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Preface

The evaluation of electromagnetic field coupling to transmission lines is an important
problem in electromagnetic compatibility. Customarily, use is made of the transmission
line (TL) approximation which applies to uniform transmission lines with electrically-
small cross-sectional dimensions, where the dominant mode of propagation is
transverse electromagnetic (TEM). Antenna-mode currents and higher-order modes
appearing at higher frequencies are neglected in the classical TL theory.

Since the development of the TL theory and the derivation of the so-called
telegrapher’s equations by Oliver Heaviside in the late 19th century, significant
progress has been achieved in the understanding of wave propagation along
transmission lines. In 1965, Taylor, Satterwhite and Harrison extended the classical
TL equations to include the presence of an external electromagnetic field. Their
field-to-transmission coupling equations – as well as their equivalent formulations
derived later – have been successfully applied to solve a large range of problems
dealing with EMP and lightning interaction with power and telecommunication lines.

The unabated increase in the operating frequency of electronic products and
the emergence of sources of disturbances with higher frequency content (such as
High Power Microwave and Ultra-Wide Band systems) have led to a breakdown of
the TL approximation’s basic assumptions for a number of applications. In the last
decade or so, the generalization of the TL theory to take into account high frequency
effects has emerged as an important topic of study in electromagnetic compatibility.
This effort resulted in the elaboration of the so-called ‘generalized’ or ‘full-wave’ TL
theory, which incorporates high frequency radiation effects, while keeping the relative
simplicity of TL equations.

This book covers both the classical transmission line theory as well as its recent
enhancements. It is intended for graduate students, researchers and engineers
interested in the transmission line theory and electromagnetic field interaction with
transmission lines, with special emphasis on high frequency effects. The text is
organized in two main parts containing a total of seven chapters.

Part I presents the consolidated knowledge of classical transmission line theory
and different field-to-transmission line coupling models.

Chapter 1 discusses the assumptions of the TL theory and presents the
derivation of the field-to-transmission line coupling equations. Three different but



completely equivalent approaches that have been proposed to describe the coupling
of electromagnetic field coupling to transmission lines are also presented and
discussed. Chapters 2 and 3, deal, respectively, with the specific cases of overhead
multiconductor lines and buried cables. Various factors influencing the pulse
propagation and crosstalk along multiconductor systems are discussed, and methods
for the calculation of the line longitudinal and transverse line parameters are
presented.

Part II presents different approaches developed to generalize the TL theory in
order to include high frequency effects.

In Chapter 4, a TL-like pair of equations is derived under the thin-wire
approximation for evaluating currents and potentials induced by external
electromagnetic fields on a wire of a given geometric form above a perfect conducting
ground. Based on perturbation theory, an iterative procedure is proposed to solve
the derived coupling equations, where the zero-iteration term is determined by using
the classical TL approximation. Chapter 5 presents an efficient hybrid method to
compute high frequency electromagnetic field coupling to long, loaded lines
including lumped discontinuities. Chapter 6 shows that the classical TL theory may
be included in a more general model based on an integral formulation of the general
full-wave problem. The derived general model is applied to conventional high-speed
microelectronics, as well as to nanoelectronics applications. Chapter 7 deals
specifically with high frequency electromagnetic field coupling to buried wires. Two
approaches, one in the frequency domain based on the Pocklington’s integral
equation, and the other in the time domain using the Hallen integral equation, are
proposed and discussed.

Although the chapters follow a logical order and a novice reader is advised to
read the book sequentially, an effort has been made to make each chapter as
independent of the others as possible. Therefore, readers interested in a particular
aspect of the subject dealt with in one chapter do not need to consult other chapters
of the book.

This book is the result of the authors’ activities in the area of electromagnetic
field-to-transmission line interactions. The authors are indebted to many individuals
for their support, advice, and guidance. Special thanks are due to Michel Ianoz,
Juergen Nitsch and Fred M. Tesche, and to all the authors of the chapters for their
precious contributions.

Farhad Rachidi and Sergei Tkachenko
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CHAPTER 1

Derivation of telegrapher’s equations and 
fi eld-to-transmission line interaction

C.A. Nucci1, F. Rachidi2 & M. Rubinstein3

1University of Bologna, Bologna, Italy.
2Swiss Federal Institute of Technology, Lausanne, Switzerland.
3Western University of Applied Sciences, Yverdon, Switzerland.

Abstract

In this chapter, we discuss the transmission line theory and its application to the 
problem of external electromagnetic fi eld coupling to transmission lines. After a 
short discussion on the underlying assumptions of the transmission line theory, we 
start with the derivation of fi eld-to-transmission line coupling equations for the 
case of a single wire line above a perfectly conducting ground. We also describe 
three seemingly different but completely equivalent approaches that have been 
proposed to describe the coupling of electromagnetic fi elds to transmission lines. 
The derived equations are extended to deal with the presence of losses and multiple 
conductors. The time-domain representation of fi eld-to-transmission line coupling 
equations, which allows a straightforward treatment of non-linear phenomena as 
well as the variation in the line topology, is also described. Finally, solution meth-
ods in frequency domain and time domain are presented.

1 Transmission line approximation

The problem of an external electromagnetic fi eld coupling to an overhead line 
can be solved using a number of approaches. One such approach makes use of 
antenna theory, a general methodology based on Maxwell’s equations [1]. Differ-
ent methods based on this approach generally use the thin-wire approximation, in 
which the wire’s cross section is assumed to be much smaller than the minimum 
signifi cant wavelength.

When electrically long lines are involved, however, the antenna theory approach 
requires prohibitively long computational times and high computer resources. On the 
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other hand, the less resource hungry quasi-static approximation [1], in which propa-
gation is neglected and coupling is described by means of lumped elements, can be 
adopted only when the overall dimensions of the circuit are smaller than the mini-
mum signifi cant wavelength of the electromagnetic fi eld. For many practical cases, 
however, this condition is not satisfi ed. As an example, let us consider the case of 
power lines illuminated by a lightning electromagnetic pulse (LEMP). Power net-
works extend, in general, over distances of several kilometers, much larger than the 
minimum wavelengths associated with LEMP. Indeed, signifi cant portions of the fre-
quency spectrum of LEMP extend to frequencies up to a few MHz and beyond, which 
corresponds to minimum wavelengths of about 100 m or less [2].

A third approach is known as transmission line theory. The main assumptions 
for this approach are as follows:

Propagation occurs along the line axis.1. 
The sum of the line currents at any cross section of the line is zero. In other 2. 
words, the ground – the reference conductor – is the return path for the currents 
in the n overhead conductors.
The response of the line to the coupled electromagnetic fi elds is quasi-transverse 3. 
electromagnetic (quasi-TEM) or, in other words, the electromagnetic fi eld pro-
duced by the electric charges and currents along the line is confi ned in the 
transverse plane and perpendicular to the line axis.

If the cross-sectional dimensions of the line are electrically small, propagation 
can indeed be assumed to occur essentially along the line axis only and the fi rst 
assumption can be considered to be a good approximation.

The second condition is satisfi ed if the ground plane exhibits infi nite conductiv-
ity since, in that case, the currents and voltages can be obtained making use of the 
method of images, which guarantees currents of equal amplitude and opposite 
direction in the ground.

The condition that the response of the line is quasi-TEM is satisfi ed only up to 
a threshold frequency above which higher-order modes begin to appear [1]. For 
some cases, such as infi nite parallel plates or coaxial lines, it is possible to derive 
an exact expression for the cutoff frequency below which only the TEM mode 
exists [3]. For other line structures (i.e. multiple conductors above a ground plane), 
the TEM mode response is generally satisfi ed as long as the line cross section is 
electrically small [3].

Under these conditions, the line can be represented by a distributed-parameter 
structure along its axis.

For uniform transmission lines with electrically small cross-sectional dimen-
sions (not exceeding about one-tenth of the minimum signifi cant wavelength of the 
exciting electromagnetic fi eld), a number of theoretical and experimental studies 
have shown a fairly good agreement between results obtained using the transmis-
sion line approximation and results obtained either by means of antenna theory or 
experiments [4]. A detailed discussion of the validity of the basic assumptions of 
the transmission line theory is beyond the scope of this chapter. However, it is worth 
noting that, by assuming that the sum of all the currents is equal to zero, we are 
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considering only ‘transmission line mode’ currents and neglecting the so-called 
‘antenna-mode’ currents [1]. If we wish to compute the load responses of the line, 
this assumption is adequate, because the antenna mode current response is small 
near the ends of the line. Along the line, however, and even for electrically small 
line cross sections, the presence of antenna-mode currents implies that the sum of 
the currents at a cross section is not necessarily equal to zero [1, 3]. However, the 
quasi-symmetry due to the presence of the ground plane results in a very small 
contribution of antenna mode currents and, consequently, the predominant mode on 
the line will be transmission line [1].

2 Single-wire line above a perfectly conducting ground

We will consider fi rst the case of a lossless single-wire line above a perfectly 
conducting ground. This simple case will allow us to introduce various coupling 
models and to discuss a number of concepts essential to the understanding of the 
electromagnetic fi eld coupling phenomenon. Later in this chapter (Sections 4 and 
5), we will cover the cases of lossy and multiconductor lines. The transmission line 
is defi ned by its geometrical parameters (wire radius a and height above ground h) 
and its terminations ZA and ZB, as illustrated in Fig. 1, where the line is illuminated 
by an external electromagnetic fi eld. The problem of interest is the calculation of 
the induced voltages and currents along the line and at the terminations.

The external exciting electric and magnetic fi elds eE
�

 and eB
�

 are defi ned as the 
sum of the incident fi elds, iE

�
 and iB

�
, and the ground-refl ected fi elds, rE

�
 and rB

�
, 

determined in absence of the line conductor. The total fi elds E
�
 and B

�
 at a given 

point in space are given by the sum of the excitation fi elds and the scattered fi elds 
from the line, the latter being denoted as sE

�
 and sB

�
 . The scattered fi elds are created 

by the currents and charges fl owing in the line conductor and by the corresponding 
currents and charges induced in the ground.

Three seemingly different but completely equivalent approaches have been pro-
posed to describe the coupling of electromagnetic fi elds to transmission lines. In what 

h

2a

0 L

ZA

x

z

y ZB

Be

x x + dx

Ee

C

Figure 1: Geometry of the problem.
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follows, we will present each one of them in turn. We will fi rst derive the fi eld-to-
transmission line coupling equations (which are sometimes referred to as generalized 
telegrapher’s equations) following the development of Taylor et al. [5].

2.1 Taylor, Satterwhite and Harrison model

2.1.1  Derivation of the fi rst fi eld-to-transmission line coupling 
(generalized telegrapher’s) equation

Consider the single conductor transmission line of height h in Fig. 1. Applying 
Stokes’ theorem to Maxwell’s equation ∇E

�
 = –jwB

�
for the area enclosed by the 

closed contour C yields

 C

d dy
S

E l j B e Sw⋅ = − ⋅∫ ∫∫
� � ��

 

(1)

Since the contour has a differential width ∆x, eqn (1) can be written as

 

0

0

[ ( , ) ( , )]d [ ( , ) ( ,0)]d

( , )d d

h x x

z z x x
x

x xh

y
x

E x x z E x z z E x h E x x

j B x z x zw

+∆

+∆

+ ∆ − + −

= −

∫ ∫

∫ ∫
 

(2)

(The coordinate y will be implicitly assumed to be 0 and, for the sake of clar-
ity, we will omit the y-dependence unless the explicit inclusion is important 
for the discussion.) Dividing by ∆x and taking the limit as ∆x approaches zero 
yields

 0 0

( , )d ( , ) ( ,0) ( , )d
h h

z x x yE x z z E x h E x j B x z z
x

w
∂

+ − = −
∂ ∫ ∫

 

(3)

Since the wire and the ground are assumed to be perfect conductors, the total 
tangential electric fi elds at their respective surfaces, Ex(x,h) and Ex(x,0), are zero. 
Defi ning also the total transverse voltage V(x) in the quasi-static sense (since 
h << λ) as

 0

( ) ( , )d
h

zV x E x z z= −∫
 

(4)

Equation (3) becomes

 

e s

0 0 0

d ( )
( , )d ( , )d ( , )d

d

h h h

y y y
V x

j B x z z j B x z z j B x z z
x

w w w= − = − −∫ ∫ ∫
 

(5)

where we have decomposed the B-fi eld into the excitation and scattered components.
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The last integral in eqn (5) represents the magnetic fl ux between the conductor 
and the ground produced by the current I(x) fl owing in the conductor.

Now, Ampère–Maxwell’s equation in integral form is given by

 

w
′

⋅ = + ⋅∫ ∫∫
�� � �� s d d

C

B l I j D s

 

(6)

If we defi ne a path C' in the transverse plane defi ned by a constant x in such a man-
ner that the conductor goes through it, eqn (6) can be rewritten as

 

s
T ( , , ) d ( ) ( , , ) dx x

C

B x y z l I x j D x y z a sw
′

⋅ = + ⋅∫ ∫∫
�� � ��

 

(7)

where the subscript T is used to indicate that the fi eld is in the transverse direction, 

xa
�

is the unit vector in the x direction, and where we have explicitly included the 
dependence of the fi elds on the three Cartesian coordinates.

If the response of the wire is TEM, the electric fl ux density D in the x direction 
is zero and eqn (7) can be written as

 

s
T ( , , ) d ( )

C

B x y z I x
′

⋅ =∫
��

� l

 

(8)

Clearly, I(x) is the only source of B
�
  T  s
  (x,y,z). Further, it is apparent from eqn (8) 

that B
�
  T  s
  (x,y,z) is directly proportional to I(x). Indeed, if I(x) is multiplied by a con-

stant multiplicative factor which, in general, can be complex, B
�
  T  s
  (x) too will be 

multiplied by that factor. Further, the proportionality factor for a uniform cross-
section line must be independent of x.

Let us now concentrate on the y component of B
�
  T  s
   (x,y,z) for points in the plane 

y = 0. Using the facts we just established that I(x) and B
�
  T  s
   (x) are proportional and 

that the proportionality factor is independent of x, we can now write

 
s ( , 0, ) ( 0, ) ( )yB x y z k y z I x= = =

 
(9)

where k(y, z) is the proportionality constant.
With this result, we now go back to the last integral in eqn (5),

 

s

0

( , )d
h

yB x z z∫
 

Note that, although the value of y is not explicitly given, y = 0. The integral rep-
resents the per-unit-length magnetic fl ux under the line. Substituting eqn (9) into 
it, we obtain

 

h

= =∫ ∫s

0 0

( , )d ( 0, ) ( )d
h

yB x z z k y z I x z

 

(10)
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We can rewrite eqn (10) as follows

 

= =∫ ∫s

0 0

( , )d ( ) ( 0, )d
h h

yB x z z I x k y z z

 

(11)

Equation (11) implies that the per-unit-length scattered magnetic fl ux under the line 
at any point along it is proportional to the current at that point. The proportionality 
constant, given by  ∫

0
  

h

  k(y = 0,z)dz,  is the per-unit-length inductance of the line L'.
This results in the well-known linear relationship between the magnetic fl ux and 

the line current:

 

= ′∫ s

0

( , )d ( )
h

yB x z z L I x

 

(12)

Assuming that the radius of the wire is much smaller than the height of the line 
(a << h), the magnetic fl ux density can be calculated using Ampere’s law and the 
integral can be evaluated analytically, yielding L' ≅ (m0/2π)ln(2h/a) [1].

Inserting eqn (12) into eqn (5), we obtain the fi rst generalized telegrapher’s 
equation

 

e

0

d ( )
( ) ( , )d

d

h

y
V x

j L I x j B x z z
x

w w+ = −′ ∫
 

(13)

Note that, unlike the classical telegrapher’s equations in which no external excita-
tion is considered, the presence of an external fi eld results in a forcing function 
expressed in terms of the exciting magnetic fl ux. This forcing function can be 
viewed as a distributed voltage source along the line.

Attention must be paid to the fact that the voltage V(x) in eqn (13) depends on 
the integration path since it is obtained by integration of an electric fi eld whose 
curl is not necessarily zero (eqn (4)).

2.1.2 Derivation of the second fi eld-to-transmission line coupling equation
To derive the second telegrapher’s equation, we will assume that the medium sur-
rounding the line is air (e = e0) and we will start from the second Maxwell’s equation, 
∇ × H

�
= J
�

+ jwe0E
�

, also called Ampère–Maxwell’s equation. Rearranging the terms 
and writing it in Cartesian coordinates for the z-component:

 0 0 0

( , ) ( , )1
( , )

y zx
z

B x z JB x z
j E x z

x y

∂ ∂
w

e m e
 

= − − ∂ ∂   
(14)

The current density can be related to the E-fi eld using Ohm’s law, J
�

= σair E
�

, 
where σair is the air conductivity. Since the air conductivity is generally low, we 
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will assume here that σair = 0 and will therefore neglect this term (which will 
eventually result in an equivalent parallel conductance in the coupling equation 
(see Section 5)).

Integrating eqn (14) along the z axis from 0 to h, and making use of eqn (4), we 
obtain

 

e e

0 0 0

s s

0 0 0

( , ) ( , )1
( ) d

( , ) ( , )1
d

h
y x

h
y x

B x z B x z
j V x z

x y

B x z B x z
z

x y

w
e m

e m

 ∂ ∂
 − = −

∂ ∂  
 ∂ ∂
 + −

∂ ∂  

∫

∫
 

(15)

in which we have decomposed the magnetic fl ux density fi eld into the excitation 
and scattered components.

Since the excitation fi elds are the fi elds that would exist if the line were not pre-
sent, they must satisfy Maxwell’s equations. Applying Maxwell’s equation (14) to 
the components of the excitation electromagnetic fi eld and integrating along z 
from 0 to h directly under the line yields

 

e e
e

0 0 0 0

1
d d

h h
y x

z

B B
z j E z

x y
w

e m

 ∂ ∂
 − =

∂ ∂  
∫ ∫

 

(16)

Using eqns (12) and (16) and given that the line response is assumed to be TEM,  
B x  

s  = 0, eqn (15) becomes

 

e

0

d ( )
( ) ( , )d

d

h

z
I x

j C V x j C E x z z
x

w w+ = −′ ′∫
 

(17)

where C' is the per-unit-length line capacitance related to the per-unit-length 
inductance through e0m0 = L'C'. Equation (17) is the second fi eld-to-transmission 
line coupling equation.

For a line of fi nite length, such as the one represented in Fig. 1, the boundary 
conditions for the load currents and voltages must be enforced. They are simply 
given by

 A(0) (0)V Z I= −  (18)

 B( ) ( )V L Z I L=  (19)

2.1.3 Equivalent circuit
Equations (13) and (17) are referred to as the Taylor model. They can be repre-
sented using an equivalent circuit, as shown in Fig. 2. The forcing functions (source 
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terms) in eqns (13) and (17) are included as a set of distributed series voltage and 
parallel current sources along the line.

2.2 Agrawal, Price and Gurbaxani model

An equivalent formulation of the fi eld-to-transmission line coupling equations was 
proposed in 1980 by Agrawal et al. [6]. This model is commonly referred to as the 
Agrawal model. We will call it the model of Agrawal et al. hereafter.

The basis for the derivation of the Agrawal et al. model can be described as fol-
lows: The excitation fi elds produce a line response that is TEM. This response is 
expressed in terms of a scattered voltage V s(x), which is defi ned in terms of the 
line integral of the scattered electric fi eld from the ground to the line, and the total 
current I(x).

The total voltage can be obtained from the scattered voltage through

 

s e s e

0

( ) ( ) ( ) ( ) ( , )d
h

zV x V x V x V x E x z z= + = − ∫
 

(20)

The fi eld-to-transmission line coupling equations as derived by Agrawal et al. [6] 
are given by

 

s
ed ( )

( ) ( , )
d x

V x
j L I x E x h

x
w+ =′

 
(21)

 

sd ( )
( ) 0

d

I x
j C V x

x
w+ =′

 
(22)

Note that, in this model, only one source term is present (in the fi rst equation) and 
it is simply expressed in terms of the exciting electric fi eld tangential to the line 
conductor  E x  

e (x,h).

Figure 2:  Equivalent circuit of a lossless single-wire overhead line excited by an 
electromagnetic fi eld (Taylor et al. model).

jω∫Ee

z(x,z)dz

I(x+dx)
L'dx

C'dxZA ZB

I(x)

V(x) V(x+dx) V(L)V(0)

h
e

0
jω∫By(x,z)dz

h

0

x+dx0 x L



Derivation of Telegrapher’s Equations 11

The boundary conditions in terms of the scattered voltage and the total current 
as used in eqns (21) and (22), are given by

 

s e
A

0

(0) (0) (0, )d
h

zV Z I E z z= − + ∫
 

(23)

 

s e
B

0

( ) ( ) ( , )d
h

zV L Z I L E L z z= + ∫
 

(24)

The equivalent circuit representation of this model (eqns (21)–(24)) is shown in 
Fig. 3. For this model, the forcing function (the exciting electric fi eld tangential to 
the line conductor) is represented by distributed voltage sources along the line. In 
accordance with boundary conditions (23) and (24), two lumped voltage sources 
(equal to the line integral of the exciting vertical electric fi eld) are inserted at the 
line terminations.

It is also interesting to note that this model involves only electric fi eld compo-
nents of the exciting fi eld and the exciting magnetic fi eld does not appear explicitly 
as a source term in the coupling equations. As we will see in the next section where 
we present the Rachidi model [7], it is also possible to represent the coupling model 
in terms of magnetic fi elds only.

2.3 Rachidi model

Another form of the coupling equations, equivalent to the Agrawal et al. and to 
the Taylor et al. models, has been derived by Rachidi [7]. In this model, only the 
exciting magnetic fi eld components appear explicitly as forcing functions in the 
equations:

 

sd ( )
( ) 0

d

V x
j L I x

x
w+ =′

 
(25)

Figure 3:  Equivalent circuit of a lossless single-wire overhead line excited by an 
electromagnetic fi eld (Agrawal et al. model).

- +
+ +

--

L'dx

C'dx

ZA
ZB 

I(x) I(x+dx)

VS (x) VS(x+dx) VS(L)VS(0) 

(x,h)dx   E
e
x

∫
h

0

e
zE ∫

h

0

e
z(L,z)dz  E

0           x                                        x+dx                  L

(0,z)dz
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es

0

( , )( ) 1
( ) d

h
xB x zdI x

j C V x z
dx L y

w
∂

+ =′
∂′ ∫ (26)

in which I s(x) is the so-called scattered current related to the total current by

s e( ) ( ) ( )I x I x I x= + (27)

where the excitation current I e(x) is defi ned as

e e

0

1
( ) ( , ) d

h

yI x B x z z
L

= −
′ ∫ (28)

The boundary conditions corresponding to this formulation are

s e

A 0

(0) 1
(0) (0, )d

h

y
V

I B z z
Z L

= − +
′ ∫ (29)

s e

B 0

( ) 1
( ) ( , ) d

h

y
V L

I L B L z z
Z L

= +
′ ∫ (30)

The equivalent circuit corresponding to the above equivalent set of coupling 
equations is shown in Fig. 4. Note that the equivalent circuit associated with the 
Rachidi model could be seen as the dual circuit – in the sense of electrical net-
work theory – of the one corresponding to the Agrawal et al. model (Fig. 3).

3  Contribution of the different electromagnetic fi eld 
components

Nucci and Rachidi [8] have shown, on the basis of a specifi c numerical example 
that, as predicted theoretically, the total induced voltage waveforms obtained using 
the three coupling models presented in Sections 2.1–2.3 are identical. However, 

Figure 4:  Equivalent circuit of a lossless single-wire overhead line excited by an 
electromagnetic fi eld (Rachidi model).
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the contribution of a given component of the exciting electromagnetic fi eld to the 
total induced voltage and current varies depending on the adopted coupling model. 
Indeed, the three coupling models are different but fully equivalent approaches 
that predict identical results in terms of total voltages and total currents, in spite of 
the fact that they take into account the electromagnetic coupling in different ways. 
In other words, the three models are different expressions of the same equations, 
cast in terms of different combinations of the various electromagnetic fi eld com-
ponents, which are related through Maxwell’s equations.

4 Inclusion of losses

In the calculation of lightning-induced voltages, losses are, in principle, to be taken 
into account both in the wire and in the ground. Losses due to the fi nite ground 
conductivity are the most important ones, and they affect both the electromagnetic 
fi eld and the surge propagation along the line [9].

Let us make reference to the same geometry of Fig. 1, and let us now take into 
account losses both in the wire and in the ground plane. The wire conductivity and 
relative permittivity are sw and erw, respectively, and the ground, assumed to be homo-
geneous, is characterized by its conductivity sg and its relative permittivity erg. The 
Agrawal et al. coupling equations extended to the present case of a wire above an 
imperfectly conducting ground can be written as (for a step by step derivation see [1])

 
+ =′

s
ed ( )

( ) ( , )
d x

V x
Z I x E x h

x  
(31)

 

sd ( )
( ) 0

d

I x
Y V x

x
+ =′

 
(32)

where Z' and Y' are the longitudinal and transverse per-unit-length impedance and 
admittance respectively, given by [1, 9] (in [1], the per-unit-length transverse con-
ductance has been disregarded)

 w gZ j L Z Zw= + +′ ′ ′ ′
 

(33)

 

w
w

+′ ′ ′
=′

+ +′ ′ ′
g

g

( )G j C Y
Y

G j C Y
 

(34)

in which

L'• , C' and G' are the per-unit-length longitudinal inductance, transverse capaci-
tance and transverse conductance, respectively, calculated for a lossless wire 
above a perfectly conducting ground:

 

10 0 2
cosh ln for 

2 2

h h
L h a

a a

m m−    = ≅ >>′       π π  
(35)
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0 0
1

2 2
for 

ln(2 / )cosh ( / )
C h a

h ah a

e e
−
π π

= ≅ >>′
 

(36)

 

s
e

=′ ′air

0

G C
 

(37)

Z'• w is the per-unit-length internal impedance of the wire; assuming a round wire 
and an axial symmetry for the current, the following expression can be derived 
for the wire internal impedance [10]:

 

g g
s g

=′
π

w 0 w
w

w 1 w

I ( )

2 I ( )

a
Z

a a  

(38)

where gw =  √
________________

  jwm0(sw + jwe0erw)   is the propagation constant in the wire and I0 
and I1 are the modifi ed Bessel functions of zero and fi rst order, respectively;
Z'• g is the per-unit-length ground impedance, which is defi ned as [11, 12]

 

w
w−∞= −′ ′

∫ s

g

( , )d
h

yj B x z x

Z j L
I  

(39)

where  B y  
s  is the y-component of the scattered magnetic induction fi eld.

Several expressions for the ground impedance have been proposed in the litera-
ture ([13], see also Chapter 2). Sunde [14] derived a general expression for the 
ground impedance which is given by

 

2
0

g 2 2
0 g

e
d

hxj
Z x

x x

wm

g

∞ −
=′

π + +
∫

 

(40)

where gg =  √
_______________

  jwm0(sg + jwe0erg)   is the propagation constant in the ground.
As noted in [13], Sunde’s expression (40) is directly connected to the general 

expressions obtained from scattering theory. Indeed, it is shown in [1] that the 
general expression for the ground impedance derived using scattering theory 
reduces to the Sunde approximation when considering the transmission line 
approximation. Also, the results obtained using eqn (40) are shown to be accurate 
within the limits of the transmission line approximation [1].

The general expression (40) is not suitable for a numerical evaluation since it 
involves an integral over an infi nitely long interval. Several approximations for the 
ground impedance of a single-wire line have been proposed in the literature (see 
[11] for a survey). One of the simplest and most accurate was proposed by Sunde 
himself and is given by the following logarithmic function:

 

g0
g

g

1
ln

2

hj
Z

h

gwm
g

 +
≅′  π    

(41)
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It has been shown [11] that the above logarithmic expression represents an excellent 
approximation to the general expression (40) over the frequency range of interest.

Finally, Y'g is the so-called ground admittance, given by [1]

 

2
g

g
g

Y
Z

g
≅′

′
 

(42)

5 Case of multiconductor lines

Making reference to the geometry of Fig. 5, the fi eld-to-transmission line coupling 
equations for the case of a multi-wire system along the x-axis above an imperfectly 
conducting ground and in the presence of an external electromagnetic excitation 
are given by [1, 4, 15]

 

s e
g

d
[ ( )] [ ][ ( )] [ ( )] [ ( , )]

d iji ij i i x iV x j L I x Z I x E x h
x

w  + + =′ ′   
(43)

 

s sd
[ ( )] [ ][ ( )] [ ] [ ( )] [0]

d i ij i ij iI x G V x j C V x
x

w+ + =′ ′
 

(44)

in which

[ • V i  
s (x)] and [Ii(x)] are frequency-domain vectors of the scattered voltage and the 

current along the line;

Figure 5:  Cross-sectional geometry of a multiconductor line in the presence of an 
external electromagnetic fi eld.
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[ • E x  
e (x,hi)] is the vector of the exciting electric fi eld tangential to the line 

conductors;
[0] is the zero-matrix (all elements are equal to zero);• 
[• L'ij] is the per-unit-length line inductance matrix. Assuming that the distances 
between conductors are much larger than their radii, the general expression for 
the mutual inductance between two conductors i and j is given by [1]

 

m  + +
=′  π + − 

2 2
0

2 2

( )
ln

2 ( )

ij i j
ij

ij i j

r h h
L

r h h
 

(45)

The self-inductance for conductor • i is given by

 

0 2
ln

2
i

ii
ii

h
L

r

m  
=′  π  

 

(46)

[• C'ij] is the per-unit-length line capacitance matrix. It can be evaluated directly 
from the inductance matrix using the following expression [1]

 
e m −=′ ′ 1

0 0[ ] [ ]ij ijC L
 

(47)

[• G'ij] is the per-unit-length transverse conductance matrix. The transverse con-
ductance matrix elements can be evaluated starting either from the capacitance 
matrix or the inductance matrix using the following relations:

 

s
s m

e
−= =′ ′ ′ 1air

air 0
0

[ ] [ ] [ ]ij ij ijG C L
 

(48)

In most practical cases, the transverse conductance matrix elements G'ij are negligible 
in comparison with jwC'ij [3] and can therefore be neglected in the computation.
Finally, [• Z'gij

] is the ground impedance matrix. The general expression for the 
mutual ground impedance between two conductors i and j derived by Sunde is 
given by [14]
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(49)

In a similar way as for the case of a single-wire line, an accurate logarithmic 
approximation is proposed by Rachidi et al. [15] which is given by

 

2 2

g g
0

g 2 2

g g

1
2 2

ln
4

2 2

ij

i j ij

i j ij

h h r

j
Z

h h r

g g
wm

g g

  +    + +         
≅′  

π  +   
+           

(50)
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Note that in eqns (43) and (44), the terms corresponding to the wire impedance 
and the so-called ground admittance have been neglected. This approximation is 
valid for typical overhead power lines [9].

The boundary conditions for the two line terminations are given by

 

s e
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0

[ (0)] [ ][ (0)] (0, )d
ih

i i zV Z I E z z
 
 = − +
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∫

 

(51)
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i i zV L Z I L E L z z
 
 = +
  
∫

 

(52)

in which [ZA] and [ZB] are the impedance matrices at the two line terminations.

6 Time-domain representation of the coupling equations

A time domain representation of the fi eld-to-transmission line coupling equations 
is sometimes preferable because it allows the straightforward treatment of non-
linear phenomena as well as the variation in the line topology [4]. On the other 
hand, frequency-dependent parameters, such as the ground impedance, need to be 
represented using convolution integrals.

The fi eld-to-transmission line coupling eqns (43) and (44) can be converted into 
the time domain to obtain the following expressions:

 

s e
g[ ( , )] [ ] [ ( , )] [ ( , )] [ ( , , )]

iji ij i i x iv x t L i x t i x t E x h t
x t t
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x t

∂ ∂
+ + =′ ′

∂ ∂  
(54)

in which ⊗ denotes convolution product and the matrix  [ x'gij
 ]  is called the transient 

ground resistance matrix; its elements are defi ned as
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The inverse Fourier transforms of the boundary conditions written, for simplicity, 
for resistive terminal loads read
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where [RA] and [RB] are the matrices of the resistive loads at the two line terminals.
The general expression for the ground impedance matrix terms in the fre-

quency domain (49) does not have an analytical inverse Fourier transform. Thus, 
the elements of the transient ground resistance matrix in the time domain are to 
be, in general, determined using a numerical inverse Fourier transform algo-
rithm. However, analytical expressions have been derived which have been 
shown to be reasonable approximations to the numerical values obtained using 
an inverse FFT (see Chapter 2).

7 Frequency-domain solutions

Different approaches can be employed to fi nd solutions to the presented coupling 
equations. Sections 7 and 8 present some commonly used solution methods in the 
frequency domain and in the time domain, respectively.

To solve the coupling equations in the frequency domain, it is convenient to use 
Green’s functions that relate, as a function of frequency, the individual coupling 
sources to the scattered or the total voltages and currents at any point along the line. 
Green’s functions solutions require integration over the length of the line, where the 
distributed sources are located. This approach is the subject of Section 7.1.

Under special conditions, it is possible to obtain more compact solutions or 
even analytical expressions. In particular, if solutions are required at the loads 
only, it is possible to write the load voltages and currents in a compact manner, 
with the complexity essentially hidden in the source. This formulation, termed the 
BLT equations, will be presented in Section 7.2.

7.1 Green’s functions

The fi eld-to-transmission line coupling equations, together with the boundary con-
ditions, can be solved using Green’s functions, which represent the solutions for 
line current and voltage due to a point voltage and/or current source [1]. In this 
section, we will present the solutions, using the Agrawal et al. model (Section 2.2) 
for the case of a single-conductor line. Similar solutions can be found for the case 
of a multiconductor line (see e.g. [1, 3]).

Considering a voltage source of unit amplitude at a location xs along the line 
(since only distributed series voltage sources are present in the model of Agrawal 
et al., it is not necessary to consider a parallel unitary current source), the Green’s 
functions for the current and the voltage along the line read, respectively [1],
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where

 x• < represents the smaller of x or xs, and x> represents the larger of x or xs.
 • d = 1 for x > xs and d = –1 for x < xs.
 • g =  √

____
 Z'Y'   is the complex propagation constant along the transmission line,

 Z• c =  √
____

 Z'/Y'   is the line’s characteristic impedance.
 r• 1 and r2 are the voltage refl ection coeffi cients at the loads of the transmission 
line given by
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ZA and ZB are the termination impedances as illustrated in Fig. 1. The solutions in 
terms of the total line current and scattered voltage can be written as the following 
integrals of the Green’s functions [1]
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Note that the second and the third terms on the right-hand side of eqns (61) and (62) are 
due to the contribution of equivalent lumped sources at the line ends (see Fig. 3).

The total voltage can be determined from the scattered voltage by adding the 
contribution from the exciting fi eld as
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7.2 BLT equations

If we are interested in the transmission line response at its terminal loads, the solu-
tions can be expressed in a compact way by using the so-called BLT (Baum, Liu, 
Tesche) equations [1]
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where the source vector is given by
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Note that in the BLT equations, the solutions are directly given for the total voltage 
and not for the scattered voltage.

For an arbitrary excitation fi eld, the integrals in eqn (66) cannot be carried out 
analytically. However, for the special case of a plane wave excitation fi eld, the 
integrations can be performed analytically and closed-form expressions can be 
obtained for the load responses. General solutions for vertical and horizontal fi eld 
polarizations are given in [1].

8 Time-domain solutions

Several approaches can be used to solve the coupling equations in the time domain 
[1, 3]. We will present here simple analytical expressions that can be obtained for 
the case of a lossless line involving infi nite summations. In Chapter 2, the Finite 
Difference Time Domain (FDTD) technique is applied to obtain general solutions 
of fi eld-to-transmission line coupling equations including frequency-dependent 
losses.

Under the assumption of a lossless line, it is possible to obtain analytical solu-
tions for the transient response of a transmission line to an external fi eld excitation 
[1]. In this case, the propagation constant becomes purely imaginary g = jω/c and 
the characteristic impedance is purely real Zc =  √

_____
 L'/C'  . If we assume further that 

the termination impedances are purely resistive, the refl ection coeffi cients r1 and 
r2, too, become real. For  | r1r2e

–2gL |  < 1, the denominator in Green’s functions (58) 
and (59) can be expanded to
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This equation is not valid for the case of a lossless line with refl ection coeffi cients 
of magnitude 1, in which the condition  | r1r2e

–2gL |  = 1 will be met at a number of 
resonance frequencies causing the solutions to be unbounded.
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With the above transformation, it is easy to show that all the frequency depen-
dences in eqns (64) and (65) will be in the form e–jwt, t being a constant. 
Therefore, it is possible to convert the frequency domain solutions to the time 
domain analytically to obtain the following transient responses for the load 
voltages (for details, see [1])
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where
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Note that  E x  
e (xs,h,t),  E z  

e (0,z,t) and  E z  
e (L,z,t) are the time-domain components of the 

exciting fi eld.

9 Conclusions

We discussed the transmission line theory and its application to the problem of 
external electromagnetic fi eld coupling to transmission lines. After a short discus-
sion on the underlying assumptions of the transmission line theory, the fi eld-to-
transmission line coupling equations were derived for the case of a single wire line 
above a perfectly conducting ground. Three different but completely equivalent 
approaches that have been proposed to describe the electromagnetic fi eld cou-
pling to transmission lines were also presented and discussed. The derived equa-
tions were extended to deal with the presence of losses and multiple conductors. 
The time-domain representation of fi eld-to-transmission line coupling equations 
which allows a straightforward treatment of non-linear phenomena as well as the 
variation in the line topology was also described. Finally, solution methods in the 
frequency domain and the time domain were presented.
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CHAPTER 2

Surge propagation and crosstalk in 
multiconductor transmission lines 
above ground

Nelson Theethayi & Rajeev Thottappillil
Division for Electricity, Uppsala University, Uppsala, Sweden.

Abstract

Surges/transients due to direct or indirect lightning strikes or switching faults are 
common phenomena in multiconductor transmission line (MTL) systems above 
ground, whether it is power systems, railway systems, communication systems or 
electronic systems with printed circuit board lands. In a given MTL system, tran-
sient surge in any one of the conductors (emitter) causes crosstalk in other adjacent 
conductors (receptors). It’s a common electromagnetic interference (EMI) phe-
nomenon due to electromagnetic coupling between the conductors. In this chapter, 
we discuss the methods to study the crosstalk mechanisms in above ground MTL 
systems and also by examples show various parameters that could infl uence the 
crosstalk mechanisms. Analysis in time and frequency domain will be also made 
wherever necessary.

1 Introduction

In the two-conductor transmission line theory [1–3], as discussed in the earlier 
chapter, one of the wires carries the currents in the opposite direction with respect 
to the other, because of which a sign convention is adopted for the voltages of the 
conductor, i.e. the conductor carrying current in the positive direction of the wire 
has a positive voltage with respect to a remote reference and the conductor car-
rying the current in the negative (opposite) direction has a negative voltage with 
respect to a remote reference. The wire that was carrying current in the negative 
direction is referred to as return conductor. In case of multiconductor transmis-
sion line (MTL) systems to be discussed here, for the above ground conduc-
tors the reference conductor is the ground that carries or returns currents in the 
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negative direction. Thus the theories discussed in the previous chapter apply here 
as well. One of the diffi culties with MTL systems with ground return could be 
the effects of imperfect ground (i.e. real conducting earth having some dielectric 
constant) on the voltages and currents propagating in the wires. It is also referred 
to as frequency dependant loss in the MTL system due to electromagnetic fi eld 
penetration in the ground [3–16]. More emphasis is given for direct numerical 
time domain solutions of the telegrapher’s or transmission line equations. Time 
domain solutions are preferred because in practical systems, like power, railway, 
etc., whenever transients propagate there are protection equipment connected to 
the system to divert the transients for providing safety to important equipments 
and personnel [17, 18]. All the protection systems contain devices like insulators, 
surge protective devices, grounding systems undergoing soil ionization, circuit 
breakers and fuses, etc. [19–21]. These being non-linear devices, hence continu-
ous monitoring of the voltages and currents on the MTL systems is needed, for 
modelling the non-linear phenomena like fl ashover, arcing, soil ionization, etc.

2  Telegrapher’s or transmission line equations for 
MTL systems

Voltage and current wave propagation in MTL systems is represented by the two 
sets of equations given by eqn (1) in frequency domain, for perfectly conducting 
ground and non-dissipative line (lossless/ideal).
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Similarly, for a perfectly conducting ground with constant or frequency-independent 
internal losses the transmission line equations are given by eqn (2) in frequency 
domain.
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Note that in conventional form, the Laplace or Fourier domain, the frequency is 
represented by S ⇔ jw [22]. Equations (1) and (2) are popularly known as teleg-
rapher’s equations. Kelvin (William Thomson) was studying the pulse propagation 
in the transatlantic cable (1855), a landline connecting North America and Europe 
via Alaska and Siberia. The cable failed, as Kelvin’s theory neglected the magnetic 
effects and only the effects due to the capacitance and resistance per unit length 
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of the cable were accounted, which when used in the actual telegrapher’s eqns (2) 
yields the diffusion equation. In 1857, Kirchoff proposed the long line theory to 
include self-induction effects. Heaviside later formulated all the parameters required 
for complete transmission line theory [23]. Equations (1a) and (2a) are the voltage 
wave equations and eqns (1b) and (2b) are the current wave equations. For a system 
of n conductors as shown in Fig. 1 and corresponding to eqns (1) and (2), the terms 
V(x, jw) and I(x, jw), are the voltage and current vectors having size n. Further, Li, 
Le, Ce, R and Ge are per unit length series inductance (internal and external), shunt 
capacitance, series resistance and shunt conductance matrices of size n, respectively. 
Note that for convenience, discussions below are for no external fi eld illuminations, 
i.e. there are no illuminating fi eld forcing terms in eqns (1) and (2), but the fi eld to 
wire coupling theories discussed in the previous chapter apply here as well.

The R and Li matrices are diagonal due to the constant internal loss of the con-
ductor and have meaning only when the skin effect phenomenon is not prominent, 
i.e. under the conditions when the radius of the circular wire satisfi es ri < 2d, where 
d is the skin depth [24, 25]. Usually, under low frequency or DC conditions the 
current is uniformly distributed over the wire cross-section, but at high frequencies 
the current crowds to the surface and distributes itself uniformly in thickness given 
by the skin depth applicable for good conductors di =  √

______
 2/wms  . At high frequencies 

the internal loss has to be represented as internal impedance which will be discussed 
later. The elements corresponding to R and Li are given by eqns (3) and (4). 
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Figure 1: System of MTL above a perfectly conducting ground.
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The external transmission line parameters, Le, Ce and Ge corresponding to Fig. 1, 
are calculated using the image theory [1–3] and is due to the external magnetic and 
electric fi elds, respectively. The external self-inductance of kth conductor and lth 
mutual inductance between wires k and l are given by
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To get the external capacitance matrix one has to fi rst obtain the potential coeffi -
cient matrix in the same way as the inductance coeffi cient matrix (5). The potential 
coeffi cient matrix is given by eqn (6) for the self and mutual values.
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Inverting the potential coeffi cient matrix, we have the capacitance coeffi cient 
matrix (7).
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The conductance coeffi cient matrix can be obtained from capacitance matrix 
directly (8). Since the conductivity of air is negligible, this matrix can be neglected 
for the above ground wires.
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Since the internal losses are not completely represented by just the resistance and 
internal inductance of the wire, we now rewrite the transmission line equations in 
terms of series impedances (internal impedance Zi and external impedance Ze) and 
the external shunt admittance Ye as shown in eqn (9).
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2.1 Expressions for internal impedance of wires

An expression for the internal impedance of the wire that can properly represent 
the frequency dependence is needed. Schelkunoff [24, 25] gave the exact expres-
sion for internal impedance for round wires of radius rw as shown in eqn (10), 
which was in terms of modifi ed Bessel’s functions and internal wire propagation 
constant gi =  √

_____
 jwms  .
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Wedepohl and Wilcox [26] gave another approximate formula as given by eqn (11) 
which is an approximation of eqn (10).
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There is another approximation to eqn (10) proposed by Nahman and Holt [27] 
and is given by eqn (12).
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A comparison of all the above expressions for wide frequency range is shown in 
Fig. 2 for an aluminium circular wire of radius 5.6 mm. It is seen that the internal 
impedance expressions (10) and (11) are identical and also the expression (12) is 
in good agreement. Interestingly eqn (12) can be used in the time domain calcula-
tions easily [2, 27], which will be discussed later.

2.2  External impedance and admittance of wires above fi nitely conducting 
ground

An imperfect (lossy) ground has fi nite value of ground conductivity sg and is char-
acterized further by the ground permittivity eg and ground permeability µ = µ0. All 
these material properties are also referred to as ground return parameters. Ground 
conductivity is of infi nite value when the ground is assumed to be perfect. When 
a current pulse is propagating along an overhead wire the electromagnetic fi elds 
from the wire source impinges the ground surface. If the ground was perfectly 
conducting, then those impinging electromagnetic fi elds get completely refl ected 
from the ground surface and nothing penetrates into the ground, since the refl ec-
tion coeffi cient for a perfect ground is unity. This allows us to use the well-known 
image theory (image of the wires’ is fi xed irrespective of the frequency of the 
propagating pulse) for perfectly conducting ground and the external impedance 
can be obtained using expressions (5). But one has to be careful with the limits of 
transmission line approximation (see also Chapter 1). This limiting condition is 
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such that the wavelength lpulse of the pulse propagating on the wire under perfect 
ground conditions should be much larger than the conductor’s height h, i.e. lpulse 
>> 2πh [2, 3]. As the pulse frequency increases, the wavelength decreases and 
above some critical frequency, the wavelength would become comparable to the 
heights of the conductor. Therefore, the discussions in this chapter are valid only 
under the limits of transmission line approximations [3]. For transients having 
frequencies of the order of a few megahertz, the transmission line approximation is 
still valid for typical overhead power lines. We shall discuss the limits of transmis-
sion line approximation for fi nitely conducting ground conditions later.

For an imperfect ground, the refl ection coeffi cients are complex valued functions 
[3, 5] leading to fi nite frequency-dependant penetration of fi elds into the ground as 
shown in Fig. 3. In the earlier discussion of skin effect phenomena, it was seen that 
magnitude of the current fl owing in a conductor tend to crowd towards the surface 
of the conductor depending upon the frequency or skin depth. A somewhat similar 
phenomenon, rather more complex, happens (see penetration depth shown in Fig. 3) 
if, instead of a perfectly conducting ground plane, a real soil or ground medium is 
present. The complexity is in identifying the proper meaning to the line voltage. In 
principle the line voltage is defi ned as the line integral of electric fi eld from the 
reference conductor to the location of the other conductor. Thus, for wires’ above 
perfect ground, the voltage is the line integral from the ground surface (referenced 

Figure 2:  Comparison of internal impedance expressions (10)–(12) for an aluminium 
circular wire of radius 5.6 mm.
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at zero potential) to the height of the conductor (note the reference wire based on 
image theory [3, 6, 13, 14] is located at a distance twice the conductor height). For 
real ground or soil, the electric fi eld in the earth is non-zero and the zero/reference 
level is only at a certain depth due to fi elds penetrating the ground. Well, the ques-
tion is at what depth one can fi nd this?

Tesche et al. [3] mention that in order to get the total wire voltage, the line inte-
gral is to be split into two parts. One integral is between the surface of the ground 
to the wire location in air and the other integral is from the –∞ in the earth to the 
surface of the earth. For discussions below, let us drop the incident fi elds (for brev-
ity) and consider only the wire above the ground and assume that some incident 
fi eld caused the induced current in the wire (see details in Chapter 1 on fi eld to 
wire coupling). For a transverse electric and magnetic (TEM) fi eld structure and 
referring to Fig. 3, taking the integration from –∞ (assuming the zero reference 
point) to h (conductor height), we have eqns (13)–(15).

The fi rst integral on the left-hand side of eqn (13) is the required voltage at two 
points on the line and the second integral corresponds to the internal loss or the 
contribution due to internal impedance, as discussed in earlier section, which, for 
a perfect conductor is zero.
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Figure 3:  Single conductor above a dissipative semi-infi nite earth (adapted from 
[3] and modifi ed).
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Under the limits ∆x → 0, the left-hand side of eqn (13) gives the derivative of the 
voltage drop and also the drop due to skin effect (internal impedance) of the con-
ductor as shown in eqn (14).
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Similarly, the right-hand side of eqn (13), for no incident or transmitted fi elds 
and with only scattered fi eld or fi eld due to current on the wire, gives eqn (15). 
Equation (15) is the fl ux due to the wire current and the return current in the 
ground.
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Note that there exists only external inductance term for wire above a perfect 
ground. From eqn (15), it is seen that the total external impedance is a series 
combination of external impedance due to inductance of wire with perfect ground 
and the ground impedance Zg. Similar to external mutual inductances (5b) for 
wires above ground, one has mutual ground impedance too. Many researchers 
have contributed to deriving the ground impedance expressions. Only the most 
important ones applicable to transmission line type problems will be discussed 
here.

The critical frequency for the soil is the instant when the displacement cur-
rents become equal to the conduction currents. For a given soil if the critical 
frequency is wc = sg/eg and if the propagating pulse on the wire or the associated 
electromagnetic fi elds have a frequency w, then the behaviour of the earth to 
those incident fi elds are the following (various types of electromagnetic pulses 
that are encountered in practical electromagnetic compatibility problems are 
also given [3, 8, 28–31]),

If • w < 0.1wc, then it is low-frequency approximation and the earth behaves as a 
conductor (Carson region). All the pulses like power, switching and typical fi rst 
lightning return strokes belong to this category.
If 0.1• wc < w < 2wc, then it is high-frequency approximation and the earth be-
haves as both conductor and insulator (transition region). Most of the fi rst and 
lightning subsequent return stroke pulses belong to this category.
If • w > 2wc, then it is very high-frequency approximation and the earth behaves 
as an insulator (asymptotic region). Most of the high-altitude electromagnetic 
and nuclear electromagnetic [31] pulses belong to this category. Care has to be 
exercised that the transmission line approximation may be strictly questionable 
at these frequencies.
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2.2.1  Carson’s ground impedance expression for low-frequency pulse 
propagation studies

Carson [16] was the fi rst to investigate the concept of ground impedance (also called 
earth return impedance). He fi rst derived the general solution of axial electric fi eld 
in the ground and related this axial electric fi eld to the magnetic fi eld components 
using the Maxwell’s curl equation. He then split the magnetic fi eld components into 
two parts, i.e. one part of the fi eld coming from the current in the wire and the other 
from the current in the ground. The axial displacement currents in the ground were 
neglected (low-frequency approximation), i.e. the ground propagation constant is 
g'g =  √ ______

 jwm0sg   and it is assumed that the wire is of suffi ciently small radius so that 
the distribution of current over its cross-section is symmetrical for the electric fi eld. 
The axial electric fi eld was further related to the scalar and vector potentials and he 
derived the fi nal ground impedance expressions as an improper integral shown in eqns 
(16a) and (16b) for self and mutual values respectively (refer Fig. 1 for geometry).
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The infi nite integral terms in eqn (16) have certain solutions in terms of Bessel’s 
functions of fi rst and second kind. Those functions can be expanded in terms of 
infi nite series. For simpler computations, Carson further expanded the integrals 
to infi nite series [16], which is widely used by power engineers. Carson’s infi -
nite series converge very quickly at low frequencies. The convergence decreases 
as frequencies increase and could lead to truncation errors. The low-frequency 
approximation is used (see the denominator terms, wherein eg is missing in eqn 
(16)). Further, under the limits frequency tending to infi nity, Carson’s expression 
poses singularity, i.e. ground impedance tends to infi nity. In reality, as frequency 
tends to infi nity the ground impedance tends to be fi nite, which will be discussed 
later.

To overcome the diffi culty of convergences of Carson’s equations and perhaps 
to study some of the power system faults, Gary proposed the complex depth earth 
return method in 1976 but without any analytical proof of his proposition [6]. In 
1981, Deri et al. [6] theoretically proved the relationship between the Carson’s 
method and the complex depth ground return method, thereby proving Gary’s 
proposition of complex depth ground return method.

This method is somewhat a closed-form approximation to Carson’s integral 
equation (16). Deri et al. [6] method assumes that the current in conductor say, k 
returns through an imagined earth path located directly under the original conduc-
tor at a depth of (hk + 2p) as shown in Fig. 4, in which k'' refers to the imagined 
earth return conductor of conductor k and p to the low-frequency approximation of 
the skin depth of the ground. In other words, earth can be replaced by a set of earth 
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return conductors. The distance between a conductor and its imagined earth return 
conductor equals twice its height above ground plus the skin depth of the ground 
(i.e. 2(hk + p)). It must be emphasized that the skin depth p = (jwm0sg)

–1/2 is a com-
plex number. The relevant ground impedance equations are shown in eqn (17) 
which have symbols as defi ned in Fig. 4.
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The drawbacks of Carson’s integral equations with regard to high frequency 
also apply to Deri et al. expressions as well. Further, it is observed that p = 0 as 
w → •. This is not true because as the frequency tends to infi nity the penetration 
depth tends to an asymptote decided by the ground material properties. This will 
be discussed after the high-frequency expression for ground impedance. Note 
that the low-frequency approximation is strictly valid only if the conduction 
currents are much larger compared with the displacement currents in the soil, 
i.e. sg >> weg.

Figure 4:  Allocation of conductors k and l and their images k' and l' with a low-
frequency approximation of skin depth p [6].
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2.2.2  Sunde’s ground impedance expression for high-frequency pulse 
 propagation studies

After Carson, the next important person to contribute to the development of ground 
impedance was Sunde [4]. In his classic text on Earth conduction effects on trans-
mission systems, Sunde analysed several other cases with regard to the location of 
wire, above and below ground, for wide frequency range and with specifi c atten-
tion to propagation characteristics. In authors’ opinion, he was the fi rst to bring 
the concept of transmission line modelling with earth conduction effects, judged 
from all his interesting works and publications during the 1940s. During his time, 
the lightning-induced transients and other power system fault estimations was of 
utmost signifi cance. This may have led him to investigate the wave propagation in 
buried cables, overhead wires, grounding rods and wires, etc. Sunde [4] derived 
his expression by assuming a dipole in air above the earth surface, with earth 
assumed to consist of two layers. He then used the wave functions or the Hertz 
potentials [32] in the three media and derived the result by satisfying the bound-
ary conditions corresponding to the continuity of the tangential components of 
the electric and magnetic fi elds at interfaces. His ground impedance expressions 
(18) include the displacement currents in the soil, i.e. ground propagation constant 
gg =  √

______________
  jwm0 (sg + jweg)   was used (refer Fig. 1 for geometry).
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The only difference between Carson’s (16) and Sunde’s (18) expressions is that full 
propagation constant in the ground was used by Sunde, the justifi cation being that 
at higher frequencies the displacement currents in the soil could not be neglected. 
For the self-ground impedance eqn (18a), Sunde gave a logarithmic approximation 
as shown in eqn (19a).
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In the recent studies on the fi eld wire coupling problems in overhead power lines 
for a wide range of frequencies the Sunde’s logarithmic approximation is used 
[28, 31]. There is yet another ground impedance expression by Vance in terms 
of Hankel functions and it is mathematically equivalent to Sunde’s expressions 
(19a) [5]. However, according to Chen and Damrau [7], Sunde’s logarithmic 
approximation is more valid. It is further said in [3, 7] that for overhead power 
lines eqn (19a) is a very good approximation of eqn (18a) and the logarithmic 
formula are valid for a wide frequency range [28, 29]. Now, having known the 
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drawback of low-frequency approximations of Carson, the immediate question 
is, does Sunde’s logarithmic or integral expression suffer the same drawbacks? 
No! As the frequency tends to infi nity Sunde’s expression, specifi cally logarith-
mic expression is fi nite and never poses any singularity. The integral expression 
(18a) have convergence problems, hence the authors have not investigated its 
behaviour for higher frequency. Rachidi et al. [28, 29] have mentioned that the 
integral expression (19a) does not pose any singularity. Let us discuss this fi nite 
value in a little while. Sunde’s expression has greater validity compared with 
other low-frequency approximations.

Equation (19a) has been extended by Rachidi et al. [28] for the mutual imped-
ance as given below in eqn (19b) and it is also claimed that (19b) is a very good 
approximation of eqn (18b). It can be shown that eqns (19b) and (17b) are similar, 
excepting that the low-frequency approximation of ground propagation constant 
was used in eqn (17b).
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As mentioned earlier, we next discuss the asymptotic nature of the ground imped-
ance as the frequency tends to infi nity based on the fi eld penetration depth. A 
comparison of various ground impedance expressions is shown in Fig. 5 for a 
conductor of height 8 m and for different ground conductivities as a function of 
frequency.

2.2.3  Asymptotic nature of ground impedance and the concept of 
 penetration depth of fi elds in the ground

From Fig. 5, it is seen that the ground impedance magnitude is tending to a con-
stant value as frequency tends to infi nity. To understand this, we need to see what 
happens to the ground penetration depth as the frequency tends to infi nity. The 
penetration depth of the fi elds in the soil is given by eqn (20) [5].
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It can be shown that eqn (20) tends to eqn (21) as the frequency tends to infi nity 
[5, 8].
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Figure 6 shows the variation of ground penetration depth as a function of frequency 
for various ground conductivities. Note that the low-frequency approximation of the 
ground penetration depth will lead to zero penetration depth as frequency tends to 
infi nity, which is incorrect, due to which the low-frequency approximation of the 
ground impedance, rather than approaching a constant asymptotic value, approaches 
infi nity. Thus, Sunde’s ground impedance is valid as it approaches fi nite value under 
the limits frequency approaching infi nity.

The value of the ground impedance, as frequency tends to infi nity, is given by 
eqns (22a) and (22b) for self and mutual values respectively [8], which is neces-
sary for time domain calculations.
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Figure 5:  Ground impedance amplitude and argument plots for conductor height 
8 m and ground conductivity sg = 10 mS/m and sg = 0.2 mS/m, ground 
relative permittivity erg = 10.
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If one observes the manner in which the ground impedance curves of Sunde 
in Fig. 5 varies as a function of frequency for different ground conductivity, it 
can be seen that the poorer the ground conductivity, the earlier the frequency 
at which the asymptotic value is attained. This is also observed in the case of 
Fig. 6 for ground penetration depth. Thus, using the concept of ground penetration 
depth, Theethayi et al. [33] discussed somewhat philosophically/intuitively, the 
limits of transmission line approximation for wires above fi nitely conducting 
ground.

It should be emphasized that we are discussing a case where ground has uniform 
conductivity, but in practical situations there are several layers in the soil having 
different conductivity and permittivity. Sunde in his book [4] has proposed the ways 
to calculate the ground impedance under such circumstances. But there are always 
assoicated uncertainties, i.e. lack of information regarding thickness of layers, 
proper ground conductivity, etc. Sunde [4] and Vance [5] mention that uncertainties 
in the soil conditions could cause around 20% errors in the analysis. Some works to 
this direction under low-frequency approximations have been proposed in [6, 34]. 
However, analysis and accuracy with regard to transmission line solution for the 

Figure 6:  Penetration depth of electromagnetic fi elds in the ground for various 
ground conductivities erg = 10.
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kind of problem we are dealing with is only dependant on the accuracy of ground 
impedance expression.

2.2.4 Limits of transmission line approximation for overhead wires
In the above discussions, we have mentioned the upper frequency limits if trans-
mission line approximations are to be valid. For all the above ground wires with 
earth return it was shown that currents return in the soil at various depths depend-
ing on the penetration depth which is further dependant on the frequency.

Along the length of a normal transmission line, both electric and magnetic fi elds 
are perpendicular (transverse) to the direction of wave travel [1–3], which is known 
as the principal mode, or TEM mode, thereby allowing us to use the quasi-static 
analysis. This type of analysis has been carried out earlier by Bannister [13–15]. 
Now the condition for the TEM propagation to be dominant at any given frequency 
is, that the distance between the actual wire location and the return wire (return 
path in the ground) is less than or equal to the wavelengths of the pulse propagat-
ing in the air. Thus, under limiting conditions, for any given frequency the pulse of 
the wavelength should be such that lpulse ≥ 2(h + dg). It is clear that if at all the 
wavelength violates the above condition, then there would possibly be other modes 
of propagation that should be considered and that the defi nition of voltage will no 
longer be valid as the wire might be radiating or return may not be through earth. 
A solution based on exact Maxwell or Hertz dipole theory as carried out by Wait [9], 
Olsen et al. [10], etc. could answer such doubts. Thus in the present study assum-
ing that only a TEM or a quasi-static fi eld structure exists (dominant), with all the 
other modes suppressed the minimum frequency beyond which the transmission 
line approximation might be questionable is given by fTL = 3 × 108/2(h + d•), 
where d• = 2/sg

  √
_____

 eg/m0  .
Figure 7 shows the actual frequency-dependant distance between wire location 

in air and its corresponding image wire or return plane for a conductor height of 
10 m. The distance between the wire and its actual image is an extension of the 
analysis based on Bannister [13–15], which is twice the sum of height and the 
skin/penetration depth in the soil. Note that the whole medium under consider-
ation now is air. Therefore, in Fig. 7 the wavelength in air is also shown as a func-
tion of frequency. It is seen that when the ground conductivity decreases, the 
limiting frequency for the transmission line analysis to be valid also decreases 
based on the arguments presented earlier and is similar to conclusions made in 
[28, 29].

Thus, we have determined all the parameters corresponding to the frequency-
dependant series impedance terms in the fi rst transmission line equations. We now 
move on to the calculation of shunt admittance parameters of the line in the pres-
ence of fi nitely conducting ground.

2.2.5 Ground admittance for above ground wires
If ground impedance is obtained, then one can obtain the ground admittance too. 
The ground impedance is due to the contribution of magnetic fi eld in the ground. 
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Similarly the ground admittance is due to the contribution of electric fi eld in the 
ground. The linear charge density along the conductor and admittance of the line is 
related to the electric fi eld as shown in eqn (23) and based on Fig. 3 [3].
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The overall shunt admittance of the line is thus given by eqn (25), which implies 
that the total line admittance is a series combination of external admittance due to 
capacitance of the wire to ground with perfect ground conditions and the ground 
admittance.
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Figure 7:  Frequency-dependant distance between the source wire and fi ctitious return 
path for conductor height 10 m, sg = 10, 1 and 0.1 mS/m and erg = 10.
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Again, there are some expressions in the literature for the ground admittance of the 
line [5]. However, as an approximation, the ground admittance and ground imped-
ance are related through ground propagation constant as in eqn (26).
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2.3  Complete per unit transmission line representation and the sensitivity 
of each transmission line parameters

We have seen in the previous sections all the relevant parameters to represent a 
distributed transmission line segment of an overhead wire with ground as return. 
Using those parameters the per unit length representation of the above ground wire 
is shown in Fig. 8. In the MTL systems, there will be mutual couplings external 
impedance and admittance parameters. The analysis, however, remains the same 
but with matrices as explained earlier. These parameters are part of the transmis-
sion line eqns (9). Let us next see which parameter among the previously men-
tioned list of transmission line parameters is dominant in various analyses.

Let us begin with series impedance parameters, i.e. we shall compare the mag-
nitudes of internal impedance, external impedance under lossless ground condi-
tions and external self-impedance under lossy conditions. For comparisons, we 
shall use the internal impedance expression (10), the external inductance expres-
sion (5a) and the ground impedance expression (19a) for a typical overhead copper 
wire, 8 m height, 1 cm radius and with a ground conductivity 10 mS/m. The com-
parisons are shown in Fig. 9.

From Fig. 9, it is clearly seen that the external impedance parameters dominate 
largely over the internal impedance only at extremely low frequencies and typically 

Figure 8:  Transmission line segment with all the transmission line parameters for 
an above ground wire.
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when the conductor heights are close to the ground the internal impedance effects 
should also be considered. Similar conclusion has been made in [28, 29] for typi-
cal overhead wires. In [35] it is shown that even for conductors close to the lossy 
ground the internal impedance effects are negligible. Hence, in the analysis with 
ground losses internal impedance could be neglected to reduce computational dif-
fi culties. We shall however see how to include internal impedance in later time 
domain simulations. Paul in [1, 2] has shown that skin effect phenomenon could 
be important in simulations of crosstalk phenomenon with printed circuit board 
lands, etc. with high-frequency pulses.

Next, let us look at the shunt admittance parameters under lossy and lossless 
conditions. We take the same example as above and calculate the external capac-
itance using eqn (7); and the ground admittance using eqn (26). The comparison 
is shown in Fig. 10, where it can be seen that ground impedance can be simply 
neglected for above ground wires since its contribution to the overall shunt admit-
tance of the line is negligible. Similar comparison/conclusion was made in [28]. 
It is shown that infl uence of ground admittance is negligible when the wire is 
close to the ground. In [7, 35] it is mentioned that the ground admittance is impor-
tant only when the wires are on the ground or below the ground which will be 

Figure 9:  Transmission line impedance parameters comparisons as a function of 
frequency for copper wire 1 cm radius, 8 m height above ground of con-
ductivity 10 mS/m and ground relative permittivity of 10.
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discussed in Chapter 3. Note that we shall from now on neglect the ground admit-
tance for further analysis in this chapter.

The authors would like to mention that pioneering works of Wait [9] and other inter-
esting works by researchers like [10, 36–38], etc., on the subject of wave propagation 
on wires above ground will give broader insight into the electromagnetism and math-
ematical principles underlying the problem under study. Those works could motivate 
researchers and engineers to develop more accurate and simple expressions for ground 
impedance and admittance for direct application to various practical problems.

2.4 Transmission line equations time domain for wires above ground

Any frequency-dependant loss in time domain will lead to convolutions in time 
domain. Thus with ground losses and skin effect losses included for wires above 
ground the relevant transmission line equations, i.e. the voltage and current wave 
equations are given by eqns (27a) and (27b), respectively, for a system of MTL under 
the zero external fi eld illumination. Note that for the skin effect loss the impedance 
corresponding to eqn (12) is used in eqn (27a). Thus the problem remains in solv-
ing the two convolutions in eqn (27a). We shall adopt the most widely used method 
in solving the transmission line equations, i.e. the fi nite  difference time domain 

Figure 10:  Transmission line admittance parameters comparisons as a function 
of frequency for copper wire 1 cm radius, 8 m height above ground of 
conductivity 10 mS/m and ground relative permittivity of 10.
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(FDTD) method. This method has been applied by various researchers for differ-
ent external fi eld excitation problems (electromagnetic pulse, lightning, switching, 
etc.), grounding systems, electronic printed circuit boards, etc. This method also 
allows us to include other non-linear devices as terminal loads, making it very suit-
able to simulate practical systems for transient protection.
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2.4.1 Time domain transient ground impedance
Before going further, it is important that we discuss the concept of transient ground 
impedance, i.e. the last term on the left-hand side of eqn (27a). In principle, the 
transient ground impedance is defi ned as either Laplace or Fourier inverse of 
ground impedance as eqn (28).
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Using the initial value theorem, it is easier to fi nd the transient ground impedance 
value at t = 0, which is necessary for FDTD calculations (to be discussed later).
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It is clear that based on eqn (29) the value of transient ground impedance at zero 
time is eqn (22) for self or mutual impedance as the case may be. It is impor-
tant to mention that in the literature there are no time domain expressions for 
transient ground impedance (28). But there are some expressions that are based 
on approximations. We shall take them one by one as transient ground imped-
ance for complete time including t = 0 is needed for the FDTD calculations 
[33, 39, 40].

Timotin [41] fi rst developed the time domain transient ground impedance 
expression by performing inverse Fourier transforms of Carson’s expression. 
Later, Orzan [42] extended Timotin’s expressions for the mutual transient ground 
impedance, as shown in eqn (30), which is applicable only when sg >> weg. This 
approximation is also called the late time (LT) approximation as it is applicable to 
the complete low-frequency spectrum.
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It is not certain as to how the transient ground impedance behaves in the transi-
tion region and in the very high-frequency region as there could be some doubts on 
the limits of transmission line approximation itself. Still to facilitate the calcula-
tions by FDTD method, it is essential that some time domain expression covering 
both early and the late time regions should be known.
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Two expressions that are available in the literature are due to Araneo and Cellozi 
[39] (eqn (31a)) and Rachidi et al. [40] (eqn (32)).
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In eqn (31a) the early time (ET) ground impedance expression (33) is used, which 
was obtained by Araneo and Cellozi [39] by Laplace transforming the very high-
frequency approximation of ground expression proposed by Semlyen [8].
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In eqn (33), I0 (.) is the modifi ed Bessel function of the fi rst kind. A comparison 
of various ground impedance expressions has been made in [33, 35]. According 
to [39], the maximum frequency at which Carson’s equation is valid is evaluated 
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as the minimum criterion  f   cr  
LF  = min(0.1sg/2πeg, 0.1c/2πh) [8, 39]. Hence in time 

domain the corresponding late time approximation (30a) can be used at a time 
greater than 1/ f   cr  

LF  [39]. The Semlyen’s very high-frequency ground impedance 
expression proposed in [8] can be used when the frequency is higher than  f   cr  

LF  = 
sg/πeg [39]. Therefore, in time domain the early time transient ground impedance 
(33) can be used for times less than 1/ f  cr  

HF  [39]. In the expression (31), the fi lter 
concept was used [39] to arrive at the transient ground impedance approximation. 
The other approximation, proposed by Rachidi et al. [40] (eqn (32)) uses the mini-
mum of asymptotic value of the transient impedance and the late time approxima-
tion. A comparison of these two transient ground impedance expressions (31) and 
(32) with the inverse Fourier transform of Sunde’s ground impedance expression 
using eqns (19) and (28) is shown in Fig. 11 for a conductor of 10 m height and 
ground conditions of sg = 2 mS/m and erg = 10.

It is seen that both the transient ground impedance expressions (31) and (32) are 
reasonably good approximations. However, the deviation between two transient 
ground impedance expressions will be higher when the ground conductivity is 
poor or conductor heights are smaller [33, 35]. Let us next discuss the method of 
solving the transmission line equations (27) using the FDTD method.

Figure 11:  Transient ground impedance comparisons between Araneo and Cellozi, Ra-
chidi et al. and actual inverse Fourier transforms of Sunde ground imped-
ance expressions for 10 m conductor height and sg = 2 mS/m and erg = 10.
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3  Time domain numerical solutions for transmission line 
 equations

3.1 Finite difference time domain method

The best available and simple method to solve the telegrapher’s equations is to use 
the FDTD technique. It was fi rst used to solve the Maxwell equations in differen-
tial form using the Yee cell approach [43]. Note that excellent discussions to the 
subject of FDTD methods for transmission lines problems and full wave fi eld solu-
tions can be found in the books by Tafl ove [44] and specifi cally for transmission 
lines in Paul [2]. To discuss the FDTD method let us assume a system of MTLs 
that are terminated in some resistive loads. We refer one of the ends as the source 
end and the other as the load end. The diagonal matrix of loads at the source end 
will be referred to as RS and similarly for the far-end as RL. Let the voltage source 
vector at the source end be VS and similarly for the far-end be VL. The representa-
tion is shown in Fig. 12.

For transmission line type problems, the simplicity of FDTD method is such 
that the problem is one-dimensional propagation and all the main parameters 
with regard to fi eld coupling between wires is inherent in the inductance, capac-
itance and ground impedance and admittance matrix. Thus, space and time vari-
ables are connected to voltages and currents (dual to electromagnetic fi elds) 
along the line in differential equations (27). The FDTD method uses central dif-
ference approximations to discretize (27) in terms of time and space steps. 

Figure 12:  The possible types of injection at the terminations on a system of n 
conductor MTLs (shown only at the source end here).
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The solution to the problem is achieved by means of leap-frog scheme [2, 44], 
i.e. for a given time step, fi rst the voltages are calculated and then the currents; 
again the voltages and then the currents; and so on. In the FDTD method there 
are NDX+1 voltage nodes and NDX current nodes on the line separated by a 
length of dx [2]. The ends of the line are essentially voltage nodes and every cur-
rent node is at the mid-point between two voltage nodes. The voltage nodes are 
solved fi rst and then the current nodes, the recursive equations for the voltage 
nodes are given below and are obtained by discretization of the current wave 
equation and then satisfying the boundary condition at the two end nodes. Note 
that the stability of FDTD method depends on the time and space discretization 
and it must satisfy the Courant condition, i.e. ∆x/∆t ≥ υ, where υ is the maxi-
mum phase velocity of the currents or voltages propagating on the line. Paul [2] 
suggests that stability of the system is assured when the total number of time 
steps NDT and space steps NDX satisfy (34).
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Line length

u
≥

 
(34)

The voltage nodes are solved fi rst and then the current nodes, the recursive equa-
tions for the voltage nodes are given below.

For the fi rst node the recursive relation is eqn (35).
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For the last node the recursive relation is eqn (36).
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For any node in between the line the recursive relation is eqn (37).
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Before going to the current wave equations, it is necessary to understand that 
we need to use the recursive convolutions [45], which are computationally more 
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effi cient than the convolution by numerical integration as carried out in [28, 29]. 
This is now explained by an example. Consider we need to convolute two time 
functions f (t) and g(t) as in eqn (38) at any given time using trapezoidal rule of 
integration (39).
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As mentioned earlier, it is seen that the product terms in the trapezoidal inte-
gration changes at every time step and therefore the summation has to be made 
using all the previous current terms, which certainly will put a heavy compu-
tational burden and memory requirements if we have many conductors in the 
MTL system. At this juncture, we can use the concept of recursive convolu-
tion as proposed in [39]. This demands only the saving of a couple of old cur-
rent values. One of the requirements to use recursive convolution is to fi nd an 
exponential approximation for g(t). For our case we need to fi nd an exponen-
tial approximation for the transient ground impedance z(t). Let us assume that 
we have an exponential approximation for g(t) with p exponential terms as in 
eqn (40). Note that the transient ground impedance could be fi tted using Prony 
approximation [46].
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Note that eqn (40) in frequency domain is eqn (41), which requires the determina-
tion of poles and residues for this well-known frequency domain fi tting called the 
vector fi tting [47] could be used. The authors have adopted this method for fi tting 
Sunde’s ground impedance expression.
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Assuming, for simplicity, that there is just one exponential, we have recursive 
convolutions technique as explained below. This interesting trick was introduced 
by Semlyen and Dabuleanu, see appendix in [45].
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Equation (43) can be split as eqn (44)
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Making a change of variables as t = t' + ∆t, in the fi rst term on the right-hand side 
of eqn (44) and after simplifi cation and change of limits we have
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Comparing eqns (45) and (43) and substituting in eqn (44), we have eqn (46).
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As can be seen from eqn (46) any new value of the convolution is dependant on the 
old value of the convolution.

This technique has been adopted by Araneo and Celozzi [39] for the solution 
of the FDTD method involving ground loss to discretize the fi rst transmission 
line equation and the recursive relation is shown below. Note that the internal 
impedance loss is also included as recursive convolution which is adopted from 
Paul [2]. The recursive relation for the current is given by eqn (47) for any 
node.
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There are various terms in eqn (48) that need to be calculated before evaluating 
eqn (47). Let the transient ground impedances be fi tted as sums of exponentials as 
in eqn (48).
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For the skin effect mechanisms, the table in Fig. 13 shows the constants and 
exponential terms as taken from Paul [2]. Note that based on the conductor 
geometry and material properties, A and B in eqn (12) have to be calculated 
a priory. Using constants from Fig. 13, terms r(0) and Ψ in eqn (47) can be 
calculated as below.
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The terms z(0) and z(∆t) are the value of transient ground impedance and zero 
time and fi rst time steps. The convolution term CI is calculated as below and the 
method is same as explained in [39]. For an n conductor MTL system CI is a sum-
mation as in eqn (51) for a given node and time instant.
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Each convolution term in eqn (51) is given by eqn (52) for N number of exponen-
tial or constant terms in the fi tting of transient ground impedance.
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Figure 13:  Table of constants and exponential terms for the skin effect phenomena 
(adapted from [2]).
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The recursive relation for each term in eqn (52) at a given node and time instant is 
given by eqn (53).
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It is worth discussing the errors associated with recursive convolution. It is largely 
dependant on the accuracy of fi tting. Based on [39], care has to be taken to have 
minimum error at the time t = 0 and at fi rst time step. The decaying nature of the 
transient impedance decides the peaks and rise times of the fi nal wave shapes. 
When the number of conductors is more, it is not computationally effi cient to use 
more exponential terms for the highest possible accuracy. Hence, an exponential 
approximation that fi ts the transient ground impedance to a reasonable accuracy 
is needed.

Note that in all the discussions above the sources at ends of the line were 
assumed to be voltage sources and that it is also possible to extend all the above 
equations to current source feeding at the ends of the line by using the conven-
tional circuit theory, i.e. source transformations, Thevinin and Norton equivalents, 
etc. Next we shall discuss the frequency domain solution for completeness.

3.2 Frequency domain solutions for MTL systems

In frequency domain the MTL system has to be uncoupled and then the system of 
uncoupled equations have to be solved. There are numerical complexities involved 
in frequency domain, while solving for eigenvalue problem [2]. The Matlab [48] 
functions for eigenvalue calculations can be used. Some errors could propagate at 
this stage. Some errors could occur while performing the inverse Fourier trans-
forms to the frequency response of voltages or currents. This, however, could be 
minimized by playing around with sampling frequency and a number of points in 
the 2 f values. The frequency domain analysis is also referred to as modal analysis. 
A discussion on the transmission line solutions have been presented in various 
texts, e.g. [2, 3].

Let us begin with coupled second-order MTL equations. Note that the imped-
ance matrix has inductance, internal impedance and ground impedance matrix and 
the admittance matrix has the external capacitance matrix.
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Paul in [2] mentions that if we can fi nd two n × n matrices TV and TI which can 
diagonalize simultaneously both the per-unit length impedance and admittance 
matrices, then the solution reduces to the solution of n uncoupled fi rst-order dif-
ferential equations [2]. Thus when the matrices are diagonalized, the system of 
equations is known as modal telegrapher’s equations, which can be easily solved 
since they are in uncoupled form. Let in modal form the transmission line equa-
tions be represented as eqn (55)
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In eqn (55) z and y are the modal impedance matrices (diagonal) and they are con-
nected to the actual line impedance and admittance matrix through the transforma-
tion matrix, obtained as

 
1

V Iz T ZT−=  (56a)

 
1

I Vy T YT−=  (56b)

The second-order modal MTL equations in uncoupled form is given by
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It is important to mention that that the product of diagonal modal impedance and 
admittance matrix is commutative because of which it can be shown by conven-
tional matrix methods that  T  I  

t  =  T V  –1  [2].
Consider the second-order modal MTL equation corresponding to the current
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In eqn (58) g 2 is a diagonal matrix. The solution to the modal currents are given by

 m m m( , ) e ex xI x j I Ig gw − + −= −  (59)

The exponential terms in eqn (59) are diagonal matrices and the other terms are 
vectors. The fi nal solution for the current and voltage are given by eqn (60).

 m( , ) ( , )II x j T I x jw w=  (60)
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Similar analysis can be made for the determination of voltage starting form eqn (61).
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The characteristic impedance Z0 can be calculated from eqn (64).
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Note that in all the above analyses, the matrix multiplication order must be maintained. 
The unknown parameters that could be encountered while solving above equations 
can be obtained by proper treatment of boundary condition at the near- and far-end 
of the lines. Note that Thevenin and Norton theorems shall be applied appropriately 
at the line ends. For a voltage feeding at the line ends, we have the following corre-
sponding to Fig. 12 and assuming that L is the length of the line or line location.
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Using eqn (65) the parameters  I m  +
   and  I m  –

   can be obtained as eqn (66) [2]
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Similarly for a current source feeding at the ends of the line can be derived as eqn 
(67) [2].
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(67)

Thus, we have the expressions for voltage and current distribution along the line 
which can be calculated for any source injection or illumination. An example of 
comparison between frequency domain and time domain FDTD method by a typi-
cal lossy problem will be demonstrated next.

3.3  Comparison between direct frequency domain solutions and 
FDTD method

It is to be mentioned that majority of the transients have double exponential wave 
shape as given by eqn (68).
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Let us fi rst take an example of perfectly conducting ground and ideal case. The 
case being simulated is the following. Two conductors are parallel to each other and 
located at 10 m height and have radii of 5.6 mm. The conductors have a horizontal 
separation of 1 m and lines are 3 km long. A current source having shape given by 
eqn (68) with Ip = 1.13, t1 = 100 µs, t2 = 2.5 µs is directly fed into the source line 
and at the far-end of the source line a resistance of 490 Ω is terminated.

This current source has a peak of 1 A and about 10 µs rise time and 50% tail time 
of 60–70 µs. On the other line (receptor line, which is a crosstalk nomenclature 
discussed in Section 4) both at the near- and far-ends the termination resistances 
are 490 Ω. Simulations are carried out by the FDTD method and frequency domain 
solutions (see Section 3.2). Note that the frequency responses are inverse Fourier 
transformed to compare with time domain solutions. The time responses of cur-
rents at the near- and far-end loads of the receptor wire are shown in Fig. 14. It is 
seen that more or less the two solutions by different methods are identical.

Next let us take up the same example as above but now by using the fi nitely 
conducting ground. The ground conductivity chosen was 1 mS/m with ground 
relative permittivity of 10. The Sunde ground impedance was vector fi tted [47] to 
obtain the constants and exponential parameters for the recursive convolution in 
the FDTD method. This was made to eliminate any approximations associated 

Figure 14:  Frequency and time domain solution comparison for a typical crosstalk 
problem for perfect ground conditions.
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with transient ground impedance calculations in time domain. The simulations for 
this lossy case with all the other simulation parameters remaining unaltered com-
pared to the previous case are shown in Fig. 15 for the near- and far-end currents 
of the receptor.

As can be seen from Fig. 15 that just by the introduction of ground losses the 
shapes and magnitudes of currents at near- and far-ends of the wire have changed 
considerably. For this reason in Section 4, we deal with the interesting subject of 
crosstalk in MTL system. Note that only parameters that will infl uence the crosstalk 
mechanisms will be discussed using typical examples and simple circuit analysis. 
The subject of crosstalk is wide area of research in electromagnetic compatibility.

4 Crosstalk in MTL systems

When the distance between source of disturbance and the system suffering 
interference is very small, the victim system is in the near-fi eld region of the 
source system. Then the coupling path process between the source and victim 
is referred to as crosstalk. Crosstalk from one system to other can occur when 
the systems share a common-impedance (or shared conductor). It also happens 
through electromagnetic coupling in the near-fi eld. Sometimes electromagnetic 

Figure 15:  Frequency and time domain solution comparison for a typical crosstalk 
problem for lossy ground conditions sg = 1 mS/m and erg = 10.
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fi eld coupling can be decomposed into that primarily due to magnetic fi eld 
(inductive crosstalk) or primarily due to electric fi eld (capacitive crosstalk). 
In many situations, crosstalk happens as a mixture of common-impedance and 
electromagnetic fi eld coupling. Various researchers have contributed to studying 
the mechanism of crosstalk. The authors’ at this juncture would like to acknowl-
edge that it was Paul [1, 2] through his interesting works has given a new dimen-
sion and better understanding of the phenomena of crosstalk. In order to have 
crosstalk, we need to have at least three conductors, one source wire and the 
other receptor wire (one could have many receptor wires in MTL systems) and 
the third wire or plane is the return path. Crosstalk in general increases with 
increasing frequency, unless the skin effect acts to screen it off as in a homoge-
neous shield of a cable. In the following sections we will analyse different types 
of crosstalk and fi nd out the various factors infl uencing them under weak cou-
pling assumptions and for lossless case, i.e. for the case of MTL systems above 
perfectly conducting ground.

4.1 Crosstalk under weak coupling conditions and for electrically short lines

In a system of MTLs one can on priory determine whether the system has weak or 
strong coupling mechanism from the source frequency, geometry, etc., i.e. system 
has weak coupling when the coupling coeffi cients between the source and the 
receptor as given by eqn (69) satisfi es k << 1. If in an MTL system the external 
self and mutual inductance/capacitance per meter is known for perfectly conduct-
ing wires above ground then,

 

ekl ekl
kl

ek el ek el

L C

L L C C
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(69)

It should also be mentioned that under weak coupling conditions, the source or 
emitter voltage and currents are not affected by the receptor or adjacent conduc-
tors. In the following analysis, besides weak coupling, electrically small MTL is 
assumed, i.e. when line length satisfi es L << l, where l is the wavelength. Also it 
is assumed that self-inductive impedance of the conductors are small compared to 
the terminal loads, i.e. wLe << RL or Rgand that capacitive impedance to ground is 
far greater than the terminal loads, i.e. 1/wCe >> RL or Rg.

4.1.1 Crosstalk due to common impedance coupling
Often, two or more current loops share a common conductor, usually the refer-
ence conductor or plane as shown in Fig. 16. Let the desired signal be the volt-
age drop VL1 across the resistor RL1. This signal is affected by the current I2 in 
circuit 2 (source circuit). In the following analysis we will see how the imped-
ance Zc of the common connection between circuit 1 (receptor) and circuit 2 
(emitter) is the reason for the interference in signal voltage VL1. Remember 
that at high frequencies, conductors have fi nite impedance that should not be 
neglected.
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From mesh analysis of loops 1 and 2,

 g1 g1 1 L1 1 c 1 2( )V R I R I Z I I= + + +
 

(70a)

 g2 g2 2 L2 2 c 1 2( )V R I R I Z I I= + + +
 

(70b)

If the loop resistances are represented as Rloop1 = Rg1 + RL1 + Zc and Rloop2 = Rg2 + 
RL2 + Zc then the voltage drop at can be obtained as eqn (71).
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(71)

The common impedance Zc compared with the sum of loop resistances is very 
small, hence assuming  Z c  

2  << Rloop1 Rloop2, eqn (71) can be simplifi ed to eqn (72).
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(72)

The second term of eqn (72) represents the noise introduced due to the common 
impedance Zc. Interference due to common impedance increases (1) if the com-
mon impedance Zc is increased and (2) if the current through the common imped-
ance due to the disturbing circuit (I2 ≈ Vg2/Rloop2) is increased. Crosstalk due to 
common impedance can be reduced by keeping Zc as low as possible or avoiding 
Zc altogether. This can be achieved by assigning separate conductors to each loop 
and connecting each loop to the reference at a single point. Note that common 
impedance Zc contains a resistive part and a reactive part. In the case of a shared 
conductor, the inductive part is dominant at high frequencies (Zc ≈ jwLc). Also, in 
the foregoing analysis, the dimensions of the circuits are assumed to be much less 
than the wavelengths of interest (electrically small).

Figure 16: Common impedance coupling representation.
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If the victim circuit (circuit 1) does not contain any sources (Vg1 = 0), we can 
rewrite eqn (72) as eqn (73).

 

c L1L1

g2 loop1 loop2

Z RV

V R R
= −

 (73)

Equation (73) can be regarded as a crosstalk transfer function due to common 
impedance. It is the voltage produced in the victim circuit per unit source voltage 
in the disturbing circuit.

4.1.2 Crosstalk due to capacitive coupling
Consider two current loops over a conducting plate forming an MTL as shown in 
Fig. 17, and the loops are electrically small.

Current loops have electromagnetic fi elds associated with it. First, consider only 
the electric fi elds. That is, consider only the capacitive coupling, neglecting the 
inductive and common impedance couplings. The capacitive coupling between the 
two loops can be represented by the circuit diagram in Fig. 18. Note C12 is the 
mutual external capacitance and Cr is the external capacitance of the receptor.

Writing equation for currents at node 1 we have,
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(74a)

Simplifying eqn (74a), we have eqn (74b).
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(74b)

Figure 17: Two conducting wires above a conducting plate forming current loops.
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Writing equation for currents at node 2, we have
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(75a)

Simplifying eqn (75a), we have eqn (75b).
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(75b)

Equating (74b) and (75b) it is possible to get an expression for transfer function for 
capacitive crosstalk, VL1/Vg2 in terms of impedance and capacitance. In a simple 
case in which all resistance are matched and equal to R we obtain eqn (76).
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(76)

Note that eqn (76) is valid only for electrically small circuits and it can be approxi-
mated as eqn (77).
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From (77), it is observed that: (1) Capacitive crosstalk increases in proportion to 
the frequency. In time domain, the fast variations in the signal could be responsible 
for the capacitive crosstalk. (2) For a given mutual capacitance C12 and disturbing 
source Vg2, the crosstalk increases with increasing circuit impedance R.

Capacitive crosstalk is present in transformers, switch contacts and in components. 
The general circuit presented here can be used to analyse these various situations. 

Figure 18: Equivalent circuit showing the capacitive coupling between two loops.
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In those cases the conductors represent the carriers of common mode signals and the 
metal plate represent the reference (metal casing, metal cable trunk, reinforcement 
meshing in concrete fl oor and walls). It is possible to model the capacitive crosstalk 
as a current injection into the victim circuit as shown in Fig. 19.

Equation (78) can be obtained from the circuit in Fig. 18.
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(78)

Substituting eqn (78) in eqn (74a), we get Ic as eqn (79) in frequency and time, 
with VL1 - VL2 = V, as the voltage difference between the two circuits.
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(79)

To avoid/reduce capacitive crosstalk some measures are:
(1) Reduce mutual coupling capacitance C12. This can be achieved by decreas-

ing the surface area of conductors and increasing the distance between them. As a 
rule-of-thumb, keep the wire separation distance ten times the wire diameter. 
Introducing a ground plane can signifi cantly reduce C12. In printed circuit boards 
conductive planes are used to reduce capacitive crosstalk between tracks. In equip-
ment with metal cabinets, the cables may be routed close to the metal panels, so 
that the crosstalk between the common mode signals of two different cables can be 
reduced. In metal cable trunks, the cables can be arranged closely against the trunk 
walls. Caution! If the ground is noisy, the capacitance Cr between the ground and 
the circuit will introduce noise signals into the circuit.

(2) Capacitive crosstalk increases with frequency, hence do not use frequencies 
more than that is absolutely necessary. For example, in a digital circuit, do not use 
pulse rise times (or fall times) more than necessary.

(3) Reduce capacitive coupling using metallic screen (shielding), e.g. screen 
transformers to reduce crosstalk. Screening breaks up the coupling capacitance 

Figure 19:  Modelling capacitive coupling as a current injection into the victim or 
receptor circuit.
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C12 into two capacitances connected in series. Screening is most effective if it is 
connected to the reference by low impedance. Then the injected disturbance cur-
rent has a low-impedance path to the ground.

4.1.3 Crosstalk due to inductive coupling
Consider the two parallel current loops of Fig. 16. Now consider only the magnetic 
fi eld coupling between the wires. The circuit can be redrawn as shown in Fig. 20.

The mutual inductance M (external inductance L12) accounts for the coupling 
through the magnetic fi elds.

The loop equations for loop 1 can be written as eqn (80a).

 g1 1 1 1 2 L1 1 0R I j L I j MI R Iw w+ + + =
 

(80a)

Equation (80a) can be simplifi ed to eqn (80b).
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The loop equations for loop 2 can be written as eqn (81a).

 g2 2 2 2 1 L2 2 g2R I j L I j MI R I Vw w+ + + =
 

(81a)

Figure 20: Inductive coupling between two electrically small circuits.
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Equation (81a) can be simplifi ed to eqn (81b).
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From eqns (80b) and (81b), we can get the transfer function for inductive crosstalk 
VL1/Vg2, for a simplifi ed case in which all resistances are matched and equal to R, 
and L1 = L2 = L is given by eqns (82). Equation (82) can be approximated as eqns 
(83) when R > wL.
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From eqn (83), it is observed that: (1) inductive crosstalk increases in proportion to 
frequency and (2) for a given mutual inductance M and disturbing source Vg2, the 
inductive crosstalk increases with decreasing circuit impedance R.

It is possible to model inductive crosstalk by a voltage source in series with the 
victim circuit as shown in Fig. 21.

From Fig. 21, we can write the loop equation (84)

 g1 1 1 1 L1 1 i 0R I j L I R I Vw+ + − =
 

(84)

Substituting eqn (84) in eqn (80a), we get Vi as eqn (85) in frequency and time.
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Figure 21: Modelling inductive coupling as a series voltage source.
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There are various methods to reduce inductive crosstalk. Make the mutual 
inductance (M) as low as possible. The value of M decreases as the areas of the 
loops are reduced and the distances between them are increased.

As far as possible, orient the loops perpendicular to each other so that there is 
very little coupling between them. Keep the magnetic fi eld H produced by the 
‘transmitting’ loop, as shown in Fig. 22 as small as possible. The value of H can be 
reduced by running the two conductors of the loop very close to each other. Refer-
ring to Fig. 22, the magnetic fi eld strength at a position P is given by eqn (86) 
which is valid when the radius rP >> D2.
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From eqn (86), it can be clearly seen that reducing the separation, D2, of conduc-
tors in the transmitting loop (equivalent to reducing loop area) reduces the mag-
netic fi eld at the position of the receiving conductors. The induced voltage per unit 
length in the receiving loop is eqn (87).
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From eqn (87), we see that the voltage pickup by the receiving loop is reduced if 
the distance, D1, between the conductor pair is small.

Another method is to use twisted pair type conductors. Twisting the conductor 
pairs or using twisted cables can reduce the crosstalk due to magnetic fi eld cou-
pling. Twisting the transmitting conductor pair reduces the H-fi eld. Twisting the 
receiving conductor pair further reduces the induced voltage. This is illustrated by 
an example. Consider an emitter carrying a current IG that varies with time as 
shown in Fig. 23.

In Fig. 23, consider the area formed by the one twisted-wire pair with the ground 
conductor (reference). The unbalanced common mode currents produced in the 
two wires of the twist effectively produce a net magnetic fi eld opposing the origi-
nal magnetic fl ux produced by the generator wire circuit. This is equivalent to a 
circulating current as shown in Fig. 23. The direction of this induced current in 

Figure 22: Inductive crosstalk between loops.
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each of the twist is such that it produces a magnetic fl ux that is opposite to the 
original fl ux. Therefore, there are only extremely small currents due to induction 
at the terminal loads. However, there is no reduction in induced currents due to 
capacitive coupling. The arrangement in Fig. 23 is called unbalanced twisted-wire. 
To eliminate both inductive and capacitive coupling, a balanced twisted-wire 
arrangement, as in Fig. 24, can be used [1]. If possible, avoid fast changing cur-
rents. Induced voltage is proportional to rate of change of current, or in frequency 
domain proportional to frequency.

4.1.4 Capacitive and inductive crosstalk combinations
In a practical circuit, different types of crosstalk may be present simultaneously. 
We will consider the case of simultaneous capacitive and inductive crosstalk and 
for simplicity we neglect the common impedance coupling part. Consider the two 

Figure 23:  Diagram illustrating the reduction of induced voltage due to magnetic 
fi eld coupling in a twisted-wire pair.

Figure 24:  Balanced twisted-wire pair that minimises both the inductive and the 
capacitive coupling.
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current loops over a conducting plane as shown in Fig. 17. Assume that cross-
talk due to both electric and magnetic fi elds are present. Modelling the capacitive 
crosstalk as a current injection into circuit 1 (victim) and modelling the inductive 
crosstalk as a voltage source in series with circuit 1, we can represent the crosstalk 
combination as shown in Fig. 25, representative of fi ctitious source feeding the 
receptor line.

In Fig. 25, all the symbols Ic = C12(dV/dt), where V is the voltage difference 
between the two circuits and Vi = M(dI/dt), where I2 is the current in the disturbing 
circuit. C12 and M are the coupling capacitance and mutual inductance between the 
two circuits. For convenience Rg1 and RL1 are renamed as RN and RF , respectively. 
Terminal N stands for the ‘near end’ (near to the disturbing source voltage Vg2) and 
F stands for the ‘far end’. Also note that the Lenz’s law requires that the polarity 
of the voltage source Vi, representing the inductive mutual coupling, should be as 
shown in Fig. 25, driving a current from the far-end to the near-end. It is assumed 
that the line is electrically small and the frequencies involved are suffi ciently small 
so that the effects of L and Cr (self-inductance and capacitance to the ground) can 
be neglected.

Solving the circuit of Fig. 25, we can easily get the expressions for voltage at the 
near- and far-ends VN and VF and they are given by eqns (88) and (89), respectively.
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A photograph of typical crosstalk setup used for laboratory demonstrations is shown 
in Fig. 26. For details of the set up, see the fi gure caption. The source having a 
frequency of 500 kHz, connected to the emitter has a sinusoidal shape as shown 
by the oscillogram in Fig. 27. This demonstration will be used for the discussions 
later in describing inductive and capacitive crosstalk.

To demonstrate the near-end and far-end crosstalk voltages under the dominance 
of capacitive coupling consider the following case with regard to the crosstalk set up 

Figure 25: Model for capacitive and inductive crosstalk combination.
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shown in Fig. 26. Let the sinusoidal source shown in Fig. 27 be connected to the 
emitter. The far-end of the emitter is open circuit. Let the corresponding near- and 
far-ends of the receptor be under open circuit (large resistance). This clearly indi-
cates the dominance of capacitive crosstalk, and the responses at the near-end and 
far-end for the sinusoidal source shown in Fig. 27 are shown in Fig. 28. As expected 
based on the equivalent circuit corresponding to Fig. 25 assuming Vi to be negli-
gible (short circuited) and with fi rst terms neglected on the right-hand side of eqns 
(88) and (89), we have similar near-end and far-end responses and the responses 
are in phase as shown in Fig. 28.

To demonstrate the near-end and far-end cross talk voltages under the domi-
nance of inductive coupling, consider the following case with regard to the cross-
talk set up shown in Fig. 26. Let the sinusoidal source shown in Fig. 27 be connected 
to the emitter. The far-end of the emitter is terminated with 50 Ω load to ground 
plane. Let the corresponding near- and far-ends of the receptor be terminated with 
50 Ω load to ground plane. This clearly indicates the dominance of inductive 
crosstalk and the responses at the near-end and far-ends for the sinusoidal source 
shown in Fig. 27 are shown in Fig. 29. As expected based on the equivalent circuit 
corresponding to Fig. 25, assuming IC to be negligible (open circuited) and with 
second terms neglected on the right-hand side of eqns (88) and (89), we have 
similar near- end and far-end responses and the responses are out of phase by 180° 
as shown in Fig. 29.

Figure 26:  Photograph of a typical crosstalk arrangement. Two copper wires above 
a perfectly conducting ground plane; one of them is the emitter (to 
which the source is connected at one of the ends called near-end with 
respect to the ground plane) and the other is the receptor separated by 
a certain horizontal distance from the emitter. The length of the wires 
is 1 m.
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Inspecting eqns (88) and (89), we can make the following observations:

In general, the voltages due to crosstalk at the near-end and far-end are differ-1. 
ent. It is the inductive component of the crosstalk that is responsible for the 
difference.
The inductive component of the crosstalk produces opposite polarity voltages 2. 
at the near-end and at the far-end. Their magnitudes are also different unless the 
impedance are matched (RN = RF).
The capacitive component of the crosstalk produces voltages of same polarity 3. 
and magnitude at both ends, even if the impedances are not matched!
For deriving eqns (88) and (89), we have neglected any series inductance in the 4. 
receptor circuit and any shunt capacitance to the reference. However, series 
self-inductance and shunt self-capacitance can be neglected only if magnitude 
of wL is far less than the terminal loads and if (wC)–1 is far greater than the 
terminal loads.

The reasons for (2) and (3) above can be found from the equivalent circuit of 
Fig. 25. In general, we can consider the capacitive-crosstalk currents of different 
magnitudes and same polarity fl owing from the centre of the loop to the ends and 

Figure 27:  Oscillogram of the sinusoidal source connected to the emitter having a 
voltage of 20 V peak to peak and frequency of 500 kHz.
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inductive-crosstalk currents of the same magnitude and opposite polarity fl owing 
from the centre to the ends as indicated in Fig. 30.

If the disturbing circuit has high impedance, the current I2 is small and the 
capacitive crosstalk becomes dominant. If the disturbing circuit has low imped-
ance, the current I2 is large and the inductive crosstalk becomes dominant. The 
near-end crosstalk can be a nuisance in the transmission of digital signals, when 
the driver and receiver circuits are at the same end of a ribbon cable.

We next discuss the situation when the coupling is not weak but strong. Unfor-
tunately in that case, we cannot perform any simplifi ed mathematical analysis as 
before because all the simplifying assumptions made above are not valid anymore 
in the strong coupling case and only through simulations or examples we make 
some of our observations and conclusions.

4.2 Crosstalk under strong coupling conditions

Usually most of the outdoor practical systems fall into this category, e.g. power 
railway, telecommunication systems. We take examples and demonstrate some 
infl uential parameters that are to affect the crosstalk mechanisms. There could 
be other mechanisms too but it is indeed a subject of research. The system under 

Figure 28:  Capacitive crosstalk voltages at the near-end and far-end of the receptor for 
the setup shown in Fig. 26 with emitter source voltage given by Fig. 27.
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study is shown in Fig. 31 [33]. In the previous sections, we have seen that the 
increase in source pulse frequency increases the crosstalk magnitude. For a given 
pulse input (double exponential), we shall see the infl uence of conductor heights 
(Case 1), ground conductivity (Case 2) and loads on the receptor (Case 3) on the 
crosstalk phenomena.

Figure 30: Directions of capacitive and inductive current components.

Figure 29:  Inductive crosstalk voltages at the near-end and far-end of the receptor for 
the setup shown in Fig. 26 with emitter source voltage given by Fig. 27.
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The receptor line was at a horizontal distance of 1 m from the emitter line, but 
the height of the receptor line was either 10 m or 0.5 m as the case may be. The 
radius of the conductors was 5.6 mm. The line length is 3 km long, which is about 
three times longer compared to the injected pulse wavelength. One of the ends of 
the emitter is injected with an double exponential impulse source having 0.1 µs 
rise time and 50% tail time of the waveform is 50–60 µs. The current source for the 
sake of demonstration of crosstalk phenomenon was a double exponential wave, 
with a peak current of about 1 A. The pulse has a maximum frequency of about 
3 MHz calculated from the product 1/πTrise time. Assuming linearity, the results can 
be extrapolated to only peak current with similar wave shape by simple multiplica-
tion. The far-end of the emitter for any of the cases treated here is terminated in its 
self-characteristic impedance RL = 490 Ω under perfect ground conditions. The 
loads at the ends of the receptor line are based on the following situations.

Case 1 (infl uence of receptor height): simulations are under perfect ground 
conditions with: RNE = RFE = 490 Ω for receptor at 10 m height case and RNE = 
RFE = 310 Ω for receptor at 0.5 m height case.

Case 2 (infl uence of fi nitely conducting ground): simulations with ground loss 
with: RNE = RFE = 490 Ω for receptor at 10 m height case and the ground con-
ductivity was varied 20, 5 and 0.4 mS/m. The relative permittivity of the earth 
was chosen to be 10, which is a reasonable value for most of the types of soil. 
Note the simulations are largely dependant on the ground impedance expres-
sion chosen for calculations.

Case 3 (infl uence of receptor terminal loads): simulations are under perfect ground 
conditions for receptor at 10 m height: short circuit loads RNE = RFE = 1 Ω and 
then open circuit loads RNE = RFE = 1 MΩ.

The current distributions are shown at the following points on the receptor: 
0 m (near-end load), 750, 1500, 2250 and 3000 m (far-end load). The injected 
current has a shape given by eqn (68) with Ip = 1.0, t1 = 100 µs, t2 = 0.02 µs. 

Figure 31:  Simulation confi guration for crosstalk studies under typical strong cou-
pling conditions (adapted from [33]).
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Some of the simulations above are taken from [33], which were carried out by 
the authors. The height of the receptor, ground conductivity and the receptor 
load influence the crosstalk currents. It is often difficult to isolate one influ-
ence from another. As a first approximation, the source is considered to be 
vertical current/voltage source connected between the emitter and ground. The 
Poynting vector is directed along the emitter conductor and points away from 
the source. Since the distance between the receptor and the emitter is very 
small compared with the length of the line (3 km), the Poynting vector is 
almost along the receptor too.

As discussed in the previous chapter, the interaction of electromagnetic fi elds 
with two lines can be viewed in terms of (a) vertical electric fi eld and the horizon-
tal magnetic fi eld [49] or (b) vertical and horizontal electric fi elds [50], or (c) 
completely in terms of horizontal magnetic fi elds [51]. The equivalency between 
the three approaches has been proven before [52]. When ground is perfectly con-
ducting, there is no horizontal electric fi eld component at ground level. At ground 
level, there is a horizontal magnetic fi eld, perpendicular to the plane of the circuit, 
and a vertical electric fi eld. At height different from zero, there is also a horizontal 
electric fi eld component, which increases in value with the increase in height. This 
horizontal fi eld is directed away from the source, in the same direction as the 
Poynting vector, and is approximately along the receptor conductor. As the energy 
fl ows away from the source, the infl uence of horizontal electric fi eld can be mod-
elled as distributed series voltage sources on the receptor [2, 3, 49–52], turned on 
in succession as the wave moves along the line from the source end. Alternatively, 
one can imagine distributed series voltage sources on the receptor due to changing 
magnetic fi eld with the receptor circuit, which are being turned on as the wave 
moves along the line from the source end. Decreasing the ground conductivity can 
be seen as an increase in the loop area of the receptor because of increased mag-
netic fi eld penetration with decreasing ground conductivity [3]. The infl uence of 
vertical electric fi eld between the receptor conductor and ground can be modelled 
as parallel distributed current sources. Decreasing ground conductivity does not 
have much infl uence on these current sources because the penetration of electric 
fi eld into fi nitely conducting ground is small. The use of a fi ctitious line with dis-
tributed sources for modelling the electromagnetic fi eld interaction was also car-
ried out in [2, 3].

Transmission lines terminated in its surge impedance do not have refl ections 
from the ends. However, in the case of crosstalk there is refl ection from the far-
end of the receptor even though it is terminated in the surge impedance. This is 
due to the presence of equivalent series voltage sources. Once turned on these 
sources produce currents that travel along with the wave front towards the far-
end and currents that travel opposite to the wave front towards the near-end. The 
time varying voltage drop across the far-end load drives a current wave towards 
the near-end and this current appears at the near-end as a kind of ‘refl ection’ 
from the far-end, the direction of this refl ection current being opposite to that of 
the near-end current.
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4.2.1 Case 1: infl uence of receptor height
The simulations for current distribution on the receptor at two different heights 
are shown in Fig. 32. It is seen that when the receptor is close to the emitter, i.e. 
10 m height the induced currents are comparatively larger than when the receptor 
is close to the ground at 0.5 m. The magnitudes of induced currents are somewhat 
proportional to the conductor height. For this case, the ratio of conductor heights is 
20 (10 ÷ 0.5) and the same ratio is seen for the induced currents (≈200 mA ÷ 10 mA). 
The shape of the currents at the far-end loads, in either case, is different from the 
current distribution at other points on the receptor line clearly due to the mismatch 
of the far-end load. It also appears that the shape of the current is somewhat like 
the derivative of the injected pulse. The ratio of the far-end currents do not fol-
low any ratio corresponding to the conductor heights. Note that we cannot talk 
in general about matching the line ends by surge impedances to avoid refl ections 
because we are not terminating the lines’ mutual impedance. It is also seen that 
the induced currents shown here are within 12 µs windows. There could be refl ec-
tions from the far-end loads at the later times which may not follow the above said 

Figure 32:  Crosstalk currents for receptor at 10 m (top window) and 0.5 m (bottom 
window), with perfect ground conditions.
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height ratio. Also note that if the line lengths are increased, the crosstalk currents 
would increase owing to the fact that the number of distributed voltage and current 
sources corresponding to the inductive and capacitive crosstalk would increase. 
Next, let us study the infl uence of fi nitely conducting ground on the induced cur-
rents on the receptor.

4.2.2 Case 2: infl uence of fi nitely conducting ground
The simulations for this case are shown in Fig. 33. In general the fi nitely conduct-
ing ground increases the crosstalk currents. When ground conductivity is infi nite, 
there is no magnetic fi eld penetration into the ground and the return current is 
along the surface of the ground. When the ground conductivity is reduced, there 
will be fi eld penetration into ground and the penetration depth is more for low 
frequency than high-frequency components. With decreasing ground conductivity 
there is stronger magnetic fi eld coupling between the emitter and receptor cir-
cuit because the per unit length area of the circuit is now larger. The frequency-
dependent penetration of magnetic fi eld into ground and the resultant losses in the 
ground causes distortion (rise time change) and attenuation (amplitude change) 
of the travelling current waves between the far-end and near-end. Distortion and 

Figure 33:  Crosstalk currents for receptor height 10 m, with ground conductivities 
20, 5 and 0.4 mS/m and ground relative permittivity of 10.
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attenuation increases with the number of times the wave travels back and forth 
between far- and near-ends. The phase velocities of the wave under the ground 
surface and in the air above ground are different. Generally waves below ground 
travel slower than speed of light.

4.2.3 Case 3: infl uence of receptor terminal loads
The simulations for this case are shown in Fig. 34. It is common, that in various 
systems when the loads are not line surge impedance. There could be also faults 
that could lead to situations of open circuit or short circuit loads. For this reason, 
we shall see some examples here with these two load conditions. Some general 
conclusions are that if the loads are short circuited, there is dominance of inductive 
crosstalk. Similarly under open circuit conditions capacitive crosstalk dominates. 
As can be seen from Fig. 34, the induced currents have increased under short 
circuit conditions compared with the case of surge impedance terminations (see 
top window of Fig. 34 and top window of Fig. 32). Under open circuit conditions 
currents have decreased considerably compared with the case of surge imped-
ance termination (see bottom window of Fig. 34 and top window of Fig. 32). 
The crosstalk currents at the receptor loads can be viewed as the sum of currents 
produced by the distributed series voltage sources and distributed parallel current 

Figure 34:  Comparison of crosstalk currents on the receptor when receptor is ter-
minated in short circuit loads of 1 Ω (top window) and open circuit 
loads 1 MΩ (bottom window) for perfect ground conditions.
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sources on the receptor. With short circuit at the ends, the series voltage sources 
can drive large currents through the ends. This is the reason why we have larger 
current distribution on the receptor line under short circuit conditions. When the 
receptor is terminated in high impedance (open circuit), the series voltage source 
cannot drive much of a current, while there is no substantial difference in the cur-
rent driven through the loads by the vertical electric fi eld coupling. This is the 
reason why we see lesser currents at the near- and far-end loads. For other loads 
between open circuit and short circuit, the currents produced by the magnetic fi eld 
add up with the current produced by the vertical electric fi eld in the near-end load 
and subtract in the far-end load. As mentioned earlier, the concept of impedance 
matching to avoid refl ections is not valid for circuit containing distributed time 
varying sources, as in the case of receptor circuit.

5 Concluding remarks

In this chapter, we have seen various factors that could infl uence the pulse prop-
agation in above ground wires. We have discussed in some detail the internal 
impedance, external impedance and external admittance parameters necessary for 
the analysis of wave propagation on above ground wires based on transmission 
line solutions. Simple and valid expressions for impedance and admittance param-
eters are also discussed for computationally effi cient solutions. It is found that the 
ground impedance (ground loss) is more dominant than the internal impedance 
(skin effect loss) and also the ground admittance for the typical above ground 
wires could be neglected in the wave propagation studies. Two methods for numer-
ical solutions of transmission line equations based on time and frequency domain 
are presented. The FDTD method for solving transmission line equations with 
frequency dependant internal (skin effect) and external (ground) losses with recur-
sive convolutions is presented. This is computationally effi cient for solving wave 
propagation problems in large distributed systems like power or railway systems. 
The factors infl uencing the crosstalk mechanisms with above ground wires under 
various coupling conditions are also presented.
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CHAPTER 3

Surge propagation in multiconductor 
 transmission lines below ground

Nelson Theethayi & Rajeev Thottappillil
Division for Electricity, Uppsala University, Uppsala, Sweden.

Abstract

Surge propagation in underground systems has been a subject of interest for many 
power and telecommunication engineers. Any typical buried electrical installa-
tion involves cables (power or telecommunication) and grounding systems. The 
cables could have multiple shields and multiconductor confi guration for the core 
with either twisted or non-twisted conductors. The grounding conductor system 
could have counterpoise, rods, grids, etc. Interestingly, all these conductor sys-
tems could be modelled as multiconductor transmission line (MTL) systems for 
the wave propagation studies. In this chapter, we shall see how they can be mod-
elled for transmission line analysis using the Telegrapher’s equations as discussed 
in Chapters 1 and 2. A brief discussion on crosstalk mechanisms will also be 
given, even though the analysis for crosstalk in MTL systems is similar to that in 
Chapter 2.

1 Introduction

Before we begin this chapter, it is good to visualize some practical problems 
that constitute a buried conductor system. In power and railway systems, we 
have cables used for bulk power transmission and signalling/telecommunica-
tion purposes. Every high-voltage power transmission tower has a long running 
counterpoise wire [1, 2] in the ground connected to the foot of the tower. The 
main purpose is to divert the lightning stroke current directly to the counter-
poise wire. This is particularly important when the potential at the tower top 
or at the footing is of interest. Moreover, in the substation, there are complex 
grounding systems, which include counterpoise wires, buried rods and buried 
grids/meshes. To get a broader insight into the problem, let us take an example 
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of a communication system. Lightning strike to communication towers is a 
usual phenomenon [3]. A schematic diagram showing most of buried conductor 
systems connected to a communication tower in a communication tower complex 
is shown in Fig. 1 [3].

In Fig. 1, the tower foundation and building foundation are connected to their 
respective ring conductors. The ring conductors are provided primarily to mini-
mize the danger of step voltage [4]. Besides, the ring conductor relieves the electri-
cal stress at the tower foundation reducing chances of damage to the foundation. 
The earth conductor between the tower and building ring conductors prevents 
ground surface arcs between tower and building, and reduces lightning currents 
carried by cable shields by sharing a part of it. The follow-on earth conductor takes 
a part of the lightning current away from the service cables. The radial conductors 
around the tower are for reducing the percentage of lightning current dispatched to 
the building via the tower cables and earth conductors. The radial conductors are 
benefi cial only if it can substantially reduce the lightning currents dispatched to 
the building, especially if the distance between the tower and building is long. The 
length and design of the radial conductors are to be governed by economy and its 
effi ciency in dissipating lightning currents into the bulk earth. How do we analyse 
those buried conductor or grounding systems in the event when lightning or switch-
ing fault currents are diverted to them? This could benefi t in the design of protec-
tion and grounding systems. This chapter will discuss as to how to use transmission 
line concepts to such problems but, of course, under the limits of transmission line 
approximations as discussed in Chapter 2.

Figure 1:  Schematic diagram of grounding conductors considering the tower and 
building as separate units (not to scale), adapted from [3].
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2  Telegrapher’s or transmission line equations for the 
buried wires

Underground wires can be either bare (counterpoise – representative of grounding 
conductors) or insulated (representative of cable shields or unshielded cables). We 
shall come to the analysis of coupling through shields later. Hence, one has two 
different systems for study as shown in Fig. 2.

In addition to ground conductivity and ground permittivity, there is also insulation 
permittivity for the insulated cables. The soil is characterized by its conductivity 
and permittivity. For insulated wires, we have insulation permittivity additionally. 
The corresponding per unit length transmission line representation of the above 
system is shown in Fig. 3 [5–9] and the relevant equations are shown below. For 
bare conductor,
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Figure 2: Bare and insulated conductor systems in the soil under study.
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The transmission line equations presented here can be extended to the multicon-
ductor transmission line (MTL) system of several buried cables or grounding wires 
similar to the discussions in Chapter 2. In eqns (1) and (2), V and I are the voltage 
and currents, respectively. In eqn (1), Zgb and Ygb are the ground impedance and 
ground admittance of the bare conductor(s). In eqn (2), Zgi and Ygi are the ground 
impedance and admittance of the insulated conductor(s). Hence, in discussions to 
follow for ground impedance and ground admittance for buried wires, we defi ne 
Zgu and Ygu, for ground impedance and admittance, respectively, and the subscript 
‘u’ is either ‘b’ or ‘i’, as the case may be, for bare or insulated wires. In eqn (2), L 
and C are the insulation inductance and capacitance, respectively [5], calculated 
using eqn (3). Lightning fi rst return stroke or switching transients have frequency 
components ranging from a few tens to a few hundreds of kilohertz and subse-
quent lightning return strokes could have frequencies up to a few megahertz [10, 
11]. For this reason, we shall investigate the ground impedance behaviour up to 
10 MHz, beyond which the validity of transmission line approximation for buried 
wires could be questionable and will be discussed later.

The current wave equation for insulated wires can be written in a convenient 
form as in eqn (4) so that the total shunt element, i.e. series combination of insula-
tion capacitance jwC and Ygi in Fig. 3 can be transformed to a parallel combination 
of insulation capacitance and modifi ed ground admittance, i.e. jwC ||  Y gi  

P
  , which is 

comparable with above-ground wires’ transmission line equations as discussed in 
Chapter 2, and researchers like [12] have adopted this.
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Figure 3:  Per unit length transmission line representation for bare and insulated 
conductor systems in the soil under study.
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2.1 Ground impedance for buried wires

In the analysis below, let us assume the radius of the wire as Rab. If the bare wire is 
in the analysis, then Rab = a else Rab = b, the outer radius of the insulated wire, and 
the depth of the wire is d. Several researchers have contributed to the development 
of ground impedance expression for buried wires. The ground impedance expression 
for buried wires was developed fi rst by Pollaczek [13] in 1926, as shown in eqn (5), 
which is a low-frequency approximation (similar to that in Chapter 2) in the sense 
that it can only be used when frequency of incident pulse satisfi es w << sg/eg.
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Because of the low-frequency approximation one can see that eqn (5) does not include 
the permittivity of the ground. All limitations associated with Carson’s ground imped-
ance as explained in Chapter 2 for above-ground wires are applicable to Pollaczek’s 
ground impedance expression for buried wires as well. Saad et al. [14] have analyti-
cally showed that an excellent approximation for eqn (5) is given by eqn (6).
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Observe that if the infi nite integral, e.g. in eqn (5), is eliminated, then those expres-
sions without infi nite integrals we shall here refer to as closed form approxima-
tions. Wedepohl and Wilcox [15] and Dommel [16, 17] (who presents expressions 
of A. Semlyen and A. Ametani) have proposed their own closed form ground 
impedance expressions, and Saad et al. [14] have shown that those expressions are 
more or less identical to eqn (6) when numerical calculations were compared.

For a wide range of frequencies, as long as the transmission line approximation 
is valid, Sunde [6] has derived the ground impedance expression as given by eqn 
(7). It is similar to eqn (5), but the only difference is that full propagation constant 
of the soil was used in eqn (7).
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The integral term in eqn (7) converges slowly leading to longer computation times 
and possible truncation errors as the frequency is increased. Further, it was found that 
the fi rst two Bessel terms in eqn (7) are oscillatory, when frequency is high. However, 
one can say Sunde’s expression for ground impedance is more valid than Pollaczek’s 
ground impedance expression in the sense that it uses the full expressions for propa-
gation constant. Recently, Bridges [8], Wait [9] and Chen [18] have independently 
proposed more complex ground impedance expressions derived from rigorous electro-
magnetic theory, and in [8, 18] closed form logarithmic approximations for transmis-
sion line solution have been proposed. The authors found that even those expressions 
in appearance, though simple, are oscillatory (perhaps numerical convergence prob-
lems) at high frequency, hence not discussed here as it needs further investigation.

Bridges [8] mentions that his complete expression for ground impedance has two 
modes, namely transmission line modes and radiation/and surface wave modes. 
Moreover, the solution of his ground impedance expressions is based on complex 
integration theory and adds that pole term in his expression corresponds to trans-
mission line mode and the branch cut corresponds to radiation/and surface wave 
modes [8]. Thus, under the transmission line modes, it can be shown that Bridges’s 
expression is identical to Sunde’s expression. Further, Wait [9] proposed a quasi-
static approximation (under transmission line modes) and is given by eqn (8).
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Vance [7] proposed one of the simplest closed form approximations for eqn (7) 
given by eqn (9), where Henkel functions are used instead of Bessel’s functions.
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Petrache et al. [12] have proposed a logarithmic approximation as shown in eqn 
(10) for the ground impedance and also claim that it’s the simplest expressions for 
the ground impedance.

 

g abLog 0
g

g ab

1+
= ln

2

Rj
Z

R

gwm
g

 
 π    

(10)

It can be seen in eqns (9) and (10) the depth of the wire is missing. Models that 
neglect air–earth interface [7] are known as infi nite earth models. Wait [9] has 
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shown that this condition exists if 2
g 0 0 g|2 | 1jd je m w wm s− >> . From this condi-

tion, it was found that neglecting the wire depth might not be a good approxima-
tion for higher frequencies typical for lightning. Moreover, it was found that for 
any combination of ground material property, the logarithmic approximation (10) 
and Vance’s approximation (9) for the ground impedance are identical.

Theethayi et al. [19] proposed a modifi ed empirical logarithmic-exponential 
approximation (11), which is similar to eqn (9) but with an extra term accounting 
for wire depth taken from Saad et al. expression (6).
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Note that, in all the expressions above for the mutual impedance between the wires 
Rab needs to be replaced by horizontal distance between the buried wires and d by 
average depth [15].

Figures 4 and 5 show the comparison of various ground impedance expressions 
and the deviations between expressions can be seen clearly both in amplitude and 
argument responses. The example is a wire of radius 2 cm and a depth of 0.5 m. 

Figure 4:  Amplitude, |Zg/jw| for comparing eqns (6)–(11): ground conductivity is 
sg = 1 mS/m and erg = 10.
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The consequence of missing depth term in logarithmic expression can be seen in 
the amplitude, and the consequence of low-frequency approximation in argument 
response. It can be seen that empirical logarithmic-exponential approximation has 
some agreement with either Sunde’s or Wait’s expression.

2.1.1 Asymptotic analysis
Now let us see the asymptotic behaviour of the ground impedance for buried wires 
as frequency tends to infi nity (even though such an approach is questionable under 
transmission line limits). For using the time domain analysis, it is necessary to 
know the value of the ground impedance at t = 0. It is thus necessary to confi rm if 
at all the ground impedance pose any singularity as the frequency tends to infi n-
ity. Similar to overhead wires, as discussed in Chapter 2, the ground impedance 
in time domain is referred to as transient ground impedance [5, 10], given by 
inverse Fourier or Laplace transform as, z(t) = F–1[Zg/jw]. The value at t = 0 can 
be obtained by initial value theorem as ( ) g

0
lim = lim
t

t Z
w

z
→ →∞

. Vance’s expression (9) 
can be rewritten as eqn (12).
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Figure 5:  Argument (radians), ∠(Zg/jw) for comparing eqns (6)–(10): ground con-
ductivity is sg = 10 and 0.1 mS/m and erg = 10.
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Simplifying eqn (12), we obtain eqn (13) and using the asymptotic expansions 
given in [20] it can be shown that lim j

w→∞
Γ → .
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Thus, under the asymptotic conditions, it can be shown that eqn (13) tends to eqn 
(14) as frequency approaches infi nity. The same is applicable with the logarithmic 
expression (10). Further, in the empirical expression, as frequency tends to infi nity 
the exponential part approaches zero.
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A similar expression to eqn (14) has been obtained in Chapter 2 for the over-
head wires, the only difference was that in eqn (14) the radius of the conductor 
Rab is to be replaced by the height of the conductor above ground. For wire of 
radius 2 cm at a depth of 0.5 m, the asymptotic value of ground impedance is 
948 Ω/m. The important dimension here is the outer diameter of the conductor. 
Equation (14) is also applicable for a tubular conductor or for the shield of a 
cable in contact with the ground. Clearly, a singularity would appear if ground 
impedance expression corresponding to the low-frequency approximation was 
used.

2.2 Ground admittance for buried wires

Once we have the ground impedance, it is simple to get the ground admittance 
term. Vance [7] suggests that ground impedance and ground admittance are related 
to each other approximately by the propagation constant as in eqn (15). This 
approximation is valid in the sense that most of the currents return with in the soil 
because of which the ratio of electric to magnetic fi elds in the ground should be 
associated with intrinsic impedance of the soil as discussed in Chapter 2.
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For a wire of radius 2 cm at a depth of 0.5 m, Figs 6 and 7 show both ground 
impedance and admittance amplitudes and arguments, respectively. The ground 
admittance appears to be more sensitive to ground conductivity than ground imped-
ance. This is unlike overhead wires where the ground impedance is very sensitive 
to ground conductivity, as discussed in Chapter 2. The interesting feature is that 
even though the ground impedance has asymptotic value at a very high frequency, 
the ground admittance monotonically increases and tends to infi nity as the 
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frequency is increased, i.e. glim Y
w→∞

→ ∞ . Thus it is clear that surge or characteris-
tic impedance  √

___
 Z/Y   of the buried bare wire will tend to zero at a very high fre-

quency, unlike overhead wires where it tends to a constant value. For buried 
insulated cables, the insulation permittivity additionally modifi es the behaviour of 
total series impedance and shunt admittance of the wire. The modifi ed ground 
admittance for insulated cables in eqn (4b) has an asymptotic value given by eqn 
(17) as the frequency tends to infi nity even though the ground admittance of bare 
wire tends to infi nity. The following arguments support this statement. Petrache et 
al. [12] have also obtained similar expression as eqn (17). A reason why the total 
shunt admittance in the current wave equation (2b) tends to infi nity as the fre-
quency tends to infi nity is that because the ground admittance term Ygi tends to 
infi nity as frequency tends to infi nity.
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Figure 6:  Ground impedance and admittance magnitude response for various 
ground conductivities for a bare wire of radius 2 cm, buried at 0.5 m 
depth and erg = 10.
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Transient simulation packages like Electromagnetic Transients Program (EMTP) 
[16, 21] ignores ground admittance and uses low-frequency approximation of ground 
impedance, i.e. neglects ground permittivity for underground cables. For bare wires, 
one cannot ignore ground admittance at all that is the reason why there are not any 
models for counterpoises etc., unlike line and cable models in EMTP [16, 21]. The 
inadequacies of low-frequency approximations for ground impedance have been dis-
cussed in the earlier section and also in Chapter 2. To illustrate the importance of ground 
admittance, let us consider two cases for an insulated wire corresponding to cable trans-
mission line representation shown in Fig. 3. Case 1 is with ground admittance and Case 
2 without ground admittance, i.e. Ygi → ∞. The line propagation constant for Cases 1 
and 2 are given by eqns (18) and (19), respectively in Laplace domain s ⇔ jw.
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Figure 7:  Ground impedance and admittance argument response for various ground 
conductivities for a bare wire of radius 2 cm, buried at 0.5 m depth and 
erg = 10.
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Observe that when Ygi → ∞, then g1 → g2. The system that is being considered is 
an insulated cable buried at a depth of 0.5 m and having a radius of 2 cm and an 
insulation thickness of 2 mm. The ground conductivity is 1 mS/m, and the ground 
relative permittivity is 10, and the insulation relative permittivity is either 2 or 5. 
The ratio of attenuation factors for Cases 1 and 2, a1/a2, and the velocity ratio of 
propagation v1/v2 (note velocity is obtained by the ratio w/b, where w is the angu-
lar frequency and b is the phase constant calculated independently, which further 
is the imaginary part of g) are shown in Figs 8 and 9, respectively.

It can be seen from Fig. 8 that the attenuation per meter for Cases 1 and 2 is 
same only at 100 Hz, and beyond that frequency, attenuation for Case 1 is a few 
times higher than Case 2. Situation is worse when the insulation permittivity is 
higher. Incorrect attenuation of currents at various points would predict incorrect 
rise times for propagating pulses.

Figure 8:  Attenuation ratio for Case 1 (Yg included) and Case 2 (Yg neglected) for a 
wire of radius 2 cm, insulation thickness of 2 mm and buried at 0.5 m depth, 
erin = 2 or 5, sg = 1 mS/m and erg = 10.
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Now consider the velocity ratio as shown in Fig. 9. The velocity of propagating 
waves is same for Cases 1 and 2 only until 10 kHz. Beyond this point, again, the 
velocity ratio is increasing, that is underestimation of velocity when ground admit-
tance is neglected. Situation is worse when the insulation permittivity is higher. 
Velocity of waves propagating in Case 2 is much slower than Case 1. The conse-
quence of different velocities between Cases 1 and 2 will result different time delays. 
Case 2 is certain to predict incorrect velocities. Changing velocity with frequency 
will cause dispersion in the propagating waves. For the above problem, Theethayi 
et al. [19] have shown the difference in the attenuations and velocities clearly with 
time domain simulations as well for a typical pulse propagation problem.

3  Possible limits of transmission line approximation for 
buried wires

The discussions until now are the analysis based on the transmission line theory. 
Some discussion on the limits of transmission line approximation was made in 
Chapter 2. A critical reader may wonder as to what the limit of transmission line 
approximation is for the buried system as well. For this, we shall use the same 

Figure 9:  Velocity ratio for Case 1 (Yg included) and Case 2 (Yg neglected) for a 
wire of radius 2 cm, insulation thickness of 2 mm and buried at 0.5 m 
depth, erin = 2 or 5, sg = 1 mS/m and erg = 10.
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philosophies that were used for overhead wires, i.e. using the concept of penetra-
tion depth. Assume the wire is buried at a depth of d meters. The penetration 
depth at which the currents return in the soil can be calculated using the expres-
sion given in Chapter 2 and are shown in Fig. 10 (solid lines) for ground relative 
permittivity of 10. It should be remembered that the discussion here is applicable 
for infi nite earth model. So if one considers the infi nite depth models, the penetra-
tion depth is defi ned not from the surface of the ground but from the surface of the 
wire because of the axis-symmetric nature of the problem, unlike overhead wires 
where the depth was measured from the surface of the ground.

For a wire located at a certain depth in the soil, the currents have a return path 
only in the soil but at various depths depending upon the frequency of the pulse 
propagating in the wire. Generally, underground wire type systems in the soil will 
not be at a depth more than 1 or 2 m. As shown in Chapter 2, the penetration depth 
attains asymptotic value when the frequency is suffi ciently high, which then 
becomes independent of frequency and is only dependant on the material proper-
ties of the soil. Further, the maximum velocity of the waves propagating in the soil 
is determined by its permittivity [7], i.e. ugmax = 3 × 108/ √

___
 erg  . The velocity of the 

Figure 10:  Penetration depth at which the currents return in the soil for buried 
wires and wavelength in the soil for erg = 10 and for various ground 
conductivities.
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wave propagating in the soil is a function of frequency as given by eqn (20) and the 
wavelength in the soil at any frequency is given by lgpulse = 2πυg/w.

 
( )

g
g 0 2

g g

1
=

1+ ( / ) +1
2

u
e m

s we
 

(20)

Similar to overhead wires, for underground wires, one can impose a condition that 
the currents should return at a plane measured from the surface of the wire in the 
soil at depths smaller than the wavelength in soil, i.e. lgpulse ≥ dg. The condition 
≥ is used instead of >>, because most of the return current is in the soil and the 
air-earth interface is neglected due to the infi nite earth model. Figure 10 shows 
the crossover points where the penetration depth (solid lines) equals the wave-
length (dashed lines) in the soil for ground relative permittivity of 10. Mathemati-
cally, this limit occurs at a frequency approximately given by eqn (21). This limit 
is possibly the limit for transmission line approximation, because if the incident 
pulse has frequencies beyond this limiting frequency, clearly, the transmission line 
approximation is questionable as discussed in Chapter 2 for overhead wires.
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4 Coupling to cable core through cable shields

Having seen how the external impedance and admittance for the buried insulated 
and bare wires infl uence the externally induced voltages and currents, we now 
move on to yet another interesting area of how induced voltages are developed in 
the inner core conductors within the cable, particularly the shielded cables. This 
is mainly attributed to the fact that fi elds due to currents in cable shields not only 
couples the external environment of the cable, i.e. shield–soil insulation medium 
and insulation–soil medium, but also to the internal conductors of the cable (core) 
due to shield imperfections. The word imperfections mean that the shield is not 
a perfect conductor and it could be leaky due to cavities/apertures as in braided 
shields [5, 7]. To understand the phenomenon of coupling to cable core, one needs 
to know which parameter of the shield contributes to the coupling phenomenon 
between the shield and internal conductors. One could have multiple cable shields. 
Sometimes the outermost one facing the soil is known as armour.

To describe the various parts of multiple shield cables and the twisted pair inner 
core conductors, we take the example of a typical telecommunication cable used 
by the Swedish Railways (Banverket) for its telecommunication and signalling 
applications, as shown in Fig. 11. The outermost metallic tubular/cylindrical con-
ductor is called the armour and the inner metallic tubular/cylindrical conductor is 
called the shield. Electromagnetic compatibility and power engineers interchange 
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the words between armour and outermost shield. Perhaps, for them, armour serves 
as a mechanical protection for the cable as such. In the coming sections, let us 
investigate whether an MTL can be derived for multiple shield and multiple core 
conductors for the transient analysis based on transmission line analysis.

To understand the coupling phenomenon between the tubular/cylindrical con-
ductors and the internal conductors, let us start with the concept of transfer imped-
ance [5, 7, 22] and later develop expressions for those phenomena in terms of what 
are known as tube impedances, fi rst introduced by Schelkunoff [22] and later 
applied by Wedepohl and Wilcox [15]. We extended the analysis of single core 
cables proposed in [15] to multicore cables, with a view to applying transient 
analysis of cables with complex internal conductor system. The analysis is based 
on tubular shields, because it is reasonable to represent the armour and shield of 
the telecommunication or power cables for frequencies up to several hundreds of 
kHz as a solid tube. The leakage effects, in authors’ opinion, due to tube apertures 
and imperfections are predominant only at high frequencies beyond 1 MHz. Under 
such circumstances, no generalized expressions exist for tube impedances with 
imperfections and they have to be determined either through experiments or exten-
sive theory. A simple/approximate method for determining the capacitance matrix 
by bridge method is shown and is particularly useful for twisted pair cables appli-
cable to most of the telecommunication cables.

Figure 11:  A typical telecommunication cable used by the Swedish railways for 
signalling and telecommunication applications.
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4.1 Generalized double shield three-core cable

The discussion presented here is a generalization for a multiconductor arrange-
ment of the cable. By using the analogy presented here, one can apply the same 
to any practical arrangement of the cables. Let us take the following examples: 
(a) an RG-58 cable that has single core and braided shield – a discussion on 
the concept of transfer impedance [5, 7] and its experimental determination are 
presented; (b) three conductor power cables that have a similar shield as that 
of RG-58 cable. In the authors’ opinion, the analysis of coupling mechanism 
between the shield and inner conductor as proposed by Vance [7] is valid only 
for a particular terminal condition. In Vance’s method, when the inner conductor 
circuit does not carry any appreciable current, the coupling mechanism between 
the shield and the inner circuit, due to current in the shield, is represented by 
distributed series voltage sources in the transmission line formed by the inner 
circuit. This allows us to eliminate the shield circuit and simplify the problem 
only to a transmission line due to inner circuit. This, in general, is not true for 
any arbitrary terminal conditions at the near and far ends of the shield and inner 
conductor/circuit. On the other hand, the analysis presented in the discussions to 
follow is valid for any arbitrary terminal conditions on either the shield or inner 
core conductors of the cable.

4.1.1 Telegrapher’s equations for shielded cables
Consider a cable cut away view as shown in Fig. 12, which shows a three-core 
cable arrangement. It has two shields, solid tubular/cylindrical with annular cross-
section. Let the core conductors carry currents I1, I2 and I3. The currents through 

Figure 12:  Generalized three-conductor cable arrangement for studying the cou-
pling between the shields and internal conductors.
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the shield and the armour are marked as I4 and I5. In all the cases, let us assume 
that the external inductance and capacitance matrices are known with the shield as 
the reference for Fig. 12.

In eqn (22), the voltages V1, V2, V3, V4 and V5 are written in differential form 
between inner conductors (cores) and the shield, between the shield and the armour 
and the armour to remote reference, respectively. These voltages are also referred 
to as loop voltages [15, 16]. The voltages like V1core, V2core, V3core, Vshield and Varmour 
are that of the conductors with respect to remote reference [15, 16]. These voltages 
are later useful for a transformation by which one can fi nd voltages on any conduc-
tor with respect to any given/specifi ed reference.

 1 1core shield=V V V−  (22a)

 2 2core shield=V V V−  (22b)

 3 3core shield=V V V−  (22c)

 4 shield armour=V V V−  (22d)

 5 armour=V V  (22e)

The voltage wave equations based on the loop voltages are given by eqn (23).
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Since loop voltages are adopted, the currents in eqn (23) are referred to as loop cur-
rents I1, I2, I3, I4 and I5. These loop currents are related to the core currents I1core, 
I2core, I3core, shield current Ishield and armour current Iarmour as shown in eqn (24).

 1 1core=I I  (24a)

 2 2core=I I  (24b)

 3 3core=I I  (24c)
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 4 shield 1core 2core 3core= + + +I I I I I  (24d)

 5 armour shield 1core 2core 3core= + + + +I I I I I I  (24e)
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The relationship between the conductor currents and loop currents also helps in 
the transformation by which telegrapher’s equations become in the form similar to 
MTL systems, as discussed earlier. Now each parameter in the impedance matrix 
Z' in eqn (23) is a combination of series loop impedances in terms of internal and 
external impedances. Similarly, each admittance term in Y' in eqn (25) is a com-
bination of external and mutual admittance terms forming the loop admittances. 
These are discussed in Section 4.1.2.

4.1.2  Transmission line impedance and admittance parameters for 
shielded cables

Our aim is to arrive at the MTL equations of the form eqn (26) after simplifying 
eqns (22) and (24) using eqns (25) and (23).
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The impedance parameters of eqn (23) are defi ned in eqn (27).

 11 i 11 Shield-in= + +Z Z j L Zw′  (27a)

 12 21 12 Shield-in= = +Z Z j L Zw′ ′  (27b)

 22 i 22 Shield-in= + +Z Z j L Zw′  (27c)

 13 31 13 Shield-in= = +Z Z j L Zw′ ′  (27d)

 23 32 23 Shield-in= = +Z Z j L Zw′ ′  (27e)

 33 33 Shield-in= + +iZ Z j L Zw′  (27f)

 14 24 34 41 42 43 Shield-mutual= = = = = =Z Z Z Z Z Z Z−′ ′ ′ ′ ′ ′  (27g)

 44 Shield-out Shield-Armour-insulation Armour-in= + +Z Z Z Z′  (27h)

 15 25 35 51 52 53= = = = = = 0Z Z Z Z Z Z′ ′ ′ ′ ′ ′  (27i)

 45 54 Armour-mutual= =Z Z Z−′ ′  (27j)

 55 Armour-out Armour-Earth-insulation g= + +Z Z Z Z′
 (27k)

The admittance parameters of eqn (25) are given by eqn (28). Many of the mutual 
admittance terms are null as shown in eqn (28b), this assumption may not be valid 
at very high frequencies.
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 44 Sheath-Armour-insulation-capacitance=Y j Cw′
 

(28c)

 55 Armour-Earth-insulation-capacitance g= ||Y j C Yw′
 

(28d)

In eqn (27), Zi is the internal impedance of the conductors, which is a conseque nce 
of skin effect phenomena of the core conductors as discussed in Chapter 2. There 
are some impedance terms in addition to external inductance (discussed later) 
of the internal conductors in eqn (27). Those impedances, excluding the internal 
impedances, are the ones that contribute to the coupling between the shield and 
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inner conductors and the shield and the armour. Let us discuss them in some detail 
in a while. Insulation capacitance and inductance calculations were explained ear-
lier, i.e. using eqn (3). The ground impedance and ground admittance terms appear 
in eqns (27k) and (28d), which has been discussed in the earlier sections.

If [L]3×3 and [C]3×3 are the inductance and the capacitance matrix of the core 
conductors with respect to the shield, then for arbitrarily located untwisted con-
ductors inside the shield as shown in Fig. 13 (adapted from Paul’s book [23]), 
those parameters for the core conductors are given by eqns (29) and (30), respec-
tively, in the same notations as discussed by Paul [23].
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For the capacitance matrix as explained in Chapter 2, we fi rst estimate the poten-
tial coeffi cient matrix, then invert the potential coeffi cient matrix similar to the 
above-ground wires. Note that in eqns (30a) and (30b) the permittivity of the insu-
lation medium is used.

Figure 13:  Untwisted parallel conductor arrangement in the shield for MTL para-
meter estimation for multiconductor cables, adapted from [23].
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Schelkunoff [22] gives a very good discussion on the surface impedances of hol-
low solid cylindrical shells. Discussions in this section are applicable only for 
imperfect conductors. Consider a hollow conductor whose inner and outer radii 
are a and b, respectively. The return of the coaxial path for the current may be 
provided either outside the given conductor or inside it or partly inside and partly 
outside. Let Zaa be the surface impedance with internal return and Zbb, with that of 
external return. This situation has appears to have in effect, two transmission lines 
with distributed mutual impedance Zab.

According to Schelkunoff, Zab is due to the mingling of two currents in the 
hollow conductor common to both lines; and since Zab is not the total mutual 
impedance between the two lines, Zab is called the transfer impedance from one 
surface of the conductor to the other [22]. Using magnetomotive intensities asso-
ciated with the two currents, he derived the surface impedances as given by eqns 
(31) and (32). The analysis presented here are applicable only to tubular 
shields.
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Two theorems proposed by Schelkunoff [22] with regard to tube impedances are 
the following.

Theorem 1: If the return path is wholly external (Ia = 0) or wholly internal (Ib = 0), 
the longitudinal electromotive force (voltage) on that surface which is the nearest 
to the return path equals the corresponding surface impedance (self) multiplied by 
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the total current fl owing in the conductor and the longitudinal electromotive force 
(voltage) on the other surface equals the transfer impedance (mutual) multiplied 
by the total current.

Theorem 2: If the return path is partly external and partly internal then the total 
longitudinal electromotive force (voltage) on either side of the surface can be 
obtained by applying Theorem 1 with the principle of superposition.

Equations (31) and (32) give the tube impedances. In comparison with eqn (27), 
one can defi ne eqn (31a) as the tube-in impedance of either shield or the armour 
(31b), as the tube-out impedance of either the shield or the armour, and eqn (32) as 
the tube-mutual impedance of either the shield or the armour.

Wedepohl and Wilcox [15] have given a very simple approximation as shown 
in eqns (33) and (34) for the tube impedances without any Bessel functions, and 
they are valid only if [(b – a)/(b + a)] < 1/8. This has been validated for various 
practical tubular cable shields by the authors and it was seen that approximations 
(33) and (34) are excellent ones to exact Schelkunoff equations (31) and (32), 
respectively.
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It is now shown how to obtain all the important impedance and admittance param-
eters that are needed to create the voltage and current wave equations (26a) and 
(26b).

4.2 An example of RG-58 cable

This cable, based on standard catalogues, has a single core and a braided copper 
shield. The capacitance of the core conductor with respect to the shield for the 
RG-58 cable is about 101 pF/m. This can be obtained using the formula (30) if 
the geometry of the cable is known. The inductance of this cable using the char-
acteristic impedance of 50 Ω will be 0.255 µH/m. The shield is braided because 
of which the tube mutual impedance or the transfer impedance will not be the 
same as discussed in Section 4.1. Vance [7] mentions that there will be two com-
ponents that contribute to the net transfer impedance. One is due to the diffusion 
of electromagnetic energy across the thickness of the shield and the other, due to 
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the penetration of the magnetic fi eld through apertures of the braid. The diffusion 
part is identical to the case as if the shield were like a solid tube, similar to the tube 
mutual impedance as shown in Section 4.1. The penetration or the leakage part is 
usually represented as a leakage inductance term as in eqn (35).

 Shield-mutual 12= = +T dZ Z Z j Mw  (35a)
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The values of Zd and M12 are calculated from the shield geometries and the number 
of carrier wires on the braid and on the weave angles. The terms rdc and rbw are the 
dc resistance of the shield and radius of the carrier wire with which the shield is 
formed. Associated formulas can be found in [7].

Can transfer impedance be measured experimentally? Under the assumption of 
weak coupling between the inner circuit and the external circuit, it is possible to 
determine the transfer impedance exactly. Let us get back to our differential equa-
tion (23). For the RG-58, the equations reduce to eqns (36) and (37).
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Assume a 1 m length of the RG-58 cable, which is electrically small. At one end 
(near end marked as suffi x N) let us short the inner conductor and shield, and inject 
a current source with respect to reference plane. At the other end (far end marked 
as suffi x F), let us open circuit the inner conductor and short the shield to the refer-
ence plane. Thus the voltage at the near and far ends with respect to core and shield 
currents can be written as

 coreF coreN 11 core 12 shield( ) = +V V Z I Z I− −  (38a)

 shieldF shieldN 21 core 22 shield( ) = +V V Z I Z I− −  (38b)

The core current is zero, because of which we have,

 coreF coreN 12 shield( ) =V V Z I− −  (39a)

 shieldF shieldN 22 shield( ) =V V Z I− −  (39b)
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Also VcoreN and VshieldN are the same as they are shorted at the injection point, 
hence by subtracting the two equations from each other in eqn (39) we have

 coreF shieldF 12 22 shield( ) = ( + )V V Z Z I− −
 

(40a)
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This is the concept used in various transfer impedance measurement methods. 
Similar to transfer impedance, one can also defi ne the transfer admittance. Exper-
imentally the Triax set up as shown in Fig. 14 is used for the transfer impedance 
measurement [24]. There could be other more accurate or simple methods as dis-
cussed in [5]. To illustrate the Triax measurements, consider an RG-58 cable of 1 
m length and make a simple Triax arrangement [24] as shown in Fig. 14. Note that 
one can make the radius of the tube smaller so as to be in contact with the outer 
insulation (not shown in Fig. 14) in order to get rid of the external inductance and 
capacitance between the tube wall and insulation. Now inject a step pulse current 
at the near end with the connection as shown in Fig. 14 and measure the open 
circuit voltage at the far end between the inner core and the shield. The ratio of the 
open circuit voltage and the shield current should give us the required tube mutual 
impedance or the transfer impedance.

Assume that for using eqn (35) for the RG-58 cable, the values needed (taken 
from [7]) are M12 = 1 nH/m, rdc = 14 mΩ/m, rbw = 63.5 µm and the copper conduc-
tivity and permeability is chosen. The transfer impedance as a function of fre-
quency using eqn (35a) for the above values are shown in Fig. 15.

Note that one could also reproduce the curve using the equations correspond-
ing to eqns (32) or (34), if the shield thickness or inner and outer radii are known. 
It is seen that if the shield was tubular of certain thickness, then the transfer 

Figure 14: Triax setup for measuring the transfer impedance.
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impedance magnitude decays at high frequencies as shown in Fig. 15, when only 
the diffusion part is considered. However, if the shield was leaky or braided, then 
the transfer impedance fi rst decreases at high frequency and then increases as 
shown in Fig. 15 with both diffusion and the leakage part considered. Tesche 
et al. [5] mention that the transfer impedance increases at high frequency either 
as µ f or µ  √

_
 f  , perhaps dependant on the type of the shield. Usually the leakage 

part is diffi cult to calculate as it depends on number of carrier wires, their optical 
coverage, weave angle and, more importantly, they are functions of complete 
elliptic integrals of fi rst and second kinds. There could be other types of shields 
that are not braided but similar to the ones shown in Fig. 11, for which no formula 
exists and controlled measurements can only give the transfer impedance. At low 
frequencies, the transfer impedance is dominated by only DC resistance of the 
shield. Similar to transfer impedance one could have transfer admittance, but it 
exists only if the shield is leaky and at high frequency. The transfer admittance is 
approximately given by eqn (41). In eqn (41), C1 is the capacitance per unit length 
between the internal conductors and the shield, C2 is the capacitance per unit 
length between shield and the external current return path and K is a function with 
complete elliptic integrals and carriers and weave angle, etc. More details can be 

Figure 15:  Transfer impedance for an RG-58 cable with braided shield, showing 
the infl uences of leakage and diffusion part.
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found in [5, 7]. As a reasonable approximation, transfer admittance is usually 
neglected.
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4.3 Infl uence of shield thickness in the coupling phenomena

Let us now consider as to what would be the infl uence of shield thickness on the 
transfer impedance characteristics. For simplicity, we shall consider the example 
of tubular shields with two thicknesses, namely, 127 and 254 µm, made of copper 
with an arbitrary outer radius of the shield as 1.65 mm. The expressions (32) or 
(34) can be used for transfer impedance. One would also get the same if the Traix 
experiments as explained earlier were made and the ratio of open circuit voltage 
and shield current were determined. The transfer impedances for the two shield 
thickness are shown in Fig. 16.

The higher the thickness, the less the transfer impedance, as can be clearly 
seen in Fig. 16. The transfer impedance in frequency domain shown in Fig. 16 is 

Figure 16:  Transfer impedance for two shield thicknesses assuming a shield to be 
solid tubular.
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vector fi tted [25] using ten poles and the time domain response is shown in 
Fig. 17. The value of transfer impedance in time domain is large, which is a 
result of convolution.

An interpretation can be provided to time domain ‘transfer impedance’ presented 
in Fig. 17. It takes some time for the shield current (magnetic fi eld) to penetrate 
inside. The time, when the steady low value of transfer impedance is achieved in 
Fig. 17, is nearly the same as the time at which the steady value of the open circuit 
voltage is achieved in Fig. 18. Stern [26] has provided a time domain formula as a 
series expansion for expression (35b). The convergence of such a time domain for-
mula depends on shield properties and shield dimensions. Another interesting fea-
ture of the transfer impedance is that it predicts the diffusion time [7] required for 
the development of the internal voltage. The diffusion time constant can be obtained 
from the shield thickness and shield material properties and is given by eqn (42).

 
2

s = (shield thickness)t ms  
(42)

To demonstrate this, let us take the same example of transfer impedance as above. The 
internal open circuit voltages, which corresponding to the Triax setup, would have 
been the product of transfer impedance and shield current for two shield thicknesses 

Figure 17:  Transfer impedance in time domain for two shield thicknesses assum-
ing a shield to be solid tubular.
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are shown in Fig. 18. Let us assume a step function for injected shield current. It can 
then be seen that the constant voltage is attained at about times corresponding to dif-
fusion time of the shield and those times are marked in Fig. 18. Note that in generat-
ing the curves corresponding to Fig. 18, the frequency domain voltage obtained from 
the product of transfer impedance and step current in frequency domain were Vector 
fi tted using ten poles. It is readily see that, higher the thickness, the larger the diffu-
sion time and the less the internal voltages due to low value of transfer impedance.

4.4  A simple measurement for estimating inductance and capacitance 
 matrix elements for internal conductors of cables

Today, very sensitive, high precision and accurate measurement systems like AC 
bridges are commercially available for measurement of smaller values of capaci-
tance and inductances. Further, there are voltage and current sensors or instru-
ments for measuring small currents and voltages. In this section, we discuss some 
of the methods to evaluate through experiments, the inductance and capacitance 
matrix elements for the MTL arrangement of conductors in the cable with respect 
to the shield based on the method proposed in [5]. This is necessary because there 

Figure 18:  Time domain response of the internal open circuit voltages for two 
shield thicknesses assuming the shield to be solid tubular.
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could be situations where the medium between the core conductors and the shield 
is not homogenous and, at the same time, one could have twisted pair arrangement. 
Under such circumstances practical formulae as discussed earlier, i.e. using eqns 
(29) and (30), no longer applies.

4.4.1 MTL capacitance matrix estimation
Let there be a system of n conductors forming an MTL system inside the shield 
and let the length of the cable be L. Let one of the ends of the cable be referred to 
as the near end and the other, as the far end. From the transmission line equations, 
the relationship between the current in the ith conductor and the voltages on the 
other conductors are related through admittances as follows.
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For a source with line length much less than the wavelength, i.e. under weak cou-
pling assumptions we can rewrite eqn (43) as

 1 1 1 2 1(0) ( ) [ + + + ]i i i i n nI I L Y V Y V Y V L− ≈ �  (44)

In eqn (43), Ii(0) and Ii(L) represent the current at the near and far ends, respec-
tively. Let all the lines at the far end be left open circuited. Then, for any conduc-
tor, the current Ii(L) = 0.

Now at the near end, say if we are interested in calculating the self-capacitance 
of kth conductor, Ckk, then we do the following. Short all the conductors to the 
shield in the near end except for the kth conductor where a voltage source Vk is 
connected to the shield. This voltage source injects a current Ik on the kth, conduc-
tor which can also be measured. Then based on eqn (44), since all the voltages are 
zero at the near end excepting on the kth conductor, we will have

 ( )0 =k kk k kk kI Y V L j C V Lw≈
 (45)

If the voltage source frequency, measured current and applied voltage at the near 
end is known, then the self capacitance Ckk can be calculated.

Similarly, if we measure the short-circuit current in the jth conductor with the 
same voltage source Vk with respect to the shield at the near end then we will have 
eqn (46), from which the mutual capacitance Cjk or Ckj can be obtained.
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4.4.2 MTL inductance matrix estimation
Similar to eqn (43), we can have the voltage and the currents in the conductor 
related through the impedance parameters as follows:
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For a source with line length much less than the wavelength, i.e. under weak cou-
pling assumptions, we can rewrite eqn (47) as

 1 1 1 2 1(0) ( ) [ + + + ]i i i i n nV V L Z I Z I Z I L− ≈ �  
(48)

In eqn (43), Vi(0) and Vi(L) represent the voltage at the near and far ends, respec-
tively. Let all the lines at the far end be short-circuited to shield. Then, for any 
conductor, the current Vi(L) = 0.

Now at the near end, say if we are interested in calculating the self-inductance 
of kth conductor, Lkk, then we do the following. Open-circuit all the conductors in 
the near end except on the kth conductor, connect a voltage source Vk with respect 
to the shield, which injects a current Ik on the kth conductor and that is measured. 
Then based on eqn (48), since all the currents are zero at the near end excepting on 
the kth conductor, we will have

 (0) =k kk k kk kV Z I L j L I Lw≈  (49)

If the voltage source frequency, measured current and applied voltage at the near 
end is known, then the self-inductance Lkk can be calculated.

Similarly, if we measure the open circuit voltage in the jth conductor with the 
same voltage source Vk with respect to the shield injecting current Ik on the kth 
conductor at the near end, then we will have eqn (50), from which the mutual 
inductance either Ljk or Lkj can be obtained.
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(50)

5  Some additional cases of ground impedance based on 
wire geometry 

5.1 Impedance with wires on the ground

Having known the expressions for ground impedance and admittance for wires 
above and below ground, it would be interesting to see what would be the expres-
sions for the ground impedance for wires on the surface of the ground. This 
is needed because there are railway systems where cables are sometimes laid 
beside the tracks either on the ground or in cable trenches. This can be seen in 
some typical power and communication systems too. Therefore, it is necessary 
to know the ground impedance expressions for wires on the ground. Sunde [6] 
has given the expression for ground impedance for the wires on the ground as 
eqn (51).
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In the above expressions, the Bessel’s function is used. An expression for ground 
impedance for wires on the ground can be obtained by using the ground impedance 
expressions for wires below ground, i.e. using eqn (11) with depth d approaching 
zero.
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(52)

What is interesting to note is that there is not any exponential term in eqn (52). 
It was seen that the logarithmic term corresponds to ground impedance of wires 
buried at infi nite depth in the soil [7]. The second term in eqn (52) modifi es or 
corrects the infi nite depth ground impedance model to obtain the ground imped-
ance expression for the wires on the surface of the earth. Therefore, the authors 
refer eqn (52) as modifi ed logarithmic formula. A comparison between the 
Sunde’s formula (using Bessel function) and the modifi ed logarithmic formula 
is shown in Fig. 19. The example is a wire of radius 2 cm, ground conductivity is 
varied from 10 to 0.1 mS/m, and the ground relative permittivity is 10. It is seen 

Figure 19:  Comparison between Sunde and modifi ed-logarithmic formula for the 
ground impedance of wires on the surface of the earth.
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that eqn (52) is a good approximation for eqn (51) and does not involve Bessel 
function. It should be remembered that if there are many parallel wires on the 
ground surface, the mutual ground impedance expressions could be obtained by 
substituting in eqn (52) the radius of the wire with horizontal distance between 
the wires, the same analogy as was applicable for the wires below ground. The 
ground admittance can be obtained using the propagation constant and the 
relation (15).

5.2  Mutual impedance with one wire above ground and the other below 
the ground

The mutual ground impedance expressions between an overhead wire and buried 
wire can be derived from Sunde’s method [6] but it involves infi nite integrals 
as shown in eqn (53). In eqn (53), dkl is the horizontal distance between above 
ground and buried conductors. The height of the overhead wire is h and the wire 
depth is d. The authors feel that simplifi ed expression for eqn (53) in terms of 
logarithms or exponentials should be derived to avoid infi nite integrals. It is a 
subject for future study.
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6 Some examples

We have seen various expressions for impedance and admittances for the bare 
and insulated wires. We have also seen how to model the coupling through cable 
shields. In this section, we take some examples, which will describe the solutions 
in time or frequency domain and also a practical example of how crosstalk phe-
nomena can be minimized using shielded cables.

6.1  Time domain simulation of pulse propagation in bare and 
insulated wires

When large transient currents or voltages propagate in bare wires or insulated 
cables there will be non-linear arcing or breakdown mechanisms occurring within 
the soil or insulation medium. The mechanisms of soil ionization in grounding 
systems and insulation breakdown in cables are common during power system 
transients/faults. To include such non-linear effects only time domain solution of 
transmission line equations helps. An effi cient way of solving numerically lossy 
transmission line equations in time domain is by using the fi nite difference time 
domain (FDTD) method with recursive convolutions as discussed in Chapter 2. 
The only difference is that a vector fi tting [25] of ground admittance in addition to 
ground impedance is to be made. The discussions presented here can be found in 
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Theethayi et al. [19] as well. Further, we will have constant term in addition to the 
exponential terms while fi tting the ground impedance and admittance terms which 
has to be used in the FDTD equations as discussed in Chapter 2.

As discussed in the beginning of this chapter, the transmission line equations, 
either eqns (1) or (2), when transformed to time domain will appear as eqn (54).
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Note that in eqn (54), the terms z(t) and h(t) are given by eqns (55a) and (55b), 
respectively.
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Let us assume that eqns (55) or (56), when fi tted with Vector fi tting, say, up to 
10 MHz, will give eqns (57) and (58).
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To demonstrate the fi nal time domain expression, let us discuss considering only 
eqns (54a) and (56a). Substituting eqns (56a) into (54a), we have
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Let us split eqn (57) as
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In eqn (58), the second term with a delta function can be written as a convolution 
given by eqn (59).
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From eqn (61), it is clear that Cz0 has dimensions similar to line series inductance 
and term Cy0 to shunt capacitance. Thus, the fi nal set of transmission line equa-
tions in time domain for pulse propagation that needs to be solved is given by 
eqn (62).
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It is interesting to see that eqn (62) appears similar to the expressions for overhead 
wires and the solutions to these equations using the FDTD method are straight 
forward, as discussed in Chapter 2, using the recursive convolution.

To demonstrate the differences one would obtain between the application of the 
FDTD method to eqn (62) and solutions using direct frequency domain solutions, 
as discussed in Chapter 2, we take an example of a bare wire 1 km long and buried 
at a depth of 0.5 m and having a radius of 7.5 mm. A current source having a peak 
of 1 A with the shape given by I0 (t) = 1.1274  (  e (1×104)t  –  e (4×105)t  )  is injected one 
end, and the voltage at the injection point, 100, 200, 300, 400 and 500 m from the 
injection point by two different methods are shown in Fig. 20 for a ground with 
sg = 1 mS/m and erg = 10. The differences between the two methods are nominal, 
which could be due to the numerical errors inherent in both the methods.

6.2 A practical crosstalk problem

In Chapter 2, we have seen the crosstalk mechanisms with the MTL conductor 
system in the presence of fi nitely conducting ground. Here, we shall consider 
crosstalk to shielded wires based on weak coupling analysis, i.e. the generator 
wire circuit currents (source) is not infl uenced by the current in the shielded cable. 
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Note that the analysis to be presented is applicable to electrically short lines as 
discussed in Chapter 2. Shielded cables are used to protect the signal wires from 
external interference and also to provide a return path or reference (e.g. the com-
mon coaxial cable type RG-58). First, we consider a perfect shield without any 
direct fi eld penetration inside, and then fi nd out how connecting the shield ends to 
the ground infl uence the crosstalk (Fig. 21). For simplicity, the ground is assumed 
to be perfectly conducting. The cable length is assumed to be electrically small so 
that the circuit analysis is valid. Let us now consider crosstalk to the shielded wire 
in the set up shown below. This situation is treated in detail by Paul [23].

First consider the capacitive coupling as discussed in Chapter 2. The shield is 
assumed to be perfect. Therefore, there is no ‘direct’ coupling between the genera-
tor wire and the receptor wire. The coupling capacitance between them is a series 
combination of CGS and CRS (Fig. 22)

 

RS GS
12

RS GS

=
+

C C
C

C C  
(63)

Figure 20:  Calculated voltages using the transmission line solution and the FDTD 
method for a bare wire buried at a depth of 0.5 m, 1 km long and radius 
of 7.5 mm. The ground medium has sg = 1 mS/m and erg = 10.
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The near end and far end crosstalk due to capacitive coupling is given by eqn (64).
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Where I2 is approximately given by eqn (65) (assuming currents and voltages in 
the receptor and shield circuit do not infl uence the currents and voltages of the 
generator circuit, that is, weak coupling with the generator circuit).
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If the screen is connected to the ground at either end, the screen voltage becomes 
zero everywhere (low-frequency approximation) and the capacitor CRS is shorted 
out. There is no capacitive crosstalk in this case,  V  F  Cap  =  V  N  Cap  = 0 when screen is 
connected to ground at one end or both ends.

Next, we will consider the inductive coupling. The disturbing current in the gen-
erator circuit produces a fl ux in the circuit formed by the shield and the ground 
plane. This fl ux induces a current in the shield which produces a fl ux opposing the 
original fl ux in the space between the shield and ground plane. That is, the fl ux link-
ing with the circuit formed by the receptor wire and the ground plane is also reduced. 

Figure 21: Basic model for crosstalk to shielded cable.

Figure 22: Equivalent circuit for capacitive crosstalk to shielded cable.
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In electrically small cables, there can be a shield current fl ow only if both ends of 
the shield are connected to the ground. Therefore, to reduce inductive coupling, 
both ends of the shield are to be connected to the ground. The equivalent circuit for 
the inductive coupling of the shielded wire is given in Fig. 23. In Fig. 23,

M• GR – Mutual inductance between the generator circuit and the receptor circuit.
M• RS – Mutual inductance between the receptor circuit and the shield circuit.
M• GR – Mutual inductance between the generator circuit and the shield circuit.
R• S, LS – Resistance and self inductance of the shield.

The direction of the disturbing current is from near end to the far end. It produces a 
voltage jwMGSI2 in the shield and drives a current IS in the direction shown. In the 
absence of the shield, the voltage induced by I2 in the inner wire (receptor wire) 
would have been jwMGRI2. The shield current IS produces a fl ux that opposes the 
fl ux produced by I2. Therefore, the induced voltage in the receptor wire would be 
reduced by an amount equal to jwMRSI2. Note that the two voltage sources in the 
receptor wire oppose each other. In the absence of shield current, IS, the voltage 
jwMGSI2 = 0. Shield current is given by eqn (66).
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The near end inductive crosstalk voltage is given by eqn (67).
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Substituting eqn (66) in eqn (67), we have
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Figure 23: Equivalent circuit for inductive crosstalk to shielded cable.
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Under weak coupling assumptions, the mutual fl ux linking the receptor circuit and 
the shield circuit is about the same as the mutual fl ux linking the generator circuit 
and the receptor wire circuit, leading to MGR ≈ MGS. Similarly, the magnetic fl ux 
in the shield-ground circuit due to shield current is the same as that magnetic fl ux 
produced by an equal current in the receptor wire leading to Ls ≈ MRS. Applying 
these two conditions in eqn (68), we get
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In a similar manner, we can fi nd the crosstalk at the far end, as
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The effect of the shield appears as a multiplying factor (71) on the crosstalk with-
out shield, where ts = Ls/Rs is the shield time constant.
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Shielding Factor (SF) can be approximated as
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For w < 1/ts,
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That is, inductive crosstalk increases by 20 dB/decade increase in frequency up to 
about f = 1/2 πts, or Rs = wLs.

For w > 1/ts,
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Equation (74) is independent of frequency. That is, inductive crosstalk remains 
constant for f > 1/2 πts.

Total crosstalk is the sum of capacitive and inductive crosstalk. If the shield is 
grounded, at least one end, the capacitive coupling contribution is zero, and the induc-
tive coupling is reduced by the shield only if the shield is grounded at both ends and 
the frequency of the interfering signal is greater than the shield cut-off frequency.

7 Concluding remarks

In this chapter, we have seen how the transmission line theory can be extended to 
solve pulse propagation problems in buried conductors, bare as well as insulated. 
Two of the key concepts for including the effect of fi nitely conducting ground are 
the ground impedance and ground admittance. After a review of different expres-
sions for these two quantities, we have presented a set of new simple expressions 
that can represent them. These two new expressions do not involve any compli-
cated infi nite integrals and hence computationally very effi cient, at the same time 
retaining the accuracy. It was pointed out that ground admittance is very sensi-
tive to ground conductivity, whereas for overhead conductors (chapter 2) it was 
ground impedance that was sensitive to ground conductivity. The popularly used 
transient simulation packages like EMTP/ATP ignores ground admittance and 
the pitfalls of using these programs for the analysis of underground systems have 
been pointed out. For the given conductivity and permittivity of ground, the fre-
quency up to which transmission line methods could be used for buried systems 
without signifi cant errors is derived. An MTL method for buried shielded cables 
is presented. This model is capable of calculating the voltages and current devel-
oped internal to the cable due to induced external currents in the shield under all 
possible terminal conditions (short circuit to open circuit). Numerical examples 
of pulse propagation in buried bare wires and cables have been presented in time 
domain and discussed.
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High-frequency electromagnetic coupling to 
transmission lines: electrodynamics correction 
to the TL approximation
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Abstract

A system of integral-differential equations for evaluating currents and potentials 
induced by external electromagnetic fi eld on a wire of different geometric form 
above a perfectly conducting ground is derived under the thin-wire approxima-
tion. Based on the perturbation theory, an iterative procedure is proposed to solve 
the derived coupling equations, where the zero-iteration term is determined by 
using the transmission line approximation. The method can be applied both in the 
frequency domain and in the time domain. The proposed iterative procedure con-
verges rapidly to exact analytical solutions for the case of infi nite and semi-infi nite 
straight wires, and to the Numerical Electromagnetics Code (NEC) solution for 
straight and bent wires of infi nite length. Moreover, with only one iteration, an 
excellent approximation to the exact solution can be obtained.

1 Introduction

The use of transmission line (TL) approximation for the calculation of the response 
of long lines to an external exciting electromagnetic fi eld has permitted to solve 
a large range of problems related mainly to lightning and electromagnetic pulse 
(EMP) effects. The accuracy of the TL approximation has been investigated in 
different papers (e.g. [1–3]). The TL approximation is mainly limited by the con-
dition that the transverse dimensions of the line and its return path (essentially the 
line height) should be much smaller than the minimum signifi cant wavelength of 
the exciting electromagnetic fi eld lmin. Therefore, for cases when this condition is 
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not met, one generally resorts to the use of scattering theory. However, a systematic 
use of the scattering theory for long lines becomes cumbersome due to computer 
time and storage requirements.

Exact analytical expressions for the calculation of the response of infi nite over-
head lines excited by an incident electromagnetic fi eld have been developed [1, 3]. 
Using those expressions, it has been shown [2] that corrections to the TL approxi-
mation can be considerable under certain circumstances. However, the method 
does not give the possibility to take into account boundary conditions at the line 
ends.

In this chapter, we derive the general fi eld-to-TL coupling equations for an over-
head wire of different geometric forms: a straight horizontal line of fi nite length 
and an infi nite horizontal wire with bend. The coupling equations will be expressed 
as in the classical telegrapher’s equations with some additional source terms 
representing the correction to the TL approximation.

We also present a simple iterative approach to correct the results obtained using 
TL approximation both in frequency and in time domains.

2  High-frequency electromagnetic fi eld coupling with 
a straight wire above a perfectly conducting ground

2.1  Derivation of an electric fi eld integral equation in a TL-like form 
for a straight thin wire of fi nite length

Consider a lossless current fi lament of fi nite length above a perfectly conducting 
ground (see Fig. 1). The line is in presence of an external electromagnetic fi eld.

Figure 1: Geometry of the problem.
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The boundary conditions on the wire surface imply that the total electric fi eld 
tangential to the wire should be equal to zero

 
tot e s( ) 0z ze E e E E⋅ = ⋅ + =
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 (1)

In eqn (1), eE
�

 is the exciting electric fi eld obtained by the sum of the incident 
fi eld 

iE
�

 and the ground refl ected fi eld rE
�

, both determined in the absence of the 
wire; sE

�
 is the scattered electric fi eld which represents the reaction of the wire to 

the excitation fi eld.
The following development will be based on the thin-wire approximation, that 

is, the current and change densities are assumed to be distributed along the wire 
axis and the condition (1) is satisfi ed on the surface of the wire. The scattered 
electric fi eld, produced by the charge and current densities r and J

�
, can be 

expressed in terms of the retarded scalar and vector potentials:
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where z′ is the length variable along the wire axis; = + +x y zr xe ye ze
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 is measured 
from the observation point to the origin, r ′�  from the source point to the origin, and 
I(z′) and r(z′ ) are the current and change density along the wire. ( , )g r r ′� �  is the 
scalar Green’s function defi ned as
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(4)

For the considered case of Fig. 1, the Green’s function becomes

 

2 2 2 2 2 2( ) ( ) ( ) ( ) ( ) ( + )

2 2 2 2 2 2

e e
( , ) =

( ) + ( ) + ( ) ( ) + ( ) + ( + )

jk z z y y x h jk z z y y x h

g r r
z z y y x h z z y y x h

− − + − + − − − + − +′ ′ ′ ′
−′

− − − − −′ ′ ′ ′

� �

 

(5)

where the wave number k is related to the angular frequency w by k = w/c.
When the fi eld point is on the wire surface, the expression for the retarded scalar 

and vector potential read:
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and
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in which the scalar Green’s function (Fig. 2) g(z) is given by
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The current and the charge density along the wire are related by the continuity 
equation:
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Introducing eqns (2), (6)–(8) into eqn (1), we get
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Figure 2: Geometry for the determination of the scalar Green’s function.



HIGH-FREQUENCY ELECTROMAGNETIC COUPLING TO TRANSMISSION LINES 127

Since the line is open-circuit at both extremities, we have

 (0) = ( ) = 0I I L  (11)

Additionally, it can be shown from eqn (7) that
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Using eqns (11) and (12), the retarded scalar potential expression (10) becomes
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Let us consider the scattered voltage as defi ned in the standard TL theory [4]
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Equation (2), written in terms of the x-component, yields
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Using eqn (14), the scattered voltage becomes
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From eqns (6b) and (5), it follows that
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which means
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Inserting eqn (18) into eqns (9) and (13) yields

 

s
e0

0

d ( )
+ ( ) ( )d = ( , )

d 4

L

z
V z

j g z z I z z E h z
z

m
w − ′ ′ ′

π ∫
 

(19)

 

s
0

0

d
( ) ( )d + 4 ( ) = 0

d

L

g z z I z z j V z
z

w e− π′ ′ ′∫
 

(20)

Equations (19) and (20) are the fi nal fi eld-to-transmission line coupling equations. 
In what follows, we will express these equations in a form similar to the classical 
TL coupling equations. To do that, let us consider the integral term, in eqns (19) 
and (20)

 0
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The approximate wave shape of the scalar Green’s function |g(z – z')| is shown in 
Fig. 3. From this fi gure, one can deduce that the effective length for the integration 
along the line is about 2h.

On the other hand, the effective length of the current variation is obviously 
equal to its wavelength l. Now, let the following conditions be satisfi ed

 1kh <<  (22a)

 2L h>>  (22b)

In this case, eqn (21) can be written as
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Further, if the observation point z is suffi ciently far from the wire ends, that is, if

 2 2h z L h<< << −  (24)

then the integration limits of eqn (23) can be taken from –∞ to +∞ (since the 
integrals from –∞ to L and from L to +∞ are negligible) and the integral reduces to

 ( ) ( ) 2ln(2 / )C z I z h a≈  (25)

Introducing eqn (25) in eqns (19) and (20) results in the well-known TL coupling 
equations – the generalized telegrapher’s equations.

Figure 3: Approximate representation of | ( )g z z− ′ |.
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In the general case when the simplifying conditions (22) and (24) are not satis-
fi ed, the function C(z) in the exact system of eqns (19) and (20) may be written as 
the sum of the term (25) and an additional corrective term as follows:
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where the operator D
�

 is defi ned as
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and 0L ′  and 0C ′  are the per-unit-length inductance and capacitance of the horizon-
tal infi nite wire above a perfect ground, as defi ned in the classical TL theory [1]. 
They are given by
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The above pair of eqns (26) and (27) is absolutely equivalent to the general fi eld-
to-TL coupling equations (19) and (20) derived earlier. This system of eqns (26) 
and (27) has a form similar to that of classical fi eld-to-TL coupling equations in 
the Agrawal et al. formulation [4] (see also Chapter 1). However, additional dis-
tributed voltage and current source which depend on the unknown current are also 
present. These terms represent electrodynamics corrections (including radiation) 
to the TL theory. The use of the system of eqns (26) and (27) is more suitable 
than (19) and (20) because it can be solved using a simple iteration technique (see 
Section 2.2). Moreover, the factor ln(2h/a) in (28) being frequency independent, 
makes it possible to transform the iterative solution in the time domain.

2.2 Iterative solution of the coupling equations in frequency-domain

A frequency-domain iterative approach based on the perturbation theory has been 
proposed in [5, 6] and applied to the case of a wire in the free space. In this section, 
we will present a similar approach to solve the coupling equations (26) and (27) in 
which the induced currents and voltages along the line are calculated using a series 
expansion in terms of the parameter 1/2ln(2h/a), which is a small parameter for 
thin horizontal wires (e.g. for h = 0.5 m and a = 1 mm, its value is about 0.072).
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 0 1 2( ) = ( ) + ( ) + ( ) +I z I z I z I z �  (31)

The initial iterations Vs
0 and I0(z) are determined from the classical TL equations:
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The following terms (n ≥ 1) are solutions of the following system of equations:
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For each iteration n ≥ 0, the open-circuit boundary condition is valid

 (0) = ( ) = 0n nI I L  (36)

To obtain a general solution for eqns (34)–(36), we substitute the expression for 
Vs

n(z) obtained from eqn (35) into eqn (34), and after making some simple math-
ematical manipulations, we get
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which is equivalent to
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The general solution of the homogeneous differential equation (38a) is given by

 1 1 2( ) = ( ) + e + ejkz jkz
n nI z F z C C−

−  (39)

The constants C1 and C2 can be determined provided that all the iteration terms 
satisfy the boundary conditions (36) at the line extremities. The fi nal solution of 
eqn (38a) can be therefore obtained as
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where
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The above equation can be rewritten in a more convenient form for numerical 
integration in which the dependence to the small parameter 1/2ln(2h/a) appears 
more explicitly
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Equations (40)–(42) permit to calculate the term In as a function of the previous 
term In–1. As stated before, the zeroth iteration term I0 is determined from the clas-
sical TL theory equations (32), (33) and (36).

2.3  Coupling of a plane wave to an infi nite wire: exact and iterative 
solutions

In this section, we present the fi rst test of the proposed iterative procedure and inves-
tigate how the solution converges to the exact solution. The considered case is an 
infi nite horizontal wire above a perfectly conducting ground excited by a plane wave 
(see Fig. 4). (The solution of this problem is well known, see, e.g. [1, 7]. How-
ever, we derive it here for the sake of consistency.) The general system for the fi nite 
horizontal line (eqns (19) and (20)) can be written for the case of an infi nite line:
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Figure 4: Plane wave coupling with infi nite horizontal wire.
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The term Ee
z(z) is the tangential exciting (incident + ground-refl ected) electric 

fi eld at the line height. This latter is defi ned as the sum of the incident electric fi eld 
Ei

z(h, z) and the ground refl ected one Er
z(h, z), both determined in absence of the 

wire. For the case of vertically – polarized plane wave Ee
z(z) is given by
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in which
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where Ei is the amplitude of the incident electric fi eld, and k1 = k cos q, where q is 
the elevation angle of the incident fi eld (the azimuth angle Φ = 0).

Expressing the scattered voltage from eqn (44) and substituting it in eqn (43) 
yields a Pocklington integral–differential equation for the induced current in the 
infi nite horizontal wire:
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Note that the interval of integration in the above integral-differential equation extends 
from –∞ to +∞. Moreover, the kernel of the equation, the function ( )g z z− ′ , de-
 pends on the difference of arguments. Under these circumstances, it is possible 
that the solution be in the form

 0 1( ) = ( )exp( )I z I j jk zw −  (48)

The integral in eqn (47) can be written as
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with
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(50)

where, we have used the following identity [8, 9]:
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and H(2)
0 (x) = J0(x) – jY0(x) denotes the Hankel function of the zeroth order and 

second kind [10].
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After substituting eqns (48) and (49) in eqn (47), we obtain an algebraic equa-
tion for the unknown current amplitude I0 ( jw) instead of the integral equation:
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The solution of eqn (52) is the well-known expression for the induced current
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Now, let us apply the general iteration formulas (40) and (41) to solve the system 
of eqns (43) and (44). We assume that the value k in eqn (40) has a small imagi-
nary part (which corresponds, for example, to small ohmic losses) k → k – jd. For 
very long wire L → ∞ and for observation points quite far from the end of the wire 
z ~ L – z ~ L, only the last term of eqn (40) ‘survives’ and we will have
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Again, the nth current iteration should have a form with the same coordinate depen-
dence as the exciting electric fi eld (eqn (45)), but with unknown amplitude I0,n(jw)

 0, 1( ) = ( )exp( )n nI z I j jk zw −
 

(55)

The function Fn(z) can be found after integration
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Substituting eqn (56) into eqn (54), we can obtain the solution for the current 
amplitude at any iteration (57)
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which is function of the zero-order iteration current amplitude I0,0( jw), obtained by the 
solution of the telegrapher’s equations (32) and (33) with exciting source (eqn (45))
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The total amplitude of the induced current I0( jw) can be obtained by summation of all 
iterations (31). As expected, the summation coincides with the exact solution (53):
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The numerical example – comparison of the exact current amplitude with those of 
perturbation theory is shown in Fig. 5a and b. One can see from these examples that 
the perturbation series converges quickly to the exact solution. It is worth observing 
that even after one iteration, we obtain satisfactory results in comparison with the TL 
approximation. Note also that the series convergence is faster for thinner wires.

2.4  Correction to the refl ection coeffi cient for a semi-infi nite 
open-circuit line

In this section, we consider a good conducting semi-infi nite wire above a perfectly 
conducting ground, without external exciting electromagnetic fi eld (see Fig. 6). 

Figure 5:  Frequency dependence of the current induced by the normal incident 
wave in the infi nite wire above a perfectly conducting ground (h = 1 m) 
for the exact solution (curve 1), classical TL approximation (curve 2), 
and the fi rst (curve 3) and the fi fth (curve 4) iterations of the perturbation 
theory for different radiuses of the wire. (a) Radius of the wire a = 1 cm. 
(b) Radius of the wire a = 1 mm.
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An incident current wave, I0 exp(jkz), travels from ∞ and returns after refl ection 
and scattering at the open-circuit left end of the line.

Suffi ciently far from the termination, the current is defi ned by the solution of the 
homogeneous system equations (43) and (44) (which is equivalent to the homoge-
neous Pocklington’s equation) for the infi nite line [7]. It represents a transverse 
electromagnetic (TEM) wave and does not radiate ([11], chapter 4). At a distant 
location from the termination the current is given by

 
( ) = (e + ( )e )jkz jkz

z
I z I R jw −
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where I	  is the amplitude of the incident current wave, R(jw) is the complex re -
fl ection coeffi cient at the open-circuit end of the line. This coeffi cient defi nes the 
radiation of the scattering current (see end of this section).

The exact solution for the complex amplitude of the refl ection coeffi cient in a 
system of two parallel wires in free space has been derived by Weinstein, using the 
Wiener–Hopf technique [8]. This expression reduces in our case to the following 
form:
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and

 

0 0

0 0

( /2 ) ( )
( ) = arctan

( /2 ) ( )

J ax h J x
W x

Y ax h Y x

 −
− −   

(61b)

in which J0(x) and Y0(x) are the zero-order Bessel function of the fi rst and second 
kind, respectively [10].

In what follows, we will derive an expression for the refl ection coeffi cient using 
the iterative approach developed in Section 2.2. The solution for the current I(z) 

Figure 6:  Geometry of the homogeneous current wave scattering problem for a 
semi-infi nite wire.
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should satisfy the asymptotic condition (60) and the open-circuit boundary condi-
tion for z = 0 (eqn (36)).

The zero iteration term, determined by the TL approximation, reads

 0 ( ) = (e e ) = 2 sin( )jkz jkzI z I jI kz−−	 	
 (62a)

 0 ( ) = 1R jw −  (62b)

To fi nd the fi rst iteration term, I1(z), we will use the general expressions (39)–(41) 
with n = 1 and a semi-infi nite integration domain

 
1 0 1 2

1
( ) = { ( )}+ e + e

2 ln(2 / )
jkz jkzI z D I z C C

h a
−�

 
(63a)

where

 

( )
2 2 2 2( ) + ( ) +4

0 0 02 2 2 2
0

2 e e
( ) = 2 ln ( ) ( )d

( ) + ( ) + 4

jk z z a jk z z hh
D I z I z I z z

a z z a z z h

∞ − − − −′ ′    − − ′ ′    − −′ ′ 
∫

�

 (63b)

Since the asymptotic amplitude of the incident current wave is considered to be 
specifi ed, it is necessary to set C2 = 0 in eqn (63a). Physically, this means that the 
scattering and radiation processes near the termination affect only the refl ected 
current wave. Using the open-end boundary condition (36), the fi nal expression 
for the fi rst iteration term follows:
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Having
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the asymptotic expression for the fi rst iteration is given by
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Finally, the expression for the refl ection coeffi cient R1 (jw) (including the zero and 
fi rst iterative approximations) reads
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Using eqns (62b), (63b) and (66b), we obtain the following expression:
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After straightforward mathematical manipulations (carrying out a change of 
variable 2 2+ (2 )= khxz  in the second term into the brackets), it is possible 
to obtain
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where Si(x) and Ci(x) are sine and cosine integral functions, C = 0.577 . . . is the 
Euler’s constant [10].

For thin wires, when 1/2ln(2h/a) << 1, the perturbation theory (only after the 
fi rst iteration) yields a good agreement with exact results, when the wavelength l 
is less than, or about several h, i.e. when the diffraction effects predominant (see 
numerical example in Fig. 7). Analytically, the approximate equation (69) can be 
directly obtained from the exact result (eqn (61)): assuming a << h, using small 

Figure 7:  Refl ection coeffi cient of a semi-infi nite wire above a perfectly conduct-
ing ground. Comparison between the proposed approach after only one 
iteration and the exact solution (a/2h = 0.001).
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argument asymptotic approximations for the function J0(x) and Y0(x), and calculat-
ing after that the lowest term in the expansion (61b) in terms of 1/2ln(2h/a).

Let us establish now a connection between refl ection coeffi cient and radiation. 
As mentioned earlier, the current for z → ∞ has a form given by eqn (60), indicat-
ing that the electromagnetic fi eld has a TEM structure and does not radiate [11]. 
Near the end, however, the fi eld of the current wave deviates from the TEM struc-
ture, and the wave can radiate. The amount of the radiation power can be expressed 
in terms of the refl ection coeffi cient as it will be shown in what follows.

The average power of TEM mode, propagating along the ideal TL can be 
written as
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where Vs(z) is the scattered voltage of the line. Using the asymptotic expression 
(60) for the current at distant locations from the line end, and calculating the sca-
lar potential and scattered voltage of the infi nite wire by usual way (see [7]; [11], 
chapter 4), it is possible to obtain the following equation for the time-averaged 
power propagating along the line at far distances from the termi nation:
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As far as we neglect the ohmic losses in the wire, the power has to convert itself into 
radiation PRad(w) = –P(w). Therefore, eqn (71) expresses the radiation losses. The 
radiation, of course, is absent in the TL approximation (62). It is convenient to intro-
duce a ‘lumped radiation resistance’, which is responsible for the radiation losses
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In Fig. 8, we have plotted the radiation resistance computed by eqn (72) calculated 
using exact equations for the refl ection coeffi cients (61) and the approximate for-
mula (69). It can be seen that the proposed approximation yields results which are 
in a very good agreement with the exact solution.

2.5  Iterative solution of the coupling equations for a fi nite-length straight 
line in time-domain

In this section, we apply the developed method to calculate the electrodynami-
cal correction to the induced current in a straight wire of fi nite length, directly in 
time domain. The series expansion parameter in the corresponding coupling equa-
tions (40) and (41) in frequency domain being frequency independent makes is 
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possible to convert the iterative equation (40) in time domain. To do that, let us write 
eqn (40) in the following form:
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(73)

Introducing the expression for Fn–1(z), eqn (38b) and rearranging, we get
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(74)

Figure 8:  Radiation resistance for the semi-infi nite open-circuit line: 1 – exact 
theory; 2 – the fi rst iteration for the perturbation theory.
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It is now straightforward to convert eqn (74) in time domain
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(75)

where the time-domain integral operator { }( , )nD i z t
�

 is given by the inverse Fourier 
transform of eqn (28)
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After some mathematical manipulations, eqn (76) can be written in the following 
form more suitable for a numerical integration:
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(77)

It is important to note that the summation in eqn (75) has a fi nite number of terms 
since

 ( 1) ,{ ( , )} | = 0 for 0n z tD i z t t− ≤
�

 
(78)

Similar to the frequency-domain solutions, the zeroth iteration term is determined 
by using the TL approximation; the following terms in(z,t) can be calculated as a 
function of the previous term in–1(z,t) using relations (75) and (77), which involve 
only one integration along the line length.
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The above procedure is compared with results obtained using the Numerical 
Electromagnetics Code (NEC) [12] for a line of fi nite length, considering a 20 m 
long, 5 m high wire above a perfectly conducting ground illuminated by an inci-
dent plane wave with an azimuth angle Φ = 0° and an elevation angle q = 90°. The 
incident electric fi eld, parallel to the wire, is defi ned as

 
1 2i 7 1 8 1

0 0 1 2( ) = (e e ) ( ) with = 65 kV/m, = 4 ×10 s , = 6 ×10 sa t a tE t E t E a ah− − − −−

 (79)

In Fig. 9, we present the ‘exact solution’ obtained using NEC superimposed 
with the TL approximation (zero order) and the fi rst-order solution for the induced 
current at z = 17 m. It can be observed that a noticeable improvement of the results 
it achieved after only one iteration. In particular, the computed peak current after 
the fi rst iteration is practically identical to the NEC results, whereas the TL approx-
imation leads to an error of more 20%.

2.6 Discussion of the convergence of the procedure for a fi nite line

In this section, we discuss the convergence of the developed method for the case 
of a fi nite horizontal open-circuited line, excited by a plane wave equations (45) 
and (46). The zero-order iteration for the induced current can be easily found by 

Figure 9:  Comparison of the proposed iterative method with the solution obtained 
using NEC, for a 20 m long, 5 m high overhead wire above a perfectly 
conducting ground. The current is calculated for the coordinate z = 17 m.
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the solution of the telegrapher’s equations (32) and (33) with the boundary condi-
tions (36):
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where I0,0(jw) is the amplitude of the current induced by the incident plane wave in 
the infi nite horizontal wire given by eqn (58). The general solution for the current 
of nth iteration, n ≥ 1, In(jw, z), is given by eqns (40) and (41) already presented 
in Section 1.

A careful examination of the iteration series and analysis of the results allow 
us in making the following observations. For some frequencies, a fast conver-
gence of the iteration procedure is observed (see e.g. results of Fig. 10). How-
ever, for values close to the resonant frequencies of the wire (wn = πcn/L, 
n = 1, 2, 3, . . .), the iterations series diverges (see Fig. 11). This phenomenon 
can be explained by looking closely at eqns (40) and (42). The term in the 
perturbation series which appears after manipulations of the fi rst two terms in 
the square brackets in the zero-iteration current expression (80) contains as 
expansion parameter not 1/2ln(2h/a), but 1/[(1–exp(–2jkL))2ln(2h/a)]. It is 
obvious that when this parameter is about, or larger than one, the iteration 
series diverges.

It is, however, possible to cope with this problem. In the denominators of eqns 
(80) and (40), the exponent is actually multiplied by the square of the current 
refl ection coeffi cient at the line terminals

 
→

− − − −2

1 1

1 exp( 2 ) 1 exp( 2 )jkL R jkL  
(81)

In the TL approximation, this refl ection coeffi cient is R = –1, resulting in eqns 
(40) and (80). Instead of R = –1, we can use the exact refl ection coeffi cient for the 
semi-infi nite line (eqn (61)), or the refl ection coeffi cient with electrodynamical 
corrections (69), improving the convergence of the iteration series. However, near 
the terminal, this solution does not satisfy the boundary conditions. A consistent 
theory for the case of a fi nite-length, terminated line excited by an external plane 
wave is presented in Chapter 5.

Now, let us discuss the convergence of the iteration procedure in the time 
domain. In Fig. 12a–c, we present the zeroth, fi rst and second iteration terms i0(t), 
i1(t) and i2(t) corresponding to the case of Fig. 9. As it can be seen from this fi gure, 
the current envelope for the nth iteration increases as tn. (It can indeed be shown that 
the nth iteration term in the frequency domain has a term ~(1 – exp(–2jkL))–(n+1) 
(n + 1 – order pole), the inverse Fourier transform of which brings a factor tn.) 
However, the accuracy of the iterative procedure can be verifi ed by the usual 
perturbation theory, which requires that the present iteration must be much smaller 
than the previous one. Numerical calculations show that this requirement is satisfi ed 
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for the fi rst and second terms for several early time periods, when the maximum 
stress occurs. In Fig. 12d, we have presented again the zeroth iteration term i0(t) (TL 
approximation) superimposed with the sum i0(t) + i1(t) + i2(t) which can be consid-
ered as the corrected solution. It can be seen that while the envelope of the TL 
solution i0(t) is constant due to the absence of any losses, the envelope of the cor-
rected induced current i0(t) + i1(t) + i2(t) show a decrease as a function of time. 
This decrease corresponds to the line radiation.
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Figure 10:  Convergence of the iteration series to the ‘exact’ NEC solutions. L = 
10 m, h = 0.5 m, a = 1 × 10–3 m, q = 45°, k = 3 m–1.
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Figure 11:  Frequency dependence of the ‘exact’ NEC solution and iterative solutions 
for the observation point z = 0.5 m. L = 10 m, h = 0.5 m, a = 1 × 10–3 m, 
q = 45°.

Figure 12:  Zero (TL), fi rst and second iteration terms for the case presented in Fig. 9.
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3  Propagation of high-frequency current waves through a 
line bend

3.1 Statement of the problem

The current along a uniform TL (horizontal infi nite straight wire parallel to a per-
fectly conducting ground) can be represented as a sum of a forward propagating 
wave exp(–jkl) and a backward propagating wave exp(jkl). Further, no radiation is 
associated with such a line [7, 11].

Radiation effects appear when the uniformity of the line is disturbed [13]. In 
particular, for lines of fi nite length, the line uniformity is disturbed near the termi-
nals of the line. Non-uniformities also arise in presence of ‘bends’ in the line (see 
Fig. 13). This is an important problem in electromagnetic compatibility and has 
been the subject of many recent publications [14–18]. In this case, radiation occurs 
in the ‘near-bend’ region. Quantitatively, the current distribution along the non-
uniform line, suffi ciently far from the near-bend region, can be described in terms 
of complex asymptotical refl ection and transmission coeffi cients R and D, associ-
ated with the bend

 

−

−

 ≤ −≅ 
≤

	 e + e , 2
( )

e , 2

jkl jkl

jkl

R l h
I l I

D l h  
(82)

The total radiation of the bend can be also expressed in terms of coeffi cients R and 
D [15]. Usually, these coeffi cients are determined using numerical algorithms such 
as the method of moments (e.g. [14, 15]).

In this section, we derive analytical expressions for the refl ection and transmis-
sion coeffi cients associated with the bend. To do this, we generalize the iteration 
approach developed earlier (see [19] and Section 2) to deal with a non-straight 
wire. First, electric fi eld integral equations for current and voltages in the line are 
derived under the thin wire assumption. Again, these equations can be written in a 

Figure 13: Confi guration of the problem and the coordinate system.
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TL-like form but with additional voltage and current source terms representing the 
electrodynamics corrections to the TL approximation. These additional source 
terms disappear at low frequencies kh → 0. The solution of these equations by the 
iterative approach yields the refl ection and transmission coeffi cients. The derived 
analytical expressions are compared with numerical results published in the litera-
ture. The developed analytical expressions can also be used to evaluate the radi-
ated power associated with line bend.

3.2  Characterization of the line bend: derivation of the electric fi eld integral 
equations

Consider a lossless current fi lament of infi nite length above a perfectly conducting 
ground. The TL has a bend characterized by an angle α in the origin of coordinates.

We assume that the line is in presence of an external electromagnetic fi eld.
The boundary condition on the surface of the non-rectilinear wire {l} implies 

that the total tangential electric fi eld should be equal to zero on the surface of the 
wire

 {}
e s( + ) 0l l

E E e =
� � �

 
(83)

In eqn (83), eE
�

 is the exciting electric fi eld obtained by the sum of the incident 
electric fi eld iE

�
 and the ground-refl ected fi eld rE

�
, both determined in absence of 

the wire; sE
�

 is the scattered fi eld, which represent the reaction of the wire to the 
excitation fi eld. The vector le

�
 in eqn (83) is a unit vector tangent to the curve {l} 

along the wire axis. For the geometry of Fig. 13, the unit vector le
�

 is
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where l is the current length along the wire and a is the angle of the bend (see Fig. 13). 
Again, we use the thin-wire approximation in which it is assumed that the current 
and charge densities are distributed along the wire axis and the condition (83) 
satisfi es in the surface of the wire [7].

As for the case of a straight wire, the scattered electric fi eld, produced by the 
charge and current densities r and J

�
, can be expressed in terms of scalar and vec-

tor retarded potentials (2). In the considered present case, to obtain the potentials 
integration has to be performed along a non-straight wire
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where l ′ is the natural coordinate along the wire (current length of the curve {l}), 
= + +x y zr xe ye ze
� � � �

 is measured from the origin to the observation point, ( )r l′ ′�
 



HIGH-FREQUENCY ELECTROMAGNETIC COUPLING TO TRANSMISSION LINES 147

from the point l ′ on the curve {l} to the origin, I( l ′) and r( l ′) are the current and 
change density along the wire, and ( , )g r r ′� �  is the scalar Green’s function (5) for 
the semi-infi nite space bordered by the perfectly conducting plane.

For the considered case of Fig. 13, the coordinates of the axis of the wire is 
defi ned as

 a a
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and the equations for the scalar and vector potentials can be written as
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After calculating the retarded scalar and vector potential, when the fi eld point is 
on the wire’s surface ( = ( ) + xr r l ae

� � �
) and making use of eqn (2), it is straightfor-

ward to obtain the following set of equations for the induced current and charge 
density.

For l < 0
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For l > 0
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The scalar Green’s function on the wire g(z) is given by eqn (7).
After substituting the expression for the scalar potential equations (90b) and 

(89b) into eqns (90a) and (89a), and using the continuity equation for the current 
and charge density along the wire
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we obtain the following equations describing induced current along the non-
uniform line.

For l < 0
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For l > 0
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Consider now the equations for low-frequencies, where 2kh << 1, and for the 
points along the line suffi ciently distant from the bend, i.e. when |l| >> 2h. Under 
these conditions, it can be shown that the second term in eqn (92) and the fi rst 
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term in eqn (93) become negligible [13]. On the other hand, analyzing the function 
g(l ′ – l) (see Section 2.1 and [19]), it can be shown that for l < 0
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Also the same result is obtained for l > 0.
Therefore, in the low-frequency approximation, the set of eqns (92) and (93) 

can be put in the form of a second-order differential equation
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Equation (95) is the usual form of the coupling equation for the induced current 
in the TL approximation [7] for which analytical solution may be obtained using 
well-known mathematical methods.

It is possible to show that the exact coupling equations (92) and (93) for an 
infi nite line with a bend can be written in the TL-like form (eqn (95)) but with an 
additional integral term b{ ( )}D I l

�
 representing the correction to the TL approxi-

mation and taking into account radiation effects. (The derivation is in analogy with 
the derivation of the coupling equations for the fi nite wire above a perfectly 
conducting ground in Section 2.1.) This equation reads
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in which
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and the functions Fbl(l) and Fb2(l) are given by
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for l < 0, and
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for l > 0.

3.3 Iterative solutions of the electric fi eld integral equation

As in the case of straight wire (see Section 2.2), the quantity 1/2ln(2h/a) appearing in 
eqns (96)–(101) is much smaller than 1 for thin wires and it is convenient to solve the 
derived eqn (96) using the perturbation theory around this small expansion param-
eter. Thus, the unknown induced current is decomposed into the following series

 �0 1 2( ) = ( ) + ( ) + ( ) +I l I l I l I l  (102)

where the zeroth iteration term I0(l) is determined from the TL approximation 
(95). Every next term In(l) is the solution of the TL-like eqn (96), but with a source 
term bD

�
 corresponding to the previous iteration In–1, in other words,
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Therefore, the magnitude of the nth iteration will be proportional to In(l)~ 
(1/2ln(2h/a)).

Previously in this chapter, it has been shown that the above iterative method for 
the case of straight infi nite and semi-infi nite wires yields excellent approximation 
to the exact solutions after only one iteration and for high frequencies (kh up to 
several unities).

Now, the developed method will be applied to evaluate the current refl ection and 
transmission coeffi cients associated with the line bend. In this case the external 
electromagnetic fi eld is assumed to be absent

 − ∞ ∞e ( ) = 0, < <lE l l  (104)

If the source is located at –∞, the current wave travelling from –∞ is partially 
refl ected from the bend and partially transmitted to +∞. The complex amplitudes 
of the refl ected and transmitted waves are described by the coeffi cients R(jw) and 
D(jw). Using the perturbation theory and eqn (102) for the induced current, the 
refl ection and transmission coeffi cients can be decomposed to

 �0 1 2= + + +R R R R  (105a)

 �0 1 2= + + +D D D D  (105b)

The zeroth iteration term, solution of eqn (95) is

 
−	

0 ( ) = e jklI l I  (106)
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and the refl ection and transmission coeffi cients have the trivial values

 0 0= 0, = 1R D  (107)

The fi rst iteration is given by the solution of the non-homogeneous differential 
equation (103) with n = 1 and a source term given by eqns (97)–(101), (106). It 
is convenient to solve the differential equations separately in the l < 0 and l > 0 
regions and join the obtained solutions afterward.

The general solutions of eqn (103) for negative and positive values of l, which 
take into account the correct boundary conditions at infi nity (82), read
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for l < 0, and
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for l > 0. In eqns (108) and (109), the solutions of homogeneous differential equa-
tions e–jkl for l < 0 and e jkl for l > 0 can be dropped since the bend can generate 
only outward current waves.

Using the fact that in infi nity [19]
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it is possible to obtain the following expressions for the fi rst-order corrections 
to the refl ection and transmission coeffi cients R1 and D1 through unknown coef-
fi cients C1 and C2
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To determine the coeffi cients C1  and C2, it is necessary to impose that the solutions 
(108) and (109), as well as their derivatives (which are, up to the factor, charges 
per-unit length), are continuous at l = 0. After some straightforward mathematical 
manipulations, we obtain the following expressions for the fi rst-order corrections R1, 
D1, to the refl ection and transmission coeffi cients R0 and D0. These expressions are
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Finally, the expression for the refl ection and transmission coeffi cients R and D 
(including the zero and the fi rst iterative terms) read

 ≈ 0 1 1+ =R R R R  (115a)

 ≈ 0 1 1+ = 1+D D D D  (115b)

From eqn (114), it is obvious that for a = 0, D1 = 0. Making a change of variables 
( 1 2= + , =x l l x l l−′ ′ ) in eqn (115a), it is possible to show that for a = 0, R1 = 0.

3.4 Validation of the proposed method

The analytical expressions (113)–(115) obtained in Section 3.3 for the coeffi cients 
R and D are not convenient for a numerical integration because of the double inte-
gration over infi nite intervals. It is, however, possible to fi nd a more convenient 
form of these equations by making the following change of variables:
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The expressions (113) and (114) are then modifi ed to the following forms, more 
suitable for a numerical integration:
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Figures 14 and 15 present a comparison between our results and those obtained 
using the method of moments and reported in [15] for both refl ection and transmis-
sion coeffi cients. We considered a horizontal wire with a radius a = 5 × 10–4 m 
located at a height h = 0.3 m above a perfectly conducting ground. The bend angle 
is a = 90°. It can be seen that a very good agreement is found between the numerical 
method and our proposed approach, over a wide range of frequency for which the 
TL approximation looses its validity.
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In Fig. 15, we present frequency and angle dependence of the magnitude of 
the refl ection and transmission coeffi cients, corresponding different bend angles 
a = 30°, 60°, 90°, 120°, 150°.

As one would expect, the refl ection and transmission coeffi cients are close to 
their TL values (R ≈ 0, D ≈ 1) for the low frequencies kh <<1, and for small bend 
angles a << 1. For higher frequencies and larger bend angles, one can observe 
oscillations in the frequency dependencies of these coeffi cients, which are con-
nected to the excitation of current eigen modes (leaky modes). These exponen-
tially decaying eigen modes u appear together with spreading out TEM modes and 
radiation modes near any non-uniformity of the wire, where the pure TEM wave is 
scattered. The eigen modes have the form exp(–jkv |l|), where Im(kv) < 0. The 
detailed analytical investigation of these different types of modes can be carried 
out analytically for the case of infi nitely long, straight wires near the ground 
excited by a lumped source [20, 21].

Figure 14:  Refl ection (a) and transmission (b) coeffi cients (magnitude) as function 
of frequency.

Figure 15:  Refl ection (a) and transmission (b) coeffi cients for the straight line 
bend (h = 0.5 m, a = 1 mm) as a function of frequency for the different 
bend angles.
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3.5 Radiated power

The knowledge of refl ection and transmission coeffi cients allows also the evalua-
tion of the radiated power associated with line bend. The radiated power Prad can 
be expressed as

 − −rad inc tr ref=P P P P  (119)

in which Pinc, Ptr and Pref are, respectively, the incident, the transmitted and the 
refl ected power at the discontinuity and are given by [15, 22]
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where I	  is the amplitude of the initial current, C 0 0= 2 ln(2 )Z h am e π  is the line 
characteristic impedance.

Inserting eqn (120) into eqn (119) yields

 
− − 22

rad inc = 1P P R D
 

(121)

In Fig. 16, we have represented the radiated power computed analytically using eqns 
(121), (115), (117) and (118) as a function of frequency, for the same confi guration 
as in Fig. 14. On the same fi gure, we have plotted numerical values obtained using 
the method of moments in [14]. It can be seen that the proposed analytical approach 
yields results which are in reasonable agreement with ‘exact’ numerical values. How-
ever, due to the square dependence in eqn (121), the agreement is less good for the 
radiated power than for the refl ection and transmission coeffi cients. To improve the 
agreement, higher-order iterations need to be considered in the perturbation theory.

For a quantitative characterization of radiation losses in the bend, we introduce 
the ‘radiation resistance of the bend’ Rrad as

 
2

rad rad= | | / 2P R I	  (122)

then from eqns (120)–(122), we have

 
2 2

rad C= (1 | | | | )R Z R D− −  
(123)

The radiation resistance for a straight line bend for different angles of the bend 
is presented in Fig. 17 in comparison with the characteristic impedance of the line. 
We can observe that no signifi cant radiation occurs at low frequencies and small 
bend angles. For higher frequencies, however, radiation of the bend becomes 
signifi cant compared to the full power of the initial current.
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4 Conclusion

The iteration approach described in this chapter allowed the taking into account of 
electrodynamics corrections to the results of TL approximation for high-frequency 
electromagnetic fi elds coupling with transmission lines of different geometric 

Figure 16: Radiated power as a function of frequency.
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Figure 17:  Radiation resistance for a straight line bend (h = 0.5 m, a = 1 mm) as a 
function of frequency for different bend angles.
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form. The method is based on the electric fi eld integral equation for the pair 
current–potential which is written in a TL-like form, but with addition integral 
terms accounting for electrodynamics corrections. This form is convenient for 
iterative solution, where the zeroth iteration term is determined by using the TL 
theory. The perturbation expansion is based on the small parameter 1/2ln(2h/a). In 
the case of a straight wire, the corrections can be obtained in an explicit form. As 
the parameter of decomposition is frequency independent, it is possible to make a 
simple transformation of the obtained results in time domain.

One of the limitations of the method in the present formulation is that it does not 
take into account the vertical elements and loads of the line at its two ends. This 
can be done, if we use a more general electric fi eld integral equation for the loaded 
wire of arbitrary geometric form [23] and generalize the iteration approach [24].

Another disadvantage of the method is the divergence of the perturbation series 
for high quality-factor systems near the resonant frequencies. This problem can be 
coped with if we use general equations for the refl ection coeffi cient (instead of the 
TL approximation), which take into account radiation losses. The corresponding 
theory will be described in Chapter 5. In the same time, the method yields good 
results for semi-infi nite lines (when re-refl ections are absent), as well as in non-
resonant frequency regions for fi nite systems. Often, only one iteration is enough 
to obtain an excellent agreement with the exact solutions.

Finally, it is also worth mentioning that the choice of the solution of the classical 
TL approximation with constant parameters as zeroth iteration for the perturbation 
solution of the electric fi eld integral equation in this chapter is quite arbitrary. An 
important question is: could one minimize the correction term in the TL-like inte-
gral equations by an appropriate choice of the parameters of the zeroth iteration? 
An attempt to answer this question was made in [25], where the integral equation 
was reduced to the non-homogeneous TL equations with real l-dependent anti-
diagonal parameters (real per-unit-length inductance and capacitance) and only 
zero-order iteration was considered. On the other hand, in [26], it was proved that 
the electric fi eld integral equation for a wiring system excited by two independent 
sources (lumped voltages, lumped impedance, etc.), could be reduced to a non-
homogeneous TL equations with anti-diagonal as well as diagonal parameters. 
These parameters depend upon the coordinate along the line, are complex valued and 
their imaginary part is connected with radiation of the system (see also [23, 27, 28]).
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Abstract

In this chapter, we present and validate an effi cient hybrid method to compute 
high-frequency electromagnetic fi eld coupling to long loaded lines, when the 
transmission line approximation is not applicable. The line can contain additional 
discontinuities (either a lumped impedance or a lumped source) in the central 
region. In the proposed method, the induced current along the line can be expressed 
using closed form analytical equations. These expressions involve current waves 
scattering coeffi cients at the line non-uniformities, which can be determined using 
either approximate analytical solutions, numerical methods (for the scattering in 
the line near-end regions), or exact analytical solutions (for the scattering at the 
lumped impedance in the central region). The proposed approach is compared 
with numerical simulations and excellent agreement is found.

1 Introduction

The present study considers the important electromagnetic compatibility (EMC) 
problem of high-frequency electromagnetic fi eld coupling to long transmission lines 
(TLs). We assume that the frequency spectrum of the exciting fi eld and the transverse 
dimensions of the line are such that the TL approximation is not applicable. To solve 
such a problem, one generally resorts to the use of numerical methods (e.g. method 
of moments) based on the antenna theory. However, a pure numerical method allows 
to have a general physical picture of the phenomena, only after large series of calcula-
tions. Moreover, a systematic use of such methods usually needs prohibitive computer 
time and storage requirements, especially when analyzing long transmission lines.
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Exact analytical expressions of induced current have been developed for 
the case of infi nite overhead lines [1, 2]. Using those expressions, it has been 
shown that corrections to TL approximation can be considerable under certain 
circumstances.

In [3, 4] (see also Chapter 4), a system of equations is derived under the thin-
wire approximation describing the electromagnetic fi eld coupling to a horizontal 
wire of fi nite arbitrary length above the ground plane. The derived equations are 
in the form of telegrapher’s equations in which the electrodynamics corrections to 
the TL approximation appear as additional voltage and current source terms. Based 
on perturbation theory, an effi cient iterative procedure has been proposed to solve 
the derived coupling equations, where the zeroth iteration term is determined by 
using the TL approximation (see Chapter 4). However, this method (as formulated 
in [3, 4]) does not take into account the vertical elements and loads of the wire. 
Another disadvantage of the method is the divergence of the perturbation series for 
high-quality-factor systems (e.g. a horizontal open-circuited wire) near the reso-
nant frequencies.

In this chapter, we consider the case of a long line, excited by a plane electro-
magnetic wave. The line can be terminated at each end by arbitrary impedances 
(with vertical elements), a confi guration that requires taking into account the inter-
actions between wire sections with different directions. The line can contain an 
additional discontinuity (in the form of a lumped impedance or a lumped source) 
in the central region.

The proposed hybrid method to compute high-frequency electromagnetic fi eld 
coupling with a long line will be based on the specifi c features of wave propaga-
tion along long wires, as described next. An exciting plane wave generates fast 
current waves (i.e. with phase velocities larger than the speed of light) along an 
infi nite straight wire parallel to a perfectly conducting ground. This current wave 
radiates uniformly along the line [5–10]. When the homogeneity of the line is 
disturbed by a discontinuity (lumped impedance or lumped source, vertical ele-
ments of the line, bend, etc.), the current distribution near the discontinuity 
becomes more complex, involving different propagation modes, namely trans-
verse electromagnetic (TEM) modes, leaky modes (which are attenuated expo-
nentially with the distance), and radiation modes (which are attenuated as 1/r n, r 
being the distance). The exact analytical solution of this problem is known only 
for the case of a lumped source (lumped impedance) in an infi nite wire (see, e.g. 
[11–13]), or for the case of a semi-infi nite open-circuited wire [14]. At distances 
large enough from the discontinuity, in the so-called ‘asymptotic region’, only 
TEM modes ‘survive’, which propagate along the line without producing any 
radiation [8, 15, 16]. The amplitude associated with the TEM modes can be 
expressed in terms of scattering coeffi cients. These TEM modes, in turn, will 
scatter when reaching line discontinuities, near which, again different type of 
modes will be present; however, enough distant from the discontinuities in the 
line asymptotic region, the only ‘surviving’ mode is TEM, and the scattering pro-
cess can be described by the refl ection and transmission coeffi cients. To obtain 
the global solution, we have to consider the scattering associated with each line 
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discontinuity and join the solutions in the asymptotic region(s). As a result, we 
will obtain a closed form analytical expressions for the induced current along the 
line [5, 6, 17, 18]. These expressions involve scattering coeffi cients for different 
types of current waves on the line discontinuities, which can be determined using 
either approximate analytical solutions, numerical methods (for the scattering in 
the line near–end regions), or exact analytical solutions (for the scattering near a 
lumped impedance in the central region [18]). The proposed approach will be 
compared with numerical simulations.

2  High-frequency electromagnetic fi eld coupling to a long 
loaded line

2.1 Asymptotic approach

Consider a long current fi lament of fi nite length above a perfectly conducting 
ground, in presence of an external plane wave (see Fig. 1). The line is loaded at its 
terminals by impedances Z1 and Z2.

2.1.1 Solution for the induced current in the asymptotic region
The exact spatial dependence of the induced current can be determined by the 
solution of the one-dimensional (thin wire approximation) Pocklington’s elec-
tric fi eld integral equation [19]. The examination of this equation for long lines 

Figure 1:  Geometry of the long terminated line excited by an external plane wave.
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(L >> 2h) has shown that the current distribution along the line may be divided 
into three regions as illustrated in Fig. 1 [5]. Regions I and III are located near 
the terminal loads. The main region II is constituted by portions of the wire suf-
fi ciently far from the terminations, i.e. lbound << z << L-lbound. In this central region, 
called hereafter the asymptotic region, the infl uence of electromagnetic fi elds aris-
ing from the load currents may be neglected in comparison with the fi elds gener-
ated by the currents along the wire [5]. The value lbound depends rigorously upon 
the modes generated near the line discontinuities, i.e. lumped loads and vertical 
elements. However, for most cases of practical interest when kh <≅ 1, a value lbound 
equal to about 2h can be adopted.

Therefore, we postulate that the general solution for the current along the 
asymptotic region can expressed as a sum of three distinct terms

 0 1 1 2( ) = exp( ) + exp( ) + exp( )I z I jk z I jkz I jkz− −  (1)

where k = w/c, and k1 = k cos q, where q is the elevation angle of the incident fi eld 
(the azimuth angle j = 0).

The fi rst term is a forced response wave, which corresponds to the induced cur-
rent on an infi nitely long wire. The second and the third terms are positive and 
negative travelling waves and the coeffi cients I1 and I2 depend upon the respective 
geometric wire confi guration and loads at the two line terminals.

The coeffi cient I0 of the forced response wave is determined from the solution 
of the Pocklilngton’s equation for the case of an infi nitely long wire [19]
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in which I(z) is the induced current, and g(z) is the scalar Green’s function given by

 

2 2 2 2+ +4

2 2 2 2

e e
( ) =

+ + 4

jk z a jk z h

g z
z a z h

− −
−

 

(3)

The term  E z  
e (h,z) is the tangential exciting E-fi eld at the line height, which, for the 

case of a vertically polarized plane wave is given by
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The analytical solution for the coeffi cient of the forced wave for the case of a verti-
cally polarized exciting fi eld is given by [20] (see also Section 4.2.3)
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In order to determine the coeffi cients I1 and I2 of the positive and negative travel-
ling waves for an arbitrary frequency of the exciting fi eld, it is necessary to know 
the exact solutions for the induced current in regions I and III, which may be 
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obtained by solving Pocklington’s equations in these regions using a numerical 
method (e.g. method of moments). It is worth nothing that Pocklington’s equation 
uses as source term the tangential component of the exciting electric fi eld along 
the wire and along the conductors of the load impedances.

To obtain the coeffi cients from the numerical solutions near the line ends, it is 
necessary to consider an intermediary step, which consists of defi ning two semi-
infi nite lines as shown in Fig. 2. (The semi-infi nite line confi gurations will also 

Figure 2:  Geometry for the original line (a), the right semi-infi nite line (b), and the 
left semi-infi nite line (c).
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allow us to obtain analytical expressions for the induced current near and at the 
two extremities of the long line, as we shall see in Section 2.1.2.) The right semi-
infi nite line extends from the line left-end to +∞ (Fig. 2b), and the left semi-infi nite 
line extends from −∞ to the line right-end (Fig. 2c). The general solution to this 
problem can be expressed as a linear combination of the solutions for non-homo-
geneous (with external fi eld excitation) and homogeneous (no external excitation) 
problems.

The non-homogeneous solution for the right semi-infi nite line (0 ≤ z < ∞) and 
for left semi-infi nite line (–∞ ≤ z ≤ 0) can be expressed respectively as

 
e e

0( ) = ( )I z I z+ +Ψ  (6)

 
e e
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and
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In eqns (8) and (9), C+ and C– are scattering coeffi cients, which depend on the 
frequency and the angle of incidence of the exciting electromagnetic fi eld C+ = 
C+(k,q), C– = C–(k,q).

The homogeneous solution (no external excitation) is given by

 
0 0( ) = ( )I z z+ +Ψ  (10)

 
0 0( ) = ( )I z z− −Ψ  (11)

in which
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and
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In eqns (12) and (13), R+ and R– are the refl ection coeffi cients, which depend on 
the frequency (R+ = R+(k), R– = R–(k)). It is important to note that both refl ection 
coeffi cients and scattering coeffi cients are independent of the line length.

Coeffi cients I1 and I2 can be expressed as a function of the coeffi cients C+, C–, 
R+, and R– by considering that the induced current in the asymptotic region of the 
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initial line is identical to the current in the asymptotic region for the semi-infi nite 
lines (see Fig. 2). The general solution for the current in the right semi-infi nite line 
is given by the sum of homogeneous and non-homogeneous solution

 
e 0

0 1( ) = ( ) + ( )I z I z I z+ + +Ψ Ψ	  (14)

in which I0 and I	1 are constant coeffi cients.
In the asymptotic region of the line, using eqns (8) and (12), the above solution 

can be written as
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(15)

Similarly, the general solution for the current in the left semi-infi nite line can be 
written as the sum of non-homogeneous and homogeneous solutions, but consid-
ering appropriate argument shifts caused by the new coordinate origin which is 
shifted by a length L (see Fig. 2c)
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Also in the asymptotic region, we have
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As it can be seen by eqns (15) and (17), the solution in the asymptotic region 
is given in the form of the proposed three-term approximation (1). By imposing 
that the coeffi cients for the terms exp(jkz) and exp(–jkz) are identical in eqns (15) 
and (17), we obtain a linear system for the unknown coeffi cients I	1 and I	2, which 
yields the following solutions:
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(19)

And, therefore, the coeffi cients I1 and I2 in eqn (1) are given by
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In this way, the induced current in the asymptotic region II is expressed analytically 
by eqn (1), in which the coeffi cients, I0, I1, and I2 are given by eqns (5), (20), and (21). 
The coeffi cients I1 and I2 are expressed in terms of the asymptotic coeffi cients C+, C–, 
R+, and R–, which are independent of the line length (for a line length larger than a few 
times its height) and are characterized only by the current scattering near the loads.

For simple line terminal confi gurations such as an open-circuit without vertical 
elements, these coeffi cients may be obtained analytically using the iteration method 
presented in Chapter 4. For the general case of arbitrary terminal loads, these coeffi -
cients have to be determined numerically (using the method of moments, for instance). 
Since the asymptotic coeffi cients are independent of the line length, they can be eval-
uated using the numerical solutions for signifi cantly shorter lines. In this way, the 
proposed method makes it possible to compute the response of TL to exciting electro-
magnetic fi eld with a reasonable computation time, regardless of the line length.

In order to determine the scattering coeffi cients, it is indispensable to consider 
two lines because we have to determine four unknowns (C+, C–, R+, and R–), and for 
each line we have a set of two eqns (20) and (21). Starting from eqns (20) and (21), 
written for two lines with similar confi gurations (by which we mean the same wire 
radius, height above ground, terminal impedances, and exciting electromagnetic 
fi eld), but with signifi cantly shorter lengths L1 and L2, the following expressions for 
the scattering coeffi cients C+, C–, R+, and R– and  can be derived (see Appendix 1)
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2.1.2  Expression for the induced current at the line terminals 
(regions I and III)

Starting from numerical solutions for the two short line confi gurations I(z,L1) and 
I(z,L2), it is also possible to derive analytical expressions for the current at the 
terminals of the original line. The solution in the left-end region (region I in Fig. 1) 
for the two short lines can be expressed as (from eqn (14))
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e 0

2 0 1 2( , ) = ( ) + ( ) ( )I z L I z I L z+ + +Ψ Ψ	
 (27)

Note that in the above two equations, the length dependence is contained only in 
the coeffi cients I	1(L1) and I	1(L2), which can be calculated by eqn (18). From these 
two equations, it is possible to infer the functions  Ψ +  e (z) and  Ψ +  0 (z). After some 
straightforward mathematical manipulations, we get
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Inserting the relations (28) and (29) into eqn (14) and considering that I1 = I	1, we 
get the solution for the induced current in the left-end region
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Similarly, in the right-end region (region III in Fig. 1), the solution for the two 
short confi gurations can be expressed as (from eqn (16))
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Again in the above two equations, the length-dependence is contained only in 
coeffi cients I	2(L1) and I	2(L2), which can be calculated by eqn (19). After some 
mathematical manipulations, it is possible to inter from these two equations the 
functions  Ψ –  

e (z) and  Ψ –  
0 (z)
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Inserting the expressions (33) and (34) into eqn (16) and taking into account that 
I2 = I	2 exp(jkL), we get the solution for the induced current in the right-end region
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2.1.3  Summary of the proposed procedure to determine the induced current 
along the line and at the line terminals

The procedure for the determination of the coeffi cients of the analytical expres-
sions for the induced current along a long line (Fig. 2a) can be summarized as 
follows:

Apply a numerical method (e.g. method of moments) to compute the response 1. 
of two equivalent lines having the same confi guration as the initial line, but 
with shorter lengths L1 << L and L2 << L. Typically, it is enough to consider L1  
equal to about 5h and in order to avoid numerical instability, it is desirable to 
take L2 frequency dependent, for example L2 = L1 + λ/2.

Starting from the numerical solutions for the induced current on the two 
above-mentioned lines, we determine the coeffi cients I1(L1), I2(L1), I1(L2), 
I2(L2) using the least-square method.
The scattering coeffi cients 2. C+, C–, R+, R– are then computed using eqns (22)–(25).
The coeffi cients 3. C+, C–, R+, R–, which are independent of the line length, are 
used to compute the coeffi cients I1(L), I2(L), for any length L using (20) and 
(21). The analytical expressions for the induced current along the asymptotic 
region of the line (1) and at the line ends (30), (35) can be applied for the any 
line length.

Note that only the fi rst step of the above procedure requires numerical computa-
tions, which is to be performed not for the whole line structure but on two signifi -
cantly shorter lines. Therefore, the computation time can be drastically reduced for 
long lines. Additionally, once the numerical solutions for the two short line con-
fi gurations are known, it is possible to compute analytically the solution for any 
similar line confi guration, but with any different line length.

2.2  Accuracy of the proposed three-term expression for the induced current 
along the asymptotic region of the line

In order to validate our assumption on the analytical form of the induced cur-
rent in the asymptotic central region II, we have developed a code for the deter-
mination of the coeffi cients I0, I1, I2 in expression (1), starting from numerical 
solutions obtained using Numerical Electromagnetics Code (NEC) [21]. The real 
and imaginary parts of coeffi cients I0, I1, I2 were determined separately using the 
least-square method. It has been shown, considering several load conditions, that 
the proposed expression (1) approximates very well the spatial dependence of the 
induced current [6]. An example of comparison between the numerical solutions 
obtained using NEC with the proposed approximate expression (1) is presented 
in Fig. 3. The line is characterized by a length L = 16 m, a conductor radius a = 
10 mm, and a height above ground h = 0.5 m, and is short-circuited at both ends 
(Z1 = 0, Z2 = 0). The exciting fi eld is a plane wave with f = 358 MHz (λ = 0.84 m), 
q = 45°, E0 = 50 kV/m. Note that, the TL approximation is not applicable to this 
case because the wavelength of the exciting fi eld is practically equal to the height of 
the conductor above ground. In this fi gure, the abscissa l represents the coordinate 
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along the whole wire length including the vertical risers, l = 0 corresponding to 
the point where the vertical conductor touches the ground and l = h to the begin-
ning of the horizontal part of the line. The total number of segments along the line 
considered in the NEC code was Nseg = 245.

It can be seen that an excellent approximation is found in the asymptotic region 
of the line.

According to our hypothesis, the coeffi cient I0 in the three-term spatial depen-
dence (1) should be equal to the expression (5), corresponding to the current 
induced by an external plane wave for the case of an infi nitely long line. Com-
parisons between the real and imaginary parts of I0 obtained from a least-square 
approximation from the NEC solution and those obtained using relation (5) have 
also shown an excellent agreement [6]. The results of comparison for the same 
case of a horizontal wire short-circuited at its both ends are presented in Fig. 4 
as a function of the frequency and angle of incidence of the exciting fi eld. Note 
that the results are practically identical within the resolution accuracy of the 
drawings.

Other successful tests of the proposed theory were presented in [6] by compar-
ing the results to analytical solutions for the case of simple line confi gurations, 
such as an open-circuit semi-infi nite line.

2.3 Application: response of a long terminated line to an external plane wave

The solution of the coupling equations for long terminated lines using the pro-
posed asymptotic theory is illustrated here by two examples.

First, let us consider an open-circuited wire of fi nite length above a perfectly 
conducting ground (see Fig. 1 in Chapter 4). In this case the exact expressions for 
the asymptotic coeffi cients can be obtained analytically using the Wiener–Hopf 
solution [14] (for the coeffi cients R+ = R–= R). They can also be determined using 

Figure 3:  Comparison of the induced current fl owing along the line using the NEC 
solution and the proposed approximate formula (1), with coeffi cients 
determined using the least-square method. Angle of incidence θ = 45°. 
(a) Real part and (b) imaginary part of the current.
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the iterative approach of Chapter 4 (see Section 2.4 in Chapter 4 for the coeffi -
cients R+ = R–= R, and Appendix 2 for coeffi cients C+ and C–).

In Fig. 5, we present a comparison between calculation results obtained by the 
developed asymptotic approach and those obtained numerically using the method 
of moment (MoM). The height of the wire is 0.5 m, its length L = 16 m, its radius 
a = 10 mm. The wire is illuminated by a vertically polarized plane wave with 
amplitude E0 = 50 kV/m, angle of incidence q = 45º (j = 0), and a frequency 
f = 100 MHz (kh ≈ 1).

Figure 5 shows a very good agreement between the proposed analytical solution 
and numerical simulation obtained using the MoM code CONCEPT [22]. On the 
same fi gure, we have also plotted the results obtained using TL theory, which does 
not provide accurate results.

For the general case of arbitrary terminal loads and geometrical confi gurations, 
the asymptotic coeffi cients R and C are determined using a procedure based on the 
exact solutions of the integral equations for two similar wire confi gurations, but 
having a signifi cantly shorter length (as described in Section 2.1). The knowledge 
of the asymptotic coeffi cients R and C permits the computation of the current coef-
fi cients I1 and I2 for any terminal line having the same terminal loads and geome-
try. In other words, the numerical solution obtained for a relatively short line 
permits the analytical determination of the solution for any longer line having the 
same confi guration. The aim of the second numerical example is to illustrate the 
use of the proposed procedure to compute the induced current by an external fi eld 
on a long loaded line.

Consider a 50 m long line with a radius a = 10 mm, and a height above ground 
h = 0.5 m. The line is short-circuited at both ends (Z1 = 0, Z2 = 0). The exciting 
fi eld is a plane wave with E0 = 50 kV/m, q = 45°.

Starting from the numerical solutions for the induced current on two similar line 
confi gurations with L1 = 16 m and L2 = L1 + l/2, we determine the coeffi cients 

Figure 4:  Comparison between the real and imaginary parts of I0 obtained by a 
least-square approximation from the NEC solution and those obtained 
using relation (5), as a function of (a) frequency and (b) the angle of 
incidence.
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I1(L1), I2(L1), I1(L2), I2(L2) using the least square method. The scattering coeffi -
cients C+(jw), C–(jw), R+(jw), R–(jw), are then computed using eqns (22)–(25) as 
a function frequency. The results are shown in Fig. 6.

It can be seen that for low frequencies (kh << 1), the refl ection coeffi cients R+ 
and R– tend to 1, which is the TL current refl ection coeffi cient associated with a 
short-circuit termination. Additionally the scattering coeffi cients C+ and C– tend to 
zero at low frequencies.

Let us now defi ne the current distribution, for example, for the frequency f ≅ 358 
MHz (l = 0.84 m, kh = 3.75). Note that at the considered frequency, the TL 
approximation is not valid since the wavelength has the same order of magnitude 
as the line height.

The scattering coeffi cients C+, C–, R+, R– for this frequency are as follows:

 = = 0.292 0.327R R j+ − −  (36a)

 = 1.250 0.291C j+ −  (36b)

 = 1.004 + 0.402C j− −  (36c)

Using eqns (20) and (21) the coeffi cients I1 and I2 for a 50 m long line can be 
determined as

 1( 50m) 65.91 16.1I L j= = − +  (37a)

 2 ( 50m) 26.25 24.28I L j= = +  (37b)

On the other hand, the coeffi cient I0 calculated using eqn (5) is given by

 0 = 48.43 4.72I j− −  (38)

Figure 5: Current induced along an open-circuited line.
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The current along the 50 m long line is simply given by eqn (1) with numeri-
cal values for the coeffi cients given by eqns (37) and (38). The results for the 
induced current in the near end and in the central regions of the line are pre-
sented in Fig. 7.

It can be seen that the agreement between the proposed approach and the exact 
numerical solutions obtained using NEC is very satisfactory. Note that in this fi g-
ure, as in Figs 3 and 4, the abscissa l corresponds to the coordinate along the whole 
wire systems, including the vertical risers.

3 Asymptotic approach for a non-uniform transmission line

The asymptotic approach presented in Section 2.4 can be generalized to calculate 
the current induced by an incident plane wave along a long line, which has a local 
discontinuity represented by a series lumped impedance ZL at some intermediate 
point (see Fig. 8). This problem can describe, for example, a cable with a damaged 
shield or a shield discontinuity [23].

Figure 6:  Variation of the coeffi cients R+, R–, C+, C–, for the horizontal wire short-
circuited by vertical risers, as function of frequency.
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Let us fi rst consider an auxiliary problem represented by Fig. 9, where the line is 
infi nitely long. The Pocklington’s integral equation, assuming the lumped imped-
ance is placed at the coordinate origin z = 0, is given by

 

2
2 e

2
0

1 d
+ ( ) ( )d = ( , ) + (0) ( )

4 d
z Lk g z z I z z E h z Z I z

j z
d

e w

∞

−∞

 
− −′ ′ ′ π   ∫

 

(39)

Figure 7:  Current spatial distribution along a short-circuited horizontal wire (L = 
50 m). Comparison between NEC solutions (solid line) and the proposed 
asymptotic approach (dashed line): (a and b) current in the left-end re-
gion; (c and d) current in the central region; (e and f) current in the right-
end region. Left columns: real part; right columns: imaginary part.
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where g(z) is the scalar Green’s function given by eqn (3). The lumped impedance, 
which is usually considered through a boundary condition, is taken into account 
in eqn (39) as an additional term in the total exiting tangential fi eld  E z  

t , accounting 
for the discontinuity at z = 0 [24]

 
t e
z z L= (0) ( )E E Z I zd−  (40)

where I(0) is the current in the impedance.
Considering that the integration in eqn (39) is carried out over an infi nite inter-

val and that the kernel of the integral-differential equation (39) depends on the 
difference of arguments z – z', it is possible to fi nd a solution using the spatial Fou-
rier transform.

The general solution for an incident plane wave can be written in the form 
 I m  e

   (z) = I0  y m  e
   (z). The subscript m indicates that the scatterer is placed in the main 

Figure 8:  Geometry of the long terminated line with an addition lumped impedance.

Figure 9: Infi nitely long line with additional lumped impedance.
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central region of the line.  y m  e
  (z) is the solution of the non-homogeneous scattering 

problem in the main central region of the line. Let us also defi ne:

 • y m,+  0
  (z) as the solution in the central region of the homogeneous (no exciting 

fi eld) scattering problem for a current (TEM) wave exp(jkz) incident to the load 
from ∞; and
 • y m,–  

0
  (z) as the solution in the central region of the homogeneous scattering prob-

lem for a current (TEM) wave exp(jkz) incident to the load from –∞.

Using the spatial Fourier transform and after mathematical manipulations, it can 
be shown that

 
e
m 1 2( ) = exp( ) + ( )z jk z F zy −  (41)

 
0
m, 2( ) = exp( ) + ( )z jkz F zy +  (42)

 
0
m, 2( ) = exp( ) + ( )z jkz F zy − −

 (43)

in which, the function F2 (z) is

 

| |
L 1

2
C L 1

[e + ( /2 ,2 , /2 )]
( ) =

2 + [1+ ( /2 ,2 ,0)]

jk zZ F a h kh z h
F z

Z Z F a h kh

−
−

 

(44)

and Zc =  √
_____

 m0/e0  (1/2π)ln(2h/a) is the characteristic impedance of the line, and the 
function F1 is
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and
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( ) ( )

( ) ( )
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,
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a a
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
− = =


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 (46)

It is important to note that the delta-function in eqns (39) and (40) is a mathemati-
cal idealization. In reality, the resistive region along the wire has a fi nite length 
∆(∆ ≥ a). As far as we are not interested here in the detailed structure of this 
region, it is possible to limit the integration at the corresponding wave number 
kmax ≈ π/2∆. In this way, the integration convergence is ensured.
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The z-dependence of the second term in eqns (41)–(43) is similar to that of the 
current induced by a point voltage source in an infi nite wire above a perfectly 
conducting ground. The corresponding solution can also be easily obtained by the 
spatial Fourier transform. This problem is a special case of the well-known prob-
lem of an infi nite wire above a ground of fi nite conductivity. In [11], a number of 
papers on this topic were reviewed. Using methods of complex variable functions, 
it was shown that F2(z) can be represented as the sum of three terms: a main TEM 
mode, the sum of eigen modes (or leaky modes), and the so-called radiation mode 
(the anti-symmetrical current modes in the two wire system are presented and 
investigated in [12, 13]). An investigation of the z-dependence for the function 
F2(z) shows that for distances from the load larger than about 2h(for kh <~ 1), the 
transmission line TEM mode exp(–jk|z|) predominates. Other modes decay with 
the distance from the scattering load as an inverse power of z (radiation mode) or 
exponentially (eigen modes), i.e. F1(a/2h, 2kh, z/2h)

| |
0

z →∞
→ .

As a consequence, we can write

 
e
m 1 m( ) = exp( ) + exp( | |)z jk z R jk zy − −  

(47)

 
0
m, m( ) = exp( ) + exp( | |)z jkz R jk zy + −

 
(48)

 
0
m, m( ) = exp( ) + exp( | |)z jkz R jk zy − − −

 
(49)

where Rm is the refl ection coeffi cient given by

 

L
m

C L 1

=
2 + [1+ ( /2 ,2 ,0)]

Z
R

Z Z F a h kh
−

 
(50)

In the low-frequency limit, when kh << 1, F1(a/2h, 2kh, 0) Æ 0 (see Fig. 10) 
and the refl ection coeffi cient reduces to the well-known TL approximation, that is 
Rm = –ZL/(2ZC + ZL).

Figure 11 shows the variation of the refl ection coeffi cient as a function of kh. It 
can be seen that at low frequencies (kh << 1), it reduces to the TL value.

Coming back to the fi nite system of Fig. 8, and according to the asymptotic 
approach, we will search for a solution for the induced current in the following 
form.

In regions I and II:

 
e 0

0 1( ) = ( ) + ( )I z I z I zy y+ +
	

 (51)

In regions II–IV:

 
1 1 e 0 0

0 m 1 2 m, 1 3 m, 1( ) = e ( ) + ( ) + ( )jk LI z I z L I z L I z Ly y y−
− +− − −	 	

 
(52)

where L1 is the distance from the line left-end to the impedance ZL.
Also, in regions IV and V:

 
1 e 0

0 4( ) = e ( ) + ( )jk LI z I z L I z Ly y−
− −− −	

 (53)
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Coeffi cients I	1, I	2, I	3, I	4 in the above equations can be determined considering 
an asymptotic view of these solutions in regions II, IV by formulas (8), (9), (12), 
(13), and (47)–(49) and taking into account that in these regions, the solution can 
be written using the three-term form (eqn (1)). In this way, approximate analytical 
solutions for the problem of Fig. 8 can be obtained (see Appendix 3).

Figure 10:  Frequency dependence of the function F1 (a/2h, 2kh, 0) for h = 0.5 m, 
a = 0.01 m, ∆ = 0.04 m.

Figure 11:  Frequency dependence of the refl ection coeffi cient Rm (kh), eqn (50), 
for a/2h = 0.01, ∆ = 4a, ZL = ZC.



178 Electromagnetic Field Interaction with Transmission Lines

To illustrate the proposed asymptotic method, let us consider a simple model of 
an open-end straight wire above a perfectly conducting ground. The height of the 
wire is h = 0.5, its length L = 16 m, its radius a = 10 mm. The wire is illuminated 
by a vertically polarized plane wave with an amplitude E0 = 50 kV/m, angle of 
incidence q = 45° (j = 0), and a frequency f = 358 MHz. The wire contains an 
impedance at its centre equal to the characteristic impedance of the line, ZL = ZC. 
The length of the impedance region is ∆ = 40 mm. In Fig. 12, we show a compari-
son between the proposed asymptotic method (eqns (51)–(53) with asymptotic 
formulas (8), (9), (12), (13), and (47)–(49)) and numerical results obtained using 
the MoM code CONCEPT [22], for the real and imaginary parts of the induced 
current.

The refl ection coeffi cients for the current wave at the ends of the line R+ = 
R– = R, C+, and C_ are obtained using an iterative approach (see Chapter 4 and 
Appendix 2).

It can be seen that the results obtained using the proposed approach are in excel-
lent agreement with ‘exact’ numerical results.

4 Conclusion

We presented in this chapter an effi cient hybrid method to compute electromag-
netic fi eld coupling to a long terminated line. The line can also have a discontinuity 
in the form of a lumped impedance in its central region. The method is applicable 
for high-frequency excitation for which the TL approximation is not valid.

In the proposed method, the induced current along the line can be expressed 
using closed form analytical expressions. These expressions involve scattering 
coeffi cients at the line non-uniformities, which can be determined using either 
approximate analytical solutions, numerical methods (for the scattering in the line 
near–end regions), or exact analytical solutions (for the scattering at the lumped 

Figure 12:  Real and imaginary parts of the induced current along the line. Com-
parison between the proposed approach and numerical results obtained 
using MoM.
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impedance in the central region). The proposed approach has been compared with 
numerical simulations and excellent agreement is found.

Appendix 1: Determination of coeffi cients R+, R–, C+, C– as a 
function of coeffi cients I1 and I2

We start from eqns (20) and (21) re-written below

 

1
1 0

exp( ) + exp( 2 )
( ) =

1 exp( 2 )

C jkL jk L C R jkL
I L I

R R jkL
− + −

+ −

− − −
− −  

(A1.1)

 

1
2 0

+ exp( )
( ) =

1 exp( 2 )

C C R jkL jk L
I L I

R R jkL
+ − +

+ −

− −
− −  

(A1.2)

We will fi rst ‘decouple’ the above equations to obtain the separate equations for  
R+, C+, and for R–, C–. To do that, lets us consider the quantities I2(L)–R+I1(L) 
and I1(L)–R–I2(L)exp(–2jkL). After straightforward mathematics, it can easily be 
shown that

 2 1 0( ) ( ) =I L R I L I C+ +−  (A1.3)

 1 2 0 1( ) ( )exp( 2 ) = exp[ ( + ) ]I L R I L jkL I C j k k L− −− − −  
(A1.4)

Now, let us write eqn (A1.3) for two different line lengths

 2 1 1 1 0( ) ( ) =I L R I L I C+ +−  (A1.5)

 2 2 1 2 0( ) ( ) =I L R I L I C+ +−  (A1.6)

It is easy now to express R+ and C+ in terms of I1 and I2

 

2 2 2 1

1 2 1 1

( ) ( )
=

( ) ( )

I L I L
R

I L I L+
−
−  

(A1.7)

 

2 1 1 2 2 2 1 1

0 1 2 1 1

( ) ( ) ( ) ( )1
=

( ) ( )

I L I L I L I L
C

I I L I L+
−
−  

(A1.8)

Writing eqn (A1.4) for two different line lengths yields

 1 1 2 1 1 0 1 1( ) ( )exp( 2 ) = exp[ ( ) ]I L R I L jkL I C j k k L− −− − − +  (A1.9)

 1 2 2 2 2 0 1 2( ) ( )exp( 2 ) = exp[ ( ) ]I L R I L jkL I C j k k L− −− − − +
 (A1.10)

And consequently

 

1 2 1 2 1 1 1 1

2 2 1 2 2 1 1 1

( )exp[ ( ) ] ( )exp[ ( ) ]
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( )exp[ ( ) ] ( )exp[ ( ) ]

I L j k k L I L j k k L
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I L j k k L I L j k k L−
+ − +
− − −

 

(A1.11)
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1 1 2 2 1 1 2 2 1 2

0 2 2 1 1 2 1 1 2

( ) ( )exp(2 ) ( ) ( )exp(2 )1
=

( )exp[ ( ) ] ( )exp[ ( ) ]

I L I L jkL I L I L jkL
C

I I L j k k L I L j k k L−
−

− − −
 

(A1.12)

Appendix 2: Derivation of analytical expressions for the 
coeffi cients C+ and C– for a semi-infi nite open-circuited line, 
using the iterative method presented in Chapter 4

In this appendix, we use the iterative procedure presented in Chapter 4 to derive an 
approximate analytical expression of the zeroth and the fi rst iteration terms of the 
asymptotic coeffi cients C+ and C–, for the case of semi-infi nite open-circuited line 
(for a right semi-infi nite line (Fig. 2b), the geometry is identical to the one shown 
in Fig. 1 of Chapter 4, with L Æ ∞). The system is excited by a vertically polarized 
external electromagnetic wave with an elevation angle q. The azimuth angle of 
incidence is assumed to be zero, j = 0. For the right semi-infi nite line the solution 
in the asymptotic region z >> 2h can be expressed as (see Section 2.1.1)

 
0 1

2
( ) (exp( ) exp( ))e

z h
I z I jk z C jkz+ +>>

≈ − + −
 

(A2.1)

where k = w/c, k1 = kcosq and I0 is the current induced on an infi nite line, given by 
the expression (A2.2), which can easily be derived (see eqn (53) in Chapter 4)

 

e

0 (2) (2)2
0 0 0

4 ( )
( ) =

sin ( ( sin ) (2 sin ))
zcE j

I j
H ka H kh

w
w

h w q q q−  

(A2.2)

where  E z  
e (jw) is the total exciting (incident + ground-refl ected) tangential electric fi eld,  

H 0  
(2) (x) is the zero order Hankel function of the second kind [25], h0 =  √

____
 m0e0  .

The zeroth iteration term of the perturbation theory, which is determined by the 
TL approximation and which satisfi es the open-circuit boundary condition for z = 0, 
is given by

 
e

,0 0,0 1( ) = (exp( ) exp( ))I z I jk z jkz+ − − −
 

(A2.3)

in which I0,0 is the induced current on an infi nite line calculated using TL approxi-
mation [20] (eqn (58) in Chapter 4)

 

e

0,0 2
0

( , ) 1
=

/ 2 ln(2 / ) sin
zE h

I
h a j

w
m w qπ  

(A2.4)

We will derive now an expression for the fi rst iteration term I1(z) using the general 
equation of the perturbation theory for the nth iteration term (eqn (40) from Chap-
ter 4) which reduces, for the right semi-infi nite line (0 ≤ z < ∞, k Æ k – jd, d Æ 0), 
to the following expression:

 
e

, 1 1( ) = ( ) (0)exp( )n n nI z F z F jkz+ − −− −
 (A2.5)
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Using the general equation for the function Fn(z) (eqn (41) from Chapter 4) and 
making use of eqn (A2.3), we can obtain the expression for the function F0(z) for 
the fi rst iteration

 

1

2 2 2 2

1

0 0,0

( ) + ( ) +4
0,0

2 2 2 2
0

( ) = [e e ]

e e
e e d

2 ln(2 / ) ( ) + ( ) + 4

jk z jkz

jk z z a jk z z h
jk z jkz

F z I

I
z

h a z z a z z h

− −

∞ − − − −′ ′
− ′ − ′

−

 
  − − − ′  − −′ ′ 

∫

 (A2.6)

For small arguments, eqn (A2.6) yields

 0 0,0 1(0) =F I D−
 

(A2.7)

in which
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 (A2.8)

And, for large arguments z Æ ∞, we get
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(A2.10)

To obtain the large argument expressions (A2.9) and (A2.10), we have used the 
integral (eqn (51)) from Chapter 4 and the well-known formula from the theory of 
Bessel functions [25]
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(A2.11)

The knowledge of function F0 for z = 0 and z Æ ∞ makes it possible to obtain a 
closed-form solution in the asymptotic region  z >> 2h for the fi rst iteration term of 
the induced current I1(z). Using eqns (A2.5), (A2.7), and (A2.9), we get

 

e
,1 0,0 2 1 1( ) [ exp( ) + exp( )]

z
I z I D jk z D jkz+ →∞

≈ − −
 

(A2.12)

The total induced current in the asymptotic region is then given by
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Now using eqns (A2.2) and (A2.11), and assuming D2 << 1 we can write for the 
current amplitude

 
0 0,0 0,0 2

2

1
(1+ )

1
I I I D

D
≈ ≈

−  
(A2.14)

and eqn (A2.13) becomes

 
e 1

0 1 1 2( ) {exp( ) + ( 1)(1+ ) exp( )}I z I jk z D D jkz−
+ ≅ − − −  (A2.15)

Expanding in terms of [2ln(2h/a)]–1 and taking the two fi rst terms, the coeffi cient (D1 
– 1)(1 + D2)

–1 in eqn (A2.15) reduces to (D1 + D2 – 1), and eqn (A2.15) becomes

 
e

0 1 1 2( ) {exp( ) + ( + 1)exp( )}I z I jk z D D jkz+ ≅ − − −  
(A2.16)

The coeffi cient C+ may be obtained by identifi cation of eqns (A2.1) and (A2.16)

 1 21+ +C D D+ ≈ −  (A2.17)

The coeffi cient C– can be determined in a similar way considering a semi-infi nite 
line –∞ < z ≤ 0, for which the current in the asymptotic region z << –2h is given by

 

e
0 1

2
( ) (exp( ) + exp( ))

z h
I z I jk z C jk z− −<<

≈ −
 

(A2.18)

It can be easily shown, following similar mathematical development, that the 
expression for C– is the same as for C+, eqn (A2.17), but replacing k1 by –k1 in 
eqns (A2.8) and (A2.10).

A comparison of the frequency dependence of the asymptotic current coeffi -
cient C(jw) for an open-circuit semi-infi nite line under normal incidence (C+ = 
C–= C ) obtained by the proposed asymptotic method (Section 2.1.1) and the one 
derived by iteration method (eqn (A2.17)) is presented in Fig. A2.1, and again, a 
very good agreement is found.

Appendix 3: Analytical expression for the induced current 
along the asymptotic region of the line containing a lumped 
impedance

Let us consider the solution for the current in the asymptotic regions II and IV 
(see Fig. 7).

In region II, starting from the left end of the line, using the expression (51) and 
taking into account the asymptotic representation (eqns (8) and (12)), we will get
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Now, starting from the centre of the line, using expression (52), and taking into 
account the asymptotic representation (eqns (47)–(49)), we will get
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As it can be seen from eqns (A3.1) and (A3.2), the solution in the asymptotic 
region is given in the form of the proposed three-term approximation (1). By 
imposing that the coeffi cients for the terms exp(jkz) and exp(–jkz) are identical in 
eqns (A3.1) and (A3.2), we obtain two equations to determine the unknown coef-
fi cients I	1, I	2, and I	3

 
1 1 1 1( )

1 0 m 2 m 3 m= e + e + (1+ )ej k k L jkL jkLI I R I R I R− + − −	 	 	
 (A3.3)

 
1

0 1 2+ = e jkLI C I R I+ +
	 	

 (A3.4)

Figure A2.1:  Comparison of asymptotic coeffi cient  for an open-circuit semi-
infi nite line obtained by iteration theory (curves 1 and 2) and the 
one derived by the asymptotic theory (curves 3 and 4). Normal in-
cidence.
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In a similar way, using the expressions for region IV, we can obtain two other 
equations for the unknown coeffi cients I	1, I	2, I	3, and I	4 

 
1 1( )

3 0 4e = e + ejkL j k k L jkLI I C I R− − + −
− −

	 	
 (A3.5)
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0 m 2 m 3 m 4e + e (1+ ) + e = ej k k L jkL jkL jkLI R I R I R I− 	 	 	
 (A3.6)

The fi nal solutions for the system of eqns (A3.3)–(A3.6) are given by
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2 1 1
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where L2 = L– L1 in eqns (A3.7) and (A3.8).
Using the above coeffi cients, the induced current in the asymptotic regions will 

be given by
In region II:

 
1

0 1 2( ) = e + e + ejk z jkz jkzI z I I I− −
 (A3.11)

In region IV:

 
1

0 3 4( ) = e + e + ejk z jkz jkzI z I I I− −
 (A3.12)

where

 1 1=I I	  (A3.13)

 2 0 1= +I I C I R+ +
	

 (A3.14)
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 4 4= e jkLI I	  (A3.16)
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Abstract

The transmission line is a powerful model to describe in a simple and accurate 
way the propagation of electric signals along interconnects of different kind. The 
‘standard’ transmission line (STL) model is derived under a series of assumptions 
involving both the physical structures and the carried signals, which are satisfi ed for 
a large amount of cases of practical interest. Nowadays the signal speed is growing 
rapidly due to market requirements and progress in technology. As the velocity of 
the electrical signals increases, high-frequency effects due to dispersion and radia-
tion losses, which the STL model is unable to describe, are no more negligible.

In the future large scale integration electronics the interconnect cross-sections will 
become smaller and smaller down to nanometric dimensions. As interconnect sizes 
shrink copper resistivity increases due to grain and surface scattering effects and wires 
become more and more vulnerable to electro-migration due to the higher current den-
sities that must be carried. In order to overcome these limitations the use of metallic 
carbon nanotubes (CNTs) as interconnects has been proposed and discussed recently.

Here both an ‘enhanced’ transmission line model able to describe the high-
frequency effects due to dispersion and radiation losses in conventional high-speed 
interconnects and a new transmission line model for metallic CNT interconnects 
are reviewed. Some applications to interconnects of particular interest in present 
high-speed electronics and in future nanoelectronics are presented.

1 Introduction and historical background

The transmission of electric signals through metallic wires is one of the most 
important contributions to the development of modern technology. S.F.B. Morse 
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invented the electric telegraph in 1838 and the fi rst commercial telegraph line was 
erected in 1844, between New York, Baltimore and Washington. Nevertheless, at 
that time the theory of electric circuits was still at its dawn and hardly anything 
was known about the transmission of electric signals along conducting wires. The 
paper in which G. Kirchhoff formulated his well-known laws has been published 
in 1845.

The rapid development of telegraphic signal transmission by means of overland 
lines and undersea cables (the fi rst undersea cable was laid between France and 
England in 1851 and in 1853 the fi rst transatlantic cable was installed) gave rise to 
a long series of theoretical investigations on the transmission of electrical signals 
through conducting wires.

Lord Kelvin (1855) studied the effects of transients in telegraphic signal trans-
mission through long cables and formulated the fi rst distributed parameter model 
for an electric cable. He assumed that the effects of magnetic fi eld were negligible, 
and modeled the effects of electric induction by means of the per-unit-length (p.u.l.) 
capacitance of the cable and the lossy effects by means of the p.u.l. resistance, so 
deriving the well-known voltage diffusion equation (Lord Kelvin, 1855).

Shortly after Kirchhoff (1857), using Weber’s electromagnetic theory [1], ana-
lyzed the transmissions of electric signals through two wires with fi nite conductiv-
ity, including the effects of the magnetic fi eld, and obtained what we can defi ne as 
the fi rst transmission line model [2]. He deduced that the electric signals propagate 
along the conductors with the same velocity as that which light propagates in the 
vacuum, several years before Maxwell published his fundamental paper demon-
strating the electromagnetic nature of light [3]. Unfortunately, for reasons that are 
still not fully clear, Kirchhoff’s work has never been widely acknowledged and is 
even today largely unknown. There is an interesting work by Ferraris in which 
Kirchhoff’s model is reviewed and studied in depth [4].

O. Heaviside (1881–87) was the fi rst to study the ‘guided’ propagation of elec-
tric signals along couples of rectilinear and parallel conducting wires, with fi nite 
conductivity, immersed in a lossy homogeneous dielectric, using Maxwell’s elec-
tromagnetic theory. He developed the transmission line theory as it is still known 
today [5]. Hereafter, the Heaviside transmission line model is called the ‘standard’ 
transmission line (STL) model.

Kirchhoff obtained his transmission line model starting with an integral formu-
lation of the problem based on Weber’s theory of electromagnetism. This theory 
is based on interaction at distance, described by two variables that can be consid-
ered as a forerunner of the electric scalar potential and the magnetic vector poten-
tial. Heaviside, instead, obtained his transmission line model starting from a 
formulation based directly on Maxwell’s fi eld theory under the assumption that 
the confi guration of the electromagnetic fi eld is quasi-transverse electromagnetic 
(TEM).

The STL model has since been extended to interconnects, even non-uniform 
ones, with many wires, in the presence of conducting planes and non-homogeneous 
dielectrics. The reader is referred to many excellent books and reviews existing in 
the literature for a complete and comprehensive treatment of the subject [5–8].
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The STL model for conventional interconnects is based on the assumptions that:

The interconnect quasi-parallel wires are metals, whose electrical behavior is • 
governed by Ohm’s law;
The structure of the electromagnetic fi eld surrounding the wires is of quasi-• 
TEM type with respect to the wire axis;
The total current fl owing through each transverse section is equal to zero.• 

A TEM fi eld structure is one in which the electric and magnetic fi elds in the 
space surrounding the conductors are transverse to the wire axis. The TEM fi elds 
are the fundamental modes of propagation of ideal multiconnected guiding struc-
tures, i.e. guiding structures with transverse section uniform along the wire axis, 
made by perfect conductors and embedded in a homogeneous medium [6, 8]. In 
actual interconnects the electromagnetic fi eld is never exactly of the TEM type. In 
ideal shielded guiding structures, high-order non-TEM modes with discrete spec-
tra can propagate as well as the TEM fundamental modes. In unshielded guiding 
structures there are also non-TEM propagating modes with continuous spectra. 
Actual guiding structures are most frequently embedded in a transversally non-
homogeneous medium, and thus TEM modes cannot exist. However, even if the 
medium were homogeneous, due to the losses, the guiding structure could not sup-
port purely TEM modes. Furthermore, the fi eld structure is complicated by the 
infl uence of non-uniformities present along the axis of the guiding structures 
(bends, crossovers, etc.). However, when the cross-sectional dimensions of the 
guiding structure are smaller than the smallest characteristic wavelength of the 
electromagnetic fi eld propagating along it, the transverse components of the elec-
tromagnetic fi eld give the ‘most signifi cant’ contribution to the overall fi eld and to 
the resulting terminal voltages and currents [9]. In other words, we have that the 
structure of the electromagnetic fi eld is said to be of quasi-TEM type.

Nowadays, the speed of electronic signals is growing rapidly due to market 
requirements and to progress in technology, e.g. allowing switching times below 
1 ns. Because of such high-speed signals the distance between the wires of inter-
connects existing at various levels in an electronic circuit may become comparable 
with the smallest characteristic wavelength of the signal themselves. As a conse-
quence high-frequency effects such as dispersion and radiation losses are no more 
negligible and there is the need of a new model to describe the propagation of the 
signals along the interconnects.

Several efforts have been made to obtain generalized transmission line models 
from a full-wave analysis based on integral formulations to overcome the restric-
tions of the STL model [10–17]. Recently, the authors [18–20] have proposed an 
‘enhanced’ transmission line (ETL) model derived from a full-wave analysis based 
on an integral formulation of the electromagnetic fi eld equations, which has the 
same simplicity and structure as the STL model. The ETL model describes the 
propagation along interconnects in frequency ranges where the STL model fails, 
taking into account the shape effects of the transverse cross-section of the inter-
connect wires. It reduces to the STL model in the frequency ranges, where the 
distance between wires is electrically short. Specifi cally, the ETL model allows to 
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forecast phenomena that the STL model cannot foresee, such as the distortion 
introduced by the non-local nature of the electromagnetic interaction along the 
conductors, and the attenuation due to radiation losses in the transverse direction. 
Furthermore, the ETL model describes adequately both the propagation of the dif-
ferential mode and the propagation of the common mode and the mode conver-
sion. The ETL model considers thick quasi-perfect conducting wires and evaluate 
correctly the kernel that shows the logarithmic singularity that is typical of the 
surface distributions. Such a singularity plays a very important role in the radiation 
problems, e.g. it may regularize the numerical models [21, 22]. The approach on 
which the ETL model is based bears a resemblance to the Kirchhoff approach [2].

The STL model can be easily enhanced so to describe non-perfect conductors, 
provided that they satisfy Ohm’s law, as for instance copper does. Unfortunately, in 
future ultra-large-scale integrated circuits some problems will arise from the behav-
ior of the copper interconnects. As the cross-section shrinks to nanometric dimen-
sions, due to surface scattering, grain boundary scattering and electromigration, the 
copper resistivity rises to values higher than its bulk value. Because of heating, 
these high values will limit the maximum allowed current density. Nanometric cop-
per conductors also suffer from the additional problem of mechanical stability. Car-
bon nanotubes (CNTs) are allotropes of carbon that have been discovered fairly 
recently [23] and are considered as an alternative to conventional technology for 
future nanoelectronic applications such as transistors, antennas, fi lters and intercon-
nects [24, 25]. Metallic CNTs have been suggested to replace copper in nano-inter-
connects [26–28], due to their unique electrical, mechanical and thermal properties, 
such as the high-current density allowed (up to 1010 A/cm2 ) which is three order of 
magnitude higher than the one of copper, the thermal conductivity as high as that of 
diamond, and the long mean free path (ballistic transport along the tube axis). 
Recently, the authors [29–31] have proposed a transmission line model to describe 
the propagation of electrical signals along metallic single wall CNT interconnects.

In this chapter, both the ETL model and the transmission line model for metallic 
CNT interconnects are reviewed. In Section 2, the derivation of transmission line 
models from a general integral formulation of the electromagnetic problem is pre-
sented. Section 3 is devoted to the transmission line model representation of con-
ventional interconnects, like wire pairs or microstrips. In Section 4, the transmission 
line model for the propagation along metallic CNTs is presented. Finally, in Sec-
tion 5 some case-studies are carried out showing either qualitative or quantitative 
analysis of the behavior of conventional and  CNT interconnects.

2  General integral formulation and derivation of transmission 
line models

2.1 Integral formulation

Let us consider an interconnect made of N conductors of generic cross-sections, 
with parallel axis x̂ and total length l, as depicted in Fig. 1, where the y–z plane 
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is shown. A perfect conductor ground is located at x = 0 and a stratifi ed inhomoge-
neous dielectric is considered, made by several dielectric layers with relative per-
mittivity ek. Let Sk be the boundary surface of the kth conductor, and lk be its contour 
at any given cross-section x = const. (sk is the curvilinear abscissa along lk). We 
assume that a sinusoidal steady state is reached, and that the operating frequencies 
and the geometrical dimensions are such that the current density is mainly located 
on the conductor surfaces Sj. In the frequency domain, the Faraday–Neumann law 
relates the electric to the magnetic fi eld as:

  × = , iw∇ −E B  (1)

where w is the radian frequency. In order to automatically solve (1) and to impose 
the solenoidality of B, implied by eqn (1) itself, we can introduce the magnetic 
vector potential A and the electric scalar potential j such that:

 w j− − ∇ ∇= , = × .iE A B A  (2)

The potentials A and j are not uniquely defi ned, unless a suitable gauge condition 
is imposed. In the present derivation we will use the so-called Lorenz gauge

 + = 0,iwemj∇⋅ A  (3)

which is imposed in homogeneous regions, i.e. in regions where the dielectric per-
mittivity e and the magnetic permeability m are constant. Note that at the interfaces 
between homogeneous regions we have to impose the continuity of the tangential 
components of the fi elds.

The sources of the electromagnetic fi eld are the (superfi cial) current and charge 
densities Js and ss, which must satisfy the charge conservation law:

 s s s+ = 0,iws∇ J  (4)

where (∇s) is the surface divergence operator. These sources may be related to the 
potentials through the Green functions defi ned for the domain of interest:
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Figure 1: Generic cross-section of a multilayered interconnect.
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where e0 and m0 are the dielectric constant and the magnetic permeability in the 
vacuum space, S represents the union of all the N conductor surfaces Sj. Note that 
the Green function GA is in general dyadic.

In order to derive a multiport representation of the interconnect, we assume that 
it would be possible to characterize it regardless of the actual devices on which it 
is terminated. In other words, the terminal elements are taken into account only 
through the relations that they impose on the terminal currents and voltages, but 
the sources located on their surfaces are neglected in computing the potentials (5) 
and (6). This is a crucial point in the fi eld/circuit coupling problem. This condition 
is approximately satisfi ed if the characteristic dimensions of the terminal devices 
are small compared to the interconnect length. Anyway, as a consequence of this 
approximation, the potentials in eqns (5) and (6) do not wholly satisfy the Lorenz 
gauge condition. Conversely, when the assumption does not hold, there is no way 
to separate the behavior of the interconnect from that of terminal devices and the 
electromagnetic system has to be analyzed as a whole.

2.2 Transmission line equations

The fi rst fundamental assumption is that the surface current density is mainly 
directed along x^ : Js = Js(r)x^ . In other words, we neglect any transverse compo-
nent of the current density, taking into account only the longitudinal one. This 
assumption is well-founded when the interconnect length is infi nite and only the 
fundamental mode is excited. Even with an infi nite length, high-order propaga-
tion modes may exhibit non-longitudinal current density components; hence this 
assumption defi nes an upper limit in the frequency range.

The fi rst consequence of this assumption is a drastic simplifi cation of eqns (5) and 
(6). Indeed, the magnetic vector potential (eqn (5)) is directed only along x^, and so the 
magnetic fi eld is of Transverse Magnetic (TM) type. In this condition, it is uniquely 
defi ned the voltage between any couple of points lying on a plane x = constant.

A second assumption is that the current and charge densities have a spatial 
dependence of separable type:

 
s ( ) = ( ) ( ), ( ) = ( ) ( ),

kk
k k k k k kSS
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where Ik(x) and Qk(x) are the total current and p.u.l. charge associated with the 
conductor and F ′ and F ′′ are shape functions dimensionally homogeneous with 
m–1, describing the distribution of currents and charges along the contour lk. In 
other words, we are assuming that only the total current Ik(x) and p.u.l. charge 
Qk(x) vary along x, whereas the spatial distributions of current and charge densities 
are independent on x.

Imposing the charge conservation law (4) on the kth conductor and using eqn 
(7), we obtain
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which yields:

 ′ ′′( ) = ( ) = ( ),k k k k k kF s F s F s  (9)
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The shape functions for the charge and current distributions must be the same. If 
we impose the following normalization condition:

 

( ) = 1
k

k k k
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(11)

then the current and the p.u.l. charge are obtained by integrating eqn (7) along lk.
With the position (7), the problem may be solved by separating the transverse 

and longitudinal behavior of the current and charge distributions. When the char-
acteristic transverse dimensions of the conductors are electrically short and the 
interconnect is geometrically long, the transverse behavior is obtained by solving 
once for all a quasi-static 2D problem in the transverse plane. This assumption 
imposes the high-frequency validity limit for the ETL model.

Equation (10) may be written for every conductor, introducing the numerical 
vectors I(x) = {Ik(x)}k=1,...,N and Q(x) = {Qk(x)}k=1,...,N:
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(12)

This is the fi rst of the two governing equations for any transmission line model. In 
order to derive the second one, we must impose the boundary conditions. Assum-
ing an ohmic behavior, on the surface of the kth conductor the boundary condition 
may be written as

 
sˆ ˆ( ) × = ( ) × .

k k
kS S
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(13)

This assumption will be removed in Section 4, when dealing with CNTs. In eqn 
(13) the surface impedance Vk takes into account the ohmic losses inside the con-
ductor. For high-frequency operating conditions, for instance, it reduces to the 
well-known Leontovich expression
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where hk and dk are, respectively, the conductivity and the penetration depth of the 
kth conductor.

Let us now focus on the relation between the voltage and p.u.l. magnetic fl ux. 
Let ak indicates a characteristic dimension of the cross-section of the kth conductor 
and let a = maxk(ak): assuming operating conditions such that a is electrically 
small it is possible to approximate at any abscissa x the values of A(x,y,z) and 
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j(x,y,z) on the surfaces S1 and S2 with their average values along the conductor 
cross-sections contours, say A^ k(x) and ĵk(x). As already pointed out, it is possible 
to defi ne uniquely the voltage between any two pair of points lying on a plane x = 
const. We may then introduce the grounded mode voltage of the kth conductor as 
follows:

 j j− +1ˆ ˆ( ) = ( ) ( ).k k NV x x x  (15)

The p.u.l. magnetic fl ux linked to a closed loop connecting the kth conductor and 
the ground one in the plane x–z may be expressed as

 
Φ − + 1

ˆ ˆ( ) = ( ) ( ).k k Nx A x A x
 

(16)

Let us introduce the vectors V(x) = {Vk(x)}k=1...N and F(x) = {Φk(x)}k=1...N: by 
using eqns (15) and (16) in eqn (13) it is easy to obtain
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where Zs(iω) is a diagonal matrix with  Z s  
kk  (iw) = ς/πak.

Equations (12) and (17) must be now augmented with the relation between the 
p.u.l. fl ux and the current and that between the voltage and the p.u.l. charge. In the 
above assumptions these relations may be obtained from eqns (5) and (6):
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These constitutive relations are spatial convolutions, hence their meaning is 
straightforward: in the general case the value of the p.u.l. magnetic fl ux (the volt-
age) at a given abscissa x depends on the whole distribution of the current intensity 
(p.u.l. electric charge) along the line. The kernels in eqns (18) and (19) are N × N 
matrices whose entries are:
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The system of equations (12) and (17)–(19) represents a generalized transmis-
sion line model: in the following we will refer to it as the ETL model. The 3D 
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full-wave problem has been recast in a transverse quasi-static 2D problem and 
a 1D propagation problem. The fi rst problem is solved once for all and provides 
the source distributions Fk(sk) along the conductor contours. The 1D propagation 
problem provides, instead, the distributions of voltages, currents, p.u.l. charge and 
magnetic fl ux along the line axis.

Letting the frequency go to zero and the interconnect length go to infi nity, it 
is possible to prove that the kernels in eqns (18) and (19) tend to spatial Dirac 
pulses [21]:

 0 0
( ) ( ), ( ) ( ).I I Q QH x x H x x H x x H x xd d− → − − → −′ ′ ′ ′

 
(22)

Hence eqns (18) and (19) reduce to local relations:
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which along with eqns (12) and (17) provide the classical expression of the teleg-
raphers’ equations in frequency domain
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where the p.u.l. impedance and admittance matrices are given by:

 0 0

1
0 s 0( ) = ( ) + ( ), ( ) = ( ).I QZ i i H Z i Y i i Hw wm w w w we w−

 
(25)

For the ideal case of a lossless transmission line Z(iw) = iwL, Y(iw) = iwC, where 
L and C are, respectively, the p.u.l. inductance and capacitance matrices.

This means that the ETL model (eqns (12) and (17)–(19)) contains the STL 
model (eqn (24)) as a particular case, obtained when the interconnect is enough 
long to neglect the effect of the fi nite length and the frequency is enough low to 
make the transverse dimensions electrically small.

It is worth noting that, as all the transmission line models, the STL model is 
based on the separation between a transverse quasi-static 2D problem and a 1D 
propagation problem. The difference with respect to the ETL model is in the fact 
that the transverse 2D problem, solved once for all, provides the p.u.l. parameters 
(eqn (25)), whereas, as for all the transmission line models, the distributions of 
voltages and currents are the solutions of a 1D propagation problem (eqn (24)).

3 Transmission line model for conventional conductors

3.1 A cylindrical pair

Let us study the simple case of a straight pair in the vacuum space, made by two 
cylindrical perfect conductors of radius a. Let hc be the center to center distance 
in the transverse plane (see Fig. 2a) and  the total length. The example can be also 
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used to analyze the case of a cylindrical conductor above a perfect ground plane. 
In vacuum the Green functions in eqns (4) and (5) reduce to the function
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where r is the distance between the source and fi eld points and k = w √
___

 em is   the 
propagation constant.

The static distribution of the sources along the conductor contours may be 
expressed in closed form as a function of the angle  (see Fig. 2a) [19]:
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Figure 2b shows the behavior of F(q) for a = 1 mm and for different values of the 
ratio hc/a: for small values of hc/a (say <10) this distribution differs signifi cantly 
from the uniform case because of the proximity effect.

When considering widely separated conductors it results F(q) = 1/2πa and it is 
possible to give a closed-form expression to the kernel (eqns (20) and (21)), which 
may be split as the sum of a static and a dynamic term, H = Hstat + Hdyn:
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Figure 2: Cylindrical pair: (a) cross-section and (b) shape function F(q).
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Here k(m) is the complete elliptic integral of the fi rst type, and
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The dynamic term depends on the frequency and vanishes as w → 0. The static 
term is independent on frequency but shows a singularity of logarithmic type:
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As already pointed out, if we consider infi nitely long lines and assume fre-
quency operating conditions such that hC/l << 1, l being the characteristic signal 
wavelength, H(z) reduces to a spatial Dirac pulse H(z) → H0d(z), where
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In this case the cylindrical pair is described by the classical telegrapher’s equations 
for ideal two-conductor lines, namely by eqn (24) with Z (iw) = iwµ0H0 = iwL and 
Y(iw) = iwe0/H0 = iwC.

3.2 A coupled microstrip

A structure of great interest for high-speed electronic applications is the microstrip 
line: Fig. 3 shows a simple example of a three conductor microstrip, made by 
two signal conductors on a dielectric layer and a ground plane. Figure 3a shows 
the references for the voltages and currents (note that the grounded modes are 
considered).

From a qualitative point of view, the results highlighted in Section 3.1 still hold: 
the kernels (20) and (21) show a singularity of logarithmic type and the STL model 
may be obtained as a limit case of the generalized one.
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Figure 3:  A coupled microstrip: reference for terminal voltages and currents (a); 
schematic of the cross-section (b).
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The fi rst difference is in the fact that the shape functions are no longer known in 
analytical form. However, they may be easily numerically computed by solving 
the electrostatic problem in the cross-section: for instance Fig. 4 shows the com-
puted behavior of the shape function for the signal conductor of a single microstrip 
with w1 = 5 mm, t = 1.25 mm, h = 8.7 mm and er = 4. It is here evident the effect 
due to the sharp edges of the rectangular section.

A second difference is due to the infl uence of the dielectric. In this case the 
kernels (20) and (21) are different, since we have to consider two different Green 
functions in eqns (5) and (6). As already pointed out, the Green function involved 
in eqn (5) is in general dyadic. Since the layers properties are assumed to change 
only along z� (see Fig. 1), GA has the structure
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In many practical applications the thickness of conductors t is small compared 
to their width w. If we assume zero-thickness for the signal conductors, since the 
current density Js directed along x̂ we have the simple expression GA = Gxx.

For the considered structure the Green functions may be evaluated in closed 
form in the spectral domain: let G	xx(kr) and G	j(kr) be their transforms in such a 
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Figure 4: Computed shape function F(s) for the signal conductor of a microstrip.
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domain, where kr is the spectral domain variable. The spatial domain functions are 
obtained by evaluating the Sommerfeld integrals [32]:
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where  H 0  
(2)  is the Hankel function. Such integrals are hard to compute practically, 

due to the slowly decaying and oscillating nature of the kernels. The cost for com-
puting such integrals is extremely high because of the slow decay of the integrands. 
A way to overcome this problem is to extract analytically the terms which are domi-
nant in the low-frequency range, referred to as the quasi-static terms. For the single-
layer microstrip structure of Fig. 3b they may be expressed as follows [33]:
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where K = (1 – er)/(1 + er) and k0 is the vacuum space wavenumber.
Once these terms have been extracted, the remainders (dynamic terms) may be 

evaluated in an effi cient way by approximating the corresponding expressions in 
the spectral domain [34]. The quasi-static terms are associated to the fundamental 
mode, are the only terms left when f Æ 0 and dominate the local range interac-
tions. The dynamic terms are associated to parasitic waves (surface waves, leaky 
waves), vanish as f Æ 0 and dominate the long-range interactions.

Figure 5 gives an example of scalar potential Green function Gj computed at 
2.1 GHz for a single microstrip with er = 4.9, h = 0.7 mm.

The quasi-static term dominates the near-fi eld region, whereas for increasing 
distances the dynamic terms become the principal ones.

Unless very high frequencies are considered, in practical interconnects the 
quasi-static terms are dominant, hence the approximation of the remainder is usu-
ally satisfactorily pursued by a low-order model. A reliable criterion [35] states 
that the Green functions are accurately represented by the quasi-static terms when 
k0h √

_____
 er – 1   < 0.1.

4 Transmission line model for CNT interconnects

CNTs are allotropes of carbon that have been discovered fairly recently [23] and are 
considered as an alternative to conventional technology for future nanoelectronic 
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applications such as transistors, antennas, fi lters and interconnects [24, 25]. Metal-
lic CNTs have been suggested to replace copper in nano-interconnects, due to 
their unique electrical, mechanical and thermal properties [26–28]. Table 1 shows 
typical values for current density allowed, thermal conductivity and mean free 
path [28].

A single wall carbon nanotube (SWCNT) is a single sheet of a mono-atomic 
layer of graphite rolled-up (Fig. 6a). It possesses four valence electrons for each 
carbon atom: three of these form tight bonds with the neighboring atoms in the 
plane, whereas the fourth electron is free to move across the positive ion lattice. 
When the sheet is rolled up it may become either metallic or semiconducting, 
depending on the way it is rolled up.

To describe the electrodynamics of CNTs we need to model the interaction of 
the free electrons with the fi xed positive ions and the electromagnetic fi eld pro-
duced by the electrons themselves and the external sources. This requires, in prin-
ciple, a quantum mechanical approach, because the electrical behavior of the 
electrons depends strongly on the interaction with the positive ion lattice. How-
ever, under suitable assumption the problem may be modeled by using a linear-
ized fl uid model to describe the dynamics of the effective conduction electrons, 
and by coupling the fl uid equations to the Maxwell equations through the Lorentz 
force.
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Figure 5:  Typical high-frequency behavior of the scalar potential Green function: 
contributions of the quasi-static and dynamic terms.
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4.1 A fl uid model for CNTs

We model a SWCNT as an infi nitesimally thin cylinder shell with radius rc and 
length l. The graphene has valence electrons (π-electrons) whose dynamics depends 
on the electric fi eld due to interactions with ions and other electrons (atomic fi eld), 
with the other π-electrons (collective fi eld) and with external fi elds. If the atomic 
fi eld is much stronger than the collective and the external fi elds (the sum of these two 
is denoted with e(r; t)) and if e(r; t) varies slowly compared to the atomic time-space 
scale, the π-electron may be described as a quasi-classical particle: the dynamics is 
the same as for a classical particle with the same charge and an effective mass (which 
takes into account quantum effects) moving under the action of e(r; t).

In these conditions the conduction electrons (distributed on the cylinder surface 
S) may be described as an electron fl uid with surface number density n(r; t), veloc-
ity V(r,t) = u(r,t) x̂ and 2D hydro-dynamical pressure p = p(r; t), of quantum nature 
[29]. We have assumed the velocity to be directed along the CNT axis x̂. Assuming 
small perturbations around equilibrium condition (n0, p0), i.e. expressing the con-
duction electron density and the pressure as n = n0 + dn, and p = p0 + dp, the inter-
action between e(r; t) and the electron fl uid is assumed to be governed by the 
linearized Euler’s equation
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Table 1: Properties of CNTS compared to copper.

Property CNT Cu

Maximum current density [A/cm2] ~1010 ~106

Thermal conductivity [W/mK] ~6000 ~400
Mean free path [nm] ~1000 ~40

(a) (b) 

Figure 6: Schematic representation of a CNT (a); picture of a CNT bundle (b) [28].
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where meff and e denote, respectively, the effective mass and the charge of the 
electron and u is a parameter which accounts for the collisions. Equation (38) is 
augmented with a ‘state equation’ relating dp to dn
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where cs is the thermodynamic speed of sound. The continuity condition imposes 
the following relation:
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Introducing in eqns (38) and (40) the charge density s = −edn and the current den-
sity j = –en0u on the surface S, we obtain the following system:
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To complete the fl uid model, we have to fi x the values of the parameters n0/meff,  
cs and u. First of all, the equilibrium number density n0 is determined by requir-
ing that the longitudinal electric conductivity obtained from this model agreed 
with the expression obtained from a semi-classical transport theory for a suffi cient 
small CNT radius [36]:
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where h is the Planck constant and uF is the Fermi velocity. Next, cs is assumed to 
be equal to uF and fi nally for the collision frequency u we use the expression
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where lmfp is the mean free path and a is a correction factor, which can be used as 
a ‘tuning’ factor able to take into account, for instance, the slight dependence of   
lmfp from the CNT radius [37].

4.2 A transmission line model for a SWCNT above a ground plane

Let us consider a SWCNT above a perfect conducting plane, as schematically rep-
resented in Fig. 7; hc is the distance between the axis nanotube and the plane. We 
assume the same operating conditions used for the general formulation introduced 
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in Section 3, hence the governing equations in the frequency domain are still given 
by eqns (12) and (17), which read for this case:
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Note that in this case the longitudinal component of the electric fi eld E(x) 
appearing in the RHS of the second of eqn (45) is not expressed through the simple 
ohmic relation as in eqn (17), but should be derived from eqn (41) assuming all the 
above mentioned conditions on the sources:
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where and Lk and Cq are, respectively, the kinetic inductance and the quantum 
capacitance, given by
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The parameters and Lk and Cq derived here agree with those obtained in literature 
starting from different models (e.g. in [27], using a phenomenological approach 
based on Luttinger liquid theory).

Equations (45) and (46) must be augmented with the constitutive relations (18) 
and (19). Assuming a quasi-TEM approximation, in this case they reduce to the 
simple relations (23):
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where LM and Ce are the classical p.u.l. magnetic inductance and electrical capaci-
tance for a single wire above a ground plane:
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Figure 7: An SWCNT transmission line.
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By using eqns (46) and (48) in eqn (45), we obtain that the interconnect is described 
by a simple lossy RLC transmission line model:
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where the p.u.l. parameters are given by:
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As will be shown in the case-studies analyzed in Section 5, the behavior of this 
particular transmission line is strongly affected by the infl uence of the kinetic 
inductance and quantum capacitance. For instance, assuming, uF ≈ 8.8 × 105 m/s, 
lmfp ≈ 1 µm, and hc/rc = 5 we have Lk/Lm = 8 × 103 and Ce/Cq = 7 × 10–2. The 
result on the inductances is quite insensitive to variation of the geometry of the 
line: the kinetic inductance always dominates over the magnetic one. As for the 
capacitance, if different dielectrics are considered the quantum capacitance may 
be comparable to the electrostatic one. As a consequence, the propagation speed 
and the lossless characteristic impedance
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may be well different from those theoretically obtained using the same geometry 
for the transmission line and replacing the CNT with a perfect conductor, say c0 
and Z0. Typical values are cNT/c0 ≈ 10−2 and Z0CNT/Z0 ≈ 102.

As for the resistance, by using eqns (51) and (44) with the same parameters as 
above and with a = 1, we obtain R ≈ 3 kΩ/ km. The high values of this p.u.l. resis-
tance and of the characteristic impedance in eqn (52) suggest using as interconnect 
stacks or bundles of CNTs rather than single CNT [31, 37–39].

In order to analyze multiconductor structures such as bundles, it is useful to 
extend the model to interconnects made by n CNTs over a ground plane. Following 
the same steps described above, the relation between voltage v(x,t) = [u1(x,t), ..., 
un(x,t)]T and current i(x,t) = [i1(x,t), ..., in(x,t)]T is given by the multiconductor trans-
mission line equations
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where the p.u.l. parameter matrices are given by
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I being the identity matrix.
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Finally, we have to remark that given the assumptions at its basis, the transmis-
sion line model introduced here describes the propagation in the low-bias voltage 
condition (corresponding to a longitudinal fi eld less than 0.1 V/µm) and assuming 
l ≥ lmfp. In high-bias condition this model should be modifi ed with the insertion of 
a non-linear resistance [30].

5 Examples and applications

5.1 Finite length and proximity effect

A fi rst simple application (Case 1) of the ETL model is the high-frequency analy-
sis of a simple cylindrical pair as in Fig. 2, with a = 1 mm, hc = 1 cm and total 
length l = 0.1 m. The conductors are ideal and the pair is in the vacuum space. 
Although simple, this example exhibits a lot of phenomena, which can be found 
also in more complex applications.

Figure 8 shows the spatial current distributions when the line is fed at the near-
end and is left open at the far-end: I(x = 0) = 1 a.u. and I(x = l) = 0. The prediction 
of the ETL model is compared to those provided by the STL model and by a full-
wave numerical solution obtained by means of Numerical Electromagnetics Code 
(NEC), a full-wave commercial simulator based on the method of moment tech-
nique [40]. The agreement between the ETL solution and the full-wave one is very 
satisfactorily. As expected, for khc > 0.1 the full-wave solution starts to deviate 
from the STL one: Fig. 8a refers to an operating frequency of f = 1 GHZ, which 
means khc ≈ 0.21. For higher frequencies the STL solution is completely inade-
quate to describe the real full-wave solution, whereas the ETL model is still accu-
rate. Figure 8b refers to f = 5 GHZ, which means khc ≈ 1.05.
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Figure 8:  Case 1, amplitude (in arbitrary units) of the current distribution for the 
mismatched case, computed at 1 GHz (a) and 5 GHz (b).
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To investigate the phenomena which are at the basis of such a behavior, it is 
useful to exploit the possibility given in eqns (28) and (29) to split the static and 
dynamic terms in the kernels. Let us consider the same conditions as above, except 
for the far end, which is now assumed to be matched (it is loaded by the character-
istic impedance Ω0 = / = 276.2Z L C  of the STL case).

Figure 9 shows the STL solution, the ETL complete solution and the ETL solu-
tion due only to the static kernel. The main contribution to the difference is given, 
at low frequencies, by the static part Hs, while for high frequencies also the 
dynamic part Hd provides a signifi cant contribution. This means that, when enter-
ing the high-frequency range khc > 0.1, the fi rst effect experienced by the solution 
is due to the fi nite length of the structure, whereas the effect due to unwanted 
radiation in the transverse plane starts acting for higher frequencies.

Finally, Fig. 10 shows the frequency behavior of the input impedance of the line 
(normalized to Z0 = 276 Ω ), when the far-end is left open.

The ETL model is able to predict the shift of the resonance frequencies toward 
lower values. Note that the shift to lower frequencies with respect to those of STL 
model means that the interconnect is electrically shorter than it actually is. Besides, 
the ETL model well predicts the amplitudes at the resonance frequencies that are 
fi nite and decreasing with increasing frequency, which is typical of a lossy line 
with frequency-dependent losses.

In very large-scale integration (VLSI) applications it is of great interest the 
study of the proximity effect, because of the short distances between the signal 
traces. Case 1 referred to a condition of widely separated wires, with hc/a = 10. For 
such a condition the distribution of the sources along the wire contours may 
assumed to be uniform (see Fig. 2b). For a cylindrical pair, we may assume as a 
rule of thumb that the proximity effect should be considered for hc/a = 2.5. Let us 
study again a wire pair, with a = 2.5 mm, hc = 5.7 mm and total length l = 1 m 
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Figure 9:  Case 1, amplitude (in arbitrary units) of the current distribution for the 
matched case, computed at 1 GHz (a) and 5 GHz (b).
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(Case 2). The line is fed at one end by a voltage source of 1 V and is terminated on 
a short circuit at the other end. This case has been analyzed in [14], where a full-
wave solution is provided by using the wire antenna theory. The proximity effect 
is there taken into account by introducing a set of ‘equivalent’ wires, whose artifi -
cial electrical axes are positioned so to satisfy the static problem in the transverse 
plane.

Figure 11 shows the current distribution at 1.2 GHz for this case, computed by 
means of ETL and STL models and compared to the quoted full-wave solution. An 
approximated ETL solution is also plotted, obtained by disregarding the proximity 
effect and hence assuming uniform distributions.

5.2 High-frequency losses

In high-speed integrated circuit technology losses play a crucial role in the overall 
system performance. With respect to a full-wave solution provided by brute-force 
numerical simulators, one of the most important advantages in using the ETL solu-
tion is the possibility to have a qualitative insight on the lossy phenomena affect-
ing the high-frequency solution. We can distinguish at least three different lossy 
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Figure 10: Case 1, amplitude of the self-impedance, normalized to Z0.
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mechanisms: (i) conductor losses; (ii) dielectric losses; (iii) excitation of parasitic 
modes (leaky waves, surface waves); (iv) radiation.

Let us consider the same pair of Case 1, assuming the conductors to be real, 
with a conductor resistivity h = 1.7 × 10–8

 Ωm (Case 3). These losses are very 
sensitive to the frequency because of the skin-effect and this may be taken easily 
into account by using a suitable defi nition of surface impedance as in eqn (14). The 
line is fed by a unitary current source (arbitrary units) and is opened at the other 
end. We consider the frequencies 0.1 f0 – 2.5f0 (f0 = 1.5 GHz), corresponding to a 
range where the STL model fails. We have evaluated the difference between the 
values of the mean power absorbed at x = 0 

 

*
in

1
( ) = real{ ( ) ( )},

2
P V Iw w w

 
(55)

evaluated with ideal and real conductors. In the fi rst case the ohmic losses are not 
considered, whereas in the second case they add to the radiation losses. Figure 12a 
shows the radiated mean power computed in these two conditions. In the low-fre-
quency range the absorbed power is dominated by the ohmic losses whereas the 
radiation losses are more relevant in the high-frequency range. The ratio between 
ohmic and radiated mean power is plotted in Fig. 12b. The effect of a fi nite resistivity 
is relevant for frequency ranges where the STL model may be still used. For frequen-
cies where the ETL model should be used, the losses are mainly due to radiation.
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Figure 11: Case 2, amplitude of the current distribution computed at 1.2 GHz.
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Let us now consider a printed circuit board microstrip, with the geometry of 
Fig. 3, assuming a single signal conductor above a ground plane and a length of 
36 mm (Case 4). The signal conductor has zero thickness, width w1 = 1.8 mm, 

and lies on a FR-4 dielectric layer of thickness h = 1.016 mm, dielectric con-
stant er = 4.9 and magnetic permeability m = m0. The conductors and dielectric 
are assumed ideal.

The ETL model solution is compared to the STL one and to two 3D full-wave 
solutions, one provided by the commercial fi nite element method code HFSS 
[41] and the other by the tool SURFCODE, which is based on the electric fi eld 
integral equation formulation [42]. Assuming for this case hc = h, since er,eff = 
3.65 we have  khc ≈ 0.1 at 1.4 GHz, which is in agreement with the results shown 
in Fig. 13, where it is plotted the absolute value of the input impedance of the 
line with the far-end left open. Indeed, the results of all the models agree satis-
factorily in the low-frequency range (Fig. 13a), whereas in the high-frequency 
range the full-wave solutions start to deviate signifi cantly from the ideal STL 
solution.

As for the previous case-studies, since the conductors and the dielectric are 
assumed to be ideal, the fi nite amplitude of the peak is only due to the lossy effects 
related to the presence of unwanted parasitic modes (surface waves, leaky waves). 
In this condition a small but not negligible amount of power is associated with 
radiation in the transverse plane. Using eqn (55), the real power absorbed by the 
interconnect fed at one end by a sinusoidal current of r.m.s. value I0 and left open 
at the other end is given by Pin(w) = real{Zin(w)} I 0  

2 /2. Figure 14a shows the 
absorbed real power computed with I0 = 1 mA. The ETL solution is in good agree-
ment with the full-wave one around the peak, whereas there is a deviation in the 
other ranges (where, however the values of power are very low). Note that, since 
we are in the ideal case, the STL input impedance is strictly imaginary, hence the 
absorbed real power predicted by the STL model is always zero.
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Figure 12:  Case 3, dissipated mean power in arbitrary units (a); ratio between 
ohmic and radiated mean power (b).
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Next, let us assume the dielectric to be real, i.e. let us introduce frequency-dependent 
dielectric losses by using, for instance, a simple Debye model [43]

 

0r r
r r( ) = + ,

1+ i

e e
e w e

wt
∞

∞

−

 
(56)

where
0r

e and re
∞
are, respectively, the low- and high-frequency limit, whereas t is 

a relaxation time constant. For the considered case, we assume 
0r

e  = 4.178, re
∞  =  

4.07 and t = 1.15 ps.
Figure 14b shows the power dissipated in the high-frequency range assuming 

again I0 = 1 mA and comparing the real dielectric described by (56) to the ideal 
one with er = 4.178. It is clear that in this case the dielectric losses are negligible 
with respect to the losses associated to the other high-frequency phenomena.
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5.3 High-frequency crosstalk and mode-conversion

In VLSI applications the crosstalk noise and the differential to common mode 
conversion are unwanted phenomena, which may lower dramatically the perfor-
mances. The crosstalk between adjacent traces may cause false signaling and is a 
serious bottleneck in the miniaturizing process for incoming scaled technologies. 
A correct evaluation of the common-mode currents is a crucial point in the analy-
sis of systems like printed circuit boards, because of their remarkable effect on 
the overall electromagnetic interference performance. Although they may be even 
some order of magnitude lower than the differential mode currents, their effects 
may be comparable, for instance in terms of radiated emissions. Both phenom-
ena may be analyzed by studying a simple three-conductor structure, like the one 
depicted in Fig. 3b.

Case 5 refers to a coupled microstrip in air (Fig. 3), with w1 = 5 mm, w2 = 10 
mm, w = 2.5 mm, h = 8.7 mm, t = 1.25 mm, and a total length of 50 mm. For such 
a structure, we assume hc = 9.35 mm, and investigate the frequency range 0.1–3 
GHz, corresponding to khc ∈ (0.02 − 0.59).

The line is assumed to be in the free space and to be open at the far end: I12 = 
I22 = 0 (see Fig. 3a for references). Figure 15 shows the frequency behavior of the 
self and mutual terms of the input impedance, computed, respectively, as Z11 = 
V11/I11  and Z21 = V21/I11 when I21 = 0. The three models agree in the low-frequency 
range, up to 0.5 GHz, corresponding to khc ≈ 0.1. For higher frequencies the full-
wave and ETL solutions deviate from the STL one, capturing not only the fre-
quency shift that has been already observed in the previous cases, but also the 
additional small peaks due to the resonance in the transverse plane. The imped-
ance Z12 is an index for the crosstalk noise: it would be the near-end crosstalk 
voltage assuming I11 = 1 A and all the other currents equal to zero. Figure 15b 
clearly shows that above 1.5 GHz the crosstalk noise level predicted by the STL 
model is well below the full-wave solution.
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Figure 15:  Case 5, amplitude of self (a) and mutual (b) impedance at the near end.
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Let us analyze, for the same structure, the problem of the common mode excita-
tion. Usually the common-mode currents are due to unwanted effects, as the pres-
ence of external fi elds, asymmetric conductor cross-sections and non-ideal 
behavior of the ground. In the differential signaling technique, however, a signal is 
defi ned as the difference between the signals of two conductors with respect to a 
third reference one and hence, due to the presence of the ground, a common-mode 
solution propagate. In order to study this ‘mixed-mode’ propagation it is con-
venient to introduce the common-mode variables: assuming the references as in 
Fig. 3a, the differential and common-mode variables are
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In order to study the mode conversion, let us assume the line to be excited by a pure 
differential mode current at the near end, with the far end left open: Id1 = 1 (arbitrary 
units) and Ic1 = 0. Figure 16 shows the distribution of the excited common mode 
currents computed at 1.7 and 2.5 GHz. For low frequencies the mode conversion 
due to asymmetric signal conductors may be neglected, whereas for frequencies 
above 1 GHz the excited common mode current starts to be relevant.
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5.4  A comparison between CNT and copper interconnects for 
nanoelectronic applications

In future ultra-large-scale integrated circuits the use of copper nano-interconnects 
will be seriously limited by the strong degradation of its performances. The main 
challenge for Cu nano-interconnects is the trade-off between the request for increas-
ing current density and the steep increase of the resistivity which, at nanometric 
dimensions, rises to values higher than its bulk value of r = 1.7 µΩ/cm. Because 
of heating, this high value will limit the maximum allowed current density. For 45 
nm node technology, the International Technology Roadmap for Semiconductors 
(ITRS) [44] foresees, for instance, a request of a current density in local vias of 8 × 
106 A/cm2, whereas the maximum allowed current density for copper will be about 
4.5 × 106 A/cm2. This limitation suggests considering the use of metallic CNTs, 
given their excellent electrical and thermal properties (see Table 1 in Section 4).

As fi rst case-study, we consider the simple interconnect structure of Fig. 7, made 
by a single CNT of radius rc = 2.712 nm at a distance h = 20 nm from a perfect 
ground, and compare its performances to those which would be in principle obtained 
by scaling the copper technology to the same dimensions (Case 6). For this case, we 
assume l = 1 µm and u = 3.33 × 1011 s–1. To investigate the validity limits of the 
transmission line model equation (50), its predictions have been compared to those 
provided by a full-wave three-dimensional electromagnetic numerical model based 
on the same fl uid description of the conduction [29]. Figure 17 shows the absolute 
value of the input admittance of the interconnect terminated on a short circuit: the 
transmission line model provides accurate results up to 1–2 THz.
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Figure 17: Case 6, absolute value of the input admittance. 
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Let us fi rst consider lossless interconnects. For the considered case using the 
defi nition in eqn (52), we have cCNT ≈ 0.0120c0, hence the electrical length of CNT 
interconnects is completely different from that of the copper one interconnect. 
Figure 18a shows the frequency behavior of the absolute value of the input imped-
ance compared to that of the equivalent copper interconnect, assuming an inter-
connect length of l = 10 µm. The CNT interconnect shows resonances at much 
lower frequencies. Resonances are extremely undesirable for interconnects, hence 
the above result seems to limit to short lengths (<1 µm) the possibility to use CNT 
interconnects in high-speed circuits. However, if we take into account the damping 
effect due to the huge p.u.l. resistance R predicted by eqn (51) this conclusion may 
change. For the considered case it is R ≈ 1.16 kΩ/µm: it introduces a strong damp-
ing effect able to cancel out the resonance peaks, as shown in Fig. 18b, where the 
absolute value of the input impedance for CNT interconnect is computed both 
considering (real CNT) and disregarding (ideal CNT) the effect of R. This result 
agrees with experimental evidence [16].

In order to compare the performances between CNT and Cu interconnects, it is 
useful to investigate the behavior of the scattering parameters. Figure 19a and b 
shows the absolute value of S11 and S12 computed for line lengths of 1 and 10 µm, 
respectively. For Cu interconnect, we disregard the increase of copper resistivity, 
assuming a constant value of rCu ≅ 1.7 × 10–8 Ωm. The reference impedance for 
the defi nition of all the S-parameters is chosen equal to the lossless characteristic 
impedance of the CNT interconnect, Z0CNT ≈ 13 kΩ for this case (this is the reason 
for the particular behavior of such parameters for the copper case).

As a conclusion, provided that it would be possible to load the line with such an 
impedance, it is clear that CNT interconnect are suitable for short and intermediate 
lengths, while they introduce a strong attenuation for longer lines. In addition, for 
high frequencies they seem to outperform the ideally scaled conventional technology.
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The high values of characteristic impedance, the p.u.l. resistance and the pre-
sence of huge parasitic resistance due to imperfect metal-CNT contacts make 
impossible the use of a single CNT as an interconnect. A more realistic condition 
should consider bundles of CNTs and compare their performance with that of cop-
per, taking into account the increase of copper resistivity too at nanometric scale. 
Case 7 will refer to a microstrip, where the signal trace is made by a bundle of 
CNTs (Fig. 20), compared to a Cu conductor with the same cross-section tw. For 
the dimensions and the values of the parameters, we refer to the indications pro-
posed by the ITRS for the 45 nm technology (year 2010) [44]. Let us consider a 
200 (10 × 20) CNT bundle, assuming rc = 1.35 nm, d = 2rc (hence w = 27 nm, 
t = 2w), h = 2t and er,eff = 2.2.

The propagation speed along CNTs is 3.2 × 107 m/s, whereas for the Cu inter-
connect it is 2 × 108 m/s. Note that at 30 GHz the wavelength is 1.6 mm for CNT 
and 10 mm for Cu interconnects: therefore up to lengths of 100 µm (local and 
intermediate level) the interconnects are electrically short. The effects of propaga-
tion should be taken into account only for global level (order of mm).
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Let us refer to the simple signaling system depicted in Fig. 21, where Rp is a 
generic parasitic resistance. As a consequence of the above considerations, the 
interconnect delay in this system is strongly dominated by the resistance. Let us 
compare the delay introduced by the CNT bundle to that produced by an equiv-
alent Cu line, with resistivity r = 4.08 µΩ/cm [44]. Figure 22 shows the results 
obtained for an ideal case (ideal drivers and contacts, ideal load: Cload = 0) and 
for a real case (ideal drivers, Rp = 100 kΩ and Cload = 0.01 pF). The perfor-
mances of the two interconnects are very close and an accurate control of the 
parasitic contact resistance for CNT bundles would lead to CNT delays compa-
rable to the Cu ones. The result suggests considering CNT interconnects as 
possible alternative to Cu ones at least for local and intermediate level, since 
they provide similar delays but much better performances in terms of current 
density allowed, heating dissipation and mechanical properties.
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Figure 21: Case 7, the considered signaling system.
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6 Conclusions

In this chapter, the extension of the popular transmission line model to high-speed 
interconnects and to CNT nano-interconnects is discussed. Starting from a full-wave 
integral formulation, an ETL model is derived, able to describe interconnects with 
transverse dimensions comparable to the characteristic wavelength of the propagat-
ing signals. The model allows us to describe, with a computational cost typical of a 
transmission line model, the phenomena which are not included in the solution of the 
classical transmission line model but could be only taken into account by a full-wave 
solution. It is not only possible to obtain the correct behavior of high-speed inter-
connects in high-frequency ranges, but also to distinguish between the phenomena 
affecting the solution at such frequencies: fi nite size, radiation, mode conversion, fre-
quency-dependent losses in conductors and dielectrics, excitation of parasitic modes.

Starting from a fl uid model, a transmission line model is also derived to describe 
the propagation along interconnects made by metallic CNTs. Although simple, 
this model takes into account complex phenomena related to the quantistic behav-
ior of such nanostructures, with a suitable defi nition of the transmission line model 
parameters. This tool is extremely useful to compare the performances of CNT 
interconnects and conventional ones for future nanoelectronic applications.
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The electromagnetic fi eld coupling to buried 
wires: frequency and time domain analysis

D. Poljak
Department of Electronics, FESB, University of Split, Split, Croatia.

Abstract

This chapter deals with the transient analysis of buried cables using the wire 
antenna theory and applying both the frequency and the time domain approach. 
On one hand, if the solution for a large number of incident waves arriving from 
various directions is of interest then the frequency domain approach is appropriate. 
On the other hand, for some electromagnetic compatibility applications in which 
accurate frequency data are required, the frequency samples obtained by the use 
of Fourier transform do not ensure accurate results and the time domain approach 
would be a better choice. Particularly, the direct time domain approach is conve-
nient if the transient response is required only for the early time behavior, since 
the frequency domain approach requires computing of the frequency response up 
to the maximum effective frequency and the entire range of frequency spectrum 
has to be transformed. The frequency domain model is based on the Pocklington 
integral equation while the time domain formulation deals with the Hallen inte-
gral equation approach. Both the Pocklington and the Hallen equation are handled 
via the appropriate Galerkin–Bubnov scheme of the indirect boundary element 
method. The strengths and weaknesses of both approaches are discussed.

1 Introduction

The electromagnetic fi eld coupling to lines buried in a lossy medium is of great 
practical interest for many electromagnetic compatibility (EMC) applications 
[1–4], such as transient analysis of power and communications cables. Basically, 
the buried wire can represent a telephone cable, power cable, or a cylindrical antenna 
operating at a very low frequency. Some important applications are also related 
to submarine communication (long dipoles submerged in water), geophysical 
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probing and electromagnetic stimulation of biological tissue. In the past, the tran-
sient excitation of buried wires, as one of the major causes of malfunction of tele-
communication and power lines, has been mostly related to the lightning discharge 
problems [3].

Generally, the electromagnetic fi eld coupling to underground wires confi gura-
tions [1, 2] has been investigated to a somewhat lesser extent than coupling to 
above-ground lines [3–11].

The studies related to buried wires are usually based on an approximate trans-
mission line approach [3]. The transmission line approach can be considered as a 
compromise between a quasi-static approximation and a full wave (wire antenna) 
model, and it is mostly related to infi nite or at least very long buried wires.

However, the effects at the line ends cannot be taken into account utilizing the 
transmission line approach [12]. Also, the effect of the earth–air interface has usu-
ally been neglected featuring the assumption that the wire is buried at a very large 
depth [1].

The transmission line approach, though suffi cient approximation if long lines 
with electrically small cross sections are considered, fails if one deals with the 
lines of fi nite length and high-frequency excitations.

Namely, the transmission line model fails to predict resonances, fails to take 
into account the presence of a lossy ground and the effects at the line ends [3–7]. 
Consequently, when the lines of the fi nite length are of interest the full wave model 
based on the receiving antenna (scattering) theory has to be used.

Thus, the wave-like behavior of the induced responses at higher frequencies 
requires a more general approach which is based on integral equations arising 
from the wire antenna theory. On the other hand, the principal restriction of the 
wire antenna model applied to overhead lines is often related to the long computa-
tional time required for the calculations pertaining to the long lines.

The transient analysis of buried cables using the wire antenna theory can be car-
ried out in either frequency or time domain. Essentially, there is no defi nitive 
advantage that could be gained using the indirect frequency domain approach or 
the direct time domain solution method.

Generally, if the solution for a large number of incident waves arriving from 
various directions is of interest then the frequency domain approach is appro-
priate.

On the other hand, for some EMC applications in which accurate frequency data 
are required, the frequency samples obtained by the use of Fourier transform do 
not ensure accurate results. The time domain approach would be a better choice if 
the transient response is required only for the early time behavior, since the fre-
quency domain approach requires computing of the frequency response up to the 
maximum effective frequency and the entire range of frequency spectrum has to be 
transformed.

This chapter deals with both approaches. The frequency domain model is based on 
the Pocklington integral equation while the time domain formulation deals with the 
Hallen integral equation approach. The strengths and weaknesses of both approaches 
are discussed.
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2 The frequency domain approach

The frequency domain antenna theory approach provides one to take into account 
the earth–air interface effects via rigorous Sommerfeld integral formulation. 
However, the Sommerfeld integrals cannot be evaluated analytically, while the 
corresponding numerical solution is rather demanding and very time consuming 
[13–17]. Consequently, some authors prefer to use a simplifi ed approach based on 
the refl ection coeffi cient approximation [1, 4].

The wire antenna approach to the analysis of the plane wave coupling to the 
buried cable of fi nite length, with the effect of the half space included via the 
refl ection coeffi cient approximation, has been proposed in [18]. This approach has 
been extended to the more complex case of a plane wave excitation with an arbi-
trary angle of incidence [19].

The frequency domain formulation presented in this chapter is based on the 
Pocklington integro-differential equation. The refl ection coeffi cient by which the 
earth–air interface is taken into account is included in the integral equation kernel.

This integral equation is solved via the Galerkin–Bubnov scheme of the indirect 
boundary element method (GB-IBEM) [20]. Furthermore, the transient response 
of the wire is computed using the inverse Fourier transform [21].

2.1 Formulation in the frequency domain

The horizontal line of length L and radius a, buried in a lossy ground at depth d, is 
shown in Fig. 1. The current distribution along the buried wire is governed by the 
corresponding Pocklington integro-differential equation. This integro-differential 
equation can be derived by enforcing the interface conditions for the tangential 
electric fi eld components.

Assuming the wire to be perfectly conducting, the total fi eld along the wire 
surface vanishes, i.e.:

 
tot = 0xe E
��

 (1)

where the total fi eld E
�

tot is composed from the excitation E
�

exc and scattered fi eld 
E
�

sct fi eld components, respectively:

 
tot exc sct= +E E E
� � �

 (2)

where the excitation fi eld component represents the sum of the incident fi eld E
�

inc 
and fi eld refl ected from the lossy ground E

�
ref:

 
exc inc ref= +E E E
� � �

 (3)

The scattered fi eld component is given by:

 
sct =E j Aw j− − ∇

��
 (4)

where A
�
 is the magnetic vector potential and j is the electric scalar potential.
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According to the widely used thin wire approximation [3, 4] only the axial com-
ponent of the magnetic potential differs from zero and eqn (4) becomes:

 

sct =x xE j A
x

j
w

∂
− −

∂  
(5)

where the magnetic vector potential and electric scalar potential are, respectively, 
defi ned as:

 0

= ( ) ( , )d
4

L

xA I x g x x x
m

′ ′ ′
π ∫

 

(6)

 eff 0

1
( ) = ( ) ( , )d

4

L

x q x g x x xj
e

′ ′ ′
π ∫

 

(7)

where eeff is the complex permittivity of the lossy ground given by:

 
eff r 0= j

s
e e e

w
−

 
(8)

while q(x) is the charge distribution along the line, I(x' ) denotes the induced cur-
rent along the line and g(x, x' ) stands for the Green’s function given by:

 0 TM( , ) = ( , ) ( , )ig x x g x x R g x x−′ ′ ′  (9)

and g0(x, x' ) denotes the lossy medium Green function:

 

2 1

0
1

e
( , ) =

jk R

g x x
R

−
′

 
(10)

while gi(x, x' ) is, in accordance to the image theory, given by:

 

2 2

2

e
( , ) =

jk R

ig x x
R

−
′

 
(11)

Figure 1: A straight wire of fi nite length buried in a dissipative medium.
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where k2 is the propagation constant of the lower medium and R1 and R2 are dis-
tances from the source point in the ground and from the corresponding image in 
the air to the observation point defi ned by:

 
2 2 2 2

1 2= ( ) + , = ( ) + 4R x x a R x x d− −′ ′  
(12)

The infl uence of a nearby ground interface is taken into account by means of the 
Fresnel plane wave refl ection coeffi cient:

 

2

eff
TM

02

1 1
cos sin

= , = arctg , =
21 1

cos + sin

x xn n
R n

d

n n

q q
e

q
e

q q

− −
− ′

−
 

(13)

The linear charge density and the current distribution along the line are related 
through the equation of continuity [7]:

 

1 d
=

d

I
q

j xw
−

 
(14)

Substituting eqn (14) into eqn (7) yields:

 eff 0

1 ( )
( ) = ( , )d

4

L I x
x g x x x

j x
j

we
∂ ′− ′ ′

π ∂ ′∫
 

(15)

Combining eqns (5), (6) and (15) results in the following integral relationship for 
the scattered fi eld:

 

sct

eff0 0

1 ( )
= ( ) ( , )d + ( , )d

4 4

L L

x
I x

E j I x g x x x g x x x
j x x

m
w

we
∂ ∂ ′− ′ ′ ′ ′ ′

π π ∂ ∂ ′∫ ∫
 

(16)

Finally, eqns (3) and (16) result in the following integral equation for the unknown 
current distribution induced along the line:

 

exc

eff0 0

1 ( )
= ( ) ( , )d ( , )d

4 4

L L

x
I x

E j I x g x x x g x x x
j x x

m
w

we
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π π ∂ ∂ ′∫ ∫
 

(17)

Integral equation (17) is well-known in antenna theory and represents one of the 
most commonly used variants of the Pocklington’s integro-differential equation.

The electric fi eld transmitted into the lossy ground and illuminating the buried 
line is given by:

 
2exc tr

0 TE TM= = ( sin cos cos )e tjk n r
x x tE E E f q f −Γ − Γ

� �

 
(18)

where a is the angle between E-fi eld vector while the plane of incidence and qt is 
defi ned by the Snell’s law [1]:

 1 2 tsin = sink kq q  (19)
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where k1 is the propagation constant in the free space.
Quantities ΓTM and ΓTE denote the vertical and horizontal Fresnel transmission 

coeffi cients, respectively, at the air–earth interface (Fig. 2) given by [1]:

 
TM 2

2 cos
=

cos + sin

n

n n

q

q q
Γ

−  

(20)

 
TE 2

2cos
=

cos + sinn

q

q q
Γ

−  

(21)

and tn r
� �

 is distance from the origin point to the observation point at the wire surface.

 t t t t= sin cos sin sin cosn r x y zq f q f q− − −� �
 (22)

Solving the Pocklington integro-differential equation (17) the current distribu-
tion at the operating frequency is obtained.

2.2 Numerical solution of the integro-differential equation

The numerical solution of eqn (17) is obtained via GB-IBEM, which is outline 
below. More detailed description of the method can be found in [13].

Figure 2: Incident, refl ected and transmitted wave from an air–earth interface.
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An operator form of the Pocklington integro-differential equation (18) can be, 
for convenience, symbolically written as:

 =KI E  (23)

where K is a linear operator and I is the unknown function to be found for a given 
excitation E.

The unknown current is expanded into a fi nite sum of linearly independent basis 
functions {fi} with unknown complex coeffi cients ai:

 =

=
n

n i i
i 1

I I fa≅ ∑
 

(24)

Substituting eqn (24) into eqn (23) yields:

 =

= = = ( )
n

in i n n
i 1

KI KI Kf E P Ea≅ ∑
 

(25)

where Pn(E) is called a projection operator [13].
Now the residual Rn is formed as follows:

 = = ( )n n nR KI E P E E− −  
(26)

According to the defi nition of the scalar product of functions in Hilbert function 
space the error Rn is weighted to zero with respect to certain weighting functions 
{Wj}, i.e.:

 
, = 0, = 1,2, ,n jR W  j ... n

 
(27)

where the expression in brackets stands for a scalar product of functions given 
by:

 

*, = dn j n jR W R W
Ω

Ω∫
 

(28)

where Ω denotes the actual calculation domain.
Since the operator K is linear, a system of linear equations is obtained by 

choosing Wj = fj, which implies the Galerkin–Bubnov procedure. Thus, it can be 
written as:

 =

, = , , = 1,2, ,
n

i i j j
i 1

Kf f E f j ... na∑
 

(29)

Equation (29) is the strong Galerkin–Bubnov formulation of the Pocklington inte-
gral equation (18). Utilizing the integral equation kernel symmetry and taking into 
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account the Dirichlet boundary conditions for the current at the wire ends of the 
cylinder, after integration by parts eqn (29) becomes:

 

2
2

eff=1 0 0 0 0

exc
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( ) ( )1
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x j

f x f x
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a
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 ∂ ∂ ′
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π ∂ ∂ ′  
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∫ …

 

(30)

Equation (30) represents the weak Galerkin–Bubnov formulation of the integral 
equation (23).

The resulting system of algebraic equations arising from the boundary element 
discretization of eqn (30) is given by:

 =1

[ ] { } = { } , = 1,2, ...,
M

ji i j
j

Z I V j M∑
 

(31

)

where [Z]ji is the local matrix representing the interaction of the ith source bound-
ary element with the jth observation boundary element:

 

T 2 T
2

eff 0 0 0 0

1
[ ] = { } { } ( , )d d + { } { } ( , )d d

4

L L L L

ji j jZ D D g x x x x k f f g x x x x
j we

 
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π   
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 (32)

The vector {I} contains the unknown coeffi cients of the solution, and it represents 
the local voltage vector. Matrices {f} and {f '} contain the shape functions while 
{D} and {D'} contain their derivatives, M is the total number of line segments, and 
∆li, ∆lj are the widths of ith and jth segment.

Functions fk(z) are the Lagrange’s polynomials and {V}j is the local right-side 
vector for the jth observation segment,

 

exc{ } = { } d
j

j x j
l

V E f z
∆
∫

 
(33)

representing the local voltage vector.
Linear approximation over a boundary element is used as it has been shown that 

this choice provides accurate and stable results [13].

2.3 The calculation of a transient response

Calculating the current distribution along a buried wire in a wide frequency spec-
trum one obtains the transfer function of the system, H(f ) is obtained.
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To analyze the transient response of the buried wire, an incident fi eld in a form 
of a single exponentially decaying function is used:

 
tr

0e ( ) = e at
x t E −

 (34)

which Fourier transform is given by:

 

tr 0( ) =
+ 2x

E
E f

a j fπ  
(35)

Now, the current distribution I(f ), i.e. the frequency response of the wire to the 
particular excitation (35) is obtained by multiplying the frequency spectrum of the 
excitation function with the corresponding transfer function of the linear system 
H(f ):

 
tr( ) = ( ) ( )xI f H f E f  (36)

Applying the inverse Fourier transform is to be applied to the function I(f ) yields 
the transient current induced along the buried transmission line [21]:

 

2( ) = ( )e dj fti t I f w
∞

π

−∞
∫

 

(37)

As the system transfer function H(f ) is represented by the discrete set of values, 
and the actual frequency response I(f ) is also represented by a discrete set of val-
ues, the integral equation (37) thus cannot be solved analytically and one has to 
deal with the Discrete Fourier transform (or in this case Fast Fourier Transform), 
i.e.:

 ( ) = IFFT( ( ))i t I f  (38)

Thus, the discrete set of the time domain current values is defi ned by [21]:

 

1

=0

( ) = ( )e
N

jk f n t

k

i n t F I k f
−

∆ ∆∆ ∆∑
 

(39)

where F is the highest frequency taken into account, N is the total number of fre-
quency samples, ∆f is sampling interval and ∆t is the time step.

2.4 Numerical results

For the comparison purposes, fi rst the current distribution induced along a wire 
conducting cylinder, immersed in sea water, is computed assuming a unit incident 
fi eld. The water parameters are er = 80 and s = 4 S/m, and the operating frequency 
is f = 1 MHz. The cylinder length is L = 120 and 160 m, respectively, with a radius 
of a = 0.6 and 0.8 m, respectively, while in Fig. 3 the calculated current distri-
butions are compared to the analytical results available from [22]. Agreement is 
found to be satisfactory.
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Further numerical examples are related to the transmission lines buried in a lossy 
ground with permittivity er = 10 and conductivity s = 0.001 S/m. Conductor radius is 
a = 1 cm wire length L and burial depth d are varied. The wire is excited by the trans-
mitted plane wave with a single exponential decaying form eqn (35). The parameters 
of the exponential function are, as follows: E0 = 1 V/m, a = (7.854 × 10–8 s)–1.

The transient response, i.e. the current induced at the center of the wires having 
various lengths for the normal incidence is shown in Fig. 4. The burial depth is 
d = 1 m. The current wave refl ections from the wire ends are clearly visible, par-
ticularly for the shorter wires. Figure 5 shows the infl uence of the burial depth on 
the induced current at the center of the 200 m long wire.

The both time shift and the attenuation of the signal seems to be increased with the 
depth. The only exception occurs for d = 0.1 m, where the induced current is lower 
then for d = 1 m. This happens due to the vicinity of the nearby ground–air interface. 

Figure 3: Comparison of numerical results obtained with different solution methods.
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The transient response of the wire of the transmission line of length L = 30 m buried at 
depth d = 1 m for various angles of incidence q = 0°, 60° and 80° is shown in 
Fig. 6.

The transient response of the wire of the transmission line of length L = 30 m 
buried at depth d = 1 m for various angles of incidence q = 0°, 60° and 80° is 
shown in Fig. 6. For the higher angle q, amplitude of the induced current at the 
wire center is smaller, since the tangential component of the transmitted electric 
fi eld is also decreased.

3 Time domain approach

This section deals with a time domain study of a single straight wire embedded 
in a dielectric half-space and illuminated by a non-uniform transient electric fi eld. 

Figure 5: Transient response for different burial depths.
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This topic is very important as a starting point in the transient analysis of wires 
buried in a lossy medium which is of great practical interest for many EMC appli-
cations [1–4].

The analysis presented in this section is based on the wire antenna theory and is 
carried out directly in the time domain. Dealing with a rather simple geometry of 
a single wire embedded in a dielectric half-space this section aims to introduce 
some basic ideas on the subject. The method can be also applied to a case of arbi-
trary wire confi gurations, which is of much more practical importance in EMC 
applications.

The time domain formulation presented in this section is based on the space–
time Hallen integral equation for half-space problems [23]. The effects of the 
two-media confi guration are taken into account via the corresponding refl ec-
tion coeffi cient and the transmission coeffi cient. The transient current along 
the straight wire embedded in a dielectric half-space is obtained by solving the 
corresponding Hallen integral equation via the time domain variant of the GB-
IBEM [13].

Once calculating the space–time current distribution along the wire, to further 
evaluate the obtained transient response, the time domain energy measures can be 
computed by spatially integrating the squared current and charge along the wire 
[24–27].

Furthermore, a simplifi ed version of space–time refl ection/transmission coeffi -
cient has been promoted in [28], while an alternative formulation for a fi nite length 
wire placed within the dielectric half-space featuring the simplifi ed form of the 
refl ection/transmission coeffi cient, instead of use of Fresnel coeffi cients has been 
proposed in [29].

This alternative approach to the time domain analysis of buried wires is pre-
sented in this section, as well.

3.1 Formulation in the time domain

A perfectly conducting straight thin wire of length L and radius a, immersed in 
a dielectric medium at depth d is considered, as shown in Fig. 7. The wire is 
illuminated by a horizontally polarized transient electric fi eld tangential along its 

Figure 7: A straight wire embedded in a dielectric half-space.
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surface, i.e. the case of normal incidence is considered only.
The mathematical framework of the problem is based on the wire antenna the-

ory and thin wire approximation [3, 4].
The transient induced current fl owing along the straight wire embedded in a 

dielectric half-space is governed by the corresponding space–time integral equa-
tion. The time domain formulation for the single wire problem in terms of the 
Pocklington or the Hallen integral equation type can be readily obtained as an 
extension of the wire in homogeneous dielectric medium.

The time domain Pocklington type integral equations often suffer from numeri-
cal instabilities, i.e. from the non-physical, rapidly growing oscillations at later 
instants of time [30].

On the other hand, the time domain Hallen integral equation does not contain 
either space or time derivatives within its kernel, which are found to be the origin 
of numerical instabilities. Consequently, the Hallen equation has been proven to 
be attractive from the computational point of view [4, 30–32].

The Hallen integral equation approach, also used for the transient analysis 
of straight wire confi guration above-ground [8–11], is applied to the problem 
of wires embedded in a dielectric half-space in this section. The Hallen inte-
gral equation for the straight wire in unbounded lossless medium can be read-
ily derived from the corresponding Pocklington integro-differential equation 
type.

Since the wire is perfectly conducting the tangential component of the total fi eld 
vanishes on the antenna surface, i.e.:

 
inc sct+ = 0x xE E  (40)

where  E x  
inc  is the incident and  E x  

sct  scattered fi eld on the metallic wire surface. From 
the fi rst Maxwell equation:
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and using the vector magnetic potential A
�
:
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it follows:
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where A
�

and j are space–time-dependent magnetic vector and electric scalar 
potential, respectively. These two potentials are to satisfy the Lorentz gauge:
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Differentiating eqn (43) and taking into account the Lorentz gauge equation (44) 
yields in the wave equation for magnetic vector potential A

�
:

 tantan
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2
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(45)

In accordance to the thin wire approximation, only the axial component of the vec-
tor potential exists, so it can be written:
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where v is the velocity of wave propagation in a homogeneous dielectric medium, 
defi ned as follows:

 0

=
rg

1
v

me e
 

(47)

where erg is the lower medium relative permittivity where c denotes the velocity 
of light.

Equation (46) is valid on the surface of the perfect conductor and the solution 
can be represented by a sum of the homogeneous equation solution and particular 
solution of the inhomogeneous equation:

 
h p( , ) = ( , ) + ( , )x x xx t x t x tA A A  (48)

In addition, the solution of the homogeneous wave equation is given as a superpo-
sition of incident and refl ected wave [13]:
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The particular solution is given by the integral [13]:
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Since the differential equation is related to the wire antenna surface eqn (50) sim-
plifi es into:
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where Zg is the corresponding impedance of a dielectric medium given by:
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On the other hand, the magnetic vector potential on the metallic wire surface 
on the left-hand side of eqn (48) may be also obtained as a solution of the wave 
equation:
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A
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t
me m∂− −∇
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(53)

where J
�
(r,t) denotes the surface current density.

The solution of differential equation (53) is usually obtained via the Green func-
tion theory by introducing the auxiliary equation:
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The solution is given in the form of retarded Dirac impulse:
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where R is a distance from the source to the observation point.
Then the solution of eqn (53) using the Green function approach may be written 

in the form:
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Performing the time domain integration one obtains:
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According to the thin wire approximation, the equivalent current along the wire 
is assumed to fl ow in the axis, while the observation points are located on the 
antenna surface, i.e. it follows:

 ,( ) = 2 ( )zI x t a x,tJπ  (58)

and the axial component of the magnetic vector potential is given by:
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(59)

Combining the relations (46) and (59) yields the Pocklington integro-differential 
equation:
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while relations (48), (49), (51) and (59) leads to the space–time Hallen integral 
equation:
 

, inc
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 (61)

Equations (60) and (61) are both related to the straight, fi nite length wire in an 
unbounded dielectric medium, where the distance from the observation point is 
given by:

 
2 2= ( ) +R x x a− ′  (62)

The multiple refl ections of the current at the free ends of the wire are taken into 
account by the unknown functions F0(t) and FL(t).

The Hallen integral equation for a homogeneous lossless medium can be also 
derived directly from the Pocklington equation by performing the straight-forward 
convolution [10].

The corresponding Hallen integral equation for the wire embedded in a dielec-
tric half-space can be derived gradually.

As a fi rst step, the Hallen integral equation for an unbounded medium equation 
(61) is transferred into the frequency domain:
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where s = jw denotes the Laplace variable.
The frequency domain Hallen integral equation for a straight wire in a dielectric 

half-space is obtained by extending the integral equation (63) with an additional 
term due to an image wire in the air located at height d above interface. This term 
contains the refl ection coeffi cient Γref for the transverse magnetic (TM) polariza-
tion multiplied by the Green function of the image wire in the air. In addition, the 
incident fi eld Ex

inc appearing in the last term in eqn (61) has to be replaced by the 
corresponding transmitted fi eld Ex

tr.
Thus, the resulting space frequency Hallen integral equation for the straight 

wire embedded in a dielectric medium becomes:
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where R* is the distance from the source point located at the image wire in the air 
to the observation point located at the wire immersed in a dielectric medium:

 
2 2* = ( ) + 4R x x d− ′  (65)

The space dependent refl ection coeffi cient, by which the ground–air interface 
effects are taken into account, is defi ned by the relation [1]:
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Finally, the electric fi eld transmitted into the dielectric medium  E x  
tr  is given as 

follows:

 
tr inc

tr tr= ( )x xE EqΓ  (67)

where Ex
inc is the incident fi eld in the air and Γtr(qtr) is the corresponding transmis-

sion coeffi cient by which the air–ground interface effects are taken into account.
The space dependent transmission coeffi cient, for the case of normal incidence 

considered in this work, is given by [23]:
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where qtr is the angle of transmission.
The time domain Hallen equation for a straight thin wire in a dielectric half-

space now can be obtained applying the inverse Laplace transform and the convo-
lution theorem to the integral equation (64).

Therefore, it follows:
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(69)

where the time domain counterpart of the Fresnel refl ection coeffi cient Γref (q, t) is:

 ref ref( , ) = ( ) ( )t tq q dΓ Γ  (70)

and d(t) stands for the Dirac impulse.



238 Electromagnetic Field Interaction with Transmission Lines

The transmitted electric fi eld in the dielectric medium Ex
tr represents a time domain 

counterpart of the relation (67) and can be obtained from the convolution integral:
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(71)

where Γtr(qtr, t) is the time domain transmission coeffi cient counterpart of the 
expression (68):

 tr tr( , ) = ( ) ( )t tq q dΓ Γ  (72)

Substituting the relations (72) and (68) into eqn (71), for the case of normal inci-
dence (qtr = 0), it follows:
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where t0 = d/v denotes the time delay.
It should be stated that a fi eld reference point (x = 0, z = 0) has been used 

throughout this analysis.
Finally, combining the relations (66)–(73) the resulting integral equation for the 

wire immersed in a dielectric medium becomes:
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The problem of a straight wire embedded in a dielectric medium governed by the 
space–time Hallen integral equation (74) can be solved by prescribing, without any 
loss of generality, the zero edge I(0, t) = I(L, t) = 0 and initial conditions I(x, 0) = 0.

The use of a convolution approach through eqns (69)–(72) to handle the refl ec-
tion and transmission coeffi cients is not necessary for the case of dielectric half-
space as they are only functions of angle. This integral equation formulation is 
used as it can serve as a starting point in deriving the model for the wire buried in 
a medium with fi nite conductivity.

3.2 Time domain energy measures

The transient response of a straight thin wire embedded in a dielectric half-space 
can be postprocessed by the time domain energy measures based on spatial inte-
grals of the squared current and charge induced along the wire.
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The time domain energy measures represented by the current and charge induced 
on an object yield insight into where and how much the object radiates as a func-
tion of time. These measures were originally proposed in [24], for wires in free 
space, and re-examined in [10, 25] and recently in [26]. The concept of the time 
domain energy measures is extended to the case of buried wires in [27].

Upon solving the set of Hallen integral equations (74) for the transient current 
along the wire located in a dielectric medium, the charge distribution along the 
wire can be determined from the continuity equation [10]:
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= d

t I x t
q t

x
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(75)

where q is the linear charge distribution along the embedded wire in a dielectric 
half-space.

Having found the current and charge, measures of the H-fi eld (kinetic) and the 
E-fi eld (static) energy densities are expressed as proposed in [27].

The H-fi eld energy is represented by the relation:
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while the E-fi eld energy is measured by the following integral:
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The total energy stored in the near fi eld is proportional to the sum of WI and Wq [27].
Numerical procedures for the calculation of the current, charge and time domain  

energy are outlined in Section 2.3.

3.3 Time domain numerical solution procedures

Time domain modeling is a more demanding task than is the frequency domain 
approach however the former provides not only a better insight into the physical 
transient phenomena, but also some computational advantages [4, 10, 14]. The 
time domain version of the GB-IBEM applied to the solution of various Hallen 
integral equation types provides the stable numerical results [8–11] and it is used 
for numerical handling of the straight thin wire in a dielectric half-space in [23].

As the time domain solution procedure for the Hallen integral equation is stable 
for an arbitrary time interval, it does not require any smoothing procedure, con-
trary to the most of the known techniques [30]. The space–time discretization is 
performed carefully, so that within one time increment the propagation on at least 
one space segment is considered, thus satisfying the inequality:
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Through the marching-on-in-time procedure it is possible to obtain the solution 
for the current at a present time for each space node as a function of currents 
at previous instants, without requiring matrix inversion. It is also necessary to 
prescribe the initial values of current at the wire ends to start the stepping pro-
cedure.

According to the usual space–time discretization procedure, the local approxi-
mation for unknown current can be expressed in the form:

 
T( , ) = { } { }I x t f I′ ′  (79)

where {f} is a vector containing shape functions, and {I} is the time-dependent 
solution vector. In addition, applying the weighted residual approach, the space 
boundary discretization of integral equation (74) leads to the local equation system 
for ith source and jth observation boundary element:
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Expression (80) can be written in the matrix form given by:
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where {E} vector denotes the excitation function and the space–time dependent 
matrices are given, as follows:
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Having completed the space discretization procedure, the weighted residual 
approach is used for the time discretization procedure, as well.

Assuming that solution in time on the ith space segment can be expressed as:
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where Ii
k are the unknown coeffi cients and T k are the time domain shape functions, 

and choosing the Dirac impulses as test functions, the recurrence formula for the 
space–time varying current can be written as:
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where Ng denotes the total number of global nodes Aji are the global matrix terms, 
gjl* is the whole right ride of the expression (81) containing the excitation and 
the currents at previous instants, while the overbar denotes that the self term is 
omitted.

Once the current distribution is obtained by solving the integral equation (74) 
via the GB-IBEM, the energy-measure integrals (76) and (77) can be evaluated.

First, the charge distribution is determined by solving the integral:
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where M denotes the total number of segments, while Nt stands for the total num-
ber of time steps.

The solution of integral in eqn (91) is carried out analytically, and given in the 
form:
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The H-fi eld energy measure is obtained by evaluating the integral:
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The solution is available in the closed form and is given by:
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The E-fi eld energy is obtained from the integral:
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for which the solution is then:
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and the total energy measure is given by sum of WI and Wq.

3.4  Alternative time domain formulation via a simplifi ed 
refl ection/transmission coeffi cient

A transient analysis of a fi nite length wire embedded in a dielectric half-space and 
illuminated by the electromagnetic pulse (EMP) using a simplifi ed refl ection coef-
fi cient approach. A direct time domain formulation is based on the wire antenna 
theory and on the corresponding Hallen integral equations for half-space prob-
lems. The presence of a dielectric half-space is taken into account via the simpli-
fi ed refl ection/transmission coeffi cient arising from the modifi ed image theory. The 
Hallen equation is solved via the time-domain GB-IBEM and some illustrative 
numerical results are presented in this section.

The transient response obtained using the simplifi ed refl ection/transmission 
coeffi cient approach is compared to the results obtained via the Fresnel coeffi -
cients approach.

A simplifi ed form of the earth–air refl ection coeffi cient, based on the modifi ed 
image theory, and proposed in [28] is given by:

 
ref ref
MOT MOT( ) = ( )t tdΓ Γ  

(97)

where Γref
MOT depends on the permittivity of the dielectric medium, only:
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A simplifi ed form of the transmission coeffi cient, based on the modifi ed image 
theory, proposed in [28] can be written, as follows:

 
tr tr
MOT MOT( ) = ( )t tdΓ Γ  

(99)

where Γtr
MOT, dependent only on the permittivity of the dielectric medium, is 

given by:
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Substituting the relations (99) and (100) into eqn (71), for the case of normal inci-
dence, it follows:
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where t0 = d/v denotes the time delay.
Also, substituting eqns (97) and (98) into eqn (69), the resulting integral equa-

tions for the straight wire immersed in a dielectric medium becomes:
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The numerical solution of the space–time Hallen integral equation is obtained 
using the procedure presented in Section 2.3.

3.5 Computational examples

The fi rst example is related to the straight wire of length L = 5 m and radius 
a = 1 cm embedded in the dielectric half-space with er = 10 at the depth d = 1 m. 
The wire is illuminated by the transmitted part of the EMP incident waveform:

 
inc

0( ) = ( )e eat bttE E − −−  (103)

where the EMP parameters are: E0 = 52.5 kV/m, a = 4 × 106 s–1 and b = 4.78 × 
108 s–1.

The transient current induced at the wire center is shown in Fig. 8
The transient response obtained using the direct time domain approach seems to 

be in a satisfactory agreement with the results computed via the indirect frequency 
domain approach. The multiple refl ections of the transient current from the wire 
ends are due to the refl ected waves. This effect can be also observed in Figs 9–11.

Figure 9 shows the transient response of the same wire buried at various 
depths.

The curves shown in Fig. 9 for the transient current induced at the center of the 
wire embedded in the dielectric half-space at depth d = 1, 10 and 20 m represent 
time delayed waveforms due to the propagation delay necessary for the incident 
electric fi eld to reach the wire. A slight amplitude and waveform variation as a 
function of depth indicate the minimal interface effect.

A slight proximity effect of the ground–air interface is visible for the case of the 
transient current induced along the wire placed at depth d = 1 m below ground, 
while only the time delay is noticeable for the curves related to the wires located 
at depth d = 10 and 20 m, respectively.
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The initial delay of the fi rst peak is caused by the arrival time of the incident 
fi eld and strongly depends on the depth d. After that time the transient behavior of 
the incident current is the same.

Furthermore, Fig. 10 shows the transient current induced of the center of L = 5 m 
long wire buried at d = 1 m below the interface for the various values of permittivity. 
Thus, three typical values of relative dielectric constant are chosen; er = 10 
(ground), er = 55 (brain permittivity at GSM (Global System for Mobile Commu-
nications) frequencies), er = 80 (sea water). It can be observed from Fig. 10 that 
permittivity of the medium strongly affects the transient response of the wire 
embedded in the dielectric medium.

Figure 8:  Transient current induced at the center of the straight wire (L = 5 m, 
a = 1 cm, er = 10, d = 1 m).

-500
-400
-300
-200
-100

100
0

200
300
400
500
600

time (sec)

I (
A

)

FD TD

0.E+00 1.E-07 2.E-07 3.E-07 4.E-07 5.E-07

-600

-400

-200

0

200

400

600

time (sec)

d=1m d=10m d=20m

I (
A

)

0.0E+00 1.0E-07 2.0E-07 3.0E-07 4.0E-07 5.0E-07

Figure 9:  Transient current induced at the center of the straight wire (L = 5 m, 
a = 1 cm, er = 10) for various depths.
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As shown in Fig. 10 the initial delay of the transient waveform fi rst peak is sig-
nifi cantly infl uenced by the relative permittivity of a dielectric semi-infi nite 
medium erg. Also, time delay of the refl ections from the wire free ends is infl u-
enced by the velocity of the propagation in the dielectric medium. Smaller the 
value of erg, the greater is the velocity v while the oscillation period is decreased.

Figure 11 shows the transient response of the straight thin wire of length L = 50 m 
and radius a = 1 cm embedded in the dielectric half-space with er = 10 at the depth 
d = 1 m. The wire is illuminated by the EMP waveform (97). This transient 
response has been computed by means of the direct time domain and the indirect 
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Figure 10:  Transient response of the straight wires (L = 5 m, a = 1 cm) for various 
permittivity values.
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Figure 11:  Transient current induced at the center of the straight buried wire 
(L = 50 m, a = 1 cm, er = 10, d = 1 m).
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frequency domain method, respectively. The numerical results obtained by the dif-
ferent approaches agree favorably again.

Comparison of the transient current from Fig. 11 with the current waveform from 
Fig. 8 clearly shows the infl uence of the wire length on the transient behavior.

It is also evident from Fig. 5 that the dominant effect to the transient behavior of 
the induced current along the line is due to the multiple refl ections of the current 
wave from the line open ends.

There is a slight frequency shift in Figs 8 and 11 between the time domain and 
the frequency domain results, particularly for later time instants. Consequently, 
there are some points regarding the frequency domain modeling to be clarifi ed.

The transients of highly resonant structures have very long duration while their 
related frequency spectra contain sharp peaks. Coarse frequency resolution cannot 
resolve the resonant points accurately thus resulting in errors in transient wave-
forms.

The problem of analyzing transients of highly resonant structures in the fre-
quency domain is the inability to know beforehand the frequency resolution 
required for sampling the spectrum. Dynamic adaptive sampling can be used to 
overcome this problem and more details can be found in [4, 33]. An equivalent 
problem in analyzing transients in time domain is the inability to know the time 
duration of the waveform.

The related frequency spectrum of the impulse and the transient response of a 
50 m long line immersed in a dielectric medium, with er = 10 at depth d = 1 m is 
shown in Figs 12 and 13, respectively.

As it is visible from Figs 12 and 13, the frequency response spectra contain a 
number of peaks decreasing with frequency. Although the frequency range of these 
spectra is infi nite, signal amplitudes for the frequencies higher than 50 MHz are 
low enough to be neglected. On the other hand, the location and the amplitude 
values of the fi rst two peaks strongly affect the obtained transient waveform.

Therefore, it is very important for frequency samples to contain exact frequen-
cies of the fi rst two peaks. This could be achieved using the suffi ciently fi ne 
frequency step (resulting in large number of samples) or by means of the dynamic 
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Figure 12:  Frequency spectrum of the impulse response at the center of the straight 
wire (L = 50 m, a = 1 cm, er = 10, d = 1 m).
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adaptive sampling technique presented in [31]. In this section a number of N = 215 
samples over the frequency range of 50 MHz have been used in order to obtain a 
satisfactory convergence rate.

Since the current distribution evaluation for a single frequency takes around 30 
s (depending on the computer speed), the calculation of current amplitude for each 
sample is obviously impossible. Thus, about 150 samples over the 50 MHz fre-
quency range have been evaluated, while the rest of the samples have been inter-
polated using cubic splines.

The effect of the interface and the validity of the Fresnel refl ection coeffi cient 
approximation in modeling the interface should be discussed, as well.

A relatively short wire (L = 0.5 m) is chosen to describe the earth–air interface 
effect. Figure 14 shows the transient current induced at the center of 0.5 m long 
wire for various depths. As is obvious from Fig. 14, there is a slight variation in 
amplitude and waveform and time shift for depths d = 0.25, 1 and 2 m. Only the 
curve for d = 0.1 m clearly demonstrates the infl uence of the earth–air interface in 
both the amplitude and waveform of the actual transient response.

Figure 15 shows the behavior of the energy stored in the near fi eld of the wire, 
i.e. it represents the decrease of the wire total energy with time, once the exciting 
pulse vanishes.

Figure 15 also demonstrates the absorbing effect of the dielectric half-space 
when the wire is brought closer to the interface.

The evaluation of the validity of the proposed model is not an easy task, even in 
the frequency domain, and even for the simplifi ed case of a dielectric half-space. 
Generally, the validity of various approximations depends on the relationship 
between; the spectral content and the direction of the incident fi eld, the electrical 
properties of the earth, and to a lesser extent the burial depth of the line. The com-
putational aspects in the frequency domain modeling of thin wire antennas in the 
presence of a lossy half-space have been reported in a number of papers and among 
the most cited ones are references [15, 16].
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The frequency domain analysis of the buried wire scatterer has been carried out 
via the rigorous Sommerfeld integral [17], and via the approximate refl ection coef-
fi cient approach [18], respectively, to account for the infl uence of the earth–air 
interface refl ected fi eld upon the straight wire scatterer current distribution.

Figure 14:  Transient current induced at the center of the straight wire (L = 0.5 m, 
a = 1 cm, er = 10) for various depths.

-60

-40

-20

0

20

40

60

80

time (sec)

I(
A

)
d=0.25md=0.1m

d=1m d=2m

0.0E+00 1.0E-08 2.0E-08 3.0E-08 4.0E-08 5.0E-08

Figure 15:  The measure of total energy (Wtot) as a function of time for various 
depths.



250 Electromagnetic Field Interaction with Transmission Lines

The Sommerfeld integral approach has been found to be numerically stable and 
reliable for straight horizontal line brought to within 10–6 wavelengths of the inter-
face [16, 17]. The rigorous and approximate results are in a very good agreement 
for depths greater or at least equal to [23]:
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As a rough guideline, the Fresnel refl ection coeffi cient approach to account for the 
refl ection from the earth–air interface has been found to produce results generally 
within 10% of those obtained using rigorous, but computationally very expensive, 
Sommerfeld integral approach.

Furthermore, for wire depths:
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the qualitative dependence of the input admittance (obtained by using the refl ec-
tion coeffi cient approach) upon depth is found to be generally correct, but these 
results primarily differ from the rigorous results due to a slight shift in the maxima 
with respect to depth.

Essentially, from the time domain point of view this condition should be satis-
fi ed for each component of the considered frequency spectrum.

It is also necessary to make at least a general trade-off between a dielectric half-
space and an imperfectly conducting half-space. The absence of the ground con-
ductivity (or at least low values of ground conductivity) causes strong resonance 
effect, which is particularly noticeable in Figs 11–13.

From the findings in the frequency domain the increasing ground conduc-
tivity is expected to decrease the response rapidly. In the realistic problems 
such as wire immersed inside sea water, ground probing or ground penetrating 
radar conductivity should not be neglected. The influence of the finite conduc-
tivity reduces the external electric field and influences the behavior of the 
induced current. The finite conductivity can also delay the initial field. How-
ever, the corresponding Green’s function, which is responsible for the second 
effect, is much more complicated and has to be calculated via the Sommerfeld 
integral approach. In that case, one would need to perform additional integra-
tion in the Hallen equation and the problem would become tremendously time 
consuming.

To roughly estimate whether a dielectric half-space approximation of a dissipa-
tive half space can be used the absolute value of the refractive index of the earth 
should be examined.

This equation is given by
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Conductivity s should be at least an order of magnitude less than we0 to be 
neglected.

For example, a reasonably dry earth, erg = 10, in the frequency band from around 
1 kHz to 1 MHz requires the conductivity s to vary from 10–6 to 10–4 S/m.

To sum up, the numerical results obtained via the different approaches agree 
satisfactorily, i.e. the maximum deviation between the results is around 6%.

The transient response of the single straight wire immersed in a dielectric half-
space has been found to be infl uenced to a greater extent by the line length and the 
permittivity of a dielectric medium, and to a lesser extent by the burial depth.

The last set of numerical results deals with the transient analysis of a fi nite 
length wire immersed in a dielectric half-space using a simplifi ed refl ection/coef-
fi cient approach [29].

The computational example is related to the straight thin wire of length L = 10 m 
and radius a = 6.74 cm embedded in the dielectric half-space (er = 9) at a certain 
burial depth d. The wire is illuminated by the transmitted part of the EMP incident 
waveform (103) where the EMP parameters are: E0 = 1.05 kV/m, a = 4 × 106 s–1 
and b = 4.78 × 108 s–1.

The transient current induced at the wire center, for various depths, computed 
via both the Fresnel and the simplifi ed refl ection/transmission coeffi cient is shown 
in Figs 16 and 17.

As in the case of the Fresnel coeffi cients approach, the evaluation of the validity 
of the proposed refl ection/coeffi cient approximation is not an easy task, even for 
the case of a lossless dielectric half-space.

Figure 16:  Transient current induced at the center of the straight wire (L = 10 m, 
a = 6.74 cm, er = 9) at burial depth d = 2.5 m.
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It is obvious from Figs 16 and 17 that the obtained numerical results via simpli-
fi ed refl ection/coeffi cient approach agree satisfactorily with the results calculated 
via the Fresnel coeffi cients approach for earlier time instants and for increasing 
values of burial depth d.

References

Bridges, G.E., Transient plane wave coupling to bare and insulated cables  [1] 
buried in a lossy half-space. IEEE Trans. EMC, 37(1), pp. 62–70, 1995.
Grcev, L.D. & Menter, F.E., Transient electromagnetic fi elds near large  [2] 
earthing systems. IEEE Trans. Magnetics, 32, pp. 1525–1528, 1996.
Tesche, F., Ianoz, M. & Carlsson, F.,  [3] EMC Analysis Methods and Computa-
tional Models, John Wiley & Sons: New York, 1997.
Poljak, D. & Tham, C.Y.,  [4] Integral Equation Techniques in Electromagnetics, 
WIT Press: Southampton and Boston, 2003.
Ianoz, M., Electromagnetic fi eld coupling to lines, cables and networks, a  [5] 
review of problems and solutions. Proc. Int. Conf. on Electromagnetics in 
Advanced Applications, ICEAA’95, Turin, Italy, pp. 75–80, 12–15 September 
1997.
Tkatchenko, S., Rachidi, F. & Ianoz, M., High frequency electromagnetic  [6] 
fi eld coupling to long terminated lines. IEEE Trans. EMC, 43(2), pp. 117–
129, 2001.

Figure 17:  Transient current induced at the center of the straight wire (L = 10 m, 
a = 6.74 cm, er = 9) at burial depth d = 5 m.



Electromagnetic Field Coupling to Buried Wires 253

Tkatchenko, S., Rachidi, F. & Ianoz, M., Electromagnetic fi eld coupling to  [7] 
a line of a fi nite length: theory and fast iterative solutions in frequency and 
time domains. IEEE Trans. EMC, 37(4), pp. 509–518, 1995.
Poljak, D. & Roje, V., Time domain modeling of electromagnetic fi eld cou- [8] 
pling to transmission lines. Proc. 1988 IEEE EMC Symposium, Denver, 
USA, pp. 1010–1013, August 1997.
Poljak, D., Tham, C.Y., McCowen, A. & Roje, V., Electromagnetic pulse  [9] 
excitation of multiconductor transmission lines. ICEAA’99, Turin, Italy, pp. 
789–792, 13–17 September 1997.
Poljak, D., Miller, E.K. & Tham, C.Y., Time domain energy measures for [10] 
thin-wire antennas and scatterers. IEEE Antennas & Propagation Maga-
zine, 44(1), pp. 87–95, 2002.
Poljak, D., Tham, C.Y. & McCowen, A., Transient response of nonlinearly [11] 
loaded wires in a two media confi guration. IEEE Trans. EMC, 46(1), pp. 
121–125, 2004.
Degauque, P. & Zeddam, A., Remarks on the transmission approach to de-[12] 
termining the current induced on above-ground cables. IEEE Trans. EMC, 
30(1), pp. 77–80, 1997.
Poljak, D., [13] Electromagnetic Modelling of Wire Antenna Structures, WIT 
Press: Southampton, Boston, 2001.
Poljak, D., New numerical approach in analysis of thin wire radiating over [14] 
lossy half-space. International Journal for Numerical Methods in Engi-
neering, 38(22), pp. 3803–3816, 1995.
Miller, E.K., Poggio, A.J., Burke, G.J. & Selden, E.S., Analysis of wire anten-[15] 
nas in the presence of a conducting half-space, Part II. The horizontal antenna 
in free space. Canadian Journal of Physiscs, 50, pp. 2614–2627, 1972.
Burke, G.J. & Miller, E.K., Modelling antennas near to and penetrating a [16] 
lossy interface. IEEE Trans. AP, 32(10), pp. 1040–1049, 1984.
Poljak, D. & Roje, V., The integral equation method for ground wire input [17] 
impedance. Integral Methods in Science and Engineering, Vol. I Analytic 
Methods, eds C. Constanda, J. Saranen & S. Seikkala, Longman: New York, 
pp. 139–143, 1997.
Poljak, D., Electromagnetic modeling of fi nite length wires buried in a [18] 
lossy half-space. Engineering Analysis with Boundary Elements, 26, pp. 
81–86, 2002.
Doric, V., Poljak, D. & Roje, V., Transient plane wave coupling to a fi nite [19] 
length wire buried in a conductive ground. Boundary Elements, XVII, pp. 
609–617, 2005.
Poljak, D. & Brebbia, C.A., Indirect Galerkin–Bubnov boundary element [20] 
method for solving integral equations in electromagnetics. Engineering 
Analysis with Boundary Elements, 28(7), pp. 771–777, 2004
Ziemer, R.E. & Tranter, W.H., [21] Principles of Communications, Houghton 
Miffl in Company: Boston and Toronto, 1995.
King, R.W.P., Sforza, P.F. & Boak, T.I.S., The current in a parasitic antenna [22] 
in a dissipative medium. IEEE Trans. AP, 22(6), pp. 809–814, 1974.



254 Electromagnetic Field Interaction with Transmission Lines

Poljak, D. & Doric, V., Time domain modeling of electromagnetic fi eld [23] 
coupling to fi nite length wires embedded in a dielectric half-space. IEEE 
Trans. EMC, 47(2), pp. 247–253, 2005.
Miller, E.K. & Landt, J.A., Direct time-domain techniques for transient radia-[24] 
tion and scattering from wires. Proc. IEEE, 168(11), pp. 1396–1423, 1980.
Miller, E.K., PCs for AP and EM refl ections. [25] IEEE Antennas & Propaga-
tion Magazine, 40(1), pp. 96–100, 1998; 41(2), pp. 92–95, 1997.
Poljak, D., Miller, E.K., Tham, C.Y., Yoong, C., Antonijevic, S & Doric, [26] 
V., Time domain analysis of the energy stored in the near fi eld of mul-
tiple straight-wires above dielectric half-space. Proceedings of the ICEAA, 
Turin, September 2005.
Poljak, D., Time domain analysis of the energy stored in the near fi eld of [27] 
fi nite length wires embedded in a dielectric half-space. Proc. Int. Symp. on 
EMC, EMC Europe 2006, Barcelona, Spain, pp. 982–987, 4–8 September 
2006.
Poljak, D. & Kresic, S., A simplifi ed calculation of transient plane waves [28] 
in a presence of an imperfectly conducting half-space. Boundary Elements 
XXVII, Orlando, pp. 541–549, 2005.
Poljak, D. & Kovac, N., Transient analysis of a fi nite length line embed-[29] 
ded in a dielectric half-space using a simplifi ed refl ection/transmission 
coeffi cient approach. Submitted to ICEAA 2007 Conference, Turin, Italy, 
September 2007.
Rao, S.M., Sarkar, T.K. & Dianat, S.A., A novel technique to the solution [30] 
of transient electromagnetic scattering from thin wires. IEEE Trans. AP, 34, 
pp. 630–634, 1986.
Tijhuis, A.G., Peng, Z.Q. & Bretones, A.R., Transient excitation of a straight [31] 
thin-wire segment: a new look at an old problem. IEEE Trans. AP, 40(10), 
pp. 1132–1146, 1992.
Poljak, D., Transient response of resistively loaded straight thin wire in [32] 
half-space confi guration. Journ. Elctromagn. Waves and Applic., 12(6), pp. 
775–787, 1997.
Tham, C.Y., McCowen, A., Towers, M.S. & Poljak, D., Dynamic adaptive [33] 
sampling technique in frequency-domain transient analysis. IEEE Trans. 
EMC, 44(4), pp. 522–528, 2002.



antenna theory, 3–4, 159, 207, 221–3, 
225, 232–3, 243

antenna-mode currents, 5
asymptotic nature, 34
attenuation, 72–3, 90–1, 190, 214, 

230

bare wire, 83, 88–9, 93, 111, 113–14, 
118

Bessel’s functions, 27, 31, 84
BLT equations, 18–20
boundary condition, 9, 11–12, 17–18, 

33, 46, 52, 124–5, 130, 136, 142, 
146, 151, 174, 180, 193, 228

boundary element method, 221, 223
buried cable, 33, 82, 221–3
buried wires, 81–3, 85–7, 91–2, 

221–2, 232, 239

capacitance matrix, 16, 26, 50, 94, 
99, 107–8

carbon nanotubes, 187, 190
Carson’s ground impedance 

expression, 31
characteristic impedance, 19–20, 52, 

69, 88, 101, 154, 175, 178, 204, 
206, 214–15

commutative, 96
complex depth ground return, 31

complex refl ection coeffi cient, 135
associated with semi-infi nite line, 142
associated with the line bend, 150, 

153
complex transmission coeffi cient, 

145, 150
associated with the line bend, 150, 

153
conductance coeffi cient matrix, 26, 99
convolution, 17, 41, 46–50, 53, 74, 

106, 111, 113, 194, 236–8
coupling, 3–6, 8–13, 15, 17–18, 

20–1, 23, 25, 29, 33, 39, 45, 
54–65, 67, 69, 72, 74, 81, 93–5, 
98, 102, 105, 108–9, 111, 
113–18, 123–4, 127–9, 131, 138, 
149, 155, 159, 161, 169, 178, 
192, 200, 221–3

capacitive, 55, 57–9, 63–8, 72–3, 
114–15, 118

common impedance, 54–7, 63
inductive, 55–7, 60–8, 72–3, 

115–18
crosstalk noise, 211
crosstalk, 23, 40, 53–74, 79, 111, 

113–18, 211
capacitive, 55, 58–9, 64–7, 72–3, 

115
conductive, 59

Index



256 Index

crosstalk (continued)
inductive, 55, 61–5, 67–8, 73, 

116–18
current node, 46
current wave equations, 25, 41, 46, 

82, 88, 101
current, 4–5, 7–15, 18–19, 23–5, 27–

33, 37, 41, 45–8, 50–60, 62–74, 
79–80, 82, 87–8, 90, 92–3, 95–7, 
100–9, 111, 113, 115–18, 123–6, 
128–30, 133–6, 138, 141–3, 
145–51, 153–4, 156, 159–62, 
164–76, 178, 180–2, 184, 187, 
189–95, 197–8, 200–2, 204–9, 
211–13, 216, 223–4, 225–33, 
235–6, 238–40, 242, 244–52

antenna-mode currents, 5
scattered current, 12
transmission line mode currents, 5

diagonalize, 51
dissipative medium, 224
distortion, 72, 190
distributed sources, 18, 70

early time, 43–4, 221–2
eigenvalue, 50
electric fi eld integral equations 

(EFIE), 124, 145–6, 150, 156, 
161, 209

for the pair current–potential, 156
electric fi elds, 6, 8, 10–11, 16, 26, 

28–9, 31, 38, 55, 57, 70, 74, 124, 
125, 132–3, 141, 145–6, 150, 
156, 161, 163, 180, 201, 203, 
209, 223, 225, 231–2, 237–8, 
250

emitter, 23, 55, 62, 64–72
EMP, 123, 243–4, 246, 251
errors, 31, 36, 50, 84, 113, 118, 247
exciting electric fi eld, 11, 16, 125, 

133, 146, 163
exciting magnetic fi eld, 11
exponential approximation, 47, 50, 

85–6

external admittance, 38, 74
external impedance, 26–7, 30, 39, 74, 

93, 97

FDTD (fi nite difference time 
domain), 20, 45

fi eld illumination, 25, 41
fi eld-to-transmission line coupling 

equations, 3, 6, 8–10, 15, 17–18, 
20, 127

Agrawal, Price and Gurbaxani 
model, 10–11

frequency domain solutions, 18, 
21, 50, 52–4, 113, 138

Rachidi model, 11–12
Taylor, Satterwhite and Harrison 

model, 6, 9–11
time domain representation, 3, 17, 21
time domain solutions, 20, 24, 

53–4, 111, 222, 239
fi nite line (wire), 141
Fourier transform, 17–18, 42, 44, 50, 

53, 142, 174–6, 221–3, 229
frequency domain approach, 221–3, 

239, 244
frequency-dependent loss, 20, 206, 217
full-wave analysis, 189

generalized telegrapher’s equations, 
6, 8, 128

Green’s function, 18–20, 125–6, 128, 
147–8, 162, 174, 191–2, 196, 
198–200, 224, 235–6, 250

ground admittance, 15, 17, 37–41, 
74, 82, 87–9, 91, 99, 111, 118

ground impedance, 14, 16–18, 30–7, 
39–45, 47–50, 53–4, 69, 74, 77, 
82–9, 99, 109–12, 118

ground refl ected fi eld, 5, 125, 132, 
146, 180

grounding rods, 33
ground-refl ected fi elds, 5, 125, 146

Hankel function, 33, 132, 180, 199
high frequency approximation, 30



Index 257

higher-order modes, 4
high-frequency effects, 187, 189
horizontal electric fi eld, 70
horizontal magnetic fi eld, 70

impedance, 13–14, 16–20, 25–37, 
39–45, 47–58, 60–1, 63, 66–7, 
69–71, 73–4, 82–9, 93–5, 
97–112, 118, 154, 156, 159–61, 
172–6, 178–9, 182, 193, 195, 
204, 206–11, 214–15, 234

characteristic impedance, 19–20, 
52, 69, 88, 101, 154, 175, 178, 
204, 206, 214–15

ground impedance, 14, 16–18, 
30–7, 39–45, 47, 49–50, 53–4, 
69, 74, 82–9, 99, 109–12, 118

line longitudinal impedance, 13
wire internal impedance, 14

imperfect ground, 24, 28
incident fi eld, 5, 29–30, 125, 132, 

162, 223, 229, 233, 236–7, 245, 
248

inductance matrix, 16, 110
infi nite horizontal wire (line), 124, 

131–2, 142
infi nite integral, 31, 83, 111, 118
infi nitely long wire, 162
insulated cable, 90
integral equation formulation, 209, 238
integral expression, 34
integral formulation, 188–90, 217, 

223
internal impedance, 14, 25–30, 

39–40, 48, 50, 74, 98
internal losses, 24, 26
inverse Fourier transforms, 17, 42, 

44, 50
iterative approach, 124, 129, 135, 

146, 170, 178

Laplace transform, 86, 237
late time, 42–4
leaky current modes (eigenmodes), 

153, 176

leaky modes, 153, 160, 176
lightning induced voltage, 13
line parameters, 26, 39

line capacitance, 9, 13, 16, 26
line conductance, 9, 13, 16, 25–6
line inductance, 8–9, 13, 16
line longitudinal impedance, 13
line transverse admittance, 13, 38, 51

linear charge density, 38, 225
logarithmic approximation, 33, 84–5
low frequency approximation, 30–2, 

34–6, 77, 83–7, 89, 115, 149

magnetic fi elds, 5, 11, 31, 33, 37, 55, 
60, 62–4, 70, 72, 74, 87, 102, 
106, 188–9, 191–2

microstrips, 190
modal impedance and admittance, 51
mode conversion, 190, 211–12, 217
multiconductor transmission line 23, 

79, 82, 204
mutual impedance, 34, 42, 71, 85, 

100–3, 111

nano-interconnects, 190, 200, 213, 217
Norton theorem, 52
numerical integration, 47, 131, 140, 

152

open circuit, 65, 69, 73–4, 102–3, 
105–7, 109, 118, 127, 130, 
134–6, 139, 166, 169, 180, 
182–3

overhead wire, 27, 33, 37, 39–40, 
86–8, 92–3, 111, 113, 124, 141

parasitic waves, 199
printed circuit board lands, 23, 40
penetration depth, 28, 32, 34–7, 72, 

92–3, 193
perfect ground, 27–8, 30, 38, 53, 69, 

71, 73, 129, 196, 213
perturbation theory, 123, 129, 134, 

137, 139, 142, 150, 154, 160, 180



258 Index

per-unit-length capacitance, 9, 16, 
188, 195

per-unit-length inductance, 8–9, 129, 
156

phase velocity, 46
Pocklington equation, 135, 163, 236
Pocklington integral-differential 

equation, 132, 223, 225–7, 233, 
235

polarity, 64, 66–7
potential coeffi cient matrix, 28, 99
Poynting vector, 70
propagation constant, 14, 19–20, 27, 

30, 33–4, 39, 83–4, 87, 89, 111, 
196, 225–6

proximity effect, 196, 205–7, 244

quantum effects, 201
quasi-static approximation, 4, 84, 222
quasi-static fi eld, 37

radiation, 84, 129, 135–6, 138–9, 
143, 145, 149, 153–56, 160, 176, 
187, 189–90, 206, 208–9, 217

radiation current mode, 176
radiation mode, 160, 176
radiation resistance, 138–9, 154–5

associated with a straight line 
bend, 154–5

receptor, 23, 53–5, 57, 59, 64–76, 
114–17

recursive convolutions, 46–8, 50, 53, 
74, 111, 113

refl ection coeffi cient, 19–20, 27–8, 
134–7

scalar Green’s function, 125–6, 128, 
147–8, 162, 174

scattered current, 12
scattered fi eld, 5, 30, 223, 225, 233
scattered voltage, 10–11, 15, 19–20, 

127, 132, 138
scattering coeffi cients, 159–61, 164, 

166, 168, 171, 178
self-ground impedance, 33

semi-infi nite open-circuit wire (line), 
134, 139, 160, 169, 180, 182

semi-infi nite line (loaded), 156, 
163–5, 180, 182

Semlyen’s ground impedance 
expression, 44

short circuit, 65, 69, 73–4, 108–9, 
118, 168–71, 173, 207, 213

shunt admittance, 26, 37–8, 40, 88
singularity, 31, 34, 86–7, 190, 197
skin depth, 25, 28, 31–2
Sunde’s ground impedance expression, 

33, 44, 47
surge propagation, 13, 23, 79
switching, 23, 30, 42, 80, 82, 189, 216

telegrapher’s equation, 3, 6, 8, 24–5, 
45, 51, 79, 81, 95, 97, 124, 128, 
133, 142, 160, 195, 197

TEM mode, 4, 37, 138, 153, 160, 
176, 189

current wave, 24, 70, 72, 135–6, 
138, 145, 150–1, 159–61, 178, 
230, 247

Thevenin theorem, 52
thin-wire approximation, 3, 123, 125, 

146
time domain approach, 221–2, 231, 244
transient ground resistance, 18
transient, 17–18, 20–4, 28, 33, 42–4, 

47–50, 52, 54, 76–7, 82, 86, 89, 
94, 111, 118, 157, 185, 188, 
221–3, 228–33, 238–9, 243–9, 
251–4

ground impedance, 14, 16–18, 
30–7, 39–45, 47–50, 53–4, 69, 
74, 77, 82–9, 99, 109–12, 118

propagation, 4, 13–14, 19–20, 
22–4, 27, 29, 31, 33–5, 37, 39, 
41, 45, 53, 65, 71, 73–7, 79, 81, 
83, 85, 87, 89–91, 95, 99, 103, 
105, 111, 113, 118, 145, 157–8, 
160, 185, 187–90, 195–6, 204–5, 
212, 215, 217–20, 225–6, 234, 
239, 244, 246, 253



Index 259

protection, 24, 42, 76, 94
transmission line (TL) approximation, 

3–6, 8, 10, 14–15, 17–28, 30, 33, 
36–7, 39–41, 43–5, 48, 50–1, 74, 
76–84, 86, 91, 93–5, 97, 108, 
111–14, 118, 123, 127, 156–9, 
172, 176, 185–90, 192–3, 195, 
199, 201–2, 204, 213, 217–19, 
222, 231

transmission line mode currents, 5
transmission line model, 187–90, 

193, 195, 199, 201–2, 204, 213, 
217, 219, 222

transmission line, 3–6, 8, 10, 14–15, 
17–28, 30, 33, 36–41, 43–5, 48, 
50–1, 54, 70, 74–86, 88–95, 97, 
99–100, 103–5, 108, 110–14, 
118–223, 127, 155–9, 172, 176, 
185–90, 192–3, 195, 199, 201–4, 
213, 217–20, 222, 229–31, 253

analysis, 21–3, 36–7, 39–41, 50, 
52, 54–6, 67, 74–7, 79, 81, 83, 
86, 91, 94–5, 100, 113–14, 
118, 142, 157–8, 186, 189–90, 
217–19, 221–3, 232–3, 238, 243, 
249, 251–4

parameters, 5, 17, 23, 25–7, 37, 
39–41, 45, 52–4, 67, 74–5, 77, 
97–9, 108, 119, 1 56, 158, 
185, 195, 202–4, 214–15, 217, 
229–30, 244, 251

theory, 3–4, 12, 14, 21, 23–7, 29, 
37, 50, 75–6, 84, 91, 94, 118–24, 

127, 129, 131, 134, 137, 139, 
142, 150, 154, 156–60, 169–70, 
180–1, 183, 185–6, 188, 202–3, 
207, 217–19, 221–5, 232, 235, 
243, 253

transverse electric and magnetic, 29
transverse electromagnetic (TEM), 4, 

135, 160, 188

uncoupled form, 51
underground cable, 89, 121

vector fi tting, 47, 53, 106–7, 111–12
vectors, 15, 25, 51, 193–4
vertical electric fi eld, 11, 70, 74
VLSI interconnects, 206, 211
voltage node, 46
voltage wave equations, 25, 96
voltage, scattered voltage, 4–6, 

8–13, 15, 18–25, 28–30, 37, 41, 
45–6, 50–2, 55–7, 59, 61–8, 70, 
72, 74–6, 79–80, 82, 93, 95–6, 
100–3, 105–9, 111, 113–16, 
118, 127, 129, 132, 138, 145–6, 
156, 158, 160, 176, 185, 188–9, 
192–5, 197, 204–5, 207, 211, 228

wave propagation, 24, 33, 41, 74–6, 
79, 157–8, 219, 234

wavelength, 3–4, 28, 37, 56, 69, 
92–3, 108–9, 123, 128

weak coupling conditions, 55
wire internal impedance, 14



...for scientists by scientists

Computer Aided Design
of Wire Structures
Frequency and Time Domain Analysis
D. POLJAK, V. DORIC and
S. ANTONIJEVIC, University of Split,
Croatia
As an introduction to the integral equation
analysis of wire structures, this book and
enclosed software package contains the
user-friendly version of the boundary
element software for modelling the straight
thin wire arrays in both frequency and time
domain. This package is designed as a step-
by-step guide for postgraduate students,
researchers and also practising engineers
to learn CAD of wire antennas immersed
in inhomogeneous media. Some
electromagnetic compatibility (EMC)
applications can also be handled using this
package. The package contains a detailed
description of antenna theory, integral
equation modelling and full manuals for
software packages.
Series: Advances in Electrical
Engineering and Electromagnetics, Vol 3
ISBN: 978-1-85312-884-4  2007
160pp+CD-ROM
£79.00/US$139.00/€118.50

Integral Equations and
their Applications
M. RAHMAN, Dalhousie University,
Canada
For many years, the subject of functional
equations has held a prominent place in
the attention of mathematicians. In more
recent years this attention has been
directed to a particular kind of functional

WITPress
Ashurst Lodge, Ashurst,  Southampton,
SO40 7AA, UK.
Tel: 44 (0) 238 029 3223
Fax: 44 (0) 238 029 2853
E-Mail: witpress@witpress.com

equation, an integral equation, wherein the
unknown function occurs under the
integral sign. The study of this kind of
equation is sometimes referred to as the
inversion of a definite integral.
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on integral equations, this new book
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including some preliminary backgrounds
of formulations of integral equations
governing the physical situation of the
problems. It also contains elegant
analytical and numerical methods, and an
important topic of the variational
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undergraduate students and first year
postgraduate students of engineering and
science courses, students of mathematical
and physical sciences will also find many
sections of direct relevance.

The book contains eight chapters,
pedagogically organized. This book is
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understand integral equations without
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calculus, ordinary differential equations,
partial differential equations, Laplace
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In the last couple of decades the Boundary
Element Method (BEM) has become a
well-established technique that is widely
used for solving various problems in
electrical engineering and electromagnetics.
Although there are many excellent research
papers published in the relevant literature
that describe various BEM applications in
electrical engineering and electromagnetics,
there has been a lack of suitable textbooks
and monographs on the subject.
This book presents BEM in a simple
fashion in order to help the beginner to
understand the very basic principles of the
method. It initially derives BEM for the
simplest potential problems and
subsequently builds on these to formulate
BEM for a wide range of applications in
electromagnetics.
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the reader to solve more complex problems
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This book covers a class of numerical
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“Collocation Methods”. Different from the
Finite Element and the Finite Difference
Method, the discretization and
approximation of the collocation method
is based on a set of unstructured points in
space. This “meshless” feature is attractive
because it eliminates the bookkeeping
requirements of the “element” based
methods. This text discusses several types
of collocation methods including the radial
basis function method, the Trefftz method,
the Schwartz alternating method, and the
coupled collocation and finite element
method. Governing equations investigated
include Laplace, Poisson, Helmholtz and
bi-harmonic equations. Regular boundary
value problems, boundary value problems
with singularity, and eigenvalue problems
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many numerical experiments are also
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Vector analysis is one of the most useful
branches of mathematics. It is a highly
scientific field that is used in practical
problems arising in engineering and applied
sciences. Based on notes gathered
throughout the many years of teaching
vector calculus, the main purpose of the
book is to illustrate the application of
vector calculus to physical problems. The
theory is explained elegantly and clearly
and there is an abundance of solved
problems to manifest the application of
the theory. The beauty of this book is the
richness of practical applications. There
are nine chapters each of which contains
ample exercises at the end. A bibliography
list is also included for ready reference.
The book concludes with two appendices.
Appendix A contains answers to some
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