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Preface to the Second Edition

The authors could perceive in the years following the publication of the first edition,
that the book has been received very favourably worldwide thanks to the engi-
neering-friendly balance between theoretically complicated interrelations and
practice-relevant design guidelines. Since the first edition in 2008, more than
5 years have passed, and the technological development has not been idle. With
respect to nonlinear control structures, many new developments have been intro-
duced. This is the motivation for the authors to incorporate the new knowledge into
the second edition, so that the book would not only be maintained in a timely
manner, but also reflect the state of the art in the field.

In this second edition, the concept of degree of freedom in vector modulation is
introduced in Sect. 2.6 to complete the inverter control topic. Especially, the
concept of flatness-based controller design for systems with three-phase AC
machines is presented in an easy to understand and pragmatical way. The idea of
flatness-based control is presented first in Sect. 3.6.2. Then the flat property of the
machine types IM, DFIM and PMSM is proved. Because the authors see them-
selves as bridge builders between theory and practice, the representation of theo-
retically complicated contexts which are not easily understood by engineers in the
practice is deliberately dispensed with. The concreted designs are introduced in
Sects. 9.2.2 for IM, 9.3.2 for PMSM and 11.3 for DFIM. To complete the topic, the
important design of the so-called rest-to-rest trajectory for flatness-based tracking
control, is presented succinctly in Appendix A.S.

The authors dedicate this second edition to their highly revered teacher
Prof. Dr.-Ing. habil. Dr. E.h. Rolf Schonfeld, founder of the Dresden School of
Automated Electrical Drives at TU Dresden. If he were still alive, he would have
celebrated his 80th birthday on June 27, 2014.
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viii Preface to the Second Edition

The authors wish to thank the German Academic Exchange Service (DAAD)
and Prof. Uwe Fiissel of TU Dresden for the support in editing this second edition.
The authors are grateful for any comments, suggestions for improvement, which
should be addressed to N.P. Quang.

Hanoi Nguyen Phung Quang
Ziirich Jorg-Andreas Dittrich
Summer 2014



Preface to the First Edition

This book covers the area of vector control of three-phase AC machines, in par-
ticular induction motors with squirrel-cage rotor (IM), permanent excited syn-
chronous motors (PMSM) and doubly-fed induction machines (DFIM), from the
viewpoint of the practical design and development.

The German editions of this book, published in 1993 and 1999 by expert verlag,
had been well received by the readers thanks to their practice-oriented and engineer-
friendly approach. This experience was motivation for the authors to address now a
broader audience with this revised and extended English-language edition. The new
chapters take account of the recent developments in AC drive technology on the
research side as well as on the application side by dedicating appropriate room for
doubly-fed induction machine control and nonlinear drive control.

The book has its clear focus on motor control with the mechanical system and its
superposed control loops—speed and position—providing the necessary interface
to the machine-specific control functions. The latter form the core of a drive control
system and may be divided into two groups:

1. Basic algorithms like space vector modulation, current control and rotor flux
estimation.

2. Advanced algorithms like parameter identification, parameter adaptation, opti-
mal state variable control and nonlinear control.

A control system with only the first group implemented may already work
satisfactorily. Integration of the second group can improve the system parameters
significantly, optimize utilization of machine and frequency converter and support
maintenance and commissioning.

After a summary of the basic structure of a field-oriented controlled three-phase
AC drive as well as of a grid voltage-oriented controlled wind power plant in
Chap. 1, the inverter control by space vector modulation is extensively discussed in
Chap. 2 with the help of numerous examples to illustrate the practical application.
Based on the basic machine equations, the continuous and the discrete machine
models of IM, PMSM and DFIM are derived in Chap. 3. The nonlinearities of the
machine models are shown here. Chapter 4 answers some questions regarding
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X Preface to the First Edition

feedback acquisition and the practical implementation of field-oriented control. The
design of vectorial two-dimensional current controllers using the discrete models is
then discussed in detail in Chap. 5 in connection with other essential problems like
control variable limitation. Several alternative controller configurations are
introduced.

With Chap. 6 the focus passes to the group of advanced control algorithms by
attending to problems like determining the machine parameters by calculation from
name-plate data and automatic offline parameter identification. Chapter 7 brings the
complex of parameter adaptation yet one step further discussing methods of online
adaptation of the rotor time constant of IM, an important issue to achieve high
utilization of the motor. Questions of energy efficient operation gain increasing
importance, especially for high-power drives. Chapter 8 has its emphasis on these
problems, particularly addressing issues like efficiency and torque optimal control
strategies under consideration of state variable limitations.

Control applications for AC drives usually feature linear algorithms in spite
of the machine itself being characterized by a nonlinear process model and of
nonlinear operating states (limitation of state variables) to master. Control
approaches which take into account system nonlinearities from the outset may fare
better in a number of circumstances. One such approach, the exact linearization
method, is introduced in Chap. 9 and further deepened for DFIM applications in
Chap. 11. Before that, Chap. 10 introduces control concepts for the electrical
system of wind power plants with DFIM, an application that has gained widespread
importance in recent years.

While compiling this book, the authors had been dedicated to expose the
problems as close as possible oriented on practical and implementation-related
requirements. The theoretical background is detailed as much as needed to
understand the subjects; numerous equations, figures, diagrams and appendices
support the detailed description of the design processes.

The book is the result of the research and development practice of the authors
over more than 15 years. We hope to provide the readers not only with approaches,
but also with reproducible and useful solutions for their systems and problems. The
authors will be grateful for any hints and inputs to improve further editions. Please
confer with N.P. Quang for remarks regarding Chapters 1-3, 4.1-4.3, 5, 6.1, 6.3,
9-12, and J.-A. Dittrich for Chapters 2.5.3, 3.1.2, 4.4, 6.2, 6.4, 7, 8.

The authors wish to thank the lector of Springer Verlag, Dr. Ch. Baumann, for
his friendly and dedicated cooperation for editing this book.

Hanoi Nguyen Phung Quang
Ziirich Jorg-Andreas Dittrich
Winter 2008
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Basic Problems



Chapter 1

Principles of Vector Orientation

and Vector Orientated Control Structures
for Systems Using Three-Phase AC
Machines

From the principles of electrical engineering it is known that the 3-phase quantities
of the 3-phase AC machines can be summarized to complex vectors. These vectors
can be represented in Cartesian coordinate systems, which are particularly chosen to
suitable render the physical relations of the machines. These are the field-orientated
coordinate system for the 3-phase AC drive technology or the grid voltage orien-
tated coordinate system for generator systems. The orientation on a certain vector
for modelling and design of the feedback control loops is generally called vector
orientation.

1.1 Formation of the Space Vectors and Its Vector
Orientated Philosophy

The three sinusoidal phase currents iy, i, and iy, of a neutral point isolated 3-phase
AC machine fulfill the following relation:

isu(t) + isv(t) + isw(t) =0 (11)

These currents can be combined to a vector ig(t) circulating with the stator
frequency f; (see Fig. 1.1).

SN TS

is = [im(t) + i (1) + isw(t)e"z“’] with y=2n/3 (1.2)

The three phase currents now represent the projections of the vector i on the
accompanying winding axes. Using this idea to combine other 3-phase quantities,
complex vectors of stator and rotor voltages u,, u, and stator and rotor flux linkages
P, . are obtained. All vectors circulate with the angular speed w;.

In the next step, a Cartesian coordinate system with dg axes, which circulates
synchronously with all vectors, will be introduced. In this system, the currents,
voltage and flux vectors can be described in two components d and q.
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Fig. 1.1 Formation of the
stator current vector from the
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Im

Us = Ugq +jusq; U, = Uy +jl/trq

v,

iy =iy +jisq; i, =i +jirq

lrbrd +jl//rq; \lls = wxd +jlpsq

(1.3)

Now, typical electrical drive systems shall be looked at more closely. If the real
axis d of the coordinate system (see Fig. 1.2) is identical with the direction of the
rotor flux Y, (case IM) or of the pole flux Y, (case PMSM), the quadrature
component (g component) of the flux disappears and a physically easily compre-
hensible representation of the relations between torque, flux and current compo-
nents is obtained. This representation can be immediately expressed in the

following formulae.

Fig. 1.2 Vector of the stator
currents of IM in stator-fixed
and field coordinates
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_____ 15 d
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A AW,
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d
i 9
. -
Lsa Phase U

af: Stator-fixed coordinates
dq: Field coordinates
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e The induction motor with squirrel-cage rotor:

:—Lm ig; m zélﬂ
1+s7, 0 "™~ o,

Vral(s) Zp W rq lsq (1.4)

e The permanent magnet-excited synchronous motor:

3

my :Ezp lpp isq (15)

In the Egs. (1.4) and (1.5), the following symbols are used:

my Motor torque
Zp Number of pole pairs
¥,4» W, =, Rotor and pole flux (IM, PMSM)
isd, lsq Direct and quadrature components of stator current
L, L, Mutual and rotor inductance
with L, = L,, + L,, (L, :rotor leakage inductance)
T, Rotor time constant with T, = L,/R, (R,:rotor resistance)
s Laplace operator

The Egs. (1.4), (1.5) show that the component i,; of the stator current can be
used as a control quantity for the rotor flux y,,. If the rotor flux can be kept constant
with the help of i,,, then the cross component iy, plays the role of a control variable
for the torque my,.

The linear relation between torque my, and quadrature component i, is easily
recognizable for the two machine types. If the rotor flux y,, is constant (this is
actually the case for the PMSM), iy, represents the motor torque m,, so that the
output quantity of the speed controller can be directly used as a set point for the
quadrature component i . For the case of the IM, the rotor flux y,, may be regarded
as nearly constant because of its slow variability in respect to the inner control loop
of the stator current. Or, it can really be kept constant when the control scheme
contains an outer flux control loop. This philosophy is justified in the formula (1.4)
by the fact that the rotor flux y,, can only be influenced by the direct component i,
with a delay in the range of the rotor time constant 7,, which is many times greater
than the sampling period of the current control loop. Thus, the set point i}, of this
field-forming component can be provided by the output quantity of the flux con-
troller. For PMSM the pole flux \, is maintained permanently unlike for the IM.
Therefore the PMSM must be controlled such that the direct component i,; has the
value zero. Figure 1.2 illustrates the relations described so far.

If the real axis d of the Cartesian dq coordinate system is chosen identical with
one of the three winding axes, e.g. with the axis of winding u (Fig. 1.2), it is
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renamed into af coordinate system. A stator-fixed coordinate system is now
obtained. The three-winding system of a 3-phase AC machine is a fixed system by
nature. Therefore, a transformation is imaginable from the three-winding system
into a two-winding system with o and § windings for the currents iy, and ig.

Isy = Isu
{ is/} = % (im +2 isv) (16)

In the formula (1.6) the third phase current iy, is not needed because of the (by
definition) open neutral-point of the motor.

Figure 1.2 shows two Cartesian coordinate systems with a common origin, of
which the system with of coordinates is fixed and the system with dg coordinates
circulates with the angular speed w; = di/dt. The current i; can be represented in
the two coordinate systems as follows.

e In af coordinates: if = iy, + jisp
e In dq coordinates: 1£ = Isq +Jisq

(Indices: s—stator-fixed, f—field coordinates)
With

Isq = I COS 795 + lxﬁ sin ’195
Isg = —lgy SIN Uy + igp cOS Uy

the stator current vector is obtained as:

i = [im cos ¥y + igp sin ﬂs] +j[isl; cos ¥y — iy sin 19X]
i = [iyy + jigs|[cos Iy — jsin 9] = e 7"

In generalization of that the following general formula results to transform
complex vectors between the coordinate systems:

vV=vd" or VvV =ved (1.8)

v: an arbitrary complex vector

The acquisition of the field synchronous current components, using Eqs. (1.6)
and (1.7), is illustrated in Fig. 1.3.

In generator systems like wind power plants with the stator connected directly to
the grid, the real axis of the grid voltage vector uy can be chosen as the d axis (see
Fig. 1.4). Such systems often use doubly-fed induction machines (DFIM) as gen-
erators because of several economic advantages. In Cartesian coordinates orientated
to the grid voltage vector, the following relations for the DFIM are obtained.
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Fig. 1.3 Acquisition of the
field synchronous current
components
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Fig. 1.4 Vectors of the stator
and rotor currents of DFIM in
grid voltage (uy) orientated
coordinates

dq: Grid voltage
orientated coordinates

e The doubly-fed induction machine:
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In Eq. (1.9), the following symbols are used:

mg Generator torque
Yy by Stator flux
i Vector of stator current
irg,iy  Direct and quadrature components of rotor current
L,,L; Mutual and stator inductance

with Ly = L, + L, (Ls:stator leakage inductance)
@ Angle between vectors of grid voltage and stator current

Because the stator flux \, is determined by the grid voltage and can be viewed
as constant, the rotor current component i,,; plays the role of a control variable for
the generator torque mg and therefore for the active power P respectively. This fact
is illustrated by the second equation in (1.9). The first of both Eq. (1.9) means that
the power factor cosp or the reactive power Q can be controlled by the control
variable i,

1.2 Basic Structures with Field-Orientated Control
for Three-Phase AC Drives

DC machines by their nature allow for a completely decoupled and independent
control of the flux-forming field current and the torque-forming armature current.
Because of this complete separation, very simple and computing time saving
control algorithms were developed, which gave the dc machine preferred use
especially in high-performance drive systems within the early years of the com-
puterized feedback control. In contrast to this, the 3-phase AC machine represents a
mathematically complicated construct with its multi-phase winding and voltage
system, which made it difficult to maintain this important decoupling quality. Thus,
the aim of the field orientation can be defined to re-establish the decoupling of the
flux and torque forming components of the stator current vector. The field-orien-
tated control scheme is then based on impression the decoupled current components
using closed-loop control.

Based on the theoretical statements, briefly outlined in Sect. 1.1, the classical
structure (see Fig. 1.5) of a 3-phase AC drive system with field-orientated control
shall now be looked at in some more detail. If block 8 remains outside our scope at
first, the structure, similar as for the case of a system with DC motor, contains in the
outer loop two controllers: one for the flux (block 1) and one for the speed (block
9). The inner loop is formed of two separate current controllers (blocks 2) with PI
behaviour for the field-forming component i,; (comparable with the field current of
the DC motor) and the torque-forming component i, (comparable with the arma-
ture current of the DC motor). Using the rotor flux ¥,, and the speed w, the
decoupling network (DN: block 3) calculates the stator voltage components u,; and
us, from the output quantities y, and y, of the current controllers R;. If the field
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Fig. 1.5 Classical structure of field-orientated control for 3-phase AC drives using IM and voltage
source inverter (VSI) with two separate PI current controllers for d and g axes

angle 9, between the axis d or the rotor flux axis and the stator-fixed reference axis
(e.g. the axis of the winding u or the axis ) is known, the components u,, Uy, can
be transformed, using block 4, from the field coordinates dq into the stator-fixed
coordinates af. After transformation and processing the well known vector mod-
ulation (VM: block 5), the stator voltage is finally applied on the motor terminals
with respect to amplitude and phase. The flux model (FM: block 8) helps to esti-
mate the values of the rotor flux \,; and the field angle 3, from the vector of the
stator current i, and from the speed w, and will be subject of Sect. 4.4.

If the two components iy, i,, were completely independent of each other, and
therefore completely decoupled, the concept would work perfectly with two sep-
arate PI current controllers. But the decoupling network DN represents in this
structure only an algebraic relation, which performs just the calculation of the
voltage components g, Uy, from the current-like controller output quantities yz, Y.
The DN with this stationary approach does not show the wished-for decoupling
behavior in the control technical sense. This classical structure therefore worked
with good results in steady-state, but with less good results in dynamic operation.
This becomes particularly clear if the drive is operated in the field weakening range
with strong mutual influence between the axes d and q.

In contrast to this simple control approach, the 3-phase AC machine, as high-
lighted above, represents a mathematically complicated structure. The actual
internal dg current components are dynamically coupled with each other. From the
control point of view, the control object “3-phase AC machine” is an object with
multi-inputs and multi-outputs (MIMO process), which can only be mastered by a
vectorial MIMO feedback controller (see Fig. 1.6). Such a control structure gen-
erally comprises of decoupling controllers next to main controllers, which provide
the actual decoupling.
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Fig. 1.6 Modern structures with field-orientated control for three-phase AC drives using IM and
VSI with current control loop in field coordinates (fop) and in stator-fixed coordinates (bottom)

Figure 1.6 shows the more modern structures of the field-orientated controlled
3-phase AC drive systems with a vectorial multi-variable current controller R;. The
difference between the two approaches only consists in the location of the coor-
dinate transformation before or after the current controller. In the field-synchronous
coordinate system, the controller has to process uniform reference and actual val-
ues, whereas in the stator-fixed coordinate system the reference and actual values
are sinusoidal.
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The set point ¥, for the rotor flux or for the magnetization state of the IM for
both approaches is provided depending on the speed. In the reality the magneti-
zation state determines the utilization of the machine and the inverter. Thus, several
possibilities for optimization (torque or loss optimal) arise from an adequate
specification of the set point y/,. Further functionality like parameter settings for
the functional blocks or tracking of the parameters depending on machine states are
not represented explicitly in Figs. 1.5 and 1.6.

PMSM drive systems with field-orientated control are widely used in practical
applications (Fig. 1.7). Because of the constant pole flux, the torque in Eq. (1.5) is
directly proportional to the current component iy,. Thus, the stator current does not
serve the flux build-up, as in the case of the IM, but only the torque formation and
contains only the component iy, The current vector is located vertically to the
vector of the pole flux (Fig. 1.8 on the left).

Using a similar control structure as in the case of the IM, the direct component
iy has the value zero (Fig. 1.8 on the left). A superimposed flux controller is not
necessary. But a different situation will arise, if the synchronous drive shall be
operated in the field-weakening area as well (Fig. 1.8 on the right). To achieve this,
a negative current will be fed into the d axis depending on the speed (Fig. 1.7, block
8). This is primarily possible because the modern magnets are nearly impossible to
be demagnetized thanks to state-of-the-art materials. Like for the IM, possibilities
for the optimal utilization of the PMSM and the inverter similarly arise by
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Fig. 1.7 Modern structure with field-orientated control for three-phase AC drives using PMSM
and VSI with current control loop in field coordinates
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Fig. 1.8 Stator current vector iy of the PMSM in the basic speed range (leff) and in the field-
weakening area (right)

appropriate specification of i;,. The flux angle J; will be obtained either by the
direct measuring—e.g. with a resolver—or by the integration of the measured speed
incorporating exact knowledge of the rotor initial position.

1.3 Basic Structures of Grid Voltage Orientated Control
for DFIM Generators

One of the main control objectives stated above was the decoupled control of active
and reactive current components. This suggests to choose the stator voltage oriented
reference frame for the further control design. Let us consider some of the conse-
quences of this choice for other variables of interest.

The stator of the machine is connected to the constant-voltage constant-fre-
quency grid system. Since the stator frequency is always identical to the grid
frequency, the voltage drop across the stator resistance can be neglected compared
to the voltage drop across the mutual and leakage inductances L, and L. Starting
point is the stator voltage equation

_av,

d
vy U A7 — = Or U ~ jo\r, (1.10)

us:Rsis+ dt s

with the stator and rotor flux linkages

U, =i L, +iLy,
{\l’r L L (1.11)
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Since the stator flux is kept constant by the constant grid voltage (Eq. 1.10) the
component i,; in Eq. (1.9) may be considered as torque producing current.

In the grid voltage orientated reference frame the fundamental power factor, or
displacement factor cosp respectively, with ¢ being the phase angle between
voltage vector uy and current vector iy, is defined according to Fig. 1.4 as follows:

cosgozls—d:l‘;d (1.12)

|ls‘ \/ l%d + l_%q

However, it must be considered that according to Eq. (1.11) for near-constant
stator flux any change in i, immediately causes a change in i; and consequently in
cosp. To show this in more detail the stator flux in Eq. (1.11) can be rewritten in the
grid voltage oriented system to:

L

lp?d = Lisisd + g ~ 0
i with ) = /L, (1.13)
llléq = L_;isq + irq ~ ‘lljé
For L,/L,, =~ 1 Eq. (1.13) may be simplified to:
isd + ird ~0 4
. . 1.1
Lsq + lrq ~ “l’é = ‘Mq ( )

The phasor diagram in Fig. 1.4 illustrates the context of (1.14). With the torque
producing current i,, determined by the torque controller according to (1.13) the
stator current iy, is pre-determined as well. To compensate the influence on cosg
according to Eq. (1.12) an appropriate modification of i, is necessary. The relation
between the stator phase angle ¢ and i, is defined by:

sin(p:lf—q:lsiq (1.15)
|lS| \/ lszd + l?q

Equation (1.15) expresses a quasi-linear relation between sing and i, for small
phase angles directly between ¢ and i, because of sing ~ ¢ in this area. This
implies to implement a sing control rather than the cosg control considered initially.
Due to the fixed relation between iy, and i,, expressed in the second equation of
(1.14) the rotor current component i,, is supposed to serve as sing- or cosg-
producing current component. Another advantage of the sing control is the simple
distinction of inductive and capacitive reactive power by the sign of sing.

The DFIM control system consists of two parts: Generator-side control and grid-
side control. The generator-side control is responsible for the adjustment of the
generator reference values: regenerative torque mg and power factor cosg. For these
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values suitable control variables must be found. It was worked out in the previous
section, that in the grid voltage reference system the rotor current component i,,
may be considered as torque producing quantity, refer to Eq. (1.9). Therefore, if the
generator-side control is working with a current controller to inject the desired
current into the rotor winding, the reference value for i,; may be determined by an
outer torque control loop.

With this context in mind the generator-side control structure may be assembled
now like depicted in Fig. 1.9. Assuming a fast and accurate rotor current vector
control this control structure enables a very good decoupling between torque and
power factor in both steady state and dynamic operation. With a fast inner current
control loop, torque and power factor might be impressed almost delay-free; the
controlled systems for both values have proportional behaviour.

However, in practical implementation measurement noise and current harmonics
might cause instability due to the strong correlation of the signals in both control
loops. Feedback smoothing low-pass filters are necessary to avoid such effects
(Fig. 1.9). These feedback filters then form the actual process model and the control
dynamics has to be slowed down.

The DFIM is often used in wind power plants thanks to the fundamentally
smaller power demand for the power electronic components compared to systems
with IM or SM. The demand for improved short-circuit capabilities (ride-through of
the wind turbine during grid faults) seems to be invincible for DFIM, because the
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Fig. 1.9 Modern structure with grid voltage orientated control for generator systems using DFIM
and VSI with current control loop in grid voltage coordinates
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Fig. 1.10 Complete structure of wind power plant with grid voltage orientated control using a
nonlinear control loop in grid voltage coordinates

stator of the generator is directly connected to the grid. Practical solutions require
additional power electronics equipment and interrupt the normal system function.
Thanks to the power electronic control equipment between the stator and the grid,
this problem does not exist for IM or SM systems.
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Figure 1.10 presents a nonlinear control structure, which results from the idea of
the exact linearization and contains a direct decoupling between active and reactive
power. However, the most important advantage of this concept consists of the
improvement of the system performance at grid faults, which allows to maintain
system operation up to higher fault levels.
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Chapter 2
Inverter Control with Space Vector
Modulation

Figure 2.1 shows the principle circuit of an inverter fed 3-phase AC motor with
three phase windings u, v and w. The three phase voltages are applied by three pairs
of semiconductor switches v,,/v,—, v,,/v,— and v, /v, with amplitude, frequency
and phase angle defined by microcontroller calculated pulse patterns. The inverter is
fed by the DC link voltage Upc. In our example, a transistor inverter is used, which
is today realized preferably with IGBTs.

Figure 2.2 shows the spacial assignment of the stator-fixed aff coordinate system,
which is discussed in Chap. 1, to the three windings u, v and w. The logical position
of the three windings is defined as:

0, if the winding is connected to the negative potential, or as
1, if the winding is connected to the positive potential

of the DC link voltage. Because of the three windings eight possible logical states
and accordingly eight standard voltage vectors ug, u; ... uy are obtained, of which
the two vectors ug—all windings are on the negative potential—and u;,—all
windings are on the positive potential—are the so called zero vectors.

The spacial positions of the standard voltage vectors in stator-fixed af coordi-
nates in relation to the three windings u, v and w are illustrated in Fig. 2.2 as well.
The vectors divide the vector space into six sectors S; ... S¢ and respectively into
four quadrants Q; ... Q4. The Table 2.1 shows the logical switching states of the
three transistor pairs.

2.1 Principle of Vector Modulation

The following example will show how an arbitrary stator voltage vector can be
produced from the eight standard vectors.

Let us assume that the vector to be realized, ug is located in the sector Sy, the area
between the standard vectors u; and u, (Fig. 2.3). ug can be obtained from the
vectorial addition of the two boundary vectors u, and u; in the directions of u; and
u,, respectively. In Fig. 2.3 mean:
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Fig. 2.1 Principle circuit of a
VSI inverter-fed 3-phase AC
motor

Fig. 2.2 The standard
voltage vectors ug, uj... Uy
formed by the three transistor
pairs (Q;... Q4: quadrants,
S;... S¢: sectors)

Table 2.1 The standard
voltage vectors and the logic
states

Fig. 2.3 Realization of an
arbitrary voltage vector from
two boundary vectors
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Subscript 7, I: boundary vector on the right, left

Supposed the complete pulse period T; is available for the realization of a vector

with the maximum modulus (amplitude), which corresponds to the value 2Up/3 of
a standard vector, the following relation is valid:

2
|us|maX: ‘llll = ... = |u6| = gUDC (21)

From this, following consequences result:

1. uq is obtained from the addition of u, + w,
2. u, and u; are realized by the logical states of the vectors u; and u, within the
time span:

(2.2)

u; and u, are given by the pulse pattern in Table 2.1. Only the switching times
T,, T; must be calculated. From Eq. (2.2) the following conclusion can be drawn:

To be able to determine T, and T}, the amplitudes of u, and u; must be known.

It is prerequisite that the stator voltage vector ug must be provided by the current
controller with respect to modulus and phase. The calculation of the switching times
T,, T; will be discussed in detail in Sect. 2.2. For now, two questions remain open:

1. What happens in the rest of the pulse period T, — (7, + T;)?
2. In which sequence the vectors u; and u,, and respectively u, and u, are realized?

In the rest of the pulse period 7, — (T, + T;) one of the two zero vectors ug or uy
will be issued to finally fulfil the following equation.

u; = u, +u; +up (or uy)

T, T, T, — (T, +T)
Spwtp et
p P P

u (or uy) 23)

The resulting question is, in which sequence the now three vectors—two
boundary vectors and one zero vector—must be issued. Table 2.2 shows the nec-
essary switching states in the sector S;.

Table 2.2 The switching

s Up u Uy uy
states in the sector S
u 0 1 1
v 0 0 1
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It can be recognized that with respect to transistor switching losses the most
favourable sequence is to switch every transistor pair only once within a pulse
period.

If the last switching state was W, this would be the sequence

Uy = u; = U = Uy

but if the last switching state was Wy, this would be

u; = U = u; = U

With this strategy the switching losses of the inverter become minimal. Different
strategies will arise if other criteria come into play (refer to Sects. 2.5.1, 2.5.3). If
the switching states of two pulse periods succeeding one another are plotted ex-
emplarily a well-known picture from the pulse width modulation technique arises
(Fig. 2.4).

Figure 2.4 clarifies that the time period T, for the realization of a voltage vector
is only one half of the real pulse period T,,. Actually, in the real pulse period 7, two
vectors are realized. These two vectors may be the same or different, depending
only on the concrete implementation of the modulation.

Until now the process of the voltage vector realization was explained for the
sector S; independent of the vector position within the sector. With the other sectors
S,—S¢ the procedure will be much alike: splitting the voltage vector into its
boundary components which are orientated in the directions of the two neighboring
standard vectors, every vector of any arbitrary position can be developed within the

Fig. 2.4 Pulse pattern of
voltage vectors in sector S; 000 [100| 110 | 111] 110 {100]000| 100
Uu
v
je—
w
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whole vector space. This statement is valid considering the restrictions which will
be discussed in Sect. 2.3. The following pictures give a summary of switching
pattern samples in the remaining sectors S, ... Sg of the vector space (Fig. 2.5).

Fig. 2.5 Pulse pattern of the
voltage vectors in the sectors
Sz. . S6
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Il.l:‘ uy us u, uz uy |

(d)




22 2 Inverter Control with Space Vector Modulation

From the fact, that:

1. the current controller delivers the reference value of a new voltage vector ug to
the modulation after every sampling period 7, and

2. every (modulation and) pulse period T, contains the realization of two voltage
vectors,

the relation between the pulse frequency f,, = 1/T,, and the sampling frequency 1/T is
obtained. The theoretical statement from Fig. 2.4 is that two sampling periods
T correspond to one pulse period 7,. However this relationship is rarely used in
practice. In principle it holds

that the new voltage vector uy provided by the current controller is realized within at least
one or several pulse periods T,

Thereby it is possible to find a suitable ratio of pulse frequency to sampling
frequency, which makes a sufficiently high pulse frequency possible at a simulta-
neously sufficiently big sampling period (necessary because of a restricted com-
puting power of the microcontroller). In most systems f,, is normally chosen in the
range 2, 5-20 kHz. Figure 2.6 illustrates the influence of different pulse frequencies
on the shape of voltages and currents.

Fig. 2.6 Pulse frequency f, and the influence on the stator voltage as well as the stator current.
1 pulsed phase-to-phase voltage; 2 fundamental wave of the voltage; 3 current
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2.2 Calculation and Output of the Switching Times

After the principle of the space vector modulation has been introduced, the reali-
zation of that principle shall be discussed now. Eventually the inverter must be
informed on “how” and respectively “how long” it shall switch its transistor pairs,
after the voltage vector to be realized is given with respect to modulus and phase
angle.

Thanks to the information about phase angle and position (quadrant, sector) of
the voltage vector the question “how” can be answered immediately. From the
former section the switching samples for all sectors as well as their optimal output
sequences with respect to the switching losses are already arranged.

The question “how long” is subject of this section. From Egs. (2.2), (2.3) it
becomes obvious, that the calculation of the switching times 7,, T; depends only on
the information about the moduli of the two boundary vectors u,, u;. The vector uy
(Fig. 2.7) is predefined by:

1. Either the DC components u,, iy, in dg coordinates. From these, the total phase
angle is obtained from the addition of the current angular position 9 of the
coordinate system (refer to Fig. 1.2) and the phase angle of u, within the
coordinate system.

9, = 9 + arctan (@> (2.4)
Usd
2. Or the sinusoidal components u,,, iy in off coordinates. This representation

does not contain explicitly the information about the phase angle, but includes it
implicitly in the components.

Therefore two strategies for calculation of the boundary components exist.

1. Strategy 1: At first, the phase angle 3, is found by use of the Eq. (2.4), and after
that the angle vy according to Fig. 2.7 is calculated, where y represents the angle
8, reduced to sector 1. Then the calculation of the boundary components can be

Fig. 2.7 Possibilities for the
specification of the voltage
vector uy
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performed by use of the following formulae, which is valid for the whole vector
space:

2 . o
— |ug| sin(60° —

V3

| =

2
; |wy| = —=|ug| sin 2.5
7); Jwl \@\I () (2.5)
With:

Jus| = 162y + 15, (2.6)

2. Strategy 2: After the coordinate transformation, the stator-fixed components i,
up are obtained from uy,, uy,. For the single sectors, u, and u; can be calculated
using the formulae in Table 2.3.

The proposed strategies for the calculation of the switching times T,, T; are
equivalent. The output of the switching times itself depends on the hardware
configuration of the used microcontroller. The respective procedures will be
explained in detail in the Sect. 2.4.

The application of the 2nd strategy seems to be more complicated in the first
place because of the many formulae in Table 2.3. But at closer look it will
become obvious that essentially only three terms exist.

1
a=|u,| + 7§‘usﬁ| :'b (2.7)

= |uSO(| - %hﬁs/i‘ ; €= %hﬁs/f‘

With the help of the following considerations the phase angle of ug can be easily
calculated.

1. By the signs of u, u,z one finds out in which of the four quadrants the voltage
vector is located.

Table 2.3 Moduli of the

boundary components u,. u; o L
dependent on the positions of St | Qo Ly, 2 iy
the voltage vectors V3 V3
2| Ium|+\/%|”sﬁ\ *\umlJr%l“sﬂ
Ol gl [l + e
. Q % Jusg | lttso| — % Jusp|
e - %ww 5l
Ss Q Iuw|+\/—|"vﬂ\ \Mr7|+\[|uvﬁ|
Al + 2 f gl | sl +—= f s
S % el el =5
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2. Because the moduli of u, and u; are always positive, and because the term
b changes its sign at every sector transition, b can be tested on its sign to
determine to which sector of the thus found quadrant the voltage vector belongs.

2.3 Restrictions of the Procedure

For practical application to inverter control, the vector modulation algorithm (VM)
has certain restrictions and special properties which implicitly must be taken into
account for implementation of the algorithm as well as for hardware design.

2.3.1 Actually Utilizable Vector Space

The geometry of Fig. 2.3 may lead to the misleading assumption that arbitrary vectors
can be realized in the entire vector space which is limited by the outer circle in
Fig. 2.8b, i.e. every vector u, with |u;| <2 Upc/3 would be practicable. The fol-
lowing consideration disproves this assumption: It is known that the vectorial addi-
tion of u, and u; is not identical with the scalar addition of the switching times 7, and
T,. To simplify the explanation, the constant half pulse period which, according to
Fig. 2.4, is available for the realization of a vector is replaced by T/, = T, /2. After
some rearrangements of Eq. (2.2) by use of (2.5) the following formula is obtained.

Ts=T.+T = \/ng/gM cos(30° —y) (2.8)
Upc

In case of voltage vector limitation, that is |us| = 2 Upc/3, it follows from (2.8):

2
Tsmax = Tpp2 7 cos(30° —7) with 0°<y<60° (2.9)

(a)

2T, » [V3L

T.s

¥

Fig. 2.8 Temporal (a) and spacial (b) representation of the utilizable area for the voltage vector u,
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The diagram in Fig. 2.8a shows the fictitious characteristic of Ty, at excess of
the half pulse period T,,,. By limitation of T to T, the actually feasible area is
enclosed by the hexagon in Fig. 2.8b.

In some practical cases—e.g. for reduction of harmonics in the output voltage—
the hexagon area is not used completely. Only the area of the inner, the hexagon
touching circle will be used. The usable maximum voltage is then:

Ju| Upc (2.10)

1
max 7§

Thus the area between the hexagon and the inner circle remains unused.
Utilization of this remaining area is possible if the voltage modulus is limited by
means of a time limitation from Tx to T,,,. To achieve this, the zero vector time is
dispensed with, and only one transistor pair is involved in the modulation in each
sector (refer to Fig. 2.20, right). A direct modulus limitation will be discussed later
in connection with the current controller design.

An important characteristic for the application of the VM is the voltage reso-
lution Au, which for the case of limitation to the inner circle or at use of Eq. (2.10)
can be calculated as follows:

2 At
:$FpUDC [V] (2.11)

At deeper analysis, restricted on the hexagon only, it turns out that the zero
vector times become very small or even zero if the voltage vector approaches its
maximum amplitude. This is equivalent to an (immediate) switch on or off of the
concerned transistor pair after it has been switched off or on. For this reason the
voltage vector modulus has to be limited to make sure the zero vector times 7, and
T, never fall below the switching times of the transistors. For IGBT’s the switching
times are approx. <1—4 ps, so that this contraction of the voltage vector for usual
switching frequencies of 1-5 kHz can be considered insignificant. However, the
situation becomes more critical for higher switching frequencies or if slow-
switching semiconductors, such as thyristors, are used.

The values either of 7, or of 7; become very small in the boundary zone between
the sectors or near one of the standard vectors u; ... ug. For some commonly used
digital signal processing structures (refer to the application example with TMS
320C20/C25 in Sect. 2.4) the PWM synchronization is directly coupled to the
interrupt evaluation of the timer counters for T, and T;. For these structures the
values of T, and 7; must never fall below the interrupt reaction times causing
another limitation of the utilizable area. The arising forbidden zones are shown in
Fig. 2.9.

Au
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Fig. 2.9 Forbidden zones in
the vector space

Forbidden
Zones

Utilizable

Zones

2.3.2 Synchronization Between Modulation
and Signal Processing

According to theory (refer to Fig. 2.4) the modulated voltage in the context of
control or digital signal processing looks like in Fig. 2.10 for the samplings periods
(k — 1), (k) and (k + 1). The voltage output sequence in period (k)

T,~ (llr) = T[ (ll[) = T7 (ll7) / Tl (lll) = Tr (u,) = To (ll())

leads to the following time relation:

To(k)  Tolk—1)
02 + 0 5

Tsynch = Tp -

For a dynamic process with ug(k — 1) # uy(k) is also Ty(k — 1)/2 # Ty(k)/2. That
means, that Ty, would be not constant (Fig. 2.10b), making the use of up/down
counters—Ilike usually done in PWM units—impossible. Therefore, a different
sequence shall be used for voltage output:

D (wo) = T () = Ti(w) = Ty (w) / Ti(w) = T, () = 22 (w)

Figure 2.10b shows this alternative sequence. It is obvious from the figure that
this sequence is absolutely stable and therefore the use of up/down counters is
supported. This means also a strict synchronization between control and pulse
periods which must be considered already in the design phase of the signal pro-
cessing hardware.
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(a) (b)
(k-1) (k) (k+1) (k1) (k) (k+1)

N I R I L [
- | |__

5

upug, Uy Uz, U Up, Iy up, Uy Uy U, 4
BRI wa) & 10 T T T T
Ty(k-1)} — ; 2 21
2 :' T = Sampling Period i ] Tyynch = T = Sampling Period |
L N S —_— e
i Ty(k)
2

Toynch

Fig. 2.10 For ensuring synchronization between modulation and control: the theoretical sequence (a)
must be modified (b)

2.3.3 Consequences of the Protection Time and Its
Compensation

So far, the semiconductors had been regarded as ideal switches with un-delayed
turn-on and turn-off characteristics. However, the IGBT’s physically reach their
safe switched-on or switched-off state only after a certain turn-on or turn-off period
tons tog- T avoid inverter short circuit, the switch-on edge of the control signal must
be delayed for a time 7, which is greater than the turn-off time 7,4 This time is
called protection time or blanking time (Fig. 2.11). In practice 5, is chosen in a way
that 7,4 will be nearly 70-80 % of 1p.

Figure 2.11b shows in turn: 1. The reference voltage U{;, for the phase v. 2. The
actual IGBT control signals v, and v_, modified by the protection time #p. 3. The
actual voltage u, of phase v. 4. The voltage errors Au,. The influence of 75, on the
trajectory of the stator voltage vector ug as well as on the fundamental wave of the
phase voltage are illustrated in Fig. 2.11c, d.

The voltage error Au,, caused by 75 and shown in Fig. 2.11d, can be calculated
as follows:

— % (3Upc) foris >0

2.12
#(GUnc)  foriy<0 (2.12)

*
Au, =u), —u, =

The voltage error depends on the sign of the phase current and may be effec-
tively compensated with respect to the voltage mean average value. This com-
pensation can be realized either in hardware or in software. Software compensation
is more widely used today. Preferably, the compensation is done without using the
actual current feedbacks which could be critical because of the pulsed current as
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Fig. 2.11 Origin of the protection time 7, and its influence on the output voltage

well as the measuring noise at zero crossings. This is possible if the current con-
troller works without or with predictable delay. In Chap. 5 it will be shown that this
condition is largely fulfilled for the control algorithms to be introduced there.

In this case the reference value can be used to capture the sign instead of the

%

actual value. The reference values i}, iy, and i, of the phase currents can be

su? sy
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calculated from i3, iy, by use of a coordinate transformation. With that the error

components in af-coordinates are obtained as follows:

Aug, = [—sign(it,) + 1sign(it,) + Lsign(i,)] 2 (3Upc)

: s . ok Ip (2 3 ! (213)
Auyg = [—sign(iy,) + sign(iy,, )] T, (3Unc) %

The error components according to (2.13) are added to the stator-fixed voltage
components u,, U before they are forwarded to the modulation.

2.4 Realization Examples

The realization of the space vector modulation requires a suitable periphery, which
has to be added to the processor hardware when normal microprocessors (LP) or
digital signal processors (DSP) are used. However, a number of microprocessors
with this periphery on chip, so called micro controllers (uC) are available on the
market today, allowing implementation of advanced modulation algorithms without
additional hardware.

Microcontrollers, which are utilizable for 3-phase AC machine systems due to
their internal PWM units as well as other on-chip periphery units, are e.g.

1. SAB 80C166, SAB C167 (Siemens, Infineon): The time resolution At of C166
is 400 ns, of C167 50 ns. The upper and the lower transistor of a phase leg are
not controllable separately using the C167-PWM unit," which would be nec-
essary for an efficient, software based generation of the protection time. A 32 bit
single chip microcontroller of the TC116x series can be used very advanta-
geously today for a high-quality drive.

2. TMS 320C240/F240 (Texas Instruments): At = 50 ns. The pC supports the
direct generation of the protection time 7, and the transistors of a pair are
controllable independently. Also, chips of the family TMS 320 F281x and
F28F3x are used very widely today.

In many systems a double processor configuration is used due to the strong price
collapse of the processors in the last years. For such applications, the digital signal
processors from Texas Instruments TMS 320C25 (16 Bit, fixed-point arithmetic) or
TMS 320C32 (32 Bit, floating-point arithmetic) can be recommended particularly.

The application of the modulation algorithm, described in Sects. 2.1 and 2.2,
shall be illustrated now in detail on 4 examples, orientated essentially on the
Siemens microcontrollers SAB 80C166, SAB C167 and the Texas Instruments DSP
TMS 320C20/C25. The calculation of the switching times is carried out according
to the 2nd strategy of Sect. 2.2, i.e. by means of the af voltage components.

"This is possible, however, if the modulation is not realized with PWM units but with CAPCOM
registers.
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In principle, the concrete formulae for the computing of the switching times in
all sectors shall be worked out first using Table 2.3. These formulae will then be
used on-line. The computing and output will be independent of the hardware fol-
lowing the flow chart in the Fig. 2.12. The flow chart clarifies the steps to determine
the space vector area in which the voltage vector to be realized is located. After that,
the computation dependent on the respective hardware, will follow.

2.4.1 Modulation with Microcontroller SAB 80C166

The microcontroller SAB 80C166 is a special high-performance microprocessor
with an extensive periphery on the chip. Particularly the Capture/Compare register
unit supports the space vector modulation for 3-phase AC machines. The double
register compare mode is used in the following example.

In double register compare mode the 16 CapCom registers CCO-CC15 are
configured in two register banks and assigned in pairs to one of the two timers TO or
T1 respectively. E.g. the three pairs CC0O/CC8, CC1/CC9 and CC2/CC10 with the
inputs/outputs CCOIO/P2.0, CC110/P2.1 and CC2I0O/P2.2, which are configured as
outputs here, shall be used. The simplified hardware structure to control the inverter
is shown in the Fig. 2.13. The assignment of the register pairs to the inverter phase
legs is represented in the Fig. 2.14.

The modulation works in a fixed time frame with the pulse period T,, which
represents at the same time the reload value 7,4 for the timer TO. This stable time
frame supports the synchronization between the hardware hierarchies as well as
between digital control, modulation and current measurement, which shall be dis-
cussed later. Thus, the reload register TOREL must be loaded with T, only once at
processor initialization. In the current sampling period (k) the turn-on/turn-off times
Ty ow Ty op Ty_on Ty o Tw_on and T, o5 of the inverter legs will be calculated and
stored intermediately in a RAM table. An interrupt signal TOIR is triggered at
overflow of the timer TO which causes the transfer of the reload value from the
register TOREL into timer TO. The interrupt signal TOIR at the same time activates
an interrupt service routine to load the new switching times from the RAM table
into the register pair for the following sampling period. In the next sampling period
(k + 1) and while the timer TO is counting up, the compare matches between:

TO and CCO, CC1 and CC2 as well as
TO and CC8, CC9 and CC10
cause the switchover of the phases u, v and w to
the positive or respectively
the negative potential
of the DC link voltage Upc. The voltage components u,, and u,s are normalized
to the maximum value 2Up/3 in the following calculations, so that an extra index
is neglected following the definition of the times introduced in Fig. 2.14, and using
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Fig. 2.12 Flow chart for the computing of the switching times according to the space vector
modulation
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Fig. 2.13 Hardware +e

configuration for the space
vector modulation using the
microcontroller SAB 80C166
in double register compare
mode
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Fig. 2.14 Assignment of the
register pairs to the switching
times of the inverter legs
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Egs. (2.1), (2.2), (2.7) and Table 2.3 the following formulae are obtained for the
different sectors:

1. Sector 1:
T, . _ T, . T,
Tu_on - 2 (1 a) ) Tv_an - 2 (1 +b C) ) Tw_on - 2 (1 +a)
T, T, T,
Tu_oﬂ :?p(S +a) ; Tv_oﬁ‘ = ?p(:; — b+C) ; Tw_oﬁf :?p(:ﬁ —a) (214)
2. Sector 2:
Ty Ty
Quadrant1: T, ,,=—=(l—a—b); T, oy =—(3+a+Db)
2 2
T, T,
Quadrant2: T, ,n=-=2L(1+a+b); T, ;s=-L3—-a—b
T (2.15)
T, (,,,:Q(l—c)- T on=-"2(14c)
2 ’ 2
T, T,
T, o :—p(3+c); Ty _op :—p(3—c)
2 * 2
3. Sector 3:
T, T, T
Tu,on:7p(l+a); Tvvonsz(l_a); vaonzip(l_b"_c)
T T, T,
TM_W:?F@—a); TV_(W:§(3+a); Tw_(,ﬂ:f(3+b—c) (2.16)
4. Sector 4:
T, T, T,
=-—(1 T, ==(1- 3 T, on__l_
TM’OH 2 ( +a> b) v_on 2 ( b +c) ) W__¢ 2 ( a)
T, T, T,
Tu_oﬂ:?p@—a); Tv_oﬂ:§(3+b—c); TW_Oﬁ:T”(3+a) (2.17)
5. Sector 5:
T, T,
Quadrant 3 : T,A_(,,l:7(1—|—a—|—b)7 T, (,ff—?(?)—a—b)
T, T,
Quadrant4: T, ,n=2(1—a—b); T, sy =-—(3+a+b
(2.18)
Tv 0,1—&(1+C); TW onzﬁ(l*c)
- 2 2
T, T,
Tv_v.ﬁ‘:?p(?’_c)? T, Off:?p(?""c)
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6. Sector 6:
_ T, . _ T, . _ T
Tu_on - 2 (1 a) 9 Tv_on - 2 (1 +a) ) Tw_on - 2 (1 +b C)
T, T, T,
Tu_off = ?1(3 +a); T, o = 71(3 —a); Ty o = 71(3 —b+ec) (2.19)

Using these equations provides an easily comprehensible realization of the space
vector modulation following the control flow of the structogram of Fig. 2.12. The
afore mentioned limitation to the maximum voltage vector should be already carried
out in the current controller because of the necessary feedback correction discussed
later. The normalization of the voltage components to 2Up/3 permits the calcu-
lation of the switching times independent of the motor nominal voltage.

2.4.2 Modulation with Digital Signal Processor TMS
320C20/C25

Unlike the Siemens microcontroller the digital signal processor is not equipped with
the intelligent Capture/Compare register unit, but provides a superior computing
power instead. In principle, there are two possibilities for the realization of the
space vector modulation.

1. Using additional hardware: The processor is extended by a latch-counter-unit
providing the process interface to the inverter (refer to Fig. 2.15).

2. Without additional hardware: The internal processor timer is used to generate
the pulse pattern.

Since the 2nd variant causes certain disadvantages, such as an inaccurate voltage
realization, particularly at the sector boundaries as well as in the area of small stator
voltage (important for the low speed region), the Ist variant (following the reali-
zation with microcontroller) is discussed first. Figure 2.15 illustrates the hardware
configuration. Figure 2.16 shows, representative of the complete vector space, the
definition and respectively the assignment of the turn-on/turn-off times to the
inverter legs.

According to the definition the switching times of the sampling period (k) can be
calculated and stored in a RAM table. In the next period (k + 1) they are output half-
pulse wise. Computing and output of the switching times are processed in a time
frame with the fixed period T,/2, which is provided by either the internal timer of
the signal processor or possibly also by the master-processor in the case of a multi-
processor system. At the synchronization instants the switching times for the actual
half pulse are automatically transferred from the latches to the down-counters,
giving way to write the switching times for the next half pulse from the RAM table
into the latch. Thus, output of the switching times independent of the interrupt



36
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reaction time is achieved, which results in a very precise voltage realization par-
ticularly in the area of small voltage values. After having been loaded with the
switching times the counter starts to count backwards. Once the counter reading is
zero, a zero detector will generate turn-on/turn-off pulses to control the inverter.
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According to the definition in the Fig. 2.16, Eq. (2.2) and Table 2.3 the
switching times can be calculated as follows.

1. Sector 1:
T, T,
Tu_on = Tw_oﬁ‘ =2 (1 - a) ; Tu_aﬂ = Tw_on =2 (1 + a)
2 2
T T (2.20)
T, o :?p(l +b—-c¢); T, o zip(l —b+e¢)
2. Sector 2:
T, T,
Quadrant 1 : T, ,, = > (I1—a=b); T, = > (I+a+b)
T,
Quadrant2 : T, o = % (14a+b); Toyy=-(1-a-b) (2.21)
T, T,
Ty_on=Tw_op = 7[} (1-¢); Ty_op =Tw_on = 71 (1+¢)
3. Sector 3:
Tu,on = Ly_off = %(1 + a) 5 Tquff = Tv)on = % (1 - a)
T T (2.22)
Ty on="2(—=b+¢); Ty op=-2(1+b—c¢)
2 2
4. Sector 4:
T, T,
Tqun = Lw_off — _p(l + a) ; Tquﬂ = TWAOH = _p(l - a)
2 2
T T (2.23)
Ty on :7”(1 —b+c¢); T o :7"(1 +b—c¢)
5. Sector 5:
7, T,
Quadrant 3 : Tu_on:7(1+a+b); Y‘H_(;ﬂ‘:?(l_a—b)
Quadrant4: T, ,, = % (1—a=b); T, = % (1+a+Db) (2.24)
Tv_on = Tw_af}‘ = E (1 + C) 5 Tv_oﬂ‘ = Tw_on = E (1 - C)
> 2 2
6. Sector 6:
T, T,
Tu_on = Iy_off = Ep(l - a) ; Tu_oﬂ = Tv_un = Ep(l + a)
(2.25)

T, T,
vaan:?p(l"'b_c); vaoffzip(l _b+c)
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The shown variant with additional hardware fulfils highest requirements
regarding the precision of the voltage realization. The additional hardware costs are
faced by a time resolution, which is practically limited only by the word length of
the three counters and their clock frequency.

With regard to a very exact and dynamic feedback control this solution has to be
preferred to the one with microcontroller if one considers that the controller has a
maximum time resolution of only 400 ns (with hardware expansion also 200 ns
possible). This time resolution permits a voltage resolution of only 7 bits at a pulse
frequency of 10 kHz (approx. 4 V/time increment) and a resolution of 8 bits at
5 kHz (approx. 2 V/time increment). This is a rather coarse resolution. In contrast to
this, a time resolution of 50 ns corresponding to a voltage resolution of 10 bits
(approx. 0.5 V/time increment) can easily be achieved, which requires just the use
of counters with 10 bit word length and 10 MHz clock frequency. Another draw-
back of the microcontroller solution is due to the fact that the CAP/COM registers
of the SAB 80C166 cannot be switched simultaneously because they are subject to
a skew of 50 ns from register to register. This necessitates a hardware-based
compensation to attain a high precision of the voltage realization. Such a com-
pensation is particularly important at the sector boundaries as well as in the area of
small voltages or small speeds.

For the DSP solution, the version without additional hardware offers itself as an
alternative possibility. The switching times are generated using the only internal
timer. Figure 2.17 shows the used hardware. Figure 2.18 shows the time frame, in
which the switching time calculation as well as their output are processed. As
familiar, the switching times are calculated and stored into a RAM table already in
the period (k) for the following period (k + 1). The difference, compared with the
two previous solutions, consists in the switching times not being output to the
inverter separately for every phase in the form of 7, and T, but in original form
as T,, T; or T, 7 together with the needed switching state. The respective switching
state is sent as a 3 bit data block to a buffer latch ahead of the inverter which holds
it for the complete period.

From Fig. 2.18 it becomes evident, that two information are relevant about the
modulation: the switching time and the switching state. These information are
determined using Table 2.3 and the flow chart in the Fig. 2.12, depending on the
sector the voltage vector is located in. The hold time of the switching state was
fetched from the RAM table and loaded into the period register PRD before. The
timer counts backwards and when reaching zero activates the automatic loading of
the new time constant from the PRD into its own counter register. At the same time,
it triggers an interrupt request Tint, which activates an interrupt routine for handing
over the following switching state (pulse pattern) into the latch as well as reloading
the PRD.

To output the switching states the following simple algorithm can be used. If
again the Fig. 2.18 for the sector S; is viewed as an example the following
assignment table can be composed.
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Switching times T, T, T; T, T, To
Switching states 100 110 111 110 100 000

The phases u, v and w are assigned to the data bits DO, D1 and D2. If the
switching states of the above table are now written in reversed order

000/001/011/111/011/001,

a so-called control word (CW) results with CW = 17D9 h as a hexadecimal number.
The control words for all six sectors can be summarized like in Table 2.4.

The control word, corresponding to the determined sector is loaded by the
interrupt routine from the memory into the accumulator, submitted to the latch,
shifted three times to the right (to remove the switching state), and then stored back
into the RAM. Every time after the control word has arrived in the accumulator, a
zero test is carried out. The value zero indicates a new control word for the next
sampling period. The described handling of the control words is illustrated again by
the flow chart in Fig. 2.19.

Some disadvantages of this method shall be mentioned now. Figure 2.17 is
redrawn for two extreme cases:

1. the areas of small voltages at the sector boundaries, and
2. the area of voltage limitation (refer to Fig. 2.20).

Changing the switching states by means of an interrupt routine reacting to Ty,
implies that the interval between two changes must be longer than the interrupt
reaction time and respectively the run time of the interrupt routine itself. Figure 2.20
(refer to Fig. 2.7) shows for sector S; that:

1. near the sector boundaries one of the two times T, or T;, and
2. in case of small voltages both times 7, and T;

may fall below the reaction time of the interrupt routine. In the 1st case the
boundary vector with the smaller switching time must be suppressed, and the
second one will be realized for the whole period instead. This, of course, causes an
inaccuracy of the voltage realization. In the 2nd case the voltage amplitude in the
vicinity of zero is limited on the lower end, which has a negative effect on the speed
control at small speeds.

At large voltage amplitudes or during transients (magnetization, field-weakening,
speed-up, speed reversal) the zero times T, and 7, can become very small, and
also fall below the reaction time of the interrupt routine (Fig. 2.20 right). This means
a limitation of the voltage amplitude on its upper end.

Table 2.4 Control words of all sectors

Sectors S, S, S5 S4 Ss S¢
Control words 17D9 h 27DA h 2DF2 h 4DF4 h 4BEC h 1BE9 h
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Fig. 2.19 Flow chart of the
interrupt routine to output
switching times and switching
states
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2.4.3 Modulation with Double Processor Configuration

In this section a double processor system is introduced combining harmonically the
strength of the digital signal processor TMS 320C25—with respect to computing
power—with the strength of the microcontroller SAB C167—with respect to

peripheries.

In this configuration the DSP is responsible for the processing of the near-
motor control functions, and the pC has to process the tasks of the superposed
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Fig. 2.20 Switching times at sector boundaries, in the area of small voltage (leff) or of voltage at
upper limits (right)

control loops. The DSP allows to calculate the extensive real-time algorithms,
part of which is also the space vector modulation within a small sampling time of
100-200 ps. In every sampling period the DSP stores the newly calculated
switching times into its own RAM, they are read from the pC memory driver using
HOLD/HOLDA signals and submitted to the pC-internal PWM units. That means,
with respect to the modulation the pC is only responsible for the output of the
switching times and for the control of the transistor legs (Fig. 2.21).

The microcontroller SAB C167 contains, different to the earlier SAB 80C166,
four timers PTO...PT3. In the symmetrical modulation mode these timers work as
up/down counters. After every forward and the following backward counting
process, when the counter content has reached the value zero, the timer/counter
automatically receives the new maximum counter content from one of the four
period registers PPO...PP3 for the new counting period. For the modulation only
three registers of each category are needed (Fig. 2.22). It can be easily recognized
that the three registers PPO, PP1 and PP2 have to get the same value simultaneously

Fig. 2.21 Overview of the
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Fig. 2.22 Simplified structure of the modulation registers of the SAB C167

to realize the same counting or modulation periods. Furthermore it can be easily
recognized that these three registers have to be initialized only once with the value
T, = 1/f, because of the constant pulse frequency f,,.

In comparison with the SAB 80C166 the registers PTO, PT1, PT2 play the role
of TO, and the registers PPO, PP1, PP2 the role of TOREL (refer to Fig. 2.13). The
registers PW0O, PW1 and PW2 generate the pulse widths. The assignment of the
registers to the transistor legs is shown in the Fig. 2.22.

While PTO, PT1 and PT2, which are represented as PWM timers in Fig. 2.23, are
counting forwards and backwards, their values are permanently compared with the

kD | ) | (cr)

meﬁmMW\?/

o iy W

S i B
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— T — 7

Fig. 2.23 Definition of the switching times for the structure in the Fig. 2.22
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contents of the corresponding pulse width registers PWO, PW1 and PW2.
Respective compare-match events cause the output ports POUTO, POUT1, POUT2
to toggle and in due course the switchover of the corresponding inverter legs.

Figure 2.23 shows that the pulse width registers PW0, PW1 and PW?2 have to be
reloaded with new switching times, for turn-on and turn-off, only once per mod-
ulation period. The switching times can be calculated according to the definition in
Fig. 2.23 as follows.

1. Sector 1:
T, T, T,
T,=L(+a); ,="(1-a+2); T,=-2L(1-a) (2.26)
2 2 2
2. Sector 2:

T, T,
Quadrant 1 : T, = 7"(1 +2b+c¢); Quadrant2: T, = 7‘(1 —2a+c¢)
T, T,

_ P . —_ P _
T, = > (I+¢); Ty 3 (I-c¢) (2.27)
3. Sector 3:
T, T, T,
Tu:é’(l—a); Tv:7p(1+a); TW:7P(1+a—2c) (2.28)
4. Sector 4:
T, T, T,
Tuzip(l—a), Tv:?p(1+a—2c), Twsz(1+a) (2.29)
5. Sector 5:
T, T,
Quadrant 3 : TH:E(172a+c); Quadrant 4 : Tu:?(l+2b+c)
L=(_e: 1,=2(1 ¢ (2.30)
2 2
6. Sector 6:
T, T, T,
Tl,:7”(1+a), T\,_?p(l—a); Twzf(l—a—&—Zc) (2.31)

To complete the chapter of the realization examples the Fig. 2.24 shows the
switching time plots, produced by the structure in Fig. 2.22, at large voltages. This
may be easily recognized by the fact that the switching times also show values near
zero.
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Fig. 2.24 The phase voltage
ug, with the corresponding
switching time T, (fop), and
the switching times 7, T,, T,,
(bottom)

2.5 Special Modulation Procedures

2.5.1 Modulation with Two Legs

Starting point for this section is Fig. 2.10, which represents the standard modulation
in a stable time frame. The standard modulation realizes the same voltage vector,
which is determined by the lengths of its boundary vector times T,, T}, twice per
pulse period. For the purpose of comparison it is represented again for the sector S
in Fig. 2.25a.

We will try now to combine the zero times Ty, T such that their sum is output
either equally distributed at the ends (Fig. 2.25b) or concentrated in the center
(Fig. 2.25¢) of the pulse period. The times T, T; or the voltage vector to be realized
remain unchanged. With respect to the mean average value the two new sequences
realize the same vector as in Fig. 2.25a.

It is obvious in the newly arisen sequences, that only two inverter legs are
actually switched over. If this method, which will be called modulation with two
legs from now on, is used consistently for the whole vector space, then the
switching losses automatically go down to approx. 2/3 of the original value.

From the Fig. 2.25b, c it becomes obvious that either the phase with the smallest
pulse width (for Sy: phase w) or the phase with the smallest pause time (for S;:
phase u) would be clamped to negative potential (the lower transistor of a phase leg
is conducting) or to positive potential (the upper transistor is conducting). The
formulae for the calculation of the switching times depend on the hardware and can
be derived according to the definition from Sect. 2.4.

With the help of the firing pulse patterns in Fig. 2.5a—e, the suitable clamping
phases or transistor legs can be found for all sectors and are summarized in the table
in Fig. 2.26. For each sector two phases are available alternatively.

To obtain the same switching losses for all transistors, the upper transistor of one
leg (corresponding phase on +) and then the lower transistor of the next leg



46 2 Inverter Control with Space Vector Modulation

(@) (k1) ! (k) (k1)

L L[
' S I R
’ [

[UWo, WUy U7 U W, g
—T= Tl Tt T
na T T0 T T T k)

2 21
| Tsynch= T = Sampling period |
(b) 1 1 (C) 1 1
(k-1) | (k) t (k+1) (k-1) | (k) 1 (k+1)
i — i 1 T
w i | | woofob .
: ; : : ,‘ 5 :
o | | oL i [ RN
VIS N S N O - a
W W, U W, Yy | i W] uz U2, W
T+ T ' 2T 'L T+ T (I N+T  Arpmd
T2 H

Tsynch= T = Sampling period Tsynch= T = Sampling period

Fig. 2.25 Modulation with two legs for sector S;

(corresponding phase on —) are alternately switched on permanently for an angular
range of 60°. To switch-over the clamping to the next phase,

1. either the sector boundaries (Fig. 2.26b),
2. or the middle points of the sectors (Fig. 2.26c)

can be used. For all variants every transistor of the inverter conducts only for 60°
per rotation of the voltage vector. With regard to the switching time calculation,
which already requires a sector selection (refer to Table 2.3), the version shown in
Fig. 2.26b, seems to be more suitable for the practical implementation compared to
the one in Fig. 2.26c¢.

The advantage of the lower switching losses, however, is faced by considerably
higher current harmonics, about twice the ripple amplitude has to be expected
compared to the standard PWM algorithm.

2.5.2 Synchronous Modulation

For the modulation algorithms discussed so far, it was always assumed that the
pulse period T), or the pulse frequency f,, = 1/T,, is kept constant. However, since the
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Fig. 2.26 Possibilities of modulation with two legs: possible phases for clamping per sector (a),
and ways to switchover the clamped phases (b, c)

fundamental frequency or the stator frequency f; of the driven motor depends on the
speed as well as on the load and is therefore variable, the relationship f,/f; is not
constant. In this case one speaks of asynchronous modulation. The pulse period and
the fundamental voltage period are not in any fixed relation.

This asynchronous characteristic causes subharmonics and losses as well as
torque oscillations, which do not play an important role, as long as the relationship
Jolfs is sufficiently large. The negative influence of the asynchronous characteristic
may become a significant problem for high-speed drives (centrifuges, vacuum
pumps etc.) in the speed range of 30,000—-60,000 rpm. This problem can be avoided
by keeping f, and f; in a fixed relationship.

b

N == = const
N
1 1
T, =— = const

"7 NS,

(2.32)
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N is the number of the pulse periods per fundamental wave and may assume—
because of the three-phase symmetry of the machines—only values, which fit the
following relationship.

N=9+4+6n n=0,1,2 3, ...
(2.33)
N=09 15, 21, 27, ...

In principle the modulation is processed in the same way as for the asynchronous
algorithm, only, that the length of the pulse period 7,,—depending on the working
frequency f,—must be recalculated permanently. It has to be taken into account for
the practical implementation, that the value of the period register cannot be changed
during the current pulse period, although the new value is already available after the
recalculation is finished. This requires a double buffering of the period register.
However, not every microcontroller will have the ability of double buffering.
Regarding this feature the SAB C167 is very recommendable because the registers
PPO, PP1, PP2 and PP3 are doubly buffered® by the so-called “shadow register”.

The following problems must be taken into account for the application of the
method:

1. Switching over of the pulse number N is carried out depending on the working
(fundamental) frequency, and a hysteresis—to prevent continuous to—and
from-switching—must be installed.

2. Switching over of the pulse number N as well as switching over between
asynchronous and synchronous modulation must—to reduce transient effects—
take place at the sector boundaries where one of the phase voltages u,, u,, and
u,,, reaches its peak value. At the sector boundaries the current harmonics pass
through their zero crossings.

2.5.3 Stochastic Modulation

In this chapter we shall take a closer look at the switching frequency harmonics
produced by the modulation and discuss certain ways to take influence on their
appearance. Typical spectra of inverter voltage and current for the standard mod-
ulation with fixed pulse width are shown in Fig. 2.27. Their shape depends on the
modulation ratio m = |u,|/umax and in case of the current on the load characteristic.

The spectra show pronounced maxima at the pulse frequency and its multiples
with the overall maximum at the 2nd harmonic. Because of the low-pass charac-
teristic of the load (R-L) harmonics beyond the 4th are suppressed in the current.
Depending on the application and performance requirements, both positive and
negative effects arise from this kind of spectrum:

Note: This ability is a further development of the SAB C167 in newer versions. The SAB C167 in
the first version does not have double buffering for period registers.
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Fig. 2.27 Voltage (top) and current (bottom) spectra for standard modulation with m = 0.4 and
pulse frequency = 1.0 kHz; current fundamental is truncated!

e Below the switching frequency and its sidebands appear only low harmonic
amplitudes and consequently their effect on ripple control frequencies in grid
applications (active front-end converters) is negligible.

e The maximum harmonic current amplitudes are concentrated around two spe-
cific frequencies (1st and 2nd order), which facilitates filtering.

e Especially for grid applications, the maxima at 1st and 2nd switching frequency
harmonic may exceed the limits specified in the applicable grid codes, which
requires additional filtering for their suppression.

e The pronounced single-frequency harmonics produce acoustical noise which
may be unwanted and experienced as disturbing in many environments.

To overcome the mentioned negative effects, it would in the first place be
necessary to get rid of the pronounced 1st and 2nd harmonics and to obtain a more
uniformly distributed spectrum. A straightforward solution could be to elude to
control strategies with variable pulse period, such as bang-bang control, predictive
control or direct torque/flux control. This is however outside the scope of this book,
since we want to rely on the current control procedures to be discussed in the later
chapters. So the question is how we can achieve a distributed spectrum while
keeping a constant pulse period at the same time.
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To derive respective procedures, it is first necessary to take a closer look on how
the harmonic frequencies originate. Figure 2.28 shall help to do this. In both phase
voltage and inverter control signals two repeating patterns may be identified:

1. The first pattern is formed by the ever repeating sequence of zero and active
vectors ... 0-R-L-7-7-L-R-0 ... which appears with switching frequency and
multiples of it.

2. The second one is formed by regular blocks of the active vectors R and L which
are interrupted by zero vectors 0/7 with symmetric distribution within one
period. This pattern is responsible for the especially strong 2nd harmonic in the
spectrum and its multiples.

\
Tp To

Fig. 2.28 Switching pattern of phase voltage (top, center) and phase control signals u/viw (bottom)
for standard modulation
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To shape a distributed spectrum, the regularity of these patterns has to be
overcome, we have to “break the symmetries”. Two methods shall be discussed to
achieve this task.

The first approach, “sequence randomizing”, breaks the first symmetry pattern by
randomly changing the start vector of the pulse period between 0 and 7. This implies
to add an additional simultaneous switchover of all three phase legs at the beginning
of the pulse period. The start vector for each period is determined by a pseudo-random
binary sequence (PRBS) which can easily be generated in a microcontroller. The
resulting pulse patterns and spectra are shown in Figs. 2.29 and 2.30.

The described change of the vector sequence occurs in the example between first
and second pulse period in Fig. 2.29. The peak value of the first harmonic is clearly
reduced but, since nothing is changed on the zero vector lengths, the second
symmetry pattern and therefore the second harmonic remain largely unaffected.

The 2nd harmonic is addressed with a different approach, which we will call
“zero vector randomizing”. The symmetrical distribution of u, and u, inside one
period in the standard modulation scheme is dropped in favor of a randomly chosen
ratio between both vectors, while keeping their symmetry with regard to the center
of the pulse period. The latter is an important condition to maintain the coincidence
between sampling instant of the phase current and the current fundamental (refer to
Chap. 4.1). With an uniformly distributed random number r(k) where 0 < r(k) <1

Fig. 2.29 Switching pattern of phase voltage (fop) and phase control signals u/v/iw (bottom) for
modulation with sequence randomizing
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Fig. 2.30 Voltage (fop) and current (bottom) spectra for modulation with sequence randomizing

and the original zero vector time Ty, the resulting zero vector times can be cal-
culated from:

T() = r(k)TOO

T, = (1 - () Too (2:34)

As it turns out in the practical implementation, the results become more
impressive when the extremes of the r(k) interval {0; 1} are stronger emphasized,
i.e. r(k) is calculated by:

r(k) = k,(r1(k) — 0.5) + 0.5
k=2,3,...,8
0<r(k)<1

0 <ry(k) <1 an uniformly distributed random number

(2.35)

It must be mentioned, that the effectiveness of zero vector randomizing of course
depends on the modulation ratio m = |ug|/umax, since m determines the available

space for the zero vector variation. Near the maximum voltage vector the effect will
be minimal.
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Fig. 2.31 Switching pattern of phase voltage (fop) and phase control signals u/v/iw (bottom) for
modulation with combined sequence randomizing and zero vector randomizing

It must also be noted, that the total harmonic current, and therefore the total
harmonic distortion (THD) value cannot essentially be changed by modifying the
modulation scheme. Thus, reducing harmonics in one area of the spectrum inevi-
tably will shift them to and increase them in another area.

Figures 2.31 and 2.32 again show resulting sample pulse patterns and spectra,
both figures for combined sequence randomizing and zero vector randomizing and
at the same operating point as in the figures above.

2.6 Degrees of Freedom in Modulation

Jenni and Wiiest (1995, Sect. 8.2), has introduced the concept of “degrees of
freedom” as a general description of the voltage vector modulation. There are three
degrees of freedom:

1. The voltage vector u, can be created from different combinations of component
vectors (logic states in Table 2.1).

2. During modulation, the sequences of component vectors can be selected
differently.

3. The zero voltages can be created by use of one or both of zero vectors u, and u.

These three degrees of freedom are the tool to change the modulation strategies,
aiming to reach the specific technical performance.
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Fig. 2.32 Voltage (fop) and current (bottom) spectra for modulation with combined sequence
randomizing and zero vector randomizing

2.6.1 Modulation with Different Combinations of Component
Vectors

The first degree of freedom is explained by the Fig. 2.33. In this example the
voltage vector u, is replaced by the following combination:

U = Uy + U + U + U + Uy (2.36)
Following the approach of (2.3), (2.36) can be extended to:

Uy = Uy + U +Up +ueo +u, +ug (or uy)

o Ttll TCl Ta2 T62 Tb
ok u + * u + * * T
Tp TP Tp Tp Tp (237)

N Ty = (Ta + Ter + Toa + Tea + T)
T

ug (or uy)
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Fig. 2.33 Voltage vector uy
can be created by use of any
one combination of
component vectors

The example in Fig. 2.33, with u within the sector S, shows that not only the
two standard vectors u; and u, of S, are used for modulation. Equation (2.37) also
contains us, the standard vector of S,. But, as Jenni and Wiiest 1995 has demon-
strated: to make sure that the total time will not become greater than the pulse
period, the vector uy shall be created by combinations of component vectors only
using the standard vectors of the sector which contains u,. That means the vector u,
from the example in Fig. 2.33 must be zero.

2.6.2 Modulation with Different Sequences of Component
Vectors

This degree of freedom has been used a lot in the previous sections, in order to
achieve different effects. We can list here as examples:

e Figure 2.4: The sequence u, = u; = u, = u; was changed into
u; = U, = u; = U, to switch every transistor pair only once within a pulse
period.

e Figure 2.10: The voltage output sequence was changed from Fig. 2.10a to
Fig. 2.10b not only to ensure strict synchronization between modulation and
control, but also to make the use of PWM units in microcontrollers possible.

e Figure 2.25: The standard output sequence in Fig. 2.25a was changed into the
sequences in Fig. 2.25b, c to reduce switching losses.

e Section 2.5.3 “Stochastic modulation”: The standard output sequence was
changed twice by combined zero vector and sequence randomizing, to reduce
the 1st and 2nd switching frequency harmonics.

The above examples illustrate the conclusion: Thanks to this degree of freedom,
the modification of the voltage output sequence becomes a powerful tool to achieve
different effects. However, when changing from one logic state (switching state) to
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Fig. 2.34 Transition between 4 B
logic states u; (010) u, (1 IO)
> >

another, one or two or three switching transitions will take place. Figure 2.34
illustrates this, whereby each arrow means that one inverter leg will be switched.

e Transition from one logic state to the state nearby: Only one inverter leg will be
switched.

e Transition with jump over the logic state nearby: Two inverter legs will be
switched.

e Transition from one logic state to the inverse logic state: Three inverter legs will
be switched.

Figure 2.34 illustrates, that, if the inverter has to be operated by the lowest
switching frequency then sequences with only one switching transition should be
used.

If the voltage component vectors for a pulse period are fixed, then the next
question about the optimal output sequence will arise. For the sector S; there are the
three following sequences possible:

e Sequence 1 (Fig. 2.25a): 6 switch-over processes per pulse period (sampling
period). This sequence is the standard modulation.

D (wo) = T () = Ty(w) = T () = Ti(w) = T (w) = 2 (w)

T,

e Sequence 2 (Fig. 2.25b, c): Only 4 switch-over processes per pulse period. Both
sequences belong to the modulation with two legs (Sect. 2.5.1).
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To (wy) = T, (wy) = 2T (wp) = T, (uy) = T (up)
T, (lll) =T (llz) = 2Ty (117) = TI(“2) =T (ll1)

7,

e Sequence 3: The two examples hereunder show sequences with 8 and more
switch-over processes per pulse period. Here each voltage creating logic state
can be adopted, different for the two time periods. By this way of modulation the
pulse frequency can be increased.

Uy = U = Uy = U = U7y = Uy = Uy

Ty

Uy = U = Uy > U = U = Uy = U7y = U

Tp

2.6.3 Execution Time of Zero Vectors

After the voltage creating logic states and their sequence are defined, the last degree
of freedom is the allocation of the remaining time for the two zero vectors u, and
uy.

6 2
To+T =T, - ZT,- =T, - Z T; (i=1,2: standard modulation in S;)
i=1 i=1

(2.38)

This allocation does not affect the short-term average value® of the modulated
voltage, but the average value of the neutral point voltage. Let’s take a look to the
case when standard modulation” is applied.

The neutral point voltage uyo is the voltage between the neutral point
of the 3-phase AC motor and the virtual zero potential of the DC link (Fig. 2.1).

3Definition of the short-term average value is in (Jenni and Wiiest 1995, Sect. 3.3.1).
“The symbols Ty, T, replace T,, T; in this section.
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According to (Jenni and Wiiest 1995, Sect. 8.2.3) the average value of the neutral
point voltage is given by the following equation:

Upc 1 T, T
Uyo = —5— = (-To 53Tt T7) (2.39)

Using (2.38) to eliminate 75 in (2.39) will obtain:

_ Upc 1 4 2
— ¢ (1 2Ty —=T, - =T
uvo =73 7, \ " 073302

| @ 21
= To=(z—2)7, —Z7 - =Ty
2" Upc 3173

Equation (2.40) shows an interesting relation between tyg and T, 7. The value
of Uy is defined by Ty, T} and T. Because T and 7, are given by |u,], the choice
of Ty will decide the value of uyg. Together with (2.38) “the choice of T()” prac-
tically means the allocation of the remaining time for the two zero vectors u, and
u,. In the practice three different variants of this allocation are applicable.

(2.40)

e Variant 1: Allocation for tiyg = 0. In this case we have:

1
To==T,

2 1
) ——Tl——TQ; T7:TP—TQ—T1—T2 (241)

3 3

e Variant 2: Equal distribution to both T and 7. This division is used in standard
modulation. According (2.39) the value of uyg will be:

— Upc 1 T, T,
_be (L4 22 2.42
Uno = — 7, \ "3 +3 (2.42)

e Variant 3: Using only one of both zero vectors u, and u;, which means only one
Ty or T5. This solution is the modulation with two legs in Sect. 2.5.1 with lower
pulse frequencies.
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Chapter 3
Machine Models as Prerequisite to Design
the Controllers and Observers

3.1 General Issues of State Space Representation

The mathematical modelling of the physical relations in 3-phase machines generally
leads to differential equations of higher order and to state models with mutual
coupling of the state variables respectively. For such systems the state space rep-
resentation provides a very clear notation and a suitable starting point for the design
of controllers, process models or observers.

Consistently, the equations to be derived in the following chapters will be
predominantly based on the state space representation, making it worthwhile to
introduce this chapter with some basic ideas. There the main focus will be on some
important topics of the modelling of 3-phase machines such as time variance of the
parameters and nonlinearity of the system equations, and their consequences for the
discretization of the state equations.

3.1.1 Continuous State Space Representation

A time-continuous dynamic system can generally be represented in the following
form:

x(t) =f(x(1),u(r)); x€R%ueR";x0=x(t) (3.1)

¥(1) =h(x(0),u(0); yeR’ |
In Eq. (3.1) f and h are general analytical vector functions of the state vector

x and the input vector u. Equation (3.1) describes a system of differential equations

© Springer-Verlag Berlin Heidelberg 2015 61
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Power Systems, DOI 10.1007/978-3-662-46915-6_3
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x(t)

x(t)

| fx,w) J.dt h(x, u)

y(t),

_I:<;

Fig. 3.1 Block circuit diagram of a system in state space representation

of first order, in which the system order n is equal to the number of contained
independent energy storages. The system has n state, m input and p output quan-
tities (Fig. 3.1).

In many cases, a system description will not be required in the general form of
Eq. (3.1), or for analysis and controller design a model must be found, which
represents an adequately exact approximation of the physical conditions and is
more accessible to the further processing. The usual way to achieve this is the
linearization of (3.1) along a (quasi-stationary) trajectory (X(t), U(t)) or around a
stationary operating point (Xo, Ug). After TAYLOR series expansion and truncation
after the linear term, the following system is obtained:

x(1) = £:(X(2), U(2))x(1) + £u(X(2), U(1) u(z)

’ (3.2)
y(1) = hy(X(2), U(2))x(z)
Depending on the choice of the trajectory (X(7), U(?)), the operating point (X, Up)
or the degree of the linearization respectively the following special cases can be
distinguished.

1. Linear system with time-variant parameters
The linearization is performed along the trajectory of a slowly variable quantity.
Nonlinear combinations of state quantities are interpreted as products of a state
quantity and a time variable parameter. Such a representation proffers itself
primarily if products of state quantities with appropriately big differences of
their eigendynamics appear. The equation system takes on the following form:

x(f) = A(0)x(r) + B(Hu(r); xo0 =x(t0);1>19 (3.3)

¥(1) = CHx(1) |
In (3.3) A is the system matrix, B the input matrix and C the output matrix.
Because no direct feed-through of the input to the output vector y exists in
electrical drive control systems (no step-change capability), we will abstain
from explicitly including this dependency in the following consideration.

2. Bilinear system
If the transfer matrices are constant in time, and if a non-linearity only exists
regarding the control input and not regarding the state vector, we speak of a
bilinear system.
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x(t) = Ax(?) + zm: N;uw;(7) x(¢) + Bu(r);  xo = x(t9)

¥(1) = Cx(1)

(3.4)

The multiplicative couplings between input and state quantities are summarized
in the matrices N;,.

3. Linear system with constant parameters
The class of the linear time-invariant systems finally represents the most simple
case. The system equations are:

x(r) = Ax(r) +Bu(r); xo =x(t9) = x(0) (3.5)

3.1.2 Discontinuous State Space Representation

Control algorithms and models are processed in microcomputers, and therefore in
discrete time. The computer receives the system output quantity y(z) at definite
equidistant points in time—e.g. after sampling and A/D conversion or U/f conver-
sion and integration—as discrete quantity y(k). The calculated control variables are
realized discontinuously as voltages by a PWM inverter. The complete control
system represents a sampling system (Fig. 3.2).

Because of the sampling operation of the computer, as a rule, a discrete design of
the control system will be preferred. This is motivated firstly, because special
phenomena caused by the sampling can specifically be considered in the design.
Secondly, the application of special design methods particularly adopted to sam-
pling operation, such as the dead beat design, will be possible. It is prerequisite that

Fig. 3.2 Overview of a
sampling system E 'j r
u(t) Continuous
Process

P
l I = Computer & l “
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an equivalent time-discrete description can be found for the continuous system,
which exactly reflects the dynamic behaviour of the continuous system at the
sampling instants.

Unfortunately, for time-variant or nonlinear systems it will only in some rare
cases be possible to find such an equivalent time-discrete system representation.
The reasons will become clear at the derivation of the discontinuous state equations
in later sections. Therefore, to design a discontinuous control system we can
principally choose between the following two alternatives:

1. Controller design for the continuous system and then discrete implementation
(quasi-continuous design).

2. Derivation of an approximated time-discrete process model and discrete con-
troller design.

In many cases it will not be required to take into account all or single nonlin-
earities of the system because certain approximations for the time-variant param-
eters and nonlinearities are possible and acceptable depending on the concrete
application. In addition, because also in the linear case the discretization of the
process model raises some important problems, the second way will be discussed in
more detail in the following. The description of the continuous system shall be
idealized as far as possible, to enable its discretization like for the linear time-
invariant case.

For this purpose it is assumed that the time-variant and state dependent
parameters in Eq. (3.3) are constant within a sampling period, therefore the
sampling period has to be chosen sufficiently small. Thus Eq. (3.3) can be regarded
piecewise linear and time-invariant for each sampling period, and the discretization
of the continuous model is possible in a conventional way like for linear time-
invariant systems. The discretization starts from the system Eq. (3.5) with the
sampling period T presumed constant.

The discrete-time state model arises from the solution of the continuous state
equation, yielding for the time-variant system (3.3) with continuous matrices
A(?) and B(?):

o(1,%0,10) = D(t,19)Xo +/(I)(t7 7)B(t)u(t)dr, 1>ty (3.6)

The matrix (¢, 7)) describes the transition of the system from the state x(#p) = Xo
to the state x(7) on the trajectory ¢, and is therefore called the fundamental matrix or
transition matrix. The matrix @ fulfils the following matrix differential equation
with the system matrix A():

d®(t,19)/dt = A(1)D(1,10); D(t,1) =1 (3.7)



3.1 General Issues of State Space Representation 65

For a constant system matrix A the fundamental matrix from Eq. (3.7) can be
calculated analytically and represented as a matrix exponential function:

D(t,19) = Al (3.8)

For the derivation of the discrete state equation the transient response between
two sampling instants is of interest. That means Eq. (3.6) must be integrated over a
sampling period 7. With (3.8) and ¢, = O the following result is obtained:

x((k+ 1)T) = +/eA T=9Bu(kT + 1) dr (3.9)
0

To comply with (3.8) and (3.9), for the discretization of a time-variant system,
the system matrix A must be presumed constant over one sampling period, as
already indicated above. The transition matrix ®((k + 1)T,kT) becomes the dis-
crete system matrix ®(k) and has to be recalculated online for every sampling
period. Thus a time-variant discrete system is obtained. If one assumes further that
the input vector u(z) is sampled by a zero-order hold function and therefore is also
constant over one sampling period, u(f) may be extracted from the integral, and the
complete system of state equations can be rewritten into the following matrix form:

x(k+ 1) = ®(K) x(k) + H(K) u(k); %o =x(0); k>0 (3.10)

The system matrix ®(k) is defined by:
@ (k) = AKDT (3.11)

Because the input matrix B is constant, B can also be written outside the integral
in (3.9). After substitution of the integration variable t, the discrete input matrix
H can be written as follows:

T T
H= / AT B = / ®(k)|7—.dt B (3.12)
0 0

With regular A, (3.12) can be solved further to:
H=AKT) [ AGT)T I}B (3.13)

The output matrix C is identical to the continuous system. The system matrix
®(k) is the decisive component of the discretization procedure. It determines the
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dynamics and stability of the discrete system. For its evaluation different methods
are known, characterized by more or less calculation effort and higher or lower
degree of approximation. Some of them, which are suitable for real time applica-
tions, shall be discussed in the following in more detail.

1. Series expansion
With this method, (3.11) is expanded directly into a power series.

2 00 v
Q:eAT:1+AT+(A2T) +---:Z(AT) (3.14)

With truncating the series expansion after the linear term, we obtain the solution
for the Euler or RK1 procedure. This quite simple and easily comprehensible
solution already suffices for many electrical drive applications at usual sampling
times in the range 0.1-1 ms with respect to stability and precision. Because of
possible numerical stability problems of the Euler procedure a more exact analysis
is, however, appropriate.

The stability range of the Euler procedure in the continuous state plane is a circle
with the radius 1/T and the center at —1/T on the real axis. Therefore all eigenvalues
4; of the continuous system must hold to the following inequality:

1 1
i + = < = 3.15
AJrT‘ T (3.15)

Particularly for complex frequency dependent eigenvalues of the system matrix
A an exact check of this stability condition is required. Discretization-induced
instabilities may be avoided by:

e Increasing the order of the series expansion of (3.14).

¢ FEluding to an integration method of higher order, e.g. RK4, which however,
probably will be less feasible for real-time applications.

e Avoiding complex eigenvalues of the system matrix A or its partial matrices.

For the latter variant the discretization of the state equations has to be first
carried out in a coordinate system in which no frequency dependent eigenvalues of
A or partial matrices A;; appear. After that the discrete state equations are trans-
formed into the final coordinate system (refer to example in the Appendix A.2).
This procedure already yields decisive improvements for the Euler method. The use
of suitable coordinate systems for the discretization can at the same time help to
avoid errors, which result from the necessarily idealizing assumption of constant
parameters of the system matrix A within a sampling period.

A similar approach would consist in transforming the input quantities of the
partial system of interest into the respective natural coordinate system (without
frequency dependent eigenvalues for the Aj;). In these coordinates all required
calculations (model, controller and observer) would be processed, and then the
output quantities would be transformed back into the original reference system.
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2. Equivalent function

The matrix function F(A) = eAT is recreated by an equivalent polynomial
function R(A) with:

R(A)=> rAl=e' (3.16)

In this function, n is the order of the continuous system. This substitution is
based on the Cayley Hamilton theorem, which states that every square matrix
satisfies its own characteristic equation. As a consequence, it can be derived
that every (n x n) matrix function of order p > n, therefore also p — oo like in
(3.14), may be represented by a function of not more than (n — 1)th order. The
equivalent function (3.16) corresponds exactly to this statement.

With known factors r; the system matrix ® can be calculated from (3.16) while
completely avoiding discretization errors, unlike with truncated series expansion.
For the calculation of the factors r; the already mentioned property of (3.16) is
used, that it is satisfied not only by the matrix A but also by the eigenvalues 4;. This
leads to the following linear system of equations:

n—1

S ordi=eT (j=1,2,...,n), (3.17)

i=0

which holds at first for single eigenvalues. For p-fold eigenvalues (p > 1)
Eq. (3.17) is differentiated (p — 1) times with respect to A;:

n—1 X
Te'T =S r,-i)vj"_1
i=1

. (3.18)
n—1 :

Tpfle)th = Z Vll(lf 1)(lfp+2)/1]l7p+l
i=p—1

A second possibility for the calculation of r; is offered by the Sylvester-Lagrange
equivalent polynomial method. A minimal polynomial M()A) is defined, which is
equal to the characteristic polynomial for the case of exclusively single eigenvalues
of A:

M() = 21— A :ﬁ(z_;ui) (3.19)

i=1

In the case of multiple eigenvalues, M(A) contains only the eigenvalues different
from each other with number m < n. Furthermore the following auxiliary functions
are defined.
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i=1,2,...n (3.20)

mi=M()|,—; i=12,...n (3.21)

With these, the substitute function R(1) = R(A)|a,

R() =Y —M;(%) (3.22)

is finally calculated, from which the factors r; are obtained by organizing after
powers of A. In the case of multiple eigenvalues, n is to be replaced by m in
Egs. (3.19) to (3.22).

The previous explanations for the state space representation shall promote the
understanding of the procedure for the later controller and observer design. The
example in the Appendix A.2 shall clarify the theoretical explanations.

As opposed to linear systems, no representation of an equivalent time-discrete
system can be given for general nonlinear and time-variant systems. The bilinear
systems (3.4) are an exception up to a certain point. The system

()= |A+ Zm:N,- w(1)|x(r) + Bu(r); x0=x(1)

y(1) = Cx(1)

(3.23)

can be integrated over T like an ordinary linear system under the prerequisite of the
constancy of the control vector u during a sampling period. For the system matrices
of the equivalent discrete system the following results are obtained:

m

(A+Z N; ll,’(k)) T . (A-‘ri N; l‘i(k)> T
(D(k) —e =1 ; H(k) = /e i=1 dt B (324)
0

However, this derivation also will have practical meaning only in special cases.

3.2 Induction Machine with Squirrel-Cage Rotor (IM)

As indicated in the previous section, the 3-phase AC machine can be described by a
complicated system of higher order differential equations. To derive a machine or a
system model, which allows a convenient handling from the control point of view, a
series of simplifying assumptions must be met regarding the reproduction accuracy
of constructive and electrical details (refer to Chap. 6).
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The reference axis for the field angle is the axis of the phase winding u and
therefore the a axis of the stator-fixed coordinate system. The coordinate trans-
formations (vector rotations for voltage output and current measurement) are
assumed as well-known methods. The same applies to the inverter control by means
of space vector modulation. These transfer blocks are regarded as error-free with
respect to phase and amplitude, and will be considered negligible for the benefit of a
clear control structure representation.

In this book, the three-phase machines will be represented using their state space
models. In the classical, computer-based control structures the controller designs
almost always were based on continuous state models. This approach does not
suffice any more today. Therefore, in the first step the continuous state space models
of the 3-phase AC machines shall be worked out in this section, then the equivalent
discrete state models will be derived to support the design of the discrete
controllers.

The electrical quantities are represented as vectors with real components. As a
reminder the important indices to be used shall be listed here.

(a) Superscript:

f field synchronous (or field orientated, rotor flux/pole flux
orientated) quantities
s stator-fixed quantities
r rotor-fixed (or rotor orientated) quantities
(b) Subscript:
1st letter: s stator quantities
r rotor quantities
2nd letter: d, q field synchronous components
a, stator-fixed components
(c) Letters in bold: vectors, matrices

3.2.1 Continuous State Space Models of the IM
in Stator-Fixed and Field-Synchronous
Coordinate Systems

Starting-point for all derivations are the stator and rotor voltage equations in their
natural and easily comprehensible winding systems: The stator-fixed coordinate
system, and the rotor-fixed coordinate system.
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e Stator voltage in the stator winding system:

Vs

ul =R, i} + i

Ry: Stator resistance; s : Stator flux vector
® Rotor voltage in the short-circuited rotor winding system:

d r
w =R+ Y
dt

R.: Rotor resistance; \|1,’ : Rotor flux vector, 0: Zero vector
e Stator and rotor flux:

Wy = L+ Lyiy [ L= L+ Lo
\I’r - Lmis + Lrir Lr — Lm + Lar

L,,: Mutual inductance; L,, L,: Stator and rotor inductances

L,,, L, Leakage inductances on the side of the stator and rotor

(3.25)

(3.26)

(3.27)

Due to the mechanically symmetrical construction the inductances are equal in
all Cartesian coordinate systems. Therefore the superscripts are dropped in
Eq. (3.27). The mechanical equations also are part of the machine description.

12,
e Torque equation ":

3 ] 3 .
my = Ezp(\jls x ig) = —EZP(\P, X ir)

3 3
my = EZpIm{"’:iS} = —EZI,Im{\Psi;‘}

e Equation of motion:

+Jdco
my =m —_
M W z, dt

my, my: Motor and load torque, z,: Number of pole pair
J: Torque of inertia, w: Mechanical angular velocity

! x cross product of vectors.

’Im{ } Imaginary part of the term in brackets; * conjugated complex value.

(3.28)

(3.29)

(3.30)
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Now a coordinate system is introduced which rotates with angular frequency wy,
as shown in Sect. 1.1, and all quantities are transformed from the winding-coupled
systems into the rotating one:

1. Stator voltage equation

After applying the transformation rules the following results are obtained:

dy!  dyt ;
A

K k jok ss ok joi s k jo
uS:use’",lszlsd",\llxz\hse]k, dt d

Inserting the transformed quantities into Egs. (3.25), (3.31) of the stator voltage
in the new rotating system is obtained:

dt
dt

uf = R+ =2 o jolt (3.31)
However, the voltage equation is not to be represented in an arbitrary system, but

for special practically relevant cases: in the stator-fixed or in the field synchronous

(field-orientated) systems. These representations are obtained by setting:

* ; = wy : Here w;, is the angular velocity of the stator-side space vectors or the
rotating rotor flux vector.

dy!
u/ = R,i/ +%+ Joou ! (3.32)

This coordinate system is chosen to lock the real or the d-axis of the system to
the rotor flux (refer to Sect. 1.2). Thus the cross component of the rotor flux
becomes equal to zero. The axes of the system are denoted by dg coordinates.

e o, = 0: This means, that the system is fixed in space, whereat the real axis or
the a-axis of the coordinate system coincides with the axis of the phase
winding u.

s
u; = R 1f+% (3.33)
The axes of this stator-fixed coordinate system are denoted as af-coordinates.
For the case w; = w (mechanical angular velocity or respectively motor speed)
a rotor-orientated equation of the stator voltage can also be derived. However,
since there is hardly any advantage to be obtained from this representation we
will not follow it further.
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2. Rotor voltage equation

The transformation rules are applied in similar way to the stator voltage
equation.

oodyt Ayt y
i =ikl = Yo, ;':r = %e’“k + jo e

After inserting the transformed quantities into Eq. (3.26) the following result is
obtained:

vt

0=Ri
'+dt

+ jon V) (3.34)

Equation (3.34) can also be written for the field-orientated and stator-fixed
coordinate systems.

® oy = wy — w = o, : This coordinate system is rotating ahead of the rotor with
angular velocity w, and coincides with the field synchronous coordinate system.
Inserting w, into Eq. (3.34) yields:

0=R i +—=+jo, ¥/ (3.35)

A
dt
Equation (3.35) represents the rotor voltage in dg-coordinates.
® o, = —o : Assuming the rotor to rotate with the mechanical angular velocity w,
this coordinate system turns with the same angular velocity in the opposite
direction. Therefore, the coordinate system is fixed to the stator and can be
chosen to coincide with the af-coordinates mentioned above.

v,
dt

0=R i+ L —jo\ (3.36)

Equation (3.36) represents the rotor voltage equation in the stator-fixed, af-
coordinates.

So far the transformation of all voltage equations from their original winding
systems into the required dg- or af-coordinates is complete. With the Egs. (3.32),
(3.33), (3.35) and (3.36) the starting point to derive the continuous state space
models of the IM is reached.

3. Continuous state space model of the IM in the stator-fixed coordinate system
(af-coordinates)
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Equations (3.33) and (3.36) are combined into the following equation system:

AV

S — Rs'S S

uS lS + ddtv
w =R, + % —jou =0 (3.37)

V) = Lyi, + L, i}

Not all electrical quantities in the system (3.37) are actually of interest. These are
e.g. the not measurable rotor current i, or, depending on the viewpoint of the
observer, also the stator flux ;. Therefore these quantities shall be eliminated from
the equation system. From the two flux equations it follows:

s 1 N s s s Lm s 5

L= L_r (‘I’r - Lmls); \|’5 = les + L_r (\l’r - Lmls)

Now i} and \§ are substituted into the voltage Eq. (3.37) to yield:

il L, d{’
uw =Ril + oL+ v

Sdt L, dt . (3.38)
0_ _lﬂiY+ i_ 'w \l!S _|_d\|’r
o s\ Todt

With:e = 1 — L2 /(L, L,) Total leakage factor

Ty = Ly/Ry; T, = L, /R, Stator, rotor time constants
After separating the real and imaginary components from (3.38) we finally obtain:

disy 1 1—-0)\ . 1—0 / l-o 1
ar (aTS+ aT,)"”‘Jr o7, Vet Oy e
disﬁi 1 1—-0)\ . 1—0 / -0 1
ar (O'TsJr T, > 'sp o Wt T, lp’/eraLs b 339
dyl, 1. Lol _ oyl (3.39)
T oy —w
a1, T,V b
dyly, 1 1
rﬂi_. / /
dt _Trl5ﬁ+wlrbroc Trwrﬁ

With: )/ =) /L,, and W, =, /Lu: Wy = Vp/Lu
To get the complete model of the IM the af-components of flux and current have
to be inserted into the torque equation. The vector i) is extracted from the last
equation of the system (3.37) and substituted into Eq. (3.28).
3 12 . .
my =37 L—r’ (l//{“ isp — lﬁfﬂ zm) (3.40)

Equations (3.39), (3.40) can now be summarized to a complete continuous
model of the IM. Figure 3.3 illustrates the block structure of this model.
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Fig. 3.3 Model of the IM with squirrel-cage rotor in stator-fixed coordinate system

The a- and S-components of stator voltage, stator current and rotor flux may be
comprised in the following vectors with real components.

xT = |:ism is/)’v W{w W{ﬁ}; uiT = [usou us/f]
Superscript index T: Transposed vector

With the newly defined state vector x the continuous state space model of the IM
with squirrel-cage rotor is finally obtained from the Eq. (3.39).

dx®
—=A’x"+B’u] (3.41)
dt

A’, B’: System and input matrix

x": State vector in stator-fixed coordinate system

u: Input vector in stator-fixed coordinate system

Equations (3.42) show in detail the matrices A* and B* with the machine parameters.

B 1 +1*O’ 0 -0 lfaw
ol, of, oT, o 1 0
o TR el R T ol

A,\': G'r\. O‘Tr o O'Tr BS: 0 1
’ L
1 1 Ths

— 0 B —p
T, 7, 0
0 1 PR 0

T, T,
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dx’

Fig. 3.4 Continuous state model of the IM in stator-fixed af-coordinates

Equation (3.41) introduces a time-variant state system with the rotor speed w as
a measurable time-variant parameter in the system matrix A*. This continuous state
model of the IM (Fig. 3.4) forms the basis for the design of discrete controllers in
the stator-fixed coordinate system in which the components of the state vector x*
appear as sinusoidal quantities.

4. Continuous state space model of the IM in the field synchronous or field-
orientated coordinate system (dg-coordinates)

Equations (3.32), (3.35) are summarized in the following system.

\|’f
u/ =R, 1f +— +]wg\|1f
d
0 =Ri + ;I’ + jo, ! (3.43)

\]1{ = L‘Yl{ + Lml{
W =L,i +Li/

As in the case of the stator-fixed coordinate system the not measurable rotor
current as well as the stator flux are eliminated.

dl'sd - 1 l1—0 . . 1—0 /
dt - <UTX + GTr ) Isd + Wilsq + GTr l// lp S Usd
di 1 1—0)\. 1—0
dstq —Wylgg — (07} + oT, >l5q - wl/,/ Lx
dyly 1. 1 / (344)
dt = Frlé'd T, l//rd (U)s - w)lprq
— /
dr - ?rlﬂl - (wS - CU) l//m’ - fl//rq

Here are: )y = Vyu/Lui W)y =y [Lns 0 — 0 = o,

After extraction of i{ from Eq. (3.27), substituting into (3.28) or (3.29) and
setting V,,, to zero due to fixing of the rotor flux vector to the real axis of the
coordinate system, the Eq. (3.45) for the torque is arrived at:
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Fig. 3.5 Model of the IM with squirrel-cage rotor in field synchronous coordinate system
3 L2 3
My =527~ L '//rd lsq = Zp(l — o)L '//rd Lsq (3.45)

Equations (3.44) and (3.45) together form the complete, continuous model of the

IM like shown in Fig. 3.5. The equation system (3.44) can be condensed into the
following state space model:

A it B Ne
? =A'x + B u:v + Nx: [ON (346)
with the state vector X;; the input vector u/:
X7 = |:lsda lsqv l//rdv l//rq} fT = [usd7 usq]

the system matrix A/, the input matrix B” and the nonlinear coupling matrix N:

7L+l—a 0 1—0 l—crw
oT, oT, oT, o
0 _ 1 | ) _lfow |
A — ol, oT, o oT,
T . I
T, T, (3.47)
0 L w 71
7, 7
! 0
oL,
B/ =| 0 !
oL,
0 0
0 0
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Fig. 3.6 Continuous state
model of the IM in field = N K
synchronous dg-coordinates
dx’
Wy w i xf
=) B P ) J =
u, 1
Af

The state Eq. (3.46) with the matrices (3.47) obviously points to a bilinear
characteristic (refer to Sect. 3.1.1, Eq. (3.4)). Here the field synchronous compo-
nents iy, Uy, of the stator voltage and the angular velocity w, of the stator circuit
represent the input quantities. The mechanical angular velocity @ in the system
matrix A’ is regarded as a measurable variable system parameter. The only formal
difference between the two continuous state models (3.41) and (3.46) is the non-
linear term with the matrix N. The other matrices of both models are identical.
Figure 3.6 illustrates the derived state model.

So far the basic prerequisites for the further work are completed. However, for
the controller design the continuous models are not particularly suitable. The
microcomputer works discretely and processes only the motor quantities measured
at discrete instants. A discrete model of the motor corresponding to this reality is
therefore necessary for the controller design. The development of the discrete
models is subject of the following section. It is useful to derive the models in the
field synchronous as well as in the stator-fixed coordinate system because in
practice control methods are developed in both coordinate systems.

3.2.2 Discrete State Space Models of the IM

Depending on the choice of the control coordinate system, the starting point for the
derivation of a discrete state model for the IM is given by one of the two continuous
state models (3.41) or (3.46).

In principle the discretization of the continuous model is relatively simple for
linear and time-invariant systems. This presumption is fulfilled to a large degree if
the IM model in the stator-fixed coordinate system is used and one assumes that the
electrical transient processes settle essentially faster than the mechanical ones. Thus
the system matrix A° or the stator-fixed system (3.41) can be considered as virtually
time-invariant within one sampling period of the current control. The mechanical
angular velocity o of the rotor can be regarded as a slowly variable parameter and is
measured by a resolver or an incremental encoder.

This condition however is no longer fulfilled if the system is processed in the
field synchronous coordinate system. The system model (3.46) indicates a bilinear
characteristic additionally, the stator frequency , consisting of the mechanical
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speed @ and the slip frequency w, leads to a time-variant system, further compli-
cating the derivation of the required model. But under the prerequisite that the input
quantities uy Uy, and w; are constant within one sampling period T the discreti-
zation of this bilinear and time-variant system becomes feasible. The result is
a time-variant however linear system which allows the application of a simi-
lar design methodology as for linear systems, like in stator-fixed coordinates. The
demanded prerequisite is largely fulfilled for modern drive systems with sampling
periods below 500 ps. The pulsed stator voltage is processed as mean average over
one period, and therefore also regarded constant in T.

1. Discrete state model in the stator-fixed coordinate system

After integrating the Eq. (3.41) (refer to Egs. (3.10) to (3.14)) the following
equivalent discrete state model of the IM is obtained.

x'(k+ 1) = ®°x°(k) + H'ul(k) (3.48)
(k+1)T
SR T e T
o =M =) (A —‘ / erdiB =) (A" B (349)
v=0 P v=1

The input vector uj(k) is given by the microcontroller and therefore has step-
shaped components. The transition matrix ®° and the input matrix H® depend on the
sampling period 7 and the mechanical angular velocity w. The two matrices can be
derived from the matrix exponential function eA”, which may be developed into a
series expansion like in (3.49). But for the practical application a further simplifi-
cation would be very helpful and wished for. Here the consideration may help that
the discrete model to be developed is not intended for mathematical simulation of
the IM, but to serve the design of the discrete controller. For this purpose the series
expansion may be truncated at an early stage if the inaccuracy hereby produced is
compensated by appropriate control means, e.g. by an implicit integral part in
the control algorithms.

The practical experience shows that an approximation of first order for ®* and
H°® suffices completely for small sampling times (under 500 us). An approximation
of higher order would increase the needed computation power unnecessarily.
A special issue is the investigation of the stability of such discrete systems. It shall
only be mentioned at this place that the stability very strongly depends on the
sampling time 7. The smaller the sampling time 7, the larger becomes the stability
area and thus also the utilizable speed range. Therefore a compromise must be
found between decreasing the sampling time and increasing the stability area as
well as the speed range, and the acceptable computation power or the computing
time. The following formulae (3.50) show the approximation of first order for
transition and input matrix.
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Fig. 3.7 Block structure of
the state model of the IM in
stator-fixed coordinates
represented with partial
matrices

The representation of the discrete state models with partial matrices (Fig. 3.7)
gives a good insight into the inner physical structure of the IM.

175 i+1—a 0 - T l—awT
o\T; T, o T, o
{1 1-o l1—0o -0 T
0 -2 —+— 2| - =Zer =2— s | s
O — UTS+Tr] Uw gTr:q)ll P!
D5, | D
I 0 L T 21 | P22
T, T,
0 N wT ],i
T, T,
T
oL
HS
H' =| 0 L:%
oL g
0 0
0 0 (3.50)
Equation (3.48) can be written in detail as follows:
{ii(k+1)=¢’i1i§(k)+¢§2\|li/(k)+H§“§(k) (3.51)
W (k1) = @3, (K) + DL (1)

With the separation of the complete model (3.48) into two submodels (3.51) a
favourable starting point arises for the practical controller design. The first equation
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Fig. 3.8 Structure of the (a) o(}
current process model (a) and v, ( )
the i-w flux model (b) of the b
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of (3.51) represents the current process model of the IM. The system has two input

vectors: The stator voltage u}(k) and the slowly variable rotor flux \|r;/ (k) (Fig. 3.8a).

In the Chap. 5 it will be worked out, that the slowly variable rotor flux can be
understood as a disturbance variable and therefore can be compensated separately
by a disturbance feed-forward term. The rotor flux is not measurable, it must be
estimated. For this purpose the second equation of (3.51) may be used and is for this
reason designated as i-w flux model (Fig. 3.8b). From the measured currents and
speed the rotor flux can be calculated using this model.

The special issue of the flux estimation has been treated in some detail in earlier
works. Besides this simple flux model, different flux observers have been proposed
for flux estimation (refer to Sect. 4.4). The rotor flux estimates are used:

e to calculate the slip frequency w, or the field angle 9, for the field orientation,
and
e as actual flux values for the flux controller.

The structures in Fig. 3.8 have been derived by splitting-up the structure in
Fig. 3.7 with H}, = 0.

2. Discrete state model in the field synchronous coordinate system

The derivation of a discrete state model or the discretization of the continuous
bilinear state model (3.46) is carried out under the prerequisite that the input
components i, iy, and w, are constant within a sampling period T. It was already
indicated in the introduction of this section that this demand can be looked-at as
largely fulfilled for modern three-phase AC drives with PWM inverters due to their
high sampling and pulse frequencies.
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After iterative integration of the Eq. (3.46) the following equivalent discrete state
model of the IM is obtained.

x/ (k4 1) = ® x/ (k) + H v/ (k) (3.52)
(Df_e[Af+Na)A(k)]T _i [Af+NCL) (k)]vT_v
- = : V!
(k+1)T (3.53)
AN, (k)] © N : T
0 - / N NOW] e g ps Z A7 +Noyb)] B
kT "=

The discrete model (3.52) is a time-variant, however linear model, unlike the
continuous one. The elements of the transition matrix @/ (k) and the input matrix
H"(k) are calculated on-line. Like for the discrete state model in the stator-fixed

system, usable formulae are obtained by first-order approximation of the series
expansions of the exponential functions in (3.53).

1—2 1+170 o, T 1701 1 awT
o\7,” 1, o1, o
o T ]_ZL -0 _lfUUJT 17(71 o | o
o = o |7 T, o o T, |_|20 )
o), | ©f,
L 0 =L (g —wyr] TR
T, T,
T T
0 — —(wy—w)T  1-=
I, ‘ T,
T
0
oL
: H/
w = o L ||
ol |H]
0 0
0 0 (3.54)

After rewriting the discrete state model (3.52) in the form with partial matrices:

{ i/ (k + 1) = ©,i/ (k) + © ¥ (k) + H{u/ (k)

. _ (3.55)
W (k+1) = @il (k) + LW (k)

and considering, that Hf is a zero matrix, the current process model of the IM and
the i-w flux model for the field synchronous coordinate system are obtained like in
Eq. (3.55) and in Fig. 3.10. The formal similarity of the two discrete state models of
the IM, which is recognizable from the equations and from the pictures, can surely
be noticed in the stator-fixed as well as in the field synchronous coordinate system.
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Fig. 3.9 Block structure of
the state model of the IM in
field synchronous coordinates
represented with partial
matrices

Fig. 3.10 Structure of the
current process model (a) and
of the i-» flux model (b) of
the IM in field synchronous
coordinates
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| discontinued,
| because H,=0 |

This formal similarity permits a generalization of both cases and their later sum-
marizing into a common controller design (Fig. 3.9).

A decisive difference between the two models can be found in the appearance of
w, in the transition matrix @’, expressing the coupling between the two current
components i,; and ig,. This coupling, as already mentioned in Chap. 1, cannot be
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removed effectively, e.g. by using a decoupling network like indicated in the
classical control structure in Fig. 1.4. This becomes particularly evident if the
system is operated constantly with strong field weakening.

The discrete state model (3.52) of the IM in the dg-coordinate system was
derived by discretization of the continuous model (3.46), which in turn was
obtained by transformation from the original af-coordinate system into the dg-
coordinate system, i.e. the transformation took place before the discretization.

Another sequence also may be chosen alternatively: Discretization before
transformation; i.e. the discrete dg-model results from the coordinate transforma-
tion of the discrete of-model (3.48) (refer to Sects. 3.1.2 and 12.2). This way
complex eigenvalues of the system matrix or instabilities caused by discretization
can be avoided. In the result a discrete state model is obtained, which provides a
larger stable working range for the controller. The parameters of the transition
matrix @ will contain sin/cos functions of w,T (e.g. w,T — sin(w,T)). Especially for
high-speed drives this procedure may yield significant advantages.

3.3 Permanent Magnet Excited Synchronous
Machine (PMSM)

Unlike the IM the PMSM has a permanent and constant rotor flux (also pole flux)
with a certain preferred axis. With a simultaneous use of a position sensor (resolver,
incremental encoder with zero pulse) the pole position can always be clearly
identified, and field orientation (also pole flux orientation) is always ensured. For
this reason the system design in the stator-fixed coordinate system will be abstained
from, and the field synchronous coordinate system will be immediately chosen for
the treatment of the machine.

3.3.1 Continuous State Space Model of the PMSM
in the Field Synchronous Coordinate System

Equation (3.25) is the general stator voltage equation of three-phase AC machines,
and valid also for the PMSM. A coordinate system rotating with w or w, is con-
ceivable whose axes are the d and ¢ axis. For the PMSM w and w, are identical
which means, that the coordinate system rotates not only field synchronously, but is
also fixed to the rotor. If the coordinate system is chosen to match the real d-axis
with the preferred axis of the pole flux, this coordinate system represents the desired
field or pole flux orientation. If the Eq. (3.25) of the PMSM (in a similar way as in
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the case of the IM) is transformed from the three winding system of the stator into
the field synchronous system, we obtain:
\|,f

u/ = Ril +—*+jo,W! (3.56)

For the flux the following equation holds:
f— 7 if f
\lJS - LS ls + “l!p (357>

Here \|1£ is the vector of the pole flux. Because the real axis of the coordinate
system is directly orientated to the preferred axis of the pole flux, the quadrature

component of \|1[f; is zero. Therefore the pole flux vector has only the real direct
component \,,. From that follows:

‘JII{ = Vpa +Wpg = ¥ With Y, =0 (3.58)

In addition it has to be taken into account that due to the construction dependent
pole gaps on the rotor surface, the stator inductance assumes different values L,
L, in the real and quadrature axis, respectively. For PMSM with cylindrical (non-
salient) rotor both inductances are nearly identical and therefore usually equalized
in classical control structures. The difference is not pronounced as in the case of
salient-pole machines and amounts to approx. 3—-12 %. To obtain an effective
decoupling between the current components iy, and iy, this difference however
should be and will be taken into account in the following. Application to the stator
flux equations thus yields:

wsd = Lygisq + lﬁp
{ Wy = Lugisg (3.39)
Substituting Egs. (3.57), (3.59) into the Eq. (3.56) then yields:
Usq = Ryisa + Lya dgll} 05 Lggisq
. dig, (360)
Usqg = Rslsq + qu at L+ wyLsgisq + wvlp

From the general torque Eq. (3.28) or (3.29) of three-phase AC machines we
obtain:

3 . :
My = EZP (lpsd Isqg — lpsq lSd) (361)
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After inserting (3.59) into (3.61) the following torque equation results:
3 C
my = EZP {lﬂplw + isalsg (Lsd - L‘Yq)} (3.62)

The torque of the PMSM consists of two parts: the main and the reaction torque.
With pole flux orientated control of the PMSM the stator current usually will be
controlled to obtain a right angle between stator current and pole flux (i;, = 0) and
therefore not contribute to magnetization, but only to torque production. Therefore
a similar equation as (3.45) for the IM can be obtained:

3 .
my =32, v, s (3.63)

Now Eg. (3.60) will be rewritten as follows:

disd 1 i+ L‘vq i+ 1
=——iy — 1 —Ugg
dt Tsd : sLsd * Lsd * (3 64)
disq——a) ﬂi —Li —|—Lu —w& .
dt - s qu sd qu sq qu sq s qu

The PMSM is completely described by Eqs. (3.62) and (3.64) in field syn-
chronous coordinates (Fig. 3.11). Equations (3.62), (3.64) are summarized to the
following state space model.

di/
_ +f Ve if
7;_ASM1S + By u] + Ny if o + Sy, o (3.65)
lm“.
L Uy L T»d I.m‘___! - 3 - 2, W
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Fig. 3.11 Model of the PMSM in field synchronous or pole flux orientated coordinate system
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Fig. 3.12 Continuous state
modelof the PMSM in field »| N A
synchronous coordinates SM N
di |
sf

far il . s dt i,
=) B, -[ =)
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f Ty pf _ | L _ L, _
Agy [ 01 _L:|’BSM|:0] s 7NsM|:_ﬂ 01:|’S|:_L:| (3.66)
Tq Ly, Ly Ly

f .
Ay, System matrix

7 .
B{,, Input matrix
Ny Nonlinear coupling matrix
S Disturbance vector

T,y = Lyy/R;, Time constant of d axis
Ty = Ly / R, Time constant of g axis

Figure 3.12 illustrates the model (3.65) of the PMSM.

The bilinear characteristic of the model is recognizable like in the case of the IM
by the matrix Ng,,. The disturbance, acting on the system through the pole flux v,
does not depend on the stator current but is constant unlike for the IM. The constant
excitation shows some advantages for the further treatment:

e The system model is a model of 2nd order (is4, isy) — the IM has a model of 4th
order (isy, isgs Wras Wrg OF sgs gy Wras Wrp) — and immediately yields the current
control process model. For the IM the system of 4th order must be split into
partial models to obtain the current process model and the flux model.

e The constant flux y, may be regarded as a system parameter.

e The constant disturbance y, is documented by the machine manufacturer and
can, similarly as for the IM, later be separately compensated by a disturbance
feed-forward term.

3.3.2 Discrete State Space Model of the PMSM

To show clearly that the pole flux y, represents only a constant disturbance
variable, y, was introduced into the system by a separate term through the
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disturbance vector in Eq. (3.65) and in Fig. 3.12. However, a discretization of the
model is hardly possible in this form. To advance the situation, y,, will be viewed as
a constant system parameter. Equation (3.65) must be rewritten as follows:

di! - ., "

= ALy il 4+ B, v+ Ny il oo, (3.67)
with:

v = [usda Usq, ws]; Bg;\i[ = [BgMy Slpp:| (368)

With (3.67) the formal, complete identity with (3.46) has been achieved,
allowing to treat the PMSM in the same way as the IM to derive its discrete state
space description.

Also in this case the state space description (3.67) is characterized by a bilinear
characteristic because of the multiplicative combination between the state vector iy
and the element «, of the input vector v/. Under the same assumption regarding the
input quantities as in the case of the IM, and after an iterative integration of (3.67)
the following equivalent, discrete state model of the permanent magnet excited
synchronous machine is obtained.

il (k+ 1) = @, i/ (k) + HL, v/ (k) (3.69)
There are:
@/, = elAu N T i [AgM + N0, (k)] %
(k+1)T - (3.70)
Hl, = / e[ N W]s gl i [A{;M + NSMa)s(k)} ! % B,
ir =1 ’

The approximation of first order for the transition matrix (I)§M and the input
matrix HJ;, arise from the series expansion (3.70):

o= LA VTE| w5 ) ] e
h sq sq

The discrete state model (3.69) simultaneously represents the expected current
control system of the PMSM. The input matrix Hg;,, can be split up as follows:

L 0 0
B, = [H{,,, h| with 0f,, = l%ﬂ LL]; h= {Czr} (3.72)
sq sq
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model and current process

Fig. 3.13 Discrete state 1-1_\
model of the PMSM
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Figure 3.13 shows the discrete state model or the current process model of the

PMSM arrived at so far. The splitting of Hg;f,, in Eq. (3.72) into two partial matrices
is necessary, because:

1. Identical structures of the current process models are obtained in both cases.
This commonality later allows the summarized treatment of the current control
problem for both machine types and spares a repeated representation of
similar designs.

2. It is necessary to later invert the input matrix for the compensation of the

disturbance quantity y,. This would not be possible if Hg;, keeps the form of a
3 x 2 matrix.

With that the final equation of the discrete state model or the current process
model of the PMSM is obtained as:

i (k+ 1) = ®f, i/ (k) + Hy, u/ (k) + hy, (3.73)

3.4 Doubly-Fed Induction Machine (DFIM)

3.4.1 Continuous State Space Model of the DFIM in the Grid
Synchronous Coordinate System

Starting-point for the derivation of the state space model of the DFIM are the
voltage equations for stator and rotor winding respectively:

e Stator voltage in the stator winding system:

Vg

u; = Rii; + r

(3.74)
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® Rotor voltage in the rotor winding system:

s,
ro_ Rr-r r 3.75
u, 1, + ar ( )
e Stator and rotor flux:
VU, = Lig + Ly iy . Ly =L, + Lg
{ U= Lo+ Li, ™\ L, =Ly + Ly, (3.76)

All symbols in the formulae (3.74), (3.75) and (3.76) have the same meaning as
in the Sect. 3.2.1.

After transforming Eqgs. (3.74) and (3.75) to a reference frame rotating with the
stator frequency oy the following equation is obtained:

v,

u; = Rsis + +]ws‘llg
s (3.77)
u, = R, + v, + jo,
r rEr dt r r
Eliminating of stator current iy and rotor flux y, from Eq. (3.77) gives:
di, 1 1+1—0'_ . .+1—0' 1+. ‘ll/
V= ——\ = 1, — Wy T —— | &+
i~ o\T, T, 7O o \1, 7)Y
oW — ooy (3.78)
ayl 1, 1 ;1
a T, (iﬂw"‘)% LY

with: /= /L,
After separating both equations into real and imaginary components, we obtain
the complete electrical equation system of the DFIM.

dig _ 1(1 1-0). g+ (g, — o]
dt :_E(f—'—T)lrd—i_wrqu—i_ . (st.vd_wlpsq

1, 1l
+ oL Yrd = Gf, Usd

dirg . 1/1 1-o0)\. l1-0/1 / /
dt = —Wrlyq p (Tr + Ts >qu + e (Ts lpxq + w‘//sd

o 3.79
+ULL,“rq - };Tm”sq (3.79)
dy 1. 1 /41

d = Fslrd - Fxl//ﬂi + wslﬂsq + Eusd
dyl, 1

_ 1, /1 1
AR A TR
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The main control objectives stated above is always the decoupled control of active
and reactive current components. This suggests to choose the stator voltage—and
respectively grid voltage—orientated reference frame for the further control design.

The realization of the grid voltage orientation requires the accurate and robust
acquisition of the phase angle of the grid voltage fundamental wave, considering
strong distortions due to converter mains pollution or background grid harmonics.
Usually this is accomplished by means of a phase locked loop (PLL).

Summarizing the equation system (3.79) yields the following state space model
for the DFIM in the grid voltage orientated reference frame:

d
7): — Ax + Byu, + Bu, (3.80)

with:

e State vector X! = {i,d, Irgs lllgd» lﬁé,]

e Stator voltage vector u! = [uy, us,| as input vector on stator side

e Rotor voltage vector urT = [u,d, un,] as input vector on rotor side

The system matrix A, the rotor input matrix B, and the stator input matrix By
may be written as follows:

Ijf1 1l-0o l-0o -0
——|=+ w, -_—Ww
ol|T, T, oT, o

{1 1-0||l-0o l—0o
—W, — =+ w
A o\, " T )| o o,
1 1
— 0 i W
I I
1 1
0 — —W, i
T, T,
1—
_7a 0
oL R
0 _1;0' ULr |
B, = om ; B, = 0 —
I oL,
L, 0 0
1 0 0
0 —
L, (3.81)
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Fig. 3.14 Continuous state (a)
space model of the DFIM -
with stator flux and rotor -
current as state variables:
a common representation; u,
b split in partial matrices —
(b)
u?’
u,

The state space model of the DFIM is shown in Fig. 3.14a. The matrices of
(3.81) may be split into partial matrices as follows, refer also to Fig. 3.14b.

A1 1 A1 2 le Brl
A21 A22

Bsz 0
The state space model in partial matrices according to Fig. 3.14b shows that the
rotor voltage u, does not influence the stator flux \, directly, but only in an indirect
way through the rotor current i,. The stator flux is determined mainly by the stator
voltage. The influence of uy to i, is like a constant disturbance, and therefore may be
compensated by simple feed-forward compensation.

s s

A= . B, = (3.82)

3.4.2 Discrete State Model of the DFIM

Like in Sects. 3.2.2 and 3.3.2 the time discrete state model of the DFIM may be
obtained by iterative integration of (3.80), yielding the following matrix equation
system as base model for the controller design:

x(k + 1) = ®Ox(k) + Hyu, (k) + Hu, (k) (3.83)
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Transition matrix @, stator input matrix H, and rotor input matrix H, are given by:

1,Z L+1770 w, T 1-oT 71770-(4)77
ol\T,. T, o T, o
—w,T PR R e A A A
H— ol\T, T, o o T, |_|Z1 12
21
r 0 l—i w T
I I
0 r —w,T l—l
T ‘ T
-0 T
o
oc L, T 0
0 -0 T oL,
- o Lol _Halg 1o T |_Ha) @8y
T 0 H,, oL, 0
L, 0 0
T 0 0
0 =
Lm

The discrete state space model is shown in partial matrix form in Fig. 3.15a.
Figure 3.15b shows the rotor current system, being the starting-point for the rotor
current controller design. Due to the stiff mains system stator voltage u, and stator
flux s, can be recognized as almost constant disturbances.

Figure 3.15a was produced by splitting of the Eq. (3.83) as follows:

{ir(k —+ 1) = (I)llir(k) + q)lgllli(k) -+ Hslll_y(k) + Hrlll,-(k)

V. (k + 1) = @y, (k) + ®nWW (k) + Hou, (k) (3.85)

3.5 Generalized Current Process Model for the Two
Machine Types IM and PMSM

In evaluation of the Eqgs. (3.51), (3.55) and (3.73) as well as the Figs. 3.8, 3.10 and
3.13 the formal identity of the two machine types IM and PMSM regarding system
structure and system order becomes clearly visible. Therefore it can be regarded
theoretically proven, that with respect to hardware and software an identical con-
cept for the stator current injection may be applied in the stator-fixed as well as in
the field synchronous coordinate system. In this section a uniform description for all
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Fig. 3.15 Discrete state (a -
model of the DFIM: a in grid ) i(k+1) (I)“ [
voltage orientated reference u (k) ™ i (k)
frame; b rotor current process — H. o= ;'] ;
model rl
H, D, |
D, |
H, 71 g 0;(K)
r/,
¥(kF1) D), e
(b) u_;(k)l 11b_\-'(k)
H, || ®.
u, (k) i(k)

| H,, = 7'1

i(ki1)

system elements will be derived to support a parallel treatment of both current
process models under investigation. The following symbols are defined:

e ®: Transition matrices @y, or (I){ , or (D£M

e H: Input matrices Hj or H{ or H§M ‘

¢ h: Disturbance matrices or vector @}, or (I)Jl‘2 or h, which represent the inter-
vention of the flux dependent disturbance quantity.

h is a 2 x 2 matrix in the case of the IM and only a simple vector in the case of
the PMSM. The input vector ug and the state vector i will be written without the
subscripts “s” (for stator-fixed) or “f’ (for field synchronous coordinate system).
This index can be attached later in the concrete choice of the coordinate system to
be used. For the rotor and pole flux the symbol v is used instead of ;. or \|lf or .
With these arrangements the following common equation results for the current
process models:

i,(k + 1) = ®iy(k) + Huy(k) + h (k) (3.86)
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and in the z domain:
ziy(z) = ®is(z) + Huy(z) + hi(z) (3.87)
with the characteristic equation:
det [zI — ®] = 0 with I = unity matrix (3.88)

Figure 3.16 shows the current process models for the following three cases in the
overview:

1. IM in the stator-fixed,
2. IM in the field synchronous and
3. PMSM in the field synchronous coordinate system.

Equation (3.87) as well as the characteristic Eq. (3.88) are given in the z domain
which is advisable for the treatment of discrete systems.

Here the similarity between the model in the Fig. 3.16 and the current process
model of the DFIM in Eq. (3.85), shown in the Fig. 3.15b, can also be easily
recognized. Because the three models represent linear and time-variant processes,
linear current controllers using:

e output feedback or
e state feedback

can be designed. The method to derive these three linear and time-variant pro-
cess models can be called the linearization within the sampling period. This is
possible because the models have been derived under the conditions that:

o the stator-side angular velocity w; in the case of the IM or PMSM, and
e the rotor-side angular velocity w, in the case of the DFIM are constant within
one sampling period.

Fig. 3.16 General current IIJ( k)
process model of IM and
PMSM =
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3.6 Nonlinear Properties of the Machine Models
and the Way to Nonlinear Controllers

Electrical 3-phase AC machines exhibit different nonlinearities because of the
mechanical construction of their magnetic paths with slots and air-gaps. But only
two types of nonlinearities are relevant for the controller design:

e The nonlinear structure of the process models: This nonlinearity is caused by
products between states variables like current components and input variables
w; (in cases IM and PMSM), w, (in the case DFIM). This structural nonlinearity
can only be mastered completely by nonlinear controllers designed — for
example — using methods like exact linearization, flatness-based or backstepping
based concepts.

e The nonlinear parameters: Some parameters like the mutual inductance depends
on the rotor flux which is a state variable. The problem with parametric non-
linearities can be solved by identification and adaptation methods.

Because the backstepping based design still is not a mature method for using in
the practice, the Sect. 3.6 only deals with the idea of the exact linearization and of
the flatness-based control designs which can be used to master the structural
nonlinearities of the process models of the IM, DFIM and PMSM, and to design
nonlinear controllers for improving the control performance in difficult operation
situations.

3.6.1 Idea of the Exact Linearization Using State Coordinate
Transformation

For the understanding, at first the idea of the relative difference order of a linear
system without dead time—the SISO process—shall be explained. If the linear
SISO process is represented by the following transfer function:

bo 4+ b e L b.sP
G(s):&: U] Ul e ps; p<q (3.89)
u(s) ao+ais+---+ags?

then the pole surplus r with:
r=q—p>1 (3.90)

can be called the relative difference order of the process model described by
Eq. (3.89). If the linear process model is a MISO system with m inputs and only one
output, i.e. a system with m transfer functions in a form similar to Eq. (3.89), then
the integer number r:
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r=minr; with 1<i<m (3.91)
1

means the relative difference order of the MISO system, in which 7; is the pole
surplus of the ith transfer function. If the definition according to the formula (3.91)
is applied to a linear process with m inputs and m outputs, the following vector r of
the relative difference orders is obtained:

r:[r17r27~--;rm] (392)

with m natural numbers r; (j = 1, 2, ..., m), and r; the relative difference order of
the jth output. Because the process described by the model (3.89) can be repre-
sented in the state space, the relative difference order r and respectively the vec-
tor r of relative difference orders can also be calculated using state space models.

Some classes of nonlinear systems with m inputs and m outputs, the so called
nonlinear MIMO systems, can be described by the following equations:

& — f(x) + H(x)u
e 553
with:
X1 Uy g1(x)
X = N 7u = N 7g(X) = .
Xp Up, gm(x) (3'94)
H(x) = (hy(x), hy(x), ... ,h,(x))

Similarly to the linear systems, for the system in the Eq. (3.93) a vector of
relative difference orders like (3.92) can also be derived.

The basic idea of the exact linearization can be summarized as follows: If the
nonlinear MIMO system in the form (3.93) contains a vector of relative difference
orders like Eq. (3.92), which fulfills the following condition:

r:rl+r2+...+rm:n (395)

then the system (3.93) can be transformed using the coordinate transformation:

mj(x) g1(x)
u w0 || g e

o= |=mw=| ¢ =] (3.96)
Zn m/'(X) gm(x)
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into the following linear MIMO system:

dz _
{ &= Az+Bw (3.97)

y=Cz
The original input u is then controlled by the coordinate transformation law:
u=ax)+L'(x)w (3.98)

The vector a(x) and the matrix Lfl(x) in (3.98) look as follows:

Ly 'gi(x) .. Ly, L gi(x) L g1(x)
L(x) = : : ;a(x) = —L7'(x) :
L L 'gm(x) ... Ly, L 'gu(x) L gm(x)
(3.99)

Formula (3.99) also requires the ability, with respect to the coordinate trans-
formation or to the exact linearization, to invert the matrix L(x). In Egs. (3.96) and
(3.99), the term

Lig(x) = o f(x) (3.100)

notifies the Lie derivation of the function g(x) along the trajectory f(x). The
details of the complicated general expressions for the matrices A, B and C are
abandoned here. Figure 3.17 illustrates the explained facts so far.

Linear Substitute System: z= Az+Bw;y=Cz

Coordinate Transformation Non-linear System

Fig. 3.17 Transformation of a nonlinear system into a linear substitute system
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Here it must be highlighted that the coordinate transformation requires exact

knowledge of the complete state vector x, which can not always be assumed for
3-phase AC machines.

3.6.1.1 Nonlinearities of the IM Model
The nonlinearity of the IM is clearly represented by the Eq. (3.46). The two first

equations of the system (3.44), which represent the current process model, will be
separated and extended by the field angle 9.

di 1 1—-0)\ . . 1—0 1
4 = _< +> lsd+wslsq+7l//,/~d+7usd

dt oT, oT, oT, oL
digg 1 l—0o -0 1

i A R A i — 3.101
dt Wylsq (O'TS + oT, > Lsq pu (Ulﬁrd + oL, Usq ( )
dis
a7

For better understanding temporary parameters and variables are introduced:

Parameters: a = 1/oLs; b=1/0Ty; c = (1 —0)/cT,; d=b+c
State variables: x; = iyy; X2 = i3 X3 = Uy

Input variables: u; = us; Uy = Ugy; U3 = w;

Output variables: y| = isy; Y2 = isq; ¥3 = Vs

Now the current process model looks as follows:

d.
% = —dx| +xu3; +au + Clﬁfd
d
%: —X1U3 —dxg—i—ausq—cTrwlMd (3.102)
d)C3
B
dt :
or:
_X:1 1 —dx; + ctﬁfd a 0 X2
X | = | —dx —CT,CUI//{d + |0 jur+ [a|ua+ | —x1 |u3
Lol |0 0 0 ! (3.103)
Y1 1 0 0 X1
) = 01 0 X2
_y3_ _0 0 1 X3

The system (3.103) can now be transferred to the general form with the
Eq. (3.93).
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{ x = f(x) + hyuy + houy + hsus (3.104)
y =g(x)
with:
—dx; + C‘ljfd a 0 X2
Fx) = | —dxy —cT oy, M= |0 sh = ja|hs = —x (3.105)
0 0 0 '

yi = g1(X) = x15y2 = g2(X) = x5 y3 = g3(X) = x3

Equation (3.104) represents the new process model and will be used later to
design the nonlinear current control loop using exact linearization.

3.6.1.2 Nonlinearities of the DFIM Model

Similar to the case IM, the nonlinearity of the DFIM is represented by the following
equation separated from the Eq. (3.79) and extended by the rotor angle 9,.

di,g 1/1 1-o0)\. . l1—-0/1
= <Tr + T5) Ird + Wrlrg + (Ts Wy — wl//@)

dt o o
1 l—0
+_urd_ Usd
r 0Ly
e e T
1 1—0
+a_L,u’q_Tmusq
di,
a

After substituting the newly defined temporary parameters:

1 l—0 l1—0 1 1—0 l—0
a= + ib = jc=—3d= je=
oT, oT; o oL, oL, oTy

in the partial model of the rotor current in the Eq. (3.106), the following model is
obtained:

di,
;td = —aiyq + Wlpy + elﬁ{d - bwlﬁé, + Curg — dugg
di,
% = —Wyiyg — ing + by + e, + cityg + ditgg (3.107)
@, _
d
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New vectors will now be defined as follows:

e Vector of state variables:

T

X' =[x1 X2 X3]; X1 = by X2 = lpg; X3 =0,

e Vector of input variables:

uv=(u w w]; w = elp/ — ba)gbé/q + Cltyg — dugg
= ba)x/({d + elﬁfq + Cyg +dug; Uz = o,
e Vector of output variables:
Y= y2 y3li i =i y2 =g y3 = 0,
Finally, the following nonlinear DFIM model in the detailed:
i X —ax 1 0 X
x-z = —ax2 Olur+ | 1| up+ | —x1 |u3
X | | 0 0 1
_y1 i 1 0 O_ X1
i) =10 1 O X2
L V3 | 0 0 1 1 LX3
or in the generalized form is obtained:
{ X = f(X) + h] (X)L{l + h2(X)Li2 + h3(x)u3
y =g(x)
with:
—ax; 1 0 X2
f(X) = —axy ;hl (X) = 0 ;hz(X) = 1 7hg(X) = —X1
0 0 0

g1(x) = x1;82(X) = x2;83(X) = x3

(3.108)

(3.109)

(3.110)

Equation (3.108) and respectively (3.109) are starting points for the later design

of the nonlinear controller for DFIM systems.
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3.6.1.3 Nonlinearities of the PMSM Model

The model (3.64) of the PMSM will now be extended by the field angle 4, similarly to
the IM in Eq. (3.101).

diy 1 L,

g =54 ; _

dt B Tsd fsd + @s Lsd lsq * LKd i lﬁ
digg Ly . 1 . 1 »
— = —w,—iy — — — U, — W, —— 3.111
d L R e A G.111)
dv,

=w
dt 3

With newly introduced variables and temporary parameters:

state variables: x| = igg; X2 = iyq; X3 = Vs

input variables: u; = uy; Uy = uy; Uz = wy

output variables: y; = iy; Y2 = isq; ¥3 = Us

e temporary parameters: @ = 1/Ly; b= 1/Ly; ¢ =1/Ty; a=1/Ty;

Equation (3.111) can be transferred to:

a
—X
le —cXq a 0 b 2
x| = —doy | + |0 |uy+ | b|uy + —éxl—blﬁp us
X
’ 0 0 0 | (3.112)
V1 1 00 X1
2 = 01 0 X2
V3 0 0 1 X

or to the following generalized form:

{)‘(f(x) +hy (X + ho(X)uz + b (x)us (3.113)
y = g(x) |
with:
a
—cxy a 0 O
f— — . = = b
() = | ~de [0 = | 0 iba(0) = | b iba (0 = | Ty —py | 544
0 0 0

Y1 =g1(X) = x1;y2 = g2(X) = x2;¥3 = g3(X) = x3

Equations (3.113) and (3.114) can be used to design nonlinear controllers for
systems using 3-phase AC machines of type PMSM.
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3.6.2 Flatness and the Idea of the Flatness-Based
Control Design

The concept of flat systems was introduced by Fliess, Lévine, Martin and Rouchon

in the years 1992-1999. The application of the idea of flat systems has been

presented very detailed in (Lévine 2009), and can be re-iterated shortly as follows.
Given is the nonlinear system:

dx
i 3.115
= xu) (3.115)
with dimx =n, dimu =m<n and rank(9f/0u) = m. The system (3.115) is
differentially flat, or shortly flat, if the two following conditions are fulfilled:

e Condition 1: There exist an output vector y and finite integers [ and r such that:

Y1

du du
= || =F(xus 20 3.116
= | [ =r(xe ) (.16
ylﬂ

e Condition 2: Both input vector u and state vector X can be expressed in function
of y and its successive derivatives in finite number:

dy dry dy d(r+1)y
=P — .., — |su= — ., 3.117
X (y7 dt ) ) dtr)’u Q<y7 dl ) 7dt(r+1> ( )

with dP/dt = f(P, Q). The output vector y is called a flat output. The 2nd equation
in (3.117) is also called the “inverse” process model of the system (3.115) with the
output (3.116). According to (3.116) and (3.117) it can be concluded that to every
output trajectory ¢ — y(#) being enough differentiable there corresponds a state and
input trajectory:

(o2 5)

x()) Yt dr

t— <u(t)) = dy d(”l)y (3.118)
o yvaw'wm

that identically satisfies the system equations.
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Inverse Process = Process’ Process
* dx :
y ' dt"”\r' u E = !{1,u) y
={) -“;‘...‘_- ;
. 2 Q[.‘ dt a’I[""] o .
AT T a T a

Fig. 3.18 The flatness leads to the idea to use the “inverse” process model (3.117) as a feed
forward controller

Conversely, to every state and input trajectory ¢ — (x(¢), u(z)) being enough
differentiable and satisfying the system equations, there corresponds a trajectory:

(3.119)

du du
Tdt’ T dr

t—y(1) :F<x,u

In the case that both conditions (3.116), (3.117) are fulfilled, and the system
(3.115) and its output vector (3.116) are flat, we can figure out a feed forward
(open-loop) control structure as in the Fig. 3.18 which is engineer-friendly and
easier to understand as the original non-linear system.

In the practice we know that the process model is never absolutely identical to
the real process. Therefore the structure in Fig. 3.18 will not be able to operate
flawless. The model errors will always cause stationary errors between set point y*
and output y such that the input u needs to be expanded by a feedback component,
normally produced by a PI controller. The integral part I is needed to eliminate the
stationary control errors. The proportional part P improves the system dynamics.

The next important point to be noted is that the structure in Fig. 3.19 was built
resulting from acceptance of the trajectory (3.119). That means y* must also be
enough differentiable like (3.119). Thus the control structure is extended by a block
which plays the role of setting the trajectory for y* (Fig. 3.20).

Feed forward component

¥

Fig. 3.19 The flatness-based control structure always contains two components: a feed forward
and a feedback controller
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Trajectory set Feed forward component

y

Fig. 3.20 The flatness-based control structure is extended by a block “Trajectory set” to make
sure that y* is enough differentiable like y

According to the presented ideas, the design process of a flatness-based control
structure can be summarized to the following steps:

e Step 1: Proving that the control object meets the conditions of flatness, and the
intended output is also flat.

e Step 2: Design of set point trajectory.
Step 3: Design of the feed forward controller.
Step 4: Design of the feedback controller, normally PL

At this point, some remarks should be made:

® Remark to step 2: In addition to the goal of making the set point y* enough
differentiable like output y, the constraints of output y could be taken into
account during trajectory design as well, for example in case of the current
control design (current limitation).

® Remark to step 4: As the Fig. 3.18 has indicated, the main task of the feed
forward controller is that the output y exactly follows the set point y*. That
means:

— that not only the stationary control errors at the new working point should be
eliminated, and

— the output y has to follow the set point y* during their movement along the
trajectory exactly despite model uncertainty and disturbance.

For this reason, a state feedback controller can be used instead of the simple
structure with PI controllers. This new structure leads to the term flatness-based
tracking control.

In the following chapters the step 1 will be worked out for the three machine
types IM, DFIM and PMSM as preparation for the later design process.
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3.6.2.1 Flatness of the IM Model

Consider the output vector y! = [co, x//fd] from the IM model (3.44). Because

w, l,b)/_d are state variables in (3.30) and (3.44), it is easy to see that y fully meets the
1st condition (3.116).

a) du d'u
= =F — ., — 3.120
y [%] (x,u, o ’dt’) (3.120)

To prove the 2nd condition (3.117) we have now to calculate the state and input
variables. From (3.44) the state variables are given as follows:

. ayl, d
{zm =Y+ T, =P\ (v, %) (3.121)
i,&'q = Tr((l)s - w)lpl/d = Pz(y)

From both first equations of (3.44)—stator voltage equations—the input vari-
ables can be calculated to:

disd 1 l1—o . . l1—0 /
Usqg = oL |: ar + (GTS + oT, )lsd — Wslsg — oT, lprd:|

) (3.122)
disg ) 1 1—-0\. l-0
Usg = oL E—F Wslgg + O_—TS—F oT, lsg + p (Ulprd
After replacing the currents from (3.121) into (3.122) we will get:
dy d2y>
oo,
dt’ dr?
(3.123)

dy
Usg = Q2 <y7 E)

Now the Egs. (3.121), (3.123) lead to the conclusion that the IM is differentially
flat with the flat output y7 = [a), Wﬁd}.

3.6.2.2 Flatness of the DFIM Model

For generators, the quantities to be considered to control are the active power P and
the reactive power Q. Section 10.2.1 shows that the electrical torque mg and the
power factor cosg represent P and Q, such that the two current components i,, i
can be used as control variables for P and Q.

The output vector y' = [mg, cosp] will be considered next. According to
(1.12), (1.4) and (10.4) it follows:

rq


http://dx.doi.org/10.1007/978-3-662-46915-6_10
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106 3 Machine Models as Prerequisite to Design ...

mg = —3z,(1— G)Lrlpgqird

—lrq
) / . 2
Lat (l//sq - l“])

Because i,4, iy, and np{q are state variables in the DFIM model (3.79) it follows
that y fully meets the 1st condition (3.116).

[ ] e
y= |:COS(p:| —F<x,u7 dt"”’dt’) (3.125)

To satisfy the 2nd condition (3.117) we must seek to represent the state and input
variables in dependence of the output variables y’ = [mg,cosp] and of their
derivatives. Using (10.6) the first state variable i,; is obtained as:

1 <2 mg g
Usq 3Zp

cos ¢ =

(3.124)

g = —

) — Pu(y) (3.126)

Replacing (1.14) into cosp=iy, / A /ifd + igq and after some transformations we
get:

. 1
qu - wgq +E

2 Mgy 1 — cos?
< G ) ? — Py(y) (3.127)

3z cos?op

After substituting the currents i,4, i,, in (3.126), (3.127) into the DFIM model
(3.79), the input variables will be obtained in dependence of mg, cos¢ as:

1 Row\Ndng 1 /1 1—0a\ 1 [2mcws
Ug = 0L, —— — == | =+ —
ugg \3zp ) dt o \T, Ty ) ua \ 3z

1 2mgwy 1 — cos? 1— 1 -
v, + ('"G ) “’}+ —Z oy, + “usd}

—,

ua \ 3z cos?gp oL,

dy
=0 (y7 E>
2mgw, 1—cos?
{ 1 d{(—"éip‘“’) g 1 (ZmGwS)
Urg = O-Lr —Wp— |\ ——

— -
Uy dt Ugq 3Zp

1/1 1-0 1 2mgow 1 — cos?q l1-01 1—0
1t /L GWs Pl Ly 179
+ a (T, + T, ) {W"‘I * Usq ( 3z, ) cos2¢p } o T, Vg + oL, u""}

_ dy
- Q2<y7 dt)

(3.128)
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With Egs. (3.126), (3.127) and (3.128) the 2nd condition (3.117) is also fulfilled.
The conclusion that the DFIM is differentially flat with the flat output y’ =
[mg, cosg] is proven.

3.6.2.3 Flatness of the PMSM Model

Consider the output vector y’ = [@s, isq] from the PMSM model (3.60). Because
g, Igq are state variables in (3.30) and (3.60), it is easy to see that y fully meets the
1st condition (3.116).

w dua da
= |. =F —_— ., — 12
y [J (x,u,dt, w) (3.129)

Now we calculate in turn the state variables and the input variables depending on
the output y' = [wy, iw].

isd = isd = Pl (y) (3130)
state variable output variable

From both (3.30) and (3.62) the following equation is obtained:

J dwy
J dws 3 . . . 7 dr +mw
- d = EZp le + lsa (Lsd - qu) lsg —Mw — lyg = §;
zp dt RAL;—/ Z {lpp + isdAL}
dy
=Py, 3.131
(v 2) (.131)

Inserting iy, from (3.131) into the first equation of (3.60) the input variable u,, is
obtained.

J doy
dis 2 ==+ m
Usg = Lgq % + Rsl.sd — g a)squ M
2p |:l//p + lydAL:| (3 132)

_ dy
- Ql <Y7 dl>

Taking the derivative of both sides of (3.131) it follows:

J dPo, . J do, di,
dixq 2 5 dr? (lpp + lSdAL) - (57 + mW)AL dtd
9 .

a3, (4, + )

(3.133)
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After inserting (3.133) into the 2nd equation of (3.60) we obtain the input
variable ug,.

Usq :Rsisq + wsLsdisd + wslpp
J d*o, ; J doy di
21, 258 (W, + iaAL) — (L% m, )
2
3% (1//,, + isdAL)

- dy d’y
=0 (y’dt’dtz>

(3.134)

Based on the results (3.129), (3.130), (3.131), (3.132) and (3.134) we can draw
the conclusion that the PMSM is differentially flat with its flat output y? = [y, is).

3.6.2.4 Design of the Set Point Trajectory

This section only presents the reproduction of excerpts, which are necessary to
understand this book, from the monograph (Lévine 2009, Chap. 7).

(a) The general case

Given is the nonlinear system (3.115). With 7y as the start time, the initial
condition can be written to:

X(t) = Xo; u(ty) = o (3.135)
and at the end time 7z, the end condition will be given to:
X(IE) = Xg; u(tE) = Uug (3136)

The design of a trajectory for the system (3.115) means the finding of a trajectory

t— (38 >Witht € [to, tg] fulfilling (3.115), (3.135) and (3.136). For the class of
differentially flat systems, this problem can be solved relatively simple without the
use of a numerical approximation method or a solution of complex differential
equations. Equation (3.117) said that both input vector u and state vector x can be
expressed as function of y and its successive derivatives in finite number.

Formulated in short, instead of solving the system of complex differential
equations, an output trajectory corresponding to the initial condition (3.135) and the
end condition (3.136) must be found.

Note that because the trajectory ¢ — y(f) must only be enough differentiable
(r + 1) times on the one hand, and at the same time y(#) does not have to fulfill any
differential equation on the other hand, y(f) can be found by a polynomial inter-

polation. After finding of ¢ — y(¢), the trajectory ¢ — ( igg ) can also be found
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by inserting y(¢) and its derivatives into functions P and Q in (3.117) or respectively
(3.118).

In the general case, the initial and the end conditions of the output can be written
as follows:

o The initial condition:

i) - W (t0); -3 ym(t0)- - D (10) (3.137)

o The end condition:
vile) -y (ee)s - symee)- . 9D (1) (3.138)

According to formulae (3.137) and (3.138), 2(r + 2) conditions have to be
fulfilled, so y/(#) can be a polynomial with 2(r + 2) coefficients. With T =tz — 1y
and t(r) = (t — 19) /T the following polynomial can be chosen:

2r+3

y(t) =" [aut(®)] j=1,...m (3.139)

k=0

The derivation of (3.139) will result in:

® 1 2r+3|: il .
; = —a T (t)} j=1...m (3.140)
Th & [(1— k)

At t = 1y and respectively 7 = 0, the initial values are obtained as follows:

k!

7% Gk k=0,..,(r+1)j=1,....m (3.141)

k
() =

At t = t and respectively t = 1, the end values will be as:

2r+3
W (t) ﬂE:{ %J k=0,...r+1);j=1,...m  (3.142)

The formulae (3.142) presents a linear equation system with (2r + 4) equations
and (2r + 4) unknowns ajy ... ajp43 for every j=1, ..., m. In reality, this
equation system only contains (» + 2) equations, because the first (r + 2) unknowns
can be obtained immediately by solving of the first (» + 2) equations of (3.137).
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The remaining (r + 2) unknowns must be the solution of the following system with
(r + 2) equations:

1 1 1
r+2 r+3 2r+3 Qjrsa |
r+D(r+2) r+2)(r+3) - (@2r+2)2r+3)
: : : aj2r+3 |
(r+2)! r+3)12 - 2r+3)/(r+2)!
yi(te) —;ZO (@/my ) (3.143)

= | ) - T (/a0 )]

Tr+1 [y}r+l) (IE) . yj(r+l) (l‘o)}

The first (» + 2) equations of (3.137) are solved to:

Tk
aj; = Hy}k)(to) k=0,...,(r+1) (3.144)

It can be seen that, although the flat condition (3.116) requires, that y(f) must be
performed as a function of x(¢), u(?) and the derivative of u(¢). But for the design of
the set point trajectory the flatness condition (3.116) did not play a significant role.

(b) The special case: rest-to-rest trajectory

If the start point [x(#), u(fp)] and the end point [x(7g), u(tg)] are equilibrium
points — it means, that derivatives of x(7), u(¢) are zero at these points — then,
according to the properties of differentially flat systems, the points y(zy) and y(¢g)
must also be equilibrium points.

Therefore it can be formulated:

{ X(IO) = P(y(IO)vov e ”0); X(IE) = P(y(tE)»Ov O) (3145)

u(to) = O(y(10),0,.. ,0): u(te) = Q(y(iz).0,...,0)

After inserting the condition (3.144) into the result (3.139) of the general case,
the formulae of the rest-to-rest trajectory is obtained in the form of a polynomial as:

N2 [l PR
Yi(1) = yi(to) + [vi(te) — yi(to)] % lZ <af?" ‘ Tlf()) )] (3.146)

k=0

with j=1,...,m
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In the formulae (3.145) the coefficients a;; are solutions of the following
equation system:

r42 r3 2 +3 a0 !

r+1)(r+2) (r+2)(r+3) - (2r+2)(2r+3) | - 0

(r+2)! 32 e @] Lo
(3.147)

Note, that in this case all derivatives of y() at starting and end point are zero. For
this reason, we can even choose the degree of its derivatives higher than (r +1), so
that the trajectory at these points becomes smoother and thus unwanted oscillations
are avoided.

(c) Trajectory of systems with bounded input and state variables

Leévine (2009), Chap. 7 divided this issue into two questions. The first question
treats the case with the geometrically constrained variables, which is important for
the tracking of controlled motions. The second question is focused on the case of
quantitative limited input and state variables. It is easily understood that only the
second question is important for the treatment of the three-phase electrical machines
and therefore is reproduced here.

We define the time T = tg — ) during which input u and state variable x are
held within the permissible values. With pre-defined () we can write:

T 2 T k T
() = 20D iy - LDy = R (5 14g)

The maximum value of output y(¢) is given as:

1 d'y(z(1))
©@) = = —— A Vk>1 3.149
Al Ol =z ae | Tk (3149
To guarantee that the given boundaries:
Iyl<ci, ..., PP < (3.150)

are valid, the following time 7 must be chosen:

dy

dt

d

y )”k} (3.151)

1
T = —
max { max dz

1 7€[0.1]

1
(e
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If ||u]| < C, must be valid, then we can write:

r+l
ol = o3| = (g i) |
i)
<0000+ 5] [ 2]+ 7 ayle =
<l103.0.....01|+ |2 a+~--+H% G
y
<c, (3.152)

The constants Cy, k =1, ..., (r + 1) are determined in dependence of C,. After
that, T can be chosen by using the formula (3.151).
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Chapter 4
Problems of Actual-Value Measurement
and Vector Orientation

This chapter aims to explain principles of the actual-value measurement to highlight
its problems to answer some related questions of the field orientation.

The current measurement technique influences decisively the controller design
and thus also the dynamic characteristic of the inner current control loop, which in
turn is the prerequisite for the superimposed speed control. So the actual-value
measurement is an important interface of every drive control system which must be
taken into account very carefully for the controller design.

Similarly, for the design of the speed control loop the speed measuring is an
important issue to consider. Either an incremental encoder or a resolver can be used
to measure the speed. Also the alternative possibility of sensorless capture of the
speed will be discussed, and possible ways to solve this problem will be shown.

The second problem of this chapter is the field orientation, which is very closely
connected to the speed measurement. Field orientation means namely,

1. that the field angle 9, and respectively the location of the field coordinate system
(dg-coordinates) must be calculated, and

2. that the un-measurable rotor flux, which will be used for calculating the rotor
frequency or the slip and therefore also the field angle J;, has to be estimated.
The estimated value of the rotor flux can be used as actual value in the flux
control loop, which is—for example—of decisive importance for field-weak-
ening operation.

The estimation of the rotor flux, which can be realized either by flux models or
by flux observers, and the calculation of the field angle require actual values of
current and speed.

4.1 Acquisition of the Current

The measurement of the currents can be performed as shown in the Fig. 1.3.
Depending on the coordinate system the inner current control loop is realized in—
field synchronous or stator-fixed—actual values i, i Or iy i, are obtained after
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the transformation of the measured phase currents iy, and i,,. What could not be
indicated in this figure are:

1. The technical realization of the measurement and
2. the fact, that for the current control only the instantaneous value of the
Sfundamental wave is relevant.

From the technical view, two possibilities to measure the currents exist:

1. The most advanced technique is the measurement of instantaneous values using
A/D converters (ADC: Analog to Digital Converter) and

2. The integrating measurement using V/f converters (VFC: Voltage to Frequency
Converter).

(a) Measurement of instantaneous values using an ADC

This method is frequently applied because of the simplicity of its technical
realization and the possibility of a high resolution. The inherent current harmonics
have to be suppressed, for example by an additional filter. This however, would
result in an additional delay of the measured values. This delay is unwanted, and
therefore has to be avoided if possible, to maintain the dynamics of the current
control loop, particularly for the new current controller designs in Chap. 5.

The time instant of the current measuring plays a decisive role for the exact
acquisition of the fundamental wave and for the elimination of the pulse frequent
harmonics. To achieve this, the measuring instant must be exactly placed in the
middle of the zero vector times Ty or T, (using the modulation algorithm in the
Chap. 2). Figure 4.1 explains the facts.

This measuring strategy has the advantage that the otherwise necessary filter
becomes superfluous and the delay connected to it disappears. The obvious dis-
advantage is, particularly under transient conditions, that the time instant of the
measurement sampling will shift (start-up, reversing, field weakening etc.), because
the values of the zero vector time T, or T, are not constant, but depend on the
operating state of the motor. The measurement sampling instants, illustrated in the
Fig. 4.1, correspond to the output sequence of ug using the time pattern in
the Fig. 2.10a.

The mentioned disadvantage of the shifting sampling instant disappears if the
output sequence of the time pattern in Fig. 2.10b is used. The sampling instant will
be exactly in the middle of 77 and consequently, the pulse and the control sampling
frequency will exactly coincide (Fig. 2.10b).

With the tendency toward higher pulse frequencies, the pulse frequency can,
however, be a multiple of the sampling frequency. The measurement sampling must
always be located either in the center of the last zero vector time 7 or at the starting
points of the sampling periods of the control system. The outlined principle for the
realization of the current measurement clarifies the demand for a strict synchroni-
zation between pulse periods and measurement sampling which must already be
thought through at the hardware design stage. Figure 4.2 presents an example with
10 kHz pulse frequency and 5 kHz sampling frequency.


http://dx.doi.org/10.1007/978-3-662-46915-6_5
http://dx.doi.org/10.1007/978-3-662-46915-6_2
http://dx.doi.org/10.1007/978-3-662-46915-6_2
http://dx.doi.org/10.1007/978-3-662-46915-6_2
http://dx.doi.org/10.1007/978-3-662-46915-6_2
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(k-1) (k) (k+1)

u, 14
T+T, To, THT, | T,, \TAT, | T,;
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Fundamental Pulsed Voltage
Wave Current

Fig. 4.1 The current measurement sampling instants (M) using an A/D converter

Fig. 4.2 A strict T=200us
synchronization between = e
pulse period and measurement
sampling with sampling in the
center of zero vector times

Measurement
instant

(D) The integrating measurement using a VFC

This category also includes the method of analog integration with subsequent
A/D conversion. The measured signal is converted into a pulse sequence with a
frequency which is directly proportional to its amplitude. This pulse sequence is
applied to an up/down counter whose counting direction is switched over according
to the sign of the measured signal. The impulses are counted over one sampling
period. Because of the integrating behavior there is no need for special measures to
suppress pulse frequent harmonics. However, the result of the integration does not
represent the instantaneous values of the fundamental, which are needed by the
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control system. They may be back-propagated using an interpolation filter, for
example of second order as in Eq. 4.1.

ig(k) = 1.831, (k) — 1.16 i,(k — 1) +0.33 i,(k — 2) (4.1)
k: 0,1,2,...,00; }s : Integrated value

The interpolation filter may be fed with either the phase currents i, i, directly or
the current components in dg or aff coordinates. That means, the back-propagation
of the instantaneous values of the fundamental happens before or after processing
Egs. (1.6) and (1.7). The results would show, depending on the sensor resolution
largely corresponding feedbacks and actual motor currents, with the restriction that
sampling-frequent oscillations cannot be followed. Since only actually measured mean
average values of the currents are available, this fact requires special measures for
the design of the current controller. Chapter 5 will more deeply deal with these issues.

4.2 Acquisition of the Speed

The speed is commonly measured either with a resolver or with an incremental
encoder. Because of the pulse counting when using an incremental encoder and the
averaging of the speed, over several sampling periods by differentiating the position
angle with resolver, the measurement has an integrating characteristic and does not
show the instantaneous value of the speed. Similar to the above discussed back-
propagation for the current feedback, an interpolation of the measured values might
be used to reconstruct the speed instantaneous values (here with filter of first order).

w(k) = 1.5 w(k) — 0.5 w(k — 1) (4.2)
@ = Integrated actual feedback value

(a) Measurement of speed using an incremental encoder (IE)

As is well known, the IE delivers two by 90  phase-shifted signals A and B
(Fig. 4.3) in the form of square pulses, where the impulse number per revolution is
given by the construction of the encoder device. The additional channel zero
provides once per revolution a zero reference impulse, which is normally congruent
with the edges of one of the channels A or B. By measuring of the impulse
frequency fj, the speed n can be determined.

60 fr
n= =
ZIE

[rpm] (4.3)

Ju = Frequency [in Hz] of the impulse sequence

z;e = Number of impulses per revolution
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Fig. 4.3 Use of an incremental encoder (IE) to measure the speed

By evaluation of the phase relationship between the signals A and B the direction of
rotation can be found. For a given IE and thus defined f;;, the maximal measurable
speed n,,,,, can be calculated by Eq. (4.3). Or conversely, with predefined motor and
maximal speed n,,,,, the maximal necessary fj, can also be calculated by (4.3).

If the rotor position is described by 4, and the sampling period of the speed
control by T, then the frequency measurement transforms into a counting of the
impulses A or B within 7,, following the equation:

$(k) — Ik — 1
0 =9k~ 1) 4
T,
k=0,1,2,...,00=Sampling time instants

The impulse counting alone does not suffice for a precise measurement at very
low-speeds, and here has to be amended by a time measurement where the time for
the passing of a certain angular sector is measured with the help of an additional
higher-frequent impulse sequence (Fig. 4.3). From the Eq. (4.4) the speed can be
obtained as follows:

360" 1 rev

9
n=————— with =—
tk) —t(k—1) 2UE 2E

(4.5)

The measurement resolution can be found by generalization of the Egs. (4.4),
(4.5). Equation (4.4) can be rewritten as follows:
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60

ZIE L'n

n =

n in [min™'] (4.6)

n;g = Number of impulses counted during 7},

The resolution of the speed measurement, using pure impulse counting, can be
obtained after derivation of Eq. (4.6).

dn 60 0
— = or An =~ A 4.7
dng  zie T, 8 ze Ty e (4.7)

With, for example,

Angp =1 (Only 1 impulse is counted during 7,)
zie = 1024 (IE produces 1024 pulses per revolution)
T, =1ms  (Sampling period)

a resolution of An =~ 58.6 min ' is obtained. With the help of impulse quadru-
plication this result can be improved essentially. The Eq. (4.5) for period mea-
surement can be rewritten as follows:

601 . . 1
n=—— in |min 4.8
ZET [ ] ( )

T = in [s] measured time for the passed angle sector 360°/z;g
The first derivation of Eq. (4.8) delivers:

@— 60 or An~ — 60
dt gt T opt?

At (4.9)

Using a 20 MHz impulse sequence (time resolution Az = 50 ns) and a 10-bit
counter (maximal measurable time 7 = 219 % 50 ns = 51.2 us) a resolution of An ~
1,1176 rpm can be obtained for very low-speeds.

Another possibility to reach a high-resolution result for low-speeds is to use an
IE with approximately sinusoidal output signals A and B (Fig. 4.4).

After zero-crossing detection the signals can be processed exactly as in the case
of an usual IE. With two additional A/D converters and high-frequency sampling
within a signal period, the speed is obtained from:
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Fig. 4.4 Use of an incremental encoder with sinusoidal output signals for speed measuring

da d B
n=—=- (arctanX) (4.10)

(b) Measurement of speed using a resolver

The construction of a resolver is shown in the Fig. 4.5a. The resolver consists of
two parts. The mobile part (the rotor) is fixed to the motor shaft and contains the
primary excitation winding, fed by a rotating transformer with an excitation signal
of approx. 2-10 kHz. The static part (the stator) contains two secondary (sine,
cosine) windings, which are mechanically displaced at 90° against each other.

In principle two methods for processing the resolver signals exist. The first one is
called angle comparison (Fig. 4.6a) and is implemented in integrated circuits like
AD2S82 or AD2S90" The angle comparison is carried out with the help of a
multiplier (RM: Ratio Multiplier) at the input, which calculates an angle error. After
the multiplier (Fig. 4.5), the following results are obtained at the outputs of sine/
cosine channels:

t.up sin(wr) sind cos ¥y and 1. ug sin(wr) cos? sindy (4.11)
Subtracting the signals of the Eq. (4.11) from each other yields the error signal:

AY = t.ug sin(wt) (sin? cos Iy — cos sindy) (4.12)
= 1. up sin(wt) sin(¥ — Jy) '

"From the firm Analog Devices.
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Fig. 4.5 Principle mechanical (a) and schematic (b) construction of the resolver with its output
signals (c) 7.: transmission coefficient; u,: amplitude of excitation signal

Fig. 4.6 Methods for
evaluation of resolver signals:
angle comparison (a) and
signal sampling with two A/D
converters (b)
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According to Eq. (4.12) the error AY disappears if the difference v — 9y
becomes zero. To achieve this, the error signal is fed via a phase sensitive detector
(PSD) to an integrator or a PI controller whose output controls a voltage-controlled
oscillator (VCO). A up/down counter (UDC) counts the impulses coming from the
output of the VCO, in which the counting direction of the UDC depends on the sign
of the error signal. This way the phase error will be eliminated with the help of an
integrator or a PI controller. The dynamics of the measurement depends on the
dynamics of the control loop which poses a considerable disadvantage for the
complete system.

The measuring dynamics can be increased significantly if the envelope of the
resolver signals (see Fig. 4.5¢) can be captured directly, i.e. always at the peak
value of the curve. With the help of two A/D converters (Fig. 4.6b) this can be
realized easily provided a strict synchronization between the measurement sam-
pling, control and modulation, is observed and taken care of already in the hard-
ware design. Furthermore it has to be considered that the resolver signals are
susceptive to noise and distortions through the transmission paths between motor
and electronics which may result into loss of the original synchronization and a
signal correction (usually by software) becomes necessary.

From the relation:

x . .
¥ = arctan— with x = sin; y = cos ¢
y

the total differential of 9 can be derived easily:

dd = ydx —xdy (4.13)
and:

AY ~ yAx — x Ay (4.14)

With Ax = Ay = 27%2¢_ in which z4pc is the resolution of the A/D converter,
the corresponding resolution of the measured angle can be assessed.

Considering that the derivatives dx/df und dy/d¢ can assume values independent
of z4pc at the actual time, and from the relationship for the speed n:

do
pe 00, 00 d [min'] (4.15)
2m g, 2mz, dt

the total differential for n can be derived after some conversions:

dn =n(xdx+ ydy) (4.16)
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From (4.16) results:
An = n(xAx+yAy) (4.17)

With the Eq. (4.17) also the speed resolution, depending on the operating point,
can be assessed using Ax = Ay = 27%pc,

Because the resolver provides the absolute position information, it can be used
advantageously in synchronous drives. In addition, the resolver is robust against
external influences like high temperatures or magnetic interference fields. With
respect to the measuring precision the resolver, however, cannot achieve the high
resolution of the IE with analog or sinusoidal output signals.

4.3 Possibilities for Sensor-Less Acquisition of the Speed

The idea to save the speed sensor, and to reduce not only the costs but also
to increase the reliability, because mechanical parts and the sensitive galvanic
connection between sensor and actuator are omitted, was the motivation for
numerous research in the last two decades. In principle the developed methods can
be divided into three groups:

1. Stator flux orientated methods like Direct Torque Control (DTC), Natural Field
Orientation (NFO).

2. Rotor flux orientated methods, following the principle of a Kalman Filter (KF)
or a Model Reference Adaptive System (MRAS).

3. Methods which use machine specific effects (unbalance, slots on stator and rotor
side etc.).

With respect to the theoretical approaches, the solutions to this problem are very
different and partly based on special effects so that not all of them can be discussed
in the context of this chapter. Because of the many advantages compared to the
stator flux orientation, this chapter exclusively deals with the rotor or pole flux
orientated drive systems which are very widespread in practice. Consistently only
examples of rotor flux orientated methods will be discussed because the methods to
be selected, must be suited for integration into the overall control system. The
methods based on the use of machine specific effects can also be used very well in
systems controlled with field orientation.

In the area of higher frequencies the speed sensor-less operation works without
problems for all methods in the case of an asynchronous drive. The critical area is
the area around standstill. The results published in the last decade have led to the
conclusion that zero stator frequency in the case of the IM represents a virtually
not observable point and therefore cannot be controlled correctly with conventional
methods like DTC, NFO, KF, and MRAS. At set points near zero speed and under
influence of a strong load, the rotor can always drift away without the system
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reacting to it. Thereat the rotor flux vector rotation stops. This is primarily based on
the fact, that the magnetization of the slowly rotating rotor of the IM can be easily
changed by the (almost) still standing rotor flux vector. Only if the mechanical
frequency of motion reaches a certain limit (approximately the slip frequency) and
thus the magnetic reversal is no longer possible, the speed can be calculated cor-
rectly again. A clean reversal across the speed zero is always possible, though. Use
of the above mentioned methods, including the already commercialized DTC,
always implies theoretically unsolidated detours.

In the case of a PMSM drive, the standstill is less critical because the pole flux is
built up permanently. Therefore a magnetic reversal process can not take place, and
the moving pole delivers information for the estimation already at low-speeds. Two
problems must be solved here:

e The initial position of the pole flux must be identified: For the case of an
asymmetric rotor build-up (e.g. salient pole machines or full pole machines with
only few magnets on the rotor surface), many useable approaches can be found
in the literature. The question is still relatively open for machines with exclusive
full pole quality (i.e. the magnets are assembled in a larger number, and thus
divided up finer) on the rotor surface thanks to the high energy density and the
improved construction.

e The development of a method for the speed sensor-less control of the drive. The
variety of the useable methods is similar as in the case of the IM.

The methods based on the use of the machine specific effects are best suitable
both for IM and for PMSM. The unbalances in the mechanical construction and the
slots on stator and rotor side are mirrored in the harmonics of the stator currents
independent of their fundamental frequency.

In this chapter only two application examples are presented for the speed sensor-
less control of the IM and PMSM. For the IM the control system has the principle
structure of Fig. 4.7. It can still be recognized that the structure of Fig. 4.7 also
applies to the case of the PMSM drive if the flux controller is dropped and the
corresponding algorithm is implemented in the context of the “speed adaptive
observer”.

4.3.1 Example for the Speed Sensor-Less Control
of an IM Drive

As is well known, the IM can be completely described by the state model (3.41)
(cf. Sect. 3.2) electrically. If we start from the assumption that the machine
parameters are time-invariant, then only A in the Eq. (3.41) depends on the speed
and must be updated on-line with a measured or estimated speed. The estimated
quantities are denoted with an index “A” in the following.
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Fig. 4.7 General structure of speed sensor-less and rotor flux orientated control of an IM drive in
dg coordinates

With the model (3.41) a Luenberger observer can be used to reconstruct the state
vector (Fig. 4.8a).
dx  ~ ~
—%:Ax+Bm+KGV4J (4.18)

K = Correction matrix

For the case of measured speed numerous approaches to design K (e.g. with the
help of pole assignment) have been presented. The observer (4.18) then delivers
only estimates for the not measurable rotor flux. If the speed, regarded as a system
parameter in this model, shall be estimated together with the state quantities, the
structure must be extended like shown in Fig. 4.8b.

Using the definition of the state error e:

e=x—% (4.19)
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Fig. 4.8 General structure of  (g)
the rotor flux observer using u,
a measured and b estimated
speed

measured W

Motor

Calculation

the following error state equation is obtained after subtracting (3.41) and (4.18):

% = (A+KCe + AAR (4.20)

with:

(4.21)

B 2 [0 Aty
A=A A‘[o —AwJ]

J= {_01 (1)] ; Aw = w — @ = Parameter error
The state estimation techniques using a speed adaptation like in Fig. 4.8b, are
part of the category of methods with model reference adaptive systems (MRAS) in
which the motor (the process) plays the role of the reference model.
Because of the nonlinear (process) behavior the stability aspect must be included
at the design of such systems from the beginning (cf. Isermann 1988, Chap. 22.3).
The stability proof can be carried out either using Popov’s method of hyper stability
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(e.g. Tajima 1993) or the direct method of Ljapunov (e.g. Kubota 1993, 1994). The
latter will be used in the following.

The Ljapunov function V for the error Eq. (4.20) is chosen to contain both the
state error e and the parameter error Aw.

V=elet+t—— (4.22)
A = Positive constant

The first derivation of V yields:

Ve [(A+KC)+(A+KC)|e

dt
- ~
U+2Awd—wi
dt 4

(4.23)

—2Aw (7sa W{/} _Al:sﬁ ‘//,{a)

There 751 = iy —?m ; 75/; =i —?5/3 are components of the state error

vector e. The right side of the Eq. (4.23) contains 3 terms. In order for the system to
remain stable, the following conditions must be fulfilled.

1. K must be chosen to ensure the negative definiteness of the first term.
2. The estimation algorithm must be designed so that the second and third terms
compensate each other, i.e. the sum of the two terms is zero.

In the references (Kubota et al. 1993, 1994), a frequency dependent correction
matrix K in the following form is suggested.

| ki k| ks k4
k = |:—k2 k| —ks kJ (4.24)
k—1/1 1 - k—1/1 k
klz— <T+F>,k2:(k—1)w, k3:1 (F—F>,
7 N TON s (4.25)
(k—1)oo
ky =——"—
1—0

The idea behind is to fix the poles of the observer (using the constant £ > 0)
proportionally to those of the motor so that the observer (exact like the process or
the motor) remains stable. It was found experimentally that £ must be chosen in the
range of 1-1.5. With this choice the method was tested successfully on different
motors, even when only parameterized from name plate data.
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In order to fulfil the above second condition concerning the stability, the esti-
mated angular speed & must fulfill the following equation:

do  1—0(~ =/ ~ =,
E = )LT (l_w lpr[)’ — Lsp l,bm) (426)

Considered that the speed can change fast, Eq. (4.26) can be augmented to the
following PI algorithm to calculate .

® =Kpe, + K; / eodt With e, = iy wfﬁ — i, (4.27)

Kp, K;: Gain factors

For the implementation of the described method the speed error must be
transformed into dg coordinates first:

Cw = —isg !y With Ty =iy — iy (4.28)

For a step-by-step design we assume first the value k£ = 1 (i.e. flux model without
correction). That means, the speed adaptive observer contains the calculation of the
current and flux model according to the Eq. (3.55) (cf. Fig. 4.7: the hatched area) as
well as the PI algorithm (4.27). The angular speed w;, on the stator side or the stator
frequency arises from the following equation:

~ o isg(k)
§ =0+ (4.29)
R AAT

The hatched area in Fig. 4.7 is represented in detail in Fig. 4.9. The processing of
the current control loop is divided into 4 steps (see Fig. 4.10, left half), with the
estimation algorithm of w (see Fig. 4.9) integrated into the second step, detailed in
the right half of the Fig. 4.10.

The speed reversal with field weakening in Fig. 4.11 illustrates the functionality
of the presented method which may be implemented in practical systems easily.

The dimensioning of the PI compensation controller (cf. Fig. 4.9) is important

for the calculation of the speed @. By integrating @ the mechanical angle J is

calculated, which forms together with the load angle the transformation angle 1/9\s for
the voltage vector output and feedback transformation. L.e. the dynamics of the
estimation of  shows up directly in the innermost loop—the current control loop
(cf. Fig. 4.12). To consider the estimation dynamics in the current controller design,
the transfer function G.(s) is needed.

The transfer function G.(s) can be derived under the conditions, that:

e the speed in small-signal response only effects the g-axis (cf. 2nd equation from
(3.44)), and

. l//,{d = x//fd = iy = iss can be assumed for the d-axis.
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Fig. 4.9 Block circuit diagram of the speed adaptive observer for the calculation of the

mechanical angular speed @ and the rotor flux t,Ab,/d

Using (3.44) the following equations are obtained in the Laplace domain:

o . 1/1 1—-o0)\. l—06 1
Motor: s iy = —Wyisg — \7 + Igqg — - oy, + o—Lsusq

T, T,
(4.30)
s - 1/1 1-0\~ 1-0_.
Model‘ S sq = —Wglgg — g FS + Tr lsq - e CU‘/er + G—l,susq
with
B R g ~ ?sq

Cisq = lsg = lsg — lsqg s € = W — W Wy =0+
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from the subtraction of the two equations in (4.30) and after some remodelling we
obtain:

/
eisq(s) _ Ve with Te _ O-TY Tr . _ lﬁ,d Te
[

—_— 4.31
ew(s) 1+sT, T, + T, (4.31)

Kp, K; should be chosen to essentially compensate the delay from (4.31) for the
closed control loop.
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4.3.2 Example for the Speed Sensor-Less Control
of a PMSM Drive

As already mentioned at the beginning of Sect. 4.3, two questions must be
solved for the speed sensor-less and field orientated operation of a PMSM drive: the
identification of the initial position of the rotor or of the pole flux and the integration
of a method for the speed sensor-less control.

The most known publications about the identification of the initial position deal
with the case of salient pole machines, where the difference between the direct and
the quadrature stator inductance—measured in the d- and g-axis—is relatively
large. This makes a relatively simple off-line identification of the rotor position
possible either by an indirect measurement of the inductances or by an evaluation of
the currents caused by scanning of the total rotor surface with identical voltage
transients. Thanks to new magnet materials with a very high energy density and
improved construction techniques the magnets of modern machines are finer dis-
tributed and fastened on the rotor surface. However, this improvement with respect
to the drive quality aggravates the chance to identify the pole flux position. An
interesting approach to solve these difficulties with moderate processor power has
been presented by Brunotte (1997).

The PMSM is different from the IM physically only by the way of the mag-

netization: In the IM 1i,, or \IJf must be built up, whereas the pole flux is perma-
nently available in the PMSM. Therefore it can be assumed, that the Ljapunov
stability approach which led to the error model (4.28) for the IM can be used here as
well with the speed error signal:

~

ew = —ly L—" with iy, = isy — isg (4.32)
sd

As in the case of the asynchronous drive the current error in the g-axis is used as
an input signal for the w-Pl-estimation controller. Because of the preferred axis of
the rotor flux, an error signal for the position angle which helps to eliminate the
position error from the beginning must be found. The following considerations help
to find a solution. From (3.64) the following equations can be obtained:

. 1 . qu .
Motor: Siyy = — i + Vs —isg + — Usq
Tsd Lsd Lsd
1 L | (4.33)
Model: 5y = — — isq + 505 =L 1y, + —
odel: § tsq Tsd Isg+ S SLsd lsq + Lsd Usa

After the subtraction of the two above equations and some rewriting the fol-
lowing linear relation arises, under the assumption that the o—transients have died
out and the load is constant:
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Fig. 4.13 Speed reversal of a speed sensor-less and field-orientated controlled PMSM drive:
currents and speed (fop), rotor or flux angle (bottom)

eisa($) _ s Ty isq
eg(s) 1+4+s5Ty

(4.34)

The fault model (4.34) means, that the current error in the d-axis can be used as a
correction signal for the rotor position. A compensation controller with I behavior,
whose output quantity is added to the flux angle, will suffice for this purpose. The
Fig. 4.13 shows the speed reversal of a PMSM drive controlled using this method.

4.4 Field Orientation and Its Problems

After the essential features of the field-orientated control and important control
structures were introduced in Chap. 1, some questions of the realization shall be
discussed in more detail now. For asynchronous drives the calculation of the rotor
flux, which is not measurable without additional costs, is decisive for a successful
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realization and satisfying control performance. Different models to solve this task
will be compared in this chapter. Because control and PWM voltage generation
work discontinuously, but the machine, of course, represents a continuous system, a
number of issues arise in the context of the interaction of both components. These
issues, if disregarded, can have a negative influence on the control accuracy and
stability. In the last part of this chapter finally some concrete discretization effects
and respective countermeasures will be worked out.

4.4.1 Principle and Rotor Flux Estimation for IM Drives

To begin with, some basics of the field orientated control shall be summarized again
for the better complete understanding of the matter. As known, the basic idea of the
field orientated control is to develop a control structure for the IM similar to that for
the DC machine. That means in detail:

1. The process models of torque and flux must be decoupled from each other.

2. At constant flux the torque equation should have a linear characteristic (linear
relation between torque and torque-producing quantity).

3. In steady-state, all control variables should be DC quantities.

4. Torque and slip should be proportional. With this proportionality a breakdown-
torque caused by the control is avoided, and the maximum torque is expres-
sively determined by the available current or the available voltage.

The requirement 3 is fulfilled by using a reference coordinate system which
rotates synchronously with the stator frequency w,. The point 2 can be fulfilled, if
one axis of the coordinate system is chosen to coincide with the current or the flux
vector. It can be shown that under all conceivable variants only the orientation to
the vector of the rotor flux (e.g. W, = ¥4, ¥,, = 0) fulfils the remaining require-
ments and at the same time ensures a dynamically exact decoupling between torque
and flux. Stator, rotor voltage and torque equations of the IM (cf. Chaps. 3 and 6) if
splitted into their vector components, then may be rewritten as follows:

di; di,,
sy = Ryigq + 0L, =2 — 0Ly + (1 — 0)Ly—24 (4.35)
dr dr
. di.Yq . .
Usqg = Rslsq + oLy ? + wy0Lgisq + (1 - G)stslmd (436)
. dimd .
0= g + T)? — lsd (437)

0 = 0, Tyima — isq (4.38)
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Fig. 4.14 Signal flowchart of the IM in field-orientated coordinates with current impression

3 Ly, . 3 L2 3 o
my = EZPL—rlprdzsq T L D imdlsg = 2zp(l — 0)Lyipalsg (4.39)

with: iy = Y, /Ly = zﬁfd

In the context of current impression the very simple signal flowchart in Fig. 4.14
arises. According to (4.37) and (4.39) the current component i;; works as a control
quantity for the rotor flux, and i,, controls the torque at constant rotor flux.

Different variants for the implementation of the principle of the rotor flux or field
orientation into a control system are conceivable and known. Besides the proposed
method using impression of the current vector, all remaining methods differ from
each other by their ways to find the modulus and the phase angle of the not
directly measurable rotor flux. The exact knowledge of the flux phase angle in stator
coordinates

y farctanl//— Jo + / w,dt (4.40)

ro

is required for the exact transformation of all measured quantities into field coor-
dinates. Using this angle the current vector in field coordinates is obtained to:

il = 156*119 (4.41)

In the simplest case the needed quantities can be calculated with the help of

(4.38) from the reference values (set points) of flux and torque (field orientated

feed-forward control (Schonfeld 1987) or indirect field orientation (Vas 1994)). A
field orientated (feedback) control or a direct orientation uses a direct measuring of,
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or an estimation model fed by measured motor quantities, for the flux calculation
and therefore has the essential advantage that the current motor state can be cap-
tured substantially more exact and independent of the quality of the inner current
control loop (e.g. at insufficient voltage reserve). Because a direct flux measuring
using Hall sensors or additional coils requires additional incursion in the motor,
practically realized systems usually work according to the model method. Typical
structures were already introduced and explained in Chap. 1. An analysis of the
general voltage equations (w; = angular speed of the reference coordinate system)

dig . . di,, . .
u; = Rii; + oL E + joyoLis + (1 — o)L <—dt +]a)kl,,,> (4.42)
; . di, .
0=00+jloxr—)T,) im+ T, il (4.43)

shows various possibilities for the calculation or estimation of the rotor flux vector.
The different approaches can be distinguished by the used coordinate system and
the measured quantities. With regard to the coordinate system characteristically the
components of the flux vector are first calculated in stator coordinates, and in the
second step modulus and phase angle are derived in field orientated coordinates.
Essentially, the following models may be derived (cf. Verghese 1988; Zigelein
1984). Model quantities are indicated with ~.

1. u, — ii-Model in stator coordinates

di,, u, — R, o di
— - = 4.44
dt (l—o)Ly, l—o0odrt (4-44)

The model immediately results from the suitable rearrangement of the stator
voltage equation. From Eq. (4.44) it can be noticed that because of the open
integration any mechanism for the elimination of state errors, caused by wrong
initial values or disturbances, is missing. At low rotational speeds considerable
precision problems are to expect because of the significant influence of the stator
resistance.

From the rotor voltage equation the following

2. iy — w-Model in stator coordinates

diy, | RV

P ( T +jo )iy + T (4.45)
This model can immediately be derived from the rotor voltage equation. In

contrast to (4.44) it can be shown that the state error decays with the rotor time

constant (Verghese 1988). The algorithm contains an integration of sinusoidal input

quantities with the corresponding problems at discrete realization, though. This

difficulty can be avoided by combination of both models to the following
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3. iy, — us — w-Model in stator coordinates
The derivation of the flux in (4.42) is eliminated after substituting (4.43):

s U Rv 1- Rr .v Lcﬁ
f - Rt (L R o'y (4.46)
(1= o)Ly (% +jo)

In Eq. (4.46) no integration is needed anymore, but three measured quantities
are to be fed to the model. The combination of the first two models to observers
(exactly: observer of reduced order) allows additionally to influence the system
dynamics and with dedicated design also the improvement of the parameter sen-
sitivity (Zégelein 1984).

From the rotor voltage equation in field coordinates the following straightforward

4. iy — w-Model in field coordinates

dipg 1, & 4
d—l‘d = T (_lmd + lsd) (447>
by = by = 0+ =2 (4.48)

Tr imd

is obtained. Because the currents here are available only after the coordinate
transformation, they also were indicated as model quantities. For this model the
comparatively low realization effort can particularly be noticed. Special problems in
certain speed ranges do not exist. However, all models derived from the rotor
equation have the common property that the precision of the phase angle 9, strongly
depends on the temperature-dependent rotor time constant.

5. “Natural Field Orientation” (NFO, Jonsson1991, 1995)

Stator frequency and flux phase angle may also be calculated directly from the stator
equations. In the NFO approach the calculation is divided between stator and field
coordinate system. In stator coordinates the EMF voltage is calculated from Eq. (4.42):

di,,
dr

di,

e =u, — R, — oL E =(1—-o0)L (4.49)

After transformation into field coordinates the stator frequency can be derived
from the quadrature component:

¢q

T 0= o) Lsina

(4.50)

In the original method the flux is controlled in open loop, i.e. the reference value
is used for i,,,;,. However, it is also possible to include a flux control loop for the flux
magnitude (4.47) additionally. Neither rotor quantities nor the speed are needed to
calculate the phase angle, at least for feed-forward controlled or constant flux.
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In this respect a close relationship to the u; — i;—model in stator coordinates exists.
The voltage integration is transferred to an integration of the stator frequency.
Similar precision problems at small rotational speeds may be supposed. So far, the
method does not yet contain any speed model. Such an extension is described in
(Jonsson 1995), although within a stator flux related control loop.

Finally the possibility of an

6. u;, — w-Model

shall yet be mentioned. To its derivation the currents are eliminated in the
voltage and flux equations by mutual substitution, and the stator flux is kept as an
auxiliary variable.

In all described models, the rotor magnetizing current i,, was used as an
equivalent for the rotor flux magnitude in the first place. The actual rotor flux
magnitude would have to be calculated from /,;, = Lm(‘iﬂ‘) Ima and

. Lio. Lm. \° (Lo.\"
|lﬂ’ = \/(Lr lyg +5— L lmd> +<L—rlsq) (4.51)

Because of the proved positive properties over the whole relevant range of stator
frequencies, and because of the simple feasibility, the i—w—model (4.47), (4.48) in
field coordinates is often preferred in the practice. Additionally to that, the current
measurements are anyway available and high-quality speed controlled drives are
equipped with speed measuring facilities.

Consideration of the magnetic saturation is required for high dynamics
requirements at operation with variable rotor flux. Corresponding control
approaches will be discussed in detail in Chap. 6.2. A relatively simple and often
satisfactorily used model shall be presented here. For the rotor voltage equation in
the arbitrary orientated (rotation frequency w,) coordinate system the following
equation can be obtained:

L, (lin]) + Lrs din Lo(fim]) + Lrs

0=1i, —i (o — i 4.52
iy — i + R 5 o) R i (4.52)
Split into components, the following equations are arrived at

-~ > L/ (/i\md) + Lro d/i\md
md = Ls = 4.53
tmd = Lsd + R, dt ( )

N . R,

Oy = B, = +’_‘17 (4.54)

lmdL (lmd) + LrU

with L. (fiu])= d'“ﬂ = Ly i 2

*More about the differential main inductance L;n(|i#|) in Chap. 6.2.3.
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Fig. 4.15 i; —w-flux model in field orientated coordinates with saturation of main inductances

Now the i; —w-flux model in discrete representation can be rewritten in the
following form:

Bl 1) = )+ (;mff;f) (0 —Twt)  @s3)

o~

- - (k) RT
Dy(k + 1) = 9,(k) + (k)T + =
(k+1) = V() + o (k)T + imd(k)L,,,(?,,,d(k)) YL,

(4.56)

Dy(k + 1) = 9,(k) + &,(k)T

The flux model in this form is represented in Fig. 4.15. Because of the tem-
perature dependence of the rotor resistance, an on-line tracking of this parameter is
additionally required for high-quality drives. Chapter 7 will deal with this problem
in greater detail.

4.4.2 Calculation of Current Set Points

Field and torque producing components of the stator current can only be controlled
independent of each other as long as the maximum current magnitude is not
reached. At this point a suitable strategy for the vectorial current limitation becomes
necessary.
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The function of the field orientated control relies on the precision or constancy
(in the basic speed range) of the impressed rotor flux. Therefore it seems reasonable
to give the flux producing component the priority, if the maximum realizable
current magnitude is exceeded. A limitation of the maximal reference value iy, to
Inad2 at the same time allows an adequate control reserve for torque impression.
Figure 4.16a illustrates the outlined vector limitation strategy.

If applying a flux control strategy which uses the set point of i, for calculating
the rotor flux set point (cf. Chap. 8) an arithmetic loop would arise. This can be
avoided by a two-step limitation of i{ in the speed controller. Figure 4.16b shows

the details.

4.4.3 Problems of the Sampling Operation
of the Control System

The problems already discussed in Chap. 3.1 for the discretization of the continuous
state equations, require a renewed critical assessment at the application within the
field orientated control. The system of state equations of the asynchronous machine
is the starting point for the design of current controller and flux model, both in field
orientated coordinates. In Chap. 3.1.2 it was worked out, that for the derivation of
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Fig. 4.16 Limitation strategy for calculating the current set points



http://dx.doi.org/10.1007/978-3-662-46915-6_8
http://dx.doi.org/10.1007/978-3-662-46915-6_3
http://dx.doi.org/10.1007/978-3-662-46915-6_3

140 4 Problems of Actual-Value Measurement and Vector Orientation

an equivalent discrete process model from the continuous state equations the fol-
lowing idealizing prerequisites or approximations must be met:

1. Constancy of the time variant and state-dependent process parameters (fre-
quencies, machine parameters) within a sampling period.

2. Constancy of the input quantities within a sampling period (sampling over zero
order hold).

These prerequisites naturally are not fulfilled in the real system, and in the result
consequences for precision, control accuracy and stability of a control system,
designed on the basis of the mentioned simplifications, have to be expected. Some
of these consequences and possible countermeasures shall be examined here.
Hereby, we will concentrate on the following main emphases:

1. Validity of the simplifying assumptions for time-variant parameters and input
quantities of the continuous system.

2. Choice of the discretization method.

3. Choice of the sampling time.

Thereby the issue (3) must be regarded in closed relation to (1) and (2).

(a) Time-variant system parameters

The problem definition can be inverted in a pragmatic way with regard to the
time-variant parameters of the system matrix: In order to obtain an equivalent time-
discrete system, the boundary conditions of the discretization must be chosen to
allow for the system matrix to be considered approximately time-invariant over one
sampling period. This primarily has consequences for the selection of the sampling
time 7 which must be chosen adequately small. Time-variant parameters of the
system matrix are the speed or mechanical angular velocity w, the stator angular
velocity w, and variable (e.g. saturation dependent) machine parameters.

With regard to speed, the prerequisite of approximate time-invariance within a
sampling period is fulfilled for usual sampling times of 0.1-1 ms. Rotor and stator
frequency can change with the dynamics of the impressed torque producing current.
The technologically existing limitation of the current allows only a restricted
maximum slip and therefore a limited frequency change, though. In the end the
assessment of this point will, however, have to be reserved for the detailed
investigation of the concrete application, where stability and performance charac-
teristics have to be investigated. The same is valid for time-variant motor param-
eters to be taken into account. For the incorporation of the main flux saturation it is
advantageous that this quantity also can be seen as depending on a slowly vary-
ing state variable (rotor flux).

The input variable of the system is the stator voltage vector ug(). The reference
value of ug(¢) is constant over one sampling period, but for the actual motor voltage
this is, however, not the case. For a machine model in stator coordinates the stator
voltage is piece-wise constant due to the pulse width modulation, and for a machine
model in field coordinates it is piece-wise sinusoidal because of the continuously



4.4 Field Orientation and Its Problems 141

changing phase angle. Thus the used approximation of zero order will cause errors
in every case. A workaround could be the consideration of the actual voltage curve
or an approximation of higher order for the calculation of the integral in the output
Eq. (3.9):

x((k+ 1)T) = —|—/eAT B u(kT + 1)dt (4.57)
0

(cf. Chap. 3.1.2). If the zero-order approximation is retained, it has to be made
sure that the mean average value of the model input quantity actually matches the
effective mean average value at the machine terminals over a sampling period.

For a model in field orientated coordinates this can be achieved by a feed-
forward compensation of the transformation angle J,. The Eq. (4.56) can be
amended as follows

D1 (k) = O(k) + k.05 (k)T (4.58)

with the new transformation angle 4;;. The factor k. = 1.5 takes additionally into
account the dead time of one sampling period between calculation and output of the
control variable. The Fig. 4.17 shows reference and actual values of the stator
voltage in field orientated coordinates with and without the feed-forward com-
pensation of the transformation angle. The pulse width modulation was not simu-
lated in this case.

(b) Discretization method

Discretization method and the used approximations decide essentially the
stability of the discrete model. This holds particularly when the continuous system
matrix contains complex or frequency dependent eigenvalues. To get an opinion
about the dimension of the influences and model errors to be expected and also of
the differences of the several discretization methods, a series of simulations was
carried out whose results are represented in Fig. 4.18. All parameters of the con-
tinuous model are regarded as time-invariant. The state controller with field ori-
entation, described in Chap. 5.4, the flux model (4.55), (4.56), (4.58) and a

. ————— . — . = ——

Fig. 4.17 References and actual values of uy (bottom) and u,, (top) in field orientated
coordinates: with (leff) and without (right) compensation
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Fig. 4.18 Stability of discretization methods

sampling time of 7 = 0.5 ms form the basis of the system under investigation.
Because an unstable behavior of the system is recognizable by increasing oscilla-
tions, the low-pass filtered norm of the current difference vector of two successive
sampling periods was chosen as a performance criterion:

0 =i (= 1)

Q 1+STF

(4.59)

The criterion was recorded during a speed start-up at maximum acceleration. The
following methods were simulated (cf. Chap. 3.1.2 and the corresponding example
in Appendix A.2):

1. Series expansion of the time-discrete system matrix @ with truncation after the
linear term (Euler discretization) (field coordinates).

2. Series expansion of @ with truncation after the quadratic term (field
coordinates).

3. Euler discretization in stator coordinates and then transformation into field
coordinates.

4. Discretization using substitute function in stator coordinates and subsequent
transformation into field coordinates.

5. Discretization using substitute function in field coordinates.

6. Current controller in stator coordinates with integration part and voltage limi-
tation in field coordinates, discretization using substitute function.

For methods 1-5 the complete current controller was realized in field coordi-
nates. It shall be emphasized that the simulation did not intend to give any state-
ments about control accuracy, current wave form and the like, but exclusively aims
at the investigation of the control system stability.

The results show significant differences between the methods. It strikes specif-
ically that a stable operation up to the maximal theoretically possible frequency
following the Shannon theorem can be achieved, if the method 5 is used. The
method 1 allows a stable operation to just below a stator frequency of 300 Hz.
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This corresponds to the theoretical stability limit of the Euler method with the
condition |4; + 1/T| < 1/T for the eigenvalues A; of the continuous system matrix
(cf. Sect. 3.1). Since the chosen sampling time rather lies in the upper range of the
usually realized values, it is also confirmed that the bigger part of applications—in
terms of the implemented control structures—can already be covered with Euler
discretization in field orientated coordinates.

(c) Choice of the sampling time

The choice of the sampling time is one of the most complex problems for the
design of a digital control system. To an important part it is a question of the
required and available computer power and therefore the hardware costs, in which
an optimum is given, because on one hand a minimization of sampling time
requires a higher computer power, but on the other hand increasing the sampling
time causes the same effect because of the required more sophisticated discretiza-
tion algorithms.

From the control point of view, stability considerations play a decisive role for
the discretization of the continuous model. With regard to the reproducibility of the
continuous signals, the absolute lower limit of the sampling frequency is defined by
the Shannon theorem. However, for the motor control the opposite case is signif-
icant as well: The production of a continuous signal (voltage, current) from a
sequence of discrete control signals (signal reconstruction). For the reconstruction
of the continuous signal f{(¢), using a simple D/A converter (zero order hold), the
following maximum amplitude error is obtained, provided steady differentiability of
f(t) (cf. Astrom 1984):

€Amax = m}flx[f(k +1)—fk)| < Tmtax%(tt) (4.60)

For a sinusoidal signal f(¢) = a sin w;t the error results to es max < a w;T. As is
easily to comprehend, the maximum amplitude error is reduced for a continuous
signal with assumed linear characteristic between two sampling instants and
reconstruction by the mean average value, to half of the value for simple sampling
at the sampling instants.

Further approaches for the choice of the sampling time can be obtained from the
demanded transient response of the closed control system. For a quasi-continuous
design, a value of T < (0.25—0.5)¢, is recommended in (Astrém 1984) from the
control response time. The relation between sampling and response time is given for
the dead-beat design by the system structure. For a small response time the sam-
pling time has to be chosen as small as possible, which however, on other hand,
increases the control gain as well as the amplitude of the control variable, and
increases the sensitivity to high-frequency disturbances.

The use of fast pulse-width-modulated inverters with constant switching fre-
quency as control equipment yields another influencing factor: Because of the
necessary synchronicity between current control and voltage output, the PWM
frequency will be chosen as an integer multiple of the sampling frequency of the
current control, which yields values in the range of about 0.1-1 ms.
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Part 11
Three-Phase AC Drives with IM
and PMSM



Chapter 5

Dynamic Current Feedback Control
for Fast Torque Impression in Drive
Systems

The current control loop plays a decisive role in a 3-phase drive system operated
with field orientation. The design of the superimposed mechanical systems (speed
and position control) wishes for an inner current control loop with ideal behaviour:
With undelayed impression of the stator current. The assumption that the ideal
current control can be modeled by a dead time simplifies fundamentally the control
design for often weekly damped oscillating mechanical systems.

Besides the dead time behaviour, which could be achieved by a design aimed at
dead-beat response, the current controller also should ensure an ideal decoupling
between the field and torque forming components iz, and iy, because the two
components are strongly coupled with each other in the field synchronous coordi-
nate system. This problem was not solved convincingly with the classic concept
(Fig. 1.4). From the view of the modern control engineering the current process
model of IM or PMSM represents a multivariable process—a MIMO' process—
which can be mastered only by a multivariable controller. The multivariable con-
troller contains besides controllers in the main (direct) path also cross (decoupling)
controllers, so that the difficulties of the decoupling are solved automatically with
the controller design.

An important task of the controller design consists in considering a number of
implementation dependent issues in controller approach and feedback. With con-
ventional PI controllers such issues are usually neglected.

e The delay of the control variable output of typically one sampling period: The
stator voltage calculated by the current controller can only have an effect in
the next sampling period.

e The technique of the actual-value measurement: After all, different possibilities
like instant value measuring (by ADC) or integrating measuring (by VFC,
resolver and incremental encoder) are considered.

Like all control equipment, the inverter can realize only a limited control vari-
able because of the fixed DC-link voltage. To avoid possible oscillations and wind-
up effects caused by the implicit integrating part after entering or leaving output

'MIMO: Multi-Input-Multi-Output.
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limitation (at start-up, speed reversals, magnetization, field weakening), the con-
troller must have the ability to take the limitation of control variables into account
effectively.

After discussing the discrete system models in the former chapters, new con-
trollers will now be introduced with uniform and easily comprehensible design and
which fulfill all mentioned requirements. But before the controller design is dis-
cussed a survey about the existing current control methods shall be given.

5.1 Survey About Existing Current Control Methods

The interested reader will find an overview in abbreviated form also in (Quang
1990). Altogether, the known methods can generally be divided into two groups:
nonlinear and linear current controllers.

(a) Nonlinear current control

Controllers of this group can show two- or three-point behaviour. A special
method is the intelligent predictive control which reacts to the stator current vector
leaving a predefined tolerance circle with a pre-calculated optimal firing pulse and
therefore has also two-point behaviour. The most simple version of a current
controller with two-point behaviour is to use three separate on-off controllers, refer
to (Peak and Plunkett 1982; Pfaff and Wick 1983; Hofmann 1984; Brod
and Novotny 1985; Le-Huy and Dessaint 1986; Malesani and Tenti 1987,
Kazmierkowski and Wojciak 1988). The principle is shown in the Fig. 5.1.
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Fig. 5.1 Stator current control with three separate hysteresis (bang-bang) controllers
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The sinusoidal set points of the phase currents are obtained by coordinate
transformation from the field synchronous set points. Depending on the sign of the
current errors, the corresponding phase is switched to “+” or “~” potential of the
DC-link voltage at exceeding of the permitted error. This control variant stands out
by the simplicity of its technical realization and by its convincing dynamic prop-
erties, but the following backdrops also have to be mentioned:

e The pulse frequency varies with changing fundamental frequency and load
which is particularly unwanted.

e With isolated motor star point the current error can reach the double of the
tolerance band.

e The control quality directly depends on analogous comparators which are
sensitive to offset and drift and could therefore lead to a slight pre-magnetization
of motor or transformer.

Figure 5.2a shows the reference vector of the stator current ij, the actual vector i
and the error vector Aiy. The phase current differences are obtained by the projection
of the error vector to the axes of the corresponding phase windings. Upon the actual
current vector leaving the tolerance hexagon the comparators will become active.

Figure 5.3 shows the realization of the control with two-point behaviour in field
synchronous coordinates (cf. Pfaff and Wick 1983; Nabae et al. 1985; Rodriguez
and Kastner 1987; Kazmierkowski et al. 1988). The current error is calculated in
field synchronous coordinates. The field angle provides the necessary address to
find, depending on the control errors, the fitting pre-defined pulse patterns.
Figure 5.4 explains this.

The actual error vector Aiy and the position of the coordinate system are shown
in Fig. 5.4a. Following the definition in Fig. 5.4b the controller behaviour can be
summarized as follows:

if 64,4 > 04 ¢, then uy vy = Uy g = 1 and

ide_’q < 5,1_’,1, then Usd,xg = — Ud’q =0

The values 1 and O are the logical values which are assigned to the voltages
+U44. Index “x” can assume one of the values 0...7 and represents the standard
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Fig. 5.2 On-off controller for phase currents in vector representation: Components of vector of
current error (a), tolerance range of one phase (b) and tolerance hexagon of all three phases (c)
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Fig. 5.3 Block structure of the drive system with inner current control loop using two-point
controllers in field synchronous coordinates
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Fig. 5.4 Definition of the switching hysteresis in two-point current controllers in field
synchronous coordinates

voltage vector to be selected. The projection of Ai; =i, — i to the axes dq like in
the Fig. 5.4a yields:

&g > 0g4, thus uy =1

&g > 0, thus uy, =1
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Accordingly, a pulse pattern or a voltage vector has to be chosen whose d and
g components minimize these control errors. In the example of Fig. 5.4 the choice
u, follows immediately. The assignment

logical values and position of field synchronous coordinate system — firing
pulse

was determined off-line beforehand and then stored in table form in EPROM.
(Rodriguez and Kastner 1987) shows concrete examples.

To control the stator currents, also controllers with three-point behaviour may be
used. In (Kazmierkowski and Wojciak 1988) details about this approach can be
found which is illustrated in the Fig. 5.5. In this method the control errors ¢, and &g
of the stator current are obtained by projection of the error vector to the off axes of
the stator-fixed coordinate system. The way to choose the required pulse pattern is
similar as in the Fig. 5.3.

Kazmierkowski et al. (1988) further introduced a structure with three-point
controllers in the field synchronous coordinate system as shown in the Fig. 5.6. In
principle this variant works exactly like the one in Fig. 5.3. The only difference
between both versions consists in aiming at a higher precision by a finer division of
the overall vector space (Fig. 5.7) into 24 sectors, combined with three-point
behaviour. The EPROM table containing the pulse patterns accordingly gets more
extensive. In contrast, Rodriguez keeps the six original sectors (Fig. 5.4).

The most intelligent version in the family of the nonlinear current controllers is
the predictive control (more in Holtz and Stadtfeld 1983a, b, 1985). This control
reacts (Fig. 5.8) on the actual current vector leaving the tolerance-circle by a
predictive calculation of the following, optimized voltage vector. Therefore, it also
shows two-point behaviour. The method can be used in field synchronous as well as
in stator-fixed coordinates. The principle block structure is shown in the Fig. 5.9.

Fig. 5.5 Three-point current controller in stator-fixed coordinate system
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Fig. 5.6 Three-point current controller in field synchronous coordinate system

Fig. 5.7 Division of the
vector space into 24 sectors

If the actual vector i; overlaps the tolerance-circle at the time 7, the predictive
controller must, using the information provided by the observer,

e calculate all possible trajectories of the current vector (Fig. 5.10a) for each of the
seven possible standard voltage vectors, and
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Fig. 5.8 Tolerance-circle of the predictive current controller
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Fig. 5.9 Block structure of the predictive current control

e following a certain criterion determine the optimal voltage vector for the chosen
current trajectory.

The trajectories can be calculated as follows:

" o diy

() = (0) + 2 lmalt = 10)
diy
Fl; |t:lo(t - tO)

(5.1)
is(t) = is(tO) +
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Fig. 5.10 Possible current trajectories on output of all possible standard voltage vectors (a) and
simplified equivalent circuit of the IM (b), ¢ possible current trajectories at instant t,

In the Eq. (5.1) the currents i} (#) and i;(#) are known. The numerical deriva-
tion of i, produces di /dt, and for calculation of di,/dt the following equation is
used:

dis(k) _ u(k) — uglt = 10)

~ 5.2
dt Ly (52)
with:
k 0,1 ..,7
u, one of the seven possible standard voltage vectors

u, (t =ty) the induced e.m.f. at instant #,
L, leakage inductance on the stator side
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The formula (5.2) follows from the Fig. 5.10b in which the stator resistance is
neglected. The induced e.m.f. is calculated by a machine model in the observer.
Depending on the chosen trajectory (k =0, 1, ..., 7) the following error vector:

Ai(1,k) = it (£) — is(1, k) (5.3)

can be calculated. For a detailed derivation the interested reader is referred to the
mentioned literature. Here only the final Eq. (5.4), which shows the different error
trajectories (Fig. 5.10c) in dependency on the chosen voltage vectors, is given.

|Ai 2 (2, k) = |Aig[* (t = to) + a1 (t — 10) + az(t — 10)* (5.4)

The error trajectories have the form of a parabola. From the Fig. 5.10a, c it can
be seen, that the firing pulses corresponding to the voltage vectors uy and us would
increase the error, while all others would decrease it.

But naturally only one of the five vectors ug ;36 can be used. The choice is
made according to one of the following criteria:

1. For slow change of current (stationary operation): In this case the actual vector
has to be kept within the tolerance circle as long as possible. In addition, the
number of necessary switchovers of the semiconductor switches should be as
small as possible. Therefore the following criterion is appropriate:

At(k)
n(k)

2. For fast change of current (dynamic operation): This case produces very fast
changes of the set point vector i}, and it requires that the actual vector i, follows
the set point vector exactly and as fast as possible. uy (k) will then be chosen
according to the following criterion:

At(k) = min (5.6)

= max (5.5)

For the example in Fig. 5.10c, using the first criterion would result in choosing
vectors u; or uz, whereas the second criterion yields vector u.

The predictive control is predominantly used in high power drives, where the
assumption of a negligible stator resistance is fulfilled widely and where a very
large rotor time constant allows the choice of a relatively large sampling period,
what is necessary because of the extensive required calculations.

The disadvantage of all nonlinear current control methods consists in the bad
current impression in the area of inverter over-modulation, resulting in a certain
orientation error and corresponding torque deviation.

(b) Linear current control

Relevant references for this method are (Mayer 1988; Meshkat and Persson
1984; Rowan 1987; Seifert 1986). The first classical version of linear current
controllers was the application of three or two separate PI-controllers to indepen-
dently control the phase currents (see Fig. 5.11). The sinusoidal output signals of
the PI controllers would be forwarded to pulse width modulators (PWM) and
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Fig. 5.11 Phase current PI controllers with pulse width modulation

compared with a sawtooth-shaped pulse sequence. The firing pulses are the
immediate result of this comparison.

The pulse width modulation was for long time the most widely used control
method for inverters. Like all methods in stator-fixed coordinates, the control
method shown in the Fig. 5.11 has the tracking error as a main disadvantage,
because the PI controllers permanently have to work in dynamic operation due to
the sinusoidal current set points. It was shown by (Rowan et al. 1987) that an
abrupt reduction of the PWM gain arises if the inverter control goes close to the
maximum voltage amplitude (transition mode). This effect of the control variable
limitation could not be taken into account effectively with this control method. An
essential improvement could be obtained by transforming the control algorithm into
the field synchronous coordinate system (Fig. 1.4) in which the variables to be
controlled represent DC quantities in stationary operation.

This control version is very widely applied and possesses the following
advantages:

1. The precision is considerably higher because the controller does not have to
work in dynamic operation, particularly the current phase error can be controlled
to zero.

2. The response near the transition mode is improved.

3. The decoupling of the current components is improved, and therefore a higher
accuracy of the field orientation is obtained.

This method however still has a number of disadvantages which shall be
mentioned here to motivate the development of improved algorithms in the
following chapters.
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1. The response time (or the dynamics) of the control strongly depends on the
stator leakage time constant. Therefore, a nearly undelayed current or torque
impression as ideally required by the speed control loop is hardly achievable.

2. The current components iy, and iy, are strongly coupled to each other in field
synchronous coordinates. Can an adequate decoupling be ensured?

3. Can the transfer characteristic of the current measuring technique actually used
(measurement of instantaneous values, integrating measurement) be taken into
account with this control concept effectively to guarantee a wide application
range?

4. Can the one-step delay of the control variable uy, calculated by PI controllers,
effectively be integrated into the control equations?

5. How does the controller react to the control variable limitation, and can
switching-off of the integral part (anti-reset wind up) be regarded as a sufficient
method in the PI controllers?

These questions will be answered in context with new designs of the current
controller in this chapter. However, it has already to be highlighted that this variant
represented a considerable progress to formerly applied methods.

A last method shall be mentioned yet, being a mixture between a linear and
nonlinear regulation. This is the method introduced in (Enjeti et al. 1988; Zhang
et al. 1988) with current modulus and current phase control (Fig. 5.12a). The
current modulus and current phase control loops are designed separately and
have in principle linear characteristics. The decoupling of the two quantities,
however, is of nonlinear nature. The references and the actual values are rectified
and then compared with each other. The current deviation is supplied to a PI
controller. The phase angles are determined and compared with each other by phase
detectors. The phase deviation has the form of a time interval during which a
counter counts. The output of the A/D converter, following the PI modulus con-
troller, and the output of the phase counter then build the address word for the
corresponding switching pattern stored in a 64 Kbytes EPROM table.

This control concept is mainly used in current source inverters with the control
system designed according to the signal diagrams shown in Fig. 5.12b, c (see Enjeti
et al. 1988).

(¢c) Closing remark to the overview

This chapter tried to give a summary of the known current control methods.
Where possible, the functional principle was outlined. In connection with this,
reference sources are included so that the possibility for background investigation is
always ensured.

Because of the wide variety of the known methods deviations to the originals are
conceivable. The aim of this summary was not to deliver a complete analysis about
all methods, but rather to give a stimulus for own study.
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Fig. 5.12 Structure of the concept using current modulus and current phase control (a): the
modulus control loop (b) and the phase or frequency control loop (c)

5.2 Environmental Conditions, Closed Loop Transfer
Function and Control Approach

The consideration of all environmental conditions is one of the most important tasks
of the controller design. Before the controller approach itself is developed these
conditions shall be discussed here. In addition, the final closed loop behaviour to be
achieved shall also be outlined.

(a) Environmental conditions

The first condition to be considered is the applied technique for capturing the
actual-values of current and speed. Basically, two main techniques exist: The
measurement of instantaneous values using A/D converters, and the integrating
measurement using V/f converters for the current and incremental encoder or
resolver for the speed. The difficulties connected to this were discussed extensively
in the Chap. 4, but how they influence the controller design will be subject of this
chapter.
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The second environmental condition is the one-step delayed output of the control
variable u, of the current controller. This delay must be taken into account in the
controller approach.

The rotor flux of the IM is, in comparison to other electrical quantities, a slowly
changing variable. The pole flux of the PMSM is constant. Therefore the fluxes can
be looked at as disturbance variables and shall be accounted for in the controller
approach separately.

(b) Closed loop response

The closed loop response is the intended transfer behaviour of the controlled
system. In the case of the stator current controller, it is characterized by the fol-
lowing properties:

1. The step rise time, characterizing the control dynamics, and
2. the decoupling between the components in steady-state and dynamic operation.

The ideal dynamic behaviour can be achieved by the so-called dead beat
response which means that the actual value will match the reference value after one
sampling period, or, if the one-step delay of the control output is taken into account,
after two sampling periods. Considering that for some systems working with very
short sampling times (e.g. T = 100 ps) this rise time of 2 x 100 ps would be too
small from the viewpoint of the required energy to drive the current, a rise time of
3 x 100 ps or 4 x 100 ps (meaning after three or four periods) could be more useful
in these cases. The dynamics does not become worse because a rise time of 300 or
400 ps (still much smaller then 1 ms) can only be wished for with conventional PI
controllers. To be able to express the demanded behaviour in general terms we start
from a closed loop response with n sampling periods (Fig. 5.13) for the SISO
process.

The discrete control by means of micro computer allows for an exact tracking of
the actual value so that it can reach the set point after n sampling periods exactly
and without overshots. Such a controller is conceived, as well known, for finite
adjustment time (FAT response). Considering the one-step delay of the control
variable the FAT will then be exact (n + 1) periods. Therefore, the approach for the
output signal can be written in the z domain as follows (Fig. 5.13):

s(t)
- Set point
i(t)
Response
s = 4
et — iaad -

Fig. 5.13 Set point signal and its response of a SISO process controlled with dead-beat behaviour
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00 Cco) =
i(z) = Z ez’ with S ..o, =c=51 (k=1...n) (5.7)
v=0 Cnt1 = Cpp2 = =Cx =1

s(z) = — (5.9)

is considered as characteristical excitation signal the general transfer function is
obtained as:

i(z) = [Z(HU +(1-z" anv — lz"] s(z) (5.10)

y=1

for the controlled SISO process with FAT response (Fig. 5.13). The closed loop
response of the vectorial stator current control is obtained from Eq. (5.10) to:

n

i(z) = [Z—WU +(1-z71h Zv ; lz—"l i'(2) (5.11)

The closed loop response (5.11) means,

1. that the dynamic as well as the static decoupling between the current compo-
nents i;; and iy, will be guaranteed, because the transfer matrix is the unity
matrix or a diagonal matrix respectively, and

2. that the FAT response with FAT = (n + 1) sampling periods will result for the
decoupled current components.

It will be shown later that a FAT response with a higher step number is always
connected with a complete change of the controller structure or with an increased
computing time. It is therefore impractical to increase the number of steps exag-
geratedly. The investigation has shown that a FAT response with FAT =2, 3 or 4
periods, referring to the computation effort which must be handled during a very
short sampling period (e.g. 100-200 ps), would be realistic and practicable.
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Therefore, only controller designs for these three cases are offered later on. The
reference transfer functions or the closed loop response are obtained as follows for:

1. n=1: FAT =n + 1 = 2 (dead beat behaviour)

ij(z) =777 i(2) (5.12)
2.n=2.FAT=n+1=3
1
i(0) =5 (7 +27) () (5.13)
3.0=3:FAT=n+1=4
1
i(2) =3 (2427 +27Y) i) (5.14)

(c) Controller approach

It was tried in the Sect. 3.5 to agree on a common representation for the current
control processes for IM and PMSM, resulting in the general process models (3.86)
or (3.87) and the block structure in the Fig. 3.16. The equations represent the
control process both in the field synchronous and in the stator fixed coordinate
system. They are repeated here in favor of a better overview.

i;(k+ 1) = @i (k) + Huy(k) + h (k) (5.15)
In z domain:
ziy(z) = @is(z) + Huy(z) + h(z) (5.16)

Using these equations the controller design shall be carried out first in general
and then applied for concrete cases. Under the assumption that y is the actual
controller output quantity the following general controller approach arises.

w (k) = H'[y(k — 1) —h (k)] or

_ (5.17)
u(k+1)=H "[y(k) —hy(k +1)]

The term y(k — 1) takes into account by the time shift (k — 1), that in the current
calculation the value of the controller output quantity y calculated in the period
before is used. With that the one-step delayed output of the control variable is
included in the approach. The 2nd term with —hV(k) compensates the flux
dependent part. After inserting Eq. (5.17) into the Eq. (5.15) this immediately
becomes recognizable, and the compensated general current process model (5.18)
arises for the IM as well as the PMSM:
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PB(k+1)

(From flux model)

(From controller)

Controller side ; Motor side

Fig. 5.14 General compensated current process model of the IM and PMSM

is(k+1)=Di(k) +yk—1) (5.18)
In the z domain the following equation holds:
1 - ®]is(z) =z ' y(2) (5.19)

Figure 5.14 illustrates the compensated current process model which serves as a
starting point subsequently for all controller designs. In the following the
methodical procedure will always be to address the general design first. After that
the design will be specified to the concrete case: IM or PMSM, in field synchronous
or in stator fixed coordinates. For this purpose the designs are always represented
both in the form of equations and by circuit diagrams so that programming will
be made easier.

5.3 Design of a Current Vector Controller with Dead-Beat
Behaviour

The designs in this chapter were introduced repeatedly in different papers (Quang
1991, 1993a; 19964, b).

5.3.1 Design of a Current Vector Controller with Dead-Beat
Behaviour with Instantaneous Value Measurement
of the Current Actual-Values

Figure 5.15 shows the principle block structure of the current vector controller with
instantaneous value measurement for the example of the measuring strategy in
Fig. 4.1. The controller equation is for this case:
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¥(2) = R/ [i2(2) — (2] (5.20)
if(z) = Reference or set point vector of the current

After substituting Eq. (5.20) into the Eq. (5.19) the following transfer function of
the current controlled IM or PMSM can be obtained:

(@) = ' (I-®+2'R] Ri(2) (5.21)

The approach (5.12) is valid for the closed loop response and respectively for the
reference transfer function. Equation (5.12) will be identical with (5.21), if the
following equation holds for R;:

R=—— (5.22)

The transfer function (5.12) illustrates by the diagonal matrix whose elements
are z > a both statically and dynamically good decoupling between the current
components. The controller Ry (5.22) in Fig. 5.15 shows that a decoupling network
in the classical presentation (Fig. 1.4) can be abandoned.

With the current control error:

X (2) = 1{(2) —is(2) (5.23)
it will be obtained:
y(z) = Ry x,,(2) (5.24)
In the time domain the following controller equation results from Eq. (5.22):

(k) = %, (k) — ®x,,(k — 1) + y(k — 2) (5.25)

B(k+1) (k)

(From flux model)

Controller side

Fig. 5.15 Block structure of the current vector controller for IM or PMSM
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After inserting Eq. (5.25) into the Eq. (5.17) the control variable and respectively
the stator voltage, which must be applied on the motor by the vector modulation, is
obtained.

w(k+1)=H" [xw(k) —Ox,(k—1)+yk—2)—hy(k+1)] (526

With the Eq. (5.26) the design is complete. Two notes, however, are still nec-
essary here.

1. The estimated rotor flux lTl(k + 1) (by Egs. 3.51, 3.55; in detail cf. Sect. 4.4) is
used to compensate its disturbance effect. It is constant in the constant flux area
and perhaps can be neglected in the practical implementation. The implicit I part
in the controller is able to compensate for the missing flux compensation.
However, the slowly variable flux in the field weakening area is exposed to
permanent changes. It is therefore more advantageous to include the compen-
sation into the Eq. (5.26).

2. The voltage or the control variable u, will be calculated by processing the
Eq. (5.26) always one sampling period ahead. With that the delay of the control
variable ug by one sampling period is taken into account.

(a) Use of the controller for the IM in field synchronous coordinates
To be able to use the design (5.22) and respectively the Eq. (5.26), the following
matrix elements must be replaced corresponding to the models derived in Chap. 3:

® by @, Hby H, and h by @/,

From Eq. (3.54) it will be obtained:

o ®,;, @ =7 (TL+1;_G> os T
T ey @y (1, 1= (5.27)
7(A)ST 1*; i‘i’ Tr>
_[os @] | 5 Kol
o= on) - [%fwr e 29
hiy o 0 o 0
H, = [ . } = |k (5.29)
1 0 Ay 0 JLL\

If the matrix elements from (5.27), (5.28) and (5.29) are used in the Eq. (5.26)
now, the following controller equations will be obtained considering that the cross
component i, of the rotor flux is zero because of an exact field orientation:
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ugg(k + 1) = hy! [xwd(k) Dy xyg(k — 1) — Do xyg(k — 1)
+yalk —2) — Diz ly(k+ 1)}

tgg(k + 1) = hi [xuq(k) + @2 xya(k — 1) — Oyy x40k — 1)
+yglk —2) + Oua gk + )}

(5.30)

Because of the necessary storage of the temporary variable y through several
sampling periods a direct programming of the Eq. (5.30) is impractical. The
following sequence is more advantageous:

1. Calculation of the vector y(k) using (5.25):

Ya(k) = Xya(k) — @11 xya(k = 1) = Praxg(k — 1) + ya(k — 2) (5.31)
Yg(k) = Xuq (k) + @12 Xya(k — 1) = @1y xig(k — 1) + y4(k — 2) '
2. Then calculation of the stator voltage using (5.17):
salk+ 1) = ! [ya(k) = @13 9 (k + 1)]
(5.32)

sy (k + 1) = i [ () + @)y (ke + 1)

Now the Egs. (5.31) and (5.32) can be used for programming provided that the axis-
related deviations x,,4, X,,4, and the accumulated quantity y still must be corrected at
stator voltage limitation to avoid instabilities. Section 5.5 will deal with the problem
of the control variable limitation later in detail.

(b) Use of the controller for the IM instator-fixed coordinates
®, H and h are replaced by ®},, H] and @], from the Eq. (3.50):

T(1 l—c
10 o) 0 1_1(L+1_) '
a \ T T,
s | ®i3z Du| l;ang ol
(I)lz - |:q)14 (I)13:| - [—%wT 1775% (534)

s hll 0 _ 671:T O
wofy o[ e
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If the matrix elements of (5.33), (5.34) and (5.35) are inserted into the Eq. (5.26),
then the following voltage components in off coordinates will be obtained.

Usy(k + 1) = hi [ty (k) — @y Xy (k — 1) + yy (k — 2)
~ O3 Y, (k4 1) = Dra )k + 1)

up(k+ 1) = Iy [xup(k) — @ryxp(k — 1) + yp(k - 2)
+ @, (k4 1) — D3 ‘//;{ﬁ(k + 1)}

(5.36)

The next steps are again useful to support programming:

1. Calculation of the vector y(k) according to (5.25):

{ya(k) = Xyo (k) — @1 Xy (k — 1) +y5(k — 2) (5.37)

yp(k) = xup(k) — @iy xwp(k — 1) +yp(k —2)

2. Then the calculation of the voltage using (5.17):

{y (k) — (1)13 lp;a(k + 1) - (1)14 l//fﬁ(k + 1):|

Uy (k+1) ”
[ (8) + @1 (e + 1) = D13 gk + 1)

hi!
ugp(k +1) = hy!

(5.38)

(c) Use of the controller for the PMSM in field synchronous coordinates

Instead of @, H and h, the matrices (DSfMa HSfM and h from Egs. (3.71) and (3.72)
are used for the PMSM:

L
d,, D, l—Tl_ waﬁ
o — _ o sd 5.39
M [q)21 cl)zz} [—ws Ti—;‘ - TL/ ( )
T
gm0 g O, [0 [0
HSM_|:0 Im}_[o LL] h—{_% =1, (5.40)

After replacing the matrix elements of (5.39), (5.40), the dg components of the
stator voltage result to:

ﬁl [de(k) — @y xwd(k - 1) — @y qu(k - 1) +yd(k - 2)]
2 [ () — @2 0k — 1) = @30, (k = 1) + 34k = 2) — oy
(5.41)

and the following programming equations will be obtained:
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1. y(k) is calculated by using (5.25):

{)’d(k) = Xy (k) — @11 xya(k — 1) — Do x50 (k — 1) + ya(k —2) (5.42)
Yq(k) = Xyuq(k) — @21 X0a(k — 1) — P Xy (k — 1) + yy(k — 2) '

2. then the voltage calculation using (5.17) follows:

{ usa(k + 1) = hylya(k) (5.43)

g (k + 1) = hy, [)’tl(k) — 'rbp}

5.3.2 Design of a Current Vector Controller with Dead-Beat
Behaviour for Integrating Measurement of the Current
Actual-Values

In principle the process Eqs. (5.18) and (5.19) are only valid for processes with
instantaneous value measurement of the current values. In case of an integrating
measurement (cf. Sect. 4.1) the measuring equipment is modeled by using the
averaging function:

i(k) =

s

[iv(k) + iv(k - 1)} (544)

N =

raised index M: average value

and the result i (k) is available for the control as actual value of the stator current.
The final process equation in case of integrating measurement results from (5.44) by
using (5.18):

1
iy(k—%l) :(I)iﬁl(k)—f-i[y(k—l)—i—y(k—Z)] (5.45)
and in the z domain:

21 - @i (z) =

s

% ' +27%]y(2) (5.46)

The controller equation starts from:

(@) =R [i;(z) — i’ (2)] (5.47)
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After eliminating y(z) in (5.46) and (5.47) we obtain the transfer function:
-1

(z'+27?) z1—<b+%(z*1+z*2) R/| R/ii(2) (5.48)

The approach for the closed loop response and respectively the reference transfer
function is:

s

iV(z) = % (z7+27)i(z) (549)

This is equivalent to a dead beat response. The Eqs. (5.48) and (5.49) are
identical, if the following controller is chosen:

I-z7'®
RR=—7—"——— 5.50
T+ ) (5-50)
Equation (5.50) looks as follows in the time domain:
1
k) =x,(k) —Dx,(k—1)+=[y(k—2 k—3
YO =% 0) = @xu (k= D)o k=2 Hvk -3

X, (k) = i; (k) — ' (k)

The derivation of the equations for the controller application in Fig. 5.16 can
similarly be carried out—for the cases IM or PMSM, in field synchronous or stator
fixed coordinates—Iike in the Sect. 5.3.1. For the problem of the control variable
limitation it is again referred to the Sect. 5.5.

P(k+1)

(From flux model)

H'IHZ"IﬂI H

Controller side | Motor side

Fig. 5.16 Block structure of the current vector controller for IM or PMSM with integrating
measurement
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5.3.3 Design of a Current Vector Controller with Finite
Adjustment Time

The controllers introduced in this chapter are derived like in Sect. 5.3.1 from the
common theoretical approach (5.11) for the closed loop response.

It was shown repeatedly in the literature references mentioned at the beginning
of the Sect. 5.3 that the fastest dynamics can be achieved by a dead beat design.
This approach provides a virtually undelayed torque impression which is particu-
larly advantageous for the conception of superimposed control loops for mechanical
systems (speed, position). Step response times of under 1 ms were reached. The
application of fast microprocessors (digital signal processors, high performance
microcontrollers) and the tendency toward higher pulse frequencies (10 kHz and
more) however result in yet faster sampling of the current control (7= 100-200 ps).
If the current control was prepared for dead beat behaviour, the inverter could not
produce the voltage over time areas necessary to drive the required current step
amplitudes (at dynamic processes like magnetization, start up or speed reversal)
within the very short demanded rise times of 2 %X 100 ps ... 2 x 200 us = 200-
400 ps. This is extremely critical for inverters with small control reserve (low DC
link voltage). It becomes critical as well if the drive is operated at the voltage limit
and dynamic processes (e.g. speed reversal out of the field weakening range) take
place simultaneously. Preferably, at these small sampling times and with fast
processors like DSP’s the current control is not adjusted to dead beat response any
more, but to FAT behaviour with more than 2 steps response time. As indicated in
the Sect. 5.2 it would be realistic to realize the FAT behaviour with 3 or 4 sampling
steps.

For instantaneous value measuring of the stator currents the transfer function
(5.21) results for the current-controlled IM in dg coordinates. The reference transfer
functions for the recommended step number are given in (5.13) and (5.14).
Equation (5.21) is identical with either (5.13) or (5.14), if for:

1. n =2 (FAT = n + 1 = 3) the following controller:

1(1+zHY[I-z'D
R, == , and 5.52
T2 1124 )) (5:52)

2. n =3 (FAT =n + 1 = 4) the following controller:

L(l+z'+z2)[1-z 'O
R, =~ 5.53
) 1 -1z 2+23 4279 (5.33)

is valid. The controller designs (5.52) and (5.53) can be used—regarding the
available processing capacity—almost without problems by application of
digital signal processors with a sampling period of 100 ps, including necessary
functions like the vector modulation, the coordinate transformation, the flux
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model or flux observer and the feedback value processing. The outlined design
was carried out assuming an instantaneous value measurement of the stator
current.

The current driving voltage over time area is—in comparison with the dead
beat design—the same, but distributed over several steps. With that the control
voltage ug rarely goes into the limitation. This property is seen as an important
advantage, especially for inverters with small control reserve (low DC voltage).
This also takes effect particularly if the inverter is operated at the limits of
the control reserve (e.g. in the field weakening area or at full load). The system
stability is fundamentally improved while entering into and recovering from
limitation.

5.4 Design of a Current State Space Controller with
Dead-Beat Behaviour

The main advantage of the current vector regulators introduced in the Sects. 5.3.1
and 5.3.3 is primarily the practically proven ruggedness when applied to machines
whose data are known only inaccurately or calculated only from the name plate.
This chapter on the other hand introduces a design in the state space which can
produce superior qualities with respect to smooth running and dynamical or
decoupling behaviour at higher stator frequencies if exact machine data are avail-
able. This allows the particularly advantageous use of the new controller, called the
current state controller from now on (Fig. 5.17), in precision drives.

P(k+1)

(From flux model)

HHz Il—.lu‘"(k] H

Motor side

Controller side

i, (%)

Fig. 5.17 Block structure of the current state controller with pre-filter matrix V and feedback
matrix K
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The design starts out as usual from the general approach (5.17) and from the
compensated process model (5.18) or (5.19). The controller equation can be written
in the z domain as:

¥(2) = Vi;(z) — Ki,(2) (5.54)

The equation of the closed loop system is obtained after inserting the Eq. (5.54)
into (5.19):

21— (® - z7'K)]is(z) =z 'Vii(2) (5.55)
Using Eq. (5.55), the state controller can be designed now, and it has to

be noticed that

1. the feedback matrix K changes the pole positions of the closed loop system, and
is therefore decisive for dynamics and stability. With that, different design
strategies, such as the design

e on dead beat behaviour or
e on well damped characteristic, can be derived, and

2. the pre-filter matrix V serves the adjustment of the demanded working point,
and therefore is responsible for the stationary transfer characteristic.

This means with respect to the decoupling between the torque and flux forming
current components that K determines the dynamic and V the static decoupling
propetrties.

5.4.1 Feedback Matrix K

By using (5.55) the characteristic equation of the closed loop system is:
det [z1— (@ -z 'K)] =0 (5.56)

The polynomial on the left side of (5.56) has the following general form:

det[zI— (@ —z'K)] = iaizi (5.57)
i=0

The system has two poles. To achieve dead beat behaviour, both poles must be
located (see e.g. Follinger 1982) in the coordinate origin. This means that

a;=0 for i#£2; a =1
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Following the Cayley-Hamilton theorem (cf. Follinger 1982; Isermann 1987) the
matrix (® — z~'K) fulfils its own characteristic equation. From that, we obtain:

[®—z'K]’=0 or [®@—2z'K]=0 (5.58)
and then:
K=z® (5.39)

Two remarks shall follow to interpret this result:

1. Equation (5.59) contains a z operator, which means that a prediction (one sam-
pling period in advance) of the actual-value of the stator current is necessary.

2. The dead beat behaviour would cause large control amplitudes (as explained in
the Sect. 5.3.3) at set point steps, and from this, strong control movements for
stochastically disturbed control variables. Therefore the design (5.59) could
have an unfavourable effect for inverters with small control reserve (low DC
link voltage). A FAT behaviour according to the Sect. 5.3.3 would be sensible
and useful. The application of this reference transfer function in the state space,
however, is not possible. A behaviour prepared for a good damping is, on the
other hand, practicable. The poles then should not be assigned directly in the
coordinate origin but in its near vicinity.

det [zI— (® -z 'K)] = (z—z1) with z; £0 (5.60)
From (5.60) it will be obtained:

K=z[®—z1] (5.61)

For practical realization it suffices to determine the satisfactory behaviour by
varying z; experimentally without having to exaggerate the theory here further.

5.4.2 Pre-filter Matrix V

A stationary exact transfer characteristic and good decoupling between the two
current components can be expected if the following is valid:

i(k+ 1) =i, (k) =i’ (k) for k — oo
or:

is(z) =i(z) for z— 1
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It follows from (5.55):
V=1-[®-K] (5.62)

After using the matrix K like (5.59) or (5.61) it will be obtained:

1. For the dead beat behaviour:
vV=I (5.63)
2. For the design with good damping:

V=(1-2z)I (5.64)

With K and V calculated by Egs. (5.59) and (5.63) or (5.61) and (5.64) we
obtain from (5.55) the following transfer function of the controlled process:

1. For the dead beat behaviour:
i(z) =27 (2) (5.65)

2. For the design with good damping:
l—z

ii(2) = = ! (z) (5.66)

The two state space designs point to a good dynamic decoupling judging from
their diagonal transfer matrices. In contrast to the current vector controller (cf.
Sect. 5.3) however, a stationary error has always to be expected because of the
missing integral term. This stationary error, partly caused by the first order
approximation of the discrete state models and partly caused by parameter devia-
tions, shall be eliminated by introducing an additional integral term. Because the
current components are dynamically and statically decoupled by the controller
design with K and V, the elimination of the stationary error or deviation can be
realized separately for every single current component. Therefore the control
structure is extended by two additional integral controllers (Fig. 5.18).

B(k+1) (k)

(From flux model)

Controller side

Fig. 5.18 Current state space control with two additional integral controllers
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The equation of the additional integral controller R; will be:

1—z! = Vi Ai, or
(1-z)wnk) =V () (5.67)
yi(k) = V1 ALy (k) + yy (k= 1)

Vi, Controller gain
Ai, Stationary current error
y1  Output variable of the integral controller

The controller output variables y; have the task to eliminate the stationary errors
Ai; of the stator current. y; and Ai; also fulfill the process Eqs. (5.18) and (5.19):

I- ®]Aij(z) =z or
[z . | Ai(z) = 2 y.I<Z) (5.68)
Aig(k + 1) = @ Aig(k) + yp(k — 1)
Since an effective decoupling between the current components is already ensured
by the basic structure of the current state space control, the Egs. (5.67) and (5.68)
can be re-written in component notation as follows?:

V
Controller :  y 4(z) = l_li‘l’zcilAixd_q(z)
. (5.69)
Process : Aigg 4(z) = W}’ld.q(Z)

Equation (5.69) is substituted into the closed loop transfer function to calculate
the gain factors V;,;, which are usually chosen identical. Because these factors
correspond to the ratio 7/T}, (T is in comparison with the sampling time T a very
big integration time), it suffices in the practice to choose for these factors after the
normalizing (about normalizing: Sect. 12.1) a value of approx. 0.05-0.25.

An even better choice would be to feed the integral controller with the current
feedback not directly but through a model of the closed loop control system. This
would prevent the controller from being invoked at every set point change.

The reader’s attention was already drawn to the z operator in Egs. (5.59), (5.61).
The z operator requires a prediction of the stator current. With the actually realized
stator voltage, the estimated rotor flux and the measured stator current this pre-
diction can be simply carried out according to the Eq. (3.74).

(k4 1) = ®ig(k) + Huy (k) + h (k) (5.70)
Equation (5.70) has to be adapted to the usage of IM or PMSM and in which

coordinate system the motor will be controlled. The complete structure of the
current state space control is represented in the Fig. 5.19.

2Caution: Instead of @, @, is used for ¢ axis in the case PMSM.
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P(k+1)

(From flux model)

u,(k)

H! PR |

Fig. 5.19 Detailed block structure of the current state space controller for the IM and PMSM

5.5 Treatment of the Limitation of Control Variables

Generally, the control variable or the stator voltage is limited by the DC
link voltage. At uncertain time, e.g. because of a dynamic transient, the current
controller requires excessive amplitudes of the control variable which, however,
cannot be provided by the inverter. So the control variable hits its maximum
consuming all available control reserve. After the current has reached its reference
the control variable still stays on its maximum until the integral part has decayed. In
this process, oscillations or vibrations of the controlled variable around limitation
may develop.

The described process is known and understandable. It is also known that these
difficulties can be normally solved by switching off the integral part (anti-reset-
windup) once the control variable goes into the limitation. Regarding the new
current controllers this strategy could be applied for the additional integral parts of
the current state space controller because these parts do obviously exist separately.
What would, however, happen with the current vector controllers? The integral part
is here not recognizable as part of the design in its own right. Furthermore, being a
rather empirical method, turning-off the integrating part does not fit into a fully
consistent design and leaves a number of open questions as to the optimal instants
to disable and re-enable integration. A better and consistent solution can be pro-
vided by reverse-correction of the control deviation (cf. Schonfeld et al. 1985)
which is elaborated on further in this chapter.

Instead of measuring the stator voltage to detect when entering limitation, the
stator voltage can be limited intentionally to the maximum modulation ratio.

From the Chap. 2 is known, that the maximum usable stator voltage lies within a
hexagon (Fig. 5.20) and furthermore, that only the limitation of the amplitude of
the voltage vector is of importance. However, the stator voltage actually exists in
components, us; and uy, or uy, and u.. That means:

The voltage limitation must be split into components as well. Suitable methods for this have
to be worked out for the chosen coordinate system.
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(b)

Fig. 5.20 Limitation of control variable: a Voltage vector ug with arbitrary phase angle 3, and
b the maximum modulation ratio |uy|,,, of inverter

The voltage limitation itself is completed with its splitting into components. But
as mentioned above:

A reverse correction strategy, which prevents the vibrations or oscillations caused by the
implicitly existing integral part, must be worked out.

Figure 5.20a has pointed to the possibilities of setting the limitation boundaries
on the inner circle touched by the hexagon or on the outer hexagon. The limitation
most simply works with the circle, but a loss of control reserve (the area between
hexagon and circle) would be the result. The phase angle 3, of the stator voltage
then is:

¥, = ¥y, + arctan (@> (5.71)
Usd

With the help of (5.71) and Fig. 5.20b the maximum amplitude of the voltage
vector or the maximum modulation ratio (at normalization with 2Upc/3)
depending on the phase angle can be found as’:

V3 1

|us‘max: 7 sin (')/ T %) (572)

3 After normalizing with 2Up /3 the voltage is formulated as modulation ratio here; the angle vy is
defined in Fig. 5.20b.
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The limitation on the outer hexagon according to (5.72) yields the best actuator
utilization with respect to deliverable control voltage, however, causes an additional
third harmonic in the current. This is unwanted in the stationary operation where
the field and torque forming components represent DC quantities. It is therefore
recommended for high-quality servo drives to limit on the inner circle. The max-
imum modulation ratio then is:

V3

‘us|max: 7

(5.73)

In principle the limitation can be implemented on one of the three following
levels (Fig. 5.21).

1. Level of dq components: This is the mostly applied, most effective variant for the
limitation. The decoupling between the dg axes or between torque formation
and magnetization can be ensured largely with a correct splitting strategy
(cf. Sect. 5.5.1).

2. Level of aff components: The application of this variant is only possible if the
torque impression is implemented using a current controller in the stator-fixed
coordinate system. Unfortunately, the decoupling between torque formation and
magnetization cannot be ensured any more.

3. Level of switching times: This variant is rarely used. The decoupling is not
ensured any more. For low-quality drives, where microprocessor power (for
splitting and reverse correction) is missing and/or slow semiconductor compo-
nents are used, the use of this variant could be interesting.

The following chapters only deal with the limitation at the level of the dg
coordinate system.

Fig. 5.21 Possible levels for Vector 3 I_ -
the realization of the control modulation
variable limitation Usa | Usa} L
o= ap = M
. g B

sa_1 N dg \J %8

)

]
Field Stator-fixed Time
coordinates coordinates level M
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5.5.1 Splitting Strategy at Voltage Limitation

Geometrically the voltage limitation is equivalent to shortening the voltage
amplitude. For non-reactive loads, i.e. current and voltage have the same sign, the
current gets smaller at reduced voltage. For reactive, inductive/capacitive or mixed
(ohmic-inductive, ohmic-capacitive) loads—i.e. current and voltage can have dif-
ferent signs—a voltage shortening would be able to cause the current to increase
and duly cause the system to become instable. It is known that u,; and i,; as well as
us, and i, very often have different signs which indicate the operating state (motor,
generator) of the system.

These introductory words make already clear that a splitting strategy, which ensures the
system stability, must be able to recognize priorities for the coordinate axes depending on
the operating state and then perform the limit splitting according to the geometric
possibilities.

(a) Geometric possibilities for limitation

From geometrical point of view and depending on whether the outer hexagon or
the inner circle is chosen as the limitation curve, one of the three following
possibilities (cf. Fig. 5.22) can be used for the splitting:

1. ugy is cut down, u,, will be kept or has priority:
Usgr = sign(tgg)+/ |ux|ﬁwx—u§q; Ugqr = Usg (5.74)

2. uyy and ug, are truncated in the same proportion (called: the phase correct
limitation):

S 1 ma U .
Usdr = u3d¢§ Usqgr = usqm (575>

Fig. 5.22 Geometric
possibilities for limitation
splitting / only d component,
or 2d and g component in the
same proportion, or 3 only

g component will be truncated
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3. uy, is cut down, ug, will be kept or has priority:

Usar = Usq; Usqr = sign (usq) |us|12nax_u§d (576)

Figure 5.22 clarifies that with the inner circle as limitation curve the value of the
maximum modulation ratio |uy|,,,, is always given according to (5.73). Unlike this,
|u|,. Using the outer hexagon can adopt different values (cf. Fig. 5.22) for the
same reference voltage vector, whose complex calculation cannot be handled by
every microprocessor and therefore is rarely used. For this reason the limitation on
the hexagon will not be further followed here. The Egs. (5.74) and (5.76) point to
the possible case in which even the component with priority can exceed the value of
|ug] In this case the component with priority must also be shortened.

max*

(b) Splitting strategy by Quang (1994)
The strategy starts out from an analysis of the possible operating states of the
electrical machine.
Asynchronous drive using IM
In stationary operation the following system of equations is valid for the stator
voltage:
Ugg = Ryisq — ws0 L isq
{ Usqg = R; isq + wy Ly iy (577)

The operating states which lead to the voltage limitation are always connected to
higher frequencies so that resistive voltage drops are negligible in the Eq. (5.77).
Therefore they can be reduced to:

Ugqg = —w; 0 Ly iy (5.78)
Usg R Wy Ly isq ’

Equation (5.78) obviously points to a static coupling between d and g axes and
implies that in the area of higher frequencies (where limitations often take place) the
components uy; and uy, usually have to provide the greater part for overcom-
ing this coupling than for keeping its own current component. The following facts
can be stated in evaluation of (5.78):

e The field forming current iy, always has positive sign in stationary operation.
(Remark: The field forming current i;; could accept negative sign only for
feedback-controlled flux for a short time).

e The product my; x wor iy X wy is always positive in motor operation. lLe. i
and w, always have the same sign. This means, that:

R

= uzy < 0, or uz; and iz, have different signs, and
= Uy, and i,, have the same sign.
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e The product my % wg or iy, X o, is always negative in generator operation.
Le. iy, and w, always have different signs. This means, that:

= u,y > 0, or uy, and iy, have the same sign, and
= uy, and iy, have different signs.

The above short analysis says, that:

In motor operation the component u,,; and

in generator operation the component u,,

will get priority. If the priority component already exceeds the value |ugmax, SO
approx. 95 % of |ug|max shall be assigned to this component.

Synchronous drive using PMSM
The following relation will be arrived at for the synchronous drive in station-
ary operation similar to the case of the asynchronous drive:

Usg = Ryizq — g L.vq isq

. . 5.79
Usqg = R; Lsq + wy Ly (lsd + LW_‘[;) ( )

or

Usqg = — Wy qu isq

Usqg = Wy Ly <isd + lL/I_Z) (580>

In the two above equations, the term (i + l//p Ly; ), in which the current iy,
assumes the value zero in the basic operation range and negative values only in the
field weakening range, represents the substitute magnetization current with always
positive values. Equation (5.80) can be interpreted now similarly to (5.78) of the IM
so that the following conclusions can be drawn:

e The product my % wr iy, X w, is always positive in motor operation. i is
either zero or negative. This means, that:

= U,y < 0, or uy, and iy; have the same sign, and
= uy, and iy, have the same sign.

e The product my; * w or isy X Wy is always negative in generator operation. iz is
either zero or negative. This means, that:

= u,; > 0, or uy, and iy; have different signs, and
= uy, and iy, have different signs.

The analysis has shown the clear difference between the IM and the PMSM:
While in the motor operation with the IM the component u,; shall get the priority

obviously, the priority must be assigned to none of the axis voltages in the case
PMSM.
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o[> ],

sign(wv) = sign(iw) ?

No (motor operation) Yes (generator operation)

leal> 95%|u ], ? |, |> 95%[u ], 2

No Yes No Yes

Usg, = Uy Uygy = Sign(Uyy). Uygr = Uy, Uy, = sign(uw).

Usgr = Sig”(”x(/)' (95%|u\|max> Usgr = Sign(”,u[)' (gs%lu‘l ‘ )
|u}\_ im —u’, Uy = sign(uw). |“x|§m,x - ufr]r Uy, = sign(u”,).

[ = o[ =

Fig. 5.23 Algorithm for voltage limitation by (Quang 1994) (index r: actually realized)

The generator operation with PMSM seems to be more problematic than with IM
because both couples u,, iy and uy,, iy, have different signs. Also this case can
be realized exactly as for the IM: Le. priority for u,,. Amplification of || for
a short time after shortening |u,,| only weakens the permanent magnetization which
in turn would increase the control reserve, and the limitation would disappear. With
these considerations a simple algorithm outlined in Fig. 5.23 can be worked out for
both types of machines.

(c) Splitting strategy by (Dittrich 1998)

The basic idea of this strategy is ensure decoupling between rotor flux and torque
in large-signal behaviour. To achieve this, an intervention in form of a limitation
should as much as possible only effect the voltage component, which has caused the
maximum voltage vector to exceed its limit, and leave the other component unin-
fluenced. This concept presumes that such a separation of causes is actually pos-
sible and that the voltage vector can be reduced to its maximum value by reduction
of one component only. The context is generally more complex and requires a
detailed analysis, in particular, if the controlled system must be operated for longer
time at the limit of the control variable.

For splitting the voltage limitation after (Dittrich 1998) two questions must be
answered:

1. Which component obtains the priority, i.e. which component must remain as
unchanged as possible?
2. Which value does the other component get?
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The algorithm which is found and realized eventually answers these questions as
follows:

Priority decision

Stability considerations are decisive. If current and voltage have different signs
in one axis, a limitation of the voltage leads to a temporarily unstable and
uncontrollable behavior. If current and voltage signs are different in one axis, this
axis must get the priority. If the signs are different in both axes, the axis with the
larger current amplitude gets the priority, or the phase correct limitation (using
Eq. (5.75)) is applied. Equal or different signs in the g axis are equivalent to motor
or generator operation.

Voltage in the non-priority axis

Two cases have to be distinguished. If the priority component is smaller than the
maximum voltage, i.e. the limitation was caused by the non-priority component
essentially, the non-priority component results simply from the geometric difference
between the maximum voltage and the priority component. In the other case, the
non-priority component is assigned the share from the cross-coupling of the current
components to support the stationary decoupling of the current components also at
control variable limitation.

Figure 5.24 shows the described algorithm in the overview. A similar approach
was attended in (Wiesing 1994).

5.5.2 Correction Strategy at Voltage Limitation

The basic idea of the reverse correction is a correction of the control error X, to
prevent the windup-integration of the integral part which implicitly exists in the
control algorithm.

o[> fu],,,

[sign(usd) = sign(isd)]\/ﬂsign(%) = sign(i:q) /\(i:d <1,5i, )}

Yes No

el > o0, 2 s > ], 2

Yes No Yes No

Uggy = oLwi, Uy, = sign (uw). Usgr == O-L.Yw.\'iSL] Usar = Sig"(uxd)'

u,, = sign(u,). = si ) 2 2
Ju, [, - w B
Uelan = Hoar (. = e

Fig. 5.24 Algorithm for voltage limitation by (Dittrich 1998)
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To derive—the design in the Sect. 5.3.1 serves as an example—the formula for
the reverse correction, the Eq. (5.17) is re-written as follows:

y(k) = Huy(k + 1) + h(k + 1) (5.81)

Assuming a largely constant rotor flux the following result will be obtained after
substituting the Egs. (5.81) into (5.25):

Hu, (k) = x,,(k — 1) — ®x,,(k — 2) + Hu,(k — 2) (5.82)

Assumed that the voltage goes into the limitation in time instant (k), i.e. instead
of the voltage uy(k) to be realized only ug(k) was realized, (5.82) turns into the
Eq. (5.83).

Hu,, (k) = x,(k — 1) — ®x,(k — 2) + Huy(k — 2) (5.83)

x,,c Control errors corrected
u,, Voltage actually realized after limitation

The subtraction of the Egs. (5.82) and (5.83) produces for the corrected
deviation:

Xpe(k — 1) = x(k — 1) — H [u, (k) — (k)] (5.84)

Also the accumulated values y according to the Eq. (5.25) have to be corrected
according to the Eq. (5.17) with the correct voltage values:

ve(k) = Hu, (k+ 1) + hp(k + 1) (5.85)

Xiod (k l— ]) I,‘ldf,.{k - l}

2
- ’
L 3 l C
Xwd
u)s ‘;E @12 3
i;q x_u.!q 3 i Li")_-@ us‘z [-0‘57522\‘} uﬁ_‘?’
o 11 0 i

|
Xug(k—1)

Fugh(k =1}~ ==

&
=
O

Fig. 5.25 Complete structure of the current vector controller with dead-beat-behaviour
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Fig. 5.26 Program flowchart i (k), (k)
of the current vector '
contrqller with dead beat Correction of the old control
behaviour difference: Eq. (5.84)

Calculation of the new control
difference: Eq. (5.23)

Calculation of the new
vector y(k): Eq. (5.25)

v

Calculation of the new
voltage vector: Eq. (5.17)

T

Yes

Limitation of the voltage
vector: Fig. 5.23 or 5.24

T um’r ’ u:cqr
r

PITA

Correction of the vector
y(k): Eq. (5.85)

The formulae for the reverse correction for the designs with FAT behavior or for
the additional integral controllers of the state space design can also be derived
similarly. Figure 5.25 exemplarily illustrates the design with dead beat behaviour.

The implementation of the complete control algorithm in Fig. 5.25 is outlined by
the program flowchart in Fig. 5.26.

References

Brod DM, Novotny DN (1985) Current control of VSI-PWM inverters. IEEE Trans Ind Appl
21:562-70

Dittrich JA (1998) Anwendung fortgeschrittener Steuer- und Regelverfahren bei
Asynchronantrieben. Habilitationsschrift, TU Dresden

Enjeti P, Lindsay JF, Ziogas PD, Rashid MH (1988) New current control scheme for PWM
inverters. In: IEE Proceedings, vol 135, Pt.B, No. 4, pp 172-179

Follinger O (1982) Lineare Abtastsysteme. R. Oldenbourg Verlag, Miinchen Wien



References 187

Hofmann W (1984) Entwurf und Eigenschaften einer digitalen Vektorregelung von
Asynchronmotoren mit gesteuertem RotorfluBl. Dissertation, TU Dresden

Holtz J, Stadtfeld S (1983) Fieldoriented control by forced motor currents in a voltage fed inverter
drive. In: IFAC symposium control in power electronics an electrical drives, Lausanne,
Switzerland, pp 103-110

Holtz J, Stadtfeld S (1983) A predictive controller for the stator current vector of AC machines fed
from a switched voltage source. In: Conference recreation IPEC Tokyo, pp 1665-1675

Holtz J, Stadtfeld S (1985) A PWM inverter drive system with on-line optimized pulse patterns. In:
EPE brussel conference recreation, pp 3.21-3.25

Isermann R (1987) Digitale regelsysteme, vol 2. Springer, Berlin

Kazmierkowski MP, Wojciak A (1988) Current control of VSI-PWM inverter-fed induction
motor. Warsav University of Technology, Institute of Control and Industrial Electronics, PE
7945

Kazmierkowski MP, Dzieniakowski MA, Sulkowski W (1988) Novel space vector based current
controller for PWM-inverters. Summary, Warsav University of Technology, Institute of
Control and Industrial Electronics

Le-Huy H, Dessaint LA (1986) An adaptive current controller for PWM-inverters. In: IEEE PESC
conference, pp 610-616

Malesani L, Tenti P (1987) A novel hysteresis control method for current controlled VSI-PWM
inverters with constant modulation frequency. In: Conference recreation of IEEE-IAS annual
meeting, pp 851-855

Mayer HR (1988) Entwurf zeitdiskreter Regelverfahren fiir Asynchronmotoren unter
Beriicksichtigung der diskreten Arbeitsweise des Umrichters. Dissertation, University
Erlangen—Niirnberg

Meshkat S, Persson EK (1984) Optimum current vector control of brushless servo amplifier using
microprocessors. In: IEEE IAS annual meeting conference recreation, pp 451-457

Nabae A, Oyasawara S, Akagi H (1985) A novel control scheme of current-controlled PWM
inverters. In: [IEEE—IAS annual meeting conference recreation, pp 473478

Peak SC, Plunkett AB (1982) Transistorized PWM inverter-induction motor drive system. In:
IEEE-IAS annual meeting conference recreation, pp 892-893

Pfaff G, Wick A (1983) Direkte Stromregelung bei Drehstromantrieben mit Pulswechselrichter.
Regelungstechnische Praxis (rtp) 24(H. 11):S. 472-477

Quang NP (1990) Verfahren zur Stromregelung in Drehstromstellantrieben: Losungsprinzipien und
deren Grenzen. Fachtagung “Steuerung mechanischer Systeme”, TU Chemnitz, pp 102-105

Quang NP (1991) Schnelle Drehmomenteinprdagung in Drehstromstellantrieben. Dissertation, TU
Dresden

Quang NP (1994) Dokumentation zur Regelungssoftware mit TMS 320C25 von REFU
402Vectovar. REFU Elektronik GmbH, Abt. E1, interner Bericht

Quang NP (1996) MehrgroBenregler 16st PI-Regler ab: Von den Parametern zu programmierbaren
Reglergleichungen. Elektronik (H.8):S. 112-120

Quang NP (1996) Digital Controlled Three-Phase Drives. Education Publishing House: Hanoi
(book in vietnamese: Diéu khién ty dong truyén dong dién xoay chidu ba pha. Nha xuét ban
Giao duc Ha Noi)

Quang NP, Schonfeld R (1991) Stromvektorregelung fiir Drehstromstellantriebe mit
Pulswechselrichter. atp, Nov., S. 401-405 (msr)

Quang NP, Schonfeld R (1991) Stromzustandsregelung: Neues Konzept zur
Standerstromeinpriagung fiir Drehstromstellantriebe mit Pulswechselrichter. atp, Dez., S.
432-436 (msr)

Quang NP, Schonfeld R (1993) Dynamische Stromregelung zur Drehmoment-einpragung in
Drehstromantrieben mit Pulswechselrichter. Archiv fiir Elektrotechnik/Archiv of Electrical
Engineering 76:S. 317-323

Quang NP, Schonfeld R (1993) Eine Stromvektorregelung mit endlicher Einstellzeit fiir
dynamische Drehstromantriebe. Archiv fiir Elektrotechnik/Archiv of Electrical Engineering
76:S. 377-385



188 5 Dynamic Current Feedback Control for Fast Torque ...

Rodriguez J, Kastner G (1987) Nonlinear current control of an inverter-fed induction machine. etz
Archiv Bd. 9( H. 8):S. 245-250

Rowan TM, Kerkman RJ, Lipo TA (1987) Operation of naturally sampled current regulators in the
transition mode. IEEE Trans Ind Appl 1A-23(4):586-596

Schonfeld R, Krug H, Geitner GH, Stoev A (1985) Regelalgorithmen fiir digitale Regler von
elektrischen Antrieben. msr, Berlin 28(H. 9):S. 390-394

Seifert D (1986) Stromregelung der Asynchronmaschine. etz Archiv, Bd. 6(H. 5):S. 151-156

Wiesing J (1994) Betrieb der feldorientiert geregelten Asynchronmaschine im Bereich oberhalb
der Nenndrehzahl. Dissertation, University Paderborn

Zhang J, Thiagarajan V, Grant T, Barton TH (1988) New approach to field orientation control of a
CSI induction motor drive. In: IEE Proceedings, vol 135, Pt.B, No. 1, pp 1-7



Chapter 6
Equivalent Circuits and Methods
to Determine the System Parameters

For the clear specification of the electromagnetic processes in 3-phase AC machines
and as a starting point for control design, equivalent circuits which are based on the
representation of the physical quantities as complex space vectors in a stator-fixed
coordinate system will be a very useful tool. The underlying mathematics is
strongly related to the complex calculations known from the AC technology. To
abstract the physical operation of the machines, inductances and resistances are
represented as concentrated components, and symmetrical conditions are assumed
with regard to the 3-phase windings.

For the satisfactory function of a controller designed using equivalent circuits the
parameters of the equivalent circuits must be known with sufficient accuracy. From
modern drives it will be expected that they fulfill the projected quality parameters
without special tuning to be carried out by the customer, and keep the parameters
durably. Because frequency converters, particularly in small and medium power
ranges, are offered in principle as separate units without motors, parameter pre-
setting or measuring the used motor by means of classical methods (no-load or short
circuit test) are not practicable. Therefore the second part of this chapter deals with
possibilities of the automated computation of the electrical motor parameters.

A first starting-point and also a base for start values of a more exact estimation
will be provided by the name plate or by the rated data of the motor. For a more
exact parameter setting off-line identification methods which provide estimated
values of motor parameters during a test run in standstill are discussed.

6.1 Equivalent Circuits with Constant Parameters

6.1.1 Equivalent Circuits of the IM

6.1.1.1 T Equivalent Circuit

The general voltage and flux-linkage equations in the stator-fixed coordinate system
(cf. Chap. 3)
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u, = Rii, + ¥, (6.1)
= RIi 4+ — jo . (6.2)
U, = Lyis + Ly, (6.3)
U = LiiL + Ly i (6.4)

describe a transformer with an additional secondary (rotor-sided) voltage source
as represented in Fig. 6.1. In this case the superscript r means that the so labelled
parameters and quantities are related to the rotor side, and therefore correspond to
the values measured at rotor terminals physically. Quantities without such index are
related to the stator side.

The actual transformer symbol in the equivalent circuit marks an ideal trans-
former with the transfer ratio #,. This contains the turn ratio and winding factors,
and can be expressed by the relationship between the no-load nominal voltages.

U,
— (6.5)
UsN

Because the induction machine is fed normally from either the stator side or the
rotor side, it is usual and useful to relate all electrical quantities to either the stator
side or the rotor side. Subsequently, on principle, the stator side reference shall be
used. For the transformation of the rotor quantities to the stator side the following
relations are obtained by using the transfer ratio #, defined above:

u;
w = -
r P
i=ni (6.6)
v,
\ljr - tr
R i L 7. 1r R;

!
|

L

o,

Fig. 6.1 Transformer-equivalent circuit of the induction machine
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B

erg
v (6.7)

Lr:?

For the current through the main inductance L,, (the magnetizing current i,,) can be
written:

i, =i, +i, (6.8)

The reference to the stator side is primarily relevant for the treatment of the
squirrel-cage IM (u, = 0) which shall be also the object of the further derivations.
Because of the interchangeability of both approaches this does not represent any
essential restriction of the generality.

If the flux-linkage in (6.1), (6.2) is replaced by (6.3), (6.4), the equations of the
stator and rotor voltage can be changed into the form:

di di
s = Ry Lm'_s Lm_u 6.9
4 s + L dr + dr (6.9)
di di
= Rr.r L, — Lm —£— 1

The mesh Egs. (6.9) and (6.10) describe the so called T equivalent circuit shown
in the Fig. 6.2a. After the transition into the Laplace domain the following voltage
equations will be obtained for the stationary operation (s — joy):

u; = Rsis +]a)v (L.mis + Lmiu) (611)
R, . . .
0= ?h + jog (Lml, + Lmlﬂ) (6.12)

with the slip s = (w; — w)/w;, represented in the Fig. 6.2b.

With Ry, L,,,, Ly, L, and R, the T equivalent circuit contains five parameters. The
stator impedance, determinable by measuring stator quantities, contains on the other
hand powers of the stator frequency from zero to three and is defined by four

(a) R g L § b R i L I

5

5O ra

Jop,

Fig. 6.2 T equivalent circuit of the induction machine: a non-stationary, b stationary
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parameters (cf. the Sect. 6.4.3). Therefore the T equivalent circuit is over-deter-
mined and not completely identifiable by measuring the stator quantities. For this
reason Lro = Lsc = Lo is often assumed. However, for many tasks it is advisable to
change to an equivalent circuit with a reduced parameter number.

The two following representations achieve this by transformation of the leakage
inductances into the stator or rotor mesh and by introduction of a total leakage
inductance. At the same time this implies a redefinition of the cross or magnetizing
current and of the main inductance with the consequence for these quantities losing
their physical equivalent. As long as all parameters can be assumed constant and
linear, this fact is of minor importance, though. Both new equivalent circuits are
derived under the premise that in the case of the squirrel-cage IM no transformation
of the stator quantities, measurable at the terminals, takes place.

6.1.1.2 Inverse I' Equivalent Circuit

A modified equivalent circuit with the total leakage inductance in the stator mesh
can be obtained by the introduction of a new cross current i,,:

. R T
m:_r: s T Iy 6.13
i L i +Lm1 (6.13)

After some transformations to eliminate the current i, in Egs. (6.9), (6.10), and
after the introduction of the leakage factor:

g=1—-n (6.14)

new voltage equations

di,,

di,
s = Rs-s Ls_ 1 - Ls 6.15
u i, +o dt+( ) O (6.15)
o—ﬁR Ly + (1 - )Ldi—’"f' (1 —0) L (6.16)
= L , Lml, o)L, o Jjo o) L, .

which can be represented by the so called inverse-I'-equivalent circuit (Fig. 6.3)
are obtained. The newly introduced cross current i,, is according to (6.13) identical
with the rotor ampere-turns. This explains why this equivalent circuit is particularly
suitable for the treatment of rotor flux orientated control methods. For stationary
operation a representation (Fig. 6.3b) which is equivalent to the Fig. 6.2b is here
possible as well.
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b L,
(b) R, i, oL, f_’](
I
u (1-0)L, &
: L=z

Jjw(1-0)L i,

Fig. 6.3 Inverse-I'-equivalent circuit for the induction machine: a non-stationary, b stationary

6.1.1.3 T" Equivalent Circuit

To transform the leakage inductance into the rotor side a new cross current:

. L2
lm‘Y:L_::lS+L_S

m

i, (6.17)

is introduced analogously to the inverse I' equivalent circuit. After substitution
of i, the equations of the I" equivalent circuit represented in the non-stationary and
stationary form in Fig. 6.4 will be obtained:

i
s = Ry + Ly 6.18
u i+ L= (6.18)
2 (L 6Ly (Lydi di L
0="2R (=", Y el A R L ek 6.1
L2 <le>+1—a<Ls dz)+ ar e (6.19)

Also at this place Eq. (6.14) is valid for the leakage factor ¢. The rotor quantities
appear, analog to the inverse I" equivalent circuit, in transformed form.

As recognizable in the figure, the stator inductance now becomes the cross or
magnetization inductance, and the stator flux linkage assumes the role of the main

flux linkage. Therefore the I' equivalent circuit is particularly suitable for the
treatment of stator flux orientated control methods.

(a) ) oL, L, ; (b) oL, L,
E i T-c L ° R, i, T-c I "
——— —_— - —-—
g ¥
u, L, Tg R, u, . L, pat
hy e i b
—QO l
. L.\'
JOT-Vr

Fig. 6.4 T equivalent circuit of the induction machine: a non-stationary, b stationary
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u, ljm Y,

Fig. 6.5 Equivalent circuit of the PMSM

6.1.2 Equivalent Circuits of the PMSM

Due to the permanent magnet excited pole flux the relations here are very simple.
To derive a common equivalent circuit for both longitudinal and traverse axes it
will usually be accepted that the same inductance is valid for both. The following
equation holds for the stator voltage:

di,
u, = R, + L, d—t +jonl, (6.20)

With (6.20) the equivalent circuit represented in the Fig. 6.5 is obtained.

6.2 Modelling of the Nonlinearities of the IM

For many control tasks the assumption of constant and state independent machine
parameters represents a too rough approximation which leads to considerable
deviations between model and reality at the examination of non-stationary opera-
tions. Therefore, the embedding of nonlinearities which are significant for different
operating states into machine models and equivalent circuits shall be discussed in
the following sections. Following the physical conditions, magnetic saturation,
current displacement and iron losses are discussed in separate approaches and
models. Symmetrical conditions and sinusoidal winding distribution are still
presupposed.

In mathematical sense nonlinear relations are indicated by the fact that the
superposition principle is not valid. Therefore an isolated treatment of the non-
linearities is, strictly speaking, not permitted. With respect to an engineer-like
analysis however, it is fundamentally important to find easily comprehensible and
utilizable approaches also for nonlinear relations. In the case of the 3-phase AC
machines it is advantageous that the most important nonlinearities are describable
as state dependent parameters. Since different parameters are affected, or the vari-
able parameters depend on different state variables, a separate treatment is justified
additionally.
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6.2.1 Iron Losses

Losses in the iron appear in the form of eddy-current losses and hysteresis losses.
Because the rotor frequency remains small compared with the stator frequency
unless at very small speeds, the rotor iron losses generally can be neglected com-
pared to the stator side ones. The hysteresis losses are produced by the flux reversal
energy consumed due to the sinusoidal with time varying iron magnetization. They
are therefore proportional to the area of the hysteresis loop (~ N’u|2) and to the
number of flux reversals per time unit (~ ;) (Lunze 1978; Philippow 1980). The
eddy-current losses are proportional to the square of the voltage (~ (ws\\llu|)2)
induced in the iron and the effective electrical conductivity of the iron core lamellae.
They significantly increase in converter fed motors because of the harmonic
components in current and voltage.

Modeling is made difficult because the effects of eddy-currents and hysteresis
and from sinusoidal magnetization are overlapping in a not exactly determinable
way, and generally different magnetic conditions occur in yoke and teeth. The
hysteresis losses depend on the effective permeability and therefore on the
instantaneous flux amplitude. They disappear as soon as the area of the magnetic
saturation is left (the upper field weakening area).

The following, strongly idealized model following (Murata 1990) takes into
account hysteresis and eddy-current parts by respectively constant factors kj, and
k... Through consideration of the slip frequency w, even operating states in which
the slip frequency will have a significant magnitude compared to the stator fre-
quency @, are included:

3
Pvfe = E [khy(ws + (Ur) + kw (w? + w%)} |\|jy|2 (621)

with:
\"y = miu (622)

After separating the stator frequency and the slip s = (w; — w)/w,, and with the
general equation for the iron losses

3 (Q’A‘N’MDz
Pvfe = ET (6.23)

an iron loss resistance Ry, as concentrated component describing the iron losses
can be introduced:

1
R, = 6.24
F T (14 92) + 2 (14 5) (6.24)
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Because better usability in some circumstances the iron loss conductance
Gy, = 1/Ry, is also used. A measured Ry, characteristics is represented exemplarily in
the Fig. 6.6. The curves are the result of no-load measurements at an inverter-fed
and external driven motor so that the influence of the friction losses is eliminated.

The iron loss power is dominated by the hysteresis losses rising nearly linearly in
the basic speed range. With field weakening setting in, at first a strong drop can be
observed because of the flux reduction. The eddy-current losses dominate in the
upper field-weakening area. In addition, the inverter dependent eddy-current losses
decrease strongly at the maximum voltage (=less high-frequency voltage harmonics)
so that different factors k,, are used in constant flux area and constant voltage range.
The corresponding diagrams calculated by least-square approximation and the
model approach (6.24) are drawn in the Fig. 6.6 (dotted lines). It turns out that this
simple approach with the above-mentioned modification describes the actual
behavior quite well.

Further analysis of the Rj-diagram in the Fig. 6.6 suggests, however, the pos-
sibility of using a yet more simplified model which only contains a linear relation
between loss resistance and stator frequency:

Wy

R = Ren (6.25)

WsN

For this model only one parameter, the loss resistance at nominal frequency,
must be determined by measurement.

A comfortable inclusion in the equation system of the IM will be obtained, if (as
shown in the Fig. 6.7) the iron loss resistance in the inverse I" equivalent circuit can
be represented by a parallel resistance in the stator circuit (Schifer 1989). The
necessary supplementation of the equation system is immediately recognisable from
the Fig. 6.7. The actual input voltage of the machine will now be formed by the
inner voltage u; which drives the inner current i;. Following Eqgs. (6.15) and (6.16)
the modified system is obtained to:
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Jo(l-o)L i

st

Fig. 6.7 Extended inverse I" equivalent circuit with iron losses

di; di,,
i = 0oLi— 1 —o0)L,— 6.26
i = ok dr + 9) dr ( )
. . di,,
0= (l —]U)Tr)lm + TFE —1; (627)
u; = uy — Ryi (6.28)
u;
i =i, — — 6.2
i, =i Re (6.29)

6.2.2 Current and Field Displacement

With regard to current and field displacement effects it must be distinguished
between effects caused by the fundamental of the current on one hand and by
inverter dependent current harmonics on the other hand. The principle physical
mechanism is the same in both cases. The current displacement leads to a frequency
dependent increase of the resistance values, and the field displacement to a
reduction of the leakage inductances. As a consequence the current harmonics
produce higher losses. Because the harmonic spectrum of fast switching inverters
with sine modulation is orders of magnitude above the fundamental wave, its
significance for control related parameters remains small. The consequences of the
fundamental dependent current displacement, however, must be investigated for the
modeling of the machine.

In stator windings of induction machines, fundamental wave dependent current
displacement effects can usually be neglected since they are intentionally sup-
pressed by a number of constructive measures. An exception would merely be the
big machines with accordingly large winding diameters at high frequencies. For the
bars of the rotor squirrel-cage such a neglection is not possible from the outset
because of the large bar heights and diameters, except for rotors with intentionally
current displacement free construction. In the normal (stationary) operation current
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jo(-o)L,

Fig. 6.8 Extended equivalent circuit with current displacement in rotor

displacement effects do not play a considerable role, however, because of the low
rotor frequency (slip). This turns different in special non-stationary operation modes
with high slip frequencies, where the current displacement is used with purpose to
increase the resistance, or if the input quantities are controlled differently to the
normal operation. In a field-orientated control system however, also at start-up
extreme slip values will not appear due to the current being controlled with defined
amplitude and slip.

A consideration of the resistance changes in the machine model is possible by an
additional resistance Rj, being inserted in series to the rotor resistance in the rotor
circuit (Fig. 6.8). The size of this resistance is a generally very unhandy function of
material constants, construction data and the rotor frequency. The following
equation can be learned from (Vogt 1986) for a rectangular deep-bar rotor with the
height A;:

X _R,—&-Rw_ﬁsinh2[3+sin2ﬁ
" R, "cosh2p —cos2p

(6.30)

There S is a normalized height of the conductor and is calculated by:

1
[)’:hm/iwruox (6.31)

Lo Absolute permeability
k  Conductivity of rotor bars

Because the height of rotor bars is often designed over-critically (rotor with
current displacement), /; assumes values of up to about 70 mm. Following (Vogt
1986) this corresponds to a machine with a rated power of about 2 MW. Therefore
it is not possible to come up with a uniform approximation for k, for the complete
interesting parameter range of f. The following variants for approximation
approaches can be derived:



6.2 Modelling of the Nonlinearities of the IM 199

For f > 2 there will be sinhf > > sinf, coshff > > cosf and sinhf ~ coshf, and
therefore holds:

k ~ B (6.32)

For f < 2, k, can be obtained by series expansion of the transcendental function
with a maximum relative fault of 0.036 to:

1+%p
L L (6.33)
L+5p
A next approximation is possible for f < 1 by partial division of (6.33):
k~1+iﬁ (6.34)
AT '

Besides the increase of the electrical resistance by current displacement, fast
changes of the flux will cause a field displacement recognized by the reduction of
the leakage inductance. Also here, noticeable effects appear only in rotors with
current displacement because of the larger conductor height. A reduction factor
k can be given in analogy to (6.30). Following (Vogt 1986) this factor can be
written for square deep-bar rotors with the fictitious series inductance L, to:

Ly — Ly _ 3(sinh2f —sin2p)
ke = L,  2pB(cosh2p — cos2p) (6.35)

As above the following approximations can be derived.

e For ff > 2:
3
ky ~ — 6.36
> (6.36)
o Forl<pf<2:
1+ 2
+ash
e For f<1:
8 4
~1—— .
ky 5P (6.38)

Equations (6.30) and (6.35) are represented in Fig. 6.9. For the better classifi-
cation the normalized bar height f is additionally referred to the rotor frequency at
different absolute bar heights. The computation was made for copper bars because
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these also have greater values S due to their greater conductivity compared with
aluminum at the same frequency.

For very big machines in the megawatt range f already reaches great values at
rotor frequencies below 10 Hz, and k, and k, also become significant. Such
machines have a small nominal slip of typical below one hertz, and will be less
overloaded in dynamic operation, though. In low power drive systems, only three to
four times the nominal slip will be applied in dynamic operation using field-ori-
entated control. Thus f will not exceed values of 1.5 through the whole power
range, and for motors in the medium and low power range there are values of = 1
to be expected at maximum. Because the rotor leakage inductance only shares about
one half of the total leakage inductance, a special consideration of the inductance
reduction can be abandoned in the model for field-orientated control. A consider-
ation of the electrical resistance increase in the model for the field-orientated control
is required only for machines above some hundred kilowatts rating.

The existence of the flux weakening and resistance increase must be taken into
account though at the estimation of parameter variations or for example to define
suitable excitation signals for the parameter identification especially at higher fre-
quencies (cf. Sect. 6.4).

The structure of the Eqgs. (6.30) and (6.35) is essentially correct also for usual bar
cross-sections which differ from the rectangle form, though with other coefficients.
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Approximately the same relations hold for square bars with d = h; and for rods
(diameter d). For wedge bars the value k, increases in the extreme case (ratio of the
trapezium front sides of 1:10) at § =2 by 50 %. k, assumes more favourable values
(Vogt 1986). Thus the above statements remain also valid for these bar forms.

6.2.3 Magnetic Saturation

At first the magnetic saturation has the consequence that the value of the induc-
tances is a nonlinear function of the amplitude of the actual flux linkage. In addi-
tion, a general analysis of the saturated induction machine must take into account
that the spatial distribution of the saturation depends on the current direction of the
accompanying flux vector. This has the consequence that in the right-angled
coordinate system the inductances assigned to the coordinate axes assume different
values in the dynamic case, and mutual couplings appear (Vas 1990). These depend
on the sine of the angle between the main flux vector and the reference axis (real
axis) of the used coordinate system.

The main field saturation has essential significance for the dynamic behavior of
the machine, primarily in the field weakening and at great torques. Its correct or
reasonable approximated consideration shall be examined in the following. At first
the leakage inductances are considered as constant.

For a representation as generally as possible the machine equations are repre-
sented in the following in a right-angled coordinate system circulating with the
angular velocity w;. The main flux linkage

U, = Luiy (6.39)

is introduced into the general voltage equations of the induction machine (cf.
Sect. 3.2). With (6.39) the following voltage equations will be obtained:
di; d
o= Rt L, S Wi Luiy) (6.40)
de  dr
dli, —i) | 4,
dt dr (6.41)
+j(wx - 0) (L, — Lyoiy)

u, = Rr(iu - is) + Lro’

Equations (6.40) and (6.41) are here still represented in an arbitrary orientated
coordinate system and contain no restrictions regarding their validity at main field
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saturation. Following (Vas 1990) the next equation holds for the derivative of the
main flux:

dv¥, M, M, di,
il -t 6.42
dr (MXy M, ) dr ( )

with: Mx—L;ncos uw+ Ly, sin® U
M, _L/ sin? i + Ly, cos u

!

M, = (L,, — L,,) sin prcos u

Thereby L,,(|i,|) is the static and L, (|i,|)= %I‘Wl‘ L,+4 d |lu\ the differential

main inductance, u is the angle between the magnetizing current vector i, and the
real axis of the coordinate system. For the non-saturated machine L,, = L’m and
dW . dl‘

dl = dl hold.

For the controller realization and also for a simulation of the saturated machine
the correct representation of the flux derivation following (6.42) is quite unhandy.
For the controller design primarily the rotor equation is important because the
estimation equation of the rotor flux, required for field-orientated control, is derived
from it. Therefore it would be desirable to maintain the rotor flux oriented
description.

A first simplification (without validity restriction or loss of precision) arises with
representation of (6.40) and (6.41) in a coordinate system related to the main flux. If
the axis of the main flux vector and the real axis (x-axis) are identical, it will be
w =0, and the next equation can be obtained for the flux derivative:

W, _ (L) 0 >di
dt!< 0 L (i) d: (6:43)

In addition, there are s, = [, | and ,, = 0.

Since obviously the flux derivative is the most problematic part of the mathe-
matical model, it seems reasonable to look for a form of presentation which gets along
without its explicit calculation. In addition, no derivative of a state variable must be
connected with the main inductance. Such a model was developed in (Levi 1994).
The rotor current is replaced by the flux linkage in the rotor voltage equation:

=i ok — o), 7 (5, ) (6.44)
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The mutual flux can be calculated from:

\|J;¢ =V, — Lra(iu - iS) (6-45)

with: i, = i

It shall be remarked that this model also does not contain any restrictions
regarding the saturation and is neutrally formulated with respect to coordinates. The
calculation of a differential inductance is not required. As opposed to (6.41), the
Eq. (6.45) contains with s, = f(L,,(|\W,|)) an algebraic loop which can cause
oscillations and limit cycles depending on the sampling period or on the integration
steps in the realization.

A third model can be obtained after trying to introduce the saturation into the
rotor equation immediately without further substitutions. This means, though, that
the saturation is coupled to the rotor flux instead to the main flux, what does not
correspond to the physical conditions correctly. The error can, however, be
acceptable for many applications because the leakage flux on the rotor side will
always remain small compared to the main flux. In any case this variant has the
advantage to provide the simplest and clearest model. A possibility for its derivation
immediately arises from the equivalent circuit in Fig. 6.3a. After substitution of the
rotor current and division by the leakage factor (1 — g), which shall be assumed as
saturation invariant, the following equation for the rotor mesh can be obtained after
transition into the coordinate system circulating with !

d(Lgiy)

u, = R, (i, —iy) + 5

+ j(ox — ) Lgiy, (6.46)

After dissolving the derivative, the rotor equation can finally be written in a
detailed notation:

L, ([in]) + Ly diyy
R, dr

Ln(finl) + Lo
R,

u, = im - i: +
(6.47)
+jlox — o)

m

In the same way the stator voltage equation can be obtained for an assumed
constant leakage inductance:

di
u, = R,i, + oLSd—; + jooLgig

+ (=) (L) + 1) (6.48)

+ jor (1 — 0) (L ([im|) + Lo )im
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The modified system matrix of the continuous state-space representation finally
can be derived from (6.47) and (6.48). It reads in complex notation with the

abbreviations Ly, = Ly,([in|) + L, and L;H = L;,1(|1m|) + Lg:

1 : l—c :

— = — jOg R, — joL

A= g" ”L“R,( " ") L, (6.49)
. T, —Jj(ox — o)

su

Re+(1
At first the model (6 47) yields the rotor-side magnetizing current i,,. The rotor

flux linkage can be calculated from Vs, = L,i,,. For this calculation the main
inductance has to be used depending on the magnetizing current i,. With (6.8) and
(6.4) its amplitude can be derived in the rotor flux orientated coordinate system

(i, = i imq =0):
Ly /L, 2
liy| = \/ ( st lmd> +<L— isq) (6.50)

For the stationary case the following result arises:

[
with: T, +4

2
il =+ (20 (651)

The knowledge of the magnetization characteristic, either in the form \, = f(i,)
or its inverse form i, = g({,), is required for all saturation dependent models.
Thereby the use of a closed representation is advisable, because this can more
simply be implemented in the model and simultaneously allows the calculation of
the differential inductance without difficulties from the measurement of the sta-
tionary characteristic. In the literature different approaches can be found, which are
based on exponential or power functions and differ from each other in the number
of contained parameters. Polynomial approaches are also used. Exponential and
power functions have the advantage to provide good models even at strong satu-
ration. Two power functions, which are built on each other, shall be examined and
compared in the following. They are based on a approach introduced by de Jong
1980 and further developed by Klaes 1992.

The main inductance is understood as a parallel circuit of a constant air-gap
inductance L, (it corresponds to the main inductance in the linear range) and a
saturation dependent part which is a power function of the obtained main flux or
magnetizing current:

iy = (6:52)
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With measured values Ly = L,,(0), Ly = L,,(1), L, = L,(y,) the remaining
parameters are obtained as follows:

In 1/L,—1/Ly
1 1/Li—1/Ly
Ly = ;s = < lnly ) (6.53)
2

An extended approach takes into account, that the main inductance converges
towards a fixed final value and not towards zero for large flux amplitudes, as it
would result from the estimation function (6.52). This is considered by the addition
of a limit inductance Lo into (6.52):

1

Ly(y) = + Loo (6.54)

S — i
Lo—Loc ' L

For the calculation of the coefficients however, no explicit solution can be
derived. With the additional measurement L3 = L, (y;) the saturation parameter
s arises from the iterative solution of the following equation:

(y1>s (L2~ L)L — L) + (Lo - L)l - L) (3) 659
72 (Ls — Li)(Lo — Lo) a '
For the remaining parameters the next equations hold:
L3(L1 — L()) —+ Ll (LO — Lg) <%>
Ly — Lo+ (Lo — Ls) (%)
1 1 1 1
= . — (6.57)
Lsal W/32 - V% LZ - Loo L3 - Loo

The estimates are represented together with the characteristic for the differential
main inductance for an 11 kW motor in Fig. 6.10. The differential main inductance
can be calculated for the three-parameter approach from:

, d .
L,() = %‘ = Ln(7) (1 -5y LL—(yt)> (6.58)

and for the four-parameter approach from:

/ (Ln(7) = L)’

L,(y) =Ln(y) — sy 7 (6.59)
sat
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Fig. 6.10 Saturation calculation functions L, (i“)7 L;,, (i“), L, (‘W) for 11 kW motor. (——):

three-parameter model; (—): four-parameter model

The measurements of the static inductance are visibly better approximated by the
four-parameter approach. Apart from the area of extreme saturation, which prac-
tically plays not a role, this also applies to the differential inductance. It must be
taken into account that the “measured values” of the differential inductance only
were won by linear approximation from the static measurements, though.

The saturation of the leakage paths is the reason that the leakage inductances
generally are functions of the current flowing through them. A general relation like
for the main inductance however, can not be derived because it depends strongly on
constructive influences according to the composition of the leakage field (slot
leakage, tooth head leakage, winding head leakage, helical leakage). At the same
time it is possible that almost no current dependency of the leakage inductance can
be found for many motors in the complete current range. For this reason, a separate
consideration in the model is abandoned. If required, a feed-forward adaptation
L, = f(|is|]) must be implemented.

6.2.4 Transient Parameters

When discussing the current displacement effects it already became obvious that
inductances and resistances of the induction machine generally have to be con-
sidered frequency dependent. Equivalent circuits can be developed with concen-
trated parameters which, however, have to be specified according to the operating
point of interest and to the operation frequency. In an inverter-fed drive the highest
frequencies practically appearing are determined by the switching slopes of the
inverter. These have an effect on the effective leakage inductance of the motor
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which determines together with the voltage amplitude the current rise time. The
effective leakage inductance is to be expected considerably smaller than the sta-
tionary leakage inductance oLs and will be called in the following as the transient
leakage inductance O'L;. At the same time it is the only parameter which must
especially be defined in the practical controller design for transient operations.

6.3 Parameter Estimation from Name Plate Data

Lacking detailed and often not obtainable motor data sheets, the name plate of the
motor represents the first and only information source for conclusions on the elec-
trical parameters. For standard drives without high dynamic demands on the motor
usage, usually it fully suffices to calculate the motor parameters from the name plate
data. However, deviations from 50 to 100 % depending on the parameter in question
have to be taken into account, because:

e the manufacturer’s information may be partly unreliable, and the actual motor
parameters are subject to spreads,

e the name plate data refer to a certain working point (the nominal working point),

e not all parameters of the equivalent circuit can be directly set into a physical
relation to the usual name plate data.

The procedure becomes impossible at the use of special machines with values
differing from standard machines considerably. Understandably, the calculation of
the inductance saturation characteristic has to be excluded.

The usual name plate data are:

Nominal power Py [kW]
(Line-to-line) nominal voltage Uy [V]
Nominal current I [A]

Nominal frequency fy [Hz]

Nominal speed ny [rpm]

(Nominal) power factor cos ¢

Because the last information is not available in many cases, calculation equa-
tions are derived in the following without and with cos ¢. In the case PMSM, the
following data are usually given by the name plate:

(Line-to-line) nominal voltage Uy [V/1000 rpm]
Nominal current I [A]

Nominal frequency fy [Hz]

Maximum speed 71,,,,x [rpm]

Nominal torque my [Nm]
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6.3.1 Calculation for IM with Power Factor cosg

The method starts out from the equation of the IM in the stationary operation (cf.
Quang 1996).

. . v,
u, = R i, + jogoL s + jog(l — o)Ly —
s J s Fjos( ) L, (6.60)

= Ry i +ja)SO-Lsis + €,

The parameters are approximately calculated for the nominal working point in
the following steps:

1. Calculation of the field-forming current component iy
(1) Nominal power of the motor: Py = 3 Uppuselphase COS @
(2) Amplitude of the nominal current: TN =21y = /I\de + /I:,qu
(3) Impedance of one phase: Zy = Uppase/Iphase
(4) Approximate rotor resistance: R, ~ s Zy
(5) Nominal power of the motor: Py ~ 3 (%) quN
(6) From (4), (5) is obtained: T2,y ~ £

(7) Inserting (1) into (6): 12, A Yetultiuccose

(8) Inserting (7) into (2): Ty = |/ I3 — Yneltiuecoso

N
The following approximate formula can be derived from (8):

T.an ~ V2Iy\/1 — cos 1) (6.61)

In the step (5) the losses in the stator resistance were neglected without great loss of
precision for the calculation of the power Py.

2. Calculation of the torque-forming current component i,

Ty ~ /215 — 12 (6.62)

3. Calculation of w,

wn =27 (N - ZP6ZN> (6.63)

4. Calculation of the rotor time constant T,

I sgN

T, = (6.64)

@OrN I sdN

5. Calculation of the leakage reactance X, = w0l
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The voltage drop over the stator resistance is neglected, which is justified for the
nominal working point, compared to the voltage drop over the leakage induc-
tance in the vector diagram in the Fig. 6.11. The simplified vector diagram of the
Fig. 6.12 can be obtained then.

Using the Fig. 6.12 the following calculation steps can be used:

(1) Amplitude of the nominal phase voltage: Uy = \/_%/;']N
(2) Relations between a, /I\st and quN: sin o = L : cos o = Lav
Iy Iy

(3) Relation between a, y and ¢: y = @ — (90° — o)
siny = sin[p — (90" — )]

(4) Calculation of siny: . .
=sin@ sino — cos @ cos o

~

(5) Inserting (2) into (4): siny = sin (pl;‘\ﬂ — cos (p’,‘\ﬂ
Iy Iy
(6) From Fig. 6.12 it will be obtained: X, ~ siny-Z&

Isgn

(7) Inserting (5) into (6): X, ~ (sin ¢ — cos q)i‘—“’) Uy

Lsgn

Iy

Fig. 6.11 Vector diagram of
the IM in the stationary
operation
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Fig. 6.12 Simplified vector
diagram for calculation of X,

>
p,
With these results the formula for the calculation of X, is obtained:
. Tav\ Un
X, ~ [ sing — cos o= (6.63)
< I sqgN ) \/§IN

6. Calculation of the main reactance Xj:
The main reactance X, = w;(1 — 0)L; =~ w,L, is the reactance of the EMF
vector eg. In the case iy, = 0, i.e. no-load, the calculation equation is approxi-
mately obtained from the Fig. 6.12:

U 2U
Xom UN _x ZV2Un (6.66)
Ist \/§1st

7. Calculation of the stator resistance Rj:

(1) Tt is assumed approximately: R; =~ R,

(2) Calculation of the EMF amplitude: €, = X, Ty =~ misqﬂ/
The definite formula then looks as follows:

~

oy 1
Ry~ R, ~— 2 2Ny, (6.67)
27TfN quN

8. Calculation of the total leakage factor o:

ol (6.68)
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9. Calculation of the stator-side time constant T:

L X,
=S _h (6.69)
Rx 27IfN Rs
The given calculation with using cos¢ was tested successfully in the practice
and is not subject to any restriction regarding motor power.

6.3.2 Calculation for IM Without Power Factor cos¢

Reference model is the inverse I" equivalent circuit of the IM. All formulae are valid
for motors with a nominal power of greater than 0.7 kW.

The total leakage reactance determines fundamentally the short circuit behaviour
of the motor or the current amplitude at nominal frequency at turn-on to the stiff
grid. For standard motors the turn-on current maximum is 4—7 times the nominal
current. Empirical values show that the most correct values for the leakage
inductance oL, will be obtained, if the 5—6-fold nominal current is used:

Uy

N —— 6.70
5.5 IN(UN\/g ( )

oL

For the transient leakage inductance a value of about 0.8¢L; can be started with.

The stator reactance is responsible for the current consumption of the no-load
machine. This depends for comparable power ratings strongly on the magnetic
utilization of the machine, thus on the nominal working point regarding the mag-
netic saturation, and therefore it can be subject to considerable variations for dif-
ferent manufacturers. Without using the power factor we can start out from the
approximate rule that the nominal no-load current I, is about half of the nominal
current at small power (until 7.5 kW) and tends above this power towards to a good
third of the nominal current. The following formula represents this empirical value:

Iy + 19A
Ip~ ———— 6.71
0 e (6.71)
Un
Li=—"+ 6.72
) Ioa)N\/§ ( )

No physical relations can be given for the calculation of the stator resistance
from the nominal data. We are here completely dependent on empirical values with
the unavoidable uncertainties. The following formula provides usable results:
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002 Uy

N 204 (6.73)

The rotor resistance provides the physically best access. The stationary slip
equation in field-orientated coordinates

Iy,
IsdTr

W, =

can be re-written for the nominal working point and I;; = I, and solved to R,:

~ 2n (fN — %)L;Ig

The stator inductance and the no-load current can be taken from Egs. (6.71) and
(6.72).

R, (6.74)

6.3.3 Parameter Estimation from Name Plate of PMSM

Starting point for this is the stator voltage equation (cf. Quang 1996) in the sta-
tionary operation.

u; = Rs is +,]U‘)AL.§ is +]wb \'Ip

o (6.75)
= Ryi; + jo,Lsis + €
At the nominal working point and in stationary operation the stator current iy
only contains the torque-forming component. This fact is represented by the sta-
tionary vector diagram in the Fig. 6.13.

Fig. 6.13 Simplified vector
diagram of the PMSM in
stationary operation
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1. Calculation of pole flux ¥,

V21Iy

(1) Calculation of torque-forming current: 1 N =

5q. N —
(2) Nominal torque using Eq. (3.63): my =3z, ¥, Ly
. . . . . . _ 2 m
(3) Inserting (1) into (2) it will be obtained: 1,01, =3 \/Ez: IN
2. Calculation of stator inductance L. The voltage drop over R, is neglected. The
next steps follow from Fig. 6.13:

(1) Amplitude of nominal voltage: UN =ny V2 (f}—%)
(2) Amplitude of EMF: &, =2nfy ),
(3) After substituting v, the stator inductance L, is given to:

i e
~ VN 8 (6.76)

sy~ ~
zan IsqN

6.4 Automatic Parameter Estimation for IM in Standstill

6.4.1 Pre-considerations

For the complete description of the IM four parameters are required with a constant
parameter model. If the inverse I" equivalent circuit (cf. Fig. 6.3) is chosen as the
reference model, the four parameters are then the stator resistance R;, the rotor
resistance R,, the total leakage inductance oL, and the stator inductance L,. The
constant parameter model in its precision does not suffice for the synthesis of
advanced algorithms, however. At least the inclusion of the saturation character-
istics of the inductances is required. Because of the different saturation functions for
main and leakage paths a division of the model inductance parameters into leakage
inductance oL, or L; and main inductance L,, can be made.

For a current controlled drive the slip is limited also in non-stationary states to
values which not yet necessitate a consideration of the current displacement in the
rotor for the modelling. Harmonic caused current displacement effects also shall be
neglected for the modelling in accordance with the presumptions made (inverter-fed
operation at high switching frequency). An exception for the consideration of fre-
quency dependencies is the leakage inductance. Depending on the excitation fre-
quency it has to be distinguished between different inductance values. This means
in particular that a transient leakage inductance o*L; for the current controller design
and a stationary (fundamental wave) leakage inductance oL, for the stator-frequent
operation have to be estimated.
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The consideration of the iron losses is not avoidable (cf. Chaps. 7 and 8) for
some special tasks. Their identification is practically only possible with the no-load
test in a classical way, however, and shall not be discussed more in-depth.

Furthermore, from practical considerations for a useful incorporation of the off-
line adaptation into the technological regime of an inverter-fed drive some condi-
tions, which fundamentally narrow down the choice of possible methods, have to be
formulated:

1. If possible, no demands or prerequisites on the part of the identification algo-
rithms should be made to technological conditions of the drive. This is the case
if the identification runs at standstill and does not need a speed feedback.

2. The safety of the methods and their transferability onto different drive config-
urations increase if algorithms which run in the closed current control loop are
used.

Regardless that the frequency dependencies are not considered in the model
except for the exception mentioned above, the choice of the identification methods
has to take into account that such dependencies exist. Thus the test signal fre-
quencies used by the identification should, on one hand, be located in the same
range as the frequencies at which the models are operated later. On the other hand
the test frequencies have to be selected for current displacement effects not inval-
idating the identified parameters. For this reason methods with predefined appro-
priately selected excitation frequencies will be preferred for the concrete
identification methods in the following sections. The parameter estimation is
essentially accomplished by evaluation of the frequency responses of current and
voltage. The identification shall be implemented without voltage measuring sen-
sors, and the voltage has to be estimated from the control signals of the inverter.

For the decoupled identification of the parameters, a further criterion for the
choice of the excitation frequencies results from the consideration, if possible, not
to influence the identification of one parameter by inaccurate other parameters. This
suggests to optimize the excitation frequencies by evaluation of sensitivity
functions.

The test signals for the parameter identification are produced by frequency
inverters. These have a non-linear current-voltage characteristic because of the
effects of blanking time, switching delays and voltage drops over the semiconductor
switch primarily at small voltages. Just in this voltage area the parameter estimation
takes place because of w = 0. Therefore, the current-voltage characteristic of the
inverter must be considered in the model, and also identified for a generally usable
identification algorithm. Because of the abandonment of voltage measuring sensors
this measure is also imperative for an adequately exact voltage feedback.

The corresponding principle structure of the off-line parameter identification is
shown in the Fig. 6.14.
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Fig. 6.14 Principle structure of the off-line parameter identification

6.4.2 Current-Voltage Characteristics of the Inverter, Stator
Resistance and Transient Leakage Inductance

As indicated already, a great importance for the precision of the parameter iden-
tification for inverter feeding and abandonment of special measuring sensors relies
on the voltage capturing. Blanking times and non-linear current-dependent inverter
voltage drops have to be considered as error sources which have an effect in
particular at small voltages and around current zero crossings. The suppression of
their effects on the parameter identification is taken care of in two ways: Firstly by
an appropriate choice of the excitation signals, and secondly by embedding the
inverter characteristics into the motor model.

Suitable excitation signals are discussed in the context of the individual iden-
tification methods specifically. The stator voltage equation is amended by an
additional current-dependent term to consider the inverter voltage drops u.(i,) in the
motor model and looks in the stationary case with @ = w, = 0 as follows:

uv(lv) = uz(is) + Ryig (677)

At first the measurement of the complete characteristic u; (i,) is carried out point
wise by impression of DC currents. It has qualitatively the appearance of the dotted
curve in Fig. 6.15. Because of a possible unbalance of the motor an averaging of the
measurements from single tests of the three phases is advisable. Assuming that
the voltage increase at high currents is only determined by the linear portions of the
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voltage drop, the stator resistance can be calculated from the ascent of the current-
voltage curve at high current:

o Us) — Us2

R, (6.78)

isl - isZ

The then known linear term is now eliminated from (6.77), and the non-linear
characteristic remains. For the non-linear inverter voltage drop u.(i;) different
approaches with constant and/or exponential sections have been proposed in the
literature (cf. Baumann 1997; Rasmussen 1995; Ruff 1994). To avoid the on-line
evaluation of exponential functions, a piecewise-linear approximation also can be
carried out. A characteristic which also is represented qualitatively in Fig. 6.15
(solid line) is obtained.

The actual compensation is made by a sign and phase correct addition to the
voltage reference values, similarly like described in Sect. 2.3.3 for the protection
time compensation. With u,, = u,(iy,), u, = u,(iy,) and u, = u,(is,) the follow-
ing voltage components are obtained in stator-fixed coordinates:

(zuzu — Uy — uzw)

V3

Uzp = T (”zv - Mzw)

Uz =

Bl

(6.79)

w

To measure the transient leakage inductance a short voltage impulse is applied to
the stator winding, and the current gradient is measured. Since the time needed for
this test pulse is very short, and the process is barely noticeable, this measurement
can be carried out also outside a special identification run. The leakage inductance
arises from:

C UAL
ST A

oL (6.80)

Fig. 6.15 Inverter current- u, ¢
voltage characteristic oe®
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For an appropriate width of the voltage pulse and measurement over the com-
plete current slope a good average inductance value will be obtained.

6.4.3 Identification of Inductances and Rotor Resistance
with Frequency Response Methods

6.4.3.1 Basics and Application for the Identification of Rotor Resistance
and Leakage Inductance

By impressing a sinusoidal current into the stator all desired motor parameters can
theoretically be identified by measuring the waveforms of currents and voltages and
subsequent frequency response analysis. However, before applying this method
some preceding considerations are necessary which follow up the preliminary
remarks and determine the most suitable environment.

The demand for an identification at standstill, and therefore the demand that no
torque must be developed, can be fulfilled by a single-phase excitation.

The estimation of the stator impedance requires an exact acquisition of the
current and voltage fundamental waves. The compensation of the inverter nonlin-
earities is decisive for the quality of the identification results because of the low
voltage amplitudes at standstill (cf. Sect. 6.4.2). Furthermore (Biinte 1995) worked
out, that the remaining error only has an effect on the real part of the measured
impedance, if the impressed current is sinusoidal. The latter is achieved if the
identification is performed in the closed current control loop. Furthermore the
current should, if possible, be free of zero crossings because the largest deviations
from the sinusoidal form arise in the zero crossings.

A zero crossing free current can be produced by overlaying the sinus reference
with a direct current component. This component is reasonably chosen close to the
nominal magnetization. This corresponds to a direct current pre-magnetization, and
a main field excitation alternating permanently around the working point is pro-
duced by the single-phase sinusoidal excitation. Therefore the derivation of the
transfer function has to start out from equations of the saturated machine (6.40),
(6.41) and (6.43). Because of @ = 0 these equations are simplified to a great deal. In
addition, the excitation only takes place in the a axis so that the dimension of the
equation system is reduced to one. Under these prerequisites the following transfer
function between stator voltage and stator current can be derived by elimination of
i, (s = Laplace operator):

Ugy bo + bys + bys?

6.81
Tso 14+ as ( )
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, R,
bOZRgbﬁ:@W+LJ(1+E>

Ly [ L +L,
bZZR_(Lm'i_LU); a = m+

r

In the steady-state operating condition (s — jw,, o, ... excitation frequency) the
Eq. (6.81) can be written as a complex impedance:

u by + (albl — bz) w? . b1 — boay + a1b2w2
Z === e . e 6.82
L2 trder T v dor (052
or
R (L)’ : (L) (L, + Ly)
Z, =R, + m 5 +Jjwe | L, +Ls — i L 5 (6.83)
R+ o2(L, + L,) R+ 02(L, + L,)

Under special conditions for the excitation frequency the formula (6.83) could
further be simplified. For example, with a(a)eT,)2>> 1 it can be written:

Z,~R;+ (1 — 0)R, + jw,0L (6.84)

This equation would be very comfortable for the calculation of the rotor resis-
tance and leakage inductance. The excitation frequency should be within the range
of at least 25 Hz, though. Here the current displacement effects in the rotor already
have a considerable magnitude and markedly distort the estimated value of the rotor
resistance. Under certain assumptions these effects could be taken into account by
an additional approach. The safe way, if more than the leakage inductance shall be
identified, consists, however, in the evaluation of the complete Eq. (6.81).

For the estimation of the four parameters of (6.81) current and voltage values
have to be captured after achieving the steady-state operating condition over at least
one period of the fundamental wave at two excitation frequencies w,; and @,;.
Harmonics are conveniently suppressed by discrete Fourier transformation of the
measurement values. Two complex resistance values are the result:

Z(we1) = c1 +jdy

6.85
Zy(wer) = ¢34 jda (6.85)

The coefficients of (6.81) can be calculated as follows:

af = Werdi — We1dy (6.86)
welwez(cz - Cl)
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d
by ==+ ca (6.87)
We
e (1 4+ P’ — (1 + dw?
by = aiby + lthall ‘22) 12( 1) (6.88)
W, — Wy
by = ci (1 +ajwy,) — (a1 — b)) (6.89)

Solving to the actual machine parameters is elementary. The obtained value for the
differential main inductance L:ﬂ, however, is not immediately usable because only a
small area of the hysteresis curve is passed through at every direct current working
point and the gradient at this point does not or only at strong saturation coincide with
the gradient of the actual magnetization characteristic. To identify the main induc-
tance the frequency response method has to be adapted specifically (cf. Sect. 6.4.3.3).
The value for by contains apart from the stator resistance the uncompensated inverter-
caused voltage errors, and is therefore not representative as an estimate.

For the determination of the current dependency of the leakage inductance
(saturation characteristic) a separate series of measurements is required because the
magnitude of the current must be varied without pre-magnetization. Because of the
zero crossing errors the received values differ a little from the leakage inductances
found with DC offset. Because no general function for oL, can be given due to the
different leakage saturation behavior, a linear approximation between the test points
or a polynomial approximation may be used.

6.4.3.2 Optimization of the Excitation Frequencies by Sensitivity
Functions

Depending on the excitation frequency, changes of a motor parameter effect the
frequency-dependent complex impedance Z; in the Eq. (6.83) with different
strength. This behavior can mathematically be described by the sensitivity function
E(p) of the complex impedance Z; regarding a parameter p. For the separate
investigation on the influence on real and imaginary part of Z, the sensitivity
function is calculated one by one for real and imaginary part respectively:

_dIm(Z)) s
Ei(s) = T os Im(Z,) (6.90)
Er(s) = SRS

IN

Os  Re(Z,)



220 6 Equivalent Circuits and Methods to Determine the System ...

After some transformations the following equations result:

| OIL2R(3L, +2L,) + 0L, (L, + 2Lo) (L, + L) | oL,

E[(Lm) — 1 e~ m-'r e—m m 5 m
(R +02(, +1,)%) Im(Z,)
(6.91)
272 p2 ! 2
weLm (Rr - (Lm + L”) ) WeLs
E(L,) = [1- N | mZ) (6.92)
(R% + w2 (L, + Ly) ) Zs
2R.03L2(L,+L;,) R,
(R + o2 (L, +1,)7) M
LR (L, + L)' -R) g,
Er(R,) = N Re(Z) (6.94)
(R +2(L, +1,)7) Re&
—20’L2(L 4+ L,)R, w,L,
En(Ly) = 2Ll +Lo)R, (6.95)

(Rz + w2 (L, + Ly)

For reasons which will be discussed in the next section, the sensitivity function
of the real part regarding L,, is not of interest. For one example the sensitivity
functions are represented in Fig. 6.16. The typical qualitative characteristic can be
transferred and generalized to other motor power ratings.

Values between 2 and 12 Hz prove to be suitable excitation frequencies for the
identification of rotor resistance and leakage inductance. The frequencies are still

Fig. 6.16 Sensitivity
functions of a 3 kW motor
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low enough to neglect current displacement effects, on the other side however,
adequately high to achieve a decoupling of the main inductance. Optimal values to
estimate the main inductance are in the area from 0.1 to 0.4 Hz.

An exact pre-computation of optimal excitation frequencies with the help of the
sensitivity functions, however, is not possible because these in turn contain the
parameters to be identified. But an iterative optimization of the excitation fre-
quencies within several identification runs is possible, thereat no more than 2-3
iteration steps are generally required.

6.4.3.3 Peculiarities at Estimation of Main Inductance
and Magnetization Characteristic

Also the main inductance can be identified by single-phase sinusoidal excitation
like leakage inductance and rotor resistance. The hysteresis problem mentioned in
the previous section can be solved by working without direct current offset.
Because of the necessary lower excitation frequencies, zero crossing errors have a
less strong effect. Because the voltage measuring errors primarily distort the real
part of the measured impedance, only the imaginary part of (6.83) is used for
evaluation. Because the imaginary part is mainly determined by the phase shift
between current and voltage, this phase shift must be measured with sufficient
accuracy which in turn sets a lower limit of approximately 0.1 Hz for the excitation
frequency. At this time R, and L, are assumed as known parameters.
Solving the Eq. (6.83) yields for the main inductance:

. R} + X7 +2X,(X, — Im(Z,)) — \/ (R? — X2)*~4Im(Z,)R2(Im(Z,) — 2X,)
" 2w,(Im(Z,) — 2X,)

(6.96)

Because the stator current is divided between inductance branch and rotor, the
exact magnetization current has to be calculated:

R+ X2
@:4¢ r 4 . (6.97)

RY + 0Z (L + Lo)

Different operating points on the magnetization characteristic are adjusted by
different current amplitudes. It has to be taken into account that the identified main
inductance is not identical with the effective main inductance at three-phase exci-
tation. The reason is that the magnetizing current has constant amplitude at three-
phase excitation, but changes sinusoidally at single-phase excitation. The ampli-
tudes coincide for the two cases. The voltage at single-phase excitation is distorted
due to saturation. The amplitude of its fundamental wave evaluated for the fre-
quency response does therefore not represent the instantaneous maximum value of
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Fig. 6.17 Single-phase and 4
three-phase main inductance "

the magnetic field strength correctly. The described relations are qualitatively
represented in the Fig. 6.17.

In Klaes 1992 the difference between single-phase and three-phase inductance is
compensated by a constant factor established heuristically which subsequently
compresses the scale of the magnetizing current or flux axis. An interesting sys-
tematic solution was described in Biinte 1995. It assumes that single-phase and
three-phase inductance curves L,, 1(7#) and L,3(i,) can be described by polynomials
of the nth degree in the following form:

ml /I\ Zalklﬂ 5 m3 l# Za3kl“ (698)

The single-phase main inductance L, is calculated for a sinusoidal magnetizing
current i,(t) = ?u sinw,t from the continuous Fourier coefficients of the funda-
mental of the magnetizing current, and the voltage drop over the main inductance u,,
from:

/o, 7/,
®eLin1 / iu(t) sinw,t dt = / u, (1) cos w,t dt (6.99)
0 0

Furthermore the following equation applies for the voltage over the main
inductance:

diy,
dt

L% _ dLm3 (lﬂ)
dt dt

uy(t) = (6.100)

iy + L (i) —
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After substituting, processing of integrals and comparison of coefficients the
result is:

k)2
2041
2111)2[+2 for k even

ax = brasy with by = (6101)

(k+1)/2

4 21
= 11 511 else

For the above mentioned second method of the adjustment of the characteristic
by coordinate axis compression, power-dependent compression factors:

i3 = cidyg mit ¢ = /[k]by (6.102)

with values of ¢, = 0.85 ... 0.88 for a polynomial degree n = 3 can be derived.
Thus this method also should provide a useable characteristic transformation. The
polynomial approximation is obtained from the single measurements by applying
least squares approximation (cf. Appendix A.3).

6.4.4 Identification of the Stator Inductance with Direct
Current Excitation

The basic concept of this method is derived from the fact that at impression of a
direct current into the stator windings a part of the applied voltage is consumed by
the stator resistance, the other part is used to build the stator flux. From the stator
voltage equation:

d,
dt

ug = Ryis + (6.103)

and after integration for the stationary state it follows:

/ udt = R, / iydt + Lyi (6.104)

Because the leakage inductance and the stator resistance are known from the
previous measurement, the main inductance can be calculated from that theoreti-
cally without difficulty. Offset errors, stationary errors of the voltage measurement
or an incorrectly estimated stator resistance can be eliminated, if the integral term
on the right side of (6.104) is replaced by the stator voltage in the steady state
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Fig. 6.18 L, identification for a 5 kW motor: no-load test (+), direct current method (o),
alternating current method (%), solid line four-parameter model from no-load measurements
(regressed by polynomial of 3rd order)

condition (f — o0). In time-discrete notation the computation equation of L; with
the sampling period 7, the time step k and the total integration time NT is:

T éV: us(k) — ug(00)NT

L, =0 o) (6.105)

For the determination of the complete magnetization characteristic the identifi-
cation is realized at different current levels. Because different single tests, partic-
ularly at small currents, partly show a considerable scattering of measurements, an
averaging of the values from several tests is recommendable. The measurement
should be carried out in all three windings to eliminate machine unbalances.

Figure 6.18 shows finally some measurement results. The values for the stator
inductance L, from alternating current and direct current methods delivered by the
identification are plotted together with the results of the no-load test. The conse-
quences of voltage measuring errors are most distinctive particularly at small currents
and simultaneously small voltage amplitudes. A very good correspondence to the no-
load characteristic is shown in the area of high saturation. Altogether, the precision of
both methods can be considered as sufficient for the purposes of the self-tuning.
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Chapter 7
On-Line Adaptation of the Rotor Time
Constant for IM Drives

A typical problem of the field-orientated control consists of the system having to
evaluate the actual value of the rotor flux without flux sensors through a model from
the measurable terminal quantities of the motor and the speed (cf. Sect. 4.4). The
often used current-speed model contains the rotor time constant of the motor as an
essential parameter whose exact knowledge influences decisively the quality of the
control. This fact and the working point dependence of this parameter motivate the
introduction of special measures to primarily compensate the temperature depen-
dence of the rotor resistance. To achieve this, two approaches are in principle
conceivable: Either the rotor flux model can be completed by an on-line adaptation
method which corrects the rotor resistance permanently, or the rotor flux is esti-
mated by an observer which is insensitive against variations of the rotor resistance.
The first approach is subject of this chapter.

In the first section the range and effects of temperature-dependent changes of the
rotor resistance on other characteristic quantities are examined. A summary of
published compensation methods follows. Thereafter adaptation methods with a
parametric error model are discussed in greater detail. Such on-line adaptation
methods use error models for the tracking of the parameters which in turn contain at
least another two machine parameters. Their precision therefore also influences the
quality of the field orientation. Thus these dependencies form a further main
emphasis in the discussion besides adaptation dynamics and problems of the
adaptation in the non-stationary operation.

7.1 Motivation

When using the i;- flux model in field coordinates (cf. Sect. 4.4) the amplitude and
phase angle of the rotor flux linkage (model quantities indicated with *) are:

dipg 1 ~ =~
S = (T + ) 7.1
T, ( md (7.1)
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~

> R i
Y =0y =+ iq (7.2)
Trlmd
with: i, = 'é"’

Thus the rotor time constant 7, is obviously the decisive parameter for both
dynamics and precision. Assuming an exact initial setting and the possibility of an
exact modelling of the rotor inductance, the rotor resistance R, remains as not
predictably variable parameter. Considering the temperature coefficient and the
possible change of the rotor temperature it can be shown that a resistance variation
of about 50 % has to be expected during operation. This undoubtedly causes a loss
of quality in the system behaviour. The size of it and its tolerability or non-
tolerability shall be examined in the following. The following criteria will be
analyzed:

e Stationary torque and flux deviation (or difference).

e Linearity between torque and torque-producing quantity (the torque-forming
current component).

e Dynamics of torque impression.

A faulty rotor time constant generates according to (7.2) a flux phase error
and thus a phase difference between model current and motor current in the
consequence:

ix :/i\xejﬂxy ’[9} = {9\S - 19S (73)
After solving into components, the Eq. (7.3) can be written as follows:

isq = igq€OS Vs — igysin vy
~ ~ ~ (7.4)
Isg = s COS Vs + Igqsin Uy

Because the speed is measured and the slip has to adjust to the existing load after
dissipation of all transient processes, the slip values in the model and motor are
identical in stationary operation, and therewith the next equation is valid according
to (7.2):

~

IR (7.5)
Lsd Tr isd Tr

Using (7.4) and (7.5) the phase error {9:- can be calculated as follows:

o~ o~

Q@ Tr isdix

tandy = (= — 1 | =——l— 7.6

(T, ) [P (7:6)
! s

7
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With the help of the stationary torque equation:

3 12

EZP L_misdisq (77)

mpyy =

relations can now be derived for the stationary torque and flux amplitude deviation.
After some intermediate steps the following formulae will be obtained:

After inserting (7.4) and (7.6) into the torque Eq. (7.7), the torque characteristic
mM(zsq) will be obtained assuming constant T

T2 T2
s 3, L2TAA i2+7i2
mM(l‘vq) 2 = Lsdlsq

2
T e (2) 32
sd /T\ sq

The Eq. (7.8) is graphically represented with and without the consideration of
the main field saturation in the Fig. 7.1 with the data of an 11 kW standard motor.

(7.10)

(a) (b)

: m
: =
] 1m
i S N 1.2
w0
N
B
aeeeemees e [T
1.0 12 &

R,

isq = i,

lyqg = 21'5(1, ....... l'sq

= 3?sd )

Fig. 7.1 Torque errors caused by inaccurate rotor resistance: a without main field saturation;
b with main field saturation (
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Without saturation the Eq. (7.8) does not contain any further machine parameters
apart from the rotor time constant deviation and therefore describes a generally

valid relation. With the consideration of the saturation there is also Zm # L, for a

wrong rotor time constant in the model because of ?ﬂ # i,. As shown in the figure,
the saturation will have a weakening influence on the torque error at larger load.
The reason is that the fraction in Eq. (7.8) and the terms before it describe contrary
trends of the torque deviation. One of them predominates depending on the load,

also an approximated compensation is possible, as in Fig. 7.1b for /i\Sq = 2/1';(1.

The size of the torque deviation is approximately half as large as the model
resistance error at nominal operation and therefore actually remarkable. Whether a
too small or too big model resistance represents the more critical case can be
recognized in connection with the flux deviation. The corresponding characteristics
using (7.9) and (7.6) are shown in Fig. 7.2.

For a speed controlled drive the motor torque to be produced will correspond to
the load torque in any case. If the rotor flux is weakened by a wrong orientation, a
higher current must be applied to achieve the demanded torque which can possibly
exceed (at full load) the maximum inverter current and then leads to premature
breakdown or the drive not reaching its rated speed. According to Fig. 7.2a this is
the case for a too big model resistance. With a too small model resistance, a flux
increase will follow which at corresponding speed causes a premature approaching
the voltage limit. It is possible that the reference speed can not be reached at
nominal torque, and the error of the rotor time constant leads to a reduction of the
available power. Because the drives are usually designed with a current reserve on
the inverter side, but the voltage of the DC link cannot be increased beyond a

¥l N : ! : : : 3,
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Fig. 7.2 a Flux amplitude errors. b Flux phase errors: by R, deviation (with magnetic saturation);

Isg = lsds ==~~~ isqg = 2isq; «ovnnnn isg = i
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certain limit, the second case (small model resistance) has to be classified as the
more critical one.

The depicted area of the T, deviation is approximately within the temperature-
dependent limits which can be practically expected, if with regard to the initial
settings of T, the following two cases are considered: On one hand an initial setting
on the cold machine, in which case an increase of the rotor resistance by 50 % has
to be taken into account during operation; and on the other hand an initial setting on
the medium-warm machine with an operation dependent resistance change
of £25 %.

For the Figs. 7.1 and 7.2 three different load cases were analyzed in which the
largest load approximately corresponds to the rated torque.

For a speed-controlled drive without high dynamic and precision demands the
appearing flux and torque errors are probably tolerable. A superimposed speed
control will compensate stationary torque errors. With adjustment on the warm
machine an unintentional flux increase and power reduction will be avoided.
However, depending on technical conditions and demands on the drive quality and
on the intended optimization goals the expected errors could become too large and
therefore no more acceptable. Such cases can be:

e The current reserve of the inverter is so small (or there is no overrating at all)
that a flux weakening caused by wrong orientation really leads to a prematurely
reaching of the current limit.

e An exact control of the state variables at variable rotor flux and in the field
weakening becomes impossible.

e Drives which require an exact torque impression cannot be designed without
additional measures. This becomes clear also by the stationary characteristic

~

my(isq) in Fig. 7.3.

Fig. 7.3 mM(im)
characteristic: —IAQ, =R,,---
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Fig. 7.4 Dynamic torque s h 3
impression at faulty [Nm]_ R, _
adjustment of 7, o | F;IBB
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e The recommended operation to avoid power reduction with a reduced flux
automatically leads to an increase of the slip, and thus to a worse efficiency.

Figure 7.4 shows the influence of a wrongly adjusted rotor time constant on the
dynamic torque impression in the constant flux area. Because the rotor flux remains
constant in the first instance after the reference step, the actual torque responds non-
delayed in the first place as in the case of correctly adjusted parameters. The
following settling process is determined by the transient of the rotor flux and is
finished if the rotor flux also has reached its new stationary state.

Thus the consequences of a wrong adjustment are less serious in the dynamic
case in the basic speed range. Altogether, the stationary torque and flux errors
represent the more serious effects and ask for the search of compensation mea-
sures in high quality and highly utilized drives.

A high-dynamic torque impression is not conceivable in the field weakening or
at low voltage reserve without an exact machine model, though. These issues will
be discussed in Chap. 8§ more thoroughly.

7.2 Classification of Adaptation Methods

Because of the significance of an online adaptation of the rotor time constant
outlined in the previous section these problems are a standard topic of the pertinent
technical literature with a mass of papers since the first publications about FOC. An
overview is found in Krishnan and Bharadwaj (1991) for example.

Because of the variety of different methods, only a certain group, namely the
model methods with different kinds of error signals, shall be dealt with in detail
subsequently. At first, a general survey will be worked out comprising a system-
atization and summaries of characteristic features to give to the reader a broader
insight and the possibility to analyze the subject more deeply with the help of
secondary literature. Figure 7.5 only shows a rough classification. In this picture
only adaptation methods which work without physical changes on the motor
(additional windings or the like) are included.
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On-line adaption of rotor time constant

With supplementary signal Without supplementary signal

Model method Non-linear observer Use of special signals

and maschine states

Linear faults Quadratic faults Deterministic Stochastic
(Luenberger observer) (Extended Kalman Filter)

Fig. 7.5 Systematization of the methods for online adaptation of the rotor time constant

(a) Methods Using Additional Signal Injection

The classic method in this group was published in Gabriel (1982). It uses the
property of the rotor flux process to low-pass filter high-frequency disturbances in
the flux forming current and therefore to keep the torque un-effected from
such signals. But this is only valid in the case of exact field orientation, if the flux
forming current does not directly contribute to torque production. If consequences
of a high-frequency pseudo-noise signal injected on the flux forming current are
provable in the torque (by correlation calculation), the field orientation is not exact
and the noticed error can be used for the correction of the rotor time constant. A
similar approach is used in Nomura et al. (1987). A higher-frequency sine-wave
signal, however, is fed into the d axis instead of the noise signal.

In the method described in Chai and Acarnley (1992) with spectrum analysis the
supplementary signal is added to the reference value of the rotor flux. At the same
time, flux and torque forming current components are controlled in such way that
no disturbance of the torque takes place. The suitable choice of the harmonic
frequencies to be evaluated in relation to the stationary stator frequency enables an
on-line emulation of the classical short circuit and no-load tests using simple
algebraic equations for the parameter calculation following digital Fourier trans-
formation of the measurement values. The method was used for the online adap-
tation of resistances and leakage inductances. Because of the harmonics produced
additionally by the saturation, an estimation of the main inductance is not possible.

The method (Sng and Liew 1995) which was especially developed for extremely
low speeds works similarly. A MRAS estimator for the rotor time constant is
combined with an on-line estimation for resistances and leakage inductances which
is excited by a high-frequency sine-wave signal.

A method which uses harmonics produced by the inverter as excitation was
finally published in Gorter et al. (1994). These harmonics are in the range of 300—
600 Hz. The rotor resistance, the leakage and main inductances are online-identified
using the RLS method. The required linear machine model was derived by tran-
sition into rotor coordinates and use of a stator current—stator flux model.
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(b) Methods Using Models

The methods of this group work according to the model reference principle. A
physical quantity of the motor is calculated by two different and independent
models, and an error signal is derived from the output signals of both models. This
error signal works as a driving quantity of an adjusting controller which corrects
on-line the rotor resistance, rotor time constant or other parameters as well. Of
course, the designed error signal must depend on the parameter to be estimated in a
way which supports an unambiguous tracking. Input quantities of the models are
measured terminal quantities of the machine, whereby a sub-model can immedi-
ately be identical with a measured quantity. In different ways stability consider-
ations can be included, for example through an observer approach or by exploiting
the theory of model reference adaptive systems (MRAS).

The methods described in the literature differ from each other primarily by the
choice of the physical quantity used for the calculation of the model error.
Furthermore it can be distinguished between the linear and quadratic error signals.
Linear error signals are formed from stator current components (Pfaff and Segerer
1989; Reitz 1988) (in this publication all parameters are adapted by an adaptation
law designed according to the Gaull-Newton method), stator voltage (Dittrich 1994;
Rowan et al. 1991), motor EMF (KaZmierkowski) or rotor flux (Ganji and Lataire
1995). Also the method described in (Fetz 1991), which works with a field-ori-
entated open-loop current control and an adaptation signal derived from the output
signal of a current by-pass controller implicitly uses the stator voltage components
as reference values. Estimated and measured stator current trajectories are compared
in Holtz and Thimm (1991) to calculate all machine parameters and rotor current
components by using a gradient method.

Quadratic error signals can be derived from the amplitude (Rowan et al. 1991) or
the phase angle (Schumacher and Leonhard 1983) of the stator voltage or the motor
EMF, from the air gap power (Dolal and Krishnan 1987), the active and/or reactive
power (Dittrich 1994; Koyama et al. 1986; Sumner and Asher 1991; Sumner et al.
1993), from the electrical torque (Lorenz and Lawson 1990; Rowan et al. 1991), the
magnitude of the stator flux (Krishnan and Pillay 1986) or from especially designed
signals (Vucosavi¢ and Stoji¢ 1993; Weidauer and Dittrich 1991).

(c) Non-linear Observers

These estimators also could be assigned to the methods with additional signal
injection as far as extended Kalman filters (EKF) are used for the parameter esti-
mation, because here the harmonics produced by the pulse-width modulated voltage
are partly used as excitation signal (Zai and Lipo 1987). For the classification
carried out at this place the observer approach shall play, however, the decisive role.

Compared with simple model methods, an observer approach offers the possi-
bility of predicting the dynamic behaviour of the adaptive system in certain limits,
and of targeted adapting the feedback matrix. Furthermore, certain properties like
the robustness of the system, can be influenced by the suitable choice of the feed-
back matrix. The parameter adaptation is a by-product to the actual task of the
observer, the flux estimation.



7.2 Classification of Adaptation Methods 235

When state observers are used for parameter estimation at the same time, non-
linear or extended observers (Zeitz 1979) arise. A complete observer for the elec-
trical quantities of the induction machine with inclusion of one parameter would
have the order of five. Because the currents usually are being measured, the order of
areduced observer (flux and one parameter) is cut down to three, and the realization
expenditure is substantially more favourable. The observer error essentially corre-
sponds to the stator voltage component error model mentioned above. Observers of
reduced order with parameter adaptation are described in Dittrich (1998), Nilsen
and Kazmierkowski (1989) and Schrodl (1989).

As opposed to Luenberger observers, Kalman Filters (KF) or Extended Kalman
Filters (EKF) take into account stochastic uncertainties of the system and measuring
errors for a combined state and parameter estimation. As already mentioned they
can also work with stochastic input signals. The realization effort is, however,
considerable. Although the asynchronous machine represents a deterministic sys-
tem, a number of papers have been published on the application of EKF (Atkinson
etal. 1991; Loron 1993; Pena and Asher 1993). Du and Brdys (1993) is to mention
as an interesting contribution on the topic of applying extended observers or EKF’s.

(d) Evaluation of Special Signals and Machine States

All methods which work without injection of an additional signal and can not be
assigned to other groups shall be assigned here. So (Vogt 1985) evaluates the speed
oscillations caused by torque vibrations from an inaccurately adjusted rotor time
constant. The method described in (Hung et al. 1991) calculates the rotor flux and a
correction signal for the rotor time constant from the third voltage harmonic caused
by the magnetic saturation, and therefore independent of rotor parameters, this
under the assumptions of an exact voltage measurement, operating the motor in the
saturation and star-connection of the windings.

An essential weakness of the methods with additional signals is certainly the
influence on the normal operation which can really have a disturbing effect, even if
the torque remains undisturbed as indicated in Chai and Acarnley (1992). The
adaptation can be carried out only in the stationary operation; a general proof of
stability is barely possible. Furthermore great care is required to ensure that only
answers to the excitation signals are actually evaluated and no harmonics and dis-
turbances caused by other influences (saturation, mechanical oscillation). On the
other side, an identification of the rotor parameters is also possible in no-load
operation (Chai and Acarnley 1992) with appropriate design of the excitation signal.

This is fundamentally impossible for methods without additional signal.
Furthermore it cannot be assumed that the signals appearing in the normal operation
have an adequate information content suitable to carry out a multi-parameter
identification (what is not intended in the context of this chapter, though). Error
models for the identification of the rotor time constant always contain other machine
parameters which decisively influence the precision of the adaptation. On the other
hand an adaptation is conceivable and theoretically also possible in the dynamic
operation. The system behaviour including stability can be designed and assessed in
an uniform approach, at least with certain limitations (e.g. partial linearization).
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7.3 Adaptation of the Rotor Resistance with Model
Methods

In this section some approaches from the group of the model methods shall be
discussed in more detail, whereat for design and stability analysis principles of the
nonlinear observer theory will be applied. Linear and quadratic fault models
(reactive power) are included. The online adaptation is focused on the compensa-
tion of temperature variations and therefore on the rotor resistance. The state var-
iable dependent main inductance is adjusted in feed-forward mode. If the adaptation
is implemented primarily for the optimization of the stationary operation, an
immediate tracking of the rotor time constant as a whole is also conceivable and
sufficient.

The observer is designed from a linearized process model based on a local
approach of the system at small state errors. This approach is justified because a
state observer is designed for the purpose to keep deviations minimal between
observer and system state variables. Prerequisite is that the initial values of the
observer states are chosen accordingly, i.e. close to the actual system states.

All fault models contain besides the rotor resistance at least two further machine
parameters whose precision fundamentally influences the adaptation error and with
that the precision and stability of the adjustment. For this reason corresponding
sensitivity studies will occupy a relatively wide room in the following
considerations.

In principle it is possible to implement the online adaptation like the flux model
in arbitrary coordinate systems. But because the flux model was already established
in the rotor flux orientated coordinate system, and thus the rotor flux is immediately
available in this system, the adaptation methods are also designed in field-orientated
coordinates.

7.3.1 Observer Approach and System Dynamics

As already indicated, the adaptation algorithm shall be designed using the theory of
non-linear observers. This approach has the substantial advantage that the adapta-
tion dynamics and stability can be examined in a uniform design procedure. The
design is carried out for a linearized system in quasi-stationary operation. The
essential design prerequisites are:

e The observer is designed exclusively for the rotor resistance, therefore being the
only state quantity.

e For the analysis of the observer dynamics the steady-state condition with regard
to the rotor flux vector is assumed:
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im = lsa, T :7sd, Yy = 55 — 9, = const (7.11)

It has to be made sure for the functionality of this approach that the rotor
resistance observer is assigned a sufficiently slow dynamics ensuring a dynamic
decoupling to the remaining system. For the compensation of thermal resistance
changes such a dynamics is completely sufficient.

With these prerequisites, for the system state and output equations can be written
(for clarity the current time step & is written as an index in the following equations):

Ry ki1 =R

Yo = h(R,x, u) (7.12)
Here y is the output vector, and u is the input vector of the system. The output
equation represents the equation of the later error model. Therefore the distinction
between input and output quantities has not to be understood in the strictly literal
meaning. Both vectors are assumed multi-dimensional in the general case.

The observer for this system is formulated as extended Luenberger observer
(Brodmann 1994; Zeitz 1979). It consists of a model of the system and a linear, but
state variable and time dependent feedback of the output error (difference between
model output and system output vector) to the observer state:

knk«rl - Rr‘k - k(kr,ky uk)T(/y\k - yk) (7 13)

Ve = h(R, 1, w)

The Eq. (7.13) corresponds to a general adaptation approach with the adaptation
fault

~

e = —k(Ropw) (Vi = vi) (7.14)

in the structure of the Fig. 7.6. For the following design procedure two tasks
remain:

e Specification of a fault model—subject of Sect. 7.3.2.
e Design of the observer dynamics by determination of the weighting or feedback
vector k.

The dynamic analysis is carried out using the difference equation of the observer
error:

Rijy1 = iér,k-&-l —Rejs1 =Ry — k(ﬁr,ka w)' (¥, — ¥0) (7.15)

If suitable starting values which already are close to the system state are chosen
for the observer state, being the rotor resistance, the design can be performed by a
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Fig. 7.6 Rotor resistance
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local analysis following the linearization around the model state. Then the
Eq. (7.15) can be written as follows:

~ oh
Rip41 = <1 k'

~ > ié rk (7 16)
From this a relation for the linearized output error can be derived by comparison
with (7.13):

_ on
yk_aRr

Ry (7.17)

rko Uk

The actual design of the fault dynamics is carried out with help of the charac-
teristic equation of the linearized fault system. This is in the z domain:

—1+Kk" =0 7.18
z + R, (7.18)
ik Uk
or with (7.17):
- 1+K' Yk —0 (7.19)
Rr,k

From this the coefficients of the feedback vector k can be calculated using the
corresponding terms for the special error models. The most important design goals
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consist of achieving a time-invariant and system signal independent fault dynamics
and of obtaining a stable transient response by specification of a constant eigen-
value z;. In addition, to satisfy the demand for adequately slow adaptation dynamics
(dynamic decoupling to the remaining system) z; should fulfil the equation:

1T
<l—z71< = 7.2
0 21_2T (7.20)

P

For all simulation and test examples given subsequently the value of the upper
limit was used respectively.

Because the observer is designed in field-orientated coordinates, the coordinate
transformation is an integral component of the model. Therewith actual input
quantities are currents and voltages in stator-fixed coordinates. If the observer
equations are formulated and designed nevertheless in field-orientated coordinates,
it has to be taken into account that the transformation angle J; or the phase error J,
is a function of the state error R,. All currents and voltages in field coordinates
depend implicitly on R,. Therefore the equation for the linearized output error has
to be extended to the complete error difference:

s _oh
T

b (7.21)

R
"+ 50l

Uy

R,

Here {i is given by (7.6) for the interesting stationary case. For the relation
between the phase error and the rotor resistance, it follows then in linearized form:

~ 90,

Uy =— —" R, (7.22)

Using
il =ife™ (7.23)

the next equation will be obtained for the derivative of the stator vector in field
coordinates with respect to the phase angle:

oL/

50 = —jife s = —jif (7.24)
S

Analogously the following equation is valid for the stator voltage:

ouf
N,

= —jule? = —ju/ (7.25)
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7.3.2 Fault Models

The stator voltage equations provide the first approach for the derivation of
the output equation and in due course for the observer fault. In addition, the active
and reactive power balance were chosen as an example for quadratic fault models.
The reason for this special choice consists in the fact that characteristic model
parameter constellations, which allow representative statements also for other
methods, are produced in the context of these methods. These relations will be more
exactly examined in the next section. At first the fault models shall be assem-
bled, and the associated feedback coefficients shall be derived. The magnetic sat-
uration remains so far unconsidered, and linear magnetic conditions or a constant
rotor flux are assumed. If the saturation of the main inductance shall be taken into
account for the adaptation in the field weakening area or for rotor flux transients, the
corresponding relations from Sect. 6.2.3 have to be used for the derivation of model
equations.

7.3.2.1 Stator Voltage Models

In this case the system output equations can be derived immediately from the time-
discrete stator voltage equation of the IM in field-orientated coordinates. To avoid
the flux derivation it is started from the state equation with Euler discretization (cf.
Chap. 3):

. oLy . . . .
U = Rslx,k + ? (lSJH—l - lx,k) +st6Lx1x,k

— (1 — U)Rr(im,k — isx,k) +J0)(1 — U)Lsim,k

(7.26)

Models which use voltage equations in d or ¢ axis or as a combination of both
components are practicable.

(a) Stator Voltage Model in d Axis
The output equation of the system is obtained by using the real component of
(7.26):

1 oL

Vaj+1 = 77— | —Usgk + Rylgap +— (ixd.,k—o—l - isd,k)
1—0¢ T
(7.27)

_O-L.vwsisq,k:| - Rr(im,k - ixd,k) =0

and the output error follows to:
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1 ~ n oLy (~ 0
Va—Ya = |~Usgx + Rslsar +—— (lsd,k+1 - lsd,k)
l1—0 T
(7.28)
_O-sts/i\sq,k:| - ﬁr,k (/i\m,k - /i\sd,k>

To obtain the adaptation gain the linearized output error has to be calculated
using (7.17) and (7.19). The calculation is carried out according to the assumption
for the steady-state condition indicated by (7.11). The explicit indication of the
current time step is omitted subsequently. Using (7.21), (7.24) and (7.25) it follows
from (7.27):

Oh 1
55 -1 o (—ttyg + Ryisq + 0Lsgisq) = — Ly, (7.29)
s —0

Finally, the stationary linearized output error is found using (7.22):

o~ o~

- ae misg
Vo=~ Trin=—2= R, (7.30)

m+lsq

After substituting this expression into (7.19) the adaptation gain can now be
calculated with the predefined eigenvalue z;:

1—2z

T i
lm+lsq

(b) Stator Voltage Model in q Axis
Analog to the d axis model the output equation immediately results from the
imaginary component of (7.26),

. oLy /. .
Vg, k+1 = 11— |:_”Sq,k + Ryiggr + 75 (l‘vq,kﬂ - l‘vq‘k)

(7.32)
+ O-stsisd,k:| + CUsLsim,k =0
with the output error:
~ 1 ~ ~ GLX o~ -~
Yg—Yq = 1-¢ —Usg i + Rylsqr + T (’sq;kﬂ - ’smk)
(7.33)

+ O-stxixd,k:| + w.vLs im,k

For the stationary linearized output error we obtain in the same way with:
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Oh ! (s — Ryisa + 0Lsig)
a0 1 = Usda — Il O L5yl
9, 1—g I (7.34)
+ wsLsisq - wsLsisq
the following equation:
¥V, = w, Ty, ﬂfe (7.35)
! T2l
Accordingly the adaptation gain can be calculated as follows:
1—
k= ——— (7.36)
T, isqé:r,:%

(c) Voltage Vector Fault Model

So far several approaches have already been suggested in the literature to
combine both error components (Rowan et al. 1991; Schumacher and Leonhard
1983). Thereat the amplitude or phase angle of the error vector was calculated.
Furthermore it is conceivable to simply add both weighted error components
derived above. However, this way shall not be followed here, because in spite of
more information flowing into the adaptation the possibility to use the additional
degree of freedom for dedicated weightings of the error components will be given
away. The combination of the error components shall be aimed to define the
dynamics with one weighting factor and to balance the contributions of both error
components to the total error with a second factor. The addition of both components
has to ensure that the sign of the total error (=adjustment direction of the rotor
resistance) is only determined by the direction of the resistance deviation or the
phase error, and not distorted by the combination of the error components. The
following approach is chosen:

~

edg = ka1(Yg — ya) — kql(s’\q — Yg)signig,
= k|G = va) = ka5, = v)signisg (7.37)
kg >0 s kql >0

The adaptation dynamics is determined by k,, and the error weighting by
kag = kq1 / kq1. By inserting (7.30) and (7.35) the linearized output error is obtained
to:

) _mba R (7.38)

w22
lm + lsq

Yag = —Ws T, (kdl im+ kql l.sq
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At positive i,n the bracket term is always positive, and thus the above-mentioned
condition is fulfilled. The adaptation gain can be calculated as follows:

1—
k= (7.39)
war(in1+kdq )%

llll !

sq

) sq

The derivation of a suitable value for kg4, is subject of Sect. 7.3.3.

7.3.2.2 Power Balance Models

The first step at examination of an error model is to find out whether it is suitable
for the rotor resistance adaptation at all. This is the case if the error signal proceeds
steadily and there is an unambiguous connection between the variation of the rotor
resistance and the sign of the model error. Particularly for error models of higher
order these prerequisites are not obvious. With the method used here to analyze the
adaptation problem with the help of the nonlinear state observer the corresponding
proof can be adduced very comfortably.

Unlike to the previous models, for the power balance methods the system output
vector is derived from the components of the complex power. Starting point is the
equation of the complex power:

— it 7.40
s = ui (7.40)

Neglecting the factor 3/2 it follows in vector notation:

— p _ usdisd + usqisq 7.41
> <q> ( _usdisq + usqisd ( ' )

The output or model equations are obtained after inserting the voltage equations
into (7.41). To simplify the representation they are written in the following in time-
continuous form. As in the case of the stator voltage methods the dynamic analysis
is carried out for steady-state condition regarding the rotor flux linkage and the
stator current (di/dt = diy,/dt = 0).

(a) Reactive Power Method
Following the described procedure the system output equation is:

. . disq . disd .
Vb = Usalsqg — Usqlsd + oL Wlxd - ?lxq

+a,L[cit + (1 —0)iy]

m

+ (1 = 0) WLyip(isq — im) =0

(7.42)
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With:

Oh
Vs

=2(1 = 0)w,Lsinis (7.43)

the following expression is obtained for the stationary linearized error:

~ 1

i2
Vo =2(1 = 0) o T, 2= R, (7.44)
1, + Lsg

The adaptation gain then will be:

1—
ky = — 4 (7.45)
20,T(1 — g) 22

Ee
Lty

(b) Active Power Method
The output equation arises as described:

. . disd . dixq .
Yw = —Usalsd — Usqlsq + oL ? Isa + Els‘q

+ Ryi2 + (1 — 0) 05Lyinis,
+ (1 - G)Rrisd(isd - lm)

(7.46)

For the stationary linearized output error and for the adaptation gain it can be
derived in the same way as above:

oh
= (= o)ol(,—) (7.47)
5, =(1-0) T, (?31 ,7}5) bR, (7.48)
I, + Lsg
1—
ky = — S (7.49)
T, (1 — 0)(1'51 — ln%) 7;5

sq

It shall be noted that obviously the active power method cannot produce
any observer fault in the area i, ~ i, and therefore its usefulness is
limited substantially. Thus further consideration is abandoned.
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7.3.3 Parameter Sensitivity

All error models contain machine model parameters which practically always show
a certain deviation compared to the actual motor parameters. This means, however,
that at use of such a faulty model the rotor resistance too cannot be estimated
exactly. The knowledge of the relations between model parameter errors and a
wrong adjustment of the rotor time constant resulting from these errors is therefore
of essential importance for the choice and assessment of an adaptation method.
Such an analysis shall be carried out now for the error models introduced in the
previous section.

The vector of the error model parameters is referenced by p, and the vector of
the machine parameters by p. At first the adaptation is looked at in stationary
operation. Stability of the overall system assumed, the adaptation algorithm will
regulate the adaptation error to zero in every case:

lim e(@,, is, ) =0 (7.50)
t—00
For a speed and rotor flux controlled system, the system state and the model state
are unambiguously determined by the motor torque my, (=load torque) and by the
set point fj‘n (:2,,,) of the rotor flux linkage. The current component fsq of the model
is adjusted by the speed controller according to the required torque. The connection
between system and model currents is given by (7.4). A statement about the model
parameter dependent adjustment error of the rotor resistance can be obtained if an
analytical connection:

ki‘ :f(mM7 /i\ma ﬁ) (751)

can be derived. Unfortunately, this is not possible in explicit form, though, so that a
simulation study or an iterative calculation must be undertaken. A possible
approach for the iterative solution consists in computing the resistance error R, fora
given p for which the adaptation error & becomes zero. This way the searched
dependencies (7.51) can be determined point-wise.

In the first step the model current component ?Sq shall be determined in
dependence of m,, and ?Sd. For this purpose (7.4) and (7.6) are inserted into the
torque equation (7.7). After some rewriting the following expression arises:

~\ 2 ~
il T\~ 3 LT~ [+ n
my |1+ <7> in| = 2% L—T#lmzsq(z; + z,,f) (7.52)

which can be solved to /i\sq iteratively. After that the motor currents can be calcu-
lated by (7.4), and after inserting the result into the stator voltage equation the
motor voltages will be obtained. With that the model voltages are finally found out
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also by (7.4) making all required quantities for the calculation of the model error
complete. Unstable areas of the overall system are indicated by the fact that no
solution ¢ = 0 for a given parameter mistuning exists. In a dynamic system sim-
ulation this case can be recognized by the fact that no stable stationary operating
point will be reached.

The results of the sensitivity calculations for the error models introduced above
are summarized in Fig. 7.7. They were obtained by using the data of an 11 kW
standard motor. The voltage vector error method still remains excluded in this
figure because the second weighting factor to be determined shall specifically used
for the robustness improvement. Although the validity of the results remains limited
to the used motor, characteristic trends can be recognized, which result from the
structure of the fault models and which also are transferable to other motors.

Fig. 7.7 ad axis voltage model, b ¢ axis voltage model, ¢ reactive power model: —— R, /Rs,----
Lin/Ly, ..... 6Ls /0L, top ® = 10 5™, bottom o = 300 s~", left m = 73 Nm, right m = 36 Nm
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In the calculations the model parameters IAQS, Zm and O'ZX were varied, and the
motor parameters were held constant. For the discrimination of the parameter
influences only one parameter was changed at one time. Therefore it is practically
definitely possible that divergent results arise by the overlapping of parameter
errors. A parameter variation range of —50%. ..+ 50 % was examined for two
characteristic rotational frequencies (1.6 Hz and nominal speed) and two loads
(nominal torque and half nominal torque). If a curve is not drawn over the full area,
the overall control system reaches a stable operating point only in the marked area.

At first all parameter mistunings have an effect on the adjusted rotor time
constant which thus represents a characteristic quantity representing the parameter
errors. From this it can be concluded to flux amplitude and phase errors corre-
sponding to Sect. 7.1.

As a trend common to all measurements, it can be noticed that the sensitivity to
the stator resistance drastically decreases at higher frequencies while the sensitivity
to leakage and main inductance is only weakly or not frequency-dependent. This
connection can be proved also arithmetically (Dittrich 1994). In the models where
the leakage inductance appears as a parameter (d axis voltage model and reactive
power model) the influence of the leakage inductance is strongly load-dependent
and a tendency towards a restriction of the stability area exists at increasing fre-
quency and too small model values.

Among the examined methods the reactive power model proves to be the one
with the most favorable robustness qualities despite the stability problems at
leakage inductance errors. These can be avoided if the leakage inductance of the
model is prevented from becoming smaller than the leakage inductance of the
motor. The complete independence on the stator resistance must be highlighted as
particularly positive.

At a more exact comparison of the results for the voltage models two facts can
be noticed: The stator resistance sensitivity curves show a contrary trend, and at
higher frequencies the main inductance or the leakage inductance determine the
sensitivity characteristic, with their plots stretching from the third to the first
quadrant.

From that it can be concluded, that it is possible to compensate the sensitivity to
R, almost completely if a combination of both fault models according to the voltage
vector fault model established in the previous section is used. Only a certain balance
of the sensitivity to the inductances will be reached, though, thereat the primary
objective consists in extending the stability area. For the complete compensation of
the R, sensitivity the factor k,, in (7.37) should be chosen to:

kg == (7.53)

lsq

The factor k,, must approach this value at low stator frequencies. For weak load
the weighting must be shifted to (¥, — ys) because of the more favourable oL
characteristics of the d-axis model, and at rising load and frequency a balanced
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weighting of both components should be obtained. One possibility to achieve this
characteristic is provided by the following approach for the weighting factor kg,

~ kR/l\m + kL /i\sq
kag(is, 5) = —— — and k4 <1 (7.54)
im + isq +kLim
with kg = 1 — 2121 and kx>0
Loy |'s4] Iy
el

2w i, Iv

The factor kg has the effect that k4, will be shifted in the direction (7.53) at low
stator frequencies because k; also is small at low frequencies. At rising load and
frequency a balanced weighting of both fault components is reached by ;.

The obtained results are represented in the Fig. 7.8. The stator resistance sen-
sitivity is reduced drastically compared to the individual methods, and the stability
area extended significantly. The balance between leakage and main inductance

0.5 1-0.25 0.25

g=lk-1]

0.51

Fig. 7.8 Voltage vector fault model: —— INQS/RS, R Zm/Lm, O’ZS/O'LS; top w=10s"",

bottom o = 300 s\, left m = 73 Nm, right m = 36 Nm
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sensitivity can be described as optimal in the upper frequency area. Also compared
with the reactive power method, a reduction of the leakage inductance sensitivity at
high frequency and strong load and of the main inductance sensitivity at weak load
is established.

Altogether it is recognizable, that the influence of stator resistance inaccuracies
can be suppressed almost completely. Despite compensation measures, the model
errors of the inductances should not become greater than 10 %, though.

7.3.4 Influence of the Iron Losses

The iron losses are a parameter which generally falls into the category “neglected or
negligible quantity” at modeling for control design. This is generally justified
because the iron loss resistance lying virtually parallel to the rotor resistance
(cf. Sect. 6.2.1) is about 1000 times greater than the rotor resistance, and the
consequences of the neglection still remain acceptable for the normal operation of
the field-orientated control. With inverter feeding and accordingly higher eddy
current losses however, significant amplitude and phase errors of the rotor flux are
already provable (Levi 1994). Furthermore, for some operating states and control
goals the perspective renders fundamentally different. One of these cases is the
adaptation of the rotor time constant.

At first this can clearly be explained from the stationary equivalent circuit. The
iron loss resistance is located quasi-parallel to the slip-dependent resistance
R,/s (Sect. 6.2.1). Thus not R, but the parallel connection of both resistances is
estimated in reality. Particularly at small slip values near the no-load operation Ry,
reaches the range of R,/s and influences the estimation result significantly.

In order to approach the problem quantitatively the equation system introduced
in Sect. 6.2.1 is now pursued further. After some transformations the following
stator and rotor voltage equations in the Laplace domain will be obtained assuming
Rs << Ry, (G, ... iron loss conductance):

_ Ry + oLiiy(s + joos) + (1 — )Lk (s + joy)

7.55
1 + GoLs(s + joy) ( )

u,

0=[1+ (s+jo,) T, iy — is + Grls (7.56)

The rotor voltage equation can be solved into real and imaginary components:

. isq — Groltgq

! 1+ 5T, ( )
.s - Ge Ky

w, = Lsq — Tfellsq (7.58)

Tr llﬂ
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The disorientating influence of the iron losses on the field orientation is
owed primarily by the G, term in the slip equation. The Ry, model error produces
an additional phase error, which also exists at no-load conditions and overlaps the
phase errors produced by a rotor resistance model fault. Because all error models
eventually derive their output error from the rotor flux phase error, the rotor
resistance estimator may yield completely wrong results.

Some stationary measurements shall give a picture about the quantitative esti-
mation error to be expected at different loads and stator frequencies. The results are
shown in Fig. 7.9. For the R, estimation the voltage vector error method is used. The
ratio between torque and flux forming current components i/i;; serves as an
equivalent for the motor load. It can clearly be recognized that the misadjustment is
most critical at the upper limit of the constant flux area (greatest hysteresis losses). It
diminishes considerably in the field weakening area, and also with increasing load.
Altogether, it turns out that in stationary operation the estimation error can be
safely kept below 4 % if the adaptation is only allowed at current ratios of i,,/i;y > 1, 5.

The conditions are more unfavorable in dynamic operation. The reason is that
after starting a transient the error due to the rotor time constant difference is built-up
delayedly, but the iron loss dependent error already exists in the no-load state.
Therefore a restriction of the adaptation to appropriately great values of i, proves
ineffective. Only the inclusion of the iron losses in the system equations according
to the model in Sect. 6.2.1 would make the additional error disappear completely.

7.3.5 Adaptation in the Stationary and Dynamic Operation

At first the adaptation algorithms were developed for the stationary operation of the
drive regarding current and rotor flux, and the parameter sensitivity examinations
were also carried-out for this operation mode. Therefore it is interesting to examine,
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whether the methods can work stably also in dynamic operation and are able to
adapt the rotor resistance. The discussion of the influence of the iron losses has
already shown that different properties have to be expected in dynamic operation
with regard to parameter sensitivity.

At first the functionality of the adaptation shall, however, be illustrated by some
examples during stationary operation. The oscillogram in the Fig. 7.10 shows a
settling transient of the estimated rotor resistance after a load step. The initial error
of the model rotor resistance is 30 %. As already indicated in the previous section,
the influences of the iron losses can be suppressed by switching-off the adaptation at
insufficient torque. The detection of the stationary operation with adequate reli-
ability is relatively easy by using a high pass filter for the torque forming current
and the rotor flux. Together with the rotor resistance and the torque forming current
the figure shows this adaptation release.

As pointed out above, the proportion between torque and flux forming currents is
shifted by the rotor flux phase error at wrong model rotor resistance. In the case
without adaptation a slow drift of the torque producing current in the model, caused
by the warming-up of the machine, will be noticed at constant load until the thermal
balance is reached. The effectiveness of the adaptation can thus be shown by the
torque forming current keeping constant at constant load over long time. The
oscillograms in the Fig. 7.11 show the corresponding plots during a warm-up
process.

Similarly to the iron losses the parameter sensitivity to other model parameters
also becomes more critical in the dynamic operation, and the demand to increase the
precision of the error model increases. Like in the stationary operation, the influence
of the leakage inductance is particularly strong and therefore shall be treated here
with priority. Primarily this is caused by the following reasons:

NINPINS IS NS SN S

S| SO, SO S i

t [5 s/div]

Fig. 7.10 R, adaptation cycles with voltage vector error method
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t [100 s/div] t [100 s/div]

Fig. 7.11 i, and R, at constant load, 7y, [10 A/div], R, — R.(0) [0.03 Q/div]: a without
adaptation; b with adaptation

e A dynamic speed change is connected to a short-time impression of a high
torque forming current. The oL, sensitivity assumes its most critical values just
at high torque.

e Parameter errors in the error model have an immediate effect to the adaptation
error. The model error of the rotor resistance, however, delayedly adds to the

adaptation error through detuning of the phase angle ;. Thus it is very probable
at sufficiently short transients that the adaptation can only be activated (and
detuned) by the model parameter errors.

For an appropriately exact adjustment of the error model the derived methods are
definitely able to adapt the rotor resistance also in dynamic operation without an
additional steady-state load torque. Figure 7.12 exemplarily shows such an adap-
tation process for the voltage vector error method recorded for longer time. The
prerequisite is that the error equations, as done in Sect. 7.3.2, are programmed using
the dynamic machine equations.

The result of a comparison of different methods with regard to the sensitivity to
leakage inductance changes and iron losses in dynamic operation is represented
in the Fig. 7.13. The adaptation was excited by speed transients between 200 and
700 rpm. The error of the model value of the leakage inductance was +5 % for all
tests. The initial error of the model rotor time constant is zero.

The reference curve (curve 1) was taken with a simultaneous adaptation of rotor
resistance and leakage inductance. The used method is not transferable to arbitrary
operating states, though. It uses different properties of the model error contributions
caused by the leakage inductance and the rotor resistance deviation in regenerative
and motor operation.
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Fig. 7.13 R, detuning caused by model error of leakage inductance and iron losses: curves (I—-3)

with compensation of iron losses, (/) combined adaptation of ﬁ, and azs, voltage vector error, (2)
reactive power method, (3) voltage vector error, (4) like curve (3), without compensation of iron

losses

The adaptation to the motor warm-up is already visible in the second part of the
plots. As far as possible, the tests were recorded until achieving a stationary state of

the adaptation.

Related to the final stationary value of curve 1 the following final deviations

develop:

e Curve 2: —1.6 %
e Curve 3: =54 %
o Curve 4: —45 %
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With that it is clear that an adaptation without consideration of the iron losses in
dynamic operation must be considered impossible. The reactive power model
proves to be the most suitable method for the dynamic operation here. The
explanation can be found in that for this model the oL, part of the flux phase error

¥, representing the rotor resistance deviation, is weighted approximately twice
stronger than in the linear error model of the voltage vector method. This can be
shown by deriving an error expression including all parameter errors according to
(7.38) or (7.44) (Dittrich 1998). Thus its share on the total error is increased with
the consequence of a better suppression of parameter errors of the model.
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Chapter 8
Optimal Control of State Variables
and Set Points for IM Drives

8.1 Objective

At the design of drives an energetically optimal operation represents an essential
point of view. Losses increase the energy requirement and produce heat which must
be dissipated by additional measures and constructive efforts. Modern power
electronic devices achieve efficiencies of 98 %, motors of medium and high-power
ratings of over 95 % at the nominal working point. A different picture arises in the
partial load area where the efficiency can decline considerably. Besides optimiza-
tion possibilities in the hardware sector and the use of loss-optimized pulse pattern
for inverter control, also the “soft” control faction is challenged to come forth with
approaches for an efficiency optimized operation. In order to keep the analytical
and realization effort within reasonable limits, only stationary or quasi-stationary
solutions are examined.

Another question arises from the technically existing limitations of the hardware
equipment with regard to currents and voltages. The control of the state vari-
ables should be designed for the drive or the motor to always being utilized as
optimal as possible.

The method of the field orientation provides the tools to realize a decoupled
control of rotor flux and torque by impressing torque and flux forming current
components. In a speed controlled system the set point of the torque forming
current is provided by the speed controller, in a torque controlled system it is an
independent control quantity. Thus the amplitude of the rotor flux or the ratio of
both components, the slip frequency, remains as a degree of freedom for the
optimization.

As shown in the next sections, the exact knowledge of difficult measurable
machine parameters is required for an effective optimization of the efficiency, or
this optimization can only be implemented with reasonable effort by a dynamically
slow control algorithm. For this reason a second optimization approach, the torque
optimal control, becomes interesting. The optimization goal consists here to control
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machine and inverter in the best possible way from the point of view of torque
production at the given limitations, i.e. the demanded torque has to be generated by
the minimal current, or the maximum torque has to be provided at limited current or
limited voltage. Such an optimization strategy also will deliver a good efficiency
because of the current dependency of the ohmic losses although this does not
represent the optimization goal in the first place.

8.2 Efficiency Optimized Control

At first it is required to perform an analysis of the controllable losses. Losses in the
motor appear in the form of stator and rotor copper losses, iron losses and additional
losses. Additional losses are produced in the iron and copper by the non-sinusoidal
field distribution, and they can be calculated with a factor of approximately
0.3 proportionally to the copper losses (Murata et al. 1990). A quantitative
expression for the copper losses can be derived from the active power equation':

Pw = Re{uxij} = % (usxisx + usyisy) (81)

After replacing the voltages with the help of the stator voltage equation (cf.
Chaps. 3 and 6) this equation can be re-written in field-orientated coordinates for
stationary operation in the following form:

3

Pv=3 [infd +(Ry+ (1= 0)R)2, + (1 - a)stimisq} (8.2)

The copper losses including one part for the additional losses added with the
factor k, can be separated to:

Pcu = sq

N W

(1+ k) {RZ, + R+ (1 = )R], | (8.3)
According to the Sect. 6.2.1, the iron losses can be calculated approximately to:

3 (o,)”

== 8.4
> Ry (8.4)

PFe

'xy can be either dg or af.
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Using Ry, = Reno;/mgy (cf. also Sects. 6.2.1) and x//# ~ Lyis it can be finally
written for the total losses:

3 L2
po=2d |1+ k)R, + 25 4, |2 4 (1 + k)[R, + (1 — 0)R,] 2 (8.5)
2 RfeN ; 59

Therefore the total losses can be split into an i,;,-dependent (flux dependent) and
a torque (or i,,-) dependent part, in which the partition is defined by the parameters
of the machine, and the flux dependent part is a function of the stator frequency:

Py = a(wS)ifd + bl?q = pui(isa) + pr2(isg) (8.6)
With the side condition of a constant or given torque:

My ~ gqlsg = CONSt
the condition:

Pulia) = Palisg) (8.7)
follows for the minimal total losses, i.e. the flux dependent and the torque
dependent loss components must have the same value.

A clear representation of the relationship between both loss parts can be

derived if it is referred to the slip frequency. The corresponding equations are
obtained similarly as above:

3 Ry
Pcu = 5(1 + k) (1 — 0)Lyisaisg [(1 + )w, + (8.8)

R.R, 1
(1 —-0)R,

2
L o,

The factored out term is proportional to the torque and can be treated as a
constant for the further calculation. For the iron losses the more exact two-
parameter model from the Sect. 6.2.1 is used now which leads to the following
relation:

3 0]
Pre =75 (1 = 0)Lyisaisg [R, (kny + kyy) (2 + 5> + 2R,kww,} (8.9)

14

The slip-dependent loss balance at two speeds with the nominal and half the
nominal torque is represented corresponding to the Egs. (8.8) and (8.9) for an 11 kW
standard motor in the Fig. 8.1. Because of the main flux getting smaller by an
increasing slip at the same torque, the iron losses behave inversely to the slip
frequency. The copper losses drastically increase at small slip because of the mag-
netization current demand strongly increasing with higher saturation. They show a
minimum and increase once more at the slip getting greater. The optimal point
with respect to the total losses depends on the respective share of the iron losses.
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Fig. 8.1 Losses as a function of the rotor frequency: a m = 0, 5 my, n = 500 rpm, b m = my,
n =500 rpm, ¢ m = 0, 5 my, n = 1500 rpm, d m = my, n = 1500 rpm

The operation at nominal speed represents the operating point with the greatest part
of the iron losses in the total losses, because here the maximum stator frequency
without field weakening is reached.

The explanations so far open up different possibilities for the practical realization
of an optimal control strategy with respect to efficiency, in which the optimization
goal is predefined by Eq. (8.7). Two variants shall be discussed in more detail.

(a) Balancing of torque and flux dependent losses

Equation (8.7) shows the way for a direct control of the balance between the two
parts. The method is schematically represented in the Fig. 8.2 (cf. Rasmussen
1997). The flux dependent losses can be directly controlled by the rotor flux without
influencing the torque dependent losses. According to the Egs. (8.3) and (8.4)
model values of the two loss parts are calculated. The difference of both forms the
input quantity (control difference) for an I or PI controller which adjusts the equality
of both parts with the rotor flux set point as a control variable.
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A comparatively fast dynamics is achieved for adjusting the optimum, an exact
compensation requires, however, an exact knowledge of the model parameters,
which is difficult and requires some effort particularly with regard to the iron losses.

Fe

(b) Loss compensation with search algorithm

The active power is calculated by Eq. (8.1), and by means of a search algorithm
the rotor flux is modified until the minimum of the active power and with that the
minimum of the losses is reached. Different search strategies are applicable with
fixed or variable step, cf. e.g. (Moreno 1997). A careful adjustment is required
because of possible convergence problems. Such a method does not need any
model parameters. Thus the power could also be measured at the input of the
inverter, and the inverter losses could be included into the optimization. Caused by
the searching method and the at first unknown “suitable” adjustment direction of the
rotor flux, the method works slowly in this simple implementation, and is suitable
exclusively for steady-state operation.

8.3 Stationary Torque Optimal Set Point Generation

8.3.1 Basic Speed Range

Initially it shall be noted, that the relations discussed in this section are not
exclusively limited to the basic speed range. They are valid everywhere where no
limitation of the stator voltage becomes effective, thus also in the field weaken-
ing area at low load. The derivations start out, however, from the basic speed range
initially because no voltage limitation occurs here in stationary operation also at the
current limit.
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Under this presumption maximum torque at given stator current amplitude will
be achieved if the operating point is always on the maximum of the slip-torque-
characteristic (cf. Fig. 8.3). This maximum corresponds graphically to the break-
down torque of the known torque-speed-characteristic.

The torque equation is with consideration of the main field saturation in sta-
tionary operation (cf. Chap. 3):

Ly (i,)?

"M 2 Lonlin) + Lo

Zp isdisq (810)

3
2

It is easily comprehensible from (8.10) that the maximum torque will
be reached at a given stator current with iy, = i, for constant inductances. Because
of the magnetic saturation the calculation of the maximum point becomes, however,
essentially more troublesome and requires the iterative solution of a nonlinear
system of equations. Parts of this system are besides (8.10) the relation of the
magnetization current amplitude (cf. Sect. 6.2.3):

Lo . \*
i =2+ (L—Uisq> (8.11)

r

the slip equation:

R iy

0 8.12
Lm(iy) + Lra isd ( )

w, =

and the boundary condition:
=iy +i, (8.13)

The Fig. 8.3 shows the calculated characteristics for an 11 kW standard motor.
The characteristic which would be obtained with constant main inductance (at the
nominal working point) is drawn for comparison as dashed line.

As mentioned above, it would be the task of a torque optimal control to control
the rotor flux in a way to keep the operating point always on the maximum of the
torque-slip-characteristic depending on the demanded or available stator current. An
online calculation of this point, however, practically has to be excluded because of
the necessary iteration. Therefore it would be interesting to know, how the usual
field-orientated operation with constant flux (nominal flux) fits into this analysis.
The nominal value of the flux forming current would be calculated by:

Un

\/gwsNLs(Ist) (814)

Ligy =
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Fig. 8.3 Slip—torque—characteristic as function of the stator current amplitude: - - - -
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Equation (8.14) contains an iteration which would have to be solved in the
practical implementation, but in the initialization phase and not in real time.

The corresponding curve is drawn as dotted line in Fig. 8.3 and shows, at least at
higher currents, a surprisingly good approximation to the optimal value. Therefore
the constant flux operation is obviously distinguished as a quasi torque opti-
mal control strategy in the basic speed range at higher stator currents. This con-
nection is understandable, because the motor is designed for the rated working point.

This is further illustrated in the Fig. 8.4. In Fig. 8.4a the necessary flux forming
current to achieve the exact torque maximum and additionally the control charac-
teristics for constant flux and for i,; = i, are drawn. In the linear area the optimal
characteristic coincides with the characteristic iy, = iy, as expected. For higher stator
currents the optimal characteristic deviates from the constant flux characteristic with
a tolerance of approximately £20 %. Figure 8.4b shows the actual effects of the
deviations on the torque. Obviously they are negligible in this case.

Under consideration of a minimal rotor flux which has to be kept to ensure a
torque generation with an acceptable dynamics, the following simple control law
can be used for the quasi torque optimal control:

im,min for isqf < inymin
=1, = Lsq f for Um,min < Isgf <ImN (815)
LN for Lqf > luN

Here i, is the low-pass filtered current iy, Because of this filtering and the
anyway existing delay in the forming of the rotor flux, a dynamic decoupling is
given between flux control and i, control. It has to be taken into account, however,
that a variable flux inevitably leads to a deterioration of the torque dynamics. If a
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control

high torque dynamics represents the central optimization goal, the constant flux
operation has to be maintained over the complete basic speed range. The torque
dynamics then only depends on the dynamics of the current impression. This is
illustrated by the Fig. 8.5 with some transients for constant flux operation and the
described flux control algorithm. In addition, it is obvious that an approximately
optimal operation mode with respect to efficiency in this area is not conceivable any
more with fast flux tracking in the dynamic operation.
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Fig. 8.5 Speed dynamics in the basic speed range: a load step change with constant flux, b set
point step with constant flux, ¢ load step with torque optimal controlled flux, d set point step with

torque optimal controlled flux
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8.3.2 Upper Field Weakening Area

Different to the basic speed range, the limitation of the stator voltage represents a
decisive additional influencing variable for the flux control in the field
weakening. Two areas must be distinguished: The first area, in which the voltage
limitation is the only deciding limiting variable, and a transition zone, in which both
current and voltage limitation determine the character of the control characteristics.
At first, only the voltage limitation shall be taken into account as a boundary
condition, and the currents shall be assumed to develop freely.

Similar to the current-limited case, typical speed (slip) over torque characteristics
can be calculated which contain the speed as a parameter. Because the calculations
are only significant for the high field weakening area, the saturation can be
neglected.

From the stator voltage equations in the field-orientated coordinate system (cf.
Chaps. 3 and 6) the following equations will be obtained for steady-state operation
with respect to the stator currents:

Usg = Rsisd — (USO'LSisq (816)
Usg = Riisg + 050Lg05q + 05(1 — 0)Lsiy, (8.17)

with: i, = Y=

For constant rotor flux it follows from (8.17):
Usg = Ryigy + wLisq (8.18)

The system boundary condition is here:

uimx = uaz‘d + usz‘q (819)

If the slip equation in field orientated coordinates (8.12) is inserted into (8.16)
and (8.18) and the current components are eliminated, the following torque equa-
tion will be obtained:

3 L1242 o,T,
my = 5 7, ; ; (8.20)
2 Lr Rs (err + (UsTs) +(1 - wsUvarTr)

Equation (8.20) is represented in the Fig. 8.6 for the stator frequency as a
parameter. This case corresponds to the natural behavior of the induction machine
at frequency control. In contrast to the constant current case, differently high torque
maxima, which are also characterized by differently high stator currents, appear for
motor and regenerative operation. The slip frequency at the torque maximum or
break-over point is calculated by (8.20):
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For speed controlled operation with the speed as a parameter the characteristics
represented in Fig. 8.7 apply. In regenerative operation an absolute maximum at
w; = 0 appears. This means that the greatest regenerative braking torque can
obviously be generated at a (negative) direct current feeding. The torque maximum
itself, however, might be barely possible to be used, because it is connected to
impractical high currents.
Analog to the constant current operation, a torque optimal control law should
adjust the currents for the maxima of the slip-torque characteristic. The solutions for
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the control characteristic will be obtained by an extreme value problem for the
torque given by the Eqgs. (8.16), (8.18) and (8.19) the torque Eq. (8.10).

Because the solutions are interesting only for high stator frequencies the stator
resistance can be neglected. This simplification actually makes the equation system
accessible for a closed solution. Furthermore it is presupposed that because of the
field weakening the main inductance can be regarded as constant.

At first, (8.16) and (8.18) have to be dissolved into components. With the men-
tioned simplification the following current equations are obtained (cf. Eq. (5.78)):

. Usq

d = —— 8.22

ba =T (8.22)
. Usa
P 8.23
Lsq wSGLS ( )

Strictly speaking, the two equations also contain on the right side the current
components i,; and iy, implicitly through the slip frequency, and would have to be
solved further to equations with the speed as parameter. This would however make
a closed solution impossible, whence the more transparent variant with the stator
frequency as a parameter shall be kept. The arising error is tolerable because
the share of the slip frequency in the stator frequency is small at high rotational
speeds. An advantage of this consists of the fact that the same control characteristics
are valid for both motor and regenerative operation because of the symmetrical
position of the torque maxima with respect to the slip frequency (cf. Fig. 8.6).

After inserting (8.22) and (8.23) into the torque equation the following Lagrange
function for the extreme value calculation can be formulated by inclusion of (8.19):

L(ttsa, tsg, 2) = m(usa tsq) + Aitggy — 1y — 13y) (8.24)

From the partial derivatives with respect to u,, and u,, the following equation
system is obtained:

. aisd . aisq 5
0=k, iz=—+ i — 2Aug 8.25
(l ! Ouyy i Ousq Hhsd (8.25)
Oisq 0,
0=k iyg o 4 fgg —L ) — 2, 8.26
(l q ausq + isq ausq) Usq ( )

L
.
After solving to the current components it yields the control characteristics:

with: k,, = %zp

. Umax
Usd lim = 8.27
st V2w,L, ( )
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with searching method, __ approximate solutions (8.27) and (8.28)

umax
o fim = —X 8.28
salim V2w,6L, ( )

Figure 8.8 shows these characteristics for an 11 kW motor together with the
characteristics calculated by means of search method without the above mentioned
approximation. They are identical for both motor and regenerative operation. The
maximum inverter current i,,,,x and the no-load current (the magnetizing current) iy
are also included in the plots.

In order for the torque optimal control strategy to be effective, both current
components must be able to develop freely. As shown in the diagrams, this depends
fundamentally on the maximum inverter current, and for the sample drive this
would be the case above approximately ws = 450 s™'. If the rotor flux is controlled
below this frequency by the derived characteristic too, no torque optimal operation
is achieved, because the inverter voltage cannot be utilized.

Thus it is also shown that the flux with high probability at the cut-in point of the
torque optimal control characteristic may already be weakened and the operating
point having been shifted to the linear part of the magnetization characteristic.
Therefore the neglection of the saturation for the derivation of the characteristics is
justified.

8.3.3 Lower Field Weakening Area

The lower field weakening area shall be understood as the zone between the fre-
quencies g and g, (cf. Fig. 8.8). This area is indicated by the following
characteristics:
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e Coming from lower frequencies, the stator voltage reaches its maximum value
so that a flux reduction is needed to continue the frequency increase.

e An operation using the torque optimal control characteristics is not possible or
expedient, because the torque forming current i, corresponding to these char-
acteristics is either not needed or cannot be produced.

Without voltage limitation the drive would be controlled according to the rules
of the basic speed range, hence with iy, = issy. Thus it seems reasonable to operate
the control system as close as possible at this set point in the lower field weakening
area, meaning to operate the drive with the maximum possible flux at the voltage
limit. This rule is well known and general practice.

For the implementation a voltage regulator is often used (Fig. 8.9). The actual
stator voltage feedback can be calculated from the (unlimited) current controller
output signal via low-pass filter to eliminate transient parts. With that it is possible
to keep the voltage always at the limiting level in stationary operation independent
of motor parameters. This method has, however, also decisive disadvantages. It is
attempted to control a very fast variable quantity (stator voltage) by a slowly
variable quantity (rotor flux). This demands for an artificial delay of the voltage
dynamics and makes it impossible to react to variable operating states (load,
acceleration) with an adequately fast change of the flux set point. For this reason a
feed-forward controlled flux set point calculation shall be derived in the following.

The stationary voltage Eqs. (8.16) and (8.18) are again the starting point. The
solution of the implicit relation current/stator frequency is refrained from because in
this case a closed solution would require too far-reaching approximations. Both
equations are squared and added up. The stator voltage amplitude is equated to the
maximum voltage, and the equation is solved to iy, = i,,. One obtains:

R2 + o(w,Ly)* .

2
1 — 0)RywiL 2
( O-) Wl . u iy (829)
RY + (L)

— i max
2 2 % 2
R + (o.Ly) R+ (oL

ok
Im

2

For R? < a(wsLs)Q, which should be fulfilled in the interesting frequency area
(ws > 300 s™1), this relation can further be simplified. At the same time the current

Ius. max

Y

o—[— |+

—=

Fig. 8.9 Flux set point calculation using voltage controller
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Fig. 8.10 Flux set point calculation using a combination of voltage (feedback) controller and set
point control in open-loop

is, 1s replaced by its set point with regard to the practical implementation which
enables a faster reaction to forthcoming i, changes:

1 —0)R, 2 2
R Gkl P \/“'“ ~ (o) (8.30)

wsLs (CI)SLS)2

A pure flux set point control in an open-loop has of course the disadvantage of
the parameter dependency which here would have the effect, that the available
stator voltage would not be utilized in stationary operation, or the flux set point
would be adjusted too high. Therefore it is useful to combine both methods, voltage
controller and flux feed-forward control, in a suitable way. In this combination, the
voltage controller has the task of keeping the voltage at the operating limit during
stationary operation, and the open-loop set point control takes care that changes of
the i, set point can be answered quickly with the corresponding flux change. The
voltage controller should control a quantity corresponding to its input signal. The
maximum voltage u,.x in (8.30), which is regarded as variable now, would be such
a suitable quantity.

Figure 8.10 shows the correspondingly modified structure. The set point u

*
§,max

corresponds to the maximum output voltage of the current controller. The control
variable of the voltage controller is added to the maximum stator voltage
Umax (ch)2 calculated from the DC link voltage. The sum of both forms the input
quantity up. of the control equation.

Because the control Eq. (8.30) was derived in exclusively algebraic way, the
saturation does not influence the result. Operating point dependent parameters can
be adapted on-line by an open-loop control. Remaining differences are stationarily
compensated by the voltage controller.

(1) upc = DC link voltage.
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8.3.4 Common Quasi-stationary Control Strategy

In the previous sections the theory for torque optimal control strategies has been
outlined for basic speed, upper and lower field weakening area or limitation of
current and/or voltage. For the implementation in a control system there are still the
following additional tasks to be addressed:

e A common strategy which provides a continuous transition between the areas is
to find.

e The developed strategy must be usable in a control structure, such as descri-
bed in the Sect. 1.2.

From the previous considerations the following conclusions can be summarized:

e The rules developed for the basic motor speed range can be generalized for all
operating states in which no voltage limitation appears.

e The rules for the two field weakening areas show that the best utilization of the
machine is always given at a maximum voltage output.

e The current limit characteristics in the upper field weakening area show such a
relationship, that the limit characteristic of the torque forming current i, ;;,, can
be equated to the maximum value of the stator current with good approximation.

Therewith the following rules can verbally be formulated:

e Rule 1: The torque and flux forming current components are equated as long as
either the flux forming current reaches its maximum value (nominal value) or
the stator voltage goes into the limitation.

e Rule 2: If the torque forming current amplitude exceeds the flux forming current,
either the flux forming current remains on its nominal value or is controlled to
keep the drive always on the voltage limit.

e Rule 3: The stator current is limited to either its absolute maximum or the limit
characteristic of the torque forming current in the upper field weakening area,
depending on which of both quantities has the smaller value.

With the nominal value of the rotor flux linkage i,,; and the maximum inverter
current iy, the rules can be summarized in equation form as follows:

I, min for isqf < im,min
- Lsq.f for Lnmin < Lsqf < lmN and Isgf < lm(umum Ly ws)

=1 ! . X ) ; 8.31
m LN for isgs > iy and iy <i (Umax, z:fq, s) ( )
i, (Umax, ijq, wy) otherwise
i _ imax for isq,lim > imax (8 32)
5,max Isqlim Otherwise )

The quantity i, (#max, i;fq, wy) results from the Eq. (8.30). The rules or the control
laws start out from the assumption that the set point i;‘q exists as an independent input
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Fig. 8.11 Current limit characteristics for the torque optimal operation and maximum voltage
output

quantity. They will appear somewhat more complicated and contain components to
be calculated possibly in iteration if the torque is immediately provided as a set point.
In the configuration with superimposed speed control looked at here, the adjustment
of the torque is subjected to the speed-feedback control loop.

The current limit characteristics are represented in expansion of Fig. 8.8 in
Fig. 8.11 corresponding to the proposed algorithm for the complete speed range.
The differences are recognizable clearly in the transition zone: The cut-in point of
the field weakening is shifted to the frequency wg;;, the maximum flux range is
extended to substantially higher stator frequencies then defined by the torque
optimal characteristic.

With this control, the area of the utilizable torque-speed range represented in the
Fig. 8.12 for the first quadrant finally results. This area is delimited by the available
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current in the basic speed range, at high rotational speeds by the ceiling speed of
the motor, and as discussed in the upper field weakening area by the available
voltage, in the lower field weakening area by the maximum current and maximum
voltage. The transition point between the upper and lower field weakening areas in
turn is given by the frequency w.g,.

The difference in the operating behaviour between torque optimal operation and
conventional flux control can be shown best with the results of a practically realized
control. For this purpose a speed reversal process is most suitable because quasi-
stationary conditions (slowly variable currents and flux linkages) can be found here
in wide areas. The comparison is made using a control characteristic of the form:

ok . WN \/§UV max LmN
=09)———— 8.33
lm l() w UN Lm ( )
isA,max = imax (834)

i.e. a flux characteristics, which is inversely proportional to the speed, and which
adapts to changes of the DC link voltage and the main inductance. The plots of the
most interesting quantities are shown in the Fig. 8.13. The differences in the
reversal time are significant. An essential difference consists in the fact that
although the stator voltage with torque optimal control under load permanently
resides at its limit during field weakening, the current controller predominantly,
works in the linear area. On the other hand the controllability of the system is
temporarily lost with the simple flux control. It shall not remain unmentioned that
similar results like those of the torque optimal control can be achieved also with a
simple flux control in favorable parameter constellation and choice of the field
weakening cut-in with respect to the reversal time. The temporary loss of the system
controllability under loads is, however, hardly avoidable.

Furthermore it has to be noticed that a dynamically correct flux model (with
saturation, cf. Sects. 6.2.3 and 4.4.1) is strongly necessary for the successful real-
ization of the flux control algorithms.

8.3.5 Torque Dynamics at Voltage Limitation

As long as a sufficient voltage reserve is available, the torque dynamics is primarily
a question of fast current impression. In the field weakening area this problem
appears to be fundamentally more complex because of the missing voltage reserve.
Regarding this the optimization goal consists here in reaching a rise time as short as
possible also at the boundary condition of the limited voltage.

One of the outstanding features of the FOC consists in the possible high-
dynamic impression of the torque because the torque rise time, constant rotor flux
assumed, is identical with the rise time of the torque forming current. Prerequisite
for a fast current impression is an adequate voltage reserve, though, so that a really
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Fig. 8.13 Speed reversal processes +3100, —3100 rpm: torque optimal control (left) and speed
inverse flux control (right)

fast torque impression is only possible in the basic speed range. According to the
above derived rules, no voltage reserve would be available in the field weakening
area at all. It is therefore necessary before an intended stepping-up of the torque to
produce this voltage reserve by a (dynamic) flux reduction. The whole process
should take place at unchanged maximum stator voltage for an optimal utilization
of the machine.

After squaring and adding-up of (8.16) and (8.17) and neglection of R, at the
same time, the following equation is obtained:

12 = (0,0Lgisg) (050 Lgisg + (1 — 0)0sLyin)? (8.35)
From this relation it is recognizable that a dynamic control reserve can, con-

sidering the slow variability of i,, be created by reducing the component i,.
The derivation of the control law must, however, start out from the dynamically
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correct voltage equations. In the first instant the rotor flux linkage is constant
changes compared to the stator current only very slowly, and therefore has influ-
ence