the	 method	 a	 new	 feature–what	 Professor	 Trachtenberg	 called	 the	 “two-
finger”	method.	It	might	equally	well	be	called	the	“units-and-tens”	method.	You
will	see	where	the	names	come	from	as	we	go	into	the	method,	because	both	are
descriptive.
We	are	 going	 to	 look	 at	 the	new	 feature	 by	 itself,	 first	 of	 all,	 then	we	 shall

apply	it	to	the	problem	of	doing	a	full-sized	and	practical	multiplication.	So	for
the	moment,	we	put	out	of	our	minds	the	process	of	multiplication	that	we	have
been	working	on	and	we	concentrate	on	the	following	points:
1. A	digit	is	a	one-figure	number,	like	5	or	7.	Zero	is	a	digit.
2. When	we	multiply	a	digit	by	a	digit,	we	get	a	one-figure	or	a	 two-figure

number,	never	any	longer.	Proof:	the	largest	number	we	can	have	by	multiplying
digits	is	9	times	9,	or	81,	which	is	only	a	two-digit	number.
3. Sometimes	a	digit	times	a	digit	gives	a	one-figure	answer,	like	2	times	3.	In

those	cases	the	resulting	6,	or	whatever	it	 is,	will	be	treated	in	this	system	as	a
two-figure	number	by	writing	a	zero	in	front	of	 it.	We	shall	say,	 in	the	method
we	 are	 about	 to	 exhibit,	 that	 2	 times	 3	 is	 06.	 This	 has	 the	 advantage	 of
simplifying	 the	 rules	and	procedures,	by	standardizing	all	products	of	digits	as
two-figure	numbers.	Of	course,	writing	a	zero	before	a	number,	as	in	06,	has	no
effect	on	the	actual	value	of	the	number.
4. In	any	two-figure	number,	the	left-hand	figure	is	the	“tens”	figure	and	the

right-hand	figure	is	the	“ones”	or	“units”	figure.	For	instance,	in	the	number	37,
the	tensligure	is	3	and	the	units-figure	is	7.	This	agrees	with	our	everyday	usage,
because	if	we	have	37	dollars,	we	have	the	equivalent	of	3	tens	and	7	ones,	not



the	other	way	around.
5. In	 using	 our	 new	method,	 we	 shall	 often	 have	 occasion	 to	 use	 only	 the

units-digit	of	a	number.	For	 instance,	we	may	come	across	 the	number	24	and
say	merely	 “4,”	 ignoring	 the	 2	 that	 is	 the	 tens-digit.	 This	 sounds	 as	 though	 it
might	cause	errors,	dropping	out	a	figure	and	forgetting	it.	However,	it	works	out
because	 the	 forgotten	 tens-digit	 comes	 into	 its	own	somewhere	else.	There	are
other	 occasions	where	we	 use	 only	 the	 tens-digit	 and	 forget	 the	 units-digit.	 In
such	case	we	would	look	at	24	and	say	“2.”
6. THIS	 IS	 IMPORTANT.	 In	 the	 new	 method	 we	 very	 frequently	 have	 to

combine	the	idea	of	point	2	with	idea	of	point	5.	That	 is	 to	say,	 in	multiplying
two	digits	together	(like	3	times	8)	we	would	use	only	the	units-digit	of	the	result
(4	of	the	24	that	we	get	from	3	times	8)	or,	in	just	as	many	other	cases,	only	the
tens-digit.	For	 instance,	we	might	have	5	 times	7	and	use	only	 the	3,	 the	 tens-
digit	of	35.

	
This	 is	 an	 unfamiliar	 mental	 operation.	We	 do	 not	 have	 it	 in	 conventional

multiplication,	and	it	has	a	rather	strange	feel	 the	first	few	times	that	we	try	it.
See	 for	 yourself	 by	 looking	 at	 these	 examples	 and	 saying	 to	 yourself	 only	 the
units-digit	 of	 the	 products:	

Answers:	 2,	 8,	 0,	 and	 6.	 Now	 go	 back	 over	 the	 same	 examples	 and	 say	 to
yourself	only	the	tens-digit	in	each	case.	The	answers	are,	of	course,	1,	1,	2,	and
1.
7. Here	 is	where	 the	 “units-and-tens”	 name	 really	 comes	 in.	 Put	 two	 digits

side-by-side,	like	3	and	8.	Multiply	each	of	them	by	another	digit,	say	4,	using
the	idea	of	taking	only	the	units-or	the	tens-digit	of	the	result,	as	we	did	in	point
5.	We	do	this	in	a	particular	way,	however.	We	use	the	units-digit	only	when	we
multiply	the	left-hand	figure	(the	3)	and	the	tens-digit	for	 the	right-hand	figure
(the	8).	The	U	means	that	we	keep	only	the	units	of	the	result,	the	T	means	that
we	keep	only	the	tens.	The	result,	with	the	dropped-out	figures	in	parentheses,	is:

We	shall	always	have	the	U	and	T	in	that	order,	from	now	on.	With	the	left-hand
figure	of	 the	adjacent	pair,	 like	 the	3	of	3	8,	we	use	only	 the	units-digit	of	 the
product.	On	the	right-hand	figure	of	the	pair,	the	8	of	3	8,	we	use	only	the	tens-
digit	of	that	product.



8. Finally,	we	make	one	more	very	simple	step–we	add	 the	 two	figures	 that
we	found	in	point	7.	We	found	2	and	3,	in	the	example.	Now	add	them,	and	get
5.	This	is	the	product	we	shall	use	in	doing	actual	multiplication.
Notice	that	we	obtained	only	the	single	figure	5,	out	of	the	pair	of	digits	3	8.

We	“multiplied”	 the	3	8	by	4,	but	 it	was	not	ordinary	multiplication.	This	 is	a
characteristic	of	the	“units-and-tens”	method:	a	pair	of	digits	is	multiplied	by	a
third	 digit	 and	 you	 end	 up	 with	 only	 one	 digit,	 like	 the	 5	 of	 the	 example.	 It
happens	because	we	use	only	the	units	of	one	result,	throwing	away	the	10's,	and
vice	versa	with	the	other.
Because	 this	 is	 the	 essential	 part	 of	 the	 “two-finger	method,”	we	will	 show

this	 example	 in	 full.	 We	 use	 again	 3	 8	 times	 4	 (not	 “times”	 in	 the	 ordinary
sense!),	 and	 we	 exhibit	 the	 relations	 in	 the	 following	 diagram:	

We	hasten	to	add	that	nothing	so	complete	is	needed	in	actual	practice,	after	the
method	 has	 become	 familiar.	 Nothing	 is	 written	 except	 the	 numbers	 to	 be
worked	on,	that	is,	3	8	and	4,	and	the	result,	5.	More	than	that:	after	the	method
is	 learned	you	 should	 try	 to	 avoid	 even	 thinking	 the	 explanatory	 numbers	 that
you	see	in	the	diagram.	It	should	be	a	semi-automatic	mental	process,	most	of	it
going	on	below	the	fully	conscious	level.	You	look	at	the	3	8	and	the	4	and	are
half	 aware	 of	 the	 2	 and	 3	 (in	 12	 and	 32),	 and	 you	 say	 “5”	 to	 yourself	 almost
immediately.	 That	 high	 a	 degree	 of	 facility	 will	 come	 after	 a	 good	 deal	 of
practice,	just	as	in	any	other	skill.
To	 emphasize	 the	 importance	 of	 this	 process	we	 call	 the	 result	 by	 a	 special

term,	 the	 “pair-product.”	The	5	 that	we	got	 in	 the	 above	example	 is	 the	 “pair-
product”	of	3	8	×	4.

	
Definition.	A	pair-product	is	a	number	obtained	by	multiplying	a	pair	of
digits	 by	 a	 separate	 (multiplier)	 digit	 in	 this	 special	 way:	 we	 use	 the
multiplier-digit	to	multiply	each	digit	of	the	pair	separately,	and	then	we
add	 together	 the	 units-digit	 of	 the	 product	 of	 the	 left-hand	 digit	 of	 the
pair	and	the	tens-digit	of	the	product	of	the	right-hand	digit	of	the	pair.

	



The	 figure	 that	we	get	 in	 this	way,	 the	pair-product,	 is	 of	 use	 to	us	because	 it
enables	 us	 to	 perform	 rapid	multiplication	without	 carrying	 large	 numbers,	 or
even	 encountering	 large	 numbers.	 How	 this	 comes	 about	 we	 shall	 see	 in	 a
moment.	 First	 let	 us	 look	 at	 some	 examples	which	will	 bring	 out	 a	 couple	 of

minor	points	of	interest:	
The	answer	is	1,	as	you	have	probably	noticed;	if	not,	you	can	see	it	from	this:

We	add	two	digits	together	to	get	the	pair-product.	This	can	cause	us	to	go	over
10,	as	we	had	11	in	the	last	example.	But	notice	that	this	will	not	take	us	over	18,
so	a	single	dot	will	 take	care	of	 it.	The	points	 illustrated	 in	 the	examples	were
these:	1. Try	to	think	of	a	single-digit	product	as	if	it	had	a	zero	written	in	front.
For	instance,	2	times	2	is	04,	and	6	times	1	is	06.	The	purpose	of	this	is	to	guard
against	a	human	tendency	to	error.	Thinking	quickly	of	the	tens-digit	of	2	times
2,	we	may	be	misled	by	the	4	that	pops	into	our	minds.
2. When	we	add	the	two	partial	products,	the	tens	of	one	and	the	units	of	the

other,	the	two	together	may	sometimes	bring	us	over	10;	that	is,	it	may	bring	us



into	 two-digit	 numbers.	 In	 that	 case	we	do	 as	usual,	we	 rewrite	 the	units-digit
(the	3	of	13,	for	instance)	and	we	indicate	the	tens-digit	(the	1	of	13)	by	a	dot.
This	means	that	we	are	doing	some	carrying.	But	it	is	an	easy	kind	of	carrying.
We	shall	not	need	to	carry	15,	as	we	would	in	some	other	kinds	of	multiplication
when	we	come	to	a	total	of	153	for	one	figure	of	the	answer.	The	smallness	of
the	carried	 figure	 is	 important	because	 it	 indicates	 the	smallness	of	 the	 figures
that	you	were	working	with.
3. Remember	 always,	 zero	 times	 any	 number	 is	 zero,	 but	 multiplying	 any

number	by	one	leaves	the	number	unchanged.
4. Only	 one	 or	 two	 of	 the	 pair-product	 calculations	 should	 be	 done	 in	 full

written	 form,	as	we	diagrammed	3	8	by	4	a	 few	pages	back.	After	one	or	 two
written	ones,	you	should	make	the	necessary	effort	of	concentration	to	visualize
the	 two	numbers–like	12	 and	32–and	 combine	 the	 inner	 digits	 (to	 get	 5).	 It	 is
easy	 enough	 to	 visualize	 this	mentally,	 even	 before	we	 have	 practiced	 it.	 The
important	thing	is	to	get	this	down	pat.	We	wish	to	get	to	the	point	where	we	feel
that	we	are	leaving	out	some	of	the	steps–which	means	really	that	we	are	doing
some	 of	 the	 steps	 of	 the	 calculation	 without	 focusing	 our	 attention	 on	 them.
Practice	will	bring	us	to	this	point.

	
Try	a	few	more	problems,	with	the	points	just	mentioned	in	mind:

Stop	here	a	moment.	Is	everything	perfectly	clear	up	to	now?	If	not,	it	will	be
worth	while	to	go	back	and	re-read	whatever	is	needed.	The	ideas	that	we	have
been	considering	in	the	last	few	pages	are	not	complicated,	but	it	is	important	to
have	them	absolutely	clear.	They	are	the	heart	of	the	method	of	this	chapter.



MULTIPLICATION	BY	A	SINGLE	DIGIT
We	can	use	 the	pair-products	 that	we	have	been	 studying	 to	perform	simple

multiplications.	Suppose	we	wish	to	multiply	3,112	by	6.	This,	of	course,	is	an
easy	example,	but	we	will	start	with	easy	ones	and	work	up	to	the	more	difficult
ones.	Using	the	pair-products,	we	have	a	new	way	to	perform	this	multiplication.
The	basic	idea	is	this:

Each	pair-product	is	one	figure	of	the	desired	answer.

	
Let	us	do	an	example	in	full.	We	set	it	up	with	a	zero	in	front,	as	we	did	in	the
last	chapter.	We	put	the	U	of	the	UT	over	the	position	where	the	“next”	figure	of

the	answer–now	the	first	figure–will	appear:	
The	T	has	no	work	to	do	now,	because	it	is	not	over	a	digit.	We	simply	use	the
units	of	2	times	6.

	
First	Step:

Second	Step:

The	UT	has	moved	to	the	left.	That	is	because	the	U	of	the	UT	is	always	placed
over	the	position	where	the	next	figure	of	the	answer	is	to	appear,	that	is,	where
the	7	will	be.	 In	 this	example,	 the	7	 is	 the	pair-product	of	 the	units-digit	of	06
(from	1	times	6)	plus	the	tens-digit	of	12	(from	2	times	6).
In	the	first	step,	the	2	of	3112	was	used	as	a	U.	In	the	second	step	it	was	used

again,	but	this	time	as	a	T.	This	always	happens.	Each	figure	of	the	multiplicand
is	used	twice,	once	under	the	U	of	UT	and	then	under	the	T.

	
Third	step:	Move	the	UT	to	the	next	figure	of	the	multiplicand.



This	6	is	the	pair-product	of	the	units-digit	of	06	(1	times	6	is	06),	plus	the	tens-
digit	of	06	(again	1	times	6	is	6).

	
Fourth	step:	Move	to	the	next	figure	of	the	multiplicand.

The	8	is	the	pair-product	of	the	units-digit	of	18	(3	times	6),	plus	the	tens-digit	of
06	(1	times	6	is	06).

	
Fifth	step:	Move	to	the	last	figure,	the	zero	in	front	of	the	multiplicand.

This	is	the	pair-product	of	the	tens-digit	of	18	(3	times	6),	plus	the	units	digit	of
00	(zero	times	6	is	zero).
Obviously,	 when	we	 come	 to	 a	 zero	 in	 the	 long	 number,	 we	 don’t	 need	 to

think	about	units-digit	or	 tens-digit.	The	act	of	multiplying	by	zero	annihilates
the	6.
In	this	method	there	is	no	reason	to	avoid	large	digits	as	was	advisable	in	the

direct	method.	Let	us	look	at	a	problem	with	large	digits,	instead	of	merely	the	1,
2,	and	3,	of	the	easy	examples.	We	are	familiar	now	with	the	UT	above	the	pair	of
digits,	and	we	may	omit	 them.	On	 the	other	hand	 there	 is	 still	 some	danger	of
losing	our	place	and	picking	up	the	wrong	digit.	As	a	compromise,	we	now	show
a	curved	line	that	is	forked	at	one	end,	enabling	it	to	point	to	both	digits	of	the
digit-pair:
First	step:

Second	step:



Third	step:

Fourth	step:

So	the	answer	is	5,306.

	
In	this	example	we	did	not	receive	the	full	benefit	of	the	power	of	the	units-

and-tens	 method.	 We	 could	 have	 done	 the	 problem	 easily,	 even	 with
conventional	multiplication.	The	point	is	that	this	happens	only	with	the	simplest
examples.	In	most	cases	where	we	find	ourselves	needing	to	do	a	multiplication,
the	numbers	we	have	to	deal	with	will	not	be	specially	selected	to	make	the	work
easy.	The	units-and-tens	method	takes	care	of	all	kinds	of	problems.
We	 shall	 see	 the	 advantage	 of	 the	 units-and-tens	method	when	we	 come	 to

multiplication	by	larger	multipliers,	not	merely	by	single	digits	like	6	or	7.	In	the
meantime,	this	multiplication	by	single	digits	is	excellent	practice	because	a	long
multiplier	is	made	up	of	single	digits,	and	the	calculation	is	an	extension	of	what
we	are	doing	now.
Incidentally,	 if	you	look	back	at	 the	problem	we	have	just	done	and	observe

how	 the	 forked	 line	 moves	 to	 the	 left	 across	 the	 multiplicand,	 you	 can
understand	how	the	name	“two-finger”	method	originated.	A	person	who	is	first



beginning	 to	 familiarize	 himself	 with	 the	 method	 may	 have	 some	 trouble	 in
keeping	his	place;	that	is,	in	remembering	which	pair	of	digits	he	is	multiplying
and	which	one	has	the	units	designation.	To	keep	track	of	the	process	as	he	goes
along,	he	may	point	at	 the	 two	figures	of	 the	digit-pair	with	 the	forefinger	and
the	middle	 finger	 of	 the	 left	 hand.	Call	 the	middle	 finger	 of	 the	 left	 hand	 the
“units	finger,”	and	the	forefinger	the	“tens	finger.”	Then,	once	he	has	identified
his	fingers,	he	can	always	keep	his	place	in	a	calculation	by	pointing	at	the	digit-
pair.	The	middle	finger	takes	the	place	of	the	letter	U	that	we	have	written	above
the	numbers,	and	the	forefinger	takes	the	place	of	the	T.	If	you	find	it	helps	you,
by	all	means	try	it.	In	any	case,	you	will	find	quite	soon	that	you	can	dispense
with	the	pointing	because	you	know	where	you	are.
On	 the	 other	 hand,	 even	 after	 you	 find	 that	 you	 can	 get	 along	 without	 the

pointing	fingers	or	the	curved	lines,	you	should	still	make	it	a	habit	to	set	out	the
work	in	a	neat	and	orderly	fashion.	The	fact	that	the	work	is	well	arranged	is	a
simple	safeguard	against	the	human	tendency	to	make	careless	errors,	especially
when	one	is	working	at	high	speed.	The	point	is	so	true,	and	so	obviously	true,
that	one	might	think	it	would	hardly	be	necessary	to	mention	it.	Unfortunately,
experience	 shows	 that	 most	 people,	 even	 the	 majority	 of	 quite	 intelligent
persons,	will	write	the	work	out	in	a	crowded	and	irregular	fashion.

	
Try	your	hand	at	one	or	more	of	 these	examples,	keeping	your	place	 in	any

way	you	find	convenient:
1.	5	6	×	8
2.	5	6	7	×	9
3.	8	5	4	×	4
4.	8	4	5	6	3	×	6

	
Answers:	1.	448	2.	5,103	3.	3,416	4.	507,378

	
Make	up	 examples	 of	 your	 own	 and	work	 them.	The	more	 you	do	 of	 these

simple	 ones,	 the	 faster	 and	 easier	 you	 will	 do	 the	 long	 and	 difficult
multiplications.	 These	 single-digit	 problems	 are	 the	 foundation	 of	 the	 fast
multiplication	method.

MULTIPLICATION	BY	TWO-DIGIT	NUMBERS
We	have	been	multiplying	numbers	of	any	length	by	single	figures,	like	6	or	7.



But	how	shall	we	multiply	a	long	number	by	37,	for	instance?	Or	by	2,237?	We
begin	by	extending	our	method	to	the	two-digit	multipliers	first.
The	over-all	 idea	 is	 that	we	now	add	 the	method	of	 the	previous	 chapter	 to

what	 we	 have	 been	 doing	 in	 this	 chapter.	 This	 is	 true	 not	 only	 for	 two-digit
multipliers,	but	for	all	multipliers.	If	you	will	refresh	your	memory	on	how	we
worked	the	outside	and	inside	pairs,	and	moved	across	the	numbers,	you	will	see
the	same	thing	happening	here.	The	difference	is	that	now	we	are	also	using	the
units-and-digits	feature.
Consider	 the	 problem	73	 times	 54.	 In	 the	 last	 chapter	we	worked	 problems

like	this	by	the	outside	and	inside	pairs.	Let’s	not	bother	to	do	the	multiplication
by	 the	 method	 of	 the	 last	 chapter	 but,	 for	 the	 sake	 of	 comparison,	 we	 shall
indicate	 the	way	 that	 the	 figures	pair	 themselves	off.	X	marks	 the	place	of	 the
figure	of	the	answer	that	we	get	at	each	step:
First	step:

Second	step:

Third	step:

Fourth	step:

That	was	how	we	did	it	in	the	last	chapter.	Now	compare	it	with	the	diagrams	for
the	 improved	method.	Here	 again	we	 are	 not	 going	 to	work	 the	 problem,	 but
merely	observe	the	movement	of	the	pair	lines:
First	step:



Have	 you	 noticed	 that	 the	 figure	 of	 the	multiplicand	 directly	 above	 the	 space
where	the	next	figure	is	to	appear	is	still	part	of	the	outside	pair?

	
Second	step:

Here	 is	 where	 the	 units-and-tens	 feature	 comes	 into	 play.	 Each	 figure	 of	 the
multiplier	works	on	two	figures	of	the	multiplicand.	In	this	example,	the	4	of	the
multiplier	 acts	 on	 the	 adjacent	 digits	 7	 3	 in	 the	multiplicand	 to	 obtain	 a	 pair-
product.	 The	 solid	 connecting	 line	 indicates	 the	 units-figure;	 the	 broken
connecting	 line,	 the	 tens-figure.	That	 is,	we	use	 the	units	of	7	 times	4	and	 the

tens	of	3	times	4:	
Before	we	finish	the	calculation,	see	how	the	lines	move	across	the	multiplicand
exactly	the	same	as	they	moved	in	the	method	of	the	preceding	chapter:
Third	step:

Fourth	step:

IMPORTANT:	The	position	of	 the	 lines	 is	of	 the	utmost	 importance	 in	 this
method.	 It	 is	 the	 whole	 secret	 of	 getting	 the	 right	 answer.	 The	 rest	 of	 it,
multiplying	 the	 digits	 together	 and	 taking	 the	 units	 or	 tens	 of	 their	 product,	 is
easy.	 Besides,	 you	 have	 already	mastered	 it.	 In	 doing	 difficult	 multiplications
with	long	numbers,	the	difficulty	comes	entirely	in	using	the	correct	two	digits



to	match	 as	 a	 pair	 and	multiply	 together.	 The	 right	 pair	 of	 digits,	 at	 the	 right
time,	will	give	you	the	next	figure	of	the	answer.
As	 in	 the	 method	 of	 the	 preceding	 chapter,	 the	 figure	 of	 the	 multiplicand

directly	above	the	space	where	the	answer	is	to	appear	is	part	of	the	outside	pair;
to	be	specific	it	is	now	the	units-figure	of	the	outside	pair;	the	tens-figure	is	the
digit	to	its	immediate	right.	From	here	we	work	inwards,	locating	the	units-and
tens-figures	of	the	inside	pair.
To	find	the	next	figure	of	the	answer,	you	may	either	draw	or	imagine	drawn	the
leftmost	line	of	the	little	pattern	of	lines	that	we	saw	in	the	diagram	above.	This
will	be	directly	above	the	next	figure	of	 the	answer	to	be	calculated.	Then	you
can	easily	visualize	the	rest	of	that	pattern,	if	you	have	looked	at	the	diagram	and
understood	how	it	goes.	The	example	in	full	is	as	follows:
First	step:

Second	step:

Perhaps	if	we	simplify	the	picture	the	main	point	will	show	up	more	clearly,
like	this:

The	meaning	of	the	diagram	is	that	we	make	the	4	of	5	4	act	on	the	digit	pair	7	3,
like	this:



Then	we	make	the	5	of	5	4	act	on	the	pair	3	and	nothing:

The	7	3	×	4	gives	us	9	(because	28	plus	12	is	9)	and	the	3	–	×	5	gives	us	5	(15
plus	 nothing),	 in	 the	 usual	 units-and-tens	 way	 that	 we	 have	 worked	 before.
Adding	these	two	results,	9	plus	5	is	14,	we	write	the	4	and	put	a	dot	for	the	1	of
14.
All	this	should	be	done	mentally	in	actual	work.	We	write	out	everything	here

only	for	the	sake	of	explanation.	It	will	be	easy	to	do	these	steps	mentally	after
we	have	practiced	a	while	on	the	units-and-tens	method.	That	is	why	we	said,	a
few	 pages	 back,	 that	 practice	 in	 multiplying	 by	 single	 digits	 is	 invaluable
preparation	for	the	whole	method.

	
Third	step:

	
Fourth	step:

	



So	the	answer	id	3,942.

LONG	NUMBER	BY	TWO-DIGIT	MULTIPLIER
The	same	process	enables	us	to	multiply	a	number	of	any	length	by	two	digits.

We	 had,	 just	 now,	 73	 times	 54.	 Suppose	we	wish	 to	multiply	 5,273	 by	 54.	 It
begins	with	exactly	the	same	first	two	steps:
First	step:

Second	step:

Now	we	continue	with	the	same	process:

	
Third	step:

Fourth	step:

Fifth	step:



Last	step:

The	answer	is	284,742
	

In	actual	work	we	would	certainly	not	rewrite	the	figures	all	over	at	each	step–
once	 is	 enough!–and	we	would	not	write	 any	of	 the	 “work”	 figures.	They	can
easily	 be	 done	 mentally.	 The	 calculation	 goes	 fast	 and	 is	 easy,	 if	 we	 have
practiced	with	pair-products.	Seeing	7	3	times	the	4,	of	say	5	4,	we	should	say
“9”	almost	immediately.	The	picture	28	+	12	will	require	no	mental	effort	after
we	do	a	reasonable	number	of	them	as	practice.	In	fact,	as	we	mentioned	before,
it	 will	 become	 a	 semi-automatic	 mental	 operation,	 and	 will	 be	 done	 without
focusing	full	attention.	This	is	the	way	it	should	be.

THREE-DIGIT	MULTIPLIERS
In	 doing	 the	 multiplication	 of	 a	 number	 of	 any	 length	 by	 a	 multiplier

consisting	of	three	digits,	such	as	273	times	154,	or	5,273	times	154,	or	235,273
times	154,	the	same	general	principles	apply.	Now,	however,	each	figure	of	the
answer	 is	 the	sum	of	 three	parts.	Before,	 it	was	 the	sum	of	 two	parts.	Each	of
these	three	parts	comes	from	a	different	digit-pair,	as	we	shall	see,	by	using	the
usual	units-and-tens	 idea.	Let	us	 look	at	an	example,	273	 times	154.	We	put	3
zeroes	in	front	(154	has	3	digits!).

	
First	step:



Second	step:

In	fact,	if	you	compare	this	with	the	preceding	example	you	will	find	the	work	so
far	has	been	the	same.	That	is	because	the	1	of	154	has	not	yet	contributed	to	the
answer–it	has	not	yet	paired	with	any	part	of	the	273.	But	now	we	go	on:
Third	step:

Fourth	step:

The	4	is	not	out	of	action	yet–it	still	contributes	the	tens-digit	of	2	times	4.	But
this	happens	to	be	zero,	as	2	times	4	is	08.	We	get	real	contributions	only	from
the	5:	10	plus	35	and	from	the	1:	07	plus	03.

	



Fifth	step:

Last	step:

The	 answer	 is	 42,042.	 From	 this	 example	 it	 is	 evident	 how	we	 proceed	 if	 the
multiplier	has	four	digits,	or	any	number	of	digits.

	
We	have	considered	multipliers	of	increasing	length,	first	one	digit,	then	two,

then	 three,	 and	 of	 course	 this	 has	 resulted	 in	 a	 certain	 amount	 of	 repetition.
Primarily	this	step-by-step	procedure	was	chosen	to	ensure	a	clear	presentation–
we	wished	to	be	sure	the	process	would	not	be	misunderstood.	It	should	now	be
added	 that	 this	 step-by-step	 procedure	was	 intended	 to	 do	 something	more.	 It
emphasizes	 the	 point	 that	 this	 is	 the	 correct	 way	 to	 go	 about	 practicing	 the
method.	 Doing	 several	 dozen	 multiplications	 by	 single	 digit	 multipliers	 will
make	 the	 two-digit	multipliers	 seem	as	easy	as	 they	 really	are.	Practicing	with
two-digit	 multipliers	 until	 the	 procedure	 is	 familiar	 will	 make	 longer
multiplications	 easy.	 Altogether	 the	 amount	 of	 practice	 needed	 to	 master	 the
whole	process	quite	thoroughly	is	only	a	few	hours.	At	the	end	of	our	practicing
we	 shall	 be	 in	 possession	 of	 a	 new	 and	 interesting	 technique,	 and	 also	 a	 new
speed	in	calculation.	The	degree	of	speed	achieved	is	determined	by	the	amount
of	 practice	 we	 give	 to	 it;	 with	 sufficient	 practice	 the	 speed	 can	 become
phenomenal.

SUMMARY
In	brief,	the	two-finger	method	consists	of	these	three	features:
1. There	is	a	process	of	forming	pair-products,	as	the	pair-product	7	is	formed



out	of	5	3	times	7:	
2. There	 is	 a	way	 of	multiplying	 any	 number	 by	 a	 single	 digit,	 using	 these

pair-products:	

until	finally	we	reach

3. There	is	a	way	of	extending	this	multiplication	by	a	single	digit	to	include
multiplication	by	numbers	of	any	length.	This	 is	done	by	forming	several	pair-
products	and	adding	 them	 to	 find	each	digit	of	 the	answer.	These	several	pair-
products	are	“inner”	and	“outer”	pairs,	taken	by	moving	inward	from	both	ends
toward	 the	 space	 between	 the	 two	 numbers	 that	 are	 being	 multiplied:	

then

and	so	on,	until	the	end:

Remember,	the	U	that	begins	the	UT	pattern	in	any	problem–the	U	farthest	to	the



left–is	 always	 placed	 directly	 above	 the	 position	where	 the	 next	 figure	 of	 the
answer	will	appear.

PRACTICE	PROBLEMS
Say	 aloud	 the	 pair-product	 of	 the	 following	 pairs	 of	 numbers	 (answers	 are

below):
	

1.	67	×	8
2.	56	×	4
3.	94	×	2
4.	77	×	6
5.	66	×	7
6.	59	×	7

	
Perform	 the	 following	 single-digit	 multiplications	 by	 using	 pair-products,	 one
for	each	digit	of	the	answer.

	
7.	56	×	4
8.	82	×	8
9.	3945	×	6

	
Perform	the	following	multiplications	by	using	pair-products	and	inner	and	outer
pairs	(two-products	for	each	figure	of	the	answer):
10.	95	×	62
11.	38	×	66
12.	83	×	45
13.	3456	×	86
14.	43546	×	62

	
Answers:

	
		1.	13
		2.	2
		3.	8
		4.	6
		5.	6



		6.	11
		7.	224
		8.	656
		9.	23,670
10.	5,890
11.	2,508
12.	3,735
13.	297,216
14.	2,699,852



CHAPTER	FOUR
Addition	and	the	right	answer
In	 the	 preceding	 chapters	 we	 developed	 methods	 of	 multiplication	 with

emphasis	on	speed.	At	the	same	time,	we	paid	attention	to	the	need	for	accuracy
and	brought	out	the	importance	of	checking	our	results.
In	 the	 problem	 of	 addition	 we	 have	 again	 these	 two	 factors,	 speed	 and

accuracy.	We	shall	develop	in	this	chapter	a	method	of	addition	which	is	faster
than	 the	 method	 used	 by	 most	 people,	 and	 we	 shall	 also	 find	 a	 method	 for
checking	and	double-checking	 the	results.	The	emphasis,	however,	needs	 to	be
changed	 somewhat.	 In	 using	 conventional	 addition,	 the	 average	 man	 cannot
always	add	a	fairly	long	column	of	figures	without	making	a	mistake.	Suppose
he	 has	 a	 column	 of	 five-digit	 numbers	 to	 add.	 He	 must	 add	 five	 separate
columns,	and	in	one	time	out	of	the	five	he	is	likely	to	make	a	mistake,	using	the
conventional	method.
We	 shall	 learn	 how	 to	 check	 the	 work	 by	 individual	 columns,	 without

repeating	the	addition.	This	has	several	advantages:
(1) we	save	the	labor	of	repeating	all	the	work,	while	at	the	same	time

	
(2) we	locate	the	error,	if	there	is	one,	in	the	column	where	it	occurs	(making

it	easy	to	correct),	and

	
(3) we	are	 certain	 to	 find	 the	 error,	which	 is	 not	 necessarily	 the	 case	 if	we

repeat	all	the	work.

	
This	 last	point	 is	 something	 that	most	people	do	not	 realize.	Each	one	of	us

has	 his	 own	 weaknesses	 and	 his	 own	 kind	 of	 errors.	 We	 recognize	 this	 in
spelling:	 a	 man	 who	 is	 otherwise	 good	 at	 spelling	 may	 spell	 “parallel”	 as
“paralell,”	and	another	may	spell	“harass”	with	 two	r’s.	 In	arithmetic	 the	same
thing	happens,	 though	most	of	us	are	 less	aware	of	 it.	One	person	may	have	a
perverse	tendency	to	say	that	8	times	7	is	54.	If	you	ask	him	directly	he	will	say
“56,”	but	in	the	middle	of	a	long	calculation	it	will	slip	out	as	“54.”	Other	people
have	different	quirks.	That	is	one	reason	why	repeating	the	calculation	is	a	poor
way	 to	 check	 it.	 Whatever	 mistake	 the	 calculator	 made	 the	 first	 time,	 it	 is
probably	 his	 favorite	 error,	 and	 he	 will	 likely	 do	 it	 again	 when	 he	 checks	 by



repetition.
“Natural”	 errors	may	 trip	us	up	 if	we	persuade	 another	 person	 to	 check	our

work	for	us.	These	are	 the	mistakes	 that	come	naturally	 to	anyone	 in	 the	same
situation.	Handwriting	is	the	simplest	example.	If	the	one	who	wrote	the	figures
makes	 the	number	4	as	 it	 is	 in	print,	with	 the	 lines	coming	together	at	 the	 top,
then	when	he	writes	too	fast	it	will	round	off	into	something	very	much	like	a	9.
Anyone	 checking	 the	 work	 will	 read	 it	 as	 a	 9,	 just	 as	 the	 first	 person	 did	 in
making	the	original	error.
Many	other	natural	errors	occur	in	various	situations:	continuing	the	repetition

of	a	repeated	pattern	one	time	too	many,	reversals,	and	a	variety	of	others.	But	in
everyday	 life	 these	 natural	 errors,	 which	 are	 natural	 for	 everyone,	 are	 less
important	 than	our	personal	 favorite	errors,	 simply	because	we	can	seldom	get
anyone	else	to	check	our	work	for	us.
All	in	all,	we	can	make	the	broad	statement	that	practically	any	other	way	of

checking	 the	 work	 is	 better	 than	 repeating	 it.	 We	 have	 in	 the	 Trachtenberg
system	a	particular	way	of	checking.	Also,	we	have	a	speed	feature	which	will
be	new	to	many,	perhaps	most,	people.

FINDING	THE	TOTAL
As	in	the	conventional	method	of	addition,	we	write	the	figures	to	be	added	in

a	column,	and	under	the	bottom	figure	we	draw	a	line,	so	that	 the	total	will	be
under	the	column.	When	writing	them	remember	that	the	mathematical	rule	for
placing	 the	numbers	 is	 to	align	 the	decimal	points.	That	 is,	put	all	 the	decimal
points	directly	under	the	first	one.	Adding	12.5,	271.65,	and	3.01,	we	write:

Very	often	we	do	not	see	any	decimal	point,	as	 in	 the	number	73,	but	 then	 the
decimal	point	 is	 just	after	 the	number;	73.	would	be	 the	complete	 form,	which
nobody	bothers	to	write.	So	when	no	decimal	points	are	seen	in	the	numbers	you
are	 given,	 you	 line	 them	 up	 on	 the	 last	 figures,	 where	 the	 invisible	 decimal
points	 are.	 That	 is	 what	 we	 have	 been	 doing	 in	 the	 conventional	 method	 of
addition,	and	in	our	new	method	we	set	up	the	problem	in	the	same	way.	Here	is
one	set	up	correctly	to	work:



The	 conventional	method	 now	 has	 us	 adding	 the	 figures	 down	 the	 right-hand
column,	9	plus	8	plus	7,	and	so	on.	We	can	do	this	if	we	wish	in	the	new	method,
but	it	is	not	compulsory:	you	can	begin	working	on	any	column.	For	the	sake	of
novelty,	we	will	start	on	the	left-hand	column.	We	add	as	we	go	down,	but	we
use	Trachtenberg’s	rule:

	
Never	count	higher	than	eleven.

	
That	is,	when	the	running	total	becomes	greater	than	11,	we	reduce	it	by	11	and
go	ahead	with	the	reduced	figure.	As	we	do	so,	we	make	a	small	tick	or	check-
mark	beside	the	number	that	made	our	total	higher	than	11.	In	the	example,	we
go	 down	 the	 left-hand	 column,	 repeated	 below	 on	 the	 left,	 making	 mental
calculations	as	follows:

3
9' 3	plus	9,

12:
this	is	more	than	11,	so	we	subtract	11	from	12.	Make	a	tick	and	start	adding	again
with	1.

1 1	plus	1,	2
6 2	plus	6,	8
9' 8	plus	9,

17:
make	a	tick	and	reduce	17	by	11.	Say	“6”	and	go	on.

5' 6	plus	5,
11:

make	a	tick,	say	“zero,”	and	go	on.

9
7' 9	plus	7,

16:
make	a	tick,	say	“5,”	and	go	on.

8' 5	plus	8,
13:

make	a	tick	and	write	2.

The	final	figure,	2,	will	be	written	under	the	column	as	the	“running	total.”



Next	 we	 count	 the	 ticks	 that	 we	 have	 just	 made	 as	 we	 dropped	 11’s.	 How
many	were	 there	 in	 the	example?	Five.	So	we	write	5	under	 the	column	as	 the
“tick	figure.”	The	example	now	looks	like	this:

The	desired	answer	will	be	found	from	the	running	total	and	the	tick	number.
But	first	we	must	do	the	same	for	the	other	columns.	The	result	will	be:

Now	we	 arrive	 at	 the	 final	 result	 by	 adding	 together	 the	 running	 total	 and	 the
ticks	 in	 this	way:	we	add	 the	neighbor	on	 the	right	 in	 the	bottom	row	of	 ticks.
Like	this:



In	the	example	we	have:

This	 special	 kind	 of	 addition,	 adding	 in	 the	 neighbor	 at	 the	 lower	 right,	 is	 a
regular	feature	of	the	method,	and	it	will	always	be	used.

	
In	full,	if	the	example	we	have	just	seen	were	to	be	done	as	actual	work,	the

answer	would	look	like	this:

	
(columns	of	figures)

In	adding	these	two	rows	we	begin	at	the	right-hand	end	and	move	to	the	left,	as
we	are	accustomed	to	doing	in	conventional	addition.	At	the	last	step,	we	must
imagine	 two	 zeroes	 as	 they	 are	 shown,	 one	 above	 the	 other,	 if	 we	 have	 not
actually	 written	 them	 there.	 That	 is	 because	 there	 is	 something	 left	 to	 add,
namely	the	leftmost	digit	in	the	tick	row,	the	5	in	this	case.	This	happens	because
we	are	not	 adding	 in	 the	usual	manner,	we	 are	 adding	 “L-shaped.”	At	 the	 last
step	we	look	at	these	figures:

The	same	procedure	is	to	be	followed	in	all	cases.

A	simple	shortcut
To	 make	 our	 addition	 even	 easier,	 you	 will	 notice	 that	 when	 using	 the

“elevens-rule”	we	cannot	go	over	19	when	we	are	running	down	a	column.	The
first	or	left-hand	digit	is	therefore	always	a	1,	when	we	go	over	11.	Consequently



we	do	not	need	to	perform	a	true	subtraction	when	we	“subtract	11.”	It	will	be
sufficient	to	forget	the	first	digit	and	reduce	the	other	digit	by	1:	if	we	have	16
we	think	only	of	the	6	and	reduce	it	to	5.	So	16	becomes	5,	as	we	make	our	tick.
This	sounds	trivial,	but	it	is	not.	In	doing	actual	problems,	the	way	you	think	can
make	the	work	twice	as	hard	or	twice	as	easy.
For	a	short	and	simple	example,	suppose	you	add	up	a	problem	in	dollars	and

cents:

Did	you	remember	to	add	in	the	lower	right-hand	neighbor,	when	you	added	the
two	 bottom	 rows?	 If	 you	 did,	 you	must	 have	 arrived	 at	 the	 right	 answer.	 It	 is
3.76.	To	be	specific,	the	bottom	rows	are:

and	these	do	actually	add	up	to	3.76	if	you	add	in	the	lower	right-hand	neighbors
in	the	bottom	row,	the	0.23.

	
Example	1:

Example	2:



Here	are	a	 few	problems	 for	practice,	with	 the	correct	 answers	 following.	 It
will	be	easy	to	make	up	similar	problems	for	yourself:

	
Problem	1:

Problem	2:

Problem	3:



Problem	4:

The	 answers	 below	 were	 obtained	 by	 applying	 L-shaped	 addition	 to	 the
following	running	totals	of	reduced	digits	and	tick	numbers:

NOTE.	From	time	to	time,	various	persons	have	used	a	procedure	similar	 to
our	 “elevens-rule:”	 they	 subtracted	10	 and	made	 a	 tick	whenever	 the	 running-
total	exceeded	10.	This	is	a	good	idea	as	far	as	it	goes.	However,	we	prefer	the
“elevens-rule”	 because	 it	 goes	 further	 and	 can	 give	 us	 a	 special	 check	 and



double-check	which	will	be	detailed	later	in	this	chapter.

CHECKING	THE	ANSWER
To	summarize	in	a	few	words	what	we	have	done,	let	us	look	again	at	one	of

our	examples,	but	now	with	most	of	the	figures	only	suggested	by	dots:

Summarizing	 in	 a	 few	words,	 we	 used	 the	 column	 of	 figures	 to	make	 up	 the
working-table,	and	we	used	the	working-table	to	find	the	answer.	The	working-
table,	as	you	see,	consists	of	the	running	totals	and	the	tick	numbers	that	we	have
been	using	in	every	example.
Now	to	check	our	work	we	use	these	three	items,	 the	column	of	figures,	 the

working-table,	and	 the	answer.	We	calculate	a	check-figure	 from	each,	and	we
compare	these	check-figures	with	one	another	to	see	if	they	agree.	If	they	do,	the
work	is	correct.	If	they	do	not	agree,	there	is	something	wrong	somewhere.	With
this	method	 of	 checking,	 the	 “somewhere”	 quickly	 becomes	 specific.	We	will
determine	in	the	check,	without	repeating	the	addition,	which	column	ot	figures
was	added	incorrectly.
Since	we	have	three	items	to	check,	the	act	of	checking	consists	of	three	steps.

First,	let	us	describe	the	three	steps,	and	then	we	shall	do	each	of	them	in	detail
as	applied	to	our	example:

	
First	step:	We	find	a	check-figure	for	each	column	of	figures.

	
Second	step:	We	find	a	check-figure	for	the	working-table.

	
Third	step:	We	find	a	check-figure	for	the	answer	(or	total).

	
First	 step:	 Taking	 in	 turn	 each	 column	 of	 digits,	 we	 find	 the	 nines-



remainders.	This	is	the	same	as	the	reduced	digit-sums	that	we	saw	on	here.	To
find	the	nines-remainders	we	strike	out,	or	underline,	all	9’s	and	all	combinations
of	digits	 that	add	to	9	or	 to	multiples	of	9;	 then	we	add	up	only	what	remains.
This	will	often	be	a	 two-digit	 figure.	 If	 it	 is,	we	 reduce	 it	 to	 a	 single	digit,	by
adding	the	two	digits	together.	The	resulting	single	figure	is	the	check-figure	for
that	 column	 of	 digits.	 For	 instance,	we	 find	 the	 check-figure	 for	 the	 left-hand
column	of	digits	in	one	of	our	previous	examples	in	this	way:

Besides	the	9’s	in	the	first	column,	we	have	struck	out	3	and	6,	because	they	add
to	9.	Likewise	we	struck	out	1	and	8.
Add	the	remaining	numbers:	5	plus	7	is	12.	To	use	in	checking	we	shall	reduce

this	 to	 a	 single	 figure	 by	 adding	 across.	 This	 gives	 1	 plus	 2	 equals	 3.	 So	 the
running	check	number	for	the	first	column	is	3.
The	other	three	columns	are	treated	in	the	same	way.	If	you	happen	to	notice

three	figures	in	a	column	which	add	to	9,	strike	out	all	three	of	them.	But	if	you
should	 overlook	 such	 a	 set	 of	 three	 figures	 there	 will	 be	 no	 harm	 done.	 It	 is
always	true	that	you	get	 the	same	final	single	 figure,	after	adding	across	as	we
added	the	1	plus	2	of	12,	no	matter	how	many	opportunities	for	striking	out	you
may	 have	 missed.	 Adding	 the	 digits	 across	 compensates	 for	 the	 missed
opportunities,	and	the	only	loss	is	the	loss	of	a	small	amount	of	mental	energy.
Try	doing	the	other	three	columns	yourself.	When	you	finish	the	result	should

look	like	this,	with	the	cast-out	figures	underlined	instead	of	struck	out:



Reducing	to	a	single	figure	in	this	way	need	not	be	left	to	the	end.	It	is	better
to	do	it	as	you	go	along.	(In	the	second	and	third	columns	from	the	left,	note	that
the	 three	cast-out	6’s	 total	18,	a	multiple	of	9.)	 In	 the	second	column	from	the
left,	 you	 may	 if	 you	 wish	 add	 the	 figures	 not	 underlined,	 obtaining	 33,	 and
reduce	33	to	6,	as	shown.	It	is	better,	however,	to	do	it	as	you	go	along	because	it
is	easier.	Going	down	the	column,	and	ignoring	all	underlined	figures,	we	have	7
plus	4,	11,	“is	2”	(because	1	plus	1	is	2),	plus	7	is	9,	plus	8,	17,	“is	8”	(because	1
plus	7	 is	8),	plus	7,	15,	“is	6”	 (because	1	plus	5	 is	6).	This	6	 is	 the	check-out
figure,	and	of	course	it	agrees	with	what	we	had	before.	The	point	is	merely	that
it	 is	 easier	 to	work	with	 the	 small	 figures	 that	we	 get	 if	 we	 reduce	 as	we	 go
along,	instead	of	adding	up	to	33	and	reducing	the	33	to	6.	We	shall	go	into	this
again	a	little	later.
Second	step:	The	purpose	of	this	step	is	to	check	the	working-table,	which	in

the	example	was	this:

We	find	check-figures	for	this	table	by	repeating	the	second	line	and	adding:



Compare	 these	 last	 figures	with	what	we	 found	 in	 the	 First	 step.	We	 found
four	single-figure	numbers,	3,	6,	2,	6,	corresponding	to	the	four	columns	of	the
addition.	In	the	Second	step	we	have	just	found	four	single-figure	numbers,	3,	6,
2,	6.	These	agree	exactly	with	the	check-figures	from	the	First	step,	so	the	work
is	correct.
Suppose	 it	 were	 to	 happen	 that	 the	 two	 sets	 of	 four	 figures	 did	 not	 agree.

Suppose,	for	instance,	that	the	First	step	gave	3,	6,	7,	6,	as	compared	with	the	3,
6,	2,	6	from	the	Second	step.	There	is	disagreement	in	the	third	figure	from	the
left.	Then	we	know	that	the	third	column	from	the	left	was	added	incorrectly,	but
the	other	three	columns	are	correct.	The	error	can	be	found	by	looking	at	column
three	only.

	
Third	step:	This	step	obtains	a	check-figure	from	the	answer.	In	the	example

the	answer,	or	total,	was	64,628.	The	check-figure	is	the	digit-sum	of	this:	6	plus
4	plus	6	plus	2	plus	8	is	26,	which	reduces	to	8.
What	shall	we	compare	this	with,	to	check?	We	compare	it	with	the	two	sets

of	 four	 single-figure	numbers	 that	we	 found	 in	 the	First	 and	Second	steps:	 the
figures	3,	 6,	 2,	 6.	Adding	 these,	we	have	17,	which	 reduces	 to	8.	The	 total	of
64,628	 also	 gave	 the	 reduced	 digit-total	 of	 8.	 The	 8’s	 agree,	 so	 everything
checks.

	
This	 procedure	 is	 used	 in	 every	 addition.	 In	 practice,	 of	 course,	 we	 do	 not

bother	to	write	down	all	the	figures	that	were	shown	in	the	explanation	above.	In
checking	 the	working-table	particularly,	 it	 is	not	necessary	 to	 rewrite	 the	 table,
with	 the	 bottom	 line	 repeated.	 The	 repetition	 of	 the	 bottom	 line	 can	 be	 done
mentally	by	simply	adding	in	the	bottom	figure	twice.	So	the	example	that	was
used	 just	 now	 in	 the	 explanation	 of	 the	 method	 would	 look	 like	 this	 is	 an
ordinary	addition:



In	 practical	 work	 we	 would	 also	 omit	 all	 the	 words	 and	 use	 only	 figures.
When	you	do	an	addition	yourself,	you	know	that	you	meant	the	line	2,	3,	10,	1
to	be	the	running	totals,	and	so	on.	We	have	labeled	them	here	only	to	avoid	any
possible	misunderstanding.
Here	 is	 another	 example,	 set	up	 just	 a	 little	differently,	which	you	may	 find

more	 convenient.	 The	 difference	 is	 that	 the	 tick	 line	 of	 the	 working-table	 is
repeated	 in	writing,	but	 the	 table	 itself	 is	not	 rewritten:	we	 repeat	 the	 tick	 line
under	 the	 answer.	 Then	we	 add	 up	 the	 three	 lines	 of	 the	 augmented	working-
table	by	jumping	over	the	answer:



This	checks,	of	course.	In	nines-remainders,	a	9	and	a	zero	are	equivalent.	The
1.69	was	obtained	by	adding	three	figures	downward:	1	plus	zero	plus	zero	gave
the	1;	2	plus	2	plus	2	gave	the	6;	and	3	plus	3	plus	3	gave	the	9.
Final	 part	 of	 the	 check:	 we	 check	 the	 answer,	 3.76,	 by	 finding	 its	 reduced

digit-sum.	This	is	7.	The	digit-sum	of	1.69	is	also	7,	so	this	checks	also.	There	is
no	error.

GENERAL	METHOD	OF	CHECKING
In	all	kinds	of	calculations	it	is	important	to	have	some	way	of	checking	our

work	other	than	repeating	it.	Whether	we	are	doing	an	addition,	a	subtraction,	a
division,	squaring	a	number,	 taking	a	square	root,	or	any	combination	of	these,
we	 need	 a	 good	method	 of	 checking.	 Such	 a	method	 exists	 and	applies	 to	 all
kinds	of	calculations.	In	fact,	there	are	two	such	methods	which	are	only	slightly
different,	and	for	the	sake	of	completeness	we	shall	demonstrate	both.	We	give
the	digit-sum	method	first,	as	the	principal	method,	and	the	eleven-remainders	as
an	alternate	or	optional	method.

Digit-sum	method
This	may	also	be	called	the	nines-remainder	method.	It	is	an	old	idea,	adopted

into	 the	 Trachtenberg	 system.	 You	 saw	 it	 appearing	 as	 part	 of	 the	 check	 on
addition.	As	you	probably	remember,	the	concept	of	a	digit-sum	consists	of	this:

	
(1) You	find	 the	digit-sum	of	a	number	by	“adding	across”	 the	number.	For

instance,	the	digit-sum	of	the	number	5,012	is	5	plus	0	plus	1	plus	2	is	8.



	
(2) You	always	reduce	 to	a	single	 figure,	 if	 it	 is	not	already	a	single	 figure.

For	instance,	the	digit-sum	of	5,012,431	is	5	plus	0	plus	1	plus	2	plus	4	plus	3
plus	1	is	7	(16,	or	1	plus	6	is	7).

	
(3) In	“adding	across”	a	number	you	drop	out	9’s.	 In	 fact,	 if	you	happen	 to

notice	two	digits	that	add	up	to	9,	like	1	and	8,	you	ignore	both	of	them.	So	the
digit-sum	of	9,099,991	is	1,	at	a	glance.	You	don’t	bother	to	add	up	the	9’s.	(But
if	you	did,	you	would	still	end	up	with	the	same	1,	after	you	reduced	to	a	single
figure.	Try	it	if	you	don’t	believe	it!)

	
(4) Because	“nines	don’t	count”	in	this	process,	as	we	saw	in	(3),	a	digit-sum

of	9	 is	 the	 same	as	 a	digit-sum	of	 zero.	The	digit-sum	of	513,	 for	 instance,	 is
zero.	In	certain	cases	it	saves	work	if	you	remember	this.

	
For	example,	what	is	the	digit-sum	of	918,273,645?	You	should	be	able	to	do

it	 in	about	 three	seconds,	without	any	hard	thinking.	The	result	 is	zero.	That	 is
because	we	ignore	the	9;	then	we	ignore	pairs	of	numbers	that	add	up	to	9	and	in
this	 example	 each	 adjacent	 pair	 of	 numbers,	 after	 the	 first	 9	 adds	 up	 to	 9.
Everything	drops	out,	and	we	end	up	with	zero.
What	is	the	digit-sum	of	234,162?	(Hint:	ignore	any	three	digits	that	add	up	to

9.)	Again	we	have	zero.
Usually,	of	course,	the	number	we	are	looking	at	will	contain	some	digits	that

do	 not	 add	 up	 to	 9.	 Whatever	 they	 do	 add	 up	 to	 is	 the	 digit-sum,	 after	 it	 is
reduced	to	a	single	figure.	So	the	digit-sum	of	903,617	is	8.	The	9	and	the	zero
are	ignored,	3	plus	6	is	9,	and	we	are	left	with	1	plus	7	equals	8.

	
Work-saver:	When	you	are	“adding	across”	a	number,	as	your	running	total

reaches	 two	 digits	 you	 add	 these	 two	 together,	 and	 go	 ahead	 with	 this	 single
figure	as	your	new	running	total.
For	instance:	find	the	digit-sum	of	7,288,476,568.	Say	7	plus	2	is	9;	forget	it.

Then	8	plus	8	 is	16,	a	 two-figure	number.	Reduce	 this	16	 to	a	 single	 figure:	1
plus	6	is	7.	Go	ahead	with	this	7:	7	plus	4	is	11,	two	figures,	so	we	reduce	it	to	a
single	figure,	1	plus	1	is	2.	Go	ahead	with	the	2:	2	plus	7	is	9,	“is	zero,”	and	we
start	over.	Then	6	plus	5	is	11,	“is	2,”	and	2	plus	6	is	8.	Then	8	plus	8	is	16,	“is



7.”	So	the	digit-sum	of	this	long	number	is	7.
Decimals	 work	 the	 same	 way	 exactly.	 We	 simply	 pay	 no	 attention	 to	 the

decimal	point.	The	digit-sum	of	5.111,	for	instance,	is	8.
Explanation:	 It	 is	 not	 necessary	 in	 a	 practical	 sense	 to	 understand	why	 the

method	works,	 but	 I	 think	you	will	 find	 the	 explanation	 interesting.	The	basic
fact	is	this:	the	numbers	that	we	have	been	calculating,	these	reduced	digit-sums,
are	precisely	the	remainders	that	you	would	get	if	you	divide	each	number	by	9.
For	instance,	take	32.	Divide	it	by	9:	9	times	3	is	27,	and	we	have	a	remainder	of
5.	Take	a	longer	number,	say	281,	and	divide	it	by	9;	you	find	a	quotient	of	31,
and	there	is	a	remainder	of	2.	But	in	the	first	case,	as	you	have	no	doubt	noticed,
32	 has	 a	 digit-sum	of	 5,	 equal	 to	 the	 remainder	 5,	 and	 in	 the	 second	 case	 the
digit-sum	of	281	is	11,	which	reduces	to	2.	In	every	case	our	digit-sum,	after	it	is
reduced	to	a	single	figure,	will	be	equal	to	the	remainder	after	dividing	by	nine.

Application	to	checking
How	are	we	going	to	use	these	digit-sums	to	check	our	calculations?	It	seems

to	 work	 differently	 in	 different	 cases,	 but	 really	 we	 need	 only	 remember	 one
underlying	principle:

	
Basic	rule:	Whatever	you	do	to	the	numbers,	you	also	do	to	their	digit-
sums;	 then	 the	 result	 that	 you	 get	 from	 the	 digit-sums	 of	 the	 numbers
must	be	equal	to	the	digit-sum	of	the	answer.

	
For	instance:	suppose	that	the	operation	involved	is	multiplication,	and	we	are

multiplying	92	by	12.	The	product	is	1,104.	We	can	write	it	in	parallel	lines:

The	digit-sum	2	comes	from	92	or	9	plus	2.	This	gives	11,	which	we	reduce	to	a
single	figure:	1	plus	1	is	2.	(Or,	we	may	simply	ignore	the	9.)	The	point	is	that
we	get	the	6	on	the	right-hand	side	in	two	ways.	One	way	is	from	the	left-hand
side:	2	times	3	is	6.	The	other	way	is	from	the	answer,	1,104:	1	plus	1	plus	0	plus
4	is	6.	Of	course,	we	say	6	equals	6,	and	the	work	checks.	Our	1,104	is	right.

	
The	method	works	equally	well	in	addition:



In	the	first	example	we	were	multiplying	 the	given	numbers,	92	times	12,	so
we	 had	 to	multiply	 the	 digit-sums,	 2	 times	 3.	 In	 the	 second	 example	 it	 was
different.	We	were	adding	the	given	numbers,	15	plus	12	plus	20,	so	we	had	to
add	their	digit-sums,	6	plus	3	plus	2.	We	always	carry	out	a	parallel	calculation,
using	the	digit-sums	instead	of	the	numbers.
Of	course,	the	given	numbers	will	frequently	be	quite	large,	sometimes	in	the

millions.	Their	digit-sums	will	always	be	small;	 in	fact,	 they	reduce	to	a	single
figure.	Consequently,	this	check	requires	only	a	small	amount	of	calculation	and
gives	us	a	valuable	verification	of	the	work.
Check	this	double	multiplication:

Ignore	 the	 decimal	 points	 in	 checking.	 To	 the	 left	 of	 the	 equals	 sign	we	 have
these	digit-sums:

On	the	right-hand	side	of	 the	equals	sign	we	have	the	answer,	112,197.68.	The
digit-sum	 of	 this,	 by	 adding	 across,	 is	 8.	 Then	 8	 equals	 8,	 and	 the	 work	 is
correct.

	
In	simple	cases,	division	works	in	exactly	the	same	way.	This	is	an	example	of

it:

Thus,	the	digit-sum	of	the	answer	is	3	(1	plus	2),	and	we	also	get	3	by	dividing	6
by	2.	So	the	work	checks.
But	 more	 often,	 division	 proves	 to	 be	 a	 little	 more	 complicated	 than	 this

because	 it	 often	 does	 not	 “come	 out	 even.”	We	 shall	 go	 into	 this	 later	 in	 the
chapter	on	division.	In	the	meantime,	it	will	be	sufficient	to	note	this	fact:



	
Division	can	be	checked	by	multiplying	the	appropriate	digit-sums.

	
For	 instance,	 in	 the	 example	 just	 above,	we	 can	multiply	 the	 digit-sum	of	 the
quotient	by	the	digit-sum	of	the	divisor,	that	is,	3	times	2.	This	gives	6,	the	digit-
sum	of	the	dividend,	and	the	work	checks.

The	elevens	method
Instead	of	the	digit-sum	method,	we	can	use	this	alternate	method	either	as	a

double	check,	if	such	a	thing	is	desired,	or	simply	for	the	sake	of	variety.	This	is
the	elevens-remainder	method.	But	we	do	not	divide	anything	by	11.	Just	as	the
regular	digit-sum	is	the	remainder	that	we	would	get	after	dividing	by	9,	we	now
find	the	remainder	that	we	would	have	after	dividing	by	11,	and	we	find	it	in	a
way	somewhat	similar	to	the	digit-sums.	This	is	the	method:

	
FIRST	CASE:	TWO-DIGIT	NUMBERS.
To	find	the	elevens-remainder	of	a	two-digit	number,	like	48,	we	subtract	the

tens-digit	 from	 the	 units-digit:	 for	 48	 we	 have	 8	 minus	 4	 is	 4.	 The	 elevens-
remainder	 of	 48	 is	 4.	 This	 is	 what	 we	 would	 have	 found	 if	 we	 had	 actually
divided	48	by	11.
Sometimes	we	 can’t	 subtract	 because	 the	 tens-digit	 is	 larger	 than	 the	 units-

digit,	as	it	is	in	86,	for	instance.	In	that	case,	we	make	the	units-digit	big	enough
by	 adding	 11	 to	 it.	 For	 86	we	 have	 6	 plus	 11	 is	 17,	minus	 8	 is	 9.	 For	 52	 the
elevens-remainder	would	be	2	minus	5;	make	it	2	plus	11	minus	5	is	8.

	
SECOND	CASE:	ALL	NUMBERS	LONGER	THAN	TWO	DIGITS.
The	method	here	 is	 to	use	every	second	digit.	That	 is	 to	 say,	we	 start	 at	 the

right-hand	end	of	the	number,	and	work	back	to	the	left	adding	up	every	second
digit,	 and	 then	we	pick	up	 the	ones	we	have	 skipped	 and	 subtract	 them.	Take
943,021,758.	Start	at	the	right-hand	end,	the	8,	and	work	back	to	the	left	adding
up	every	second	digit:

Then	go	back	to	the	next-to-last	digit,	the	5	of	the	long	number,	and	again	pick
up	every	second	number:



	

	
Then	subtract:

	

	
This	19	still	has	to	be	reduced,	just	as	we	had	to	reduce	our	digit-sums	to	a	single
figure	before.	In	this	method	we	reduce	it	by	subtracting	the	tens-digit	from	the
units-digit:

	

	
We	 had	 29	 minus	 10	 in	 this	 example.	 Suppose	 in	 another	 case	 we	 had

something	 like	 29	minus	 35,	 so	 that	we	 couldn’t	 subtract;	what	would	we	 do
then?	We	would	add	11	to	the	smaller	number	to	bring	it	up	to	where	we	could
subtract;	here	29	minus	35	would	become	40	minus	35	equals	5.

	
Do	 these	 numbers	 seem	 uncomfortably	 large,	 the	 29	 and	 the	 35?	 They	 can

easily	be	avoided	by	using	little	shortcuts.	Here	is	one,	similar	to	one	that	we	had
before:	after	you	find	the	first	number,	like	the	29,	do	not	set	it	aside	to	find	the
35.	Instead,	you	will	now	work	down	from	the	29,	or	whatever	number	it	is.	That
is,	 after	you	 find	 the	 total	of	 every	 second	number,	go	back	 to	 the	next-to-last
number	and	subtract	 it	 from	the	 total.	Continue	 to	 the	 left	 through	the	number,
subtracting	 every	 second	 digit	 from	 this	 new	 starting-point.	 (These	 are	 the
numbers	we	skipped	to	reach	the	first	total.)	It	amounts	to	subtracting	the	second
total	a	little	piece	at	a	time.	Take	2,368,094.	Start	at	the	end	with	the	4,	and	add
the	underlined	figures:

Add	4	plus	zero	 is	4,	plus	6	 is	10,	plus	2	 is	12.	Then	go	back	using	 the	other
figures,

and	subtract	by	going	down	from	the	12	that	we	found	just	now:	12	minus	9	is	3;



then	minus-8	won’t	go	because	8	is	too	large	for	the	3,	so	we	increase	3	by	11
and	say:	3	plus	11	is	14	minus	8	is	6,	minus	3	is	3.	The	elevens-remainder	is	3.	If
you	prefer	you	could	also	go	back,	 after	 adding	up	 to	 the	12,	 and	 subtract	 the
other	figures	from	left	to	right:	12	minus	3	is	9,	minus	8	is	1;	1	plus	11	is	12;	12
minus	9	is	3.	The	elevens-remainder	of	this	number	will	always	be	3,	no	matter
what	shortcuts	you	use.

	
A	different	shortcut,	very	effective,	is	to	go	across	the	number	using	adjacent

pairs	of	figures.	In	each	pair	we	subtract	one	figure	from	the	other,	because	one
of	them	is	an	“even”	figure	and	the	other	is	an	“odd”	one	(in	order	of	position,	of
course).	For	 instance,	 take	4,693,260,817.	Write	 the	number	out	and	group	 the
digits	into	pairs,	as	we	show	by	underlining:

	
Subtracting:

Explanation:	 the	 upper	 line	 is	 the	 given	 number	 with	 the	 pairs	 of	 figures
indicated,	and	 the	 lower	 line	 is	 the	 set	of	elevens-remainders	 that	we	get	 from
these	pairs.	We	get	each	one	 from	 its	pair	 in	 the	usual	way,	by	subtracting	 the
tens-digit	 from	 the	 units-digit.	Of	 course	 these	 are	 only	 temporarily	 treated	 as
units-or	tens-digits;	we	think	of	the	4	6	at	the	beginning	as	if	it	were	46,	for	the
purpose	of	doing	this	little	calculation.	Going	across	the	whole	number	from	left
to	right,	the	4	6	gives	us	6	minus	4	is	2,	then	3	minus	9	becomes	3	plus	11	is	14;
14	minus	9	is	5;	then	6	minus	2	is	4;	then	8	minus	zero	is	8;	then	7	minus	1	is	6.
This	accounts	for	the	row	of	figures	under	the	given	number,	one	figure	to	each
pair.
Now	we	add	these	figures	that	we	have	just	found:	2	plus	5	is	7,	plus	4	is	11,

“is	zero,”	we	say,	because	in	elevens-remainders	an	11	is	equivalent	to	zero;	then
8	plus	6	is	14,	“is	3,”	we	say,	reducing	by	11	as	always	in	the	elevens-remainder
method.	The	result	is	3.
Applications:	We	apply	the	elevens-remainders	to	calculations	as	a	check,	in

the	same	manner	as	we	did	with	the	nines-remainders	previously.	The	principle
involved	is	the	same	as	before:

	
Whatever	operation	we	perform	on	 the	given	numbers,	we	do	 the	same



operation	on	the	elevens-remainders.	Then	the	result	of	operating	on	the
elevens-remainders	 must	 be	 the	 same	 as	 the	 elevens-remainder	 of	 the
answer,	if	the	answer	is	correct.

	
For	 example,	 let	 us	 check	 a	multiplication	 that	we	 performed	 in	 a	 previous

chapter.	We	 arrived	 at	 the	 result	 of	 302	 times	114	 equals	 34,428.	Let	 us	write
these	numbers	out,	each	with	its	elevens-remainder	below	it:

Multiply	the	5	by	the	4:	the	result	should	be	the	9	on	the	right-hand	side	of	the
equation,	 if	 the	multiplication	 is	 correct.	 This	means,	 of	 course,	 they	must	 be
equal	 in	 the	 sense	 of	 the	 remainders,	 after	we	 drop	 out	 eleven	 if	 necessary	 to
reduce	 to	 a	 single	 figure.	 Is	 this	 the	 case	 here?	Yes.	Because	 5	 times	 4	 is	 20;
remove	11,	the	20	is	reduced	to	9.	We	have	the	equation	of	elevens-remainders	9
equals	9,	parallel	to	the	original	multiplication.

	
Here	 are	 two	more	 examples.	 See	whether	 you	 can	 check	 them	yourself	 by

using	this	method:

You	should	find	that	both	are	correct.	In	(1)	we	have	the	elevens-remainders,	4
times	10	equated	to	7:	that	is,	40	has	the	same	elevens-remainder	as	7.	Reducing
40	by	subtracting	the	4	from	0	(increased	by	11),	we	find	this	is	true.
In	(2)	we	have	the	elevens-remainders	9	times	zero	on	the	left,	and	zero	on	the

right;	9	times	zero	is	zero,	so	the	work	checks.



CHAPTER	FIVE
Division–speed	and	accuracy
It	was	 the	 first	 day	 of	 school	 in	 a	 large	American	 university.	 In	 one	 of	 the

rooms	thirty	students	of	the	first-year	algebra	class	had	gathered	to	hear	a	lecture
from	 the	 head	 of	 the	 mathematics	 department.	 He	 had	 taken	 the	 assignment
himself	 for	 a	 good	 reason–he	 wanted	 to	 see	 that	 the	 students	 had	 a	 solid
foundation	 for	 their	 later	 work.	 You	 can’t	 build	 on	 a	 poor	 foundation,	 and
nowadays	a	poor	foundation	is	what	you	have	to	work	with	most	of	the	time.
So	 he	 did	 the	 first	 thing	 that	 must	 be	 done	 in	 teaching	 fundamentals.	 He

convinced	 the	 students	 that	 they	 needed	 teaching,	 by	 deflating	 their	 over-
confidence.	 He	 deflated	 them	 in	 this	 way:	 he	 gave	 them	 a	 rather	 long	 long-
division	 problem	 to	 work	 out.	 On	 the	 blackboard	 he	 wrote	 a	 long	 number,
something	 like	 7,531,264,	 and	 he	 asked	 them	 to	 divide	 it	 by	 something	 like
9,798.	 They	 all	 pitched	 right	 in	 and	 after	 a	 while	 even	 the	 slow	 ones	 were
finished.
Then	he	took	up	their	worksheets	and	looked	at	the	answers.	Out	of	the	thirty

students	he	had	twenty-five	different	answers,	one	right	and	twenty-four	wrong.
Six	of	the	thirty	had	done	the	work	correctly,	but	twenty-four	had	made	at	least
one	mistake	somewhere	along	the	line.
Why	was	this?	Remember,	these	were	college	students.	They	had	all	learned

the	method	in	grammar	school,	had	studied	further	mathematics	in	high	school,
and	had	passed	all	their	courses.	The	same	test	applied	to	the	general	population
would	have	given	even	worse	results.	The	explanation	is	that	we	are	not	taught
to	be	sure	of	getting	 the	 right	answers.	We	are	not	made	 to	appreciate	 the	 fact
that	a	problem	is	not	finished	until	we	have	the	right	answer,	not	just	an	answer.
In	 fact,	a	problem	is	not	 really	 finished	until	we	have	proved	 that	we	have	 the
right	answer.
In	 the	 last	 chapter	 we	 emphasized	 the	 importance	 of	 systematic	 checking.

Now	 that	we	are	coming	 to	division,	 it	 is	even	more	 important	 to	have	such	a
habit	than	it	was	before–in	multiplication	and	addition.
To	 take	 care	 of	 this	 need	 we	 offer	 a	 choice	 between	 two	 methods	 of	 long

division.	Both	are	different	from	conventional	long	division.

	
The	 first	 is	 the	 “simple”	method,	 intended	 for	 people	who	 are	more	 or	 less



non-mathematical–that	 is,	 they	 are	 in	 lines	 of	 work	 which	 require	 little
mathematics,	 or	 they	 have	 only	 a	 limited	 interest	 in	 doing	mathematics	 for	 its
own	 sake.	An	 appropriate	method	 of	 long	 division	 for	 such	 persons	would	 be
one	that	is	easily	remembered	and	is	as	nearly	foolproof	as	possible	in	the	matter
of	arriving	at	the	right	answer.

	
The	other	one	is	the	“fast”	method.	Anyone	who	has	a	liking	for	figures	will

enjoy	 this.	 There	 is	 just	 enough	 to	 it	 to	make	 it	 stimulating	 to	 one	with	 some
aptitude	 for	 mathematics	 and,	 once	 learned,	 it	 is	 much	 easier	 to	 do	 than	 the
conventional	method.	Also,	when	 it	 has	been	 thoroughly	mastered,	 it	 becomes
really	 impressive	to	watch.	The	answer	 to	a	 long	division	can	be	written	down
immediately,	without	any	intermediate	calculation.

THE	SIMPLE	METHOD	OF	DIVISION
This	requires	no	aptitude	for	mathematics.	We	need	only	be	able	 to	add	 two

numbers	together	and	to	do	simple	subtraction.
We	are	going	to	divide	27,483,624	by	62.	The	setup	we	use	is	similar	to	the

one	that	most	people	use:

We	call	the	62	the	“divisor,”	which	is	a	very	natural	name.	As	we	do	the	work,
this	62	becomes	 the	 top	 figure	of	 a	 column	of	 figures.	We	get	 this	 column	by
adding	 62	 repeatedly,	 ten	 times	 to	 be	 exact:	

On	the	left	of	the	divisor	column	we	are	going	to	set	up	a	column	of	digit-sum
check-figures	that	will	look	like	this:



Now	let	us	look	at	how	we	find	the	check-figures.	At	each	step	as	we	add	in
another	62	in	the	divisor	column,	so	in	the	check	column	we	add	in	another	8.
This	 is	because	8	is	 the	digit-sum	of	62	(6	plus	2	 is	8).	When	we	go	into	 two-
figure	numbers	(as	we	did	in	this	example	as	soon	as	we	added	8	plus	8	is	16),
we	cut	it	down	immediately	to	a	single	figure,	by	merely	adding	the	two	figures
together.	Here	we	had	a	16,	so	we	changed	it	to	a	7	(1	plus	6	is	7).	Then	we	go
ahead	with	the	7.	Add	another	8	at	 the	next	step.	You	have	7	plus	8	is	15.	But
this	 is	a	 two-figure	number,	 so	we	cut	 it	down	 to	a	single	 figure,	6	 (1	plus	5).
And	so	on	every	time.
What	do	you	do	with	 these	check-figures?	You	use	each	one	 just	as	soon	as

you	 find	 it.	 After	 the	 first	 addition,	 you	 have	 the	 16	 which	 reduces	 to	 the	 7.
Notice	that	this	is	directly	to	the	left	of	the	first	of	the	main	additions,	the	124.
So	you	compare	the	7	with	the	124.	Add	across	the	124,	you	have	1	plus	2	plus	4
is	7.	This	agrees	with	the	7	that	you	already	have.	So	this	line	is	correct.	Then
you	add	another	62	to	the	124,	and	you	get	186.	In	the	check	column	on	the	left
you	add	another	8	and	you	get	15,	as	we	saw	above.	This	15	reduces	to	6,	which
is	the	check-figure	for	the	186.	Does	it	really	check	out?	Add	up	186,	across;	1
plus	 8	 is	 9,	 which	 we	 drop	 out	 and	 forget	 (always	 drop	 nines	 in	 digit-sum
checking!)	 and	we	have	 left	 the	6.	So	6	 equals	6,	 and	 the	186	 line	 checks.	At
each	step,	you	add	another	62	in	the	divisor	column	and	another	8	in	the	check
column.	 As	 soon	 as	 you	 have	 done	 that,	 you	 compare	 the	 new	 figure	 in	 the
divisor	column	with	the	new	figure	in	the	check	column–“comparing”	meaning
that	 you	 add	 across	 the	 new	 divisor	 total	 and	 see	 if	 it	 agrees	 with	 your	 new
check-figure.
Obviously,	 if	 you	 make	 this	 check	 at	 each	 step	 as	 you	 go	 along,	 you	 will

discover	any	error	in	your	addition	as	soon	as	it	occurs.	This	keeps	everything	on
the	right	road	all	the	time.
How	far	 should	you	go	 in	 this	way?	Ten	 times.	To	be	exact,	 the	number	62



should	be	written	 in	 the	column	 ten	 times,	 so	 it	has	been	added	 in	nine	 times.
The	tenth	result	must	be	620.	This	is	simply	the	original	divisor,	whatever	it	was
(62	here,	but	whatever	it	may	be),	with	a	zero	added	at	the	end.	Putting	a	zero	at
the	end	of	a	number	multiplies	it	by	10.	Consequently	this	tenth	number	must	be
the	 original	 divisor	 with	 a	 zero	 after	 it.	 Here	 is	 the	 full	 column	 with	 all	 the

checks:	
This	620	equals	62	times	10.	It	checks.

	
Once	 the	 divisor	 column	 has	 been	 set	 up	 and	 checked	 for	 correctness	 by	 the
digit-sum	figures	the	check	column	is	no	longer	needed	and	may	be	stricken	out.
Notice	 that	we	 have	 also	 labeled	 the	 steps	 as	we	went	 along,	with	 the	 bold

numbers	 in	parentheses.	Each	one	of	 these	 label-numbers	 tells	 us	what	62	has
been	multiplied	by.	Beside	the	(2),	for	instance,	is	124.	Now	124	is	62	times	2.
The	 label-numbers	 identify	 the	 various	multiples	 of	 62.	 For	 instance,	 434	 is	 a
multiple	of	62,	because	434	is	7	times	62.	So	you	see	434	in	our	divisor	column,
and	alongside	of	it	is	the	indicator	(7),	to	identify	it	as	the	7-times	multiple	of	62.



The	 divisor	 column	 that	 we	 now	 have	 eliminates	 the	 need	 for	 any
multiplication,	and	it	is	in	multiplying	that	most	errors	are	made.	The	rest	of	the
method	is	in	this	rule:
Subtract	repeatedly	from	the	dividend,	the	largest	number	that	you	can	use

in	the	divisor	column.

	
You	start	subtracting	at	the	left-hand	end	of	the	long	number	(the	dividend)–as	in
conventional	division.	At	each	step	you	look	down	the	divisor	column	and	find
the	 biggest	 number	 there	which	 is	 not	 too	 big,	 that	 is,	 not	 too	 big	 to	 subtract.
Look	at	the	example,	27483624.	If	you	try	to	use	only	the	first	two	figures,	you
have	 27.	 Look	 down	 the	 divisor	 column.	 There	 is	 no	 number	 there	 which	 is
smaller	 than	 27.	 So	 take	 the	 first	 three	 figures	 of	 the	 long	 number,	 274.	Now
look	down	the	divisor	column.	What	do	you	see	that	is	smaller	than	274?	(You
want	it	to	be	smaller,	because	you	are	going	to	subtract	it	from	the	274.)	Well,	62
is	smaller	than	274,	and	so	is	124,	and	186,	and	248.	The	rest	are	larger	than	274.
So	the	largest	number	that	we	can	subtract	is	248.	This	number	leads	us	to	our
next	rule:
The	label-number,	or	multiple	number,	of	the	number	that	we	subtract	is

the	next	figure	of	the	answer.

	
Here	the	label-number	of	248	is	(4).	That	means	that	4	is	the	first	figure	of	the
answer:

After	writing	 this	 figure	of	 the	answer,	you	write	 the	number	 that	you	wish	 to
subtract	under	 the	long	number	(the	dividend)	and	you	perform	the	subtraction
as	shown	above.	You	get	26	by	subtracting.	Then	you	carry	down	the	next	digit
of	the	dividend.	This	is	what	you	are	accustomed	to	doing	in	conventional	long
division.
Now	repeat	the	same	process,	using	this	new	number	under	the	long	number.



Here	it	is	268.	You	look	down	the	divisor	and	find	the	largest	number	that	is	not
too	large.	Here	the	number	that	you	find	in	the	divisor	column	is	248.	Subtract	it,
after	 writing	 its	 label-number	 (4)	 as	 part	 of	 the	 answer:	

The	example	fully	worked	out	looks	like	this:

So	the	answer	is	443,284,	and	there	is	a	remainder	of	16.
In	 practice,	 you	 will	 probably	 find	 the	 following	 point	 a	 help	 in	 saving

trouble.	 In	making	up	 the	divisor	 table,	we	must	add	 in	 the	divisor	 repeatedly,
but	 this	 does	 not	 necessarily	 mean	 that	 we	 must	 write	 out	 the	 divisor	 many
times.	It	is	easy	enough	to	look	back	at	the	head	of	the	column	where	the	divisor
appears,	 and	 thus	 add	 the	divisor	 to	 the	number	we	have	 last	obtained.	 In	 this
way,	 we	 would	 have	 the	 work	 looking	 as	 follows:	



Here	are	some	practice	examples,	which	you	may	find	interesting	to	try:
	

1.	73,458	÷	53
2.	90,839	÷	133
3.	23,525,418	÷	3,066
4.	21,101,456,770	÷	326

	
Answers: 1.	1,386;	2.	683; 3.	7,673; 4.	64,728,395

	
It	might	 sometimes	 happen,	 though	 it	 is	 unlikely,	 that	 the	 person	 doing	 the

work	 might	 be	 so	 careless	 as	 to	 choose	 the	 wrong	 figure	 out	 of	 the	 divisor
column.	This	 is	unlikely	because	all	we	have	 to	do	 is	see	which	number	 is	 the
biggest	of	those	we	can	use.	The	biggest	allowable	figure	in	the	divisor	column
will	be	the	last	one	of	those	that	are	small	enough	to	subtract,	and	all	the	figures
following	it	will	be	too	large.	But	suppose	that	someone	did	make	such	an	error.
There	would	 still	 be	no	 real	harm	done,	because	he	would	notice	 immediately
that	there	was	an	error	at	that	step:
 (1) If	 he	 took	 a	 number	 that	was	 larger	 than	 the	 correct	 one,	 he	would	 be
unable	to	subtract	it.

 (2) If	 he	 took	 a	 number	 that	was	 too	 small,	 then	 at	 the	 next	 step	 he	would
discover	that	the	next	“digit”	of	the	answer	was	10,	which	is	not	a	digit.

	
To	check	 the	 subtraction,	 it	 is	 convenient	 and	adequate	 to	check	 them	all	 at

once	by	checking	the	answer	itself.	We	do	this	by	the	following	method:
 (1) Subtract	the	remainder	from	the	dividend	and	take	the	digit-sum	of	what
you	 get.	 In	 our	 example	 on	 here,	 we	 were	 left	 with	 a	 remainder	 of	 16:	

 (2) Multiply	the	digit-sum	of	the	answer	by	the	digit-sum	of	the	divisor:



 (3) Compare	the	results	and	if	they	agree	the	work	is	correct.	The	answer	is	2
in	both	cases,	so	the	work	is	correct.

THE	FAST	METHOD	OF	DIVISION
Do	you	remember,	back	when	we	were	doing	multiplication,	we	had	what	we

called	the	“units-and-tens”	method?	We	are	now	going	to	borrow	one	idea	from
that	 method	 and	 use	 it	 in	 division,	 but	 we	 shall	 add	 a	 new	 wrinkle	 to	 it.	 To
refresh	your	memory	we	repeat	what	we	had	before.	Taking	a	pair	of	digits,	like
4	3,	and	a	single	multiplier	like	6,	we	multiplied	in	a	special	way	and	obtained	a

single	figure,	namely	5:	
The	24	is	4	times	6.	The	18	is	3	times	6.	Because	the	4	of	43	has	a	U	above	it	(U
for	units),	we	use	only	the	units-digit	of	the	24,	that	it,	we	use	the	4.	Because	the
3	of	43	has	a	T	above	it,	for	“tens”,	we	use	the	1,	which	is	the	tens-digit	of	18.
Then	we	add	 this	4	and	 this	1:	24	plus	18	 is	5.	The	underlined	 figures	are	 the
units	and	the	tens	that	we	mentioned.
The	new	wrinkle	is	the	same	thing	with	a	certain	difference.	Instead	of	the	UT

product,	we	now	form	the	NT	product.	The	N	stands	for	“number”,	meaning	that

we	use	the	entire	number,	not	only	the	units-digit:	
The	NT	product	is	25.	We	still	have	in	the	work	24,	from	4	times	6,	and	18,	from
3	times	6.	But	now	we	use	all	of	the	24,	not	merely	the	4	part	of	it.	We	still	use
only	the	tens-digit	of	18,	as	the	letter	T	tells	us	to	do.	What	is	the	NT	product	of

78	times	3?	It	is	23.	Because:	

THE	DIVISION	PROCESS



Two-digit	divisors
First	we	shall	go	 through	a	 long	example	 to	give	an	overall	 idea	of	how	the

method	works.	This	 is	 for	orientation	only.	 It	 is	 not	necessary	 that	you	 should
remember	all	 the	details	at	 this	stage.	What	you	need	to	do	now	is	observe	the
general	 way	 in	 which	 the	 process	 moves–the	 “feel”	 of	 it	 so	 to	 speak.	 It	 is
different	from	what	we	are	accustomed	to	in	conventional	long	division,	so	we
shall	 take	 a	 bird’s-eye	 view	 of	 a	 division	 calculation	 performed	 by	 the	 new
method.	Most	of	the	details	will	be	postponed	for	a	few	paragraphs.
We	shall	divide	8,384	by	32.	Using	 the	new	method,	we	shall	eventually	be

able	to	arrive	at	the	answer	without	writing	any	calculations	at	all.	At	this	stage,
of	 course,	 when	 we	 are	 seeing	 it	 for	 the	 first	 time,	 we	 prefer	 to	 write	 the
intermediate	 steps.	 The	 fully	 worked	 example	 will	 be:	

Our	first	step	is	to	take	the	first	or	left-hand	figure	of	the	dividend	and	make	it
the	first	of	our	partial	dividends.	Each	partial	dividend	will	lead	us	to	one	figure
of	the	answer.

The	 second	 step	 is	 to	 divide	 the	 partial	 dividend	 by	 the	 first	 figure	 of	 the
divisor,	 the	3	of	32.	The	resulting	figure	becomes	 the	first	digit	of	our	answer.
The	partial	dividend	may	not	always	be	exactly	divisible	but	this	is	no	problem
as	we	simply	 ignore	any	remainder;	 thus,	 the	 first	 figure	of	our	answer	 is	2	 (8
divided	by	3	is	2).
We	 now	 take	 this	 first	 digit	 of	 our	 answer	 and	 multiply	 it	 and	 the	 divisor

together	in	a	special	way.	This	special	way	gives	us	two	sets	of	figures.	We	will
call	 these	 the	NT	 figures	 and	 the	U	 figures.	 (Turn	 back	 to	 here,	 if	 you	 need	 to
refresh	your	memory	on	how	we	arrive	at	the	NT	figure.)	In	our	present	problem

the	NT	figure	for	this	step	works	out	like	this:	



The	 U	 is	 part	 of	 an	 incomplete	 UT	 pair,	 the	 T	 being	 out	 of	 the	 picture	 in

problems	with	only	two-digit	divisors:	
We	are	going	to	put	NT	and	U	figures	aside	for	a	brief	moment	to	discuss	the

top	row	of	 figures	 in	our	work	space.	These	working-figures	are	used	only	 for
the	 purpose	 of	 finding	 the	 partial	 dividends	 just	 beneath	 them:	

You	 will	 notice	 that	 each	 working-figure	 is	 composed	 of	 two	 digits,	 even
though	 one	 may	 be	 a	 zero.	 We	 are	 going	 to	 get	 one	 digit	 from	 the	 partial
dividend	and	the	other	from	the	dividend	above.
The	tens-digit,	 the	2	of	23	above,	comes	from	subtracting	 the	NT	 figure	 (06)

we	found	a	moment	ago	from	the	partial	dividend	(8).

To	get	the	units	figure,	the	3	of	23	above,	we	merely	bring	down	the	next	digit
of	the	dividend:

As	we	mentioned	before,	the	working-figure	exists	only	to	lead	us	to	a	partial
dividend	directly	beneath	 it.	Once	we	 find	 the	working-figure	we	 immediately
subtract	 from	 it	 the	 U	 figure	 we	 found	 a	 moment	 ago:	



This	new	partial	dividend	will	give	us	the	next	figure	of	the	answer	and	will
also	lead	us	to	the	tens-digit	of	the	next	working-figure.	As	we	mentioned	at	the
onset	of	our	discussion	of	the	division	process,	it	is	important	to	get	the	“feel”	of
the	movement	of	the	calculation–it	is	the	heart	of	the	system.	We	start	off	with	a
partial	 dividend	 which	 leads	 to	 a	 working-figure,	 which	 leads	 to	 a	 partial
dividend,	 which	 leads	 to	 a	 working-figure,	 and	 so	 on.	 Diagramatically	 our
problem	 looks	 like	 this:	

This	is	the	heart	of	our	system.	All	the	rest	is	repetition	of	what	we	have	just
seen.	Let	us	go	ahead	with	the	calculation	of	our	example.
Our	 latest	 figure	 is	 19.	 Again,	 we	 divide	 this	 partial	 dividend	 by	 the	 first

figure	of	 the	divisor,	 that	 is,	by	3.	This	gives	us	19	divided	by	3	equals	6.	We
ignore	 any	 remainders.	 So	 6	 is	 the	 next	 figure	 of	 the	 answer:	

Then	we	use	this	6	to	multiply	the	32	in	two	ways,	first	NT	and	then	U,	and	make
two	 subtractions	 with	 these	 results:	

Carry	down	the	next	figure	of	the	dividend:



Then	subtract	the	result	of	the	U-Style	multiplication:

We	get	the	last	figure	of	our	answer	by	dividing	our	latest	partial	dividend,	6,	by
the	3	of	32:

We	have	now	found	the	last	figure	of	our	answer,	but	we	still	have	to	determine
the	remainder,	if	any.	We	apply	this	2	of	the	answer	to	the	divisor,	the	32,	in	the

NT	fashion:	
Subtracting	this	6	we	have:

We	 have	 carried	 down	 the	 next	 figure	 of	 the	 dividend.	 Now	 we	 subtract	 the
result	of	the	U	type	multiplication:

This	zero	means	that	there	is	no	remainder.	The	division	is	complete.

	
Is	it	necessary	to	mention	that	in	actual	work	we	do	not	draw	any	arrows?	In

practice,	we	would	begin	by	writing	the	working-figures,	but	would	soon	find	it



easy	 to	omit	some	of	 them.	Eventually	all	 the	work	will	be	done	mentally:	 the
answer	being	written	down	without	any	intermediate	steps.	At	first,	though,	it	is
wise	to	write	the	working-figures	as	we	have	been	doing	in	our	example.

THE	METHOD	IN	DETAIL
Point	 1.	 “Doing	 what	 comes	 naturally”	 is	 not	 always	 recommended–

sometimes	it	is	forbidden	by	law.	But	there	are	many	situations	(and	this	is	one
of	them),	where	the	natural	thing	to	do	is	also	the	correct	thing.	This	is	very	fine,
because	 then	 all	 you	need	 to	 remember	 is	 that	 your	 first	 impulse	 is	 right.	You
divide	 the	 first	 figure	of	 the	dividend	by	 the	 first	 figure	of	 the	divisor,	and	 the
result	 is	 the	 first	 figure	 of	 the	 answer.	 Like	 this:	

What	would	you	do	about	this	one?

You	can’t	divide	1	by	3.	What	you	must	do	 is	 take	 the	 first	 two	figures	of	 the
long	number,	that	is,	16:

In	the	same	way	you	would	have	this:

Point	2.	To	get	 the	other	 figures	of	 the	answer	you	continue	 to	use	 the	 first
figure	of	the	divisor,	but	divide	it	into	the	partial	dividends,	rather	than	into	the
long	number	itself.

	
Point	3.	As	soon	as	you	have	found	one	of	the	figures	of	the	answer,	you	use

it	 immediately	 to	 multiply	 the	 divisor	 by	 the	 NT	 (number-tens)	 methods.	 For

instance:	
Multiplying	the	62	by	3	in	this	NT	style	is	really	supposed	to	be	done	mentally.



This	 result,	 18,	 is	 to	 be	 subtracted	 from	 the	 last	 figure	 we	 found,	 the	 22:	

This	is	the	step	where	the	rest	of	the	long	number,	the	dividend,	comes	into	the
picture.	 We	 bring	 down	 the	 next	 digit	 of	 the	 dividend,	 like	 this:	

Point	4.	To	make	the	other	subtraction,	you	must	multiply	the	new	figure	of
the	answer–the	latest	one	found,	the	3	here–by	the	units-digit	of	the	divisor	and
use	 the	 units-digit	 of	 what	 you	 get:	

Finish	the	example.	All	we	need	is	to	repeat	what	we	have	just	done:

and	then	find	the	NT	product	of	62	by	our	new	figure	of	the	answer,	7:

and	bring	down	the	next	digit	of	the	dividend:

and	finally	the	units-digit	only	of	62	times	the	latest	figure	of	the	answer,	the	7:



This	is	the	end–we	have	no	more	figures	to	work	with.	What	does	this	last	zero
mean?	It	is	the	remainder.	The	last	working	figure,	on	the	bottom	line,	is	always
the	remainder.

	
Point	5.	The	last	working	figure	on	the	bottom	line	is	always	the	remainder.	In

the	example	above,	it	came	out	to	be	zero.	We	might	say	that	the	division	“came
out	even.”	But	this	does	not	usually	happen.	Suppose	that	instead	of	the	2,294	of
the	example	we	had	been	given	2,296,	and	again	we	wished	to	divide	it	by	62.
Everything	would	be	 the	 same	except	 that	our	number	 is	now	 larger	by	2.	We
know	that	this	extra	2	will	be	left	over	as	a	remainder.
Let	us	look	at	the	calculation.	It	will	all	be	the	same	except	at	the	last	step.	At

that	step	we	had:

What	we	must	 do	 now	 is	 take	 the	 units-digit	 of	 2	 (the	 2	 of	 62)	 times	 7,	 and
subtract	it:

So	our	 last	working	figure,	 in	 the	usual	way	of	 figuring,	 is	2.	We	have	 to	stop
because	 there	 is	 nothing	 left	 to	 work	 with,	 and	 we	 see	 that	 this	 2	 is	 the
remainder.	 The	 extra	 2	 that	we	 added	 on	 to	 our	 2,294	 (which	 came	 out	 even)
shows	up	at	the	end	as	the	last	working	figure.

	
Point	6.	Sometimes	the	following	will	happen.	We	shall	try	to	subtract	the	NT

figure	from	our	last	working	figure,	as	in	Point	3,	and	we	shall	find	that	we	can’t
do	 it.	 The	 number	 will	 sometimes	 be	 too	 large	 to	 subtract.	 For	 instance:	



Then	we	multiply	NT	style,	34	by	6:

But	this	20	can’t	be	subtracted	because	we	have	only	19	to	subtract	it	from.

	
In	cases	like	this,

	
Reduce	the	figure	of	the	answer	by	one.

	
Reducing	our	6	by	1,	the	first	figure	of	the	answer	is	corrected	to	5:

From	now	on	everything	goes	as	usual.	We	subtract	the	units-digit	of	4	times	5,
which	 happens	 to	 be	 zero;	 then	 we	 find	 the	 next	 figure	 of	 the	 answer:	

then	the	NT	product	of	34	by	this	new	6	is	20–we	had	it	before:



and	finally	we	subtract	the	units	of	4	times	6,	namely	4:

Again	we	end	up	with	a	zero.	There	is	no	remainder.	The	answer	is	56	even.

	
Although	we	have	 been	 referring	 to	 the	 dividend	 as	 the	 “long	number,”	 the

dividends	 that	have	appeared	 in	our	examples	have	not	been	particularly	 long.
We	 have	 seen	 four-digit	 numbers	 like	 the	 1,904	 just	 above.	 Perhaps	 you	 have
been	wondering	whether	we	are	restricted	to	such	numbers.
The	 answer	 is	 no.	 The	 dividend	 can	 be	 as	 long	 as	 you	wish,	 and	 the	 same

method	will	 apply.	Here	 is	 a	 long	one:	479,535	divided	by	63.	Spread	out	 the

figures:	
The	remainder	is	42.

	
The	arrows	would	not	be	drawn	in	actual	work.	It	is	easy	enough	to	imagine

them	there.	Further:	we	can	omit	the	middle	line	of	working	figures,	now	that	we
understand	 the	 idea.	 The	 work	 should	 really	 look	 like	 this:	

Eventually,	after	the	steps	have	become	familiar,	you	will	find	that	you	will	be
able	 to	do	without	 any	working	 figures	 at	 all.	Even	 the	 single	 line	of	working



figures	that	you	see	in	the	example	just	above	can	be	omitted,	if	one	concentrates
on	the	work.	Then	nothing	is	written	but	the	answer	itself.	The	NT	and	the	U	that
we	showed	just	now	are	only	reminders,	which	can	be	dropped	just	as	soon	as
you	feel	that	you	no	longer	need	to	be	reminded.
Here	 is	 a	 little	 trouble-saving	 device.	 It	 saves	 trouble	 in	 the	 cases	 that	 we

mentioned	 a	 few	 paragraphs	 back,	 where	we	 try	 to	 subtract	 a	 large	NT	 figure
from	a	smaller	partial	dividend:

If	the	second	digit	of	the	divisor	is	8	or	9,	don’t	divide	by	the	first	figure
of	 the	 divisor;	 instead,	 increase	 the	 first	 figure	 of	 the	 divisor	 by	 1	 and
then	divide.

	
For	instance,	if	the	divisor	happens	to	be	39,	we	divide	by	4,	not	by	3.	The	9	of
39	has	that	effect.	Common	sense	tells	us	why:	39	is	much	closer	to	40	than	it	is
to	30.	Likewise,	a	divisor	of	38	would	call	 for	dividing	by	4	 instead	of	3.	For

example:	
The	first	step,	as	we	have	been	doing	it	up	until	now,	is	to	say	“20	divided	by	3
is	6,”	and	write	the	6	as	the	first	figure	of	the	answer.	But	then	we	will	have	to
correct	the	6	and	change	it	to	5,	because	the	NT	product	is	too	big,	and	we	can’t
subtract.	(To	be	precise,	the	NT	product	of	39	×	6	=	18	+	54	=	23.)	Now,	however,
we	use	the	trouble-saving	device	and	divide	20	by	4	instead	of	3.	Thus,	the	first
figure	 of	 the	 answer	 is	 5	 immediately	 and	 will	 not	 need	 to	 be	 corrected:	

It	is	important	to	notice	that	we	get	the	right	answer	either	way,	with	or	without
the	trouble-saving	device.	You	can	go	still	further	if	you	wish	and	use	this	one-
larger	figure	for	the	first	figure	of	the	divisor	whenever	the	second	digit	is	6,	7,
8,	or	9.	With	a	divisor	like	36,	you	would	divide	the	working-figures	by	4	to	get
the	next	figure	of	the	answer.
If	 you	 do	 extend	 it	 down	 to	 6	 and	 7,	 you	will	 sometimes	 have	 too	 small	 a

figure	 in	 the	 answer.	 This	will	 need	 to	 be	 corrected,	 just	 as	we	 cut	 down	 the
figure	of	the	answer	when	it	was	too	large,	previously.	This	can	also	happen	with
8	or	9	as	the	second	figure	of	the	divisor,	but	rarely.
How	can	we	know	when	the	new	figure	of	the	answer	is	too	small?	Nothing

about	the	NT	product	will	warn	us–it	 is	small,	so	it	can	certainly	be	subtracted.



Nothing	about	the	U	product	will	tell	us.	But	here’s	where	the	“partial	dividend”
comes	to	our	aid:

If	the	partial	dividend	is	greater	than	the	divisor,	or	even	if	it	is	equal	to
it,	then	the	latest	figure	of	the	answer	is	too	small.

	
Suppose	someone	made	a	very	careless	mistake	as	in	this	division:

This	is	very	careless,	because	we	know	that	57	×	8	is	7,	not	6.	But	notice	how
this	error	shows	itself	in	the	partial	dividend:

This	 partial	 dividend	 of	 90	 is	 obviously	 wrong	 because	 it	 is	 larger	 than	 the
divisor.	So	the	6	has	to	be	changed	to	7.
If	you	failed	to	notice	that	90	is	larger	than	81,	you	would	have	it	forced	on

your	attention	at	the	next	step.	For	you	would	say	90	divided	by	8	is	11,	and	that
would	be	saying	“the	next	digit	of	the	answer	is	11.”	This	is	impossible–11	is	not
a	digit.	You	would	realize	that	6	is	too	small,	and	you	woud	increase	it	to	7.

THREE-DIGIT	DIVISORS
Suppose	we	wish	to	divide	236,831	by	674.	The	calculation	will	be	almost	the

same	as	what	we	have	been	doing.	It	is	very	much	as	if	we	were	dividing	by	67,
instead	of	674.	At	the	same	time,	we	are	going	to	do	something	about	the	third
figure	of	the	divisor.
You	remember	the	diagrams	we	had	before	with	upward-slanting	arrows	that

meant	 “subtract	NT	 product,”	 and	 straight-down	 arrows	 that	meant	 ‘subtract	U
product.”	 These	 straight-down	 arrows	 will	 now	 have	 a	 somewhat	 different
meaning.	The	new	meaning	brings	in	the	new	digit,	the	4	of	674,	as	we	can	see
by	 comparing	 these	 two	 diagrams:	



What	does	this	mean?	Just	what	it	seems	to	mean,	at	first	glance.	We	form	the	NT
product,	to	be	subtracted	on	the	upward	arrow,	by	using	67	and	the	digit	of	the

answer:	
This	is	the	same	as	before,	we	simply	paid	no	attention	to	the	4	of	674.	But	now
we	 come	 to	 the	 subtraction	 of	 the	 downward	 arrow–the	 U	 product.	 It	 now
becomes	the	UT	product:	So	in	going	down	from	the	36	that	we	had	just	now,	we
subtract	the	UT	2:

Our	latest	figure	is	34.	It	is	on	the	bottom	line,	so	it	is	a	partial	dividend,	and	we
shall	now	divide	it	by	the	6	of	674,	as	usual.	This	gives	5	as	the	next	digit	of	the

answer:	
And	 so	 on.	We	 form	 the	NT	 product	 of	 67	with	 this	 5,	 and	 subtract	 from	 the
partial	dividend.	Then	we	form	the	UT	product	of	74	with	this	5	and	subtract,	to
get	the	next	partial	dividend.
Not	 quite,	 though!	 The	 repetition	 is	 not	 quite	 exact.	 The	 next	 digit	 of	 the

answer	is	not	handled	exactly	the	same	as	the	first	digit	was:	we	use	both	of	the
digits	of	the	answer	already	found.



The	NT	product	is	as	usual:	67	times	5,	is	30	plus	35,	is	33.	We	subtract	33	from
34,	leaving	1;	carry	down	the	8	to	make	18	in	the	working	line.	But	the	number
to	be	subtracted	from	18	is	now	the	sum	of	two	parts:	a	UT	plus	a	U.	The	diagram
above	shows	the	source	of	these	two	parts.

We	subtract	this	9	from	the	18	in	our	division,	to	get	a	partial	dividend	of	9.	We
divide	 the	 9	 by	 the	 6	 of	 674	 and	 obtain	 1.	 Thus,	 1	 is	 the	 next	 figure	 of	 the

answer:	
In	this	particular	example,	no	more	digits	need	be	found;	351	is	the	quotient.
In	 other	 problems	 the	 dividend	 may	 of	 course	 be	 much	 longer	 than	 our

236,831,	 and	 then	 we	 would	 have	 to	 continue	 with	 further	 repetitions	 of	 the
process.	To	take	care	of	all	cases,	we	give	this	general	rule:

Whenever	 the	 divisor	 has	 three	 digits	 (indicated	 by	 three	 x’s	 in	 the
diagram	 below),	 the	 UT	 or	 “downward”	 subtraction	 is	 calculated	 as

indicated:	
the	two	x’s	in	the	answer	are	the	two	last-found	digits	of	the	incomplete
answer.

	



As	we	 said,	 the	 quotient	 351	was	 the	 answer	 in	 our	 example.	However,	we
must	still	find	the	remainder.	To	know	when	we	have	the	quotient	in	full,	we	do
this:

Counting	 from	 the	 right-hand	 end	 of	 the	 dividend	 (the	 long	 number),
mark	off	as	many	positions	as	there	are	figures	in	the	divisor,	less	one.

	
In	our	example	the	divisor	is	674,	which	is	three	figures;	we	must	mark	off	one
less,	that	is,	we	mark	off	two	places:

We	observe	this	mark	as	our	guide	in	knowing	when	to	stop.	All	the	figures	to
the	 left	of	 the	mark	are	used	 in	 finding	figures	of	 the	answer,	or	quotient.	The
figures	 to	 the	 right	of	 the	mark	are	used	 to	 find	 the	 remainder.	Let	us	 find	 the
remainder	 in	 our	 example:	

We	got	the	33	in	the	working	figures	in	the	usual	manner:	the	NT	of	67	times	1,
06	 plus	 07,	 is	 6.	 Subtract	 the	 6	 from	 9	 to	 get	 3	 and	 bring	 down	 the	 3	 of	 the
dividend.	From	 the	 33	we	 subtract	 the	UT	 plus	U	 products	 as	 before	 (UT	 is	 74
times	1,	07	plus	04,	equals	7;	U	is	4	times	5,	20,	equals	zero)	to	get	33	minus	7,
or	26.
The	26	is	carried	up	without	any	NT	subtraction,	to	join	the	1	of	the	dividend

as	261.	The	final	downward	step	is	accomplished	by	subtracting	the	product	of
the	right-hand	digit	of	the	divisor	(the	4	of	674)	and	the	right-hand	digit	of	the
answer	(the	1	of	351).

The	remainder	is	257.

	
Think	 of	 the	 situation	 in	 this	way:	 the	 slash	 through	 the	 dividend	 divides	 it

into	two	parts:	a	quotient	part	on	the	left	and	a	remainder	part	on	the	right.	The
slash	itself	is	the	boundary	line	between	these	regions.	We	cross	the	boundary	by



making	an	up-slanting	NT	arrow	(subtraction),	namely	the	one	that	uses	the	last
digit	 of	 the	 answer.	 As	we	 cross	 the	 boundary	we	 are	 still	 acting	 “normally,”
meaning	as	we	do	 in	 the	quotient	 region.	 In	 fact,	we	complete	 this	whole	 step
normally,	because	the	next	downward	UT	+	U	subtraction	is	also	done	as	 in	 the
quotient	region.	Only	after	that	do	we	use	the	remainder	region	procedure,	which
differs	from	the	quotient	region	procedure	in	two	respects:
1. No	 further	 NT	 subtractions	 are	 made.	 The	 upward	 arrow	 carries	 up	 the

whole	partial	dividend.

	
2. The	 last	 downward	 subtraction	 is	made	by	using	only	 the	product	 of	 the

right-hand	digit	of	 the	answer	 (not	 the	 last	 two	digits)	and	 the	 right-hand
digit	of	the	divisor.

	
The	 description	 of	 the	 remainder	 calculation	 just	 given	 is	 a	 useful	 one–it

applies,	with	 obvious	modifications,	 to	 divisors	 of	 any	 length.	We	 shall	 come
back	to	this	point	in	the	next	section.

	
Here	 is	 another	 illustration–divide	196,307	by	512.	There	are	 three	digits	 in

512,	 so	 we	 mark	 off	 two	 places	 from	 the	 right	 and	 then	 begin	 dividing:	

Now	we	 cross	 the	 boundary	 line,	 the	 slash,	with	 a	 regular	NT	 subtraction,	 and
complete	 the	 step	 with	 a	 regular	 downward	 subtraction:	

Here	we	 go	 into	 the	 remainder	 procedure–we	 subtract	 nothing	 on	 the	 upward
arrow,	 instead	we	bring	 up	 the	 entire	 partial	 dividend	 to	 form	part	 of	 the	 new
working-figure.	We	 then	use	only	 the	product	of	 the	 final	3	of	 the	answer	383



and	the	last	digit–2–of	the	divisor	on	the	downward	arrow	(instead	of	using	83	as

we	“normally”	would):	
Notice	 that	 to	 the	right	of	 the	boundary	line	we	have	no	“partial	dividends,”

the	 numbers	 are	 all	 “working	 figures.”	 By	 this	 we	 mean	 that	 none	 of	 these
numbers	are	divided	by	the	first	figure	of	the	divisor	to	give	the	next	digit	of	the
answer.	We	 already	 have	 the	whole	 answer	 and	 are	 now	 looking	 only	 for	 the
remainder.
Here	is	a	long	one,	written	out	as	one	might	actually	do	it:

The	 answer	 is	 64,214.	 The	 remainder	 is	 895.	 (Notice	 that	 983	 is	 so	 close	 to
1,000,	with	that	8	in	the	second	place,	that	we	divide	our	partial	dividends	by	10,
not	by	9,	if	we	wish	to	save	ourselves	the	trouble	of	correcting	some	of	the	digits
of	the	answer.)
Here	is	another	one:	39,863,907	divided	by	729.	Because	the	second	digit	of

729	is	only	2,	not	8	or	9,	we	do	not	consider	using	8	instead	of	7	as	divisor.	On
the	other	hand,	 at	 one	point	we	 shall	 have	 to	 cut	down	a	 figure	of	 the	 answer
because	 we	 run	 across	 a	 UT	 plus	 U	 figure	 that	 is	 too	 big	 to	 subtract.	 This	 is
indicated	 by	 a	 7	 which	 is	 struck	 out	 and	 corrected	 to	 6:	

The	answer	is	54,683.	The	remainder	is	zero–it	comes	out	even.

Examples
Here	 are	 three	 examples	 that	 you	 may	 like	 to	 try	 for	 yourself.	 They	 are

worked	out	according	to	the	“hints”	that	follow	the	third	problem.	Do	not	read



the	hints	if	you	feel	that	you	can	do	without	them.
1.	92880	×	432	=	?
2.	31392	×	654	=	?
3.	54763	×	489	=	?

Hints:	The	last	divisor,	489,	has	an	8	in	the	second	position,	so	at	each	step
we	may	divide	the	partial	dividend	by	5,	instead	of	4.	On	the	other	hand	it	would
also	be	correct	 to	use	 the	4.	You	may	do	so	 if	you	do	not	mind	correcting	 the
answer	 when	 necessary.	 In	 every	 case,	 remember	 to	 (1)	 divide	 each	 partial
dividend	 in	 the	 respective	 problems,	 and	 write	 the	 result	 as	 a	 figure	 of	 the
answer;	(2)	find	the	NT	product	of	this	figure	and	subtract	it;	and	then	(3)	find	the
UT	 product	 of	 the	 latest	 figure	 of	 the	 answer	 plus	 the	 U	 product	 times	 the
preceding	figure	of	the	answer	and	subtract	that	from	your	working	figure.

	
ANSWERS:

DIVISORS	OF	ANY	LENGTH
In	calculations	that	have	divisors	of	four	or	more	digits,	such	as	in	13,671,514

divided	by	4,217,	we	use	the	same	basic	ideas	as	before:

	
1. Subtract	the	NT	product	to	find	the	working	figure.
2. Subtract	 the	 UT	 product	 from	 the	 working	 figure	 to	 get	 the	 new	 partial

dividend.
3. Divide	the	result	(the	partial	dividend)	by	the	first	figure	of	the	divisor	to

arrive	at	the	next	figure	of	the	answer.



	
But	now	with	a	four-digit	divisor	we	have	an	extra	digit	to	take	care	of,	such

as	the	7	of	4,217.	We	take	care	of	it	by	extending	the	UT	product,	while	the	other
two	steps	(1	and	3)	remain	unchanged.	“Extending”	the	UT	products	means	what

we	see	in	this	comparison:	
Each	extra	digit	 in	 the	divisor	calls	for	an	extra	UT	pair.	This	results	 in	what

we	see	above–overlapping	UT	pairs.	A	four-digit	divisor	will	have	at	the	peak	of
its	 development	 three	 UT	 pairs;	 a	 five-digit	 divisor,	 four	 UT	 pairs.	We	 always
have	a	single	U	at	the	end,	but	this	is	really	a	UT	pair.	The	T	of	it	is	over	no	figure
at	all,	so	it	does	not	contribute,	and	we	do	not	bother	to	write	that	T.
What	digit	shall	we	use	to	mulitply	each	UT	by?	Obviously,	one	of	the	digits	of

the	answer	goes	with	each	UT	pair,	but	which	one?	Let	us	write	an	unspecified
answer,	or	the	part	of	it	that	has	already	been	found,	in	the	form	of	x’s.	Each	x
stands	 for	 some	 digit	 that	 we	 need	 not	 name	 here.	 Suppose	 we	 have	 already
found	four	figures	of	the	answer.	Then	the	multiplication	in	UT	style	matches	off
the	 UT	 pairs	 with	 the	 digits	 of	 the	 answer	 in	 this	 manner:	



Then	we	add	 the	 results	 of	 these	UT	multiplications	 together.	This	 is	what	we
have	been	doing	right	along	with	two-and	three-digit	multipliers.	Looking	at	the
way	the	lines	of	the	diagram	fit	into	one	another,	you	will	notice	that	they	form	a
“nested	 set,”	 similar	 to	 what	 we	 had	 in	 the	 chapter	 on	 multiplication:	

“Move	inward	to	the	middle	from	both	ends”	would	be	a	rule	that	describes	the
motion	here.	The	whole	process	can	be	summarized	in	three	rules:
1. Multiply	the	new	figure	of	the	answer,	at	each	step,	by	the	first	two	digits

of	the	divisor	(like	the	42	of	4,217)	in	NT	style.

	
2. Multiply	the	same	new	figure	of	the	answer	in	UT	style	by	the	second	and

third	digits	of	the	divisor	(like	the	21	of	4,217).

	
3. Then	move	in	toward	the	middle,	multiplying	other	UT	pairs	in	the	divisor

by	 the	 “old”	 figures	 of	 the	 answer	 in	 turn	 (as	 in	 4,217,	we	move	 inward
twice,	first	to	the	pair	17	and	then	to	the	incomplete	UT	pair	7).

	
Let	us	 look	at	 the	example	we	had	above,	13,671,514	divided	by	4,217.	We

shall	apply	the	three	rules	stated	just	above,	and	see	how	they	give	the	answer.
First	of	all,	we	observe	 that	 the	divisor,	4,217,	has	 four	digits,	 so	we	mark	off
from	 the	 right	 three	 places	 (always	 one	 less	 than	 the	 divisor):	



The	last	three	figures	of	the	dividend	will	be	used	for	finding	the	remainder.	The
first	figure	of	the	answer	is	3.	It	is,	of	course,	13	divided	by	the	4	of	4,217.	Now
we	apply	the	three	rules:
Second	digit	of	answer:

	
Subtract	NT	product	(rule	1):

Subtract	UT	product	(rule	2):

Divide	the	partial	dividend	10	by	4	of	4217	and	you	have	the	next	figure	of	the
answer:	2

	
Third	digit	of	answer:

	
Subtract	NT	product	(rule	1):



Subtract	UT	product	(rule	2	and	3):

Then,	of	course,	 the	next	 figure	of	 the	answer	comes	 from	dividing	 this	 last
figure,	18,	by	the	4	of	4,217	(18	divided	by	4	is	4).

Last	digit	of	answer:
The	 fourth	digit	of	 the	answer	 is	 the	 last	digit	 in	 this	 example.	 (We	know	 this
because	 of	 the	 slash	 that	 divides	 the	 quotient	 part	 of	 the	 dividend	 from	 the
remainder.)	 Subtract	 the	 NT	 product	 (rule	 1):	

Subtract	UT	products	(rule	2	and	3):

The	last	figure	of	the	answer	is	2–namely,	the	last	partial	dividend,	9,	divided
by	4	of	4,217.



The	remainder:
After	we	have	 all	 the	digits	 of	 the	quotient	 (the	 answer),	we	 continue	on	 to

find	the	remainder.	The	general	process,	for	a	divisor	of	any	length,	is	similar	to
what	we	had	in	the	section	on	three-digit	divisors.	There	are	three	steps:	1. We
cross	 the	 “boundary”	 (the	 slash	 in	 the	dividend)	 still	 calculating	 in	 the	normal
manner.	We	make	 our	NT	 subtraction	 to	 find	 the	 first	working	 number	 on	 the
remainder	 side	 of	 the	 slash.	 The	UT	 subtraction	 is	 also	 handled	 in	 the	 regular
manner.

This	 was	 done	 just	 as	 before.	 (We	 will	 feel	 the	 effect	 of	 the	 remainder
procedure	 only	 in	 the	 next	 step.)	 Notice	 how,	 in	 the	 divisor	 and	 quotient,	 the
action	of	the	NT	and	UT	calculations	move	from	left	to	right.	In	this	step,	the	3	of
the	quotient,	3,242,	was	not	used.	This	left	to	right	movement	will	continue,	as
we	shall	see	below.
2. Across	the	“boundary,”	we	now	make	use	of	the	first	of	the	two	remainder

features.	 From	 here	 to	 the	 end	 of	 the	 problem	 we	 no	 longer	 make	 any	 NT
calculations.	Instead	we	merely	bring	up	the	new	partial	dividend	to	form	part	of
the	new	working	figure.

3. Finally,	 the	 last	 of	 the	 two	 remainder	 features:	 on	 each	 new	 downward



subtraction	we	stop	using	one	digit	of	the	quotient,	beginning	at	the	left.	Notice
how	 this	 left-to-right	 movement	 eliminates	 one	 UT	 calculation	 at	 each	 step.
Compare	diagrams	above	and	below.

As	 there	 are	no	 longer	 any	NT	 subtractions	we	bring	up	 the	partial	dividend
figure	as	 in	 step	2	 above.	Then,	 as	 in	 step	3,	we	 stop	using	 the	next	 left-hand
digit	 in	 the	 quotient.	 This	 is	 the	 last	 step	 in	 our	 problem	 and,	 as	 we	 would
expect,	 we	 end	 up	 by	 multiplying	 the	 units-digit	 (the	 right-hand	 digit)	 of	 the
divisor	 by	 the	 units-digit	 of	 the	 quotient.	We	 have	 continued	 our	 left	 to	 right
movement	 and	 have	 now	 “run	 off	 the	 ends”	 of	 both	 divisor	 and	 quotient:	

The	last	figure	found	in	the	calculation	is	the	remainder.	In	this	example,	that
last	figure	is	zero.	The	division	comes	out	even,	so	there	is	no	remainder.
All	the	details	we	have	just	seen–the	careful	naming	of	the	digits	involved	at

each	step–tend	to	make	the	division	process	seem	difficult.	But	this	is	deceptive.
It	looks	complicated	only	because	we	repeated	all	the	small	bits	of	work	for	the
sake	 of	 clarity.	 In	 actual	 work,	 after	 the	 method	 is	 clearly	 understood,	 the
calculation	goes	fast	and	is	really	quite	easy.
The	 only	 real	 difficulty	 is	 the	 one	 that	 is	 always	 present–i.e.,	 the	 need	 for

being	 careful.	 Careless	 slips	 are	 a	 danger	 in	 any	 kind	 of	 calculation.	 In	 the
division	 process	 of	 the	 Trachtenberg	 method,	 we	 must	 take	 care	 to	 find	 the
correct	UT	pair	products.	Let	us	repeat	the	three	rules	stated	on	here	which	tell	us
how	to	identify	the	digits	in	the	answer	by	which	we	multiply	the	NT	and	UT	pairs
in	the	divisor.



	
1. Multiply	the	new	figure	of	the	answer,	at	each	step,	by	the	first	two	digits

of	the	divisor	(like	the	42	of	4,217)	in	NT	style.

	
2. Multiply	the	same	new	figure	of	the	answer	in	UT	style	by	the	second	and

third	digits	of	the	divisor	(like	the	21	of	4,217).

	
3. Then	move	in	toward	the	middle,	multiplying	other	UT	pairs	in	the	divisor

by	the	“old”	figures	of	the	answer	(as	in	4,217,	we	move	inward	twice,	first	to
the	pair	17,	and	then	to	the	incomplete	UT	pair	7).

	
Perhaps	the	following	diagrams,	which	show	only	the	divisor	and	quotient	of

the	problem	we	just	finished,	may	give	you	a	clearer	view	of	the	relationship	of
the	NT	and	UT	pairs	with	each	new	digit	of	the	answer	that	is	found	(1-4)	and	in
the	determination	of	the	remainder	(5-7).



Care	must	be	 taken	 in	 the	handling	of	 the	numerous	UT	 products.	To	 reduce
the	danger	of	error,	and	also	to	save	some	mental	effort,	do	this:	as	soon	as	you
find	each	new	UT	product,	subtract	it	 immediately	from	the	working	figure	and
use	what	remains	as	a	new	working	figure	from	which	you	subtract	the	next	UT
product.

CHECKING	THE	DIVISION
We	 have	 just	 learned	 two	 new	 ways	 to	 perform	 divisions,	 one	 of	 them	 a

“simple”	way	 and	 the	 other	 a	 “fast”	way.	The	 simple	method	 is	 self-checking
almost	entirely,	but	we	 left	one	part	of	 it	 for	a	 final	check.	The	 fast	method	 is
only	 partly	 self-checking.	 At	 this	 point	 we	 need	 a	 systematic	 check	 on	 the
answer	and	on	the	remainder–especially	on	the	remainder.
Of	the	several	possible	methods	of	making	a	check,	probably	the	most	natural

and	 most	 convenient	 is	 the	 one	 that	 follows.	 A	 possible	 variation	 of	 it	 is
suggested	at	 the	end,	and	each	 individual	may	make	up	slight	variations	of	his
own,	but	the	recommended	procedure	goes	along	these	general	lines:
1. Subtract	the	remainder	from	the	dividend.	For	instance,	in	one	example	we

divided	2,296	by	62,	and	we	found	an	answer	of	37,	with	a	remainder	of	2.



Subtract	 this	 2	 from	 the	 2,296.	 The	 result,	 2,294,	 is	 a	 reduced	 dividend
which	would	leave	no	remainder	if	divided	by	the	62	of	our	example.

2. Find	the	digit-sum	of	this	reduced	dividend	by	adding	the	digits	across,	as
we	 have	 done	 before.	 The	 example,	 2,294,	 gives	 2	 plus	 2	 plus	 9	 plus	 4
equals	17.	Reduce	this	to	a	single	figure	by	adding	it	across:	1	plus	7	is	8.
The	digit-sum	is	8.	Always	 reduce	 the	digit-sum	 to	a	 single	 figure	 in	 this
way.

3. Find	the	digit-sum	of	the	divisor–62,	in	the	example–and	the	digit-sum	of
the	 answer,	 the	 37.	 Then	multiply	 these	 two	 digit-sums	 together.	 The	 62
gives	8,	and	the	37	gives	10,	which	reduces	to	1.	Then	multiply	these	two
together:	 1	 times	 8	 is	 8.	 (This	 should	 be	 reduced	 to	 a	 single	 figure	 if
necessary,	 but	 8	 happens	 to	 be	 a	 single	 figure	 already.)	 4. Compare	 this
product	of	two	digits	which	you	have	just	found,	the	8,	with	the	digit-sum
of	the	reduced	dividend,	in	paragraph	2.	That	was	also	an	8.	So	8	equals	8,
and	the	work	checks.	The	answer	and	the	remainder	are	both	correct.

	
One	of	our	examples	came	out	“even,”	with	no	remainder;	1,904	divided	by

34.	Here	is	how	it	would	look	with	the	checking	figures	written	in	parentheses:	

Check:	7	times	2	is	14,	and	1	plus	4	is	5.	Compare	this	5	with	the	digit-sum	of
1,904.	It	is	5	also.	The	work	checks.
What	does	this	all	amount	to?	It	is	essentially	a	matter	of	checking	the	inverse

process,	the	multiplication.	We	saw	that	1,904	divided	by	34	is	56.	In	reverse,	we
could	say	that	34	times	56	is	1,904.	This	is	saying	the	same	thing,	but	in	terms	of
multiplication.

When	there	is	a	remainder	we	must	get	rid	of	it	before	we	check	the	work.	This
is	done	by	subtracting	it	from	the	dividend:



The	variation	that	we	mentioned	before	is	optional.	It	helps,	though,	because	it
eliminates	the	subtraction	at	the	right,	above,	where	we	subtracted	the	895.	This
is	the	variation:
1. Do	 not	 subtract	 the	 remainder	 from	 the	 dividend,	 such	 as	 895	 from

63,123,257.
2. Instead,	 find	 the	 digit-sum	 of	 the	 remainder,	 and	 subtract	 that	 from	 the

digit-sum	 of	 the	 dividend.	 (Add	 9,	 if	 necessary,	 to	make	 the	 subtraction
possible.)	In	the	example,	 the	remainder	of	895	gives	8	plus	5	is	13,	or	1
plus	3	is	4.	The	digit-sum	of	the	dividend	is	6	plus	3	plus	1	plus	2	plus	3
plus	2	plus	5	plus	7	=	20,	 or	 2	 plus	0	 is	 2.	Now	we	must	 subtract	 the	4
(remainder)	from	the	2	(dividend).	Since	the	2	is	too	small,	we	increase	it
by	 adding	 9,	 and	 it	 becomes	 11.	 Remember,	 in	 digit-sums	 nines	 do	 not
count.	They	are	the	same	as	zeroes.	So	we	subtract	the	4	from	11,	and	we
have	7.

3. As	 before,	 we	 obtain	 a	 number	 to	 compare	with	 the	 7.	We	multiply	 the
digit-sum	of	the	answer,	8,	by	the	digit-sum	of	the	divisor,	2,	and	we	have
16.	Then	1	plus	6	is	7.

4. Compare	 the	 two	numbers	 that	we	have	 found,	 in	paragraphs	2	 and	3:	7
equals	7.	The	work	checks.

Practice	problems
		1.	5678	÷	41
		2.	4871	÷	74
		3.	70000	÷	52
		4.	7389	÷	82
		5.	9036	÷	36
		6.	36865	÷	73
		7.	22644	÷	51
		8.	28208	÷	82



		9.	14847	÷	49
10.	11556	÷	36
11.	18606	÷	31
12.	43271	÷	72
13.	81035	÷	95
14.	63000	÷	72
15.	4839	÷	64
16.	2014	÷	56
17.	5673	÷	72
18.	5329	÷	95
19.	4768	÷	92
20.	5401	÷	67
21.	2001	÷	45
22.	7302	÷	86
23.	9345	÷	99
24.	85367	÷	26
25.479535	÷	63
26.236831	÷	674
27.543765	÷	823
28.234876	÷	632
29.204356	÷	913
30.743567	÷	256
31.4536754	÷	543
32.27483624	÷	6211
33.63123257	÷	9832

	
Answers













CHAPTER	SIX
Squares	and	square	roots

INTRODUCTION
Here	are	diagrams	of	three	ranches	out	west.	They	must	be	in	Texas,	because

each	one	is	several	miles	long	on	each	side.	They	happen	to	be	perfectly	square
in	shape	because	these	are	fictitious	ranches	and	we	can	make	them	square	if	we

wish:	
What	 are	 their	 areas?	The	 first	 has	 an	 area	 of	 9	 square	miles.	This	 is	 because
each	side	is	3	miles,	and	3	times	3	is	9.	In	the	same	way	the	area	of	the	second	is
16	square	miles,	and	the	area	of	the	third	is	36	square	miles.
Notice	the	arithmetic	involved	here.	In	each	case	it	consists	of	multiplying	a

number	 by	 itself.	 This	 action	 is	 called	 “squaring”	 the	 number.	 Squaring	 3	we
have	9.	This	mathematical	operation	comes	up	as	part	of	various	problems.	The
simplest	and	most	natural	way	in	which	it	comes	up	is	just	what	we	had	here,	the
question	of	finding	the	area	of	a	square.	For	that	reason	it	is	natural	for	everyone
to	speak	of	it	as	squaring	the	number	and	to	call	the	result	of	doing	so	the	square

of	the	number.	For	instance:	
So	we	 see	 that	 squaring	defines	 a	mathematical	 “operation.”	The	 idea	of	 an

operation	is	this:	we	operate	on	a	number	when	we	change	it	to	another	number.



Many	 simple	 examples	 are	 familiar	 to	 everyone–for	 instance,	 doubling.	 We
double	 12,	 and	 it	 becomes	 24.	 The	 simplest	 operation	 of	 all	 is	 probably	 that
indicated	by	the	instruction	“increase	by	one.”	We	operate	in	this	way	on	12,	and
it	becomes	13,	and	so	on.	In	each	case	we	start	with	a	particular	number,	in	fact
any	 number	we	wish	 to	 talk	 about,	 and	we	 end	 up	 at	 a	 different	 number.	We
move	from	one	number	to	another	one.
Suppose	we	take	the	result	of	doubling,	like	the	24	that	we	mentioned,	and	we

apply	 a	 new	 operation,	 “halving.”	We	 take	 half	 of	 24	 and	we	 are	 back	 at	 12,
where	we	started.	Doubling	and	halving	are	opposite	operations,	 in	 that	 sense.
We	say	that	halving	is	the	“inverse”	operation	to	doubling.	What	is	the	operation
inverse	to	“increase	by	one?”	Obviously,	“decrease	by	one.”	Apply	this	to	the	13
of	the	last	paragraph,	and	we	are	back	at	12	again.
There	 is	 an	 operation	 inverse	 to	 squaring.	 It	 is	 the	 operation	 of	 “taking	 the

square	 root.”	 We	 expressed	 the	 other	 operations	 in	 the	 form	 of	 commands,
“double,”	or	“increase	by	one.”	If	we	express	the	idea	of	the	square	roots	in	this
way,	it	is	“answer	the	question:	what	number	when	multiplied	by	itself	becomes

the	given	number?”	Examples:	
In	this	chapter	we	are	going	to	consider	both	of	these	operations,	squaring	and

taking	the	square	root.	The	easier	one	is	squaring,	so	we	shall	look	at	that	first.	It
also	acts	as	an	introduction	to	the	process	of	taking	the	square	root,	which	is	not
quite	 as	 easy	 but	 has	 more	 practical	 value.	 We	 shall	 find	 that	 squaring–
multiplying	 a	 number	 by	 itself–is	 very	 similar	 to	 the	 method	 of	 fast
multiplication	 that	 we	 have	 already	 seen.	 In	 fact	 it	 is	 really	 a	 special	 kind	 of
multiplication.	Taking	square	roots	is	more	like	division.

SQUARING

Two-digit	numbers
It	 is	 easy	 to	 find	 the	 square	of	 a	 two-digit	 number,	 like	73.	 It	 is	 even	 fairly

easy	to	find	it	by	straightforward	multiplication.	We	could	say	73	times	73	and



use	 our	 method	 of	 fast	 multiplication	 from	 a	 previous	 chapter:	

But	we	shall	now	develop	an	even	faster	and	easier	way	to	get	this	result.	Easy
as	 it	 is,	 we	may	 as	 well	 take	 it	 in	 three	 steps	 because	 the	 first	 two	 steps	 are
interesting	points	 in	 themselves.	These	 first	 two	steps	are	 two	special	kinds	of
numbers,	namely:
Special	Type	Number	1:	These	are	the	numbers	which	end	in	a	5,	like	35	and

65.	We	can	write	down	the	square	of	such	a	number	 instantly:	1. The	 last	 two
figures	of	the	square	are	25.	This	is	true	of	any	number	of	this	special	type.	The
square	of	35	is	actually	1225.	In	writing	down	the	square	of	it	first	write	25	with
room	in	front	of	it:	35	squared	is	25.
2. To	find	the	two	figures	that	go	in	front	of	this	25,	multiply	the	first	digit	of

the	given	number	by	the	next	larger	digit.	In	the	case	of	35,	the	first	digit	is	3,	so
we	multiply	3	times	4.	This	gives	12.	We	put	the	12	before	the	25.	The	answer	is
1225.
In	the	case	of	65,	we	can	think	of	it	in	this	way:

Special	Type	Number	2:	These	are	the	numbers	in	which	the	tens-digit	is	5,
like	56,	for	instance.	We	write	down	the	square	of	such	a	number	immediately:
1. The	last	two	digits	of	the	answer	are	the	square	of	the	last	digit	of	the	number.
With	56,	we	have	36,	because	6	times	6	is	36.
2. The	 first	 two	 digits	 of	 the	 answer	 are	 25	plus	 the	 last	 digit	 of	 the	 given

number.	With	56	we	get	25	plus	6	is	31.	This	31	goes	in	front	of	the	36	and	the
answer	is	then	3,136.
If	 the	 last	 digit	 of	 the	 given	 number	 happens	 to	 be	 small,	 as	 in	 51,	we	 still

square	it:	1	times	1	is	1.	But	since	this	has	to	give	us	the	last	 two	digits	of	the

answer,	we	write	the	1	as	01:	
The	answer	is	2,601.	We	have	to	have	four	figures	in	the	answer,	and	this	is

how	we	arrive	at	it.
Perhaps	you	have	noticed	that	we	could	have	written	these	from	left	to	right,	if

we	had	wished.	There	is	never	any	number	to	“carry.”	With	other	numbers	this



will	 not	 always	 be	 true,	 but	 in	 these	 two	 special	 types	 of	 numbers	 there	 will
never	be	anything	to	carry.

	
Now	we	go	on	 to	 two-digit	numbers	 in	general,	not	 restricted	 to	any	special

type.	We	can	still	use	two	features	of	the	special	types:
1. In	 finding	 the	 last	 two	digits	 of	 the	 answer,	we	 shall	 still	 square	 the	 last

digit	of	the	number	(like	finding	25	from	35).

	
2. In	finding	the	first	two	digits	of	the	answer	we	shall	still	need	to	square	the

first	digit	of	the	number	(like	the	25	plus	1	out	of	51).

	
We	 shall	 no	 longer	 use	 the	 other	 features	 of	 the	 special	 types.	 Instead,

something	new	is	added.	Another	number	comes	into	the	picture:
3. We	shall	now	need	 to	use	 the	“cross-product.”	This	 is	what	we	get	when

we	multiply	 the	 two	 digits	 of	 the	 given	 number	 together.	 In	 squaring	 34,	 the
cross-product	 is	12,	because	3	times	4	is	12.	We	shall	now	see	how	we	should
use	this.	What	is	the	square	of	32?

	
First	 step:	Write	 32	 squared	 in	 this	 way:	 322.	 The	 small	 2	 above	 the	 line

means	 that	 we	 have	 two	 32’s	multiplied	 together.	 (If	 we	 refer	 to	 32	 times	 32
times	 32,	 we	 may	 write	 it	 as	 323,	 because	 there	 are	 three	 32’s	 multiplied

together.)	Square	the	right-hand	digit:	
Second	step:	Multiply	 the	 two	 digits	 of	 the	 number	 together	 and	 double:	 3

times	2	is	6,	doubled	is	12:

We	 write	 the	 12	 as	 2,	 and	 a	 dot	 to	 carry	 the	 1.	 Squaring	 is	 very	 much	 like
multiplication.

	
Last	step:	Square	the	left-hand	figure	of	the	number:



What	is	the	square	of	84?

	
Step	1:

Step	2:

Step	3:

Let’s	make	a	game	of	it–let	us	do	the	whole	thing	mentally.	It	is	possible	to	do
all	the	work	in	a	purely	mental	fashion,	without	writing	any	calculations	or	even
the	answer.	All	we	need	 is	a	 little	 trick	of	concentration.	Looking	at	 the	given
number,	say	the	32	that	we	had	before,	we	visualize	three	figures	of	two	digits

each:	
As	 usual	 we	 put	 a	 zero	 in	 front	 of	 a	 single	 digit	 like	 4,	 to	 make	 a	 two-digit
number	out	of	it.
Where	did	these	three	numbers	come	from–09,12,	and	04?	Obviously,	the	9	is

3	times	3,	and	the	4	is	2	times	2.	The	12	is	twice	3	times	2.	Then	we	“collapse”

these	three	two-digit	numbers	mentally:	
Add	the	figures	in	brackets:	9	plus	1	is	10,	(zero	and	a	dot);	2	plus	zero	is	2.	We
replace	 each	 bracket	 by	 the	 sum	 of	 the	 digits	 inside	 it:	

You	can	even	do	this	from	left	to	right	without	much	trouble,	after	doing	a	few
examples	to	get	the	feel	of	it.	Going	from	left	to	right	we	often	have	to	carry	a
figure,	as	we	did	with	the	1	just	above,	and	going	from	left	to	right	we	have	to
make	a	correction	when	we	carry	anything.	It	is	easy	enough	to	do	that,	because
we	have	only	these	three	two-digit	numbers	to	collapse,	and	a	little	practice	will
enable	 us	 to	 hold	 them	 before	 us	 mentally	 at	 the	 same	 time.	 Then,	 when	 we
come	to	a	carried	one	like	the	example	above,	we	say	“9”	and	change	it	to	“10”



without	any	great	effort.
It	 is	probably	easiest	 to	calculate	 the	cross-product	and	double	 it	as	our	first

step,	and	then	do	the	squaring	of	the	two	digits.	In	the	example	above,	the	most
convenient	way	is	probably	to	look	at	the	32	and	say	“3	times	2	is	6,	doubled,	is
12,”	our	middle	number,	and	only	then	do	we	say	“3	squared	is	9;	2	squared	is
4.”	With	proper	concentration	we	do	not	actually	say	 these	 things,	even	 in	our
minds.	The	proper	procedure	is	to	look	at	the	3	and	find	that	a	9	is	coming	into
our	 consciousness.	 Likewise	 the	 2	 suggests	 to	 us	 the	 figure	 4.	 But	 the	 cross-
product	takes	two	distinct	steps	in	the	minds	of	most	people;	it	does	not	suggest
itself	 spontaneously	until	we	have	practiced	a	great	deal.	That	 is	why	 it	 seems
best	to	calculate	the	cross-product	first.	However,	this	is	of	course	optional.

	
Try	one	yourself.	The	answer	follows	immediately,	but	you	can	test	yourself

by	 looking	 at	 the	 number	 once	 and	 looking	 away,	 and	 doing	 the	 calculation
mentally	 before	 you	 look	 at	 the	 answer.	 The	 square	 of	 43	 is	 1,849,	which	we

reach	in	this	way:	
A	little	while	ago	we	had	a	special	method	for	squaring	a	number	like	35.	We

said	“3	times	4	is	12,	and	then	attach	25–1225.”	The	4	is	used	because	it	is	the
next	larger	number	to	3.	Now	you	may	wonder,	would	our	present	method	with
the	cross-product	work	on	 the	number	35?	Of	course	 it	would.	Do	it	yourself–
square	 the	 number	 35	 mentally	 by	 using	 the	 three	 two-digit	 numbers	 and
collapsing.	The	answer	to	squaring	35	is	1,225,	any	way	we	arrive	at	it,	and	with

our	present	method	we	arrive	at	it	like	this:	

THREE-DIGIT	NUMBERS
Suppose	 we	 wish	 to	 find	 the	 square	 of	 462.	We	 can	 still	 make	 use	 of	 the

operations	that	we	learned	to	do	on	two-digit	numbers:
1. We	can	still	use	the	square	of	each	of	the	digits	separately.	In	squaring	32,

a	few	pages	back,	you	will	remember	that	we	used	a	9	(from	3	times	3)	and	a	4

(from	2	times	2);	



Now	with	 the	 three-digit	 number	 462,	 we	 shall	 use	 the	 square	 of	 4	 (16),	 the
square	of	6	(36),	and	the	square	of	2	(4).
2. We	can	also	still	use	the	cross-product	of	the	digits,	and	we	still	double	it.

In	 squaring	32,	 as	 you	 see	 just	 above,	we	had	 a	 12	 that	 came	 from	 the	 cross-
product	3	 times	2,	doubled.	Now	with	 the	 three-digit	number	462,	we	still	use
cross-products,	but	now	we	have	several	cross-products.	In	fact	we	shall	pair	off
the	three	digits	in	every	possible	way.
First	step:	Forget	about	the	4	of	462	for	a	moment.	We	have	left	only	62,	a

two-digit	number.	We	know	how	to	square	 two-digit	numbers,	so	we	go	ahead

and	square	this	62:	
Second	step:	This	is	new.	It	is	not	part	of	what	we	had	in	two-digit	numbers.

Form	an	“open	cross-product”	by	multiplying	together	the	first	and	last	digits	of
462,	that	is,	the	4	and	the	2,	and	doubling:	4	times	2	is	8,	and	8	doubled	is	16.
Add	this	number	directly	to	the	two	left-hand	digits	of	our	working	number,	like

this:	
Notice	that	this	is	not	collapsing.	It	is	a	full	overlap.
Last	 step:	 Now	 forget	 about	 the	 2	 of	 462	 for	 the	moment.	 Square	 46	 as	 a

regular	 two-digit	 number,	 except	 that	 you	 omit	 the	 6	 squared:	

What	does	all	this	amount	to?	Looking	at	the	bare	bones	of	the	method,	so	to
speak,	 we	 see	 that	 it	 is	 quite	 natural.	 In	 squaring	 462	 we	 first	 worked	 on	 62
squared.	Then	we	ignored	the	2	of	462	and	worked	on	46	squared.
Because	62	is	the	“end”	of	462,	squaring	62	gave	us	the	end	or	right-hand	part

of	the	answer.	Because	46	is	the	“beginning”	of	462,	it	gave	us	the	beginning	or
left-hand	 part	 of	 the	 answer.	But	 because	 the	 46	 and	 the	 62	 overlap,	we	 have
some	overlapping	in	the	middle	of	the	answer.	To	be	exact:
 1. The	 number	 462	 contains	 6	 only	 once.	 Hence,	 we	 have	 to	 use	 36	 (6

squared)	only	once:	when	we	square	46	we	don’t	add	in	another	36,	we	have
already	taken	care	of	it	in	squaring	62.

 2. There	is	one	new	term,	which	does	not	occur	in	squaring	either	46	or	62.	It
is	the	“open	cross-product,”	formed	by	multiplying	together	the	first	and	last



digits	of	462.	We	had	4	times	2	is	8,	and	this	8	doubled	is	16.	This	16	is	to	be
added	in	at	the	middle	of	the	number,	so	we	added	it	at	the	left	of	62	squared.

	
In	 doing	 an	 actual	 problem	 we	 would	 not	 expand	 the	 work	 with	 any

explanation.	It	would	look	more	like	this:

Do	you	remember	that	25	is	one	of	our	two	“special	types,”	because	it	ends	in
5?	If	we	had	25	alone	to	square,	we	would	say	2	times	3	is	6	(3	being	the	next
larger	number	after	2),	and	we	tag	on	 the	25:	625.	Can	we	use	 this	 trick	here?
Certainly.	Just	remember	that	we	really	need	four	digits,	so	625	has	to	be	written

as	0625:	
Try	this	one	for	mental	practice–don’t	write	anything	but	the	answer.	To	make

it	 easier	 for	 you	 this	 first	 time,	 we	 choose	 a	 symmetrical	 number:	

Don’t	look	now–the	answer	is	just	below.	After	you	do	it	yourself	you	can	check
your	work	against	this:

Then	add	the	open	cross-product	2	times	2,	doubled:



This	study	of	squaring	numbers	will	give	us	some	insight	into	the	method	of
finding	 the	 square	 root,	 which	 follows	 immediately.	 The	 method	 is	 not	 a
repetition	 of	 anything	 we	 have	 had	 already,	 however.	 It	 is	 different	 from
anything	else,	as	you	will	see.

SQUARE	ROOTS

Three-digit	and	four-digit	numbers
When	 we	 are	 given	 a	 number,	 we	 know	 that	 its	 square	 root	 will	 be	 some

smaller	number	with	this	peculiarity:	when	we	multiply	the	smaller	number	by
itself,	we	shall	obtain	the	given	number.	Given	144,	we	find	that	its	square	root
is	12,	because	12	times	12	is	144.	That	is	what	“square	root”	means.
If	 the	 given	number	 consists	 of	 three	 digits,	 like	 144,	 or	 of	 four	 digits,	 like

1,024,	the	square	root	will	have	two	digits.	(The	square	root	of	1,024	is	32.)	That
is	why	we	are	 taking	 three-and	four-digit	numbers	 together–both	kinds	give	us
two-digit	answers.

	
EXAMPLE	ONE:	Find	the	square	root	of	625.	It	is	customary	to	write	this	in

symbols	as

Read	“square	root	of	625.”
First	step:	Counting	from	the	right	we	mark	off	two	places:

and	we	work	on	the	figure	or	figures	to	the	left	of	this	bar.	In	this	example	we
begin	by	working	on	6.	The	principle	is	general:	whether	the	number	has	three
digits	or	four,	it	is	always	true	that	we	mark	off	two	places	from	the	right-hand
end	and	use	whatever	lies	to	the	left	of	the	slash.	(With	1,024	we	would	work	on
10;	we	have	10/24.)
Second	step:	From	your	knowledge	of	the	multiplication	table	find	the	largest



single	figure	whose	square	 is	not	 larger	 than	 the	number	you	found	in	 the	first
step.	Using	6,	what	 is	 this	 digit?	 It	 is	 2.	That	 is	 because	2	 times	2	 is	 4,	 but	 3
times	3	is	9.	We	can’t	use	3,	because	9	is	larger	than	our	6.	So	2	is	the	first	figure
of	the	answer:	
Third	step:	Square	the	first	figure	of	the	answer	and	subtract	it	from	the	6:

Fourth	step:	Take	half	of	this	last	figure	(half	of	the	lower	2),	and	put	a	zero
after	it,	so	that	we	have	10.	Then	divide	this	10	by	the	first	figure	of	the	answer:

10	divided	by	2	is	5.	This	is	the	other	figure	of	the	answer:	
Now	we	have	two	figures	of	the	answer,	2	and	5,	and	we	know	that	the	answer

will	be	a	two-figure	number.	Are	we	finished?	No.	Because:
1. We	must	verify	the	last	figure,	 the	5.	It	can	happen	here,	as	it	happens	in

division,	that	a	figure	of	the	answer	may	be	too	large,	or	too	small.	We	may	have
to	 go	 back	 and	 correct	 it.	 So	 the	 5	 that	we	 have	 now	 is	 not	 official	 yet.	 It	 is
tentative,	not	final.
2. We	wish	 to	find	 the	remainder.	 In	most	cases	 the	answer	does	not	“come

out	 even,”	 just	 as	 usually	 happens	 in	 division.	 We	 can	 determine	 what	 the
“remainder”	 is,	 the	 excess	 over	 the	 next-smaller	 number	 that	would	 come	 out
even.

	
This	being	a	situation	similar	to	division,	you	will	not	be	surprised	to	find	that

the	 rest	 of	 the	 calculation	 reminds	 you	 of	 the	 division	method	 in	 the	 previous
chapter.	 In	 fact	 it	 is	 quite	 similar	 to	 that	 part	 of	 the	 calculation	 where	 you
determined	the	remainder:
Fifth	 step:	 Imagine	 the	 answer	 that	 we	 have	 found,	 25,	 written	 out	 in	 the

same	way	that	we	did	it	in	squaring:

Omit	the	left-hand	pair,	the	04	in	this	case.	We	only	need	the	20	and	25.	Collapse
them:



So	we	imagine	the	work	looking	like	this:

Subtract	 the	 first	 figure	 of	 this	 imagined	 number,	 the	 underlined	 2,	 from	 our
working	figure	(the	lower	2):

Last	step:	Bring	down	the	last	two	figures	of	the	given	number.	We	found	a
zero	by	subtracting	just	now.	After	 this	zero	we	bring	down	the	2	and	the	5	of

625:	
From	 this	 025,	 or	 whatever	 it	 is	 in	 other	 cases,	 we	 subtract	 the	 rest	 of	 our
“imagined”	number.	We	have	already	used	the	2	that	was	underlined	in	the	225.

Now	we	use	the	remaining	25:	
The	work	came	out	even.	The	square	root	of	625	is	25.

	
EXAMPLE	TWO:	Find	the	square	root	of	645.	We	shall	have	a	remainder;

this	one	does	not	come	out	even.
	

First	step:	Mark	off	two	places:	6/4	5
	

Second	step:	Find	the	first	figure	of	the	answer.	It	is	the	largest	number	whose
square	is	less	than	6:

Third	step:	Subtract	the	square	of	this	number	(2	times	2	is	4):



Fourth	step:	Take	half	this	last	figure,	the	lower	2,	and	put	a	zero	after	it:

Divide	this	10	by	the	figure	of	the	answer	already	found:	10	divided	by	2	is	5.
This	 is	 the	 second	 figure	 of	 the	 answer,	 at	 least	 tentatively:	

Fifth	step	(remainder	and	check):	Using	the	answer	as	just	found,	we	form
the	 second	 and	 third	 pairs	 of	 figures	 as	 we	 do	 in	 squaring:	

and	we	subtract	the	underlined	2.	Then	bring	down	the	45	and	subtract	the	25	of
225:

We	 have	 a	 square	 root	 of	 25	 and	 a	 remainder	 of	 20.	 This	 remainder	 is
“acceptable,”	because	 it	 is	 less	 than	 the	 answer,	25.	But	 this	 is	not	 always	 the
case.

	
EXAMPLE	THREE:	Here	is	a	case	where	the	remainder	is	not	acceptable:

All	 the	 work	 up	 to	 this	 remainder	 was	 identical	 with	 the	 calculation	 in	 the
example	just	above.	But	now	we	have	a	remainder	of	51.	In	square	root	the	rule
is:	the	remainder	must	not	be	larger	than	twice	the	answer.	Here	the	remainder,
51,	 is	 greater	 than	 twice	 the	 answer,	 25.	 Evidently	 the	 5	 of	 our	 answer	 is	 too
small.	Maybe	it	should	be	a	6,	that	is,	the	answer	may	be	26	instead	of	25.	We



try	it:	
So	with	26,	it	comes	out	even:	the	square	root	of	676	is	26,	exactly.

	
EXAMPLE	FOUR:	Find	the	square	root	of	2,200:

	
First	step:	2	2/0	0
Second	Step:

Third	Step:

Fourth	Step:

Fifth	step	(remainder	and	check)

We	can’t	subtract!	The	7	must	be	too	large,	because	we	can’t	subtract	the	9	from
zero.	So	we	cut	it	down	to	46	and	try	that:

We	can	subtract	16	from	100,	so	46	must	be	the	right	answer.



	
There	was	one	step	where	we	 took	half	of	 the	 last	working-figure	and	put	a

zero	after	it.	In	the	example	just	above,	the	6	under	the	16	was	divided	by	2	and
a	zero	added	(half	of	6	is	3,	plus	zero	is	30).	We	used	30	by	dividing	it	by	the	4
of	the	answer.

	
Sometimes	 it	will	 happen	 that	we	 have	 an	 odd	 number	 to	 take	 half	 of,	 like

this:

In	such	cases	it	is	probably	best	to	use	the	“bigger	half.”	With	5,	use	3:

The	subtraction	is	blocked–we	can’t	subtract	the	underlined	6	from	our	working-
figure,	5.	Therefore	 the	6	of	our	answer	must	be	 too	 large.	We	try	55	 instead:	

It	comes	out	even:	the	square	root	of	3,025	is	55,	exactly.

Five-digit	and	six-digit	numbers
We	take	these	together	because	both	cases	give	us	 three-figure	answers.	The

square	root	of	88,246,	for	instance,	is	296,	and	the	square	root	of	674,589	is	821.
Both	of	these	are	three-digit	answers.	There	is	a	remainder	in	each	case.
This	is	a	logical	place	to	discuss	the	number	of	digits	in	the	square	root	of	a

number.	We	can	tell	how	many	digits	we	shall	have	in	the	square	root	before	we
find	a	single	figure	of	the	answer.	Roughly,	we	shall	have	half	as	many	figures	in
the	answer	as	in	the	given	number.	To	be	exact:
1. If	 the	given	number	consists	of	an	even	number	of	figures	(as	674,589	 is

six-figures,	 and	 six	 is	 an	 even	 number).	 then	 its	 square	 root	will	 have	 exactly
half	as	many	figures.



2. If	the	given	number	consists	of	an	odd	number	of	figures	(as	625	is	a	three-
figure	number,	and	three	 is	odd),	 then	we	make	the	number	of	figures	even	by
increasing	it	by	one–three	is	changed	to	four–and	we	take	half	of	that.	(Half	of
four	is	two,	so	the	square	root	of	625	will	be	a	two-figure	number).

	
We	 can	 get	 the	 same	 result	 exactly	 in	 a	 mechanical	 way,	 without	 even

counting,	by	marking	off	in	twos	from	the	right.	Given	674,589,	before	we	start
to	 find	 its	 square	 root	we	can	mark	 it	off	 in	 this	way:	67/45/89.	We	have	here
three	blocks	of	figures,	so	we	shall	have	three	digits	in	the	answer.	Suppose	we
were	 given	 88,246.	We	would	mark	 it	 off	 as	 8/82/46,	 and	we	 still	 have	 three
blocks	of	figures.	The	fact	that	one	block	contains	only	the	single	figure	8	makes
no	 difference.	 So	 again	 we	 expect	 to	 find	 three	 digits	 in	 the	 answer–and	 of
course	we	do,	because	the	answer	is	296.
The	advantage	of	marking	off	in	two’s,	from	the	right,	is	that	it	does	more	than

tell	us	how	many	digits	our	answer	 is	going	 to	have.	 It	 also	performs	 the	 first
step	of	our	method	for	us.	This	was	simply	 to	mark	off	 the	 left-hand	figure	or
figures–one	figure	or	two–which	will	give	us	the	first	figure	of	our	answer.	With
88,	246,	the	first	step	is	to	determine	that	we	have	8	as	our	first	block	to	work
with.	Then	we	find	the	digit	which	has	as	its	square	the	greatest	number	which
does	not	exceed	8.	This	is	2.	It	is	not	3,	because	3	times	3	is	9,	and	9	is	greater
than	 8.	 So	 the	 first	 figure	 of	 the	 answer	 is	 2.	 Notice	 that	 counting	 off	 is
necessary,	because	we	must	be	sure	not	 to	use	88	 in	our	 first	step.	That	would
lead	to	9	instead	of	2:	the	square	of	9	is	81,	and	that	is	not	greater	than	88.	As
long	as	we	mark	off	 in	 two’s	 from	the	right,	 there	will	be	no	danger	of	such	a
mistake	occurring.
All	 three	 figures	of	 the	answer,	 in	 the	cases	we	are	considering	now,	can	be

found	without	anything	new.	We	need	only	the	ideas	that	we	have	been	using	on
the	numbers	three	and	four	digits	long,	in	the	preceding	section.	There	will	be	a
new	point	in	the	last	part	of	the	calculation,	where	we	are	finding	the	remainder,
and	 this	 part	 is	 necessary	 because	 it	 provides	 a	 check	 on	 the	 last	 digit	 of	 our
answer.	Once	in	a	while	we	must	go	back	and	reduce	the	last	figure	by	one.	But
notice	how	similar	this	is,	at	the	beginning,	to	what	we	have	had:
Example	1:	Find	 the	square	 root	of	207,936.	Mark	 it	off	 in	 twos:	20/79/36.

We	start	with	20,	and	we	shall	have	three	digits	in	the	answer.

	
FIRST	FIGURE	OF	ANSWER:	4	times	4	is	less	than	20,	but	5	times	5	is	greater	than



20.	 Our	 first	 figure	 then	 is	 4:	

SECOND	 FIGURE	 OF	 ANSWER:	 This	 20	 divided	 by	 4	 is	 5:	

This	 is	 the	 same	 squaring	 method	 that	 we	 had	 before.	 The	 40	 is	 4	 times	 5
doubled,	 and	 the	 25	 is	 5	 squared.	 In	 squaring	 we	 have	 three	 such	 two-digit
numbers	to	collapse	together,	but	in	this	square-root	method	we	use	only	the	last
two.	That	is	because,	of	course,	the	first	such	number	has	already	been	used.	It
would	be	4	squared,	or	16,	and	we	subtracted	16	in	our	first	step,	above.

	
LAST	FIGURE	OF	ANSWER:	Subtract	 the	4	of	 this	425	going	up,	and	 the	2	of	425

going	down,	like	this:	
Taking	 half	 of	 an	 odd	 number,	 like	 this	 5,	we	 don’t	 know	whether	 to	 use	 the
“smaller	half”	or	 the	 “larger	half,”	 the	2	or	 the	3.	The	best	 thing	 to	do	on	 the
average	is	split	the	difference.	After	adding	on	the	zero	we	have	either	20	or	30,
and	we	don’t	know	which	it	would	be	better	to	use.	Of	course	we	cannot	really
go	wrong,	because	a	wrong	guess	on	this	point	would	clear	itself	up	very	soon.
But	the	natural	thing	to	do,	and	the	one	that	saves	us	trouble	more	often	than	any
other	 choice,	 is	 to	 split	 the	 difference.	 Instead	 of	 either	 20	 or	 30,	we	 use	 25.
Divide	this	by	the	first	digit	of	our	answer:	divide	25	by	4.	This	gives	6,	the	last

figure	of	the	answer:	
We	 have	 all	 three	 figures	 of	 the	 answer.	 Notice	 that	 we	 have	 used	 nothing
different	from	the	techniques	that	we	had	in	our	shorter	numbers,	the	ones	that
gave	 us	 two-digit	 answers.	 The	 business	 of	 splitting	 the	 difference	 only



happened	to	occur	in	this	example:	it	occurs	as	readily	with	the	shorter	numbers,
or	longer	ones.
But	from	now	on	we	have	the	“remainder	and	check”	part	of	the	calculation.

In	this	we	shall	use	one	new	idea.	Even	that	is	not	entirely	new,	it	is	new	only	in
the	square	root	calculation.	We	had	it	before,	in	the	squaring	method.	It	is	the	use
of	 the	 “open	 cross-product,”	 in	 which	 we	 multiply	 together	 the	 first	 and	 last
digits	of	 the	three-digit	answer.	With	our	456,	we	multiply	4	times	6.	As	in	all
such	cross-products,	we	must	double	the	result:	4	times	6	doubled	gives	48.

The	636	is	the	collapsed	form	of	56	as	a	cross-product.	As	always	in	square	root,
we	omit	 the	 first	 of	 the	 three	 two-figure	numbers	 that	we	had	 in	 squaring:	we

omit	the	5	squared.	(It	has	already	been	taken	care	of.)	Then	
is	our	usual	cross-product	form.
These	 cross-products	 should	 always	 be	 done	mentally,	 after	 we	 have	 had	 a

little	practice.	It	is	quite	easy.	We	do	not	really	need	to	write	out	5	times	6,	30,
doubled	 is	60;	60	36	collapses	 to	636.	 It	 is	 easily	done	 in	 the	mind.	But	don’t
become	absent-minded	and	forget	to	double!

	
REMAINDER	AND	CHECK:	As	soon	as	you	have	the	answer,	you	can	bring	down	all
the	 rest	 of	 the	 given	 number	 at	 once,	 like	 this:	

We	 struck	 out	 the	 4	 and	 the	 2	 of	 425,	 because	we	 have	 already	 used	 them	 in
subtracting	from	our	working	figure.	Now	we	use	the	underscored	4	of	the	open
cross-product,	the	48,	as	the	arrows	show.	As	soon	as	we	have	said	“5	minus	4,
1,”	we	also	strike	out	the	4	of	48.	We	have	finished	with	it.	What	remains?	Only

this:	



Now	add	the	vertical	column:	5	plus	8	plus	6	is	19,	like	this:

We	subtract	this	result,	this	1936,	from	the	whole	remaining	work-figure:

The	problem	comes	out	even.	The	square	root	of	207,936	is	456,	exactly.

	
Example	2:	With	only	a	sketchy	explanation,	here	is	the	work	for	the	square

root	of	893,304:

The	7	has	just	now	been	struck	out,	after	we	used	it	by	subtracting	it	from	the	8,
going	 up.	 Then	 we	 subtract	 the	 3	 of	 736,	 going	 down:	

The	5	of	the	answer	is	50	divided	by	9	(the	9	of	94).	Now	that	we	have	the	whole
answer,	we	calculate	the	cross-products	and	bring	down	all	 the	rest	of	 the	long

number:	
The	remainder	is	279.	The	work	checks,	in	the	sense	that	we	did	not	encounter
any	contradictions.	There	was	no	place	where	we	tried	to	subtract	a	number	that
was	 too	 large,	 and	 the	 remainder	 of	 279	 is	 smaller	 than	 our	 answer,	 945.



Everything	looks	reasonable.	The	answer	is	correct.

PRACTICE	EXAMPLES
Here	 are	 a	 few	 practice	 examples	 that	 you	 will	 find	 interesting	 to	 try	 for

yourself,	 especially	 if	you	 take	 them	 in	order.	The	earlier	ones	work	out	 in	an
easier	 way	 than	 the	 later	 ones.	 Answers	 are	 after	 the	 last	 one.	When	 you	 do
them,	you	 can	help	yourself	 by	using	 these	 tips:	1. When	 the	 partial	 dividend
happens	 to	be	 an	odd	number,	 “split	 the	difference,”	 as	we	 said	 earlier.	 If	you
have	a	7,	for	instance,	and	you	wish	to	take	half	of	it,	it	will	give	you	either	3	or
4.	Adding	the	usual	zero,	you	would	have	either	30	or	40,	which	you	would	then
divide	 by	 the	 first	 figure	 of	 the	 answer	 (in	 order	 to	 get	 the	 next	 figure	 of	 the
answer).	Which	should	you	use,	30	or	40?	Neither.	Use	35.
2. When	the	partial	dividend	is	zero,	try	1	as	the	next	figure	of	the	answer,	not

zero.	This	will	usually	save	time.
3. Whenever	you	divide	by	 the	first	 figure	of	 the	answer	and	find	10	as	 the

next	figure	of	the	answer,	cut	it	down	immediately	to	9.	It	certainly	can’t	be	10.
It	may	even	be	8.
4. This	is	important,	and	comes	up	pretty	often–if	the	remainder	is	larger	than

twice	the	answer,	try	increasing	the	answer	and	see	if	it	is	possible.
	

Here	are	the	examples.	Find	the	square	root	of
		1.	765
		2.	965
		3.	200
		4.	683
		5.	7,888
		6.	4,569
		7.	46,500
		8.	103,456
		9.364,728
10.	900,045

	
Answers:	These	are	worked	out	 in	a	practical	way;	 that	 is,	very	much	as	 they
might	be	done	in	actual	work,	except	that	a	few	comments	have	been	added.	In
actual	work	some	of	what	we	show	here	could	be	omitted,	after	a	certain	amount
of	practice:







SEVEN-DIGIT	AND	EIGHT-DIGIT	NUMBERS
These	will	 lead	 to	 four-digit	 answers.	We	are	going	 to	 set	 up	 the	work	 in	 a

form	similar	to	what	we	had	with	two-digit	and	three-digit	answers.	It	should	be
realized	that	this	form	is	not	really	rigid.	We	only	keep	to	it	rigidly	in	presenting
the	 method	 for	 the	 first	 time.	 After	 a	 person	 has	 become	 familiar	 with	 the
method	he	can	introduce	variations	to	suit	his	own	taste.	Mostly	these	variations
will	be	omissions–the	more	familiar	we	are	with	the	method,	the	more	steps	we
can	do	mentally	and	thus	save	the	trouble	of	writing	them.	For	instance:
1. The	 first	 figure	 of	 the	 answer	 is	 the	 digit	whose	 square	 is	 just	 under	 the

first	 digit,	 or	 the	 first	 two	 digits,	 of	 the	 number,	 as	 in	 the	 example:	

Variation:	you	can	find	the	3	and	subtract	the	9	mentally:
2. In	finding	the	other	figures	of	the	answer,	we	have	used	the	cross-products

and	 “collapsed”	 the	 two-figure	 numbers:	

In	 the	 examples	 that	we	 have	 been	 considering,	we	 have	 usually	 shown	 these
two-figure	 numbers,	 like	 12	 04,	 and	 then	 collapsed	 them.	 These	 need	 not	 be
written,	in	actual	work.	Looking	at	32,	we	can	arrive	at	124	mentally,	after	only	a
little	practice.	But	don’t	forget	to	double	the	cross-product!

	
3. After	 all	 the	 figures	 of	 the	 answer	 have	 been	 found,	 we	 go	 on	 to	 the

remainder	part	of	 the	calculation.	The	examples	 above	 showed	 this	 as	done	 in
one	subtraction.	The	figures	 in	 the	column	of	 the	 table	at	 the	right	were	added
up,	 and	 after	 all	 columns	 had	 been	 added	we	 subtracted	 the	 total	 in	 one	 step,
from	 all	 the	 unused	 figures	 of	 the	 given	 number:	

Variation:	we	could	subtract	in	sequence,	one	column	at	a	time,	first	the	10,	then
the	4,	then	the	1:



This	is	an	advantage	after	we	have	become	so	familiar	with	the	method	that	we
do	not	write	the	little	table	under	the	321.	This	can	be	done	mentally.	In	that	case
we	do	not	calculate	the	little	table	all	at	once,	we	calculate	one	column	at	a	time.
As	 soon	 as	we	have	 calculated	 a	 column	we	use	 it,	 by	 subtracting	 it	 from	 the
working-figure,	so	that	we	can	immediately	forget	that	column.	But	this	comes
naturally	only	after	a	good	deal	of	practice.
For	 seven-digit	 and	eight-digit	numbers,	we	use	everything	we	have	already

had	in	shorter	numbers,	and	we	add	on	something	at	the	end.	To	be	specific:
1. We	find	the	first	three	of	the	four	digits	of	the	answer	exactly	as	we	found

three-digit	answers	before.	For	instance,	the	square	root	of	10323369	is	3,213,	as
we	 shall	 soon	 see.	The	 first	 three	digits	 of	 the	 answer	 are	321,	 so	 the	work	 is
exactly	 the	 same	 as	 in	 the	 shorter	 example	 just	 above:	

But	 now	 we	 do	 not	 go	 ahead	 with	 the	 remainder	 calculation.	 We	 still	 have
another	figure	of	the	answer	to	find.
2. We	find	the	fourth	figure	of	the	answer	like	this:	we	use	the	next	column	of

the	little	table,	4,	6,	0,	exactly	as	we	always	do	in	finding	figures	of	the	answer.
That	is,	we	find	the	total	of	the	column	(4	plus	6	plus	0	is	10),	and	we	subtract
the	 tens-digit	 of	 this	 total	 on	 an	 upward	 arrow:	

then	we	subtract	the	units-digit	of	the	total	(zero)	on	a	downward	arrow:



We	have	struck	out	 the	4,	 the	6,	and	the	zero,	because	we	have	used	them	just
now–we	subtracted	both	digits	of	10.
We	take	half	of	this	last	2	with	a	zero	after	it	(half	of	2	is	1	plus	zero	is	10)	and

we	 divide	 by	 the	 first	 digit	 of	 our	 answer,	 the	 3	 (10	 divided	 by	 3	 is	 3).	 The
resulting	 3	 is	 the	 last	 figure	 of	 the	 answer:	

3. All	the	unused	figures	of	10,323,369	go	into	the	remainder.	Here	is	where
we	 need	 to	 extend	 the	 method.	 The	 little	 table	 under	 the	 answer	 needs	 more
columns	now.	Let	us	postpone	this	for	just	a	moment	while	we	look	at	the	same
steps	 figured	on	a	different	number.	Find	 the	 four	 figures	of	 the	answer	 in	 the

square	root	of	40,094,224:	
The	first	three	figures	of	the	answer,	633,	were	found	just	as	they	would	be	in	an
example	with	a	three-digit	answer.	The	last	figure,	the	2,	is	found	by	subtracting
the	 column	 9,	 6,	 1,	 which	 totals	 16,	 from	 the	 19,	 and	 taking	 “half”	 of	 the
resulting	3.	When	we	add	the	zero	we	split	the	difference	and	use	15.	We	divide
it	by	the	6	of	633,	and	we	have	2,	the	last	figure	of	the	answer.

Remainder	and	check
1. Bring	up	the	last	working-figure	and	“tag	on”	after	it	all	the	unused	figures

of	the	long	number:	FIRST	EXAMPLE

SECOND	EXAMPLE



From	the	number	that	we	have	just	found,	23369,	or	34224,	or	whatever	it	may
be,	we	shall	subtract	the	number	which	we	shall	find	in	the	next	paragraphs.	The
result	will	be	the	remainder.

	
2. We	 find	 the	 number	 that	must	 be	 subtracted	 by	 extending	 the	 little	 table

under	the	answer.	We	have	already,	in	the	first	example:	
This	table	was	made	without	using	the	last	figure	of	the	answer,	the	3.	What	we
add	 on	 now	 is	 simply	 the	 contributions	 from	 this	 last	 figure:	 we	 form	 cross-
products	of	this	3	with	the	other	figures	of	the	answer,	in	all	possible	ways,	and

we	square	the	3:	
Multiplying,	we	have	9,	6,	3,	and	9,	in	that	order.	But	for	our	table	in	the	square-

root	method	all	cross-products	must	be	doubled,	so	we	have:	
They	go	from	left	to	right	one	step	at	a	time,	just	as	we	go	across	3213	from	left
to	right	one	step	at	a	time	when	we	form	them.

	
Now	how	shall	we	 fit	 these	new	numbers	 into	our	 little	 table?	We	write	 the

very	 first	 of	 the	 digits	 in	 this	 four-number	 table,	 the	 1	 of	 the	 18,	 in	 the	 last
column	that	was	struck	out.	But	remember,	any	single-digit	numbers	have	to	be
written	with	a	zero	in	front,	just	as	the	6	in	the	table	is	shown	as	06.	If	our	first
number	had	been	an	8	instead	of	an	18,	we	would	have	written	it	as	08.	This	is
important–it	keeps	numbers	in	their	correct	columns.	So	in	the	first	example	we



have:	
Actually,	the	rule	is	this–the	tens-digit	of	the	18,	or	whatever	the	number	may

be	 in	other	 examples,	 goes	 in	 the	 last	 struck-out	 column.	Normally	 this	works
out	in	a	natural	way,	as	it	does	with	18,	because	normally	we	do	have	a	two-digit
number.	But	sometimes	we	have	a	single	digit,	like	6.	This	takes	care	of	itself	if
we	remember	to	write	6	always	as	06.	Sometimes	also	we	may	have	a	three-digit
number:	9	times	7	is	63,	doubled,	gives	126.	In	those	cases,	we	still	put	the	tens-
digit	in	the	last	struck-out	column.	With	126,	the	2	would	go	into	that	column.

	
In	the	other	example	that	we	were	looking	at	we	have:

Subtracting	 this	number	we	get	zero.	Both	of	our	examples	came	out	even,	no
remainders.	 This	 does	 not	 usually	 happen	 in	 general	 when	 we	 are	 given	 a
number	 and	 asked	 to	 find	 its	 square	 root:	



We	took	the	second	figure	of	the	answer	as	1,	not	zero,	though	zero	divided	by	3
is	zero.	This	 is	a	guess,	based	on	the	 large	digits	coming	next,	9	and	8.	In	any
case,	we	can’t	go	wrong.	For	suppose	we	had	used	the	incorrect	zero.	We	would

have	had:	
What	is	the	next	figure	of	the	answer?	Divide	this	45	by	the	3	of	the	answer,	and
you	have	15.	But	15	can’t	be	 the	next	digit	of	 the	answer,	because	15	 is	not	a
digit.	It	is	two	digits.	So	we	know	we	must	increase	the	zero	that	we	tried,	and
then	we	have	31.	In	the	same	way	the	5	of	315	was	too	small.	We	increased	it	to
316.
Find	the	square	root	of	8,724,321.	Marking	it	off,	we	have	8.72.43.21,	so	we

shall	 have	 a	 four-digit	 answer,	 and	 we	 begin	 with	 the	 8,	 not	 with	 87:	

The	 20	 divided	 by	 2	 gave	 us	 10	 as	 the	 second	 digit	 of	 the	 answer,	 which	 is
impossible.	We	 have	 cut	 down	 the	 10	 to	 9.	 Then	 we	 have	 29	 as	 part	 of	 the
answer	when	we	 come	 to	 the	 15,	which	was	what	we	 get	when	we	 “split	 the
difference.”	 Notice	 this	 point:	 instead	 of	 dividing	 the	 15	 by	 the	 2	 of	 29,	 we
divide	the	15	by	3.	This	is	a	matter	of	common-sense.	Any	number	beginning	29
is	almost	as	large	as	one	beginning	30,	and	it	is	far	away	from	one	beginning	20.
Hence	we	can	say	that	this	particular	2	is	almost	a	3,	because	of	the	9	after	it.	(Of
course	we	would	arrive	at	the	right	answer	either	way,	it	is	a	question	of	possibly



wasting	 a	 little	 time.)	So	5	 is	 the	next	 figure	of	 the	 answer.	Continuing	 to	 the

end:	

LONGER	NUMBERS
Numbers	still	 longer	than	those	we	have	mentioned	are	handled	by	the	same

principles.	The	method	that	we	have	just	seen	for	four-digit	answers	will	give	us
the	first	four	digits	of	longer	answers.	The	fifth	figure	comes	from	an	application
of	 the	same	method.	If	 there	are	only	five	digits	 in	 the	answer	we	then	get	 the
remainder	by	using	the	little	table	under	the	answer,	but	now	the	table	contains
extra	entries.	They	are	the	cross-products	of	the	fifth	figure	of	the	answer	by	all
the	other	figures	in	turn,	ending	with	the	square	of	the	fifth	figure.	As	usual,	all
the	cross-products	are	doubled,	but	the	square	of	the	fifth	digit	is	not	doubled.
The	square	root	of	872,079,961	is	marked	off	as	8.72.07.-99.61,	so	there	will

be	five	digits	in	the	answer,	and	we	begin	with	8:

“Splitting	 the	 difference”	 on	 the	 1	 gives	 us	 the	 05	 shown	 as	 our	 last	working
figure.	Divide	this	by	3,	from	the	29,	and	we	have	1	or	2,	we	don’t	know	which.
Actually	 1	 proves	 to	 be	 correct,	 so	 we	 shall	 avoid	 rewriting	 by	 using	 it



immediately:	
In	accordance	with	our	principles,	the	new	slanting	line	of	figures,	04,	18,	and	so
on,	 comes	 from	multiplying	 the	 last	 figure	 of	 the	 answer	 across	 all	 the	 other
figures	of	the	answer	and	doubling,	and	then	squaring	the	last	figure	itself.	Also
in	accordance	with	our	principles,	 the	 tens-digit	of	 the	first	number	 in	 the	new
slanting	line,	the	tens-digit	of	the	04,	is	in	the	last	struck-out	column.

	
In	practice	we	need	not	have	such	a	spread-out	array.	In	fact,	we	would	not.

But	it	is	best	for	each	individual	to	choose	his	own	way	of	handling	it.	Either	he
can	collapse	some	of	these	two-digit	numbers	together,	which	is	advantageous	if
he	writes	 the	 result,	 or	 he	 can	 omit	writing	 the	 two-digit	 figures	 entirely,	 and
instead	subtract	each	column	sequentially.

CHECKING
In	 squaring	 numbers,	 and	 in	 finding	 square	 roots,	 we	 can	 use	 methods	 of

checking	 very	 similar	 to	what	we	 used	 in	multiplication	 and	 division.	 In	 fact,
squaring	 is	a	particular	kind	of	multiplication,	 in	which	a	number	 is	multiplied
by	 itself,	 so	 we	 can	 use	 precisely	 the	 multiplication	 check.	 This	 consists	 of
finding	the	digit-sum	of	the	numbers	multiplied	together	and	the	digit-sum	of	the
result,	and	seeing	whether	or	not	they	agree.	This	applies	directly	to	the	squaring
of	numbers.	Take	the	example	322	equals	1,024.	We	are	not	likely	to	have	made
an	error	in	such	an	easy	one,	but	it	serves	as	an	illustration.

	
  3	+	2	=	5,	the	digit-sum	of	32



  1	+	0	+	2	+	4	=	7,	the	digit-sum	of	1,024
	

If	squaring	32	 leads	 to	1,024,	 then	squaring	 the	digit-sum	of	32	should	 lead	 to
the	digit-sum	of	1,024.	Does	it?	The	digit-sum	of	32	is	5.	Square	it	and	you	have
25,	which	 reduces	 to	7.	Remember,	all	digit-sums	must	be	 reduced	 to	a	 single
figure.	So	squaring	 the	digit-sum	of	5	gives	us	7.	Compare	 this	with	 the	digit-
sum	of	1,024–it	is	also	7.	They	agree,	and	the	work	checks.

	
Checking	square	roots.	 In	 this	we	do	 the	same	sort	of	 thing	 that	we	did	 in

checking	 division.	 We	 check	 the	 inverse	 process	 instead,	 which	 is	 fully
equivalent	 to	checking	 the	process	 itself.	For	example,	one	of	 the	 square-roots
that	 we	 worked	 out	 was	 the	 square	 root	 of	 207,936.	 We	 found	 it	 to	 be	 456
exactly,	 with	 no	 remainder.	 Let	 us	 check	 it:	

Square	the	6,	and	you	have	36.	But	3	plus	6	is	9,	which	is	zero,	in	digit-sums.	So
the	two	agree.	The	work	checks.
The	reasoning,	of	course,	is	this:	to	say	that	the	square	root	of	207,936	is	456

is	the	same	thing	as	saying	that	456	squared	is	207,936.	One	is	true	if	the	other
is.	So	we	check	the	squaring	of	456,	rather	than	try	to	take	the	square	root	of	the
longer	number.	You	couldn’t	tell	in	advance	whether	you	should	use	the	square
root	of	zero,	or	of	18,	or	of	27,	or	of	36,	etc.	They	all	equal	one	another,	in	digit-
sums.	 This	 way,	 we	 square	 the	 digit-sum	 of	 the	 root,	 and	 we	 have	 a	 reliable
check.
What	 do	we	 do	when	 there	 is	 a	 remainder?	 The	 same	 thing	 that	we	 did	 in

division.	 We	 trim	 off	 the	 remainder,	 either	 actually	 or	 in	 the	 digit-sums.	 For
instance,	 we	 worked	 this	 example	 earlier:	

To	 check,	we	 square	 the	 8,	 which	 gives	 64,	 or	 1,	 in	 digit-sums.	 The	work	 is
correct.
In	 the	 calculation	 of	 the	 square	 root,	 we	 had	 partial	 checks	 as	 the	 work

proceeded.	This	final	check	on	the	whole	answer	and	remainder,	however,	is	still
highly	desirable.



CHAPTER	SEVEN
Algebraic	description	of	the	method
Hardly	a	person	 is	now	alive,	probably,	who	has	not	been	challenged	at	one

time	or	another	to	answer	a	question	something	like	this:
A	carpenter	 found	one	day	 that	he	had	a	 long	board,	 too	 long	 to	use.	So	he

took	a	saw	and	cut	it	into	three	pieces.	The	first	piece	was	3	feet	long.	The	length
of	the	second	was	equal	to	that	of	the	first	plus	one-fourth	the	length	of	the	third.
The	third	piece	was	as	long	as	the	other	two	together.	How	long	was	the	original
board,	and	how	long	was	each	piece?

	
If	you	happen	to	be	a	puzzle	fan	you	will	certainly	recognize	this–it	is	one	of

the	standard	types	of	puzzles.	The	answer	to	this	particular	one	is	16	feet	for	the
original	board,	and	the	three	pieces	are	3,	5,	and	8	feet	respectively,	as	we	shall
see	later.
Any	way	 that	 you	may	have	 arrived	 at	 the	 result	 is	 fair,	 and	 if	 you	 did	 not

work	it	at	all,	that	is	fair	too.	We	are	not	interested	in	the	puzzle	for	its	own	sake.
We	mention	it	only	because	it	is	a	beautiful	illustration	of	one	point	of	view	of
algebra.	This	particular	problem,	and	all	of	its	type,	can	be	done	best	by	algebra.
The	 point	 of	 view	 of	 algebra	 that	 it	 implies	 is	 what	 we	 may	 call	 “x	 is	 the
unknown.”	A	certain	number	is	being	sought,	and	we	shall	not	know	its	identity
until	 the	problem	is	solved.	So	in	the	meantime,	we	call	 it	by	a	letter,	x	or	any
other	letter,	as	a	sort	of	alias.
This,	of	course,	is	not	all	there	is	to	algebra.	For	one	thing,	in	the	field	of	pure

mathematics	 there	 is	 a	 very	 extensive	 and	varied	 structure	of	 algebraic	 theory,
which	 does	 not	 try	 to	 solve	 problems	 of	 this	 kind.	 For	 another,	 there	 are
applications	of	algebra	which	have	more	practical	value	and	are	different	 from
the	puzzle-solving	kind	of	algebra.	One	of	them	we	shall	use	now,	and	it	will	be
useful	all	through	this	chapter.	Different	from	the	“x	is	the	unknown”	idea	is	the
class-description	 point	 of	 view.	 It	 is	 a	 way	 of	 talking	 about	 a	 whole	 set	 of
numbers	all	at	one	time,	without	picking	out	any	individual	number.
Consider	this	situation:	A	certain	group	of	men	belong	to	a	bowling	team,	and

their	wives	belong	to	a	women’s	bowling	team.	Mr.	A	is	28	years	old	and	his	wife
is	26;	Mr.	B	is	25	years	old	and	his	wife	23;	Mr.	C	is	29	and	his	wife	27;	Mr.	D	is
23	and	his	wife	21;	and	Mr.	E	is	24	and	his	wife	22.



How	 can	 we	 summarize	 these	 figures?	 We	 can	 do	 it	 by	 noticing	 that	 the
women’s	bowling	team	is	two	years	younger	than	the	men’s	team.	In	fact,	each
husband	is	two	years	older	than	his	wife.	Let	us	write	the	letter	h	to	represent	the
age	of	any	one	of	the	husbands	and	w	for	his	wife’s	age-choosing	the	first	letter
of	each	word	to	remind	us	which	is	which–and	we	have:	
This	is	the	same	as	saying	that	each	wife	is	two	years	younger	than	her	husband:

The	same	fact	can	also	be	written	in	a	notation	which	uses	subscripts.	We	write	a
for	“age”	and	we	put	a	small	h	or	w	a	little	below	the	line	to	indicate	“husband”
or	“wife,”	and	then	the	relation	is	written	as	
To	see	how	this	can	be	useful,	let	us	use	the	letter	s	to	stand	for	“score,”	meaning
an	 individual’s	 average	 score	 for	 one	 game,	 and	we	might	 have	 this	 relation:	

This	would	be	the	case	if	each	husband	scored	25	points	higher	than	his	wife.
The	point	is	that	each	of	these	equations	describes	a	situation	which	is	true	for

all	 the	 numbers	 of	 the	 set,	 that	 is,	 for	 all	 the	members	 of	 the	 team.	When	we
write	h	=	w	+	2,	we	are	referring	in	one	equation	to	the	fact	that	28	=	26	+	2,	for
Mr.	and	Mrs.	A;	also	to	the	fact	that	25	=	23	+	2,	for	Mr.	and	Mrs.	B,	and	so	on.
It	is	a	general	statement	which	includes	all	the	special	ones.
In	this	very	simple	example	we	could	have	used	words	instead	of	the	algebraic

symbols.	 “Each	 husband	 is	 two	 years	 older	 than	 his	wife,”	 is	 easy	 to	 say	 and
easy	 to	 grasp.	 But	 in	 more	 complicated	 situations	 we	 are	 able	 to	 handle	 the
relations	 involved	easily	 in	symbols,	whereas	 the	statement	 in	words	would	be
formidably	 long	 and	 complicated.	 That	 is	 the	 kind	 of	 situation	 we	 shall
encounter	 now,	 in	 describing	 the	 essential	 parts	 of	Trachtenberg	 system	 in	 the
language	 of	 algebra.	 In	 this	 chapter	 we	 shall	 (1) begin	 by	 looking	 at	 part	 of
Chapter	One	from	a	new	point	of	view,	to	illustrate	what	we	are	trying	to	do,	and
then	(2) give	a	short	review	of	the	basic	methods	of	algebra,	which	of	course	is
not	 a	 part	 of	 the	 Trachtenberg	 system	 itself.	 This	 review	 is	 intended	 for	 the
convenience	 of	 those	 who	 would	 like	 to	 refresh	 their	 memories;	 others	 may
prefer	to	skip	over	it.	Then	(3) we	shall	apply	the	basic	ideas	of	algebra	to	the
procedures	already	presented	as	the	Trachtenberg	method.

NUMBERS	IN	GENERAL
In	 the	 previous	 chapters	 we	 have	 been	 working	 with	 numbers,	 combining

them	in	various	kinds	of	calculations.	In	every	case	we	had	a	particular	number



or	pair	of	numbers	before	us,	such	as	4,776	multiplied	by	63.	We	did	not	make
any	use	of	 letters	 to	 represent	numbers,	as	 the	ah	and	aw	 represent	 the	 ages	of
husband	and	wife.
Now	we	are	going	to	look	at	the	Trachtenberg	method,	or	at	least	at	the	most

important	 parts,	 with	 the	 aid	 of	 letters	 representing	 numbers.	 This	 makes	 it
possible	to	talk	about	all	numbers	at	once,	and	we	can	make	statements	about	the
method	 that	will	 always	be	 true,	 regardless	 to	what	particular	number	we	may
apply	our	rules.
This	 is	optional.	 It	 is	not	 required,	 for	any	practical	application,	 that	anyone

should	 read	 this	 chapter.	 On	 the	 other	 hand	 many	 persons	 find	 this	 kind	 of
discussion	interesting,	and	for	their	sake	we	include	it.	Also,	there	are	two	real
benefits	that	can	be	obtained	from	this:
1. The	 algebraic	 formulation	 proves	 that	 the	 rules	 we	 have	 been	 using	 are

correct.	More	than	a	few	persons	have	a	tendency	toward	skepticism	about	new
ideas.	 In	 fact	 some	of	 this	 skepticism	can	 linger	on	even	after	a	 few	examples
have	been	tried	and	the	method	has	given	correct	answers.	The	general	method,
using	algebra,	proves	that	the	rules	will	always	lead	to	correct	answers.	This	will
remove	any	doubt	that	may	remain	in	one’s	mind,	and	also	enable	us	to	convince
any	second	person	who	may	challenge	this	method.
2. The	 algebraic	 formulation	 gives	 us	 insight	 into	 the	 principles	 that	 are	 at

work.	When	we	work	 a	 particular	 example,	 like	 4,776	 times	 63,	 our	 attention
must	be	focused	on	the	figures	with	which	we	are	working.	The	manner	in	which
the	pieces	of	the	picture	come	together	to	give	the	whole	result	is	buried	under
the	 details	 of	 the	 calculation.	 But	 when	 we	 use	 the	 algebraic	 method,
representing	 numbers	 by	 letters,	 it	 is	 quite	 different.	We	 do	 not	 carry	 out	 any
actual	calculation.	We	do	not	 say	“3	 times	6	 is	18,”	and	so	on.	Our	minds	are
free	to	look	at	the	manner	in	which	the	different	parts	of	the	numbers	combine	to
give	 the	answer.	This	 leads	 to	a	better	understanding	and	a	 firmer	grasp	of	 the
method.

	
In	 order	 to	 see	 how	 the	 Trachtenberg	 method	 operates,	 we	 shall	 need	 to

“spread	the	numbers	out”	so	that	we	can	see	what	 the	individual	figures	of	 the
numbers	are	doing.	Suppose	the	number	is	357.	This	means	three	hundreds	plus
five	tens	plus	seven	ones:

3	5	7	=	3	×	100	+	5	×	10	+	7
	



The	number	704	can	be	written	similarly,	in	the	form
	

7	0	4	=	7	×	100	+	0	×	10	+	4
	

In	 terms	 of	money,	 this	means	we	 have	 7	 hundred-dollar	 bills,	no	 tens,	 and	 4
ones.
Any	number	at	all	in	the	hundreds	range–from	a	hundred	to	a	thousand–can	be

written	in	this	form:
	

a	×	100	+	b	×	10	+	c
	

Each	of	the	letters,	a,	b,	and	c,	stands	for	a	single	figure.	The	single	figure	can	be
zero,	or	9,	or	any	whole	number	in	between.	So	the	letter	a	stands	for	a	figure
from	zero	to	9,	and	b	and	c	stand	for	figures	of	the	same	kind,	either	the	same	or
different:

a	=	7
b	=	7
c	=	7
	

This	leads	to	the	number	777:
	

7	7	7	=	(7	×	100)	+	(7	×	10)	+	7
	

Longer	numbers,	say	a	six	figure	number	for	example,	can	be	written	in	the	same
way,	as:

	
(a	×	100,000)	+	(b	×	10,000)	+	(c	×	1,000)	+	(d	×	100)	+	(e	×	10)	+	f

In	all	these	expressions	we	have	used	the	×	to	indicate	multiplication.	We	read
“a	×	100”	as	“a	times	one	hundred.”	However,	it	is	more	convenient	to	omit	the
times	sign.	No	×	need	be	written.	The	more	customary	form	is	not	“a	×	100”	but
rather	 “100a,”	 which	 is	 read	 “one	 hundred	 a.”	 The	 fact	 that	 the	 100	 and	 the
number	a	 are	multiplied	 together	 is	understood,	 simply	 from	 the	 fact	 that	 they
are	written	side	by	side.	So	the	six-figure	number	could	be	written	as

100,000a	+	10,000b	+	1,000c	+	100d	+	10e	+	f
	



In	 the	ordinary	way	of	writing,	which	we	use	when	we	have	figures	 instead	of
letters,	this	number	would	be	abc,def.	We	need	the	spread-out	form	for	the	later
calculations.
Further,	 notice	 that	 we	may	 add	 a	 zero	 in	 front	 of	 the	 number	 if	 we	wish,

because	this	leaves	the	number	unchanged.	We	may	wish	to	do	this	in	order	to
put	an	extra	zero	in	front	of	a	number,	as	we	did	in	the	chapter	on	multiplication.
Then	the	number	357,	for	instance	would	be:

3	5	7	=	(0	×	1,000)	+	(3	×	100)	+	(5	×	10)	+	7
	

Remember,	any	number	multiplied	by	zero	is	equal	to	zero.	Consequently,	the	(0
×	1,000)	of	the	equation	just	above	is	equal	to	zero,	and	we	may	add	it	or	not,	as
we	 please.	 We	 choose	 now	 to	 add	 it	 because	 we	 are	 going	 to	 describe
multiplication,	and	 in	 that	method	we	place	an	extra	zero	 in	 front	of	 the	given
number.	Any	number	at	all	of	three	digits	is	represented	by:

(0	×	1,000)	+	(a	×	100)	+	(b	×	10)	+	c
	

or	else	if	we	prefer	by:
	

(1,000	×	0)	+	100a	+	10b	+	c

THE	RULE	FOR	ELEVEN
Now	let	us	use	this	to	examine	the	“rule	for	eleven”	in	multiplication.	As	you

remember,	 the	rule	 is	simply	“add	the	neighbor,”	 the	neighbor	being	 the	figure
immediately	 to	 the	 right	 of	 the	 one	 you	 are	 considering	 at	 the	 time.	 It	 is
understood	that	we	must	write	a	zero	in	front	of	the	given	number,	and	apply	the
rule	 to	 this	 zero	 also.	 The	 last	 figure	 of	 the	 given	 number,	 the	 digit	 on	 the
extreme	right,	has	no	neighbor	at	all,	of	course,	so	there	is	nothing	to	add	to	that
figure.	To	see	how	it	works,	let	us	take	a	four-figure	number,

N	=	(0	×	10,000)	+	(a	×	1,000)	+	(b	×	100)	+	(c	×	10)	+	d	=	(10,000	×	0)	+
1,000a	+	100b	+	10c	+	d

This	 represents	 all	 the	 four-figure	 numbers	 that	 there	 are,	 and	 choosing	 a
particular	four-figure	number	means	giving	particular	values	to	a,	b,	c,	and	d.	We
shall	not	give	them	any	particular	values,	because	now	we	wish	to	talk	about	all
four-figure	numbers	 at	once.	What	we	are	going	 to	do	 is	multiply	 this	general
number	by	11	(11	is	10	plus	1):



	
So	when	we	multiply	any	number	by	11	we	are,	in	effect,	multiplying	it	by	10,
and	 multiplying	 it	 by	 1,	 and	 adding	 the	 two	 results:	

But	multiplying	a	number	by	10	simply	adds	on	a	zero	at	the	right-hand	end	of
the	number	(35	×	10	is	350).	So:

	
“To	multiply	 by	 ten,	 add	 a	 zero	 at	 the	 right”	 explains	 itself	 when	we	 use	 the
spread-out	 form	 of	 the	 numbers,	 and	 add	 a	 zero	 (which	 does	 not	 change	 its
value!):	
Times	10:

Now	we	do	the	same	things	to	the	general	four-digit	number–not	a	particular
number,	but	any	one:

Multiplying	by	10	has	added	another	zero	to	each	of	the	factors	10,	100,	1,000,
and	 so	on,	which	moves	every	 figure	over	 to	 the	 left,	 and	 leaves	a	 zero	at	 the
right-hand	end.
Now	we	multiply	 the	general	number	by	1.	Multiplying	any	number	by	one

leaves	it	unchanged.	So	we	have:
1	×	N	=	10,000	×	0	+	1,000a	+	100b	+	10c	+	d

	
Finally	we	add	this	expression	for	1	×	N	to	the	previous	expression	for	10	×	N,
and	we	have	11	×	N:

Add	these	numbers	in	pairs,	by	adding	each	term	to	the	one	immediately	beneath
it,	like	this:



Now	it	is	always	true,	in	ordinary	arithmetic,	that	a	+	b	=	b	+	a,	for	any	numbers
a	and	b.	For	instance,	3	+	5	=	5	+	3.	Each	pair	equals	8.	So	we	can	reverse	the
order	 of	 the	 pairs	 of	 letters	 that	 are	 added	 together.	 The	 equation	 for	 11	 ×	N

becomes:	
This	is	the	“rule	for	eleven.”	To	multiply	by	11,	we	take	each	figure	of	the	given
number	in	turn	and	we	add	to	it	its	“neighbor.”	The	neighbor	of	a	is	b,	because
the	given	number	in	ordinary	writing	is	a,bcd.	The	neighbor	of	b	is	c.	We	have
added	the	neighbor,	and	the	equation	for	11	×	N	is	the	same	as	the	rule	for	eleven
that	we	have	been	using.	This	proves	that	the	rule	is	correct.
Why	did	we	put	the	zero	in	front?	To	take	care	of	“carried”	figures	when	they

happen	to	occur.	Notice	that	we	must	carry	figures	in	the	ordinary	way.	Suppose
that	b	equals	7	and	c	equals	8.	Then	one	part	of	our	answer	is	the	term	(b	+	c)	×
100	and	this	becomes	(7	+	8)	×	100,	which	is	1,000	plus	500	(or	1,500).	So	this
term	contributes	not	only	 to	 the	“hundreds”	position	of	 the	answer,	but	also	 to
the	“thousands”	position.	It	contributes	a	1	to	the	thousands.	This	is	a	“carried”	1
in	ordinary	language.	The	thousands	term	of	the	answer	is	(a	+	b)	×	1,000	in	the
equation	 above.	 But	 we	 have	 carried	 the	 1	 from	 the	 hundreds	 term,	 and	 it
becomes	(a	+	b	+	1)	×	1,000	when	we	have	b	=	7	and	c	=	8.	This	shows	that	we
must	carry	over	the	1	of	15,	or	whatever	it	may	be,	to	the	next	higher	position.
Whenever	 the	given	number	happens	 to	be	 in	 the	9,000	 range	we	 expect	 to

have	 a	 carried	 1	 at	 the	 last	 step.	 This	 explains	 the	 need	 for	 a	 zero	 in	 front.
Suppose	that	a	=	9	and	b	=	8,	so	that	the	given	number	is	in	the	9,800	range.	We
multiply	it	by	11.	What	is	in	the	thousands	place?	It	is	a	+	b	=	9	+	8	=	17,	plus
possibly	a	carried	number	if	c	is	large.	It	is	at	least	17.	We	must	carry	at	least	a	1,
possibly	a	2.	Then	what	 is	 in	 the	 ten-thousands	place?	It	 is	either	0	+	a	+	1	or
else	0	+	a	+	2,	and	since	a	=	9	in	the	example,	it	is	either	10	or	11.	In	either	case
we	must	carry	over	a	1	into	the	hundred-thousands	place.	This	place	becomes	(0
+	1)	×	100,000.	We	see	that	the	zero	in	front	of	the	given	number	has	provided
us	with	a	place	to	put	the	carried	1.	That	is	all	it	does,	but	that	is	enough.	If	we
should	ever	forget	the	carried	figure,	the	answer	would	be	disastrously	wrong.
This	 takes	care	of	all	 four-digit	numbers.	What	shall	we	say	about	five-digit

numbers,	 and	 the	 rest?	 There	 are	 two	 ways	 that	 we	 can	 handle	 them,	 both
satisfactory:
1. Observing	that	we	have	not	made	any	use	of	the	fact	that	our	number	was

four	digits	long,	we	may	simply	say	“the	same	argument	obviously	holds	true	for
numbers	of	any	length.”	A	five-digit	number,	for	instance,	would	have	one	more



letter;	it	would	look	like	ab,cde.	But	the	way	we	multiply	by	10,	and	the	addition
to	this	of	the	number	itself,	and	the	grouping	of	the	letters	by	pairs	as	(a	+	b)	and
so	on,	would	all	go	through	in	the	same	way.	The	same	argument	actually	does
hold	good.
2. There	 is	 a	 neat	 way	 of	 writing	 numbers	 of	 any	 length,	 and	 using	 this

notation	takes	care	of	everything.	We	shall	see	 this	a	 little	 later.	 It	 is	not	really
necessary	at	this	point,	and	it	is	more	convenient	to	postpone	it.

ALGEBRAIC	MANIPULATION
Once	you	have	written	down	an	algebraic	 expression,	 like	1,000a	 +	 100b	+

10c	+	d,	what	are	you	going	to	do	with	it?	As	it	stands	it	has	not	given	us	any
new	information.	Something	always	has	to	be	done	to	the	expression:	either	we
must	 combine	 it	with	other	 expressions,	 as	we	 combined	 a	number	with	11	 in
multiplication	a	few	paragraphs	back,	or	else	we	have	to	change	it	in	some	other
way.	Whatever	we	do,	it	will	come	under	the	formal	and	rather	dignified	name	of
“algebraic	manipulation.”
Undoubtedly	 you	 have	 encountered	 this	 sort	 of	 thing	 in	 school,	 either	 as

algebra	or	as	arithmetic.	Perhaps	part	of	it	was	only	suggested	by	examples,	and
never	clearly	stated,	but	it	was	there	in	some	way.	But	some	of	the	possible	kinds
of	manipulation	may	not	be	 fresh	 in	your	mind,	 and	perhaps	 also	you	may	be
tempted	to	try	some	incorrect	kinds	of	manipulation.	Certain	rearrangements	of
the	 numbers	 and	 letters	 look	 plausible,	 but	 actually	 would	 lead	 to	 wrong
answers.	So	to	refresh	your	memory,	let	us	list	the	legitimate	ways	of	changing
algebraic	expressions:

Grouping	in	parentheses	or	brackets
We	 did	 this	 in	 the	 “rule	 for	 eleven”	 just	 above,	 because	we	 had	 (a	+	 b)	 ×

1,000	 and	 similar	 expressions.	 Take	 the	 case	 where	 a	 happens	 to	 be	 2	 and	 b
happens	to	be	3;	then	a	+	b)	is	5.	In	this	case	the	expression	(a	+	b)	×	1,000	is
5,000.	This	is	a	natural	and	convenient	way	to	proceed.
We	 have	 to	 be	 a	 little	 careful,	 though.	 In	 complicated	 expressions	 there	 is

some	 danger	 of	 making	 an	 error	 unless	 we	 either	 remember	 certain	 rules,	 or
understand	the	basic	ideas	very	thoroughly.
There	is	really	only	one	truly	basic	idea	in	the	use	of	parentheses,	or	brackets.

They	 tell	 us	 to	 think	 of	 everything	 inside	 as	 one	 number.	 This	 is	 in	 line	with
what	 the	written	 symbols	 naturally	 suggest.	 Suppose	we	 had	 2	 ×	 (5	 +	 1),	 for



instance.	We	wish	 to	 think	 of	 5	+	 1	 as	 a	 single	 idea,	 so	 it	 is	 held	 together	 by
parentheses.	Then	we	replace	(5	+	1)	by	the	corresponding	single	number,	6,	and

we	have	
Suppose	we	had	a	subtraction	inside	brackets	or	parentheses,	like	2	×	(5	–	1).

We	use	the	same	principle,	and	we	have	
We	use	the	word	“parenthesis”	for	the	curved	symbol	and	the	word	“bracket”

for	the	square	one.	A	common	situation	is	 to	have	parentheses	within	brackets,
like	this:

2	×	[(5	+	1)	–	(3	–	2)]

	
What	shall	we	do	here?	Well,	the	principle	is	that	we	wish	to	think	of	everything
inside	 an	 enclosure	 as	 one	 number.	 The	 result	 is	 that	 we	 must	 start	 with	 the
innermost	enclosure.	That	is,	we	cannot	do	anything	immediately	with	[(5	+	1)	–
(3	 –	 2)],	 because	we	 do	 not	 know	 immediately	what	 the	 figures	 inside	 of	 the
square	brackets	amount	to.	The	place	to	start	is	with	something	that	we	do	know
immediately.	This	is	5	+	1,	which	we	can	replace	with	6.	Likewise	we	know	that
3	–	2	is	1.	So	we	can	certainly	write

2	×	[(5	+	1)	–	(3	–	2)]	=	2	×	[6	–	1]
	

Then	we	are	almost	finished.	Because	6	–	1	is	5	and	so

This	leads	us	to	the	rule:	Start	with	the	innermost	and	work	out.
With	 letters	 instead	 of	 numbers	 it	 is	 a	 little	 different,	 simply	 because	 it	 is

obviously	 impossible	 to	 get	 rid	 of	 parentheses	 by	 actual	 calculation.	 For
instance,	 (a	 +	 b)	 ×	 1,000	 cannot	 be	 simplified	 by	 actually	 performing	 the
addition,	because	we	do	not	wish	to	give	any	particular	values	to	a	and	b.	In	this
case,	we	would	probably	leave	it	in	the	form	it	has.
Frequently,	 though,	 we	 find	 it	 convenient	 to	 get	 rid	 of	 the	 parentheses	 by

another	 method.	 This	 is	 what	 is	 called	 “removing	 parentheses,”	 and	 in	 this
example	it	would	go	like	this:

2	×	(5	+	1)	=	2	×	5	+	2	×	1
	



We	have	omitted	the	parentheses,	and	to	compensate	for	 the	omission	we	have
applied	the	idea	of	multiplying	everything	inside	the	parentheses	separately	by	2.

Notice	that	this	gives	the	correct	result:	
The	result,	12,	is	the	same	as	what	we	found	before	from	2	times	6.
In	terms	of	letters	we	might	have	something	like	this:

	
a(x	+	y	+	z)	=	ax	+	ay	+	az

	
Here	we	have	multiplied	by	the	number	a.	On	the	 left	side	of	 the	equal	sign

we	multiplied	the	sum	of	x	+	y	+	z	by	a.	On	the	right	we	multiplied	each	of	the
three	by	a	separately.	If	a	=	3,	and	x	=	5,	y	=	2,	and	z	=	4	(we	took	these	out	of
the	 air,	 just	 as	 an	 illustration),	 we	 would	 have:	

So	 the	 method,	 applying	 the	 multiplier	 to	 each	 term	 separately,	 works	 out
correctly	here,	as	it	must	always	do.

	
When	only	addition	is	involved	we	simply	remove	the	parentheses:

A	subtraction	 inside	of	 the	enclosure	causes	no	 trouble.	Again	we	merely	omit

the	parentheses:	
But	a	minus	sign	outside	the	enclosure,	in	front	of	the	whole	enclosure,	tells	us
to	subtract	everything	 inside	 the	parentheses	as	 if	 it	were	a	single	number,	and
this	causes	a	little	trouble.	When	we	remove	the	parentheses,	we	must	reverse	all
the	signs	inside	the	enclosure.	Every	plus	sign	becomes	minus	and	every	minus
becomes	plus.	Like	this:

8	–	(5	–	1	+	3	–	2)	=	8	–	5	+	1	–	3	+	2
	



On	 the	 left	 we	 have	 two	 minuses,	 –1	 and	 –2,	 and	 a	 plus,	 +3.	 The	 5	 is	 also
understood	to	have	a	plus	sign.	Whenever	a	number	is	written	without	any	sign
before	it,	neither	plus	nor	minus,	it	is	understood	that	the	sign	is	plus.
Notice	that	this	works	out	because	on	the	left	side	of	the	equation:

	
8	–	(5	–	1	+	3	–	2)	becomes	8	–	(4	+	1)	=	8	–	5	=	3

	
And	on	the	right:

	
8	–	5	+	1	–	3	+	2	becomes	3	+	1	–	3	+	2	=	3

	
The	 left	 side	of	 the	 equation	 equals	 3,	 and	 the	 right	 side	 also	 equals	 3,	 so	 the
equation	is	true.
The	same	kind	of	situation	in	terms	of	letters	would	be	like	this:

	
a	–	(m	–	n	+	s	–	t)	=	a	–	m	+	n	–	s	+	t

Notice	that	we	can	do	the	same	thing	in	reverse	if	we	wish.	Instead	of	removing
parentheses	we	can	put	them	in	where	none	were	before,	and	sometimes	it	is	to
our	 advantage	 to	 do	 so.	Whether	 we	 remove	 parentheses	 or	 put	 new	 ones	 in
depends	on	the	specific	situation.	We	know	that:

2(a	+	b	+	c)	=	2a	+	2b	+	2c
	

The	two	expressions,	one	on	the	left	and	the	other	on	the	right	of	the	equal	sign,
are	equal	to	each	other,	and	we	can	replace	either	one	by	the	other	in	a	problem
or	calculation.	So	if	we	happened	to	notice,	in	the	course	of	working	a	problem,
that	we	had	the	expression	2a	+	2b	+	2c,	we	would	have	the	right	to	replace	it	by
2(a	+	b	+	c)	if	we	wished.	We	can	think	of	this	as	“extracting”	the	2.	This	is	very
often	useful.
Frequently	we	encounter	two	expressions	in	parentheses	together,	in	the	form

of

The	 last	 one	 means	 exactly	 the	 same	 as	 writing	 (a	 +	 b)	 ×	 (c	 –	 d),	 but	 it	 is
customary	to	omit	the	times	sign	when	we	have	letters	instead	of	numbers.	In	all



these	cases	the	basic	idea	is	to	take	two	steps:
1. Remove	one	pair	of	parentheses–either	one–leaving	the	other	unchanged,

that	is,	we	open	up	only	one	of	the	two	enclosures;	then	2. Remove	 the	second
pair	of	parentheses.

	
For	instance,	in	a	simple	addition	we	would	have:

	
ADDITION:

SUBTRACTION:

MULTIPLICATION:

Equations
In	order	 to	manipulate	 equations,	we	make	use	of	one	basic	principle	under

several	different	 forms.	 It	 is	 essentially	 this:	whatever	expression	 is	written	on
the	left	of	the	equal	sign	is	one	way	of	writing	a	certain	quantity,	and	whatever	is
written	on	the	right	is	a	different	way	of	writing	the	same	quantity.	For	instance:
a	+	2b	–	1	=	15
means	that	a	+	2b	–	1	is	one	way	of	writing	the	quantity	15.	Anything	that	we	do
to	a	+	2b	–	1,	such	as	doubling	it,	or	adding	1	to	it,	must	also	be	done	to	the	15
on	 the	 right	 of	 the	 equal	 sign,	 in	 order	 to	 maintain	 the	 equality:	

In	a	few	words:	Anything	that	we	do	to	the	left-hand	side	of	any	equation	must
also	be	done	to	its	right-hand	side.	But	always	remember	this:	everything	to	the
left	 of	 the	 equal	 sign	 must	 be	 treated	 as	 a	 single	 quantity,	 and	 so	 must	 the
expression	on	the	right.	That	is,	it	must	be	treated	as	if	it	were	in	parentheses,	as



we	 did	 by	 actually	 writing	 the	 parentheses	 in	 the	 doubled	 and	 the	 squared
equations	above.
The	 ideas	 of	 the	 preceding	 sections	 also	 enable	 us	 to	 do	 a	 little	 further

manipulating,	such	as:

The	expression	in	the	last	equation,	with	the	figure	two	written	above	the	line,
is	something	that	we	had	before	in	the	chapter	on	squares	and	square	roots.	The	2
is	 read	 as	 the	word	 “squared,”	 and	 it	means	 that	 the	 expression	 to	which	 it	 is
attached	is	multiplied	by	itself.	The	expression	72	means	49,	because	it	means	7
multiplied	by	itself.	We	write	2	because	we	have	two	sevens	multiplied	together.
The	 basic	 principle	 of	 doing	 the	 same	 thing	 to	 both	 sides	 of	 the	 equation

appears	in	several	forms,	according	to	what	the	“same	thing”	happens	to	be.	Two
forms	are	particularly	useful:
1. Adding	 the	 same	 number	 to	 both	 sides	 of	 the	 equation.	 This	 includes

subtracting	the	same	number	from	both	sides,	because	subtracting	is	the	same	as
adding	a	negative	number.	For	instance:	x	–	1	=	5
Add	1	to	both	sides,	and	we	have

x	–	1	+	1	=	5	+	1
that	is,

x	=	6
	

This	is	often	referred	to	as	“transposing	a	number	to	the	other	side.”	We	have
in	effect	transposed,	or	moved,	the	1	of	x	–	1	to	the	right-hand	side,	and	added	it
to	 the	5.	On	 the	 left	 it	was	minus	1,	 and	on	 the	 right	 it	 is	plus	1.	This	always
happens.	You	may	think	of	it	as	a	rule,	in	fact	it	is	often	stated	as	a	rule:	When
you	transpose,	change	the	sign.
Once	you	understand	what	happened	in	the	example,	when	x	–	1	became	x	–	1

+	1	which	is	x	+	0,	you	will	have	the	rule	in	your	possession	without	the	effort	of
memorizing	 it.	 For	 what	 happened	 was,	 we	 added	 to	 the	 left	 side	 what	 we
needed	to	wipe	out	the	minus	1–we	added	1–cancelling	the	minus	1	on	the	left
side.	To	preserve	equality	we	must	also	add	1	to	the	right-hand	side,	and	we	did
so.	Any	term,	in	any	equation,	can	be	transposed	to	the	other	side	of	the	equation
in	the	same	way.

	



2. Multiplying	or	dividing	both	sides	of	the	equation	by	the	same	number.	For

instance:	
In	 algebraic	 usage,	 when	 letters	 are	 used	 instead	 of	 numbers,	 we	 have	 the

same	 process,	 as	 in	 this	 example:	

This	 has	 simplified	 the	 form	of	 the	 equation	 by	 eliminating	 the	 fractions.	The
new	equation	is	equivalent	to	the	one	with	fractions,	but	it	will	be	easier	to	deal
with	in	later	manipulations.

	
Example	1:	We	had	a	puzzle	at	the	beginning	of	this	chapter.	Let	us	solve	it

directly,	 by	 using	 algebra.	 It	 consisted	 of	 three	 numbers–the	 lengths	 of	 three
boards,	 but	 we	 need	 only	 think	 of	 them	 as	 numbers–and	 these	 numbers	 were
described	as	having	the	following	properties:
(1) The	first	number	is	known	to	be	3.
(2) The	second	one	is	equal	to	the	first	plus	one-fourth	of	the	third,
(3) The	third	is	equal	to	the	first	two	added	together.

	
Let	us	call	the	first	of	these	numbers	x,	the	second	one	y,	and	the	third	one	z.

The	three	statements	listed	just	above	can	be	written	in	this	way:
 (1) x	=	3
 (2) y	=	x	+	¼z
 (3) z	=	x	+	y

	
Use	equation	(1)	x	=	3,	to	get	rid	of	x,	wherever	we	encounter	it	in	the	other	two
equations:
 (2) y	=	3	+	¼z
 (3) z	=	3	+	y

	
Now	this	new	form	of	(2)	makes	it	possible	for	us	to	eliminate	y	 from	(3).	We

replace	y	in	(3):	
This	 contains	 fractions,	 and	 fractions	 are	 less	 convenient	 to	 work	 with	 than



whole	 numbers,	 so	 we	 get	 rid	 of	 the	 fractions.	 Multiply	 by	 4:	

Subtract	z	from	both	sides	(or	“transpose”	the	z):

Divide	both	sides	by	3,	and	we	have	part	of	the	answer:

What	is	y?	We	can	find	it	now	by	using	equation	(3):

Subtract	3	from	both	sides:

What	is	x?	We	already	know	that	x	 is	3,	because	in	this	case	it	happened	to	be
given	to	us.	In	other	examples,	we	could	find	out	what	x	was	by	using	the	values

of	z	and	y	which	we	have	just	found.	The	answer	is:	
Total	length	of	board,	16.

	
Example	2:	This	is	adapted	from	an	ancient	Persian	book	on	mathematics:

	
A	 lady	of	 the	court	was	wearing	a	pearl	necklace	one	night.	 In	an	amorous

struggle,	the	necklace	was	broken,	and	one-third	of	the	pearls	fell	on	the	floor.	A
fourth	 of	 the	 pearls	 remained	 on	 the	 couch,	 and	 there	 were	 twenty	 pearls
remaining	on	the	string.	How	many	pearls	were	on	the	string	originally?

	
We	 let	x	 represent	 the	 number	 of	 pearls	 on	 the	 string	 before	 it	was	 broken.

Total	 number	 of	 pearls:	

But	these	must	be	equal,	before	and	after	the	accident,	because	all	the	pearls	are



accounted	for.	We	write	the	equality:	
Eliminate	fractions	by	multiplying	through	by	12:

Subtract	7x	from	both	sides	of	the	equation:

The	necklace	was	one	of	48	pearls.	You	can	easily	verify	that	a	necklace	of	48
pearls	fits	the	description	given	in	the	problem.

THE	TRACHTENBERG	SYSTEM	IN	ALGEBRA

The	Rule	for	Six
We	shall	use	these	methods	of	manipulating	equations	to	show	that	the	rule	for

six,	 and	 other	 parts	 of	 the	 system,	 actually	 do	 give	 the	 correct	 answer.	 This
shows	 at	 the	 same	 time	 how	 the	 rule	 arrives	 at	 the	 correct	 answer,	 which	 is
interesting	because	it	gives	us	insight	into	the	situation.
The	rule	for	six	tells	us	to	“add	half	the	neighbor,	plus	five	if	odd,”	meaning	if

the	 number	 itself	 is	 odd,	 not	 if	 the	 neighbor	 is	 odd.	 This	 has	 the	 effect	 of
multiplying	 by	 six.	 To	 arrive	 at	 the	 rule	 we	 write	 six	 in	 a	 very	 special	 way:	

This	 is	 the	 way	 we	 write	 6.	 How	 shall	 we	 write	 the	 number	 that	 is	 to	 be
multiplied	by	6?	We	can	call	this	number	N	if	we	wish,	and	we	choose	to	write	it
in	this	way	(like	4028;	we	do	not	wish	to	restrict	the	first	digit	to	being	4,	so	we
simply	 call	 it	 a,	 and	 similarly	 with	 the	 other	 figures,	 b,	 c,	 d):	

We	are	showing	N	as	being	a	four-figure	number,	but	this	is	only	for	the	sake	of
definiteness.	A	five-figure	number	would	begin	with	10,000	times	a,	and	so	on.
We	wish	to	multiply	this	number	N	by	6.	To	avoid	any	possible	confusion,	let

us	indicate	multiplication	by	writing	a	dot	between	the	numbers	multiplied,	like
5	 ·	 7	 for	 5	 times	 7.	 Multiply	 the	 long	 number	 by	 6:	

Replace	the	four-digit	number	N	by	its	full	form:



Remove	the	parentheses	in	this	equation,	both	pairs:

In	 the	 first	 term	 after	 the	 equal	 sign,	 we	 can	 multiply	 the	 10	 and	 the	 1,000
together	to	get	10,000,	so	that:	
We	can	do	similar	multiplications	in	other	terms.	The	result	is	this:

Now	we	come	to	the	crucial	point.	We	rearrange	these	terms.	The	two	terms	of
the	 form	 “something	 times	 1,000”	 are	 put	 together.	 Those	 times	 100	 are	 put

together,	and	so	on:	
Now	we	can	insert	parentheses,	as	we	did	a	few	pages	back.	The	second	line	just
above	 shows	 that	 two	 terms	 are	 added	 together,	 and	 each	 of	 these	 terms	 is
something	 times	a	 thousand.	We	can	“factor	out”	 the	1,000,	 and	what	 remains
goes	into	parentheses:	
The	other	lines	behave	similarly:

The	 pattern	 here	 is	 obvious.	 We	 have	 added	 the	 ½	 ·	 0	 term	 for	 the	 sake	 of
completing	the	pattern;	it	is	permissible	to	add	zero	to	anything	if	we	wish,	since
adding	zero	does	not	increase	or	decrease	the	number.
The	pattern	 is	 still	not	quite	complete.	We	can	complete	 it	by	adding	a	zero

term	at	 the	beginning,	on	 the	 first	 line.	½	·	a	 ·	10,000	 in	 the	 form	0	+	½	·	a	 ·
10,000.	Then.



This	demonstrates	 the	“rule	 for	six.”	The	original	number	N	had	 the	form	of	a
four-digit	number	a,bcd	when	written	in	the	ordinary	way,	so	that	a	is	the	figure
in	the	thousands	position	and	so	on.	Under	the	a,	in	the	thousands	position	of	the
answer,	we	have	(a	+	½	·	b)	·	1,000,	that	is,	the	given	figure	in	that	position	plus
half	of	its	right-hand	neighbor	(½	·	b).	Similarly	in	all	other	positions,	we	“add
half	the	neighbor.”
This	is	the	whole	story	if	the	given	number	N	contains	only	even	digits,	like	2

and	6.	What	if	there	is	a	3	or	a	7?	The	rule	says	then	“add	half	the	neighbor	plus
5	 if	 the	 figure	 is	 odd.”	 In	 that	 case	 one	 of	 the	 expressions	½	 ·	a,	½	 ·	b,	 etc.,
would	be	fractional,	because	it	would	be	half	of	7	or	something	similar.
We	take	care	of	the	possibility	in	this	way.	We	assume	that	one	of	the	figures,

say	b	for	instance,	is	odd,	and	we	replace	it	by	the	expression	2n	+	1.	Any	odd
whole	number	can	be	written	in	this	form.	For	instance,	7	is	2	·	3	+	1,	and	9	is	2	·
4	+	1.	The	number	n	here	 is	what	we	have	called	“the	smaller	half”	of	an	odd
figure.	Replace	b	by	2n	+	1	in	the	equations	given	above,	and	you	will	find	that
the	 same	 argument	 holds	 up	 to	 the	 end.	 We	 have:	

This	 tells	us	 to	use	 the	“smaller	half”	and	 to	add	 the	5,	as	 the	rule	has	already



told	us	to	do.	The	rule	is	verified.
This	“rule	for	six”	argument	was	shown	at	full	length	for	the	sake	of	clarity.

We	 do	 not	 need	 to	 repeat	 this	 procedure–the	 method	 of	 arriving	 at	 the
Trachtenberg	 rules	 is	 similar	 for	 the	 other	 rules	 as	 far	 as	 the	 techniques	 are
concerned.	It	will	be	sufficient	to	present	a	few	of	the	other	parts	of	the	method
in	a	more	abbreviated	form,	if	this	rule	for	six	has	been	understood.

NON-TABLE	MULTIPLICATION	IN	GENERAL
The	other	“rules”	are	derived	by	arguments	which	run	along	the	same	general

lines	as	 the	preceding	section.	This	 is	 true	 in	a	general	sense	only,	because	 the
rules	for	eight	and	nine	are	somewhat	different.	To	summarize:
1. The	“rule	for	seven”	is	very	similar	 to	the	rule	for	six,	requiring	only	the

doubling	of	 the	number.	In	consequence,	 the	derivation	of	 the	rule	for	seven	is
the	same	as	that	for	six	in	the	preceding	section,	except	that	we	use	7·N	 instead
of	6·N	and	we	replace	the	7	by	½·10	+	2,	just	as	we	replaced	the	6	by	½	10	+	1.
2. The	“rule	for	five”	is	again	along	the	same	lines,	in	fact	exactly	the	same

except	 for	one	 thing.	 Instead	of	having	6·N	=	 (½·10	+	1)·N	we	 now	have	 the
simpler	form,	5·N	=	½·10·N.
Both	the	rule	for	seven	and	that	for	five	can	be	easily	worked	out	by	following

along	the	argument	of	the	preceding	section	and	making	the	appropriate	changes,
if	you	wish	to	do	so	for	your	own	edification	or	amusement.
3. The	rules	for	nine	and	eight	both	require	a	different	approach,	or	rather	a

different	“trick”	at	one	point,	as	we	shall	now	see.

The	rule	for	nine
Multiplying	by	9	without	using	multiplication	tables,	we	follow	this	procedure

(as	you	perhaps	remember):
(1) Subtract	the	right-hand	figure	from	10.
(2) Subtract	each	other	figure	from	9	and	add	the	neighbor.
(3) When	 you	 come	 to	 the	 final	 figure,	 the	 one	 at	 the	 left-hand	 end	 of	 the

answer,	we	use	the	left-hand	figure	of	the	given	number	minus	1.
Throughout	all	this	it	is	understood	that	we	“carry”	a	1	if	necessary,	as	usual

(nothing	higher	than	1	will	turn	up).
Let	us	see	where	this	rule	comes	from.	We	can	write	9	in	the	form	10	–	1	if	we

wish.	We	do	wish,	because	this	will	lead	us	to	the	rule.	For	any	number	a,	it	is
also	true	that	9a,	or	9	times	a,	is	equal	to	10a	–	a.



The	number	 that	we	wish	 to	multiply	by	9	may	be	called	N	 if	we	wish,	and
may	 be	 expanded	 into	 a	 fuller	 form	 as	 we	 did	 before:	

Now	use	the	fact	that	9	is	10	minus	1,	and	9a	=	10a	–	a,	etc:
This	is	similar	to	what	we	did	in	the	preceding	section,	dealing	with	the	rule	for
six.
Here	is	the	point	at	which	we	need	a	new	device,	to	handle	the	rule	for	nine.

We	add	and	subtract	 the	same	number,	which	 is	 legitimate	because	 it	does	not
change	the	quantities.	For	instance,	if	we	start	with	25	and	then	we	both	add	and
subtract	 2,	we	 have	 25	 +	 2	 –	 2,	which	 is	 still	 25.	Adding	 and	 subtracting	 the
same	number	means	that	we	are	adding	zero,	which	does	not	change	the	size	of	a
number:	25	plus	zero	is	still	25.	So	we	are	justified	in	writing	25	as	25	+	2	–	2,	or
as	25	+	7	–	7,	or	anything	similar,	if	we	wish	to	do	so.
Does	this	seem	to	be	pointless?	Such	an	impression	would	be	false.	It	can	be

helpful	 whenever	 we	 have	 several	 terms	 added	 together.	 In	 such	 cases	 it	 is
possible	to	group	the	subtracted	term,	like	–2,	with	one	group	of	the	other	terms,
and	then	group	the	added	 term,	like	the	+	2,	with	a	different	set	of	terms.	This
grouping	will	sometimes,	when	we	are	lucky,	result	 in	simplifying	both	groups
of	terms.
In	 this	example,	 the	 rule	 for	nine,	we	add	and	subtract	9,000,	also	900,	also

90,	and	9,	like	this:

Group	together	the	“thousands”	terms,	the	“hundreds”	terms,	and	so	on,	and	this
becomes:

The	numbers	in	the	parenthesis	on	the	last	line	amount	to	9,999,	which	we	write
as	 10,000	 –	 1.	 Then:	

This	is	precisely	the	“rule	for	nine,”	expressed	in	symbols.



The	Rule	for	Eight
Write	8	as	10	–	2,	which	is	similar	to	writing	9	as	10	–	1.	Then	follow	along

the	same	lines	as	 in	 the	preceding	section,	except	for	a	slight	change	when	we
come	 to	 the	business	of	 adding	and	 subtracting	 the	 same	numbers.	Before,	we
added	and	subtracted	9,000,	900,	90,	and	9.	Now,	 in	 the	rule	for	eight,	we	add
and	subtract	double	these	figures;	that	is,	18,000,	1,800,	180,	and	18.	The	result
is	that	we	have	to	double	what	we	get	by	subtracting	from	9	(or	from	10,	at	the
first	step),	and	the	left-hand	figure	is	2	less	than	the	left-hand	figure	of	the	given
number,	not	1	less.	This	is	precisely	the	rule	for	eight.

SQUARING	NUMBERS
In	 a	 previous	 chapter	 we	 had	 special	 methods	 for	 finding	 the	 square	 of	 a

number,	 that	 is,	 for	 multiplying	 a	 number	 by	 itself.	 We	 began	 with	 two
particularly	interesting	kinds	of	numbers:
1. Two-digit	numbers,	of	which	the	second	digit	is	5,	like	35.	To	multiply	35

by	35,	we	multiply	3	by	the	next	larger	digit,	4,	and	we	have	12.	Write	25	after
this	12,	and	you	have	the	answer,	1,225.
In	algebraic	symbols,	such	numbers	have	the	form	a·10	+	5.

The	desired	result,	the	square,	is	(a·10	+	5)2	=	(a·10	+	5)	(a·10	+	5).

	
Expand	the	parentheses:

Now	we	group	the	first	two	terms	together	and	we	can	take	out	the	factor	a	by
inserting	 parentheses,	 as	 we	 did	 earlier	 in	 this	 chapter.	 The	 expression	 now

becomes:	
This	is	the	rule,	in	symbols.	For	a(a	+	1)	is	the	original	tens-digit	times	a	digit
larger	 by	 1,	 and	 the	 factor	 100	 tells	 us	 that	 the	 result	 cannot	 overlap	 the	 25
(because	multiplying	a	number	by	100	has	the	effect	of	placing	two	zeroes	after
it).

	
2. If	the	first	digit	of	a	two-digit	number	is	5,	as	is	56,	we	square	the	5	to	get

25,	and	we	add	to	this	the	units-digit	(the	6,	in	the	case	of	56).	The	result	is	the



first	two	digits	of	the	answer:	in	the	case	of	56,	we	have	the	partial	answer	562	=
31??	To	fill	 in	 the	 last	 two	digits	we	simply	square	 the	units-digit	of	 the	given
number;	in	the	case	of	56	we	square	the	6	and	we	have	36.	This	36	is	the	rest	of
the	answer,	and	the	whole	number	is	3,136.
Such	 a	 number	 has	 the	 form	 (5·10	 +	 a)2,	 which	 is	 (5·10	 +	 a)·(5·10	 +	 a).

Expand	 the	 parentheses	 as	 we	 did	 above:	

This	is	equivalent,	in	symbols,	to	the	procedure	described	in	the	first	paragraph
of	this	section,	where	we	squared	56.

	
3. To	square	any	two-digit	number	at	all,	say	for	instance	73,	we	find	the:
(1) units-digit	of	the	answer	by	squaring	the	given	units,
(2) tens-digit	 of	 the	 answer	 by	 doubling	 the	 cross-product	 of	 the	 given

number	 (for	 73,	we	 double	 7	 times	 3	 and	we	 have	 42),	 and	 (3) hundreds-and
thousands-digits	of	the	answer	by	squaring	the	tens-digit	of	the	given	number.
As	with	73:

The	general	form	of	such	a	number	is	a·10	+	b.	Square	it:

This	corresponds	to	the	procedure	stated	just	above.	The	product	a·b	is	the	cross-
product,	tens-digit	times	units-digit,	and	the	equation	shows	that	we	must	double
it.

MULTIPLICATION	BY	THE	UNITS-AND-TENS	METHOD
First	let	us	consider	the	multiplication	of	a	three-digit	number	by	a	one-digit

number,	like	617	times	3:	
This	is	done,	as	you	will	recall,	by	moving	a	pattern	UT	across	the	617	from	right



to	left:	
and	then

And	so	on.

	
Let	us	look	at	 the	case	of	any	three-digit	number,	 in	algebraic	terms.	Such	a

number	has	the	appearance,	in	ordinary	writing,	of	a	b	c,	and	is	written	in	full	as:

Let	us	call	our	multiplier	n.	It	is	a	single	figure.	Then:

is	our	multiplication	in	algebraic	form.	Expand	the	bracket:

Each	of	the	pairs	n·a,	n·b,	and	n·c	is	the	product	of	two	single	figures.	The	result
is	 in	 general	 a	 two-figure	 number;	 for	 instance,	 7	 times	 3	 is	 21,	 a	 two-figure
number.	To	keep	matters	 straight	we	must	write	 them	 in	 the	 form	of	 two-digit
numbers.	We	 can	 do	 so	 by	 introducing	 new	 symbols	 with	 subscripts.	 One	 of
them	is	Ua,	which	means	a	single	figure,	namely	 the	units-digit	of	what	we	get
when	we	multiply	a	by	the	multiplier	n.	The	multiplier	n	is	the	given	multiplier
for	the	problem,	and	so	we	need	not	mention	it	in	the	symbol.	The	subscript	a	of
Ua	tells	us	to	multiply	our	n	by	a,	and	the	U	of	Ua	tells	us	to	take	the	units	of	the
result.	 Similarly	 for	 the	 others:	

Then	our	desired	multiplication	now	looks	like	this:

Expand	the	parentheses:



Remembering	the	facts	that:

	
(a) the	 letters	 T	 and	 U	 mean	 the	 units-and	 tens-digits	 of	 what	 we	 get	 by

multiplying	by	 the	given	multiplier	n,	and	 that	 (b) the	 subscript	 tells	us	which
digit	of	the	long	number	is	being	multiplied	by	n,
we	 see	 that	 this	 last	 equation	 describes	 the	 method	 of	 units-and-tens
multiplication.	 Take	 for	 instance	 the	 term	 (Ub	 +	 Tc)·10:	

Then	apply	this	to	the	multiplication	written	in	our	usual	way:

Place	 the	 Ub	 and	 the	 T	 above	 the	 digits	 that	 they	 refer	 to:	

Once	 they	are	correctly	placed,	we	do	not	need	 the	subscripts.	We	can	write	 it
simply	as:

The	other	figures	of	the	answer	come	out	of	the	other	terms	of	the	equation,	in
exactly	 the	 same	 way.	 Thus	 we	 have	 arrived	 at	 the	 method	 of	 units-and-tens
multiplication,	for	the	case	of	multiplying	by	a	single	digit.

Multiplication	by	longer	multipliers
Suppose	we	wish	to	multiply	617	by	23.	We	use	two	UT	patterns	to	find	each

figure	of	the	answer.	We	obtain	the	figure	of	the	answer	by	adding	together	the
two	 numbers	 that	 result	 from	 the	 two	 UT	 patterns,	 like	 this:	



This	example	worked	out	in	full	is

Suppose	we	 have	 any	 three-digit	 number,	 say	 abc,	 to	 be	multiplied	 by	 any
two-digit	 multiplier,	 mn.	 When	 written	 out	 in	 full	 the	 multiplication	 is:	

Expand	the	parentheses:	the	desired	answer	is	equal	to

In	the	first	term	we	see	a·m,	which	is	two	single	digits	multiplied	together.	This
is	in	general	a	two-digit	number.	We	must	write	out	all	these	two-digit	numbers,
a·m,	a·n,	b·m,	and	so	on,	in	the	form	of	two-digit	numbers.	This	was	done	just
above,	 when	 we	 had	 a	 single-digit	 multiplier.	 We	 did	 it	 by	 introducing	 the
symbols	Ta,	Ua,	and	so	on.
But	 now	 we	 need	 another	 subscript,	 because	 the	 multiplier	 involved	 is	 not

always	 the	 same	 digit.	 Half	 the	 time	 it	 is	m	 and	 half	 the	 time	 it	 is	 n.	 In	 the
example	above,	where	we	multiplied	by	23,	half	the	time	we	acted	upon	a	pair
with	the	2	and	half	the	time	with	the	3,	of	the	23.	To	remind	ourselves	which	one
is	being	used	at	the	moment	we	must	write	another	subscript,	and	we	have	such
symbols	as	Uam.	This	is	still	only	a	single	digit,	even	though	three	letters	are	used
in	 writing	 it;	 we	 write	 the	 two	 subscripts	 only	 for	 our	 own	 convenience,	 to
remind	ourselves	what	numbers	are	being	multiplied.
These	are	the	two-digit	expressions	that	we	need:



The	desired	answer	of	our	multiplication	now	takes	the	form:

Now	expand	 these	parentheses	 and	 rearrange	 the	 terms,	 and	we	have	 the	 final
result:

This	 is	 the	 statement,	 in	 terms	 of	 algebraic	 symbols,	 of	 the	method	 of	 adding
together	 the	 results	of	our	 two	UT	 pairs	 at	 each	 step	of	 the	multiplication.	The
same	method	 of	 proof	 will	 apply	 to	 the	 case	 of	 longer	 numbers	 times	 longer
multipliers	than	the	ones	shown.

NUMBERS	OF	ANY	LENGTH
In	 the	 last	 few	 sections	we	 have	 been	 handling	 numbers	 of	 a	 general	 form,

such	as	the	number	a·1,000	+	b·100	+	c·10·d.	This	would	ordinarily	be	written
a,bcd,	and	it	represents	any	four-digit	number.
We	can	make	the	form	still	more	general,	by	not	restricting	ourselves	to	four-

digit	numbers.	We	can	write	an	expression	that	represents	any	number	consisting
of	any	number	of	digits.	To	do	this	we	need	two	techniques:
1. We	indicate	powers	of	any	number	by	writing	a	small	figure	above	and	to

the	 right	 of	 it.	We	 have	 already	 indicated	 the	 square	 of	 7	 by	 72,	 where	 the	 2
indicates	that	we	have	two	7’s	multiplied	together,	72	=	7	>	7	=	49.	In	the	same
way	73	means	three	7’s	multiplied	together,	73	=	7	×	7	×	7	=	343.	The	principle
holds	for	any	power,	74,	723,	etc.
When	we	apply	this	to	the	number	10	we	find	that	the	“exponent,”	the	number

above	the	line,	tells	us	how	many	zeroes	are	after	the	1.	For	instance	102	=	10·10
=	 100,	 and	 there	 are	 two	 zeroes.	 Then	 104,	 for	 instance,	 equals	 four	 10’s
multiplied	together,	104	=	10·10·10·10	=	10,000,	and	there	are	four	zeroes.

	
2. We	introduce	a	symbol	which	means	“form	a	summation,”	 the	symbol	Σ.

This	is	a	Greek	“s,”	and	we	choose	the	letter	“s”	to	suggest	the	word	“sum.”	An

example	shows	how	it	is	used:	



Now	 we	 put	 these	 two	 ideas	 together	 and	 we	 can	 write	 the	 most	 general
number.	First,	let	us	look	again	at	the	four-digit	number	a·1,000	+	b·100	+	c·10
+	d.	Using	the	power	notation,	we	write	this	as	a·103	+	b·102	+	c·101	+	d·1.	(In
the	last	term	d	is	multiplied	by	1,	which	has	no	zeroes	after	it.)	The	powers	of	10
are	in	a	suitable	form	to	use	with	the	Σ	symbol,	because	we	can	indicate	all	of
them	at	once	by	 the	symbol	10n.	The	exponent	n	 takes	 the	values	3,	 2,	 1,	 and
zero	in	turn,	in	the	four-digit	number.	But	we	must	replace	the	a,	b,	c,	d	by	new

letters,	like	this:	
Then	we	can	write:

We	can	now	go	over	to	the	most	general	number,	say	a	k-digit	number,	where	k
may	have	any	value	we	wish.	We	do	 this	by	writing	our	most	general	number,

say	N,	in	this	form:	
By	 using	 this	 symbol	 and	 following	 the	 same	 lines	 of	 reasoning	 as	 in	 the
preceding	 sections,	 we	 can	 derive	 our	 rules	 of	 procedure	 for	 numbers	 of	 any
desired	length.
Other	procedures	of	the	Trachtenberg	method,	besides	those	mentioned	above,

can	be	derived	by	methods	of	the	same	general	nature.



CHAPTER	EIGHT
Postscript
This	then	is	 the	Trachtenberg	System	of	Basic	Mathematics,	an	entirely	new

approach	to	the	very	important	arithmetical	skills.	If	you	have	applied	yourself
diligently	you	should	at	this	point	have	at	least	a	minimum	working	grasp	of	this
new	 mathematical	 system.	 No	 doubt	 there	 were	 moments	 when	 the	 going
seemed	difficult,	but	 that	 is	quite	natural.	The	Trachtenberg	system	is	different
from	what	you	have	been	accustomed	to,	and	it	is	never	easy	to	break	down	the
habits	 of	 the	 past	 and	 the	 old	 ways	 of	 doing	 things.	 A	 little	 patience	 will
overcome	this,	and	the	benefits	will	repay	the	effort	many	times	over.
The	 value	 of	 this	 new	 approach	 will	 be	 most	 apparent	 to	 those	 who	 teach

arithmetic	to	the	primary	grades.	As	we	saw	in	the	first	chapter,	we	are	no	longer
compelled	to	dull	the	natural	eagerness	of	young	minds	with	simple,	prolonged
repetition.	The	 old	 system	 forces	 them	 to	 spend	 several	 years	memorizing	 the
multiplication	 tables.	 This	 means	 memorizing	 countless	 combinations	 of
numbers,	 each	 one	meaningless	 in	 itself,	 and	 the	 natural	 result	 is	 a	 feeling	 of
boredom.	The	whole	matter	becomes	distasteful.	With	the	new	system,	however,
we	 are	 able	 to	 keep	 the	 subject	 alive,	 and	 natural	 interest	 carries	 the	 young
student	ahead.
In	this	book,	of	course,	the	subject	has	been	presented	from	the	point	of	view

of	 the	 adult;	 when	 it	 is	 presented	 to	 children	 it	 needs	 to	 be	 done	 somewhat
differently,	with	changes	in	the	emphasis	on	various	points.	This	is	an	interesting
subject,	but	limitations	of	space	prevent	us	from	going	into	the	details	here.
The	important	point	is	that	all	this	has	actually	been	taught	to	children.	Since

the	 late	 nineteen-forties	 one	 group	 after	 another	 has	 entered	 the	 Trachtenberg
Institute	 and	 gone	 through	 the	 course	 of	 study.	 In	 fact,	 it	 began	 even	 earlier,
when	 Professor	 Trachtenberg	 himself	 gave	 individual	 instruction	 to	 several
children.	Then	he	founded	his	Institute	and	the	teaching	was	done	in	the	form	of
classes,	with	 assistant	 instructors	 helping	 him.	 In	 this	way	 they	 developed	 the
details	of	the	method	of	instruction	and	worked	them	out	to	best	advantage,	over
a	period	of	some	years.
From	the	beginning,	however,	 the	results	were	gratifying.	The	students	were

always	fascinated	by	their	newly-acquired	powers,	and	their	eagerness	kept	them
going	ahead.	Instead	of	being	repelled	by	monotony,	they	were	attracted	by	the
diversity	 of	 the	 ideas.	 Step	 by	 step	 their	 interest	 was	 kept	 alive	 by	 their	 own



successful	 achievements.	 We	 have	 already	 seen	 for	 ourselves,	 from	 the
beginning	of	Chapter	One	on,	how	much	novelty	there	is	to	attract	the	students.
At	 each	 step	 there	 is	 some	 additional	 feature	 at	 the	 same	 time	 that	 there	 is
usually	 some	 similarity	 to	 what	 preceded	 it–enough	 to	 provide	 a	 desirable
continuity.	It	is	easy	to	understand	why	those	children	did	so	well.
They	did	well	in	other	subjects,	too.	The	attitude	of	interest	or	dislike	tends	to

strike	a	broad	target.	Those	who	are	doing	badly	in	one	kind	of	study	will	soon
dislike	all	studies:	 they	will	“hate	school.”	It	 is	a	natural	human	feeling.	In	 the
same	way	those	who	are	doing	well,	 those	who	are	making	progress	every	day
and	 gaining	 some	 new	 skill,	 go	 to	 other	 studies	 with	 a	 lively	 interest.	 They
approach	every	subject	with	self-confidence	and	the	general	air	of	asking	“what
can	I	get	out	of	it?”	This	is	the	right	way	to	start,	and	unless	something	strongly
repels	them	in	the	other	subject	they	will	succeed.
We	would	 like	 to	see	 this	 sort	of	 thing	happen	 in	all	 schools	 throughout	 the

nation.	 It	 is	 true,	of	course,	 that	 for	many	reasons	changes	on	a	 large	scale	are
always	made	slowly.	No	one	can	reasonably	expect	any	important	changes	in	our
national	educational	methods	to	occur	in	less	time	than	decades.	But	if	this	can
be	 done,	 even	 gradually,	 what	 a	 boon	 it	 would	 be!	 The	 children	 themselves
would	 be	 freed	 from	 the	 burden	 of	 their	 worst	 drudgery,	 and	 the	 subject	 that
most	of	 them	consider	most	difficult	would	become	 lighter.	For	many	of	 them
the	truly	fascinating	possibilities	would	begin	to	open	up.
From	such	a	start,	more	and	more	of	them	would	begin	to	be	attracted	to	the

physical	 sciences,	 in	 which	 mathematics	 is	 essential,	 and	 we	 can	 hope	 that
eventually	this	would	help	to	relieve	the	nation’s	most	urgent	need,	the	need	for
engineers	and	experts	in	the	physical	sciences.
It	is	too	late	for	us,	the	adults,	to	benefit	from	such	an	educational	change	in	a

direct	way–we	cannot	enjoy	 the	same	benefits	as	 the	children.	But	even	 in	 the
matter	of	children	and	schools	we	do	benefit	 indirectly.	A	civilized	person	 is	a
member	 of	 a	 community.	 What	 hurts	 the	 community	 hurts	 each	 member,
whether	he	is	aware	of	it	or	not,	and	what	helps	the	community	will	in	the	long
run	bring	indirect	benefits	even	to	members	who	are	not	directly	concerned.
More	 important	 than	 these	 indirect	 effects,	 we	 grown	 persons	 can	 get

something	out	of	 the	Trachtenberg	 system	ourselves,	 in	 a	direct	way.	Who	are
the	 students	 at	 the	 Trachtenberg	 Institute?	 Are	 they	 all	 children?	 No,	 by	 no
means.	There	are	classes	for	children	and	classes	for	adults.	Those	in	 the	adult
classes	 are	 more	 enthusiastic	 and	 more	 outspoken	 in	 their	 praise	 than	 the
children.	They	are	more	enthusiastic	because	they	are	more	aware	of	the	value	of



what	they	are	receiving.
The	most	obvious	and	immediate	benefit	is	a	very	practical	one:	the	increased

skill	 in	 calculation	 itself.	 Nowadays	 the	 trend	 of	 things	 is	 such	 that	 skill	 and
accuracy	 in	 calculating	 is	 becoming	 a	 necessity	 for	 everyone.	Most	 of	 us	 are
engaged	in	occupations	which	are	not	primarily	mathematical,	but	mathematics
keeps	creeping	in.	Even	the	portrait-painter	has	to	make	out	income-tax	returns
like	the	rest	of	us,	so	he	needs	to	keep	some	records	of	his	irregular	income.	The
man	who	owns	and	manages	a	small	service	station	may	be	an	auto	mechanic	by
experience	and	by	 inclination,	but	he	must	be	a	part-time	accountant.	He	must
keep	 fairly	 complicated	 records	of	 the	parts	purchased	and	 the	work	done,	 the
income	and	 social-security	credits	of	his	 employees,	 and	 so	on.	 It	 is	much	 the
same	with	all	of	us.
In	 handling	 these	 necessary	 transactions	 the	 speed	 and	 ease	 of	 the

Trachtenberg	 system	 are	 a	 great	 help.	 In	 the	 most	 direct	 manner	 the	 new
improved	methods	will	help	to	reduce	the	time	spent	on	such	matters.	This	is	an
obvious	advantage.
Less	obvious,	but	equally	important,	is	the	stress	which	the	new	system	places

on	accuracy.	As	we	mentioned	before,	a	calculation	is	not	finished	until	we	have
the	right	 answer,	 in	 fact	not	until	we	can	prove	 that	we	have	 the	 right	answer.
This	 principle	 is	 seldom	observed	 in	 everyday	 life.	Usually	 the	 results	 are	 not
checked	 at	 all;	 if	 any	 attempt	 is	made	 it	 is	 by	 repeating	 the	work,	which	 is	 a
weak	and	unreliable	test.	Better	methods	exist.	Scattered	through	the	preceding
chapters	are	repeated	references	to	checking	the	work,	most	often	by	the	“digit-
sum”	 method	 and	 the	 “elevens-remainder”	 method.	 Both	 of	 these	 are	 good.
When	 used	 together,	 as	 a	 double	 check,	 they	 are	 excellent.	 In	 Chapter	 Four
(Addition	and	the	Right	Answer)	we	saw	a	special	type	of	check,	invented	for	a
particular	operation.	In	Chapter	Five	(Division–Speed	and	Accuracy)	there	was	a
different	 kind	 of	 emphasis	 on	 getting	 the	 right	 answer.	 A	 whole	 method,	 the
“simple”	method	of	division,	was	offered	for	those	who	may	find	it	useful,	and	it
was	included	because	it	is	very	easy	to	learn	and	is	so	devised	as	to	minimize	the
danger	of	error.	All	this	emphasis	on	being	certain	there	is	no	error	is	part	of	the
Trachtenberg	system.	The	average	citizen,	in	everyday	life,	makes	far	too	many
mistakes.	Something	is	needed	to	overcome	this	tendency.	We	believe	this	point
to	be	so	important	that	we	have	emphasized	it	intentionally.
Besides	 this	 checking	 process,	 which	 locates	 and	 corrects	 errors,	 there	 is

found	to	be	a	different	kind	of	increase	in	accuracy.	Throughout	the	system	we
have	 been	 concerned	 with	 the	 gradual	 development	 of	 the	 power	 of



concentration.	 This	 was	 done	 in	 greatest	 detail	 in	 Chapter	 1.	 It	 continued
throughout	the	other	chapters	mainly	in	the	form	of	the	step-by-step	manner	in
which	 the	work	was	 arranged.	The	habit	 of	 proper	 concentration	developed	 in
this	way	is	a	protection	against	errors	being	made	at	all,	and	there	will	be	fewer
errors	for	the	checking	process	to	look	for.
Finally,	 success	 in	 acquiring	 these	 new	 techniques	 gives	 the	 learners	 self-

confidence.	For	many	of	 them	the	feeling	of	self-confidence	is	something	new.
Many	 persons	 are	 somewhat	 intimidated	 by	 the	 thought	 of	 any	 sort	 of
calculation;	they	approach	the	work	with	uneasiness,	half	expecting	the	results	to
be	wrong.	This	attitude	almost	concedes	the	“victory”	to	the	problem.	When	the
attitude	 is	 changed,	 and	 they	begin	 to	have	 real,	 solidly-based	 self-confidence,
things	begin	to	improve.	They	do	the	work	in	the	right	way,	keeping	everything
under	control,	and	that	makes	it	less	likely	that	any	errors	will	occur.
The	 total	 effect	 of	 all	 these	 factors	 has	 often	 been	 a	 reawakened	 interest	 in

mathematics	 and	 related	 subjects	 generally.	 This	 revitalization	 is	 even	 more
important	than	all	the	practical	results	of	the	Trachtenberg	system.	It	is	our	hope
that	the	American	people	will	receive	the	full	benefit	of	these	opportunities,	both
practical	 and	 general.	We	 are	 convinced	 that	 the	 Trachtenberg	 system	will	 be
more	and	more	widely	appreciated	as	time	goes	on.
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