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Preface

The present edition of the book is a completely revised version of the earlier two
editions. The second edition provided an opportunity to correct several
typographical errors and wrong answers to some problems. Also, in addition,
based on many suggestions received, a chapter on composite materials was also
added and this addition was well received. Since this is a second-level course
addressed to senior level students, many suggestions were being received to
add several specialized topics. While it was difficult to accommodate all
suggestions in a book of this type, still, a few topics due to their importance
needed to be included and a new edition became necessary. As in the earlier
editions, the first five chapters deal with the general analysis of mechanics of
deformable solids. The contents of these chapters provide a firm foundation to
the mechanics of deformable solids which will enable the student to analyse and
solve a variety of strength-related design problems encountered in practice. The
second reason is to bring into focus the assumptions made in obtaining several
basic equations. Instances are many where equations presented in handbooks
are used to solve practical problems without examining whether the conditions
under which those equations were obtained are satisfied or not.

The treatment starts with Analysis of stress, Analysis of strain, and Stress—
Strain relations for isotropic solids. These chapters are quite exhaustive and
include materials not usually found in standard books. Chapter 4 dealing with
Theories of Failure or Yield Criteria is a general departure from older texts. This
treatment is brought earlier because, in applying any design equation in strength
related problems, an understanding of the possible factors for failure, depending
on the material properties, is highly desirable. Mohr’s theory of failure has been
considerably enlarged because of its practical application. Chapter 5 deals with
energy methods, which is one of the important topics and hence, is discussed in
great detail. The discussions in this chapter are important because of their
applicability to a wide variety of problems. The coverage is exhaustive and
discusses the theorems of Virtual Work, Castigliano, Kirchhoff, Menabria,
Engesser, and Maxwell-Mohr integrals. Several worked examples illustrate the
applications of these theorems.



xii Preface

Bending of beams, Centre of flexure, Curved Beams, etc., are covered in Chapter 6.
This chapter also discusses the validity of Euler—Bernoulli hypothesis in the
derivations of beam equations. Torsion is covered in great detail in Chapter 7.
Torsion of circular, elliptical, equilateral triangular bars, thin-walled multiple cell
sections, etc., are discussed. Another notable inclusion in this chapter is the
torsion of bars with multiply connected sections which, in spite of its importance,
is not found in standard texts. Analysis of axisymmetric problems like composite
tubes under internal and external pressures, rotating disks, shafts and cylinders
can be found in Chapter 8.

Stresses and deformations caused in bodies due to thermal gradients need
special attention because of their frequent occurrences. Usually, these problems
are treated in books on Thermoelasticity. The analysis of thermal stress problems
are not any more complicated than the traditional problems discussed in books
on Advanced Mechanics of Solids. Chapter 9 in this book covers thermal stress
problems.

Elastic instability problems are covered in Chapter 10. In addition to topics on
Beam Columns, this chapter exposes the student to the instability problem as an
eigenvalue problem. This is an important concept that a student has to appreciate.
Energy methods as those of Rayleigh—Ritz, Timoshenko, use of trigonometric
series, etc., to solve buckling problems find their place in this chapter.

Introduction to the mechanics of composites is found in Chapter 11. Modern—
day engineering practices and manufacturing industries make use of a variety of
composites. This chapter provides a good foundation to this topic. The subject
material is a natural extension from isotropic solids to anisotropic solids.
Orthotropic materials, off-axis loading, angle-ply and cross-ply laminates, failure
criteria for composites, effects of Poisson’s ratio, etc., are covered with adequate
number of worked examples.

Stress concentration and fracture are important considerations in engineering
design. Using the theory-of-elasticity approach, problems in these aspects are
discussed in books solely devoted to these. However, a good introduction to
these important topics can be provided in a book of the present type. Chapter 12
provides a fairly good coverage with a sufficient number of worked examples.
Several practical problems can be solved with confidence based on the treatment
provided.

While SI units are used in most of numerical examples and problems, a few can
be found with kgf, meter and second units. This is done deliberately to make the
student conversant with the use of both sets of units since in daily life, kgf is
used for force and weight measurements. In those problems where kgf units are
used, their equivalents in SI units are also given.

The web supplements can be accessed at http://www.mhhe.com/srinath/ams3e
and it contains the following material:

For Instructors
m Solution Manual
m PowerPoint Lecture Slides
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For Students
= MCQ’s (interactive)
m Model Question Papers
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Typical Physical
Constants
(As an Aid to Solving Problems)

Material Ultimate Strength | Yield Strength Elastic  |Poisson’s | Coeff.

(MPa) (MPa) Modulus | Ratio |Therm

(GPa) [Expans.

Tens. Comp Shear|Tens or Shear | Tens Shear per °C

Comp x 107
Aluminium alloy | 414 414 221 300 170 | 73 28 0334 | 232
Cast iron, gray | 210 825 — — — | 0 4 0.211 10.4
Carbon steel 690 690 552 415 250 | 200 83 0.292 11.7
Stainless steel | 568 568 — | 276 — | 207 9 0291 | 17.0

For more accurate values refer to hand-books on material properties




CHAPTER

Analysis of Stress 1

1.1 INTRODUCTION

In this book we shall deal with the mechanics of deformable solids. The starting
point for discussion can be either the analysis of stress or the analysis of strain. In
books on the theory of elasticity, one usually starts with the analysis of strain,
which deals with the geometry of deformation without considering the forces that
cause the deformation. However, one is more familiar with forces, though the
measurement of force is usually done through the measurement of deformations
caused by the force. Books on the strength of materials, begin with the analysis of
stress. The concept of stress has already been introduced in the elementry strength
of materials. When a bar of uniform cross-section, say a circular rod of diameter
d, is subjected to a tensile force F along the axis of the bar, the average stress
induced across any transverse section perpendicular to the axis of the bar and
away from the region of loading is given by

oo F _4F
Area ;42

It is assumed that the reader is familiar with the elementary flexural stress
and torsional stress concepts. In general, a structural member or a machine
element will not possess uniform geometry of shape or size, and the loads
acting on it will also be complex. For example, an automobile crankshaft or a
piston inside an engine cylinder or an aircraft wing are subject to loadings that
are both complex as well as dynamic in nature. In such cases, one will have to
introduce the concept of the state of stress at a point and its analysis, which will
be the subject of discussion in this chapter. However, we shall not deal with
forces that vary with time.

It will be assumed that the matter of the body that is being considered is
continuously distributed over its volume, so that if we consider a small volume
element of the matter surrounding a point and shrink this volume, in the limit we
shall not come across a void. In reality, however, all materials are composed of
many discrete particles, which are often microscopic, and when an arbitrarily
selected volume element is shrunk, in the limit one may end up in a void. But in
our analysis, we assume that the matter is continuously distributed. Such a body
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is called a continuous medium and the mechanics of such a body or bodies is

called continuum mechanics.

1.2 BODY FORCE, SURFACE FORCE

AND STRESS VECTOR

Consider a body B occupying a region of space referred to a rectangular
coordinate system Oxyz, as shown in Fig. 1.1. In general, the body will be

z
Fig. 1.1 Body subjected to forces

subjected to two types of forces—
body forces and surface forces. The
body forces act on each volume ele-
ment of the body. Examples of this
kind of force are the gravitational
force, the inertia force and the mag-
netic force. The surface forces act
on the surface or area elements of
the body. When the area considered
lies on the actual boundary of the
body, the surface force distribution
is often termed surface traction. In
Fig. 1.1, the surface forces F;, F,,
F; ... F,, are concentrated forces,
while p is a distributed force. The
support reactions R;, R, and R; are

also surface forces. It is explicitly assumed that under the action of both body
forces and surface forces, the body is in equilibrium.

Let P be a point inside the body with coordinates (x, y, z). Let the body
be cut into two parts C and D by a plane 1-1 passing through point P, as

Fig. 1.2 Free-body diagram of a
body cut into two parts

shown in Fig. 1.2. If we consider the
free-body diagrams of C and D, then
each part is in equilibrium under the
action of the externally applied forces
and the internally distributed forces
across the interface. In part D, let AA
be a small area surrounding the point
P. In part C, the corresponding area
at P’ is AA’". These two areas are distin-
guished by their outward drawn normals

r% and r% The action of part C on AA at
point P cian be represented by the force
vector AT and the action of part D on AA’
at P’ can be represented by the force vector

1
AT’. We assume that as AA tends to zero,
1

theratio 2—1 tends to a definite limit, and
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Analysis of Stress 3

further, the moment of the forces acting on area AA about any point within the
area vanishes in the limit. The limiting vector is written as
AT _dT _2
lim =—==—-=T
aAs0 AA  dA
Similarly, at point P’, the action of part D on C as AA’ tends to zero, can be
represented by a vector

(1.1)

1 1
AT AT
0 im AN = dA

1
=T 12)

1 1
Vectors T and T’ are called the stress vectors and they represent forces per

unit area acting respectively at P and P’ on planes with outward drawn normals
1 1
n and n’.

1

We further assume that stress vector T representing the action of C on D

at P is equal in magnitude and opposite in direction to stress vector 'Il’
representing the action of D on C at corresponding point P’. This assump-
tion is similar to Newton’s third law, which is applicable to particles. We
thus have

1 1
T=-T' (13)

If the body in Fig. 1.1 is cut by a different
plane 2-2 with outward drawn normals ﬁ and
A passing through the same point P, then
the stress vector representing the actiog

of C, on D, will be represented by T
(Fig. (1.3)), i.e.

1
In general, stress vector T acting at point
1
P on a plane with outward drawn normal n
Fig. 1.3 Body cut by another plane P 2
will be different from stress vector T acting

at the same point P, but on a plane with outward drawn normal r?] Hence the
stress at a point depends not only on the location of the point (identified by coordi-
nates x, y, z) but also on the plane passing through the point (identified by direc-
tion cosines n,, n,, n, of the outward drawn normal).
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1.3 THE STATE OF STRESS AT A POINT

Since an infinite number of planes can be drawn through a point, we get an
infinite number of stress vectors acting at a given point, each stress vector
characterised by the corresponding plane on which it is acting. The totality of
all stress vectors acting on every possible plane passing through the point is
defined to be the state of stress at the point. It is the knowledge of this state of
stress that is of importance to a designer in determining the critical planes and
the respective critical stresses. It will be shown in Sec. 1.6 that if the stress
vectors acting on three mutually perpendicular planes passing through the point
are known, we can determine the stress vector acting on any other arbitrary
plane at that point.

1.4 NORMAL AND SHEAR STRESS COMPONENTS

Let 'F be the resultant stress vector at point P acting on a plane whose outward
drawn normal is n (Fig.1.4). This can be resolved into two components, one along
the normal n and the other perpendicular to n. The
component parallel to n is cnalled the normal stress
and is generally denoted by o . The component per-
pendicular to n is known as the tangential stress or
shear stress component and is denoted by 7. We
have, therefore, the relation:

n
o

n
Ty

2 n n

n
=c?+1°

u (14)

n
where [T| is the magnitude of the resultant stress.
n

Stress vector T can also be resolved into three
components parallel to the x, y, z axes. If these

. n n n
Fig. 1.4 Resultant stress  components are denoted by Tx, Ty, Tz, we have
vector, normal

and shear stress ‘n ‘2 nonon
components Tl =T +Ty +T, (15)

1.5 RECTANGULAR STRESS COMPONENTS

Let the body B, shown in Fig. 1.1, be cut by a plane parallel to the yz plane. The
normal to this plane is parallel to the x axis and hence, the plgne is called the x
plane. The resultant stress vector at P acting on this will be T . This vector can

be resolved into three components parallel to the x, y, z axes. The component
parallel to the x axis, being normal to the plane, will be denoted by o, (instead of by

cxr). The components parallel to the y and z axes are shear stress components and
are denoted by 7, and 7, respectively (Fig.1.5).
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Highlight
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Y In the above designation, the first
subscript x indicates the plane on
which the stresses are acting and the
second subscript (y or z) indicates the
direction of the component. For ex-
ample, 7, is the stress component on
the x plane in y direction. Similarly,
T,, IS the stress component on the
X x plane in z direction. To maintain
consistency, one should have denoted
the normal stress component as z,,. This
4 would be the stress component on the
Fig. 1.5  Stress components on x plane x plane in the x direction. However, to
distinguish between a normal stress and

a shear stress, the normal stress is denoted by o and the shear stress by .

At any point P, one can draw three mutually perpendicular planes, the x plane,
the y plane and the z plane. Following the notation mentioned above, the normal
and shear stress components on these planes are
Oy, Ty Ty, ON X plane
0y, Ty T, 0Ny plane

Oy Ty Ty ON Z plane

These components are shown acting on a small rectangular element surround-
ing the point P in Fig. 1.6.

Ly A O,
N
4T o
m
i > }’ - TXy
T ’"T’"
Ox <——| %~ i " > O,
P I
T
o, /,// 7
e SR S
- Ty?
Oy
X

Fig. 1.6 Rectangular stress components

One should observe that the three visible faces of the rectangular element
have their outward drawn normals along the positive x, y and z axes respectively.
Consequently, the positive stress components on these faces will also be directed
along the positive axes. The three hidden faces have their outward drawn normals
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in the negative x, y and z axes. The positive stress components on these faces
will, therefore, be directed along the negative axes. For example, the bottom face
has its outward drawn normal along the negative y axis. Hence, the positive stress
components on this face, i.e., oy, 7, and 7, are directed respectively along the
negative y, x and z axes.

1.6 STRESS COMPONENTS ON AN ARBITRARY PLANE

It was stated in Section 1.3 that a knowledge of stress components acting on three
mutually perpendicular planes passing through a point will enable one to deter-
mine the stress components acting on any plane passing through that point. Let
the three mutually perpendicular planes be the x, y and z planes and let the
arbitrary plane be identified by its outward drawn normal n whose direction

cosines are n,, n, and n,.

Ly Consider a small tetrahedron

. at P with three of its faces

T, normal to the coordinate

B A n axes, and the inclined face

having its normal parallel to

%z n. Let h be the perpendicu-
oy / T lar distance from P to the
B I X inclined face. If the tetrahe-
3 T dron is isolated from the
X st A X body and a free-body dia-
gram is drawn, then it will
be in equilibrium under the
C .
o, action of the surface forces
z and the body forces. The
Fig. 1.7 Tetrahedron at point P free-body diagram is shown

in Fig. 1.7.

Since the size of the tetrahedron considered is very small and in the limit as we
are going to make h tnend to zero, we shall speak in terms of the average stresses
over the faces. Let T be r$he nresunltant stress vector on face ABC. This can be
resolved into components Tx, Ty, T, parallel to the three axes x, y and z. On the
three faces, the rectangular stress components are oy, 7, 7, Oy Ty Ty Op Ty
and 7. If A is the area of the inclined face then

Area of BPC = projection of area ABC on the yz plane
= An,
Area of CPA = projection of area ABC on the xz plane
=An,
Area of APB = projection of area ABC on the xy plane
= An,
Let the body force components in X, y and z directions be ¥, ¥ and v, respectively,

per unit volume. The volume of the tetrahedron is equal to % Ah where h is the
perpendicular distance from P to the inclined face. For equilibrium of the
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tetrahedron, the sum of the forces in x, y and z directions must individually
vanish. Thus, for equilibrium in x direction

n
T,A - o, An,— 7, An, - 7,0 An, + %AhyX =0
Cancelling A,
n 1
Ty = Ot T Ny+ TN, = 3 hy (1.6)

Similarly, for equilibrium iny and z directions

n
1
Ty =gyn+ oy N+ TN, — 3 hy, 7
n 1
and T, = Tt TNy + 0N, — 3 hy, (1.8)

In the limit as h tends to zero, the oblique plane ABC will pass through
point P, and the average stress components acting on the faces will tend to their
respective values at point P acting on their corresponding planes. Consequently,
one gets from equations (1.6)—(1.8)

n
T, =n, 0+ Ny Ty + N, Tyy
n

T, =N T+ Ny O+ N, T, (1.9

n
T,=n7T,+ n, 7,+n, o,

Equation (1.9) is known as Cauchy’s stress formula. This equation shows that
the nine rectangular stress components at P will enable one to determine the stress
components on any arbitrary plane passing through point P. It will be shown in
Sec. 1.8 that among these nine rectangular stress components only six are indepen-
dent. This is because 7,, = 17, 7,, = 7,, and 7,, = 7,,. This is known as the equality
of cross shears. In anticipation of this result, one can write Eq. (1.9) as

n
Ti=n t+n, 5, +n, 5, = an T (1.10)
]
where i and j can stand for x or y or z, and oy = 1, 0, = 7,y and o, = 7,,.
n
If T is the resultant stress vector on plane ABC, we have
2 2 2 2
n n n n
|T| =Tx+Ty+T; (1.11a)
If o, and 7, are the normal and shear stress components, we have

nl2

7 (1.11b)

_ 2 2
—Gn+Tn

n
Since the normal stress is equal to the projection of T along the normal, it is
n n n

also equal to the sum of the projections of its components T,, T, and T, along
n. Hence,

n n n
o, =0T, +nT, +n,T, (1.12q)
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i ) n n n
Substituting for T,, T, and T, from Eq. (1.9)

o_n6+n6+n 6+2nnr y + 200, 7, + 20N, 7, (1.12b)

Equation (1.11) can then be used to obtain the value of 1,

Example 1.1 A rectangular steel bar having a cross-section 2 cm x 3 cm is
subjected to a tensile force of 6000 N (612.2 kgf ). If the axes are chosen as
shown in Fig. 1.8, determine the normal and shear stresses on a plane whose
normal has the following direction cosines:

(i) ny=n,= \/1f,n =0
. 1
(it) nX:O,ny:nX:E
1
(i) nX:ny:nxzﬁ

TF

<

Fig. 1.8 Example 1.1

Solution Area of section = 2 x 3 = 6 cm? The average stress on this plane is
6000/6 = 1000 N/cm?. This is the normal stress o,. The other stress components
are zero.

(i) Using Egs (1.9), (1.11b) and (1.12a)

_ 1000
\/E ’
1000

On="% = =500 N/cm?

n n n
TXZO, T TZZO

2
n
2 = |T| - o2 = 250,000 N*/cm*

7, =500 N/cm? (51 kgflcm?)
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.. n n n
() Tx=0, Ty 1%0, T,=0
o, =500 N/cm?, and 7, = 500 N/cm? (51 kgf/cm?)
n n n
@iy Tx=0, Ty:%, T:=0
o, = 10390 N/cm?

r, =817 N/cm? (83.4 kgflcm?)

Example 1.2 At a point P in a body, o, = 10,000 N/cm? (1020 kgf/cm?), o, =
-5,000 N/cm? (-510 kgf/cm?), o, = -5,000 N/cm2 = 1, =T, =10,000 N/cm?.
Determine the normal and shearlng stresseson a plane thatis equally inclined
to all the three axes.

Solution A plane that is equally inclined to all the three axes will have

1
— — — — qj 2 2 2 _
n,=n,=n,= NG since ny +ny+ny =1

From Eq. (1.12)
o, = % [10000 - 5000 — 5000 + 20000 + 20000 + 20000]

= 20000 N/cm?
From Eqgs (1.6)—(1.8)

n
T, = L (10000 + 10000 + 10000) = 10000 /3 N/cm?
V3
o1
T, = —= (10000 — 5000 + 10000) =-5000 /3 N/cm?
V3
oo
T, (10000 — 10000 — 5000) = 5000 /3 N/cm?
NG
n 2
T| =3[(10%) + (25 x 10°%) + (25 x 10%)] N¥cm*

=450 x 10° N¥cm*
7.2 = 450 x 10° — 400 x 10° = 50 x 10° N*/cm*
or 7, = 7000 N/cm? (approximately)
Example 1.3 Figure 1.9 shows a cantilever beam in the form of a trapezium of

uniform thickness loaded by a force P at the end. If it is assumed that the bending
stress on any vertical section of the beam is distributed according to the elementary
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flexure formula, show that the normal stress o on a section perpendicular to

the top edge of the beam at point A is G; rx where o, is the flexural stress
cos
%, as shown in Fig. 1.9(b).
y
A g
o x

(c)
Fig. 1.9 Example 1.3

Solution At point A, let axes x and y be chosen along and perpendicular to the
edge. On the x plane, i.e. the plane perpendicular to edge EF, the resultant stress
is along the normal (i.e., x axis). There is no shear stress on this plane since the
top edge is a free surface (see Sec. 1.9). But on plane AB at point A there can
exist a shear stress. These are shown in Fig. 1.9(c) and (d). The normal to plane
AB makes an angle 6 with the x axis. Let the normal and shearing stresses on this
plane be o, and ;.

We have

=0, oy =0,=0, Ty =Ty =T =0

The direction cosines of the normal to plane AB are
=0

n, = Cos 6, n, =sin 6, n,

The components of the stress vector acting on plane AB are

n
TX

0, =N, 0, +n, T, +N, T, = 0COSO

=3

Ty=nty+n,0,+n,7,=0

n
Tz:nxrxz+nyryz+nzc72:0

n n n
Therefore, the normal stress on plane AB=o,=nTx+n, Ty+n, T, =
2
o cos” 6.
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Since o, = 0,

o Mc

O = =
cos’ @ 1cos® @

Further, the resultant stress on plane AB is

n n n
T =T24+T2+T2=06%cos? 0
Hence 7%= 0% c0s°0 - 0,°

o0 c0s%0 — o % cos*o

1 .
or rzzasm 20

1.7 DIGRESSION ON IDEAL FLUID

By definition, an ideal fluid cannot sustain any shearing forces and the normal
force on any surface is compressive in nature. This can be represented by

n
T=-pn, p=0

n n
The rectangular components of T are obtained by taking the projections of T
along the x, y and z axes. If n,, n,and n, are the direction cosines of n, then

n n
Tx =-pn,, Ty =—pny, T: =—pn, (1.13)
Since all shear stress components are zero, one has from Egs. (1.9),

n n n
Tx :nXGX, Ty =N (114)

Comparing Egs (1.13) and (1.14)
Oy =0,=0,=—p

Since plane n was chosen arbitrarily, one concludes that the resultant stress
vector on any plane is normal and is equal to —p. This is the type of stress that a
small sphere would experience when immersed in a liquid. Hence, the state of
stress at a point where the resultant stress vector on any plane is normal to the
plane and has the same magnitude is known as a hydrostatic or an isotropic state
of stress. The word isotropy means ‘independent of orientation’ or ‘same in all
directions’. This aspect will be discussed again in Sec. 1.14.

1.8 EQUALITY OF CROSS SHEARS

We shall now show that of the nine rectangular stress components o, ,
Ty Ty Oy T@nd 7, only six are independent. This_is becagse_ Ty =Ty Ty = Ty
and t,, = 7,,. These are known as cross-shears. Consider an infinitesimal rectan-
gular parallelpiped surrounding point P. Let the dimensions of the sides be Ax, Ay

and Az (Fig. 1.10).

y? sz! Gyl
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Y A7, + AT,
§’ Ty + ATy
/
Ty + AT,
77777 / R Ty + AT,y
Ty ! T, + AT,
v} zX ZX T)(z + |ATXZ

>~
< Txy / < X

~--mm- ¢

Y T,

Z vy

Fig. 1.10  Stress components on a rectangular element

Since the element considered is small, we shall speak in terms of average stresses
over the faces. The stress vectors acting on the faces are shown in the figure. On
the left x plane, the stress vectors are z,, 7, and z,,. On the right face, the stresses
are 1, + ATy, 7, + At and 1, + At,,. These changes are because the right face is
at a distance Ax from the left face. To the first order of approximation we have

or. é)Txy or
szﬁAX, ATXy:WAX7 ATXZZWXZAX

Similarly, the stress vectors on the top face are 7, + Az,

7,, + A1, where

AT

» T + AT, and

or or or
_ %y _ ' _ Yy
Aty = EY AY, Aty = 2y Ay, Aty = EY Ay
On the rear and front faces, the components of stress vectors are respectively
TZZ’ TZX’ sz
Ty + ATy, Ty + ATy, T, + AT,
where
or or Oty
ATZZ Z—ZZAZ, ATZX = 0,,;)( AZ, ATZy ZWAZ

For equilibrium, the moments of the forces about the x, y and z axes must
vanish individually. Taking moments about the z axis, one gets

T AY AZ % — (T + AT) Ay Az % +

AX
(1 +AT) Ay Az AX - 7, AX AZ - +

AX
(7, + AT,) AX Az = - (T + AT,) AXAZ Ay +
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T,y AX Ay % — T, AX Ay % - (1 + Aty) AX Ay % +
(74 + AT,) AX Ay A_2y: 0

Substituting for Az, Az, etc., and dividing by Ax Ay Az

o Txx Ay é)TXy é)TW Ay
TTox 2 Tw e M T

or or Or.. A

yx zy AX | OTy AY
ooy N 2t 20

In the limit as Ax, Ay and Az tend to zero, the above equation gives 7, = 7.
Similarly, taking moments about the other two axes, we get 7, = 7, and 7,, = 7,,.
Thus, the cross shears are equal, and of the nine rectangular components, only six
are independent. The six independent rectangular stress components are oy, oy,

Oy Ty Ty, @Nd Ty,

1.9 A MORE GENERAL THEOREM

The fact that cross shears are equal can be used to prove a more general
theorem which states that if n and n’ define two planes (not necessarily
orthogonal but in the limit
passing through the same point)
vxith conrresponding stress vectors

T and T, then the projection of
'F along n’ is equal to the pro-
jection of 1n' along n, i.e.'rF ‘n=
'rF -n (see Fig. 1.11).

The proof is straightforward. If
Ny, Ny and n; are the direction
cosines of n’, then

n , n n n
— ’ ’ ’
T-n = TXnX+Tyny+TZnZ

From Eq. (1.9), substituting for
n

Fig. 1.11  Planes with normals n and o’

n n
T, T, and T, and regroup-

ing normal and shear stresses

n
’ _ ’ ’ ’ ’ ’
T-n"=on,n +o,nn,+o,nn,+7g,nn,+g,nn,+

’ 7 7 ’
T, Ny N+ T,y N, 0y + T, N, 0+ T, N 1,
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Using the result 7, = 7,

yar T

= Ty and 7, = T,

X
n
T-n"=o,nn’y+o,nn+o,nn,+1z, 00 +nn0)+
o T, (ny n,+n, n’y) + 1, (NN, +n.n)
Similarly,
n 4 4 4 4 ’
T n=onn',+o,nn,+0o,nn,+1g, NN +nn0)+
1, (N, N, +n, ") + 7, (N, N, + N, ")
Comparing the above two expressions, we observe

n n’

T.n'=T-n (115

Note: An important fact is that cross shears are equal. This can be used to prove
that a shear cannot cross a free boundary. For example, consider a beam of
rectangular cross-section as shown in Fig. 1.12.

/A Tyx = 0
R A v
—
X

(a) (b)
Fig. 1.12 (a) Element with free surface; (b) Cross shears being zero

l‘~ y
|
|

If the top surface is a free boundary, then at point A, the vertical shear
stres component 7,, = 0 because if 7,, were not zero, it would call for a
complementary shear 7,, on the top surface. But as the top surface is an
unloaded or a free surface, 7, is zero and hence, 7, is also zero (refer
Example 1.3).

1.10 PRINCIPAL STRESSES

We have seen that the normal and shear stress components can be determined on
any plane with normal n, using Cauchy's formula given by Egs (1.9). From the
strength or failure considerations of materials, answers to the following questions
are important:

(i) Arethere any planes passing through the given point on which the result-
ant stresses are wholly normal (in other words, the resultant stress vector
is along the normal)?

(ii) What is the plane on which the normal stressisa maximum and what isits
magnitude?
(iii) What is the plane on which the tangential or shear stress is a maximum
and what it is its magnitude?
Answers to these questions are very important in the analysis of stress, and the
next few sections will deal with these. Let us assume that there is a plane n with
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direction cosines n,, n, and n, on which the stress is wholly normal. Let o be the
magnitude of this stress vector. Then we have

T —on (L16)
The components of this along the x, y and z axes are
n n n
Tx =on,, Ty=ony, Tz=o0n, 1.17)
Also, from Cauchy’s formula, i.e. Egs (1.9),
'Fx =0, N+ Ty Ny + T, N,

n
Ty=1,n+0,n+7,n,

n
T:=1,n+7,n+0,0N,
Subtracting Eq. (1.17) from the above set of equations we get

(o= 0) ng+ 1N+ 7, N, =0

Ty N+ (0, —0) n,+ 7, n,=0 (1.18)

T, Ny + T, Ny + (0,—0) n, =0
We can view the above set of equations as three simultaneous equations involv-
ing the unknowns n,, n, and n,. These direction cosines define the plane on which
the resultant stress is wholly normal. Equation (1.18) is a set of homogeneous

equations. The trivial solution is n, = n,=n, = 0. For the existence of a non-trivial
solution, the determinant of the coefficients of n,, n, and n, must be equal to zero, i.e.

(oc—0) 1y Tx
Tyy (Gy - G) 7, |=0 (1.19)
T r, (0,-0)

Expanding the above determinant, one gets a cubic equation in o as
0° = (6, + 0, + 0,)0°+ (0, O, + O, 0, +0, Oy — Txy — Ty; — Tax) O =

2 2 2
(0, 0y 0, + 27 Ty, T,y — Oy Ty, = Oy Ty, =0, Tyy) =0 (1.20)

The three roots of the cubic equation can be designated as o;, o, and o,. It

will be shown subsequently that all these three roots are real. We shall later give
a method (Example 4) to solve the above cubic equation. Substituting any one of
these three solutions in Eqgs (1.18), we can solve for the corresponding n,, n, and
n,. In order to avoid the trivial solution, the condition.

n;+n;+n=1 (1.21)

is used along with any two equations from the set of Egs (1.18). Hence, with each

o there will be an associated plane. These planes on each of which the stress
vector is wholly normal are called the principal planes, and the corresponding
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stresses, the principal stresses. Since the resultant stress is along the normal, the
tangential stress component on a principal plane is zero, and consequently, the
principal plane is also known as the shearless plane. The normal to a principal
plane is called the principal stress axis.

1.11 STRESS INVARIANTS

The coefficients of 62, o and the last term in the cubic Eq. (1.20) can be written as
follows:
l,=0,+0,+0, (1.22)

2 2 2
I, = 0,0, + 0,0, + 0,0, — Tyy = Ty; = T

Ox Tyl |0y Tyl log T
= T (1.23)
Ty Oy T, 0 T, Oy
;= +2 72 2 72
3= 0y o-y o; Txy Tyz Tox — O yz O-y x ~ 0 Xy
Oy Ty T
=ty Oy Ty, (1.24)
7. T O

ZX Z

yz

Equation (1.20) can then be written as

The quantities I, I, and I are known as the first, second and third invari-
ants of stress respectively. An invariant is one whose value does not change
when the frame of reference is changed. In other words if x’, y’, z/, is
another frame of reference at the same point and with respect to this frame
of reference, the rectangular stress competence are oy, oy, Gy, Tyryrs Tyryr
and r,,., then the values of I, I, and |5, calculated as in Eqs (1.22) — (1.24),
will show that

oyt o,+0,=0+0/+0/
ie. =1
and similarly, l,=1; and l;=13

The reason for this can be explained as follows. The principal stresses at a point

depend only on the state of stress at that point and not on the frame of
reference describing the rectangular stress components. Hence, if xyz and
X'y’z" are two orthogonal frames of reference at the point, then the following
cubic equations

o®-l,o?+1,0-1;=0

and o=l 0%+lI,0-1;=0
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must give the same solutions for o. Since the two systems of axes were arbitrary,
the coefficients of 6%, and o and the constant terms in the two equations must be
equal, i.e.
L=1, I, =15 and =1

In terms of the principal stresses, the invariants are

l,=0,+0,+0;

|, = 0,0, + 0,05, + 050,

l; = 0,0,0,

1.12 PRINCIPAL PLANES ARE ORTHOGONAL

The principal planes corresponding to a given state of stress at a point can be
shown to be mutually orthogonal. To prove this, we make use of the general
theorem in Sec. 1.9. Let n and n’ be the two principal planes and o; and o,, the
corresponding principal stresses. Then the projection of o, in direction n” is
equal to the projection of o, in direction n, i.e.

on-n=o,n-n’ (1.25)
If n,, n,and n, are the direction cosines of n, and n’, n’y and n’, those of n’, then
expanding Eq. (1.25)

oy (nny +nyny +1,07) = o, (g + nyny + nn; )

Since in general, o; and o, are not equal, the only way the above equation can
hold is

nany +nyng +n,n; =0

i.e. n and n” are perpendicular to each other. Similarly, considering two other
planes n” and n” on which the principal stresses o, and o; are acting, and
following the same argument as above, one finds that n” and n”” are perpendicular
to each other. Similarly, n and n” are perpendicular to each other. Consequently,
the principal planes are mutually perpendicular.

1.13 CUBIC EQUATION HAS THREE REAL ROOTS

In Sec. 1.10, it was stated that Eq. (1.20) has three real roots. The proof is as
follows. Dividing Eq. (1.20) by o2,
| |
oc—-l+ ﬁ - 0'_32 =0
For appropriate values of o, the quantity on the left-hand side will be equal to
zero. For other values, the quantity will not be equal to zero and one can write the
above function as

I I
0'—|1+§—O_—32=f(0') (1.26)

Since I, I, and |, are finite, f (o) can be made positive for large positive values of
o. Similarly, f (o) can be made negative for large negative values of o. Hence, if one
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\f (0) plots f(o) for different values of
o as shown in Fig. 1.13, the curve
must cut the o axis at least once as
shown by the dotted curve and for

A B\ this value of o, f(o) will be equal to
zero. Therefore, there is at least one
real root.

Let o be this root and n the as-
sociated plane. Since the state of
stress at the point can be
characterised by the six rectangular components referred to any orthogonal frame
of reference, let us choose a particular one, x’y’z’, where the z” axis is along n and
the other two axes, x” and y’, are arbitrary. With reference to this system, the stress
matrix has the form.

Fig.1.13 Plot of flc) versus o

Oy Txy O
z—x’y’ O-y’ 0 (1.27)
0 0 oy

Figure 1.14 shows these stress vectors
on a rectangular element. The shear stress
components 7, and 7, are zero since the
Z’ plane is chosen to be the principal plane.
With reference to this system, Eq. (1.19)
becomes

(GX/ - G) Tyyr 0
X ) Tyyr (O'y, - O') 0 =0 (1.28)
Fig 1.14 Rectangular element
with faces normal 0 0 (0'3 - O')
tox’, y’, 2" axes
Expanding (0;-0)[02- (0, + 0)) 0+ 00, — T4y ]=0

This is a cubic in o. One of the solutions is o = ;. The two other solutions are
obtained by solving the quadratic inside the brakets. The two solutions are

optoy (000, 2
o1, = 5 + L 5 J + Ty (1.29)

The quantity under the square root power% is never negative and hence,

o, and o, are also real. This means that the curve for f(o) in Fig. 1.13 will cut the
o axis at three points A, B and C in general. In the next section we shall study a
few particular cases.
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1.14 PARTICULAR CASES

(i) If oy, 0, and oy are distinct, i.e. 0;, 0, and o, have different values, then
the three associated principal axes n;, n, and n, are unique and mutually
perpendicular. This follows from Eq. (1.25) of Sec. 1.12. Since o;, o, and
o, are distinct, we get three distinct axes n,, n, and n; from Egs (1.18), and
being mutually perpendicular they are unique.

(i) If o, = 0, and oy is distinct, the

n, axis of n, is unique and every
direction perpendicular to n; is

T a principal direction associated

with o, = o0,. This is shown in
0 Fig. 1.15.

To prove this, let us choose a

Fig. 1.15 Case with 6, = o, frame of reference Ox’y’z” such

and o3 distinct that the z” axis is along n; and

the x” and y” axes are arbitrary.

From Eq. (1.29), if o, = 0,, then the quantity under the radical must

be zero. Since this is the sum of two squared quantities, this can happen
only if

oy=0, and 7, =0

But we have chosen x” and y” axes arbitrarily, and consequently the
above condition must be true for any frame of reference with the z” axis
along n;. Hence, the x” and y” planes are shearless planes, i.e. principal
planes. Therefore, every direction perpendicular to n; is a principal direc-
tion associated with o, = o,.

(iii) If o, = 0, = o3, then every direction is a principal direction. This is

the hydrostatic or the isotropic state of stress and was discussed in
Sec. 1.7. For proof, we can repeat the argument given in (ii). Choose a
coordinate system Ox’y’z” with the z” axis along n, corresponding to o;.
Since o; = o, every direction perpendicular to n, is a principal direction.
Next, choose the z” axis parallel to n, corresponding to o,. Then every
direction perpendicular to n, is a principal direction since o, = 0.
Similarly, if we choose the z” axis parallel to n, corresponding to o,
every direction perpendicular to n, is also a principal direction. Conse-
quently, every direction is a principal direction.

Another proof could be in the manner described in Sec. 1.7. Choosing Oxyz
coinciding with n,, n, and n,, the stress vector on any arbitrary plane n has value
o, the direction of o coinciding with n. Hence, every plane is a principal plane.
Such a state of stress is equivalent to a hydrostatic state of stress or an isotropic
state of stress.

1.15 RECAPITULATION

The material discussed in the last few sections is very important and it is worth-
while to put it in the form of definitions and theorems.
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Definition

n
For a given state of stress at point P, if the resultant stress vector T on any plane
n is along n having a magnitude o, then o is a principal stress at P, n is the
principal direction associated with o, the axis of o is a principal axis, and the
plane is a principal plane at P.

Theorem

In every state of stress there exist at least three mutually perpendicular principal
axes and at most three distinct principal stresses. The principal stresses o;, o,
and o, are the roots of the cubic equation

where I3, I, and I; are the first, second and third invariants of stress. The principal
directions associated with o3, 0, and o5 are obtained by substituting o; (i = 1, 2, 3)
in the following equations and solving for n,, n, and n;:

(Gx - Cyi) n, + Txy y
Ty N+ (0, — o) ny+ 7, n,=0

n,+7,Nn,=0
2 2 2
n+ny+n; =1
If 0y, 0, and oy are distinct, then the axes of n;, n, and n; are unique and
mutually perpendicular. If, say o, = 6, # o3, then the axis of n; is unique and

every direction perpendicular to n; is a principal direction associated with
o, = 0,. If 0, = 0, = 03, then every direction is a principal direction.

Standard Method of Solution

Consider the cubic equation y® + py? + qy + r = 0, where p, g and r are constants.

Substitute y =X —%p
This gives xX+ax+b=0
_1(aq_p? 1 (o3_
where a= 3(3q p ) b= > (2p 9pq+27r)
Put COS ¢ =— b

12
of 2
27

Determine ¢, and putting g =2 ,/—a/3, the solutions are

yy=goos £ -2
Y, = g cos [%+120°) -

Y3 = @ COS [g + 240°j -
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Example 1.4 At a point P, the rectangular stress components are
o, =1 oy =-2, o,=4, Ty = 2, Ty =-3 and 7,=1
all in units of kPa. Find the principal stresses and check for invariance.

Solution The given stress matrix is

1 2 1
[75]=|2 2 -3
1 -3 4

From Egs (1.22)—(1.24),
I,=1-2 +4=3
l,=(-2-4)+(-8-9)+ (4-1)=-20
l;=1(-8-9)-2(8+3)+1(-6+2)=-43
f(0)=0°-302-200+43=0
For this cubic, following the standard method,
y=0c, p=-3, q=-20, r=43

a=21(60-9)=-23

3
b= % (=54 — 540 + 1161) = 21
%)
2
cos = ——L—
(12167 )1’ 2
27
$=-119° 40

The solutions are
o, =Y, =425+1=525kPa
0,=Y,=-52+1=-4.2kPa
0;=Y,=0.95+1=1.95kPa

Renaming such that o, > 0, > o; we have,
o0,=525kPa, o0,=1.95kPa, o;=-4.2kPa

The stress invariants are

I, =525 +1.95-4.2=3.0
I, = (5.25 x 1.95) — (1.95 x 4.2) — (4.2 x 5.25) = -20
l;=—(5.25x 1.95 x 4.2) =43

These agree with their earlier values.

Example 1.5 With respect to the frame of reference Oxyz, the following state of
stress exists. Determine the principal stresses and their associated directions. Also,
check on the invariances of 1, I,, I,.
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Solution For this state
ILb=1+1+1=3
L=1-4)+(1-1)+(1-1)=-3
l,=11-1)-22- 1)+12-1)=-1
fo)=0®-1,06%+1,0-1;,=0

ie., 03-302-306+1=0

or (6®+1)-30(c+1)=0

ie., (c+1)(6°-0+1)-30(c+1)=0
or (6+1)(6?-46+1)=0

Hence, one solution is o= -1. The other two solutions are obtained from the
solution of the quadratic equation, which are =2 % V3.

R o, =-1, 62=2+\/§, 0'3=2—\/§
Check on the invariance:

With the set of axes chosen along the principal axes, the stress matrix will have
the form

-1 0 0
[T”] = O 2+\/§ 0
00 2-3
Hence, |1=—l+2+\/§+2—\/§=3

lL=(2-~3)+(@-3)+(-2+3)=-3
l;=-1(4-3)=-1
Directions of principal axes:
() For o,=-1, from Eqgs (1.18) and (1.21)
(1+n,+2n,+n,=0
2n,+ (1+1)n,+n,=0
ne+n,+(1+1n, =0
together with

nZ+n’+nl=1
From the second and third equations above, n, = 0. Using this in the third
and fourth equations and solving, n, = i(l/ﬁ) ,n, = ir(l/x/E) .

Hence, o, =-1 is in the direction <+1/\/§, ~1/4/2, O) .

It should be noted that the plus and minus signs associated with n,, n,
and n, represent the same line.
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(i) Foro,=2+ 3
(-1 —\/§)nX +2n,+n,=0
2n, + (-1 - \/§)ny+n2:0
ng+n, (-1- \/§)nZ:0
together with
nZ+ns+n’=1

Solving, we get

1/2

\/§ (3 + \/§)1/2

(iii) For o,=2- 3
We can solve for n,, n,and n, in a manner similar to the preceeding one
or get the solution from the condition that n;, n, and n; form a right-
angled triad, i.e. ng=n; X n,.
The solution is

Example 1.6 Forthe given state of stress, determine the principal stresses and their
directions.

011
110

Solution ,=0,1,=-3,1;=2
f(o)=-0°+30+2=0
=(-0%-1)+ (30 +3)
=—(c+1)(c*-c+1)+3(c+1)
=(0c+1)(c0-2)(c+1)=0
0,=0,=-1 and o0;=2
Since two of the three principal stresses are equal, and oy is different, the axis of
o, is unique and every direction perpendicular to o, is a principal direction asso-
ciated with o, = 0,. For ;=2
=2n,+n,+n,=0
n,—2n,+n,=0
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n,+n,-2n,=0

2 2 2
n+ny+n; =1

1

5

These give n,=n, =n, =

Example 1.7 The state of stress at a point is such that
0x=0y=0;=Ty =T, =T =P

Determine the principal stresses and their directions

Solution For the given state,
I, =3p, l,=0, ;=0

Therefore the cubic is o® - 3po? = 0; the solutions are o, = 3p, 0, =
o0;=0.Foro,=3p

(p—3p)n,+ pn,+pn, =0
pn,+(p—3p) ny+ pn,=0
pny+pny+ (p-3p) n, =0
or
=2n,+n,+n,=0
n,—2n,+n,=0
n,+n,-2n,=0
The above equations give
ng=n,=n,

With nZ +nZ+nZ=1, one gets n,=n, =n,=1/3.

Thus, on a plane that is equally inclined to xyz axes, there is a tensile stress of
magnitue 3p. This is the case of a uniaxial tension, the axis of loading making
equal angles with the given xyz axes. If one denotes this loading axis by z’, the
other two axes, x” and y’, can be chosen arbitrarily, and the planes normal to
these, i.e. X" plane and y’ plane, are stress free.

1.16 THE STATE OF STRESS REFERRED
TO PRINCIPAL AXES

In expressing the state of stress at a point by the six rectangular stress compo-
nents, we can choose the principal axes as the coordinate axes and refer the
rectangular stress components accordingly. We then have for the stress matrix

o, 0 O
[731=| 0 o, O (1.30)
0 0 o4
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On any plane with normal n, the components of the stress vector are, from
Eq. (1.9),

n n n
Tx =00, T, = oyny, T, =030, (2.32)
The resultant stress has a magnitutde
2
n
T = o202 + o202 + o202 132)

If o is the normal and 7 the shearing stress on this plane, then
o= oyN; + oyNn) + ogn? (1.33)

nl2
2T

and T =

-o? (1.34)
2,2 2, 2.2 2, 2.2 2
=nny (o — 0,)" +nyn; (o — 03)” +n;ns (o3 — 07)

The stress invariants assume the form

l,=0,+0,+ 04 (1.35)
I, = 0,0, + 0,05 + 050,
l; = 0,0,05

1.17 MOHR’'S CIRCLES FOR THE THREE-DIMENSIONAL
STATE OF STRESS

We shall now describe a geometrical construction that brings out some
important results. At a given point P, let the frame of reference Pxyz be
chosen along the principal stress axes. Consider a plane with normal n at
point P. Let o be the normal stress and 7 the shearing stress on this plane.
Take another set of axes ¢ and 7. In this plane we can mark a point Q with
co-ordinates (o, ) representing the values of the normal and shearing
stress on the plane n. For different planes passing through point P, we get
different values of o and 7. Corresponding to each plane n, a point Q can
be located with coordinates (o, 7). The plane with the o axis and the 7
axis is called the stress plane #. (No numerical value is associated with
this symbol). The problem now is to determine the bounds for Q (o, 7) for
all possible directions n.
Arrange the principal stresses such that algebraically
0,2 0,2 03

Mark off o;, o, and o5 along the o axis and construct three circles with
diameters (o, - 0,), (0, — 03) and (o, — o3) as shown in Fig. 1.16.

It will be shown in Sec. 1.18 that the point Q(o, 7) for all possible n will lie
within the shaded area. This region is called Mohr’s stress plane & and the three
circles are known as Mohr’s circles. From Fig. 1.16, the following points can be
observed:

(i) Points A, B and C represent the three principal stresses and the associated

shear stresses are zero.
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(i)

(iii)

(iv)

V)

1.18

AT

Fig. 1.16  Mohr's stress plane
1
2
mal stress is %(Gl+ 03). This is indicated by point D on the outer circle.

Just as there are three extremum values o,, o, and o, for the normal
stresses, there are three extremum values for the shear stresses, these

being Z1-93 2279 4nd 91~ 92 The planes on which these shear

The maximum shear stress is equal to = (o, — o3) and the associated nor-

stresses act are called the principal shear planes. While the planes on
which the principal normal stresses act are free of shear stresses, the
principal shear planes are not free from normal stresses. The normal stresses
b2
O'1+ Oy T . . . .
and s These are indicated by points D, E and F in Fig. 1.16. It will be

associated with the principal shears are respectively

shown in Sec. 1.19 that the principal shear planes are at 45° to the principal
normal planes. The principal shears are denoted by 7, 7, and z; where

27y = (0y — 0y), 27, = (0, — 03), 27 = (0, — 03) (1.36)
When o, = 0,# o; or 0, # 0, = 03, the three circles reduce to only one
circle and the shear stress on any plane will not exceed %(51 - 0;) Or

%(61 - 0,) according as o, = 0, Of 0, = 0.

When 6, = 0, = 3, the three circles collapse to a single point on the o
axis and every plane is a shearless plane.

MOHR'’S STRESS PLANE

It was stated in the previous section that when points with coordinates (o, 7) for
all possible planes passing through a point are marked on the o — 7 plane, as in
Fig. 1.16, the points are bounded by the three Mohr’s circles. In this, section we
shall prove this.
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Choose the coordinate frame of reference Pxyz such that the axes are along the

principal axes. On any plane with normal n, the resultant stress vector T and the
normal stress o are such that from Egs (1.32) and (1.33)

2
n
Tl =0%+12= ofn} + o4n; + o5n’ (1.37)
_ 2 2 2
0= oyNy + o,y + o3 (1.38)
2 2 2
and also 1=ng+ny+n; (1.39)

The above three equations can be used to solve for nf, nf, and nz2 yielding

2_(0'—0'2)(0'—0'3)+ T2

M= (0'1 - 0'2)(”1 - 0'3)

(1.40)

2 (O'— 0'3)(0'— O'l)+ TZ
n2 = = o2)(or - o1) (1.41)

2 (O'—O'l)(O'— 0'2)+ TZ
n? = (2= o) - o) (1.42)

Since nf, n§ and nz2 are all positive, the right-hand side expressions in the above

equations must all be positive. Recall that we have arranged the principal stresses
such that o, = 0, > o5. There are three cases one can consider.

Case (i) 0, > 0, > 0
Case (ii) 0, =0, > 05
Case (iii) 0, = 0, = 0,
We shall consider these cases individually.
Case (i) 0,> 0,> 0
For this case, the denominator in Eq. (1.40) is positive and hence, the numerator
must also be positive. In Eq. (1.41), the denominator being negative, the numera-

tor must also be negative. Similarly, the numerator in Eq. (1.42) must be posi-
tive. Therefore.

(c-0)(c-0y)+ 1220
(6-0)(0-0y) +1%<0
(c-0)(c-0)+ 1220

The above three inequalities can be rewritten as

2 2
rz+[0'— 02203] > [02503]
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2
o3 + O
2'2+[0— 32 l]

IA

2
03 -0
(257

O'-l-O'2 0'0'2
2 _ato) (A%
”[" 2 ]‘[ 2]

According to the first of the above equations, the point (o, t) must lie on or

outside a circle of radius %(02 — 03) with its centre at %(02 + 0,) along the o axis

(Fig. 1.16). This is the circle with BC as diameter. The second equation indicates

that the point (o, 7) must lie inside or on the circle ADC with radius 1(crl - 0,)
2

and centre at %(01 + 0;) on the o axis. Similarly, the last equation indicates that

the point (o, 7) must lie on or outside the circle AFB with radius equal to l(crl -0y
2

and centre at %(01 + 0,).
Hence, for this case, the point Q(o, 7) should lie inside the shaded area of Fig. 1.16.

Case (ii) 0, = 0, > 04
Following arguments similar to the ones given above, one has for this case from

Eqgs (1.40)—(1.42)
2 2
z_2+[O__(72J2F(73j :[02;03]

2 2
T2+[O__03J2F(71] :[03;01]

2 2
2 0 t0 >[O'1_0'2)
R G I L

From the first two of these equations, since o, = o,, point (o, ) must lie on the

circle with radius %(0l — 0,) with its centre at %(01 + 0;). The last equation
indicates that the point must lie outside a circle of zero radius (since o; = 0,).

Hence, in this case, the Mohr’s circles will reduce to a circle BC and a point circle
B. The point Q lies on the circle BEC.
Case (iii) 0, = 0, = 04
This is a trivial case since this is the isotropic or the hydrostatic state of stress.
Mohr’s circles collapse to a single point on the o axis.

See Appendix 1 for the graphical determination of the normal and shear stresses
on an arbitrary plane, using Mohr’s circles.

1.19 PLANES OF MAXIMUM SHEAR

From Sec. 1.17 and also from Fig. 1.16 for the case o, > 0, > 03, the maximum
shear stress is %(01 - 0;) = T, and the associated normal stress is E(crl + 0,).
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Substituting these values in Eqgs.(1.37)—(1.39) in Sec. 1.18, one gets n, = +1/2 ,

n,=0andn, =+l V2. This means that the planes (there are two of them)
on which the shear stress takes on an extremum value, make angles of 45°

and 135° with the o, and o, planes as shown in Fig. 1.17.

0,

O

04

X
\12 \Or

69

112 (o, + 0,)

(b)

Fig. 1.17 (a) Principal planes (b) Planes of maximum shear

If o, = 0, > 0;, then the three Mohr’s circles reduce to one circle BC (Fig.1.16)

and the maximum shear stress will be —(02 03) = 1, With the associated normal

stress —(02 + 0;). Substituting these values in Egs (1.37)-(1.39), we get n, = 0/0,

n, = O/O and n,= #1+2i.e. n and n, are indeterminate. This means that the

planes on which 7, is acting makes angles of 45° and 135° with the o; axis
but remains indeterminate with respect to o; and o, axes. This is so be-
cause, since o, = 0, # 03, the axis of o, is unique, whereas, every direction
perpendicular to oy is a principal direction associated with o, = o, (Sec.
1.14). The principal shear plane will, therefore, make a fixed angle with o,
axis (45° or 135°) but will have different values depending upon the selec-
tion of o; and o axes.

1.20 OCTAHEDRAL STRESSES

Let the frame of reference be again chosen along o;, 6, and o5 axes. A plane that
is equally inclined to these three axes is called
an octahedral plane Such a plane will have n,

n, = n,. Since n + n +n?=1,an octahedral
plane WI|| be defined by ng=n,=n,= =+13.
There are eight such planes as shown in
Fig.1.18.

The normal and shearing stresses on these
planes are called the octahedral normal stress
and octahedral shearing stress respectively.
Substituting n, = n, =n, = +1/+/3 in Egs (1.33)
and (1.34),

Fig.1.18 Octahedral planes
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Ogct = %(0'1 + 0+ 0y) = % ly (1.43)

-1
and To = g l(01=0)" + (0, = )" + (03 - 0)1] (L442)
or 92, =2(0, + 0, + 0;)° — 6(0,0, + 6,0, + 0,07) (1.44b)
or Toot = g (1 - 31,)"? (144c)

It is important to remember that the octahedral planes are defined with respect
to the principal axes and not with reference to an arbitrary frame of reference.
Since o, and 7, have been expressed in terms of the stress invariants, one can
express these in terms of oy, 0, 0,, %, 7,,and 7, also. Using Egs (1.22) and (1.23),

Ooct :% (O-x + c)-y + O-z) (145)

95 = (0,- )2 + (0, - 0,2+ (0,— )% + 6(hy + 70y + 7 ) (1.46)

The octahedral normal stress being equal to 1/3 |,, it may be interpreted as the
mean normal stress at a given point in a body. If in a state of stress, the first
invariant (o, + o, + 03) is zero, then the normal stresses on the octahedral planes
will be zero and only the shear stresses will act. This is important from the point
of view of the strength and failure of some materials (see Chapter 4).

Example 1.8 The state of stress at a point is characterised by the components
oy = 100 MPa, o, = —40 MPa, o, = 80 MPa,
Ty =T, =Tx=0
Determine the extremum values of the shear stresses, their associated normal
stresses, the octahedral shear stress and its associated normal stress.

Solution The given stress components are the principal stresses, since the
shears are zero. Arranging the terms such that o, > 0, = o3,

o, = 100 MPa, o, = 80 MPa, o; = -40 MPa
Hence from Eq. (1.36),

03 ~03 _80+40

T, = =
1 > > 60 MPa
5= ;Gl = _405100 =-70 MPa
_0,-0, 100-80
T 5= > =10 MPa
The associated normal stresses are
;= %27% _80-40 54 Mmpa

(ox
! 2 2
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*_o3to _—-40+100

P > 5—— =30 MPa
* _ op+o0, 100+80
O3 = = —
3 > 5 90 MPa
Toot = %[(ol —0,) +(0, —03)" + (03 —07) } =61.8 MPa
Ot = %(0'1 +0,+0y) =%= 46.7 MPa

1.21 THE STATE OF PURE SHEAR

The state of stress at a point can be characterised by the six rectangular stress
components referred to a coordinate frame of reference. The magnitudes of these
components depend on the choice of the coordinate system. If, for at least one
particular choice of the frame of reference, we find that o, = o, = ¢, = 0, then a state
of pure shear is said to exist at point P. For such a state, with that particular choice
of coordinate system, the stress matrix will be

0 Ty  Tx
[Ti i J =7y 0 Ty,
T Ty 0

For this coordinate system, |, = o, + o, + 0, = 0. Since |, is an invariant, this
must be true for any choice of coordinate system selected at P. Hence, the neces-
sary condition for a state of pure shear to exist is that I, = 0, It can be shown
(Appendix 2) that this is also a sufficient condition.

It was remarked in the previous section that when I, = 0, an octahedral plane
is subjected to pure shear with no normal stress. Hence, for a pure shear stress
state, the octahedral plane (remember that this plane is defined with respect to
the principal axes and not with respect to an arbitrary set of axes) is free from
normal stress.

1.22 DECOMPOSITION INTO HYDROSTATIC
AND PURE SHEAR STATES

It will be shown in the present section that an arbitrary state of stress can be
resolved into a hydrostatic state and a state of pure shear. Let the given state
referred to a coordinate system be

Oy Ty Ty
[5l=|"% 9y %y
e Tyz O

Let p = 1/3(0, + 0, + 0,) = 1/3]; (L47)
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The given state can be resolved into two different states, as shown:

Oy Ty Ty p 00 ol Ty
Ty Oy Ty |=|0 p O+ 7, o,—-P 7y (1.48)
e Tyz O3 00 p Txz Tyz o,-p

The first state on the right-hand side of the above equation is a hydrostatic
state. [Refer Sec. 1.14(iii).]
The second state is a state of pure shear since the first invariant for this
state is
I’y = (0,-p) *+ (0, - p) + (0, - P)
=oyto,+0,-3p
=0 from Eq. (1.47)
If the given state is referred to the principal axes, the decomposition into a hydro-
static state and a pure shear state can once again be done as above, i.e.

o, 0 0] [p 0 0] [ey-p O 0
0 6, 0[=|0 p O[+] 0 o,-p O (L49)
0 0 o] |0 0 p 0 0 o3-p

where, as before, p = 1/3(o; + 0, + 03) = 1/3l,.
The pure shear state of stress is also known as the deviatoric state of stress or
simply as stress deviator.

Example 1.9 The state of stress characterised by T is given below. Resolve
the given state into a hydrostatic state and a pure shear state. Determine the normal

and shearing stresses on an octahedral plane. Compare these with the ¢, and 7,

calculated for the hydrostatic and the pure shear states. Are the octahedral
planes for the given state, the hydrostatic state and the pure shear state the same or
are they different? Explain why.

10 4 6
[]1=|4 2 8
6 8 6

Solution l,=10+2+6 =18, %I1=6
Resolving into hydrostatic and pure shear state, Eq. (1.47),

6 00| [4 4 6
[51=]0 6 0|+|4 -4 8
006| (6 8 0
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For the given state, the octahedral normal and shear stresses are:

Gy :% l,=6
From Eq. (1.44)
.- g(hz _3|22)1/2
=g[132 ~3(20-16+12-64+ 60 - 36)]
=§(396)”2 =222

For the hydrostatic state, o, = 6, since every plane is a principal plane with =6
and consequently, 7, = 0.

For the pure shear state, o, = 0 since the first invariant of stress for the pure
shear state is zero. The value of the second invariant of stress for the pure shear
state is

I',=(~16-16 + 0 — 64 + 0 — 36 ) = —132

Hence, the value of 7,

To = g (396)2 =222

Hence, the value of o, for the given state is equal to the value of o, for the
hydrostatic state, and 7., for the given state is equal to 7, for the pure shear state.

The octahedral planes for the given state (which are identified after determining
the principal stress directions), the hydrostatic state and the pure shear state are
all identical. For the hydrostatic state, every direction is a principal direction, and
hence, the principal stress directions for the given state and the pure shear state
are identical. Therefore, the octahedral planes corresponding to the given state
and the pure shear state are identical.

for the pure shear state is

Example1.10 Acylindricalboiler, 180 cmindiameter, ismade of plates 1.8 cm thick,
and is subjected to an internal pressure 1400 kPa. Determine the maximum shearing
stress in the plate at point P and the plane

| on which it acts.

|
| paiat Solution From elementary strength of
ﬁ materials, the axial stress in the plate is
@ - 2_? where p is the internal pressure, d
p
pdi2t i the diameter and t the thickness. The cir-

cumferential or the hoop stress is g—?

) The state of stress acting on an element
Fig. 1.19  Example 1.10 is as shown in Fig. 1.19.
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The principal stresses when arranged such that o, > o, > o are
pd. pd.
. ATy STy 9s=7P
The maximum shear stress is therefore,

Substituting the values

1400 [1.8 %100

Trnax > >x18 +1j = 35,700 kPa

1.23 CAUCHY’S STRESS QUADRIC

We shall now describe a geometrical description of the state of stress at a point P.
Choose a frame of reference whose axes are along the principal axes. Let o, o,
and o, be the principal stresses. Consider a plane with normal n. The normal
stress on this plane is from Eq. (1.33),

2

— 2 2
0= o1y + 0y Ny + 03Ny

Along the normal n to the plane, choose a point Q such that

PQ =R =1/Jo (150)

As different planes n are chosen at P, we get different values for the normal
stress o and correspondingly different PQs. If such Qs are marked for every plane
passing through P, then we get a surface S. This surface determines the normal
component of stress on every plane passing through P. This surface is known as
the stress surface of Cauchy. This
has a very interesting property. Let
Q be a point on the surface,
Fig. 1.20(a). By the previous defini-
tion, the length PQ = R is such that
the normal stress on the plane whose
normal is along PQ is given by

o= % (L51)

~s3

(b) If m is a normal to the tangent
(a) plane to the surface S at point Q,

then this normal m is parallel to the
Fig. 1.20 (a) Cauchy’s stress quadric pn

(b) Resultant stress vector and
normal stress component Since the direction of the result-

resultant stress vectorT at P.

n
ant vector T is known, and its component o along the normal is known, the
n
resultant stress vector T can be easily determined, as shown in Fig. 1.20(b).
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n
We shall now show that the normal m to the surface S is parallel to T, the
resultant stress vector. Let Pxyz be the principal axes at P (Fig. 1.21). n is the
normal to a particular plane at P. The normal stress on this plane, as before, is

2

_ 2 2
o =01y +o,Ny + 03N,

If the coordinates of the point Q are

Y (X, ¥, z) and the length PQ = R, then
Qv 2 N y ,
PSS n, =5 ny =5 n, -5 (1.52)
/ n Substituting these in the above equa-
N tion for o
P X oR?=oX% + 0,y + 0,7
From Eq. (1.51), we have oR? = +1. The
z plus sign is used when o is tensile and the
Fig. 1.21 Principal axes at P and ~ minus sign is used when o is compressive.
n to a plane Hence, the surface S has the equations

(a surface of second degree)
when o is tensile
o+ o, yP + 0577 = +1 (1.53a)
when o is compressive
o X2+ oy2 + 02 = -1 (1.53b)
We know from calculus that for a surface with equation F(x, y, z) = 0, the
normal to the tangent plane at a point Q on the surface has direction cosines
proportional to %—E oF and %—E From Fig. (1.20), m is the normal perpendicular

oy

to the tangent plane to S at Q. Hence, if m,, m,, and m, are the direction cosines of
m, then

JF JF JF
mxzaﬁ, my:aé)—y, mzzaz
From Eq. (1.53a) or Eq. (1.53b)
m, = 200X, m, = 200,Y, m, = 20052 (1.54)

where o is a constant of proportionality.
'F is the resultant stress vector on plane n and its components -rllx,Tny, and
'Irlz according to Eq. (1.31), are
n n n
T, =oyn,, Ty =oyny, T, =
Substituting for n,, n, and n, from Eq. (1.52)

L 1 L 1 L 1
szﬁO'lX, Ty:ﬁo'zy, Tzzﬁ0'3z
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n n n
or o1X=RTx, o,¥y=RTy, 032 =RT;
Substituting these in Eq. (1.54)
n n n
mX=2a RTx, my=2aRTy, mZ=2a RTZ

n n n
i.e. m,, m and m, are proportional to Tx, Ty and Tz.
n
Hence, mand T are parallel.
The stress surface of Cauchy, therefore, has the following properties:

(i) If Q is a point on the stress surface, then PQ =1/<Jo where o is the
normal stress on a plane whose normal is PQ.

(i) The normal to the surface at Q is parallel to the resultant stress vector 'F
on the plane with normal PQ.
Therefore, the stress surface of Cauchy completely defines the state of stress
at P. It would be of interest to know the shape of the stress surface for different
states of stress. This aspect will be discussed in Appendix 3.

1.24 LAME’S ELLIPSOID

Let Pxyz be a coordinate frame of reference at point P, parallel to the principal
axes at P. On a plane passing through P with normal n, the resultant stress vector
n

is T and its components, according to Eq. (1.31), are

n n n
TX:O-lnX, Ty=O’2ny, TZ:O-3nZ

Let PQ be along the resultant stress vector and its length be equal to its
n
magnitude, i.e. PQ=|T|. The coordinates (x, y, z) of the point Q are then

n n n
X:Tx, y:Ty, Z:Tz

Sincen; +nJ +nZ =1, we get from the above two equations.

=1 (L55)

2
X_2+
01

This is the equation of an
ellipsoid referred to the princi-
pal axes. This ellipsoid is called
the stress ellipsoid or Lame's
ellipsoid. One of its three semi-
axes is the longest, the other
the shortest, and the third in-
between (Fig.1.22). These are
the extermum values.

If two of the principal
Fig. 1.22  Lame’s ellipsoid stresses are equal, for instance
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0, = 0, Lame’s ellipsoid is an ellipsoid of revolution and the state of stress at a
given point is symmetrical with respect to the third principal axis Pz. If all the
principal stresses are equal, o, = 6, = 03, Lame's ellipsoid becomes a sphere.

Each radius vector PQ of the stress ellipsoid represents to a certain scale, the
resultant stress on one of the planes through the centre of the ellipsoid. It can be
shown (Example 1.11) that the stress represented by a radius vector of the stress
ellipsoid acts on the plane parallel to tangent plane to the surface called the
stress-director surface, defined by

2 2
. ¥y 4 (156)
01 0 O3

The tangent plane to the stress-director surface is drawn at the point of intersec-

tion of the surface with the radius vector. Consequently, Lame’s ellipsoid and the
stress-director surface together completely define the state of stress at point P.

Example 1.11 Show that Lame’s ellipsoid and the stress-director surface together
completely define the state of stress at a point.

Solution If 6, 0, and o, are the principal stresses at a point P, the equation of
the ellipsoid referred to principal axes is given by

The stress-director surface has the equation
2 2 2
X_+y_+z_:l
o, 0, O3
It is known from analytical geometry that for a surface defined by
F(x, y, z) = 0, the normal to the tangent at a point (X,, Yo, Z, ) has direction cosines

oF oF OF

proportional to " W o evaluated at (X, Yo, Zg)- Hence, at a point (X,, Yo, Zp)
on the stress ellipsoid, if m is the normal to the tangent plane (Fig.1.23), then
z
m =a-2, my:aﬁ, m,=a -2
o1 02 O3

Stress-director
Surface

Fig. 1.23  Stress director surface and ellipsoid surface
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Consider a plane through P with normal parallel to m. On this plane, the resultant
n
stress vector will be T with components given by

m m m
T)( :O-lmx, Ty :O-zmy, TZ :O-3mz
Substituting for m,, m, and m,
m m m
Tx =axg, Ty=ay,, T:=az,

i.e. the components of stress on the plane with normal m are proportional to the

coordinates (X,, Yo, Zo)- Hence the stress-director surface has the following property.

L(Xo, Yo, Zo) is a point on the stress-director surface. m is the normal to the

tangent plane at L. On a plane through P with normal m, the resultant stress
m

vector is T with components proportional to x,, y, and z,. This means that the
m m m
components of PL are proportional to Tx, Ty and T-.

n
PQ being an extension of PL and equal to T in magnitude, the plane having
this resultant stress will have m as its normal.

1.25 THE PLANE STATE OF STRESS

If in a given state of stress, there exists a coordinate system Oxyz such that for
this system

0,=0, 7,=0, 7,=0 (1.57)

then the state is said to have a ‘plane state of stress’ parallel to the xy plane. This
state is also generally known as a two-dimensional state of stress. All the forego-
ing discussions can be applied and the equations reduce to simpler forms as a
result of Eq. (1.57). The state of stress is shown in Fig. 1.24.

A O
y
A Oy
7, Txy
! Xy
()-X } O-X
~—f- >
I
\ G Y
Ty g )
. Ty
4 O'y rO'y
(a) (b)

Fig. 1.24 (a) Plane state of stress (b) Conventional representation

Consider a plane with the normal lying in the xy plane. If n,, n, and n, are
the direction cosines of the normal, we have n, = cos 6, n, = sin 6 and n,= 0
(Fig. 1.25). From Eq. (1.9)
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Fig. 1.25 Normal and shear stress components on an oblique plane

n
Tx =0y cos 6+ 17, sin 6

n
Ty =oy,sin 6+ 7, cos 6

(158)

(1.59)

n
T; =0
The normal and shear stress components on this plane are from Eqs (1.11a)
and (1.11b)
0 =0, 05> 6 + g, sin” 6 + 27, sin 6 cos 6
+ —
_ 2 20“y . 20'y C0s 20 + T, sin 20
n2 n2 2
and 2=T +Ty -0
or 1= 2"% sin2g+ 7,y COS 20

The principal stresses are given by Eq. (1.29) as

2 1/2
O-X+O-y O'X—O'y 2
O']_,O-z— 2 i[( 2 "rTXy

0,=0
The principal planes are given by
(i) the z plane on which o; =0, =0 and
(i) two planes with normals in the xy plane such that

2t
tan 2¢ = — _X‘;
x = Oy

The above equation gives two planes at right angles to each other.

(1.60)

(L61)

(162)

If the principal stresses o;, 0, and o, are arranged such that o; > o, > o3, the

maximum shear stress at the point will be

01— 03

Tmax = 2

(1.63a)
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In the xy plane, the maximum shear stress will be

Tmax = % (01 -03) (1.63b)

and from Eq. (1.61)
1/2

2
O'X—O'y 2
=|| ——| +7

1.26 DIFFERENTIAL EQUATIONS OF EQUILIBRIUM

So far, attention has been focussed on the state of stress at a point. In general, the
state of stress in a body varies from point to point. One of the fundamental prob-
lems in a book of this kind is the determination of the state of stress at every point
or at any desired point in a body. One of the important sets of equations used in the
analyses of such problems deals with the conditions to be satisfied by the stress
components when they vary
A from point to point. These con-
ditions will be established when
7 the body (and, therefore, every
/%H part of it) is in equillibrium. We
ﬁ—' isolate a small element of the
body and derive the equations
(b) of equilibrium from its free-
body diagram (Fig. 1.26). A simi-
(a) lar procedure was adopted in
Sec. 1.8 for establishing the
equality of cross shears.
Consider a small rectangu-
lar element with sides Ax, Ay
and Az isolated from its par-
ent body. Since in the limit, we
are going to make Ax, y and Az
tend to zero, we shall deal with
average values of the stress
components on each face.

(164)

Tmax

Fig. 1.26 Isolated cubical element
in equilibrium

L These stress components are
%+ A% shown in Fig. 1.27.
% The faces are marked as 1, 2, 3

etc. On the left hand face, i.e. face
No. 1, the average stress com-
ponents are oy, 7, and z,,. On
the right hand face, i.e. face
Fig. 1.27 Variation of stresses No. 2, the average stress com-
ponents are

do, Ory or,,
. +_§x AX, Ty + x AX, Ty, + Ay

o AX
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This is because the right hand face is Ax distance away from the left hand face.
Following a similar procedure, the stress components on the six faces of the
element are as follows:

Face 1 Oxi Tyyr Txz
éb—x &W &xz
Face 2 O'X"r EN AX, TW "rWAX, Tyz +WAX
Face 3 Oy Ty Ty
Face 4
oo, or or
y yX yz
oy +ﬁ_yAy' Ty + 2y Ay, Ty, + 2y Ay
Face 5 Oy Ty Ty
50_ 52' arzy
Face 6 o, + 522 Az, Ty + 5;( Az, Ty + 5, Az

Let the body force components per unit volume in the x, y and z directions
be %, %, and . For equilibrium in x direction

ﬂo‘x 5ryx
o, + ax AX|Ay Az -0, Ay Az + ryx+0,7—yAy AZ AX -7, AZAX+

2
Tox +7Az AXAY — 7,0 AXAY + 7, AXAYy Az=0
Cancelling terms, dividing by Ax, Ay, Az and going to the limit, we get

0’)0)( + ﬁz—yx n ﬂfzx
ox oy 0z

+7x:0

Similarly, equating forces in the y and z directions respectively to zero, we get
two more equations. On the basis of the fact that the cross shears are equal,
.. Ty = Ty, Ty, = Ty Ty, = Ty, WE Obtain the three differential equations of
equilibrium as

ébx + ﬁTXy + &zx

ox oy oz *7x=0
oo or or

y Xy yz — 1.65
ﬂy+é’x+az+7yo (165)
ﬁaz &xz ﬁryz _
2z " ox * oy *7:=0

Equations (1.65) must be satisfied at all points throughout the volume of the
body. It must be recalled that the moment equilibrium conditions established the
equality of cross shears in Sec.1.8.
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1.27 EQUILIBRIUM EQUATIONS FOR PLANE

STRESS STATE
The plane stress has already been defined. If there exists a plane stress state in
the xy plane, then o, = 7,, = 7, = 3, = 0 and only ¢, 0y, 7,,, % and ¥ exist. The
differnetial equations of equilibrium become

vy, = (1.66)

Example1.12 The cross-section of the wall of adamisshownin Fig. 1.28. The
pressure of water on face OB is also shown. With the axes Ox and Oy, as shown
in Fig. 1.28, the stresses at any point (x, y) are given by (y = specific weight
of water and p = specific weight of dam material)

Oy = -7y
_|_» 2y 4
o, = - X + -ply
! [tanﬁ tan® ﬂ] [tan2 Vij J
- _ Y
Ty = Tyx__tanzﬂx
7,=0, 7,=0, 0,=0

Check if these stress components satisfy the differ-
Fig 1.28 Example 1.12 ential equations of equilibrium. Also, verify if the
boundary conditions are satisfied on face OB.

Solution The equations of equilibrium are

O’b_x ﬁz—xy _
Ix + 2y +% =0
Jo or

and S ARGS. & =
7y + x +7, =0

Substituting and noting that %, = 0 and ¥, = p, the first equation is satisifed. For
the second equation also

Yy P 14
tan? g tan? g
On face OB, at any y, the stress components are o, = —yy and z,, = 0. Hence the
boundary conditions are also satisfied.

+p=0

Example 1.13 Consider a function ¢(x, y), which is called the stress function.
If the values of o,, o, and 7, are as given below, show that these satisfy the
differential equations of equilibrium in the absence of body forces.
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2% 5% o 2%
R
Solution Substituting in the differential equations of equilibrium
I
oy? ox  ay? ox

> %
ox2 oy ox® oy

Example 1.14 Consider the rectangular beam shown in Fig. 1.29. According to the
elementary theory of bending, the ‘fibre stress’ in the elastic range due to bending is
given by

My 12 My
N Y
y

T X

} hl2
> O E— X

X z ¥ hi2

~— p >

Fig. 1.29 Exmaple 1.14

where M is the bending moment which is a function of x. Assume that
0,= 1, =1, =0and also that 7, = 0 at the top and bottom, and further, that o, = 0
at the bottom. Using the differential equations of equilibrium, determine 7, and o,.
Compare these with the values given in the elementary strength of materials.

Solution From Eq. (1.65)
ﬁO' az-)(y aT
+

X XZ=O

1704 " oy oz
Since 7., = 0 and M is a function of x

_12y oM, Try

bh® ox 2y °
or Ty _ 12 oM,
Y ph® X
Integrating Ty = %aﬁ—'\f y? +cf(x)+¢,
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where f(x) is a function of x alone and c,, c, are constants. It is given that

rxy=0aty=i%

6 h’ oM

bh3 4 O = _le(X) %)
3 M
f + =__2 gV
or c, f(x) +c, oh Ox

T = i ﬂ ﬁ -1
W 2bh x| R?
From elementary strength of materials, we have

T, = ljm y' dA

Xy | y
oM T .
where V = o is the shear force. Simplifying the above expression
oM 12 (h? y2 |2
T ox 2R3l 4 2
or 3 om(4y°
2bh x| p3

i.e. the same as the expression obtained above.
From the next equilibrium equation, i.e. from

doy Oty Oty

oy Tox o T
Ao 3 [4y? A2°M
Y =2 — 1
we get By 2bh ( 2 J P
__ 3 M[4y
%=~ on P (Shz yl+c F(X)+¢,
where F(x) is a function of x alone. It is given that o, =0 aty = —g.
_3Mh
Hence, cF(x) + ¢, = 2bh 2 3
1 0°M
2b px?

Substituting
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Aty = +h/2, the value of o is
_1°M _w

b 0’>X2 b
where w is the intensity of loading. Since b is the width of the beam, the stress
will be w/b as obtained above.

1.28 BOUNDARY CONDITIONS

Equation (1.66) must be satisfied throughout the volume of the body. When the
stresses vary over the plate (i.e. the body having the plane stress state), the
stress components o, o, and 7,, must be consistent with the externally applied
forces at a boundary point.

Consider the two-dimensional body shown in Fig.1.30. At a boundary point P,
the outward drawn normal is n. Let F, and F, be the components of the surface
forces per unit area at this point.

A

Fig. 1.30 (a) Element near a boundary point (b) Free body diagram

F. and F, must be continuations of the stresses o,, o, and 7, at the boundary.
Hence, using Cauchy’s equations
n
x =F,=on, + TNy
n
Ty =F,=oyn, + 1yn,
If the boundary of the plate happens to be parallel to y axis, as at point P;, the
boundary conditions become

Fr=0, and F =1,

1.29 EQUATIONS OF EQUILIBRIUM IN CYLINDRICAL
COORDINATES
Till this section, we have been using a rectangular or the Cartesian frame of

reference for analyses. Such a frame of reference is useful if the body under
analysis happens to possess rectangular or straight boundaries. Numerous problems
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exist where the bodies under discussion possess radial symmetry; for example, a
thick cylinder subjected to internal or external pressure. For the analysis of such
problems, it is more convenient to use polar or cylindrical coordinates. In this
section, we shall develop some equations in cylindrical coordinates.

Consider an axisymmetric body as shown in Fig. 1.31(a). The axis of the
body is usually taken as the z axis. The two other coordinates are r and 6,
where 6 is measured counter-clockwise. The rectangular stress components at
a point P(r, 0, z) are

O-r! 0-9’ 0-z’ Ter’ TOZ and Tzr

These are shown acting on
the faces of a radial element
at point P in Fig.1.31(b).
o,, 0, and o, are called the
radial, circumferential and
axial stresses respectively. If
the stresses vary from point
to point, one can derive the
appropriate differential equa-
tions of equilibrium, as in
Sec. 1.26. For this purpose,
consider a cylindrical ele-
ment having a radial length
Ar with an included angle A6
and a height Az, isolated from
the body. The free-body dia-
gram of the element is shown
in Fig.1.32(b). Since the ele-
ment is very small, we work
with the average stresses act-
ing on each face.

The area of the face aa’d’d
(a) is r AB Az and the area of face
bb’c’c is (r + Ar) A8 Az. The
areas of faces dcc'd” and abb’e’
are each equal to Ar Az.

:

Fig. 1.31 (a) Cylindrical coordinates of a point
(b) Stresses on an element

The faces abcd and a’b’c’d” have each an area (r + A6 Ar. The average

stresses on these faces (which are assumed to be acting at the mid point of eace
face) are
On face aa’d’d
normal stress o,
tangential stresses 7,, and 7,
On face bb’c’c
do,
ar Ar

normal stress o, +
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(b)
Fig. 1.32 (a) Geometry of cylindrical element (b) Variation of stresses across faces

. Or or,
tangential stresses 7 +7”Ar and Top +7“Ar
The changes are because the face bb’c’c is Ar distance away from the face aa’d’d.
On face dcc’d’
normal stress o,
tangential stresses 7,,and 7,
On face abb’a

Jo
normal stress o, + —2 AQ
MY

tangential stresses 7,, + Prrg A6 and t,, + Tty AO
2% 20

The changes in the above components are because the face abb’a is separated by
an angle A6 from the face dcc’d’.
On face a’b’c’d’
normal stress o,
tangential stresses t,, and t,,
On face abcd
o,
57 Az

normal stress o, +

tangential stresses t,, + s

or
Az and 7, + 292 A7
0z 52

Let ¥, 7, and 7, be the body force components per unit volume. If the element is
in equilibrium, the sum of forces in r, 8 and z directions must vanish individually,
Equating the forces in r direction to zero,

0o, or Ar
[ar +7rArj (r+Ar)AGAZ + (z’n +7”Azj [r +7) ABAr
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£) AGAr — o, sin A76’Ar Az

-0, TAOAL -1, (r+ >

—Trp cosATgArAz —[ag +%A9j sin A7‘9Ar Az

a6

Cancelling terms, dividing by A6 Ar Az and going to the limit with A6, Ar and Az,
all tending to zero

+(r,9 + Pro AHJ cosATeAr AZ+ 7y, (r+%) AO Ar Az=0

do, | Ity Ory

il A

"o T T

+0,—0y+ry =0

é)o_r + ﬁfrz l é’TrH Or — 0y
or  Jdz r 20 r
Similarly, for equilibrium in z and 6 directions, we get

G 0y L T, (1.68)

or az r b r

Iro , o 1% | 2T =0 (1.69)

and =
or 9z r A0 r 7o

Equations (1.67)—(1.69) are the differential equations of equilibrium expressed in
polar coordinates.

1.30 AXISYMMETRIC CASE AND PLANE STRESS CASE

If an axisymmetric body is loaded symmetrically, the stress components do not
depend on 6. Since the deformations are symmetric, 7., and 7,, do not exist and conse-
quently the above set of equations in the absence of body forces are reduced to

do, Or, Op—0y
+ =
or 0z r

0

57” . ﬁo’z +Ti
or oz r

A sphere under diametral compression or a cone under a load at the apex are
examples to which the above set of equations can be applied.

If the state of stress is two-dimensional in nature, i.e. plane stress state, then
only o,, 0, 7.4, %, and ¥, exist. The other stress components vanish.These non-
vanishing stress components depend only on 6 and r and are independent of z in
the absence of body forces. The equations of equilibrium reduce to

=0

do, 10y O, =0y _

or r o0 r 0

1.70
57r0+1506+27r6= (70

or r o0 r 0
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Example1.15 Consider afunction ¢(r, 8), whichiscalledthestressfunction. If the
valuesof o,, 0,, and 7, areasgiven below, show that in the absence of body forces,
these satisfy the differential equations of equilibrium.

2
o=@ 1759
ror (2 s
_ 5%
%0 52
o 10% 13
e~ T

rorce 20
Solution The equations of equilibrium are

oo or, o, -0
r 1%  Or~ %

o r o r =0

Oty 100y 2t
or Tra T r 0
Substituting the stress function in the first equation of equilibrium,

13, 15% 2%, 1 % +;(_;0”_3¢+%ﬂ_2¢f}

200t a2 a2 r2agtor T\ ralor 2 ap?

106, 10% 1% _

2 + 3 2 2 =0

r2or 3a9° T or
Hence, the first equation is satisfied. Similarly, it can easily be verified that the
second condition also holds good.

Problems

11 It was assumed in Sec.1.2 that across any infinitesimal surface element in
a solid, the action of the exterior material upon the interior is equipollent
(i.e. equal in strength or effect) to only a force. It is also possible to

assume that in addition to aforce, thereis also
acouple, i.e. at any point across any plane n,

n
n
m there is a stress vector T and a couple-stress

vector I\?I as shown in Fig. 1.33.

Show that a set of equations similar to
Cauchy’s equations can be derived, i.e. if
we know the couple-stress vectors on three
mutually perpendicular planes passing
Fig. 1.33 Problem1.1  through the point P, then we can determine
the couple-stress vector on any plane n

~>
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passing through the point. The equations are
n
Mx = Mxx nx + Myx ny+ sz nz

n
M, =M, n,+Myn +M,n,

n
Mz = sz N+ Myz ny + Mzz n,

n n n n
M,, My, M, are the x, y and z components of the vector M acting on

plane n.

12 A rectangular beam is subjected to a pure bending moment M. The cross-
section of the beam is shown in Fig. 1.34. Using the elementary flexure
formula, determine the normal and shearing stresses at a point (x, y) on the
plane AB shown.

M AN M o
< IR >H 1,,
~45° X vy

Fig. 1.34  Problem 1.2

[Ans. o, =T, =6l3}
bh

13 Consider a sphere of radius R subjected to diametral compression
(Fig. 1.35). Let o, 04 and o, be the normal stresses and 7,4, 74, and 7, the
shear stresses at a point. At point P(o, y, z) on the surface and lying in the
yz plane, determine the rectangular normal stress components o, o, and o,

in terms of the spherical stress components.
[Ans. o, = 0,; 0, = 0, C0S” ¢; G, = 0, sin’ ¢]

Fig.1.35 Problem 1.3
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The state of stress at a point is characterised by the matrix shown. Deter-
mine T,, such that there is at least one plane passing through the point in
such a way that the resultant stress on that plane is zero. Determine the
direction cosines of the normal to that plane.

T, 2 1
|:Tij :| =l 2 0 2
1 20

[Ans. T11:2;nX:J_rg;n :i%;nzzi%}

3y
If the rectangular components of stress at a point are as in the matrix below,
determine the unit normal of a plane parallel to the z axis,
i.e. n, = 0, on which the resultant stress vector is tangential to the plane
a 0 d
[Tij]: 0 b e
d e c

b 1/2 a 1/2
{Ans. n":i[b—aj ;ny:i(mj ;nzzo}

A cross-section of the wall of a dam is shown in Fig.1.36. The pressure of
water on face OB is also shown. The stresses at any point (X, y) are given by
the following expressions

o =-ry
Y= (tanpﬂ B tar?;/ﬂ} XJ{tanj; B _p] Y
TyZ:TZX:O'ZZO
0w e x o where y is the specific

N weight of water and p the
) specific weight of the dam
] material.

Consider an element OCD

F— c b and show that this element
SR is in equilibrium under the
'B A action of the external forces
(water pressure and gravity

y force) and the internally dis-

tributed forces across the

Fig. 1.36  Problem 1.6 section CD.
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Determine the principal stresses and their axes for the states of stress
characterised by the following stress matrices (units are 1000 kPa).

18 0 24 Ans. o, =50, n,=0.6,n,=0,n,=0.8
M [z]=] 0 -50 © 0,=0,n,=0.8,n,=0,n,=0.6
| 24 0 32 03=-50,n,=n,=0,n,=1
3 -10 0
() [z;]=|-10 0 30
| 0 30 -27

Ans. 0,=23,n,=0.394,n,=0.788,n,=0.473
0,=0,n,=0.912,n,=0.274,n,=0.304
0;=-47,n,=0.941,n,=0.188, n, = 0.288

The state of stress at a point is characterised by the components
o, =12.31, o, = 8.96, 0,=4.34
Ty = 4.20, Ty = 527, 0,=0.84

Find the values of the principal stresses and their directions

Ans. o, = 16.41,n,=0.709, n, = 0.627, n, = 0.322 |
0, =8.55,n, = 0.616, n, = 0.643, n, = 0.455
0,=0.65,n,=0.153,n, = 0.583,n,=0.798 |

For Problem 1.8, determine the principal shears and the associated normal stresses.
Ans. 7,=3.94,0,=12.48
7,=7.88, 0,=853
7,=3.95, 0,=452 |
For the state of stress at a point characterised by the components (in 1000 kPa)

0,=12, o,=4, 0,=10, 7,=3, 7,=17,=0

determine the principal stresses and their directions.
Ans. o, = 13; 18° with x axis; n, =0
0, =10;n,=0;n,=0;n, =1
03 = 3; —72° with x axis; n,= 0
Let o, = -5¢, 0y, = ¢, 0, = C, T, = —C, T, = T,, = 0, where ¢ = 1000 kPa.
Determine the principal stresses, stress deviators, principal axes, greatest
shearing stress and octahedral stresses.

[Ans. o, =(-2+ +/10)c; n,=0and = 9.2° with y axis |
o,=¢,n=n=0;n,=1
o,=(-2- V10 )c; n,=0and 6 = 9.2° with x axis
T = V10 ¢; o) =-4c; oy =2¢, 0, =2¢

NIER
3

Ogct = —C; Toet =
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112 A solid shaft of diameter d =+/10 cm (Fig. 1.37) is subjected to a tensile
force P = 10,000 N and a torque T = 5000 N cm. At point A on the surface,

determine the principal stresses, the octahedral shearing stress and the maxi-
mum shearing stress.

TR

Fig. 1.37 Problem 1.12

[Ans. oy, =22%0 (11 13/5) Pa
! T
2000 [13
me =T \5 P2
_ 4000 [22 5
T =g \'5

113 A cylindrical rod (Fig. 1.38) is subject_ed to a torque T. At any point P of the
cross-section LN, the following stresses occur

o,=0,=0,=17,=1,=0,1,=1,=-G0y, 7, = 7, = GOX

}"\

L
\ ‘ AW
y/( 2Ny &) %

N

Fig. 1.38 Problem 1.13

Check whether these satisfy the equations of equilibrium. Also show that
the lateral surface is free of load, i e. show that

n n n
Tx :Ty :Tz :O

1.14 For the state of stress given in Problem 1.13, determine the principal shears,
octahedral shear stress and its associated normal stress.

Ans. 1, =1;= % GO X* +y? 1,=-GO X* +y?
To = @ Go (\/x2 + yz): Ooct = 0



Appendix 1

Mohr’s Circles

It was stated in Sec. 1.17 that when points with coordinates (o, 7) for all possible
planes passing through a point are marked on the o—7 plane, as in Fig. 1.16, the
points are bounded by the three Mohr’s circles. The same equations can be used
to determine graphically the normal and shearing stresses on any plane with
normal n. Equations (1.40)—(1.42) of Sec.1.18 are

2 _(0-03)(0-05)+ 7" (AL1)

" (0"1—02)(0'1_0"3)

2_(0'_0'3)(0'_0'1)+72
ny = (02 = 0_3) (02 = 0'1) (A1.2)

2 _(0'—0'1)(0—02)+z'2
n; =
(03 _0'1)(0'3 —Uz)

For the above equations, the principal axes coincide with the coordinate
axes x, y and z. Construct a sphere of unit radius with P as the centre. P,, P,
and P, are the poles of this sphere (Fig.A1.1). Consider a point N on the
surface of the sphere. The radius vector PN makes angles o, 8 and v, respec-
tively with the x, y and z axes. A plane through P with PN as normal will be
parallel to a tangent plane at N to the unit sphere. If n,, n, and n, are the
direction cosines of the normal n to such a plane through P, then n, = cos ¢,
n, = cos f, n, = cos 7.

(A13)

O3 ( O0qtO03 0y o1+0o Oy O
2 2

Fig. A1.1  Mohr’s circles for three-dimensional state of stress
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Let point N move in such a manner that y remains constant. This gives a circle
parallel to the equatorial circle P,P,.
From Eq. (A1.3)

(0= 0)(0-0y) + 72 = 1 (0;-0,)(05-0)
o +o, ) 2
or (o- —%) +12=n? (05— 0,)(0;— 5,) + @: RZ

Since n, = cos vyis a constant, the above equation describes a circle inthe o -7

01+ 0y

plane with the centre at on the o axis and radius equal to R;. This circle

gives the values of o and 7 as N moves with y constant. For different values
of n,, one gets a family of circles, all with centres at ZL* 2
Mohr’s circle.

Similarly, if n, = cos f3 is kept constant, the point N on the unit sphere moves
on a circle parallel to the circle P,P;. The values of o and 7 for different positions
of N moving along this circle can be obtained again from (Eq. Al.2) as

.Ifn,=0wegeta

(0-05)(0-0y) + 12 = N (0,- 03) (0, 07)

2 2
+ —
or [o’ A% 5 03] +7%= nf, (0,-0y)(0,— 0y) + (01— 03)" 40-3) =R?

. . . . . +
This describes a circle in the o — 7 plane with the centre at M and

radius equal to R,. For different values of n,, we get a family of circles, all with

+ . . . .
centres at M. With n, = 0, we get the outermost circle. Similarly, with
. . +
n, = cos o kept constant, we get another circle with centre at @ and

radius R,. In order to determine the normal stress o and shear stress 7 on a plane

with normal n = (n,, n,, n,), we describe two circles with centres and radii as

0y + 03
2

01+ 0y
2

where R, and R, are as given in the above equation. The intersection point of

centre at and radius equal to R,

centre at and radius equal to R,

these two circles locates (o, 7). The third circle with centre at % and

radius R, is not an independent circle since among the three direction cosines n,,
n, and n,, only two are independent.



Appendix 2

The State of Pure Shear

n
Theorem: A necessary and sufficient condition for T to be a state of pure shear
is that the first invariant should be equal to zero, i.e. I, = 0.

n
Proof: By definition, T is a state of pure shear at P, if there exists at least one
frame of reference Pxyz, such that with respect to that frame,

n

Therefore, if the state of stress T is a pure shear state, then I,, an invariant,
must be equal to zero. This is therefore a necessary condition. To prove that |, = 0
is also a sufficient condition, we proceed as follows:

Givenl; = o, + 0, + 0, = 0. Let Px'y’z’ be the principal axes at P. If 0, 0, and o,
are the principal stresses then

lL=0,+0,+0;=0 (A2.1)

From Cauchy’s formula, the normal stress o, on a plane n with direction

cosines Ny, Ny N, is

— 2 2 2
0, = 0 Ny + 0,Ny + 0Ny (A2.2)

We have to show that there exist at least three mutually perpendicular planes on
which the normal stresses are zero. Let n be the normal to one such plane. Let
Q(X’, y’, ') be a point on this normal (Fig. A2.1).

, If PQ =R, then,
Y aw,y, 2) , , ,
X R’ y R’ z R

Since PQ is a pure shear normal, from Eq. (A2.2)
oX? + 0,¥? + 0,2° =R%, =0 (A2.3)

The problem is to find the locus of Q. Since
I, = 0, two cases are possible.

Fig. A2.1 Normalntoa
plane through P
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Case (i) If two of the principal stresses (say o, and o,) are positive, the
third principal stress o; is negative, i.e.

0,>0, 0,>0, o3=—(0y+0,)<0

The case that o; and o, are negative and o is positive is similar to the above
case, as the result will show.

Case (ii) One of the principal stresses (say o;) is zero, so that one of the remain-
ing principal stress o, is positive, and the other is negative, i.e.

o, >0, o, =—0y <0, o3=0

The above two cases cover all posibilities. Let us consider case (ii) first since it is
the easier one.
Case (ii) From Eq. (A2.3)
oxX*-0,y%=0
or X2-y?2=0
The solutions are
(i) x’ =0 and y’ = 0. This represents the z’ axis, i.e. the point Q, lies on
the z” axis.
(i) x”=+y" or x” = —y’. These represent two mutually perpendicular planes, as
shown in Fig. A2.2(a), i.e. the point Q can lie in either of these two planes.

’

AZ

(o)

Fig. A2.2 (a) Planes at 45° (b) Principal stress on an element under plane state of stress

The above solutions show that for case (ii), i.e when o, = 0 and o; = —0,, there
are three pure shear normals. These are the z” axis, an axis lying in the
plane x” = y” and another lying the plane x” = —y’. This is the elementary case
usually discussed in a plane state of stress, as shown in Fig. A2.2(b).

Case (i) Since 03 =—- (0, + 0y), EQ. (A2.3) gives
oX?+ 0,y — (0, + 09)22 =0 (A2.4)

This is the equation of an elliptic cone with vertex at P and axis along PZ’
(Fig. A2.3). The point Q(x’, y’, Z') can be anywhere on the surface of the cone.
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Now one has to show that there are at least
three mutually perpendicular generators of the
above cone. Let Q; (X, ¥;,1) be a point on the
cone and let S be a plane passing through P
and perpendicular to PQ,. We have to show
that the plane S intersects the cone along PQ,
and PQ, and that these two are perpendicular
to each other.

Let Q(X’, ¥’, 1) be a point in S. Then, S being
perpendicular to PQ,, PQ is perpendicular to
PQ,, i.e.

Fig. A2.3 Cone with vertex X'+ yy'+1=0 (A2.5)
at P and axis If Q lies on the elliptic cone also, it must satisfy
along PZ’ Eq. (A2.4),i.e.

oX?+ 0,y = (0, +0,) =0 (A 2.6)

Multiply Eq. (A2.6) by 2y;? and substitute for y'y; from Eq. (A2.5). This gives
oX? Y2 + o, X +1)? (0, +0,) Y2 =0
or (o1 Y12 + 0, X2) X2 + 20,% X' + [0'2 —(oy+0,) yl'z] =0 (A27)

Similarly, multiplying Eq. (A2.6) by xl'2 and substituting for x’x’; from
Eq. (A2.5), we get

(0, X% + 0y ¥i2)y'? + 20y VY| + [0'1 —(0, +07) xl'z] =0 (A2.8)

If Q(x’, y;, 1) is a point lying in S as well as on the cone, then it must satisfy
Egs (A2.5) and (A2.6) or equivalently Egs (A2.7) and (A2.8). One can solve
Eqg. (A2.7) for x” and Eq. (A2.8) for y’. Since these are quadratic, we get two
solutions for each. Let (X3, y5) and (x3, y3) be the solutions. Clearly

2
o, — (o +0,)Y
x;xgz[ 2 (o1 + %) il (A2.9)

12 12
| 02X T o1y J

o I:O'l —(o, + o-l)xl'zJ
Y2 Y3 = (A 2.10)

B 2 12
| 02X T Oo1Y1 ]

Adding the above two equations

12 2 2 2
0110, =01y —0yY; — 0% — 01X

[ AN
X X3 + Y5 Y3 = 2 2
0% T oY
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Since Q,(X{, ¥1,1) is on the cone and recalling that o, + o, = —03, the right-

hand side is equal to -1, i.e.
Xy X3+ Yy Y3 +1=0

Consequently, PQ, and PQ, are perpendicular to each other if Q, =
(X3, Y5, 1) and Qg (X, y3,1) are real. If x5, X3 and Y3, Y3, the solutions of
Egs (A2.7) and (A2.8), are to be real, then the descriminants must be greater
than zero. For this, let Q (X, y;.1) be specifically Q,(1, 1, 1) i.e. choose
X, = y; = 1. Both the descriminants of Eqs (A2.7) and (A2.8) then are

4(0'12 + 010, + 0'22)

The above quantity is greater than zero, since o, > 0 and o, > 0. Therefore,
X5, X3 and Y3, y; are real.



Appendix 3

Stress Quadric of Cauchy

n
Let T be the resultant stress vector at point P (see Fig. A3.1) on a plane with unit

normal n. The stress surface S associated with a given state of stress 'F is defined
as the locus of all points Q, such that

PQ =Rn
1

1/2
(BGQ)
and o(n) is the normal stress component on the plane n. This means that a point
Q is chosen along n such that R = 1/+/& . If such Qs are marked for every plane
passing through P, then we get a surface S and this surface determines the normal
component of stress on any plane through P. The surface consists of S; and S.—
the tensile and the compressive branches of the surface.

where R = |PQ|=

n
The normal to the surface S at Q(n) is parallel to T. Thus, S completely deter-
mines the state of stress at P. The following cases are possible.

Case (i) 0, 20, 0, 20, 03 2 0; S, and S; are each a central quadric surface about
P with axes along n,, n,and n,.

() If 0y, 0, and o5 all have the same sign, say o, > 0, 0, > 0, 03> 0 then
S =Sy is an ellipsoid with axes along n,, n, and n, at P. There are two cases
(@) If oy = 0, # 03, then S = S, is a spheroid with polar axis along n,

(b) If 0, = 0, = 03, then S =S, is a sphere.

(i) If oy, 0, and o3 are not all of the same sign, say o; > 0, 6, > 0 and
0; < 0, then S; is a hyperboloid with one sheet and S; is a double sheeted
hyperboloid, the vertices of which are along the n, axis. In particular, if o, = o,
then S, and S, are hyperboloids of revolution with a polar axis along n,.

Case (ii) Let 0, 20, 0, # 0 and o; = 0 (i.e. plane state). The S, and S are right
second-order cylinders whose generators are parallel to n, and whose cross-sections
have axes along n, and n,. In this case, two possibilities can be considered.
@ If o, >0, 0, >0, then S = S, is an elliptic cylinder. In particular, If
o, = 0, then S = §, is a circular cylinder.
(i) If oy >0and o, <0, then S, is a hyperbolic cylinder whose cross-section has
vertices on the n, axis and S; is a hyperbolic cylinder.
Case (iii) If o, # 0 and o, = o3 = 0 (uniaxial state) and say o; > 0 then
S = §, consists of two parallel planes, each perpendicular to n, and equi-
distant from P.
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Z) One can prove the above statements directly from
Egs (1.53) of Sec. 1.23. These equations are

S;:oxt+ o,y +0,2°=1
S.: 0.2+ 0,2 + 07° = -1

These can be rewritten as

2 2

S X’ + +—2L =1
(Wor)® (Wos)?  (Ufos)?

S, : =-1 (A3.1)

x2 y? z?
2 + 2 + 2
Fig. A3.1 Ellipsoidal (Won)? (U)o
surface )
Case (i) 0,#0,0,#0,0;#0
() 0,>0,0,>0,0,>0
Equation (A3.1) shows that S is an imaginary
surface and hence, S = S,. This equation represents
an ellipsoid.
(@) If o, = 0, # o5 the central section is a circle
(b) If 0, = 0, = o5 the surface is a sphere
(i) Ifo,>0,0,>0,0;<0

2 2 2

S;: X + y - z =1
e e )

1 (A32)

x? y? z°
Sei- 2 2t 2
(1/1/01) (1/‘10'2) (1/\10'3)
Hence, S; is a one-sheeted hyperboloid and S, is a
two-sheeted hyperbloid. This is shown in Fig. A3.2.

Fig. A3.2 One-sheeted
and two shee-
ted hyperbo-

loids Case (ii) Let 0, # 0, 0, #0 and o; = 0. Then Eq. (1.53)
reduces to
o X2+ o,y? = £1 (A3.3)

This is obviously a second-order cylinder, the surface of which is made of
straight lines parallel to the z-axis, passing through every point of the curve in the
Xy plane, of which an equation in that plane is expressed by Eq. (A3.3).

(i) If o, >0and o, > 0, the above equation becomes

oxXt+ oy +1

2
X2 y

or >+ 5 =1
1oy) Loy)
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This is the equation of an ellipse in xy plane. Hence, S = S, is an elliptic
cylinder.
In particular, if o; = o,, the elliptic cylinder becomes a circular cylinder.
(i) If o,>0and o, <0, then the equation becomes

ox* = |0y y? = 1
or X(1e,)? -y Uo?)=+1

This describes conjugate hyperbolas in the xy plane. S; is given by a hyper-
bolic cylinder, the cross-sectional vertices of which lie on the n, axis and S; is
given by a hyperbolic cylinder with its cross-sectional vertices lying on
the n axis.

Case (iii) If 0, # 0, 0, = 0, = 0, Eq. (1.53) reduces to
o, X2 =+1
When o, > 0, this becomes

x? =1/o,

or X :ill\/O'T

This represents two straight lines parallel to the y axis and equidistant from it.
Hence, S =S, is given by two parallel planes, each perpendicular to n, and equi-
distant from P.



CHAPTER

2

Analysis of Strain

2.1 INTRODUCTION

In this chapter the state of strain at a point will be analysed. In elementary strength

of materials two types of strains were introduced: (i) the extensional strain (in x or
y direction) and (ii) the shear strain in the xy plane. Figure 2.1 illustrates these two
simple cases of strain. In each case, the initial or undeformed position of the
element is indicated by full lines and the changed position by dotted lines. These

are two-dimensional strains.
L fffffffffffffffffffff *»‘ Auyfe— ;
Au, L
I 0,/
Y /
A / L
y Ayl
e Au
i ) BT P
Ax f
©

‘47 AX 44 AUy <—
@) (b)
Fig. 2.1 (a) Linear strain in x direction (b) linear strain in y direction (c) shear strain

in xy plane
In Fig. 2.1(a), the element undergoes an extension Au, in x direction. The exten-
sional or linear strain is defined as the change in length per unit initial length. If g,
()]

denotes the linear strain in x direction, then
Au,
&= "Ax
Similarly, the linear strain in y direction [Fig. 2.1(b)] is
Auy
(22

§= Ay

Figure 2.1(c) shows the shear strain 7, in the xy plane. Shear strain y,, is defined
as the change in the initial right angle between two line elements originally
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parallel to the x and y axes. In the figure, the total change in the angle is 6, + 6,.
If 6, and 6, are very small, then one can put

6, (in radians) + 6, (in radians) = tan 6, + tan 6,

From Fig. 2.1(c)

Au AU
tan 6, = A_xy tan 6, = Ayx (23)

Therefore, the shear strain y,, is

Au Au
Yxy = 6 + 6, = A_)Z + A_yx (24)

Reduction in the initial right angle is considered to be a positive shear strain, since
positive shear stress components z,, and 7, cause a decrease in the right angle.

In addition to these two types of strains, a third type of strain, called the
volumetric strain, was also introduced in elementary strength of materials. This is
change in volume per unit original volume. In this chapter, we will study strains in
three dimensions and we will begin with the study of deformations.

2.2 DEFORMATIONS
In order to study deformation or change in the shape of a body, we compare the

positions of material points before and after deformation. Let a point P belonging
VoA to the body and having coordinates

- i (X, Yy, z) be displaced after deformations
el to P’ with coordinates (x’, y’, z')
(Fig. 2.2). Since P is displaced to P’,
the vector segment PP’ is called the
displacement vector and is denoted
by u.

The displacement vector u has
components u,, u, and u, along the x,
y and z axes respectively, and one can
write

g u=iu, + ju, + ku, (2.5)

The displacement undergone by any
point is a function of its initial co-
ordinates. We assume that the displacement is defined throughout the volume
of the body, i.e. the displacement vector u (both in magnitude and direction)
of any point P belonging to the body is known once its coordinates are known.
Then we can say that a displacement vector field has been defined throughout
the volume of the body. If r is the position vector of point P, and r” that of

point P’, then

Fig. 2.2  Displacement of point P to P’

r=r+u
2.6
Uer -1 (2.6)
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Example 2.1 The displacement field for a body is given by
u=0C+y)i+@B+z)j+x+2y)k

What is the deformed position of a point originally at (3, 1, -2)?

Solution  The displacement vector u at (3, 1, -2) is
u=(32+1)i+(B3-2)j+(3+2k

=10i+j+ 11k
The initial position vector r of point P is
r=3i+j-2k

The final position vector r” of point P”is
r=r+u=13i+2j+9k

Example 2.2 Two points P and Q in the undeformed body have coordinates
(0,0,1)and (2, 0,-1) respectively. Assuming that the displacement field given
in Example 2.1 has been imposed on the body, what is the distance between
points P and Q after deformation?

Solution The displacement vector at point P is
uP)=0+0)i+(3+1)j+(0+0)k=4j
The displacement components at P are u, = 0, u, = 4, u, = 0. Hence, the final
coordinates of P after deformation are
P :x+u,=0+0=0

y+u =0+4=4

z+u,=1+0=1
or P’ (0,4,1)
Similarly, the displacement components at point Q are,

u=4, u=2 u,=4

and the coordinates of Q" are (6, 2, 3).
The distance P’Q’ is therefore

d = (62 +22+ 23" =211

2.3 DEFORMATION IN THE NEIGHBOURHOOD
OF A POINT

Let P be a point in the body with coordinates (x, y, z). Consider a small region
surrounding the point P. Let Q be a point in this region with coordinates
(X + AX, Yy + Ay, z + Az). When the body undergoes deformation, the points P
and Q move to P’ and Q’. Let the displacement vector u at P have components
(uy uy, U,) (Fig. 2.3).
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YA T The coordinates of P, P”and Q are
\ P: (X, Y, 2)
P (X+uU,y+u,z+u,)
Q: (X + AX, y + Ay, 2+ A2)
The displacement components at Q dif-

fer slightly from those at P since Q is away
x  from P by Ax, Ay and Az. Consequently,

Z the displacements at Q are,
Fig. 2.3 Dz'sp}fzcements of two U, + Au,, Uy + Auy, U, + Au,.
) ) nt _ _
;e;id OQng potis If Q is very close to P, then to first-order
approximation
ou, Juy ou,

= 2.7a
Auy ax AX + oy Ay + 5 Az (2.73)

The first term on the right-hand side is the rate of increase of u, in x direction
multiplied by the distance traversed, Ax. The second term is the rate of increase of
u, in y direction multiplied by the distance traversed in y direction, i.e. Ay. Simi-
larly, we can also interpret the third term. For Au, and Au, too, we have

au au au
Au, S AX + 2y Ay + 57 Az (2.70)
ou, ou, au,
= 2.7
Au, ax AX+ 2y Ay + > Az (2.7c)
Therefore, the coordinates of Q” are,
Q' = (X+AX+ U+ Auy, Y+ Ay + Uy + Auy, Z + AZ + U, + Au) (2.8)

Before deformation, the segment PQ had components Ax, Ay and Az along the
three axes. After deformation, the segment P’Q” has components Ax + Au,, Ay +
Au,, Az + Au, along the three axes. Terms like,

du, du, ouy

. ,—=X, etc.
ox ' oy’ Jz

are important in the analysis of strain. These are the gradients of the displacement
components (at a point P) in x, y and z directions. One can represent these in the
form of a matrix called the displacement-gradient matrix as

[ou, du, du, |
ox oy Oz
{ﬂ,i } _ | du, du, du,
IX; ox oy 0oz
ou, au, au,
ox oy Oz
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Example 2.3 The following displacement field is imposed on a body

u = (xyi + 3x%zj + 4k)107?
Consider a point P and a neighbouring point Q where PQ has the following
direction cosines

n,=0.200, n,=0.800, n,=0.555

Point P has coordinates (2, 1, 3). If PQ = As, find the components of P'Q” after
deformation.

Solution Before deformation, the components of PQ are

Ax=n,As=0.2 As

Ay=n,As=0.8As

Az =n, As = 0.555 As
Using Egs (2.7a)-(2.7c), the values of Au,, Au, and Au, can be calculated. We are
using p = 1072

u, = pxy u, = 3px’z u,=4p
au, au, ou,
ox ox hpe 5e=0
ou, Ay ou,
oy ~ ™ ay ~° oy ~°
au, auy ou,
o2 =0 ¢ 5 =0

At point P(2, 1, 3) therefore,
Au, = (YAX + XAY)p = (AX + 2Ay)p
Au, = (6xzAX + 3X°Az)p = (36AX + 12A7)p
Au,=0
Substituting for Ax, Ay and Az, the components of As” = |P’Q’| are
AX + Au, = 1.01 Ax + 0.02 Ay = (0.202 + 0.016) As =0.218 As
Ay + Au, = (0.36 Ax + Ay + 0.12 Az) = (0.072 + 0.8 + 0.067) As
=0.939 As
Az + Au, = Az =0.555 As
Hence, the new vector P’Q’can be written as
P'Q" = (0.218i + 0.939j + 0.555k)As

2.4 CHANGE IN LENGTH OF A LINEAR ELEMENT

Deformation causes a point P(x, y, z) in the solid body under consideration to be
displaced to a new position P” with coordinates (X + u,, y + U, Z + u,) where u,, u,
and u, are the displacement components. A neighbouring point Q with coordi-
nates (x + Ax, y + Ay, z + Az) gets displaced to Q" with new coordinates (x + Ax +
Uy +Au,, y + Ay + U, + Au,, Z + Az + U, +Au,). Hence, it is possible to determine the
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change in the length of the line element PQ caused by deformation. Let As be the
length of the line element PQ. Its components are

As: (AX, Ay, A7)
As% (PQ)% = AX? + Ay? + AZ?

Let As” be the length of P’Q’. Its components are

AS" (AX' = AX + Au,, Ay = Ay + Au,, AZ" = A7 + Au,)

AS'% (P'Q7)% = (AX + AU)? + (A + Au,)” + (AZ + Au,)?

From Eqs (2.7a)—(2.7¢),

. ou, ou,
AX _[1+ ﬁxjAXJr Jy Ay +

ou,
oz

ou

Ay’ =&Ax +[1+&JAy +—2L Az
X oz

Ja

17 oy

_au, ou,

AZ' AX +

We take the difference between As’? and As?
(P/Qz )2 _ (PQ)Z — AS/Z _ ASZ

au
OX oy Ay + [H oz

z

Az

= (AX 2+ AY'? + A7'?) — (AX® + AY? + AZP)
= 2(E,, AX* + E, Ay + E,, AZ* + E AX Ay
+E,, Ay Az + E,, AX Az)

ZX

_ , , i
— aux 1 aux ﬁuy ﬁuz
where Ba= 2% T2 [5xj +[W T ox
&+l Ay 2+ & 2+ u, i
W oy 2|\ dy oy oy
2
£ 90U, 1|( 2y, i& +&2
z 901 2|\ oz 01 0z
E - ﬂux+&+ﬁux ﬂuX+&& ou, Au,
ooy ox  ox dy  Ox 2y Ox Jy
£ :@Jrﬂuz +§ux &ux+ﬂ@ ou, ou,
¥ o1 oy o8y 01 Oy 1 3y Oz
E - OUy YU AU, Oy +&& Au, 4u,
¥ 01 Ox  Ox 91 OX 91 OX 01
It is observed that
Exy=ny, E =E E =E

yz zy?
We introduce the notation

_ As'—As

Epq = As

XZ

(2.9)

(2.10)

(2.12)

2.12)
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Epq is the ratio of the increase in distance between the points P and Q caused by
the deformation to their initial distance. This quantity will be called the relative
extension at point P in the direction of point Q. Now,

2 2 r_ r_ 2
AS?— As (As As  (AS - As) J A2

2 T as 2As?
12 2
= EpQ + 2 EpQ AS (2.13)
—Eo (14 LE,o | AS?
=Epq (1+ 5Epg | As

2
From Eq. (2.10), substituting for (As® — As?)

1
Epg (1+ > EPQ) AS? = E,, AX* + E, AY? + E,, A7

+E, AXAy +E,, Ay Az + E,, AX Az
If n,, n, and n, are the direction cosines of PQ, then
n)(:&l ny:ﬂ, nz=£
As As As
Substituting these in the above expression
1 2 2 2
Epg (1+§ EPQ) =Euny +E, Ny +E,N; +E, NNy
+E,nn, + E,n,n, (2.14)
Equation (2.14) gives the value of the relative extension at point P in the direction
PQ with direction cosines n,, n,and n, .

If the line segment PQ is parallel to the x axis before deformation, then
n,=1,n,=n,=0and

E, (1+% EX) —E, (2.15)
Hence, E =[1+2E,]""-1 (2.16)

This gives the relative extension of a line segment originally parallel to the
x-axis. By analogy, we get

E,=[1+2E,]"" -1, E,=[1+2E,]""-1 (2.17)

2.5 CHANGE IN LENGTH OF A LINEAR
ELEMENT—LINEAR COMPONENTS

Equation (2.11) in the previous section contains linear quantities like du,/ox, ou,/
, ldy, . . ., etc., as well as non-linear terms, like (Ju,/dx)?, (Ju,/dx- du,/d), ...,
etc. If the deformation imposed on the body is small, the quantities like du,/dX,
du,/dy, etc. are extremely small so that their squares and products can be
neglected. Retaining only linear terms, the following equations are obtained

g = Oy _ My Y
*Tox ! &y = oy’ 7T 9z

(2.18)
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ou, duy au,  Au, Au, ou,
=X+, =—=+—1, = —L 2.19
By ay Tox fe= 57 * oy b= "5+ ox (219)
2 2 2
Epg = &pq = &Ny + &y Ny + &,N; + NN, + E,N N, + E, NN, (2.20)

Equation 2.20 directly gives the linear strain at point P in the direction PQ with
direction cosines n,, n,, n,. When n, =1, n,=n, =0, the line element PQ is parallel
to the x axis and the linear strain is

ou
EX = £XX = Or)XX
ou
Similarly, E,~¢,= 5_yy and E,~¢g,= %

are the linear strains in y and z directions respectively. In the subsequent analy-
ses, we will use only the linear terms in strain components and neglect squares
and products of strain components. The relations expressed by
Egs (2.18) and (2.19) are known as the strain displacement relations of Cauchy.

2.6 RECTANGULAR STRAIN COMPONENTS

&x €y and g, are the linear strains at a point in x, y and z directions. It will be
shown later that ¥, %, and ¥, represent shear strains in xy, yz and xz planes
respectively. Analogous to the rectangular stress components, these six strain
components are called the rectangular strain components at a point.

2.7 THE STATE OF STRAIN AT A POINT

Knowing the six rectangular strain components at a point P, one can calculate the
linear strain in any direction PQ, using Eq. (2.20). The totality of all linear strains
in every possible direction PQ defines the state of strain at point P. This defini-
tion is similar to that of the state of stress at a point. Since all that is required to
determine the state of strain are the six rectangular strain components, these six
components are said to define the state of strain at a point. We can write this as

Exx 7xy Vxz
[l=|"9 ¢w 7Ty (2.21)
Vxz 7yz u

To maintain consistency, we could have written

o Ey = Yy &= K ‘c_:xz =% ] ]
but as it is customary to represent the shear strain by 7, we have retained this

notation. In the theory of elasticity, 1/2y, is written as e, , i.e.
1 _ l 5UX ﬁuy _
2% = 2(ay *ox | =8 222)
If we follow the above notation and use
€xx = Exxr Eyy = &y €,=8&,
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then Eqg. (2.20) can be written in a very short form as
€pQ = 1 2 &N
i

where i and j are summed over X, y and z, Note that e;; = g;;

2.8  INTERPRETATION OF y,_, 7, 7, AS SHEAR
STRAIN COMPONENTS

It was shown in the previous section that

— ﬁux _ é’uy _ é,uz

T Ty BT

represent the linear strains of line elements parallel to the x, y and z axes respectively.
It was also stated that

Jdu Ay My o Ay oy,
oy  ox’ 91 ay’ 01 Ox
represent the shear strains in the xy, yz and xz planes respectively. This can be
shown as follows.
Consider two line elements, PQ and PR, originally perpendicular to each other

and parallel to the x and y axes respectively (Fig. 2.4a).

Yy

YA

o) > X

<———— AX——

Fig. 2.4 (a) Change in orientations of line segments PQ and PR-shear strain

Let the coordinates of P be (x, y) before deformation and let the lengths of PQ
and PR be Ax and Ay respectively. After deformation, point P moves to P, point
Q to Q" and point R to R”.

Let u,, u, be the displacements of point P, so that the coordinates of P”are
(x + u, y + uy). Since point Q is Ax distance away from P, the displacement
components of Q(x + Ax, y) are

ouy
+

U OX

o”uy
Ax and UV+W AX
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Similarly, the displacement components of R(x, y +Ay) are

é’ux ﬁuy
UX+0,)—y Ay and u, + 2y Ay
From Fig. 2.4(a), it is seen that if 6, and 6, are small, then
au
0, =~tan 6, = —L
1 1 X
ou
0, =tan 0, = é’_);( (2.23)
so that the total change in the original right angle is
Au ﬁuy
01 + 92 = é’yx +W = %(y (224)

This is the shear strain in the xy plane at point P. Similarly, the shear strains ¥,
and y, can be interpreted appropriately.

If the element PQR undergoes a pure rigid body rotation through a small angu-
lar displacement, then from Fig. 2.4(b) we note

- d’ly éux
07 oy T - oy
Y, taking the counter-clockwise rotation

as positive. The negative sign in (—au,/dy)
comes since a positive du,/dy will give
a movement from the y to the x axis as
shown in Fig. 2.4(a). No strain occurs
during this rigid body displacement.

We define
P’i _l 5Uy_ﬁux_
| . @ = 5 ( ax oy | G 22)
(0]
Fig. 2.4 (b) Change in orientations of This represents the average of the
line segments PQ and PR-  sum of rotations of the x and y
rigid body rotation elements and is called the rotational

component. Similarly, for rotations about
the x and y axes, we get

_1fau, 4y _
w, = Z[é’y 57 | =% (2.26)

_1({du du, ) _
4= 2(&2 ax )~ e @221)
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Example 2.4 Consider the displacement field
u = [y% + 3yzj + (4 + 6x?)k]1072

What are the rectangular strain components at the point P(1, 0, 2)? Use
only linear terms.

Solution u, =y*- 107 u,=3yz- 107 u, = (4 +6x%) - 107
Ouy =0 & =0 Ny _ 12x - 107
OX X X
e~y 102 My _ 3,107 M, _
e oy ay
Au, au, P ou
=0 —= =3y-10 z =0
oz oz y oz
The linear strains at (1, 0, 2) are
au auy - Au
&y = éxx =0, £yy=ﬁ—y=6><10 , £, = azz =0
The shear strains at (1, 0, 2) are
ou, duy
W=yt ox ~°F
ou ou
=Y Z =0+0=0
Ke =57 * oy
sy = D M2 _ 04125102 =12 x 102
Jtz  OX

2.9 CHANGE IN DIRECTION OF A LINEAR ELEMENT
It is easy to calculate the change in the orientation of a linear element resulting
from the deformation of the solid body. Let PQ be the element of length As, with
direction cosines n,, n, and n,. After deformation, the element becomes PQ” of
length As’, with direction cosines n',, ', and n;. If u,, u,, u, are the displacement
components of point P, then the displacement components of point Q are.
u, + Au,, u, +Au, u, + Au,

where Au,, Au, and Au, are given by Eq. (2.7a)—(2.7c).
From Eg. (2.12), remembering that in the linear range Epq = &pq,

As" = As (1 + &pg) (2.28)
The coordinates of P, Q, P”and Q" are as follows:

P:(x,y,2)

Q: (X+AX, Y+ AY, 2+ A2)

Pr(X+U,y+Uy,z+U,)

Q: (X +AX+ U+ Au, y+ Ay + U, +Auy, Z+AZ+ U, + Au,)
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Hence,
_ AX _ Ay _ Az
nx - YT A ! nz — A~
AS AS AS
. AX+Au, . Ay+Auy AZ + Au,
n = ————-—, n,=—————, n,=— -——*
X As' y AS z AS

Substituting for As” from Eq. (2.28) and for Au,, Au,, Au, from Eq. (2.7a)-(2.7c)
P N | YRS PR M
ny _1+€PQ _(l+ 5Xjnx + 2y ny + 2 n,

, 1 |au, . au, au, -
ny_1+8pQ % n, + +_0”y ny+7nZ (2.29)

, 1 [au, ou, u,
= 1
: 1+epg | OX M+ oy N ™

The value of & is obtained using Eqg. (2.20).

2.10 CUBICAL DILATATION
Consider a point A with coordinates (x, y, z) and a neighbouring point B with
coordinates (X + Ax, y + Ay, Z + Az). After deformation, the points A and B move to
A’ and B’ with coordinates

A (X+Uy, Yy +U,Z+U,)

B": (X + AX+ U+ AUy, Y + Ay + Uy + AUy, Z + AZ + U, + AU,)
where u,, u, and u, are the components of diplacements of point A, and from Egs
(2.7a)-(2.7c)

ou ou ou
AU, = X X X
™ AX + 2y Ay + 57 Az
AU o”uy A ﬁuy A a”uy A
= X+ + z
Yo ox oy Y+72;
ou ou ou
Au,=_"% z Z A7
1= AX + 2y Ay + 57

The displaced segement A’B” will have the following components along the x, y
and z axes:

. ou ou ou
X axis: AX + Au, = X X X
(1+ EN ij+ 2y Ay + T Az
. au ([ é&uy,) A
axis: Ay + Au, = —_ ¥ —_y —_y 2.30
y y+ay = —2 AX+L1+ 6yJAy+ o, A (2.30)

zaxis: Az + Au, = %Ax+ ?u; Ay+(1+%) Az
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Fig. 2.5 Deformation of right parallelepiped

Consider now an infinitesimal rectangular parallelepiped with sides Ax, Ay and Az
(Fig. 2.5). When the body undergoes deformation, the right parallelepiped PQRS
becomes an oblique parallelepiped P'Q'R’S".

Identifying PQ of Fig. 2.5 with AB of Egs (2.30), one has Ay = Az = 0. Then, from
Eqgs (2.30) the projections of P’Q” will be

. ou
| : X 1A
along x axis [1+ 5xj X

. du
along y axis: —2 Ax
OX

au, Ax

X

Hence, one can successively identify AB with PQ (Ay = Az = 0), PR (Ax =
Az =0), PS ( Ax= Ay = 0) and get the components of P’Q’, P’R” and P’S” along the
X, y and z axes as

along z axis:

P/Q' P'R/ P/S/
X axis: 10 D | ay P Ay My Az
OX ay 01
ou ou ou
axis: YA |1+t |ay 2XAz
y X [ oy ] Y &
Z axis: au, AX au, Ay 1+ My Az
IX ay o1

The volume of the right parallelepiped before deformation is equal to V = Ax Ay
Az. The volume of the deformed parallelepiped is obtained from the well-known
formula from analytic geometry as

V'=V+AV=D: AX Ay Az
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where D is the following determinant:

ouy ouy ouy
(“ o ) BY &
ou ou ou
D= a_xy (1 + Wyj a_zy (2.31)
ou, ou, ou,
ox oy (1+ oz J

If we assume that the strains are small quantities such that their squares and
products can be negelected, the above determinant becomes

ou
D ~ 1 + é)uX 4+ y 4+ é)uz
ox oy 0z
=l+eg,+tg,te, (2.32)
Hence, the new volume according to the linear strain theory will be
V/=V+AV=(1+¢g,+¢y,+¢&,) AXAY Az (2.33)

The volumetric strain is defined as

A= & = & + Syy + EZZ (234)

\

Therefore, according to the linear theory, the volumetric strain, also known as
cubical dilatation, is equal to the sum of three linear strains.

Example 2.5 The following state of strain exists at a point P

002 -0.04 O
[e;]=1-0.04 0.06 0.02
0 -0.02 0

In the direction PQ having direction cosinesn, =0.6,n,=0andn, = 0.8,
determine &pq.

Solution From Eq. (2.20)
€po = 0.02 (0.36) +0.06 (0) + 0 (0.64) — 0.04 (0) - 0.02 (0) + 0 (0.48)
=0.007

Example 2.6 In Example 2.5, what is the cubical dilatation at point P?
Solution From Eq. (2.34)

A=sxx+a/y+e3Zz
=0.02+0.06 +0=0.08
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2.1 CHANGE IN THE ANGLE BETWEEN
TWO LINE ELEMENTS

Let PQ be a line element with direction cosines n,,, n;, n,; and PR be another line

element with direction cosines n,,, ny,, n,,, (Fig. 2.6). Let 6 be the angle between

, the two line elements before deformation.

ya 5 After deformation, the line segments be-

S come P’Q” and P’R” with an included angle

\95 0’. We can determine 6 easily from the
results obtained in Sec. 2.9.
From analytical geometry

o) X oS 6= Ny Nyo +Niy Ni5 + Ny Ny
z The values of ny njy, Ny, Nk, Ny, and
Fig. 2.6 Change in angle between n;, can be substituted from Eqg. (2.29).
two line segments Neglecting squares and products of small

strain components.

1
L+ 8PQ) (L +&pR)

+ (1 + 2822) nzanZ + yxy(nxlnyZ + nx2ny1)

+ sz(nylnzz + nyanl) + j/zx(nxlnzz + an nzl)] (2-35)
In particular, if the two line segments PQ and PR are at right angles to each other
before strain, then after strain,

1
L+ 8PQ) L+ &pr)
+ yxy (nxlnyZ + nx2nyl) + yyz(nyanZ + ny2nzl)
+ j/zx(nxl nzZ + an nzl)] (2.36&)

Now (90° — 6”) represents the change in the initial right angle. If this is denoted
by o, then

cos 0'=

[(1 + ngx) nxlnx2 + (1 + 2‘gyy) ny1ny2

/
cos 0= [2€ gy Ny + 28, Ny Ny + 26, N, N,

0’'=90°-« (2.36hb)
or cos 8’ =cos (90° - @) =sina= « (2.36¢)
since o is small. Therefore Eq. (2.36a) gives the shear strain o between PQ and

PR. If we represent the directions of PQ and PR at P by x” and y” axes, then
Y% at P =cos 6’ = expression given in Eqgs (2.36a), (2.36b) and (2.36¢)

Example 2.7 The displacement field for a body is given by

u =k(x2 +y)i + k(y +2)j + k(x® + 2z%)k  where k = 1073
At a point P(2, 2, 3), consider two line segments PQ and PR having the follow-
ing direction cosines before deformation

1 1
PQ:nxlznylznﬂ:ﬁ, PR:anznyzzﬁ, n,=0

Determine the angle between the two segments before and after deformation.
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Solution Before deformation, the angle 6 between PQ and PR is

COS 0=ny Ny, + NNy, +NyN, = % + % =0.8165

6=35.3°
The strain components at P after deformation are

au
Bo= TN okx =4k, gy = L =k e, =D = akz =12k

OX oy
ou, Oy duy  Ju, ou, ou
= Y =, =_Yy =k, =27z X
By = 5yt ox %= 27 5y = ot oy

The linear strains in directions PQ and PR are from Eq. (2.20)
&g = k[(4><%)+%+(12x%)+(lx%)+(lx%)+(4x%ﬂ:%k

1 1 1
Epg = k[(4x§)+(lx§)+(12 ><O)+(1x§)+0+0}=3k
After deformation, the angle beteween P’Q” and P’R’ is from Eq. (2.35)

cos 0’ =

%+(1+2k)%+0

(e elos ) o)

=0.8144 and 6 =355°

1
(1+23/3K) (L + 3K) {(“ k)

2.12 PRINCIPAL AXES OF STRAIN AND
PRINCIPAL STRAINS

It was shown in Sec. 2.5 that when a displacement field is defined at a point P, the
relative extension (i.e. strain) at P in the direction PQ is given by Eq. (2.20) as
2 2
&g = Exly + & yyny + E,N7 + %Ny + KN N, + K NN,

As the values of n,, n,and n, change, we get different values of strain &, Now
we ask ourselves the following questions:

What is the direction (n,, ny, n,) along which the strain is an extremum
(i.e. maximum or minimum) and what is the corresponding extremum value?

According to calculus, in order to find the maximum or the minimum, we would
have to equate,

depglony, dépglan,, depglan,,
to zero, if n,, n, and n, were all independent. However, n,, n, and n, are not all
independent since they are related by the condition

nZ+n+n’ =1 (2.37)



Analysis of Strain 79

Taking n, and n, as independent and differentiating Eq. (2.37) with respect to n,
and n, we get

2n, +2n, N _ 0
ony
(2.38)
2n,+2n, 9% —g
Ny

Differentiating &, with respect to n, and n, and equating them to zero for
extremum

on
0=2n,¢g, + Ny Yy + N, Y+ a_nz (N, 7y + nyYy + 2n,&,,)
X

on
0=2n€, +N¥%y +NY%, + a_nz (e + Ny Yoy + 2N,€,,)
y

Substituting for dn,/dn, and dn,/dn, from Egs (2.38),

an‘gxx + r]y}/xy + N, 7 NJox + ny7/zy + 2nz‘gzz

Ny n,
2nyey + Ny + N0 Melox Ny + 2n, &,
n, n,

Denoting the right-hand side expression in the above two equations by 2¢ and
rearranging,

28, + YNy + %N, — 2en, =0 (2.39)
YoMk + 28,0, + %N, —2 en, =0 (2.39b)
and Yoy + Wy + 26,0, — 2en, =0 (2.39¢c)

One can solve Eqs (2.392)—(2.39c) to get the values of n,, n, and n,, which deter-
mine the direction along which the relative extension is an extremum. Let us
assume that this direction has been determined. Multiplying the first equation by
n, second by n, and the third by n, and adding them, we get

2
2(go N2 + £, Ny + £, N2 + Y NN, + KN, + %N,N) = 28(n% +nj +n?)
If we impose the condition n; +nJ +n? = 1, the right-hand side becomes equal to
2¢e. From Eg. (2.20), the left-hand side is the expression for 2&5q. Therefore
8PQ =&

This means that in Egs (2.39a)-(2.39c) the values of n,, n, and n, determine the
direction along which the relative extension is an extremum and further, the value
of gis equal to this extremum. Equations (2.39a)—(2.39c) can be written as

(8xx - e)nx + %’yxyny + %%(znz =0
1 1
5 Yo + (& — €N, + 5 %, =0 (2.40a)

1 1
E Yol + E yzy“y + (821 - S)HZ =0
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If we adopt the notation given in Eq. (2.22), i.e. put

1 1 1
E’}/xy = Eyys E’}/yzzeyz’ E’}/zx = €x

then Eqs (2.40a) can be written as
(e — N +e,Nn, +e,n,=0

Xyry
ey + (&, — &n, +e,n,=0 (2.40b)
exy + N, + (e,-€)n,=0

The above set of equations is homogeneous in n,, n, and n,. For the existence of
a non-trivial solution, the determinant of its coefficient must be equal to zero, i.e.

(gxx - 5) exy €y
ey (e —9) e, |=0 (2.41)

€ ezy (gzz - 5)

X

Expanding the determinant, we get

-0, +3,e-1,=0 (2.42)
where

‘]1 =& T ‘gyy + &, (243)
& e & e £ e

‘]2 _ XX Xy i ¥y yz 4|7 Xz (2. 44)
ey>< Eyy ezy €n Ex €z
Exx exy €x

J3= 8 &y Ey (2.45)
€xx ezy n

It is important to observe that J, and J, involve e, , e/, and e, not ¥, %, and .
Equations (2.41)—(2.45) are all similar to Egs (1.8), (1.9), (1.12), (1.13) and (1.14). The
problem posed and its analysis are similar to the analysis of principal stress axes and
principal stresses. The results of Sec. 1.10-1.15 can be applied to the case of strain.

For a given state of strain at point P, if the relative extension (i.e. strain) €is an
extremum in a direction n, then ¢ is the principal strain at P and n is the principal
strain direction associated with .

In every state of strain there exist at least three mutually perpendicular princi-
pal axes and at most three distinct principal strains. The principal strains g, &,
and &, are the roots of the cubic equation.

e3-0e?+,e-3;,=0 (2.46)
where J;, J,, J; are the first, second and third invariants of strain. The principal
directions associated with &, &, and &; are obtained by substituting & (i =1, 2, 3)
in the following equations and solving for n,, n, and n,.

(& — &N+ &Ny +€,,n, =0
N + (&, — €Ny +&y,n, =0 (2.47)

2 2 2 _
ng+ny+n;=1
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If &, & and g, are distinct, then the axes of n;, n, and n, are unique and mutually
peprendicular. If, say €, = ¢, # &, then the axis of n; is unique and every direction
perpendicular to n is a principal direction associated with &, = &,.

If g = &, = &, then every direction is a principal direction.

Example 2.8 The displacement field in micro units for a body is given by
u=0C+y)i+@B+2)j+(x2+2y)k

Determine the principal strains at (3, 1, —2) and the direction of the minimum
principal strain.

Solution The displacement components in micro units are,
U=X"+y, U=3+2 U=x>+2y.
The rectangular strain components are

au auy au
exxzﬁ—)(X:Zx, gw=7y=o, gzzzazzzo
du,  duy duy  ou ou, du
Hy ﬁy+ﬁx AT ﬁz+ﬁy 5 7x ox t o T
At point (3, 1, -2) the strain components are therefore,
£, =6, &y =0, g,=0
K=l %=3 =6
The strain invariants from Eqs (2.43) — (2.45) are
Ji=gutgy+e,=6
1 3
6 = |0 2|6 3
J, = 1 2 + 3 2 + = —%
5 0 5 0| |3 0
Note that J, and J; involve e _1 e -1 e -1
2 3 xy_27xy, yz_z}/yz, zx_z}/zx
1
6 5 3
1 3
‘] = |— ===
3= 15 0 > 9
3
3 > 0
The cubic from Eq. (2.46) is
23

& —6s? —7g+9:O
Following the standard method suggested in Sec. 1.15
= 1(_69 q44)__47
a= 3( > 36) 5
1

b= 2—(—432—621+ 243) =-30
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-30
2 x \/ﬁ
¢ = 46°48
g=2.-al3=56
The principal strains in micro units are
€ =0C0s¢/3+2=+7.39
€,= gcos (¢/3+120°) +2=-2
&5= g cos (4/3+240°) +2=+0.61
As a check, the first invariant J; is

CoS ¢ = — =0.684

Ext &yt E,=6+E+6=739-2+061=6
The second invariant J, is

€16+ &8+ &6 =-1478-1.22 + 451 =-11.49
The third invariant J; is

£68=739%x2x0.61= -9
These agree with the earlier values.
The minimum principal strain is 2. For this, from Eq. (2.47)
6+2)n, +%ny +3n, =0

%nXJany +%nZ =0

nZ+n’+n2 =1
The solutions are n, = 0.267, n, = 0.534 and n, = -0.801.

Example 2.9 For the state of strain given in Example 2.5, determine the
principal strains and the directions of the maximum and minimum principal
strains.

Solution From the strain matrix given, the invariants are

J, =, + €, +&,=002+006+0=008

;. _|002 -002| |006 -001) j002 0
2712002 006 |-001 O 0 0

(0.0012 - 0.0004) + (- 0.0001) + 0 =0.0007

002 -002 O
J;=1-0.02 0.06 -0.01/=0.02(-0.0001) + 0+ 0=-0.000002
0 -001 O

The cubic equation is
£ -0.08¢2 +0.0007¢ + 0.000002 = 0
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Following the standard procedure described in Sec. 1.15, one can determine the
principal strains. However, observing that the constant J; in the cubic is very
small, one can ignore it and write the cubic as

£?-0.08£2 +0.0007¢=0
One of the solutions obviously is € = 0. For the other two solutions (¢ not equal
to zero), dividing by ¢
£?-0.08 £+0.0007 =0
The solutions of this quadratic equation are
€=0.4+0.035,i.e. 0.075 and 0.005
Rearranging such that €, > €, > &, the principal strains are
=007, =001, &=0
As a check:
Ji=¢+¢&+&=0.07+0.01=0.08
J, = €& + &¢&, + &g = (0.07 x 0.01) = 0.0007
J;=¢£66=0 (This was assumed as zero)

Hence, these values agree with their previous values. To determine the direction
of g =0.07, from Eqgs (2.47)

(0.02-0.07) n,-0.02n,=0
- 0.02n, +(0.06 - 0.07) n, - 0.01n, =0
nZ+ns+n’=1
The solutions are n,=0.44, n,=-0.176 and n,=0.88.
Similarly, for &5 =0, from Eqgs (2.47)
0.02n, - 0.02n, =0
-0.02n, +0.06n,-0.01n, =0

2 2 2
ng+ny+n; =1

The solutions are n, = n, = 0.236 and n, = 0.944.

2.13 PLANE STATE OF STRAIN

If, in a given state of strain, there exists a coordinate system Oxyz, such that for
this system

&,=0, %,=0, ¥%=0 (2.48)
then the state is said to have a plane state of strain parallel to the xy plane. The
non-vanishing strain components are g, €, and .

If PQ is a line element in this xy plane, with direction cosines n,, n,, then the
relative extension or the strain & is obtained from Eq. (2.20) as
Epg = & Mg + &y Ny + Jy Ny N,

or if PQ makes an angle 6 with the x axis, then

Epo = 4 COS7 0+ £, SIN% 6+ %7)(), sin 20 (2.49)
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If £ and ¢, are the principal strains, then
2 1/2

2
Ex T Eyy Exx — Eyy Yxy
= + - .
&Ly &9, > + ( > 15 (2.50)

Note that & = &, is also a principal strain. The principal strain axes make angles ¢
and ¢ + 90° with the x axis, such that

7/><y
Exx — Eyy
The discussions and conclusions will be identical with the analysis of stress if we

tan 2¢ = (2.51)

and &, in place of oy, o, and o, respectively, and e,, = 1

use &y, &y, > Yy
1 1 . .
ey, = 5 Y e, = 5 in place of 7, 7, and t,, respectively.

2.14 THE PRINCIPAL AXES OF STRAIN REMAIN
ORTHOGONAL AFTER STRAIN

Let PQ be one of the principal extensions or strain axes with direction cosines n,,,
n,; and n,;. Then according to Eqgs (2.40b)

(& — &Ny + ExqyNy1 + €N = 0

€xyNx1 T (eyy - gl)nyl + €N,y = 0
€Nyt t eyznyl + (821 - 81) N, = 0
Let n,,, ny, and n,, be the direction cosines of a line PR, perpendicular to PQ
before strain. Therefore,
nxlnx2 + nylny2 + nzanZ =0
Multiplying Eqg. (2.40b), given above, by n,,, ny, and n,, respectively and adding,
we get,
8xxnx1nx2 + Eyynylnyz + gzznzlnzz + exy(nxlnyz + nylnxz) + eyz (nylnzz + nyanl)
o ) + ey (NN, + NeNyy) =0
Multiplying by 2 and putting
Zexy = yxyl Zeyz = ’yyzl 2ezx = Y
we get
28xxnxlnXZ + 2f”yynylnyZ + 28zznzanZ + yxy (nxlnyZ + ny1nx2)

+ %2 (nylnzz + nyanl) + Vi (nxlnzz + nzlnxz) =0
Comparing the above with Eq. (2.36a), we get
cos 0" (1 + &q) (1 + &g) =0
where 0’ is the new angle between PQ and PR after strain.

Since &pg and &y are quite general, to satisfy the equation, 68” = 90°, i.e. the
line segments remain perpendicular after strain also. Since PR is an arbitrary
perpendicular line to the principal axis PQ, every line perpendicular to PQ before
strain remains perpendicular after strain. In particular, PR can be the second
principal axis of strain.

Repeating the above steps, if PS is the third principal axis of strain perpendicu-
lar to PQ and PR, it remains perpendicular after strain also. Therefore, at point P,
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we can identify a small rectangular element, with faces normal to the principal axes
of strain, that will remain rectangular after strain also.

2.15 PLANE STRAINS IN POLAR COORDINATES

We now consider displacements and deformations of a two-dimensional
radial element in polar coordinates. The polar coordinates of a point a are
r and 6. The radial and cir-
cumferential displacements
are denoted by u, and u,.
Consider an elementary ra-
dial element abcd, as shown
inFig. 2.7.

Point a with coordinates
(r, ) gets displaced after
deformation to position a’
with coordinates (r + u,,
0 + o). The neighbouring

o NS

A point b(r + Ar, @) gets
Fig. 2.7 Displacement components of a radial moved to b” with coordinates
element
oY oo
[r +Ar +u, + ar Ar,9+a+ﬁAr]
The length of a’b’ is therefore
Ar + % Ar
The radial strain g, is therefore
ou,
=T 252
gl‘ 5,. ( )

The circumferential strain g, is caused in two ways. If the element abcd under-
goes apurely radial displacement, then the length ad = r A6 changesto (r + u,)A6.

The strain due to this radial movement alone is
uAf U

rag r
In addition to this, the point d moves circumferentially to d” through the distance

Ouy
—A
Uy +—9 0
Since point a moves circumferentially through u,, the change in ad is

My AO. The strain due to this part is

00
duy A _1 Ouy
o9 rA0 r b
The total circumferential strain is therefore
_Y 14 253
= 5 259)
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To determine the shear strain we observe the following:
The circumferential displacement of a is u,, whereas that of b is

Up+ % Ar. The magnitude of 6, is

) 1
Kug +WArj—a(r+Ar)}E

But o= u_g.
r
ou u 1
H = ZO9Ar—u, -2 Ar | —
ence, 0, (ue s Ar —uy , Arj AT
Uy Uy
o
Similarly, the radial displacement of a is u,, whereas that of d is u, + ﬂ;gf A6.
Hence,
-1 AN o |
%= Ta0 K”f "0 Ag) ”f}
_1 ou,
r a9
Hence, the shear strain ¥, is
ou, Jdu, u
7/r9:91+‘92:l r - (254)

r o0 or r

2.16 COMPATIBILITY CONDITIONS

It was observed that the displacement of a point in a solid body can be repre-
sented by a displacement vector u, which has components,

Uy, Uy, Uy

along the three axes x, y and z respectively. The deformation at a point is specified
by the six strain components,

EXX’ gyy! 822’ %(y! ’yyz and yZX'

The three displacement components and the six rectangular strain components
are related by the six strain displacement relations of Cauchy, given by Eqs (2.18)
and (2.19). The determination of the six strain components from the three displace-
ment functions is straightforward since it involves only differentiation. However,
the reverse operation, i.e. determination of the three displacement functions from
the six strain components is more complicated since it involves integrating six
equations to obtain three functions. One may expect, therefore, that all the six
strain components cannot be prescribed arbitrarily and there must exist certain
relations among these. The total number of these relations are six and they fall
into two groups.
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First group: We have
au ou Au, ol
X gyy:_y' 7xy:_x+_y
X oy oy  oXx
Differentiate the first two of the above equations as follows:
ey Pug 52 (%J
oyt  oxoy? oxay\ dy

Exx =

ey u, g2 (o
ox?  fgyox? oxay| ox
Adding these two, we get

52 5ux+5uy _527/Xy
oxoy\| dy x| oxdy

é)zgxx + é)ZEW _ 0’)2%(3’

oy>  ox2  Oxdy

Similarly, by considering &, &, and ¥%,, and &, &, and y,, we get two more
conditions. This leads us to the first group of conditions.

ie.

ﬁzgxx ﬁzEW _ é’zyx)’
oy?  ox2  Oxdy
ﬁzé‘yy + ﬁzgzz _ ﬁz}/yz
o1%  oy*  Oyoz
Py O’ Oy
axz 522 10X

(2.55)

Second group: This group establishes the conditions among the shear strains.
We have

- Py My
K= 5y T ox
ou,  Au

_ Ty oY
K=t oy
_ou,  ouy
L

Differentiating
2
a}/X)’ ﬁzux + 2 Uy
oz 10y 010x
2
éﬁ/yz a Uy + 0’72UZ
OX X0t oxay
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é)]/zx — azuz + azux
oy oxoy oJyoz
Adding the last two equations and subtracting the first

@/VZ_'_@/ZX @/Xy_z ﬂzuz

ox Ady 01 T Oxdy
Differentiating the above equation once more with respect to z and observing that

Fu, Py,
oxoyadt  Ix oy

we get,

X @/YZ +572x _a}/Xy _— é’sUZ _20"2522
ot ox Jdy Iz OXOy 1 " Ox Ay

This is one of the required relations of the second group. By a cyclic change of
the letters we get the other two equations. Collecting all equations, the six strain
compatibility relations are

ﬁzgxx +0,,28W — O”27xy

- 2.56a
oy? 52 X oy ( )
Pz, L Pen &y, (2.56b)
a1 oy? gy oz
52522 i azgxx — 0’727/zx (2.56C)
aXZ 522 01 OX

NZa a}/yz Y x _ a}/XY — azgzz

o1\ ox "oy "oz )T 20”x—§y (2550

o O i éﬁ/xy B éﬁ/yz _ é’zgxx

ox\ oy o1 ox | Zm (2:56¢)

2
O[Ty Ty dn|_, Ty (2.56f)
oy\ oz ox oy ox 01

The above six equations are called Saint-Venant’s equations of compatibility. We
can give a geometrical interpretation to the above equations. For this purpose,
imagine an elastic body cut into small parallelepipeds and give each of them the
deformation defined by the six strain components. It is easy to conceive that if the
components of strain are not connected by certain relations, it is impossible to
make a continuous deformed solid from individual deformed parallelepipeds. Saint-
Venant’s compatibility relations furnish these conditions. Hence, these equations
are also known as continuity equations.
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Example 2.10 For acircular rod subjected to a torque (Fig. 2.8), the displacement
components at any point (X, y, z) are obtained as

u,=-tyz+ay+bz+c
o AN .
uZ

/\/ \/ 2 =TXxz—ax+ez+f

% =-bx-ey+Kk
VY where a, b, ¢, e, f and k are
Fig. 2.8 Example 2.8 constants, and 7 is the shear
stress.
(i) Select the constants a, b, c, e, f, k such that the end section z =0 is fixed
in the following manner:
(a) Point o has no displacement.
(b) The element Az of the axis rotates neither in the plane xoz nor in
the plane yoz
(c) The element Ay of the axis does not rotate in the plane xoy.
(i) Determine the strain components.
(iii) Verify whether these strain components satisfy the compatibility conditions.
Solution

(i) Since point ‘0’ does not have any displacement
u=c=0, u,=f=0, u,=k=0
The displacements of a point Az from ‘o’ are

auy auy au,
e Az, WAZ and EAZ
Similarly, the displacements of a point Ay from ‘o’ are
au, ouy au
Ay, —=A —LA
oy Y SN and ay Y
Hence, according to condition (b)
ou Au
YAz = X A7 =
57 Az=0 and, e Az=0
and according to condition (c)
Juy
5_y Ay =0
Applying these requirements
au
—Y at‘o’iseand hence,e=0
oz
Py at ‘o’ is b and hence, b=0
oz

Ay at ‘o’ isa and hence,a=0
ay
Consequently, the displacement components are

U, =-1Yyz, u, = Xz and u,=0
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(i) The strain components are

8xx=?)?20' gyy:i,)—u);lzo, &, =0;
Yy = Zu;+%=—rz+rz=0
— 5uy auz
J@Z—W+W=7X
_ou, ou,
Too= o T TN

(iif) Since the strain components are linear in x, y and z, the Saint-Venant’s
compatibility requirements are automatically satisfied.

2.17 STRAIN DEVIATOR AND ITS INVARIANTS

Similar to the analysis of stress, we can resolve the e;; matrix into a spherical (i.e.
isotoropic) and a deviatoric part. The e; matrix is

[eij}: & Sy Gy

This can be resolved into two parts as

Ex — € Exy €z e 0O
[eij J =| &y &y € e, |+|0 e O (2.57)
L €y eyz &,y —€ 0 0 e
1
where e=3 (6o + 8y + €2) (2.58)

represents the mean elongation at a given point. The second matrix on the right-
hand side of Eq. (2.57) is the spherical part of the strain matrix. The first matrix
represents the deviatoric part or the strain deviator. If an isolated element of the
body is subjected to the strain deviator only, then according to Eq. (2.34), the
volumetric strain is equal to

AV_V = (8xx_ e) + (8yy_ e) + (822 - e)

=&yt &y t+E,—3€ (2.59)

This means that an element subjected to deviatoric strain undergoes pure defor-
mation without a change in volume. Hence, this part is also known as the pure
shear part of the strain matrix. This discussion is analogous to that made in
Sec. 1.22. The spherical part of the strain matrix, i.e. the second matrix on the right-
hand side of Eq. (2.57) is an isotropic state of strain. It is called isotropic because
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when a body is subjected to this particular state of strain, then every direction is
a principal strain direction, with a strain of magnitude e, according to Eq. (2.20). A
sphere subjected to this state of strain will uniformally expand or contract and
remain spherical.

Consider the invariants of the strain deviator. These are constructed in the
same way as the invariants of the stress and strain matrices with an appropriate
replacement of notations.

(i) Linear invariant is zero since

J =(g—€)+(gy—€)+(g,-€)=0 (2.60)
(i) Quadratic invariant is

3= S € Ex n ey —€ €y n |:‘9xx —€ € :|
y =
&y &y O e, &,-¢ &y &y —©
2 2
=% (gxx - gw) + (gyy - SZZ) +(&z —Ex) (2.61)

2
+6( + ey +8x) }

(iif) Cubic invariant is

Eyx — € exy ey,
J3= €y &y —F€ €y (262)
€y ezy &, —€

The second and third invariants of the deviatoric strain matrix describe the two
types of distortions that an isolated element undergoes when subjected to the
given strain matrix e;;.

Problems

2.1 The displacement field for a body is given by
u=(2+y)i+@B+2)j+(®+2yk
Write down the displacement gradient matrix at point (2, 3, 1).

4 10
Ans. |0 0 1
4 2 0

2.2 The displacement field for a body is given by
u=[(x2+y2+2)i+ Bx+4y?j+ (2x3+42)k]10™
What is the displaced position of a point originally at (1, 2, 3)?
[Ans. (1.0007, 2.0019, 3.0014)]

2.3 For the displacement field given in Problem 2.2, what are the strain compo-
nents at (1, 2, 3). Use only linear terms.
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24

25

26

2.7

28.
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{ Ans. g, =0.0002, ¢, =0.0016, &, = 0.0004}
%y = 0.0007, %, =0, %, =0.0006
What are the strain acomponents for Problem 2.3, if non-linear terms are also
included?
Ans. E, =2p+ 24.5p° Eyy 16p + 136p E,, = 4p + 8p° }
[ E,y = 7p +56p°, =0,E,=6p+ 24p where p=107*
If the displacement field is given by
u, = kxy, u, = kxy, u, = 2k(X +y)z
where k is a constant small enough to ensure applicability of the small
deformation theory,
(@ write down the strain matrix

(b) what is the strain in the direction n, =n,=n, = 1/:/32

y X+y 2z
Ans. (a) [gij] =k|x+y x 2z
2z 2z 2(x+y)

(0) £ng =5 (x+ y +2)

The displacement field is given by

U =k +22),  u =k@x+2y*+2),  u,=4kz?
k is a very small constant. What are the strains at (2, 2, 3) in directions
(@ ny=0,n,= U2 n, = UV2
(b) n,=1,n=n,=0
() n,=06,n,=0,n,=08 [Ans. (a) k (b) 4k, (c) 17. 76k}
For the displacement field given in Problem 2.6, with k =0.001, determine the

change in angle between two line segments PQ and PR at P(2, 2, 3) having
direction cosines before deformation as

(a) PQ nxl = 0’ nyl = T
PR: ne=1 n,=n,=0
1
b) PQ: =0,n = =
( ) Q y1 1 \/E

PR: n,=06,n,=0n,=08

Ans. (a) 90°—89.8°=0.2° }
{ (b) 55.5°-50.7°=4.8°
The rectangular components of a small strain at a point is given by the
following matrix. Determine the principal strains and the direction of the
maximum unit strain (i.e. &,,,).

1 0 O
[gij ] =p|0 0 —4| wherep=10"
0 -4 3
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Ans. g =4p, & =p, &=—P
for g :n,=0,n,=0447n,=0.894
fore,:ny=1,n,=n,=0
for &1 n,=0,n,=0.894, n,=0.447
29 For the following plane strain distribution, verify whether the compatibility
condition is satisfied:

B =3X%Y,  £,=4yx+107%  y =2xy+2x°

[Ans. Not satisfied]
210 Verify whether the following strain field satisfies the equations of compat-
ibility. p is a constant:

Ex = DY, &y = PX, &,=2p(xX+Y)
Yy = PX+Y), &, = 2P, £, =2pz [Ans. Yes]
211 State the conditions under which the following is a possible system of
strains:
£y =a+ b +y?) x*+y* % =0
gy=a+ B +y)+x +y4 %y =0
Yy =A+Bxy (+y*-c?), g,=0

[Ans.B=4;b+ B+2c?=0]
212 Given the following system of strains
£ =5+X2+y’+xt+yt
g,y =6+3x"+3y* +x* +y*
Yy = 10+ 4xy (x* +y° + 2)
€= % = Yw=0
determine whether the above strain field is possible. If it is possible, deter-
mine the displacement components in terms of x and y, assuming that u, = u,
=0 and o, = 0 at the origin.

Ans. It is possible. u, =5x +%x3 + xy? +%x5 +xy* +cy

uy:6y+3x2y+y3+x4y+%y5+cx

213 For the state of strain given in Problem 2.12, write down the spherical part
and the deviatoric part and determine the volumetric strain.

Ans. Components of spherical part are
= % [11+ 402 +y?) +2(x* + y")]

Volumetric strain = 11 + 4(x2 +y?) + 2(x* + y*)



Appendix

On Compatibility Conditions

It was stated in ?ec. 2.16 thatlthe Six strainlcomponents g (1.6, B = & By = &,
2= & 8y = 5V € = 5V By = 57“) should satisfy certain necessary
conditions for the existence of single-valued, continuous displacement functions,
and these were called compatibility conditions. In a two-dimensional case, these
conditions reduce to

e

0%, N %,y _ o%ey
oy’ P oxoy
Generally, these equations are obtained by differentiating the expressions for
€ €y €y and showing their equivalence in the above manner. However, their
requirement for the existence of single-value displacement is not shown. In this
y section, this aspect will be treated
for the plane case.

Let P(x, — y,) be some point in a
simply connected region at which
the displacement (ug, uf) are known.
We try to determine the displace-
ments (u,, u,) at another point Q in
terms of the known functions e, e,,,
€y, Oy, by means of a line integral
over a simple continuous curve C

% joining the points P and Q.

Consider the displacement u,

Fig. A.1 Continuous curve connecting
Pand Q in a simply

Q
connected body. U(Xz ¥) = U3 + JF; du, (A1)

ou, dx+ ou,

Since, du, = P o

dy

Qou, . Qou,
Ux(Xz) ¥,) = U3 + iad)”.!’ 3y dy

=ug + .[exxdx +J.dey

P P
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aux_l(auu@u\ 1( ou, 5&\
Now, oy 2l %y axJ 23y ")

=g, — 0, from equations (2.22) and (2.25).

Q Q Q
U, (%, ¥5) = U5 + ] 8@+ ] 8y —[ 0y A2)
P P P

Integrating by parts, the last integral on the right-hand side

Q Q Q
P P P

Q
—(ywyx)I—Jy( o X dy) (A.3)

P

Substituting, Eq. (A.2) becomes

(dw

U (%o, ¥p) = U + I%dx+fexydx (Yo) I—ka

X dx+ 0w yyx dy} (A.4)

Now consider the terms in the last integral on the right-hand side.

: : GUX
adding and subtracting 2 6y

Since the order of differentiation isimmaterial.

Gew ___(aux +auxj 1 0 (au, +%\
ox 20y\ox ox) 2ox\ oy  ox
_0 (A.5)
R exy
Similarly, oy 10 (6ux auy\

10 (ou, ou)) 1 (au, 5&\

“2oy oy GXJ 2ox oy o) (A.6)
_1@(6ux+au\ 100y %\
= 2oyl ay ax ) 2ax\ oy T oy

0
:a_y%_&eyy
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Substituting (A.5) and (A.6) in (A.4)

Q Q Q
U V) = U5 = (Yoo,) | + [ 8o+ [ & dy
P P P
(o) o (G &) o
Regrouping,

° 9 8 Py |
U(Xa, Yo) = US— (Yo,) | + { —Y—=,+Y—_ |dX
21 J2 YX)|:|) JF:eXX ay 6)(_

Q oe,, oy |
+ i{exy—y6—y+ y—2 |dy (A7)
Since the displacement is single-valued, the integral should be independent of
the path of integration. This means that the integral is a perfect differential. This
means

el %n By |_0le _ O
ay{%_yay”ax}ax{% Yoy Y ox

Ooy 08, O, 8y 08y 08y '8 O,

e oy oy Y oy X Y axay T ax  Yaxey TV a2

Since g, = g,,, the above equation reduces to

2 02 o2
oy OX oxoy

(A.8)

An identical expression is obtained while
considering the displacement u, (X, Yy)-
Hence, the compatibility condition is a
necessary and sufficient condition for the
existence of single-valued displacement
functions in simply connected bodies. For
a multiply connected body, it is a neces-
sary but not a sufficient condition. A mul-
Fig. A.2 Continuous curve tiply connected body can be made simply
connecting P and Q but  connected by a suitable cut. The displace-
not passing through the ~ ment functions will then become single-
cut of multiply connected  valued when the path of integration does
body not pass through the cut.




Stress—Strain Relations EaE
for Linearly Elastic
Solids 3

3.1 INTRODUCTION

In the preceding two chapters we dealt with the state of stress at a point and the
state of strain at a point. The strain components were related to the displacement
components through six of Cauchy’s strain-displacement relationships. In this
chapter, the relationships between the stress and strain components will be estab-
lished. Such equations are termed constitutive equations. They depend on the
manner in which the material resists deformation.

The constitutive equations are mathematical descriptions of the physical phe-
nomena based on experimental observations and established principles.
Consequently, they are approximations of the true behavioural pattern, since an
accurate mathematical representation of the physical phenomena would be too
complicated and unworkable.

The constitutive equations describe the behaviour of a material, not the
behaviour of a body. Therefore, the equations relate the state of stress at a point
to the state of strain at the point.

3.2 GENERALISED STATEMENT OF HOOKE’S LAW

Consider a uniform cylindrical rod of diameter d subjected to a tensile force P.
As is well known from experimental observations, when P is gradually
increased from zero to some positive value, the length of the rod also in-
creases. Based on experimental observations, it is postulated in elementary
strength of materials that the axial stress o is proportional to the axial strain ¢
up to a limit called the proportionality limit. The constant of proportionality is
the Young’s Modulus E, i.e.

e:% or o=Ee (3.1)

It is also well known that when the uniform rod elongates, its lateral dimensions,
i.e. its diameter, decreases. In elementary strength of materials, the ratio of lateral
strain to longitudinal strain was termed as Poisson’s ratio v. We now extend this
information or knowledge to relate the six rectangular components of stress to the
six rectangular components of strain. We assume that each of the six independent
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components of stress may be expressed as a linear function of the six components
of strain and vice versa.

The mathematical expressions of this statement are the six stress—strain
equations:

Oy = Q184 T Qp&yy + 38y T Yy + 5y, T 85 7k
O, = An &y + 8p&yy + 838, T 8y + 857y, T 867 i
0, = 8318y T 83p8yy + 8338, + )y + 357y, + 8367 1 (32
Ty = Qu1éxx T g€y + 8438y + gy + us)y, + Aupl o

Ty, = 518 t 858y + 8538, T 54 xy T A55)y; + 85e) ik
T, = 8p16xx T 8528y T 85385, T 85aYxy T 8g5Yyz + 8p67 ix

Or conversely, six strain-stress equations of the type:

Ex = bllo-x + blZO-y + blSO-z + b142-><y + b152-yz + blGsz (3.3)
gy =...etc
where a,;, a;,, by;, by, . . ., are constants for a given material. Solving

Eq. (3.2) as six simultaneous equations, one can get Eq. (3.3), and vice versa. For
homogeneous, linearly elastic material, the six Eqgs (3.2) or (3.3) are known as
Generalised Hooke’s Law. Whether we use the set given by Eq. (3.2) or that given
by Eq. (3.3), 36 elastic constants are apparently involved.

3.3 STRESS-STRAIN RELATIONS FOR ISOTROPIC
MATERIALS

We now make a further assumption that the ideal material we are dealing with has
the same properties in all directions so far as the stress-strain relations are con-
cerned. This means that the material we are dealing with is isotropic, i.e. it has no
directional property.

Care must be taken to distinguish between the assumption of isotropy, which
is a particular statement regarding the stress-strain properties at a given point,
and that of homogeneity, which is a statement that the stress-strain properties,
whatever they may be, are the same at all points. For example, timber of regular
grain is homogeneous but not isotropic.

Assuming that the material is isotropic, one can show that only two indepen-
dent elastic constants are involved in the generalised statement of Hooke’s law.
In Chapter 1, it was shown that at any point there are three faces (or planes) on
which the resultant stresses are wholly normal, i.e. there are no shear stresses on
these planes. These planes were termed the principal planes and the stresses
on these planes the principal stresses. In Sec. 2.14, it was shown that at any point
one can identify before strain, a small rectangular parallelepiped or a box which
remains rectangular after strain. The normals to the faces of this box were called
the principal axes of strain. Since in an isotropic material, a small rectangular box
the faces of which are subjected to pure normal stresses, will remain rectangular
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after deformation (no asymmetrical deformation), the normal to these faces
coincide with the principal strain axes. Hence, for an isotropic material, one can relate
the principal stresses o;, o,, o with the three principal strains g, €, and &, through
suitable elastic constants. Let the axes X, y and z coincide with the principal stress and
principal strain directions. For the principal stress o, the equation becomes

o, = ag, + be, + cg;
where a, b and c are constants. But we observe that b and ¢ should be equal since
the effect of o, in the directions of ¢, and &;, which are both at right angles to o,
must be the same for an isotropic material. In other words, the effect of o, in any
direction transverse to it is the same in an isotropic material. Hence, for o, the
equation becomes

o, =ag +b(g + &)

=(a-b)e, +b(e + & + &)

by adding and subtracting be,. But (g; + €, + &) is the first invariant of strain J;
or the cubical dilatation A. Denoting b by 4 and (a — b) by 2u, the equation for o,
becomes

0, = AA+ 2ug; (3.4a)
Similarly, for o, and o, we get

0, = AA + 2us, (3.4b)

03 = AA + 2ug, (3.4c)

The constants A and u are called Lame’s coefficients. Thus, there are only two
elastic constants involved in the relations between the principal stresses and
principal strains for an isotropic material. As the next sections show, this can be
extended to the relations between rectangular stress and strain components also.

3.4 MODULUS OF RIGIDITY

Let the co-ordinate axes Ox, Oy, Oz coincide with the principal stress axes. For an
isotropic body, the principal strain axes will also be along Ox, Oy, Oz. Consider
another frame of reference Ox’, Qy’, Oz’, such that the direction cosines of Ox” are
Ny Ny1s Ny and those of Oy’ are n,,, ny,, N,,. Since OX” and Oy’ are at right angles
to each other.

y2

nxlnx2 + nylny2 + nzanZ =0 (35)
The normal stress o, and the shear stress z,,, are obtained from Cauchy’s formula,
Egs. (1.9). The resultant stress vector on the x” plane will have components as

X' X' X'
TX :nxlo_l, Ty:nylo'z, TZ :nzlo_3

These are the components in X, y and z directions. The normal stress on this x” plane
is obtained as the sum of the projections of the components along the normal, i.e.

0,= Oy = nloy + nylzaz +n,20, (3.6a)
Similarly, the shear stress component on this x” plane in y” direction is obtained as

the sum of the projections of the components in y” direction, which has direction

cosines Ny, Nyy, Ny Thus

Ty = NxaNyp01 + Ny Ny 05 + NyyN; 073 (3.6b)
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On the same lines, if g, &, and &, are the principal strains, which are also along x,
y, z directions, the normal strain in x” direction, from Eq. (2.20), is

ey = Nyiey +NyJE, +NjiEs (3.7a)
The shear strain ., is obtained from Eq. (2.36c¢) as

%(,y, = m[Z(nxlnngl + nylnyzgz + n21n2263)

+ Ny Nyp + nylnyZ + nzln22:|
Using Eg. (3.5), and observing that &, and &, are small compared to unity in the
denominator,

%y = 2(NgNp& + Ny Nyo&; + NaN,083) (3.70)
Substituting the values of o;, o, and o; from Eqgs (3.4a)-(3.4c) into
Eg. (3.6h)
Ty = MaMo (AA+2u&) + NNy, (AA+2u8,) + Ny, (AA+2us)

= AA(NgNgo +NyNyp + NpNyo) + 2 1 (N Ny & + Ny Nyp &5 + Ny Ny E3)
Hence, from Egs (3.5) and (3.7b)

Tx’y’ = :u%(y' (38)
Equation (3.8) relates the rectangular shear stress component z,., with the rectan-
gular shear strain component .. Comparing this with the relation used in elemen-
tary strength of materials, one observes that u is the modulus of rigidity, usually
denoted by G.

By taking another axis Oz" with direction cosines n,s, n; and n,; and at right
angles to Ox” and Oy’ (so that Ox’y’z” forms an orthogonal set of axes), one can
get equations similar to (3.6a) and (3.6b) for the other rectangular stress compo-
nents. Thus,

G, = N3Oy + N0, + N5 oy (3.92)
o, = Naoy + ny§JZ +n,30, (3.90)
Tyy = Mx2Mx30y + NyoNy30y + NyoN53073 (3.9
Ty = NygNoy + Ny 0y + NygN, 073 (3.9d)

Similarly, following Egs (3.7a) and (3.7b) for the other rectangular strain compo-
nents, one gets

&y = NG& +Nye, + e (3.10a)
&, = NG e + ny§ £ +N,5 6, (3.10b)
Yo = 2NxaNyaéy + NyoNyaéy + NyoNy363) (3.10c)
Yox = 2(nxz’»nxlgl + ny3ny1 &+ nzsnzlgS) (3-10d)

From Eqgs (3.6a), (3.4a)—(3.4c) and (3.7a)

_ a2 2 2
Oy = Nyoy + N0y +N,103
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2 2 2 2 2 2
= /1A(nx1 +Ny1 4Ny ) + 2#(«91% +&Ny1 + ggnzl)
= AA+2ugy, (3.114)
Similarly, one gets

Oy = AA+2ugy, (3.11b)
o, = AA+2ug, (3.11c)
Similar to Eq. (3.8),
Ty’z’ =H %/z’ (3128)
Toy = Yoy (312b)

Equations (3.11a)—(3.11c), (3.8) and (3.12a) and (3.12b) relate the six rectangular
stress components to six rectangular strain components and in these only two
elastic constants are involved. Therefore, the Hooke’s law for an isotropic mate-
rial will involve two independent elastic constants A and u (or G).

3.5 BULK MODULUS
Adding equations (3.11a)—(3.11c)

Oy +0,+0, =31A+2u (erxr + &y 52,2,) (3.133)

y
Observing that

oy toy+o,=h=0,+0,+0; (first invariant of stress),
and
Exp HEpy T Epp =d1=6 16+ & (first invariant of strain),
Eqg. (3.13a) can be written in several alternative forms as
o, +0,+0,=(31+2u0)A (3.13h)
Oy + 0y + 0, = (34 + 2u)A (3.13¢c)
I, =(BA+2u)J, (3.13d)

Noting from Eq. (2.34) that A is the volumetric strain, the definition of bulk
modulus K is

pressure _b (3.14a)
volumetric strain A

If 0, = 0, = 05 = p, then from Eq. (3.13b)
3p = (B4 + 2u)A
or 3P =@31+2
~ = 1)
and from Eq. (3.14a)
= %(3/1 +24) (3.14b)

Thus, the bulk modulus for an isotropic solid is related to Lame’s constants
through Eq. (3.14b).
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3.6 YOUNG’S MODULUS AND POISSON’S RATIO
From Eq. (3.13b), we have

_ 01+0;+03

(31 +2u)
Substituting this in Eq. (3.4a)
A
o, = m(al + oy +a3)+2,u6‘1
or £ = Aty P— (0, +03) (3.15)
u(Br+2u)| Y 2(2+p)

From elementary strength of materials

-1
£ = E[O'l —V(o, +03)]
where E is Young’s modulus, and v is Poisson’s ratio. Comparing this with

Eq. (3.15),

_ H(34+2u), 2

0w TIGew 19

3.7 RELATIONS BETWEEN THE ELASTIC CONSTANTS

In elementary strength of materials, we are familiar with Young’s modulus E,
Poisson’s ratio v, shear modulus or modulus of rigidity G and bulk modulus K.
Among these, only two are independent, and E and v are generally taken as the
independent constants. The other two, namely, G and K, are expressed as

E E
Tty Ty @17
It has been shown in this chapter, that for an isotropic material, the 36 elastic
constants involved in the Generalised Hooke’s law, can be reduced to two inde-
pendent elastic constants. These two elastic constants are Lame’s coefficients
Aand u. The second coefficient u is the same as the rigidity modulus G. In terms
of these, the other elastic constants can be expressed as

_ u(34+2u) _ 2
SR iy S ) ¢ )
(32 + 24) _ B VE
Keims—— &= Yaipaszy @9

It should be observed from Eq. (3.17) that for the bulk modulus to be positive,
the value of Poisson’s ratio v cannot exceed 1/2. This is the upper limit for v.
For v=1/2,

3G=E and K=o
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A material having Poisson’s ratio equal to 1/2 is known as an incompressible
material, since the volumetric strain for such an isotropic material is zero.

For easy reference one can collect the equations relating stresses and strains
that have been obtained so far.

(@) In terms of principal stresses and principal strains:

0, = AA +2ug,
0, = AA +2ue, (3.19)
03 = AA + 2Ug,
where A=g +¢e+¢&=1J,.
_ Atu | A |
T U@ au) |7 202+ p) (o +03)_
Atu | A |
SO P — — 320
“ U@ ou) |7 2(/1+y)(03+01)_ (320
_ Atu | ! |
S u@rr2u) |7 20+ ) (o1+02)

(i) Interms of rectangular stress and strain components referred to an orthogo-
nal coordinate system Oxyz:

O-X = A’A + 2luEXX
o, = AA +2ue,,
o, = AA +2ue,, (3.21a)
where A =g, + &, +&,=J;.
Ty = Hhy T = Hm T = Mk (3.21b)

S P
T u@iv2u) |7 20+ ) (o +e2)

A+u A

S S - 2
&= a@ieza)|* 200w 7 )] (3222)
A+ | A |
T CYI YN L R TP (o +UV)_
Yoy = % Tyys Y = % Ty Yox = % Tix (3.22b)

In the preceeding sets of equations, A and u are Lame's constants. In terms
of the more familiar elastic constants E and v, the stress-strain relations are:
(i) with g, + €, +¢&,=J; = A,

ol (=

= AJ; + 2Gg,,
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E v
= A .
o, (1+V) _(1—2v) +gyy_ (3.233)
= 1J; + 2Gg,,
E I 14 |
= A
%T Wy -2t
= AJ, + 2Gg,
Ty = Gy 7, = G¥y T = Gy (3.23b)
_1
Ex = E|:O'X —V(O'y +O'Z):|
&y = é[ay -v(o, + 0oy )] (3:24a)
_1
&, I3 |:O'Z - V(O'X +0oy )]
yxy = é Txy! ’yyz = é TyZ! Vx = é Tix (324b)

3.8 DISPLACEMENT EQUATIONS OF EQUILIBRIUM

In Chapter 1, it was shown that if a solid body is in equilibrium, the six rectangular
stress components have to satisfy the three equations of equilibrium. In this
chapter, we have shown how to relate the stress components to the strain
components using the stress-strain relations. Hence, stress equations of equilib-
rium can be converted to strain equations of equilibrium. Further, in Chapter 2, the
strain components were related to the displacement components. Therefore, the strain
equations of equilibrium can be converted to displacement equations of equilib-
rium. In this section, this result will be derived.
The first equation from Eq. (1.65) is

X

ﬁO' + az-)(y + 5sz
ox oy oz

=0

For an isotropic material
0= AN+ 2uey; Ty = Hxys Tyt =H7x
Hence, the above equation becomes

O\ agxx a]/Xy @’xz
A= =
ﬁx+y(2 5x+0”y+0”z 0

From Cauchy’s strain-displacement relations

au, _ ou, duy _ ou, Ay,
' Ky ﬁy+ﬁx' = 5 ok

Ex =
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Substituting these

2 2 2% 2 2
5A+# Zﬁux+5ux+ y+5ux+ﬁuZ _
ﬁxz ﬁyz oxoy 522 X0t

2 2 2 2 22U 2
or gA ﬂﬁux+aux+5ux+ 5ux+ y+ﬁuz _
ﬁx 0”X2 ﬁyz 522 ﬁxz é’Xﬁy OXO1
or ﬂA ﬂzux + 0’>2ux + é’zux + ﬁ & + & + & =0
Aok TH o2 oy o2 | Hox\ox Tay T | T

Observing that

ou, Auy  pu,
A=gxx+gyy+gu=ﬁ)z‘+0,,; =5

o (dug My  ou, o, A%, A%,
A =0
(2+ )ﬁx[o”x oy ay ﬂz TH Ox? * ay? * 072

This is one of the displacement equations of equilibrium. Using the notation
2 2 2

l - l - l !

oxs  oy° oz

the displacement equation of equilibrium becomes

V2=

(2 +p) g’A +uviu, =0 (3.25a)

Similarly, from the second and third equations of equilibrium, one gets

(2+ 1) g@ +uV2u, =0 (3.25h)
(i-i—,u)ZA—i-sz =0

These are known as Lame’s displacement equations of equilibrium. They involve
a synthesis of the analysis of stress, analysis of strain and the relations between
stresses and strains. These equations represent the mechanical, geometrical and
physical characteristics of an elastic solid. Consequently, Lame’s equations play
a very prominent role in the solutions of problems.

Example 3.1 A rubber cube is inserted in a cavity of the same form and size
in a steel block and the top of the cube is pressed by a steel block with a
pressure of p pascals. Considering the steel to be absolutely hard and
assuming that there is no friction between steel and rubber, find (i) the
pressure of rubber against the box walls, and (ii) the extremum shear stresses in
rubber.
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p
ATy

e — / —
y
2 X
Fig. 3.1 Example 3.1
Solution
(i) Let I be the dimension of the cube. Since the cube is constrained in x and
y directions
=0 and g, =
and o,=-p
Therefore
-1 -
Ex = E[ax —v(cry +0'Z)} =0
-1 -
&y = E[ay -v(oy +aZ)J =0
Solving
o= Y g=-"_
O-x_o-y_l_v o, —Vp

If Poisson’s ratio = 0.5, then
G = O-y =0,=-p
(i) The extremum shear stresses are
01~ 03 01 -0y 02 — 03
2 ¢+ BT AT
If v<0.5, then o, and o, are numerically less than or equal to o,. Since o,
o, and o, are all compressive

el
6= 0,2~ p
03=0,=-P
1-2v 1-2v
A e R =L L

If v =0.5, the shear stresses are zero.

Example 3.2 A cubical element is subjected to the following state of stress.

0, =100 MPa, o,=-20MPa, o0,=-40Mpa, 7, =17,=17,=0
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Assuming the material to be homogeneous and isotropic, determine the prin-
cipal shear strains and the octahedral shear strain, if E = 2 x 10° MPa and
v=0.25.

Solution  Sincethe shear stresseson x, y and z planes are zero, the given stresses are
principal stresses. Arranging such that o, > 0,> o,

0, =100 MPa, o©,=-20MPa, o0;=-40MPa
The extremal shear stresses are

7= %(02_63) - %(—20+40) =10 Mpa
_1 _1 _
T, = E(cyg—(;l) = E(—40—100)——70 Mpa

1= %(0'1—02) = %(1oo+20) = 60 Mpa
The modulus of rigidity G is

E _ 2x10°
2(1+v) 2x125

The principa shear strains are therefore

G= =8x10* MPa

-n__10 _
e 1.25 x 107
_f___170 __ 4
7/2_—G— 8x10° 8.75x 10
_%3__60 _
Y= G ax10f =75x%x10"%

From Eq. (1.44a), the octahedral shear stressis

To = :—]3' [(0,— 0,)% + (0, — 09 + (03— 67)7]V?

= %;[1202 + 207 + 14072 = 61.8 MPa
The octahedral shear strain is therefore

79 61.8
=9 =7.73x 107
=G Tg10°
Problems

31 Compute Lame’s coefficients A and u for
(@ steel having E = 207 x 10° kPa (2.1 x 10° kgf/cm?) and v = 0.3.
(b) concrete having E = 28 x 10° kPa (2.85 x 10° kgf/cm?) and v = 0.2.
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Ans. (@) 120 x 10° kPa (1.22 x 10° kgf/cm?), 80 x 10® kPa
(8.1680 x 10° kgf/cm?)
(b) 7.8 x10° kPa (7.96 x 10* kgf/cm?), 11.7 x 10° kPa
(1.2 x 10° kgf/cm?)

32 For steel, the following data is applicable:
E =207 x 10° kPa (2.1 x 10° kgf/cm?),
and G =80 x 10° kPa (0.82 x 10° kgf/cm?)
For the given strain matrix at a point, determine the stress matrix.

0001 0 -0002
[6]=| 0 —0.003 0.0003
0002 0003 O
684 0 —160
Ans.[]=| O 77084 24| 403kp,

-160 24 -228.4

3.3 A thin rubber sheet is enclosed between two fixed hard steel plates (see
Fig. 3.2). Friction between the rubber and steel faces is negligible. If
the rubber plate is subjected to stresses o, and o, as shown, determine the
strains g, and &, and also the stress ¢,

[Ans. 0,=+v (0, + 0))

1+v
Ex = +? [(1 - V)o-x_ VO'y]

1+v

€y = +? [(1-V)o, vo]

Fig. 3.2 Example 3.2
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4.1 INTRODUCTION

It is known from the results of material testing that when bars of ductile materials
are subjected to uniform tension, the stress-strain curves show a linear range within
which the materials behave in an elastic manner and a definite yield zone where the
materials undergo permanent deformation. In the case of the so-called brittle mate-
rials, there is no yield zone. However, a brittle material, under suitable conditions,
can be brought to a plastic state before fracture occurs. In general, the results of
material testing reveal that the behaviour of various materials under similar test
conditions, e.g. under simple tension, compression or torsion, varies considerably.
In the process of designing a machine element or a structural member, the
designer has to take precautions to see that the member under consideration does
not fail under service conditions. The word ‘failure’ used in this context may mean
either fracture or permanent deformation beyond the operational range due to the
yielding of the member. In Chapter 1, it was stated that the state of stress at any
point can be characterised by the six rectangular stress components—three nor-
mal stresses and three shear stresses. Similarly, in Chapter 2, it was shown that
the state of strain at a point can be characterised by the six rectangular strain
components. When failure occurs, the question that arises is: what causes the
failure? Isit a particular state of stress, or a particular state of strain or some other
guantity associated with stress and strain? Further, the cause of failure of a
ductile material need not be the same as that for a brittle material.
Consider, for example, a uniform rod made of a ductile material subject to tension.
When yielding occurs,
(i) The principal stress ¢ at a point will have reached a definite value, usually
denoted by o,;
(i) The maximum shearing stress at the point will have reached a value equal
tor = %O'y;
(iii) The principal extension will have become & = o, /E;
(iv) The octahedral shearing stress will have attained a value equal to
(~N213) o

and so on.
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Any one of the above or some other factors might have caused the yielding.
Further, as pointed out earlier, the factor that causes a ductile material to yield
might be quite different from the factor that causes fracture in a brittle material
under the same loading conditions. Consequently, there will be many criteria or
theories of failure. It is necessary to remember that failure may mean fracture or
yielding. Whatever may be the theory adopted, the information regarding it will
have to be obtained from a simple test, like that of a uniaxial tension or a pure
torsion test. This is so because the state of stress or strain which causes the
failure of the material concerned can easily be calculated. The critical value
obtained from this test will have to be applied for the stress or strain at a point in
ageneral machine or a structural member so as not to initiate failure at that point.

There are six main theories of failure and these are discussed in the next sec-
tion. Another theory, called Mohr’s theory, is slightly different in its approach
and will be discussed separately.

4.2 THEORIES OF FAILURE
Maximum Principal Stress Theory

This theory is generally associated with the name of Rankine. According to this
theory, the maximum principal stressin the material determines failure regardless
of what the other two principal stresses are, so long as they are algebraically
smaller. This theory is not much supported by experimental results. Most solid
materials can withstand very high hydrostatic pressures without fracture or with-
out much permanent deformation if the pressure acts uniformly from all sidesasis
the case when a solid material is subjected to high fluid pressure. Materials with
aloose or porous structure such as wood, however, undergo considerable perma-
nent deformation when subjected to high hydrostatic pressures.On the other hand,
metals and other crystalline solids (including consolidated natural rocks) which
are impervious, are elastically compressed and can withstand very high hydro-
static pressures. In less compact solid materials, a marked evidence of failure has
been observed when these solids are subjected to hydrostatic pressures. Further,
it has been observed that even brittle materials, like glass bulbs, which are subject
to high hydrostatic pressure do not fail when the pressure is acting, but fail either
during the period the pressure is being reduced or later when the pressure is
rapidly released. It is stated that the liquid could have penentrated through the
fine invisible surface cracks and when the pressure was released, the entrapped
liquid may not have been able to escape fast enough. Consequently, high pres-
sure gradients are caused on the surface of the material which tend to burst or
explode the glass. As Karman pointed out, this penentration and the consequent
failure of the material can be prevented if the latter is covered by athin flexible
metal foil and then subjected to high hydrostatic pressures. Further noteworthy
observations on the bursting action of a liquid which is used to transmit pressure
were made by Bridgman who found that cylinders of hardened chrome-nickel steel
were not able to withstand an internal pressure well if the liquid transmitting the
pressure was mercury instead of viscous oil. It appears that small atoms of mer-
cury are able to penentrate the cracks, whereas the large molecules of oil are not
able to penentrate so easily.
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From these observations, we draw the conclusion that a pure state of hydro-
static pressure [o; = 0, = 65 =—p ( p > 0)] cannot produce permanent deformation
in compact crystalline or amorphous solid materials but produces only a small
elastic contraction, provided the liquid is prevented from entering the fine surface
cracks or crevices of the solid. This contradicts the maximum principal stress
theory. Further evidence to show that the maximum principal stress theory cannot
be a good criterion for failure can be demonstrated in the following manner:

Consider the block shown in Fig. 4.1, subjected to stress o, and o,, where o, is
tensile and o, is compressive.

0
T T

W | e 2N
SENEER G
lo'l

T
Fig. 4.1 Rectangular element with 45° plane

If o, is equal to o, in magnitude, then on a 45° plane, from Eq. (1.63b), the
shearing stress will have a magnitude equal to ;. Such a state of stress occursin
acylindrical bar subjected to pure torsion, If thePaxi?sum principal stress theory
was valid, o; would have been the limiting¥alue. However, for ductile materials
subjected to pure torsion, experiments reveal that the shear stress limit causing
yield is much less than ¢; in magnitude.

Notwithstanding all these, the maximum principal stress theory, because of its
simplicity, is considered to be reasonably satisfactory for brittle materials which
do not fail by yielding. Using information from a uniaxial tension (or compression)
test, we say that failure occurs when the maximum principal stress at any point
reaches a value equal to the tensile (or compressive) elastic limit or yield strength
of the material obtained from the uniaxial test. Thus, if o, > 0, > o3 are the
principal stresses at a point and o, the yield stress or tensile elastic limit for the
material under a uniaxial test, then failure occurs when

0y 2 O,

: 4.1)

Maximum Shearing Stress Theory

Observations made in the course of extrusion tests on the flow of soft metals
through orifices lend support to the assumption that the plastic state in such
metals is created when the maximum shearing stress just reaches the value of the
resistance of the metal against shear. Assuming o, > o, > 03, yielding, according
to this theory, occurs when the maximum shearing stress
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reaches a critical value. The maximum shearing stress theory is accepted to be
fairly well justified for ductile materials. In a bar subject to uniaxial tension or
compression, the maximum shear stress occurs on a plane at 45° to the load axis.
Tension tests conducted on mild steel bars show that at the time of yielding, the
so-called slip lines occur approximately at 45°, thus supporting the theory. On the
other hand, for brittle crystalline materials which cannot be brought into the plas-
tic state under tension but which may yield alittle before fracture under compres-
sion, the angle of the slip planes or of the shear fracture surfaces, which usually
develop along these planes, differs considerably from the planes of maximum
shear. Further, in these brittle materials, the values of the maximum shear in ten-
sion and compression are not equal. Failure of material under triaxial tension (of
equal magnitude) also does not support this theory, since equal triaxial tensions
cannot produce any shear.

However, as remarked earlier, for ductile load carrying members where large
shears occur and which are subject to unequal triaxial tensions, the maximum
shearing stress theory is used because of its simplicity.

If 0, > 0, > 05 are the three principal stresses at a point, failure occurs when

0, — 03

(o}
Tmax = > > 7)/ (42)

where 6,/2 is the shear stress at yield point in a uniaxial test.

Maximum Elastic Strain Theory

According to this theory, failure occurs at a point in a body when the maximum
strain at that point exceeds the value of the maximum strain in a uniaxial test of the
material at yield point. Thus, if ,, 0, and o; are the principal stresses at a point,
failure occurs when

& = % [0'1 ~v(oy + 63)] > % 43

We have observed that a material subjected

to triaxial compression does not suffer failure,
T thus contradicting this theory. Also, in ablock

subjected to a hiaxial tension, as shown in
Fig. 4.2, the principal strain g; is

Oy <« > 0, & :é(o.l _ VUZ)

and is smaller than o,/E because of o,.
Therefore, according to this theory, o; can
l be increased more than o, without causing
o, failure, whereas, if o, were compressive, the
magnitude of o, to cause failure would be
less than o,. However, thisis not supported
by experiments.
While the maximum strain theory is an improvement over the maximum stress
theory, it is not a good theory for ductile materials. For materials which fail by

Fig. 4.2 Biaxial state of stress
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brittle fracture, one may prefer the maximum strain theory to the maximum
stress theory.

Octahedral Shearing Stress Theory

According to this theory, the critical quantity is the shearing stress on the octa-
hedral plane. The plane which is equally inclined to al the three principal axes Ox,
Oy and Oz is called the octahedral plane. The normal to this plane has direction
cosines n,, n,and n,= 1/ /3. The tangential stress on this plane is the octahedral
shearing stress. If o, 0, and o; are the principal stresses at a point, then from
Eqgs (1.44a) and (1.44c)

/2
T =3[ (1= 02 + (02 - 03)" + (05— n)' |

:g(lf _3|2)]JZ

Inauniaxial test, at yield point, the octahedral stress (\/5/3) o, = 0.47c,. Hence,

according to the present theory, failure occurs at a point where the values of
principal stresses are such that

12
Tout =%[(0'1—0'2)2 +(oy —0'3)2 +(0'3—0'1)2} Zgay (449

or (17-3;)207 (4.4b)
Thistheory is supported quite well by experimental evidences. Further, when a mate-
rial is subjected to hydrostatic pressure, o, = 0, = 053 =, and 7, iS equal to zero.
Consequently, according to this theory, failure cannot occur and this, as stated
earlier, is supported by experimental results. This theory is equivalent to the maxi-
mum distortion energy theory, which will be discussed subsequently.

Maximum Elastic Energy Theory

This theory is associated with the names of Beltrami and Haigh. According to
this theory, failure at any point in a body subject to a state of stress begins
only when the energy per unit volume absorbed at the point is equal to the
energy absorbed per unit volume by the material when subjected to the elastic
limit under a uniaxial state of stress. To calculate the energy absorbed per unit
volume we proceed as follows:

Let 0, 0, and o5 be the principal stresses and let their magnitudes increase
uniformly from zero to their final magnitudes. If &, &, and &; are the corresponding
principal strains, then the work done by the forces, from Fig. 4.3(b), is

AW =%0'1 Ay Az (SAX) +%0'2 AxAz((?Ay)+%63 AX Ay (5Az)

where 6A X, 6Ay and 6Az are extensions in X, y and z directions respectively.
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o, O3 p
T / Work Done =
l Area Under Triangle
Ax
O] <—F|-— o—F—> O0;
AV I
o l
03
()

Fig. 4.3 (a) Principal stresses on a rectangular block
(b) Area representing work done

From Hooke' slaw

1
oAy =¢, Ay== [0'2 v (oy + 03 ]Ay

OAZ= 83AZ—E[J3 (o1 +03) ]AZ
Substituting these

“2elot

The above work is stored as internal energy if the rate of deformation is small.
Consequently, the energy U per unit volume is

2E [0'1 + 0% +05 - 2v (010, + 0p05 + 0'30'1)] (45)

In auniaxial test, the energy stored per unit volume at yield point or elastic limit
is /2E af, . Hence, failure occurs when

ol +o5 405 -2 (0105 + 0,03+ 0307) 2 03, (4.6)

This theory does not have much significance since it is possible for a material to
absorb considerable amount of energy without failure or permanent deformation
when it is subjected to hydrostatic pressure.

Energy of Distortion Theory

This theory is based on the work of Huber, von Mises and Hencky. According to
this theory, it is not the total energy which is the criterion for failure; in fact the
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energy absorbed during the distortion of an element is responsible for failure.
The energy of distortion can be obtained by subtracting the energy of volumetric
expansion from the total energy. It was shown in the Analysis of Stress (Sec. 1.22)
that any given state of stress can be uniquely resolved into an isotropic state and
a pure shear (or deviatoric) state. If o,, 0, and o, are the principal stresses at a
point then

6, 0 0 p 0 0] [e,-p O 0
0 o, 0|=/0 pOl=| 0 o,-p O 47
0 0 o4/ |0 O P 0 0 o3-p

where p = %(0'1 + 0, + 03).

The first matrix on the right-hand side represents the isotropic state and the
second matrix the pure shear state. Also, recall that the necessary and sufficient
condition for a state to be a pure shear state is that its first invariant must be
equal to zero. Similarly, in the Analysis of Strain (Section 2.17), it was shown that
any given state of strain can be resolved uniquely into an isotropic and a deviatoric
state of strain. If &;, & and &; are the principal strains at the point, we have

5 0 0] [e 00| [g-e O 0
0 & 0|=|0 e 0|]=| 0 &-e O 48)
0 0 | |00e 0 0 g-e

wheree= % (e, + &+ &).

It was also shown that the volumetric strain corresponding to the deviatoric
state of strain is zero since its first invariant is zero.

It is easy to see from Eqs (4.7) and (4.8) that, by Hooke's law, the isotropic
state of strain is related to the isotropic state of stress because

& =é[61 -v(oy + 63):|
& =%|:62 -v(oz+ 0'1)}

&3 =é[°’3 - V(O'z + 0'1)}

Adding and taking the mean

%(gl+gz+g3) =e

or e= é[(l— 2v)p] (4.9)
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i.e. e is connected to p by Hooke's law. This states that the volumetric strain
3e is proportional to the pressure p, the proportionality constant being equal to

% (1—2v) = K, the bulk modulus, Eq. (3.14).
Consequently, the work done or the energy stored during volumetric change is
,_ 1 1 1 3
U = — — — = —
5 Pe+ s pet s pe=> pe
Substituting for e from Eq. (4.9)

,_ 3
U=z (1-2v) p
1-2
- BE
The total elastic strain energy density is given by Eq. (4.5). Hence, subtracting U’
fromU

(4.10)

(‘71 +0y+ ‘73)2

s_ 12, 2 2\ Vv
u'= _(0'1 +05 +a3)—E(alo'2 +0,03+030)

2E
1-2v 2
2(1+
= (t+v) (0'12 +02 402 —0,0,-0,05-03 0'1) (4.11b)
6E
1+v
_%[(01—02)2 +(0o3 —03)2 +(03—01)2} (4.11c)
- __E
Substituting G = 20+7) for the shear modulus,
U*=%(6124-0'22-%-0'3?—610'2—6263—0'361) (4.129)
or U*=A|:(O' —0')2+(a —0')2+(0' —6)2:| (4.12b)
12G 1 2 2 3 3 1
Thisisthe expression for the energy of distortion. In auniaxia test, the energy of
distortion is equal to %05. This is obtained by simply putting o, = o, and

0,=03=0inEq. (4.12). Thisisalso equal to (@+v)

0-32/ from Eq. (4.11c).
Hence, according to the distortion energy theory, failure occurs at that point
where 03,0, and o5 are such that

(o1-0y )2 +(0y - 03)2 +(o5— 0'1)2 > 20')2, (413
But we notice that the expression for the octahedral shearing stress from
Eqg. (1.22) is

12
Tout =:—]3'[(0'1 - 0'2)2 +(0y - 0'3)2 +(o3— 0'1)1
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Hence, the distortion energy theory states that failure occurs when
2 2
95t = 2 20y

or Tot = 2 gay (4.14)
Thisisidentical to Eq. (4.4). Therefore, the octahedral shearing stress theory and
the distortion energy theory are identical. Experiments made on the flow of ductile
metals under biaxial states of stress have shown that Eq. (4.14) or equivalently,
Eq. (4.13) expresses well the condition under which the ductile metals at normal
temperatures start to yield. Further, as remarked earlier, the purely elastic deforma-

tion of a body under hydrostatic pressure (z,, = 0) is also supported by this theory.

4.3 SIGNIFICANCE OF THE THEORIES OF FAILURE

The mode of failure of a member and the factor that is responsible for failure
depend on a large number of factors such as the nature and properties of the
material, type of loading, shape and temperature of the member, etc. We have
observed, for example, that the mode of failure of a ductile material differs from
that of a brittle material. While yielding or permanent deformation is the character-
istic feature of ductile materials, fracture without permanent deformation is the
characteristic feature of brittle materials. Further, if the loading conditions are
suitably altered, a brittle material may be made to yield before failure. Even ductile
materials fail in a different manner when subjected to repeated |oadings (such as
fatigue) than when subjected to static loadings. All these factors indicate that any
rational procedure of design of a member requires the determination of the mode
of failure (either yielding or fracture), and the factor (such as stress, strain and
energy) associated with it. If tests could be performed on the actua member,
subjecting it to all the possible conditions of loading that the member would be
subjected to during operation, then one could determine the maximum loading
condition that does not cause failure. But this may not be possible except in very
simple cases. Consequently, in complex loading conditions, one has to identify
the factor associated with the failure of a member and take precautions to see that
this factor does not exceed the maximum allowable value. This information is
obtained by performing a suitable test (uniform tension or torsion) on the material
in the laboratory.

In discussing the various theories of failure, we have expressed the critical
value associated with each theory in terms of the yield point stress o, obtained
from auniaxial tensile stress. This was done since it is easy to perform a uniaxial
tensile stress and obtain the yield point stress value. It is equally easy to perform
a pure torsion test on a round specimen and obtain the value of the maximum
shear stress 7, at the point of yielding. Consequently, one can also express the
critical value associated with each theory of failure in terms of the yield point
shear stress 7,. In a sense, using o or 7, is equivalent because during a uniaxial

tension, the maximum shear stress 7 at a point is equal to %0'; and in the case of

pure shear, the normal stresses on a 45° element are o and —o, where ¢ is numeri-
cally equivalent to 7. These are shown in Fig. 4.4.
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g
s | My Q

=0, o=1,

Fig. 4.4 Uniaxial and pure shear state of stress

If one uses the yield point shear stress 7, obtained from a pure torsion test,
then the critical value associated with each theory of failure is as follows:

(i) Maximum Normal Stress Theory According to thistheory, failure occurs when
the normal stress s at any point in the stressed member reaches a value
02T,
This is because, in a pure torsion test when yielding occurs, the maximum
normal stress sis numerically equivalent to t,.

(i) Maximum Shear Stress Theory According to this theory, failure occurs when
the shear stresst at a point in the member reaches a value

>
‘L'_‘L'y

(iff) Maximum Strain Theory According to this theory, failure occurs when the
maximum strain at any point in the member reaches a value

5=é[°’1“’(°’2 +03)]

From Fig. 4.4, in the case of pure shear
0,=0=1 0,=0,0=—0=-7
Hence, failure occurs when the strain e at any point in the member reaches a
value

8=—(Z’ +vr )——(1+v)r

(iv) Octahedral Shear Stress Theory When an element is subjected to pure shear,
the maximum and minimum normal stresses at a point are s and —s (each numeri-
cally equal to the shear stress t), as shown in Fig. 4.4. Corresponding to this,
from Eg. (1.44a), the octahedral shear stressis

1 1/2
Toct = 3 [(o-l - 0'2)2 + (o, - 0'3)2 + (o3 — 0'1)2]
Observing that 6, =0=1,0,=0,0=—0=—-7

Toct = %(0'2 + 0% + 45?)Y?

:\/21'
3
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So, failure occurs when the octahedral shear stress at any point is

2
Toct = \/% Ty

(v) Maximum Elastic Energy Theory The elastic energy per unit volume stored
at a point in a stressed body is, from Eq. (4.5),

ir » 2
U=£ [o-l +0% +05 —2v (010, + 0,03 + 6361):|

In the case of pure shear, from Fig. 4.4,

oy =T1, o,=0, O3=—-7
Hence, U= ZL [Tz +72 -2y (—rzﬂ
—Z(L+v)e

So, failure occurs when the elastic energy density at any point in a stressed
body is such that

U==(1+v)7]

Ty

|T||H

(vi) Distortion Energy Theory The distortion energy density at a point in a
stressed body is, from Eg. (4.12),

U = 121G [(0'1 0'2)2 + (o — 03)2 + (o3 - 0'1)2J

Once again, by observing that in the case of pure shear

o, =T, o, =0, O3=—7T

U= %[r2+r2+472]

1
"2G°
So, failure occurs when the distortion energy density at any point is
equal to
2(1+v) ,
E

N

+v
)

The foregoing results show that one can express the critical value associated
with each theory of failure either in terms of o, or in terms of 7,. Assuming that a
particular theory of failureis correct for a given material, then the values of ¢, and
7, obtained from tests conducted on the material should be related by the corre-
sponding expressions. For example, if the distortion energy is avalid theory for a

—
=
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material, then the value of the energy in terms of o, and that in terms of 7, should
be equal. Thus,
 (1+v) 5, (+v)

U= n="3 %

or =0.577 oy

1
oy = NE] Oy
This means that the value of 7, obtained from pure torsion test should be equal to
0.577 times the value of o, obtained from a uniaxial tension test conducted on the
same material.

Table 4.1 summarizes these theories and the corresponding expressions. The
first column lists the six theories of failure. The second column lists the critical
value associated with each theory in terms of oy, the yield point stress in uniaxial
tension test. For example, according to the octahedral shear stress theory, failure
occurs when the octahedral shear stress at a point assumes a value equal to
V213 oy . The third column lists the critical value associated with each theory in
terms of 7,, the yield point shear stress value in pure torsion. For example, accord-
ing to octahedral shear stress theory, failure occurs at a point when the octahe-

dral shear stress equals avalue \/ﬁ 7, . The fourth column gives the relationship
that should exist betweent, and o, in each case if each theory is valid. Assuming
octahedral shear stress theory is correct, then the value of 7, obtained from pure
torsion test should be equal to 0.577 times the yield point stress o, obtained from
auniaxial tension test.

Tests conducted on many ductile materials revea that the values of 7, lie
between 0.50 and 0.60 of the tensile yield strength o, the average value being
about 0.57. This result agrees well with the octahedral shear stress theory and the

Table 4.1

Failure theory Tension Shear Relationship

Max. normal stress o, o, =1, T, = O,

Max. shear stress T =%o—y T, 7,=050,

Max. strain (v:%] g=é0'y g:ZT—Ey r,=080,

Octahedral shear Ty = % oy Tog = % 7, r,=0577 0,

1

Max. energy (V:Zj' U :éo‘i U :%éri 7,=06320,

Di . » 1+v 0'3 . r§ — 0577
istortion energy U = 2 E U :(1+ V)E 7, =0577 o,
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distortion energy theory. The maximum shear stress theory predicts that shear
yield value 7, is 0.5 times the tensile yield value. Thisis about 15% less than the
value predicted by the distortion energy (or the octahedral shear) theory. The
maximum shear stress theory gives values for design on the safe side. Also,
because of its simplicity, this theory is widely used in machine design dealing
with ductile materials.

4.4 USE OF FACTOR OF SAFETY IN DESIGN

In designing a member to carry a given load without failure, usually a factor of
safety N is used. The purpose is to design the member in such a way that it can
carry N times the actual working load without failure. It has been observed that
one can associate different factors for failure according to the particular theory of
failure adopted. Consequently, one can use a factor appropriately reduced during
the design process. Let X be afactor associated with failure and let F be the load.
If X isdirectly proportional to F, then designing the member to safely carry aload
equal to NF is equivalent to designing the member for a critical factor equal to
X/N. However, if X is not directly proportional to F, but is, say, proportional to
F 2, then designing the member to safely carry aload to equal to NF is equivalent

to limiting the critical factor to 4/ X/N . Hence, in using the factor of safety, care
must be taken to see that the critical factor associated with failure is not reduced
by N, but rather the load-carrying capacity is increased by N. This point will be
made clear in the following example.

Example 4.1 Determine the diameter d of a circular shaft subjected to a bending
moment M and atorque T, according to the several theories of failure. Usea factor of
safety N.

Solution Consider a point P on the periphery of the shaft. If d is the diameter,
then owing to the bending moment M, the normal stress o at P on a plane normal
to the axis of the shaft is, from elementary strength of materials,

My d 64
=—2 =M -— 4.
i 2 g (415
_32M
zd?
The shearing stress on a transverse plane at P due to torsion T is
Td Td-32
T=F7— = 4.16
2lp 27d* (418
_ 16T
zd3

Therefore, the principal stresses at P are

UL3=%ai%J(O'2+4T2), o,=0 (417
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(i) Maximum Normal Stress Theory At point P, the maximum normal stress
should not exceed s, the yield point stress in tension. With a factor of safety N,
when the load is increased N times, the normal and shearing stresses are Ns and
Nt. Equating the maximum normal stressto s,

o 1( 2 W2
amaxzalzN[§+§(a +4r) j|—0'y
1/2 2
or U+(62+4Z'2) = %
2 2
ie, 32'\2 + 13 ><32(M2+T2) _ %%
zd zd N
12 d®
ie, 16M +16(M?+T2) " = i Nay

From this, the value of d can be determined with the known values of M, T and S

(if) Maximum Shear Stress Theory At point P, the maximum shearing stress
from Eq. (4.17) is

1 1
Tmax: 5(0-1_0-3)25( 2 +4T2)

When the load is increased N times, the shear stress becomes Nt.

Hence,
1 2 o\V2 _ oy
NTmaX_EN(O- +4T) 7
12
or, (02 +412) =9
N

Substituting for o and 7
32 (M2+T2)1/2 _ 9%
N

7d®

)1/ 2 zd 30'y

or, 32(M2+T2 S

(iii) Maximum Strain Theory The maximum elastic strain at point P with a fac-
tor of safety N is

N
Emax =E[Ul -V (52 + 0'3)]
From Eq. (4.3)
O,

O
- - y
Since o, = 0, we have o=V Oo3=
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or Z ;(62+4T )Uz—v%+%(o—2+412)u2=%

Substituting for o and 7

16M 16 (ng2 , +2\¥2_ 9y
(1-v) =22 e +(1+ )ﬂd3(M +T) =
d3
o (1-v)16M + (1+v)16(M2 T2 =TT

(iv) Octahedral Shear Stress Theory The octahedral shearing stress at point P
from Eqg. (4.4a), and using afactor of safety N, is

1/2 2
N7, =%[(0'1 - 0'2)2 + (o, — 0'3)2 + (o5 - 0'1)1 = %ay
1/2
or [(01_02)2+(0'2_03)2+(03_01)2] =%O—y
With 0,=0
1/2
|:20'12+26§—26163:| =%o-y
1/2
or [012+032—0103] :%
Substituting for o, and o,
1 2 1( 2 2\, 1 2 2\W2 1 2, 1( 2 2
|:ZG +Z(O' +4r )+§o-(a +4z') +Za +z(0' +4Z')
1 2 2\W2 1 5 1/ 2 2 l/z_o-y
—EG(O' +4T) —ZO' +Z(0' + 47 )} "N
12
or (0'2+3z'2) -9
N
Substituting for o and
12
16 (4M2 3TZ) _ 9%
zd?® N
2 2\V2 ”d30y
or 16 (4M~ +3T°)"° = N

(v) Maximum Energy Theory The maximum elastic energy at P from
Eq. (4.6) and with a factor of safety N is

0_2

N2
Note: Since the stresses for design are No;, No, and No, the factor N2
appears in the expression for U. In the previous four cases, only N

appeared because of the particular form of the expression.
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2
9y

2, 2
(07 +03 —2vo,03) = NE

Substituting for o, and o,

[%02+%(02+4r2)+%0(0'2+472)1/2+%0'2
1( 2 2y 1 2 2\V2 2 0)2/
+Z(O' +4r )—EO'(O' +4r ) + 2vr }:W
o2
or o?+(2+2v) 7% = N—’;
ie [a +(2+2v rszz %
e Blam?i(2r2)1?]" =2
7rd3 N
3
or [4M2+2(1+V)T2]1'2 - ”1(:3 :y

(vi) Maximum Distortion Energy Theory The distortion energy associated with
Ns;, Ns, and Ns; at P is given by Eq. (4.11c). Equating this to distortion energy in
termsof s,

N%(1+v 2 2 2
d=T)|:(O'1—O'2) +(0y —03) +(0'3—0'1)J
_1+V 2
EERE
With 0,=0
252
2 2
(20_1 +203 _20_1 03) = N2y
or (62 + 02 -0y 05)"% = %

This yields the same result as the octahedral shear stress theory.

4.5 A NOTE ON THE USE OF FACTOR OF SAFETY

Asremarked earlier, when afactor of safety N is prescribed, we may consider two
ways of introducing it in design:
(i) Design the member so that it safely carries a load NF.
(i) If the factor associated with failure is X, then see that this factor at any
point in the member does not exceed X/N.



Theories of Failure or Yield Criteria and Introduction to Ideally Plastic Solid 125

But the second method of using N is not correct, since by the definition of the
factor of safety, the member isto be designed for N times the load. So long as X
is directly proportional to F, whether one uses NF or X/N for design analysis, the
result will beidentical. If X isnot directly proportional to F, method (ii) may give
wrong results. For example, if we adopt method (ii) with the maximum energy
theory, the result will be

-1
2E

< N

o
U

|

2 2 2 1
[0'1 +05 +O'3—2V(O'10'2+O'20'3+0301):|—N

2

where X, the factor associated with failure, is %G—Ey But method (i) gives

2 0_2
U zgl—E[O'f +05+ 05 —2v(oy0,+0,03+0; oﬁ}z%

The result obtained from method (i) is correct, since No;, No, and No; are the

principal stresses corresponding to the load NF. As one an see, the results are

not the same. The result given by method (ii) is not the right one.

Example 4.2 A force F = 45,000 N is necessary to rotate the shaft shown in
Fig. 4.5 at uniform speed. The crank shaft is made of ductile steel whose elastic
limit is 207,000 kPa, both in tension and compression. With E = 207 x 10° kPa,
v = 0.25, determine the diameter of the shaft, using the octahedral shear stress
theory and the maximum shear stress theory. Use a factor of safety N = 2.
Consider a point on the periphery at section A for analysis.

Fig. 4.5 Example 4.2

Solution The moment at section A is

M = 45,000 x 0.2 =9000 Nm
and the torque on the shaft is

T =45,000 x 0.15= 6750 Nm
The normal stressdueto M at Ais

_ _64Md __32M

27d* 7d®
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and the maximum shear stressdueto T at A is

_ 32Td _ 16T
2rd*  zd®
The shear stress due to the shear force F is zero at A. The principal stresses from
Eq. (1.61) are

U2
61’3=%O'i%(62+4‘[2) , o,=0

(i) Maximum Shear Stress Theory
1
T = 5 (07— 03)

:%(02 N 42_2)1/2

_1 32 2 2\1/2
"2 (M*+T9)
12
=15 (9000 + 67507~ = 27228 g
zd d
With afactor of safety N = 2, the value of 7, becomes
NE o = 114321.6 Pa

This should not exceed the maximum shear stress value at yielding in
uniaxial tension test. Thus,

1 Oy 207 _.n6
= (114591.6) = - =%x10
d®=1107x10% m®

or d =10.35x10°m=10.4cm

(ii) Octahedral Shear Stress Theory

12
Toct = % [(0'1 - 0'2)2 + (o - 0'3)2 + (o3 - 0'1)2]
With o, =0,
1 1/2
Tot =3 [20'12 + 20§ - 20, 03]
Substituting for o; and o, and simplifying

Toct = g (0'2 +372 )]Jz

-2 [(32m)? + 3(16T)2T/2

- 3rd?®

;‘ﬁg (4m2+ ezTZ)ll2
7T
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1642 2 22
e | 4(9000)7 + 3(6750)’ |

= £3 x 343418
3rzd

Equating this to octahedral shear stress at yielding of a uniaxial tension
bar, and using a factor of safety N = 2,

\/E ><2><343418=£0'
3rzd? 3 Y

or 2x343418=7d°® 5, = 7d® x 207 x 10°

d®=1.056x10"2
or d =0.1018 m=10.18cm

Example 4.3 Acylindrical bar of 7 cm diameter is subjected to a torque equal to
3400 Nm, and a bending moment M. If the bar is at the point of failing in accordance
with the maximum principal stress theory, determine the maximum bending moment
it can support in addition to the torque. The tensile elastic limit for the material is
207 MPa, and the factor of safety to be used is 3.

Solution  From Example 4.1(i)

3
16M +16(M2 +T)V2 = 2d°

N y
e 16M +16(M? + 340072 = #xT°x107° x 207x10°
| 3
or (M? +3400%)Y2 = 4647 - M
or M2 +3400° = 46472 + M? —9294 M
M = 1080 Nm

Example 4.4 In Example 4.3, if failure is governed by the maximum strain
theory, determine the diameter of the bar if it is subjected to atorque T = 3400 Nm
and a bending moment M = 1080 Nm. The elastic modulus for the material is
E = 103 x 106 kPa, v = 0.25, factor of safety N =3 and o, =207 MPa.

Solution  According to the maximum strain theory and Example 4.1(iii)

3
16(1— ) M +16(1+ 1) (M2 + T2)V2 =% g

3
(16 x 0.75x 1080) + (16 x 1.25) (10807 + 3400%)V2 = % x 207 x 10°
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i.e, 12960+ 71348=216.77 x 10°d?
or d®=389x10°
or d=73x10?m=7.3cm

Example 4.5 An equipment used in deep sea investigation is immersed at a
depth H. The weight of the equipment in water is W. The rope attached to the
instrument has a specific weight y, and the water has a specific weight y. Analyse
thestrength of therope. Theropehasa cross-sectional area A. (Refer toFig. 4.6.)

o1
io'=W+Wr
H 1 A
01 /P
p— p:YH
oo W
p:yH 1 A

Fig. 4.6 Example 4.5

Solution The lower end of the rope is subjected to a triaxial state of stress.
There is a tensile stress o, due to the weight of the equipment and two hydro-
static compressions each equal to p, where

w

A L
At the upper section there is only a uniaxial tension o due to the weight of the
equipment and rope immersed in water.

0y = o0, =03=—yH (compression)

W . ,

Therefore, according to the maximum shear stress theory, at lower section
w

4+ yH

AT )

_01-03_1

z'max 2 2
and at the upper section

Tmax = 2 ZK_7H+7rH

If the specific weight of the rope is more than twice that of water, then the upper

section is the critical section. When the equipment is above the surface of the

water, near the hoist, the stress is

W
A

_Gi—aé:;(w )

oy and o,=03=0
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_iw
iy
W’ is the weight of equipment in air and is more than W. It is also necessary to
check the strength of the rope for this stress.

4.6 MOHR’S THEORY OF FAILURE

In the previous discussions on failure, al the theories had one common feature.
This was that the criterion of failure is unaltered by a reversal of sign of the
stress. While the yield point stress o, for a ductile material is more or less the
same in tension and compression, this is not true for a brittle material. In such a
case, according to the maximum shear stress theory, we would get two different
values for the critical shear stress. Mohr's theory is an attempt to extend the
maximum shear stress theory (also known as the stress-difference theory) so asto
avoid this objection.

To explain the basis of Mohr’s theory, consider Mohr’s circles, shown in
Fig. 4.7, for a general state of stress.

T

Fig. 4.7 Mohr’s circles

0y, 0, and o, are the principal stresses at the point. Consider the line ABB’A". The
points lying on BA and B’A’ represent a series of planes on which the normal
stresses have the same magnitude o, but different shear stresses. The maximum
shear stress associated with this normal stress value is t, represented by point
A or A”. The fundamental assumption is that if failure is associated with a given
normal stress value, then the plane having this normal stress and a maximum
shear stress accompanying it, will be the critical plane. Hence, the critical point for
the normal stress o, will be the point A. From Mohr’s circle diagram, the planes
having maximum shear stresses for given normal stresses, have their representa-
tive points on the outer circle. Consequently, as far as failure is concerned, the
critical circle is the outermost circle in Mohr’s circle diagram, with diameter

(01— 03).
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Now, on a given material, we conduct three experiments in the laboratory,
relating to simple tension, pure shear and simple compression. In each case,
the test is conducted until failure occurs. In simple tension, o, = o, 0, =
o, =0. The outermost circle in the circle diagram (there is only one circle) corre-
sponding to this stateis shown as T in Fig. 4.8. The plane on which failure occurs
will have its representative point on this outer circle. For pure shear, 7,,= 0, = -0,
and o, = 0. The outermost circle for this state is indicated by S. In simple com-
pression, o, = 0,= 0 and o3 = —0y. In general, for a brittle material, o, will be
greater than oy, numerically. The outermost circle in the circle diagram for this
case is represented by C.

Fig. 4.8 Diagram representing Mohr’s failure theory

In addition to the three simple tests, we can perform many more tests
(like combined tension and torsion) until failure occurs in each case, and corre-
spondingly for each state of stress, we can construct the outermost circle. For all
these circles, we can draw an envelope. The point of contact of the outermost
circle for a given state with this envelope determines the combination of ¢ and 7,
causing failure. Obviously, alarge number of tests will have to be performed on a
single material to determine the envelope for it.

If the yield point stress in simple tension is small, compared to the yield point
stress in simple compression, as shown in Fig. 4.8, then the envelope will cut the
horizontal axis at point L, representing afinite limit for ‘hydrostatic tension’. Simi-
larly, on the left-hand side, the envelope rises indefinitely, indicating no elastic limit
under hydrostatic compression.

For practical application of this theory, one assumes the envel opes to be straight
lines, i.e. tangents to the circles as shown in Fig. 4.8. When a member is subjected
to a general state of stress, for no failure to take place, the Mohr’s circle with
(0, — 03) as diameter should lie within the envelope. In the limit, the circle can
touch the envelope. If one uses afactor of safety N, then the circle with N(o;, — o5)
as diameter can touch the envelopes. Figure 4.8 shows this limiting state of stress,
where o; = Noy and o3 = N,
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The envelopes being common tangents to the circles, triangles LCF, LBE
and LAD are similar. Draw CH parallel to LO (the o axis), making CBG and CAH
similar. Then,

BG _ AH
CG  CH @
1 1 * *
Now, BG=BE-GE=BE-CF=Jo, - (0] ~03)

1, +, 1
CG=FE=FO-EO= Z (0} +03) -5 0y

1 1 * *
AH = AD —HD = AD ~CF =Z oy, - = (0} - 03)

1, +, = 1
CH=FD=FO+0D= 7 (0] +03) +50yc

Substituting these in Eq. (a), and after simplification,

* O-y[ *
oy=0,———0
yt =01 Oy 3
= N(oy — koy) (4.189)
o
where k=—2 (4.18b)
Oy

Equation (4.18a) states that for a general state of stress where o, and o5 are the
maximum and minimum principal stresses, to avoid failure according to Mohr’s
theory, the condition is
O
yt
oy —koz < N -

where N is the factor of safety used for design, and k is the ratio of oy, to oy, for
the material. For a brittle material with no yield stress value, k is the ratio of o
ultimate in tension to o ultimate in compression, i.e.
Ou

k= (4.18¢c)

GUC
o,/N is sometimes called the equivalent stress o, in uniaxial tension corresponding
to Mohr’s theory of falure. When o, = o, k will become equal to 1 and
Eq. (4.18a) becomes identical to the maximum shear stress theory, Eq. (4.2).

Example 4.6 Consider the problem discussed in Example 4.2. Let the crank-
shaft material have o, = 150 MPa and o, = 330 MPa. If the diameter of the
shaft is 10 cm, deter mine the allowabl e force F according to Mohr’ stheory of
failure. Let thefactor of safety be 2. Consider a point on the surface of the shaft
where the stress due to bending is maximum.

Solution Bending moment at section A=(20x102 F) Nm

Torque= (15x1072 F) Nm
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64Md _ 32M
7zd4 7zd3
32Td _ 16T

27d*  zd®

O'l'3=% %(62+4T Y2, 6,=0

o (bending) =

7 (torsion) =

Org = 1M + (4M 4T )1/2
zd®  xd?*

=% [2(20x10?) £10? (1600 + 22F )2 |

7 x10
80F 80F 40+ 427)=2106F;  -68.75F
%% _150
k== 23304545

yc
- N(oy — ko) = 2F(2106 + 31.25) = 4274.5F
From Eq. (4.18a),
4274.5F = o, =150x10° Pa

or F = 34092N

4.7 IDEALLY PLASTIC SOLID

If arod of a ductile metal, such as mild steel, is tested under a simple uniaxial
tension, the stress—strain diagram would be like the one shown in Fig. 4.9(a). As
can be observed, the curve has several distinct regions. Part OA is linear, signify-
ing that in this region, the strain is proportional to the stress. If a specimen is
loaded within this limit and gradually unloaded, it returns to its original length

A

Stress
Stress

o Strain 0 Strain
(a) (b)
Fig. 4.9 Stress—strain diagram for (a) Ductile material (b) Brittle material



Theories of Failure or Yield Criteria and Introduction to Ideally Plastic Solid 133

without any permanent deformation. This is the linear elastic region and point A
denotes the limit of proportionality. Beyond A, the curve becomes slightly non-
linear. However, the strain upto point B is still elastic. Point B, therefore, repre-
sents the elastic limit.

If the specimen is strained further, the stress drops suddenly (represented by
point C) and thereafter the material yields at constant stress. After D, further
straining is accompanied by increased stress, indicating work hardening. In the
figure, the elastic region is shown exaggerated for clarity.

Most metals and alloys do not have a distinct yield point. The change from the
purely elastic to the elastic-plastic state is gradual. Brittle materials, such as cast
iron, titanium carbide or rock material, allow very little plastic deformation before
reaching the breaking point. The stress-strain diagram for such a material would
look like the one shown in Fig. 4.9(b).

In order to develop stress-strain relations during plastic deformation, the
actual stress-strain diagrams are replaced by less complicated ones. These
are shown in Fig. 4.10. In these, Fig. 4.10(a) represents a linearly elastic material,
while Fig. 4.10(b) represents a material which isrigid (i.e. has no deformation) for
stresses below o, and yields without limit when the stress level reaches the value
o,. Such amaterial is called arigid perfectly plastic material. Figure 4.10(c) shows
the behaviour of a material which is rigid for stresses below o, and for stress
levels above o, a linear work hardening characteristics is exhibited. A material
exhibiting this characteristic behaviour is designated as rigid linear work hardening.
Figure 4.10(d) and (€) represent respectively linearly elastic, perfectly plastic and
linearly elastic-linear work hardening.

\ A
0 1) [}
7] %) (%]
o o o
n n n
Strain g Strain Strain
(@) (b) (©)

Stress
Stress

Strain Strain
(d) (e)
Fig. 4.10 Ideal stress-strain diagram for a material that is (a) Linearly elastic (b) Rigid-

perfectly plastic (c) Rigid-linear work hardening (d) Linearly elastic-perfectly
plastic (¢) Linearly elastic-linear work hardening
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In the following sections, we shall very briefly discuss certain elementary
aspects of the stress-strain relations for an ideally plastic solid. It is assumed that
the material behaviour in tension or compression is identical.

4.8 STRESS SPACE AND STRAIN SPACE

The state of stress at a point can be represented by the six rectangular stress
components 7; (i, j = 1, 2, 3). One can imagine a six-dimensional space called the
stress space, in which the state of stress can be represented by a point. Similarly,
the state of strain at a point can be represented by a point in a six- dimensional
strain space. In particular, a state of plastic strain eij(p) can be so represented. A
history of loading can be represented by a path in the stress space and the
corresponding deformation or strain history as a path in the strain space.

A basic assumption that is now made is that there exists a scalar function
called a stress function or loading function, represented by f(z;, €;, K), which
depends on the states of stress and strain, and the history of loading. The func-
tion f = O represents a closed surface in the stress space. The function f characterises
the yielding of the material as follows:

Aslong as f < 0 no plastic deformation or yielding takes place; f > 0 has no
meaning. Yielding occurs when f = 0. For materials with no work hardening char-
acteristics, the parameter K = 0.

In the previous sections of this chapter, several yield criteria have been
considered. These criteria were expressed in terms of the principal stresses
(01, 0, 03) and the principal strains (g, &, &). We have also observed that a
material is said to be isotropic if the material properties do not depend on the
particular coordinate axes chosen. Similarly, the plastic characteristics of the
material are said to be isotropic if the yield function f depends only on the
invariants of stress, strain and strain history. The isotropic stress theory of
plasticity gives function f as an isotropic function of stresses alone. For such
theories, the yield function can be expressed asf(l,, |,, I5) wherel,, |, and |; are
the stress invariants. Equivalently, one may express the function as f(o,, 0,, 03).
It is, therefore, possible to represent the yield surface in a three-dimensional
space with coordinate axes o;, o, and o;.

The Deviatoric Plane or the & Plane

In Section 4.2(a), it was stated that most metals can withstand considerable
hydrostatic pressure without any permanent deformation. It has also been
observed that a given state of stress can be uniquely resolved into a hydrostatic
(or isotropic) state and a deviatoric (i.e. pure shear) state, i.e.

6, 0 0 p 0 0] [e,-p O 0
0 o, 0 (=0 poOl=| 0 o,-p O
0 0 o4/ |0 O P 0 0 o3-p

or []=[pl+[co], (=129 (419
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where p= % (oy+ 0, +03)
is the mean normal stress, and
o =c-p, (=123
Consequently, the yield function will be independent of the hydrostatic state. For
the deviatoric state, 1,;* = 0. According to the isotropic stress theory, therefore,

the yield function will be a function of the second and third invariants of the
devatoric state, i.e. f(l,,13). The equation

oy +0,+03=0 (4.20)

03 represents a plane passing through the
origin, whose normal OD is equally
inclined (with direction cosines 1/+/3)

D to the axes o, 0, and o,. This plane

(01,05, 05) iscalled the deviatoric plane or the

7 plane /'//Q plane. If the stress state (o7 , 0, 03)

e causes yielding, the point represent-

01 ing this state will lie in the & plane.

75 Thisis shown by point P in Fig. 4.11.

) P(c}, 03 03) Since the addition or subtraction of

- an isotropic state does not affect the

Fig. 4.11 The Plane yielding process, point P can be

moved parallel to OD. Hence, theyield

function will represent a cylinder perpendicular to the & plane. The trace of this
surface on the 7 plane is the yield locus.

4.9 GENERAL NATURE OF THE YIELD LOCUS

Since the yield surface is a cylinder perpendicular to the 7 plane, we can discuss
its characteristics with reference to its trace on the 7 plane, i.e. with reference to
theyield locus. Figure 4.12 shows the 7 plane and the projections of the o;, ¢, and
oy axesonthisplaneas ¢’;, o', and o’5. These projections make an angle of 120°
with each other.

Let us assume that the state (6, O, O) lies on the yield surface, i.e. the state
0,=6, 0,=0, 0;=0, causes yielding. Since we have assumed isotropy, the states
(0, 6, 0) and (0, 0, 6) also should cause yielding. Further, as we
have assumed that the material behaviour in tension is identical to that in com-
pression, the states (-6, 0, 0), (0, —6, 0) and (0, 0, —6) also cause yielding. Thus,
appealing to isotropy and the property of the material in tension and compres-
sion, one point on the yield surface locates five other points. If we choose a
general point (a, b, ¢) on the yield surface, thiswill generate 11 other (or atotal of
12) points on the surface. These are (a, b, c) (c, a, b), (b, c, a), (a, ¢, b), (c, b, a)
(b, &, ¢) and the remaining six are obtained by multiplying these by —1. Therefore,
the yield locus is a symmetrical curve.
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(a)
Fig. 4.12 (a) The yield locus (b) Projection of 7 plane

4.10 YIELD SURFACES OF TRESCA AND VON MISES
One of the yield conditions studied in Section 4.2 was stated by the maximum
shear stress theory. According to this theory, if o; > 0, > o3, the yielding starts
when the maximum shear 5 (01 — 0,) becomes equal to the maximum shear o,/2in
uniaxial tension yielding. In other words, yielding begins when o, — 03 = o,. This
condition is generally named after Tresca.

Let us assume that only o, is acting. Then, yielding occurs when o; = o,. The
o, axisisinclined at an angle of ¢ toits projection ¢ ’; axis on the = plane, and
sin ¢ = cos 0= 143, [Fig. 4.12(b)]. Hence, the point o, = o, will have its projec-
tion on the 7 plane as o, cosg =~/2/3 o, aong the o’, axis. Similarly, other
points on the 7 plane will be at distances of ++/2/3 o, along the projections of
0y, 0, and o5 axeson the  plane, i.e,, dlong 6’4, 0, 0’;axesin Fig. 4.13. If oy,
o, and o3 are al acting (with o, > 0, > 03), yielding occurs when o, — 05 = 0,.

y
This defines a straight line joining points at a distance of o, along o; and —o;

axes. The projection of thisline on the 7 plane will be a straight line joining points
at adistance of v/2/3 o, along the o, and —o/; axes, as shown by AB in Fig. 4.13,
Consequently, the yield locus is a hexagon.

Another yield criterion discussed in Section 4.2 was the octahedral shearing
stress or the distortion energy theory. According to this criterion, Eq. (4.4b),
yielding occurs when

f(ly, 15,15 = £(f - 3,) =0} (4.22)

Since a hydrostatic state of stress does not have any effect on yielding, one can
deal with the deviatoric state (for which II =0) and write the above condition as

f(l5.13) = f(3)=-3l; =07 4.22)
The yield function can, therefore, be written as
foly+io2=1)+ (4.23)

37y
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where sis aconstant. Thisyield criterion is known as the von Mises condition for
yielding. The yield surface is defined by

I, +s°=0
or 010, + 003 + 0307 — 3p? = -8 (4.24)
The other alternative forms of the above expression are
(01 = P)* + (0 = P + (05— P)* = 287 (425
(01— 05)% + (0, — 03)° + (03 — 7y)° = 68 (4.26)
Equation (4.25) can also be written as
Oy + Oy + 03 = 25° 4.27)

(@) (b)
Fig. 4.13 Yield surfaces of Tresca and von Mises

Thisis the curve of intersection between the sphere o2 + o2 + o2 = 2s? and the
n plane defined by aI +a; +0§ =0. This curve is, therefore, a circle with

radius+/2s inthe plane. The yield surface according to the von Mises criterion
is, therefore, aright circular cylinder. From Eg. (4.23)

£-162, o, s=-1Lo (4.28)

3 37
Hence, the radius of the cylinder isv2/3 o i.e. the cylinder of von Mises cir-
cumscribes Tresca' s hexagonal cylinder. Thisis shown in Fig. 4.13.

4.11 STRESS-STRAIN RELATIONS (PLASTIC FLOW)

The yield locus that has been discussed so far defines the boundary of the elastic
zone in the stress space. When a stress point reaches this boundary, plastic
deformation takes place. In this context, one can speak of only the change in the
plastic strain rather than the total plastic strain because the latter is the sum total
of all plastic strains that have taken place during the previous strain history of the
specimen. Consequently, the stress—strain relations for plastic flow relate the
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strain increments. Another way of explaining thisis to realise that the process of
plastic flow isirreversible; that most of the deformation work is transformed into
heat and that the stresses in the final state depend on the strain path. Conse-
guently, the equations governing plastic deformation cannot, in principle, be fi-
nite relations concerning stress and strain components as in the case of Hooke's
law, but must be differential relations.
The following assumptions are made:
(i) The body is isotropic
(i) The volumetric strain is an elastic strain and is proportional to the mean
pressure (6,,=p = 0)
& =3Ko

or de =3kdo (4.29)
(iii) The total strain increments de; are made up of the elastic strain incre-
ments d; and plastic strain increaments d g

(iv) The elastic strain increments are related to stress components o;; through
Hooke's law

1
deg, =E[O'X —v (o, +0,)]

det =i[o'y - oy + 0,)]

woE
des, = é[aZ —v(oy +0,)] (4.31)
1
defy = dyy, = ]
1
dey, =dyy, =G

(v) The deviatoric components of the plastic strain increments are propor-
tional to the components of the deviatoric state of stress

d [ex‘; —%(ex‘; +efy + gz‘;)} = [ax —%(ax +o,+ az)} di (4.32)

where dA is the instantaneous constant of proportionality.
From (ii), the volumetric strain is purely elastic and hence

_ e e e
E=bxtEy T E,

But 5:5)fx+5§y+5zez+(gx'§(+5}f’y+gzpz)
Hence,
et ey +en=0 (433
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Using thisin Eq. (4.32)
deP =di| o, — X
Exx = oy §(ax toy,+ o,)

Denoting the components of stress deviator by s;, the above equations and the
remaining ones are

ded =dA sy
dg)fy =dis,,
de, =dis, (4.34)
dyy =dis,
dyy,, =dis,
dyy =dA s,
Equivalently
def =dis; (4.35)

4.12 PRANDTL-REUSS EQUATIONS
Combining Egs (4.30), (4.31) and (4.35)

where dgi(je) is related to stress components through Hooke's law, as given in

Eq. (4.31). Equations (4.30), (4.31) and (4.35) constitute the Prandtl—-Reuss equations.
It is also observed that the principal axes of stress and plastic strain increments
coincide. It is easy to show that dA is non-negative. For this, consider the work
done during the plastic strain increment

dW, = o, defy + o, defy + o,def + 7, dy ) + 7,dy ), + 7 dy )
= A2 (04 Se + Oy Sy + 0,8, + TSy + TSy, + TSy )
=dA |:O'X(O'X—p) + O'y(O'y— p) +o0,(c,—p)+ z’fy + qu + Z'ZZX:I
2 2 2
or dezdi[(o—x—p) +(ay—p) +(o, - p) +rfy+r)2,2+rzzx}
ie dW, =dAT? (4.37)

Since de >0

we have di>0
If the von Mises condition is applied, from Eqgs (4.23) and (4.35)
dW, = dA2s?
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or =L (439)
2s
i.e dA is proportional to the increment of plastic work.

4.13 SAINT VENANT-VON MISES EQUATIONS

In afully developed plastic deformation, the elastic components of strain are very
small compared to plastic components. In such a case

~ p
dgij ~ dgij

and this gives the equations of the Saint Venant—von Mises theory of plasticity
in the form

Expanding this
2 1 i
de,, = 3 di _o—x -5 (cry + az)_
2 1 i
de,, = 304 9y _5(01 + ax)_
de,, = % di o, - % (0 +0y) (4.40)
dy, = dAt,,
dy, = diz,
dy, = dAt,

The above equations are also called Levy—Mises equations. In this case, it should
be observed that the principal axes of strain increments coincide with the axes of
the principal stresses.

Problems

41 Figure 4.14 shows three elements a, b, ¢ subjected to different states of
stress. Which one of these three, do you think, will yield first according to
(i) the maximum stress theory?
(i) the maximum strain theory?

7500

i 21,000
28,500 30,000 21,000
-] a o < b — - (o] —

Fig. 4.14 Problem 4.1



Theories of Failure or Yield Criteria and Introduction to Ideally Plastic Solid 141

(iii) the maximum shear stress theory?
Poisson’s ratio v = 0.25 [Ans. (i) b, (ii) a, (iii) ]
4.2 Determine the diameter of a cold-rolled stedl shaft, 0.6 m long, used to trans-
mit 50 hp at 600 rpm. The shaft is simply supported at its ends in bearings.
The shaft experiences bending owing to its own weight also. Use a factor of
safety 2. Thetensileyield limit is 280 x 10° kPa (2.86 x 10° kgf/cm?) and the
shear yield limit is 140 x 10° kPa (1.43 x 10° kgf/cm?). Use the maximum shear
stress theory. [Ans.d=36cm|
43 Determine the diameter of a ductile steel bar (Fig 4.15) if the tensile load F
is 35,000 N and the torsional moment T is 1800 Nm. Use a factor of safety
N=15.

E = 207 x 10° kPa (21x10°kgf/cm?) and o,
(2100 kgf/cm?).

Use the maximum shear stress theory. [Ans.d=4.1cm]

[

Fig. 4.15 Problem 4.3

is 207,000 kPa

44 For the problem discussed in Problem 4.3, determine the diameter accord-
ing to Mohr’s theory if oy =207 MPa, o, =310MPa. The factor of
safety N=1.5; F = 35,000 N and T = 1800 Nm. [Ans. d=4.2 cm]

45 At a point in a steel member, the state of
stress is as shown in Fig. 4.16. The tensile

T

elastic limit is 413.7 kPa. If the shearing

stress at the point is 206.85 kPa, when yield- - P}
ing starts, what is the tensile stress o at

the point (a) according to the maximum T~

shearing stress theory, and (b) according
to the octahedral shearing stress theory?
[Ans. (a) zero; (b) 206.85 kPa (2.1 kgf/cm?)]
46 A torque T is transmitted by means of a system of gears to the shaft
shown in Fig. 4.17. If T = 2500Nm (25,510 kgf cm), R = 0.08 m,
a= 0.8 mand b= 0.1 m, determine the diameter of the shaft, using the
maximum shear stress theory. o, = 290000 kPa .. The factor of safety is 2.
Note that when atorque is being transmitted, in addition to the tangential
force, there occurs aradial force equal to 0.4F, where F is the tangential
force. Thisisshownin Fig. 4.17(b).
Hint: The forces F and 0.4F acting on the gear A are shown in
Fig. 4.17(b). The reactions at the bearings are also shown. There
are two bending moments—one in the vertical plane and the other in the
(0.4Fab) .

(@atb)

Fig. 4.16 Problem 4.5

horizontal plane. In the vertical plane, the maximum moment is
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< a '{ b*i ()
A b
e = Np |
a0 ——
N = N
} 7 7§7 77%{77 __/
N =
& = N _ a T

0.4F

a+b

(b)
Fig. 4.17 Problem 4.6

in the horizontal plane the maximum moment is ((;?tg) ; both these maxi-

mums occur at the gear section A. The resultant bending is

v _ |[04FabY’ Fap ]
Mmac= | =25 ) *|axb

= 1.08F A0

a+b
The critical point to be considered is the circumferential point on the shaft
subjected to this maximum moment. [Ans. d = 65 mm]

47 1f the materia of the bar in Problem 4.4 has o, = 207 x 10° Pa and
ay(::517><106 Pa determine the diameter of the bar according
to Mohr's theory of failure. The other conditions are as given in
Problem 4.4. [Ans. d = 4.6 cm]



CHAPTER

Energy Methods 5

5.1 INTRODUCTION

In Chapters 1 and 2, attention was focussed on the analysis of stress and strain at
a point. Except for the condition that the material we considered was a continuum,
the shape or size of the body as a whole was not considered. In Chapter 3, the
stresses and strains at a point were related through the material or the constitu-
tive equations. Here too, the material properties rather than the behaviour of the
body as such was not considered. Chapter 4, on the theory of failure, also dis-
cussed the critical conditions to impend failure at a point. In this chapter, we shall
consider the entire body or structural member or machine element, along with the
forces acting on it. Hooke’s law will relate the force acting on the body to the
displacement. When the body deforms under the action of the externally applied
forces, the work done by these forces is stored as strain energy inside the body,
which can be recovered when the latter is elastic in nature. It is assumed that the
forces are applied gradually.

The strain energy methods are extremely important for the solution of many prob-
lems in the mechanics of solids and in structural analysis. Many of the theorems
developed in this chapter can be used with great advantage to solve displacement
problems and statically indeterminate structures and frameworks.

5.2 HOOKE’S LAW AND THE PRINCIPLE
OF SUPERPOSITION

We have observed in Chapter 3 that the rectangular stress components at a
point can be related to the rectangular strain components at the same point
through a set of linear equations that were designated as the generalised
Hooke’s Law. In this chapter, however, we shall state Hooke’s law as appli-
cable to the elastic body as a whole, i.e. relate the complete system of forces
acting on the body to the deformation of the body as a whole. The law asserts
that “deflections are proportional to the forces which produce them’. This is a
very general assertion without any restriction as to the shape or size of the
loaded body.



144 Advanced Mechanics of Solids

In Fig. 5.1, a force F, is applied at
point 1, and in consequence, point 2 un-
dergoes a displacement or a deflection,
which according to Hooke's law, is pro-
portionate to F,. This deflection of
point 2 may take place in a direction
which is quite different from that of F,.
If D, is the actual deflection, we have

D,= kZlFl

where k,; is some proportionality
constant.

When F; is increased, D, also in-
creases proportionately. Let d, be
the component of D, in a specified

Fig. 5.1 Elastic solid and Hooke's law ~ direction. If 6 is the angle between
D, and d,

d, = D, cosf = k,; cos6 F,

If we keep 6 constant, i.e. if we fix our attention on the deflection in a specified
direction, then

d, = ayF,
where a,, is a constant. Therefore, one can consider the displacement of point 2
in any specified direction and apply Hooke’s Law. Let us consider the vertical
component of the deflection of point 2. If d, is the vertical component, then
Hooke's law asserts that

d, = ayF, (6.1)
where a,, is a constant called the ‘influence coefficient’ for vertical deflection at
point 2 due to a force applied in the specified direction (that of F,) at point 1. If F;
is a unit force, then a,, is the actual value of the vertical deflection at 2. If a force
equal and opposite to F, is applied at 1, then a deflection equal and opposite to
the earlier deflection takes place. If several forces, all having the direction of F,,
are applied simultaneously at 1, the resultant vertical deflection which they pro-
duce at 2 will be the resultant of the deflections which they would have produced
if applied separately. This is the principle of superposition.

Consider a force F; acting alone at point 3, and let d; be the vertical compo-

nent of the deflection of 2. Then, according to Hooke’s Law, as stated by Eq. (5.1)

d; = a,F; (5.2)
where a,; is the influence coefficient for vertical deflection at point 2 due to a
force applied in the specified direction (that of F;) at point 3. The question
that we now examine is whether the principle of superposition holds true to
two or more forces, such as F, and F5, which act in different directions and at
different points.

Let F, be applied first, and then F,. The vertical deflection at 2 is

d, =ayF;+az;F; (5.3)
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where a,; may be different from a,;. This difference, if it exists, is due to the
presence of F, when F; is applied. Now apply —F,. Then

= ayF + a3Fs — ayFy
a,, may be different from a,,, since F; is acting when —F; is applied. Only F; is
acting now. If we apply —F;, the deflection finally becomes
dy =ayF, + ajFs — ayF; — ayF; (5.4)

Since the elastic body is not subjected to any force now, the final deflection given
by Eqg. (5.4) must be zero. Hence,

’
aynFy + apF; — aynF —ayF;=0
ie (ap, — ay)F; = (a3 — a53) Fs

ay — &, 8y — a5
or 21 21 _ 923 23 (55)
Fs 51

The difference a,, — a3, if it exists, must be due to the action of F;. Hence, the

left-hand side is a function of F; alone. Similarly, if the difference a,; — aj, exists,

it must be due to the action of F, and, therefore, the right-hand side must be a
function F, alone. Consequently, Eg. (5.5) becomes

g — @y _ By —ay —k 56
2 f d; o

where k is a constant independent of F, and F;. Hence
a3 = 3 — kFy
Substituting this in Eq. (5.3)
d, = a,F; + ayF; — kF;F5

The last term on the right-hand side in the above equation is non-linear, which is
contradictory to Hooke's law, unless k vanishes. Hence, k = 0, and

— 4 _ ’
d3=ay and ay = ay

The principle of superposition is, therefore, valid for two different forces acting at
two different points. This can be extended by induction to include a third or any
number of other forces. This means that the deflection at 2 due to any number of
forces, including force F, at 2 is

d, = ay,F + a,F, + a,F; + . . (5.7)

5.3 CORRESPONDING FORCE AND DISPLACEMENT OR

WORK-ABSORBING COMPONENT OF DISPLACEMENT
Consider an elastic body which is in equilibrium under the action of forces F, F,,
Fs, . .. The forces of reaction at the points of support will also be considered as
applied forces. This is shown in Fig. 5.2.
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The displacement d, in a specified direction
at point 1 is given by Eq. (5.7). If the actual
displacement is D, and takes place in a direction
as shown in Fig. (5.2), then the component of
this displacement in the direction of force F;
is called the corresponding displacement at
point 1. This corresponding displacement is
denoted by 6,. At every loaded point, a cor-
responding displacement can be identified. If
the points of support a, b and ¢ do not yield,
then at these points the corresponding dis-
placements are zero. One can apply Hooke’s
law to these corresponding displacements and
obtain from Eq. (5.7)

Fig. 5.2 Corresponding forces

and displacements
6 =ayF, +a,F,+aF+. ..
S, =ay,F, +a,F,+a,F;+...etc. (5.8)
where a,;, a,,, a;3, - . ., are the influence coefficients of the kind discussed earlier.

The corresponding displacement is also called the work-absorbing component of
the displacement.

5.4 WORK DONE BY FORCES AND ELASTIC STRAIN
ENERGY STORED

Equations (5.8) show that the displacements §,, 6,, . . .etc., depend on all the

forces Fy, F,, .. ., etc. If we slowly increase the forces F,, F,, . . ., etc. from zero to
their full magnitudes, the deflections also increase similarly. For example, when
the forces F,, F,, . . ., etc. are one-half of their full magnitudes, the deflections are

1 1 1

E 51 = a.ll (EFl)-I- a.12 (§F2)+ ey

1

5 S, =ay (%F1)+a22 %Fz + ..., etc.,

i.e. the deflections reached are also equal to half their full magnitudes. Similarly,
when F,, F,, . . ., etc. reach two-thirds of their full magnitudes, the deflections
reached are also equal to two-thirds of their full magnitudes. Assuming that the
forces are increased in constant proportion and the increase is gradual, the work
done by F, at its point of application will be

1
W, = 2 F151

1
= E Fl(allFl + aleZ + 813[:3 + .. .) (5.9)
Similar expressions hold good for other forces also. The total work done by exter-
nal forces is, therefore, given by

W1+W2+W3+...: (F161+F262+F363+...)

N~
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If the supports are rigid, then no work is done by the support reactions. When the
forces are gradually reduced to zero, keeping their ratios constant, negative work
will be done and the total work will be recovered. This shows that the work done
is stored as potential energy and its magnitude should be independent of the
order in which the forces are applied. If it were not so, it would be possible to
store or extract energy by merely changing the order of loading and unloading.
This would be contradictory to the principle of conservation of energy.

The potential energy that is stored as a consequence of the deformation of any
elastic body is termed elastic strain energy. If F;, F,, F; are the forces in a particular
configuration and 8,, 8,, 9, are the corresponding displacements then the elastic
strain energy stored is

U=32 (Fid,+ Fody + Fadyt .. ) (5.10)

It must be noted that though this expression has been obtained on the assump-
tion that the forces F,, F,, F; . . ., are increased in constant proportion, the
conservation of energy principle and the superposition principle dictate that this
expression for U must hold without restriction on the manner or order of the
application of these forces.

5.5 RECIPROCAL RELATION
It is easy to show that the influence coefficient a,, in Eq. (5.8) is equal to the
influence coefficient a,,. In general, a;; = a;. To show this, consider a force F,
applied at point 1, and let &, be the corresponding displacement. The energy
stored is
1 1

U= §F161 = %an R’

since 6, =a,,F,;

Next, apply force F, at point 2. The corresponding deflection at point 2 is a,,F,
and that at point 1 is a,,F,. During this displacement, force F, is fully acting and
hence, the additional energy stored is

1
U, = 2 Fa(axF,) + Fi(aF,)

The total elastic energy stored is therefore

U=U,+U, = la11 F2+ la22 F?+a,, F,F,

2 2
Now, if F, is applied before F;, the elastic energy stored is
, 1 1
U'= S8, F + Fau R +axFiF,

Since the elastic energy stored is independent of the order of application of F;
and F,, U and U’ must be equal. Consequently,

Ay, = ay (5.11a)
or in general
(5.11b)
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The result expressed in Eqg. (5.11b) has great importance in the mechanics of
solids, as shown in the next section.

One can obtain an expression for the elastic strain energy in terms of the
applied forces, using the above reciprocal relationship. From Eq. (5.10)

U= %(Flal 8,4+ +F b))

1
=5 Fi(a;Fy +apF, +. .. +a,F)
1
to g Fo@yFy+apF, +. .. +a,Fp)

1
U= 5 (ay F2+ay,Fr+. .. +a,F?)
1
+ E(alele +apFF+. . +a,FF +..)
1
=5 Z(ay, F12) +Z(a,FFy) (6.12)

5.6 MAXWELL-BETTI-RAYLEIGH RECIPROCAL
THEOREM

Consider two systems of forces F,, F,, . .., and F/, F,, ..., both systems having
the same points of application and the same directions. Let 8,, J,, . . ., be the
corresponding displacements caused by F,, F,, .. ., and J7, 03, ..., the corre-

sponding displacements caused by F/, F;, ..., Then, making use of the recipro-
cal relation given by Eqg. (5.11) we have

F'o,+ Fj6,+...+ F &,
= R'(ayF +aF + ... +a,F)
+F,)(ay,F +a,F, + ... +a,F)
+...+ R (@ F +a,F +. .. +a,F)
=a;,F, K +ayF, F) +a,,F, F/
+ap(R'F+ FF) +a(RF+ FFY)
+...+a,(FF,+ R F) (5.13)

The symmetry of the expressions between the primed and unprimed quantities in
the above expression shows that it is equal to
Fi01 +F,05 +...+ F,6,
ie. Fol+ R, +...=FRo, + K6, + ... (5.14)
In words:
“The forces of the first system (F,, F,, . . ., etc.) acting through the corresponding
displacements produced by any second system (F/ F;, ..., etc.) do the same
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amount of work as that done by the second system of forces acting through the
corresponding displacements produced by the first system of forces’.
This is the reciprocal theorem of Maxwell, Betti and Rayleigh.

5.7 GENERALISED FORCES AND DISPLACEMENTS

In the above discussions, F, F,, . . ., etc. represented concentrated forces and
é,, 0,, . . ., etc. the corresponding linear displacements. It is possible to extend
the term ‘force' to include not only a concentrated force but also a bending
moment or a torque. Similarly, the term 'displacement’ may mean linear or angular
displacement. Consider, for example, the elastic body shown in Fig. 5.3, sub-
jected to a concentrated force F, at point 1 and a couple F, = M at point 2. §,
will now stand for the corresponding linear displacement of point 1 and 6, for
the corresponding angular rotation of point 2. If F; is a unit force acting alone,
then a,,, the influence coefficient, gives the linear displacement of point 1 cor-
responding to the direction of F,. Similarly, a,, stands for the corresponding
linear displacement of point 1 caused by a unit couple F, applied at point 2. a,,
gives the corresponding angular rotation of point 2 caused by a unit concen-

trated force F, at point 1.
The reciprocal relation a,, = a,;, can also be
Fi interpreted appropriately. For example, making
reference to Fig. 5.3, the above relation reveals
that the linear displacement at point 1 in the
direction of F, caused by a unit couple acting
alone at point 2, is equal to the angular rotation
at point 2 in the direction of the moment F,
caused by a unit load acting alone at point 1.
This fact will be demonstrated in the next

S few examples.

With the above generalised definitions for
Y4 forces and displacements, the work done when
the forces are gradually increased from zero to

Fig. 5.3 Generalised forces their full magnitudes is given by

and displacements W= % (Ro + FoSy+..+ Fy5,)
The reciprocal theorem of Maxwell, Betti and Rayleigh can also be given wider
meaning with these extended definitions.

Example 5.1 Consider a cantilever loaded by unit concentrated forces, as shown
in Figs. 5.4(a) and (b). Check the deflections at points 1 and 2.

Fig. 5.4 Example 5.1
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Solution In Fig. 5.4(a), the unit load F, acts at point 1. As a result, the deflec-
tion of point 2 is a,;. In Fig. 5.4(b) the unit load F, acts at point 2 and as a result,
the deflection of point 1 is a;,. The reciprocal relation conveys that these two
deflections are equal. If L is the length of the cantilever and if point 1 is at a
distance of 2L from the fixed end, we have from elementary strength of materials

6, due to F,= deflection at 1 due to F, + deflection due to slope

_ 8’ 4l
8LEI ' 54El

6, due to F, = deflection at 1 due to a unit load at 1 + deflection at 1
due to a moment (L/3) at 1
_ 8’ a4’
81El 54 El

Example 5.2 Consider a cantilever beam subjected to a concentrated force F at
point 1 (Fig 5.5). Let us determine the curve of deflection for the beam.

R

Fig. 5.5 Example 5.2

o~
w
oro

Solution One obvious method would be to use a travelling microscope and
take readings at points 2, 3, 4, etc. These readings would be very small and
consequently, errors would creep in. On the other hand, the reciprocal relation
can be used to obtain this curve of deflection more accurately. The deflection at
2 due to F at 1 is the same as the deflection at 1 due to F at 2, i.e. a,; = a;,.
Similarly, the deflection at 3 due to F at 1 is the same as the deflection at 1 due to
F at 3, i.e. a3, = a;5. Hence, one observes the deflections at 1 as F is moved along
the beam to get the required information.

Example 5.3 The cantilever beam shown in Fig. 5.6(a) is subjected to a bending
moment M =F, at point 1, and in Fig. 5.6(b), it is subjected to a concentrated load
P =F, at point 2. Point 2 is 2/3 L from the fixed end. Verify the reciprocal theorem.

213 L P

i

El
El

Fig. 5.6  Example 5.3
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Solution From elementary strength of materials the deflection at point 2 due to
the moment M at point 1 is

2 2
asz(zq 1 2ML

3 ) 2EI  9EI
The slope (angular displacement) at point 1 due to the concentrated force P at
point 2 is

2 f 1 2pL?

%:Pﬁi 2EI  9EI

Hence, the work done by M through the displacement (angular displacement)
produced by P is equal to

2MPL?

9EI
This is equal to the work done by P acting through the displacement produced by
the moment M.

MQ]_:

Example 5.4 Determine the change in volume of an elastic body subjected to two
equal and opposite forces, as shown. The distance between the points of application
is h and the elastic constants for the

P material are E and v, (Fig. 5.7).

Solution This is a very general
$ problem, the solution of which is ap-

< parently difficult. However, we can

/4 o _get a soluti_on very easily by apply-

ing the reciprocal theorem. Let the

o elastic body be subjected to a hydro-

static pressure of value . Every vol-

ume element will be in a state of

(b) hydrostatic (isotropic) stress. Conse-

Fig. 5.7 Example 5.4 quently, the unit contraction in any
direction from Fig. 5.7(b) is

=9 2,9 _1-21nE&
S—E ZVE @ 21/)E

The two points of application A and B, therefore, move towards each other by a
distance.

Ah=ha—2W%

Now we have two systems of forces:

System 1 Force P
Volume change AV
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System 2 Force o
Distance change Ah
From the reciprocal theorem
P Ah=0c AV
or AV = Lid Ah
o
_ %h 1-2v)

If vis equal to 0.5, the change in volume is zero.

5.8 BEGG’S DEFORMETER

In this section, we shall demonstrate the application of the reciprocal theorem to
a problem in experimental mechanics. Figure 5.8 shows a structural member sub-
jected to a force P at point E. It is required to determine the forces of reaction at
point B. The reaction forces are V, H and M and these make the displacements
(vertical, horizontal and angular) at B equal to zero. A theoretical analysis is quite
difficult for an odd structure like the one shown. The reactions at the other
supports also are such that the displacement at these supports are zero. To determine
V at B we proceed as follows.
P

— F

M } d,
B TN
C
4
Fig. 5.8 Reactions due to force P

A known vertical displacement &5 is imposed at B, keeping A, C, D fixed and
preventing angular rotation and horizontal displacement at B. The corresponding
displacement at E (i.e. displacement in the direction of P) is measured. Let this be o .
During the vertical displacement of B, the forces V’, M’ and H” that are induced at B
are not measured. The two systems involved in the reciprocal theorem are as follows:

System 1  Specified
Forces V, H, M at B (unknown) and other reactive forces
at A, C, D (also unknown), P at E (known)
Corresponding displacements 0, 0, 0 at B; 0, 0, 0 at A, C and D; g, (unknown) at E.

System 2 Experimental
Forces V’, H’, M’ at B (unknown) and other reactive forces at
A, C, D (all unknown); 0 at E (i.e. point E not loaded)
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Corresponding displacements &,, 0, 0 at B; 0, 0, 0 at A, C and D; ¢; at E
Applying the reciprocal theorem

(V-8)+(H-0)+(M-0)+0+(P-&)
=(V'-0)+(H"-0)+(M"-0)+0+(0-4)

5

L

Since &, is the known displacement imposed at B and & is the corresponding

displacement at E that is experimentally measured, the value of V can be deter-

mined. It is necessary to remember that the corresponding displacement & at E is
positive when it is in the direction of P.

To determine H at B, we proceed as above. A known horizontal displacement
&, is imposed at B, with all other displacements being kept zero. The correspond-

ing displacement & at E is measured. The result is

S

%

To determine M at B, a known amount of small rotation 6” is imposed at B,

keeping all other displacements zero. The corresponding displacement &, result-
ing at E is measured. The reciprocal theorem again gives

ie.- V=_p (5.15)

H=-p

5/
M=_p=L
0’

5.9 FIRST THEOREM OF CASTIGLIANO
From Eq. (5.12), the expression for the elastic strain energy is

U= %(aan FanFR e+ ayF2)

+(a AR, +agRF +... +a,RF) +...
In the above expression, F,, F,, etc. are the generalised forces, i.e. concentrated
loads, moments or torques. a,;, a;,, - . . , etc. are the corresponding influence
coefficients. The rate at which U increases with F, is given by éﬂF From the
above expression for U, !
oU
This is nothing but the corresponding displacement at F,, Eq. (5.8). Hence, if o,

stands for the generalised displacement (linear or angular) corresponding to the
generalised force F,, then
oy

Eﬁf:@ (5.16)
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In exactly the same way, one can show that

N N
5':2 = 52, ﬂ—F?’— 53, ..., etc.

That is to say, ‘the partial differential coefficient of the strain energy function
with respect to F, gives the displacement corresponding with F,”. This is Castigliano's
first theorem. In the form derived in Eq. (5.16), the theorem is applicable to only
linearly elastic bodies, i.e. bodies satisfying Hooke's Law (see Sec. 5.15).

This theorem is extremely useful in de-

F, termining the displacements of structures

as well as in the solutions of many stati-

cally indeterminate structures. Several

examples will illustrate these subse-

quently. We can give an alternative proof
for this theorem as follows:

Consider an elastic system in equilib-
rium under the force F,, F,, . . . F,, etc.
(Fig. 5.9). Some of these are concentrated
loads and some are couples and torques.
Let the strain energy stored be U. Now
increase one of the forces, say F,, by
AF, and as a result the strain energy in-
Fig. 5.9  Elastic body in equilibrium  creases to U + AU, where

under forces F,, F,, etc. AU
AU =
AF,

Now we calculate the strain energy in a different manner. Let the elastic system be
free of all forces. Let A F,, be applied first. The energy stored is

%A F. A8,
where A9, is the elementary displacement corresponding to A F,. This is a quan-
tity of the second order which can be neglected since A F,, will be made to tend to
zero in the limit. Next, we put all the other forces, F,, F, , . .. ,etc. These forces by
themselves do an amount of work equal to U. But while these displacements are
taking place, the elementary force AF, is acting all the time with full magnitude at
the point n which is undergoing a displacement &,. Hence, this elementary force
does work equal to A F,, 8,. The total energy stored is therefore

AF,

U +AF, &, +%AFn AS,

Equating this to the previous expression, we get

U+ AALFJ AF, =U + AF, &, +%AFn AS,
n
In the limit, when AF, — 0
oJ

oF, "
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it is important to note that &, is a linear displacement if F,, is a concentrated load,
or an angular displacement if F is a couple or a torque. Further, we must express
the strain energy in terms of the forces (including moments and couples) since it
is the partial derivative with respect to a particular force that gives the corre-
sponding displacement. In the next section, expressions for strain energies in
terms of forces will be obtained.

5.10 EXPRESSIONS FOR STRAIN ENERGY

In this section we shall develop expressions for strain energy when an elastic
member is subjected to axial force, shear force, bending moment and torsion.
Figure 5.10(a) shows an elastic member subjected to several forces. Consider a
section of the member at C. In general, this section will be subjected to three
forces F,, F, and F, and three moments M,, M, and M, (Fig. 5.10(b)). The force F,
is the axial force and forces F, and F, are the shear forces across the section.
Moment M, is the torque T and moments M, and M, are the bending moments
about the y and z axes respectively. Let As be an elementary length of the
member; then when As is very small, we can assume that these forces and
moments remain constant over As. At the left-hand section of this elementary
member, the forces and moments have opposite signs. During the deformation
caused by the axial force F, alone, the remaining forces and moments do no
work. Similarly, during the twist caused by the torque T = M,, no work is as-
sumed to be done (since the deformations are extremely small) by the other
forces and moments.

Consequently, the work done by each of these forces and moments can be
determined individually and added together to determine the total elastic strain
energy stored by As while it undergoes deformation. We shall make use of the
formulas available from elementary strength of materials.

(a) (b)

Fig. 5.10 Reactive forces at a general cross-section
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)

(i)

(iii)

Elastic energy due to axial force: If g, is the axial extension due to F,, then

1
AU = 5 F.0,
1 R
=5 F AEAS
using Hooke's law.
F2
AU = X 5.17
SAE AS (5.17)

A is the cross-sectional area and E is Young's modulus.

Elastic energy due to shear force: The shear force F, (or F,) is distrib-
uted across the section in a complicated manner depending on the
shape of the cross-section. If we assume that the shear force is distrib-
uted uniformly across the section (which is not strictly correct), the
shear displacement will be (from Fig. 5.11) As Ayand the work done by
Fy, will be L

Ay -1
gy Ay AU= 2 F, As Ay
{ ¢ From Hooke's law,
F
T Aj/ =_Y
As AG

where A is the cross-sectional area
and G is the shear modulus. Sub-
stituting this

Fig. 5.11 Displacement due to
shear force

1 I:y
AU == X
> Fy AS G

2

F
or AU=_Y
2AG %

It will be shown that the strain energy due to shear deformation is ex-
tremely small, which is often ignored. Hence, the error caused in assuming
uniform distribution of the shear force across the section will be very
small. However, to take into account the different cross-sections and non-
uniform distribution, a factor k is introduced. With this

kF?
AU = 56 AS (5.18)
A similar expression is obtained for the shear force F,.
Elastic energy due to bending moment: Making reference to Fig. 5.12, if A¢
is the angle of rotation due to the moment M,(or M), the work done is

1



(iv)
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From the elementary flexure formula, we
PN have

z =xm

m

where R is the radius of curvature and I,

is the area moment of inertia about the z
Fig. 5.12 Displacement due  zxis. Hence

to bending moment

- 1w,
Mz or R~
e Z
M

As M
A = —= z
0=R @, A
Substituting this
M 2
AU = —Z- 1
U 2E1, As (5.19)

A similar expression can be obtained for the moment M,.

Elastic energy due to torque : Because of the torque T, the elementary
member rotates through an angle A0 according to the formula for a
circular section

T _ GAd
|p_As

ie. AO = LAs
Gl,

|, is the polar moment of inertia. The work done due to this twist is,
AU:%TAG

T2
2GI,

AS (5.20)

Equations (5.17)—(5.20) give important expressions for the strain energy
stored in the elementary length As of the elastic member. The elastic
energy for the entire member is therefore

. . § F2
(i) Due to axial force U = I X_ds (5.21)
3 2AE
(i) Due to shear f u fkyFi d (522)
ii) Due to shear force )= s .
1 2AG
Sk, F/
s 2AG
. . s M2
(iii) Due to bending moment U, = [ - ds (5.24)
5 2El,
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U= Mg (5.25)
5° £2EIZ S '
. S -I-Z ’
(iv) Due to torque Ug = £2Glp ds (5.26)

Example 5.5 Determine the deflection at end A of the cantilever beam shown in
Fig. 5.13.

Solution The bending moment

-~ X —— . .
at any section x Is

A
B i M = Px
P The elastic energy due to bend-
Fig. 5.13  Example 5.5 ing moment is, therefore, from

Eq. (5.24)

L pRL
2El ~ 6EI

O'—‘

The elastic energy due to shear from Eq. (5.22) is (putting k; = 1)

L p2 2
_Lp P’L
V2= 1286 %~ 2aG

One can now show that U, is small as compared to U,. If the beam is of a
rectangular section

1 3
A: = —
bd, | 12 bd

and 2G=E
Substituting these

U, P?L gbd®

U, 2bdG 12p2 3

d2

212

For a member to be designated as beam, the length must be fairly large com-
pared to the cross-sectional dimension. Hence, L > d and the above ratio is

extremely small. Consequently, one can neglect shear energy as compared to
bending energy. With

6El

we get

Pl
0P T 3EI
which agrees with the solution from elementary strength of materials.

_§A
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Example5.6 For the cantilever of total length L shown in Fig. 5.14, determine
the deflection at end A. Neglect shear energy.

P

i‘ L, - L, Solution The bending energy is
Px) L (Px)2
I / U= il )
’ h A J 2El, X { 2E1, X
Fig. 5.14 Example 5.6 =—Ly4 c-0
6El, ' 6El, ( 1)

_ﬂ_PL’i P (13 3
o= 5P ~3EI, T 3E, (©-1)

Example 5.7 Determine the support reaction for the propped cantilever (Fig.5.15.)

P

Y

>

Fig. 5.15 Example 5.7

Solution The reaction R at A is such that the deflection there is zero. The
energy is

o(-Rx)”  a[-R(b+x)+Px]’
U=JJ SE] dx+£J SE] dx
1 sz3 szz R?a® R%ba?
V=57 T T2
. P?a® PRba® szaE’j
6 2 6

o _ Rb 2. , Ra 2 Pba® Pa®
R - EI[3+Rba+3+Rba > 3j

Equating this to zero and solving for R,

Remembering that a + b = L, the length of cantilever,

il
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Example 5.8 For thestructure shownin Fig. 5.16, what isthe vertical deflection at
end A?

Solution The moment at any section 6 of the
curved part is Pr (1 — cos 0). The bending mo-
ment for the vertical part of the structure is a
constant equal to 2Pr. The bending energy
thereforeis

(2Pr)2

T

T[Pr (1- cos 6?)]2
s o

L
rdg+ |
0

We neglect the energy due to the axia force.

Then
B uo 37P°r 2P°r’L
Fig. 5.16 Example5.8 4 El El
5= M _(3 Pr?
A P (2 nr + 4L Ei

Example5.9 Theend of thesemi-circular member showninFig.5.17, issubjected
to torque T. What is the twist of end A? The member iscircular in section.

Solution  The torque is a mo-
ment in the xy plane and can be
represented by vector T, as
shown. At any section 6, this
vector can be resolved into two
components T cos@ and T siné.
The component T cosf acts as
torque and the component T Sn@
asamoment.

The energy due to torque
is, from Eq. (5.26),

2
@ (b) Plan View U, = I(T;&S@) cdo
Fig. 5.17 Example5.9 o F
_arTe
4Gl
The energy due to bending is, from Eq. (5.24),
_ #(Tsing)’
U2 = JC;T rdo
_ arT?

~ 4El
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I, is the polar moment of inertia. For a circular member
4
_ o] _ 7l
I, =2l =5

Substituting, the total energy is

2
UZ U1+U2:7”;r {L_Fi]

Hence, the twist is

5.11 FICTITIOUS LOAD METHOD

Castigliano's first theorem described above helps us to determine the displace-
ment at a point corresponding to the force acting there. Situations arise where it
may be desirable to determine the displacement (either linear or angular) at a point
where there is no force (concentrated load or a couple) acting. In such situations,
we assume a small fictitious or dummy load to be acting at the point where the
displacement is required. Castigliano's theorem is then applied, and in the final
result, the fictitious load is put equal to zero. The following example will describe
the technique.

Example 5.10 Determine the slope at end A of the cantilever in Fig. 5.18 which
is subjected to load P.

P Solution To determine the

slope by Castigliano's method

L I we have to determine U and

Ay M take its partial derivative with

« respect to the corresponding

force, i.e. a moment. But no

Fig. 5.18 Example 5.10 moment is acting at A. So, we

assume a fictitious moment M

to be acting at A and determine the slope caused by P and M. Since the magnitude of
M is actually zero, in the final result, M is equated to zero.

The energy due to P and M is,

(Px+M)2

T

L
u-]
0

_P?C ML, MPL?
6EI ' 2EI ~ 2EI
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_ AU _ML P

~ OM ~ El ' 2El
This gives the slope when M and P are both acting. If M is zero, the slope due to
P alone is

PL?
=28
If on the other hand, P is zero and M alone is acting the slope is
ML
0= El

Example 5.11 For the member shown in Fig. 5.16, Example 5.8, determine the
ratio of L to r if the horizontal and vertical deflections of the loaded end A are
equal. P is the only force acting.

Solution In addition to the vertical for P at A, apply a horizontal fictitious force
F to the right. The bending moment at section 6 of the semi-circular part is

M; =Pr (1 —cos ) — Frsin 0)
At any section x in the vertical part, the moment is

M, = 2Pr + Fx
Hence,
1 L
U= 2EI j[Prl cosd) - Frsma} rdo+ ﬁi(ZPHFX)
oU r , , 1k
SE = —ﬁg[Pr(l—cosa)— Fr sm6’]sm6’d¢9+Ei(ZPHFx)xdx
and
oul .
e = %= EI j[Pr 1-cos@)sin 6’}d9+ jZPr xdx

~2pr® Prl2 _Pr( .2 2
et e (2 )
From Example 5.8

2

= ITE—"I(%zzr+4L)
Equating 6, to &,

Pr? (3 Pr 2

F(Efrr+4L) Er ( _2r +|_)
or L2_4Lr—r? (3;+2) 0
Dividing by r? and putting % =p

P —4p—(37”+2):o
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4% \[16+4(322+2)]
2

or p=2+4/6+%ﬂ'

5.12 SUPERPOSITION OF ELASTIC ENERGIES

When an elastic body is subjected to several forces, one cannot obtain the
total elastic energy by adding the energies caused by individual forces. In
other words, the sum of individual energies is not equal to the total energy of
the system. The reason for this is simple. Consider an elastic body subjected
to two forces F, and F,. When F, is applied first, let the energy stored be U,.
When F, is applied next (with F; continuing to act), the additional energy
stored is equal to U, due to F, alone, plus the work done by F, during the
displacement caused by F,. Hence, the total energy stored when both F; and
F, are acting is equal to (U, + U, + Us), where U, is the work energy caused by
F, alone, U, is the work energy caused by F, alone, and U, is the energy due
to the work done by F, during the displacement caused by F,. Another way of
observing this is to note that the strain energy functions are not linear func-
tions. Hence, individual energies cannot be added to get the total energy. As
a specific example, consider the cantilever shown in Fig. 5.18, Example 5.10.
Let P and M be actual forces acting on the cantilever, i.e M is not a fictitious
force as was assumed in that example. The elastic energy stored due to P and
M is given by (a), i.e.

P’L>  M?L , MPL?

6EI ' 2EI ' 2EI

The energy due to P alone is

Solving, p=

U=

2L3
2EI 6EI
Similarly, the energy due to M alone is

1 a2 M2L
Obviously, U; + U, is not equal to U. However, if P is applied first and then M,
the total energy is given by U, + U, + work done by P during the displacement
caused by M.
The deflection at the end of the cantilever (where P is acting with full magni-
tude) caused by M is

~_ ML?
0= 2Ei
During this deflection, the work done by P is

ML?
Us = P(zEl j

U, = j(Px) dx =

U2=
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If this additional energy is added to U, + U,, then one gets the previous expres-
sion for U. It is immaterial whether P is applied first or M is applied. The order of
loading is immaterial. Thus, one should be careful in applying the superposition
principle to the energies. However, the individual energies caused by axial force,
bending moment and torsion can be added since the force causing one kind of
deformation will not do any work during a different kind of deformation caused by
another force. For example, an axial force causing linear deformation will not do
work during an angular deformation (or twist) caused by a torque. This is true in
the case of small deformation as we have been assuming throughout our discus-
sions. Similarly, a bending moment will not do any work during axial or linear
displacement caused by an axial force.

5.13 STATICALLY INDETERMINATE STRUCTURE

Many statically indeterminate structural problems can be conveniently solved,
using Castigliano's theorem. The technique is to determine the forces and
moments to produce the required displacement. Example 5.7 was one such prob-
lem. The following example will further illustrate this method.

Example 5.12 A rectangular frame with all four sides of equal cross section is
subjected to forces P, as shown in Fig. 5.19. Determine the moment at section C and
also the increase in the dis-

P T tance between the two points
a of application of force P.
A ”
b Solution The symmetry
conditions indicate that the
2b || L M,

C c top and bottom members
deform in such a manner
that the tangents at the
points of loading remain hori-

\«aal«a ] pr2 zontal. Also, there is no
change in slopes at sections

(a) (b) C-C. Hence, one can con-

Fig. 5.19 Example 5.12 sider only a quarter part of

the frame, as shown in (b).
Considering only the bending energy and neglecting the energies due to direct
tension and shear force, we get

2
tjﬂ ."’[‘(MO—P/ZX) i
o 2Bl 2EI
1 1 p2,3
2EI[M b+MZa- MP2 1 Pa j

Because of symmetry, the change in slope at section C is zero. Hence

o’ _ 1 1
oM, ~ 2EI [ZM0 (a+D) Pa }
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Equating this to zero,
Pa’
Myg= —F——=
" 4(a+b)
To determine the increase in distance between the two load points, we determine

the partial derivative of 4U” with respect to P (assuming that the bottom loaded
point is held fixed).

2.4 2.4 2.3
4 P-a (a+b)—Pa P-a

U=au'=-4
26T | 16(a+b)’ 8(a+h) 12

a_U: Pa3 (a+4b)
OoP  12El (a+bh)

Example 5.13 A thin circular ring of radius r is subjected to two diametrically
opposite loads P in its own plane as shown in Fig. 5.20(a). Obtain an expression for
the bending moment at any section. Also, determine the change in the vertical
diameter.

Fig. 5.20 Example 5.13

Solution Because of symmetry, during deformation there is no change in the
slopes at A and B. So, one can consider only a quarter of the ring for calculation
as shown in Fig. 5.20(c). The value of M, is such as to cause no change in slope
at B. Section at A can be considered as built-in.

Moment at 6=M :gr(l—cosé?)—M0

1 7l 2 p 2
U=-2 [|Pya- _
5E] g [2 r(1-cos ) MO} rdo

Since there is no change in slope at B

7l 2
AN _ 1 L — -
M, =260 !JZ[Zr(l cos 8) Mo}de 0
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7l 2 p
ie. [ [fr(l—cos 6)—M0}d¢9:0
0
; P [z _4\_ T _
ie. 2r(2 1) M02 0
Pr 2
M = — —_——
or 0= 5 (l ”)

P P 2 Pr (2
a 2r(l cosﬁ) 2r(l )_ 2( cosﬁ)

To determine the increase in the diameter along the loads, one has to determine the
elastic energy and take the differential. If one considers the quarter ring, Fig. 5.20(c),
the elastic energy is

7l2 2
* 1 |Pr(2
U=[]_—=—|"+F[&- d
) 2EI[2 (ﬂ cosﬁ)} rdé

The differential of this with respect to (P/2) will give the vertical deflection of the
end B with reference to A. Observe that in order to determine the deflection at B,
one has to take the differential with respect to the particular load that is acting at
that point, which is (P/2). Putting (P/2) = Q.

7l 2 2
ut=_1 [Qr(%—cos&)} rdo

2EI |
= SE | p cos 8| do

0

AT QrP TR g4 2, 4
20 ~ B £ ”2+cos 0 ”cose dé

-2 (s-2-%e-

El \4 ) 2E1\4 =«

As this gives only the increase in the radius, the increase in the diameter is twice
this quantity, i.e.

5.14 THEOREM OF VIRTUAL WORK

Consider an elastic system subjected to a number of forces (including moments)
Fi, Fy ..., etc. Let 8, 6, . . ., etc. be the corresponding displacements. Remember
that these are the work absorbing components (linear and angular displacements)
in the corresponding directions of the forces (Fig. 5.21).

Let one of the displacements 8, be increased by a small quantity Aé,. During
this additional displacement, all other displacements where forces are acting are
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held fixed, which means that additional
forces may be necessary to maintain
such a condition. Further, the small
displacement A¢, that is imposed must be
consistent with the constraints acting. For
example, if point | is constrained in such a
manner that it can move only in a particu-
lar direction, then A, must be consistent
with such a constraint. A hypothetical
displacement of such a kind is called a
virtual displacement. In applying this vir-
tual displacement, the forces F,, F,, . . .,
etc. (except F,) do no work at all because
Fig. 5.21 Generalised forces and  their points of application do not move
displacements (at least in the work-absorbing direction).
The only force doing work is F; by an
amount F, A9, plus a fraction of AF; A§,, caused by the change in F;. This
additional work is stored as strain energy AU. Hence

AU = F, A8, + k AF, A§,

or AU _E kAR
AS
and Lt AY_ au (5.27)

A o0AS, a

This is the theorem of virtual work. Note that in this case, the strain energy must
be expressed in terms of g, 9,, . . ., etc. whereas in the application of Castigliano's
theorem U had to be expressed in terms of F,, F,, . . ., etc.

It is important to observe that in obtaining the above equation, we have not
assumed that the material is linearly elastic, i.e. that it obeys Hooke's law. The
theorem is applicable to any elastic body, linear or nonlinear, whereas Castigliano's
first theorem, as derived in Eq. (5.16), is strictly applicable to linear elastic or
Hookean materials. This aspect will be discussed further in Sec. 5.15.

Example5.14 Threeelastic members AD, BD and CD are connected by smooth
pins, as shown in Fig. 5.22. All the members have the same cross-sectional
areas and are of the same material. BD is 100 cm long and members AD and CD
are each 200 cm long. What is the deflection of D under load W?

Solution Under the action of load W, it is possible for D to move vertically and
horizontally. If §, and o, are the vertical and horizontal displacements, then
according to the principle of virtual work.

oU oJU
== =W, ===0
2 s,
where U is the total strain energy of the system.
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A
N
B D
w
C
(a) (b) (c) (d)

Fig. 5.22 Example 5.14

Becacse of 9;, BD will not undergo any changes in length but AD will extend by
6, cosf and CD will contract by the same amount, From Fig. (a),

cos 0= @

Because of &,, BD will extend by 9, and AD and CD each will extend by %62.
Hence, the total extension of each member is

AD extends by = (\f 5 + 52) cm

BD extends by 52 cm

CD extends by %(— V36, + 5, ) em

To calculate the strain energy, one needs to know the force-deformation equation
for the non-Hookean members. This aspect will be taken up in Sec. 5.17, and
Example 5.17. For the present example, assuming Hooke's law, the forces in the
members are (with 6 as corresponding extensions)

in AD: B9 _ g1 (f51+52)

L 200
in BD: 28BS _ 1
in = = aEd, — 100
: . aEo
in CD.T ( f51+52)200

The total elastic strain energy taking only axial forces into account is

P2L _aE 1
U=2>7€" 7[800(\f§1+§2) * 100 %
1 2
+%(—\/§51+52)}
—aE(—5 —52)
800 ' 160 2
oJ _ 3aE

N 651_4_0051
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AN _&E ¢
a5, 80 2
Hence, 9, is zero, which means that D moves only vertically under W and the
value of this vertical deflection 6, is

400
5 =2V
! SaEW

and 0=

5.15 KIRCHHOFF'S THEOREM

In this section, we shall prove an important theorem dealing with the uniqueness of
solution. First, we observe that the applied forces taken as a whole work on the body
upon which they act. This means that some of the products F,, §, etc. may be negative
but the sum of these products taken as a whole is positive. When the body is elastic,
this work is stored as elastic strain energy. This amounts to the statement that U is an
essentially positive quantity. If this were not so, it would have been possible to extract
energy by applying an appropriate system of forces. Hence, every portion of the body
must store positive energy or no energy at all. Accordingly, U will vanish only when
every part of the body is undeformed. On the basis of this and the superposition
principle, we can prove Kirchhoff's uniqueness theorem, which states the following:

An elastic body for which displacements are specified at some points and
forces at others, will have a unique equilibrium configuration.

Let the specified displacements be &,, 6,, . . ., 6, and the specified forces be F,,
F. .. .F, Itis necessary to observe that it is not possible to prescribe simulta-
neously both force and displacement for one and the same point. Consequently,
at those points where displacements are prescribed, the corresponding forces are

F/, F;, ..., F/ and at those points where forces are prescribed, the correspond-
ing displacement are &;, &, ..., J, . Letthis be the equilibrium configuration. If
this system is not unique, then there should be another equilibrium configuration
in which the forces corresponding to the displacements 6,, 6,, . . ., &, have the
values R, F,', ..., F" and the displacements corresponding to the forces F,, F,,
..., F, have the values &, ¢/, ..., o,. We therefore have two distinct systems.
First System Forces R, F,...F, F, F,...., F,
Corresponding o, O, ..., 6 O, &,.... O
displacements
Second System Forces F., F...FK F F... F,
Corresponding
displacements o, O, ..., 6 S8 &, ... O,

We have assumed that these are possible equilibrium configurations. Hence, by
the principle of superposition the difference between these two systems must
also be an equilibrium configuration. Subtracting the second system from the first,
we get the third equilibrium configuration as

Forces (R-R").(R-F)..., (R -F"); 0, 0, ey 0
Corresponding
displacements 0, 0 e, 0 G =60) (=) .y (Gn—=67)
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The strain energy corresponding to the third system is U = 0. Consequently the
body remains completely undeformed. This means that the first and second
systems are identical, i.e. there is a unique equilibrium configuration.

5.16 SECOND THEOREM OF CASTIGLIANO
OR MENABREA'S THEOREM

This theorem is of great importance in the solution of redundant structures or
frames. Let a framework consist of m number of members and j number of joints.
Then, if

M>3j-6

the frame is termed a redundant frame. The reason is as follows. For each joint,
we can write three force equilibrium equations (in a general three-dimensional
case), thus giving a total of 3j number of equations. However, all these equation
are not independent, since all the external forces by themselves are in
equilibrium and, therefore, satisfy the three force equilibrium equations and
the three moment equilibrium equations. Hence, the number of independent
equations are 3j — 6 and if the number of members exceed 3j — 6, the frame is
redundant. The number

N=m-3j+6

is termed the order of redundancy of the framework. If the skeleton diagram lies
wholly in one plane, the framework is termed a plane frame. For a plane framework,
the degree of redundancy is given by the number
N=m-2j+3

Castigliano's second theorem (also known as Menabrea's theorem) can be stated
as follows:

The forces developed in a redundant framework are such that the total elastic
strain energy is a minimum.

Thus, if F,, F, and F, are the forces in the redundant members of a framework
and U is the elastic strain energy, then

J oJ _

ﬁ_Fl = O, 5_F2_O'”.

oU

: aFrzo

This is also called the principle of least work and can be proven as follows:

Let r be the number of redundant members. Remove the latter and replace their
actions by their respective forces, as shown in Fig. 5.23(b). Assuming that the
values of these redundant forces F,, F,, . . ., F, are known, the framework will
have become statically determinate and the elastic strain energy of the remaining
members can be determined. Let U be the strain energy of these members. Then
by Castigliano's first theorem, the ‘increase’ in the distance between the joints a
and b is given as

ay

"o s
= o (5.28)
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a a
(a) (b)

Fig. 5.23 (a) Redundant structure (b) Structure with redundant member removed

The negative appears because of the direction of F;. The reactive force on the
redundant members ab being F;, its length will increase by

8= - (5.29)

1 I

where |, is the length and A, is the sectional area of the member. The increase in
the distance given by Eq. (5.28) must be equal to the increase in the length of the
member ab, given by Eq. (5.29). Hence

aUs FI Ii
s o i 5.30
i A E 530)
The elastic strain energies of the redundant members are
— F|2 Il _ F22 |2 U = Fr2 Ir
" 2AE T2 2AE,T T 2AE
Hence, the total elastic energy of all redundant members is
R F2 1 F2 1
U+Uy+...U =11 R Rl
LTt S TN E, T2A,E, T 2AE,
o F I
é’_E(Ul +U2 +...+Ur):ﬁ

since all terms, other than the ith term on the right-hand side, will vanish when
differentiated with respect to F;. Substituting this in Eq. (5.30)

aJy o B
_a_Fi_ﬁFi (U1+U2 +...+Ur)—0
or i(U +U, +...+U, +U)=0
aFi 1 2 r S

The sum of the terms inside the parentheses is the total energy of the entire
framework including the redundant members. If U is this total energy

oJ

oF,
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Similarly, by considering the redundant members one-by-one, we get

oJ oJ o
=0, =—==0,...,——=0 .
é’Fl R, JF, (5:31)

This is the principle of least work.

Example 5.15 The framework shown in Fig. 5.24 contains a redundant bar. All
the members are of the same section and material. Determine the force in the
horizontal redundant member.

Solution Let T be the tension in the mem-

E 2P ber AB. The forces in the members are
50°l60° Members Length Force
c | D AB 23 h 4T
F 600 h AC, BD h T/\/§—P
60°
A 5 Y AFBF 2h ~2T/3+0
P P CF, DF J3h -T+P3
Fig. 5.24 Example 5.15 CE. DE oh 2T/\/§—2P
FE h —21/\3+0
The total strain energy is
2 2
U= 2 T 2PT ), 16T
ZEA{ZIT +2{P +3 el 73
+243(T% +3P% - 2PT \3)
T pz _2PT) 4T%
+16{ 3 +P NE j+ 3 }
The condition for minimum strain energy or least work is
o _o _ _h £_£ 32T
=0 = 2EA{ 43T + N +4+/3T
1pp 4 32T 32 8T
12P +=5 7 P+ 3}
4 32 32 . 8\_pl 4 32
T(4«/§+3+ 3 +4/3 + 3 +3)_P[\/§+12+\/§j
9(\/§+1)
or P

T 6y3+19
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Example 5.16 A cantilever is supported at the free end by an elastic spring
of spring constant k. Determine the reaction at A (Fig. 5.25). The cantilever beam
is uniformly loaded. The intensity of
w loading is W.
R TR ERRY
= Solution Let R be the unknown reac-
Fig.5.25 Example 5.16 tion at A,_ i.e.Ris th_e force on the_sprlng.
The strain energy in the spring is

lps=igrR_R°
U, = 5 RO = > R =
where g is the deflection of the spring. The strain energy in the beam is

LM?2 dx

Y =£ 2El
L(RX—WX2/2)2 dx

:£ 2EI

_1(lp2y3, 1 2,5 1 4
_EI(GRL+4OWL 8RWL)

Hence, the total strain energy for the system is

_ _R* 1 (1,23, 1 .25 1 4
U—U1+U2—2k+EI(6R L+4OWL 8RWL

From Castigliano's second theorem

A _R 1 (1lps 1.4)_
oR k+EI(3RL 8WL) 0
3Bkl

N 8(3E| + kL3)

5.17 GENERALISATION OF CASTIGLIANO'S THEOREM
OR ENGESSER'S THEOREM

It is necessary to observe that in developing the first and second theorems of
Castigliano, we have explicitly assumed that the elastic body satisfies Hooke's
law, i.e. the body is linearly elastic. However, situations exist where the defor-
mation is not proportional to load, though the body may be elastic. Consider the
spring showns in Fig. 5.26(a), whose load—displacement curve is as given in
Fig. 5.26(b).

The spring is a non-linear spring. Consider the area of OBC which is the strain
energy. It is represented by

U= TF dx (5.32)
0
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Hence du _ F
dx

’3 This is the principle of virtual

%NVW\AN‘—» AF work, discussed in Sec. 5.14, and
F ? is applicable whether the elastic

member is linear or non-linear.

Now consider the area OAB. It is
represented by

o »\A | < c X U F (533)
X *= [xdF .
(a) (b) g

Fig. 5.26 (a) Non-linear spring; (b) Non- This is termed as a complementary
linear load-displacement curve energy. Differentiating the comple-
mentary energy with respect to F

yields

du*

= 34
aF X (5.34)

This gives the deflection in the direction of F. If we compare with Castigliano's
first theorem (Eqg. 5.16), we notice that to obtain the corresponding deflection, we
must take the derivative of the complementary energy and not that of the strain
energy. When a material obeys Hooke's law, the curve OB is a straight line and
consequently, the strain energy and the complementary strain energy are equal
and it becomes immaterial which one we use in Castigliano's first theorem. The
expression given by Eq. (5.34) represents Engesser's theorem.

Consider as an example an elastic spring the force deflection characteristic of
which is represented by

F=ax"
where a and n are constants.
The strain energy is

X X
U= _ n\n " 1 n+1
{)Fdx ga(x) dx’ = ax
The complimentary strain energy is
E F F 1/n
U* = jxdF:j(—) dF
0 0\ @

1 n @wn)

alln . n+1
From these v _ ax"=F
dx
dU* — 1 . Fl/n =X
dF al/n
Further, expressing U in terms of F, we get

1 1 n+1
U= _+ . 4 . 1/n
n+1 a|:a1/n F :l
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d_U _ l(E 1/n :lx

dF nla n

and this does not agree with the correct result. Hence the principle of virtual

work is valid both for linear and non-linear elastic material, whereas to obtain

deflection using Castigliano's first theorem, we have to use the complementary

energy U* if the material is non-linear. If it is linearly elastic, it is immaterial
wheather we use U or U*, since both are equal.

Example 5.17 Consider Fig. 5.27, which shows two identical bars hinged together,
carrying a load W. Check Castigliano's first theorem, using the elastic and comple-
mentary strain energy.

Fig. 5.27 Example 5.17
Solution When C has displacement CC, = &, we have from the figure for small o,

tan ¢ ~sin a = S/l
If F is the force in each member, a the cross-sectional area and ¢ the strain, then

F=_W W
2sina 26

[ 2 2
and &= &zlﬁ
I 22
Also = LZLI
aE 20aE
Equating the two strains
w52
20aE 212
U3
w
o=1|=
or (Ea)

i.e. the deflection is not linearly related to the load.
The strain energy is

)]f3

s
U= |Wdo =
£ (aE
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U 4lw¥3

W 3(aE)”

Hence, Castigliano's first theorem applied to the strain energy, does not yield the
deflection 6. This is so because the load defection equation is not linearly related.
If we consider the complementary energy,

w
|
U*=|[ddW =
'c[ (Ea)ll3
3|W4/3
- 4(Ea)”®
U ﬂm_
oW I(Ea) =0

w
[w? dw
0

Hence, Engesser's theorem gives the correct result.

5.183 MAXWELL-MOHR INTEGRALS

Castigliano's first theorem gives the displacement of points in the directions of
the external forces where they are acting. When a displacement is required at a

Fig. 5.28 A general structure under
load P

Lo
3

Fig. 5.29 Moments and forces across
a general section

point where no external force is acting, a
fictitious force in the direction of the re-
quired displacement is assumed at the
point, and in the final result, the value
of the fictitious load is considered equal
to zero. This technique was discussed
in Sec. 5.11. In this section, we shall de-
velop certain integrals, which are based
on the fictitious load techniques.

Consider the determination of the ver-
tical displacement of point A of a struc-
ture which is loaded by a force P, as
shown in Fig. 5.28. Since no external force
is acting at A in the corresponding direc-
tion, we apply a fictitious force Q in the
corresponding direction at A. In order to
calculate the strain energy in the elastic
member, we need to determine the
moments and forces across a general
section. This is shown in Fig. 5.29.

At any section, the moments and
forces of reaction are caused by the
actual external forces plus the fictitious
load Q. For example, about the x axis we
have

Fx=Fp + Fyq,
My = Myp + Mg
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where F,p is caused by the actual external forces, such as P, and F, is due to the
fictitious load Q. It is essential to observe that the additional force factors, such
as Fyq, M,q, etc. are directly proportional to Q. If Q is doubled, these factors also
get doubled. Hence, one can write these as F,,Q, M,,Q, etc. where F,;, M,, etc.
are the force factors caused by a unit fictitious generalised force. Consequently,
the force factors due to the actual loads and fictitious force are

Fy=Fp+FaQ, M, =M;p + M,,Q
F=Fp+FuQ  M,=Mg+M,Q (5.35)
F,=Fp+F,Q, M, =M, +M,,Q

Note that in Fig. 5.29 while M, acts as a torque, M, and M, act as bending

moments. These force factors vary from section to section. The total elastic
energy is

2
- J(Mxp + M, Q) ds N (Myp +M,,Q)" ds
|

2Gl, ! 2EI,

(Myp + M, Q) ds +I(F +FQ) d
2EL 2EA

2
ky(FyP + Fle) ds+jk . (Fe +F1Q)
2GA 2GA

|
Differentiating the above expression with respect to Q and putting Q =0

ﬂ J‘ MxP Mxl ds MVP Myl ds

aQQ:O | X .I[ Ely

5A:

Mp M, ds Fp F,ds
+J‘ ZPEI 71 +J‘ xPEz\l

| z |

ky FYP F dS kz FZP le ds

J;GA 'I[GA

(5.36)

If the fictitious force Q is replaced by a fictitious moment or torque, we get the
corresponding deflection 6,.

These sets of integrals are known as Maxwell-Mohr integrals. The above
method is sometimes known as the unit load method. These integrals can be used
to solve not only problems of finding displacements but also to solve problems
connected with plane thin-walled rings. The above set of equations is generally
written as

My ds+j EI Z ds

kF F. E
+Ij EAX ds + VG’;_\ Lds+| GZA Z ds (5.37)
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where M,, My,. .., M, are the force factors caused by a generalised unit ficti-
tious force applied where the appropriate displacement is needed.

Example 5.18 Determine by what amount the straight portions of the ring are
bought closer together when it is loaded, as shown in Fig. 5.30 consider only the
bending energy.

Solution Consider one quarter of
the ring. The unknown moment
M, is the redundant unknown
generalised force. Owing to symme-
try, there is no rotation of the sec-
tion at point A. To determine the
x  rotation, we assume a unit moment in
the same direction as M,. The mo-
ment due to this fictitious unit
moment at any section is M.
M at any section in quadrant =
agq.a(l-cos¢)—M,;
M at any section in quadrant = —1
M at any section in the top
horizontal member = aq (a + x)
—gx%2 - M,
M at any section in the top
horizontal member = -1

Fig. 5.30 Example 5.18

712 _aq(1- cos ¢) + M aag(a+x)-ax’/2—M
0, = 1 _ 1
A .(‘; El ad¢ J(; El dx

- _a%qZ+1L Z )=
or ElG, = aq(2+3)+M1a(2+1) 0

3r+2
M, = a’q——-_~0.74 a°
! q3(7r+2) q

This is the value of the redundant unknown moment. To determine the vertical
displacements of the midpoints of the horizontal members, we apply a fictitious
force P; =1 in an upward direction at point A of the quarter ring. Because of this

M at any section in quadrant = —a (1 — cos ¢)
M at any section in top horizontal part = —(a + x)
Hence, the vertically upward displacement of point A is

5 < 712 a%q(1-cos ¢ —0.74) (1- cos ¢)
S El

0
[aq (a+x)- % qx? — 0.74a2qJ(a +X)
- £l dx

dg

+

O —
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~0.86a'q
~ El
Hence, the two horizontal members approach each other by a distance equal to

2(0.86)aq _

4
agq
£l 1.72 £l

Example5.19 Athinwalledcircular ringisloaded asshowninFig.5.31. Determine
the vertical displacement of point A. Take only the bending energy.

y

(b) (c)
Fig. 5.31 Example 5.19

Solution Because of symmetry, we may consider one half of the ring. The reac-
tive forces at section A are F; and M. Because of symmetry, section A does not
rotate and also does not have a horizontal displacement. Hence in addition to M,
and F;, we assume a fictitious moment and a fictitious horizontal force, each of
unit magnitude at section A.

The moment at any section ¢ due to the distributed loading q is

¢
M, = [qrdér (sin ¢ —sin 6) =qr? (g sin ¢ + cos ¢ — 1)
0

M at any section ¢ with distributed loading F, and M, is
M = qr? (¢ sing + cosg — 1) + M, + F,r (1 — cos¢)
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M at any section ¢ due to the unit fictitious horizontal force is
VM = r(l — COS ¢)

O = EI jr [qr (¢sin ¢ +cos g —1)

+M, + Rr (1-cos ¢) | (1-cos ¢)dg

2
=L ( qr +7rM1+F1r37”)
Since this is equal to zero, we have
3 1 2
My +2 Fr = g ar (5.38)
M at any section ¢ due to unit fictitious moment is
M =1
I Vs
0, = E_g [qr (psing+cosg—1)+ M, + Rr(1- cos¢)] ¢
=5 (7rM + F1r7r)
Since this is also equal to zero, we have
M, +F;r=0 (5.39)
Solving Egs (5.38) and (5.39)
2
r r
1= _qT and F :q7

To determine the vertical displacement of A we apply a fictitious unit force P; =1
at A in the downward direction.

M at any section ¢ due to P, = 1 is r sing

r? [qr (¢sing+ cosg—1) + My + Rr (1-cos ¢) |sing dg

Example5.20 Figure5.32 showsacir-
cular member in its plan view. It carries
a vertical load W at A perpendicular to
the plane of the paper. Taking only
bendng and torsional energies into ac-
count, determine the vertical deflection
of the loaded end A. The radius of the
’ member is R and the member subtends an
Vertical Load W angle o at the centre.

Fig. 5.32 Example 5.20
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Solution At section C, the moment of the force about x axis acts as bendng
moment M and the moment about y axis acts as torque T. Hence,

M =Wx AD =WR sinf
T=WxDC=WR(1- cosb)
a 1 . 2 [24 1 2
U= (j) 5= (WRsino) Rd9+£ ﬁ[\/\/R(l—cose)] Rdo
When the load W is gradually applied, the work done by W during its vertical
deflection is % W 8, and this is stored as the elastic energy U. Thus,

2ws, = E%(\/\/Rsine)Z Rd6+E%[WR(1_COSQ)}2RdH
or oy = [ZEI (a—%sm 2a)+é(ga+%sin2a—25inaﬂ
Thisis the same as JU/JW.
I
Problems

51 Aload P =6000 N acting at point R of a beam shown in Fig. 5.33 produces
vertical deflections at three points A, B, and C of the beam as

Sp=3cm dg=8cm dc=5cm
Find the deflection of point R when the beam isloaded at points, A, B and C by

P, = 7500 N, Pg = 3500 N and P, = 5000 N.
[Ans. 12.6 cm (approx.)]

iP
& A R B c

Fig. 5.33 Problem 5.1

5.2 For the horizontal beam shown in Fig. 5.34, avertical displacement of 0.6 cm of
support B causes areaction R, = 10,000 N at A. Determine the reaction R, at B
due to a vertical displacement of 0.8 cm at support A. [Ans. R,=13,333N]

A B C D

Y

<30 cm—>{=<30 cm < 60 cm
Fig. 5.34 Problem 5.2
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53 A closed circular ring made of inextensible material is subjected to an
arbitrary system of forces in its plane. Show that the area enclosed by the
frame does not change under this loading. Assume small displacements
(Fig. 5.35).

Hint: Subject the ring to uniform internal pressure. Since
the material is inextensible, no deformation occurs.
Now apply the reciprocal theorem.

\?

F,
F3
Fig. 5.35 Problem 5.3

54 Determine the vertical displacement of point A for the structure shown in
Fig. 5.36. All members have the same cross-section and the same rigidity

o [Ans. o =pi(7+ 4\/5)}

~ | ———~——— | ——]

A W
W

Fig. 5.36 Problem 5.4
55 Determine the rotation of point C of the beam under the action of a couple

M applied at its centre (Fig. 5.37). [ M1 }

Ans. @ = ﬁ

A e B

Fig. 5.37 Problem 5.5
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56 What is the relative displacement of points A and B in the framework shown?
Consider only bending energy (Fig. 5.38).

Pa® Pazb}

P [Ans Onpg = +
p }—a/Q—H 6EI © 2El
I
P

b

!

5.7 What is the relative displacement of points A and B when subjected to
forces P. Consider only bending energy (Fig. 5.39).

e

Fig. 5.38 Problem 5.6

[Ans. e =37 %}

A B
P P

Fig. 5.39 Problem 5.7

5.8 Determine the vertical displacement of the point of application of force P.
Take all energies into account. The member is of uniform circular cross-

section (Fig. 5.40).
3 3
_ ah 2h a ka b
{A”S' On _ZP[3EI 2El T 2GI, | AG 2AEH

~a

T

o«

Fig. 5.40 Problem 5.8
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59 What are the horizontal and vertical displacements of point A in
Fig. 5.41. Assume AB to be rigid.

17Ph . 1.73Ph
[Ans. oy = EA 1Oy = EA }

Fig. 5.41 Problem 5.9

510 Determine the vertical displacement of point B under the action of W. End B
is free to rotate but can move only in a vertical direction (Fig. 5.42).

_Wa’ (371
{A”S' %="E| [4 97z+8ﬂ

w
Fig. 5.42 Problem 5.10

511 Two conditions must be satisfied by an ideal piston ring. (a) It should be
truly circular when in the cylinder, and (b) it should exert a uniform pressure
all around. Assuming that these conditions are satisfied by specifying
the initial shape and the cross-section, show that the initial gap width must be
3rpr/El, if the ring is closed inside the cylinder. p is the uniform pressure
per centimetre of circumference. El is kept constant.

512 For the torque measuring device shown in Fig. 5.43 determine the stiffness
of the system, i.e. the torque per unit angle of twist of the shaft. Each of the springs
has a length | and moment of inertia | for bending in the plane of the

moment.
o 42
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Fig. 5.43 Problem 5.12

513 A circular steel hoop of square cross-section is used as the controlling
element of a high speed governor (Fig. 5.44). Show that the vertical deflec-
tion caused by angular velocity w is given by

B 2p w2r5
o= E
where r is the hoop radius, t the thickness of the section and p the weight
density of the material.

Free to Slide
Fig. 5.44 Problem 5.13

5.14 A thin circular ring is loaded by three forces P as shown in Fig. 5.45. Deter-
mine the changes in the radius of the ring along the line of action of the
forces. The included angle between any two forces is 2o and A is the cross-
sectional area of the member. Consider both bending and axial energies.

3 ( ) (
{Ans. ﬂLcotﬂ+ @ 1, PR (cota+

(04
__+ —_—
261 (' 2" Jgint s w) TUEA s o)

Fig. 5.45 Problem 5.14
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5.15 For the system shown (Fig. 5.46) determine the load W necessary to cause a
displacement & in the vertical direction of point O. a is the cross-sectional
area of each member and I is the length of each member. Use the principle

of virtual work.

[Ans.W = %5}
A w B
(0]
C

Fig. 5.46  Problem 5.15

516 In the previous problem determine the force in the member OC by

Castigliano's second theorem. [Ans. 2W/3]
5.17 Using Castigliano's second theorem, determine the reaction of the vertical
support C of the structure shown (Fig. 5.47). Beam ACB has Young's modu-
lus E and member CD has a value E'. The cross-sectional area of CD is a.

4 '
ARS. 5wl”aE
4(6EIh+qE’ °)

/ | I 5
| wiunit length ‘
AT Y Y Y Y Y Y YYYYYYg

TR IR
h

ip

TR

Fig. 5.47 Problem 5.17

‘ b

518 A pin jointed framework is supported at A and D and it carries equal loads
W at E and F. The lengths of the members are as follows:
AE=EF=FD=BC=a
BE=CF=h
BF=CE=AB=CD=1=(a?+h?2
The cross-sectional areas of BF and CE are A, each, and of all the other
members are A, each. Determine the tensions in BF and CE.

WA, Ih?
'Al(as + h3)+ AR

Ans



Energy Methods 187

Fig 5.48 Problem 5.18

519 A ring is made up of two semi-circles of radius a and of two straight
lines of length 2a, as shown in Fig. 5.49. When loaded as shown, deter-
mine the change in distance between A and B. Consider only bending

energy: 6177 - 67> ga*
Ans,—— 2T A8
12(2+7) EI

520 Determine reaction forces and moments at the fixed ends and also the verti-
cal deflection of the point of loading. Assume G = 0.4E (Fig. 5.50).

Ans. M =%;T —0.387 Pa
_q711 P2
s=orufe

SARAAAREAA 7

Fig. 5.49 Problem 5.19 Fig. 5.50 Problem 5.20

521 A semi-circular member shown in Fig. 5.51 is subjected to a torque T at A.
Determine the reactive moments at the built-in ends B and C. Also deter-
mine the vertical deflection of A.

T

T
Ans.M =—:; Torque = — —
g oraue=—go

_RT (97 1 _
®_SH(4+ﬁ ﬂ
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Fig. 5.51 Problem 5.21

522 In Example 5.12 determine the change in the horizontal diameter



CHAPTER

Bending of Beams 6

6.1 INTRODUCTION

In this chapter we shall consider the stresses in and deflections of beams having
a general cross-section subjected to bending. In general, the moments causing
bending are due to lateral forces acting on the beams. These lateral forces, in
addition to causing bending or flexural stresses in transverse sections of the
beams, also induce shear stresses.

Flexural stresses are normal to the section. The effects of transverse shear
stresses will be discussed in Sec. 6.4—6.6. Because of pure bending moments, only
normal stresses are induced. In elementary strength of materials only beams hav-
ing an axis of symmetry are usually considered. Figure 6.1 shows an initially
straight beam having a vertical section of symmetry and subjected to a bending
moment acting in this plane of symmetry.

Fig. 6.1 Beam with a vertical section of symmetry subjected to bending

The plane of symmetry is the xy plane and the bending moment M, acts in this
plane. Owing to symmetry the beam bends in the xy plane. Assuming that the
sections that are plane before bending remain so after bending, the flexural stress
o, is obtained in elementary strength of materials as

M
o, =— My 6.2)
IZ
The origin of the co-ordinates coincides with the centroid of the cross-section
and the z axis coincides with the neutral axis. The minus sign is to take care of the
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sign of the stress. A positive bending moment M,, as shown, produces a com-
pressive stress at a point with the positive y co-ordinate. |, is the area moment of
inertia about the neutral axis which passes through the centroid. Further, if E is
the Young's modulus of the beam material and R the radius of curvature of the
bent beam, the equations from elementary strength of materials give,

M,__ox_E 6.2)

I, y R
The above set of equation is usually called Euler—Bernoulli equations or Navier—
Bernoulli equations.

6.2 STRAIGHT BEAMS AND ASYMMETRICAL BENDING

Now we shall consider the bending of initially straight beams having a uniform
cross-section. There are three general methods of solving this problem. We shall
consider each one separately. When the bending moment acts in the plane of
symmetry, the beam is said to be under symmetrical bending. Otherwise it is said
to be under asymmetrical bending.

Method 1 Figure 6.2 shows a beam subjected to a pure bending moment M,
lying in the xy plane. The moment is shown vectorially. The origin O is taken at
the centroid of the cross-section. The x axis is along the axis of the beam and the
z axis is chosen to coincide with the moment vector. It is once again assumed that
sections that are plane before bending remain plane after bending. This is usually
known as the Euler—Bernoulli hypothesis. This means that the cross-section will
rotate about an axis such that one part of the section will be subjected to tensile
stresses and the other part above this axis will be subjected to compression.
Points lying on this axis will not experience any stress and consequently this axis
is the neutral axis. In Fig. 6.2(b) this is represented by BB and it can be shown
that it passes through the centroid O. For this, consider a small area AA lying at a
distance y’ from BB. Since the cross-section rotates about BB during bending, the
stretch or contraction of any fibre will be proportional to the perpendicular dis-
tance from BB, Hence, the strain in any fibre is

g

/

& =Ky

Fig. 6.2 Beam with a general section subjected to bending
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where k" is some constant. Assuming only o, to be acting and o, = o, = 0, from
Hooke's law,

o, =KEy =ky (6.3)
where k is an appropriate constant. The force acting on AA is therefore,
AR, =ky AA

For equilibrium, the resultant normal force acting over the cross-section must be
equal to zero. Hence, integrating the above equation over the area of the section,

k[[y' dA =0 (6.4)

The above equation shows that the first moment of the area about BB is zero,
which means that BB is a centroidal axis.

It is important to observe that the beam in general will not bend in the plane of
the bending moment and the neutral axis BB will not be along the applied moment
vector M,. The neutral axis BB in general will be inclined at an angle S to the y
axis. Next, we take moments of the normal stress distribution about the y and z
axes. The moment about the y axis must vanish and the moment about the z axis
should be equal to —M,. The minus sign is because a positive stress at a positive
(y, ) point produces a moment vector in the negative z direction. Hence

[[oy,zdA=][ky'zdA =0 (6.5a)
Ly

C z [[ oy dA =[[ky’y dA = -M, (6.5b)

y’ can now be expressed in terms of y and z
y coordinates (Fig. 6.3) as
B y=CF - DF
=ysinf-zcosf
Substituting this in Egs (6.5)
B ; 2
k zsin B—z°cos B)dA=0

Fig. 6.3 Location of neutral 'U(y P P

axis and distance y’ of  and k[ (y* sin B —yz cos ) dA = -M,

point C from it

N
N/
o I/
o
w
=

i.e. ly, sin B—1,cos B=0 (6.6a)
and k(l,, cos B—1,sin B) =M, (6.6b)
From the first equation
tanf = I_V (6.7)
IVZ
This gives the location of the neutral axis BB.
Substituting for k from Eq. (6.6b) in Eq. (6.3)
o M, (ysin g—z (?osﬂ)
I, cos B—1,sin g
_ Yytnpg-z
l, -1, tan g *
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Substituting for tan B from Eq. (6.7),

yly -zl

o, = (68)

12, -1,
The above equation helps us to calculate the normal stress due to bending. In
summary, we conclude that when a beam with a general cross-section is sub-
jected to a pure bending moment M,, the beam bends in a plane which in general
does not coincide with the plane of the moment. The neutral axis is inclined at
an angle S to the y axis such that tan g =1,/1,. The stress at any point (y, z) is
given by Eq. (6.8).

Method 2 we observe from Eq. (6.7) that = 90° when I, =0, i.e. if the y and
z axes happen to be the principal axes of the cross-section. This means that if the
y and z axes are the principal axes and the bending moment acts in the xy plane
(i.e. the moment vector M, is along one of the principal axes), the beam bends in
the plane of the moment with the neutral axis coinciding with the z axis. Equation
(6.8) then reduces to

This is similar to the elementary flexure formula which is valid for symmetrical
bending. This is so because for a symmetrical section, the principal axes coincide
with the axes of symmetry. So, an alternative method of solving the problem is to
determine the principal axes of the section; next, to resolve the bending moment
into components along these axes, and then to apply the elementary flexure for-
mula. This procedure is shown in Fig. 6.4.

y Y EN ® y
y’ ‘ ’ \k\g\\
A L - ES
z M,\_) z M,

/"v
£

/ / M, cos 6

¥z’

Fig. 6.4 Resolution of bending moment vector along principal axes

y and z axes are a set of arbitrary centroidal axes in the section. The bending
moment M acts in the xy plane with the moment vector along the z axis. The
principal axes Oy’ and Oz’ are inclined such that

21,
-1

tan 26 = I

z y
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The moment resolved along the principal axes Oy’ and Oz are M," = M,
sin 6 and M,” = M, cos 6. For each of these moments, the elementary flexure
formula can be used. With the principle of superposition,

r

My' z _ Mz' y'

I, l,

It is important to observe that with the positive axes chosen as in Fig. 6.4, a point
with a positive y coordinate will be under compressive stress for positive M,” = M,
cosh. Hence, a minus sign is used in the equation.

The neutral axis is determined by equating o, to zero, i.e.

My 2" M, y’:0

o, = (6.9)

or

y (6.10)

The angle B’ is with respect to the y” axis.

y Method 3 This is the most general method.
Choose a convenient set of centroidal axes Oyz
about which the moments and product of iner-
tia can be calculated easily. Let M be the
M applied moment vector (Fig. 6.5).

Resolve the moment vector M into two com-
ponents M, and M, along the y and z axes
respectively. We assume the Euler-Bernoulli
hypothesis, according to which the sections

B that were plane before bending remain plane
after bending. Hence, the cross-section will
rotate about an axis, such as BB. Consequently,

NA

Fig. 6.5

Resolution of bend-
ing moment vector
along two arbitrary

the strain at any point in the cross-section will
be proportional to the distance from the neu-
tral axis BB.

orthogonal axes

N,

g =Ky

Assuming that only o, is non-zero,
o, = EKYy = ky’ @)

where k is some constant. For equilibirum, the total force over the cross-section
should be equal to zero, since only a moment is acting.

[[o.dA=k [[y dA=0

As before, this means that the neutral axis passes through the centroid O.
Let B be the angle between the neutral axis and the y axis. From geometry
(Fig. 6.3).

y =ysin 3—2zcos (b)
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For equilibrium, the moments of the forces about the axes should yield
[[oyzdA= [[ky’zdA =M,

[[oy dA= [[ky’y dA =-M,
Substituting for y'

kJ’j(yz sin B - z% cos ﬂ)dA =M,

k”(y2 sin B — yz cos ﬂ)dA =-M,
ie. k(ly, sin -1, cos §) = M, (6.11)
and k(1, sin g1y, cos B) = -M, (6.12)
The above two equations can be solved for k and . Dividing one by the other

ly, sin -1, cos f _ M,
I, sin -1, cos B

M
l, tan g -1, __My

z

or LIRS
I, tan -1, M,
I, M, +1, M

ie. tan g =L 2 % YV (6.13)
I, M, +1, M,

This gives the location of the neutral axis BB. Next, substituting for k from
Eqg. (6.11) into equations (a) and (b)
_ M, (ysin g -z cos /)

I, sin g—1, cos g

_ My (ytan g -z)
l,tan -1,
Substituting for tan B from Eq. (6.13)

oMty -y )My (v, -2t (614)

X 2
12 1,1,

When M, = 0 the above equation for o, becomes equivalent to Eg. (6.8).
In recapitulation we have the following three methods to solve unsymmetrical
bending.

Method 1 Let M be the applied moment vector.

Choose a centroidal set of axes Oyz such that the z axis is along the M vector.
The stress o, at any point (y, z) is then given by Eqg. (6.8). The neutral axis is given
by Eq. (6.7).
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Method 2 Let M be the applied moment vector.

Choose a centroidal set of axes Oy’z’, such that the y” and z” axes are the
principal axes. Resolve the moment into components M,” and M,” along the princi-
pal axes. Then the normal stress o, at any point (y’, z’) is given by
Eq. (6.9) and the orientation of the neutral axis is given by Eq. (6.10).

Method 3 Choose a convenient set of centroidal axes Oyz about which the prod-
uct and moments of inertia can easily be calculated. Resolve the applied moment
M into components M, and M,. The normal stress o, and the orientation of the
neutral axis are given by Eqs (6.14) and (6.13) respectively.

Example 6.1 A cantilever beam of rectangular section is subjected to a load of
1000 N (102 kgf ) whichisinclined at an angle of 30° to the vertical. What is the stress
due to bending at point D (Fig. 6.6) near the built-in-end?

1000 N 430000 N
' | K

4
0 >
E: X - 6 cm
<—400 cm————> z
(a) | 4 cm‘D

(b)
Fig. 6.6 Example 6.1

Solution For the section, y and z axes are symmetrical axes and hence these are
also the principal axes. The force can be resolved into two components 1000 cos 30°
along the vertical axis and 1000 sin 30° along the z axis. The force along the vertical
axis produces a negative moment M, (moment vector in negative z direction).

M, =— (1000 cos 30°) 400 = —400,000 cos 30° N cm

The horizontal component also produces a negative moment about the y axis,
such that

M, = — (1000 sin 30°) 400 = —400,000 sin 30° N cm

The coordinates of point D are (y, z) = (=3, —2). Hence, the normal stress at D from
Eq. (6.9) is

o, = y 24

(—400, 000 sin 3o°)@—(—4oo,ooo cos 3o°) (-3)

I, I,

I, I,

_ 400’000(2 sin30° 3 cos 30 ]
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6 x 4° 4x6°
l, = - 4 = = 4
y 12 32cm”, |, 7 72cm
_ 2 3\/§
%= 400'000[2 x32 2x 72]

=-1934 N/cm? = —19340 kPa (= —197 kgf/cm?)

Example 6.2 A beam of equal-leg angle section, shown in Fig. 6.7, is subjected to
its own weight. Determine the stress at point A near the built-in section. It is given that
the beam weighs 1.48 N/cm (= 0.151 kgf/cm). The principal moments of inertia are
284 cm* and 74.1 cm*.

y
yl
‘\ 28.7 mm
N
‘\ [ A
3m z 100 mm
)‘, | gl
‘ Z10 mm
Fig. 6.7 Example 6.2
Solution The bending moment at the built-in end is
wL?
M.=="5-
- M — 66,000 N cm
The centroid of the section is located at
100 x10 x 50) + (90 x 10 x 5
( X X ) + ( X X ) _ 287 mm

(100 x 10) + (90 x 10)

from the outer side of the vertical leg. The principal axes are the y” and z’ axes.
Since the member has equal legs, the z” axis is at 45° to the z axis. The components
of M, along y” and z” axes are, therefore,

M, =M, cos 45° =-47,100 N cm
M, =M, cos 45°=—-47,100 N cm

For point A
y=—(100-28.7) =-71.3 mm=-7.13 cm

and z=-(28.7-10)=-18.7mm=-1.87 cm
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Hence,
y =y c0s 45° + z sin 45°
=-50.42 - 13.22=-63.6 mm =—-6.36 cm
and
7' =1z cos 45° — y sin 45°
=-13.22 +50.42=+37.2mm=3.72cm
o = 47,100 3.72 47,100 x 6.36

X 74.1 B 284
=-2364 — 1055 = —3419 N/cm? = —341,900 kPa

Example 6.3 Figure 6.8 shows a unsymmetrical one cell box beam with four-
corner flange members A, B, C and D. Loads P, and Py are acting at a distance of
125 cm from the section ABCD. Determine the stresses in the flange members
A and D. Assume that the sheet-metal connecting the flange members does not
carry any flexual loads.

o 2500 ko =

\
|
[

-

s

/’:/w

30em
V4
< 1
z’ C ‘D

~—40cm —>

Fig. 6.8 Example 6.3

Solution The front face ABCD is assumed built-in.

Member  Area y 7’ Ay AZ y z
A 6.5 30 40 195 260 149 13.7
B Bi5 20 0 70 0 4.9 -26.3
C 5.0 0 40 0 200 -15.1 13.7
D 2.5 0 0 0 0 -15.1 —-26.3
3= 17.5 265 460

Therefore, the coordinates of the centroid from D are

Ay _ 265
V= Sa =175 -161cm

o 2A7' _ 460

SA "175 =26.3cm
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Member  Area y z y? & Ay? AZ? Ayz
A 6.5 14.9 13.7 222 187.7 1443 1220.1 1326.8
B 355 49 —26.3 24 691.7 84 2421 —-451
C 5.0 -15.1 13.7 228 187.7 1140 938.5 -1034.4
D 2.5 -15.1 —26.3 228 691.7 570 1729.3 992.8

|, = XAy? = 3237 cm*

|, = ¥Az* = 6308.9 cm*

l,, = ZAyz = +834.2 cm*
One should be careful to observe that the loads P, and P, are acting at
X =-125cm

Moment about z axis = M, =-312500 kgf cm =-30646 Nm
Moment about y axis = M, = +80000 kgf cm =+7845.3 Nm

From Eq. (6.14)
_ —312500(6308.9y — 834.22) + 80000 (834.2y — 32372)
(834.2)° - (3237 x 6308.9)

X

=-96.57y — 0.09z

(6)n =—(96.57 x 14.9) — (0.09 x 13.7) = 1440 kgf.cm?
=-141227 kPa

(6)p = — (~96.57 x 15.1) — (—0.09 x 26.3) = +1460 kgf.cm?
= 143233 kPa

6.3 REGARDING EULER-BERNOULLI HYPOTHESIS

We were able to solve the flexure problem because of the nature of the cross-
section which remained plane after bending. It is natural to question how far this
assumption is valid. In order to determine the actual deformation of an intially
plane section of a beam subjected to a general loading, we will have to use the
methods of the theory of elasticity. Since this is beyond the scope of this book,
we shall discuss here the condition necessary for a plane section to remain plane.
We have from Hooke's law

&= é[ax—v(o-erO'z)]

£y=%[0'y—v(0'z+ax)] ©

1
g = E|:O'z - V(O'X + O'y):l
Solving the above equations for the stress o, we get

o vE E
%= Wav)(—av) & TE TR T o
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or from Eg. (3.15)

o, = AJ; + 2Gg, (6.15)
where A is a constant and G is the shear modulus. According to the Euler-Bernoulli
hypothesis, we have

o,=0,=0
Hence,
ouy
= = 6.16a
o,= E¢, =E ax ( )
Differentiating,
2
Py _ g I (6.16b)
OX Ox?
From equilibrium equation and stress-strain relations
é’ox =_0”Txy _ 0’,sz
X ay 0z
e A IS Y
B Gﬁy[ay T ox Gaz 27 " ox
e 52”; +52”2X N
ay 0z ox\ oy Oz
o, A%, .
:—(E[ﬂy2 +? —Gﬁ(gy‘f‘gz) (6178)
Since o, = 0, =0, from Eg. (c),
gy = 82 = —é O-X
Hence, Eq. (6.17a) becomes
o _ o 2y Ay 2uG Aoy
X ﬂyz ﬂzz E OJx
ie do, (1_ 2vg) __ 2%, A%,
ox E oy? o1
or co, _  GE 2%u, + 2%u, (6.17b)
W B E-2vG é’yz 0”22 '

Substituting in Eq. (6.16b),

%, ,_GE [0”2uX . o”zuxJ

E
ox?  E-2G| oy 522
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2 2 2
(E—ZVG)ﬂuX+G[ﬂ U 2 “X]

ie. ox? oy> o072 | =0
2 2 2

or Al o) o T | g (6.18)
OX oy oz

where A is a constant. From flexure formula and Eq. (6.16a)

_ My _ay,
T, -E OX @

In the above equation, M is a function of x only and y is the distance measured
from the neutral axis; I, is the moment of inertia about the neutral axis which is
taken as the z axis. Then

g _ Y oM
azz IZ OX
Integrating Eq. (d)
Eu, = ILJ'M dx + ¢ (y, 2)
z
where ¢ is a function of y and z only. Differentiating the above expression

2u, ¢y, 2)

E =
ay? y?
and £ _2°9(y.2)
o172 o172

Substituting these in Eq. (6.18),
2 2
Ay ﬂM(XhQV b(y.2) 0 ¢(y,z)} o

Elz X E ayz 522
2 2
N ) MO _ [ 007 6.2
X ay oz

The left-hand side quantity is a function of x alone or a constant and the right-
hand side quantity is a function of y and z alone or a constant. Hence, both these
quantities must be equal to a constant, i.e.
M (X)
OX
or M(X) = K3x + Kg
This means that M(x) can only be due to a concentrated load or a pure moment. In

= a constant

. . M . .
other words, the Euler—Bernoulli hypothesis that o, = I—y (which is equivalent to
z

plane sections remaining plane) will be valid only in those cases where the bend-
ing moment is a constant or varies linearly along the axis of the beam.
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6.4 SHEAR CENTRE OR CENTRE OF FLEXURE

In the previous sections we considered the bending of beams subjected to pure
bending moments. In practice, the beam carries loads which are transverse to the
axis of the beam and which cause not only normal stresses due to flexure but also
transverse shear stresses in any section. Consider the cantilever beam shown in
Fig. 6.9 carrying a load at the free end. In general, this will cause both bending
and twisting.

Fig. 6.9 Cantilever beam loaded by force P

Let Ox be the centroidal axis and Oy, Oz the principal axes of the section. Let
the load be parallel to one of the principal axes (any general load can be resolved
into components along the principal axes and each load can be treated sepa-
rately). This load in general, will at any section, cause

() Normal stress o, due to flexure;

(i) Shear stresses 7,, and 7,, due to the transverse nature of the loading and

(iii) Shear stresses 7, and 7,, due to torsion

In obtaining a solution, we assume that

P(L-x)y

O == o3
z

y=0,=7,=0 (6.19)
This is known as St. Venant's assumption.

The values of 7, and 1,, are to be determined with the equations of equilib-
rium and compatibility conditions. The value of o, as given above is derived
according to the flexure formula of the previous section. The determination of
7,y and t,, for a general cross-section can be quite complex. We shall not try
to determine these. However, one important point should be noted. As said
above, the load P in addition to causing bending will also twist the beam. But
P can be applied at such a distance from the centroid that twisting does not
occur. For a section with symmetry, the load has to be along the axis of
symmetry to avoid twisting. For the same reason, for a beam with a general
cross-section, the load P will have to be applied at a distance e from the
centroid O. When the force P is parallel to the z-axis, a position can once
again be established for which no rotation of the centroidal elements of the
cross-sections occur. The point of intersection of these two lines of the bend-
ing forces is of significance. If a transverse force is applied at this point, we
can resolve it into two components parallel to the y and z-axes and note from
the above discussion that these components do not produce rotation of
centroidal elements of the cross-sections of the beam. This point is called the
shear centre of flexure or flexural centre (Fig. 6.10).
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y It is important to observe that the location
of the shear centre depends only on the
geometry, i.e. the shape of the section. For a
section of a general shape, the location of

)\ the shear centre depends on the distribution

z 0 of ,, and 7,,, which, as mentioned earlier, can

be quite complex. However, for thin-walled

beams with open sections, approximate loca-

Fig. 6.10 Load P passing tions of the shear-centres can be determined

through shear centre by an elementary analysis, as discussed in
the next section.

6.5 SHEAR STRESSES IN THIN-WALLED OPEN
SECTIONS: SHEAR CENTRE

Consider a beam having a thin-walled open section subjected to a load V,,
as shown in Fig. 6.11(a). The thickness of the wall is allowed to vary. As
mentioned in the previous section, the load V, produces in general, bend-
ing, twisting and shear in the beam. Our object in this section is to locate
that point through which the load V, should act so as to cause no twist, i.e. to
locate the shear centre of the section. Let us assume that load V, is applied
at the shear centre. Then there will be normal stress distribution due to
bending and shear stress distribution due to vertical load. There will be no
shear stress due to torsion.

(@) (b)
Fig. 6.11 Thin-walled open section subjected to shear force

The surface of the beam is not subjected to any tangential stress and hence,
the boundary of the section is an unloaded boundary. Consequently, the shear
stresses near the boundary cannot have a component perpendicular to the bound-
ary. In other words, the shear stresses near the boundary lines of the section are
parallel to the boundary. Since the section of the beam is thin, the shear stress
can be taken to be parallel to the centre line of the section at every point as
shown in Fig. 6.11(b).

Consider an element of length Ax of the beam at section x, as shown in
Fig. 6.12.
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TXS
~— > x
Oy 7 ﬁ
<~ /7. ~ 0oy
4—’/ / > oy + " AX
[ r
}’ ‘\’ Tex }’ ‘: X
| A >
\ //\\/,/ N /k\:;ﬁ/i»
% L /x\\ ///
/ / oM,
Mz/® ’[/D M, + o A%
X

Fig. 6.12  Free-body diagram of an elementary length of beam

oM

OX
section x + Ax- o, and o, + O,JXX Ax, are corresponding flexural stresses at these
two sections. It is important to observe that for the moments shown the normal
stresses should be compressive and not as shown in the figure. However, the
sign of the stress will be correctly given by Eqg. (6.8). Considering a length s of the
section, the unbalanced normal force is balanced by the shear stress 7, distrib-
uted along the length Ax. For equilibrium, therefore,

Let M, be bending moment at section x and M, + Z Ax the bending moment at

doy 3
x ijt ds=0

S S
Ty b Ax—jaxtds+f[ax+
0 0

i __ 139

ie. Eas £ o Lds (6.20)
t; is the wall thickness at s. Observing that M, = 0, the normal stress o, is given by
Eq. (6.8) as

1, —zl
yz y 'z
1, —zI M
Hence, Dy _ y2 y % ﬁa z (6.21)
ox g -1, 1, X
Recalling from elementary strength of materials M, _ —V,, and substituting in
Eq. (6.20) X
V 1 S
Tox = _Z—I(Iyy_ IyZ Z)tdS
g -1, 1,0
Vy s s
or To= "7 5% I, [ytds—1,, [ztds (6.22)
t(1y 1= 15)L o 0

The first integral on the right-hand side represents the first moment of the area
between s = 0 and s about the z axis. The second integral is the first moment of the
same area between s = 0 and s about the y axis. Since z,, is the complementary
shear stress, its value at any s is also given by Eq. (6.22).
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Let Q, be the first moment of the area between s = 0 and s about the z axis and
Q, the first moment of the same area about the y axis.
Then,
V
To =T == <[ 1y Q 1, Q) | (623)
t(1y 1, 1%)
Equation (6.22) gives the shear stress distribution at section x due to the vertical
load V, acting under the explicit assumption that no twisting is caused. Hence, the
shear stress distribution 7, must be statically equivalent to the load V,. This
means the following:
() The resultant of 7, integrated over the section area must be equal to V,.
(i) The moment of 7, about the centroid (or any other convenient point)
must be equal to the moment of V, about the same point. That is,

V, e, = moment of 7, about O
where e, is the eccentricity or the distance of V, from O to avoid twisting

(Fig. 6.13).
If a force V, is acting instead of V,, we can determine the shear stress z,, at any s as
V S S
T =————~ I, [ ztds—1, [ytds (6.24)
t(ly 1 -15)L "o 0
V.
or fo=-—L—[1,Q, -1, Q | (6.25)
t(1y 1, -15)

If the above shear stress distribution is due to the shear force alone and not due
to twisting also, then the moment of V, about the centroid O must be equal to the
moment of 7, about the same point, i.e.

V, e, = moment of z,; about O

y
"4 Vy
\Af
Vv, ‘

o 3
Shear Centre ! e
| v
D — - Y
z Z el e 0
TXS
Fig. 6.13 Location of shear centre and Fig. 6.14 Location of shear centre for
Sflow of shear stress a general shear force

Any arbitrary load V can be resolved into two components V, and V, and the
resulting shear stress distribution 7,, at any s is given by superposing
Egs (6.22) and (6.25). The point with coordinates (e,, e,), through which V, and V,
should act to prevent the beam from twisting, is called the shear centre or the
centre of flexure, as mentioned in Sec. 6.4. This is shown in Fig. 6.14.
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Example 6.4 Determine the shear stress distribution in a channel section of a
cantilever beam subjected to a load F, as shown. Also, locate the shear centre of
the section (Fig. 6.15).

Y4t

Fig. 6.15 Example 6.4

Solution Let Oyz be the principal axes, so that I, = 0. From Eq. (6.23) then,
noting that F is negative,

_ _F
TXS_tSIyIZ(IyQZ)
FQ
or sz:t IZ
s 'z

where Q, is the statical moment of the area from s = 0 to s about z axis. Consider-
ing the top flange, t, = t;, and the statical moment is

_ tsh
Q==
Hence, Tys = ;fh for 0<s<b (6.26)

i.e. the shear stress increases linearly from s =0 to s = b. For s in the vertical web,
t, = t,, and the statical moment is the moment of the shaded area in Fig. (6.15)
about the z axis, i.e.

h (h 1(h
Q,= btl§+(5—y)t2 [y+§(i—y)}
2
= %{btl h+[h7—y2] tz}

2
Hence, L= o {btl h+ (h— -y j } for — % <y< +% (6.27)
2 z

i.e. the shear varies parabolically from s = b to s =b + h. For s in the horizontal
flange, t, = t; and the statical moment is

h h
Qz=bt1—+0+(s—b—h)t1(—§)

[bh+——%sjt1
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2
Hence, Ty = F (bh + h_h sj for2b+h>s>b+h (6.28)
21, 2 2
[ i.e. the shear varies linearly. When
s = 2b + h, i.e. the right tip of the
é FE' e ] bottom flange, the shear is zero. The
i‘iﬂ variation of 7, is shown in Fig. 6.16.
¢ | This shear stress distribution
e | :
EY shou_ld be statically equl_valent to
== == applied shear force F. It is easy to
U:Djj? see that this is equal to F in magni-
tude. On integrating 7, over the area
(a) (b) of the section, the resultant of the
Fig. 6.16 Example 6.4—Shear stress in the top and bottom flange
stress distribution cancel each other, and therefore, there is
diagrams no horizontal resultant. Integrating 7,

over the vertical web, we have

+hi2 2
[ rtydy = ZIT {jbtlh dy+j{h7—y2jt2 dy}
Z

-h/2
F 2 h® h3
= z[btlh +—4 2 15 b }

2, b’
. {btlh 2z

I\)|_n

Now for the section

h? h2 . h®
I,= bt — +bt1 4 +t, — 1
T N
= bty Sty o (6.29)
+h/2
Hence, [ 7tsdy =F
-h/2

Hence, the resultant of 7, over the area is equal to F. In addition, it has a moment.
Taking moment about the midpoint of the vertical web [(Fig. 6.15(b)]

M = (resultant of 7, in top flange) xg

+ (resultant of z, in bottom flange) x

N |

= 2 (resultant of 7 in top flange) x

N |

2 |average of 7 in top flange x area x %)



Bending of Beams 207

_o(Fbh b
_2(szng2j

_ Fb*h%,
T4l

This must be equal to the moment of F about the same point. Hence, F must act
at a distance e, from C such that

212
Fe = PNt
41,
or e,= bt
Y

z

Substituting for I, from Eq. (6.29)

3b%h?t,

A

6bt,h? +t,h
or e,= 30
27 6bt, +1t,h

Hence, the shear centre is located at a distance e, from C [Fig. 6.16(b)].

Example 6.5 Determine the shear stress distribution for a circular open section
under bending caused by a shear force. Locate the shear centre (Fig. 6.17).

-

~ 2R

Fig. 6.17 Example 6.5
Solution The static moment of the crossed section is
g
Q,= [(Rdgt)Rsing
0

= R’ (1- cos 6)



208 Advanced Mechanics of Solids

Hence, from Eq. (6.23), noting that I, = 0, and for a vertically upward shear
force F,

F
T, = _FQ __F Rt(1- cos 6)
i,
But |, = 7R
_ F
Hence, Ts= ——or (1-cos 9)
2F
For 6=180° ==
b 7Rt

The distribution is shown in Fig. 6.17(b). The moment of this distribution
about O is,

2
M= [7r,(RdO)R
0

__F oo
= ”Rt{)Rt(l cos §)dé

=-2FR

This should be equal to the moment of the applied transverse force F about O.
For F positive, the moment about O is negative since it is directed from +zto +y.
Hence the, force F must be applied at the shear centre C, which is at a distance of
2R from O.

6.6 SHEAR CENTRES FOR A FEW OTHER SECTIONS

In a thin-walled inverted T section, the distribution of shear stress due to
transverse shear will be as shown in Fig. 6.18(a). The moment of this dis-
tributed stress about C is obviously zero. Hence, the shear centre for this
section is C.

iy v
Yy Yly

iy ] S—

— -~ < > > | — > > >
Shear Centre

Shear Centre C C
(@) (b)

Fig. 6.18 Location of shear centres for inverted T section and angle section

For the angle section, the moment of the shear stresses about C is zero and
hence, C is the shear centre. Figure 6.19 shows how the beams will twist if the loads
are applied through the centroids of the respective sections and not through the
shear centres.
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Fig. 6.19 Twisting effect on some cross-sections if load is not applied through
shear centre

6.7 BENDING OF CURVED BEAMS
(WINKLER-BACH FORMULA)

So far we have been discussing the bending of beams which are initially
straight. Now we shall study the bending of beams which are initially curved.
We consider the case where bending takes place in the plane of curvature.
This is possible when the beam section is symmetrical about the plane of
curvature and the bending moment M acts in this plane. Let p, be the initial
radius of curvature of the centroidal surface. As in the case of straight beams,
it is again assumed that sections which are plane before bending remain plane
after bending. Hence, a transverse section rotates about an axis called the
neutral axis, as shown in Fig. 6.20.

Consider an elementary length of the curved beam enclosing an angle A¢.
Owing to the moment M, let the section AB rotate through 6A¢ and occupy the
position A’B’. The section rotates about NN, the neutral axis. SN is the trace of
the neutral surface with radius of curvature r,. Fibres above this surface get
compressed and fibres below this surface get stretched. Fibres lying in the
neutral surface remain unaltered. Consider a fibre at a distance y from the neutral
surface. The unstretched length before bending is (r, — y) A¢. The change in

Fig. 6.20 Geometry of bending of curved beam
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length due to bending is y(6A¢). Noting that for the moment as shown, the
strain is negative,

y(6 Ag)
(oY) Af (60
It is assumed here that the quantity y remains unaltered during the process
of bending. The value of (6A¢)/A¢ can be obtained from Fig. 6.20(a). It is
seen that

strain = g, = —

SN=(Ap+SAQ) T
where r is the radius of curvature of the neutral surface after bending. Also

SN =r,A¢
Hence,
(Ag+SAPT 1
Ag 1y -
i.e_ ﬁ = r_o_l
Ag r
- G—rij (6.31)
Substituting in Eq. (6.30) °
Y (1 1
& = —r o (r roj (6.32a)

Now we shall assume that only oy is acting and that o, = o, = 0. This is similar

to the Bernoulli—Euler hypothesis for the bending of straight beams. On this
assumption,

___By 11
o, = rO—yro[r roj (6.32b)

The above expression brings out the main distinguishing feature of a curved
beam. The value of y must be comparable with that of r,, i.e. the beam must have
a large curvature in which the dimensions of the cross-sections of the beam are
comparable with the radius of curvature r,. On the other hand, if the curvature
(i.e. 1/ry) is very samll, i.e. ry is very large compared to y, then Eq. (6.32b)

becomes
1 1
ox =By [F - E]

With r, — oo, the above equation reduces to that of the straight beam. For
equilibrium, the resultant of o, over the area should be equal to zero and the
moment about NN should be equal to the applied moment M. It should be
observed that the strains in fibres above the neutral axis will be numerically
greater than the stains in fibres below the neutral axis. This is evident from Eq.
(6.32a), since for positive y, i.e. for a fibre above the neutral axis, the denomina-
tor (ro —y) will be less than that for a negative y. Since the resultant normal force
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is zero, the neutral axis gets shifted towards the centre of the curvature. For
equilibrium, we have,

1 1 dA
.[O-X dA:_Ero(F_r_)-[ry— =0
A o/)afo—Y
and ~[oyy dA = + Er [%—rlj Z oA _
A o/afo—Y
From the first equation above
YAA (6:33)
A -y

The second equation can be written as

1 1) ydA |
+Er0(r foj{ £ydA+r0£r0_y}_M

The first integral represents the static moment of the section with respect to the
neutral axis and is equal to (—Ae), where e is the distance of the centroid from the
neutral axis NN and this moment is negative. The second integral is zero accord-
ing to Eq. (6.33). Thus,

Er, (l - lj Ae =M (6.34)
But from Eg. (6.32)
Er, (;_1} __ox(m-Y)

rh y
Substituting this in Eq. (6.34)

_O-x (ro - y)
y

Ae =M

or o=-M_Y (6.35)

o Ae(p-y)
As Eq. (6.35) shows, the normal stress varies non-linearly across the depth. The
distribution is hyperbolic and one of its asymptotes coincides with the line pass-
ing through the centre of curvature, as shown in Fig. 6.21(a). The maximum stress
may occur either at the top or at the bottom of the section, depending on its
shapes. Equation (6.35) is often referred to as the Winkler-Bach formula.

In some texts, the origin of the coordinate system is taken at the centroid of the
section instead of at the point of intersection of the neutral axis and the y axis. If
the origin is taken at the centroid and y’ is the distance of any fibre from this
origin, then puttingy =y’ — e and r, = p, — e, Eq. (6.35) becomes

M y-e
Ae pp—e-Yy' +e

o, =
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Tﬁﬁ
Iy
vyl Neutral Axis
N
(a) (b)
Fig. 6.21 Distribution of normal stress and location of neutral axis
M Yy -e
or o= —— - (6.36)
§ Ae py -y

To use Eqg. (6.35), one requires the value of r,. For this, consider Eq. (6.33).
Introducing the new variable u

Uu=ro—y
the equation becomes
[
A U
Hence, ro= jdﬁ (6.37)
A

The integral in the denominator represents a geometrical characteristic of the sec-
tion. In other words, the values of r, and e are independent of the moment within
elastic limit. We shall calculate these for a few of the commonly used sections.

Rectangular Section From Fig. 6.22, dA=b du and u = p, —y’. Hence,

h
po+hi2 Pots
J‘ dA _ .[ w:b log 2
Ay u n h
po—hi2 Po=%
_ h _ h
Hence, ro= Y = Tog. (n7r) (6.38)
Aoty
log, h
Po~ 2
The shift of the neutral axis from the centroid is
e= ___h (6.392)
Pot s
log,, ﬁ
Po~ 2
h (6.39b)

or €= po——— .
log,, (2)
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e
o
A
<« 3 >l T 5|
oY >
.~ > 5
O\ >
<
T
o
el
l\)ﬁ >

u
y\ T ] &
A { 1 h;
' \ |
Y C
du h,
Y )
~—b—> —b,—
Fig. 6.22  Parameters for a rectangular ~ Fig. 6.23 Parameters for a trapezoidal
section to calculate 1y accord- section to calculate ry accord-
ing to Eq. (6.31) ing to Eq. (6.31)

Trapezoidal Section (see Fig. 6.23) Let h, + h, = h. The variable width of the
section is

b= b2+—(b1;]b2) (h, +e+y)
and dA =dy[b, + (b —b,) (h, +e+y)/h]
jd—A: hlf—e [bz +(b —by) (h, +e+ y)/h}dy
u 7hzfe pO_e_y

= [b, + 1, (b, —b,)/h] log[—j— (b, — by)

When b, = b,, the above equation reduces to that of the previous case.

b, )h
o =M {[bz +1, (b —b,)/h] log :—_i - (bl_bZ)} (6.40)

T-section (see Fig. 6.24) Proceeding as in the previous case, we obtain for
the section

du—Azb1 Iog:—3'+b2 Iog:—2 (6.41)
1 3

I-Section For the I-section shown in Fig. 6.25, following the same procedure as
in the preceding case,

dA _ 5 Ly b
| 0 =b log 3 +b, log 3 +Db, 2 (6.42)
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LY T T Y
| )
A f Iy l
r l < b;—>| l by Iy r
| | 2
b2» l—
Y
| [y
by~ [« p;—>
Fig. 6.24  Parameters for T-section Fig. 6.25 Parameters for I-section to
to calculate 1y according calculate 1y according to
to Eq. (6.31) Eq. (6.31)

Circular Section (see Fig. 6.26)

U=ro—y=(p,—e)—(acosb—-e)=p,—acos8

A Y du=asin 6d6

T dA = 2a sin 6 du = 2a® sin? 6 d6
u jd_A = [2a® sin” 0/(p, —a cos ) do
AU oo

l 71 — cos? 0 Ao

I — , Where p=22

% g j b—cosd { a

Ky Adding and substracting (b cos 6 + b?) to the
numerator,

. dA 9 1/2
Fig. 6.26 Parameters for a _[_ = 2ar b—(b —1)
circular section to AU

calculate 1y according 1/2
to Eq. (6.31) =2z [po ~(p -2 }

and ro=

2 po = (0§ - a*)"?]

Example 6.6 Determine the maximum tensile and maximum compressive stresses
across the Sec. AA of the member loaded, as shown in Fig. 6. 27. Load P = 2000 kgf
(19620 N).
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D b

* o
Fig. 6.27 Example 6.6

Solution For the section p,=11cm,h=6cm, b=4cm.

po+hi2 7_
log ——— ho - log 7] =0.5596
From equations (6.38) and (6.39)
6
r=—-——=10. =11-10.73=0.
0= 55598 10.73, e=11-10.73=0.27
From Eg. (6.35), owing to bending moment M
' My
o, =
T Ae (h—Y)
M y

©24x0.27 (10.73-y)
For the problem

M=P (a+a+h/2)=19P

AtC, y = —(e+hi2)=—3.27

and, at D, y=%—e=2.73

Hence, (0 =P (821) _ _epagp
24x027 " (10.73+3.27)

and (0))p = ——22P 273 ____q001P

24 x0.27 (10.73-2.73)
The stress due to direct loading is

" o_ _B _ _
Oy = —F=- 24 0.0417 P
Hence the combined stresses are
(0)c =(0.6848 —-0.0417) P

= 0.6431P = 129 kgf/cm? (12642 kPa)

215



216 Advanced Mechanics of Solids

and

(6)p = (~1.001 — 0.0417) P
=—1.0427 P = —209 kgf/cm? (20482 kPa)

Example 6.7 Determine the stress at point D of a hook (Fig. 6.28) having a
trapezoidal section with the following dimensions: b, =4 cm, b, =1cm, r, =3 cm,
r,=10cm, h =7 cm, force P = 3000 kgf (29400 N).

Solution For the section
9A _ [1+10(4 - 1)/7] log % —(4-1)
=3.363cm
A= 2 (b +b)h=> =175 cm?
r, = A/3.363 = 17.5/3.363 = 5.204 cm

+2b,)h
Po=3+ (et,)l(bl+§2)) =3+ 1;
e =py—ry=0.596
The moment across section D is
M = -3000 p, =—17,400 kgf cm (1705 Nm)
The normal stress due to bending is therefore

=5.80cm

, M Yy
0. = —_
(2o Aery—y
Fig. 6.28 Example 6.7 17,400 2204
175x 0596 " 5204 - 2.2
= 1226 kgf/cm? (120,148 kPa)
The normal stress due to axial loading is
3000 3000
(0o = =1 =17% S22 — 171 kgf /cm?

The total normal stress is therefore,
(0,)p = 1397 kgf/cm?, or 136,907 kPa

6.8 DEFLECTIONS OF THICK CURVED BARS

In Chapter 5, the problems of thin rings and thin curved members were analyzed
using energy methods. In this section, we shall discuss a few problems involv-
ing thick rings. The energy method will be used. Consider the member shown
in Fig. 6.29(a).

In the straight part of the U-ring, across any section, there is a tangential
force P and a moment (Px — M). In the curved part of the member, there will
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~d— N

|
M)
o
}

P
I P

==)(==Jh

(a) ‘ s
@V\ Ag
DS
| 0

(c)
Fig. 6.29 Geometry of deflection of a curved bar

be a tangential force V, a normal force N and a bending moment M. Their
values are

V=P cos 0

N=Psin 6

M =M, - (d + p,sin ) P
To calculate the strain energy stored we proceed as follows (we make use of the
expressions developed in Chapter 5):

(i) In the straight part of the member: Owing to the shear force V, the strain energy
stored in a small length As is

2
AU, = 2V As (6.43)

where « is a numerical factor depending on the shape of the cross section, A is
the area of the section and G is the shear modulus.

Because of the bending moment M, the energy stored is

M 2As
AUy, =28 (6.44)

where | is the moment of inertia about the neutral axis, which for a straight beam
passes through the centroid of the section.

In general, the strain energy due to V is small as compared to that due
to M.

(ii) In the curved part of the member: Owing to the shear force V, the strain energy
stored in a small sectoral element, enclosing an angle Ag, is

2
AU, = QY748 (6.45)

If p, is the radius of curvature of the centroidal fibre, As = p, A¢.
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Because of the normal force N, which is assumed to be acting at the centroid of
the cross-section,

N2As
AUn =2AE

Owing to bending moment M, the energy stored is equal to the work done. If 6 A¢
is the change in the angle due to bending [Fig. 6.29 (c)]

(6.46)

AU,, = % M (5 Ag)
From Eq. (6.31),

SAG= Ad 1y (%—lj

fo
From Eq. (6.34), substituting for the right-hand part in the above equation

M
¢ ¢ AeE
2
Hence, AUy, = M*Ag
2AeE
. As
Putting Ap=—
£o
M2 As
=" A7
M 2AeE p, 6.47)

If N is applied first and then M, owing to the rotation of the section, the centroid
C [Fig. 6.29(c)] moves through a distance g, As, where g, is the strain at C and
consequently, the force N does additional work equal to

AUMN = N 50 AS
g from Eq. (6.35) is

e=Ix__ M Y

T E AeE (1 - Yp)
In the above equation, M is positive, according to the convention followed
(Fig. 6.20). y, is the distance of the centroidal fibre from the neutral axis and is

equal to —e. Also, p, = Iy + e. With these,

e = M
0 Apy E
Hence the work done by N is
MN As
Ayn = (6.48)
MN A,OOE

The same result is obtained if M is applied first and then N. This is according to
the principle of superposition, which is valid for small deformations. This can be
seen by referring to Fig. 6.30.
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The normal force N acting across the sec-
tion produces uniform strain g,; since the
lengths of the fibres are different, face AB
will not shift parallel to itself. The extension
of the fibre at b will be g, r; Ag. The angle
enclosed between AB and A’B’ is therefore

Owing to this rotation of A’B’, the moment M
does work equal to

AUy = Mg, Ag

Fig. 6.30 Deformation of a
section of curved bar

Since & = %

MN
AUy = g A7

MN As
AE py

For a straight beam, the work done by N when M is applied is zero since the section
rotates about the neutral axis which passes through the centroid. This is also con-
firmed in the above expression where p, = < for a straight beam and therefore
AU, = 0. Combining all the energies detailed above, the total strain energy is.

U= [(AUy + AUy + AUy + AU )
S

-

S

av? | N? M? MN
[2AG T 2AE " 2ReEp, AEpojds (649
For the straight part of the beam, the last expression will be zero and the third
expression (which becomes indeterminate since e = 0 and p, = <o) is replaced by
M 2?/2El. With the strain energy calculated as above and using Castigliano's theo-
rem, one can solve for the unknown—either the deflection or the indeterminate
reaction. We shall illustrate this through an example.

Example 6.8 A ring with a rectangular section is subjected to diametral
compression, as shown in Fig. 6.31. Determine the bending moment and stress
at point A of the inner radius across a section 6. r; and r, are the inner and
external radii respectively.

Solution We observe that the deformation of the ring will be symmetrical about
the horizontal and vertical axes. Consequently, there will be no changes in the
slopes of the vertical and horizontal faces of the ring [Fig. 6.31(b)]. We can,
therefore, consider only a quadrant of the circle for the analysis. This is shown in
Fig. 6.31(c). M, is the unknown internal moment. Its value can be determined from
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' ©

Fig. 6.31 Example 6.8

the condition that the change in the slope of this section is zero. We shall use
Castigliano’s theorem to determine this moment.
Across any section ¢, the moment is

=Hy- 2 p, (- cos)

In addition, there is a normal force N and a shear force V, as shown in
Fig. 6.31(d). Their values are

N:—%pocowﬁ and V:—gsin¢
The total strain energy for the quadrant from Eq. (6.49) is
12 oP? sin? ¢ 12p2 cos? ¢

V=1 g n 4+ ] g nds

p 2
n/z[Mo —% po (1-cos ¢)}
d

* g 2AeE ¢

HIZ[MO —gpo @a- cos¢)} P cos ¢

_ d (6.50a)
{) 2AE ¢

(o P2 p2 \
= 8AG *8AE) 270

1 z, P 2z 7, z_
+2AeE{M 2+4p°(2 4 2) Mopop(z 1)}

P _ P~ _Poz
SAE [MO 4) (6.50b)
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In the above expression, M, is still an unknown quantity. As the change in slope
at the section where M is applied is zero,

U 1 P _
oM, 2AeE[M°” pop(z 1)} 2AE 0

P
M, = ﬂ[l_ngﬁj (6.51)
2 T 7Py

If we ignore the initial curvature of the member while calculating the strain energy,
then

7l2 2 ain? 7l2
« “SaPsin” ¢ P cos? @
U _J(; 8AG 0d¢ .[ AE Po d¢

+ ¢
! 2E|
and N> 1MZM P 1 d 0
oM, " El ! [ O_E’OO( _COS¢)},DO $=
p p
e Z__ ELL
i Mg > 2 2+ 2p0 0
_Ppy 2
o= P2(1-2]

i.e. same as given in Eq. (6.51) with e — 0 and p, — <. Also, this moment is the
same as in Example 5.12, i.e. that of a thin ring.
With the value of M, known, the bending moment at any section 6 is obtained as

M:Mo—% P, (1 — cos 6)

P
il [cos@ ﬁ—g]
2 oy T

The normal stress at A can be calculated using Eq. (6.35) and adding additional
stress due to the normal force N.

__M_¥y N
OnT T he (ro—y)+ A
__Ppy 2 2| _y Pcoso
2Ae[cosg+7rp0 n] h-y  2A
For point A, from Eqs (6.38) and (6.39b)
_h_ __fh-h e
y=5=% b log (r,/1,)’ €= log (r,/r,) P ~To
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Using these
-2)+2e (h-2
oA:—L po(mcosd—2)+2e (h-2e) s
2A e (2py —h)

Example 6.9 A circular ring of rectangular section, shown in Fig. 6.31, is
subjected to diametral compression. Determine the change in the vertical
diameter.

Solution From Eq. (6.50b), the total energy for the complete ring is

2 ) M2 2p?
U:4po{ap AR 1 [”°+p° (3—”—2)

32AG  32AE  2AeEp,| 2 4 4
B P Poo (7
o (51 e o+ 2 51
where M, = poP (1—g+£j
2 T 7oy
oJ
4= Gp

Using the above expression for U (remembering that M is also a function of P),
and simplifying

2 2
ar 1 2 T 2 Po z 1 e
= L T R L -4 =

If e is small compared to p,, then

5~ 2TAP , 2Ppy (2 ;z)+ 2Pp; (;z 1)

4AG AE \z 8] AEep,\8
_anPp, P o Ppg
= AAG +0.488 AE +0.15 AEe

If we assume that the ring is thin and the effect of the strain energies due to the
direct force and shear force are negligible, then the chage in the vertical diameter
is obtained as

S :P_pg(l_é)
v El \4 =«

This can be seen from Eq. (6.35). When p, is large compared to y and
e — 0, Aep, becomes equal to | according to flexure formula. Also, check with
Example 5.13.
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Problems

6.1 A rectangular wooden beam (Fig. 6.32) with a 10 cm x 15 cm section is used
as a simply supported beam of 3 m span. It carries a uniformly distributed
load of 150 kgf (1470 N) per meter. The load acts in a plane making 30° with
the vertical. Calculate the maximum flexural stress at midspan and also locate
the neutral axis for the same section.

y
fsoo W
A
N
-~ l 15 cm
‘ |
< 3m N A | B
[<—>]
10 cm
Fig. 6.32 Problem 6.1
Ans. o, = 73 kgflcm? = 7126 kPa
N.A cuts side AD such that DN = 1.0 cm

6.2 A cantilever beam with a rectangular cross section, 5 cm x10 cm
which is built-in in a tilted position, carries an end load of 45 kgf
(441 N), as shown in Fig. 6.33. Calculate the maximum flexural stress

at the built-in end and also locate the neutral axis. The length of the
cantilever is 1.2 m.

Fig. 6.33 Problem 6.2

Ans. o= +102.5 kgf/cm? = 10052 kPa
[ N.A. is at 36.8° to the Iongerside}
6.3 A bar of angle section is bent by a couple M acting in the plane of the larger
side (Fig. 6.34). Find the centroidal principal axes Oy’z” and the principal
moments of inertia. If M = 1.1550 kgf cm (1133 Nm), find the absolute maxi-
mum flexural stress in the section.
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Ay

N

l»\ [<— 12.7 mm
AN
\
127mm - 0
z < o)
// l
z,/i,,,,mf 12.7 mm o
>/ A Ans. ¢ =14 324 \
64 mm l,=41.9cm";1,=391cm
Fig. 6.34 Problem 6.3 Orex = 33600 kPa

6.4 Determine the maximum absolute value of the normal stress due
to bending and the position of the neutral axis in the dangerous section of
the beam shown in Fig.6.35. Given a = 0.5 m and P = 200 kgf
(1960 N). Section properties: equal legs 80 mm; centroid at 2.27 cm from the
base; principal moments of inertia 116 cm?, 30.3 cm*; I, = 73.2 cm*,

Fig. 6.35 Problem 6.4

Ans. ¢ =914 kgf/cm? (89640 kPa) }
[ ¢ =60° w.r.t. y axis

6.5 Determine the maximum absolute value of the normal stress due to bending and

the position of the neutral axis in the dangerous section of the beam. (Fig 6.36).

P = 1000 kgf

‘47 2m—>¢

= 4m >
Fig. 6.36 Problem 6.5

Ans. 1454 kgf/lcm? (142588 kPa)
¢ =60.1° with vertical
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6.6 For the cantilever shown in Fig. 6.37, determine the maximum absolute value
of the flexural stress and also locate the neutral axis at the section where
this maximum stress occurs. P =200 kgf (1960 N).

iP
/ v 120 cm

e 15 m—F 05 m—l |

12 cm
Fig. 6.37 Problem 6.6

[Ans. 112.5 kgf/cm? (11032 kPa)}
¢ =—25°36" with vertical

6.7 A cantilever beam (Fig. 6.38) of length L has right triangular section and
is loaded by P at the end. Solve for the stress at A near the built-in end.
P =500 kgf (4900 N), h=15cm, b=10cmand L = 150 cm.

Fig. 6.38 Problem 6.7

[Ans. 2133 kgf/cm? ( 209175 kPa)]

6.8 Figure 6.39 shows an unsymmetrical beam section composed of four
stringers A, B, C and D, each of equal area connected by a thin web. It
is assumed that the web will not carry any bending stress. The beam
section is subjected to the bending moments M, and M,, as indicated.
Calculate the stresses in members A and D. The area of each stringer
is 0.6 cm?,

Ans. (o,), =—464 kgflcm? (—45503 kPa)
(0)p = 448 kgf/cm? (43934 kPa)
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5
5 A<« 12cm —> B
A Hf :.)

o
g é{; M, = 500 kgf cm
=4 20m ‘

n

N '
s «5 ‘

Y O———0O
Cl—8cm—D
Fig. 6.39 Problem 6.8

6.9 In the above problem, if stringers C and D are made of magnesium alloy and
stringers A and B of stainless steel, what will be the bending stresses in
stringers A and D?

Eq & = 2 x 10° kgf/icm? (196 x10° kPa)
Eqng alloy = 0-4 x 10° kgffcm? (39.2 x10° kPa)
Hint: Assume once again that sections that are plane before bending remain
plane after bending. Hence, to produce the same strain, the stress will be
proportional to E. Convert all the stringer areas into equivalent areas of
one material. For example, the areas of stringers C and D in equivalent
steel will be
Emag Emag

Aé:ACXE , and AbzADXE_

st st
The areas of A and B remain unaltered. Solve the problem in the usual
manner, using all equivalent steel stringers. Determine the stresses (o,)
and (o,)’p. Calculate the forces F, = (0,)'s A's = (0,)'s A, and
Fp = (0,)'p Ao Now, using the original areas calculate the stress as
(0 = (6) A A'aAL=(0,) s
(6o =(6)"5 A'p/Ap

Ans. (0,), =—480 kgffcm? (-47072 kPa)}
[ (6,)p = 425.6 kgf/cm? (41737 kPa)
6.10 Show that the shear centre for the section shown in Fig. 6.40 is at
e = 4R/ measured from point 0.

Fig. 6.40 Problem 6.10
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6.11 For the section shown in Fig. 6.41 show that the shear centre is at a
distance
4(sin o — « Cos @)
20 —sin 2a
from the centre of curvature O of the section.

e=R

Fig. 6.41 Problem 6.11

6.12 Locate the shear centres from C.Gs for the sections shown in
Fig. 6.42(a), (b), and (c). In Fig. 6.42(b) the included angle is 7/2.

i

t =< T ﬁ
- 2a 21
M t
| l/ﬂ
\e(aaT‘ 212 (C)

(b)
Fig. 6.42 Problem 6.12

[Ans. (@) 1.2 a, (b) 0.705 a (c) 0.76 a]

6.13 For the section given in Fig. 6.43, show that the shear centre is located at
a distance e from O such that

Fig. 6.43 Problem 6.13
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6.14

6.15

6.16

w|>

where

A= 12+6ﬂbgb1+6() 10b E+37z(b1)2—4(%j3%

and B:3n+12%+ ( )( )

Note: one can particularise this to the more familiar sections by putting
b or b, or both equal to zero.

The open link shown in Fig. 6.44 Is loaded by forces P, each of which is
equal to 1500 kgf (14,700 N). Find the maximum tensile and compressive
stresses in the curved end at section AB.

Fig. 6.44 Problem 6.14

(6)s =—-1796 kgficm? (~176147 kPa)

A curved beam has an isosceles triangular section with the base of the
triangle in the concave face. Develop the expression for r, in terms of the
altitude h of the triangle and R the radius of curvature of the centroidal
axis.

[Ans. () = 3591kgficm? (352310 kPa) ]

3h?

2[(3R +2h) log 33? Zhh Sh}

Find the maximum tensile stress in the curved part of the hook shown in
Fig. 6.45. The web thickness is 1 cm.

Ans.ry =

[Ans. 3299 kgf/cm? (328680 kPa)]
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2700 kgf (26,460 N) )
cm

Fig. 6.45 Problem 6.16

6.17 Find the maximum tensile stress in the curved part of the hook shown in
Fig. 6.46.
[Ans. o, = 2277 kgf/cm? (223300 kPa)]

6cm

<>

2000 kgf (19,600 N) @
»/L“‘”"

Fig. 6.46 Problem 6.17

6.18 Determine the ratio of the numerical value of o, and o, for a curved
bar of rectangular cross-section in pure bending if py=5cmand h=r, -

r,=4cm. [Ans.1.76]
6.19 Solve the previous problem if the bar is made of circular cross-
section. [Ans. 1.89]

6.20 Determine the dimensions b; and b; of an I-section shown in
Fig. 6.25, to make o, and o, numerically equal in pure bending.
The other dimensions are r; =3 cm; ry=4cm; r,=6cm; r,=7cm; b, =
1cm;and b, + by =5cm.
[Ans. b, = 3.67 cm, b; =1.33 cm]
6.21 For the ring shown in Fig. 6.31 determine the changes in the horizontal
diameter.
Hint: Apply two horizontal fictitious forces Q along the diameter. Calcu-
late the total strain energy, Apply Castigliano’s theorem.

_Ppy a ,1(4 1 1 2 2(2 1)
{Ans"s'*‘ A{ ZG+E(7z 2) Eepo{ze P\7 72




CHAPTER

7 Torsion

7.1 INTRODUCTION

The torsion of circular shafts has been discussed in elementary strength of mate-
rials. There, we were able to obtain a solution to this problem under the assump-
tion that the cross-sections of the bar under torsion remain plane and rotate
without any distortion during twist. To observe this, consider the sheet shown in
Fig. 7.1(a), subject to shear stress 7. The sheet deforms through an angle ¥, as

shown in Fig. 7.1(b).
B|| D
T
All C
~7
@ 0 ©

Fig. 7.1 Deformation of a thin sheet under shear stress and the resulting tube

T /’}/
4—>D,

If the deformed sheet is now folded to form atube, the sides AB and CD can be
joined without any discontinuity and this joined face will assume the form of aflat
helix, as shown in Fig. 7.1(c). If y isthe shear strain, then from Hooke's law

r=5 (7.2)
where G is the shear modulus. Owing to this strain, point D movesto D’ [Fig. 7.1(b)],

such that DD’ = |y. When the sheet is folded into a tube, the top face BD in
Fig. 7.1(c), rotates with respect to the bottom face through an angle

6* = 'Ty (7.2)
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where r is the radius of the tube. Substituting for yfrom Eq. (7.1)

w«_ .1
0% = Gr
o* _ =
or T = Gr (7.3)
Also, the moment about the centre of the tube is
T=rx2rrtr
27ritr 7l
or T _Te
r r
. T _ 1
ie. T (7.4

p

where | is the second polar moment of area.
Equations (7.3) and (7.4), therefore, give

T _z_ GO (7.5)

Iprl

the familiar equations from elementary strength of materials. Now one can stack a
series of tubes, one inside the other and for each tube, Eq. (7.5) would be valid.
These stacked tubes can form the section of a solid (or a hollow) shaft if the top

face of each tube has the same rotation G6*, i.e. if $ is the same for each

tube. Therefore, the ratio % is the same for each tube, or in other words, 7 varies

linearly with r. Further, if T, is the torque on the first tube with polar moment of
inertia 1,;, T, the torque on the second tube with polar moment of inertia I,
etc., then

ol lon T+ lpa+o 1y 1y

where T is the total torque on the solid (or hollow) shaft and I, is its polar moment
of inertia.

From the above analysis we observe that for circular shafts, the cross-sections
remain plane before and after, and there is no distortion of the section. But, for a
non-circular section, this will no longer be valid. In the case of circular shafts, the
shear stresses are perpendicular to a radial line and vary linearly with the radius.
We can see that both these cannot be valid for a non-circular shaft. For, if the
shear stress were always perpendicular to the radius OB [Fig. 7.2(a)], it would
have a component perpendicular to the boundary. This is obviously inadmissible
since the surface of the shaft is unloaded and a shear stress cannot cross an
unloaded boundary. Hence, at the boundary, the shear stress must be tangential
to the boundary. Further, by the same argument, the shear stress at the corner of
a rectangular section must be zero, since the shear stresses on both the vertical
faces are zero, i.e. both boundaries are unloaded boundaries [Fig. 7.2(b)].

In order to solve the torsion problem in general, we shall adopt St. Venant’s
semi-inverse method. According to this method, displacements u,, u, and u, are

T T_2 T, T +T, +...+T, T
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(b)

Fig. 7.2  (a) Figure to show that shear stress must be tangential to boundary,
(b) shear stress at the corner of a rectangular section being zero as
shown in (c).

assumed. The strains are then determined from strain-displacement relations
[Egs (2.18) and (2.19)]. Using Hooke’s law, the stresses are then determined.
Applying the equations of equilibrium and the appropriate boundary conditions,
we try to identify the problem for which the assumed displacements and the
associated stresses are solutions.

7.2 TORSION OF GENERAL PRISMATIC BARS-SOLID
SECTIONS

We shall now consider the torsion of prismatic bars of any cross-section
twisted by couples at the ends. It is assumed here that the shaft does not
contain any holes parallel to the axis. In Sec. 7.12, multiply-connected sections
will be discussed.

On the basis of the solution of circular shafts, we assume that the cross-
sections rotate about an axis; the twist per unit length being 6. A section
at distance z from the fixed end will, therefore, rotate through 6z. A point P(x, y)
in this section will undergo a displacement r6z, as shown in Fig. 7.3. The compo-
nents of this displacement are

u,=-rézsin
u, = rezcos

Fig. 7.3  Prismatic bar under torsion and geometry of deformation
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From Fig. 7.3(c)

sin B= % and cos B= %
In addition to these x and y displacements, the point P may undergo a displace-

ment u, in z direction. This is called warping; we assume that the z displacement
is a function of only (x, y) and is independent of z. This means that warping is the
same for all normal cross-sections. Substituting for sin 8 and cos j, St. Venant’s
displacement components are

u, =-0yz (7.6)
uy = oxz 77
U, = 6y (x,y) (70

(X, y) is called the warping function. From these displacement components,
we can calculate the associated strain components. We have, from Eqs (2.18)
and (2.19),

é)ux é’uy é)uz

Ex = X’ &y = oy’ &= 57

éu, ol auy,  ou, ou, ou,
o vt Yy =5t i e
oy ox e o1 oy 01 Ox

From Egs (7.6) and (7.7)

Yy =

8xx=£yy=‘€zz=%<y=0

%. =0 (B—V; + x) (7.8)

From Hooke’s law we have
vE E
= A
R T N e TRV

vE E
= A
R (Y YY) R vl
o, vE A E &

R 2 R TRV
Ty = nyy, Ty, = nyz, T, =G,

where A=gy+e,+¢,

Substituting Eq. (7.8) in the above set

oy=0,=0,=7,,=0

oy
7, =GO (ﬂ_y + xj (7.9
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0
7,,=G0O (0”_;)[: - yj

The above stress components are the ones corresponding to the assumed dis-
placement components. These stress components should satisfy the equations of
equilibrium given by Eq. (1.65), i.e.

fo, Oty Or
X 4 Xy + X

=0
ox Jy 0z
Oty doy, Ory

= 7.10
OX " oy - oz 0 (7.10)
asz +0’77y2 +0”O_z =0

ox oy Oz

Substituting the stress components, the first two equations are satisfied identi-
cally. From the third equation, we obtain

2 2
Gﬁ(é’ v,2 "’J:o

ox®  oy?
2 2
ie. ix"z’ + O;y'é’ =V2y=0 (7.11)

Hence, the warping function y is harmonic (i.e. it satisfies the Laplace equation)
everywhere in region R [Fig. 7.3(b)].

Now let us consider the boundary conditions. If F,, F, and F, are the compo-
nents of the stress on a plane with outward normal n (n,, n,, n,) at a point on the
surface [Fig. 7.4(a)], then from Eqg. (1.9)

NGO, + Ny Ty + N, Ty, = F,
N, Ty+n,0,+0,7,=F (7.12)

n,T,+nN 7,+Nn,0,= F,

n(n, n, o)

(b)

Fig. 7.4 Cross-section of the bar and the boundary conditions
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In this case, there are no forces acting on the boundary and the normal n to the
surface is perpendicular to the z-axis, i.e. n, = 0. Using the stress components from
Eg. (7.9), we find that the first two equations in the boundary conditions are
identically satisfied. The third equation yields

o _ 4% _
Gg(ﬂx yjnx+60(ﬁy+xjny_0

From Fig. 7.4(b)

n, = c0S (n,x)—g—y, n, = cos (n,y)=—% (7.13)
Substituting

v _ Y (v, )X _

(ﬂx yj ds (ﬁy+x dS_O (7.14)

Therefore, each problem of torsion is reduced to the problem of finding a function
w which is harmonic, i.e. satisfies Eq. (7.11) in region R, and satisfies Eq. (7.14) on
boundary s.

Next, on the two end faces, the stresses as given by Eq. (7.9) must be equiva-
lent to the applied torque. In addition, the resultant forces in x and y directions
should vanish. The resultant force in x direction is

[ 7, dx dy:Geﬂ(?—V;—yj dx dy (7.15)
R R

The right-hand side integrand can be written by adding V 2y as

v _ ) (v _ v Py
(ﬂx yj_(é’x yj”(ax oy?

since V2y = 0, according to Eq. (7.11). Further,

oy Py v\ o[ (v 2 [ﬁw )
(ﬂx y) (ﬂxz +ﬂy2 _ﬂX X OX y +ﬁ_y X ﬁ_y+x

Hence, Eq. (7.15) becomes

Hrzxdxdy Gé?jj'{ {(?V; yﬂ+§y[x(?—t+xﬂ}dxdy

Using Gauss’ theorem, the above surface integral can be converted into a line
integral. Thus,
oy oy
grzx dx dyzGaﬂx [5— ) n, + X[ﬁ_er x) ny}ds

_ oy ]dy [5_W ]dx
Ge@x{[ﬂx ds ﬁy+x ds ds




236 Advanced Mechanics of Solids

according to the boundary condition Eq. (7.14). Similarly, we can show that
[[ 7y, dxdy=0
R

Now coming to the moment, referring to Fig. 7.4(a) and Eq. (7.9)
T= H (Tyz X = T, y) dx dy
R

_ Ay
Gé?jj(x +yrex 2 oy yaxjdxdy

Writing J for the integral

54
J= H(x +y? +X5y yaxj dx dy (7.16)

we have T=GJO (7.17)
The above equation shows that the torque T is proportional to the angle of twist
per unit length with a proportionality constant GJ, which is usually called the
torsional rigidity of the shaft. For a circular cross-section, the quantity J reduces
to the familiar polar moment of inertia. For non-circular shafts, the product GJ is
retained as the torsional rigidity.

7.3 ALTERNATIVE APPROACH

An alternative approach proposed by Prandtl leads to a simpler boundary condi-
tion as compared to Eq. (7.14). In this method, the principal unknowns are the
stress components rather than the displacement components as in the previous
approach. Based on the result of the torsion of the circular-shaft, let the non-
vanishing stress components be 7,, and 7,,. The remaining stress components o,
o,, 0, and 1, are assumed to be zero. In order to satisfy the equations of equilib-
rium we should have

0’7sz ﬂz—yz or. 0”Tyz
— A = 0’ = O' X = 0 718
oz oz X * oy (7.18)

If it is assumed that in the case of pure torsion, the stresses are the same in every
normal cross-section, i.e. independent of z, then the first two conditions above are
automatically satisfied. In order to satisfy the third condition, we assume a function
¢ (x, y) called the stress function, such that

12 02
O (749)
With this stress function (called Prandtl’s torsion stress function), the third condition
is also satisfied. The assumed stress components, if they are to be proper elasticity
solutions, have to satisfy the compatibility conditions. We can substitute these
directly into the stress equations of compatibility. Alternatively, we can determine the
strains corresponding to the assumed stresses and then apply the strain compatibility
conditions given by Eqg. (2.56). The strain components from Hooke's law are

&, =0, &y =0, g,=0 (7.20)
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1 1
yxy = 0, ’yyz = a Tyzl Yx = 6 Tox
Substituting from Eq. (7.19)
__10¢ _ 194
%2 =G ax’ and %X_Gay

From Eq. (2.56), the non-vanishing strain compatibility conditions are (observe
that ¢ is independent of z)

% a}/yz_i_%J:O

ox| ox ' dy
O[T | _
ayl\ ox oy
2 2 2 2
ie. i é’—f+ﬂ_f :0; i ﬂ_f_,_é’f =0
ax\ox* oy ay\ox? oy
2 2
Hence, a—era—(f = V2¢ = a constant F (7.21)
ox: oy

The stress function, therefore, should satisfy Poisson's equation. The constant F
is yet unknown. Next, we consider the boundary conditions [Eq. (7.12)]. The first
two of these are identically satisfied. The third equation gives

N D
n, 2y ny 5x_o
Substituting for n, and n, from Eq. (7.13)
oy dpdx_
oy ds  ox ds
. dg _
i.e. ds - 0 (7.22)

Therefore, ¢ is constant around the boundary. Since the stress components de-
pend only on the differentials of ¢, for a simply connected region, no loss of
generality is involved in assuming
¢=00ns (7.23)

For a multi-connected region R (i.e. a shaft having holes), certain additional con-
ditions of compatibility are imposed. This will be discussed in Sec. 7.9.

On the two end faces, the resultants in x and y directions should vanish, and
the moment about O should be equal to the applied torque T. The resultant in x
direction is

ap
dx dy = || == dx d
grzx yIRay y



238 Advanced Mechanics of Solids
= Jax jaf” dy

=0
since ¢ is constant around the boundary. Similarly, the resultant in y direction
also vanishes. Regarding the moment, from Fig. 7.4(a)

T= [[ (xt, —yz,) dx dy
R

—jj (x +y£/) dx dy

_ D axdy— ([ vy 2

S gxaxdxdy g y ﬁydxdy
Integrating by parts and observing that ¢ = 0 of the boundary, we find that each
integral gives

[[ ¢ dx dy
Thus T=2[[¢dxdy (7.24)

Hence, we observe that half the torque is due to 7,, and the other half to 7,
Thus, all differential equations and boundary condltlons are satisfied if the

stress function ¢ obeys Eqs (7.21), (7.23) and (7.24). But there remains an indeter-

minate constant in Eq. (7.21). To determine this, we observe from Eq. (7.19)

0% %% Ity Oty
ox:  oy? oy Ox

-G (@’zx _a}/YzJ

oy  OX

v o”u +5uz i &+5uz
= ﬁy ox | ox| oz oy
O [dux Yy
=G 2, oy  Ox

—G—(2 )

where @, is the rotation of the element at (x, y) about the z-axis [Eq. (2.25), Sec. 2.8].
(9/0z) (w,) is the rotation per unit length. In this chapter, we have termed it as
twist per unit length and denoted it by 6. Hence,

ﬂf ﬂ? =V2p=-2Go (7.25)
oxs oy
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According to Eq. (7.19),
A

Tx = ﬁy ’ yz X

That is, the shear acting in the x direction is equal to the slope of the stress
function ¢ (x, y) in the y direction. The shear stress acting in the y direction
is equal to the negative of the slope of the stress function in the x direction. This
condition may be generalised to determine the shear stress in any direction, as
follows. Consider a line of constant ¢ in the cross-section of the bar. Let s be the
contour line of ¢ = constant [Fig. 7.5(a)] along this contour

n
contour line Ty
¢ = const.
dg
o 0 (7.26a)
- A, dpdy _
ie. X ds + dy ds (7.26b)
pdx, o dy
or Tygs * Tox gg = 0 (7.26¢)
From Fig. 7.5(b)
dx _ _
Tds % (n.y) = dn
dy _ dx
and ~gs ~ °0s (n, x) = an
where n is the outward drawn normal. Therefore, Eq. (7.26¢) becomes
7, €0s (N, y) + 7, cos (n, X) =0 (7.273)

From Fig. 7.5(c), the expression on the left-hand side is equal to z,,, the compo-
nent of resultant shear in the direction n.
Hence, T,,=0 (7.27b)
This means that the resultant shear at any point is along the contour line of
¢ = constant at that point. These contour lines are called lines of shearing stress.
The resultant shearing stress is therefore
T,s = T,, SIN (N, Y) = 7, sin (N, X)
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= 1, €0s (N, X) — 7, cos (N, y)

d d
=Tyzd_)ri_z'zxd_)r:
__Opdx_04dy
~ oxdn 9y dn (7.28)

Thus, the magnitude of the shearing stress at a point is given by the magnitude of
the slope of ¢ (x, y) measured normal to the tangent line, i.e. normal to the contour
line at the concerned point. The above points are very important in the analysis of
a torsion problem by membrane analogy, discussed in Sec. 7.7.

7.4 TORSION OF CIRCULAR AND ELLIPTICAL BARS
(i) The simplest solution to the Laplace equation (Eq. 7.11) is

W = constant = ¢ (7.29)
With y = c, the boundary condition given by Eq. (7.14) becomes
dy _dx _
“Yas X ds =0
2 2
d xXT+y
or ds > =0
ie. x? + y? = constant

where (X, y) are the coordinates of any point on the boundary. Hence, the bound-
ary is a circle. From Eq. (7.7), u, = 6c. From Eq. (7.16)

I=[] ®+y?) dx dy = 1,
R

the polar moment of inertia for the section. Hence, from Eq. (7.17)

T=Gl,0
T
or 0= ——
Gl,
Tc
Therefore, u,=6c= N

which is a constant. Since the fixed end has zero u, at least at one point, u, is zero
at every cross-section (other than rigid body displacement). Thus, the cross-
section does not warp. The shear stresses are given by Eq. (7.9) as

Tx
7, =GOx = |_p

T
sz=_G9y=_|_y
p
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Therefore, the direction of the resultant shear 7 is such that, from Fig. 7.6

Ty Gox X
tan o= L=-292__2%2
o GOy y

Fig. 7.6  Torsion of a circular bar

Hence, the resultant shear is perpendicular to the radius. Further

2 2 2 _T2(x2+y2)

Tr

ID
where r is the radial distance of the point (x, y). Thus, all the results of the
elementary analysis are justified.
(ii) The next case in the order of simplicity is to assume that

v = Axy (7.30)
where A is a constant. This also satisfies the Laplace equation. The boundary
condition, Eq. (7.14) gives,

dy dx
Ay —y) =L — (A == =0
(Ay =) 2L~ (Ax+0) X

or y(A—l)g_)S/—x(AJrl)%:O

ie. (A+1) 2x% ~(A=1) Zy% 0
d 2 2|

or g[(A+l)x—(A—1)yJ_O

which on integration, yields
(1+A) x* (1 - A) y? = constant (7.31)
This is of the form
2 2
.y _
St = 1

QD
(o
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These two are identical if

a? 1-A

b2 TI1+A
b? — a2
b2+ a?

Therefore, the function

or A=

b% - a?

Vo

represents the warping function for an elliptic cylinder with semi-axes a and b
under torsion. The value of J, as given in Eq. (7.16), is

J= [ 0¢+y?+Ax* - Ay?) dx dy
R

Xy

=(A+1)[[ x*dxdy +(1-A) [[y*dxdy
—(A+1) L, +(1-A) ],

3 3
Substituting I, = 7ab” and l, = %b, one gets
J= za’h’
a’+b?

Hence, from Eq. (7.17)

ra’b®

T=GJO=Go
a+b?

_ T a+p
- G za%?
The shearing stresses are given by Eq. (7.9) as

a4
Tyz =Go [d_y+ Xj

2 2 2 2

a“+b°(b°-a

=T |22 11 x
ra’b? [b2+a2 J

or

(7.32)

_ (7.333)
ra’h

and similarly,
2Ty

TZX =
rab®

(7.33b)
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The resultant shearing stress at any point (x, y) is
T2 2 M2 2T 4,2 | .4 27H2
T = [ryz + sz] = e [b X“+a'y ] (7.33c)
To determine where the maximum shear stress occurs, we substitute for x> from

2 2 2
X y o _ 2_.204_Y
a—2+b—2_1, or x“=a (1 —sz
L __ 2T 204 4 22 (42 _ h2) (2112
giving T=—73— [a"+a" (a° - b) y]
za’b

Since all terms under the radical (power 1/2) are positive, the maximum shear
stress occurs when y is maximum, i.e. wheny = b. Thus, 7,,,, occurs at the ends of
the minor axis and its value is

2T 4,.211/2 2T
Ty = @b )y =———
™ 2a%p® rab?

With the warping function known, the displacement u, can easily be determined.
We have from Eq. (7.7)

(7.34)

u, =0
v 7a’n’G y

z

depressed

) The contour lines giving u, = con-
u, negative

stant are the hyperbolas shown in
Fig. 7.7. For a torque T as shown,
elevated the convex portions of the cross-
u, positive section, i.e. where u, is positive, are
indicated by solid lines, and the

Fig. 7.7 Cross-section of an elliptical concave portions or where the sur-
bar and contour lines face is depressed, are shown by dot-

of u, ted lines. If the ends are free, there

are no normal stresses. However, if

one end is built-in, the warping is

prevented at that end and consequently, normal stresses are induced which are
positive in one quadrant and negative in another. These are similar to bending
stresses and are, therefore, called the bending stresses induced because of torsion.

~—a—

7.5 TORSION OF EQUILATERAL TRIANGULAR BAR
Consider the warping function

w=A(Y® - 3x%) (7.35)
This satisfies the Laplace equation, which can easily be verified. The boundary
condition given by Eq. (7.14) yields

(-6AXy —y) dy _ (3Ay? — 3Ax? + X) ax _g
ds ds
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dy 2 _3ax +x) 9% =
or y(6AX + 1) s + (3Ay“ — 3AX“ +X) s =0
: d 2_ a3, 1.2 1 2 _
ie. E3Axy Ax+2x+2y) 0
Therefore,
2 .12, 1 0
A(3xy —x)+§x 5 =b (7.36)
1 2a’

where b is a constant. If we put A = - 5 and b = +t37
Eq. (7.36) becomes

1 o+ @y 2 a2
6a(3xy x)+2(x+y) 3a 0

or (x—«/§y+2a) (x+ \/§y+2a) (x-a)=0 (7.37)
Equation (7.37) is the product of the three equations of the sides of the triangle
shown in Fig. 7.8. The equations of the boundary lines are

L

~——2a——><—a—>

Fig. 7.8  Cross-section of a triangular bar and plot of T, along x-axis
x—a=0 onCD
x—\/§y+2a:0 on BC

X+ \/§y+2a:0 on BD
From Eq. (7.16)

_ 2 2 2 _ 2\ _ .
J= g[x +y +Ax(3y 3x ) Ay ( 6xy)} dx dy
= [ % dyjf@y_za [xz +y2+ Ax(3y2 - 3x2) - Ay(—6xy)] dx
1 Y[y o [ X2+ Y2+ AX(3Y2 =35 ) — Ay (-6xy) | dx

(7.39)

_ 93 .4
=75 @75h

_3
5
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Therefore,
- T 5T
0= GJ " 30l (7.39)
I, is the polar moment of inertia about 0.
The stress components are
Ty, = GH[?—V; + x)
= GH(3Ay2 3AX% + x)
_GO (.2
=<2 (x y +2ax) (7.40)
Ol
and Ty = GH(;; j
_ Goy
7.41
5 (x-a) (7.41)

The largest shear stress occurs at the middle of the sides of the triangle, with a
value

3Goa

max — 2

(7.42)

At the corners of the triangle, the shear stresses are zero. Along the x-axis, 7,, =0
and the variation of z,, is shown in Fig. 7.8. 7, is also zero at the origin 0.

7.6 TORSION OF RECTANGULAR BARS

The torsion problem of rectangular bars is a bit more involved compared to those
of elliptical and triangular bars. We shall indicate only the method of approach
without going into the details. Let the sides of the rectangular cross-section be 2a
and 2b with the origin at the centre, as shown in Fig. 7.9(a).

\Y Ay T
c B \
2b
O \
J J ? /::\ \\i
Dl«—2a—>A k: 2a |
T

(a)
(b)
Fig. 7.9 (a) Cross-section of a rectangular bar (b) Warping of a square section

— convex

X

~— concave
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Our equations are, as before,
oy 6%
2V, Y g
1704 oy
over the whole region R of the rectangle, and

(%— )nx +(g—l/;+ xj n,=0
on the boundary. Now on the boundary lines x = xa or AB and CD, we have n, = 1

and n,= 0. On the boundary lines BC and AD, we have n,= 0 and n = +1. Hence,
the boundary conditions become

(7. y on x==a
X
W —X on y=1zb
ay
These boundary conditions can be transformed into more convenient forms if we
introduce a new function y;, such that

y=Xy—-y
In terms of y;, the governing equation is
§2l//1 + 521//1 =0
ox®  oy?
over region R, and the boundary conditions become
M _ 0 on x==a
OX

%=2x on y==b

It is assumed that the solution is expressed in the form of infinite series
Y= Zoxn () Ya (y)
n=

where X, and Y, are respectively functions of x alone and y alone. Substitution
into the Laplace equation for y; yields two linear ordinary differential equations
with constant coefficients. Further details of the solution can be obtained by
referring to books on theory of elasticity. The final results which are important are
as follows:

The function J is given by

J=Kah
For various b/a ratios, the corresponding values of K are given in Table 7.1.
Assuming that b > a, it is shown in the detailed analysis that the maximum
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Table 7.1

b/a K K, K,
1 2.250 1.350 0.600
1.2 2.656 1.518 0.571
15 3.136 1.696 0.541
2.0 3.664 1.860 0.508
2.5 3.984 1.936 0.484
3.0 4.208 1.970 0.468
4.0 4.496 1.994 0.443
5.0 4.656 1.998 0.430

10.0 4.992 2.000 0.401
oo 5.328 2.000 0.375

shearing stress is at the mid-points of the long sides x = +a of the rectangle. On
these sides

7,,=0 and Toax = Ky 'I:]_a

The values of K, for various values of b/a are given in Table 7.1. Substituting
for J, the above expression can be written as

Ta

a’b

where K, is another numerical factor, as given in Table 7.1. For a square section,
i.e. b/a =1, the warping is as shown in Fig. 7.9 (b). The zones where u, is
positive are shown by solid lines and the zones where u, is negative are shown
by dotted lines.

Tnax = K,

Empirical Formula for Squatty Sections

Equation (7.32), which is applicable to an elliptical section, can be written as

T_ma® 5_ 1 GA'
0 a2+b2 47[2 Ip
_ (a®+Db?)

where A = mrab is the area of the ellipse, and I, = TA is the polar moment

of inertia. This formula is applicable to a large number of squatty sections with an
error not exceeding 10%. If 472 is replaced by 40, the mean error becomes less
than 8% for many sections. Hence,

T_GAY

0 401,
is an approximate formula that can be applied to many sections other than elon-
gated or narrow sections (see Secs 7.10 and 7.11).
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7.7 MEMBRANE ANALOGY

From the examples worked out in the previous sections, it becomes evident that
for bars with more complicated cross-sectional shapes, analytical solutions tend
to become more involved and difficult. In such situations, it is desirable to
resort to other techniques—experimental or otherwise. The membrane analogy
introduced by Prandtl has proved very valuable in this regard. Let a thin homo-
geneous membrane like a thin rubber sheet be stretched with uniform tension
and fixed at its edge, which is a given curve (the cross-section of the shaft) in
the xy-plane (Fig. 7.10).

‘Z
P
Sk . D// CF
b -
A F B
* /AJ/
Y /F
1 B+AB
A
Ayi*f;\ B

Fig. 7.10  Stretching of a membrane

When the membrane is subjected to a uniform lateral pressure p, it undergoes a
small displacement z where z is a function of x and y. Consider the equilibrium of an
infinitesimal element ABCD of the membrane after deformation. Let F be the uniform
tension per unit length of the membrane. The value of the initial tension F is large
enough to ignore its change when the membrane is blown up by the small pressure p.
On face AD, the force acting is FAy. This is inclined at an angle S to the x-axis. tan 8

is the slope of the face AB and is equal to dz/dx. Hence, the component of FAy in z
direction is ( FAy ) since sin § = tan = 3 for small values of 3. The force on face
BC is also F Ay but is inclined at an angle (3 + AB) to the x-axis. Its slope is therefore

ﬁz 0 (o2
ox " ox (o”x) Ax
and the component of the force in z direction is

o (02
FAy[— + X (5) Ax}

Similarly, the components of the forces FAy acting on faces AB and CD are

o1 01 o ( oz
-FAX== and FAXx —+—[—]A }
oy L,y oy loy) ™Y
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Therefore, the resultant force in z direction due to tension F is

s J1 | 31 oz
_FAy5X+FAy{5X+5X2AX}—FAX5y
o1 1z
+ FAX|—+—A
{53’ oy’ y}
( 3
= Lﬁz—§+ﬂz—§JAxAy
oxs oy

The force p acting upward on the membrane element ABCD is p Ax Ay, assuming
that the membrane deflection is small. For equilibrium, therefore

F 0’7_22 + 0’7_22 J— p
oxt oy?
5% | 2% p

or P + oy F (7.43)
Now, if we adjust the membrane tension F or the air pressure p such that p/F
becomes numerically equal to 2G6, then Eq. (7.43) of the membrane becomes
identical to Eq. (7.25) of the torsion stress function ¢. Further, if the membrane
height z remains zero at the boundary contour of the section, then the height z of
the membrane becomes numerically equal to the torsion stress function [Eq. (7.23)].
The slopes of the membrane are then equal to the shear stresses and these are in
a direction perpendicular to that of the slope. The twisting moment is numerically
equivalent to twice the volume under the membrane [Eq. (7.24)].

7.8 TORSION OF THIN-WALLED TUBES

Consider a thin-walled tube subjected to torsion. The thickness of the tube need
not be uniform (Fig. 7.11). Since the thickness is small and the boundaries are free,
the shear stresses will be essentially parallel to the boundary. Let 7 be the magni-
tude of the shear stress and t the thickness.

Consider the equilibrium of an element of length Al, as shown. The areas of cut
faces AB and CD are respectively t; Al and t, Al. The shear stresses (complemen-
tary shears) are 7, and t,. For equilibrium in z direction we should have

4A\I> N
Al s
I,
T
T
C H

Fig. 7.11  Torsion of a thin-walled tube
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or nt =1,1 =0, aconstant (7.44)

Hence, the quantity 7t is a constant. This is called the shear flow ¢, since the
equation is similar to the flow of an incompressible liquid in a tube of varying
area. For continuity, we should have V,A, = V,A,, where A is the area and V the
corresponding velocity of the fluid there.

Consider next the torque of the shear about point O [Fig. 7.12(a)].

AF=qAs

v‘°f

(a)

Fig. 7.12  Cross-section of a thin-walled tube and torque due to shear

The force acting on an elementary length As of the tube is
AF = tt As=QAs
The moment arm about O is h and hence, the torque is
AT = gAsh=2g9AA
where AA is the area of the triangle enclosed at O by the base s. Hence, the total
torque is
T=X20AA=20A (7.45)
Where A is the area enclosed by the centre line of the tube. Equation (7.45) is
generally known as the Bredt-Batho formula.
To determine the twist of the tube, we make use of Castigliano’s theorem.

Referring to Fig. 7.12(b), the shear force on the element is Tt As = q As. Because
of shear strain v, the force does work equal to

AU = %(z’t AS) S
1
=35 (zt As) yAl

_1 z
= S (st As) Al £

2
Al As
- qze = (7.46)
2
_ T Al As (7.47)

8BAXG U
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using Eq. (7.45). The total elastic strain energy is therefore

T2 Al
U= — §9 (7.48)
8AG " t
Hence, the twist or the rotation per unit length (Al = 1) is
A T ;ds
= ] 7.49
o=t 4pNGT t (749)
Using once again Eq. (7.45)
S 750
0 2AG(3B t (7:50)

7.9 TORSION OF THIN-WALLED MULTIPLE-CELL
CLOSED SECTIONS

We can extend the analysis of the previous section to torsion of multiple-cell
sections. Consider the two-cell section shown in Fig. 7.13.

& e
®

Fig. 7.13 Torsion of a thin-walled multiple cell closed section

Consider the equilibrium of an element at the junction, as shown in
Fig. 7.13(b). In the direction of the axis of the tube

or Tltl = thz + T3t3

i.e, 0,= 0, + 05 (7.52)
Thisisagain equivalent to afluid flow
dividing itself into two streams.
Choose any moment axis, such as
point O (Fig. 7.14).

The shear flow in the web can be
considered to be made up of g; and
—Q,, Since g3 = g; — g,. The moment

Fig. 7.14 Section of a thin-walled mul-
tiple cell beam and moment
axis

about O due to g, flowing in cell 1
(with web included) is[Eq. (7.45)]
Ty =20, A
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where A, is the area of cell 1.
Similarly, the moment about O due to g, flowing in cell 2 (with web included),
with AI as the area enclosed at O outside cell 2, is

T,= 20, (A +A)-20 A
The second term with the negative sign on the right-hand side is the moment due
to the shear flow g, in the middle web. Hence, the total torque is

T=T+T,=200 A +20, A (7.52)
A, and A, are the areas of cells 1 and 2 respectively.
Next, we shall consider the twist. For continuity, the twist of each cell should
be the same. According to Eq. (7.50), the twist of each cell is given by

_1,9ds
20=307%
Let a1=g>% for cell Lincluding the web
a, =g’>%for cell 2including the web

a, =g’>% for the web

Then, for cell 1

266 % (20 — 3, 0) (7.53)
For cell 2

266 = % (2 % — a4, ) (7.54)

Equations (7.52)—(7.54) are sufficient to solve for q,, g, and 6.

Example 7.1 Figure 7.15 shows a two-cell tubular section whose wall thick-
nesses ar e as shown. If the member is subjected to atorque T, determine the shear
flows and the angle of twist of the member per unit length.

vt
o) iy
ZJ’W - +M¢$/22 — t/2
1y
. N . ;i

Fig. 7.15 Example 7.1
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Solution
ds a, a a,a_7a
For cell 1 =TT T=T
orcell 1, N t+2t+t+t 2t &
ds a & a,a,2a_ b5a
For cell 2 e e it b
or cell 2, : t+t+t+t t a,
ds a _
For web, T—T—alz
From Eqg. (7.53)
For cell 1, 2GO = % (801 — 2 9,)
1
_1(ra, _a \_1(7,_
= a2 (2t ql t qz) at (2 ql qZ)
For cell 2, zee_i(azqz ay,0)
A,
1
=—2(—QZ__Q1) — (50, - qy)
a
Equati Lo~ 0, =50, - =3
quating, S =02 =50~ O =70

From Eq. (7.52)
T= 20 A +20, A =2a° (ql +%q1)=%a2q1

2T 3T
== and =—F
4z 73.2 ¢7 1

1
266= ¢ (50, — &)
_1(15_ _11
_at(4 1)q1 Aat &

_1(u)(zr
or 9= 26 (4at) (7a2)
1T
28 3'[(;

Example 7.2 Figure 7.16 shows a two-cell tubular section as formed by a conven-
tional airfoil shape, and having one interior web. An external torque of 10000 Nm
(102040 kgf cm) is acting in a clockwise direction. Determine the internal shear flow
distribution. The cell areas are as follows:
A, =680 cm?
A, = 2000 cm?
The peripheral lengths are indicated in Fig. 7.16.
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— Q>

~<0.09 cm

0.08 cm
Fig. 7.16 Example 7.2

Solution Let us calculate the line integrals ¢ ds/t.

67 33
For cell 1 L A
or cell 1, a,; 0.06+0.09 1483
33 63 48 67
For cell 2, a, = =
2= 0.09 " 0.09 " 0.00 008 2%
For web, a;, = % =366
From Eqs (7.53) and (7.54)
Forcell1,  2G0= % (2 Oy — 2, 0p)
1
= <55 (1483, —3660,)
= 2.189q; — 0.540q,
For cell 2, 2GO = é (8,0, — a3,0y)
1
= —o55 (24090, - 366;)

1.209,-0.18q,
Hence, equating the above two values
219q9,-054¢9,=1.200,-0.18 q;
or, 2370,-174q9,=0
i.e. q,=1360q,
The torque due to shear flows should be equal to the applied torque. Hence, from
Eq. (7.52)
T=20,A; + 20,7,
or 10000 x 100 = 2q, x 680 + 29, x 2000
= 1360 g, + 4000 q,
Substituting for g,
10° = 1360q, + 5440q, = 68000,
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g, = 14710 (15 01 kgf] 0, _200—[204 k?nfj

7.10 TORSION OF BARS WITH THIN
RECTANGULAR SECTIONS
Figure 7.17 shows the section of a rectangular bar subjected to a torque T. Let the
thickness t be small compared to the width b. The section consists of only one
boundary and the value of

LY the stress function ¢ around
A B this boundary is constant.
T ~— ~— ~— ~] Let 9=0.
’1 i @ From Eq. (7.25)
D = b »C 24 N 24
ox?  py? =260
Excepting at the ends AD
Fig. 7.17 Torsion of a thin rectangular bar and BC, the stress function

is fairly uniform and is inde-
pendent of x. Hence, we can take ¢(x, y) = ¢(y). Therefore, the above equation
becomes

2
79 _ 60
ay?
Integrating o= -GOy* +ay+a,
Since ¢ = 0 around the boundary, one has ¢ = 0 at y = + t/2. Substituting these
GO
= O, = —
a1 a2 4
2
and o=Go| " _ V2 (7.55)
4
From Eqg. (7.19)
Tyz = —@ = O
X
_d __
and T, = oy " 2GOy (7.56a)

These shears are shown in Fig. 7.17. Obviously, the above equations are not valid
near the ends. The maximum shearing stresses are at the surfaces y = + t/2, and

(Tdmax =+ GO (7.56b)
From Eq. (7.24),
T=2[[¢dxdy

b/2 t/2
~ 2602, o[, (G - v? oy
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or T= %bt3 GO
The results are
13T 6T 3T
0= EE' Tax :_Fyv (72 ) max :ibt_z

7.11 TORSION OF ROLLED SECTIONS

(7.57)

(7.58)

The argument leading to the approximations given by Eqgs (7.55) and (7.56) can be
applied to any narrow cross-section which has a relatively small curvature, as
shown in Figs 7.18(a)—(d). To see this, we imagine a 90° bend in the middle of the
rectangle shown in Fig. 7.17, so that the section becomes an angle. This section
has only one boundary with ¢ = constant = 0. Excepting for the local effects near
the corner, the shape across the thickness will be similar to that shown in Fig. 7.17,
for the thin rectangular section. Hence, Eqs (7.55) and (7.57) can be applied,
provided b is taken as the total length of both legs of the angle concerned and y

is the rectangular coordinate in the direction of the local thickness.

A — —— —
Tt C'W ﬂ,‘D; (r — 5
F

2 U S
N N
(a) (b) ©
~ b
C— = =Dl
N
t2+J F¢b2
-
—

~——b;—> *

(d)
Fig. 7.18 Torsion of rolled sections

In the case of a T-section shown in Fig. 7.18(b), the length b = b, + b, if the
thickness is uniform. If the thickness changes, as shown in Fig. 7.17(d), Eqgs (7.55)

and (7.57) become

( ) _
¢:GQLZ_yJ (i=120r3)
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and T= %Ga(bltf +byt2 + bytd) (7559)

This is obtained by adding the effect of each rectangular piece.

Example7.3 Analyze the torsion of a closed tubular section and the torsion of a tube
of the same radius and thickness but with a longitudinal slit, as shown in Figs 7.19(a)

and (b).
4 -

i R

/ NI

Fig. 7.19  Example 7.3—Torsion of a closed tubular section and a slit tubular section

Solution For the closed tube, if Tis the shear stress, we have from elementary analysis

T= Qraret).r=27rtr  and 6= é

Therefore, T = 22r3tGo
For the slit tube, there is only one boundary and on this ¢ = 0. According to Eq. (7.57)

1,.3 1 3
T==>bt°GO==27rt°G
3 0 327 0
Further, following the same analysis as for a thin rectangular section
Toax = F GOt

The shear stress directions in the slit tube are shown in Fig. 7.19(b). The ratio of
the torsional rigidities is

L (27rr3t66’)/% 271t3Go)

T2
2
_ar
‘S(t)

For a thin tube with r/t = 10, tube (a) is 300 times as stiff as tube (b).

If the slit tube is riveted along the length to form a closed tube of length I, as
shown in Fig. 7.19(c), the force on the rivets will be
Tl

F=rtl=
2712
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where for T we have put the value

= T
271t
as for a non-slit tube. If there are n rivets in a length I, then the average force on
each rivet is F/n.

Example 7.4 (i) A30-cm | beam (Fig. 7.20), with flanges and with a web 1.25
cmthick, issubjected toatorque T =50000 kgfcm (4900 Nm). Find the maximum

shear stress and the angle of twist per
e | 80 cm % 1.95 cm unit length.

A (i) In order to reduce the stress and
the angle of twist, 1.25 cm thick flat
30 cm plates are welded onto the sides of the
section, as shown by dotted lines. Find
the maximum shear stress and the angle
Y of twist.
Fig. 7.20 Example 7.4

Solution
(i) Using Eq. (7.58)

Tmax = 3T/ (Z bitiz)
3 x 50 000
30 x (5/4)% + 30 x (5/4)° + (30 — 2.5) x (5/4)?
= 1097 kgflcm? (107512 kPa)

)

0=

O~

B 3x 50000 A
30 x (5/4)° + 30 x (5/4)° + (30 — 2.5) x (5/4)° G
= 878/G radians per cm length

(i) When the two side plates are welded, the section becomes a two-cell
structure for which we can apply Eqs (7.52)—(7.54). For each cell

a=a, ==L (28;5 + 2815 . 2875+ 28.75)
=69.00
T=20A +20,A,
= 4guA =47 % 125 x 28152875

or T=132257
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Therefore,
7= 50000/1322.5 = 37.81 kgf /cm? (3705 kPa)
260 = ~ (40 — 2420p)
A
- Lg@-ay

A

Therefore

_ 1.2 1 2875
9= 26 %2875 2875 (69 1.25 )

= 0.06/G radians per cm length

7.12 MULTIPLY CONNECTED SECTIONS

In Sec. 7.2 and 7.3, we considered the torsion of shafts with sections which do
not have holes. It is easy to extend the same analysis for the solution of
shafts, the cross-sections of which contain one or more holes. Figure 7.21
shows the section of a shaft subjected to a torque T. The holes have bound-
aries C, and C,.

Fig. 7.21 Torsion of multiply-connected sections

Once again, as in Sec. 7.3, we assume that 7, and 7,, are the only non-vanishing
stress components. The equations of equilibrium yield

é’Tyz =0, 0”sz =0, ﬁrzx + ﬁTyz =0
oz 0z OX oy
Let ¢ (X, y) be a stress function, such that
_ 99 i

T, = , T
oy o oX
The non-vanishing strain components are

1 1 99

)/ = =7 :__y

1 194
and )/yz = ____X
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The compatibility conditions given by Eq. (2.56) yield
2 2
Gt i
oxs oy
So far, the analysis is identical to that given in Sec. 7.3. Considering the boundary
conditions, we observe that there are several boundaries and on each boundary

the conditions given by Eq. (7.12), Sec. 7.2 should be satisfied. Since each bound-
ary is a free boundary, we should have

¢ = a constant F (7.60)

B W
oy "M ox =
Substituting for n, and n, from Eq. (7.13)
apdy 3 dx _
Jy ds  Jx ds
dg _
or ds
ie. ¢ for C; = K; (7.61)

i.e. on each boundary ¢ is a constant. Unlike the case where the section did not
contain holes, we cannot assume that ¢ = 0 on each boundary. We can assume
that ¢ = 0 on one boundary, say on C,, and then determine the corresponding
values of K; on each of the remaining boundaries C,. To do this, we observe that
the displacement of the section in z direction, i.e. u, = Oy (x, y), from Eq. (7.7),
must be single valued. Consequently, the value of dy integrated around any
closed contour C; should be equal to zero, i.e.

oy oy )
= it Z7 = 7.62
qﬂcidr// gbci[ﬁxdx+ﬁydy 0 (7.62)
From Eq. (7.9), and using the stress function
ox GO '¥ " Go éy
and o1, 1 7,63
oy  Go ™ Goox * (763)
Hence, for the single valuedness of u,
o
GeqSC( ¢dx——¢dy)+<j>c(ydx xdy)=0 (7.64)

The second integral on the left-hand side is equal to twice the area enclosed by
the contour C,. This can be seen from Fig. 7.22(a).

Sﬁci ydx = IGKH y dx +.[HLG y dx
area G'GKHH' —area H' HLGG’

area enclosed by C, = A
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Fig. 7.22  Evaluation of the integral around contour C;

Similarly, §xdy = [, xdy + [, xdy
= area L'LGKK' —area K'KHLL'
=-A
Therefore, ¢ (ydx—xdy) =2A; (7.65)
The first integral in Eq. (7.64) can be written as
12 12 dp dx apd
qac[ X ax - "’ ) =¢C[£¥—5¢d—gds (7.664)

and from Fig. 7.22(b)
g (@Y B dx)
- qscﬁﬁy dn " 2x dn ds
=—jo 2 P 4 (7.66b)

where n is the outward drawn normal to the boundary C;. Therefore, Eq. (7.64)
becomes

§e % ds = 2GOA, (7.67)

on each boundary C;. A is the area enclosed by C;.
The remaining equations of Sec. 7.3 remain unaltered, i.e. Eqs (7.24) and (7.25) are

Torque T = 2 [[ 4 dx dy
R

and L S =V =—2GH

The value of J defined in Eqg. (7.16) can be obtained for a multiply-connected body
in terms of the stress function ¢, as follows. Using Eq. (7.63)

J—H(x +y +xﬁv;—y?”jdxdy

- 2. 2 1 A 2 1, 2
‘IR(X” Goox X "Gaay’ yjdXdy
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Ll @
= -g(ﬁxXJré’y yjdxdy

- il 2= 5 00)- 2 ()| exay

R

= %g¢dxdy+éq‘>¢¢(ydx—xdy)

where we have made use of Gauss’ theorem and the subscript C on the line
integral means that the integration is to be performed in appropriate directions
over all the contours C; (i=0, 1, 2,. . .,) shown in Fig. 7.21. Since we have chosen
¢ to be zero over the boundary C,

2 1 1
J= G—0g¢dxdy+G—9<ﬁq(ydx—xdy)K1+G—9<j>C2(ydx—xdy)K2+...

where K, K,, . . ., are the valuesof gon C,, C, . . .,
And from Eq. (7.9)

2 1
J= G—g’jé[gzﬁdxdy+G—6’(2K1/3&+2K2A2 +...)

where A; is the area enclosed by curve C;. Hence,

2
J:@[jj¢dxdy+ZKiAJ (7.68)
Equation (7.17), therefore, assumes the form
T=Glo=2([[dxdy +ZKiA) (7.69)

For a solid shaft with no holes, the above equation reduces to Eq. (7.24).

Example 7.5 Analyse the torsion problem of a thin-walled, multiple-cell closed
section, using equations (7.28), (7.56) and (7.69). Assume uniform thickness t.

Solution Consider the two-celled section shown in Fig. 7.23. According to
Eq. (7.61), the stress function ¢ is constant around each boundary. Put

contour S,
n

contour S,

% __ Ko ¢ =K
on  t ?/% :
$=0 ¢=0

Fig. 7.23 Example 7.5
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¢ = 0 on boundary Cy, ¢ = K, on C; and ¢ = K, on C,. From Eq. (7.28), the
resultant shear stress is given by t,, = —? where n is the normal to the contour

n

of ¢, i.e. the line of shear stress. Since the thickness t is small, the lines of shear
stress follow the contours of the cells. Further, since ¢ = 0 on C, and ¢ = K; on
C,, we have for contour S, of cell 1,

dp _ 0-K, K

-5 = : =0 (7.70)
For the web contour S,,
9 _ KooK
on - T 1 T2 (7.71)
and for contour S, of cell 2
0-K, K
@ _ K K (7.72)

on t t
From Eq. (7.67), for cell 1
73(Sy = Spp) + 71581, = 2GOA
where S, is the peripheral length of cell 1 including the web, and S,, the length of
the web. Substituting for 7, and 7,

Kl KZ — Kl

: (S,-S,) - S, =2GoA,
S S
or K, Tl -K, %2 =2G6A, (7.73)

Similarly, for cell 2
(S, = S1p) — 71581, = 2GOA,

K K, - K,

or TZ(S2 -Sp,)+ S, =2G6A,
ie. K, St—z - K, S’tﬁ =2G6A, (7.74)
From Eq. (7.69) T=2([[¢ dxdy + Z;K;A)

Compared to A;, the area of the solid part of the tube section is very small and
hence, the integral on the right-hand side can be omitted. With this

T=2(KA +KyA) (7.75)
Equations (7.73)—(7.75) will enable us to solve for K;, K, and 6.

Example 7.6 Using equations (7.28) and (7.61), prove that the shear flow is
constant for a thin-walled tube (shown in Fig. 7.24) subjected to torsion.

Solution Let S be the contour of the centre line and t, the thickness at
any section. According to Eq. (7.61), the stress function ¢ is constant around
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each boundary. Let ¢ = 0 on C, and ¢ = K,
on C,. Then, from Eq. (7.28), at any section

Ly
Therefore,
7.ty = K, a constant
Fig 7.24 Example 7.6 i.e. q is constant.

7.13 CENTRE OF TWIST AND FLEXURAL CENTRE

We have assumed in all the previous analyses in this chapter that when a twisting
moment or a torque is applied to the end of a shaft, the section as a whole will
rotate and only one point will remain at rest. This point is termed the centre of
twist. Similarly, it was stated in Sec. 6.5 that there exists a point in the cross-
section, such that when a transverse force is applied passing through this point,
the beam bends without the section rotating. This point is called shear centre or
flexural centre. Consider a cylindrical rod with one end firmly fixed so that no
deformation occurs at the built-in section (Fig. 7.25).

/

’/

Fig. 7.25 Centre of twist and flexural centre

P =T

For such a built-in cylinder, it can be shown that the centre of twist and
the flexural centre coincide. To see this, let the twisting couple be T = P, and the
bending force be F = P,. It is assumed that P, is applied at point 1, which is the
centre of twist and P,, through point 2, the flexural centre. Let 8, be the rotation
caused at point 1 due to force P, (= F) and let &, be the deflection (i.e. displace-
ment) of point 2 due to force P, (= T). But §,, the rotation, is zero since the force
P, is acting through the flexural centre. That is, a,, = 0. Consequently, from the
reciprocal theorem, a,; = 0. But a,, is the deflection (i.e. displacement) of the
flexural centre due to torque. Since this is equal to zero, and since during twisting,
the only point which does not undergo rotation, i.e. deflection, is the centre of
twist, the flexural centre and the centre of twist coincide. It is important to note
that for this analysis to be valid it is necessary for the end to be firmly built-in.
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Problems
71 (a) Verify that

V= —%(xz +y? —2ax+ _Zb’ax__ sz
2 X2 4+ y2
where a and b are as shown in Fig. 7.26
and C is a constant, is the Saint-Venant
warping function (also Prandtl stress func-
tion) for the torsion of a round shaft with
a semi-circular keyway.
(b) Obtain an expression for the maximum
stress in the section.
(€) What is the ratio of the maximum stress in
Fig. 7.26 Problem 7.1 a shaft without a groove to the maximum
stress in a shaft with a groove where b
tends to be very small.
[Ans. () 7, =GO (2a-h) }
(c) Ratio >2asbh—0
7.2 The two tubular sections shown in Fig. 7.27 have the same wall thickness t
and same circumference. Neglecting stress concentration, find the ratio of
the shear stresses for

(a) equal twisting moments in
the two cases and

(b) equal angles of twist in the
two cases.

ot

t > <

[Ans. (@ 1: 4/7r}

Fig. 7.27 Problem 7.2 (b) 1:m/4

7.3 A thin-walled box section of dimensions 2a x a x t is to be compared with a
solid section of diameter a (Fig. 7.28). Find the thickness t so that the two
sections have

< 2a 1

a

i t> <

Fig. 7.28 Problem 7.3

(@) the same maximum stress for the same torque and
(b) the same stiffness.
Ans. (a) t=rma/64

_3m
bt =764
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74 A hollow aluminium section is designed, as shown in Fig. 7.29(a), for a
maximum shear stress of 35000 kPa (357 kgf/cm?), neglecting stress concen-
trations. Find the twisting moment that can be taken up by the section and
the angle of twist if the length of the member is 3 m. If the member is
redesigned, as shown in Fig. 7.29(b), find the allowable twisting moment and
the angle of twist. Take G = 157.5 x 10°kPa.

0.6 cm 09 cm
Y Y -
A X

> < 0.6cm 6 cm > < 06cm

: e
| ‘i | ‘;

=< 10 cm > [<——10cm ————

(@ (b)
Fig 7.29 Problem 7.4

(b) 2352 Nm; 0.837°

75 A steel girder has the cross-section shown in Fig. 7.30. The wall thickness is
uniformly 1.25 cm. The stress due to twisting should not exceed 350000 kPa
(3570 kgf/cm?). Neglect stress concentrations.

(@ What is the maximum allowable

[Ans. (@ 2352 Nm; 1.060}

1.25 cm
2 torque?
X (b) What is the twist per metre length
4 ?
under that torque?
125 0m (c) What is the shear stress in the
y 1L \ middle web?
f«—-—25cm —— > Ans. (a) 273.44kNm

Fig. 7.30  Problem 7.5 1 g .
(b) S (4.2 x 10°) radians
(c) zero

7.6 A thin-walled box shown in Fig. 7.31 is subjected to a torque T. Determine
the shear stresses in the walls and the angle of twist per unit length of
the box.

l~— 28—

i

Ans. g, = (z+2)T g, =278
2a U a?(rPe12re1s) C Amels
|
—=" 5 (27 +3)T

- 3, (2
Fig. 7.31 Problem 7.6 2Ga t(” +127 +16)



Torsion 267

7.7 Figure 7.32 shows a tubular section with three cells. The thin-walled tube is
subjected to a torque T = 113000 Nm (115455 kgf cm). Determine the shear
stresses in the walls of the section.

7, b T t, By

N ——

[\

<t
=+
i
A
S
<

K \tz fy %

Fig. 7.32 Problem 7.7

a=12.7cm,t;,=0.06 cm, t,=0.08 cm, t;=0.08 cm, t,=0.13 cm,
t; =0.08 cm, t; =0.10 cm
Ans. 1, =394649 kPa

7, = 518388 kPa
T, = 460472 kPa
7, =—136862 kPa
75 = 57920 kPa
T, = 368377 kPa

7.8 A thin tubular bar shown in Fig. 7.33 is subjected to a torque T = 113000 Nm
(115455 kgf cm). The dimensions are as indicated. Determine the shear
stresses in the walls.

Given a=12.7cm,t; =0.06 cm, t,=0.08 cm,
t;=0.06 cm, t,=0.10cm, t; =0.13 cm

Fig. 7.33  Problem 7.8

Ans. 1, =441.2 MPa
7, = 558.6 MPa
7, =393.1 MPa
7, =-211 MPa
75 = 140 MPa
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79 A thin-walled box section has two compartments, as shown in Fig. 7.34. It
has a constant wall thickness t. What is the shear stress for a given torque
and what is the stiffness, i.e. the torque per unit radian of twist?
[Hint: Treat cell 1 as a closed box and cell 2 as made of two narrow rectan-
gular members. The shear flow near the junction is shown in Fig.7.33(b).]

W;

A

2a >

~——

Y
4
t

(@

Fig. 7.34 Problem 7.9

T T T 2, 42 3

Ans. 7, = ~ —=Gat (a“ +1t°) = Ga’t

{ at@i+t?) 22t 4 }

7.10 A section which is subjected to twisting is as shown in Fig. 7.35. Determine

the allowable twisting moment for a maximum shear stress of 68950 kPa

(703.6 kgf/cm?). Calculate the shear stresses in the different parts of the
section, neglecting stress concentrations.

25.4 cm 25.4 cm
fle——>«—— 50.8cm ]
‘ | ‘ 7‘7
> < 1.27¢cm T
B 25.4 cm
vy A C y L
\ -]+
A A
0.63 cm 0.63 cm

Fig. 7.35 Problem 7.10

Ans. T =112,126 Nm (L.13 x 10 kgf cm)
7, = 2151 kPa (21.95 kgf/cm?)
75 = 34475 kPa (351.8 kgf/cm?)
7. = 68950 kPa (703.6 kgf/cm?)



g ; CHAPTER
Axisymmetric

Problems

8.1 INTRODUCTION

Many problems of practical importance are concerned with solids of revolution
which are deformed symmetrically with respect to the axis of revolution.
Examples of such solids are circular cylinders subjected to uniform internal and
external pressures, rotating circular disks, spherical shells subjected to uniform
internal and external pressures, etc. In this chapter, a few of these problems will
be investigated. Let the axis of revolution be the z-axis. The deformation being
symmetrical with respect to the z-axis, it is convenient to use cylindrical coordinates.
Since the deformation is symmetrical about the axis, the stress components do
not depend on 6. Further, t,,and 7,, do not exist. Consequently, the differential
equations of equilibrium [Eqgs (1.67)—(1.69)] can be reduced to our special case.
However, it is instructive to derive the relevant equations applicable to
axisymmetric problems from first principles. Consider an axisymmetric body shown
in Fig. 8.1. Let an elementary radial element be isolated. The stress vectors
acting on its faces are as shown.

Fig. 8.1 An axisymmetric body
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On faces ABCD and EFGH, the normal stresses are o, and there are no shear
stresses. On face ABFE, the stresses are o, and 7,,. On face CDHG, the normal
and shear stresses are

o
o,+ A0, =0, + ﬁzz Az
aTI’Z
2z4

On face AEHD, the normal and shear stresses are o, and 7,,. On face BCGF,
do, ory, Ar

or or
For equilibrium in z direction

T, + AT, =T, + Az

the stresses are o, +

Ar and 7., +

[az + 0, Az) [r +£] AO Ar +[rrz + Oty Arj (r+ Ar) AG Az
oz 2 or

-7, AOAZ - 0, [r+%) AO Ar +, [H%j AOArAz=0

where 7, is the body force per unit volume in z direction. Hence,

do, (r +£] AY A9A2+ﬂ(r+Ar) Ar A6 Az
Vori 2 or

+ 1, ArAB Az +, (r+£jArA9Az:O
2

Cancelling Ar A8 Az and going to limits
do, OJry, N
oz or

Similarly, for equilibrium in r direction we get

In py=0 8.1)
.

do, Or, L0
o oz
where ¥ is the body force per unit volume in r direction. Since the stress components
are independent of 6, the equilibrium equation for 6 direction is identically satisfied.

For the problems that we are going to discuss in this chapter, we need expres-
sions for the circumferential strain &, and the radial strain &,.

Referring to Fig. 8.2(a), consider an arc AE at distance r, subtending an angle
A6 at the centre. The arc length is rA6. The radial displacement is u,. Conse-
quently, the length of the arc becomes (r + u,) A6. Hence, the circumferential
strain is

+%=0 (82)

. (r+u)A@-rAo u ©3)

= —_r
¢ rag r
The radial strain is, from Fig. 8.2(b),

sﬁ=i¢ 8.4)
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oy
u, +—L Ar
uf

Fig. 8.2  Displacements along a radius

The axial strain is

a
g = é’ZZ (8.5a)
where u, is the axial displacement. In subsequent sections we shall consider the

following problems:

Circular cylinder subjected to internal or external pressure
Sphere subjected to internal or external pressure

Sphere subjected to mutual gravitational attraction
Rotating disk of uniform thickness

Rotating disk of variable thickness

Rotating shaft and cylinder

8.2 THICK-WALLED CYLINDER SUBJECTED TO
INTERNAL AND EXTERNAL PRESSURES—LAME'S
PROBLEM

Consider a cylinder of inner radius a and outer radius b (Fig. 8.3). Let the cylinder
be subjected to an internal pressure p, and an external pressure p,. It is possible
to treat this problem either as a plane stress case (o, = 0) or as a plane strain case
(g, = 0). Appropriate solutions will be obtained for each case.

Py
AR RARAR AR R AL

RELLEEARRRRRE

Q
2o

YYYYYYYYYYYYYYY

fEEPERE R Rt A

(b)

(a)

Fig. 8.3  Thick-walled cylinder under internal and external pressures
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Case (a) Plane Stress

Let the ends of the cylinder be free to expand. We shall assume that o, = 0 and
our results will justify this assumption. Owing to uniform radial deformation, z,, = 0.
Neglecting body forces, Eqg. (8.2) reduces to

do, Lo =0y _

8.5b

or r 0 (8.50)

Since r is the only independent variable, the above equation can be written as
L(ro,)-0,=0 (8.50)

Equation (8.1) is identically satisfied. From Hooke’s law

1 1
& =E(0', - vag), &y =E(O'9 - var)
or the stresses in terms of strains are

= (et ve)  op=mg(e v e)

Oy

Substituting for & and &, from Egs (8.3) and (8.4)

__E [ ”_f] 86
crr—l_vz(dr+vr (8.6a)
- E |& d”r] 8.60
o=l e v (8.60)

Substituting these in the equation of equilibrium given by Eq. (8.5¢)

d(, du j_[u_r dﬁ]_
dr(r dr+vur r+1/dr =0

du, ~d®u,  du, u.  du
or o T T Var T Va0
e du,  1du u g
- dr2 rdr g2
This can be reduced to
d (du, u_rj_
dr( ar 7))
or 4 H (0 r)} -0 ®7)

If the function u, is found from this equation, the stresses are then determined
from Egs. (8.6a) and (8.6b).
The solution to Eq. (8.7) is

U =Cr+ G (8.8)
r
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where C, and C, are constants of integration. Substituting this function in
Egs. (8.6a) and (8.6h)

E 1
O, = m I:C]_ (1+ V) - C2 (1— V) r—zjl (893.)
Gy = 1/2 {cl (1+v)+C, (1) 12} (8.90)
- r
The constants C, and C, are determined from the boundary conditions.
When  r=a, 0, = —P,
when r=bn, o, = —Py
Hence,
: [cl 1+ -C, (- v)—}—pa
1-
£ [Cl 1+1)-C, - —}=—pb
1-v?
1-v pya’—p, b?
whence, C = £ a 7
1+v a2p?

C, :?W(Pa ~ Py)
Substituting these in Eqgs (8.8) and (8.9) we get

_l-vpa-pb®  1+vat? pa-p

= b a2 £ P (8.10)
_paa’-pb® @%b’ p,—py 611)
' b? — a® r2 b?-a? '
2 2 2,2
b _
0_0 — paa pb + a b pa pb (812)

b% - a® r2 b’>-a°

It is interesting to observe that the sum o, + o, is constant through the thick-
ness of the wall of the cylinder, i.e. independent of r. Hence, according to
Hooke’s Law, the stresses o, and o, produce a uniform extension or contraction
in z direction, and cross-sections perpendicular to the axis of the cylinder remain
plane. If we consider two adjacent cross-sections, the deformation undergone
by the element does not interfere with the deformation of the neighbouring
element. Hence, the elements can be considered to be in a state of plane stress,
i.e. o, =0, as we assumed at the beginning of the discussion. It is important to
note that in Egs (8.10)-(8.12), p, and p, are the numerical values of the compres-
sive pressures applied.
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Cylinder Subjected to Internal Pressure In this case p, = 0 and p, = p. Then
Egs (8.11) and (8.12) become

2 2
pa b
O = b2 _ a2 (l_ rzj ©13)
2 2
pa b
Op = b2 _ 2 [1+ rzj ©14)

These equations show that o, is always a compressive stress and o, a tensile
stress. Figure 8.4 shows the variation of radial and circumferential stresses across
the thickness of the cylinder under internal pressure. The circumferential stress is
greatest at the inner surface of the cylinder, where

p(a?+b?
(©0) nax = —E)z — ) (8.15)

b° +a°
b? - &2

(b)
Fig. 8.4 Cylinder subjected to internal pressure

Hence, (0p)max IS @lways greater than the internal pressure and approaches this
value as b increases so that it can never be reduced below p, irrespective of the
amount of material added on the outside.

Cylinder Subjected to External Pressure In this case, p, = 0and p, = p. Equations
(8.11) and (8.12) reduce to

pb? a?
O = [1——r2] (8.16)
pb? a’
e

The variations of these stresses across the

thickness are shown in Fig. 8.5. If there is

no inner hole, i.e. if a = 0, the stresses are

Fig. 8.5 Cylinder subjected to uniformly distributed in the cylinder with
external pressure O, = 0y = —P.
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Example 8.1 Select the outer radius b for a cylinder subjected to an internal
pressure p = 500 atm with a factor of safety 2. The yield point for the material (in
tension as well as in compression) is o, = 5000 kgf/cm? (490000 kPa). The inner
radius is 5 cm. Assume that the ends of the cylinder are closed.

Solution The critical point lies on the inner surface of the cylinder, where

b2 + az a2
o, =-P 0yp=p b2 o,=p YR (assumed)

In the above expressions, it is assumed that away from the ends, o, caused by p
is uniformly distributed across the thickness. The maximum and minimum principal
stresses are o, = o, and o; = o,. Hence,

bZ
b? — a®

Substituting the numerical values (1 atm = 98.07 kPa),
- 5,
b= \f3 a=6.45cm

Example 8.2 A thick-walled steel cylinder with radiia =5 cm and b = 10 cm is
subjected to an internal pressure p. The yield stress in tension for the material is
350 MPa. Using a factor of safety of 1.5, determine the maximum working pressure
p according to the major theories of failure. E =207 x 106 kPa, v =0.25.

Troax = %(0'1_0'3): p

Solution

(i) Maximum normal stress theory
Maximum normal stress= 0, atr=a

(b% + a%)

(b?-a%)

(b2 + a?) oy

(b*-a®) N

350 x 10° 10025
15 100 + 25

1l aximum shear stress theory

(i) Maxi h h

=140 x 10° kPa

or p=

Maximum shear stress = %(09 -o,)atr=a

_1 (2 )

_2p(b2—a2
p b 1%
b2-a? 2 N
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350 x 10° 10025
3 100
(iii) Maximum strain theory

=87.5x10°% kPa

or p=

Maximum strain = g, = % (ocy—vo,)atr=a

p 2 n2y a2 n2y]o %y
E(bz_az)[(a +b%) v (@ -b?) |= L
350 x 10°

b )
or 000 75 [125+(0.25x 75) | = e

350 x 10° x 75
1.5x143.75

(iv) Octahedral shear stress theory

p= =121.7 x10° kPa

1/2
Toct=%[0'§+0r2+(0r—ag)q at r=a

1 1/2
= §[2(0'r —0,)° + 20, O'g:|

_ﬁﬂ_p_ p(b2+a2)T_ . (b2+a2)}1/2

3 (b?— a?) (b’ —a?
_V29
3N
. s o M2
Gt )] B
3 (bz _ aZ)Z (bz _ aZ) 3 N
or (40000 _125\"%_ 3850
5625 75 15

p =100 x 10° kPa

(v) Energy of distortion theory
This will give a value identical to that obtained based on octahedral shear
stress theory, i.e. p = 100 x 103 kPa.

Example 8.3 A pipe made of steel has a tensile elastic limit o, = 275 MPa and
E =207 x 106 kPa. If the pipe has an internal radius a = 5 cm and is subjected to an
internal pressure p = 70 x 10° kPa, determine the proper thickness for the pipe wall

according to the major theories of failure. Use a factor of safety N = %
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Solution

(i) Maximum principal stress theory
Maximum principal stress=o0, atr=a
(b*+a%) oy

(b?-a? N

70 x 10° [(25 x107%) + bz] 275 x 10° x 3

[b2-(@5x10%)] 4
or 1750 x 10~* + 70b? = 825b% — % «107

or 136.25b% = 6906.25 x 107
: b=712x10%2m=7.12cm
Wall thickness t =2.12 cm
(i) Maximum shear stress theory

rmax=%(ag—o,) at r=a

pb® oy

T p2-a’) N

6 12
70x10°D" 3, 75,108
[b?-(25x107%)] 8
or 70b? = 103.13 b? - 2578.1 x 107
: b =8.82x102m=8.82cm
Wall thickness t = 3.82 cm
(iif) Maximum strain theory (with v = 0.25)

Emax=%(0'9—v0r) at r=a

p

_ 2, 12y _ 1 (a2_p2y] PV
_—E(bz_az)[(a +b?) v (a® - b?)]

NE

70 x 108
[b? = (25 x 107%)]

[(0.75x 25 x107%)

+(1.25 xb?)] =%>< 275 x 10°

or 1312.5 x 10 + 87.5b% = 206.25b? — 5156.25 x 10~
- b=7.38%x10?m=7.38cm
. Wall thickness t = 2.38 cm

(iv) Maximum distortion energy theory
From Eq. (4.12) with

0,=0p 0;=0, 03=0,=-p

277
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*= oxlog + ot + (o — )]

12G
(1+V)(2 24207 - 20, 0,)

2
(1+V) l+vo
3E (05 + 07 —0p07) = E N_y

2. 2 o
oy +0y —0y 0O, =—=
4 r HrN

. o[ 02+ a%)? b2-a%) | oy
ie. p {(bz—az)z +1+ 07+ 2) =

(o)
Putting —L| =f and simplifying one gets
UpN) =V

B-fA)b*+2a% f2b*+ (1- f2)a*=0
282 f) \/ [4a* 1 —4a* @~ 12) 3 1D)]
2(3- 1))

) az[—fy2 + Jat) —3)]

2(3-17)

b? =

With a=5x1072

6
fy = 275x 10 X3:2.946

70 x10° x 4

=(630r13.4)10" or b=79x10"m=7.9cm
WaII thlckness t=29cm

Case (b) Plane Strain

When the cylinder is fairly long, sections that are far from the ends can be consid-
ered to be in a state of plane strain and we can assume that o, does not vary
along the z-axis. As in the case of plane stress, the equation is

%(ro],)—ag =0

From Hooke's law

™
|

P = %[0, - v(oy +0'Z)]

£y= %[09 -v(o, + O'Z)]

)
|

, = %[O‘Z -v(o, +00)]
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Since g = 0 in this case, one has from the last equation
o,=Vv(0, + 0y

g = “Vm V) o, — voy] (8.18)

1+v
&=

[(1 V) oy - VGr]

Solving for o, and G

69 = WE(]_—‘,-V) [Vgr + (1_ V) 89] (819&)
o = E [@=1) & + v, ] (8.19b)

T A-2v)(1+v)
On substituting for &, and &, from Egs (8.3) and (8.4), the above equations become

E du,
%= m[ o e } (620
_ E du, U
e e 62

Substituting these in the equation of equilibrium, Eq. (8.5¢c)

d du, du,
E|:(1 )rw+w:| V——(l— )
du, du, uo

or W+r ar 2 T—O

' d (du U_r)_

e dr(dr T =0

This is the same as Eq. (8.7) for the plane stress case. The solution is the same as
in Eqg. (8.8).

C
ur=(‘,lr+T2

where C,; and C, are constants of integration. From Egs (8.20) and (8.21)

= g o 020 6220

_ E c
o | & oo

Once again, we observe that o, + o, is a constant independent of r . Further, the
axial stress from Eq. (8.18) is

_ 2vE
0, = -2 Ay C (8.22¢)
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Applying the boundary conditions

o, =—-p, Wwhen r=a, o,=—-p, when r=>b
B Je_aon&__
A-20) @+ ) {Cl d-2v) aZ}‘ Pa
B e _a_on&__
-2V @+ ") [Cl t-2v) bZ}‘ Po
_ 1L-2v) L+ v) pyb®— p,a’
Solving, C,= 3 7 b;
1+ v (p, — p,) a2 b?
and C.= —¢ az—abz
Substituting these, the stress components become
2 2 212
—n.b —
o, = Pad”—p,b"  pa—py a‘h (8.23)

b? — a? b?-a% r?

_ Paa’—pyb®  p,—pp a’h?

Op= b7 a2 0 a2 12 (8.24)
2 2
Ppd” — Pab

O, = ZVﬁ (825)

It is observed that the values of o, and o, are identical to those of the plane
stress case. But in the plane stress case, o, = 0, whereas in the plane strain
case,o, has a constant value given by Eq. (8.25).

8.3 STRESSES IN COMPOSITE TUBES—SHRINK FITS

The problem which will be considered now, involves two cylinders made of two
different materials and fitted one inside the other. Before assembling, the inner
cylinder has an internal radius a and an external radius c. The internal radius of
the outer cylinder is less than c by A, i.e. its internal radius is ¢ — A. Its external
radius is b. If the inner cylinder is cooled and the outer cylinder is heated, then
the two cylinders can be assembled, one fitting inside the other. When the cylin-
ders come to room temperature, a shrink fit is obtained. The problem lies in deter-
mining the contact pressure p, between the two cylinders.

The above construction is often used to obtain thick-walled vessels to with-
stand high pressures. For example, if we need a vessel to withstand a pressure of
say 15000 atm, the yield point of the material must be at least 30000 kgf/cm?
(2940000 kPa). Since no such high-strength material exists, shrink-fitted composite
tubes are designed.

The contact pressure p, acting on the outer surface of the inner cylinder reduces
its outer radius by u;. On the other hand, the same contact pressure increases the
inner radius of the outer cylinder by u,. The sum of these two quantities,
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i.e. (—u; +u,) must be equal to A, the difference in the radii of the cylinders. To
determine u, and u,, we make use of Eq. (8.10), assuming a plane stress case.
For the inner tube

1—1/1( c? ) +1+V1 a%c? [_ Pe ]

U, = - c
! E k Pe Cz—aZJ E c c?-a®
CP; 2 2
or Uyj=————[@Q-v)c°+(Q+v)a
) El(cz_az)[( 1) 6%+ L+ vy) @ |

For the outer tube

_1l-n c? j 1+V2C2b2[ Pe ]
U2 = E, [pc b? —c? o E, ¢ \p?-¢?

CP. 2 2
or Uy=—————|L=w)c"+ 1+ )b
2 Ez (b2 _ C2) |: 2 2 ]
In calculating u,, we have neglected A since it is very small as compared to c.
Noting that u, is negative and u, is positive, we should have

—U; +U, =A
. CP¢ 2 2
l.e. —— 1 1-v)c"+(1+ v,)a
3 (cz_az)[( 1)¢” + L+ v)a’ |
CP. 2 2
+——¢ (1= v,)c2+ 1+ v,)b? |=A 8.26a
3 (bz_cz)[( )6+ (L+ 1,0 | (8.262)

Regrouping, the contact pressure p, is given by

Alc

11]c?+a? 1 | b? +c?

Eld-a "|'E|l-2 7

If the two cylinders are made of the same material, then E; = E, and v; = v,.
Equation (8.26) will then reduce to

_ EA (*-a%) (0*=c?)

2¢3 (b?-a?)

It is important to note that in Eqgs (8.26) and (8.27), A is the difference in radii
between the inner cylinder and the outer jacket. Because of shrink fitting, there-
fore, the inner cylinder is under external pressure p.. The stress distribution in the
assembled cylinders is shown in Fig. 8.6.

If the composite cylinder made up of the same material is now subjected to an
internal pressure p, then the two parts will act as a single unit and the additional
stresses induced in the composite can be determined from Eqgs (8.13) and (8.14).
At the inner surface of the inner cylinder, the internal pressure p causes a tensile
tangential stress oy, Eq. (8.14), but, the contact pressure p, causes at the same
points a compressive tangential stress, Eq (8.17). Hence, a composite cylinder can

Pe = (8.26b)

(8.27)

C
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)

Fig. 8.6

Streses in composite tubes

support greater internal pressure than an ordinary one. However, at the inner

points of the jacket or the outer
pressure p, both will induce ten

cylinder, the internal pressure p and the contact
sile tangential (i.e. circumferential) stresses o,.

For design purposes, one can choose the shrink-fit allowance A such that the
strengths of the two cylinders are equal. To determine this value of A, one can

proceed as follows.

Fig. 8.7 Equal strength
composite tube

Let a and ¢ be the radii of the inner cylinder, and
c and b the radii of the jacket (see Fig. 8.7) c is
the common radius of the two cylinders at the
contact surface when the composite cylinder is
experiencing an internal pressure p and the shrink-
fit pressure p.. If the strengths of the two cylin-
ders are the same, then according to the maximum
shear stress theory, (o, — o3) at point A of the
inner cylinder should be equal to (o, — o3) at
point B of the outer cylinder. o, and o; are the
maximum and minimum normal stresses, which are
respectively equal to o, and o,.

At point A, due to internal pressure p, from Egs (8.13) and (8.14),

b? + a®
b% - a®

(60 - Gr)A = p

b2
b? - a®

=2p

(-p)

Because of shrink-fitting pressure p., at the same point, from Eqs (8.16) and (8.17),

CZ

(0g= O)a = _chz—

c-—a

2

Hence, the resultant value of (o, - o;) at A is

b2

CZ

(Go‘Gr)AZZpbz 7~ 2P

8.28
22 (828)

At point B of the outer cylinder, since the composite involves the same material, due to
the pressure p, from Eqs (8.13) and (8.14), and observing that r = ¢ in these equations,
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a’(c?+b%) a%(c?-p?
(0p=0)g=Pp 2(2 2)_ 2(2 2)
c“(b°-a°) c°(b°-a%)
a’b?
P 2.2
c (b -a“)

At the same point B, due to the contact pressure p,, from Eqgs (8.13) and (8.14),
with internal radius equal to ¢ and external radius b,
c?+b? c?-b? }

(0g—0)g = P {m—m

b2
=20 —bz —
The resultant value of (o, — o,) at B is therefore
a’b? b?
(69— o‘r)B: 2pm+ 2pc m (829)
For equal strength, equating Eqs (8.28) and (8.29)
b? c? a’b? b?
2 -2 =2p——— + 2 -
P (b% - a?) Pe (c®>—a?) P (b% - a?) Pe (b% - c?)
b? c? b? a’b?
or + - - 8.30
'O{bz—c2 (cz—az)} p{(bz—az) c? (b? - a?) (68:30)

The shrink-fitting pressure p, is related to the negative allowance A through Eq.
(8.27) and it is this value of A that is required now for equal strength. Hence,
substituting for p, from Eq. (8.27), Eq. (8.30) becomes

g(cz—aszz—cz){ b? c? }:p{ b? a%h? }

26 (bP-a?) - cd)  (-a?) (b2—a?) c%(b2-a?)

or AE (20%c*-b%*a’-c*)  pb®(c’-a?)

2c3 (b? - a?) - 2 0?-a?)
2p b%c(c? - a?)
or A= — 8.31a
E b2(c?-a®)-c?(b*-c?) (8:31)
Also, from Eq. (8.30),
2022 o2\2 12 A2
b, = b“(c®—a”) (b°-c?) (8.31b)

p

¢? (b?—a®) [ b? (¢ - a®) + ¢ (b - ¢?) |
The value of (o, — o,) either at A or at B, from Eqgs (8.28) and (8.31), is
2b? {1 (c*~a%) (b - ¢*) }

(0*—a?) |  b?(c?—a?)+c? (b’ —c?)

Og— 0= 1D
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2b? 1
or O,— O, = 1- (8.32)
C T 2o a?) b2, ¢
b2 —c?2 c2-a?

Therefore, for composites made of the same material, in order to have equal strength
according to the shear stress theory, the shrink-fit allowance A that is necessary
is given by Eqg. (8.31a), and this depends on the internal pressure p. Further, A
depends upon the difference between the external radius of the inner cylinder and
the internal radius of the jacket. In other words, this depends on c(+) and c(-).
With a, b and p fixed, one can determine the optimum value of ¢ for minimum
(0,— o,) at A and B. From Eq. (8.32), the minimum value of (o, - o,) is obtained
when the denominator of the second expression within the square brackets is a
maximum, i.e. when D is a maximum, where
b? c?
b= - - al
Differentiating with respect to ¢ and equating the differential to zero,

D 2ch? 2c(c®-a’)-2c®
dc (b% — ¢?)?2 (c® —a?)? -
Simplifying, one gets

c=+ab

The corresponding value of (o, - o,), from Eq. (8.32), is

o 2b? B
(b2 - a?) b? L ab
b(b-a) a(b-a)

(0-0 - O-r)min =

2 [ (b=
_po |y (b-9)
(b?-a?)| 2b
b
or (0= O)min= P b-a (8.33)
Also, the optimum value of A is from Eq. (8.31a),
1 P

Ag= 2 PC=¢ Jab (8.34)

Example 8.4 Determine the diameters 2c and 2b and the negative allowance A
for a two-layer barrel of inner diameter 2a = 100 mm. The maximum pressure
the barrel is to withstand is p_, = 2000 kgf/cm? (196000 kPa). The material
is steel with E = 2(10)® kgf/cm? (196 x 10° kPa); o. , in tension or compression is
6000 kgf/cm? (588 x 102 kPa). The factor of safety is 2.
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Solution From Eq. (8.33),
6000 _ b
5 = 2000 =
Therefore, b=3a

Since ¢ = Vab,c= \/§ a. The numerical values are therefore, 2a = 100 mm,
2b =300 mm, 2¢ = 173 mm. With ¢ = ab, the value of A is, from Eq. (8.34),

A= L Jab - 2090 [(50%150) = 0.866 mm
E 2x10

Example 8.5 A steel shaft of 10 cm diameter is shrunk inside a bronze cylinder of
25 c¢m outer diameter. The shrink allowance is 1 part per 1000 (i.e. 0.005 cm
difference between the radii). Find the circumferential stresses in the bronze cylinder
at the inside and outer radii and the stress in the shaft.
Eqeer = 2.18 x 10° kgf/cm? (214 x 10° kPa)
Epronze = 1.09 x 10° kgf/icm? (107 x 10° kPa)
and v = 0.3 for both metals.

Solution In Eq. (8.26),
a=0, c=5 b=125 A=0.005 v,=v,=03
Substituting in Eq. (8.26a),

5
— P (07x25)+
2.18 x 10° x 25

5p.
1.09 x 10° x (156.25 — 25)

X (0.7 x25+1.3x 156.25) =0.005

or, p. = 610 kgf/cm? (59780 kPa)
For the bronze tube, the circumferential stress is, from Eq. (8.14),

oo 610 x 25 ( 156.25)
" (156.25 - 25) r
Whenr=5cmandr=125cm
0, = 842.4 kgflcm? (82555 kPa)

0, = 232.4 kgflcm? (22775 kPa)
The shaft experiences equal o, and o, at every point, from Eqgs (8.16) and (8.17).
Hence,

0, = 0,=-610 kgf/cm? (59780 kPa)

Example 8.6 A compound cylinder made of copper inner tube of radii a = 10 cm
and ¢ = 20 cm is snug fitted (A = 0) inside a steel jacket of external radius
b = 40 cm. If the compound cylinder is subjected to an internal pressure
p = 1500 kgf/cm? (147009 kPa), determine the contact pressure p. and the values of
o, and o, at the inner and external points of the inner cylinder and of the jacket. Use
the following data:

E,, =2 x 10 kgf/cm? (196 x 10° kPa),
E. =1x10%kgflcm? (98 x 10° kPa),  v,=0.3, v, =0.34
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Solution  Since the initial shrink-fit allowance A is zero, the initial contact pres-
sure is zero. When the compound cylinder is subjected to an internal pressure p,
the increase in the external radius of the copper cylinder under p and contact
pressure p. should be equal to the increase in the internal radius of the jacket
under the contact pressure p,,

i.e. [(ur)p +(Up)p, atr= c] = [(ur)pc atr = c]st

cu

For copper cylinder, from Eq. (8.10),

1-v,, pazc 1+ v, a%c? p
(ur)p - = (C2 - 3.2) = c (C2 - 8.2)

W, - B A A
P = (Cz - az) = c (C2 - az)

2pa’c P.C
Eo (€2-2a%) Eg (¢P-aP)

(Uotar = [c? = vyy) +a® L+ )]

For steel jacket, from Eq. (8.10),

w, = 1- Vst ch3 1+ Vst c’b? Pc
P By (¥-c®) Eqx C (¥ -c?)
PcC 2 2
=———— ¢ (I-vy)+b A+ v
Eﬂﬁ—&ﬂ (L= ) + b7 L+ vy) |
Equating the (u,)s
2pa’c P.C

ECU (Cz_ az) Ecu (CZ— az) [C (l VCU) +a (l+ ch):|

_ pC 2 2
_m[c (L= vg) +b° @+ vy) |

o b {(02 ra?) — vy (F-a%) (0P +¢h) v vy (07 02)}
‘ Ecu (Cz_az) Est (bZ_CZ)

2a*
Ecu (CZ - az)

With p = 1500 kgf/cm?, a = 10, ¢ = 20, b = 40, v, = 0.3, v, = 0.34,

=p

500 - 300 x 0.34 2000 +1200 x 0.3 | _ 3000 x 100
¢ 300 x 10° 2 x 1200 x 10° 300 x 108

p. = 433 kgf/cm? (42453 kPa)
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Now, p, will act as an external pressure on the copper tube and as an internal
pressure on the steel jacket. For copper tube, from Eqgs (8.11) and (8.12),
(i) Inner surface:,
o, at r = a is —1500 kgf/cm? and,
ogatr=ais

(1500 x 100) — (433 x 400) N 100 x 400 N (1500 — 433)
(400 —100) 100 (400 —100)
= 1357 kgf/cm? (compressive)
(i) Outer surface:
o, at r = ¢ is —433 kgf/cm? and,
ogatr=cis

(1500 x 100) — (433 x 400) 100 x 400 (1500 — 433)
a (400 —100) " 400 (400 —100)
=279 kgf/cm?
For steel jacket, from Eqgs (8.11) and (8.12),
(i) Inner surface:
o, at r = ¢ is — 433 kgf/cm? and,
ogatr=c is

_ (433x400) 400x1600 433
(1600 — 400) 400 (1600 — 400)
=722 kgf/cm?

(i) Outer surface:
o, at r =D is zero and,
opatr=nhis

_ (433x400) 4001600 433
~ (1600-400) 1600 (1600 — 400)

= 289 kgf/cm?

8.4 SPHERE WITH PURELY RADIAL DISPLACEMENTS

Consider a uniform sphere or spherical shell subjected to radial forces only, such
as internal or external pressures. The sphere or the spherical shell will then
undergo radial displacements only. Consider a particle situated at radius r before
deformation. After deformation, the spherical surface of radius r becomes a
surface of radius (r +u,) and the particle undergoes a displacement u,. Similarly,
another particle at distance (r + Ar) along the same radial line will undergo a

displacement [u, +%Ar) .
Hence, the radial strain is

_Ollr
€, = ar
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Before deformation, the circumference of any great circle on the surface of radius
ris 2zr. After deformation, the radius becomes (r +u,) and the circumference of
the great circle is 27 (r + u,) Hence, the circumferential strain is
27z(r +Ur)_ 2zr U,
£¢ = = —
2zr r
This is the strain in every direction perpendicular to the radius r. Because of
complete symmetry, we can choose a frame of reference, as shown in Fig. 8.8.

Fig. 8.8 Sphere with purely radial displacement

Thus, the three extensional strains along the three axes are

u u
gr =_r 5‘9 = — g¢ :Tr (835)

r
Because of symmetry, there are no shear stresses and shear strains. Let y be the
body force per unit volume in the radial direction.

The stress equations of equilibrium can also be derived easily. Consider a
spherical element of thickness Ar at distance r, subtending a small angle 26 at
the centre. Because of spherical symmetry, o, = o, For equilibrium in the
radial direction,

-0, (201)(20r) + (0, + Ag;) (r + Ar)20 (r + Ar)26

-2

r+ %)ZHAr% sin -2

r+ %)29 Arc, sin@+ y, 46°r*Ar =0

Or
r

Putting o, = 0, and Ao, = Ar , the above equation reduces in the limit to

2 ﬁO'r
or

Since r is the only independent variable, the above equation can be rewritten as

r

+2ro, —2ro, + rzyr =0

% (ro,)-2ro, + 1’y =0 (8.36)
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If body force is ignored,

1d 2
z dr( ’6,) = 7% (8.37)

From Hooke s law

1
& = E[G -v(oy+ 0'¢)J
du, 1
== - 8.38
or 5 = & (0 —2v0y) (8.38)
and
£y= é[% —v(oy+ or)J
or
u _ 1
i E[(l_ V) oy, - vo-r] (8:39)

Equations (8.37)—(8.39) can be solved. From Eq. (8.39)

u, = %[(1— Vo, - vra,]

Differentiating with respect to r

du, _ %{(1_V)d(ra¢) d(ro,)

dr dr dr
Subtracting the above equation from Eq. (8.38)
d(r0'¢) d(rO'r) N

0=-(11-v) ar ar r —2voy
Substituting for o, from Eq. (8.36)
N (r Gr)_ d(ro,) vd(rio,) 8.40
(1 ) 14 dr (o +?T—O ( )
Ifr? o, = y,
d 1o )- y] 1dy 1
dr( o) = dr( rdr r2y
Therefore, Eq. (8.40) becomes
1 9y _vdy vy oy vdy
2(1 )er rdry2 r2+rdr 0
2
or dy _ 212: 0 (8.41)

This is a homogeneous linear equation with the solution

y= Ar2+%
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where A and B are constants. Hence,
B

O, = A+—3 (842)
r
And from Eq. (8.37)
1d 2, B B
== 2l=A-— 8.43
0= - dr(Ar + r) A >3 (8.43)

The constants A and B are determined from the boundary conditions.

Problem of Thick Hollow Sphere

Consider a spherical body formed by the boundaries of two spherical surfaces of

radii a and b respectively. Let the hollow sphere be subjected to an internal pres-

sure p, and an external pressure p, . The boundary conditions are therefore
o,=—p, whenr=a, and o,=-p, whenr=>0

From Eq. (8.42)

B B
—p, = A+¥ and —pb:A+b—3

Solving,
b’p, —a’p a%?
AZ—ﬁ, B:m(pb_pa)
Thus, the general expressions for o, and o, are
1 3p®
0, = 73 3 |:_b3 Py + a3 Pa + a_3(pb — Pa ):| (844)
b® -a r
1 3 3 a’b®
Oy= Oy = P [—b Pp +a° Py __2r3 (pb - pa)} (8.45)
If the sphere is subjected to internal pressure only, p, = 0, and
a’ b?
0, = Pa P 1- = (8.46)
3 3
a b ]
0,=0p=P, &= |1+—= 8.47
6- 70 pabg’—a3[ 2r® (847)

The above two equations can also be written as
S 6_3[L_Lj
@\

3
a 1 1
R e ey
0= 907 Pa T g 2
In the case of a cavity inside an infinite or a large medium, b — o and the above
equations reduce to

G, = —Pa ";‘—3 (8.48)
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3
a 8.49
o (849

The above equations can also be used to calculate stresses in a body of any
shape with a spherical hole under an internal pressure p,, provided the outer
surface of the body is free from pressure and provided that every point of this
outer surface is at a distance greater than four or five times the diameter of the
hole from its centre.

0y= Op =+ Pa

Example 8.7 Calculate the thickness of the shell of a bomb calorimeter of
spherical form of 10 cm inside diameter if the working stress is o kgf/cm?
(98 o kPa) and the internal pressure is o/2 kgf/cm? (49 o kPa).

Solution From equations (8.46) and (8.47), the maximum tensile stress is due to
o, Which occurs at r = a. Hence,
c 5 ( b’
Oy= — 1+
T2 os 2x5)
Equating this to the working stress o

2 (B
1+ =2
b3—53L 2><53)
b =6.3cm

Hence, the thickness of the shell is 1.3 cm.

Example 8.8 Express the stress equation of equilibrium, i.e.

given by Eqg. (8.37), in terms of the displacement component u,, using Hooke's
law and strain—displacement relations.

. 1
Solution We have g = E[(ar - 2vo-¢)J

1
€= E[(l_ v)o, - vo-,]
Solving for o, and o,

E

o= m[gr (L= v)+ 2ve, | (8.50)

~ E
O-¢ = m (V{;'r + €¢) (851)

Using the strain—displacement relations

du u
£ = d_rr and g¢:Tr
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and substituting in the equilibrium equation, we get

EQ-v) {dzu”rzdi 2 u:l_o
=

A+ V@A-2v)| g2 r dr 2

E(l— V) d dul’ ur B
> @+ v@-2v) dr [W +2 TJ =0 (8.52)

8.5 STRESSES DUE TO GRAVITATION

When body forces are operative, the stress equation of equilibrium is, from
Eg. (8.36),

1d 2

r_ZW(rZO-r)_?O-¢+}/r:0 (853)
where ¥ is the body force per unit volume. The problem of a sphere strained by
the mutual gravitation of its parts will now be considered . It is known from the
theory of attractions

h=-Poy
where a is the radius of the sphere, p is the mass density, r is the radius of any
point from the centre and g is the acceleration due to gravity. Expressing the
equations of equilibrium in terms of displacement u, [Eq. (8.52)], we have
E@A-v) d (dur u,) r
4 - pg—= 8.54
Trna-2vdrlar "27) P90 (8.54)

dr r
The complementary solution is

u,= Cr+&2
r

and the particular solution is
=1 L+v)1-2v)
" 10 E(@l-va

Hence, the complete solution is
C 1@0+v(@-2v) 3
u, = —_ _
SOt Eamva FY

For a solid sphere, C, should be equal to zero as otherwise the displacement will
become infinite at r = 0. The remaining constant is determined from the boundary
condition o, = 0 at r = a. From the general solution

du, _ . 31+v)(1-2V) U _ . @+Va-2)
ar ST TioEa-wa P 7 T ST oEa-wa AW
and from Eq. (8.50)

par®

o, & (1—V)+2V8¢]

= ;[
@+vy@1-2v)
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:m[%'(l— v+ 2VUH

~ - v)%l— 2) [C(l‘ I+ 3(“1%2; 2 port + 21
s

) m [C @+ Vl)o(éa—:(lvz (i)_ = /’grz]

From the boundary condition o,=0 at r=a,
B-v)(1-2v)

C=-"Ea-y PR
_ 1 B=-v) .2 2 P9
Hence, %= ~15 = (a“—r9) a (8.55)

and from Eq. (8.53)

1 B-wa’-(1+31r° pg
10 @-v a
It will be observed that both stress components o, and o, are compressive at

every point. At the centre (r = 0), they are equal and have a magnitude

i3—v
101-v

O'¢ = Oy = (856)

O,=o0y=0p= pga (compressive)
Further,

du, _ 1 31+v)(1-2v) 2

ar St Ea-wa Y

_ 1 (B-v@a-2v 1 31L+v)(1-2v)
=10 Ea-» "'l ea-va P

_ 1A+ (1_2‘/)@{1%2 ~(B-w az}

10 E(Q-v) a 1+v)
The above value is zero when
2 _ B-v) 2
T aaen @

Hence, if v is positive (which is true for all known materials), there is a definite
surface outside which the radial strain is an extension. In other words, for

L+ v) T2
F>8 3107

the radial strain ¢, is positive though the radial stress o, is compressive every-
where. This result is due, of course, to the ‘Poisson effect” of the large circumfer-
ential stress, i.e. hoop stress, which is compressive.
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8.6 ROTATING DISKS OF UNIFORM THICKNESS

We shall now consider the stress distribution in rotating circular disks which are
thin. We assume that over the thickness, the radial and circumferential stresses
do not vary and that the stress o, in the axial direction is zero. The equation of
equilibrium given by Eq. (8.5b) can be used, provided we add the inertia force
term pw?r, i.e. in the general equation of equilibrium [Eq. (8.2)] we put the body
force term equal to the inertia term pw?r, where w is the angular velocity of the
rotating disk and p is the density of the disk material. The z-axis is the axis of

rotation. Then;

ﬁ;—rr =% + po’r=0
or d(ro-) o, + pa’r? =0
dr ' Or ot P
The strain components are, as before,
_du, u
&=—" and =T
dr =7
From Hooke’s law, with o, =0,
1
&= T (o, — voy)

1
£y= E(ag - voy,)

From Eqg. (8.58)

& = % (rge)

From Hooke’s law

1
E(Gr - Voy) =& = d (rey) = Ea(rae - vroy)

Let ro,=y
Then, from Eq. (8.57b)

Substituting these in Eq. (8.59) and rearranging

2d%y Oy 2,3 _
rd +rdr Y+ @B+ V) por’=0

The solution of the above differential equation is

y= Cr+C1%—(3-gv) pa)zr3

From Eg. (8.60)

o, = C+C1r%—(3;v) pa’r?

(8.57a)

(8.57b)

(8.58)

(8.59)
(8.60a)

(8.60b)

(8.61)

(8.62)

(8.63)
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1 1+3v

The integration constants are determined from boundary conditions.

Solid Disk

For a solid disk, we must take C, = 0, since otherwise the stresses o, and
o, become infinite at the centre. The constant C is determined from the condition
at the periphery (r = b) of the disk. If there are no forces applied there, then,

po°r® (8.64)

(G)r-p=C - 3; Y po®? =0
Hence,
o Sw; 1% pa)zbz
and the stress components become
0= 31V ot (07 - 1) (8.652)
Gy = 3:; Y e’ — 1+83V por? (8.65h)

These stresses attain their maximum values at the centre of the disk, where

_3+v

0= 0y=—¢ po’b? (8.66)

Circular Disk with a Hole of Radius a

If there are no forces applied at the boundaries a and b, then

(O-r)r:a = O, (O-r)r:b =0
from which we find that

_3+V ofo . 2 3+ V 999
C= g P@ (b +a), Cl——Tpa)ab
Substituting these in Eqs (8.63) and (8.64)
2.2
G, = 3+Vpa)2(b2+a2—ag —rzj (8:67)
8 r
_ 3+v 2 2 2 azb2_1+3\/ 2]
Opg= —g PO [b +a+ " 35, " (8.68)

The radial stress o, reaches its maximum at r = v/ab where

_3+v

(O-r max = g ,Oa)z (b - a)z (869)
The maximum circumferential stress is at the inner boundary, where
_ 3+ v 2[ s 1-v 2]
(Ge)max - 4 P b + 3+ v a (870)

It can be seen that (0y) . IS greater than (o;) nax-
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When the radius a of the hole approaches zero, the maximum circumferential
stress approaches a value twice as great as that for a solid disk [Eqg. (8.66)]. In
other words, by making a small circular hole at the centre of a solid rotating disk,
we double the maximum stress.

The displacement u, for all the cases considered above can be calculated from
Eqg. (8.58), i.e.

U =regy= é (oy—voy) (8.71)

Example 8.9 A flat steel disk of 75 cm outside diameter with a 15 cm diameter
hole is shrunk around a solid steel shaft. The shrink-fit allowance is 1 part in 2000
(i.e. an allowance of 0.0075 cm in radius). E =2.18 x 108 kgf/cm? (214 x 106 kPa).
(i) What are the stresses due to shrink-fit?
(ii) At what rpm will the shrink-fit loosen up as a result of rotation?
(iii) What is the circumferential stress in the disk when spinning at the above
speed?
Assume that the same equations as for the disk are applicable to the solid
rotating shaft also.

Solution

(i) To calculate the shrink-fit pressure, we have from Eq. (8.27)

_ 2.18x10° x 0.0075 y (7.5%-0) (37.5% - 7.5%)
2x75° (37.5° - 0)
or  p,= 1044 kgflcm? (102312 kPa)

The tangential stress at the hole will be the largest stress in the system
and from Eq. (8.24)

1044 x 7.5 37.52

= 2 N 2
(37.52-7.5%) 75

= 1131 kgf/cm? (110838 kPa)

(i) When the shrink-fit loosens up as a result of rotation, there will be no
radial pressure on any boundary. When the shaft and the disk are rotating,
the radial displacement of the disk at the hole will be greater
than the radial displacement of the shaft at its boundary. The difference
between these two radial displacements should equal A =0.0075 cm at 7.5
cm radius. From Eqs (8.71), (8.67) and (8.68)

c

0

r
Ugisk = E (09— voy)

_L3+V
"E 8

a2b2 _1+ 3v r2
r2 3+v

2112
—v[b2 +a?-2>% E - rzﬂ
r

P’ [bz +a’+
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1+vp2a? 1l+v rg]

(B+v)(1-v) B
1-v 2 3+v

r

E 8
75 y 3.3x0.7 pa)2

2. 18 x 10° 8

2 2,13 3752x752_£
xL375 +75 57 —7'52 33

pa)2 (bz + a2 +

)
X.2
75

=4052 x 107 pw?
From equations (8.71), (8.65a) and (8.65b)

r
Ushaft = E (09— voy)

1-v 5 2 2
=55 PO r[@+v)b? =@+ r?]

0.7 2 2 2
=— — pw°  x75(3.3x75°-13x75
8x218x10° " ( )
=34 x 10° pw?
Therefore,
(4052 - 34) x 107 pw? = 0.0075
or
2 _ 6 1 981
o= 0.0075x10° x 7018 * 0.0081
= 226066 (rad/s)?
Therefore,

® =475 rad/s or 4536 rpm
(iif) The stresses in the disk can be calculated from Eg. (8.68)

o = %pwz 37.52 4752 1 37.52 — ég 7.5?
=1170 pw?

0.0081
= 1170 x o8l x 226066

= 2184 kgf/cm? (214024 kPa)

Example 8.10 A flat steel turbine disk of 75 cm outside diameter and 15 cm inside
diameter rotates at 3000 rpm, at which speed the blades and shrouding cause a
tensile rim loading of 44kgf/cm? (4312 kPa). The maximum stress at this speed is to
be 1164 kgf/cm? (114072 kPa). Find the maximum shrinkage allowance on the
diameter when the disk and the shift are rotating.

Solution Let ¢ be the radius of the shaft and b that of the disk. From Eq. (8.70),
the maximum circumferential stress due to rotation alone is

_3+V 2(2 1-v 2)
(69)1_ 4 po b +3+VC
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_33 =2 2,07 2
=4 Po (37.5 33><75)
=1170 pw?

Owing to shrinkage pressure p,, and the tensile rim loading p,, from Eq. (8.12)

2 2 2
(0g), = _PC 7 [l+ b—j +2 Py
C

b? — c? b? — c?
7.5 [ 37_52) 44 x 37.5?
= + +2
Pe 3752 752 7.5 3752 — 7.5°
=1.08p, +91.7
Hence, the combined stress at 7.5 cm radius is
0,=1170pw? + 1.08p, + 91.7
This should be equal to 1164 kgf/cm?. Hence,
1.08 p, = 1164 — 1170pw? - 91.7
11641170 x (1007)° x £008L _ g1 7

981
=1164 -953.5-91.7
=118.8
Hence,
p. = 110 kgf/cm?

The corresponding shrink-fit allowance is obtained from Eq. (8.27), i.e.

En 15 (37.52 - 7.52)

110 = x
2x 75 37.5°
=0.064 EA
110 x10°®
A = —=
or 0.064 < 218 0.0008 cm

8.7 DISKS OF VARIABLE THICKNESS

Assuming that the stresses do not vary over the thickness of the disk,
the method of analysis developed in the previous section for thin disks of
constant thickness can be extended also to disks of variable thickness. Let h be
the thickness of the disk, varying with radius r. The equation of equilibrium can
be obtained by referring to Fig. 8.9.

For equilibrium in the radial direction

) Ar Ahy} o Ar
Lh Ar) r+Ar)A0+p(r+ 2)A9(h+ 2) (r+ 2)
-ho, rAB—Zo-g(h Azh)Ar smATQ:O
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Fig 8.9 Rotating disk of variable thickness
Simplifying and going to the limit

r% (ho,) + ho, + pa?r?h—o,h=0

or % (rho,) — o,h + po’r’h =0

8.72)
Putting y=rho, (8.73a)
ho, = g_r+ hpo?r? (8.73b)
The strain components remain as in Eq. (8.58), i.e.
oo du

u
and &, =-"
dr 0

r
Hence, &= % (rey)

From Hooke’s law and Eq. (8.59)
1 1d

3 (o, — voy) “Edr (roy—vro,)

Substituting for o, and o, from Eqs (8.73a) and (8.73b)

2 L@(rd_y_
h dr

dy j _

r ar ") =0 8.74)

In the particular case where the thickness varies according to the equation
y=Cr"

y + 3+ v) po’hr® -

in which C is a constant and n any number, Eq. (8.74) can easily be integrated.
The general solution has the form

(8.75)
y= mr" 24+ Ar®% + Brf
in which m= _ B+ v)pa'’c

(vn+3n+38)
and o and S are the roots of the quadratic equation
X>—nx+rm-1=0

A and B are constants which are determined from the boundary conditions.

299
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Example 8.11 Determine the shape for a disk with uniform stress, i.e. ¢, = o,.

Solution From Hooke's law

=10 -v0y),  g=z(0s-voy)

if o, = 0y then g, = g,. From strain—-displacement relations

we get &

Since g, = ¢g,, the above equation gives

de,
dr
i.e. €, = constant

=0

Hence, from Hooke's law, o, and o, are not only equal but also constant through-
out the disk. Let o,= o, = o. Equilibrium Eq. (8.73) gives

_4d 2.2
ho = ar (rho) + hpwr

ho + raﬁ + pw*hr?

dr
1dh -1
hdr o Per

which upon integration gives

or

2
log h=-£2r+C,

2 2
or h = exp {—% r +C1}:C exp (—pa)z 5—0]

8.8 ROTATING SHAFTS AND CYLINDERS

In Sec. 8.5 and 8.6, we assumed that the disk was thin and that it was in a state
of plane stress with o, = 0. It is also possible to treat the problem as a plane
strain problem as in the case of a uniformly rotating long circular shaft or a
cylinder. Let the z-axis be the axis of rotation. The equation of equilibrium is the
same as in Eq. (8.57):

% (ro,) — oy + par? =0 (8.76)
The strain components are, as before,
du u Al
&=g &= & =3L=0 (8.77)
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From Hooke's law

& =%[crr -v(oy + O'Z)]

&p= %[0'9 -v(o, +O'Z)]

1
g = E[O'Z -v(o, + 0'9)]
Since g, = 0 (plane strain),
o,=v(o, +0oy)

and hence, substituting in equations for & and g,

g = 1Ev[(l— V) o, — voy]
€= 1EV[(1— V) o,y — vo, ]

From strain—displacement relations given in Eq. (8.77)

&= (re)

and using the above expressions for ¢, and g,, we get

-v)o, - vagzi[(l— Wroy—vr O',]

dr
With ro, =y, Eq. (8.76) gives for g,

Oy = %+ po’r?

Substituting for o, and o, in Eq. (8.78)

ERPS AL A S I (ﬂ zs)_
@l-v Vgr T pe'r _dr{(l V) rgr PO vy

r

d’y dy 3-2v
2_ ——
or AL A

The solution for this differential equation is
1 (B-2v) 2,3

pa)zr3 =0

y=Cr+C1F—mpa)
1 B-2v) 52
H y = -
ence o, C+Clrz 8(1_V)pa)r
Gy=C — li_(l+2V) 2.2

@
2 81-v) "

1 2.2
and o, V|:2C 20— ) PO }

(8.79)

(8.79a)

(8.79b)

(8.79c)
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(i) For a hollow shaft or a long cylinder, o, =0 at r = a and r = b which are the
inner and outer radii. From these

C=K(@%+b?) and C,=-Ka’b?

3-2v)
h K= B8=2v) 5
whnere 8(1— V) P
Hence, from Eqs (8.79a—c)
_B=20, 2 2y ah® 2 2
o, = 8A=) (a® +b?) e re|pw (8.80)
_B=2v) |, 2, 2y, 2% 1+2v 5|
69_8(1—1/) (@ +b%) + 2 35,0 |P? (8.81)
_ v 2 12y (2 9N op2 2
S Y [(a +b%) (3= 2v) - 2r ]pa) (8.82)
0, assumes a maximum value at r = a and its value is
_(3—21/)( 2 2_1+2V 2) 2
(Cmax = 8- 1) 2b° +a 3-5,8 )P0
If a%/b? is very small, we find that
- B-2v) »
(Cahmax = 27—y ) b?pew (8.83)

(ii) For a long solid shaft, the constant C; must be equal to zero, since otherwise
the stresses would become infinite at r = 0. Using the other boundary condition
that o, = 0 when r = b, the radius of the shaft, we find that

_B-2v) 2

b-2v) 2
C=ganre?
Hence, the stresses are
_(B-2v) o 2 2
o, = 80— ) (b - r9) pw (8.84)
_(3—2V)(2_1+2V 2) 2
Op= 8_ 1) b 3—2vr PO (8.85)
_ v 2(n o2 2
%= i) [b (3-2v)-2r ] @ (8.86)
The value of o at r=0is
_(B-2v) o
(O-O)max - 8 (1_ V) b pa) (887)

Comparing Eqg. (8.87) with Eq. (8.83), we find that by drilling a small hole
along the axis in a solid shaft, the maximum circumferential stress is doubled
in its magnitude.
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Example 8.12 A solid steel propeller shaft, 60 cm in diameter, is rotating at a speed
of 300 rpm. If the shaft is constrained at its ends so that it cannot expand or contract
longitudinally, calculate the total longitudinal thrust over a cross-section due to
rotational stresses. Poisson’s ratio may be taken as 0.3. The weight of steel may be taken
as 0.0081 kgf/cm3 (0.07938 N/cm3).

Solution The total axial force is
b
F,=[o,2zrdr
0

and from Eq. (8.86), substituting for o,,

_ v 2 (a0 2 4 2
Fo= 207 [b (3-2v) zb% — 7b ]pa)
= %ﬂb“pmz
Substituting the numerical values
_ 03 4 0.0081 _ 300° 2
F,= > x 77 x 307 x 981 X 602 x 7wh

= 3120 kgf (31576 N) Tensile force

8.9 SUMMARY OF RESULTS FOR USE IN PROBLEMS

(i) For a tube of internal radius a and external radius b subjected to an internal
pressure p, and an external pressure p,, the radial and circumferential stresses are
given by (according to plane stress theory)

_ P@® - pp®  a%? p, -y

o

r b2 _ a2 2 p2_al
2 2

.= pa” - pbb +a2b2 Pa — Py

6~ 2 2 2 2 2
b —a r b°-a

0,=0

The stress o, < 0 for all values of p, and p,, whereas o, can be greater or less
than zero depending on the values of p, and p,. o, is greater than zero if

p, > % (Z—z + 1]
The maximum and minimum stresses are
(0)max = O (@t r=b)=—-p,
(G)min= o (@t T =2) =—p,
Py (a” + b*) — 2pb?
b% — a?

(O-G)max = Oy (at r= a) =
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2p,a’ - py(a” +b?%)

(Gomin = Tp(at r =b) =

b2 — a2

If pf%%[z—zﬂ]

then, (0)min = 0
Ur-a= %_Da (EZ J_r:z + Vj —2p bzb_zaz}
W)r-s= %:Zpa o vﬂ

(ii) Built-up cylinders: When the cylinders are of equal length, the contact pres-
sure p, due to difference A between the outer radius of the inner tube and the
inner radius of the outer tube is given by

A/c

1((: +a 1(b2+c )
e 2 (55w

where E;, v;, a and c refer to the inner tube’s modulus, Poisson’s ratio, inner
radius and outer radius respectively. E,,v,, ¢ and b are the corresponding values
for the outer tube.

If E; = E, and v; = v,, then

2¢3 b?—a®
(iii) For a sphere subjected to an internal pressure p, and an external pressure p,,
the radial and circumferential stresses are given by

1 3 3 3b3
Or = b3_a3 |:_b Pp+a P, + r _(pb ):|

p.=

p.=

1 a’h®
b3 2r3 - (pb - pa):|

(iv) For a thin solid disk of radius b rotating with an angular velocity w, the
stresses are given by

Op=0yp=—5—— { b%p, +a’p, -

3+v
o =3 po’(b? —r?)

3-18- Vpa)zbz _ 1 +83V pwzrz

These stresses attain their maximum values at the centre r = 0, where

Og =

60: O, = %pa)zbz
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The radial outward displacement at r = b is

1-v
(ur)r=b = ﬁpwzbs

(v) For a thin disk with a hole of radius a, rotating with an angular velocity w, the
stresses are

a2b?
o, = 3-gvpa)2(b2+a ——rb —rzj

2,.2
Oy = 3;1/,00)2 [b2+a +—r2 —13++3‘1; rzj

(G)max = O (atr:\/%):g’gvpa)z (b - a)?

3+v 2,2 1+v o
(Cdmax = Oy (at r=a) = 4 PO (b 3,8

and (Go)max > (Gr)max

The radial displacements are

3+ 1-v
@r-a= 5 pora (02 + 10 27

3+v 1-v
(Upr—p = ﬁpa’zb [az + sz

Problems

8.1 A thick-walled tube has an internal radius of 4 cm and an external radius of
8 cm. It is subjected to an external pressure of 1000 kPa (10.24 kgf/cm?). If
E =1.2 x 108 kPa (1.23 x 10° kgf/cm?) and v = 0.24, determine the internal
pressure according to Mohr’s theory of failure, which says that

(O-)max -n (O-)min < Otenslie strength
where n is the ratio of o-tensile strength to o-compressive strength. For the
present problem, assume o-tensile strength = 30000 kPa (307.2 kgf/cm?) and
o-compressive strength = 120000 kPa (1228.8 kgf/cm?).
[Ans. p = 17000 kPa (174 kgf/cm?)]
8.2 In the above problem, determine the changes in the radii.

Ans. Ar; =0.01mm
Ar, =0.007 mm

83 In Example 8.1, if one uses the energy of distortion theory, what will be the
external radius of the cylinder? The rest of the data remain the same.

[Ans. =6.05 cm]

84 A thick-walled tube with an internal radius of 10 cm is subjected to an

internal pressure of 2000 kgf/cm? (196000 kPa). E = 2 x 10° kgf/cm?
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85

8.6

8.7

88
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(196 x 10° kPa) and v = 0.3. Determine the value of the external radius if the
maximum shear stress developed is limited to 3000 kgf/cm? (294 x 10° kPa).
Calculate the change in the internal radius due to the pressure.
Ans. r,=17.3cm }
Ar; =0.023cm
A thick-walled tube is subjected to an external pressure p,. Its internal and
external radii are 10 cm and 15 cm respectively, v = 0.3 and E = 200000 MPa
(2041 x 10° kgf/cm?). If the maximum shear stress is limited to 200000 kPa
(2041 kgf/cm?), determine the value of p, and also the change in the external
radius.
[Ans. p, =111 MPa (1133 kgf/cmz)}
Ar, =-0.19 mm

Determine the pressure p, between the concrete tube and the perfectly rigid
core. Assume E, = 2 x 10° kgf/cm?, r, = 0.16. Take r,/r, = 0.5 (Fig. 8.10).
[Ans. p, = 17.4 kgf/cm?]

p = 12 kgflcm? (1126 kPa)

Fig. 8.10 Problem 8.6

Determine the dimensions of a two-piece composite tube of optimum
dimensions if the internal pressure is 2000 kgf/cm? (196000 kPa),
external pressure p, = 0, internal radius r; = 8 cm and E = 2 x 10° kgf/cm?
(196 x 10° kPa). The maximum shear stress is to be limited to 1500 kgf/cm?
(147 x 10° kPa). Check the strength according to the maximum shear
theory.

Ans. r,=14cm;ry;=24cm

A=0.014cm
p. = 500 kgf/cm?
(49030 kPa)

Determine the radial and circumferential stresses due to the internal pres-
sure p = 2000 kgf/cm? (196,000 kPa) in a composite tube consisting of an
inner copper tube of radii 10 cm and 20 cm and an outer steel tube of
external radius 40 cm.vy = 0.3, v, = 0.34, E; = 2 x 10° kgf/cm? (196 x10° kPa)
and E,, = 10° kgf/cm? (98 x 10° kPa). Calculate the stresses at the inner and
outer radius points of each tube. Determine the contact pressure also.
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Ans. For inner tube:
o, =—-2000 kgf/cm? (196000 kPa)
o, = -577 kgflcm? (-56546 kPa)
o, = 1800 kgf/cm? (176400 kPa)
o, = 371 kgf/cm? (36358 kPa)
For outer tube:
o, = -577 kgflcm? (-56546 kPa)
o,=0
=962 kgf/cm2 (94276 kPa)
=385 kgf /cm? (37730 kPa)
pC =577 kgf/cm? (56546) J
89 In problem 8.7, if the inner tube is made of steel (radii 10 cm and 20 cm) and
the outer tube is of copper (outer radius 40 cm), determine the circumferen-
tial and radial stresses at the inner and outer radii points of each tube.
Ans. For inner tube:
o, =—-2000 kgf/cm? (196000 kPa)
o, = —248 kgf/lcm? (-24304 kPa)
= 2672 kgf/cm? (262032 kPa)
o0, = 920 kgf/cm? (90221 kPa)
For outer tube:
0, = —248 kgf/lcm? (-24304 kPa)
o,=0
o, = 413 kgf/cm? (40474 kPa)
=165 kgf/cm? (16170 kPa)
i P, = 248 kgf/cm? (24304 kPa)

8.10 A composite tube is made of an inner copper tube of radii 10 cm and 20 cm
and an outer steel tube of external radius 40 cm. If the temperature of the
assembly is raised by 100°C, determine the radial and tangential stresses at the
inner and outer radius points of each tube. o, = 16.5 x 105 o, = 12.5 x 10°;
E. Vo Eg, and v, are as in Problem 8.

[ Ans. For inner tube:
o,=0
o, =-173 kgf/cm? (-16954 kPa)
o, =—461 kgf/cm? (45080 kPa)
o =288 kgf/cm? (—28243 kPa)
For outer tube:
o, =-173 kgf/cm? (-16954 kPa)
0'r =0
=288 kgf/cm? (28243 kPa)
=115 kgf/cm? (11270 kPa)
8.11 Determine for the composite three -piece tube (Fig. 8.11):
(a) Stresses due to the heavy-force fits with interferences of A, =0.06 mm and
A, =0.12 mm in diameters
(b) Stresses due to the internal pressure p = 2400 kgf/cm?
r, =80 mm, r, =100 mm, ry = 140 mm, r, = 200 mm,
E = 2.2 x 10° kgf/cm?.
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Fig 8.11 Problem 8.11

The radial displacement at the outside of a thick cylinder subjected to an
internal pressure p, is

(Zparbraz)

E(rb2 - raz)
By Maxwell's reciprocal theorem, find the inward radial displacement at the
inside of a thick cylinder subjected to external pressure.

2
{Ans. u, = szb—abz
E(b°-a%)
A thin spherical shell of thickness h and radius R is subjected to an internal
pressure p. Determine the mean radial stress, the circumferential stress and
the radial displacement.

Ans. u,= pR?(1- v)/(2Eh)
R

(o;) average = %p

An infinite elastic medium with a spherical cavity of radius R is subjected to
hydrostatic compression p at the outside. Determine the radial and circum-
ferential stresses at point r. Show that the circumferential stress at the sur-
face of the cavity exceeds the pressure at infinity.

B 2
Ans. o, = —p[l—R—aj ]
r
R3
Oy —G¢=—p|:1+2?:|

(op) at cavity = —% p
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A perfectly rigid spherical body of radius a is surrounded by a thick spheri-
cal shell of thickness h. If the shell is subjected to an external pressure p,
determine the radial and circumferential stresses at the inner surface of the

shell (b =a + h).
_ 3
Ans. o, = 3 3V)b P 3
21-2v)a’+ 1+ v)b
A steel disk of 50 cm outside diameter and 10 cm inside diameter is shrunk

on a steel shaft so that the pressure between the shaft and disk at standstill
is 364 kgf/cm? (3562 kPa). Take p = 0.0081/g kgm/cm?®.

(@ Assuming that the shaft does not change its dimensions because of
its own centrifugal force, find the speed at which the disk is just free
on the shaft.

(b) Solve the problem without making assumption (a).

[Ans. (a) 4013 rpm }
(b) 4028 rpm.
A steel disk of 75 cm diameter is shrunk on a steel shaft of 7.5 cm diameter.
The interference on the diameter is 0.0045 cm

(@ Find the maximum tangential stress in the disk when it is at a stand-
still.

(b) Find the rotation speed at which the contact pressure is zero.

() What is the maximum tangential stress at the above speed.

Ans. (a) 647 kgf/cm? (6349 kPa)

(b) 4990 rpm

(c) 2622 kgflcm? (257129 kPa)
A disk of thickness t and outside diameter 2b is shrunk on to a shaft of
diameter 2a, producing a radial interface pressure p in the non-rotating con-
dition. It is then rotated with an angular velocity o rad/s. If f is the coeffi-
cient of friction between disk and shaft and w, is the value of the angular
velocity for which the interface pressure falls to zero, show that

(@ the maximum horsepower is transmitted when = wo/\/§ and
(b) this maximum horsepower is equal to 0.000366 a’t fpa,, where dimen-
sions are in inches and pounds.

A steel shaft of 7.5 cm diameter has an aluminium disk of 25 cm outside
diameter shrunk on it. The shrink allowance is 0.001 cm/cm. Calculate the
rpm of rotation at which the shrink-fit loosens up. Neglect the expansion of
the shaft caused by rotation. v, = 0.3, Eg = 7.3 x 10° kgf/cm? (175 x 10° kPa);
y =2.76 107 kgf/icm®. [Ans. 13420 rpm]



CHAPTER

9 Thermal Stresses

9.1 INTRODUCTION

It is well known that changes in temperature cause bodies to expand or contract.
The increase in the length of a uniform bar of length L, when its temperature is
raised from Tyto T, is

AL=alL (T-Ty)
where o is the coefficient of thermal expansion. If the bar is prevented from
completely expanding in the axial direction, then the average compressive stress
induced is

L
where E is the modulus of elasticity. Thus, for complete restraint, the thermal
stress needed is

o=—0E (T-Ty)
where the negative sign indicates the compressive nature of the stress. If the
expansion is prevented only partially, then the stress induced is
o=—-koE (T-Ty)
where k represents a restraint coefficient. It is assumed in the above analysis that
E and « are independent of temperature. In general, in an elastic continuum, the
temperature change is not uniform throughout. It is a function of time and the
space coordinates (X, Y, 2), i.e.
T=T{ XY, 2
The body under consideration may be restrained from expansion or movement
in some regions and external tractions may be applied to other regions. The deter-
mination of stresses under such situations may be quite complex. In this chapter,
we shall restrict ourselves to the analysis of the following problems:
(i) Thin circular disks with symmetrical temperature variation;
(i) Long circular cylinders—hollow and solid;
(i) Sphereswith purely radial temperature variation—hollow and solid;
(iv) Straight beams of arbitrary cross-section;
(v) Curved beams.
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Before these specific problems are analysed, we shall develop the general
thermoelastic stress—strain relations and discuss two important general results.

9.2 THERMOELASTIC STRESS-STRAIN RELATIONS

Consider a body to be made up of a large number of small cubical elements. If the
temperatures of all these elements are uniformly raised and if the boundary of the
body is unconstrained, then all the cubical elements will expand uniformly and all
will fit together to form a continuous body. If, however, the temperature rise is not
uniform, each element will tend to expand by a different amount and if these
elements have to fit together to form a continuous body, then distortions of the
elements and consequently stresses should occur in the body.

The total strains at each point of a body are thus made up of two parts. The
first part is a uniform expansion proportional to the temperature rise T. For any
elementary cubical element of an isotropic body, this expansion is the same in all
directions and in this manner only normal strains and no shearing strains occur. If
the coefficient of linear thermal expansion is ¢, this normal strain in any direction
is equal to aT. The second part of the strains at each point is due to the stress
components. The total strains at each point can, therefore, be written as

& = %[GX - V(Gy +GZ):|+6¥T

& = %[Gy - V(GX + 0o, )] +aT (9.1a)
g = %[GZ - V(GX + O'y):|+ al
Yy = éz—xyl Vyz :éryz' Vax :érzx (9.1b)

The stresses can be expressed explicitly in terms of strains by solving
Eq. (9.1a). These are
o, =Ae+2ue, — (3A+2u) oT

o, =Ae +2ue, — (3A+2u) oT (9.28)
o,=Ae+2ue, - (3A+2u) oT
Ty = Uy Ty = U T = HYx (9.2b)

The Lame constants A and u (= G) are given by

_ vE _~_ E
P Tvasy “C% 2aam (©3)

9.3 EQUATIONS OF EQUILIBRIUM

The equations of equilibrium are the same as those of isothermal elasticity since
they are based on purely mechanical considerations. In rectangular coordinates
these are given by Eq. (1.65). These are repeated for convenience.

o . oty ory,

X

x oy o

+7x=0
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ory, oy yz
=0 94

0’)sz é,Tyz ﬁO'Z
-0
x oy o T

where g, ¥ and y, are body force components.

9.4 STRAIN-DISPLACEMENT RELATIONS

Only geometrical considerations are involved in deriving strain—displacement
relations. Hence, the equations are the same as in isothermal elasticity. In rectangular
coordinates, these are given by Eqs (2.18) and (2.19). To repeat, these are

Ay Ay a

& = o Ey :é’_yl & :EZ (953.)
Al A a, A A, A
WA a T a e et a (9.5b)

9.5 SOME GENERAL RESULTS

When the temperature distribution is known, the problem of thermoelasticity con-
sists in determining the following 15 functions:

6 stress components o,, 0y, 0, Ty, Ty Ty

6 strain components &, &, &, %y %o Yx

3 displacement components u,, u,, U,
so as to satisfy the following 15 equations throughout the body

3 equilibrium equations, Eq. (9.4)

3 stress—strain relations, Eq. (9.1)

6 strain—displacement relations, Eq. (9.5)
and the prescribed boundary conditions. In most problems, the boundary condi-
tions belong to one of the following two cases:

Traction Boundary Conditions In this case, the stress components determined
must agree with the prescribed surface traction at the boundary.

Displacement Boundary Conditions Here, the displacement components deter-
mined should agree with the prescribed displacements at the boundary.

In some cases, the prescribed boundary conditions may be a combination of
the above two, i.e. on a part of the boundary, the surface tractions are prescribed
and on the remaining part, displacements are prescribed.

(i) The method of arriving at a solution depends in general on the specific
nature of the problem. It is shown in books on thermoelasticity that if the
temperature distribution in a body is a linear function of the rectangular
Cartesian space coordinates, i.e. if

T(X, Y, z,t) =a(t) + b(t)x + c(t)y + d(t)z (9.6)
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where t represents time, then all the stress components are identically zero
throughout the body, provided that all external restraints, body forces and
displacement discontinuities are absent. Conversely, under those provisions,
this is the only temperature distribution for which all stress components are
identically zero. These results are obtained immediately by considering the
stress compatibility relations.

It, therefore, follows from the above statement and from the linearity of
the boundary-value problem as formulated through Eqgs (9.1), (9.4) and (9.5)
that a linear function may be added to or subtracted from a given tempera-
ture distribution without affecting the resulting stress distribution. How-
ever, the strains and displacements are altered, as is obvious.

We shall now show that if a body is subjected to a uniform temperature rise
T = T,(t) and if the boundary of the body is prevented from having any dis-
placements, then the solution of the corresponding thermoelastic problem is

u, =0, u, =0, u,=0
8X:£y:82207 ’}/Xy:’}/yzz']/zxzo

Ea
Ty = Ty =17, =0, 0'X=0'y=0'2=—1_2VT0

To show this, we shall apply the principle of superposition. We shall first
allow free expansion of the body due to temperature rise T, with no restraint
whatsoever. Since all cubical elements of the body expand freely, no stresses
develop and all elements expand in an identical manner. This has been
discussed in Sec. 9.2. Consequently,

oy=0,=0,=0, Ty =T,=Tx=0
yxy:yy/z:yzxzol 8x:8y:‘€z:aT0
Therefore, U, = aTyX, u,=aTyy, u,=aTyz (9.7a)

Now we apply boundary tractions to prevent this displacement. If the body
is subject to a hydrostatic state of stress, then all elements of the body will
experience the same state of stress (—p). With this state of stress, i.e. oy = 0, =
0, =-p and 7, = 7, = 7,, = 0, the equations of equilibrium are identically
satisfied.

Corresponding to this state of stress, the strain components are

&=¢,=5=2[-p-v(-p-p)]

__1q_
=-g@-2vp
Ky:%/z:yzxzo
__1 ) 1
Therefore, U, = “E 1-2v)px; Uy =— T @1-2v)py,
u, = -%(1— 2v)pz (9.7b)

To get the original problem, the above values of u,, u, and u, together with the
values of u,, u, and u, [Eqg. (9.7a)] corresponding to free thermal expansion,
should give zero displacements. Hence,
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aT, x—i(l— 2v)px =0
ot E

or, p= Ea

B 1—2vT°

Hence, o,=0,=0,=—pP=— T (9.8)

y

as stated earlier.

9.6 THIN CIRCULAR DISK: TEMPERATURE
SYMMETRICAL ABOUT CENTRE

Consider a thin disk subjected to a temperature distribution which varies only
with r and is independent of 6. It is assumed further that it does not vary over the
thickness and consequently, it is taken that the stresses and displacements also
do not vary over the thickness. The stresses o, and o, therefore, satisfy the
equilibrium equation
do, LG~
dr r

Body forces are ignored. Also, because of symmetry, 7, = 0. With o, = 0, the
stress—strain relations given by Eq. (9.1a) take the form, in polar coordinates,

=0 (9.9)

% (o —voy)+aT (9.10)

€9 = %(O'e —vo,)+aT
Solving the above equations for o, and o,, we find
o = 1%[6} +veg—([1+V) aT] 9.12)
%

Op= E > [59+ ve, —(L+ V) aT]

Substituting these in the equation of equilibrium

r% (6 + vey) + (L— 1) (6, — &) = (L+ V)ar %—I (0.12)
The strain-displacement relation for a symmetrically strained body, from
Egs (8.3) and (8.4), are

du u
e =_1T - 9.13
r ar &y r ( )

Substituting in Eq. (9.12)

d’u,  1du _u ar

_
drz r dr r2 (1+ V)a dr
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This may be written as

d dT
ar [r ar (ru, )} @+ VOCW

Integration of the above equation yields,

.
u =1+ v)a%fTr dr+c1r+% (9.14)

a
It can be observed that the above expression becomes identical to Eq. (8.8) if T is

put equal to zero.

The lower limit a in the integral above depends on the disk. For a disk with a
hole, a is the inner radius and for a solid disk, a is zero.

The stress components are determined by substituting the value of u, in Eq. (9.13)
and using the results in Eq. (9.11). The results are

o, = —aE —jTr dr + . [cl l+v-C,(1-v) —} (9.15)

Cy= aE jTr dr — oET + —— T {cl L+ +C,(1-v) } (9.16)
V

The constants C, and C, are determined by the boundary conditions. We shall
now consider two specific cases. It should be observed that a linear variation of
temperature with r will also induce stresses. This does not contradict the state-
ment made in Sec. 9.5 that the stresses in a body are zero if the temperature
distribution is linear with respect to a Cartesian frame of reference and if the body
is free from external restraints and body forces. A linear radial variation will not
give a linear variation with respect to the x, y and z-axes. In fact

T=kr=kx*+y?+2°

Solid Disk of Radius b In the case of a solid circular disk, a=0 and in Eq. (9.14)
it is observed from L’ Hospital’s rule that

lim = jTr dr =0

r—0

Hence, the constant C, should be equal to zero, as otherwise u, would become
infinite at r = 0. The remaining constant C, is determined from the condition that
o, =0 at r =D, the outer radius of the disk. From Eq. (9.15), therefore, we get

C,=(Q1- v) jTr dr

Substituting this, the stresses are

Or= aE (b_lz ‘:[Tr dr - rLQ Ii;Tr drj 9.17)

S
I

( ¢ o
aEL—T + bLZ ‘([ Trdr + riz ‘([Tr er (9.18)
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From L’ Hospital’s rule

1
| Trdr ==
ﬂ%rz({rdr 210

where T, is the temperature at the centre of disk. Hence, at r =0
r
6, (0) = 0,(0) = acE[bi2 [Trdr - %Toj (9.19)
0

Disk with a Hole of Radius a For a disk with a hole and traction free surfaces,
o,=0atr=aand r = b. Substituting these in Eq. (9.15)

Cl+1)-Cy(l— v)i2 -0

—aE—jTrdr+ [Cl(1+v) C,(1-Vv)—= }:

1- 2
Solving, we get

2
jTr dr; C,=a(l- v) 2 jTr dr

C, = a(l—v) ¥

Substituting in Egs (9.15) and (9.16)

o, = “'25 {b jTr dr — jTr dr} (9.20)
r
Cy= “'25 Lr)z * az jTr dr + jTr dr —Tr } 9.21)
r
and from Eq. (9.14)
_a g @a- v)r +(1+v)a
up = 7{(“ V) £Tr dr + 7 jTr dr} (9.22)

If the temperature T is constant, then all the stress components are zero and the
radial displacement is u, = orT.

9.7 LONG CIRCULAR CYLINDER

We shall now consider the nature of the thermal stresses induced in a long circu-
lar cylinder when the temperature is symmetrical about the axis and does not vary
along the axis. If the z-axis is the axis of the cylinder and r the radius, then T is a
function of r alone and is independent of z. Since the cylinder is long, sections far
from the ends can be considered to be in a state of plane strain and we can
analyse this problem with u,, the axial displacement, assumed to be zero.

Once again, owing to symmetry, all the shear stress components are zero and
there are now three normal stress components o,, o, and o,. The stress-strain
relations are

£ = [O‘r —v(oy + O'Z)] +al

1
E
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™
I

0 %[0"9 -v(o, + O'Z)] +aT

£, Z%[O'Z -v(o, + O'e)] +aT
Since u, = 0, we have g, = 0. Hence, from the last equation we get

o,= v(o, +0y))—ETa (9.23)
Substituting this in the expressions for g, and g,

1-v?
&= "2 (o‘r —1_‘/‘/09) +(1+v)aT
(9.24)
1- V2 1%
€=—"F |% ~1_,°r +@+v)aT
E
Let 2 =E, 1TV1/: v, I+va=a (9.25)
Then, Egs (9.24) can be written as
&= (o —noy) + T
El
%zéwr%qn%T (9.26)
1

Comparing the above expressions with Eg. (9.10), it is immediately observed that
the expressions for g and g, in the plane strain case is similar to those in the
plane stress case if we use E;, v, and ¢, given by Eq. (9.25), in place of E, vand
o respectively. Since the equation of equilibrium is the same as in the plane stress
case, further analysis is identical to that in the plane stress case. The expressions
for u,, o, and o, can, therefore, be written from equations (9.14) and (9.16) as

1+v 1t C,

= 2 =2 9.27

; 1—var£Trdr+Clr+ : (9.27)

aE 1} E [cl cﬂ

= = £ -2 9.28

Or 1—Vr2£”dr+l+v -2y 2 (.28)
E 1°¢ aET | E [ C, Czj

_ 1 _ 2 9.29

o 1-vy2 ITrdr 1—v+1+v 1—21/Jr r2 (©.29)

a

and from Eqgs. (9.23), (9.28), and (9.29)

aET N 2vEC,
1-v (@A+v)1-2v)
When T = 0, the equations become identical to Eqs (8.22a—c). Normal force given by

Eq. (9.30) is necessary to keep u, = 0 throughout. The constants C, and C, are
determined from the boundary conditions. We shall now consider two particular cases.

Solid Cylinder of Radius b  As before, from L’ Hospital’s rule

o,= - (9.30)

r—0

1r
lim = [Trdr=0
r0
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Hence, from Eqg. (9.27) we observe that C, should be equal to zero, as otherwise
u, would be infinite at r = 0. Since o, = 0 at r = b, we get from Eq. (9.28) with
C,=0and a =0 in the lower limit of the integration

G
@L+v)@-2v) l—

jTr dr

I+vA-2v) a
d-v

Comparing this with the value of C, obtained for the plane stress case, we observe
that C, for the plane strain case can be obtained from C, for the plane stress case,
merely by changing E, v and « to E;, v, and ¢, and then converting these
according to Eq. (9.25). The values of o, and o, are, accordingly,

or C,= jT rdr

aE (10 17 ]
o, = — |Trdr——=|Trdr 9.31
= @S- ] 63
E 10 17 J
Oy = -T+—=|Trdr+—=|Trdr 9.32
‘ G—W( Mg ﬂ£ 0%
andatr=20
_ __aE (1054 1
6,00) = 0,(0) = " [bz {Tr dr 5 Toj (9.33)
where T, is the temperature at r = 0. Further, from Eq. (9.23)
o= 2E_ jTrdr— (9.34)
T -v

The radial displacement is given by

1+v
u,= 1=

{a Zw-——jTrdr+- jTrdr} (9.35)

Note: In obtaining Eq. (9.34), we have assumed a plane strain condition with &, = 0.
Consequently, a stress distribution o, as given by Eqg. (9.30) was necessary to
maintain u, = 0. If, however, the ends of the cylinder are free, then the resultant
force in z direction should be equal to zero. This condition can be achieved by
superposing a uniform stress distribution o, = C; so that the resultant force
is zero.

For the solid cylinder, the resultant of o, from Eq. (9.30) is

2VEC,
Tarva-2)

The resultant of the superimposed uniform stress o, = Cs is 7b°C,. The value of
C, to make the total force zero in z direction is, therefore, given by

2VvEC,
@+v)@-2v)

b
J2rro, dr - 2maE jT r dr
0

2
- G

b2

2 _ 27aE ? _
Cynh? = v (j)Tr dr
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The resultant o, distribution is given by

__aE [ 2 %14
o, = (1—V)[b2 {Trdr Tj

The u, displacement is then given by Eq. (9.35) plus (-vC,r/E).

Hollow Cylinder with Inner Radius a \Ne shall write the solutions for this from
the plane stress case results, Egs (9.20)-(9.22), by putting E,, v, oy in place of E,
v, o and then converting these according to Eq. (9.25). Accordingly, we get

2_ .21 r
o, = (101EV) %{;2_:2 [Trdr—[Tr dr} (9.36)
Cp= (10‘EV) 12{r +al jTr dr+jTr dr —Tr } (9.37)
-V)r
@+ va|f A-2vr?+a
and u, = (1_1;‘ L{Tr dr + ﬁjr dr} (9.38)
Also o, = (101Ev)((b2 jTr dr — J (9.39)

Example 9.1 The inner surface of a hollow tube is at temperature T, and the outer
surface at zero temperature.

Assuming steady-state conditions, calculate the stresses. What are the values of o,
and o, near the inner and outer surfaces?

Solution Under steady heat flow conditions, the temperature at any distance r
from the centre is given by the expression

Io (b/a) log (b/r)
Substituting this in Egs (9.36)—(9.39)
__@EL [ b __a [_ij b
%= A wiog@ia)| 9t o2\ 2) 197

_ aET, I b &’ [ sz b
%= 7a—wiog@ra) |t 97 Tpz_z 1T z) 1097

o = aET, i b 2a° b
' 2(@1-v)log (b/a) I r p2_g2 ~a
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o,=0atr=0andr=b. The stress components ¢, and o, attain their maximum
positive and negative values at r = a and r = b. These values are

aET, | 2b° b
Ll— PR logE

(Or—a= (@, = ;
2(1-v)log P

aET, (24’ b)
(Ge)r:b =), = b Ll - b - d° log ZJ
2(1-v)log a

If T, is positive, the radial stress is compressive at all points, whereas o, and o,
are compressive at the inner surface and tensile at the outer surface. These tensile
stresses cause cracks in brittle materials such as stone, brick and concrete.

9.8 THE PROBLEM OF A SPHERE

We shall now consider the problem of a sphere subjected to purely radial tem-
perature variation, i.e. T is a function of r alone. Because of symmetry, the shear
stresses are all zero and the normal stresses are such that o, = o, The equation
of equilibrium in the radial direction is, from Eq. (8.37),

1d,2 2
Zar (Fed =7 0,=0
or 9 r26)-2r0, =0
dr r ¢

The stress—strain relations are

& = %(crr —2vo,) +al

1
€= 59:—[0'¢— v (o, +0¢)J+aT

E
Solving the above equations for o, and o,
E
S~ S— .- - 9.40
o, A=) [(1 V) & +2ve; — (L+v) aT] (9.40)

E

Op= m[% +ve, —(1+ V) aT] (9.41)

From strain-displacement relations, we have
du,
dr

Substituting these in the expressions for o, and o, and then substituting these in
the equilibrium equation, we get

du, L2du 20 1+v dT
drz r dr r2 T1-v dr

Ur

£ = and ¢, =¢, = i (9.42)
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This can also be written as

d[1d o] Lrv, dr
dr |2 dr S l-v o odr

The solution is

=

] it :ariziTrzdr+Clr+% (9.43)
where C, and C, are constants to be determined from boundary conditions. The
lower limit of the integral in the above equation is zero if the sphere is solid or is
equal to a, the inner radius, if the sphere is hollow. From the expression for u,, the
strain components &, and &, can be determined from Eg. (9.42) and substituted in
Eq. (9.40). The results are

3 2aE 1t EC, 2EC,
o= -1_ j Tredr + 20 gs (9.44)
aE 1 EC, EC, ETa
= = T -
%0= % 1- Vr3;[ rd 1—21/+(1Jr wré 1-v (945)

we shall consider two specific cases.

Solid Sphere In this case, the lower limit a in the integrals may be taken as zero.
In Eq. (9.43), the limit

!m [——jTr dr}

according to L” Hospital’s rule. Consequently, the constant C, should be equal to
zero, as otherwise, the displacement u, would become infinite at r = 0. The remain-
ing constant C, is determined from the condition that o, = 0 at r = b. Hence, from
Eq. (9.44),

ZaE 1 EC,
- jTr dr + —2— v 0
or C,= —Zoél Z)V) 1 jTr dr
Substituting this in Eqgs (9.44) and (9.45)
_ 2aE 1
o, = i V)[ jTr dr J'Tr drj (9.46)
___ _aE (2% > A2 gr
Og= 04= ) [bs {Tr dr + 3 J(;Tr dr T] 947)

Hollow Sphere Let a be the radius of the inner cavity and b the outer radius of the
sphere. The boundary conditions are o, =0 atr =aand r = b. Hence, from Eq. (9.44),

EC, 2EC, 1

1-2v 1+v ag
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20E 1 EC, 2EC, 1 _
‘I?“*T S T N Fava il

The above equations can be solved for C, and C, and substituted in Eqgs (9.44)
and (9.45). The result is

3 r
2aE r 1 2
=i V{(bs Sj r2dr - g £Tr dr} (9.48)
o= 20E | 20+a’ frezdr + L frrear— 11 (9.49)
T l-v]2m-ad)rd, 2r2 3 2

Therefore, the stress components can be calculated if the distribution of tempera-
ture is known.

Example 9.2  Letthe inner surface of a hollow sphere be at temperature T; and the
outer surface at temperature zero. Let the system be in a steady heat flow condition.
The temperature distribution is then given by

_3(2_]
T b-a

Determine the stress distribution.

Solution Substituting the above expression for T in Egs (9.48) and (9.49), we get

_aETi ab 1,2 a’b?
r__l—Vbe’—ae[ a+b- (b +ab+a?)+ p }

_ aETi _ ab 1,02 2y a’b?
Og= 0, = = Vb3 {+b 2r(b +ab +a“) o3

As can be seen, o, =0 at r = a and r = b, according to the boundary conditions.
Differentiating the expression for o, with respect to r and equating the resulting
expression to zero, it is observed that o, is a maximum or a minimum when

2= 3a%b?
N2 2
b+ab+a

The expression for o, shows that its value increases with r for T; positive, and

_ aET; b(b-a)(a+2b)
)= "2 poa

ET, a(b—a)(2a+h)




Thermal Stresses 323

9.9 NORMAL STRESSES IN STRAIGHT BEAMS DUE
TO THERMAL LOADING

In this section, we shall develop an elementary formula for normal stresses in free
beams subjected to thermal loadings. We shall make use of the Bernoulli—-Euler
assumption mentioned in Chapter 6. According to this assumption, sections which
are plane and perpendicular to the axis before loading remain so after loading and
the effect of lateral contraction (due to Poisson effect) may be neglected. The
beam is assumed to be statically determinate and free of external loads. The tem-
perature variation is arbitrary and the cross-section of the beam is also arbitrary.

Let the y and z-axes lie in the plane of the section and let the x-axis be the axis
of the beam (Fig. 9.1). x, y and z-axes form a set of centroidal axes.

(a) (b)
Fig. 9.1 Beam subjected to thermal loading

The analysis is similar to the one used in Chapter 6 for the bending of beams.
If the beam is prevented from bending and if warping is not allowed, then the
displacement of any section in the axial direction due to temperature rise will be a
function of the axial coordinate x. Let this be f, (x). If now, the beam is allowed to
undergo bending with the plane section remaining plane, then the displacement in
x direction of any point (y, z) in a plane will be a linear function of the coordinates
y and z. This is equivalent to saying that the cross-section rotates about an axis.
The section that was plane before bending will, therefore, remain plane after bend-
ing and axial displacement. Hence, the total axial displacement, according to the
Euler—Bernoulli hypothesis, will be

Uy = fo(X) + yh(%) + zf5(x)
where f, and f, are functions of x alone. The axial strain ¢, is, therefore,

& = % = f(x) + YE(X) + 2f5 (%) (9.50)

The strain represented by the last two terms on the right-hand side is similar to
the one expressed in Chapter 6. We can also assume that the section rotates
about an axis, such as BB in Fig. 9.1(b), and write the strain as
g, = Ty(x) +Kky’, wherey” is the perpendicular distance of a point from BB, which
is inclined at f3 to the y-axis. This is what was done in Chapter 6. The unknowns
kand Bare now replaced by f,(x) and f;(x) . From Hooke’s law, since o, and o,
are assumed to be zero,

o,=E(g,—0aT)
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Substituting for &,
o, = E[fy(x) + yf,(X) + zf;(X) — aT] (9.51)

Since a free beam without external loading is considered, the conditions to be
satisfied at any section are

[Joy,dA=0;  [[oydA=M,=0, [[o,zdA=M, =0

i.e. the resultant force over the section is zero and the moments about the y and z
axes should individually vanish. Substituting the expression for o,, the above
conditions become

fo [[dA+ /[y dA+ f; [z dA=[[aT dA
f [[y dA+ f/[[y*dA+ f; [[yz dA=[[aTy dA (952)
fo [[zdA+ £/ [[yz dA+ T} [[ 22 dA= [[ oTz dA
The integrations extend over the entire cross-section. The expressions
[[yda=[jzdA=0
because of the selection of the centroidal axes. Further,
[f[da=A,  [[y?dA=1,  [[z2dA=1, [[yzdA=1,,
Substituting these, Eq. (9.52) can be written as
Afg(X) = [[aT dA
f/l, + f51, = [[aTy dA (9.53)
f'ly, + f1, = [[aTz dA
Let EffaTdA=p, E[faTydA=-M,, E[faTzdA=M,

A minus sign is used in the second expression in order to make the final result
similar to the result of Chapter 6. The solutions for fy, f/ and f, are then
given by

LMy = 1My, LMy 1M,

fr_& f!

= = fy (9.54)
0 , 1 5
Substituting these, the axial stress o is, from Eq. (9.51),
6. = —aET +%_ (I, My + |y;Myt) . (I,My, + |y;_|v|zt) ,
(IYIZ =1 yZ) (Iylz -1 yz)
M I,-z,)+M I, —zl
or o,=-aET +%+ a (Yly = 2ly) + My (W), — 21,) (955)

1%, = 1,1,
Equation (9.55) bears a very close resemblance to Eq. (6.14) since the analyses in
both cases have proceeded on similar lines.

If the axes chosen happen to be the principal axes of the section, then
I,,=0and Eqg. (9.55) reduces to

P M M
oy = —aET + 4 - =2 y+|—y‘z (9.56)
z y
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9.7 STRESSES IN CURVED BEAMS DUE
TO THERMAL LOADING

An elementary analysis of the stresses developed in curved beams may be devel-
oped on the same basic assumptions as in the case of straight beams. Consider a
free curved beam of arbitrary constant cross-section, the centre line of which is an
arc of a circle (Fig. 9.2). It is assumed that this arc lies in one of the principal planes
of the beam. Let the temperature vary as a function of r and 6, i.e. T(r, 6). We shall
follow the notations used in Chapter 6.

In the isothermal case, the radius of curvature of the neutral surface is given

by r, [Eq. (6.33)] such that
” ydA
To—Y
As in Sec. 6.7, the origin O lies on the neutral axis and y is measured towards the
centre of curvature. A view of the deformed element is given in Fig. 9.3. Let the
elementary length of an undeformed element enclose an angle A6.

Because of thermal loading, the element deforms and it is assumed that
sections which were plane before, remain plane after deformation. A fibre at a
distance y from the chosen origin has a length (r, — y) A6 before deformation.
After deformation, the length of the same fibre becomes

0 (957)

{ro' -y- faT dy} (AO + 5A6) (9.58)
0

The third term in the first bracket above represents the thermal expansion in
y direction. The change in the length of the fibre is therefore

y
{ro’ —y—|aT dy} (AO+ SAO) — (1y — y) AO
0

y y
:{ro'—r0 —[aT dy}AeJ{ro'— y-[aT dy} (6 A6)
0 0

/ AG + SAO\\

Centroidal line

Fig. 9.2 Curved beam subjected to Fig. 9.3 Deformation of a
thermal loading curved beam
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Hence, the strain is

ggzﬁ{[ jaTdy] 5?;[ —-y- jaTdyﬂ

We observe that

y
[aT dy<<y
0

Hence,
1 SN0
£, = aT dy |+ =2 (g (9.59)
4 (rO y) |: I yjl ( 0 y)
From Hooke’s law, taking only o, into account
o,=E(gp-0T)
Therefore,

g1 r’—r—}le + e(r’—)— T
Op = Y 0o~ To oa y Ag o y a

The two unknowns 1y and % are determined from the boundary conditions of

the beam. Since the beam is free of external loadings, we should have

[[opdA=0;  [[o,ydA=0

Beam with Rectangular Section

A somewhat more accurate result can be obtained for a curved beam with a
rectangular cross-section and temperature independent of 6. This is obtained by
superposing the result for a thin circular disk subjected to radial thermal loading
with the result for the bending of a curved beam subjected to pure bending
moment. If a sectoral element is isolated from a disk, as shown in Fig. 9.4(b), the
ends of the element will be found (Examples 9.3 and 9.4) to be subjected to zero
resultant circumferential force and some moment F,, i.e.

[ogdA =F,=0
A

[ogydA =F,

A

where F, is the moment about the median line.
If, on this curved beam, we apply an equal and opposite moment F,, as shown
in Fig. 9.4(c), then we get a free curved beam subjected to thermal loading only.
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(c)

Fig. 9.4 Curved beam with rectangular section

Example 9.3 Showthatthe resultant circumferential force across any radial section
of a hollow disk subjected to thermal loading is zero.

Solution From Eq. (9.21), the value of the circumferential stress o, is

2

agzor‘E L; val jTrdr+jTr dr' — Tr}

Let the disk be of unit thickness perpendlcular to the plane of the paper. The
resultant circumferential force across any section is

b
a

E [bo b bg2 b
> jdrorerrj—zdrordr
—a [a a afl a
b
+aE{j—dror dr’ — der}
ar

Let  [Trdr=p

ak

Then, ngbz_az {ﬁ(b—a)—/}az [%_lﬂ

a

b

(1 3 b b
+aE || == [Trdr' || +[Tdr—[Tdr
L r a J a a

In the above expression, we have made use of the formula
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V(a) V(a)
d | dF(a, X) av du
- F(a, x) dx= j ——dx+ FV,a) 5—-FU, o) =—
da U (@) U (a) da da da
Substituting the limits, it is observed that

Fo=0
There is no resultant circumferential force across any section.

Example 9.4 Determinethebending moment duetothecircumferential stressacross
a section of a thin hollow disk subjected to radial thermal variation.

Solution If p, is the radius of the median line and o, the circumferential stress
on afibre at r from the centre of curvature (Fig. 9.4b), then the moment about the
median lineis

Fn= oy (r—pp)dr

b
ogf dr — pyf opdr

a
The second integral on the right-hand side is zero, from Example 9.3. Using
Eq. (9.21), the moment becomes

W T © —T

_ «aE
Fn= b? - a?

b b b2 b
[j'rdror dr +deror dr}
a a

a a
bl r b
+aE j‘Fdr [Trdr = [Trdr
a a a

b
Putting jTr dr = 3, the above expression becomes
a

__aE B2 2y, .2 b
Fm_bz_az[z(b a)+aﬂloga}

b

r b
+aE{Iogror’dr’} —aE [(log r) Tr dr — EB
a a

a
aEp

_ 2, 52 b_ [
pPT {b +a (Zloga 1]}+aE{ﬂ(logb 1) £(Iogr)Tr dr

Problems

91 A thin hollow tube has its inner surface at temperature T; and its outer
surface at zero temperature. Assuming steady-state conditions, calculate

the stresses. The inner radius is a and the thickness of the tube is t.



9.2

9.3

94

95
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aET,; t
Ans. (0y)r_a = (0,)roa =— 20 1) (1+ E]

ET,

A solid sphere of radius b is subjected to thermal loading T = T(r). Show
that the radial stress o, at any radius r is proportional to the difference
between the mean temperature of the whole sphere and the mean tempera-
ture of a sphere of radius r. Also, show that the circumferential stress at any

point is equal to 3(210‘E ) multiplied by the following expression:
-V
[(mean temperature of the whole sphere) 3
+ (1/2 the mean temperature within the sphere of radius r) — ETJ

A thin disk of inner radius a and outer radius b is subjected to a temperature
variation which is symmetrical about the axis, i.e. T = T(r). Consider a sectoral
element, as shown in Fig. 9.4. Calculate the resultant moment due to o,
about the median line of the section across any radial section.

i aEp
2(b% - a?)

Ans. F,, = {b2+a2 (2 Iog%—lﬂ+aE [B(logb-1)

b
—[logr Tr dr}
a

b
where  g=Trdr
L a
A thin, uniform disk of radius b is surrounded by a heavy ring of the same
material. The assembly just fits when the disk and the ring are at a uniform
temperature. The faces of the disk are kept at temperature T; and the circum-
ference is kept at temperature T,. The temperature variation along r from the
centre is given by

r2
T=T-(-To) g

The heavy ring is at temperature T, and its strain is assumed to be negli-
gible. Show that the radial compressive stress in the disk at radius r is

1 3-v r?
or=3 Ea (T - To) [E—b—zj
The temperature distribution in a long cylindrical conductor due to the pas-
sage of current is given by

T =02 -1?)
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where A is a constant. Determine the stresses due to thermal loading only.

[ Ea A
Ans. — =% 22
S0 iy )
- Ea A 2 2
o 4(1_]/)(3r b%)
_ Ea A 2 2
] .2(1_V)(2r b?) |

96 A beam of rectangular section (see Fig. 9.5) is subjected to a temperature
distribution of the form
2
y2)
T=T,|1-%
iy
Show that the normal stress induced is given by

Oy =%aTOE -alyE Ll—Z—jJ

A y
|

—r——yx Z<——L

=
o

|—>|
9}

] —

Fig. 9.5 Problem 9.6



CHAPTER

Elastic Stability 10

10.1 EULER’S BUCKLING LOAD

Consider along slender column subjected to an axial force P. If the column is
perfectly straight and is ideal in every respect, then it will remain straight and
p will be in equilibrium. If now a small lateral force Q is
applied in addition to the axial force P (Fig. 10.1), the
member will act as a beam and will assume a deflected
form and will remain deflected as long as the lateral force
Q isacting. When Q is removed, the member will return
to its straight equilibrium position. However, there exists
‘ acritical axial load P, such that under the action of P,
Q 7* if the columnis given asmall lateral deflection by aforce
/ Q and the lateral force is removed, the column will con-
tinue to remain in the slightly buckled form and will be
in equilibrium.
The value of P, known as the Euler’s critical load or
the buckling load can, therefore, be obtained by consider-
P ing the equilibrium of a slightly buckled column. In el-
Fig. 10.1 Column ementary strength of materials, following this approach,
Euler’s critical loads for the columns shown in Fig. 10.2

with lat- .
eral load have been obtained.
The critical loads for the first modes shown in Fig. 10.2 are as follows:
2 2 2
for case (a), for case (b), and for case (c)

412 L2 L2

The method followed in elementary strength of materials to derive the above

formulas will be applied to the following problem, which is slightly more compli-
cated than the above cases.

Consider a centrally loaded column with the lower end built-in and the upper
end hinged (Fig. 10.3). The critical value of the compressive load is that value of
P, which can keep the strut in a slightly buckled shape. It may be observed that
in order to keep point A in line with B, alateral reaction R will be necessary.
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P P o
‘ 1 1L/4
Li2 *
L '
7$L/4
- A Y
P tp
(@) (b) (©

Fig. 10.2 (a) Column with one end fixed and the other end free, (b) Column with both
ends hinged; (c) Column with both ends fixed

P The bending moment at any section x is
R iA M =Py —R(L - X)

AN CA
Using the expression
2
L M = —El d—32’
dx
2
X Eld—Z:—Py+R(L—x)
y dx
Y, x
B Let k2_ P

Fig. 10.3 Column with =l
one end fixed The differential equation then becomes

and the other )
end hinged dy -y Ry (200
dXZ El

The general solution of this equation is

y=C,; coskx + C, sin kx + %(L—x)

The constants C, and C, and the reaction R will have to be determined from the
boundary conditions. These are

y=0 ax=0 and atx=L, %:0 ax=0

Substituting these, we obtain the following equations:

R
C,+>L=0
P

C,coskL +C,sinkL =0

R
kC,— =0
2P
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The trivial solution is C; = C, = R = 0, which means that the column remains
straight. The non-trivial solution is

__R - 1R
G==p b C=p
Substituting into the second equation, we obtain the transcendental equation
tan kL = kL (10.2)

A solution to this can be obtained from a graphical plot. The smallest value of kL
satisfying this equation is kL = 4.493, which means
_ 2019EI  A%EI

L2 (0.699L)?

As another example, we shall analyse by the elementary method, a fairly general
problem of a column with a varying cross-section and with end as well as interme-
diate loading.

P = K°El

cr

Example10.1 AcolumnABwithhingedends(Fig. 10.4) iscompressed by twoforces
P, and P,. The moment of inertia for the length L, of the column is |, and for the
remaining length L,, it is |,,. Determine the critical

A ipl value of the force P, + P,
~<——R
Solution If the equilibrium position of the buck-
W4 led column is as shown in Fig. 10.4, then to have
L, zero moments at the hinged ends A and B, it is nec-
essary to have a horizontal reaction R such that
5 RL=P,0 or, R=P,5/L (a
T’ Let y, be the deflection at any section of the L,
. ' P, portion and y, the deflection at any section of the
x, P I, L, portion.
l For the L, portion, the moment is
g i 7 M =P,y, + R(L - X)
P, + P, Using Eg. (a),
- d? 5P,
Fig. 10.4 Example 10.1 “El, dx32/1 =Py, + T2 (L -x)

and for the L, portion, the moment is
M =Py, +R(L—X) = Py(6-VY,)

2 oP,
or 1,82y, T2 (L0 - RS-y
dx L
Using the notations
R ) 2 R+R K2 P

El, B, 2 El, % E
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the differential equations become

d?y,

dXZl =_k12y1_€k3(|-_x)
_d?y, — Ky _§k22X
G 2L

The solutions of the above equations are

y,=C;sinkx+ C, coskx— —— (L—-X)

. 5 k2
Y, = Cg sin kgx + C, cos k,x + E—zx
3

The boundary conditions are
y;=0 ax=L, y=90 ax=L,, Y,=0 ax=L,

The first four conditions yield

_ Sk L+kg L)
K2 L(sink L, —tank Lcosk Ly)

1

_S(kL-K Ly)
k2Lsink L,
Substituting the values of these constants into the continuity condition, i.e.

dylj (dyzj
( dx dx X=he
the following transcendental equation is obtained:

ki K L+ki L, _k_22+ KoL - koL,
K ktankl, K ktankl,
For any particular case, the above equation can be solved to give the critical load.
If, asan example, L; =L,, I, =1, =1 and P, = P, are taken, we get
7% El
(0.87L)2
In this chapter, we shall discuss three specific topics:
(i) Beam columns;

(i) Stability problem as an eigenvalue problem and
(iii) Energy methods to obtain approximate solutions to buckling problems.

C,= Gtankl, G C,=0

(Pl + Pz)cr =



Elastic Stability 335

I. BEAM COLUMNS

10.2 BEAM COLUMN

In the theory of bending discussed in Chapter 6, it was found that stresses were
directly proportional to the applied loads. Similarly, in determining the deflections,
we could apply the principle of superposition because of the linear relationship
between the load acting and the deflection produced. In these cases, it is assumed
that the deformations produced by one load do not affect the action of the other loads.
Figure 10.5(a) shows a cantilever loaded by forces Q; and Q.. If 8, is the deflection
caused at point S due to Q, aone, and &, the deflection at the same point Sdue to Q,
aone, then the deflection ¢ due to the combined action of Q, and Q, is 6, + &,.

Oz Ol QZ Ql
4 2 i i L i i P
@) ’ (b)
Fig. 10.5 (a) Cantilever with loads Q; and Q,, (b) Beam column with axial and

lateral loads

In arriving at this result it is assumed that the deflection 6, caused by Q, does
not affect the action of Q,. However, in the case of a beam which is subjected to
lateral forces Q, and Q, aswell asto axial forces P as shown in Fig.10.5(b), it can
be seen that the bending moment caused by P depends on the deflection y pro-
duced by the lateral forces Q, and Q,. In such cases, the principle of superposi-
tion cannot be applied without certain modifications. The beams that are subjected
to axia loads in addition to lateral loads are known as beam columns. We shall
restrict our analysis to beam columns having symmetrical cross-sections.

10.3 BEAM COLUMN EQUATIONS

Consider the beam shown in Fig. 10.6(a). The beam carries a distributed lateral
load of intensity g, which is a function of x. In addition, the beam is subjected to
an axial compressive force P. An elementary length A x of the beam before deflec-
tion is considered. The lateral load g will be assumed to be positive when it is
acting downward. The free body diagram of length Ax is shown in Fig.10.6(b).

a(x) l\l\,ﬁq
o N M aM

; /) P

eax—] \

(b)

Fig. 10.6 Beam column with varying lateral load

V+AV




336 Advanced Mechanics of Solids

The shearing force V and bending moment M acting on the sides of the element
are assumed to be positive in the directions shown.
The relations among the load, shearing force V and bending moment M are obtained
from the equilibrium considerations of the element. Summing forcesin Y directions
-V+qAx+(V+AV)=0
or,inthelimitasAx— 0
av.
gq= o (10.3)

Taking moments about point S and assuming that the angle between the axis of
the deformed beam and the horizontal is small, we get

M +qAxA—+(V+AV)Ax (M + AM) + Pijx—O
or, q—+V+AV—AA—M+P$: 0

Inthelimit,asAx — 0
v S dy
V="L_p2 104
x "o (104)

As in the case of the bending of beams, we ignore the effects of shearing defor-
mation and assume that the curvature of the beam axis is given by

El dzy (10.5)
dx?

where E isthe Y oung’ s modulus of the beam material and | is the moment of inertia
about the neutral axis. Using Eq. (10.5), Egs (10.4) and (10.3) can be written as

3
El % +P % =y (106)
X X
4 2
and El %+ P% - q (10.7)

Equations (10.3)—(10.7) are the basic differential equations for the bending of
beam columns. These equations reduce to the familiar beam bending equations
when P is equal to zero.

10.4 BEAM COLUMN WITH A CONCENTRATED LOAD

Consider auniform beam of span L (Fig. 10.7) simply supported and carrying aload Q
at distance a from the right hand support. The beam is subjected to an axial force P.

Q The bending moment at any sec-

f—°¢ < a > tion x is due to Q as well as P.
L X <7P However, the bending moment
M due to P cannot be caculated

L > until the deflection is determined.

}/¢ The beam column is therefore

Fig. 10.7 Beam column with concentrated load  statically indeterminate.
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The bending moment at any x is

M:% x+Py for x<(L-a)

M:M (L-x)+Py for x>(L-a)

Hence, from Eq. (10.5)

2
B 9Y R by for x<(L-a) (108)
dx? L
2 _
g dY o QU=3 o by for x>(L-a) (109
dx? L
. P
Puttin k2= —
J El

the above equations become

4% ey Qa

+ky=——"—x
dx? R=TE
2
Y ey - Q=8 (=X
dx EIL
The general solutions of these equations are
y=Acoskx+Bsinkx—%x x<(L-a)
y=Ccoskx+Dsinkx—W x> (L - a)

The constants A, B, C and D are to be determined from the conditions of the
beam. The conditions are
() y=0atx=0andatx=L
(i) yatx=(L - a) should be the same according to both solutions.
(iii) The tangent at x = (L — a) would be the same according to both
solutions.
From condition (i)
A=0 and C=-DtankL
Conditions (ii) and (iii) give

Bsin k(L—a)—%(L—a)

=D[sink(L - a) - tan kLcosk(L—a)]—%(L—a)

Bk cosk(L — a) _Q
PL
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— Dk [cosk(L - a) + tan KL sin k(L—a)]+¥
From the above two equations we get

_ Qsinka D__Qsink(L—a)
~ PksinkL’ ~ PktankL

Substituting these constants, the solutions are

_ Qsinka

Qa
_ Q8K - Ry forx< (L - 10,1
PrsnkL oML X forxs(L-3a) (10108

y= Msink(L—x)
Pk sin kL

Q(L a)(L x) forx>(L-a)
(10.10b)

By the differentiation of Egs (10.10a) and (10.10b), we obtain the following formu-
lae, which are useful.

Q=Qs_mkacoskx—% 0<x<L-a
dx PsinkL PL
_ (10.12)
ﬂ=—Mcosk(L—x)+M x>L-a<lL
dx P sin kL PL
2
d—¥= Msnkx0<x<L a
2 H _
M:wsink(L—a) x>L—-a<lL
dx? PsinkL
As aparticular case, if a= L/2, i.e. the load acts at midspan, then
sy ato Rk L]
2 2Pk 2 2
102
Putting u= LS = L (ij (10.13)
2 2\HE
3 p—
_ QL® 3(tanu—u) (10.14)

48El u’

It is observed from the above equation that 6 becomes infinite when u = 7/2, i.e.
when

7r/2=L P
2 VE
2
or p=2 El P
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So, however small Q is, when P becomes equal to P, the lateral deflections
becomes very large. We should recall that P, given above isthe Euler buckling
load for a slender column with hinged ends.

10.5 BEAM COLUMN WITH SEVERAL
CONCENTRATED LOADS

Equations (10.10a and b) show that deflection y is proportional to lateral load Q,
whereas the relation between the deflection and axial force P is more complicated.
Because of the linear relationship between deflection y and load Q, if Q is doubled
(with P remaining unaltered), then the deflection also is doubled. Hence, the prin-
ciple of superposition in a modified form can be used for the effect of the lateral
load, provided the same axial force acts on the bar.

Consider the beam shown in Fig. 10.8, which is subjected to an axial force P
and three lateral loads Q,, Q, and Q, acting at distances a,, a, and a; respectively
from the right hand side support B.

A I

P> B«P»x
MV_JJ
i L— a;—
y >

Fig. 10.8 Beam-column with several lateral loads

At some section left of Q, let y, be the deflection due to Q, aone with P, y, the
deflection at the same point due to Q, alone with P, and y, the deflection due to
Q, aone with P. From Eq. (10.5) with each Q and P [(similar to Eq. (10.8)], we get
the following:

CIZyl :gh.al
d2y2 :22612
d2y3 Q?:a?:
El ? =22 y_ Py3

By adding these equations

El d?(y, + Yo + ¥5) - Qa X_QZaZ X_Q3a3
v L L L

- Py + Y2+ Y3)

(10.15)
If Q;, Q, and Q are acting together with P, then the bending moment at section x is

M = Qll_ai X+ Q2La2 X+ Qia?’ X+ Py, + Y, + Y3)
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From Eg. (10.5), therefore, we get

El d?(y, + 3;2 +Y3) __ Q& X Q3 X
dx L L
Thisisidentical to Eq. (10.15). Therefore, when there are several loads acting on
a bar with an axial force P, the resultant deflection can be obtained by the super-
position of the deflection produced by each lateral load acting in combination
with axial force P.

Let a beam be acted upon by n lateral loads Q,, Q,, ..., Qn Qmity v Q, &
distances a,, a,..., &y 8mi1r---r &, respectively from the right hand support. At
some point X, which lies between Q,,, and Q,,,;, the total deflection is obtained
from Eq. (10.10) as

a
—QT_3X—P(Y1+YZ+Y3)

SinkX m X m
=0 inka, — — _
Y= PrsnkL ElQ' S PL ElQ'a'
snklL-% & ; o L—xm o
Pk sin kL i=%+1Q' Snk(L-a) PL i=%+lQI(L g) (10.16)

In the above equation, we have made use of Eq. (10.10a) for loads Q,, Q,,..., Qy, lying
to the right of x and Eq. (10.10b) for loads Q,,1, Qmiz---Qn 1YiNg to the left of x.

10.6 CONTINUOUS LATERAL LOAD
The result obtained for a single load and the method of superposition can be used

to solve the problem of a beam subjected to a continuously distributed load and
Aa an axial force, shown in Fig.

X —>] ] ——a 10.9. Let g be the intensity of

A q B loading. At distance a from
?é\ ¢ ¢ ¢ ¢%% Pj the right hand support, the

load on an elementary length

y aha Aais q Aa.
. . . At distance x from A, the
Fig. 10.9 Beam-column with continuous deflection due to the load
lateral load g Aafrom Eq. (10.10a) is
_ qAagn kaSin o gaAa «
Pk sin kL PL

Assuming a to vary from 0 to (L — x) from the right hand support, the deflection
due to this part of the load, from Eq. (10.10a) and the principle of superposition, is

sin kx L—x

. X rL-x
= — sin kada— — a da
Y1 PksinkLIO q PLIO q

Similarly, using Eq. (10.10b) and the principle of superposition, the deflection at x
due to the loading to the left of x, i.e. for avarying from (L — x) to L, is

_sink(L - X) L

L .
Y2= BSmiL . asink(L-a)da-

- X
= jLfo q(L -a)da
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The total deflection y due to complete loading isy = y; + y,. Summing the
above two quantities and integrating with g as constant, we obtain the result,

Withu=%kLas

qL? [cos (U-2ux/L) 1} _ o
16Elu* cosu 8El u

y = 5 (L= X)X (1017)

Example10.2 Determinethedeflectiony, usingthegeneral differential equation
for a beam-column given by Eq. (10.7), for a beam uniformly loaded laterally and
subjected to an axial force P.

Solution The general differential Eq. (10.7) is

4 2
g4y, pdy
dx? dx?

where q is a constant. The general solution of this equation is

2
y=Asinkx+ Bcoskx+ Cx+ D + qzip

where A, B, C and D are constants. The boundary conditions are that the deflec-
tion and bending moment are zero at x=0and x =L, i.e.

2
y=0 and dy_O ax=0and at x=L
These give
B—p-_9. a0 lzcosk . __d
k2P k%P sinkL 2P
Therefore,
y=i—1 COSkI'smkx+—(coskx 1)—qL +%
k’P sinkL k2P 2P 2P
Putting
2
u:& and I:>:4u2EI
2 L

the above equation can be written as

4 Tq_ 2
qL 1 cosZuSi 2ux 2ux_ }_ qL (L-)x

= —— +C0S—
16Elu® | sin2u L L 8EIu?

4 r . _ . . 2
gL sin f cosZusmf+sm2ucosf_}_ qL (L - X)x

16EIL* | sin 2u 8EIu?
where, we have put f = 2ux/L. Simplifying, we obtain
gt |[cos(u-f) 1 qL?
16Elu* | cosu 8Elu?
asin Eg. (10.17).

y= (L—x)x
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10.7 BEAM-COLUMN WITH END COUPLE

Consider the beam shown in Fig. 10.10, where amoment M, is applied at support B.
The solution to this can be

A M, :B obtained from the equation for

? the deflection curve due to a
P .

single concentrated load. For

. i this purpose, we assume

that the distance a where the
Fig. 10.10 Beam-column with one end couple load Q is applied is made to
approach zero, however, keep-
ing the product Qa = M, constant. In this manner, we obtain moment M,, acting at
support B. From Eq. (10.10a)
_ Qsinka _ Qa

y= ———s8nkx— =—x
Pk sin kL PL

Now, the limit of Q sinka asa — 0 and Q —eo, S0 that Qa = M,, remains congtant is

( k3ad )
LtQLka— 3 +J =k(Qa) = Mk
! Y= PksinkL PL
or - %(S_'”kx _Xx) (10.18)
P Lsm kL L

If two couples M, and M, are applied at the ends A and B of the bar, as shown in
Fig. 10.11, the equation for the deflection curve can be obtained by applying the

modified principle of superposition. Equation (10.18) gives the
deflection produced by M,,. In

M M, this equation, if we substitute

;A : B; M, for M, and (L — x) for x,

P N__M P we obtain the deflection pro-
duced by M,. Adding these

results, we get the deflection

curve for M, and M, acting
together. Thus,

Fig. 10.11 Beam-column with two end couples

:ﬂ(gm_ﬁhﬂ{g”k(“xﬁ“x} (10.19)

P Lsin kL L P sin kL L

The slopes 6, and 6, a A and B can be obtained by differentiating the above
expression and puttingx=0and x=1L, i.e.

0,= (ﬂ) at x=0, and Hb:—(ﬂ] at x=1L
dx ax
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The negative sign in 6, expression is because of the sign convention adopted
[Fig. (10.11)]. The slopes are

ML My L
My L M,
0. = u u 10.20b
b= T3 w(u) + 6El ¢( ) ( )
3((1 1)
h = —
where o ulsn2u  2u
0= 3(1 1)
v 2u\2u tanZ2u
2
and == kL—l L[ Pj
2 El

Example 10.3 A beam-column carries a triangular load, as shown in Fig. 10.12.
Find the slopes at the ends of the column.
Solution We make use of
EQ. (10.16). Theloading Q; will

QI m now be equal tod ada acting
A B L

P ‘ ‘ P at distance a from B. Replacing
~x = ‘ a the summation by integration,
- L i the equation becomes

Fig. 10.12 Example 10.3

. L— L-X 2
:ﬂ | qasmkada— X jﬁda
PksinkL 3 L PL { L

; _ L
ML Clb OB e P e s

_ j qa(L a) da
PksinkL |2, L PL |24

Now, we make use of the formula
V(a) V(a)

9 k@ = | F@X g r@v) Y Feuy

da |y Ule) da da

Then,
dy kcoskx " *qa

X dnkada- sink_ g(L - x)

| : snk(L - x)
dx PksinkL § L PksinkL L

L-X a2 2
1 I 3da+iq“'_x) kcosk(L—x)><

PL L PL L  PksinkL
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L
qa B sink(L - x) q(L - x)
L[Xl_smk(L a)da + oS ) sin kx
L
I L(L-a)da- Loxalt=x,
PL 7, PL L
dy q q 7.2
= —jasmkad -—5[a‘da
dxJ, o, PLsnkL PL" o
-1 @tankL -3k - KL tan kL)
3Pk“L tan kL
Similarly,
dy} q
[ =——>—"——(6sinkL-6kL —k?’L?sinkL
{dx x=L 6Pk2LsinkL( :

Il GENERAL TREATMENT OF COLUMN
STABILITY PROBLEMS
(As an Eigenvalue Problem)

10.8 GENERAL DIFFERENTIAL EQUATION
AND SPECIFIC EXAMPLES

The general differential equation derived for a beam column, given by
Eqg. (10.7), can be used as a general equation to determine the critical loads
of buckled bars. If the column is not subjected to lateral loads, then the
general equation becomes, with g = 0,

4 2
ay . p d_gf -0 (1021)
dx dx
If El varies along X, then the general equation can be derived on the same lines as
in Sec. 10.3, giving

El

2 2 2
d2 o [e Idy\ &y g (1022)

dx? dx
Equations (10.21) and (10.22) are the equilibrium equations of a slightly buckled
beam subjected to axial load only. Hence, the axial load will represent the critical
load. The boundary conditions, i.e. the end conditions, can be quite general.
Hence, these equations represent the general differential equations for a column.
For the present, we shall assume that El is constant along x and use

Eq. (10.21). On using the notation k? = E_F: Eq. (10.21) becomes

dy . d%
—Yikr=2-0 1023
dx* dx? 1023
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The general solution of this equation is
y=Asinkx+ B coskx+ Cx+ D (10.29)

The constants are determined from the end conditions of the bar. We can con-
sider the following particular cases:

Column with Hinged Ends (Fundamental Case) In the case of a bar with
hinged ends (Fig. 10.11), the deflection and bending moments are zero at the two
ends, i.e.

y=0, and d—:O ax=0 andx=L
These conditions give
B=0, C=0, D=0, andsinkL =0

Hence, kL =nzx
¢ The deflection curve is then ob-
i ¢ tained as

nrzxX

y=Asnkx=Asn

where A is undetermined, i.e. in
x L2 4 determining the load that keeps
I i L/f’ the column in a slightly buckled
— - ! form, the amplitude of the deflec-

tion remains undetermined. For

S (10.25)
—|A '« T

(a) (b) (c) Nn=1,n=2andn=23, theshapes
Fig. 10.13 Various modes of buckling of a of the buckled bar are as snown
inFig. 10.13.

column with two ends hinged i
The corresponding loads are

obtained from the equation

n_ﬂ'_(ijﬂz o p _MrE
L \E a L2

Column with One End Fixed and the Other End Free The end conditions are
at fixed end (i.e. at x=0), y=0and dy/dx =0

at free end (at x = L), moment and shear force are zero, i.e. d?y/dx? = 0

and from Eq. (10.6)

El d_3y +P dy =0
dx® dx
From these, the constants are determined as
B=-D, C=-Ak,
AsinkL + B coskL =0, C=0

Hence, A=C=0 and coskL=0
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or kL= (2n-1) %
The deflection curve is therefore
y = B(1 — cos kx)
or y=B [1— cos(2n-1) ’Zf—ﬂ (10.26)
With n= 1, we obtain
KL = % or, P, :%

This is the smallest load that can keep the column in a slightly buckled shape.
When n = 2, 3, etc., we get the other critical loads as

97°El 257°El
P, =———, ==———,..., €C.
a2 a2
The corresponding deflection curves are shown in Fig. 10.14.

! i l |

L
J:X L3 T
| .
AN A\Y - T
(@ (b) © @)
Fig. 10.14 Various modes of buckling of a column with one end fixed and the other
end free
Column with One End Fixed and Other End p
Pinned Thiscaseisshownin Fig. 10.15 and was i
discussed in Sec. 10.1. Since the top end is pinned, R S NS
alateral force Ris necessary to keep the column in
that position.
The end conditions are .
y=0, ﬂ =0 ax=0
dx
X
2
y=0, d—!:o ax=1L I N

dx
With these, the general solution yields the follow- Fig. 10.15 Column with

ing equations: one end fixed
B+D=0 and other end

Ak+C=0 pinned
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CL+D=0
AsinkL + BcoskL =0
A trivial solution for the above set of equationsis A= B = C =D = 0, which
means that the deflection curveis astraight line (i.e. y = 0). For the existence of
a non-trivial solution, the determinant of the coefficients should be equal to
zero. The determinant is

0 1 0 1
k 0 10

=-snkL + KL coskL
0 0 L 1

sinkL coskL 0 O

For the existence of a non-trivial solution, the above quantity should be equal to
zero, i.e.

—sin kL + kL coskL =0
or tan kL = kL (10.27)
The load which keeps the column in a slightly buckled form should, therefore,
satisfy the above transcendental equation. The smallest root of this equation is
kL = 4.493 and the corresponding critical load is

20.19 El 72El
Pe = 2 2
L (0.699L)

Column with Ends Fixed For a column with both ends fixed, the boundary
conditions are

y=0, Q:O for x=0
dx

y=0, Q:O for x=1L
dx

Substituting these in Eq. (10.24), we get
B+D=0
Ak+C=0
AsinkL +BcoskL+CL+D=0
Ak coskL —BksinkL + C=0

For the existence of a non-trivial solution, the following determinant should be
equal to zero

0 1 01

k 0 10
sin kL coskL L 1 =0
kcoskL -ksnkL 1 O

i.e 2(coskL - ) + kL snkL=0
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. kL (kL kL kL

or sm7 70037—sm7 =0 (10.28)
One solution is
sin&:o
2
2 2
e kL = 2nz and hence P, =w
L

Noting that sin kL = 0 and cos kL = 1, whenever sin kL/2 = 0, the constants are
found as

A=0, C=0, B=-D
and the deflection curve is therefore

y=B (cos 207X _ ] (10.29)
L
{M A second solution to Eq. (10.28) is
. AY A\
kL kKL o kL _
5 cos 5 —sin 5 =0
kL kL
or tan —=—
T 2 2
L2 The lowest root of this transcendental
i equation iskL/2 = 4.493 and hence
2
cr L2
Fig. 10.16  Modes of buckling of a The deflection curves corresponding to
column with both these two critical loads are shown in

ends fixed Fig. 10.16.

Column with Load Passing Through a Fixed Point Consider a column
with one end fixed and the other end loaded in such a manner that the load passes
through a fixed point (Fig. 10.17). The load may be applied through the tension of
a cable passing through the fixed point O.

During buckling, because the force P becomes inclined, a shearing force is
developed at the top end. This shearing force is equal to the horizontal compo-
nent of the inclined force P. Since the deflection is assumed to be very small, the
vertical component will be ailmost equal to P and the horizontal component is

v=-_p2
C

From Eg. (10.6)
d3y

dy  pdy_
Bl 5P =P
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P /P
—
/
/
/
c L /o
/
[
ANNANNY 1 WLT
(d)
T-9%o0 o
@) (b)
Fig. 10.17 Column with load passing through a fixed point
3 2
or d7y + k2 dy _k%
dx3 dx ¢

This is one of the boundary conditions. The other conditions are

y=0 and (;—dizo ax=0

2
d_g/ =0 ax=L
dx
Substituting these in the general solution given by Eq. (10.24)
B+D=0
Ak+C=0
c=9
c

AsinkL + B coskL =0
Solving these equations, the constants are obtained as

A=-1=. B=gtank=-D, C

Substituting these, the deflection curve is obtained as

ol

y:%[tan KL (coskL — 1) + kL — sin kL]

or tan kL = KL (1— 8 (10.30)
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The above equation gives the value of the critical load for any given ratio of c/L.
2

For three specific values of c/L, the values of kL and % are as follows:
T
c
_——= 1 oo
i 0
KL = 4.493 7 z
2
2P,
=2.05
2EI 1 025

When ¢ = 0, we get the case of a column pinned at the top and fixed at the bottom,
which is the case discussed in (iii). When ¢ = L, the critical load is obtained as

7°El

L2
which is the same as the one obtained for case (i), i.e. the fundamental case. This
can be explained by the fact that when the line of action of P passes through the
base point, the moment at the base is zero and the end behaves like a hinged end.
The moment at the top end is also zero and consequently, the column acts as a

hinged-end column. When ¢ approaches infinity, the column behaves like it did in
case (ii), where the load is aways vertical.

kk=7z and P, =

10.9 BUCKLING PROBLEM AS A CHARACTERISTIC
VALUE (EIGENVALUE) PROBLEM

In Sec. 10.8, the buckling problem was discussed, starting with the general differ-
ential equation of equilibrium of a slightly buckled column subjected to axial load
only. The specific examples analysed, bring out some general characteristic fea-
tures of the differential equation, which will be discussed now. These features
give us a better insight into the problem and provide a basis for the application of
energy methods to buckling problems.

The general differential equation of equilibrium of a slightly buckled column
with general boundary conditions was given by Eg. (10.22) as

2 2 2
d—z(EIX d—ﬁ'} pIY g (10319)
dx dx dx
It is assumed that the moment of inertia |, can vary along the axis of the column.
We can write

llep(x)

where | is a constant moment of inertia and p(x) is a dimensionless function of x.
The differentia equation then becomes

d? d?y d?y
— |Elp(x) — |+ P—2=0 10.31b
dxz{ p()dxz} ( )
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Dividing by El and using the notation k? = EF; the above equation can be
written as
d2 d2y ) d2y
— | p(X)— |+ k*—=0 1032
& [p( ) dxz} — (1032)
This is a homogeneous differential equation with the following general solution:
X
y=Cai(k, X) + Copa(k, X) + Cg Tt Cq (10.33)

where C;, C,, C; and C, are constants and ¢,(k, X) and ¢,(k, X) are transcendental
functions of x and k. When El, is constant, the general solution has the form given
by Eg. (10.24). The constants have the dimensions of length and are determined from
the boundary conditions. The most frequently encountered boundary conditions are

2
For freely supported end y=0 and % =0
X
: dy
For afixed end y=0 and v 0 (10.34)
d2
For afree end _y:o and shear=0
dx?

The zero shear force condition is represented by an equation similar to Eq. (10.6) as
d d?y |  ,dy

— — |+k“°—==0
dx { P(x) dx? } " dx

These boundary conditions are linear and homogeneous equations and will, there-
fore, be referred to as homogeneous boundary conditions. Substituting these homo-
geneous boundary conditions for a specific case in Eq. (10.33), we get a set of four
linear homogeneous equations with the following general form

o3 Cy + @Gy + 03,C3 + @,Cy = 0

12Cy + aCy + a3,Cs + 24Cy = 0

013C; + @3Cy + agaCa + 243Cy = 0 (10.35)
Some of these coefficients s are transcendental functions of the parameter k while
others are constants. We have come across these kinds of equations in Sec. 10.8. A
trivial solution of Eq. (10.35) isthat C, = C, = C; = C, = 0, representing a straight
undeflected column (y = 0). However, a non-trivial solution, in which we are inter-
ested, exists if the determinant of the coefficientsis zero, i.e.

G Oy O3 Ay
Qyp Ay Op «

APz 2 %m Gl g (10.36)
O3 Q3 (33 Og3

Oy Ozq Azp Oy
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The expansion of the determinant is A and equating it to zero yields an equation
for the parameter k, which is the only unknown in this equation. In general,
Eg. (10.36) is a transcendental equation providing an infinite number of roots k;
(i=1,2,..,). These are called the characteristic roots or values of the parameter
k and for each k;, there is a corresponding critical load P, given by

p
2 _ i
i El

Introducing one of the characteristic values k; into the system of Eq. (10.35), we
get four equations to determine the four constants C,;, C,, C4 and C,,. However,
as these eguations are homogeneous, only the ratios of these constants can be
determined. Let

g, S_g

Gy Gy Gy
Substituting these in Eq. (10.33), we get the deflection curve corresponding to the
load P; as

V= Cy [ A1, %) + Cai 6, () + Ca 3k, X) + Cai g4 (i, %) | (1037)

The constant C;; remains undetermined. y; is called characteristic function of the
homogeneous differential Eq. (10.32) associated with the set of particular bound-
ary conditions of the case under consideration.

The above analysis of the homogeneous differential Eq. (10.32) shows that
there exists a set of values of the parameter k for which a deflected configuration
of the column is possible. For each value of the parameter k a corresponding
critical load to keep the column in that buckled shope is obtained from Eq. (10.37).
The amplitude (i.e. the magnitude) of deflection however remains indeterminate.
There is a close similarity between the analysis of a buckling problem and the
analysis of avibration problem connected with small oscillations. The relationship
between the two groups of problems is as follows:

Problem EquationA=0 Characteristic Characteristic
values functions
Buckling Stability criterion Buckling loads Buckling modes
Vibrations Frequency equation Frequencies Principal modes of
vibration

10.10 THE ORTHOGONALITY RELATIONS

The characteristic functions y; satisfying the homogeneous differential equation
have an important property which play an important role in the energy methods.
Consider the homogeneous differential equation

2 2 2
L e Y | ke &Y o
dy o ox

Thisis satisfied by any characteristic function y, and the associated characteristic
value of the parameter k;, i.e.
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d?y | o d%y
dy{p() }K e

Multiply this equation by any other characteristic functionsy, and integrate over
the length L of the column, obtaining

L d2 d2y|
00|y2{no() } dx+ K I 2 -y o (10.38)

Integrating the first term by parts, we obtain

L

fd Y g
{de{p(x) L‘X

0
Integrating once again by parts
L

_ L
d y. d?y, | i v | 9%y,
“oy| PM e | U O {p(x) | Xko+£{p(x) }dxzk dx
Similarly, the second term in Eq. (10.38) yields
Ldy, say [ dy; dy,
Kjdxz Y dX = kldxyk _ki-[dxdxdx

Substituting these in Eq. (10.38), we obtain

d?y. dy )
|:p(X) yl k:|
0

L
d d?y.  , dy.
Hd_yp(x)FJrk' I } k:|0

+T{D(x)ﬂd2y"} —k? jdy' Oly"dx 0
0

dx? dx

o dx?
The first term within the brackets vanish for any combination of the homoge-
neous boundary conditions given by Eq. (10.34). Consequently,

i K2 j i M gy - (1039)

L d2y
X
{, PN G2 dx®  dx 2 dx dx
Since the above equation is valid for each combination of two characteristic func-
tions, we can interchange y; and y, and obtain

L d d Ld

d dx
Subtracting one from the other
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(k2 -12) j?jy' Y g0 (1040)

If i is different from k then in genera kiz —kk2 will be different from zero, and conse-
quently,

L
J% D 4 0 (10.41)
o dx dx

Using Eqg. (10.41) in Eq. (10.39), we observe that
L 2 2

j p(x )d Y A g (10.42)
dx?

Ifi =k the mtegral

L/ Ay )2

| (%] dx

o\ dx
cannot be equal to zero since the integrand is always a positive quantity and in
Eq. (10.39), as k-2 is also different from zero, we observe that

\ L dy 2
jp( )L ZIJ dx=0 and j(—'] dx=0 (1043)
o\ dx

Equations (10.41) and (10.42) express the fundamental properties of the character-
istic solutions of the differential Eqg. (10.32) and these are known as the orthogo-
nality relations of the characteristic functionsy;. A family of functions consisting
of all of Eg. (10.32) with prescribed boundary conditions is said to constitute a
complete system of orthogonal functions.

If 1, is independent of x, then in Eq. (10.32) p(x) = 1 and consequently,
Eqgs (10.41) and (10.42) reduceto

L gv. L 42y, 2
[ T i TR SV (10.44)
o dx dx o dx® dx?

For example, the sequence of functions
y,=sini ”TX (=1, 2.,

which are the terms of a Fourier expansion, form a complete system of orthogonal
functions satisfying conditions given by Eq. (10.44). We may recall that for a

(. d?y )
hinged column, Lley—dX =0for x=0and x= L) the functions

Yn= SN %
are the characteristic solutions which satisfy the orthogonality conditions. The
advantage of representing a deflection curve by a series like
y= alsin”—XJra2 sin@+assin% +...
L L L

will be demonstrated in Sec. 10.19.
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Il ENERGY METHODS FOR BUCKLING PROBLEMS

10.11 THEOREM OF STATIONARY POTENTIAL ENERGY

The energy method of analysing the problems of elastic stability is based on an
extremum principle of mechanics. Consider an elastic body subjected to external
surface and body forces. Let the body be in equilibrium. During the application of
these forces, the body deforms and consequently, these forces do a certain amount
of work W. The internal forces which are set up inside the elastic body also do
work during the deformation process and this is stored as elastic strain energy.
When external forces are applied gradually and no dissipation of energy takes
place due to friction etc. the work done by the external forces should be equal to
the internal elastic energy U, i.e.

w=U (10.45)
Let portions of the body be given small virtual displacements. These are small
displacements that are consistent with the constraints imposed on the body. For
example, if apoint of the body isfixed, then the virtual displacement there is zero.
If a point of the body is constrained to lie on the surface of another body, then
the virtual displacement there should be tangential to the surface of the contact-
ing body. These virtual displacements being very small, the changes necessary in
the external forces to bring about these virtual displacements will also be very
small and will vanish in the limit. The work done by external surface and body
forces P; during these virtual displacements is

oW =2 RS A; + higher order terms (10.46)

where 0A; are the work absorbing components of the virtual displacements. It is
convenient to define a potential V of the external forces in such a manner that the
work done during virtual displacementsis equal to -6V, i.e. a decrease in poten-
tial energy in the form of an equation

— oV =2 RoA, =W (1047)
In the above equation, we have neglected the higher order terms of Eq. (10.46). If
a part of the body is subjected to distributed external forces, then over that part,
the summation must be replaced by a surface integral.

From Eq. (10.47)

-0V-0W=0
Using Eq. (10.45), the above equation can be written as
6U+V)=0 (10.48)
The expression U + V is known as the total potential of the system. Consequently,
Eq. (10.48) can be stated as follows:

The first-order change in the total potential energy must vanish for every
virtual displacement when an elastic body isin equilibrium.

First-order change means a change in which only those terms that contain
first-order terms are considered. Terms of higher order, asin Eq. (10.46), are ig-
nored. Equation (10.48) is also stated as that in which the quantity U + V assumes
a stationary value, i.e.

U + V = stationary (10.49)
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It is shown in books on elasticity that for stable equilibrium, any virtual displace-
ment will cause a positive change in the total potential energy of the system,
which means that for a system in stable equilibrium, the total potential energy
is minimum.

Example 10.4 Figure 10.18 shows a three-bar truss, the point D of which is
subjected to P units of force. Applying the principal of minimum potential energy,
determine the vertical and horizontal displacements of D due to the load. The
members have equal cross-sectional areas.

‘475)—)'47 Dy
B

Fig. 10.18 Example 10.4

Solution Let the point D have a vertical displacement g, and a horizontal dis-
placement g,. The elongation caused in each member due to these displacements
can be calculated geometrically. Thisis shown in the figure for member AD. The
total extension of each member is
12 5
member AD — ¢ + —
134713 %
member BD o,
4 3
member CD —q,— —
5 Sl 5 Q2

If A is the cross-sectional area and E is the Young's modulus, then the elastic
strain energy stored in a member of length L is

U= E_Aé'z
2L

where § is the elongation. Hence, for the three members, the strain energies are

2
for AD U, = i[lzqﬁiqz)

2(130)\13 " " 13
EA
forBD  U,= —— ¢
x 27 2200
EA (4 3
for CD uz—[— -2 )
o 37 205t 5%
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The total elastic strain energy is the sum of the above three quantities.
Hence,
U = EA(958q7 - 47,0 + 17765 ) x10°°

Taking the undeformed position as the datum, the potential energy in the de-
formed configuration is

V=-Pq,
Hence, the total potential energy is

U +V = EA(958q7 - 47qyq, +17765 ) x 10°° - pa

For equilibrium position, the first-order variation of the above quantity should be
equal to zero, i.e.

o(U+V)= EA[ 958(20, 60,) — 47(q,60, + 0,60,
+177(20,60) | x 10° - P8, =0

or 1916ql—47q2—E—I1><105 50 + (~47q, +3540,) 5, = 0

Since 6q, and §q, are arbitrary virtual displacements, the quantities inside the
parentheses should vanish individually. Thus,

P
1916q, — 47q, = = 10°
— 47, + 3540,=0

Solving these two equations, we obtain

P P
It should be observed that we have not made use of any equation of staticsin
solving the problem.

10.12 COMPARISON WITH THE PRINCIPLE
OF CONSERVATION OF ENERGY

It isimportant to realise that the principle of the minimum total potential is different

from the law of conservation of energy. The latter principle states that in an equilib-

rium condition, the work done by all external forces during the loading process is

equal to the internal elastic strain energy stored, i.e. Eq. (10.49) becomes
U-w=0

If the loading is done gradually, the work done is equal to

1
W= 22 Ry

where y, is the work absorbing component of the deflection at P,. On the other
hand, the virtual work doneis
oW =ZP; Ay,
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There is no 1/2 factor in this case since the forces p;s are acting with full magni-
tude during the virtual displacements Ay, s.

10.13 ENERGY AND STABILITY CONSIDERATIONS

In Example 10.4, we have demonstrated the use of the theorem of stationary po-
tential energy in solving a statically indeterminate problem. Now we shall show,
with reference to a specific problem, how energy considerations can be used to
analyse stability problems. Consider a vertical bar hinged at one end and sup-
ported at the other end by a spring, as shown in Fig. 10.19. It is assumed that the
bar isinfinitely rigid. It carries a centrally applied load P.

Fig. 10.19 Vertical bar hinged at one end and supported by spring at the other end

Let the bar be displaced through a small angle o. Because of this displacement,
the load P is lowered by the amount

2
L-Lcosa=L{1-cosa)~ L%

The decrease in potential energy is equal to the work done by P, i.e. 1 PL 2. At

the same time, the spring elongates by an amount oL and the energy stored due
tothisis % S(aL)? where Sis the spring constant. If the decrease in the potential
energy is greater than the energy stored in the spring, i.e. if
LoLaz > L2
2 2
then the system is unstable. On the other hand, if
LpLae? < Lsa2i?
2 2
then the system is stable. If
Lpra? = Lgp212
2 2
ie P,=S
then we get the value of the critical load which keeps the column in equilibriumin
a dlightly displaced configuration.
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The same conclusion can be obtained by applying the principles of statics. For
equilibrium in the displaced position, the moment about A should be zero. The end
B of the column is subjected to a vertical load P and a horizontal force SeL. For
moment equilibrium about A,

PeL=Sal? o P,=9
An analysis of stability problems in column buckling, using the above concept,
will be taken up again in Sec. 10.17.

10.14 APPLICATION TO BUCKLING PROBLEMS

We shall now discuss the application of the minimum total energy principle to

column buckling problems. . _
Consider the column shown in

\ iP Fig. 10.20, carrying an axial load P. Let
NEh the moment of inertia |, be variable. In
. calculating the strain energy, we shall
\ consider only the bending energy. From
the straight equilibrium configuration, let
| the column be moved to a neighbouring
j - bent configuration.
AX |/ As Let the buckled form be expressed by
T y =f(X). The elastic strain energy is

(b) 1 L (g2’
u=-—-E |
P 2%

Taking the undeflected position as da-
tum, the potential energy in the buckled

J dx  (10.50)

Fig. 10.20 Column with varying
moment of Inertia

formis
] V =—-PAL
To calculate AL, we observe from Fig. (10.20(b))
L
AL = [(As— AX)
0
But AS= (AX? + A 2)1/2~Ax+1(ﬂ\2Ax
- s 2l ax)
Hence, PAL= 1P (dy) dx (1051)
' T2 dx '
The total potential energy is, therefore, given by
L 2
U+V= j (M\ . (ﬂ) dx (1052)
L 2 \dx

For equilibrium, the variation of the above quantity should vanish, i.e.

C (@) by
5(U+V):§[%E£IXLK¥ dx—%P{)(%) dx]:O (1053)
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The above equation permits the determination of the function y = f(x) by applying
the technique of the calculus of variations. While the mathematical procedure will
not be discussed here, it may be mentioned that the final result agrees with the
differential equation given by Eq. (10.31a). While this differential equation can be
derived from static equilibrium considerations as was done in the derivation of Eq.
(10.31a), the merit of the energy criterion for the solution of stability problems
becomes evident in the Rayleigh—Ritz method discussed in the next section.

10.15 THE RAYLEIGH-RITZ METHOD

A direct solution to the extremum problem stated by Eq. (10.49) is obtained by the
Rayleigh—Ritz method, revealing the importance of the energy criterion. We shall
demonstrate the method with respect to the buckling problem discussed in the
previous section. The deflection of the buckled column is expressed in the form of
afinite series:

y=a9 +ap, + ...+ a0, (10.54)

The ¢ terms are a set of arbitrarily chosen functions of x, such that each term
satisfies the prescribed boundary conditions of the column. These are called co-
ordinate functions. The coefficients a correspond to a set of parameters, as yet
undetermined. With the value of y as given by Eq. (10.54), the elastic strain en-
ergy and the potential energy can be calculated, using Egs (10.50) and (10.51).
These lead to an expression involving the n parameters a, and having the form

U+Vv=F(a,a,,...a,) - PR(a,a,,...,a,) (10.55)

in which F; and F, are quadratic forms of the parameters a. If y, as given by Eq.
(10.54), is to be a solution of the problem, then the parameters a must be chosen
S0 as to make the total potential energy an extremum [Eq. (10.55)]. The problem
has, therefore, been reduced to the familiar maximum—minimum problem involving
the parameters a;, a,,..., a,. Hence, the conditions become

AU +V
UV) _o =12 ..m) (10.56)
8
e F_pe g
iz iz
oF, _oF,
—1l_p=—=2 -9 10.5
Jay Jay (10:57)
F_ph_,
Ja, Ja,

The above set of equations involve only linear functions since these are deriva-
tives of the quadratic expressionsinvolved in U + V. Since Eq. (10.57) is a set of
homogeneous equations, for the existence of a non-trivial solution, the determi-
nant of the coefficients should be equal to zero, i.e.

A=0 (1059)
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Thisis an equation of degree n in the unknown P and is the stability condition
from which P can be determined. The smallest of the roots gives the critical
load P,.

Introducing P = P, in Eq. (10.57), a set of n linear homogeneous equations is
obtained from which the ratios of the parameters a can be determined. Calling

—= = ay, a—l—ag,, , a—lzan
the buckling mode is obtained from Eq. (10.54) as
y = a(day + oo + ... + dray) (1059

The importance of the Rayleigh—Ritz method liesin the fact that it offers a method
of obtaining an approximate solution to the buckling problem. The method, in
many cases, involves less labour than isinvolved in solving the differential equa-
tion and the associated eigenvalue (i.e. characteristic value problem) . In the
majority of cases, afew terms of the seriesin Eq.(10.54) give a sufficiently accu-
rate result. Success or failure in applying the Rayleigh—Ritz method to any prob-
lem depends largely on the proper choice of the coordinate functions. In the
majority of cases, satisfactory results can be obtained only when the coordinate
functions chosen form a system of orthogonal functions discussed in Sec. 10.10.
This is the reason why Fourier Series play such an important role in the applica-
tions of the Rayleigh—Ritz method.

Example 10.5 Consider a pin-ended column subjected to an axial compressive
load P, as shown in Fig. 10.20. Assume that the buckled shape is given by

- asin &
y=asin -
where a is an unknown parameter. The coordinate function chosen satisfies the
boundary conditions which are
y=0 atx=0 and atx=L
2
d_g/ =0 atx=0 and atx=L
dx
Solution  From Eg. (10.50), the strain energy is obtained as

2
u=1g T(—dzy\ dx
2
2 0 dx
1 o 7r4 X
-+ 2| 7T in2 TR
—2EI {)a = | sin de
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From Eq. (10.51), the potential energy is obtained as

V= —%PE(S—‘Qde

L
(a?)
= 1 Pz? a
L)
Thus, the total potential energy is
2
U+vs= 17r4aZE—EP7r2a—
4 2 4 L
For this to be an extremum, we must have
14,8 1,28 _,
2 2 2 L
1 2 a( 2 El )
or —n°—|z"—-P| =0
2 L L2
The non-trivial solution is obtained when
7°El
P=P, = 12

We have been able to obtain an exact solution since the coordinate function we
used happens to give the exact deflected shape for the column.

Example 10.6 Consider a column fixed at one end and free at the other end

(Fig. 10.21). It is subjected to a compressive load P at the free end. Determine the
approximate critical load assuming the deflection
curve as

6 P 2 3
N -a({) ruly)
‘ i y al(L 2( |
Solution The boundary conditions are

y=0 atx=0, ﬂ=0 ax=0
dx

X 2
le and 9 _o ax=tL

™ dX2

Fig. 10.21 Example 10.6

(i) Let usignore the last condition for the time being. The first two conditions are
satisfied by the coordinate function. The strain energy is equal to
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|
N
m
—
/N
g

|
| =
m
o —
VR
N
—
B
+
o
Y
>
N——
N
Q

The potential energy is to equal to
V= 2P£ o) &

(Zaix 3a2 2\’

de

= ——(20a1 + 458,a, + 27a2)

-2p )

30L
Hence, the total potential energy is
2EI 2P 6El 3P 6El 9P
vrve al(— Eax a“(@ z]*a(? o)

For an extremum we should have
oU+V) [4EI 4P]

o8 5 3L 2 2L
oU+V) (6El 3P 12EI 9P
—— =\ 3 5 + 3 T a = 0

da, 15 2L > 5L

For the existence of a non-trivial solution, the determinant D of the coefficients
should be equal to zero. Hence,

A-(ﬁ_ﬁj[lza 9P) (@_Ejzz
"l 3 13 5L 2 2L

or
3P2L* — 104PL2%El + 240E4°=0
Therefore,

P= 249ﬂ or 3218ﬂ
L2 L2

The smaller value is
El
Pcr = 249 F

2
Compared to the exact value il >

, the error is only +0.92%.
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(ii) In the above analysis, we have ignored the third boundary condition, i.e. at

d?%y
x=L, — = 0. If we use this condition

dx
d?y 23, 6al
ax=1)="2+—2=0
dxz( )L 13

or a, =-3a,
Using this

y= [5]2_1 (1]3

& L 3al L

Substituting a, = —3a, in the expressions for U and V

2EI 2 a4 _2 25a12
LZL ) 318
P(2 1 1 4 P
and V=__(_ 2 12, 1 z]:___ 2
3% 28 2 5L
Therefore,
U+V= [Eﬂ_igj 2
318 15L

For an extremum, the quantity inside the parentheses should be equal to
zero, i.e.

4P_3FEP
5L 48
El
or Pcr=2.5F

which is almost identical with the previous solution but the solution has been
obtained with comparative ease.

10.16 TIMOSHENKO’S CONCEPT OF SOLVING
BUCKLING PROBLEMS

Consider a straight column subjected to an axial load P. If P is less than the
critical load, then the column is in stable equilibrium, which means that if the
column is slightly displaced from its straight equilibrium position by any trans-
verse disturbing force, it will return to its vertical position as soon as the disturb-
ing force is removed. In terms of energy, this means that when P is less than P,
in the slightly bent configuration, the elastic strain energy stored in the bent
column is greater than the work done by the axial load in moving through a
distance AL, i.e.

U-W>0 (10.60)
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where U is the strain energy and W = P AL. On the other hand, when P exceeds
P, if the column is slightly displaced, the work done by the external load P will
exceed the strain energy in bending and the equilibrium becomes unstable. Con-
sequently, the condition

U- w=0 (10.61)
characterises the state when the equilibrium configuration changes from stable to
unstable.

Following the same procedure as in the Rayleigh—Ritz method, we can assume
that the buckled column curve can be expressed by Eq. (10.54) as
y=ah + 3, +...+ a0,

The ¢ terms are functions of x so that each term satisfies the boundary conditions
of the column. The constants a,, a,,..., define the amplitudes of the terms. The
strain energy is given by

L(" 2 y
U= EI dx=F (a,a,...,a,)
2 IL ) 18, & a,
The work done by the external force during deformation is from Eq. (10.51)
i)
W= =P || —=| dx=PF - PO
> (J) ax 2 (8, 8 ay)
Using Eq. (10.61)
L
[ (d?y/dx®)? dx

P = El 0|_ _ F1 (alaaz,...,an) (1062)
j(dY/dX)z dx F, (a, a,..., a,)
0

Observing that for a pin-ended column or a column with one end free

2
M_—Eld—g
dx
and that M =Py
(d2y)* P2
and Bl {|—2| dx = — [y? dx
Ilez) El Jy

Eq. (10.62) can also be written as

El If(dy/dx)z dx
P= —2—— (10.63)
[y? dx
0

Since we need the minimum value for the load P, the critical load is obtained when
the expression in Eq. (10.62) or Eq. (10.63) is made a minimum. This requires that
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the derivatives of Eq. (10.62) or Eq. (10.63) with respect to each coefficient a; must
vanish. This yields
M @=O, i=12..) (10.64)
8 g
These are identical to Eq. (10.57). Since there are n homogeneous equations, a
non-trivial solution exists when the determinant of the coefficients is equa to
zero. This discussion isidentical to that given in Sec. 10.15.
There is afundamental difference between Eqgs (10.62) and (10.63) though they
appear to be equivalent. The elastic strain energy is obtained from the expression

L
u=ij|v|2dx

2El o
If we take the deflection curve asy =y (X), then M could be expressed in two ways
d?y
M=-El —
dx? (10.65)
or M = Py

where P isthe axial force acting on a pin-ended column or a column with one end
free end the other end fixed. If we use the first expression in Eq. (10.65), we get the
strain energy for any assumed form of the column. If we use the second expres-
sion, we take the external force also into account and consequently, the final
result obtained for P, using Eq. (10.63) gives a slightly more accurate result.
Equation (10.62) is generally referred to as the Rayleigh-Ritz formula and
Eq. (10.63) as the Timoshenko formula.

10.17 COLUMNS WITH VARIABLE CROSS-SECTIONS

So far, in the examples considered, we have treated the moment of inertia | as
independent of x. We shall consider a few problems where | varies with x. The
energy method will be found to be very suitable to obtain fairly good solutions.

Example 10.7 Consider a column with the moment of inertia of the cross-sectional
area varying according to the equation

| = |0(1+gn”TX]

Solution  The column is hinged at both ends. Assume that the deflection curve
can be represented by the series

y=2ansin%

Since the deflection curve must be symmetrical with respect to the middle point of the
column (because the moment of inertia is symmetrical about the middle point), the
even parameters in the above series vanish. The deflection equation then becomes

y= alsinﬂ—x+a sin%+a5sin%+
N L 7L Lo
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We shall consider only two terms of the series. Thus

. 37X
y=asn-+asn=—
L (g2y)’
U=f& Ld_gl dx

20 dx

1k . 7X 7\ . X 3r)* . 3ax]?
== [Elg|1l+sn==||-a || sn==-a;|—| sn=—| dx
23 L L L L L

1 (zf (4 ;zj z_g (2916+817rj 2
25l 3T R WA

L 2 2
AL:EI[% dle(ﬁj [LainrLXgaSz]
21\ AUATERE

Substituting in Eq. (10.62)

and

7 (8/3+ n)al — (48/5) aja, + (5832/35) + 817)a; F
P=El,— 2% _h
L2 a +9a; F,

For minimum P, we should have from Eq. (10.64)

2 (F,-PF)=0 ad -2 (F,—PF,)=0
7 8y

8 & 48
Thus, 2(—+ —P) -—a, =0
3 7 & 5 %
and —4—58a1+2(5832 817 — 9Pja3:0
2
where P = PL
7Elg

For the existence of a non-trivial solution, the determinant of the coefficients
should be equal to zero. This gives

A= 9p? —(%4—817[-1— 24497

(o) (e (5] 0

. El
P'=5746 or P= 1805L—°

P

Solving,
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10.18 USE OF TRIGONOMETRIC SERIES

In many instances, it will be useful to represent the deflection curve in the form of
atrigonometric series. We have discussed in Sec. 10.11 that the functions satisfy-
ing Eqgs (10.31a) and (10.31b) also satisfy orthogonality conditions. The trigono-
metric series which we shall consider now is made up of such functions. Let the
deflection curve be represented by

. .2 .
y:alsmﬂTXJrazsm%XJr...Jransm?+... (10.66)

By properly determining the coefficients a;, a,,..., the above series can be made to
represent any deflection curve. These coefficients may be calculated by a consider-
ation of the strain energy of the beam or the column. The strain energy is given by

L( g2y
u=1g Ikd_Z) dx
2 0 dx
d?y 7 X 227%  27x Fr® . 3rx
Now, —=—a1—sm —a,——sin —ag——sn—— —. ..
dx? L L L L L
Hence, the square of the above expression will involve terms of two kinds
4 4
2 nr .2 nzX
S —_—
a, L L
2. ..2 4
and 5 n“m°z" . nax . mex
Pt T L L
By direct integration it can be seen that
L L L onzx . max
jsnznﬁxdx_—, and jsmism—dx 0, fornzm
0 2 o L L

These are the orthogonality relations expressed by Eqgs (10.42) and (10.43). Hence,
in the expression for straln energy, terms containing products like a,, a, vanish
and only terms like an remain. Then

1 ot L L2 L L3 AL
U==E ——+a —+ —+...

2o A E TR E R T

El z* 2 4,2 42
= E (1811 +27a; +3 a3+...)

Bz 2
= > nt 10.6
ITER= % (10.67)

Similarly, if we consider the expression

L 2
aL=1 j(ﬂj i
0
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we find the integrand to consist of two kinds of terms
2_2

a2 N7 o2 X
L2 L
and 2a,,a, mn;r i cos X g VX
L L L
By direct integration it can be shown that
nzx _ L
I cos” ===

L
andjcoszﬁ c0s™ dx=0 fornzm
5 L L
Consequently,
AL ﬂz > ah (10.68)

V=]
With these expressions for U and AL, we can consider the following example.

Example 10.8 Abeamcolumnissubjected to an axial force P and alateral force Q
at x = ¢ (Fig. 10.22). Determine the deflection curve using the energy method.

Q
Al= c e aﬂB
P > <~ P—X
Y
L |
y

Fig. 10.22 Example 10.8
Solution Let the deflection curve be
y=asnZ+ sin@(+
=a 1 & e

Let a virtual displacement dy, be given. This virtual displacement is obtained
by changing one of the terms a, sin (nzx/L) to (a, + a,) sin (nax/L). In other
words, the deflection curve da, sin (nx/L) is superimposed on the origina de-
flection curve. The work done by the external forces Q and P is

éW=Q5ansin%+P5(AL)
Using Eq. (10.68)
2
. NhzC T 2
= Qda,sn—+ P—2n“a,4,
oW = Qda, L aL 8,0
The increase in strain energy is

o
U= Za 5ay,
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From Eq. (10.67)
EI 7

ouU = n‘a, sa,
Since the increase in strain energy should be equal to the work done, we have
2 4
Qsinn—iméan+P%n2an§an: = n'a, 5a,
from which,
3
g = 2L 1 gpme
Elx [ , PL? ] L
n - 2
El 7
If we use the notation
p= PL?
El z°
2° 1
then, a,= 2L sin ¢
Elz* n? (n -p) L
The deflection curve is, therefore, given by
Q3 = 1 . nac . NrX
= 7 > sin——sin —
El 7" n=1n°(n° - f) L L

Example10.9 Using aninfinite series, determine the deflection curve for the beam
column shown in Fig. 10.23.

< L >
Fig. 10.23 Example 10.9

Solution In the solution of the previous example consider ¢ to be very small.

Then sin%z%
L L
3 ©
and y= 2L EQCZ;sin@

Elz* L~ nin?(n-p) L
Let ¢ — 0 and Q —e, such that Qc = M = constant.
2ML? 2 1 . nzx

Then, y= 2z sin
RS n-in(n?-p) L
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Problems

101 A uniformly loaded beam is built-in at one end and simply supported at the
other end. It is subjected to an axial force P. Determine the moment M,, at
the built-in end (Fig. 10.24).

JéHHH%%P

b
Fig. 10.24 Problem 10.1

CCO)
Ans. M, =+ )

where, B(u) = % (tanu—u)
u

(u)_i(i_ 1)

2u tan2u

102 A beam of uniform cross-section has an initial curvature given by the equation

X
dsin —
Yo= L

It is subjected to end couples M, and M, and to an axial force P (Fig. 10.25).
Determine the deflection curve.

A M, MM‘B)
P P

Fig. 10.25 Problem 10.2

M, |L-x sink(L-x) sinks X

Ans. y=- +
Pl L sin kL snkL L
+—5”2 sin”—x
72— k212 L

103 The initial shape of a bar can be approximated by the series

X 27X
1) n—+§ sin—+...
Y= osno o, L

If the bar is simply supported and subjected to axial force P only, show that
the deflection curve due to P is given by

( o X o, . 27X ) _kZL2
sin—-+...| ,Wwhere a =—
l1-«a L 2°2_¢ J z

Y1 =
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104 For a column with one end built-in and the other end free and carrying an
axial load P, it is assumed that the deflection curve has the form

where L is the length of the column and x is measured from the fixed end.
Using the energy method, determine the critical load.
El
[Ans P, = 2.5F}

105 The deflection curve for a pin-ended column is represented by a polynomial
as
y=ax*+ b+ o+ dx+e

Determine the critical load by the energy method.
[Ans P, =9.88 %}

106 A prismatic bar with hinged ends (Fig. 10.26) is subjected to the action of a
uniformly distributed axial load of intensity q and an axial compressive force
P. Find the critical value of P by assuming, for the deflection curve, the

equation
. TX
=osin—
Y L
Ans P - 7°El gL
S. Fer L2 _7
P P,
L . H{ YB
‘ }
L |
| i1 1 s
\ Y C |4l
6 |<L i
L, b
w P, AX
X qa i A I
v v
Y P+ P,
Fig. 10.26 Problem 10.6 Fig. 10.27 Problem 10.7

10.7 Determine the critical load (P, + P,) by the energy method for the case
shown in Fig. 10.27. The column has a moment of inertia |, for half the
length and moment of inertia |, for the other half.



Assume the deflection curve in the form
. TX
=0sn—
y L
Ans. (P, + Py, =

(7%El, /L) (m+1)
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2
m[m;lj 8 m_pen| LD
6\ m 72 m 6
where m:M !

and n:I—2
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CHAPTER

1 1 Introduction to

Composite Materials

11.1 INTRODUCTION

Till now, we have been considering materials that are homogeneous and isotropic.
These qualifications are with respect to their elastic properties. If the properties
are the same at every point in the body, then it is said to be homogeneous.
Isotropy implies that the properties are independent of directions. Materials like
steel, copper, aluminium, etc. are both homogeneous and isotropic. However, wood
is homogeneous but is not isotropic since its strength along the fibres is greater
than its strength in a direction transverse to the fibres. Materials that are not
isotropic are called anisotropic materials. At any point of such a body, the elastic
properties are different for different directions. Directions for which the elastic
properties are the same are said to be elastically equivalent. Generally speaking,
one would like to use materials that are suitable to specific applications. For
example, a cable wire or rope that is used for hauling purposes needs to have the
required tensile strength in the direction of the cable. A structure built up of
bricks is good to carry compressive loads. A reinforced concrete beam with steel
reinforcement at the bottom is good to carry bending loads which will induce
compressive stresses in concrete and tensile stresses in the steel reinforcement.
This is an example of a composite material that is designed for a specific opera-
tion. On the other hand, consider a bundle of glass fibres or carbon filaments,
which is useless when used as an engineering structure. It has no shape and no
defined hard surface for machining purposes. The bundle can resist tensile forces,
but it is useless for compressive, bending and torsional forces. But, when the
same bundle of filaments or fibres is dipped into a bath of resin, drained and
allowed to harden, it behaves as a new material possessing properties that are
comparable to those of steel or other metals, and can resist forces in tension,
compression and bending. It has a definite shape, a durable surface and it can be
machined. Such amaterial is called a composite material.

Generally speaking, composites are produced when two or more materials are
joined to give a combination of properties that cannot be attained in the original
materials. Composites can be placed into three categories—particulate, fibre and
laminar—based on the shapes of the constituent materials. Concrete, a mixture of
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cement and gravel, is a particulate composite; fiberglass, containing glass fibres
embedded in a polymer, is a fibre-reinforced composite; and plywood, having
alternating layers of wood veneer, is alaminar composite. In this chapter, we shall
focus our attention mainly on fibre-reinforced composites and laminates.

11.2 STRESS-STRAIN RELATIONS

In Chapter 3, it was stated that for alinearly elastic body, the stresses are linearly
related to the strains and are given by

o, =
Oy = 81 & t 8y &y T 8y3 £+ 8y Vyy T 85 Yy + 825 Vx
O0,= 831 & + 83 &y + 8336, + 831 Vyy T 8357y, + 835 Vx
Ty = a41‘C"x+a42‘C"y+a43‘gz"_a447/xy"'a457/yz+a467/zx
Ty = 85 Ex T 85 &y T 853 €, T 854 Vyy T 855 Yy + 855 Vx

Tx= 81 &x T35 &y T 836, T 854 Vyy T 85 Vyz T 865 ¥
Assuming that the sixth-order determinant of the coefficients a;sin Eq. (11.1) is

not zero, one can solve for g, &,. . .,y interms of o, 0,. . ., 7,. The expressions
for the strain components will then be

&= bll O-x_"blz O-y"‘bl3 O-z+b148ﬁy€)tbl%y£;'-hﬁigzﬁ‘z+ai4 )/Xy+ai5 )/yz+aiﬁ ¥ 2
& = bZlo-x_"bzzo-y+b230-z+b24Txy"'bZS Tyz+b26 Tx

&= Qlo-x+Q20y+Q3o-z+b34Txy+Q5Tyz"'b%sz

(11.1)

(1.2
Yy = 1 Ox + Dy oy + by 0, +by, Ty + b5 Tyz+b46 Toy

Vyz:b51o-x+b520-y+b53o-z+b54rxy+b55Tyz+b56sz

Y= b61o-x+b620-y+b63o-z+b64 Txy+b65 Tyz+b66 Tx
where the coefficients bys are related to g;s. The stress-strain relations given by
Eqg. (11.1) contain altogether 36 elastic constants. However, this number can be
reduced based on the material properties. Let us assume that there exists an
elastic potential V such that

X e’ y_ﬁgy' 2 Oyy
The physical meaning of the potential V will become clear soon. Assuming the
existence of such a potential, from Eq. (11.3), one obtains

(11.3)

doy _ oN _oy  do N _ Tty
2 I L Ory O Ory Oy
From Egs. (11.4) and (11.1), one immediately gets

A1 = &y1; 831 = Agzs - - - Y5 = Bgg

etc. (11.9)
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And, in general, based on the existence of such a potential,

a”:a“ (|,J:1,2,3,...,6) (11.58)
Consequently, in Eq. (11.2)
b =b; (,j=123,...,6) (11.5b)

As aresult of this, i.e. a; = @; and b; = b;, the 36 elastic constants a;s in
Eq. (11.1) or the bysin Eq. (11.2) get reduced to 21. In other words, since a,, = 8y,
&3 =8g,. . ., Ay = 85 and similarly, b, =b,,, b3 =Dby,,. . ., byg = bg;, the number
of independent elastic constants in Eqgs (11.1) and (11.2) gets reduced by15, re-
sulting in 21 constants. So, for a general case of anisotropy, the number of inde-
pendent elastic constantsis 21. However, because of the symmetry of the material
properties, it is claimed by material scientists that the number of independent
elastic constants does not exceed 18.

Equation (11.6) gives the expression for V which can be verified by differenti-
ating with respect to ¢, &, &, etc., and comparing with Eq. (11.1). Thus,

_1 2
V= E & &x + 3 Exby + Q3Ex6, + a14gx7/xy + a155x7yz + Qg Ex)

1 2
1

+ 2 a33g§ + 83487V xy T A5E7) yz T 836670
1 (11.6)

5 By + usl gV vz + By o0
1 2

+ 23557yz+3567yz7/zx

+ % ags 122X

By differentiating Eq. (11.6) with respect to g, &, €, €tc., one gets expressions for

Oy, Oy, 0y, €tc., thus verifying Eq. (11.3). The terms of Eq. (11.6) can be grouped to
give for V an equivalent expression as

_1
V= 2 (Bq16x + A28y + AuzE; + AV + A5V yz T 6Y ) Ex

1
+ E (alzgx + azzgy + 82382 +...+ 816]/2)() é‘y

1 (11.7)
+ E (3138)( + a23gy + 83382 + ...+ a36j/zx) é‘z
1
+§(a_|_4gx + a24gy + a34é‘z + a44]/xy + ...) 7/Xy + ...
Using Eq. (11.1), the elastic potential assumes the form
V= %(axgx +OyEy + 028, + Ty Vg + Tyl yz + TV ) (11.8)

This is nothing but the elastic energy per unit volume at any point of the body,
when forces are applied uniformly, i.e without dynamic effects.

Consider a body for which Egs (11.1) and (11.2) are valid and let a uniform
stress o, = p be applied along the x-axis. The remaining stress components are
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zero. Then, the strain components as given by Eq. (11.2) are constant for every
point, i.e

g=bup & =byp & =byp (119
Yy = 41 P 7yz=b51p 7/zx=b61p

It becomes obvious that small segments passing through different points and
parallel to x-axis get extended by the same amount. In general, all segments paral-
lel to a given direction n and drawn through different points, undergo equal
elongations. A homogeneous anisotropic body exhibiting this property is said to
be rectilinearly anisotropic. For such a body, all parallel directions are elastically
equivalent. Equations (11.9) show that elements of the same size in the form of
rectangular parallelepipeds with respective parallel faces deform identically, no
matter where they are located. However, it should be noted that, in general, rect-
angular parallelepipeds deform into oblique parallel epipeds having no right angles
between the faces. The constants a;s appearing in Eq. (11.1) are sometimes called
material constants or components of modulus. The constants b;;s appearing in
Eq. (11.2) are called components of compliance. In other words, material constants
or components of modulus are used to determine stresses from strains, and com-
ponents of compliance are used to get strains from stresses.

11.3 BASIC CASES OF ELASTIC SYMMETRY

The number of elastic constants involved either in Eq. (11.1) or Eq. (11.2) is 36,
and these get reduced to 21 independent elastic constants under the assumption
that an elastic potential V (equivalent to strain energy density function) exists. It
was also stated that even in the most general case, the number of independent
elastic constants (according to material scientists) does not exceed 18. For an
isotropic body, it has been shown earlier that the number of independent elastic
constants is only 2, these being the Lame's constants A and u, Eq. (3.4); or the
engineering constants, E the Young's modulus and u the Poisson’s ratio. For an
anisotropic body, the number of independent elastic constants get reduced de-
pending on the type of symmetry that exists.

When a surface of revolution is rotated through any angle about the axis of
revolution, the position of every point on the surface, but not on the axis, gets
changed, but the position of the figure as awhole is not changed. In other words,
the surface can be made to coincide with itself after an operation which changes
the positions of some of its points. Any geometrical figure which can be brought
into coincidence with itself after an operation which changes the position of any
of its points is said to possess symmetry. A body which can be brought into
coincidence with itself by a rotation about an axis, is said to possess an axis of
symmetry. A body which after rotation can be brought into coincidence with itself
by reflection in a plane, is said to possess a plane of symmetry.

Transversely Isotropic Consider a fibre-reinforced body in which the filaments
arefairly long and are al oriented in the same direction, Fig. 11.1. L et the z-axis be
paralel to the fibre elements and let the x and y axes lie in a plane perpendicular to
the element orientation. If the fibres are uniformly distributed in the matrix, then it
is obvious that the elastic properties at any point in the x—y plane, which is the
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Fig. 11.1  Transversely isotropic composite

plane of symmetry, are independent of the directions in that plane. A body of this
nature is said to be transversely isotropic. The axis normal to the plane of elastic
symmetry is some times called the principal direction. It is assumed that no
debonding between the fibres and matrix occurs when the body is stressed.

If auniform force p is applied in the z direction, such that o, = p and all other
stress components are zero, then any rectangular parallelepiped with faces par-
alel to x, y and z planes will deform into a rectangular parallelepiped with equal
lateral contraction (or extension) in x and y directions. Equations (11.2) can
therefore be written as (using double subscripts for g,, &, and &),

&y = b330, & =130, gyy:b23az:bl3az- 7xy:7/yz:7zxzo
Because of transverse isotropy, b,; = b,; (i.e. transverse strains are equal). For a
uniform stress o,, with the remaining stress components being zero, the strain
components will be

Ex = b0, 8yy:b210x' £, =Dby0y, 7/xy:7/yz:7zxzo
One should observe that the transverse strains ¢,, and &,, will not be equal.

A similar set of equations can be written with stress o, and other stress
components being zero. Now consider the shearing stresses. For a shearing stress
7,y in the Xy plane, the deformation pf arectangular parallelepiped yvill only bein
the xy plane. Thus, for 7, alone (with other stress components being zero),

Now consider with 7,, alone. The strain components will be
gXX:gW:gZZ:O, 7yz:b:'>5ryzi 7zx:7xy:0
Similarly, with 7, aone, all strain components other than v, = beg 7, Will be zero.

In general, with all stress components o;; and 7; acting, the strain components g;
can be obtained by superposition of all the above expressions. Thus,

£ = byoy +bpoy + 30,
&,y = bpoy +byoy, + b0,
€, = byoy + 30, +byo,
Yy = Paalyy
Nz = b55Tyz
Yo = Do Tx

(11.10)
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In the above set of equations, there are eight constants. However, because of the
reciprocal relations, b,; = b,,;, and as a result, the number gets reduced to seven
elastic constants. Also, as aresult of the plane of symmetry, by, = bg,. Further,
the elastic constants in the plane of isotropy, i.e. by,, b;, and b,, are also related.
One can see thisif Eq. (11.10) are written using the familiar engineering constants
E,v and G, asfollows.

V,

1 V.
En = E—aX—E—XyO'y—E—XZO'ZZ
XX vy zZ
14 14
yX 1 yz
E, = — —_ —
¥ Exx ! Eyy 7y Ezz O
1% 14 1
£, = E—ZXO'X—E—Zyay+E—0'ZZ
XX vy z
1 (1111
%(y: =T
ny Xy
1
Yyz = qryz
1
Yx = G_sz
yz

In these equations, v, is the Poisson’s ratio in x direction due to a stressin y
direction, i.e the ratio of lateral contraction in x direction to axial extension iny
direction. This contraction is indicated by a negative sign. Slight variations exist
in the subscript representation of Poisson’s ratio from book to book. Also, the
strain—stress equations are written in different ways. What is important is the
reciprocal identity, i.e by = by;.

Since xy plane is a plane of isotropy, E,, = E,.;

i V.
Also, because of reciprocal identity,

w= Vi Vox = Vs Gy = G

V.
'y2 _ Vy Ve _ Vo 1112
E, E, and (11129

Further, in the plane of isotropy, one has from Eq. (3.14)

_ E
G= 2@+v)
(11.12b)
E, 1

G =
Xy 2(1+ ny) 2[1+ny)
EXX EXX
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InEqg. (11.11)
1 Vxy 1
= —, —_——_— = , G = —
EXX bll Exx b12 Y b44
Substituting these in Eq. (11.12b), one gets
1 1 1
by 2 (b —byp)
ie by, =2(by; —by,) (1113

As aresult of this, the number of independent elastic constantsin Eq. (11.11) are
only five; these being E,,, E,,, Vs Vi Gy

Orthotropic Body Let the fibresin a composite be aligned along the x and y axes
and let these be uniformly distributed. z-axis is taken normal to this plane, Fig.
11.2. The planes normal to x, y and z axes are planes of symmetry (by reflection)
and the body is said to be orthogonally anisotropic or orthotropic. The axes x, y
and z are the principal directions. Ty

Fig. 11.2 Orthotropic composite

To be quite general, the fibres parallel to x-axis may be different from the fibres
paralel to y-axis.

Conseguently, for an axial force in z direction, the lateral contractions (or exten-
sions) in x and y directions will be different. Similarly, the elasticity moduli corre-
sponding to these two directions will also be different. But, when the thickness in z
direction islarge, the propertiesin x and y directions tend to become equal. However,
retaining the difference, the strain-—stress relations will be (recalling that by = by):

Ex = bllo-x + blzo-y + b130-2
&y = blzax + bﬂo—y + bZSUz

€, = D30y + 30, + byo, (11.14)
Yy = baaTy
Yz = bSSTyz
Yx = bGGsz

Observe that because of orthogonal symmetries, the shear stresses cause defor-
mations only in their respective planes. There are thus altogether nine indepen-
dent elastic constants. One can rewrite Eq. (11.14) using the familiar engineering
constants (v; is the Poisson’s effect in i direction due to a force in j direction):
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Epy = _E_ZXXO-XJFéGy_";_ZGZ
szzz—é—xxo-x—l‘;—jyay+E—lzzaz

Yo = é Ty (11.15)
Nz = éryz

In the above equations, the following conditions hold good because of the recip-
rocal identity:

w _ Yw

E, Ex
i.e B Viy = By Vi (11.16)
and, ExVe= Ez vy Eyv,=Ezvy

It should be observed that v, # v, v, # v, and v, # v,,, unlike in the case of an
isotropic body. If the fibres in the x and y directions are identical in their elastic
properties and assuming that they are uniformly interwoven, the following addi-

tional relations hold good among the elastic constants.

by =105,  ba=Dby, by =Dy (11.17)

Consequently, the number of elastic constants gets reduced to six.

11.4 LAMINATES

So far, our discussion has been quite general, in the sense that the composite
element that was being considered was an element in a three-dimensional or a
bulk material having special properties. However, composites are manufactured
keeping in view certain specific applications. For example, a plywood with veneers
oriented in different directions is essentially a laminate designed to meet specific
requirements. Laminates, which are essentially thick sheets, are produced not
only to be used as such or in a moulded form as corrugated sheets but also to
produce bulk materials (by cementing one sheet on top of another, or wrapping
one sheet after another about a mandrel). So, an analysis of composite laminates
becomes important. Let xy plane represent the midplane of a composite laminate,
with z-axis normal to the plane.

Unidirectional Laminates Let the composite consist of fibres all aligned parallel
to x-axis. Such a composite will obviously be stronger in the x direction than in
the y direction. We assume that the laminate will be subjected to a plane state of
stress. At any point, the rectangular stress components will be o, o, and z,,.
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The strain components will be g, &, €, and ¥, their values being (remembering
Ex = bllo-xx + on'yy
&y = blzo-xx + bzzo-yy
&n = tblo-»( + bszo-yy
%(y = bMTxy

We shall be using double subscripts for stresses and strains in order to be con-

sistent with a;s, b;s and 7s.

There are six independent elastic constants called compliance coefficients. Using
engineering constants E and v,

(11.18)

1 V,
Ea= E_ O E, Ow
XX vy
V,
yX 1
e =__2 =
» E, O + E, Oy
(11.19)
V. V.
€n= “E. O E, Ow
XX vy
Yy = gz—xy

Vyy Isthe Poisson’s effect (ratio) in x direction due to astressiny direction, v,, is
the Poisson’s ratio in z direction due to a stress in x direction, etc. A negative
sign isused to indicate lateral contraction for an extensional stress at right angles.

Asin Eq. (11.16), because of reciprocal identity,

My Y (11.20)
E, Ex
Table 11.1 gives typical values of Young's moduli in x and y directions, shear
modulus, volume fraction of fibre V;, Poisson’s ratio, and specific gravity for

selected unidirectional (along x-axis) composites.

Table 11.1 Fibres Along xx-axis

E. E,y €y, Sp.
Material (GPa) (GPa) (GPa) Vyx V¢ gravity
Graphite + Epoxy 181 10.3 717 0.28 0.70 16
Boron + Epoxy 204 185 5.59 0.23 0.5 20
Graphite + Epoxy 138 8.96 7.1 0.3 0.66 1.6
Glass + Epoxy 38.6 8.27 4.14 0.26 0.45 18
Kevlar + Epoxy 76 55 23 0.34 0.60 1.46

Similar to Eq. (11.18), one can express the stress components in terms of strain
components. Thus, for a plane state of stress with o, = 0,
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O = 18y + &y
Oy = B4p8xx T 808y (11.21)
Tyy = ualiy
Or, one can solve Eg. (11.19) to obtain expressions for o, 6y, and t,, in terms of
the engineering constants and the strain components. These come out as

EXX
GXX m (gXX + nygyy)
E
o, 11.22
vy = 1 Viy Vix (V Ex T gyy) ( )
Ty =Gy

The reciprocal identity given by Eq. (11.20) holds good

Off-axis Loading in writing the strain—stress equations, the axes x and y
were chosen along the principal directions, i.e. along and perpendicular to the
fibre directions. If the laminate is stressed such that the rectangular stress
components for these axes can easily be determined, then one can directly use
Eqg. (11.19), and in practice, through experiments or otherwise, the elastic con-
stants (like E,, E,, v, etc.) along the principal directions can be determined.
However, if the loading isin an arbitrary direction, say X" and y’ directions that
are oriented at an angle 6 to x and y
axes, then, it is desirable to get ¢,,,
&y, €tc. using the elastic constants
transformed to these new axes. Con-
sider Fig.11.3, where the principal di-
,,,,,,,,,,,,,,,,,,,, rections are x and y and the arbitrary
:::::::’:/X' loading directions are x” and y’. The
,,,,,,,,,,,,,,,,,, axes X" and y’ are rotated through an

”””” Yo _ angle 6 counter-clockwise.
X The positive X -axis makes an angle 6
Fig. 11.3 Off-axis loading with fibre direction (i.e. x-axis) and the
angle is positive when it is measured

counter-clockwise.

Let the stresses applied be o, o, and 7,,, and let the corresponding strain

components be, &y, &y, and y,.. The procedure to get &, in terms of o, is as
follows:

el

o, =f,(0jy, 6) according to Egs (1.59) and (1.60)
=f,(g;, ;) according to Eq. (11.18)
=f5(g;, ©) according to Eqgs (2.20) and (2.363)

&y = f3|:f2 (Ulj ’ql )’e:l
= f3{f2|:fl(o-i'j' 0). b QJ}
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y/ y / X/
AN Ty oy, ﬁ &y
O, — 7 .
Yy Xy ! i
F - < // L EXX
X Oyx 7\ %(y

y
;

Fig.11.4 Off-axis stresses and strains

The above transformations are illustrated in Fig. 11.4.

To transform o, into o;;, we make use of Egs (1.59) and (1.60). oy, is the normal
stress on the x plane, and the normal to this plane which is the x-axis, makes
angles —6 and (90 + 6) with x” and y’ axes. Hence, n,’ = cos 6 and

n/=-sin 6. Similarly, for the y-axis, n,’ = cos (90 — ) =sin 6 and n,/ = cos 6.
O = Oy COS” O+ O SIN? 0= 27, SiN O COS O

Oy = Oyx SN° 0+ 0y, COS* 0+ 27, SiN O COSO (11.23)

1 .
Ty = +5 (Oyx — Oyy) SN 20 + 7,0\, COS 20
From Eq. (11.18)
£ = D13 (0yy COS° O + 0y SN?O -7, SiN 20)
+y,(0yy SIN* O+ 0, COS* O+ 7, SN 20)
&, = Dip(0y COS° 0+ 0, SIN O — 7, SN 20)
+0,, (0, SIN* 0+ 0y, COS* O+ 7,0, SN 20) (11.24)
€, =y (0yy COS O+ 0, SIN* 07, sin 20)

+ by (oyy SINT O+ oy, COS™ O + 7,0, SIN 20)

1 .
yxy = +§ b44|:(axrxr - Uyryr) sn 29+ Zz'xryr COs 29:|
To obtain &g in terms of &; we make use of Egs (2.20) and (2.36). In using
Eq. (2.36a) for the shear strain, one ignores in the denominator, quantities of
higher order compared to unity. For x-axis, n, = cos 6, n, = sin 6, and for
y'-axis, n, = cos (90 + 0) = —sin 6, n, = cos 6.
Eex = Ex COS° O+ £, SIN" O+ y,, sin O cos O
= ¢, 8N°0+ ¢, cos> 0+ y,, sin0cosd 11.25
&y = &xx yy xy
Yoy = =265 COSOSIN O+ 25, SN O COS O+ 7, (oS O — sin’ )
Substituting for &, €, and %, from Eq. (11.24),
8)()( = COSZ 9|:bll(o-xrxr COSZ 9+ O-yryr S|n2 9— Tx’y’ Sln 29)
+ b5 (0 SIN* O+ 5 COS° O+ 70, sinze)]

+8in? 0 by (0yx 005 O+ 0y SIN? 0= 7,0, SIN20)
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+ By (G SIN? 0+ Gy, COS” O+ 7,0y, SiN20) |
A vy Xy’

1. .
+an 29|:b44(O'err _O-yryr)sn 29+ 2b44 Z-X'y' 00529:|
Grouping the coefficients of oy, oy, and 7, we get

Egx = o-X'X'(bllcos49+ 2b12005295in29+bﬁsin49+%1b445in22c9)
+ Oy (bucoszﬁsin2¢9+ by, cos® @+ by, sin® @
+b2003293in29—%b443in22¢9)
F Ty (—bucos2 9sin20 +by, cos? §sin 20— by, sin? fsin 26

+b,, sin 20sin? 4 + % by, sin26 00329)

Using the notation n = cos 8 and m = sin 6, one can rewrite the expression for
Eyy 8S

€y = (bun4 + 2b,n°m? + b,,m* + b44n2m2) Oy
+(bun2m2 + b,n* + b,m* + byn? m* — b44n2m2) Oyy
+[—2blln3m+ 2by,n%m — 2b,nn? + 2b,,nm* + by,nm (n? — mZ)J Tey
Substituting for by,, by, b;, and b,, from equations (11.18) and (11.19),

2v
1 4 1 4 Xy 1 2
Eypy=|—N +——m" — —— | N N Oyt yr
XX {EXX E (E G j ] X

W o Oy
V.

e e Y (ntmt) Oyry
Ex E, Gy E,

2v
ol o L2 fme(n2-m?yam| 2 - L Ty
Ex  E, E, Gy

Observing that
n* +m' = n*+ m*+ 2n’n? - 2n’n?
= (n?+ m?)? - 2n’m? =1- 2n’m?,
the expression for g,,, can be simplified as

4 4 2v
gy = |2—+ o L Y e o,
Ex E, |Gy Ey

2v v
+M1+1_1+ anzmz_xyl Oy (11.26)
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2 2 2v
{z(g_gHGl_EWj(nz_ ? >] ey,
Yy XX Xy 14

Similarly, expressions for &, and g, can be obtained.
For an anisotropic body, it is preferable to use compliance coefficients while
expressing strains in terms of stresses. Thus, one can write

Ex = bl'lo-x'x’ + bl'zo-y’y’ + b1'4z-x’y’
&y = bllzo-x’x’ + bzlzo-y'y' + b2,4Tx'y'
&y = byOyy + 050y + by T, (11.27)

Yy = b1'4O-x'x’ + b2'4o-y’y’ + bzi4z-x’y’
From Eq. (11.26),

4 2v
bl!l n " m " i _ Xy nZ mZ
E, E G, E

Yy Xy Yy
2v 1%
by, :[1+1_1+anzmz_w (11.28)
E, Eyy ny Eyy EW

2 2 2v
Z[m_n}{l_ WJ(nZ—mZ)]nm
Ey, Ex) (Gy Ey,

Proceeding on the lines for getting &, one can get expressions for &,,, and ¥
The compliance coefficients for these will come out as

4 4 2v
b'ﬁ:ern J{l_ XYanmz

Gy Ey

bj, = {2{5—2‘2}((;—?}# —m? )} nm (11.29)
vy XX

2v
b‘{4:4i+i+ Xy_i n2m2+i
Eow E, E, Gy

Since changes in thickness of the laminate are not of much concern, the compli-
ance coefficients for ,, have not been written. Hence, for a unidirectionally
reinforced laminate, if the material constants (i.e., Es and vs) along the principal
directions are known, one can get from Eqs (11.28) and (11.29), the compliance
coefficients for any arbitrarily oriented axes x” and y’. One should remember that
positive x’-axis makes an angle +6 counter-clockwise with the fibre axis, i.e. +x
axis. Equations (11.28) and (11.29) can be written in a compact from using the
notations of Eqgs (11.18) and (11.19). Thus,

by, = byn* + byym® + 20, + by n*m?
by, = byn?m? + byn?m? + by, (n* + m*) — by,nn?
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by, =—2b,;n°m+ 2b,nm° + 20y, (n* — M”) NM + by, (n* = m*) nm

(11.309)
by, = bym’* + byyn? + 2b,n*N7? + by,n?m?
by, = —2b,nM? + 2b,,n*m— 20y, (n? — m?) nm - by, (N — m?) nm
by, = 4bn°m? + 4b,n°nT — 8b,N° NP + by, (n* — )?
where
-1 1 Vo _ Y 1

b= 1 1 Dy 1 11.30b

= b E,,’ o E, Eu Daa Gy ( )

Equations (11.30a) can be further modified for ease of applications when we take
up for analysis multidirectional composites. Towards this, consider the following
trigonometric identities:

n4=%(3+400329+cos49), n3m=%(25in29+sin49) (11.313)
n2m? = i_é (1-cos4d), nm’= % (2sin 26— sin 46) (11.31b)
' = % (3— 40520 + cos 46) (11.31¢)

Substituting these for b;; in Eq. (11.30a)

by, = %(3+ 40826 + c0s 40) bll+:—é(3—4c0329+cos4¢9) by,
+%(1— 00S 46) (2by, + byy)

I~

(301 + 30y + 20y, +Byg) + 3 (Byy — bz) 00520 (11.329

+2 (b + By — 2Dy, — by,) 0040

=R + P, cos 26 + P, cos 40
Similarly, substituting for other componentsin Eqg. (11.30a),

b, = %(bu+b22+6b12—b44)—:—$(b11+b22—2b12—b44) cos 49

=P, - B cos4d
b, = —P,sin 20 - 2P; sin46
b, = B — P, cos26 + P;cos 40 (11.32b)

by, = —P sin 26 + 2P, sin 46

£-
I

2 (B + by — 20y + Bya) — 3 (byy + By — 20y, + by) COS 40

R, — 4P; cos 49
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In the above expressions for b;
P, = é(3%+3b22+2q2+b44)
P,= 3 (B - by)
Py = % (buy + byp — 20y, — byy) (1133)
Py = % (b, + by + 60y, — byg)

Ps = 2 (Buy + bz — 201, — by
These equations are useful in two ways. Firstly, the quantities P;s are material
properties of the composite.
Once these quantities are determined, they can be used for any off-axis loading
direction. Secondly, as mentioned before, when we take up multi-direction com-
posites, these equations become useful.

Example 11.1 Consider a graphite-epoxy laminate whose elastic constants along
and perpendicular to the fibres are as follows.

Eo=181GPa, E,=103GPa, G, =717GPa v, =028

vy, = 0.01594
Obtain the compliance coefficients appropriate to X'y’ axes which are at (a)
+30° (counter-clockwise) to xy axes and (b) +90° to xy axes

Solution: (a) 6= 30°, n=cos30°=0.866, m=sin30°=0.5
From Egs. (11.28) and (11.29),
by; = [3.107 + 6.068 + (139.5 - 3.094) x 0.1875] x 10~
= (34.75) x 103 (GPa) *
b, = [(5.525+97.09 —139.47 + 3.094) x 0.1875 - 1.547] x 10~
=—(7.88x107%) (GPa) !
by, = [2(24.3- 4.143) + (139.47 — 3.094) (0.75- 0.25)] x 0433x 1072
= (40.3+ 68.188) x 0.433 x 10 2 = 46.98 x 10 3 (GPa)*
by, = [0.345+ 54.61+ (139.47 — 3.094) x 0.1875] x 102
= 80.53x 1073 (GPa)*
by, = [2(72.81-1.381) - (139.47 - 3.094) (0.75— 0.25)] x 0433 x 1072
= (142.86 — 68.188) x 0.433 x 10 2= 32.33x 1073 (GPa) *
by = [4(5.525+ 97.09 + 3.094 — 139.47) x 0.1875 + 139.47] x10 ™2
= 114.15x 103 (GPa)*

(b) 6=90°, n=0, m=1,
From Eqs (11.27) and (11.28),
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by = £ =97.09x107(GPa)
yy

V.
b, = ——2 =-155x 107 (GPa)*

EXX

by = 0

bl, = Ei — 5525x10 (GPa)
XX

b24 =0

by, = GA ~139.5x 1073 (GPa)*
Xy

It should be observed that X"y’ frame is obtained through rotation of the xy frame
by 90° counter-clockwise. Consequently, the values of the elastic constants get
switched since the x’-axis will be along the y-axis, and the y’-axis will be along the
x-axis (but in the opposite direction). Thus, E,, = E,,, = E,,, = E,,and G, = G, as
the results show.

Example 11.2 At a point in a laminate the
following stress state exists: < y

0y = 100MPa, o, =30 MPa,

—30MPa N X

The laminate is unidirectionally reinforced 30°
and the fibre orientation is 30° to X-axis, -
asshown in Fig. 11.5. The elastic constants
along the principal directions of the lami-
nate are

Tyy

« = 100GPa,  E, = 10GPa, .

Gy =5CGPa, v, =02 Fig. 11.5 Example 11.2

Determine the principal stresses, principal strains and their orientations in the
plane of the laminate.
Solution From Eq. (1.61), the principal stresses are

012= 5

=%(130)i [(35)7+307 | =111 or 19

0,=111MPa and o,=19 MPa (check: oy + oy =07 + 03)



390 Advanced Mechanics of Solids

From Eq. (1.62),

27
tan 29 = — XY

Oyx — Oyy

- 80_pg571

70
. # =203 and ¢,=110.3°
From Strength of Materials, the algebraically maximum principal stress, whichin our
present caseis o; = 111 MPa, lieswithin the principal 45° angle. Thus, o; = 111 MPa
makes an angle of 20.3° with X-axis, and o, = 19 MPamakes an angle of 110.3° with
X -axis (counter clockwise).

To determine the principal strains, the required rectangular components can be
obtained either with respect to X'y’ or with respect to xy axes. To determine the
components with respect to X'y” axes, we need the corresponding compliance coef-
ficients. To obtain the strain components with respect to xy axes, we need to trans-
form the given stress components to these axes, and then use
Eqg. (11.19). Let us transform the given stress components to xy axes. From
Eq. (11.23),

= (100 x 0.75) + (30 x 0.25) — (2 x 30 x 0.433) = 56.52 MPa
0y, = (100.0 x 0.25) + (30 x 0.75) + (2 x 30 x 0.433) = 73.48 MPa

(check o + 0y =0y + O

W~ y'y’)

Ty = % (70) x 0.866 + (30 x 0.5) = 45.31MPa
From Eg. (11.19) and using the reciprocal identity, Eq. (11.20),

£ = (56 52 _025 75 48) 10°3=0.3815x 102

100 ~ 100
0.25 73.48 -3 _ -3
£y = ( 100 x 56.52 + +—0 |~ ) 10°=7.207x10

ty= 23 x10%=0.062x 107

The principal strains corresponding to these are, from Eqg. (2.50),

2 2
Exx T Eyy Exx — Eyy Yy
= * + | —

= % (0.3815+ 7.207) x 103 + \/[(3.413)2 + (4.531)2] x107

= (3.7942 x 1079) + (5.6726)
=04668x10° or -1.8784x10°
(check: g+ &,=€+ &)
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From Eq. (2.51), the directions of these principal strains are

Ty 9.062
tan 2¢* =
¢ Exx — Eyy ~0.3815-7.207 -ls2n
. ¢* =-26.5° and @,* =+63.5°
Th%e angles are with respect to the x-axis. By subtracting 30°, we get the orien-
tations of the principal strain axes with respect to x’-axis. Thus,

¢,* =—56.5° and ¢,* =33.5°
Unlike an isotropic case, in general, the principal stress axes do not coincide
with the principal strain axesin an anisotropic body. In this example, the principal

stress axes are at 40.6° and 130.6°, while the principal strain axes are at 33.5° and
123.5° (i.e. — 56.5°) to X-axis.

Example 11.3 In Example 11.2, the directions of the principal strains were
obtained by transforming the applied stresses to the principal direction axes.
Show that the same results can be obtained by using the loading or the stress
axes as reference and obtaining the corresponding compliance coefficients.

Solution: 6= 30°, n cos 30° = 0.866, m=sin30°=05
From Equations (11.28) and (11.29)

by, = [5.6243+ 6.25+ (200 - 5) x 0.1875] x 10" = 48.4368 x 10"
bf, = [(10+100 - 200+ 5) x 0.1875— 2.5] x 10™* = - 18.4375 x 10
biy = [2(25— 7.4996) + (200 - 5) x 0.5] x 0.433 x 10™* = 57.3728 x 10 2
bj, = [0.625+56.24 + (200 - 5) x 0.1875] x 10™*? = 93.4275 x 10 *2
bs, = [2(74.996 — 2.5) — (200 - 5) x 0.5] x 0.433 x 107" = 20.564 x 10~
bi, = [4(10+ 100+ 5 200) x 0.1875+ 200] x 10 ¥ =136.25x 10"
From Eq. (11.25),
£y = [(48.4368 x 100) - (18.4375 x 30) + (57.3728 x 30)] x 10°°®
=0.006012
gy, = [~(18.4375 x 100) + (93.4275 x 30) + (20.564 x 30)] x 10°°
= 0001576

(check: ey + &y =& + €

y'y' yy )
Yoy = [(57.3728 x 100) + (20.564 x 30) + (136.25 x 30)] x107°
=0.010434

The principal strains are

2 2
_ s teyy | Eex gy Yxry'
12 2 2 172
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2
= % (6.012+1.576) x 107> + \/{(%;1'576] + (5.217)2] x107

= (3.794 + 5.669) x 10~ = 0 .00946; — 0.00187

Off-axis Components of Modulus In the previous discussions we obtained the
off-axis components of compliances b’;s from Egs (11.28) and (11.29). The motiva-
tion for considering this first is that in practice, composites are used to comply
with situations where stresses or loads are prescribed which usually are not along
principal directions. To estimate the deformations using Eq. (11.27), one needs
compliance coefficients from known elastic constants along principal directions.
On the other hand, when we need to analyse multidirectional fibre composites we
need to know the stress values for given off-axis strain values. To get this, one can
follow a similar procedure as was adopted earlier, i.e obtain o;; in terms of &,s.

g;= f (g, 0) from Egs(2.20) and (2.36a)
0= f, (&, d;) from Eq.(11.21)

oy = f3(0y,6) fromEgs(1.59) and (1.60)
fs[ f, (&, &), 9}

fs{ fo[ (&5 6), 31, 9}
Alternatively, one can solve for oy, o, and 7, from Eqg. (11.27). For this, we
need expressions for &y, &y, and ¥

Ex = bl'lo-x'x' + bl'zo-y’y’ + b1'4rx’y'

f‘yy = Q'Z Oyx T b2'2 Oyy + bé4 Txy'

Yoy = bz'll Oyxx T bziz Oyy + b434 Ty
In Eq. (a), b’y = by, and by, = b’,,. The determinant of the coefficients in
Eqg. (9) is

A= by (b bay —b5% ) —bl (B by — iy by ) +byy (B, by b by)
=b£1bézbé4+2%bé4b£4—b'zbi42—b£1bé42—bé4t¥22

Hence, the solutions for oy, oy, and 7, from Eq. (a), are
G = [0 bia — B3s?) i — (b by — bl Bhy) £y
+ (0o by — b4 05) 7y ]
Gyy = (bl bl — Bhe ble) e — (bl Dl — Be2) £y
+(bf; by, — b, b5) 7/X'y']
Ty = - (bl — bigbfa) Gy — (BliDhs — o) 2y
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+ (0l — b)) 7y ] (11.34)
From the general stress—strain equations, for alaminate under plane state of stress
with an off-axis coordinate system, one has, similar to Eq. (11.27),

Oyx = 81 &xx + 82 5§’y’ + a8y, Yy
Oyy = 8y &xx + 8 5{/’y’ +ay y Xy’ (11.35)
Ty = &y Exx T 34 5{/’y’ +ay Vxy

Comparing the coefficients &, in Egs (11.34) and (11.35), one gets

a1 = = (bgobla ~b3,”)

N,_Q’,
Il

— (biabjs — biab3a)
84 = - (biabss — biabs)

(11.36)
=~ (bhbis — bis?)

2
N
|

W2
i
Il

-+ (Blabss — bLbpy)

! 1 r ’ ’
Ay = Z(bubzz - bi,%)
Application of Eqg. (11.36) to get & s involves calculations of b’s. Instead, one

can follow the procedure adopted earlier. Thisis shown schematically in Fig. 11.6.
The results are the following:

’

, oy X

AN O, Ty -
y N\ £ Yy y Gxx
- x T % \
i %« Oy
Yoy , My
Evyr &y #

Fig. 11.6 Off-axis components of stresses and strains

a); = ann® +apm' +2a,n’n? +4a,,n’n?
al, = ayN’m? +ay, ’m? +ay, (n* +nft)—4a,, n?m?
. Al 3 2 _ 2 2_ 2
aj, = —81N°M+ axNM° + a5, (N° —M)NMm + 2a,, (N“-m7)Nm (1137
ay, = —ay; MM + a,n°m-ay, (n? —m?)nm-2a,, (n?-m?)nm

4 2 2
ay, = apnt' + axyn' +2a,n’n? +4a,,n’n?
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ay, = apn’m? +ayn?n? —2a,n°m? +a,, (n? —m?)?

where, from Eqgs (11.21) and (11.22),
, =G

& Xy

(11.37b)
Equations (11.37a) can be recast as was done in the case of compliance coefficients,
i.e. Egs (11.32) and (11.33). Using the trigonometric identities given by Eq. (11.31),

E, a Eyy o, =+ Vix E,
1=, v 2= 2 =TT T
1 Vix Vyy 1 Vix Vyy 1 Vix Vxy

&, = %(3+ 40820 + c0S46) a11+:—é(3—4c0529+ c0s 46) ay,
+ % (1- cos 46) (2ay, + 4ag,)
—L (38, + 30y, + 20y, + 484, + £ 2
—§(all+ App + 285 + a44)+§(a11—a22)cos 0

+ :—é (841 + Agy — 2&y, — 4ay,) cos 46

=Q, + Q, cos 20 + Q; cos 460 (11.383)
Similarly, for other components we get,

ay, = Q —Q, cos26 + Q; cos 40
al, = Q, —Q; cos4d

aj, = —%stinZH—Q35in49 (11.380)

ay, = —%stin29+Q35in49

a,, = Qs —Q,cos 46
where,

Q= %(3311 + 3ay, + 28, + 4ay,)
1
Q= 5(311 - ay)
Qs = 3 (8 + 8 — 28, — 4ay) (11.39)
_1
Q4= §(311 + &y, + 6ay,; — 4ay,)
_1
Qs = §(311 + 8y — 2a; + 4ay,)
The Q;s involve only material properties and once they are determined, the

compliance coefficients for any off-axis direction can be determined using
Eq. (11.38b).
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Example 11.4 A unidirectionally reinforced composite of ‘ Toray’ filament and
‘Nameo’ resin has the following moduli and Poisson’ s ratio.

E, =181GPa, E, =103GPa, v, =00159, G, =7.17GPa,

(1— vy V) - =1.0045

Estimate the components of moduli for an off-axis orientation of
(a) 6 = +30° and (b) 6 = +45°.
Soluion: (a) for 8 = +30°, n = cos # = 0.866 and m =sin 6 = 0.5.

From Eq. (11.37b),

E
a;; = — X% =181x1.0045=181.8 GPa
1- Vix Vyy
E
Ay = ¥__ —10.3x1.0045=10.34 GPa
1- Vix Vyy
Vix Exx
ay, = —2—% =0.0159 x 181 x 1.0045 = 2.891 GPa

1- VixVyy
a,,= Gy, =7.17GPa
Further, n=0.866, m= 0.5, nm=0.433
n>=0750, n*=0562, m* =025  m*=00625

n°m=0.3248, nn?=0.1083,  n’n? =0.1875
Substituting in Eq. (11.37a),
a; = (181.8 x 0.562) + (10.34 x 0.625) + (2 x 2.891 x 0.1875)
+ (4% 7.17 x 0.1875) =109.2 GPa

al, = (181.8 x 0.1875) + (10.34 x 0.1875) + (2.891) (0.6245)
— (4% 7.17 x 0.1875) = 32.45GPa

al, = —(181.8 x 0.3248) + (10.34 x 0.1083) + (2.891x 0.5 x 0.433)
+(2x 7.17 x 0.5 x 0.433) =-54.19 Gpa

aj, = 23.64GPa, aj, =—20.05GPa, aj, = 36.78GPa;

Similarly, for (b) with 6 =+45°
aj; =56.6 GPa, a,=4232GPa, aj, =-42.87GPa, &), =46.59 GPg
a,, =—42.87 GPa; aj, = 46.59 GPa

Multi-directional Laminates Multi-directiona laminates can be formed by cementing
plies with different fibre orientations. The effective in-plane modulus of laminate pliesis
found to be smply the arithmetic mean of the moduli of the congtituent plies. Laminates
with midplane symmetry will behave like homogeneous anisotropic plates. A multi-direc-
tiona composite laminate is defined by a code which describes the stacking sequence of
the ply groups. For example, the code

[0,/90,/45/-45,] (11.40)
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means the following:
The thickness of the laminate is h. Start-
ing from the bottom of the laminate, at z=

—g , thefirst ply group has two plies of 0°

orientation, followed by the next group with
two 90° plies, followed by one 45° ply, and
finally the last group with three —45° plies.
For a symmetric laminate, the ascending
order from the bottom face is identical to
the descending order from the top face, i.e

z= +g . The subscript S denotes that the

laminate is symmetric with respect to the

Fig. 11.7 Multidirectional midplane, i.e z= 0. The upper half of the
laminate—Sche- laminate is the same as the lower half ex-
matic representation cept that the stacking sequence is reversed

to maintain midplane symmetry.

A subscript T is used to describe the total laminate without resorting to de-
scribe symmetry or otherwise. For example, the laminate described by the code
given in Eg. (11.40) can be written with the following code al so:

[0,/90,/45/— 45,/— 45,/ 45/90, /0, |, (11.419)

or [0,/90,/45/-454/45/90,/0, | (11.41b)

where the middle six ply groups with the same orientations have been grouped
together. Figure 11.7 shows the laminate schematically.
Inplane Stress—Strain Relations In deriving the stress—strain relations for a
multi-directional laminate, the following assumptions are made:

(i) The laminate is symmetric, i.e.
02 =0(=2) (11.42a)
and a;(2 =g (-2 (11.42b)
Hence, both the ply orientation and the ply material modulus are symmetric with
respect to the midplane of the laminate.
(ii) The strain is urliformly the same across the thickness of the laminate, i.e.

Ex(2) =
ey (2) =4, (11.43)
V(D =7%

The above assumption is fairly reasonable when the total laminate thickness is
small and bonding between plies is good. x and y axes are arbitrary axes with
reference to which the strains are prescribed. These axes may not in general
coincide with any fibre axes.

Because of different orientations of the plies, the components of moduli for any
given direction are not the same for each ply. Hence, for a given uniform strain,
the stresses vary from ply to ply, and it is useful to discuss in terms of average
stresses across the thickness of the laminate. Thus,
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oy =% [ oy dz (11.44)

Now, from Eq. (11.35) for any ply, remembering that x and y are arbitrary axes,
Oxx =81 Exx T 810 Eyy T84 ¥y
O-yy:aiz 8XX+a22 8W+a24j/xy

Ty =844 Exx T 8o Eyy + 841 7y
Since the strains are the same in the plies,
hi2

1 * * *
ox =% | [aﬂ b + BppEyy + al4yXdez
h _h2
1 * * *
=F[8’°‘ [y dz+ ey fay, dz+ y [ an, dz}
1 * * *
= [ Av o+ Ay + Auryy | (11459
where,
h/2 h/2 h/2
A= | aydz  Ay= [ a,dz  Ay= [ a,dz (11.45b)
h/2 h/2 h/2
Smilarly,
- 1 * * *
Oy = ﬁ[plz Ex T Py + Py 7xy] (11.45¢)
_ 1 * * *
Dy = [ A S+ Ay + A 7y | (11.450)
where,
h/2 h/2 h/2
Ap= [ andz,  Ay= [ aydz  Ay= | audz (1145
h/2 h/2 h/2

oxx g'yy m;xy , are the average stresses across the thickness of the lami-

nate, i.e. stresses per unit thickness. Hence, for a laminate of thickness h, the
stress resultants are

NXX = hg-xx, Nyy = hg'yy, N = thy

Substituting for Exx,g_yy and _rxy
Nxx: Ail‘c";x+A.2‘c";y+Ai47;y
Ny = Az Exc + A &y + Pos 73y (11.46)

ny:Ai48xx+A24gyy+A447xy
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The quantities A,;, A,,, €tc. are the integrated values (across the thickness) of the
off-axis components of moduli of the laminate.

Evaluation of In-plane Moduli The resultant values of the moduli components
are obtained by integrating the moduli component values across the thickness. In
practice, when different plies of finite thicknesses are bonded to get the laminate,
the yalu% of a&;s change iq di_screte steps from ply to ply and they are_not
continuous functions of z as indicated by Eqs (11.45b and €). However, continu-
ing the integration sign as used earlier,

h2

An= [ a,dz
~h/2

= [(Q +Q, cos 20+ Q, cos 46) dz

=Q [dz+Q, [cos20 dz+ Q; [cos 46 dz

The Qs for a laminate are constant because of our assumption that the laminate
consists of plies of the same kind having identical material constants, but in the
bonding process, the plies are put with their fibre axes oriented differently, i.e. 8
changes from ply to ply, but the Qs are the same for each ply. Thus,

A= Qh+QV, +QV, (11.47a)
where
h/2 h/2
V,= | cos20dz, and V,= | cos4fdz (11.47b)
—h/2 ~h/2

Similarly, from Eqgs (11.45 b and e),
Ay = Qh-Q\V, +Q\V,
Ap=Qh-QV,

Ay = —% QV; - QV, (11.47¢)

1
Aoy = —E QN3 — QV,

A= Qh-QaV;
h/2 h/2
where V= [ sin20dz, and V,= | sin46dz (11.47d)
-h/2 -h/2

It was assumed that the laminate consists of even number of plies and are sym-
metrically positioned, i.e. the positioning sequence from the bottom of the lami-

nate, i.e. from z = —g to z = 0 is the same as from z = +g to

z= 0, the mid-plane. Hence the limits for the integrals can be changed to z= 0 and

z= +2 , and the quantities multiplied by 2. Also, it was explicitly stated that the

orientations 6 change in finite steps, from ply to ply. So, the integration sign can
be changed to summation sign, i.e.
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n
V; = 2> cos26h (1148

i=1
where 6 is the fibre orientation of the i ply whose thickness is h;, and the total
number of plies in the laminate is 2n, so that the number of plies from

z=0toz= g is n. The summation in Eq. (11.48) is over al the plies from

z=0toz= g , i.e. n. Let the laminate be composed of 2k; number of plies with

fibre orientation 6, 2k, number of plies with fibre orientation 6,, and 2k; number
with 6, orientation. Then,

V; = 2khy cos 26, + 2k,h, cos26, + ...+ 2k hy cos 26, + ... (11.49)

Also, 2K + 2K, +..+ 2k +...=2n

and 2k + 2koh, + ..+ 2k +...=h
LIPS hy o
or 2k, h + 2k, h +..+ 2K h +..=1

It iseasily seen that (2k;h;/h) is the volume fraction of plies with fibre orientation
i in the laminate. If the volume fractions are indicated by v;s, then Eq. (11.49) can
be written as

* V
Vlzﬁzv1 C0S 26, +V, C0S 20, + ...+ V. C0S26, +... (11.50)
where, VitV +.. 4V +..=1

Equation (11.50) is simply the rule mixtures equation which will be discussed later.
Thus, Egs (11.47b and d) can be rewritten as

*

vV, = v =V, C0S20, +V, C0S20, +...

1
h

LY/
V, = ﬁ:vlcos4¢91+v2 cos4d, +...

.V _ :
V; = ﬁ=vlsm 20, +V, SN26, + ... (11.51)

v, :V_;=V19n491+vzsin492+...

If the thickness of each ply is the same, say t, then on the basis of
Eq. (11.49), one can write
V, = t(2k, cos 26, + 2k, cos 20, +...)
V, = t(2k; cos 46, + 2k, cos 46, +...) (1152
V; = t(2k; sin 26, + 2k, sin 26, +...)
V, = t(2k, sin46, + 2k, sin 46, +...)
where, as mentioned earlier, 2k; is the number of plies in the laminate with 6,

orientation of fibres, 2k, is the number of plies in the laminate with 68, orienta-
tions, etc.
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Using either Eq. (11.51) or Eg. (11.52), one can easily compute the in-plane
moduli of multi-directional laminates with any ply orientation. The information
needed is orientation and volume fraction (or the number of plies) of each ply
group. Using Egs (11.51) or (11.52), the values of V,-*S(or V:s) can be determined.
Since the plies are identical, the values of Qs are the same for each ply and these
can be evaluated from Eq. (11.39). The values of a,s needed in Eq. (11.39) are
obtained from Eq. (11. 37b) Finaly, Eq. (11.47) g|ves the values of 4;s. The units
of 4,5 are Pam or Nm?

As an illustration of the steps involved consider the following case:

Cross-ply composites are commonly used in practice when uniform strength is
required in both x and y directions. The laminate consists of plies with fibres
oriented at 6 = 0° and 6 = 90° The laminate is symmetric. Let v, be the volume
fraction of plies with 6 = 0° orientation, and vy, be the volume fraction of plies
with fibres at 6 = 90° orientation. In general, v, and vy, are not equal.

0,=0° cos20=cosd4d=1 sSn20=sin46=0
0,=90°, cos20=-1 cosd4d=+1 sSn20=sin46=0
From Eq. (11.51),
Vi= voh —veo h=(vo = veo)h
Vo= (vo+ve)h="h
Vea=V,=0
From Egs (11.47aand c),

A = [Ql + 05 (Vo —vgo) + Q3] h
Ay = [Q1 =0, (vg —vgo) + Qs]h

A= [Qs - Qa]h (1153
Ap= [Q4 - Qa]h
A1y=A424=0

A laminate of this type is called an

ZA orthotropic laminate, Fig. 11.8. A three-

‘ / y dimensional body formed by cross-ply lami-

| nates was said to be orthogonally anisotro-
pic or orthotropic.

! 0 It can easily be seen from the figure that

| — X pecause of the difference in fibre densities

in x and y directions, £, and E,, can be

i different. Further, a shear str%sr produceﬁ

only shear strain in the xy plane and does

Fig. 11.8 Cross-ply laminate not cause any linear strain either in x direc-

tion or in y direction. These are being

reflected in 4,, and 4,,, both being zero. Further, the moduli components 4,, and

A,, vary linearly with (vy — vgo). When vy or v, IS zero, we get unidirectional

composite laminates. When v, = vq,, the volume fractions are equal and 4,; = 4,,.

Examplel11.5 Estimate the in-plane moduli and compliances for a cross-ply laminate
formed by using unidirectional composites with ‘Toray’filament and ‘Namco’resin. The
modulus data for this ply was given in Example 11.4 and is repeated here:
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E . =181GPa, E, =103GPa, v, =0.0159, G, =717GPa,

(1-v,v,, )" =1.0045

Solution  From Example 11.4, the values of a;s for any ply are
a,, = 181.8GPa,  a,, =10.34 GPa,

a, =2.891GPa,  a,, =7.17GPa
From Eq. (11.39),

1
O, = 8 (Bayy + 3ay, + 2a1, + 4ay,)

% [(3x181.8) + (3x10.34) + (2x 2.891) + (4 x 7.17)]
—76.36GPa

0,= % (ayy — az) = % (181.8—-10.34) — 85.73GPa

1
0= 3 (a1 + ag — 2a1, — 4ayy)

11181841034 (2x 2.891) - (4% 7.17)] =19.71GPa

(o]

O,=

(a1 + ag + 6ayy —4ayy,)

©Ik -

[181.8+10.34+ (6 2.891) — (4x 7.17)] = 22.6 GPa

Os = % (ay + az = 2a;, + 4ay,) = 26.88 GPa

Substituting these in the expressions for 4,;s from Eq. (11.53),

% Ay = 76.36+ (vy — vgy) 85.73+19.71

% Ayy = 76.36— (v — vgy) 85.73+19.71
% Ay, = 26.88-19.71=7.17
% A, = 22.60-19.71=2.89

A1y =4 =0

401

(b)

©

The average values of the compliance coefficients are obtained by the inversion

of Eq. (11.46). If A is the determinant of the 4;sin Eq. (11.46), then

2
A= Ay (AppAgy — A%) — Aip(Aip Ay — Apgdhy) + Ay (Ao Aoy — Agpiy)

Corresponding to Eq. (11.46), one can write for gy
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é‘;x = Ellex + BlzNyy + 514ny
&), = buN,, +bnN,, +buN,, (11.54)
y;y = baiN,, +ba2 N, +buN,,

Solving Eq. (11.46) for gy s and comparing with the coefficientsin Eqgs (11.54), one
gets

- 1

b = X(AZZAM —4,)

bz = — & (U, Ay — dipd

12 A( 12444 14454)

b = %(A12A24 — A1y 4y) (11.55)
b =L (4.4, - 42

22 A( 11444 )

7 1
b2 = A (A1 454 — Aadip)

7 1
baa A (A11A22 - A122)

To find the values of 4,;s we need the values of v, and vg,. Assuming v, = vgo = 0.5,
Ay = 96.07h, Ay =96.07h, Ay =7.17h, A, =2.89%,
Ag =A% =0
Substituting these,
A = 96.07 (96.07 x 7.17) — 2.89 (2.89x 7.17) = 66.12 x 10% 13 (Pa)®

% — 0.0151x 10723

bith = 0.0151x 107 (96.07 x 7.17) x 10¥ =10.40 x 10 *? (Pa) *
bizh = —0.0151x 10" (2.89 x 7.17) x 10'
=—-0.313x1072 (Pa)* (d)
b h = 0.0151x10° (96.07 x 7.17) x10® = 10.40x 102 (Pq)*

bash = 0.0151x 107 (96.07 x 96.07 — 2.89%) x 108

=138.3x102(Pa)!

Angle-ply Laminates Another class of laminates that are commonly used in prac-
tice are the angle-ply laminates. In these laminates, there are only two ply orienta-
tions which have the same magnitudes but are of opposite signs. The laminate is
said to be balanced when there are equal number of plies with positive and nega-
tive orientations. Hence, for a balanced angle-ply laminate assuming complete
symmetry, one has, from Eqgs (11.42a and b), the following:
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0= 48, O=-f wm=v,-% (11.56)

Substituting these in Eq. (11.51),

v, = % (cos2p + cos 23) = cos 23

V, =cos4p (11.57)
Vs =V, =0
From Egs (11.47aand c),
Ay =[O+ 0, cos2B+ Q5 cos 4B h
Ay =[0,— 0, 0528+ Q5 cOS4B] h
A= (04— 05 cOS4B] h (11.58)
Apy= [Qs -0 C054ﬁ] h
A1y=454=0
As an example, consider a balanced symmetric angle-ply laminate with
B =45°. For such alaminate,

Ap=Ap=(0-0)h,  Ap=(04+05)h, Ay =(0s+05)h
A1y =A3=0
For the composite considered in Example 11.5, the values of O;s are,
0,=T7636GPa, (,=8573GPa, (;=19.71GPa,
0,=226GPa, (;=26.88GPa
For alaminate formed from these composites,
Aqq = Ay =(76.36 —19.71)h = 56.65 h GPa

A, = (22.6+19.7)h = 4231/ GPa

A= (26.88+19.71) h = 46.59h GPa
Ayq=A%=0
The components of compliance are obtained from Eq. (11.55)
buh = bah=39.91x10"2 (Pa)™*
bizh = —29.81x 1072 (Pa)™?
bauh = 21.46x107 (Pa)™*
b = baa =0
The corresponding Engineering constants are

E. - -t -2505GPa
b11h
_ 1
E = =——=2505GPa
Yy b22h

G. - —1 -4659GPa
Y baah
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Vy, = —b2Exc h=0.746
The reason for working out the values of the Engineering constants is to show
that in the case of a composite, the value of Poisson’s ratio can be greater than
0.5. In this particular case, the Poisson’sratio in the x direction is 0.746.

11.5 PLY STRESS AND PLY STRAIN

The stress analysis of symmetrical laminates discussed in the previous section
was based on the fundamental assumption that all the plies in the laminate expe-
rienced uniform strains. As the fibre orientations in the plies are different, for a
given strain, the stresses induced in individual plies will be different. Also, under
the same assumption of uniform strain, a given load or stress gets distributed
according to the stiffness of each ply. As an example, consider alaminate having
the code [0,/90,]s. This is a symmetric cross-ply laminate having a total of 16
plies. Let the plies be of the same composite material that we have been discuss-
ing so far, i.e. the values of hl?l.j s areasgivenin Eq. (d). Let the thickness of each
ply be 130 x 10° m, and let the laminate be subjected to a uniaxial stress resultant
N, =1MN/m.

Thickness of laminate = 4 = 16 x 130 x 10° = 2.08 x10°m

The compliance coefficients for the laminate from Eq. (d) are

bt % «x10.40x1072 = ﬁ x10.40 x10° = 5x 107 (N/m)

1
2.08

bz —% x0.313x102 = — L1, 0313x10°=-0.15x10° (N/m)*

bia =0
From Eq. (11.54), the strains are
£, = Ellex =5x10°x10°=5x1073
g, = bioN,, =-0.15x10x10°=-0.15x10"®
These are the strains experienced by each ply. For the ply, the stress—strain
equations are

O = 1€y, + 108y,
0, = 1€y T axE,,

From Example 11.4, for 0° fibre orientation,
ay,=1818GPa,  a,, =10.34GPa,  a, =2.891GPa
0, = (181.8x 5x10°) — (2.891x 0.15x 10°) = 908.6 MPa.
0, = (2891x 5% 10°) — (10.34x 0.15x 10°) =12.9 MPa
7,=0

For the 90° fibre orientation,
ay,=1034GPa,  a,,=181.8GPa,  a, =2.891GPa
0, = (10.34x5x10%) - (2.891x 0.15x 10°) = 51.3MPa

0,, = (2891x5x10%) - (181.8x 0.15x10%) = ~12.9 MPa
7,=0
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It should be observed that for 0° fibre orientation ply group, o,, and o,, are the
stresses along and perpendicular to the fibres, whereas for 90° ply group, o, and
o,, are stresses perpendicular and parallel to the fibres.

From these results, the average stresses in x and y directions are

5. = % (908.6 + 51.3) = 479.95 MPa

o, =0, ?xy =0
The resultant stress in x direction is

& .h = (479.95x10° Pa) x (2.08x10 m) = 998 x 10° N/m = 1 MN/m

This checks with the resultant applied stress V...

One of the reasons in estimating the stresses and strains in individual pliesis
to check whether they meet the failure criteria. Failure criteriawill be discussed in
the next section. For example, in the present case if the maximum strain criterion is
applied with the limit that

e aongfibre<10x1073

max

& PErPENdicular tofibre <4.5x10°°
then, for the 90° ply group, g;x =5x107 is the strain perpendicular to the fibres
and this is greater than 4.5 x 1073, which is the limit. Hence, based on the maximum
strain criterion, failure would have occurred in the 90° ply group, when the resultant
applied stress reached a value

N 45_ 09 MN/m

xx(max) — 5

11.6 FAILURE CRITERIA OF COMPOSITE MATERIALS

It is obvious from the discussions so far that the failure theories for composite
materials would be quite different and more complex compared to theories of
failure for an isotropic solid. In this section, we shall briefly consider some of the
failure criteria found suitable for composites. We shall restrict our discussion to
orthotropic materials in general and to laminates in particular. As in the case of
isotropic materials, the maximum stress theory and the maximum strain theory are
the basic theories that are considered first.

Maximum Stress Theory =~ The maximum stress theory assumes that failure oc-
curs when any of the stresses in the principal material axes reach acritical value.
There are three possible modes of failure, and the conditions for these are

011=0n
0'22 = 09 (1159)
T12= T12

The stresses ¢;; are referred to the principal directions 1 and 2. oy, is the
ultimate tensile or comprve stressin direction 1, o, isthe ultimate tensile or
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compressive stress in direction 2 and z;, is the ultimate shear stress acting on
plane 1 (i.e. plane with normal in direction 1) in direction 2. The values of oy, 05,
and r;, are obtained experimentally for a given composite.

If the load were to be applied at an angle 6 to the fibre axis direction 1, Fig. 11.5,
and if x’, y” are the corresponding frame of reference for the applied stresses, then,
from the transformation equations

Oy = Oy cos® 6
O,y = 0. SN2 0 (11.60)
Ty, = + 0, SING COSH
Combining Egs (11.59) and (11.60), according to the maximum stress theory, failure
occurs when o, assumes the smallest of the following three values

P
T cosf O
O
W —222 (11.61)
sin“ g
T
_ 12
Oyy = ————
sin @ cos @

Instead of o, aone, if the stresses acting are o,

X'x"1

the stresses in the principal directions 1 and 2 are

oyyand T

x/y/ y

then from Eq. (11.23),

Ol = 0y COS 0+ 0, SiN°0 —7,, sin 20
Gy = Oy SN0+ 0, COS” 0+, SN 20 (11.62)

_1 ;
T = > (Oyy —0y,)SiN20+17,,, COS20

If the applied stresses o, , o, and 7., either individually or in combination
cause 0y, Or 0,, O 03, to exceed their maximum allowable values, failure occurs.

Maximum Strain Theory According to this theory, failure occurs when the strain
along any principal direction assumes a critical value, i.e when

€11= é11
€9y = Ex (1163
Y12 = 712

where &, is the maximum tensile or compressive strain in direction 1, &,; is the
maximum tensile or compressive strain in direction 2, and 7;, is the maximum
shear strain in plane 1-2. If E;, E,, and G,, are the material constants, then,
according to the maximum strain theory, failure occurs when any of the following
conditions hold:
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o o
&= —Ell —Vi2 _Ezz 2 ‘9;1
11 2
_ 011 , O» *

)/ _ T
12 G12—712

If 0., 0,,,and 7., are the stresses applied, then the values of o, 05, and, 7, are

obtained from Eg. (11.23), which can then be substituted into Eq. (11.62).

Distortion Energy Theory While the maximum stress and maximum strain theo-
ries are easy to apply, they have limitations since experiments do not completely
support them. Another theory which is commonly used in design processes is the
energy of distortion theory, which sometimes is called the Tsai—Hill theory. This
theory is similar to the distortion energy or the deviatoric stress theory applied to
isotropic solids. For an isotropic solid, Eq. (4.12) gives the distortion energy as

= %[(0’1 - 0'2)2 + (o — 0'3)2 + (0'3_61)2]

where o, 0, and o are the principal stresses and G is the shear modulus. For an
orthotropic solid, this expression is generalised and written as

(o) = F(oy - 522)2 +G(oy - 533)2 +H (033 — 511)2

+2L 75 +2M 755 + 2N 72 =1 (11.65)
where 1, 2 and 3 are the principal directions of symmetry and F, G, H, L, M and N
are parameters characterising the anisotropy of the material. In the stress-space,
Eq. (11.65) represents a six-dimensional surface. The critical values of o;sand 7;s
will give the limits to this yield surface. If the applied stresses lie within the
surface, then no failure occurs. The values of the parameters are obtained from

tests conducted on a sample of the composite. Let o7;, 0y, 033 be the normal or
yield strengths in the directions of anisotropic symmetry. Then, with a{l alone,
Eq. (11.65) gives

*2 *2

FeH=— (11.663)
on
Similarly, with o3 and o3 individually applied, one gets
F+G=— (11.66b)
O
1
G+H=—5 (11.66¢)

O33
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On the same lines, for 7,,,7,; and 75;, One gets
1 1 1

ZLZTZ. 2M=TZ’ 2N = >3 (11.66d)
12 723 731

where z';-s are the yield strengths in shear.
From Egs (11.66a—), one can solve for F, G and H. The solutions are

S e
011 O Os3

Q
I
N~

*2 *2 *2

_A+A+AJ (1167
011 Oy O33

*2 *2 *2
2 011 O O33

g1 A_L+AJ
Equation (11.65) with values for F, G, H, L, M and N substituted from
Eqgs (11.66d) and (11.67) describes afailure surface in a six-dimensional space. So
long as the point (o1, 093, O3, T12: T3, 731 ) lies within this surface, no failure
occurs. If the point happens to fall either on the surface or outside the surface,
failure occurs.

Consider now a unidirectionally reinforced composite as shown in
Fig. 11.1. Let x-axis be along the fibre direction instead of z as shown in that
figure. Then, the plane yz will be atransverse plane of isotropy, and for this plane,
the transverse yield strengths a and Uzz will be equal to each other In our
notation, this means that o, and o33 are equal. Also, for this body, 712 endrl
are equal, i.e. L = N. Hence, for an orthotropic body, substituting the present
valuesfor F, G, H, etc., Eq. (11.65) becomes

1 1
*2 [(0'11 02)° (02 — 038)* + (05 ~ Un)ﬂ +—=5 (02 - 53)°
20 Oy
1 1 2
+ =5\ + 751) + =5 (75) =1
22 ( 12 31) 2 23 (11.68)

In the case of alaminate with unidirectional reinforcements, if the state of stress
is a plane state, then one has 043 = 73 = 7,3 = 0. Equation (11.68) then reduces to

2 2 2
o111 011 )\ %11 O 712

Equation (11.69) describes a failure envelope and so long as the point

(011, 095, 715) lies within the surface no failure occurs. If the unidirectional lami-

nate is subjected to a stress o, at an angle § to x-axis, then from
Eqgs (11.60) and (11.69) failure occurs when
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1
4 .42
O = {C"Eze " ( L1 J sin® 0 cos? 0 + %] (11.70)
O11 T12 On1 O

Example 11.6 Fora class of E-glass-epoxy composite with unidirectional reinforce-
ment, the following data apply:

E, =538GPa, E,;=17.9GPa
v, =025 G;, =8.6 GPa
o, (tens) = 1304 MPa o, (comp) = 1034 MPa
022 (tens) = 27.64 MPa 022 (comp) =138 MPa
z,, = 55.2 MPa
Determine the minimum value of o, applied at an angle of 30° to the fibre axis
to cause failure according to (a) maximum stress theory (tension and compres-

sion), (b) maximum strain theory (tension) and (c) distortion energy theory
(tension).

Solution (@) Maximum Stress Theory
(i) Tension: From Eq. (11.61),

on 1304
= ~1304 _ 1378 7MP
O =" 20 074 a

Cy» 276
=92 _218_q194\pa
O T Gn2g 025

_ Ty 552
%= Gndcosd 0433 =127.5MPa

Failure occurs when o,... > 110.4 MPa (tension).
(i) Compression: From Eq. (11.61)

on 1034
= ~1034 _ 13787 MP.
O =" 2o 075 a
oy 138
- - 138 _ 550 Mpa
%= G2 0.25
=12 952 _4o750Mpa

"7 9n@cosd 0433

Failure occurs when o, > 127.5 MPa (Compression)
(b) Maximum Strain Theory: From Eq. (11.60)

Oy = 0, C0S°0, Op=0,.SN%6, ®
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le = %GX')C' Sn 20

Further, from Eq. (11.64), the maximum tensile strain in direction 1 when yield
(or failure) stress 0I1 isapplied is

< _ o 1034 _
& = B, 538 0.01922
Similarly, the maximum tensile strain in direction 2 when yielding (or failure)

occurs is

o _ Ox _0.0276
2~ F, 179
22 .

Further, the shear strain at the time of yielding is

=0.001542

P T _ 0.0552
276G, 86

From Egs (11.64) and (€)

= 0.00642

O- U 2 O-X’X, . 2
£, = —=*C0s° 0 —v;, 22-sin“ 4
Ell E22

s (cos2 9_, s n? 9)
- Ox'x' — V12
Eyy Ey

e - [ ” c052¢9+sin29j
22 — X' T V21
i Ell E22

» =a,,[19”2‘9J
12 x'x 2 G12

Substituting the critical values for the strains and solving for o, (With the

V. V.
reciprocal identity EL;:E_Zl j
11

. {00529 sinze}

O = & — V.
x'x 11 12
Ell E22

= 0.01922 (0.01394 — 0.003492) *
~1.8395 GPa=1839 MPa

) 1
=g { ” c0526?+sm2¢9
xx' T €22 | TV12

E22 E22

= 0.001542 (—0.01047 + 0.01397) *
= 0.4406 GPa = 441 MPa
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oo, = [18n20 .
Yy = V12 2 G12
=0.00642 (0.04511) !

=0.1275 GPa =142 MPa
Based on the minimum of the three values, the critical stress value is
142 MPa.
(c) Distortion Energy Theory: From Eg. (11.70)

oy =10° x[0.0052612 + (3.2819 — 0.00935) x 0.1875+0.82047]

=83 MPa

11.7 MICROMECHANICS OF COMPOSITES

In this section, the micromechanical aspects of fibrous composites based on the
rule of mixtures, where the sharing of the loads by the matrix and the fibre is
dependent on the volume-weighted averages of the component properties, will be
examined.

Consider a composite of mass m, and volume v,. The total mass of the compos-
ites is the sum of the matrix mass m,, and the reinforcing fibre mass m,, i.e.

m, =m, +mg (11713
The subscripts ¢, m and f refer to composite, matrix and fibre, respectively. The
volume v, of the composite is given by

Ve =V V5 Y, (1172

where v, is the volume of voids that the composite element may contain. Dividing
Eq. (11.71) by m_ and Eq. (11.72) by v,, one gets
M, +M,=1 (11.73)

and Vi +V, +V, =1 (11.74)

where the Ms and Vs stand for mass and volume fractions.

Consider arectangular, unidirectional composite rod, Fig. 11.9, subjected to a
force P, in the direction of the fibres. Assume that the rod extends uniformly with
no delaminations between the matrix and the fibres.

l

L

Fig. 11.9 Unidirectional composite rod

Assume that transverse sections that were plane before loading remain plane
after loading. This means that the strain in the matrix and the strains in the fibres
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are the same. Thus,

where €, indicates the strain in the composite in the longitudinal direction.

The situation depicted by Eq. (11.75) is known as the isostrain situation. It is
further assumed that the Poisson’ s ratios of the matrix and the fibres are equal. If £,
and E,are the Young's moduli for the matrix and the fibre, then the stresses are

Oy = Em Eels O-f :Efgcl

If 4, isthe total cross-sectional area of the composite, then

P.= B, + P
i.e 0 A.= 0,4, +o,4, (11.764)
=(4,E, + 4,E;) &, (11.76b)
O A A/
—<¢ =F, =E ‘M“m4E,— 11
or &, cl m Ac + f Ac ( 77)
Since the lengths of the composite, the matrix and the fibres are all equal,
v, = A,L, vy =AL, v,=AL
A v A/ Ve
and Imo—m L - = 11.78
I 4. v, Yy ( )
Eq. (11.77) becomes
E,=E,V,+EV,=Ey (1179

E4, isthe Young's modulus for the composite in the fibre direction. Thisis called
the rule of mixtures for the Young's modulus in the fibre direction. From
Eqgs (11.76a) and (11.78), one can obtain an expression for the composite strength
in the fibre direction as

O =Op Vm + O-f Vf (1180)

If the composite is loaded in the transverse direction, and if it is assumed once
again that there is no separation between the fibres and the matrix, then one can
group the fibres together as one phase material that is continuous, and the matrix
as one group, Fig. (11.10).

1 f
el 1 H
..... l N
t,

! b A

Fig. 11.10 Two phases of unidirectional composite rod
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If the applied load is uniformly distributed across the transverse faces, then the
transverse stresses in the two phases are equal, i.e.

Oy =0,=0, (11.81)
The total transverse displacement is
At =At, + Aty (11.82)

t,, and ¢, are the equivalent gauge lengths of the matrix and the fibre respectively,
when each is considered as one phase material. If L isthe length of the member as
shown in Fig. 11.9, then

Lt, = v,, Lt, =v,, Lt,=v, (11.83)
Dividing Eq. (11.82) by ¢.

At, At Atf

€= =—+ -

¢ ¢ t

c

C C
Aty by Aly by
w1 1

YV, v
=&, —L + é'f —L
ie £,= &g Vytep Vs (11.84)
o o Oy
N(]/V’ gc = ct , " _m, &, =—
" E, E, I E,
Using Eq. (11.81), Eq. (11.84) becomes
O-ct O-ct act
4 ="dy 14
E, E, ""E '
1 V Vf
or, = = 11.85
E, E, E, (1.8

Equation (11.85) gives the Young's modulus for the composite in a direction
transverse to the fibre direction according to the rules of mixtures. It should be
observed that equations (11.79) and (11.85) for the values of the Y oung’s moduli
in the axial direction (i.e. in the direction of the fibres) and the transverse direction
are obtained under the assumption that the Poisson’s ratios for the matrix and the
fibres are equal. If the Poisson’s ratios are different, then the analysis becomes
complicated. Some aspects of this will be discussed subsequently.

When a composite cylindrical rod of uniform cross-section is subjected to a
force P,, assuming that cross-sections remain plane, the stresses in the fibre and
matrix, and the linear strain in the rod are given by

O'.
8_—j:

Om
cl T
Ef E

m
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__Fk
- Ac Ecl
Ll 1 | fromEq (11.79)
A |EV, +EV,
Gf: Ef Eels Oy =Em &l

(11.86)

(11.87)

The determination of the shear modulus G. for the composite in terms of shear
moduli for the fibre and matrix is not ssimple. However, under some simple assump-

tions, an expression can be obtained as indicated next.

Assume, as shown in Fig. 11.11, that the composite can be considered to be a
combination of two continuous phase materials, one that of fibre and the other

that of matrix.

As shown in Fig. 11.11(b), the shear stresses on the complementary faces are
equal. Consequently, if the shear moduli for the matrix and the composite are not
equal, there will be some discontinuity in the shear strains as shown in

Fig. 11.11(c). Ignoring this discontinuity,

T N

) x k
i e
[ tc T i
P i e, S
 p m—
7 > (b) O]
@ Fig. 11.11 Assumed shear deformation
- (s
the shear strain in the fibre is .
>
o . (0
the shear strain in the matrix is (t—’”j
o .. [, %5,
and the total shear strain in the composite is .
The shear modulus for the composite is
e (11.89)

G. = L =
© @+t 6, +0,
If G,and G,, are the shear moduli for the fibre and matrix, then

T T
= d =
GGy T TG0,
t
i_e = l and é‘m :ﬂi
S G G
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Substituting these in Eq. (11.88),

tt,

G. =
<~ @, 1G,) + (#1,,1G,,)
t

T ¢,1G) + (t,1G,)
Gy Gy

V i G, +V,G ’
Equation (11.89) gives the composite shear modulus in terms of the constituent shear
moduli. In obtaining an expression for the composite elastic modulus £, in the fibre
direction, it was assumed that the Poisson’ s ratios for the fibre and matrix were equal .
If the ratios happen to be different, one can get the composite Poisson’s ratio in
terms of the matrix and fibre ratios under some simple assumptions. For this, consider
Fig. 11.9 and Eq. (11.79). The longitudinal strain for the compositeis

or G, =

C

(11.89)

£ = Ol O

" E, EJ,+EV,

C

If v.and v,, are the Poisson’s ratios for the constituents, then the change in the
transverse dimension ¢, is

ot, = t,V, &4 + 1V i€y

This is under the assumption that there are no transverse stresses when the bar is
subjected to uniaxial tension. The transverse strain is therefore

6tc &
&, = tc :? (tVm TtV y)
= &g (VVm +Vyvy) (11.90a)
using Eg. (11.83). Hence, the Poisson’s ratio for the composite is
=Sty Wy, (11.90b)
&

It should be observed that the transverse strain €, as given by Eq. (11.90a) is
negative when &, the longitudinal strain, is positive.

Among the several important properties of composites, the specific strength
and specific modulus are the special characteristics. These are defined as follows:

Specific strength = (11.91)

Specific modulus =

SRR

where o is the yield or tensile strength, p is the density and E is the modulus of
elasticity. Properties of some typical fibres are given in Table 11.2. The highest
specific modulus is usually found in materials having a low atomic number and
covalent bonding, such as carbon and boron. One should be careful about the
units involved in Eqg. (11.91). In the metric system the yield strength o will be
expressed in kgf/cm? and the density in kgf/cm®. Thus, the specific strength will
be expressed in
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kgf em®. kglem em®.  com?

cm® kg = Pem? kg &
In Sl units also, the specific strength or the specific modulus will be expressed in m?/s>.
Table 11.2

Material Density (Mg/m® Tensile strength (MPa) Elasticity modulus (GPa)

Polymers
Kevlar 1.44 4480 124
Polyethelene 1.14 3300 172
Metals
Be 1.83 1275 303
Boron 2.36 3450 379
Glass
E-glass 255 3450 724
Sglass 2.50 4480 86.9
R-glass 2.76 4137 85
Carbon
High strength 1.75 5650 276
High modulus 1.90 1860 531

Example 11.7 Oneof theimportant light weight composites used for hightempera-
ture applications is borasic-reinforced aluminium containing 40% by volume of
fibres. Estimate the density, modulus of elasticity and tensile strength parallel to the
fibre axis. Also estimate the modulus of elasticity perpendicular to the fibres. The
following data is given:

Material Density (kg/m®) E (GPa) Tensile strength (MPa)
Fibres 2.36 x 10° 380 2760
Aluminium 2.70 x 10° 70 35

Solution A cubic metre of composite consists of 0.4 m® of fibres and 0.6 m® of
auminium. Hence, from Eq. (11.71), the density p, (kg/m®) of the composite is

Pe=0.6(2.70 x 10°) + 0.4(2.36 x 10°)

=256 x 10° kg/m?®
From Eq. (11.79),
E, = 70(0.6) + 380(0.4) =194 GPa
From Eq. (11.80),
o, = 35(0.6) + 2760 (0.4) =1125 MPa
In adirection perpendicular to the fibre axis, from Eq. (11.85),
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1 _06,04_ s
£, =20 +380—9.624><10

103.9 GPa

S
Il

Example 11.8 A4 glass fibre reinforced nylon composite contains E-glass ibres
30% by volume. Calculate the percentage of load carried by the fibres when the
composite is loaded. The moduli of elasticity of the constituents are E (glass) =
72 GPa, E (nylon) = 2.8 GPa.

Solution Assuming isostrain condition,

€= Ep =&y

C

o o
But, €, = E and &, =é
Im _9
E, E
E
ie Z—; =E_i:=27_§3=25'71
The load carried by the composite is
F.=F,+F,

Hence, the fraction of the load carried by the fibre is
Fy ordy
F,+F, o0,4,+0,4;

O'/er X
=—————— using Eqg. (11.78)
O'me + O'/er
c,(0.3)
0,,(0.7) +0,(0.3)

_ 0.3
0.7(c,,/o,)+03

_ 0.3 B
~ 0.7(1/25.71) +0.3 0.92

Hence, the fibres carry 92% of the applied load.

Example11.9 Animportant part of a structure which currently is being made of an
aluminium alloy having a modulus of elasticity of 60 GPa is to be replaced by a
composite material consisting of E-glass fibres in nylon matrix. It is desired that while
weight reduction is important, the specific modulus of the composite should not be
lower than that of the current material. The direction of loading in the composite will
be in the fibre direction. The density of aluminium alloy used is 2.8 x 10° kgf / m?
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Solution  The specific modulus of the aluminium alloy is
60GPa 60x10° Nm®
28x10°kgm>  2.8x10° kg m?
=20.69x10° m? sec?
From Table 11.2, the density of E-glassis 2.55 x 10° kg/mq, and its modulus is 72
GPa. For nylon, the corresponding values are 1.14 x 10° kg/m® and 2.8 GPa. If we

use 60% by volume of glass fibres in the composite, then the density and modu-
lus of the composite will be

p. = (0.6) x 255x10° + (0.4) x 1.14 x 10° =1.986 x 10° kg/m".
E .= (06)x72+(04)x 2.8
=44.32 GPa
.. specific modulus of the composite is

44,32 x10° Nm™

. X gm

While the specific modulus is marginally increased by 10%, the density is reduced
by 29% of the original values.

Example 11.10 A microlaminate is produced using five sheets of 0.4 mm thick
aluminium and four sheets of 0.2 mm epoxy which is reinforced with unidirectionally
oriented Kevlar fibres. The volume fraction of Kevlar fibres in these intermediate
epoxy sheets is 55%. Calculate the modulus of elasticity of the microlaminate parallel
and perpendicular to the fibre alignment.

Solution In each epoxy sheet of 0.2 mm thickness, the fibre content is 55%.
Thus, inal mm x 1 mm sheet size, the fibre content is

(0.2x0.55) =0.11 mm®
and that of pure epoxy content is
(0.2x 0.45) = 0.09 mm?®

Since there are four such fibre reinforced epoxy sheets, the total fibre content is
0.44 mm?, and that of pure epoxy is 0.36 mm®.
A microlaminate of size 1 mm x 1 mm has atotal volume equal to

V.= (5x0.4) + (4x 0.2) = 2.88 mm?

Out of this, the aluminium content is 2 mm?3, the pure epoxy content is 0.36 mm?®,
and that of fibresis 0.44 mm®. Hence, the modulus along the fibre according to the
rule of mixturesis

E, = % [(2 x 70) + (0.36 x 3) + (0.44 x 124)]

=69.87 GPa
To evaluate the modulus perpendicular to the fibre orientation, we haveto do it in
two steps. The aluminium sheets being isotropic, its modulus will be direction
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independent. However, for the reinforced epoxy, we have to use Eq. (11.85). For
each of the reinforced epoxy sheets, if £, is the modulusin a direction transverse
to fibre orientation, then

L T Y
c”l Em Ef
-1 [0 9,2 11) 0.1544 (GPa) *
0203 124
=6.477GPa

Now the Iammate Con5|sts of aluminium (volume content = 2 mm?,
E, = 70 GPa), and fibre reinforced epoxy (volume content = 0.8 mm?®,
E’,,=6.477 GPa). Hence, for the laminate, the modulus will be

1 1 2 0.8
E, 28 70" 6477

: E.,=184GPa

In getting the above anSNer we have used Eg. (11.85) assuming isostress condi-

tions, and this gives a low modulus value. However, for the reinforced epoxy, a

modulus in the transverse direction has already been determined as £7,,. So, if the

bonding is good between the aluminium sheets and the reinforced epoxy sheets,
one can use the isostrain condition and obtain a modulus value as

} 0.0543

E, = 2—18 [(2x 70) + (0.8 x 6.477)]
~518GPa

The actual value will however be in between these two values.

Examplel11.11 [tisdesiredto design atensile member made of a uni-directional
composite material. The structure is to carry a load of 2.2 kN and is to be 3 m long
having a circular cross-section. The matrix is to be epoxy with a yield strength of
80 MPa. The yield strength of the composite should not exceed the yield strength
of the epoxy. This is to make sure that if the fibres break, the epoxy will be able to
carry the load without any catastrophic failure. Assume a modulus of 3.5 GPa for
the epoxy. It is also required that the composite member should not stretch more
than 2.5 mm.

Solution If the member is made entirely of epoxy without any fibres, then

_25mm

_ 3
= 3000mm - 0.88x 10

Omax = Emax X E

=0.83x10° x3.5x10°
=2.92x10° Nm™
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2.2x10°

Area of section =
2.92x10° Nm™

=0.753x10°% m?

Diameter of the member =d =31 mm
Assuming a specific weight of 1.25 x 10% kgf m=, the weight of the tensile member
will be

W(epoxy) = (1.25x10%) (0.753x107%) (3) = 2.83 kgf

For the composite, the maximum strain permitted is still 0.83 x 107, The maximum
yield strength for the composite is 80 MPa. Hence, the minimum modulus for the
composite will be

6 -2
E, (minm) = % = % =96.4x10° Nm
. X

From Table 11.2, the moduli of glass fibres are less than the minimum required. So
one hasto look for a fibre having a higher modulus. High-modulus carbon having
amodulus of 531 GPa, and a density of 1.90 Mgm™ meets our requirement. |f Viis
the volume fraction of the carbon fibre in the composite, the modulus of the
composite will be

E.=V,(33)+(1-V,)x3.5=9.4
This should be equal to or greater than 96.4. Thus,
V, (83D +(@1-V,)x35=964
or V,=0176

The volume fraction of the carbon is 0.176 and that of epoxy is0.824. A composite
of this nature will have a modulus not less than 96.4 GPa.

If the structure is made of such a composite, and if the fibres break when aload
of 2.2 kN is applied, then the epoxy alone should be able to carry the load. If 4, is
the total area of section, then 0.824 A, is the area of epoxy and the stress on this
should not exceed 80 MPa. Thus,

0.824 4, x80x10° Nm™? = 22x10° N

. 2.2x10°N
0.824 x 80x10° Nm™

=0.0333x 10° m? = 33.4 mm?
The diameter of the compositeis 6.5 mm.

Volume=334x10°m?x3m=10x 10° m®
Weight = [(L9 x 0.176) + (1.25 x 0.824)] x 10 x 105 = 0.137 kgf

Therefore, the carbon fibre reinforced structure is less than one-quarter the diam-
eter of pure epoxy structure, and one-twentieth the weight of pure epoxy.

or

c
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NS PRESSURE ‘VESSELS

Let the thickness of the vessel be small compared to the radius of the vessel, so
that the curvature effects on the fibres can be neglected. The problem concerned
iswith the orientation of the fibres for optimum strength. In the netting theory, it
is assumed that only the fibres take the load and that too in the directions of the
fibres only. The strength of the fibre in its transverse direction is taken as zero.
The contribution of the matrix to the strength is ignored.

Consider a cylindrical pressure vessel with closed ends, as shown in
Fig. 11.12(a), subjected to an internal pressure p. The longitudinal and hoop

stresses are

o, = %, oy = % (1292

where a is the radius of the vessel and h is the thickness of the vessel. Assume
a helical winding as shown in Fig. 11.12, and let us consider the stresses along the
fibre orientation. If o is the stress aong the fibre orientation, then the stress in
the z direction is ¢ cos® ¢ and that in the hoop direction is o sin? ¢. For equilib-
rium,

and osin?g="P2 (1193

o cos? ¢= h

2h
From these two,

tan> p=2 or ¢=55 (11.94)

Hence, the optimum orientation of the fibre does not coincide with the principal
stress direction. The shear stress shown in Fig. 11.12(c) is balanced by the shear
stress caused by the fibre in the —¢ direction. In practice, the fibres are not made
to run in the optimum directions as given by Eq. (11.94), because such a pattern
cannot be used to form the end domes. Generally, a small winding angle ¢ is used
to form both the cylindrical portion and the end domes, and then an overlay of
fibres in the circumferential direction is put to resist the hoop stresses. Thus, in
practice, the fibres run approximately in the principal stress directions.

K+++p+++x
&++++++/

osin? ¢
4 _osingcos ¢
/ ?»ocos 0

(b) (©)
Fig. 11.12 Composite pressure vessel
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11.9 TRANSVERSE STRESSES

In the previous sections, it was assumed that the Poisson’s ratios of the matrix

material and of the fibres were equal. When the ratios are different, one can expect
forces between the surfaces of contact because

of different contractile tendencies. To see this,

a consider acylindrical composite member having
b asingle fibre as acore, Fig. 11.13. Let a be the
\\v/ radius of the fibre and b the outer radius of the
T matrix matrix. Let the composite cylinder be subjected
E; E, V, 0, to auniaxial load in the z direction.
Vi Let g, &y, € bethestrainsand o,, oy, o, the
o; stress components in the polar coordinate sys-
J tem. Then, the general Hooke' slaw with Young's
modulus in the longitudinal direction as £ and
N4 Poisson’s ratio as v, is
| e 0 O L oo 0 O
Flg._till.ls IC)f/_l;)nder 0 & 0= ;v 0 o, 0l-
with a single fibre 0 0 - 0 0 o
100 (11.95)
—%(a, +0,+0.)[0 1 0
001

The equation of equilibrium is

do, o0, -0
Zor Ly Zr F0

dr r

This is the only equilibrium equation for the case under consideration. Let the
strain in the z direction be constant. The strain-displacement equations are

g = % &y = Ly &, = constant (11.96)
dr r

where u, is the radial displacement. Equation (11.95) can be solved for o, and o,
interms of €, €, and &,. The results are

o,= K[1-v)e, +v(ey +&.)]

oy= K[1-Vv) gy +v(s, +¢.)] (11.979)
£
1+v)@-2v)
Substituting for ¢, and g, from Eq. (11.96), one gets

du, vy V€Z:| (1198
r r

where K= (12.97b)

o, = K{(l—v) 7
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Cy= K[v du, +(1—v)u—’+vgz}

dr r
Substituting into the equilibrium equation, the result appears as

dzu, 1du, u,
- + - r_2 =0 (11.99)

The solution of the above differential equation is
u, =Cr+ % (11.100)

where C; and C, are constants to be determined from the boundary conditions.
Equation (11.100) is valid for both matrix and fibre. Representing the fibre equa-
tion by subscript £, and the matrix equation by m, Eq. (11.100) becomes

C
U= G 1t —2L (11.101)

7

U, = Cp,, r+ C% (11.102)
The boundary conditions to determine the constants are
(i) Atthefreesurfacer=5,s,, =0
(i) At the interface r = a, because of continuity, ,,= u,, and o,,= o,,
(i) Atr=0,u,=0Thisgives C,=0
Applying the above boundary conditions, the following equations are
obtained:

0 @-v,) (clm - Cbzzm J +v, [clm —%j-kvmgz =

or, Cyy + X P Cop ==V & ®
. C C
(”) (1_ Vm) (Clm - 22m ] TV (Clm + %j TV &
a a
1+2
Or, Clm + b 2Vm sz +Vm EZ = Cl/r +V/r (92
a , .
. 1+2v,
e G+, G- -v,)e, ©
a
C2m
Also, Cpa+—-Cra=0 (h)
a l

Equations (f) — (h) can be solved for the constants. The stress (—p), at the inter-
face is obtained as
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_ 2‘C"z(‘/m - Vf)Vm
- (v,12K,) + (V, 12K )+ (UG,,)

where K is given by Eq. (11.97b).
The stress components in the fibre are

P

oy=Ee. —2vip

The stress components in the matrix are

O,

rm

|
=
T/
S
N
| IS
N
)

N
~
VR

H
|
\l@
NN
N

a? b?
Oom= P 2 1+r—2 (11103
(a2 )
o, = E 2 a
111 A particular laminate has the following elastic constants aong the principal
axes x-y:
E,=200GPa, E, =20GPa, G, =10GPa, v, =025

At a point in the laminate, the following state of stress exists:

O-x/x/: ZOOMPa, O-yryr :ZOMPa, Txryr :ZOMPa
The x’-axis makes an angle of 30° with the fibre axis, counter-clockwise.
Calculate the principal stresses, the principal strains and their orientations.

Ans. 0y, = 2022 MPa; 7.8 MPa
¢’ = 6.25° and 96.25°

£,= 7.207x107%; -2.255% 10"

¢" = -33.6° and 56.4°

112 For a graphite-epoxy laminate having uniaxial reinforcements (parallel to
x-axis), the following elastic constants apply:

E.=181GPa, E, =103GPa G, =7.17GPa, =028

Obtain the off-axis compliance coefficients when the axes are rotated by
(a) +45° and (b) +60°. Express the results in (102 Pa)™ units.

Vyx
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Ans.  (a) bj; = 59.75; by, =59.75; b, =—9.99
by, = 105.7; b, =—45.78; by, =—45.78
(b) b, = 80.53; by, =34.75; b, =—7.88
by, = 1141/, = -32.34; by, = —46.96
11.3 Estimate the components of moduli and compliances for a cross-ply lami-
nate formed from composites consisting of Toray filament and Namco resin.

The modulus data are

E,-181GPa, E,=103GPa, v,=0159, G, =717GPa,

-1
@-v, v,) =10045

The laminate code is (a) [0,/90]s (b) [0,/90]. Assume that the composites
are of uniform thicknesses. Express

Ans.  (3) Ay, = 124.65h; Ay, = 67.49h; —

Ay = TATh; A, = 2.89%;
byh = 803 byh=14.82;
buh = 139.47; b,h=—0.344;

(b) Ay, = 147.51h; Ay, = 44.63h;
Ay = 7A7h; 4, =2.8%
byh = 6.78, byyh=22.43

buh = 139.47; b,h=—0.440

114 A laminate is formed from angle-ply composite plies having elastic con-
stants given in Example 11.5. Estimate the components of moduli and
compliances for the laminate described by the following codes:

(@) ¢ = £30° and (b)¢ = £60°.
~ Ans. (@ Ay = 109.3h; Ay, =236k,
A;,=32461h

Auy= 3673k Ay = Ay =0
hbi1 = 15.42: hby = 71.36:
hbio = -21.8;

hbas = 27.22: hbia = bas =0
(b) Ay, = 23.6h; Ay, =109.3k;
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(b) Ay, = 23.6h; Ay, =109.3k;
Ay, =32.46 h
Ay = 36.73h; A=Ay, =0

hby = 71.36, hbop =15.42;

hbip = —21.18 hbas = 27.22;

bia = b =0

115 For the laminates of Problem 11.4, estimate the average values of the
engineering constants (E£s and vs) corresponding to x and y axes.

Ans. (9 Euw =
Gy =
(b) Ex=

64.9 GPa; E,, = 14 GPa;
36.7 GPa; vy = 1.376;

14 GPa; E,y = 64.9 GPa;

G,, =36.7 GPa;v,, = 0.297

116 For the laminate described in Example 11.6, determine the minimum failure
stresses o, applied at 6 = 45° and 6 = 60° to the fibre axis according to (a)
maxmium stress theory in tension and compression; (b) maximum strain theory
in tension only; (c) distortion energy theory in tension and compression.
Use the data given in Example 11.6.

[~ Ans. (8) Tension:

Compression:

(b) Tension:

(©) Tension:

Compression:

0=45°, 0, =552MPa
0=60° o, =368MPa
0=45°, . =110.4MPa
0=60° o, =127.5MPa
0=45°,0,.=736MPa
0=60° o, =40MPa
6=45°, 0. =494MPa
0=60°, .. =353MPa
0=45°, o, =102MPa
6 =60° o, =105MPa

11.7 A cemented carbide cutting tool used for machining contains 75% by weight
tungsten carbide (WC), 15% by weight titanium carbide (TiC), 5% by weight
TaC, and 5% by weight cobalt (Co). Estimate the density of the composite,
given the following densities for the constituents:

P =15.77 Mgm™,
Prac =145Mgm™3,

Pric =494 Mgm™3,
£, =8.90 Mgm™2,
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11.8 An electrical contact material is produced by infiltrating copper into
a porous tungsten-carbide (WC) compact. The density of WC
is 15.77 Mgm= and that of the final composite is 12.3 Mgm™.
Assuming that all of the pores are filled with copper, and given p. = 8.94
Mgm=3, calculate
(i) thevolume fraction of copper in the composite,

(i)  the volume fraction of poresin WC compact before infiltration and
(i) the original density of WC compact.
[4ns. (8) 0.507; (b) 0.507; (c) 7.775]

119 An epoxy matrix is reinforced with 40% by volume E-glass fibres to produce
a 20 mm diametre composite to carry a load of 25 kN. Calculate the stress
acting on the fibre elements. The modulus of epoxy is
3 Gpaand that of glassfibreis 72.4 Gpa.

[4ns. 187.3 MP4]

11.10 In the design problem of Example 11.11, if one uses high strength carbon
instead of the high modulus carbon, what will be the changes as compared
to the pure epoxy member?

[Ans. Diameter = 7.3 mm; Weight = 0.179 kgf]

11.11 If Kevlar fibres are used instead of carbon fibresin Example 11.11, show that
the volume fraction of fibre needed would be 0.8, and the diameter of the
member would be 13.1 mm, and the weight 0.57 kgf.
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CHAPTER :
Concentration and
1 2 Fracture Mechanics

I STRESS CONCENTRATION

12.1 INTRODUCTION

While analysing the stresses induced in members subjected to tension, compres-
sion, torsion, and bending, it is generally assumed that members do not have
abrupt changes in their cross-sections. In the case of a tapered member under
tension or compression, the cross-section changes uniformly. But, abrupt changes
in the cross-sections of load-bearing members cannot be avoided. Shafts sub-
jected to torsion will have shoulders to take up thrusts, and key-ways for pulleys
and gears. Oil grooves, holes, notches, etc., are common. In such cases, the
analysis of stresses and strains become complicated. Elementary equations de-
rived under the assumption of no abrupt changes in the geometry of the section
are no longer valid. Sectional discontinuities are called stress raisers, and the
distribution of stresses in the neighbourshood of such regions are higher than in
other regions. They are called regions of stress concentration. Generally, stress
concentration is a highly localized effect. Figures 12.1(a) and (b) show members
with stepped cross-sections under tension and torsion respectively. Let the mem-
bers be circular in their cross-sections. In the case of the member under tension,
let A}, 4,, and 4, be respectively the cross-sectional areas of the parts 4, B, and C.
If P is the axial tensile force, the stresses in the parts according to

, P P P .
elementary analysis are R and /T}-However, these values are valid in re-

gions for removed from sectional discontinuities including the region where the
load P is applied. The corners where the discontinuities occur are regions of
stress concentration. These are shown by dots. Similarly, in the case of the tor-

. . Tr Tr
sion member, the shear stresses by elementary analysis are 7 and 1, »where /,
a

and /, are the polar moments of inertia of the parts 4 and B. As before, these
average stress values are valid in regions far removed from geometrical
discontinuities. At points of discontinuities and nearabout, the stress values
are high.
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A
B
i A
—= A [
: g y
(b)
C
I
(@

Fig. 12.1 Stepped cross-sections
12.2 MEMBERS UNDER TENSION

Figure 12.2 shows a two-dimensional member having two semi-circular grooves
and subjected to tensile loading.

The distribution of normal stresses across the section mn is shown qualita-
tively in the figure. At points m and n, the stress magnitudes are high and they
fall rapidly to a uniform value as shown. Ignoring stress concentration, the aver-

age or the nominal stress across the section mn is

o o, —_abt_____ab
T T T A " (b-2r)t (b-2r)
where b is the width and ¢, the thickness of the
plate. At points m and n, the stresses are maxi-
mum, and let their values be o,,..The
ratio of 6, to the nominal or average stress G,

¢ is called the stress-concentration factor K;; 1i.e.,
2r O ax _O'max(b—Zr)

" " T K= oy ob

The subscript ¢ in K, represents that this stress
concentration factor is obtained theoretically or
experimentally and does not depend on the me-

chanical properties (within the elastic limit) of
l l l \ the plate material. Sometimes, instead of
using the area across mn, the area away from

Fig. 12.2 Plate with discontinuity is used to calculate the nominal
semicircular stress. In the present case, this will be
grooves +_ obt
O'O = 7 =0
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and K = Zmax

so, while referring to design tables, one should be careful about the meaning of
the stress concentration factor.
With reference to Figures 12.1(a) and (b), it was said that the regions where the
cross-sections abruptly change are zones of high stress concentration. To reduce
stresses, these regions are
- r smoothened by fillets as
shown in Fig. 12.3.

’== . Figure 12.4 dispalys quali-
tatively how the stress con-

trati fact i lat
Fig. 12.3  Members with fillets centration factor in plates

. . . r
varies with the ratio —, where

d
r is the radius of the groove or the fillet and d is the width of the plate near the

groove or the fillet. Determination of stress concentration factors purely from theo-
retical analysis for sectional discontinuities of several shapes is difficult and compli-
cated. The majority of data for design purposes are obtained experimentally.

30 T
6 i > }¢2r v
. [ Uv .
DG B T e I v s
99 (a) Semicircular grooves (b) Fillets
K, 1.8
14 |
ol
0 01 02 03 04 05 06 0.7 0.8 09 1.0

r
d

Fig. 12.4  Stress concentration factor for grooves and fillets
The case of a very wide plate with hyperbolic grooves has been solved theo-
retically and the solution shows that the stress concentration factor near the
roots of the grooves can be represented approximately by the formula

K = J08L 41201 @)
2r

where d is the width of the plate at the grooves, and r is the radius of curvature at
the bottom of the groove. Poisson’s ratio is taken as 0.3 in the foregoing equation.

In the case of a circular member of large diameter with hyperbolic grooves and
subjected to tension, the maximum stress occurs again at the bottom of the grooves.
The stress concentration factor is given by
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K, = [05L+055 + 0.08 (b)

Comparing Eq. (a) with Eq. (b), it is seen that the stress concentration factor in the
case of a cylinder under tension is smaller than the stress concentration factor for

a plate under tension. For example, with % =10 in both cases, K,=2.93 in the

case of the plate, and K,= 2.5 in the case of the cylinder.

(a) Plate with a Circular Hole Figure 12.5 shows a plate of width w and thickness
¢t with a small circular hole of radius c. The plate is subjected to a tensile stress G
at a distance far removed from the hole. The width w is assumed to be large
compared to ¢, the radius of the hole. This problem has an exact solution given by
the theory of elasticity. The detailed solution, which is fairly simple, is given in
the Appendix at the end of this chapter. An approximate solution can also be ob-
tained using the energy method and curved beam theory discussed in chapters 5
and 6. For this, consider a /arge circle drawn concentric with the hole and having
a radius b. Since this circle is far removed from the hole, it can be assumed that the
stress condition around the circumference of the circle is not affected by the

presence of the hole.
B

SRR R, I REERRES

osing=0¢

m[ | \]U | m
!
e

!<—b —>|

(b)

T 177

(a)
Fig. 12.5  Plate with a circular hole

To determine the stress distribution around the circumference, consider a tangen-
tial plane PQ at point D, Fig. 12.5 (c). The radius vector makes an angle ¢ with

mm. The area of the section across PQ is ,Wt . Hence, the stress across PQ is
sin@

' owt

o =m=0’51ﬂ(p~

This stress distribution, which is a function of @, is shown in Fig. 12.5 (b).
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The problem is now reduced to a thick circular ring of thickness ¢ with inner

radius ¢, outer radius b, and subjected to loading ¢ sin ¢ around the periphery as
shown in Figures 12.5 (b) and 12.6 .

(@)
Fig. 12.6  Thick ring subjected to periferal loading

Consider a qudrant mn of the ring across the section mm, Fig. 12.6(b). The
reactive forces across mn consist of a longitudinal force N, and a moment M,
which maintains the slope there as zero. The value of N, is obtained by integrat-
ing ¢ sin @ from 0 to ®/2; i.e.,

/2
Ny= I osing bt do = obt
0

The strain energy method ( similar to the method in Example 6.8 ) is used to obtain
M,. Cosider a section of the quadrant at angle 0, Fig. 12.6 (c). The face of this
section is subjected to the following moments:

moment due to M, = M,

moment due to Ny=—N, (bi—pocose) =-N, bxe (1-cos0)

2 2

)
moment due to distributed forces :j otsin¢ bd ¢(bco¢ _b ; € cos 9)
0

0
= obtf sin ¢(bcos o — 2 £€ cos0)d¢
0

)
= O'bt[lbsin2 o+ b+e cosOcos ¢}|
2 2 0

= obt [%b sin® 0+ b—;:c cos 0(cos 0 — 1)}
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The total moment

M=M, —o-btbLzc(l—cos(9)+%0'bztsin2 9+abtbzccose(cos9—1)

=M,- abtbzc(l—cosﬁ) (1+cos6)+%o-bztsin2 0

ie., M=M, —%o-btcsin2 6.
The vertical force N’ on the face at 0 is obtained from statics; i.e.,

0
N'+[osindt bdp= N,
0

or N’=—0'bt(c059—1)+0'bt=0'btcos9

The face at section 6 is subjected to moment M, normal force N = N'cos0

= obtcos>0,and shear force ¥ =N'sin® = o bt cos0 sin 0. Observing that the di-

rection of M is opposite to the one shown in Fig. 6.30, the total strain energy V for
the quadrant from Eq. (6.49) is,

n2 12 2 2 3

4 N M MN

U = @ + + - p,do
{ LzAG 24E  24eEp,  AEp, J 0

Here, p, is the radius of the centre line, 4 is the cross-sectional area, e is the
distance of the neutral axis of the curved member from the centroid of the section,
and E is young’s modulus. Since there is no change of slope across mn,

oU _ o "(M__N\oM
M, o \AEe  AE|oM,
o . oM _
Substituting for M and N, and observing that oM. 0,
0
/2
J' IM 1 ) 2 _
—|M, —= obtcsin® 0| —ocbtcos™ 0 |dO =0
o Le 2
ﬂ/z
ie., {l*[MOG—%O'th(%—}Tsin 26)}—0‘bt(%+%sin29)} =0
0
ie Ym, ® - Lope ) - om =0
e\" %2 2 4 4

. T
M, —n(zabtc4+eabt4)

_obtfc
_ ! (2+e)
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The normal stress at the point n of the section mn is 0, due to the moment M,,
plus o, due to the longitudinal force N, From Eq. (6.35), and since M, is
opposite to one in Fig. 6.20,

M, vy
O-l B Ae (ro—y)

In this equation; making reference to Fig. 6.20,

M, :ff_’”(§+e

2
A=(b-c)t
_b-c
y_ 2 —-€

_ _b-c _b+c
h=pg—e="% +c—e= 5 e

Substituting these, simplifying, and expressing in the form of ratios, one gets

a=e f(% )L ;2/}

Similarly,

g:2é2_9€*
or c 2 log(%)‘

Let b/c = 5 as an example. Then,

e_5+1_5-1_
= a5 =057
5 1.0294\]
{4(10294 )( 4 )}"L83G
= |: }—1.250‘-

Omax =01+ 0, :(1.83+1.25)0':3.080'.
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Table 12.1 gives the values of o,,0,,and o,,, for several values of b/c.

Table 12.1
b/c= 3 4 5 6 7 8
o= 1.50 1.33 1.25 1.20 1.14 1.11
O,= 2.33 1.93 1.83 1.83 1.95 2.19
[ 3.83 3.26 3.08 3.03 3.09 3.30

max

Comparing the values in the table with the exact solution 6,,,,, = 36 for a very small
hole, it can be seen that for b/c between 5 and 8, the results of the approximate
calculation agree closely with the exact solution. When b/c < 5, the hole cannot be
considered as small. Consequently, the distribution of stress on the outer perifery
of the bigger circle is no longer what was assumed. It is also seen from the table,
when b/c > 8, the approximate value deviates substantially from the exact value,
though the hole is small. The reason for this is that the stress calculated for the
curved beam according to the elementary theory is not accurate enough.

From the exact theory, the stress G, at a distance » from the centre across the
section mm is given by

_1 ¢ 3
=27 [2+r +r4j

where G is the uniform tensile stress across the ends of the plate, Fig. 12.5 (a).
When 7 = ¢, i.e., at the point n of the hole, the tensile stress 6,=30 as stated
earlier. When r increases, the stress falls down rapidly as shown in Fig. 12.7(a).
At point 7 = 2¢, the stress is

1 1. 3

Oy =50'(2+ 4+E)_1 220

The exact theory also tells that at the point s i.e., when @ in Fig. 12.7 is equal to X,

the stress is compressive and is equal to 6. This means that when the plate is
subjected to uniform tensile stress o, at the boundary, the point » at the hole
experiences a tensile stress of magnitude 36, and the point s at the hole experiences
a compressive stress of magnitude G.

Instead of the stress ¢ at the boundary being tensile, if it is compressive as
shown in Fig. 12.7 (b), the sign of the stresses around the hole become reversed;
i.e., the point n will experience a stress of magnitude —36, and the point s will
experience a tensile stress of magnitude ¢. This is important if the material is
brittle like glass. Brittle materials are strong in compression and weak in tension.
Hence, as shown in Fig. 12.7 (b) , when a glass plate is subjected to compressive
stress G at the boundary, due to tensile stress, cracks develop at points s.

Figure 12.8 (a) shows a plate subjected to a biaxial state of stress 6, and G,, where
both stresses are tensile. Due to ¢, the stresses at points n-n are —G, each, and those
to 6, are 30, each. The combined stresses at points 7-n are each (-0,+30,). Similarly,
at the p01nts s-s, the combined stresses due to 6, and o, are each (30,— G,). A thin
tube with a hole and subjected to torsion is shown in Fig. 12.8(b). Ifthe hole is small
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AR |11

) R

@° ® °
Fig. 12.7 (a) Plate under tensile stress; (b) Plate under compressive stress

compared to the radius of the tube and is far removed from the ends, the area
around the hole can be considered to be subjected to a biaxial state of stress with
+ 0, and — G,. These are equal in magnitude. Due to G,, the stresses at # and s are
respectively —0, and +30,. Due to 6, the stresses at 7 and s are respectively —30,
and +0,. The net stresses are therefore:

at n: -0, - 36, = —40, since | o, |=| o, |=o.

ats: 30+ 0, =+40.

L1

(a) (b)
Fig. 12.8 (a) Sheet subjected to biaxial stress state; (b) Thin tube subjected to
pure torsion
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Hence, when a thin tube with a hole, is subjected to pure torsion in the direction
shown in Fig. 12.8(b), at points such as s, there will be tensile stresses which are
four times the shear stress in the tube.

In the previous discussions, it was assumed that the hole was small compared
to the width of the plate and was far from the loaded ends. The problem of a hole
in a plate of finite width has also been solved theoretically. Referring to Fig. 12.9,

if the radius ¢ of the hole is equal to g, where b is half-width of the plate; i.e.,
distance of the straight edge from the centre of the hole, and the plate is sub-

jected to a uniform tensile stress ¢ at the ends, then oy at points n and m are

Cg at n =4.30
Oy at m=0.750.
Hence, for a finite plate with a hole, the stress 6, at n is more than that for a large
plate (theoretically, the width 25 — o) with a hole.

m
-~ [¢¢] >
-~ >
~— 09 n ¢ N
(S E— 0 >0
-~ c >
-~ >
-~ b N
-~ N

Fig. 12.9 Finite plate with a hole

(b) Plate with an Elliptical Hole Figure 12.10 shows a plate of large width
(theoretically infinite) with a hole which is elliptical in shape, and the plate
is subjected to uniform tension G at the ends in the direction of the minor axis of
the ellipse.

The exact analysis of the problem gives the magnitude of the stress at point n
of the major axis of the ellipse as

* = ol1+24
O O'(+b)

— _—
B m— f—
B m— —
B mm— —
B m— —

0 <— —— — X
B m— >
~] ———>0
e E—
B m— >
-~ e

Fig. 12.10 Plate with an elliptical hole under tension
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where a is the semi-major axis and b is the semi-minor axis of the ellipse. As the
equation shows, the stress o, at the ends of the major axis keeps increasing as
the ellipse becomes more and more slender. In the limit, when b tends to zero,
tends to infinity. When a = b, the ellips degenerates into a circle, and 64= 3. This
agrees with the previous discussion of a hole in a wide plate. In the case of the
elliptical hole, the least value of stress occurs at the ends of the minor axis, point
s and its value is —G.

When the uniaxial tension ¢ is along the major axis of the ellipse, the maximum
value of the stress 6, occurs at the tips s of the minor axis, and its value is

o' = a(l + 22)
a

In this case, when the ellipse becomes very narrow, i.e., b—> 0, the value of G,
tends to ¢, and the narrow slit is along the direction of the external loading.

When the plate with an elliptical hole is subjected to pure shear T parallel to
the x and y axes, it is eqvivalent to subjecting the plate to a tensile stress ¢ = T at
1/4 and a compressive stress —G at 3m/4 to the x-axis, Fig. 12.11.

The solution from the theory of elasticity shows that the stresses at the tips of
both major and minor axes, i.e., points » and s respectively are both zero. The
value of the maximum stress is

. (a + b)2
=g
and the minimum stress is
. (a + b)
o =-c—
Yy
i T
!
\ !
\}« : /)' t=r
|

N G/}‘
7

28
N

T
Fig. 12.11  Plate with an elliptical hole under shear
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These occur at points whose location depends on the ratio S.When the ellipse

becomes very narrow, the value of 6™ becomes very high, and the points where
they occur are close to the tips of the major axis.

It becomes clear why cracks perpendicular to the direction of tensile loading
tend to spread. Since the maximum stress in the case of a circular hole is finite
(stress concentration factor being 3), to prevent spreading of cracks, small holes
are drilled at the ends of a crack. Plates with semicircular grooves subjected to
tension as shown in Fig. 12.2, also experience stress concentration as stated
earlier. Experiments reveal that the stresses at points m and n, are nearly three
times the stress at the ends of the plate as the radius 7 of the groove is very small
in comparison with the width d of the minimum section. This is seen in Fig. 12.4,
where the curve tends to 3 as g tends to zero.

All of the foregoing conclusions regarding stress distribution assume that the
maximum stresses are within the elastic limits of the materials under test. Beyond
the elastic limit, the distribution of stresses depend on the ductility of the mate-
rial. A ductile material can be stretched considerably beyond the elastic limit
without a great increase in stress, since the stresses tend to get distributed more
and more uniformly as the member gets stretched. This is the reason why in the
case of ductile materials, holes, notches and grooves do not affect the ultimate
strength of the material.

In the case of brittle materials however, the stress concentration caused by
grooves and fillets remain up to the point of breaking. There are no redistribution of
stresses. This is the reason why brittle members with grooves or fillets show a
lower ultimate strength compared to members with no geometrical changes. But, in
the case of glass, which is a brittle material, fine surface scratches do not produce
any noticeable weakening effect, though at the bottom of fine scratches, the stress
magnitudes should be quite high. As an explanation to this, it is stated that com-
mon glass, in its natural state has many microscopic cracks and defects and that a
few additional ones deliberately caused do not substantially affect the strength.

12.3 MEMBERS UNDER TORSION

Similar to members in tension or compression, geometrical discontinuities or irregu-
larities in members under torsion act as stress raisers. In discussing torsion prob-
lems, the hydrodynamical analogy is useful. This analogy compares the torsional
stresses in a bar of uniform cross-section with that of the motion of a frictionless
fluid circulating in a shell having the same cross-section as that of the torsion
member. Figure 12.12 shows the cross-section of a shell in which an ideal fluid is
circulating. An ideal fluid is characterized by two qualities; (a) incompressibility,
and (b) frictionlessness. At point 4 in Fig. 12.12, let V, and ¥, be the components in
the x and y directions respectively of the velocity of the circulating fluid.

In the case of deformable solids, the volumetric strain, i.e., change in volume
per unit volume is given by Eq. 2.34, i.e.,
_AV_Ou, Oty Ou

—= (12.1)

A V. ox oy Oz
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where u,, u,, and u,, are the displacements at a point in the x, y, and z directions.
For a two-dimensional body, this becomes

Ou. Ou
A=—24—2 .
paas P (12.2)
If the body under consideration is incompress-
ible, then
Ou, Ou
x A=—>+—2=0 12.
ox * oy (12.3)

In the case of a fluid in motion, the conti-
nuity equation is the mathematical expression
Fig. 12.12  Circulating ideal fluid ~ of the conservation of mass. If p is the den-

in a shell sity, for a two-dimensional flow field as in
Fig. 12.12, the conservation of mass gives

dp (ov, v,
m +pk o ayJ =0 (12.4)

where p is the density of the fluid. The terms inside the brackets represent the
volumetric strain. If the flow is steady, the density p is independent of time, and
the conservation of mass equation becomes

ov, 8vy

+—2—-90- (12.5)
ox Oy

Then the fluid is said to be incompressible.

In Chapter 2, dealing with the analysis of strain, Eq. 2.25 gave o, = ®, as rigid
body rotation about the z-axis without strain or deformation. If the rigid body
rotation is uniform every where,

1 ( ou,, aux\

then, ('ny = E LE— ay

= ®, =constant

ou, o
ie., 6_xy_ au; = constant. (12.6)
Similarly, in the case of a fluid, the vorticity or rotation is given by the expression
avy ov
0, =————
Wooox oy (12.7)
The condition of uniform vorticity is therefore,
ov, ¢
a—;— 6‘; = constant. (12.8)

Hence, an incompressible fluid circulating with uniform vorticity in a shell is
expressed by
ov 5Vy

2 +E:0 (129&)
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ov, oy
Yy X _
and r 3 constant (12.9b)
Now define a stream function ¢ such that
% o
Ve = gy and vy =50 (12.10)

Such a function satisfies Eq. 12.9 (a). In order to satisfy Eq. 12.9 (b), we should

have
o’ 0%
_8x2 +_8y2 = constant. (12.11)

This stream function coincides with Eq. 7.21 for the forsion stress function, or
Prandtl’s torsion stress function. From torsion stress function and Eq. 7.19,

29 %
T, za,and Ty =T (12.12)
From the stream function and Eq. 12.10,
2 2
Vx=ay,andvy=—ax (12.13)

This means that the velocity components v, and v, correspond to shear stress
components 7, and 7, respectively.

Consider Fig. 12.13 which shows a shaft with a small eccentric hole. Let the
shaft be subjected to torsion.

The effect of this hole on the stress distribution is similar to the velocity distri-
bution of a circulating fluid in a shell with a solid cylinder of the same diameter as
the hole. Such a cylinder obviously alters the velocity distribution in the
neighbourhood of the obstruction. According to hydrodynamic analysis, the ve-
locities of the circulating fluid in the front and rear points of the solid cylinder are
zero, while at points m and n, the velocities are doubled. Analogously therefore,
when the shaft with a small circular hole is subjected to torsion, the shear stresses
in the immediate neighbourhood of the hole will be twice of what it would be in
the absence of the hole.

@ (b) ©
Fig. 12.13 (a) Shaft with a circular hole; (b) Shaft with a semicircular groove;
(¢) Shaft with a key way
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Figure 12.13 (b) shows a shaft with a semicircular groove at the periphery. Based
on the hydrodynamic analogy, the shear stress at the bottom of the groove, point
m, is about twice the shearing stress at the surface of the shaft far away from the
groove. In the case of a key way with sharp corners, Fig. 12.13 (c), the hydrody-
namic analogy indicates a zero velocity of the circulating fluid at the corners
protruding or projecting outwards, points n-n. Hence, the shearing stresses at
these corresponding points in the torsion problem are zero. The corners m-m are
called reentrant corners. At these points, the velocities of the circulating fluid are
theoretically infinite. In the corresponding torsion problem, the shearing stresses
at these points are also very high. This means that even a small torque will induce
permanent set at these points. The stress concentration can however be reduced
by rounding the corners n-n. Generally speaking, reentrant corners are points of
high stress-concentration, and protruding corners experiences zero stresses.
Figure 12.14 illustrates protruding cor-
ners or projecting corners, and vertices
of reentrant corners. Some of these are
sharp and some are rounded corners.
The hydrodynamic analogy explains
the effects of a small hole of elliptical
corss-section or of a groove with a semi-
elliptic cross-section in a shaft under
torsion. Let the principal axes be a and
Fig. 12.14 Reentrant (b, ¢) and b. If the principal axis « is along the ra-
protruding (a, ¢, f) corners  dial direction of the shaft, then the shear-
ing stresses at the ends of the major axis

. . . a . .
a are increased in the proportion {1“‘(3)} :1. Thus, the maximum stress induced

depends on the ratio %_ When a and b become equal, the ellipse tends to become
a circle; i.e., a hole in the shaft, and the discussion can be applied. When b becomes
very small, the ellipse resembles a crack in the radial direction, and the shearing
stresses at the tips of this crack become very high. This explains why shafts with
radial cracks are weak in torsion. Figures 12.15 (a) and (b) illustrate these.

Circular shafts with abrupt changes in diameters are subjected to high stress
concentrations under torsion. If the diameter changes gradually, then one may
use the elementary analysis to get the values of the stresses. To reduce the

(a) (b)
Fig. 12.15 (a) Shaft with an elliptical hole; (b) shaft with a radial crack
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occurrence of high stresses, fillets or shoulders are provided in stepped shafts,
Fig. 12.16. The magnitude of the maximum stress depends on the ratios p/d and
D/d, where p is the radius of the fillet, and d and D are the two diameters of the
circular shaft.

Fig. 12.16  Shaft with variable diameter

Figure 12.17 illustrates the stress concentration factors K, as a function of p/d for
two values of D/d.
The stress concentration factor K, is equal to the ratio of the maximum shear

stress 7,,, occurring at the fillet to the stress T, occurring in the shaft with the

X

smaller diameter, i.e., d. The value of 7, is given by

;. = Id _ 16T

0 2J nd’

where T is the torque applied and J is the polar moment of inertia of the smaller
shaft. Thus,

_ Tmax =7 7Z'd3 .
7 max 16T

These localized high stresses may not be dangerous for ductile materials sub-
jected to static loading. However, when these structural members or machine
components are subjected to fluctuating loads, as in the case of turbine rotors
and crankshafts, these stress concentrations will have pronounced effects.

301
2.6

22 ¢
1.8

1.4 r

1.0

0 0.05 0.10 0.15 0.2 0.25
p/d

Fig. 12.17 Variation of stress concentration factor

12.4 MEMBERS UNDER BENDING

Equations obtained for normal and shearing stresses in the case of prismatic
beams are very often applied to cases of beams of variable cross-section. If the
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changes in the sections of the beam are not abrupt and are gradual, the solutions
obtained by the application of elementary analysis are fairly satisfactory. If the
changes are abrupt, then, as in the previous cases of tension and torsion, the
maximum stress values will be greater than those obtained from elementary formu-
las. The maximum stress can be expressed as

Omax = K0
in which ¢ is the stress at the point under consideration as obtained from the
prismatic beam formula, and K, is the stress concentration factor. Only in limited
number of cases, the values of K, have been obtained using the equations of the
theory of elasticity. For example, a circular shaft with a hyperbolic groove, Fig. 12.18(a),

the stress concentration factor in the case of pure bending is obtained as

K, = 4?\{1+ %+1}{;d+4+v (1—2v) %+1} (12.14a)

where
1+v

N = 3(2—+1) l+4v4/—+1+ F (12.14b)

where d is the diameter of the minimum cross-section and r is the smallest radius
of curvature at the bottom of the groove. v is the Poisson’s ratio for the material.

= I D

Fig. 12.18 Shaft and plate with hyperbolic grooves under bending

When % is fairly large, Eq. (12.14a) can be replaced with sufficient accuracy by

the following approximate equation

3 [d
K =7\>, (12.14c)

similar to the circular shaft, a large plate with hyperbolic notches subjected to
pure bending has also been rigorously analysed for stress distribution near the
notches. The stress concentration factor near the roots fo the notch, m and n,
Fig.12.18(b), can approximately represented by

K,=0.08+,/0355L 1055 (12.14d)

where d is the minimum width of the plate and r, the radius of curvature at the
bottom of the groove.

As in the case of tension, Sec. 12.2, a circular shaft with hyperbolic notches
subjected to bending has a smaller stress concentration factor at the roots than a
wide plate with hyperbolic notches under bending.
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12.5 NOTCH SENSITIVITY

It was stated earlier in this chapter that when the sectional geometry of a member
under stress has geometrical discontinuities like grooves, fillets, holes, keyways,
etc., at these zones, stresses higher than the nominal stress values are induced. The
value 0,,,, of stress at these highly stressed zones was obtained by multiplying the
nominal stress value 6, by a factor K| called the stress concentration factor; i.e.,

Omax = Kt Sy (a)
However, there are some materials that are not very sensitive to notches, grooves,
etc. For such materials, a lower stress concentration factor can be used for design

purpose. In line with Eq.(a), for these materials, the maximum stress value is
Omax = Kf' Oy (b)
where K, is a reduced value of K, and o is the nominal stress value. Notch
sensitivity q is defined by the equation
K, -1
q= K, -1 (12.15)

where ¢ is usually between zero and unity. Equation (12.15) shows that if ¢ = 0,
then K, = 1, and the material under consideration has no sensitivity to notches at
all. On the other hand, if ¢ = 1, then K, = K, and the material has full notch
sensitivity. For design purposes, the factor X, is obtained first for a given geom-
etry either from theoretical considerations or experimental results. This factor X, is
independent of the material. Next, for the material under consideration, find ¢ from
design charts. With these, the value of K, is obtained from the equation

K=1+q(K~1) (12.16)

Figure 12.19 shows how the notch sensitivity factor varies with the notch radius
for two materials, aluminium alloy and steel whose 6, = 0.7 GPa. The notch
10 1

0.8 '/

Steel, 6 ;= 0.7GPa

06 |

04 L
Aluminium alloy

02|

O 1 1 1 1 1 1 1 ]
0 0.5 1.0 1.5 20 2.5 30 35 40
Notch radius » (mm)

Fig. 12.19 Variation of q with notch radius
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sensitivity factor curves involve considerable scatter and because of this many
design calculations involve only the stress concentration factor X,.

12.6 CONTACT STRESSES

Stresses developed during the pressing actions of two bodies need careful atten-
tion since the occurrence of such cases are very frequent. Gears, ball-and-roller
bearings, wheel on rails, etc., are familiar examples. When bodies with curved
surfaces come into contact without any pressure or forces between them, the
geometry of contact is in general either a point or a line. When pressure is applied
between the contacting bodies, the point or line contact become area contacts.
Since the areas of contact are small, the stresses developed will be high. Typical
failures due to these high contact stresses are seen as cracks, pits or flaking in
the surface material.

The general analysis of contact stresses involve bodies having double radius
of curvature; that is, when the radius in the plane of rolling is different from the
radius in a perpendicular plane. Figure 12.20 illstrates a body having a double
radius of curvature.

In the present discussion, only two special cases will be considered, i.e., con-
tacting spheres and contacting cylinders, because of their importance. The stresses
developed are generally referred to as Hertzian stresses, named after the scientist
who developed the theory.

(a) Two Spheres in Contact Consider two spheres of diameters d, and d,

brought into contact. Initially, when no pressure is applied, the spheres expe-

rience point contacts. When a force F is

applied, a circular area of contact is devel-

oped due to axial symmetry. Let this con-

F tact area have a radius a, and let £, v, and

E,, v, be the respective elastic constants of

the two spheres. According to Hertzian

. analysis, the radius a of the contact sur-
face is given by

sp LW s 1
8 1/d, 1/d, (12.17)

Fig. 12.20 Body having a double ~ 1f the spheres are extremely rigid with £, —
radius of curvature and E,—o, the area of contact will be a point

as the expression reveals. The stresses at all

points within the area of contact in the two spheres are not uniform. They have
a semi-elliptical distribution. Figure 12.21(a) shows two spheres in contact and
the frame of reference xyz. The axis of z is downword and the force F acts along
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the z-axis. Figure 12.21(b) shows the stress distribution in the spheres and in the
area of contact; and this is shown in Fig. 12.21(c), separately.

z
(©)
F F
z 'z
(@ (b)
Fig. 12.21 (a) Geometry of spheres; (b) Stress distribution within the area of contact;
(c) Enlarged sketch

The maximum pressure p,,, occurs at the centre of the contact area, and its
magnitude is given as

P = = (12.18)

27a*
Equations (12.17) and (12.18) are general expressions in the sense that they are
valid for a sphere in contact with a plane surface, or a sphere inside another
spherical surface. For a sphere of diameter d, in contacte with a plane, d, = . For
a sphere d, in contact within another internal spherical surface, d, is negative.
These cases are shown in Fig. 12.22.

d,(negative)

(@ (b)
Fig. 12.22 (a) Sphere in contact with a plane; (b) Sphere inside another spherical surface

All points within the spheres experience stresses, but the stresses along the z-
axis are maximum; i.e., in any diametrical plane at z the stresses at point ( 0, 0, z )
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are maximum. Their values are

o oz 1 o
Ox =0y = ~Pmax {1 P [z/a]}(“_‘}) 2(1+22/a2) (12.19)

1
O, =~ Puax | — 5 )
. =~ Pma Lﬂz/az} (12.20)

where p,., 1s the numerical value as given by Eq. (12.18). These are the principal
stresses at any point z along the z-axis.

The average stress at the area of contact is '/ (ﬂaz) . Hence, the maximum pres-
sure p,... as given by Eq. (12.18) which occurs at the centre of the contact area, is

1% times the average stress. Assuming both the spheres have the same elastic

properties, and taking v = 0.3, the maximum pressure which is compressive, is

2
3 F 2 (n+n)
==L =0.388] 3 FE? 2L
pmax 2 7[612 1’127”22 (1221)

where 7, and r, are the radii of the two spheres. Let the sphere with radius », be
pressed on to a plane surface which has the same elastic properties as that of the
sphere. Putting r, = oo, the radius of the contact area, and the maximum pressure are

[Fr FE?
a=1.109|:371:|, pmax=0~388{3 2 } (12.22)
1

Equations (12.17) to (12.22) are valid for both spheres; but appropriate value for
Poisson’s ratio corresponding to the sphere considered, need to be used.

The Mohr’s circles for the state of stress described by equations (12.19) and
(12.20) consist of a point and circle.

Further aso, =o0,,7,, =0; and

T =71,_= = (12.23)

One can plot the values ¢, and ©, along z to display their variations as a func-
tions of the distance from z = 0. In measuring the distances along the z-axis, the
radius a of the surface of contact is taken as the unit. For the stresses, p,,, is
taken as the unit. Figure 12.23 shows graphically the plots of o, and 6, = ©,.
The plot of t,, = 7, , Eq. (12.23), is also shown. All the normal stresses are
compressive in nature, and v is taken as equal to 0.3.
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z/a
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Fig. 12.23  Plot of Opax 00y, Ty, and 7,

At the central point of contact, i.e., at x =y =z = 0, the values of o, = o, are from
Eq. (12.19),

1]__1+2
Ox = Oy = 7 Pmax [(1 + V)—ﬂ =7 = Prna (12.24a)

From Eq. (12.20),

0, =~ Pmax

The maximum shear stress at the point from Eq. (12.24) is

1 I 1+2v 1-2v
Tz =Ty = E(O-x - Gz) = E(_ 2 + l)pmax = 4 Prmax (1224b)
With v=03, 7. =7, =01py,, (12.24c¢)

This being too small, it dose not cause any yielding of materials such as steel,
which depend on shear stresses for yielding. In fact, the maximum shear stress
occurs inside the sphere at approximately half the distance of the radius of the
contact area. This point must be considered as the weakest point in such materi-
als as steel. The maximum shearing stress at this point, for v= 0.3 is about 0.31p, ..
It is suggested that cracks originate at this point below the surface and progresses
to the surface. The lubricant, which is under pressure, enters the fine crack and
wedges the chip loose.
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(b) Two Cylinders in Contact Now consider two cylinders, Fig. 12.24, pressing
against each other. Before the application of force F, there will be a line of con-
tract [. After the application of the pressing force, the bodies deform and the line
of contact becomes a narrow rectangle of width 2b and length /. The pressure
distribution within the area of contact is once again semi-elliptical as in the case
of the two spheres.

F
F
X
o et
/
£ y

—

I :

z

(@) (b)

Fig. 12.24 (a) Two cylinders in contact, (b) Pressure distribution in the contact area

z

If d, and d, are the diameters of the cylinders, and if £, v, and E,, v, are the
respective elastic constants, then the half-width b of the rectangle area of contact
is given by

b || 2F (1) / Er(1-v7%) /£ (12.25)
R 1,1
d d,

The maximum pressure; i.e., compressive stress o,,,, Which occurs along the middle

line of the contact area is given by

2F
Pmax = 57 (12.26)
Equations (12.25) and (12.26) are general and are applicable to both cylinders. If a
cylinder of diameter d, presses on a plate, then d, becomes infinite in Eq. (12.25).
If the cylinder is in contact with a hollow cylinder of diameter d,, then d, is
negative. A wheel pressing on a rail is a case where d, = co.
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The state of stress along the z-axis for two cylinders is given by

2
z z
o, = _vamax|: [1+b_2j —g] (12.27)

( \ T,z
O-y:_pmax |:L2_+ 1+z /b _25:| (1228)

R e
‘max m (12.29)

If the elastic properties of the two cylinders are identical, then equations (12.25)
and (12.26) reduce to the following.

F (1-v)*dd, EF _d +d,
b=1.128| =A% |, _os64] [EE_GTD
{ El (d+dy) |'? I (1—vydd, | (1230

Figure 12.25 is a plot of G,, G,, and ©, as a function of depth form the centre of the

contact areca. The unit of depth is b, the half-width of the contract area, and the
unit of stress is p...

0 0.2 04 0.6 0.8 1.0 o/p
L max

05 4
1.0 | (o)
1.5 | T,

z/a 20 4

25 |

3.0
Fig. 12.25 Plots of ©,, 6,, 6,and 7,,(v =0.3)

Let the force applied per unit length of cylinders be F* = F//, and let
1- vz2

ky=—+7—, and k, = T
2

(12.31)
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Then

| 4F (k)
b—J[ — (12.32)

where 7, and r, are the radii of the cylinders. If both cylinders have the same
elastic constants and v = 0.3, then

*
F nn

(12.33)

In the case of two equal radii r; = r,=r,

_ Fr
b=1.08 ,/ 7 (12.34)

For the case of contact of cylinder with a plane surface,

_ F'r
b=1.52 ,/ 7 (12.35)

Substituting for b from Eq. (12.33) into Eq. (12.26), one gets

| F (5 +1)
Dimax ey (12.36)

If the materials of both cylinders are the same and v = 0.3

Pmax = 0418, [ ———— (12.37)

(12.38)

Based on the plot of 7,,, the maximum shearing stress occurs at a depth z = 0.780,
and its magnitude is 0.301 p,.. .

Instead of maximum shear stress theory for failure of materials, sometimes the
octahedral shear stress theory is used. From Eq. (1.44a).
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1 ) 5 , 2
Toct = 3 (0'1 _O'z) +(0y —03)" + (03— 0y)
where ¢,, 6, and ©, are principal stresses.

(i) Two Spheres in Contact 0, = 0,, and o, are the principal stresses at the centre
of the area of contact. Since these are compressive, stresses, arranging them alge-
braically,

o =0,=0,=0,,and 03 =0,

o =3[ (00 +(e )}”2

_\2
_T(GX -o.) (12.39)

At z = 0, substituting from equations (12.19) and (12.20),

ﬁ[_l+2v

Toct = 3 2 pmax + pmale
_\2

=% (1-2V) Prax (12.40)

With y=0.3,

Toot = 0.094p, .

(ii) Two Cylinders in Contact At z = 0; from equations (12.27), (12.28),
and (12.29),

= _Zmeax; Oy = " Pmax> 9z = ~Pmax
Arranging algebraically,

01 =0y, 0 =03 =

1/2
Toct = %|:(O-x —0; )2 +(O-z _O-x)z:|

V2

=75 (0x=00)=
Example 12.1 Two carbon steel balls, each 25 mm in diameter are pressed together
by a force F = 18N. At the centre of the area of contact, determine the values of the
principal stresses, the maximum shear stress, and the octahedral shear stress.

For carbon steel, E =207 GPa, and v = 0.292.

N

3 (1-2v) Prax (12.41)
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Solution  From Eq. (12.17)

\/31:{2(1—#)/15}
a=3=|— -
8 2/d

3F{(1—Vz)d:|
a=3—|——
8 E

Substituting the given values,

a=3{3><18><0.915x25><10_3}
8x 207 x10°

=10"3/0.7459 =9.07x10° m = 0.091 mm

From Eq. (12.18),

Do = 3F
" 2 7a?
10
= X80 g450mpa
2x7%x9.07
From Eq. (12.24),
o 1+2v
O_x_Gy__ 2 Prmax

= —0.792 p,. = — 828 MPa

0,= = Pmax— — 1045 MPa
Arranging algebraically,

0,= 0, = —828 MPa, 0, = — 1045 MPa

Maximum shear stress is

o -0
2

%(—828+ 1045) = 108.5 MPa

Octahedral shearing stress is
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= g(— 828 +1045) =102.3 MPa
Also, from Eq.(12.y)

= %(1 ~2V)P,,,

Toct
= %(1 —0.584)x104.5x10’
=102.5 MPa.
Example12.2 [nExample12.1,0neofthe steel balls is replaced by aflat carbon plate.

For F'= 18N, determine the principal stresses, the maximum shearing stress, and the
octahedral shearing stress, at the centre of the contact area.

Solution From Eq. (12.17), with d, = oo,

33_}:[2(1—\/)2(11:‘

8 E

Substituting the given values from Example 12.1,

a:3[3x18x2x0.915x25x103}
8x207 x10’

=10%31.492 = 11.43 x10 > m=0.1143 mm
From Eq. (12.18),

_ 3F
Pmax = 2 Cl2
10
= X80 655.10° pa.
2x x11.43
From Eq. (12.24),
142
O_x_o_y__ 2 Prmax

=—0.792p, . =—521x10° Pa
O, =—Pryy =—058x10° Pa.
Arranging algebraically,
0, =0, =-521x 10° Pa, o3 = —658 x 10° Pa.
Maximum shear stress is

o -0
z.l’\’lf:l)(:l—3
2
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= %(—521+ 6358)10° = 68.5 MPa .
From Eq. (12.y), the octahedral shear stress is

NG

Toct = ?(1 - 2v)pmax

:%x0.416x658x106

= 64.5 MPa.

Example 12.3 [In Example 12.2, determine the maximum shear stress and the
maximum octahedral shear stress. At what distance from the contact surface do they
occur?

Solution The maximum shear stress and octahedral shear stress occur approxi-

mately at half the radius of the contact area, i.e., at z = %a =5.7x10"> m. At this

point, from equations (12.19) and (12.20)

1

2XZ

=)=~ Dum [1—%tan*‘ (2)}(1.292)—

- p {[1 -2 1.107}(1.292)—0.4}

= —0.177p,,,, =116 MPa

1
and O, =~ Pmax _1

I+Z

= 0.8, =526 MPa .

Hence, the maximum shear stress is

1
Tmax = E(O-x - O-z)

- %(—1 16+ 526) = 205 MPa .

The Octahedral shear stress is

2
Toct = T(O-x - O-z)

:%(-11“526) =193 MPa .
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I FRACTURE MECHANICS
12.7 BRITTLE FRACTURE

It is generally known that materials always show a strength that is much smaller
than what might be expected from the analysis of molecular forces. For example,
for a glass specimen, the theoretical strength in tension based on the analysis of
molecular forces is about 11 GPa. But tensile tests conducted on glass rods reveal

o a strength of only 180 MPa. This discrepancy
T T T between theory and experiments was attrib-
uted to the fact that glass in its natural state

contains a large number microscopic crack-
producing regions of high stress concentra-
tion. Consequently, the theoretical strength
would be much higher than the experimental
L results. Figure 12.26 shows a glass plate with
_>| 2a |<_ a narrow crack of length 2a. Let a uniform ten-
sion ¢ be applied at the two ends of the
plate.Considering the crack as a microscopic
alliptical hole. It was shown theoretically,
based on the strain energy principle, that the
stress ¢ required to extend the crack sponta-
neously is inversely proportional to the square
l l l root of the length of the crack. Experimental

investigations made on glass sheets in which

° cracks of known length were made with a glass
Fig. 12.26  Glass plate with a cutter’s diamond showed a very satisfactory
crack of length 2a agreement.

Previous discussions on stress concentrations revealed that very few problems
involving regular geometrical irregularities could be solved theoretically to deter-
mine stress concentration factors. Most of the factors used in design calculations
are based on the results of experimental investigations. The specimens needed for
experimental investigations have to be prepared very carefully since they involve
factors like root radius, notch depth, fillet radius, etc. In order to use these factors
in practice, the designer has to know precisely the geometrical parameter present
in his structural or machine member, which may not be easy. When there exists a
crack, or a flaw, or an inclusion, the elastic stress concentration factor approaches
infinity as the root radius approaches zero; and renders the stress concentration
factor useless. Further, in the case of ductile materials, zones of high stresses
make the material yield with the stresses getting redistributed. Hence, a new ap-
proach is required while dealing with cracks in structural or machine members.

In this context, a designer is interested in two factors associated with the prob-
lem of a crack in a specimen.

(a) The state of stress field in the close vicinity of the crack tip

(b) If a crack already exists, the energy required to produce a spontaneous
crack extension thus creating a new fracture surface. This knowledge will
help in calculating the average stress necessary to initiate a crack.
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12.8 STRESS INTENSITY FACTOR

Consider a plate of uniform thickness having a centrally located crack. The plate
is subjected to a uniform tensile stress o applied at the ends. The stress field in
the vicinity of the crack tip has been obtained theoretically. These are expressed
by the following equations, and are with reference to Fig. 12.27. The crack of
length 2a is a through crack in the plate of thickness .

Ay

BERRERES

c
Fig. 12.27  Plate with a through crack of length 2a

o, = K [cos—(l—sin—sinlﬂ (12.42a)
2zr 2 2 2

o, :Ll:cos—(l+sin—sin3—):| (12.42b)
27y 2 2 2

Ty = L[sin—cos—cos?’—} (12.42¢)
2rr 2 2 2

Equations (12.42a, b, and c) show that the elastic normal and elastic shear stresses
in the vicinity of the crack tip depend on the radial distance » from the tip, the
orientation 6 of the point of interest, and the factor K. This means that the state
of stress at a given point in the vicinity depends completely on the factor K called
the stress intensity factor.

However, this factor K depends on the nature of loading, the configuration of
the stressed body (i.e., the location of crack in the plate, ratio of crack length to

the width of the plate, etc.), and the mode of crack opening. The fracture modes
will be discussed separately.
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For a central crack of length 24, in an infinite plate subjected to a uniform tensile
stress ¢ as shown in Fig. 12.27, the stress intensity factor K is given by

Ky, =oNma (12.43)

where K is in (N/mm?) VMM or MPa/m . Values of K have been determined for a

variety of situations employing both theory of elasticity approach and numerical
techniques. As mentioned earlier, the value of K depends on the type of loading,
and the geometry of the specimen. For example, If #/b = 1, and a/b = 0.5, the
magnitude of K gets modified and becomes

K, =1320ra
In order to take care of this dependence of K, on the type of loading and the
geometry, Eq. (12.43) is modified as

K, =ao~Nrma (12.44)

Figures 12.28(a) and (b) show graphically the values of K|/K_ , where K is taken
as the base unit, for several values of 4/b and a/b. The subscript I in K indicates
that it is mode I fracture, and the meaning of this will be discussed subsequently.

K/K,

4.0 o h
t ot ot 5 =04
30* -~ 2 — 7;
&
2.0 137 ﬁ=0.7
G/ b
h
L h_
1.0 ‘ ‘ ‘ /’/ b %ratio
0 0.2 0.4 0.6 0.8
(@
70 L o
60| —F S S N
h b
50 L i
4.0 a—
2 h
<30 T T 1 7 ;=05
(o)
20 L
10 T 1 1 1 1 1 1 gratl'o
0 02 ®) 04 0.6 b

Fig. 12.28 Values of K;/ K as a function of a/b for different % values.
(a) Central crack of length 2a, (b) Edge crack of length a.
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12.9 FRACTURE TOUGHNESS

The previous discussion dwelt on the stresses induced in a specimen with a central
crack subjected to external loading. Closely associated with this aspect is the inher-
ent behavioural property of the material of the specimen. This aspect deals with the
strength of the material. This is characterized by the critical stress intensity factor,
also called fracture toughness.This is designated by the symbol X, .

Through carefully controlled testing of the specimen of a given material, for a
known applied stress, the critical crack length @, which suddenly propagates is
noted. This critical crack length gives the critical value of K, by the equation.

K, =ao.\lra, (12.45)

K. 1s a basic material parameter called fracture toughness. These tests are usually
conducted on single edge-notch specimens subjected to mode 1, i.e., the opening
mode (discussed in section 12.11), and under plane strain conditions.

If K, is known, then it is possible to compute from Eq. (12.45), the maximum
allowable stress to prevent brittle fracture for a given flaw size. For a given flaw
size, the allowable stress is directly proportional to Kj, and for a given operating
stress the maximum allowable crack size is proportional to the square of K.
Therefore, increasing the value of K| has a much larger influence on allowable
crack size than on allowable stress. Although the fracture toughness K| is a basic
material property in the same sense as yield strength, it varies as a function of
strain rate and temperature. This dependence on the strain rate and temperature
decreases as the temperature decreases. Figure 12.29 illustrates graphically the
relationship between crack length ¢ and maximum allowable stress ¢ to prevent
sudden extension of crack for two materials, one with high K|, and the other with
lower K.

High K|,

Allowable stress o

Low K|,

a;
Crack length a
Fig. 12.29 Crack length and allowable stress for high and low K, materials

As the figure illustrates, for a given crack length a,, the maximum allowable
stress 0, is higher for a material with high K than the allowable stress ¢, for a
material with low K.



Introduction to Stress Concentration and Fracture Mechanics 461

Example 12.4  An off-shore drilling platform has a steel sheet 35-mm thick, 12-m
wide, and 20-m long . The steel sheet is subjected to a tensile stress in the direction
of its length. The operating temperature is below its ductile-to-brittle transition
temperature. Tests have revealed that under the conditions, the material has a fracture
toughness factor K; .= 28.5 MPa~/m . The sheet has a 60 mm long central transverse
crack . Calculate the tensile stress for catastrophic failure. If the yield strength for the
material is 240 MPa, how does the failure stress compare with it?

Solution Making reference to Fig. 12.27, 2a = 60 mm, 2b =12 m, and 24 =20 m ,

-3
Hence, the ratio of crack length to width of the plate is %z 30 X610 =0.005.

Further, 5:?71 .67 .

Since £ is very small, the crack may be considered to be present in a very
long plate, and centally located. For this case, Eq. (12.44) can be used with o0 = 1.
This gives for o, the value

O'=Kl/\/E

Since fracture occurs when K| =K, one gets

Ky,  285x10°

s ,/ 7r><30><10

=92.8 x 10°Pa = 92.8 MPa

O =

This is the stress value at which catastrophic failure will occur. The ratio of this
stress value to yield strength is

O
Zw 20 559 or T _0386

o 928 oy

Thus, catastrophic failure will occur at 0.386 G ..

Example 12.5 A 10-m wide plate used in a heavy-machine-shop construction
operation had a catastrophic failure during assembly when the sheet was subject to
a stress of 90 MPa. The ambient temperature was cold. The critical stress intensity
factor for the material was 20 MPam . It was suspected that an existing crack,
presumably in the middle went undetected. Determine the maximum length of the crack
that could have escaped the crack-detector’s attention.

Solution Assuming that the plate was long and the length of the crack was small
compared to the width, Eq. (12.44) can be used with oo = 1. Hence,

KIc
Jra

with 6 = 90 MPa and K, = 20 MPa~/m ,




462 Advanced Mechanics of Solids

20x10°
90x10° =
\Ta
or Jra = % =0.222
and a=0.071lmor 71 mm.

. Length of the centrally located crack = 2a = 142 mm.

12.10 FRACTURE CONDITIONS

Section 12.7 mentioned brittle fracture without explaining what we mean by brittle
fracture. It is generally known that there are materials like copper, mild-steel etc.,
which clearly have a defined yield points stress, maximum stress, and ultimate stress.
These qualifications or distinctiveness are based on the stress—strain curves
obtained usually during a tensile test. Figure 12.30 is a typical curve obtained from
standard tensile test of a ductile material. Point P in this figure is called the propor-
tional limit. This is the point at which the curve begins to deviate from a straight
line. Point E is called the elastic limit. At this point of stressing, if the load is
gradually removed, the specimen will regain its original length without any perma-
nent set, Hooke’s law, which states that stress is proportional to strain, applies only
up to the proportional limit P. Many materials reach a point at which the strain
begins to increase very rapidly without a corresponding increase in stress. This
point is called the yield point. Not all materials have an obvious yield point. For this
reason, yield strength G, is often defined by an offset method. This is shown in
Fig. 12.30, In this method, the yield strength correspond to a definite amount of
permanent set. This is usually 0.2 or 0.5 per cent of the original gauge length,
although 0.01, 0.1 and 0.5 per cent are used. The other points U and F correspond
to ultimate strength and the fracture or breaking stress.

U
e R F
| |
/'Y } }
E //: ! |
L _ ¢ |
Pl i i
Stresso Do | |
. ! ‘
/ I ! ‘
/ | ! ‘
/ | | !
/ | I !
/ | | !
/ | | \
/ | | !
/ ' l 1
0 1
A Sy €, Er
Strain €

Fig. 12.30 Tensile test diagram for a ductile material
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Materials which exhibit definite yield zones are called ductile materials. Before
fracture occurs, they exhibit strong yield characteristics. Materials which do not
have yield points are called brittle materials. These materials fail catastrophically
after reaching a finite stress state. Glass, cast iron, are example. In the case of
ductile materials, the yield strength is temperature dependent. There exists a tem-
perature for a given material, wherein below that temperature the material sud-
denly exhibits a brittle nature without any yield characteristic. This temperature is
called the transition temperature, or ductile-to-brittle temperature. Tables of
transition temperatures for various materials are not available, possibly because
of great variations on their values even for a single material. Cold temperature is
definitely an influencing facture for brittle fracture. So, operations below room
temperature is an indicator of possible brittle fracture.
The term relatively brittle is used in test procedures. This term means fracture
without yielding occurring throughout the fractured cross section. The fracture
mechanic concept is correct only for linear elastic materials i.e., conditions in
which no yielding occurs. But Equations. ( 12.42 a, b, and ¢ ) show that as r
approaches zero near the crack tip, the stresses become very high and yielding
occurs. However, if the yield zone is very small compared to the crack width
(generally of the order of 0.1), the elastic solutions i.e., Liner Elastic Fracture
Mechanics ( LEFM ) solutions obtained for stress intensity factors cabe used.
It was also stated that the values of stress intensity factors are valid under
plane strain conditions. This means that the thickness of the specimen is critical.
Thin specimens do not exhibit flat fractured surfaces. They reveal ductile-brittle
mode (mixed mode) of failures, and fracture stress is a function of the thickness of
the specimen. As the thickness increases, the value of fracture stress becomes
constant. Figure 12.31 exhibits this phenomenon. The minimum thickness to obtain
plane strain conditions and valid K; measurement is

2
‘= 2.5(K1°} (12.46)

where 0,,is 0.2 per cent offset yield strength (see Sec.12.14).

Mixed mode
Plane strain fracture

Fracture stress

Thickness ¢
Fig. 12.31 Effect of thickness on fracture stress
In general, increasing the thickness of a part leads to a decrease in K .
As Fig. 12.31 shows, the value of K, becomes asymptotic to a minimum value with
increasing thickness. This minimum value is called the plane strain critical stress-
intensity factor. The test requirements for measuring K|, call for plane strain val-
ues; and therefore the published values invariably refer to plane strain values.
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When a crack is visible and its length can be measured, this data can be used
along with its location in the member. When a crack is not visible, the designer has
to assume for 2a the longest length that goes undetected by any of the crack
detection techniques. For its locations, the designer has to assume the worst con-
ceivable locations, since more than one location for the crack may be critical.

12.11 FRACTURE MODES

In our discussion so far, attention has been focussed on opening mode or the
first mode. This was the reason for putting the subscript /c to the critical stress
intensity factor K. Generally, three ways of separating a plate are considered in
facture mechanics. These are shown in Figures 12.32(a), (b) and (c).

Figure 12.32(a) is commonly called the opening mode and is designated by I,
the first mode. It has an edge crack and the forces attempt to extend the crack.
Figures 12.32(b) and (c) are called the shearing modes. In Fig. 12.32(b) the dis-
placements stay within the plane of the plate, and are designated as mode II. In
Fig. 12.32(c), the displacements are out of plane, and are called mode III. Mode III
is called the tearing mode. In our discussion here, the attention has been mainly
on mode I, because considerable amount of analysis and experimental investiga-
tions have been done on this mode.

= &l

7

l — ~
(@) (b) (©

Fig. 12.32  Fracture modes (a) Opening mode; (b) Shearing mode ;
(¢) Tearing/ Shearing mode

Example 12.6 A plate of 1.5-m width and 3-m length is required for construction
operations. The expected load in the longitudinal direction is 4 MN. Experimental
methods to detect through thickness edge cracks are valid only for cracks longer than
2.7 mm. Two steel plates m and n are being considered for this purpose . Steel-m has
yield strength of 850 MPa, and steel-n has yield strength of 1500 MPa. The correspond-
ing critical stress intensity factors for the two materials are: form, K, . =100 MPa m,and
forn, K, =60 MPa~lm . A factor of safety of 1.5 is to be used. Minimum weight is
important. Which of the two materials should be selected? Inspection did not reveal
any apparent cracks in the two sheets.

Solution (a) We shall first determine the thickness of each sheet based on the
yield strengths of the materials.
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o
Steel-m : 2 x15xt=F
1.5
__L5F

or R
1.5 oy

C 15x4 S
_—1.5><850_4'7X10 m or 4.7 mm

Steel-n : t= 15x4 2.67x107 m or 2.67 mm

1.5x1500
(b) We shall next determine the thickness based on the critical stress that each
sheet can bear without crack growth. Since inspection did not reveal any appar-
ent cracks, we shall assume a crack in each sheet whose maximum length goes
undetected; i.e., 2.7 mm.

Based on Fig. 12.27, for both materials,

h_3/2_ . a__27

b 15 b 15x10°
For these values, the curve in Fig. 12.28 gives a value for K;/K, as 1.1.
Steel-m : With K;,=100 MPa~/m , and Eq. (12.44),

100=1.10v7a

_ 100

o=
or 1.IN7za

100

1.INZx2.7%107

=987 MPa
This crictical stress for crack extension is greater than the yield stress for the
material. Hence the thickness based on 6, prevails, which is 7 = 4.7mm.

Steel-n: With K, =60 MPay/m, and Eq. (12.44),

=1.8x107 =0.0018

60=1.1 ov7ma
o= 60
or 1.1\ 7ma
_ 60
LINZx2.7%x1073
=592 MPa

With a factor of safety = 1.5, the allowable critical stress for steel-n is %= 395

MPa. This value is lower than s, /1.5 = 1000 MPa. To carry a load of 4 MN, the
thickness required is therefore

4

= ——— _3 =
=15%395 6.75x107" m = 6.76mm

t
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Hence, the n-steel with a lower a K|, and a higher yield strength requires a thick-
ness of 6.76 mm, whereas, the m-steel with a higher K|, and lower yield strength
requires a thickness of only 4.7 mm. So, the m-steel is recommended for the task.

Example 12.7 [n Example 12.4 dealing with off-shore platform, the thickness of the

steel sheet was 35mm and the value of K| was given as 28.5 MPa m . What should be
the 0.2 per cent yield strength to ensure plane-strain condition according to Eq.
(12.46)?

Solution t = 35mm, K, = 28.5 MPam. Substituting,

2

35xu)3:25[3§§ing
: o
or 0.014 o, = 28.5x10°
or o, = 241 MPa

This agrees well with the value given in the example.

Example 12.8 A rotating disk with a bore radius ¢ and an outer radius b has a small
radial crack of length a at the bore. Determine the critical speed for the disk based on
(i) the yield stress 0, and (ii) the critical stress intensity factor K|_.

Solution From Eq. (8.68), for a disk rotating with an angular velocity of ® rad/sec,
the circumferential stress G at a radial distance » from the centre is

3+ bt 143
Gy = 8vpa)2{b2+cz+ rg —3+;}r2i|

where p is the mass density of the material. This stress reaches its maximum value
at the inner radius ¢, Eq. (8.70), and is equal to

2
_3+v 252 I-v|c
O-max_ 4 pwb |:1+3+V(b) :| (a)

(i) With o,,=0,, Eq. (a) gives for @ the

value
2 oy,
a)1=
2, 1-v 2
\/(3+v)p[b 3¢ }
or
2 oy
W, =

Fig. 12.33 Rotating disk with a \/ 2 ~ 2
radial crack at the bore P [(3 * V)b * (1 v)c J

(ii) From Eq. (12.44)

K. = aoy a
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o= KIc
or _—a Ja ()

Substituting this into Eq. (a),

Ky 3+vpa)22b2{1+ l—v(%)Z}

o a 4 3+v

:%p(oz2 |:(3+v)b2 +(1—v)cz]

or (ﬂa)% \/ap[(3+v)b2 +(1—V)Cz:| ©

Putting @ = Zg_ON

speeds N, and N,.

, where N is the rpm, one can get the corresponding critical

Example 12.9  In Example 12.8 what s the ratio of the critical speed N, based on
the yield stress to the critical speed N, Based on the critical stress intensity factor?

30 30 .. N o
N, :7a)l,and N, = ® gzvmgN—;:w—;

Solution From Equations (b) and (c),

Ifo=1.12, 6,= 1515 MPa, a = 2.54 mm, and K, .= 50 MPa /m,

N, 3\i [L12x1515
N_2_< x 254107 )F 2220022

=0.3x5.83 (b)

=1.75

This example shows that if N, is the rpm decided by the yield strength criterion,
there is the danger of catastrophic failure when the speed reaches 0.57N,.

Example 12.10 A4 cylinder subjected to internal pressure p has an inner radius ¢
and an outer radius b. The cylinder has a small radial crack of length a at the bore.
The inner radius is fixed and the outer radius is to be determined.

(i) The value of the outer radius b is to be determined according to the maximum
shear stress theory ignoring the crack. A factor of safety n is involved.
(ii) The design is to be based on the critical stress intensity factor K.
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Solution (i) To apply the maximum shear stress theory, a point at the inner radius
is considered. At this point, based on Example 8.1, and equations (8.13) and (8.14),

o = p'a—pb2+cz'0'—p c?
r = TP 0~ > z =
b -c? b -c?

The maximum and minimum pressures are o; =o and o3 = 0,..

Hence, Tmax = l(O-l - 03) = p 2b2 2
2 b”—c
E ting this t LO'
quating 1S 1o n o
b’ 1

P2 "

o
Fig. 12.34 Cylinder with an internal ~ or b = O'y——ygnpc ?

crack under pressure

(ii) To prevent crack extension, it is critical to consider Gy,
From Eq. (12.44), for an edge crack of length c,

K. = aora

K Ic

oN7rwa

or o=

Equating this to %Ge,

1 [)2+C2 _ KIC

V4
nep?_c? a~Nwa

b = nkK, + pa~ma 2
o nK,, — paNna

12.12 PLANE STRESS AND PLANE STRAIN

While discussing stress concentration, it is helpful to consider load-path or
load-flow lines in a body such as a wide plate, with and without geometrical
discontinuities. These are similar to stream lines in fluid flow. In a pipe of uni-
form cross-section, the steady flow of a fluid can be represented by streamlines
which are all parallel to the flow direction. If some sort of obstruction to the flow
exists then the streamlines get crowded near the obstruction and the velocity of
flow near the obstruction will no longer be uniform. Similarly, in the (case of a
body of uniform section with no discontinuities, the load lines will) be uniform
and all parallel, when the body is loaded longitudinally, Fig. 12.35(a). If there is
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a geometrical discontinuity, such as a notch, the load lines get crowded near the
notch tip and the stresses near that region will no longer be uniform, Fig. 12.35(b).

The load lines also indicate the direction of the load or the stress. In
Fig. 12.35(a), the load lines are all straight indicating the uniaxial state of stress.
However, in Fig. 12.35(b), the load lines bend near the notch and the tangents to
the lines give the directions of the resultant stresses. As seen in Fig. 12.35(c), The
tangent at 4 to one of the lines has two components, one in x-direction and
another in y-direction. This means that though the member is subjected to uniaxial

| | F

l l

(@) (b) ©

Fig. 12.35 (a) Load lines in a uniform bar; (b) Bar with a notch; (c) Load lines
indicating bi-axial state of stress

loading, at point 4, the state of stress is bi-axial. Figure12.36 shows qualitatively
the bi-axial nature of the stress distribution near the notch section of a uniaxially
loaded member. At the root radius of the notch 6, = 0, since the surface of the
notch is stress-free. However, as x increase, G, increase, reaches a maximum and
at a far distance from the notch tip becomes zero. At the notch tip, 6, is maximum
and becomes uniform at the far end of x. )

y

Fig. 12.36  The bi-axial state of stress near the notch

The two faces of the plate are stress-free; i.e., 6,= 0. Hence, the situation is a
plane stress case; but €, is not equal to zero. Very close to the notch tip,

(o3 Gy v
g, =—V—2—v——= —E(O'x +0o,)

E ' E (12.46)
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and contraction in the plate thickness occurs. However, this is a as localized
effect in a wide plate, as shown in Fig. 12.37.

In the case of a thick specimen, the material near the crack tip is heavily
constrained in the thickness direction (i.e., in the z direction) to contract. A
small cylindrical material surrounding the crack tip will therefore experience O, in
the z direction, as shown in Fig. 12.38. Since the faces of the plate are stress-
free, o, will be zero at these faces. A sufficiently thick plate with a crack will
therefore be in a state plane strain. The stress 0, in the thickness direction that
is required to completely prevent €,will be

o v

Z

E :E(O-x+o-y)

i€, o, = V(GX + Gy) (12.47)

As mentioned, the two faces of the plate are
stress-free and the value of O is zero at the
two faces. But, it builds up rapidly inside.
Consequently, a small dimple appears near
< . the crack tip in the two faces. Inside the plate
Z Tries to contract near the crack tip, there will be a triaxial state
of stress taking into account 6,, 6, from Fig.

12.36 and G, as per Eq. (12.47).
In the case of a thin plate, there is not
enough material surrounding the notch tip to
constrain or prevent contraction in the z-

o direction. So, €, is not zero, but G, is zero.
Fig. 12.37 Contraction near Hence, this is a case of plane stress; Fig 12.39.
the notch tip
c c
(¢ ()
>® —ff—ercrack
plane
(¢ (¢
B
(thickness)
c c
(a) (b) Fig. 12.39 Thin plate;
Fig. 12.38 (a) Cylindrical material surrounding the free contraction,

crack tip; (b) Stresses preventing contraction plane stress
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12.13 PLASTIC COLLAPSE AT A NOTCH

The presence of a high state of stress near the notch tip suggests the occurrence
of plastic yielding near the tip. In Chapter 4, several theories of yielding were
discussed. Among these, the maximum shear stress theory and the octahedral
shear stress theory are applicable to a large number of materials. According to the
maximum shear stress theory yielding will occur at a point when

Hoi-o3)=30, (1248)

where 0, and o5 are respectively the maximum and the minimum principal stresses
at the point, and o, the yield point stress for the material. According to octahe-
dral shearing stress theory (also called the distortion energy theory), yielding will
occur at a point when

1
1 2 2 22 _ 2
Toct = 5[(01 ~6,)" +(0,~03)" +(05-0y) } =73 % (12.49)
where 6}, 0,, and 05 are the principal stresses arranged algebraically, and G, the

yield point stress for the material.
In the case of a thick plate, near the crack tip, 6, = o,.T.

w = 0 according to
equations (12.42)

and 0,=v (0, + 7)) according to Eq. (12.b)

These are the principal stresses also, since 7,, = 0 in the plane of symmetry, i.e.,
along the x-axis. Thus, near the crack tip

0,=0,=0,,=0;=0,=v(0,+0,)=2v0, (12.50)

Assuming v = 0.33, yielding occurs according to the maximum shear stress theory
when

1 1
E(Uy -2vo,) = 2%
ie., 0.34ay =0,, Or o, :3ayp (12.51)

This means that in the case of plane strain (thick plate), yielding occurs when
6, = 30,, At low loads, the local stress is less than 35,, and hence the material
remains elastic. As load increases, 6, becomes equal 36, and yielding occurs.

According to the octahedral shearing theory yielding occurs when (with v = 0.33).

1 ) 1/2 5
g[(ay —2v0'y) +(2vo, -0, )2} = %ayp
1.e., x/§(0.340'y) = \/anp, or o, =30'yp.

This is the same as the maximum shearing stress theory. Figure 12.40 (a) repre-
sents the situation.
In the case of a thin plate, 6, = ¢; = 0 and therefore it is a plane stress case. The

. 1 1 L
maximum shear is 5(0'1 —03)= 70- Plastic yielding occurs when 6, = ©,, As
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loading increases, the plastic zone keeps spreading until the entire remaining section
yields unless fracture occurs earlier. Figure 12.40(b) depicts the situation.

Gy Gy
30,7 Increasing applied
load Gy \
20,,1 Elastic-plastic

G| % Elastic-plastic

. Elastic Elastic

X X

(a) (b)
Fig. 12.40 (a) Yielding at notch tip under plane strain (b) Yielding at notch tip

under plane stress

It is important to observe that in plane strain cases the notch tip stresses are
much higher than G, when yielding occurs. In plane stress cases they are limited
to 6, Thus, plane strain condition is more severe and can more easily lead to
fracture and cracks.

From the foregoing discussions it becomes clear that if the stress distributions
as shown in figures 12.40(a) and (b) can be reached before fracture, then plastic
collapse can occur. Consider the case where there is no strain hardening. The
maximum stress that the cross section across the notch can carry will be limited to
the yield point stress. As the load increases, the yield area across the section
keeps enlarging until the entire area cannot have stress greater than G,,. Such a
situation is called plastic collapse. Thus, in plane stress where the stress in the
entire cross section is equal to yield strength at the time of collapse, the maximum
load carrying capacity (for a plate with single edge notch) is

Poux = BV —a)a, (12.52)

where B is the thickness of the plate, ¥ is the width, and « is the crack length.
This failure load is called the collapse load or the limit load. The nominal stress
in the section where there is no crack, under the limit load is

Pmax
Toom =y
(W -a)

O (12.53)

As can be seen, the nominal stress keeps decreasing linearly with increasing
crack length.

In plane strain case, or in general non-plane stress case, the stress distribution
after the onset of yielding is not uniform, Fig. 12.5(b). The stress peak is local and
the average stress across the section cannot become much higher than in the
case of plane stress, and Eq. (12.51) becomes applicable.

In the case of a work-hardening material, when tearing or plastic collapse com-
mences at the notch tip, the stresses in most of the ligament are still close to 6,,,
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because the strain gradient is very steep. Thus, the average stress can be higher
than 6, but will be less than the ultimate stress 6. This average stress across
the ligament is called the collapse strength O, . In general, for a work-hardening

col *
material Eq. (12.53) changes into

(12.54)

It should be noted that the foregoing discussion is strictly for uniform applied
loading.

Example 12.11 Calculate the theoretical stress concentration factor of an elliptical
notch with semi-major axis of Scm perpendicular to the applied load, and semi-minor
axis of lecm. What is the strain concentration factor in the elastic case? What is the stress
concentration factor after the notched section has fully yielded in plane stress
assuming no work hardening?

Solution  The theoretical stress concentration factor K, for an elliptical notch is
, %

K, =2 - (1 + 21)

O-nom b

where a and b are respectively the semi-major and semi-minor axes of the ellipse.
Here, a =5 cm and b =1 cm. Hence,

v S\ _qq. (W—a)
Kt_1+2(])_611(%m: W Ocol
When the member is still in an elstic state, stress is proportional to strain, and
hence

O-nom

E

¥

x
o
& =7 and &, =

(K),=(K), =11
When the notched section has fully yielded with no work hardening, the entire

section across the notch is experiencing uniform stress and there is no stress
concentration. Hence, K,= 1.

Example 12.12  For Exercise 12.11, calculate the nominal stress in the full section
at the time of collapse if the yield stress is 350 MPa. The width of plate is 30 cm, and
thickness is 1.25 cm. Calculate the collapse load.

. (W -2a)
Solution Thom =57 Oy

_(30-10)
30
Collapse load =Wto,,,

x 350 =233.3 MPa

=(30x1072)(1.25x1072)(233.3x10°)
= 874875 N =875 kN
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Example 12.13  As mentioned earlier in this chapter, if a crack appears in practice
one sometimes drills a stop hole at the crack tip as a temporary repair. Suppose a crack
has started at the edge of a strip, and its length is a. The crack tip radius is almost zero.
A hole of diameter d is drilled with its centere coinciding with the crack tip. Assume
that the crack with the stop hole is an ellipse. Calculate the theoretical stress
concentration factor before and after drilling the stop hole. If the crack is 2.5 cm long,
determine the diameter of the hole to be drilled to give a theoretical stress concentra-
tion factor of 5.

Solution For an elliptical hole in an infinite plate, the theoretical stress concen-
tration factor is given by

! a
K, =1+23

where a and b are the semi-major and semi-minor axes of the elliptical hole. This
can be recast in terms of the radius of curvature p of the ellipse at the end of the
major axis. The radius of curvature is given by
»?
P=a
Using this and substituting for »

or ,
Kt=1+2\/z
P

In the case of a circle, p = R the radius of the circle. If d is the diameter of the hole

drilled
' 2
K, = 1+24l7a

For the present example, before the drilling of the stop hole,
' a
K, =1+ 26 =

After drilling the hole, if the stress concentration factor is 5, then

2a
=1+2,/=
5 +“,d

or 7:4

ie., d =%

Hence, to bring down the stress concentration factor from oo to a finite value of 5,

the diameter of the stop hole should be %
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12.14 EXPERIMENTAL DETERMINATION OF K,

The American Society for Testing and Materials (ASTM) has set standard test
methods to determine the values of plane strain fracture toughness of metallic
materials. Among the several standard specimens recommended, one of them, namely
the three-point bending specimen is shown in Fig. 12.41. To ensure that cracking
occurs within a certain envelope and to reduce scatter, starter notches are generally
used. The specimens are then fatigure pre-cracked prior to testing to simulate an
ideal plane crack with essentially zero tip radius to agree with the assumptions of
LEFM. To ensure plane strain conditions, the specimen dimensions must be large
enough. The standard recommendations according to ASTM are:

2

B>25 (&J (12.55)

2
K
W =5.0 L# ]
O
Since the value of K, is not known prior to testing, some estimate based on other
experiments is used, or use of large thickness specimens is recommended. At the

end tests, the value of K, obtained is used to validate the dimensions of the
specimen according to Eq. (12.55).

Fatigue crack L(iad

Machineb*_ N V}/

notch \| a
e 2.1W | 2.1W | —~ B~
(min) (min) :V_2V
4W

Fig. 12.41 ASTM specimen for three-point bend test
Table 12.1 gives the representative values of plane strain fracture toughness for
selected engineering alloys.

Table 12.1
Modulus Yield stress Toughess
Material (MPa) o,, (MPa) K,. (MPa \/% )
Steels
Medium carbon 2.1 x 10° 2.6 x 107 54
High strength alloys 14.6 x 10? 98
Maraging steel 18.0 x 10? 76

(continued)
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Aluminium alloys

2024 T3 70 x 10* 3.45 x 10? 44
2024 T8 4.2 x 10? 27
7075 T6 5.4 x 10? 30

Titanium alloys
Ti-6A-4V 1.0 x 10° 10.6 x 10? 73
(high strength) 11.0 x 10? 38

12.15 STRAIN-ENERGY RELEASE RATE

It is obvious that a body with a crack or a void is less stiff than a similar body
without a void. Under uniaxial loading, stiffness M of a given member is defined as
the force or load necessary to cause a unit deflection under the load or in the
direction of loading. Consider a body with a crack of length a and subjected to a
load P as shown in Fig. 12.42(a). Let the body be of unit thickness.

V :

|

{’ dd Py P,
—>|daj«— ‘P, !
M, : :
o (A
° : .

0 )
> dd |~
@ ®)

Fig. 12.42  Single edge-crack extention

As the load P on the body is gradually increased, displacement of the point of
application occurs, and for a linearly elastic body, the load-displacement line OP,
will be as shown in Fig. 12.42(b). The elastic strain energy U stored is equal to the
work done by the load P, i.c.,

U =%P5 (12.56)

where § is the displacement of the point of application. In terms of stiffness, since

_P
5= (12.57)
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the energy is

1P’
U= U (12.58)
where M is the stiffness of the body with a crack of length a. Let the crack length
a be increased by an amount da. As a result of this, the stiffness gets reduced
from M,to M,. There are now two cases to consider, Fig 12.43(a) and (b).

(i) The loading grips are held fixed (i.e., after the initial displacement & under

the load P)) and the crack is extended.
(i1) The load P, is held constant and the crack is extended. Due to this, the

stiffness gets reduced and the load moves down.

(i) In the case of fixed grip, with the additional cut da, the load P, gets
reduced to P, corresponding to the reduced stiffness M, but the original
displacement d, remains unchanged, i.e.,

R B
S =ar=0 =70 12.59
M, 2T M, (12.59)

Further, due to additional crack length da, the strain energy gets reduced such
that from Eq. (12.58)
1
)

(au) -3 E(a_P)JrP da (12.60)

dals 2| M\éa

Ou
where the subscript & indicate that it is fixed-grips. The quantity Ja 1s called the

strain—energy release rate.

Crack begins to increase from a

Crack begins to | .
Py oo » < increase from a o~ 1(;1 agceli bl;
Crack is longer : \ 8a
Py | ok e 8 S
N ,/l i y oa @ /,’1 X
S/ N
X :
e :
81 8 81 82 8
(@) (b)

Fig. 12.43 Load-extension plots for crack extension (a) Fixed-grip ( fixed displace-
ment); (b) Constant load
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Differentiating Eq. (12.57)

(i)
05 _g_1oP p\M
oa M Oa oa
1
3]
OP M
or or _ _ _\MJ
oa M Oa

Substituting in Eq. (12.60)

L), L)
ou) _1| 2P, M) 0 \u
(8a)5_2 MPM Oa P Oa
1
ol -1
_ 15 (M)
L (12.61)

The expression given by Eq. (12.61) is the strain—energy release rate under fixed-
grip condition.

(i) In the case of constant load P, from Fig.12.37(b), the change in strain—energy
due to the extension of the crack is

dU =U, - U, =%P(52 ~5)

Since 5:55 (%)P =P E» ;
and 0, :51+%da
dU:%P:(51+%da]—é’l}
:lP_aa—ilda
1
-lp Pa(a]Z[) d

1.€.,

=5 == (12.62)
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This is identical to Eq.(12.61) excepting for the sign. Hence, the strain—energy
release rate is independent of the type of load application (e.g. fixed-grip, con-
stant load, combinations of load change and displacements, etc.). From figures
12.43(a) and (b), at instability, i.e., at the instant that the crack length is about to
get extended, the critical strain—energy release rate G, is

8 i)
dU _ -~ _ 1, (M_l 20C 12.63
Frilc e L Pt L (1269

The factor Czﬁ is called the compliance of the cracked plate, which depends on
the crack size. Compliance C is the deflection per unit load on the specimen. Once
the compliance versus crack length relationship is established for a given speci-
men configuration, G, can be obtained by noting the load at fracture. It is neces-
sary that the plastic deformation at the load tip is kept to a minimum.

The compliance coefficients are generally expressed in the dimensionless form
EBC, where E is Young’s modulus, B is the specimen thickness, and C, the
compliance at a given slit length a. A set of compliance measurements is made on
a specimen, and the slit is extended by small increments between each pair of
consecutive measurements. The slit length for each measurement must be mea-
sured accurately. The procedure is repeated until the slit length is greater than the
longest crack to be used in the test specimen.

12.16 MEANING OF ENERGY CRITERION

The change in strain energy due to extension of crack can be interpreted as the
energy necessary to create a fracture over da. Consequently, one can write

U’ =U" (body with no crack) + U", (due to crack)

Consider a large plate of length L, width # and thickness B with a small central
crack of length 2a. If the loading is uniform tension, then the elastic strain energy
of the uncracked body is

1
U’, (body with no crack) = E%LBW (12.64)

The stress due to a crack depends upon the crack tip stresses. These crack tip
stresses are proportional to the applied stress 6. Thus the strain energy due to

2

crack will be proportional to %. The energy will also be proportional to the
thickness B (thicker the plate greater will be the energy). Hence, U," will be propor-
ol
E

also.U,"and U,"should have the same dimensions of energy. Hence, the crack size a
should appear as a* in U,"; i.e.,

tional to B Further, the energy due to crack dependes on the crack size a

" 2
Uy =C% Ba’ (12.65)
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where C is a dimensionless constant of proportionality. A detailed analysis shows
that C = . The total strain energy of a plate of unit thickness, having a centre
crack of length 2a is therefore

_ 1o° ne” 2
U—U1+U2—2 ELW+ E (12.66)
dU _ 2n62a
w- E (12.67)
This is for a crack with two tips. Since all considerations are for one crack tip,
dU _ no’a
a- E (12.68)

per crack tip, per unit thickness. The fracture energy per unit crack extension is
called fracture resistance and is denoted by R, while the energy release rate is
denoted by G.. Thus, we have from equations (12.63) and (12.68)

2
G, =Rand R= &E“ 12.69)

Equation (12.69) shows that fracture occurs when (no”a) reaches a certain value,

2

namely, ER. The factor gs?q is equal to the square of the stress intensity factor K.

Hence, Eq. (12.61) tells that fracture occurs when K, reaches a certain values, i.e.
ER. In other words,

fracture if : K;, =./ER = toughness (12.70)
K2
fracture resistance R = % (12.71)

Example 12.14 A 75-cm wide steel plate has a central crack of length 2a =10 cm. The
plate is 5 mm thick. The plate is pulled to fracture and the fracture load is 800 kN.

Determine the stress intensity factor assuming % as small. Also, determine the value

of fracture resistance R. E for the material is 207 GPa.

Solution Since%is small , =1 in Eq. (12.44). Thus,

K, =oVna
The nominal stress ¢ of the uncracked specimen at the time of fracture is

B 800,000
(75x1072)(5x107%)

=2133x10° N/m?> =213.3 MPa

K, =2133x10° [ mx5x107 |
= 84.5 MPa /iy . This is fracture toughness.
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From Eq. (12.61), the fracture resistance is
2
RpToa
E

_ x(213.3)2 %10 x 5107
207 x10°

=34.5x10°N/m

K. 2
R — Ic
Also, “F

_ (84.5)2 x10"
207x10°

The residual strength is the fracture stress Oy i.e., the nominal stress at which
failure takes place (or the remaining strength due to the presence of crack).

Thus, K, = aopNma
KIc
a~Nma

_ Toughness

=34.5x10°N/m

O-ﬁ:

oaNTa

84.5

1><\/TC><5><1072

=213 MPa

Example 12.15 Using the result of the previous example, calculate the residual
strength of a plate with an edge crack of length a = 5 cm. The width of the plate W =
12.5 cm. Check for collapse. Use o =2.1, and o, = 480 MPa.

Solution The residual strength G, is

K[C
O A
/ a~NTa
84.5

= =101.5 MPa

2.1><x/71:><5><1072

The nominal stress at the time of collapse, from Eq. (12.53) is

W -a)
Ohom = w pr
_(12.5-5)
152
Since 288 >101.5, plastic collapse does not occur.

x 480 = 288 MPa
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12.17 DESIGN CONSIDERATION

The conditions for fracture in a component depend on the interaction of material
properties, such as the toughness, with the design stress and crack size. For a
large plate with a central crack, stress intensity factor K, is given by

K. =omna @

where ¢ is the design stress and « is the flaw size. In the process of using this
equation in the design process, the selection of the material generally depends on
the environmental conditions in which the designed product will be functioning.
For example, the conditions may be such as to require a corrosion resistant mate-
rial. Once a selection like this is made, the value of the critical stress intensity
factor K, is essentially fixed. In addition, if the situation allows for the presence of
a relatively large crack—one that can be readibly detected and repaired—the

design stress is fixed and must be less than K, /Nma. For instance, assume that for

the wing skin of a military aircraft, a certain aluminium alloy is selected because of
its high strength and light weight. As a consequence of this, the value of K, is
fixed. Added to this, if the design stress G is set at a high level to increase the
payload capacity of the aircraft, then the allowable flaw size is given by K2c/(nc?).
If this flaw size goes undetected due to the limitations of the inspection process,
a catastrophic fracture may occur. This flaw may get covered up by a rivet head,
and the crack may get extended from the rivet hole and cause failure. The signifi-
cance of Eq. (a) lies in the fact that it is essential to decide what is most important
in the design of a component. Is it the material selection because of the environ-
ment, availability, etc., or the high level of design stress because of weight, size,
and cost consideration, or the flaw size that must be tolerated for safe functioning
of the component? Once any two combinations to the three variables (fracture
toughess, design stress, and the flaw size) is identified, the value of the third
variable is fixed.

12.18 ELASTO-PLASTIC FRACTURE MECHANICS (EPFM)

Consider a body B having linear or non-linear elastic properties containing a
crack or a void. Let the body have a volume V, loaded by surface traction F on

the boundary S, and prescribed displacements D on the boundary S, Fig. 12.44
(a). Under the action of external forces and prescribed displacements, the body
will undergo deformation and store strain energy. The energy stored is equal to
the work done by the internal stresses during the deformation process. In the
case of a linearly elastic body, the elastic energy per unit volume at any point of
the body is given by Eq. (11.8); i.e.,

1 * * * * * * * * * * * *
W = E(O-x Ext 0, 8,40, & 4T, VT, 7, T T, 7zx) (12.72)
whereo,. 0,- - - 7., &, &,- - -5 are the final or terminal values reached at the end

of gradual loading. In the case of a non-linearly elastic body, let the stress—strain
curve be as shown in Fig. 12.44 (b). Consider an elementary rectangular volume of
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the body with sides Ax, Ay and Az. The stresses acting on the rectangular faces
are shown in the figure. Due to G, acting on the area AyAz, the energy stored is
equal to the work done by it and is equal to

Lt [(oAvAz)A &, Ax =1t [(0,A &, ) AxAyAz =[(o d e, )dx dy dz

where A€ Ax is the elementary extension in the x direction (refer sec. 4.2.5).

Similarly, the work done by other forces 6, AxAz, 6,AxAy, etc, can be written.
Assuming that deformations are small and that superposition principle is appli-
cable, the elastic strain energy stored in the elementary volume is

External loads

Prescribed
displacements

AN
(a) (b)
Fig. 12.44 (a) Elastic body with cavity, (b) Non-linear elastic curve

o*, g *

| (Gxdgx to,de, +ode. + 7,7, + 7,7, + sznx)dxdydz (12.73)

[
The quantity in the parenthesis under the integral sign is the strain energy per
unit volume, also called strain energy density, at the point considered. The
limits of the integration are from zero to final values at the end of loading; i.c.,
c,, Gy* - - - 1" In the case of a linearly elastic solid, the strain energy density
given by Eq. (12.73) reduces to that given by Eq. (12.72). The strain energy
density at any point is denoted by W, where

w=[(Xode,) (12.74)

The summation sign under the integral stands for the expanded version given in
Eq. (12.73). The total strain energy stored in the body is therefore,

U=j'WdV=j[J'Zaxdgx]dV (12.75)
14 Vv

Now consider the body B with the cavity. Let AB be a small elementary volume
adjacent to the cavity, Fig. 12.45(a).

Let the elementary volume of the body AB be isolated from B and let free-body
diagrams of the newly created void, and that of AB be drawn as in Fig. 12.45(b).
Only a part of the cavity, and the elementary volume are shown enlarged in the

figure. The elementary part AB will be having surface fractions 7 *, and the surface



484 Advanced Mechanics of Solids

of the newly created cavity (i.e., the space that was occupied by AB) will be having
equal and opposite surface fraction 7 *. This is similar to action and reaction dis-

cussed in reference to Fig.1.2.

¢ AC

(@ (b)
Fig. 12.45 (a) Body with cavity ; (b) Newly created cavity and small volume removed

The total elastic strain energy of the original body is now equal to the strain
energy of the body with the newly created cavity, plus the strain energy stored in
the elementary volume AB that is removed; i.e.,

U=[wdv= [ wdv+ | wdv (12.76)
V V-AB AB

Consider a point P and an elementary area 35 surrounding it on the surface of the

newly created cavity. Let n be the normal to this area and 7" the traction
. . * : * * * .

Fig. 12.45 (b). The traction vector 7° will have components 7", T, and 7, inx,y,

and z directions. During the loading process, the point P will have undergone

. * * * . . . . *
displacements U, Uy, and u_ inx, y, and z directions. The traction vector T and

the displacement vector u are the final or the terminal values at the end of loading
the body, B. In the case of a lineraly elastic body, T and U are proportional to
each other. In the case of a non-linearly elastic body, they are not proportional .
Let n,, n, and n, be the direction cosines of the normal n; and let

*

* * * * *
0,0,0, Ty Ty, andt,, the rectangular stress components at P. Then, from equa-

tions (1.9),

X

T* * * *
=no, +n7, +nr,

I =nrt +no,+nrt, (12.77)
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* _ * * *
I =nrt_+ n,T,+no,

z

During the loading process, the work done by the traction T acting on the area ds
is equal to [similar to Eq. (12.74)],
T* u*
Aw= [ (Tydu,+T,du, +T.du,)ds (12.78)
0
This expression is valid for both linear and non-linear elastic bodies. The total
work done by traction forces acting on the entire surface area of the new cavity
during the loading process is
_
w= J Aw ds = _[ _[ (TxduX+Tyduy+TzduZ) ds (12.79)
AS AS 0

Now we try to make the newly created cavity traction free so that it becomes a
virtual extension of the original cavity. This is easily achieved by applying equal
and opposite traction forces T at the surface of the new cavity. During this process,
the forces T applied will do work on the body and this is equal to Eq. (12.79). It is
important to recollect what has been done so far.

We started with a body B (linearly or non-linearly elastic), having a cavity C and
loaded by surface traction F on S, and prescribed displacements D on S,
Fig. 12.44(a). During the deformation process, the elastic body stored strain energy
U given by Eq. (12.75). Next, an elementary volume of body AB adjacent to the
cavity was identified and this was isolated from the parent body. Free-body dia-
grams of the body with the old cavity C and the newly created cavity AC, and the
elementary volume AB were drawn. The elementary body AB was acted upon by

surface traction 7, and the surface of the elementary cavity AC had surface trac-

tion equal and opposite to 7" The elastic strain energy of the original body B was

decomposed into two parts: (a) that of the body B with the newly created cavity
AC; and (b) that of the isolated body AB. Finally, in order to make the surface of
AC, traction free, we apply gradually, equal and opposite forces 7, so that we have
now a body with an extended cavity C + AC. During the process of applying T to
the surface of AC, work is done on the body and the energy stored due to this is
given by Eq. (12.79).

The strain energy stored now in the body B—AB, i.e., in the body with extended
cavity is

U =[wdy— [ wdv + | Awds (12.80)
4 AB AS

Hence, the decrease in energy in the process of creating a void or a cavity is

—AU = [ wdV - [ AWds
AB AS

(12.81)

12.19 PLANE BODY
Let the body B considered be a plane body. Equation (12.81) can then be written as

—AU = [ WdA— | AWds

J . (12.82)
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where AA is the area of the material removed in forming a void and AS represents
the newly created traction-free boundary surface. Now in the limit, let the cavity
or the void considered become a crack of length a. For an infinitesimal crack
extension, the rate of change of energy with crack growth can be expressed as

=] f dxdy - f a—WdS (12.83)

12.20 GREEN’S THOREM
Let I" be the closed boundary of a domain A4, and let P(x,y) and Q(x,y) be two
I
ay

>

9a
functions that are continuous together with their partial derivatives 3 and

in the domain A and the boundary
Fig. 12.46. Then,

Boundary r

Domain A
P (xy)
Q (xy)

d 0
j{\(a—g —a—gj dxdy = !(de+ Qdy)

(12.84)

Integration path ., In this case, the direction in which the

contour is traversed is chosen so
Fig.12.46 Boundary I enclosing that the domain 4 remains to the left,
the domain A Fig. 12.46.

12.21 THE J-INTEGRAL

Let the co-ordinate system be as shown in Fig. 12.47 such that the origin is at the
crack-tip. Then, da=dx, and Eq. (12.83) can be written as

Crack

~——

Fig. 12.47 Body with extended crack
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” dxd —j (12.85)

Using Green’s theorm, the area 1ntegral in Eq. (12.85) can be converted to line
integral giving

a = IWd f—ds (12.86)

0
The quantity (— %) is called the J-integral, i.c.,

J=- aa de ja ds (unit: Nm™) (12.87)

J is thus the drop in potential energy per unit virtual extension of crack.

An important consequence of Eq. (12.87) is its applicability to plastic behaviour
under certain restrictions. The main restriction is that the body must be subjected
to monotonically increasing loading and must not experience any unloding. J is
thus a measure of the input work to the system and not the amount of work
recoverable on unloading.

12.22 PATH INDEPENDENCE OF THE J-INTEGRAL

Consider Eq. (12.85) with reference to the closed path I" shown in Fig. 12.48 (a).
The first term on the right-hand side of the expression, i.c.,

” o axdy

becomes for a plane body from equations (12.58) and (12.59)

oW _ 9 Oy 0y
xS ox Tt Tox tO S

(12.88)

X

Since,

au au, ou, du,

NGV Sy:_l ny=_+_|

oX ay dy  Ox
Equation (12.88) becomes

oW _ 90w, afou Ny 9oy
ax  Ox ax( ox j+TXy ax( oy x| 7O ax oy

oW aux 0 aux aUy 0 E)uy
H - dxdy = ”[ Xax( ~ j+rxy&[ o T P x| oy dxdy

P ou ou p) ou ou

A

€y =
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Now consider the second term on the right-hand side of Eq (12.85),
ie., | W 4o

i Ox
From Egq. (12.79) for a plane body,

ou
J. d J|: ¥ o +TyE:|dS

S|

n.ds = dscos® =dy, n,ds = dssin® = —dx.
Substituting these in Eq. (12.90)

From Eq. (12.77)

(n o, +n,T )+86ny<

3T n.t,, +n,0, )}ds (12.90)

From Fig. 12.48(b),

ou,, ) (o ou,, )
—ds—jL o 6 xy%de—lery%+ay%de

Using Green’s thorem, the above expression can be written as

ow, ol  ou, du,, )
Jart=laoa o J ayw Oy o J Bl
y
n
Path T dy9 _B)
dS dS
O X —dx
4 @ )

Fig. 12.48 (a) Closed contour T surrounding the domain A; (b) segment ds of the
path with normal n

This expression is identical to Eq. (12.89). Hence, for a closed contour T as in
Fig. 12.48(a), the J-integral is zero, i.e.,

aw
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Consider Fig. 12.49(a) which shows a body with a crack. A closed contour
ABCDEFA, which includes the two flanks of the crack, CD and AF is shown. This
contour consists of two paths I; and I}, and the two flanks.

I \(F irst path)
@ (b)
Fig. 12.49 Closed contours for a body with a crack (a) Two paths in different directions;
(b) Two paths in the same direction

The two paths I} and I, of the contour are in opposite direction to each other.
Since the J-integral for a closed contour is zero, we have

J=Jpc +Jep +Jppr +Jps =0
Along the flanks CD and FA of the crack, y = dy = 0 and the traction force 7T is

also zero. Hence, for the flanks, the J-integral according to Egs. (12.87) and (12.78),
is zero. Accordingly,

Jase == per
The second path DEF is opposite in direction to the first path 4ABC. If the path

DEF is in the same direction (i.e., the domain or the area being to the left of the
traversing direction), Fig. 12.49 (b),

Jr, =Jp, (12.92)

This implies that the J-integral is path independent when applied around a crack
tip from one crack surface to the other.

12.23 J-INTEGRAL AS A FRACTURE CRITERION

The path independency of the J-integral can be used as a fracture criterion in the
same manner that the stress intensity factor is used. From Eq. (12.87), J is the
drop in potential energy per unit virtual extension of crack; i.e.,

1(o
J= _E(a_Z) (12.93)

where B is the specimen thickness. The procedure indicated by Eq. (12.93) is as
follows.

First, load displacement diagrams are obtained for a number of pre-cracked
specimens. Let the crack-lengths be a,, a,, a;, etc. Figure 12.50(a) depicts these.
The energy per unit thickness u; delivered to the specimen at a given level of
displacement 9§ is obtained as the area under the load-displacement curve. U, is
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then plotted as a function of crack-length for several constant values of displace-
ment J,, §,, J, etc., Fig. 12.50 (b).

The negative slopes of U,—a curves are plotted against displacement for any de-
sired crack length between the shortest and the longest used in testing, Fig. (12.50(c ).

oUa

The slopes represent — 3 at a given value of displacement which is obvi-
a

ously J. A knowledge of the displacement § on the onset of crack extension
enables the determination of J. from the J — & calibration curve for each initial
crack length. Alternatively, if J is an appropriate criterion of crack extension,
then 87, 8% and &', are the displacements on the onset of crack extensions for the
respective crack length §,, J,, and d;

Load per unit thlckness%
5
Energy per unit thickness U,

S, 5, & a, a, 43 S, 5, o
Displacement & Crack length a Displacement &

Fig. 12.50 (a) Load-vs-displacement for different slit lengths a,, a,, as, (b) Energy-
vs-slitlength; (c) J-vs-displacement

12.24 ASTM-STANDARD TEST FOR J,,

The American society for Testing and Materials has standardized a test method
to determine J, as a measure of toughness. The objective is to determine the
value of J at the initiation of crack growth. It is not intended to characterize crack
growth beyond the initiation stage. The recommended specimens are the notched
bend and compact tension. Figure 12.51 shows the sketch of the notched bend
specimen.

Displacement
| measurement point
f
AT w I
e s
«—2.25 W(min)——2.25 W(min)—] — V?V [~
=B

Fig. 12.51 Notched three-point bend specimen
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The specimen has a deep initial crack (% 2 0~5) . In order to obtain a valid J| value,

the crack length a, the initial uncracked ligament dimension (W-a)=b, and the
width B must satisfy the condition

b,B>25 {i—’;j (a)

In order to ensure that the crack tip stress/strain field is characterized by path-
independent integrals. Evaluations of the J-integral are made from load versus
load—displacement curves using the area under the load displacement curve. For
the three-point bend specimen, the J-integral is given by

_A4 %
J_Bb [W]

where A is the area under the load versus load-point displacement diagram, B is

the specimen thickness, b is the initial uncracked ligament (W—ao), W is the

width of the specimen, and a, is the original crack size. For the three point bend

specimen, f[a_oj )
w

The initial values of J,, obtained from the measurements of the area under the
load versus displacement curve is validated by the condition (a).

12.25 RELATIONSHIPS OF K, G., AND J

It is obvious that the changes involved in the process of extension of a crack in
a loaded body is intimately connected with the stress field existing in the neigh-
borhood of the crack tip. This means that the critical stress intensity factor K,
the critical strain energy release rate G,, and the J-integral are related. The rela-
tionships are as follows:

2
J=G, = KL(I—%) for plane strain (12.94 a)

¢ E
K.’
J=G, = EC for plane stress (12.94 b)
Problems

121 A 20-mm long cast iron rod of 25-mm diameter is pressed on to a thick
copper plate with a force of 20 N. Determine the width of the contact
area, the maximum pressure at the centre of the contact area, and the
octahedral stress at the centre of the contact area. The elastic constants
for the materials are: cast iron—£ = 41.4 GPa, v = 0.211; copper-£ =
44.7 GPa, v =0.326.
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122

123

124

125

12.6

Ans: 6.85x 107 mm; p,,,. = 930 GPa;
Toot = 253 GPa.

For two spheres in contact under pressure, show that the maximum shear
stress on the z-axis occurs very nearly at half the distance of the radius of
the contact area and its value is 0.31p, ..

For two cylinders pressed together, show that the maximum shear occurs
at a depth of z = 0.78b and its magnitude is 0.301 p,,., where b is the half-
width of the contact area.

An aluminium plate of 1.5-m width and 3-m length is required to support a
force of 2 MN in the 3-m direction. Inspection procedures can detect a
through-thickness edge cracks longer than 2.7 mm. Al-2024 and Al-7178 are

the materials under consideration. Al-2024 has a value of 26 MPa \/E for

K., and a yield stress S, = 455 MPa. For Al-7178, K,.= 33 MPa ¥m, and
S, =490 MPa. Weight is a major consideration. Using a factor of safety of
1.5, select the proper sheet and its thickness.

Ans: Use Al-7178,
t=6.1 mm

A steel sheet that is 16 m long and 8§ m wide is found to have a central

transverse crack of 40-mm length. The material of the sheet has a fracture

toughness factor K; = 25 MPa/m . Determine the maximum longitudinal
stress the sheet can withstand without the danger of catastrophic failure.

[Ans: 3.15MPa]

A cylinder with an internal radius of 5 cm and external radius of 6.5 cm
has a radial crack of 2-mm length on the outer periphery. The material has
a yield strength of 490MPa. The two ends of the cylinder are closed.
Determine the maximum internal pressure that can be applied without yield-
ing or fracture occurring. Consider points at the inner and outer bound-
aries. A factor of safety 2 is used.

Fig. 12.35 Tube with an external crack under internal pressure
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Ans : p =50 MPa or p=1.943
K, ifK, <257 MPavm

Calculate the theoretical stress concentration factor for an elliptical notch
with a major axis equal to 8 cm, and a minor axis equal to 0.7 cm. Loading
is perpendicular to the major axis. What is the radius of curvature at the
ends of the major axis? Assume that there is no yielding.

[ Ans:K; =23.86, p=0.031 cm |

For Problem 12.7, calcute the nominal stress in the full section at the time
of collapse if the yield strength is 525 MPa. What is the fracture load?
Width W =25 cm, and thickness # = 0.15cm.

max

[Ans : B, =133.9kN, 0,,,=355 MPa|

Calculate the fracture toughness of a material for which a plate test with
central crack gives the following information: Width = 50 cm, thickness
B =1.9 cm, crack length 2a = 5 cm, failure load P = 1335 kN. The yield
strength is 6,,= 480MPa. Is this plane Strain? Check for collapse.

Ans : Toughness = 39.2 MPavm;
Yes; No collapse.

Given a toughness of K = 77 MPa /m, and an yield strength of c,,=520

MPa, determine the residual strength of a centre cracked plate of 45 cm
width and crack length 2a = 7.5 cm. Check for collapse. oo = 1.01.

Ans : 0 =222 MPa;
No collapse.



APPENDIX

The strain compatibility condition for the two-dimensional case is, from Eq.(2.56 a)

2
e, Oc, 07y

6y2 ox2  oxdy (a)

This can be converted to stress compatibility equation for the plane stress case
using the stress—strain relations:

1 1

Ep = E(o-x —vo,), &, = E(o-y -vo,) (b)
1 2(1+v)

Yy = 5 Ty = T Tyy (C)

Substituting in Eq. (a),
& o o
y(Gx—VO'y)-Fax—z(Gy—va):m[z(l-l—v)‘[xy] (d)

The equations of equilibrium in the absence of body forces from equations (1.65)
are

oo, ot
&ty 0 Q
do, Ot
¥ W o_
oy * ox 0 *)

Differentiating Eq. (e) with respect to x, and Eq. (f) with respect to y and adding,
one gets

Zazrxy _ o’o, _ 620}
xdy ot oy’

Substituting the above in Eq. (d),

620'x 620y (620}, azo-x\ (azo-x ﬁzoy\
5 t—5 vV 5+ 5 =—(1+v) S+ 5
oy ox oy ox ox oy
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( A2
e, 2 —)w +,)=0 ®

Equation (g) is the stress equation of compatibility. The usual method of solving
an elasticity problem is by introducing a function ¢ of x, and y, that satisfies the
equations of equilibrium (e) and (f), the compatibility condition (g), and the ap-
propriate boundary conditions. Let a function ¢ (x, y) be choosen such that

&9, o’g. 29
B O e T ey ®

As can be checked, this function satisfies the equations of equilibrium. In order
that it may satisfy the compatibility condition (g), we should have

(2 &2\ d% 0%

Lax oy Jkﬁx aYZJZO 0
4 4 4
S« PO .

A function ¢ (x, y) which satisfies Eq. (k) satisfies the equations of equilibrium
and the compatibility condition. If it satisfies in addition, boundary conditions of
a given problem, then such a function is the proper function for that problem. We
shall transform Eq. (k) into polar coordinates to solve axi-symmetric problems. Let
the stress function in polar coordinates be ¢(r, 6), and let

104,10
Y

2
Oy = an (m)

104 10° 4 [1 6(/5]
r

o = _2% - 7arae 00

The function ¢ (7, 0) so defined by Eq. (m) satisfies the equations of equilibrium,
Eq. (1.70), in polar coordinates.

Equation (g) is the stress equation of compatibility expressed in Cartesian
co-ordinates. It can easily be converted into polar co-ordinates. We have,

7 =x*+3* and 9=arctan%

from which
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o0 ¥y _sinB6 00 _ x _ cosH

Let the stress function in polar coordinates be ¢(r, 0). For this function

% _obar 00 00_2 , 100

= . = — sin®
ax oo a0 ar Y rae
Symbolically,
0 _[(0 1 0
ax—(arcosﬁ sm@ae)
3¢ olog] (o 1. .0 (6¢ 6)
y = a{a = arcosé’ smé?ae) 3 cos Sln986’
62¢ 2 62¢ 0¢ sin” 0 0¢ sin @ cos O
—67005 0_261’69 + 5 B + Z%r—2+
52¢ sin? 0
2 ()
06 r
In the same manner one gets
o’ 0’¢ 0*¢ sinfOcos® = O cos’ @
8)/_2 6r251n 9+2666’—r +E—r

09 sin fcos & + ﬂcos2 0 ®)
IO 06> r? P

Adding together equations (n) and (p)
2 2 2 e
P9 P9 _09 100 1%

ox? 6y2 or? r or r? 06?
Using this, Eq. (j) can be written as

(@, 200 2} [i+li+1 ](62 100,18 29) _
o ¥ Jkax oy ot ror y?oe kar ror o6

Any function ¢ (r, 0) satisfying this equation will satisfy equilibrium equations
and compatibility condition. If the function in addition, satisfies the boundary
conditions for a given problem, then it is the proper stress function for that
problem.

@

WIDE PLATE WITH A SMALL CIRCULAR HOLE

Consider a wide plate with a small circular hole of radius a, subjected to a uniform
tensile stress o, Fig. A-1.

If a large circle of radius b is drawn concentric with the hole, then the stress
distribution around the circumference of the circle is the one caused just by o,
without being affected by the hole, since the hole is very small and the boundary
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Fig. A-1. A wide plate with a small hole subjected to a tensile stress ©.

of the circle is far removed from the hole. The stress distribution around the big
circle can be determined from statics as was done in Section 12.2(a). At an angle
0, on a small area bdO, the stress is ¢ cos6. This can be resolved into two
components; one radial : ¢ cos?6, and the other tangential:— ¢ cosfsin6. This
large circular thick plate with a small hole can be isolated and analysed as equiva-
lent to the original problem.

The ring is now subjected to the following stresses:

radial: o cos’@ = %o-(l+cos 26)

®

tangential: —o cos sinf = —% o sin26

. . 1 . . .
The case of uniform radial stress Z0on the ring can be solved using equations

(8.16) and (8.17). The remaining parts consisting of the varying radial stress
%O‘ c0s20, and the tangential stress %O‘ sin26 can be analysed through the stress

function method.
Let the stress function be of the form ¢ = f(r) cos26. This has to satisfy the
compatibility condition given by Eq. (p). Substituting

2 2
[a_ L1lo La_]
ot ror 2 56°

o 10 | o
x{y[f(r)cos%’] + ;5[f(r)cos20] + rjg[f(r)cosZQ]} =0

. ? 10 1 azj
e (61’2 ’ ror " r 06

2
X o Jr) cos 26 + laf(r) cos26 — 4/ cos26|=0
or? p2  Oor 2
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Cancelling cos 26, and observing that the differential equation involves only f(r),
the partial differential equation becomes an ordinary differential equation, which is

[dz 1d ](df 144,

dr? ;E - dr rdr er

The general solution is

f)= a4 +Bt+CcLip
r

The stress function is therefore

b= f(r)cos20 = [Arz Bt Oy Dj c0s 20
r

The corresponding stresses from Eq. (m) are
106,108 (o, 6, 40)

24 +—+— cos26
I" I"

Torar 2 a0

2
oy=22 [2,4 + 128 + g) c0s20 )

or? r

_ 16¢) [ 2 6C 20]
T,p = 6r[r6(9 24 + 6Br n > |sin26

r r
The constants of integration are now determined from the conditions: (i) that the
edge of the inner hole is free from external forces, and (ii) the outer boundary is
subjected to stresses given Eq. (1).

These conditions give the following equations.

6C 4D 1
24 + — b4 b2 = —EO'

6C
24 + = — =0

a a

2 6C 2D 1
24 + 6Bb —b—4—b—2:—50'
24+68a> -5 2D _
a a

a
Solving these and puttingz 0 because of a very wide plate, one obtains

4

2
A:—%, B=0, C:—%O', Dz%a
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Substituting these in Eq. (s) we get the stresses in the large disc (equivalently in

the plate) due to the varying radial stresses %O‘ cos2¢ and the tangential stresses

%o- sin2¢ . Remembering that in addition to these, the disc is subjected to the

. . 1 S
uniform radial stress 50 on the outer boundary, whose solution is given by

equations (8.16) and (8.17), the final solutions are

T2 r r r
2 4
oy :%[l + j—z ]— %[l + %} cos 260 ®

o 3a* | 24°) ..
Tr‘g:—?[l—r—4+r—zjsln2(9

When r is very large, the stresses approach the values given by Eq. (r). At the
edge of the small hole

0,=7,=0, and oy=0(1-2cos20) (u)
It can be seen that G, is greatest when § = %or 0= 37”, i.e., at the ends m and n of

the diameter perpendicular to the direction of . At these points, o, = 30. When

0=0 orf=7x, oy=-0.



Anisotrophy

orthogonal 401

rectilinear 377
Asymmetrical bending 190
ASTM standards 490, 476
Axis of symmetry 377
Axisymmetric body 269
Axisymmetric problems 269-306

Beam bending 181
Beam column, equations 335
with concentrated lateral load 336
with continuous lateral load 340
with end couple 342-344
with several loads 339
Beam with hyperbolic groove 444
Begg’s deformeter 152
Biaxial stress state 470
Body force 2
Boundary conditions 45, 312
Bredt-Batho formula 250
Brittle
fracture 457
material 463
Buckling
as an eigenvalue problem 350-352
energy methods 355
of columns with variable
cross-sections 366
Rayleigh-Ritz method 360
Timoshenko’s concepts 364
use of trigonometric series 368
Bulk modulus 101

Castigliano
first theorem of 153
generalized theorem of 173
second theorem of 170
(see also Menabrea’s theorem)
Cauchy’s
strain-displacement relations 70

INDEX

stress formula 7
stress quadric 34, 60—62
Centre
of flexure 201
of twist 264
shear 201
Change
in angle of a linear segment 73
in direction of a linear segment 73
in length of a linear segment 69, 67
Circular disk
Thermal stresses in 314
(see also rotating disks)
Collapse
load 473
strength 473
Column stability
general treatment of 344
with both ends fixed 347
with hinged ends 345
with load passing through a
fixed point 348
with one end fixed and other
end free 345
with one end fixed and other end
pinned 346
with variable cross-section 366
Compatibility conditions 86-88, 94
Complementary energy 174
Compliance 480
Components
of compliance 377
of modulus 377
off axis 386
Composite
cross-ply 400
cylinder of equal strength 282
failure (see Failure)
in-plane moduli of 398
micro-mechanics of 411



off-axis loading of 383
pressure vessel 421
rod, unidirectional 412
stress-strain relations 375
transverse stresses in 422
tube 280
Constitutive equations 97
Contact stresses 445

Continuity conditions (see compatibility

conditions)

Continuity equations 440
Continuum mechanics 2
Corresponding

displacements 145

forces 145
Critical stress intensity factor 460
Cross-shears 11
Cubic equation

real roots 17

standard solution 20
Cubical dilatation 74
Curved beams

bending of 209

deflections of 216

thermal stresses in 325

Winkler-Bach formula 209
Cylinder

under external pressure 271, 274

under internal pressure 271, 274
Cylinders in contact 450, 453

Decomposition 31
Deformation
in neighborhood of point 64
of right parallelepiped 75
Deviatoric part of strain matrix 90
(see strain deviator)
Deviatoric plane 134
(see also pi-plane)
Deviatoric state of stress 32
Disks of variable thickness 298
Displacement
along a radius 271
equations of equilibrium 104
generalized 149
gradient matrix 66
vector 64
vector field 64
work absorbing component of 145
Distortion energy 119, 407

Eigenvalue problem 350
Elastic
constants, relations of 102
energy 376, 483

Index 501

energy, maximum 118
energy stored 146
energy superposition of 163
potential 375
stability 331
symmetry 377
Ellipsoid surface 61
Energy
complementary 174
distortion 119, 407
methods 144, 355
criterion 480
Engesser’s theorem 173
Equality of cross-shears 11
Equilibrium equations
differential 40-41
displacement 104
for axisymmetric case 42, 270
in cylindrical coordinates 45-48
in plane-stress case 42
in rectangular coordinates 40-42
Eqvivalent stress 131
Euler-Bernoulli
equations 190
hypothesis 190, 198
Extensional strain 63, 71

Factor of safety 121, 124
Failure theory
distortion energy 118, 119, 407
maximum elastic energy 113
maximum elastic strain 112, 118
maximum principal stress 113, 431
maximum shearing stress 111, 118
Mohr’s 129
octahedral shearing stress 113,
118, 407
of composites 406
significance of 117
Fictitious load method 161
Flexural centre 201, 264
Fluid vorticity 440
Fracture
conditions 463
elasto-plastic 483
first mode 464
modes 464
resistance 481
toughness 460, 476, 481
Free boundary 14

Generalized
displacement 149
force 149

Green’s theorem 486



502 Index

Hertzian stresses 446
Hooke’s law 144

generalized statement 97, 375
Hydrostatic state of stress 11, 19, 31

Ideal fluid 439
Incompressible material 103
Influence coefficient 144
Isostrain 412
Isotropic
state of strain 90
state of stress 11, 19
state function 134
transversely 377
Ideal fluid 11
Ideally plastic solid 109, 132
Invariants of
strain 80, 90
stress 16

J-fracture criterion 490

—integral 487
—path independence 487

Kirchhoff’s theorem 169

Lame’s
coefficients 102, 99
ellipsoid 36
displacement equations 105
problem 271
Laminate
angle-ply 408
cross-ply 400
multidirectional 395
off-axis loading 383
orthotropic 401
unidirectional 381
Laplace equation 234
Least work principle 170
Levy-Mises equations 140
Limit load 473
Linear strain 71
Lines of shearing stress 239
Load lines 469

Material

anisotropic 374

composite 374

constants 377

isotropic 98
Maximum shear plane 28
Maxwell-Betti-Rayleigh theorem 148
Maxwell-Mohr integrals 176
Membrane analogy 248
Menabrea’s theorem 170

Micromechanics 411
Modulus
in-plane components 398
of elasticity 97, 102
off-axis components of 392
of rigidity 99
specific 416
Mohr’s
circles 25, 54-55
stress plane 26
theory of failure 129
Multidirectonal laminates 395

Netting theory 421

Neutral axis location 191, 212
Normal stress components 4, 7
Notch sensitivity 445

Octahedral

normal stress 29

planes 29

shear stress 29
Off-axis components

of compliance 386

of modulus 392
Off-axis loading 383
Opening mode 464
Order of redundancy 170
Orthogonal symmetry 380
Orthogonality relations 352
Orthotropic

body 380

laminate 401

Pi-plane 134
Plane
Octahedral 28
of maximum shear 28
of symmetry 377
shearless 16, 28
state of strain 83
state of stress 38, 40, 42
strain 460, 469, 471
stress 469, 471, 472
Plastic collapse 471, 473
Plastic solid, ideal 132
Plate
with elliptical hole 437
with circular hole 431
Ply
strain 404
stress 404
Poission equation 237
Poission’s ratio 99, 379
Potential energy 355
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Prandtl-Reuss equations 139 Shrink fits 280
Prandtl-torsion stress function 236 Specific
Pressure vessels 421 modulus 416
Principal strength 416
axes of bending 192 Sphere
direction 378 hollow 290
planes 15, 17 radial displacement 287-290
planes are orthogonal 17 stresses due to gravitation 292
shear planes 28 thermal stress 320
strains 78 Spheres in contact 446, 453
strain axes 78, 84 Spherical part of strain matrix 90
stress 16, 39 Stability
stress axes 15, 39 elastic 331
Principle (see also columns)
of least work 170 energy, and 355
of superposition 143 State of
Pure shear state 31, 55 plane stress 38
pure shear 31, 55
Quadric, Cauchy’s stress 34, 60-62 (see also decomposition)

pure shear strain 90

strain at a point 70

stress at a point 4

stress referred to principal axes 24
Statically indeterminate structures 164
Steady flow 440
Stiffness 477
Strain

deviator 90

displacement relations 70

energy expression 155, 376

extensional 63, 71

function 134

invariants 80, 90

isotropic state of 90, 95

linear 71

off-axis 384

plane state of 83

principal 78

pure shear part 90

Rayleigh-Ritz method 360
Reciprocal
identity 379
relation 147
theorem 148
Rectangular
strain components 70
stress components 4
Relative extension 69
Residual strength 482
Resultant stress vector 7
Rigid body rotation 72, 440
Rigidity modulus 99
Rotating
disks of uniform thickness 294-298
disks of variable thickness 298
shafts and cylinders 300-302
Rule of mixtures 400, 411
Young’s modulus, for 413

Saint Venant compatibility equations 88 rectangular components 70
Saint Venant’s assumption 201 shear 71
Saint Venant-von Mises equations 140 space 134
Shaft spherical part of 90
with eccentric hole 441 two dimensional 63
wiht key way 442 Strain energy
with semicircular groove 442 density 484
Shear release rate 477, 479
centre 201, 264 Stream function 441
flow 250 Stress
in thin-walled sections 202 components on arbitrary plane 6
plane, maximum 28 concentration
strain components 64, 71 factor 429
stress components 4, 7 under bending 444
Shear mode 465 under tension 429

Shearless plane 16, 28 under torsion 439
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Stress (continued)
deviator 32
difference theory 129
due to gravitation 292
ellipsoid 36
equivalent 131
field near a crack 458
function 42
function, torsion 236
in composite tubes 280
intensity factor 458
invariants 16
isotropic state of 11, 19
normal components 4
octahedral 29
off-axis 384
plane, Mohr’s 25
plane state of 38
principal 14, 38
quadric 34, 60-62
raiser 428
rectangular components 4
space 134, 408
strain relation, isotropic materials 98
strain relations, linear 97, 375
strain relations, plastic flow 137
strain relations, thermoelastic 311
transverse 422
vector 3
Stresses due to gravitation 292
Superposition of energies 163
Superposition principle 143

Surface
force 2
traction 2

Tangential stress 4
Tetrahedron, equilibrium of 6
Theorem
of Kirchoff 169
of stationary potential energy 355
of virtual work 166
Theories of failure (see failure)
Thermal stress in
curved beam 325-328
disk with hole 316

long circular cylinder 316-319

solid disk 315

sphere 320-322

straight beam 322

thin circular disk 314
Thermoelastic

strain-displacement

relations 312

stress-strain relations 311
Thick-walled cylinder

plane strain 278-280

plane stress 272-273
Torsion of

circular bar 230, 240

elliptical bar 240, 243

equilateral triangular bar 243

multiple-cell closed section 251

multiply connected sections 259

prismatiac bars 232

rectangular bars 245

rolled sections 256

slit tube 257

squatty sections 247

thin rectangular bars 255

thin-walled tubes 249
Torsional rigidity 236
Torsion stress-function 236
Traction, surface 2
Transverse stress 422
Transversely isotropic 377
Tresca yield surface 136
Tsai-Hill theory 407

Unit load method 177
Unsymmetrical bending 190

Virtual work theorem 166
Volumetric strain 76

(See also cubical dilatation)
Vorticity 440

Warping function 233
Winkler-Bach formula 209
Work absorbing component 145

Yield criteria 109
Yield locus 135
Yield surface 136

Young’s modulus 97, 102



