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PREFACE

The	 last	 two	 decades	 have	 witnessed	 an	 upsurge	 of	 interest	 and	 activity	 in
graph	 theory,	 particularly	 among	 applied	mathematicians	 and	 engineers.	 Clear
evidence	 of	 this	 is	 to	 be	 found	 in	 an	 unprecedented	 growth	 in	 the	 number	 of
papers	 and	 books	 being	 published	 in	 the	 field.	 In	 1957	 there	was	 exactly	 one
book	on	 the	 subject	 (namely,	König’s	Théorie	der	Endlichen	und	Unendlichen
Graphen).	Now,	sixteen	years	later,	there	are	over	two	dozen	textbooks	on	graph
theory,	 and	 almost	 an	 equal	 number	 of	 proceedings	 of	 various	 seminars	 and
conferences.
Each	book	has	its	own	strength	and	points	of	emphasis,	depending	on	the	axe

(or	 the	pen)	 the	 author	has	 to	grind.	 I	have	emphasized	 the	computational	 and
algorithmic	 aspects	 of	 graphs.	 This	 emphasis	 arises	 from	 the	 experience	 and
conviction	 that	 whenever	 graph	 theory	 is	 applied	 to	 solving	 any	 practical
problem	(be	it	in	electrical	network	analysis,	in	circuit	layout,	in	data	structures,
in	 operations	 research,	 or	 in	 social	 sciences),	 it	 almost	 always	 leads	 to	 large
graphs—graphs	 that	 are	 virtually	 impossible	 to	 analyze	without	 the	 aid	 of	 the
computer.	 An	 engineer	 often	 finds	 that	 those	 real-life	 problems	 that	 can	 be
modeled	 into	 graphs	 small	 enough	 to	 be	 worked	 on	 by	 hand	 are	 also	 small
enough	 to	 be	 solved	 by	means	 other	 than	 graph	 theory.	 (In	 this	 respect	 graph
theory	 is	 different	 from	 college	 algebra,	 elementary	 calculus,	 or	 complex
variables.)	In	fact,	the	high-speed	digital	computer	is	one	of	the	reasons	for	the
recent	growth	of	interest	in	graph	theory.
Convinced	that	a	student	of	applied	graph	theory	must	learn	to	enlist	the	help

of	 a	 digital	 computer	 for	 handling	 large	graphs,	 I	 have	 emphasized	 algorithms
and	their	efficiencies.	In	proving	theorems,	constructive	proofs	have	been	given
preference	over	nonconstructive	existence	proofs.	Chapter	11,	the	largest	in	the
book,	 is	 devoted	 entirely	 to	 computational	 aspects	 of	 graph	 theory,	 including
graph-theoretic	algorithms	and	samples	of	several	tested	computer	programs	for
solving	problems	on	graphs.	I	believe	this	approach	has	not	been	used	in	any	of
the	 earlier	 books	 on	 graph	 theory.	 The	material	 covered	 in	Chapter	 11	 and	 in
many	sections	from	other	chapters	is	appearing	for	the	first	time	in	any	textbook.



Yet	 the	applied	and	algorithmic	aspect	of	 this	book	has	not	been	allowed	 to
spoil	 the	 rigor	 and	 mathematical	 elegance	 of	 graph	 theory.	 Indeed,	 the	 book
contains	enough	material	for	a	course	in	“pure”	graph	theory.	The	book	has	been
made	as	much	self-contained	as	was	possible.
The	level	of	presentation	is	appropriate	for	advanced	undergraduate	and	first-

year	 graduate	 students	 in	 all	 disciplines	 requiring	 graph	 theory.	 The	 book	 is
organized	 so	 that	 the	 first	 half	 (Chapters	 1	 through	 9)	 serves	 as	 essential	 and
introductory	 material	 on	 graph	 theory.	 This	 portion	 requires	 no	 special
background,	 except	 some	 elementary	 concepts	 from	 set	 theory	 and	 matrix
algebra	and,	of	course,	a	certain	amount	of	mathematical	maturity.	Although	the
illustrations	of	applications	are	interwoven	with	the	theory	even	in	this	portion,
the	examples	selected	are	short	and	mostly	of	the	nature	of	puzzles	and	games.
This	is	done	so	that	a	student	in	almost	any	field	can	read	and	grasp	the	first	half.
The	second	half	of	the	book	is	more	advanced,	and	different	chapters	require

different	 backgrounds	 as	 they	 deal	 with	 applications	 to	 nontrivial,	 real-world,
complex	problems	in	different	fields.	Keeping	this	in	mind,	Chapters	10	through
15	have	been	made	independent	of	each	other.	One	could	study	a	 later	chapter
without	 going	 through	 the	 earlier	 ones,	 provided	 the	 first	 nine	 chapters	 have
been	covered.
Since	there	is	more	material	here	than	what	can	be	covered	in	a	one-semester

course,	it	is	suggested	that	the	contents	be	tailored	to	suit	the	requirements	of	the
students	in	different	disciplines,	for	example:

1. Electrical	Engineering:	Chapters	1–9,	and	11,	12,	and	13.

2. Computer	Science:	Chapters	1–9,	11,	12,	and	parts	of	10	and	15.

3. Operations	Research:	Chapters	1–9,	and	11,	14,	and	parts	of	15.

4. Applied	Mathematics:	Chapters	1–11	and	parts	of	15.

5. Introductory	“pure”	graph	theory:	Chapters	1–10.

In	 fact,	 the	 book	 grew	 out	 of	 a	 number	 of	 such	 courses	 and	 lecture-series
given	by	the	author	at	the	Jet	Propulsion	Laboratory,	California	State	University
at	Los	Angeles,	the	Indian	Institute	of	Technology	at	Kanpur,	and	the	University
of	Illinois	at	Urbana-Champaign.
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1	INTRODUCTION

1-1. WHAT	IS	A	GRAPH?

A	linear†	graph	(or	simply	a	graph)	G	=	(V,	E)	consists	of	a	set	of	objects	V	=
{v1	v2,	.	.	.}	called	vertices,	and	another	set	E	=	{e1’	e2,.	.	.},	whose	elements	are
called	edges,	such	that	each	edge	ek	is	identified	with	an	unordered	pair	(vi,	vj)	of
vertices.	The	vertices	vi	vj	associated	with	edge	ek	are	called	the	end	vertices	of
ek.	 The	most	 common	 representation	 of	 a	 graph	 is	 by	means	 of	 a	 diagram,	 in
which	 the	 vertices	 are	 represented	 as	 points	 and	 each	 edge	 as	 a	 line	 segment
joining	its	end	vertices.	Often	this	diagram	itself	is	referred	to	as	the	graph.	The
object	shown	in	Fig.	1-1,	for	instance,	is	a	graph.
Observe	that	this	definition	permits	an	edge	to	be	associated	with	a	vertex	pair

(vi,	vi).	Such	an	edge	having	the	same	vertex	as	both	its	end	vertices	is	called	a
self-loop	(or	simply	a	loop.	The	word	loop,	however,	has	a	different	meaning	in
electrical	 network	 theory;	 we	 shall	 therefore	 use	 the	 term	 self-loop	 to	 avoid
confusion).	Edge	e1	in	Fig.	1-1	is	a	self-loop.	Also	note	that	the	definition	allows
more	than	one	edge	associated	with	a	given	pair	of	vertices,	for	example,	edges
e4	and	e5	in	Fig.	1-1.	Such	edges	are	referred	to	as	parallel	edges.

Fig.	1-1	Graph	with	five	vertices	and	seven	edges.



A	graph	that	has	neither	self-loops	nor	parallel	edges	is	called	a	simple	graph.
In	some	graph-theory	literature,	a	graph	is	defined	to	be	only	a	simple	graph,	but
in	most	engineering	applications	it	is	necessary	that	parallel	edges	and	self-loops
be	 allowed;	 this	 is	 why	 our	 definition	 includes	 graphs	 with	 self-loops	 and/or
parallel	 edges.	 Some	 authors	 use	 the	 term	 general	 graph	 to	 emphasize	 that
parallel	edges	and	self-loops	are	allowed.
It	should	also	be	noted	that,	 in	drawing	a	graph,	it	 is	immaterial	whether	the

lines	 are	 drawn	 straight	 or	 curved,	 long	 or	 short:	 what	 is	 important	 is	 the
incidence	between	the	edges	and	vertices.	For	example,	the	two	graphs	drawn	in
Figs.	1-2(a)	and	(b)	are	the	same,	because	incidence	between	edges	and	vertices
is	the	same	in	both	cases.

Fig.	1-2	Same	graph	drawn	differently.

In	a	diagram	of	a	graph,	sometimes	two	edges	may	seem	to	intersect	at	a	point
that	 does	 not	 represent	 a	 vertex,	 for	 example,	 edges	 e	 and	 f	 in	 Fig.	 1-3.	 Such
edges	 should	 be	 thought	 of	 as	 being	 in	 different	 planes	 and	 thus	 having	 no
common	point.	(Some	authors	break	one	of	the	two	edges	at	such	a	crossing	to
emphasize	this	fact.)

Fig.	1-3	Edges	e	and	f	have	no	common	point.

A	graph	 is	 also	 called	 a	 linear	 complex,	 a	1-complex,	 or	 a	one-dimensional



complex.	A	vertex	is	also	referred	to	as	a	node,	a	junction,	a	point,	0-cell,	or	an
0-simplex.	Other	terms	used	for	an	edge	are	a	branch,	a	line,	an	element,	a	1-cell,
an	arc,	 and	 a	1-simplex.	 In	 this	 book	we	 shall	 generally	 use	 the	 terms	 graph,
vertex,	and	edge.

1-2. APPLICATIONS	OF	GRAPHS

Because	 of	 its	 inherent	 simplicity,	 graph	 theory	 has	 a	 very	 wide	 range	 of
applications	 in	 engineering,	 in	 physical,	 social,	 and	 biological	 sciences,	 in
linguistics,	and	in	numerous	other	areas.	A	graph	can	be	used	to	represent	almost
any	physical	situation	involving	discrete	objects	and	a	relationship	among	them.
The	following	are	four	examples	from	among	hundreds	of	such	applications.

Königsberg	Bridge	Problem:	The	Königsberg	bridge	problem	 is	perhaps	 the
best-known	 example	 in	 graph	 theory.	 It	 was	 a	 long-standing	 problem	 until
solved	 by	 Leonhard	 Euler	 (1707-1783)	 in	 1736,	 by	 means	 of	 a	 graph.	 Euler
wrote	the	first	paper	ever	in	graph	theory	and	thus	became	the	originator	of	the
theory	of	graphs	as	well	as	of	 the	rest	of	 topology.	The	problem	is	depicted	 in
Fig.	1-4.
Two	 islands,	C	 and	D,	 formed	by	 the	Pregel	River	 in	Königsberg	 (then	 the

capital	of	East	Prussia	but	now	renamed	Kaliningrad	and	in	West	Soviet	Russia)
were	connected	 to	each	other	and	 to	 the	banks	A	 and	B	with	seven	bridges,	as
shown	in	Fig.	1-4.	The	problem	was	to	start	at	any	of	the	four	land	areas	of	the
city,	A,	B,	C,	or	D,	walk	over	each	of	the	seven	bridges	exactly	once,	and	return
to	the	starting	point	(without	swimming	across	the	river,	of	course).
Euler	represented	this	situation	by	means	of	a	graph,	as	shown	in	Fig.	1-5.	The

vertices	represent	the	land	areas	and	the	edges	represent	the	bridges.
As	we	 shall	 see	 in	Chapter	 2,	Euler	 proved	 that	 a	 solution	 for	 this	 problem

does	not	exist.



Fig.	1-4	Königsberg	bridge	problem.

Fig.	1-5	Graph	of	Königsberg	bridge	problem.

The	Königsberg	bridge	problem	is	the	same	as	the	problem	of	drawing	figures
without	lifting	the	pen	from	the	paper	and	without	retracing	a	line	(Problems	2-1
and	 2-2).	 We	 all	 have	 been	 confronted	 with	 such	 problems	 at	 one	 time	 or
another.

Utilities	Problem:	There	are	three	houses	(Fig.	1-6)	H1,	H2,	and	H3,	each	to	be
connected	to	each	of	the	three	utilities—water	(W),	gas	(G),	and	electricity	(E)—
by	 means	 of	 conduits.	 Is	 it	 possible	 to	 make	 such	 connections	 without	 any
crossovers	of	the	conduits?

Fig.	1-6	Three-utilities	problem.

Figure	 1-7	 shows	 how	 this	 problem	 can	 be	 represented	 by	 a	 graph—the
conduits	 are	 shown	 as	 edges	 while	 the	 houses	 and	 utility	 supply	 centers	 are
vertices.	As	we	shall	see	in	Chapter	5,	the	graph	in	Fig.	1-7	cannot	be	drawn	in
the	plane	without	edges	crossing	over.	Thus	the	answer	to	the	problem	is	no.

Electrical	Network	Problems:	Properties	(such	as	 transfer	function	and	input
impedance)	of	an	electrical	network	are	functions	of	only	two	factors:

1. The	 nature	 and	 value	 of	 the	 elements	 forming	 the	 network,	 such	 as



resistors,	inductors,	transistors,	and	so	forth.

2. The	way	these	elements	are	connected	together,	that	is,	the	topology	of	the
network.

Fig.	1-7	Graph	of	three-utilities	problem.

Since	there	are	only	a	few	different	types	of	electrical	elements,	the	variations
in	networks	are	chiefly	due	to	the	variations	in	topology.	Thus	electrical	network
analysis	 and	 synthesis	 are	 mainly	 the	 study	 of	 network	 topology.	 In	 the
topological	 study	 of	 electrical	 networks,	 factor	 2	 is	 separated	 from	 1	 and	 is
studied	independently.	The	advantage	of	this	approach	will	be	clearer	in	Chapter
13,	a	chapter	devoted	solely	to	applying	graph	theory	to	electrical	networks.
The	 topology	 of	 a	 network	 is	 studied	 by	means	 of	 its	 graph.	 In	 drawing	 a

graph	 of	 an	 electrical	 network	 the	 junctions	 are	 represented	 by	 vertices,	 and
branches	 (which	 consist	 of	 electrical	 elements)	 are	 represented	 by	 edges,
regardless	of	the	nature	and	size	of	the	electrical	elements.	An	electrical	network
and	its	graph	are	shown	in	Fig.	1-8.



Fig.	1-8	Electrical	network	and	its	graph.

Seating	Problem:	Nine	members	of	a	new	club	meet	each	day	for	lunch	at	a
round	table.	They	decide	to	sit	such	that	every	member	has	different	neighbors	at
each	lunch.	How	many	days	can	this	arrangement	last?
This	situation	can	be	represented	by	a	graph	with	nine	vertices	such	that	each

vertex	 represents	 a	 member,	 and	 an	 edge	 joining	 two	 vertices	 represents	 the
relationship	of	sitting	next	to	each	other.	Figure	1-9	shows	two	possible	seating
arrangements—these	are	1	2	3	4	5	6	7	8	91	(solid	lines),	and	1	3	5	2	7	4	9	6	8	1
(dashed	lines).	 It	can	be	shown	by	graph-theoretic	considerations	 that	 there	are
only	two	more	arrangements	possible.	They	are	1573928461	and	1	7	9	5	8	3	6	2
4	1.	 In	general	 it	 can	be	 shown	 that	 for	n	 people	 the	number	of	 such	possible
arrangements	is

Fig.	1-9	Arrangements	at	a	dinner	table.



and

The	 reader	 has	 probably	 noticed	 that	 three	 of	 the	 four	 examples	 of
applications	above	are	puzzles	and	not	engineering	problems.	This	was	done	to
avoid	introducing	at	this	stage	background	material	not	pertinent	to	graph	theory.
More	substantive	applications	will	follow,	particularly	in	the	last	four	chapters.

1-3. FINITE	AND	INFINITE	GRAPHS

Although	in	our	definition	of	a	graph	neither	the	vertex	set	V	nor	the	edge	set
E	need	be	finite,	in	most	of	the	theory	and	almost	all	applications	these	sets	are
finite.	A	 graph	with	 a	 finite	 number	 of	 vertices	 as	well	 as	 a	 finite	 number	 of
edges	 is	 called	 a	 finite	 graph;	 otherwise,	 it	 is	 an	 infinite	 graph.	The	 graphs	 in
Figs.	1-1,	1-2,	1-5,	1-7,	and	1-8	are	all	examples	of	finite	graphs.	Portions	of	two
infinite	graphs	are	shown	in	Fig.	1-10.

Fig.	1-10	Portions	of	two	infinite	graphs.

In	 this	 book	 we	 shall	 confine	 ourselves	 to	 the	 study	 of	 finite	 graphs,	 and
unless	otherwise	stated	the	term	“graph”	will	always	mean	a	finite	graph.



1-4. INCIDENCE	AND	DEGREE

When	 a	 vertex	 vi	 is	 an	 end	 vertex	 of	 some	 edge	 ej,	 vi	 and	 ej	 are	 said	 to	 be
incident	with	(on	or	to)	each	other.	In	Fig.	1-1,	for	example,	edges	e2,	e6,	and	e7
are	incident	with	vertex	v4.	Two	nonparallel	edges	are	said	to	be	adjacent	if	they
are	incident	on	a	common	vertex.	For	example,	e2	and	e7	in	Fig.	1-1	are	adjacent.
Similarly,	two	vertices	are	said	to	be	adjacent	if	they	are	the	end	vertices	of	the
same	edge.	In	Fig.	1-1,	v4	and	v5	are	adjacent,	but	v1	and	v4	are	not.
The	number	of	edges	incident	on	a	vertex	vi,	with	self-loops	counted	twice,	is

called	 the	degree,	d(vi)	 of	 vertex	 vi.	 In	 Fig.	 1-1,	 for	 example,	d(v1)	 =	d(v3)	 =
d(v4)	 =	 3,	d(v2)	 =	 4,	 and	d(v5)	 =	 1.	 The	 degree	 of	 a	 vertex	 is	 sometimes	 also
referred	to	as	its	valency.

Fig.	1-11	A	graph	with	five	vertices	and	seven	edges.

Let	us	now	consider	 a	graph	G	with	e	 edges	 and	n	 vertices	v1,	v2,	 .	 .	 .	 ,	vn.
Since	each	edge	contributes	two	degrees,	the	sum	of	the	degrees	of	all	vertices	in
G	is	twice	the	number	of	edges	in	G.	That	is,

Taking	Fig.	1-1	as	an	example,	once	more,

d(v1)	+	d(	v2)	+	d(v3)	+	d(v4)	+	d(v5)
=	3	+	4	+	3	+	3+1	=	14	=	twice	the	number	of	edges.

From	Eq.	(1-1)	we	shall	derive	the	following	interesting	result.



THEOREM	1-1

The	number	of	vertices	of	odd	degree	in	a	graph	is	always	even.

Proof:	 If	we	consider	 the	vertices	with	odd	and	even	degrees	separately,	 the
quantity	 in	 the	left	side	of	Eq.	(1-1)	can	be	expressed	as	 the	sum	of	 two	sums,
each	taken	over	vertices	of	even	and	odd	degrees,	respectively,	as	follows:

Since	 the	 left-hand	 side	 in	Eq.	 (1-2)	 is	 even,	 and	 the	 first	 expression	on	 the
right-hand	 side	 is	 even	 (being	 a	 sum	of	 even	numbers),	 the	 second	 expression
must

Because	in	Eq.	(1-3)	each	d(vk)	 is	odd,	 the	total	number	of	terms	in	the	sum
must	be	even	to	make	the	sum	an	even	number.	Hence	the	theorem.?

A	graph	in	which	all	vertices	are	of	equal	degree	is	called	a	regular	graph	(or
simply	a	regular).	The	graph	of	three	utilities	shown	in	Fig.	1-7	is	a	regular	of
degree	three.	

1-5. ISOLATED	VERTEX,	PENDANT	VERTEX,	AND	NULL
GRAPH

A	vertex	having	no	incident	edge	is	called	an	isolated	vertex.	In	other	words,
isolated	vertices	are	vertices	with	zero	degree.	Vertices	v4	and	v7	in	Fig.	1-11,	for
example,	are	isolated	vertices.	A	vertex	of	degree	one	is	called	a	pendant	vertex
or	an	end	vertex.	Vertex	v3	in	Fig.	1-11	is	a	pendant	vertex.	Two	adjacent	edges
are	said	to	be	in	series	if	their	common	vertex	is	of	degree	two.	In	Fig.	1-11,	the
two	edges	incident	on	v1	are	in	series.



Fig.	1-11	Graph	containing	isolated	vertices,	series	edges,	and	a	pendant	vertex.

In	the	definition	of	a	graph	G	=	(V,	E),	it	is	possible	for	the	edge	set	E	to	be
empty.	Such	a	graph,	without	any	edges,	is	called	a	null	graph.	In	other	words,
every	vertex	in	a	null	graph	is	an	isolated	vertex.	A	null	graph	of	six	vertices	is
shown	in	Fig.	1-12.	Although	the	edge	set	E	may	be	empty,	the	vertex	set	V	must
not	be	empty;	otherwise,	there	is	no	graph.	In	other	words,	by	definition,	a	graph
must	have	at	least	one	vertex.	†

Fig.	1-12	Null	graph	of	six	vertices.

1-6. A	BRIEF	HISTORY	OF	GRAPH	THEORY

As	mentioned	 before,	 graph	 theory	was	 born	 in	 1736	with	 Euler’s	 paper	 in
which	he	solved	the	Königsberg	bridge	problem	[1-4].†	For	the	next	100	years
nothing	more	was	done	in	the	field.
In	1847,	G.	R.	Kirchhoff	(1824-1887)	developed	the	theory	of	trees	for	their

applications	in	electrical	networks	[1-6].	Ten	years	later,	A.	Cayley	(1821-1895)
discovered	 trees	 while	 he	 was	 trying	 to	 enumerate	 the	 isomers	 of	 saturated



hydrocarbons	CnH2n	+	2	[1-3].
About	the	time	of	Kirchhoff	and	Cayley,	two	other	milestones	in	graph	theory

were	 laid.	One	was	 the	 four-color	conjecture,	which	states	 that	 four	colors	are
sufficient	for	coloring	any	atlas	(a	map	on	a	plane)	such	that	the	countries	with
common	boundaries	have	different	colors.
It	 is	 believed	 that	 A.	 F.	 Möbius	 (1790-1868)	 first	 presented	 the	 four-color

problem	 in	 one	 of	 his	 lectures	 in	 1840.	 About	 10	 years	 later,	 A.	 De	Morgan
(1806-1871)	discussed	this	problem	with	his	fellow	mathematicians	in	London.
De	Morgan’s	letter	is	the	first	authenticated	reference	to	the	four-color	problem.
The	problem	became	well	known	after	Cayley	published	 it	 in	1879	 in	 the	 first
volume	 of	 the	Proceedings	 of	 the	 Royal	Geographic	 Society.	 To	 this	 day,	 the
four-color	 conjecture	 is	 by	 far	 the	 most	 famous	 unsolved	 problem	 in	 graph
theory;	it	has	stimulated	an	enormous	amount	of	research	in	the	field	[1-11].
The	 other	milestone	 is	 due	 to	 Sir	W.	R.	Hamilton	 (1805-1865).	 In	 the	 year

1859	he	invented	a	puzzle	and	sold	it	for	25	guineas	to	a	game	manufacturer	in
Dublin.	The	puzzle	consisted	of	a	wooden,	regular	dodecahedron	(a	polyhedron
with	12	faces	and	20	corners,	each	face	being	a	regular	pentagon	and	three	edges
meeting	at	each	corner;	see	Fig.	2-21).	The	corners	were	marked	with	the	names
of	20	important	cities:	London,	NewYork,	Delhi,	Paris,	and	so	on.	The	object	in
the	 puzzle	 was	 to	 find.	 a	 route	 along	 the	 edges	 of	 the	 dodecahedron,	 passing
through	each	of	the	20	cities	exactly	once	[1-12].
Although	 the	solution	of	 this	 specific	problem	 is	easy	 to	obtain	 (as	we	shall

see	in	Chapter	2),	to	date	no	one	has	found	a	necessary	and	sufficient	condition
for	 the	 existence	 of	 such	 a	 route	 (called	 Hamiltonian	 circuit)	 in	 an	 arbitrary
graph.
This	fertile	period	was	followed	by	half	a	century	of	relative	inactivity.	Then	a

resurgence	of	interest	in	graphs	started	during	the	1920s.	One	of	the	pioneers	in
this	period	was	D.	König.	He	organized	 the	work	of	other	mathematicians	and
his	own	and	wrote	the	first	book	on	the	subject,	which	was	published	in	1936	[1-
7].
The	past	30	years	has	been	a	period	of	intense	activity	in	graph	theory—	both

pure	and	applied.	A	great	deal	of	 research	has	been	done	and	 is	being	done	 in
this	area.	Thousands	of	papers	have	been	published	and	more	than	a	dozen	books
written	during	the	past	decade.	Among	the	current	leaders	in	the	field	are	Claude
Berge,	Oystein	Ore	 (recently	 deceased),	Paul	Erdös,	William	Tutte,	 and	Frank
Harary.

SUMMARY



SUMMARY

In	this	chapter	some	basic	concepts	of	graph	theory	have	been	introduced,	and
some	elementary	results	have	been	obtained.	An	attempt	has	also	been	made	to
show	that	graphs	can	be	used	to	represent	almost	any	problem	involving	discrete
arrangements	 of	 objects,	 where	 concern	 is	 not	 with	 the	 internal	 properties	 of
these	objects	but	with	the	relationships	among	them.
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PROBLEMS

1-1. Draw	all	simple	graphs	of	one,	two,	three,	and	four	vertices.
1-2. Draw	graphs	representing	problems	of	(a)	two	houses	and	three	utilities;

(b)	 four	 houses	 and	 four	 utilities,	 say,	 water,	 gas,	 electricity,	 and
telephone.

1-3. Name	10	 situations	 (games,	 activities,	 real-life	 problems,	 etc.)	 that	 can
be	 represented	 by	means	 of	 graphs.	 Explain	 what	 the	 vertices	 and	 the
edges	denote.

1-4. Draw	the	graph	of	the	Wheatstone	bridge	circuit.
1-5. Draw	graphs	of	 the	following	chemical	compounds:	(a)	CH4,	 (b)	C2H6,

(c)	 C6H6,	 (d)	 N2O3.	 (Hint:	 Represent	 atoms	 by	 vertices	 and	 chemical
bonds	between	them	by	edges.)

1-6. Draw	a	graph	with	64	vertices	representing	the	squares	of	a	chessboard.
Join	 these	vertices	appropriately	by	edges,	each	 representing	a	move	of
the	knight.	You	will	see	that	in	this	graph	every	vertex	is	of	degree	two,
three,	four,	six,	or	eight.	How	many	vertices	are	of	each	type?

1-7. Given	a	maze	as	shown	in	Fig.	1-13,	represent	this	maze	by	means	of	a
graph	 such	 that	 a	 vertex	 denotes	 either	 a	 corridor	 or	 a	 dead	 end	 (as
numbered).	 An	 edge	 represents	 a	 possible	 path	 between	 two	 vertices.
(This	is	one	of	numerous	mazes	that	were	drawn	or	built	by	the	Hindus,
Greeks,	Romans,	Vikings,	Arabs,	etc.)



Fig.	1-13	A	maze.

1-8. Decanting	problem.	You	are	given	three	vessels	A,	B,	and	C	of	capacities
8,	 5,	 and	3	 gallons,	 respectively.	A	 is	 filled,	while	B	 and	C	 are	 empty.
Divide	the	liquid	in	A	into	two	equal	quantities.	[Hint:	Let	a,	b,	and	c	be
the	amounts	of	liquid	in	A,	B,	and	C,	respectively.	We	have	a	+	b	+	c	=	8
at	all	 times.	Since	at	 least	one	of	 the	vessels	 is	always	empty	or	full,	at
least	one	of	the	following	equations	must	always	be	satisfied:	a	=	0,	a	=
8;	b	=	0,	b	=	5;	c	=	0,	c	=	3.	You	will	find	that	with	these	constraints	there
are	16	possible	states	(situations)	in	this	process.	Represent	this	problem
by	means	of	a	16-vertex	graph.	Each	vertex	stands	 for	a	state	and	each
edge	 for	 a	 permissible	 change	 of	 states	 between	 its	 two	 end	 vertices.
Now	when	you	look	at	this	graph	it	will	be	clear	to	you	how	to	go	from
state	(8,	0,	0)	to	state	(4,	4,	0).]	This	is	the	classical	decanting	problem.

1-9. Convince	 yourself	 that	 an	 infinite	 graph	with	 a	 finite	 number	 of	 edges
(i.e.,	 a	 graph	with	 a	 finite	 number	 of	 edges	 and	 an	 infinite	 number	 of
vertices)	must	have	an	infinite	number	of	isolated	vertices.

1-10. Show	that	an	infinite	graph	with	a	finite	number	of	vertices	(i.e.,	a	graph
with	 a	 finite	 number	 of	 vertices	 and	 an	 infinite	 number	 of	 edges)	will
have	at	 least	one	pair	of	vertices	 (or	one	vertex	 in	case	of	parallel	self-



loops)	joined	by	an	infinite	number	of	parallel	edges.
1-11. Convince	 yourself	 that	 the	maximum	degree	 of	 any	 vertex	 in	 a	 simple

graph	with	n	vertices	is	n	–	1.
1-12. Show	 that	 the	 maximum	 number	 of	 edges	 in	 a	 simple	 graph	 with	 n

vertices	is	n(n	–	l)/2.

†The	adjective	“linear”	is	dropped	as	redundant	in	our	discussions,	because	by	a	graph	we	always	mean	a
linear	graph.	There	is	no	such	thing	as	a	nonlinear	graph
†Some	authors	(see,	for	example,	[2-9],	p.	1,	or	[15-58],	p.	17)	do	allow	the	case	in	which	the	vertex	set	V	is
also	empty.	This	they	call	the	null	graph,	and	they	call	a	graph	with	E	=	Ø	and	V	≠	Ø	a	vertex	graph.	For
our	 purposes	 this	 distinction	 is	 of	 no	 consequence.	 For	 a	 lively	 discussion	 on	 paradoxes	 arising	 out	 of
different	definitions	of	the	null	graph,	see	pp.	40-41	in	Theory	of	Graphs:	a	Basis	for	Network	Theory,	by	L.
M.	Maxwell	and	M.	B.	Reed	(Pergamon	Press,	N.	Y.	1971).
†	Bracketed	numbers	refer	to	references	at	the	end	of	chapters.



2	PATHS	AND	CIRCUITS

This	chapter	serves	two	purposes.	The	first	is	to	introduce	additional	concepts
and	 terms	 in	 graph	 theory.	 These	 concepts,	 such	 as	 paths,	 circuits,	 and	 Euler
graphs,	 deal	 mainly	 with	 the	 nature	 of	 connectivity	 in	 graphs.	 The	 degree	 of
vertices,	which	is	a	local	property	of	each	vertex,	will	be	shown	to	be	related	to
the	more	global	properties	of	the	graph.
The	 second	 purpose	 is	 to	 illustrate	 with	 examples	 how	 to	 solve	 actual

problems	using	graph	theory.	The	celebrated	Königsberg	bridge	problem,	which
was	 introduced	 in	 Chapter	 1,	 will	 be	 solved.	 The	 solution	 of	 the	 seating
arrangement	problem,	also	introduced	in	Chapter	1,	will	be	obtained	by	means	of
Hamiltonian	 circuits.	 A	 third	 problem,	 which	 involves	 stacking	 four
multicolored	 cubes,	 will	 also	 be	 solved.	 These	 three	 unrelated	 problems	 will
demonstrate	the	problem-solving	power	of	graph	theory.	The	reader	may	attempt
to	solve	these	problems	without	using	graphs;	the	difficulty	of	such	an	approach
will	quickly	convince	him	of	the	value	of	graph	theory.

2-1. ISOMORPHISM

In	geometry	two	figures	are	thought	of	as	equivalent	(and	called	congruent)	if
they	 have	 identical	 behavior	 in	 terms	 of	 geometric	 properties.	 Likewise,	 two
graphs	are	thought	of	as	equivalent	(and	called	isomorphic)	if	they	have	identical
behavior	 in	 terms	of	graph-theoretic	properties.	More	precisely:	Two	graphs	G
and	 G′	 are	 said	 to	 be	 isomorphic	 (to	 each	 other)	 if	 there	 is	 a	 one-to-one
correspondence	 between	 their	 vertices	 and	 between	 their	 edges	 such	 that	 the
incidence	 relationship	 is	 preserved.	 In	 other	 words,	 suppose	 that	 edge	 e	 is
incident	on	vertices	v1	and	v2	in	G;	then	the	corresponding	edge	e′	in	G′	must	be
incident	on	the	vertices	v′1	and	v′2	that	correspond	to	v1	and	v2,	respectively.	For
example,	 one	 can	 verify	 that	 the	 two	 graphs	 in	 Fig.	 2-1	 are	 isomorphic.	 The
correspondence	between	the	two	graphs	is	as	follows:	The	vertices	a,	b,	c,	d,	and



e	correspond	to	v1,	v2,	v3,	v4,	and	v5,	respectively.	The	edges	1,	2,	3,	4,	5,	and	6
correspond	to	e1,	e2,	e3,	e4,	e5,	and	e6,	respectively.

Fig.	2-1	Isomorphic	graphs.

Except	 for	 the	 labels	 (i.e.,	 names)	 of	 their	 vertices	 and	 edges,	 isomorphic
graphs	are	the	same	graph,	perhaps	drawn	differently.	As	indicated	in	Chapter	1,
a	given	graph	can	be	drawn	in	many	different	ways.	For	example,	Fig.	2-2	shows
two	different	ways	of	drawing	the	same	graph.

Fig.	2-2	Isomorphic	graphs.

It	is	not	always	an	easy	task	to	determine	whether	or	not	two	given	graphs	are
isomorphic.	For	instance,	the	three	graphs	shown	in	Fig.	2-3	are	all	isomorphic,
but	 just	by	looking	at	 them	you	cannot	tell	 that.	It	 is	 left	as	an	exercise	for	 the
reader	to	show,	by	redrawing	and	labeling	the	vertices	and	edges,	that	the	three
graphs	in	Fig.	2-3	are	isomorphic	(see	Problem	2-3).
It	 is	 immediately	 apparent	 by	 the	 definition	 of	 isomorphism	 that	 two

isomorphic	graphs	must	have

1. The	same	number	of	vertices.

2. The	same	number	of	edges.

3. An	equal	number	of	vertices	with	a	given	degree.



Fig.	2-3	Isomorphic	graphs.

Fig.	2-4	Two	graphs	that	are	not	isomorphic.

However,	 these	 conditions	 are	 by	 no	 means	 sufficient.	 For	 instance,	 the	 two
graphs	shown	in	Fig.	2-4	satisfy	all	three	conditions,	yet	they	are	not	isomorphic.
That	 the	 graphs	 in	 Figs.	 2-4(a)	 and	 (b)	 are	 not	 isomorphic	 can	 be	 shown	 as
follows:	 If	 the	 graph	 in	 Fig.	 2-4(a)	 were	 to	 be	 isomorphic	 to	 the	 one	 in	 (b),
vertex	 x	 must	 correspond	 to	 y,	 because	 there	 are	 no	 other	 vertices	 of	 degree
three.	Now	in	(b)	there	is	only	one	pendant	vertex,	w,	adjacent	to	y,	while	in	(a)
there	are	two	pendant	vertices,	u	and	v,	adjacent	to	x.
Finding	a	 simple	 and	efficient	 criterion	 for	detection	of	 isomorphism	 is	 still

actively	 pursued	 and	 is	 an	 important	 unsolved	 problem	 in	 graph	 theory.	 In
Chapter	11	we	shall	discuss	various	proposed	algorithms	and	their	programs	for
automatic	detection	of	isomorphism	by	means	of	a	computer.	For	now,	we	move
to	a	different	topic.

2-2. SUBGRAPHS

A	graph	g	is	said	to	be	a	subgraph	of	a	graph	G	if	all	the	vertices	and	all	the
edges	of	g	are	in	G,	and	each	edge	of	g	has	the	same	end	vertices	in	g	as	in	G.



For	 instance,	 the	 graph	 in	 Fig.	 2-5(b)	 is	 a	 subgraph	 of	 the	 one	 in	 Fig.	 2-5(a).
(Obviously,	when	considering	a	subgraph,	the	original	graph	must	not	be	altered
by	 identifying	 two	 distinct	 vertices,	 or	 by	 adding	 new	 edges	 or	 vertices.)	 The
concept	of	 subgraph	 is	akin	 to	 the	concept	of	 subset	 in	set	 theory.	A	subgraph
can	be	thought	of	as	being	contained	in	(or	a	part	of)	another	graph.	The	symbol
from	set	theory,	g	⊂	G,	is	used	in	stating	“g	is	a	subgraph	of	G.”

Fig.	2-5	Graph	(a)	and	one	of	its	subgraphs	(b).

The	following	observations	can	be	made	immediately:

1. Every	graph	is	its	own	subgraph.

2. A	subgraph	of	a	subgraph	of	G	is	a	subgraph	of	G.

3. A	single	vertex	in	a	graph	G	is	a	subgraph	of	G.

4. A	single	edge	in	G,	together	with	its	end	vertices,	is	also	a	subgraph	of

Edge-Disjoint	Subgraphs:	Two	 (or	more)	 subgraphs	g1	 and	g2	 of	 a	graph	G
are	said	to	be	edge	disjoint	if	g1	and	g2	do	not	have	any	edges	in	common.	For
example,	 the	 two	graphs	 in	Figs.	2-7(a)	and	 (b)	are	edge-disjoint	 subgraphs	of
the	graph	 in	Fig.	2-6.	Note	 that	although	edge-disjoint	graphs	do	not	have	any
edge	 in	 common,	 they	 may	 have	 vertices	 in	 common.	 Subgraphs	 that	 do	 not
even	have	vertices	in	common	are	said	to	be	vertex	disjoint,	(Obviously,	graphs
that	have	no	vertices	in	common	cannot	possibly	have	edges	in	common.)

2-3. A	PUZZLE	WITH	MULTICOLORED	CUBES

Now	we	shall	take	a	brief	pause	to	illustrate,	with	an	example,	how	a	problem



can	be	solved	by	using	graphs.	Two	steps	are	involved	here:	First,	the	physical
problem	is	converted	into	a	problem	of	graph	theory.	Second,	 the	graph-theory
problem	 is	 then	 solved.	 Let	 us	 consider	 the	 following	 problem,	 a	well-known
puzzle	available	in	toy	stores	(under	the	name	Instant	Insanity).
Problem:	We	are	given	four	cubes.	The	six	faces	of	every	cube	are	variously

colored	blue,	green,	red,	or	white.	Is	it	possible	to	stack	the	cubes	one	on	top	of
another	 to	 form	a	 column	 such	 that	 no	 color	 appears	 twice	on	 any	of	 the	 four
sides	 of	 this	 column?	 (Clearly,	 a	 trial-and-error	 method	 is	 unsatisfactory,
because	we	may	have	to	try	all	41,472	(=	3	×	24	×	24	×	24)	possibilities.)

Solution:	 Step	1:	Draw	a	graph	with	 four	vertices	B,	G,	R,	 and	W—one	 for
each	color	(Fig.	2-6).	Pick	a	cube	and	call	it	cube	1;	then	represent	its	three	pairs
of	 opposite	 faces	 by	 three	 edges,	 drawn	between	 the	 vertices	with	 appropriate
colors.	 In	other	words,	 if	a	blue	 face	 in	cube	1	has	a	white	 face	opposite	 to	 it,
draw	 an	 edge	 between	 vertices	 B	 and	W	 in	 the	 graph.	 Do	 the	 same	 for	 the
remaining	two	pairs	of	faces	 in	cube	1.	Put	 label	1	on	all	 three	edges	resulting
from	cube	1.	A	self-loop	with	the	edge	labeled	1	at	vertex	R,	for	instance,	would
result	 if	 cube	 1	 had	 a	 pair	 of	 opposite	 faces	 both	 colored	 red.	 Repeat	 the
procedure	for	the	other	three	cubes	one	by	one	on	the	same	graph	until	we	have	a
graph	with	four	vertices	and	12	edges.	A	particular	set	of	four	colored	cubes	and
their	graph	are	shown	in	Fig.	2-6.



Fig.	2-6	Four	cubes	unfolded	and.	the	graph	representing	their	colors.

Step	2:	Consider	 the	graph	 resulting	 from	 this	 representation.	The	degree	of
each	 vertex	 is	 the	 total	 number	 of	 faces	with	 the	 corresponding	 color.	 For	 the
cubes	of	Fig.	2-6,	we	have	five	blue	faces,	six	green,	seven	red,	and	six	white.
Consider	two	opposite	vertical	sides	of	the	desired	column	of	four	cubes,	say

facing	north	and	south.	A	subgraph	(with	four	edges)	will	represent	these	eight
faces—four	facing	south	and	four	north.	Each	of	the	four	edges	in	this	subgraph
will	have	a	different	 label—1,	2,	3,	and	4.	Moreover,	no	color	occurs	 twice	on
either	 the	north	side	or	 south	side	of	 the	column	 if	and	only	 if	every	vertex	 in
this	subgraph	is	of	degree	two.
Exactly	the	same	argument	applies	to	the	other	two	sides,	east	and	west,	of	the

column.
Thus	 the	 four	 cubes	 can	 be	 arranged	 (to	 form	 a	 column	 such	 that	 no	 color

appears	more	than	once	on	any	side)	if	and	only	if	there	exist	two	edge-disjoint
subgraphs,	each	with	four	edges,	each	of	the	edges	labeled	differently,	and	such
that	 each	vertex	 is	 of	degree	 two.	For	 the	 set	 of	 cubes	 shown	 in	Fig.	 2-6,	 this
condition	is	satisfied,	and	the	two	subgraphs	are	shown	in	Fig.	2-7.



Fig.	2-7	Two	edge-disjoint	subgraphs	of	the	graph	in	Fig.	2-6.

2-4. WALKS,	PATHS,	AND	CIRCUITS

A	 walk	 is	 defined	 as	 a	 finite	 alternating	 sequence	 of	 vertices	 and	 edges,
beginning	 and	 ending	 with	 vertices,	 such	 that	 each	 edge	 is	 incident	 with	 the
vertices	 preceding	 and	 following	 it.	No	 edge	 appears	 (is	 covered	or	 traversed)
more	 than	once	 in	 a	walk.	A	vertex,	however,	may	appear	more	 than	once.	 In
Fig.	2-8(a),	 for	 instance,	v1	a	v2	b	v3	c	v3	d	v4	e	v2	 f	 v5	 is	 a	walk	 shown	with
heavy	 lines.	A	walk	 is	 also	 referred	 to	 as	 an	edge	 train	 or	 a	chain.	The	 set	of
vertices	and	edges	constituting	a	given	walk	in	a	graph	G	is	clearly	a	subgraph	of
G.

Fig.	2-8	A	walk	and	a	path.

Vertices	with	which	a	walk	begins	and	ends	are	called	 its	 terminal	 vertices.
Vertices	v1	and	v5	are	the	terminal	vertices	of	the	walk	shown	in	Fig.	2-8(a).	It	is
possible	for	a	walk	to	begin	and	end	at	the	same	vertex.	Such	a	walk	is	called	a



closed	walk.	A	walk	that	is	not	closed	(i.e.,	the	terminal	vertices	are	distinct)	is
called	an	open	walk	[Fig.	2-8(a)].
An	open	walk	in	which	no	vertex	appears	more	than	once	is	called	a	path	(or	a

simple	 path	 or	 an	 elementary	 path).	 In	 Fig.	 2-8,	 vl	 a	 v2	 b	 v3	 d	 v4	 is	 a	 path,
whereas	v1	a	v2	b	v3	c	v3	d	v4	e	v2	f	v5	is	not	a	path.	In	other	words,	a	path	does
not	intersect	itself.	The	number	of	edges	in	a	path	is	called	the	length	of	a	path.
It	 immediately	 follows,	 then,	 that	an	edge	which	 is	not	a	self-loop	 is	a	path	of
length	one.	It	should	also	be	noted	that	a	self-loop	can	be	included	in	a	walk	but
not	in	a	path	(Fig.	2-8).
The	terminal	vertices	of	a	path	are	of	degree	one,	and	the	rest	of	the	vertices

(called	 intermediate	 vertices)	 are	 of	 degree	 two.	 This	 degree,	 of	 course,	 is
counted	 only	with	 respect	 to	 the	 edges	 included	 in	 the	 path	 and	not	 the	 entire
graph	in	which	the	path	may	be	contained.
A	 closed	 walk	 in	 which	 no	 vertex	 (except	 the	 initial	 and	 the	 final	 vertex)

appears	 more	 than	 once	 is	 called	 a	 circuit.	 That	 is,	 a	 circuit	 is	 a	 closed,
nonintersecting	walk.	In	Fig.	2-8(a),	v2	b	v3	d	v4	e	v2	 is,	for	example,	a	circuit.
Three	different	circuits	are	shown	in	Fig.	2-9.	Clearly,	every	vertex	in	a	circuit	is
of	 degree	 two;	 again,	 if	 the	 circuit	 is	 a	 subgraph	 of	 another	 graph,	 one	 must
count	degrees	contributed	by	the	edges	in	the	circuit	only.

Fig.	2-9	Three	different	circuits.

A	circuit	is	also	called	a	cycle,	elementary	cycle,	circular	path,	and	polygon.
In	electrical	engineering	a	circuit	 is	sometimes	referred	to	as	a	 loop—not	to	be
confused	with	 self-loop.	 (Every	 self-loop	 is	a	circuit,	but	not	every	circuit	 is	 a
self-loop.)
The	definitions	in	this	section	are	summarized	in	Fig.	2-10.	The	arrows	are	in

the	direction	of	increasing	restriction.
You	may	have	observed	that	although	the	concepts	of	a	path	and	a	circuit	are

very	simple,	the	formal	definition	becomes	involved.



Fig.	2-10	Walks,	paths,	and	circuits	as	subgraphs.

2-5. CONNECTED	GRAPHS,	DISCONNECTED	GRAPHS,
AND	COMPONENTS

Intuitively,	 the	concept	of	connectedness	 is	obvious.	A	graph	is	connected	if
we	 can	 reach	 any	 vertex	 from	 any	 other	 vertex	 by	 traveling	 along	 the	 edges.
More	formally:
A	graph	G	is	said	to	be	connected	if	there	is	at	least	one	path	between	every

pair	 of	 vertices	 in	G.	Otherwise,	G	 is	disconnected.	 For	 instance,	 the	graph	 in
Fig.	2-8(a)	is	connected,	but	the	one	in	Fig.	2-11	is	disconnected.	A	null	graph	of
more	than	one	vertex	is	disconnected	(Fig.	1-12).
It	is	easy	to	see	that	a	disconnected	graph	consists	of	two	or	more	connected

graphs.	Each	of	these	connected	subgraphs	is	called	a	component.	The	graph	in
Fig.	2-11	consists	of	two	components.	Another	way	of	looking	at	a	component	is
as	follows:	Consider	a	vertex	vi	in	a	disconnected	graph	G.	By	definition,	not	all
vertices	of	G	 are	 joined	by	paths	 to	vi.	Vertex	vi	 and	all	 the	vertices	of	G	 that
have	paths	to	vi,	together	with	all	the	edges	incident	on	them,	form	a	component.
Obviously,	a	component	itself	is	a	graph.



Fig.	2-11	A	disconnected	graph	with	two	components.

THEOREM	2-1

A	graph	G	is	disconnected	if	and	only	if	its	vertex	set	V	can	be	partitioned	into
two	 nonempty,	 disjoint	 subsets	V1	 and	V2	 such	 that	 there	 exists	 no	 edge	 in	G
whose	one	end	vertex	is	in	subset	V1	and	the	other	in	subset	V2.

Proof:	Suppose	that	such	a	partitioning	exists.	Consider	two	arbitrary	vertices
a	and	b	of	G,	such	that	a	∈	V1	and	b	∈	V2.	No	path	can	exist	between	vertices	a
and	b;	otherwise,	there	would	be	at	least	one	edge	whose	one	end	vertex	would
be	in	V1	and	the	other	in	V2.	Hence,	if	a	partition	exists,	G	is	not	connected.
Conversely,	let	G	be	a	disconnected	graph.	Consider	a	vertex	a	in	G.	Let	V1	be

the	set	of	all	vertices	that	are	joined	by	paths	to	a.	Since	G	 is	disconnected,	V1
does	 not	 include	 all	 vertices	 of	 G.	 The	 remaining	 vertices	 will	 form	 a
(nonempty)	set	V2.	No	vertex	in	V1	is	joined	to	any	in	V2	by	an	edge.	Hence	the
partition.	

Two	interesting	and	useful	results	involving	connectedness	are:

THEOREM	2-2

If	a	graph	(connected	or	disconnected)	has	exactly	two	vertices	of	odd	degree,
there	must	be	a	path	joining	these	two	vertices.

Proof:	 Let	G	 be	 a	 graph	 with	 all	 even	 vertices†	 except	 vertices	 v1	 and	 v2,
which	are	odd.	From	Theorem	1-1,	which	holds	 for	 every	graph	and	 therefore
for	every	component	of	a	disconnected	graph,	no	graph	can	have	an	odd	number
of	 odd	 vertices.	 Therefore,	 in	 graph	 G,	 v1	 and	 v2	 must	 belong	 to	 the	 same



component,	and	hence	must	have	a	path	between	them.	

THEOREM	2-3

A	 simple	 graph	 (i.e.,	 a	 graph	 without	 parallel	 edges	 or	 self-loops)	 with	 n
vertices	and	k	components	can	have	at	most	(n	−	k)(n	−	k	+	l)/2	edges.

Proof:	Let	the	number	of	vertices	in	each	of	the	k	components	of	a	graph	G	be
n1,	n2,	.	.	.	,	nk.	Thus	we	have

n1	+	n2	+	.	.	.	+	nk	=	n,
ni	≥	1.

The	proof	of	the	theorem	depends	on	an	algebraic	inequality†

Now	 the	 maximum	 number	 of	 edges	 in	 the	 ith	 component	 of	G	 (which	 is	 a
simple	 connected	 graph)	 is	 .	 (See	 Problem	 1-12.)	 Therefore,	 the
maximum	number	of	edges	in	G	is

It	may	be	noted	that	Theorem	2-3	is	a	generalization	of	the	result	in	Problem	1-
12.	The	solution	to	Problem	1-12	is	given	by	(2-3),	where	k	=	1.
Now	we	are	equipped	to	handle	the	Königsberg	bridge	problem	introduced	in

Chapter	1.

2-6. EULER	GRAPHS

As	 mentioned	 in	 Chapter	 1,	 graph	 theory	 was	 born	 in	 1736	 with	 Euler’s
famous	paper	 in	which	he	 solved	 the	Königsberg	bridge	problem.	 In	 the	 same
paper,	Euler	posed	 (and	 then	 solved)	a	more	general	problem:	 In	what	 type	of
graph	G	 is	 it	 possible	 to	 find	 a	 closed	walk	 running	 through	 every	 edge	 of	G



exactly	once?	Such	a	walk	is	now	called	an	Euler	line,	and	a	graph	that	consists
of	an	Euler	line	is	called	an	Euler	graph.	More	formally:
If	 some	closed	walk	 in	a	graph	contains	all	 the	edges	of	 the	graph,	 then	 the

walk	is	called	an	Euler	line	and	the	graph	an	Euler	graph.
By	its	very	definition	a	walk	is	always	connected.	Since	the	Euler	line	(which

is	 a	 walk)	 contains	 all	 the	 edges	 of	 the	 graph,	 an	 Euler	 graph	 is	 always
connected,	 except	 for	 any	 isolated	vertices	 the	graph	may	have.	Since	 isolated
vertices	do	not	contribute	anything	to	the	understanding	of	an	Euler	graph,	it	is
hereafter	 assumed	 that	 Euler	 graphs	 do	 not	 have	 any	 isolated	 vertices	 and	 are
therefore	connected.
Now	we	shall	state	and	prove	an	important	theorem,	which	will	enable	us	to

tell	immediately	whether	or	not	a	given	graph	is	an	Euler	graph.

THEOREM	2-4

A	given	connected	graph	G	 is	an	Euler	graph	if	and	only	if	all	vertices	of	G
are	of	even	degree.

Proof:	 Suppose	 that	G	 is	 an	Euler	graph.	 It	 therefore	 contains	 an	Euler	 line
(which	 is	 a	 closed	walk).	 In	 tracing	 this	walk	we	 observe	 that	 every	 time	 the
walk	meets	a	vertex	v	it	goes	through	two	“new”	edges	incident	on	v—with	one
we	 “entered”	 v	 and	 with	 the	 other	 “exited.”	 This	 is	 true	 not	 only	 of	 all
intermediate	 vertices	 of	 the	 walk	 but	 also	 of	 the	 terminal	 vertex,	 because	 we
“exited”	 and	 “entered”	 the	 same	 vertex	 at	 the	 beginning	 and	 end	 of	 the	walk,
respectively.	Thus	if	G	is	an	Euler	graph,	the	degree	of	every	vertex	is	even.
To	prove	the	sufficiency	of	the	condition,	assume	that	all	vertices	of	G	are	of

even	degree.	Now	we	construct	a	walk	starting	at	an	arbitrary	vertex	v	and	going
through	the	edges	of	G	such	that	no	edge	is	traced	more	than	once.	We	continue
tracing	as	far	as	possible.	Since	every	vertex	is	of	even	degree,	we	can	exit	from
every	vertex	we	enter;	the	tracing	cannot	stop	at	any	vertex	but	v.	And	since	v	is
also	of	even	degree,	we	shall	eventually	 reach	v	when	 the	 tracing	comes	 to	an
end.	If	this	closed	walk	h	we	just	traced	includes	all	the	edges	of	G,	G	is	an	Euler
graph.	If	not,	we	remove	from	G	all	the	edges	in	h	and	obtain	a	subgraph	h′	of	G
formed	 by	 the	 remaining	 edges.	 Since	 both	G	 and	h	 have	 all	 their	 vertices	 of
even	degree,	 the	degrees	of	 the	vertices	of	h′	are	also	even.	Moreover,	h′	must
touch	h	at	least	at	one	vertex	a,	because	G	is	connected.	Starting	from	a,	we	can
again	construct	a	new	walk	 in	graph	h′.	Since	all	 the	vertices	of	h′	are	of	even
degree,	 this	walk	 in	 h′	 must	 terminate	 at	 vertex	 a;	 but	 this	walk	 in	 h′	 can	 be
combined	with	h	to	form	a	new	walk,	which	starts	and	ends	at	vertex	v	and	has



more	edges	than	h.	This	process	can	be	repeated	until	we	obtain	a	closed	walk
that	traverses	all	the	edges	of	G.	Thus	G	is	an	Euler	graph.	

Königsberg	 Bridge	 Problem:	 Now	 looking	 at	 the	 graph	 of	 the	 Königsberg
bridges	(Fig.	1-5),	we	find	that	not	all	its	vertices	are	of	even	degree.	Hence,	it	is
not	an	Euler	graph.	Thus	it	is	not	possible	to	walk	over	each	of	the	seven	bridges
exactly	once	and	return	to	the	starting	point.

One	often	encounters	Euler	lines	in	various	puzzles.	The	problem	common	to
these	puzzles	is	to	find	how	a	given	picture	can	be	drawn	in	one	continuous	line
without	 retracing	 and	 without	 lifting	 the	 pencil	 from	 the	 paper.	 Two	 such
pictures	 are	 shown	 in	 Fig.	 2-12.	 The	 drawing	 in	 Fig.	 2-12(a)	 is	 called
Mohammed’s	scimitars	and	is	believed	to	have	come	from	the	Arabs.	The	one	in
Fig.	2-12(b)	is,	of	course,	the	star	of	David.	(Equal	time!)
In	defining	an	Euler	line	some	authors	drop	the	requirement	that	the	walk	be

closed.	For	example,	the	walk	a	1	c	2	d	3	a	4	b	5	d	6	e	7	b	in	Fig.	2-13,	which
includes	all	the	edges	of	the	graph	and	does	not	retrace	any	edge,	is	not	closed.
The	initial	vertex	is	a	and	the	final	vertex	is	b.	We	shall	call	such	an	open	walk
that	includes	(or	traces	or	covers)	all	edges	of	a	graph	without	retracing	any	edge
a	unicursal	line	or	an	open	Euler	line.	A	(connected)	graph	that	has	a	unicursal
line	will	be	called	a	unicursal	graph.

Fig.	2-12	Two	Euler	graphs.



Fig.	2-13	Unicursal	graph.

It	 is	 clear	 that	 by	 adding	 an	 edge	 between	 the	 initial	 and	 final	 vertices	 of	 a
unicursal	line	we	shall	get	an	Euler	line.	Thus	a	connected	graph	is	unicursal	if
and	only	 if	 it	 has	 exactly	 two	vertices	 of	 odd	degree.	This	 observation	 can	be
generalized	as	follows:

THEOREM	2-5

In	 a	 connected	 graph	 G	 with	 exactly	 2k	 odd	 vertices,	 there	 exist	 k	 edge-
disjoint	subgraphs	such	that	they	together	contain	all	edges	of	G	and	that	each	is
a	unicursal	graph.

Proof:	Let	the	odd	vertices	of	the	given	graph	G	be	named	v1,	v2,	.	.	.	,	vk;	w1,
w2,	.	.	.	,	wk	in	any	arbitrary	order.	Add	k	edges	to	G	between	the	vertex	pairs	(v1,
w1),	(v2,	w2),	.	.	.	,	(vk,	wk)	to	form	a	new	graph	G′.
Since	every	vertex	of	G′	is	of	even	degree,	G′	consists	of	an	Euler	line	p.	Now

if	 we	 remove	 from	 p	 the	 k	 edges	 we	 just	 added	 (no	 two	 of	 these	 edges	 are
incident	 on	 the	 same	 vertex),	 p	 will	 be	 split	 into	 k	 walks,	 each	 of	which	 is	 a
unicursal	 line:	 The	 first	 removal	will	 leave	 a	 single	 unicursal	 line;	 the	 second
removal	will	split	that	into	two	unicursal	lines;	and	each	successive	removal	will
split	a	unicursal	line	into	two	unicursal	lines,	until	there	are	k	of	them.	Thus	the
theorem.	
We	shall	 interrupt	our	study	of	Euler	graphs	 to	define	some	commonly	used

graph-theoretic	 operations.	One	 of	 these	 operations	 is	 required	 immediately	 in
the	next	section;	others	will	be	needed	later.

2-7. OPERATIONS	ON	GRAPHS

As	is	the	case	with	most	mathematical	entities,	it	 is	convenient	to	consider	a



large	 graph	 as	 a	 combination	 of	 small	 ones	 and	 to	 derive	 its	 properties	 from
those	of	the	small	ones.	Since	graphs	are	defined	in	terms	of	the	sets	of	vertices
and	 edges,	 it	 is	 natural	 to	 employ	 the	 set-theoretical	 terminology	 to	 define
operations	between	graphs.	In	particular:
The	union	of	two	graphs	G1	=	(V1,	E1)	and	G2	=	(V2,	E2)	is	another	graph	G3

(written	as	G3	=	G1	⋃	G2)	whose	vertex	set	V3	=	V1	⋃	V2	and	the	edge	set	E3	=
E1	⋃	E2.	Likewise,	the	intersection	G1	⋂	G2	of	graphs	G1	and	G2	is	a	graph	G4
consisting	only	of	those	vertices	and	edges	that	are	in	both	G1	and	G2.	The	ring
sum	of	two	graphs	G1	and	G2	(written	as	G1	⊕	G2)	is	a	graph	consisting	of	the
vertex	set	V1	⋃	V2	and	of	edges	that	are	either	in	G1	or	G2,	but	not	in	both.	Two
graphs	and	their	union,	intersection,	and	ring	sum	are	shown	in	Fig.	2-14.†
It	is	obvious	from	their	definitions	that	the	three	operations	just	mentioned	are

commutative.	That	is,

G1	⋃	G2	=	G2	⋃	G1, G1	⋂	G2	=	G2	⋂	G1,
G1	⊕	G2	=	G2	⊕	G1.

If	G1	and	G2	are	edge	disjoint,	then	G1	⋂	G2	is	a	null	graph,	and	G1	⊕	G2	=
G1	⋃	G2.	If	G1	and	G2	are	vertex	disjoint,	then	G1	⋂	G2	is	empty.	For	any	graph
G,

G	⋃	G	=	G	⋂	G	=	G,
and

G	⊕	G	=	a	null	graph.

If	g	is	a	subgraph	of	G,	then	G	⊕	g	is,	by	definition,	that	subgraph	of	G	which
remains	after	all	the	edges	in	g	have	been	removed	from	G.	Therefore,	G	⊕	g	is
written	as	G	−	g,	whenever	g	⊆	G.	Because	of	this	complementary	nature,	G	⊕
g	=	G	−	g	is	often	called	the	complement	of	g	in	G.
Decomposition:	 A	 graph	 G	 is	 said	 to	 have	 been	 decomposed	 into	 two

subgraphs	g1	and	g2	if

g1	⋃	g2	=	G,

and
g1	⋂	g2	=	a	null	graph.



Fig.	2-14	Union,	intersection,	and	ring	sum	of	two	graphs.

In	other	words,	every	edge	of	G	occurs	either	in	gl	or	in	g2,	but	not	in	both.	Some
of	the	vertices,	however,	may	occur	in	both	gl	and	g2.	In	decomposition,	isolated
vertices	 are	 disregarded.	A	 graph	 containing	m	 edges	 {el,	 e2,	 .	 .	 .,	 em}	 can	 be
decomposed	in	2m	-	1	−	1	different	ways	into	pairs	of	subgraphs	g1,	g2	(why?).
Although	 union,	 intersection,	 and	 ring	 sum	 have	 been	 defined	 for	 a	 pair	 of

graphs,	these	definitions	can	be	extended	in	an	obvious	way	to	include	any	finite
number	of	graphs.	Similarly,	a	graph	G	can	be	decomposed	into	more	than	two
subgraphs—subgraphs	that	are	(pairwise)	edge	disjoint	and	collectively	include
every	edge	in	G.

Deletion:	 If	vi	 is	a	vertex	 in	graph	G,	 then	G	—	vi	denotes	a	subgraph	of	G
obtained	 by	 deleting	 (i.e.,	 removing)	 vi	 from	G.	 Deletion	 of	 a	 vertex	 always
implies	the	deletion	of	all	edges	incident	on	that	vertex.	(See	Fig.	2-15.)	If	ej	is
an	edge	 in	G,	 then	G	—	ej	 is	a	subgraph	of	G	obtained	by	deleting	ej	 from	G.
Deletion	of	an	edge	does	not	imply	deletion	of	its	end	vertices.	Therefore	G	−	ej



=	G	⊕	ej.

Fig.	2-15	Vertex	deletion	and	edge	deletion.

Fusion:	 A	 pair	 of	 vertices	 a,	 b	 in	 a	 graph	 are	 said	 to	 be	 fused	 (merged	 or
identified)	if	the	two	vertices	are	replaced	by	a	single	new	vertex	such	that	every
edge	that	was	incident	on	either	a	or	b	or	on	both	is	incident	on	the	new	vertex.
Thus	fusion	of	two	vertices	does	not	alter	the	number	of	edges,	but	it	reduces	the
number	of	vertices	by	one.	See	Fig.	2-16	for	an	example.

Fig.	2-16	Fusion	of	vertices	a	and	b.

These	 are	 some	 of	 the	 elementary	 operations	 on	 graphs.	 More	 complex
operations	 have	 been	 defined	 and	 are	 used	 in	 graph-theory	 literature.	 For	 a
survey	of	such	operations	see	the	paper	by	Harary	and	Wilcox	[2-10].

2-8. MORE	ON	EULER	GRAPHS

The	following	are	some	more	results	on	the	important	topic	of	Euler	graphs.

THEOREM	2-6

A	connected	graph	G	 is	an	Euler	graph	 if	and	only	 if	 it	can	be	decomposed
into	circuits.

Proof:	Suppose	graph	G	can	be	decomposed	into	circuits;	that	is,	G	is	a	union



of	edge-disjoint	circuits.	Since	the	degree	of	every	vertex	in	a	circuit	is	two,	the
degree	of	every	vertex	in	G	is	even.	Hence	G	is	an	Euler	graph.
Conversely,	let	G	be	an	Euler	graph.	Consider	a	vertex	v1.	There	are	at	least

two	 edges	 incident	 at	 v1.	 Let	 one	 of	 these	 edges	 be	 between	 v1	 and	 v2.	 Since
vertex	v2	is	also	of	even	degree,	it	must	have	at	least	another	edge,	say	between
v2	 and	v3.	Proceeding	 in	 this	 fashion,	we	eventually	arrive	at	 a	vertex	 that	has
previously	been	traversed,	thus	forming	a	circuit	Γ.	Let	us	remove	Γ	from	G.	All
vertices	in	the	remaining	graph	(not	necessarily	connected)	must	also	be	of	even
degree.	 From	 the	 remaining	 graph	 remove	 another	 circuit	 in	 exactly	 the	 same
way	 as	 we	 removed	 Γ	 from	G.	 Continue	 this	 process	 until	 no	 edges	 are	 left.
Hence	the	theorem.	
Arbitrarily	Traceable	Graphs:	Consider	 the	 graph	 in	Fig.	 2-17,	which	 is	 an

Euler	graph.	Suppose	that	we	start	from	vertex	a	and	trace	the	path	a	b	c.

Fig.	2-17	Arbitrarily	traceable	graph	from	c.

Now	at	c	we	have	the	choice	of	going	to	a,	d,	or	e.	If	we	took	the	first	choice,	we
would	only	 trace	 the	circuit	a	b	c	a,	which	 is	not	 an	Euler	 line.	Thus,	 starting
from	a,	we	cannot	trace	the	entire	Euler	line	simply	by	moving	along	any	edge
that	 has	 not	 already	 been	 traversed.	 This	 raises	 the	 following	 interesting
question:
What	property	must	a	vertex	v	in	an	Euler	graph	have	such	that	an	Euler	line

is	 always	obtained	when	one	 follows	any	walk	 from	vertex	v	 according	 to	 the
single	rule	that	whenever	one	arrives	at	a	vertex	one	shall	select	any	edge	(which
has	not	been	previously	traversed)?
Such	 a	 graph	 is	 called	 an	 arbitrarily	 traceable	 graph	 from	 vertex	 v.	 For

instance,	 the	 Euler	 graph	 in	 Fig.	 2-17	 is	 an	 arbitrarily	 traceable	 graph	 from
vertex	 c,	 but	 not	 from	 any	 other	 vertex.	 The	 Euler	 graph	 in	 Fig.	 2-18	 is	 not
arbitrarily	 traceable	 from	 any	 .vertex;	 the	 graph	 in	 Fig.	 2-19	 is	 arbitrarily
traceable	from	all	its	vertices.	The	following	interesting	theorem,	due	to	Ore	[2-
5],	answers	the	question	just	raised.



Fig.	2-18	Euler	graph;	not	arbitrarily	traceable.

Fig.	2-19	Arbitrarily	traceable	graph	from	all	vertices.

THEOREM	2-7

An	 Euler	 graph	G	 is	 arbitrarily	 traceable	 from	 vertex	 v	 in	G	 if	 and	 only	 if
every	circuit	in	G	contains	v.

For	a	proof	of	the	theorem	the	reader	is	referred	to	[2-5].

2-9. HAMILTONIAN	PATHS	AND	CIRCUITS

An	Euler	line	of	a	connected	graph	was	characterized	by	the	property	of	being
a	 closed	 walk	 that	 traverses	 every	 edge	 of	 the	 graph	 (exactly	 once).	 A
Hamiltonian	 circuit	 in	 a	 connected	 graph	 is	 defined	 as	 a	 closed	 walk	 that
traverses	every	vertex	of	G	exactly	once,	except	of	course	the	starting	vertex,	at
which	 the	 walk	 also	 terminates.	 For	 example,	 in	 the	 graph	 of	 Fig.	 2-20(a)
starting	 at	 vertex	 v,	 if	 one	 traverses	 along	 the	 edges	 shown	 in	 heavy	 lines—
passing	 through	 each	 vertex	 exactly	 once—one	 gets	 a	 Hamiltonian	 circuit.	 A
Hamiltonian	circuit	 for	 the	graph	 in	Fig.	2-20(b)	 is	also	shown	by	heavy	 lines.
More	formally:



Fig.	2-20	Hamiltonian	circuits.

A	circuit	in	a	connected	graph	G	is	said	to	be	Hamiltonian	if	it	includes	every
vertex	 of	G.	 Hence	 a	 Hamiltonian	 circuit	 in	 a	 graph	 of	 n	 vertices	 consists	 of
exactly	n	edges.
Obviously,	not	every	connected	graph	has	a	Hamiltonian	circuit.	For	example,

neither	 of	 the	 graphs	 shown	 in	Figs.	 2-17	 and	 2-18	 has	 a	Hamiltonian	 circuit.
This	 raises	 the	 question:	 What	 is	 a	 necessary	 and	 sufficient	 condition	 for	 a
connected	graph	G	to	have	a	Hamiltonian	circuit?

Fig.	2-21	Dodecahedron	and	its	graph	shown	with	a	Hamiltonian	circuit.

This	 problem,	 first	 posed	 by	 the	 famous	 Irish	 mathematician	 Sir	 William
Rowan	 Hamilton	 in	 1859,	 is	 still	 unsolved.	 As	 was	 mentioned	 in	 Chapter	 1,
Hamilton	 made	 a	 regular	 dodecahedron	 of	 wood	 [see	 Fig.	 2-21(a)],	 each	 of
whose	20	corners	was	marked	with	the	name	of	a	city.	The	puzzle	was	to	start
from	any	city	and	 find	a	 route	along	 the	edge	of	 the	dodecahedron	 that	passes
through	every	city	exactly	once	and	returns	to	the	city	of	origin.	The	graph	of	the
dodecahedron	 is	 given	 in	 Fig.	 2-21(b),	 and	 one	 of	 many	 such	 routes	 (a
Hamiltonian	circuit)	is	shown	by	heavy	lines.
The	 resemblance	 between	 the	 problem	 of	 an	 Euler	 line	 and	 that	 of	 a

Hamiltonian	circuit	is	deceptive.	The	latter	is	infinitely	more	complex.	Although
one	can	find	Hamiltonian	circuits	in	many	specific	graphs,	such	as	those	shown



in	Figs.	2-20	and	2-21,	there	is	no	known	criterion	we	can	apply	to	determine	the
existence	of	a	Hamiltonian	circuit	in	general.	There	are,	however,	certain	types
of	graphs	that	always	contain	Hamiltonian	circuits,	as	will	be	presently	shown.

Hamiltonian	Path:	If	we	remove	any	one	edge	from	a	Hamiltonian	circuit,	we
are	 left	 with	 a	 path.	 This	 path	 is	 called	 a	 Hamiltonian	 path.	 Clearly,	 a
Hamiltonian	path	in	a	graph	G	traverses	every	vertex	of	G.	Since	a	Hamiltonian
path	 is	 a	 subgraph	 of	 a	 Hamiltonian	 circuit	 (which	 in	 turn	 is	 a	 subgraph	 of
another	 graph),	 every	 graph	 that	 has	 a	 Hamiltonian	 circuit	 also	 has	 a
Hamiltonian	path.	There	are,	however,	many	graphs	with	Hamiltonian	paths	that
have	no	Hamiltonian	circuits	(Problem	2-23).	The	length	of	a	Hamiltonian	path
(if	it	exists)	in	a	connected	graph	of	n	vertices	is	n	—	1.
In	considering	the	existence	of	a	Hamiltonian	circuit	(or	path),	we	need	only

consider	simple	graphs.	This	is	because	a	Hamiltonian	circuit	(or	path)	traverses
every	vertex	exactly	once.	Hence	it	cannot	include	a	self-loop	or	a	set	of	parallel
edges.	Thus	a	general	graph	may	be	made	simple	by	removing	parallel	edges	and
self-loops	before	looking	for	a	Hamiltonian	circuit	in	it.
It	 is	 left	as	an	exercise	 for	 the	reader	 to	show	that	neither	of	 the	 two	graphs

shown	in	Fig.	2-22	has	a	Hamiltonian	circuit	(or	Hamiltonian	path).	See	Problem
2-24.

Fig.	2-22	Graphs	without	Hamiltonian	circuits.

What	 general	 class	 of	 graphs	 is	 guaranteed	 to	 have	 a	 Hamiltonian	 circuit?
Complete	graphs	of	three	or	more	vertices	constitute	one	such	class.

Complete	Graph:	A	simple	graph	in	which	there	exists	an	edge	between	every
pair	of	vertices	is	called	a	complete	graph.	Complete	graphs	of	two,	three,	four,
and	 five	 vertices	 are	 shown	 in	Fig.	 2-23.	A	 complete	 graph	 is	 sometimes	 also
referred	 to	 as	 a	universal	 graph	 or	 a	clique.	 Since	 every	 vertex	 is	 joined	with
every	 other	 vertex	 through	 one	 edge,	 the	 degree	 of	 every	 vertex	 is	n	 −	 1	 in	 a



complete	graph	G	of	n	vertices.	Also	the	total	number	of	edges	in	G	is	n(n	−	l)/2.
See	Problem	1-12.

Fig.	2-23	Complete	graphs	of	two,	three,	four,	and	five	vertices.

It	is	easy	to	construct	a	Hamiltonian	circuit	in	a	complete	graph	of	n	vertices.
Let	the	vertices	be	numbered	v1,	v2	 ,.	 .	 .	 ,	vn.	Since	an	edge	exists	between	any
two	vertices,	we	can	start	from	v1	and	traverse	to	v2,	and	v3,	and	so	on	to	vn,	and
finally	from	vn	to	v1.	This	is	a	Hamiltonian	circuit.

Number	of	Hamiltonian	Circuits	in	a	Graph:	A	given	graph	may	contain	more
than	 one	Hamiltonian	 circuit.	Of	 interest	 are	 all	 the	 edge-disjoint	Hamiltonian
circuits	 in	 a	 graph.	 The	 determination	 of	 the	 exact	 number	 of	 edge-disjoint
Hamiltonian	circuits	(or	paths)	in	a	graph	in	general	is	also	an	unsolved	problem.
However,	the	number	of	edge-disjoint	Hamiltonian	circuits	in	a	complete	graph
with	odd	number	of	vertices	is	given	by	Theorem	2-8.

THEOREM	2-8

In	 a	 complete	 graph	 with	 n	 vertices	 there	 are	 (n	 −	 l)/2	 edge-disjoint
Hamiltonian	circuits,	if	n	is	an	odd	number	≥	3.

Proof:	 A	 complete	 graph	 G	 of	 n	 vertices	 has	 n(n	 −	 l)/2	 edges,	 and	 a
Hamiltonian	 circuit	 in	G	 consists	 of	 n	 edges.	 Therefore,	 the	 number	 of	 edge-
disjoint	Hamiltonian	circuits	in	G	cannot	exceed	(n	−	l)/2.	That	there	are	(n	−	l)/2
edge-disjoint	Hamiltonian	circuits,	when	n	is	odd,	can	be	shown	as	follows:
The	subgraph	(of	a	complete	graph	of	n	vertices)	in	Fig.	2-24	is	a	Hamiltonian

circuit.	 Keeping	 the	 vertices	 fixed	 on	 a	 circle,	 rotate	 the	 polygonal	 pattern
clockwise	by	360/(n	−	1),	2·360/(n	−	1),	3·360/(n	−	1),	.	.	.	,	(n	−	3)/2·360/(n	−	1)
degrees.	Observe	 that	 each	 rotation	produces	a	Hamiltonian	circuit	 that	has	no
edge	 in	 common	with	 any	 of	 the	 previous	 ones.	 Thus	we	 have	 (n	 −	 3)/2	 new
Hamiltonian	circuits,	 all	 edge	disjoint	 from	 the	one	 in	Fig.	2-24	and	also	edge
disjoint	among	themselves.	Hence	the	theorem.	



Fig.	2-24	Hamiltonian	circuit;	n	is	odd.

This	theorem	enables	us	to	solve	the	problem	of	the	seating	arrangement	at	a
round	table,	introduced	in	Chapter	1,	as	follows:
Representing	a	member	x	by	a	vertex	and	the	possibility	of	his	sitting	next	to

another	member	y	by	an	edge	between	x	and	y,	we	construct	a	graph	G.	Since
every	member	is	allowed	to	sit	next	to	any	other	member,	G	is	a	complete	graph
of	nine	vertices—nine	being	the	number	of	people	to	be	seated	around	the	table.
Every	Seating	arrangement	around	the	table	is	clearly	a	Hamiltonian	circuit.
The	 first	 day	 of	 their	 meeting	 they	 can	 sit	 in	 any	 order,	 and	 it	 will	 be	 a

Hamiltonian	 circuit	 H1.	 The	 second	 day,	 if	 they	 are	 to	 sit	 such	 that	 every
member	 must	 have	 different	 neighbors,	 we	 have	 to	 find	 another	 Hamiltonian
circuit	H2	in	G,	with	an	entirely	different	set	of	edges	from	those	in	H1;	that	is,
H1	and	H2	are	edge-disjoint	Hamiltonian	circuits.	From	Theorem	2-8	the	number
of	 edge-disjoint	 Hamiltonian	 circuits	 in	 G	 is	 four;	 therefore,	 only	 four	 such
arrangements	exist	among	nine	people.
Another	interesting	result	on	the	question	of	existence	of	Hamiltonian	circuits

in	a	graph,	obtained	by	G.	A.	Dirac,	is:

THEOREM	2-9

A	sufficient	 (but	by	no	means	necessary)	 condition	 for	 a	 simple	graph	G	 to
have	a	Hamiltonian	circuit	is	that	the	degree	of	every	vertex	in	G	be	at	least	n/2,
where	n	is	the	number	of	vertices	in	G.

Proof:	For	proof	the	reader	is	referred	to	the	original	paper	by	Dirac	[2-3].



2-10. TRAVELING-SALESMAN	PROBLEM

A	 problem	 closely	 related	 to	 the	 question	 of	 Hamiltonian	 circuits	 is	 the
traveling-salesman	problem,	stated	as	follows:	A	salesman	is	required	to	visit	a
number	of	 cities	 during	 a	 trip.	Given	 the	distances	between	 the	 cities,	 in	what
order	should	he	travel	so	as	 to	visit	every	city	precisely	once	and	return	home,
with	the	minimum	mileage	traveled?
Representing	the	cities	by	vertices	and	the	roads	between	them	by	edges,	we

get	a	graph.	 In	 this	graph,	with	every	edge	ei	 there	 is	associated	a	real	number
(the	distance	in	miles,	say),	w(ei).	Such	a	graph	is	called	a	weighted	graph;	w(ei)
being	the	weight	of	edge	ei..
In	our	problem,	if	each	of	the	cities	has	a	road	to	every	other	city,	we	have	a

complete	weighted	graph.	This	graph	has	numerous	Hamiltonian	circuits,	and	we
are	to	pick	the	one	that	has	the	smallest	sum	of	distances	(or	weights).
The	 total	 number	 of	 different	 (not	 edge	 disjoint,	 of	 course)	 Hamiltonian

circuits	 in	 a	 complete	 graph	 of	n	 vertices	 can	 be	 shown	 to	 be	 (n	 −	 l)!/2.	 This
follows	from	the	fact	that	starting	from	any	vertex	we	have	n	−	1	edges	to	choose
from	 the	 first	 vertex,	n	 −	 2	 from	 the	 second,	n	 −	 3	 from	 the	 third,	 and	 so	on.
These	being	 independent	 choices,	we	get	 (n	−	1)!	possible	number	of	 choices.
This	 number	 is,	 however,	 divided	 by	 2,	 because	 each	Hamiltonian	 circuit	 has
been	counted	twice.
Theoretically,	the	problem	of	the	traveling	salesman	can	always	be	solved	by

enumerating	all	(n	−	l)!/2	Hamiltonian	circuits,	calculating	the	distance	traveled
in	each,	and	then	picking	the	shortest	one.	However,	for	a	large	value	of	n,	 the
labor	involved	is	too	great	even	for	a	digital	computer	(try	solving	it	for	the	50
state	capitals	in	the	United	States;	n	=	50).
The	problem	 is	 to	prescribe	a	manageable	algorithm	 for	 finding	 the	 shortest

route.	No	efficient	algorithm	for	problems	of	arbitrary	size	has	yet	been	found,
although	many	attempts	have	been	made.	Since	this	problem	has	applications	in
operations	 research,	 some	 specific	 large-scale	 examples	 have	been	worked	out
(see	 [2-1]).	 There	 are	 also	 available	 several	 heuristic	methods	 of	 solution	 that
give	a	route	very	close	to	the	shortest	one,	but	do	not	guarantee	the	shortest	(see
[2-4]	for	such	a	method).

SUMMARY

In	 this	 chapter	 we	 discussed	 the	 subgraph—a	 graph	 that	 is	 part	 of	 another



graph.	Walks,	 paths,	 circuits,	 Euler	 lines,	Hamiltonian	 paths,	 and	Hamiltonian
circuits	in	a	graph	G	are	its	subgraphs	with	special	properties.	A	given	graph	G
can	 be	 characterized	 and	 studied	 in	 terms	 of	 the	 presence	 or	 absence	 of	 these
subgraphs.	Many	physical	problems	can	be	represented	by	graphs	and	solved	by
observing	the	relevant	properties	of	the	corresponding	graphs.
Various	types	of	walks	discussed	in	this	chapter	are	summarized	in	Fig.	2-25.

The	arrows	point	in	the	direction	of	increasing	restriction.

Fig.	2-25	Different	types	of	walks.
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PROBLEMS
2-1. Verify	 that	 the	 two	 graphs	 in	 Fig.	 2-2	 are	 isomorphic.	 Label	 the

corresponding	vertices	and	edges.
2-2. Show	by	redrawing,	step	by	step,	that	graphs	(b)	and	(c)	in	Fig.	2-3.	are

isomorphic	to	(a).
2-3. Show	that	the	two	graphs	in	Figs.	2-26(a)	and	(b)	are	isomorphic.



Fig.	2-26

2-4. Construct	 three	more	 examples	 to	 show	 that	 conditions	 1,	 2,	 and	 3	 in
Section	2-1	are	not	sufficient	for	isomorphism	between	graphs.

2-5. Prove	that	any	two	simple	connected	graphs	with	n	vertices,	all	of	degree
two,	are	isomorphic.

2-6. Are	the	two	graphs	in	Fig.	2-27	isomorphic?	Why?

Fig.	2-27
2-7. Given	the	set	of	cubes	represented	by	the	graph	in	Fig.	2-6,	is	it	possible

to	stack	all	four	cubes	into	a	column	such	that	each	side	shows	only	one
color?	Explain.

2-8. Prove	 that	 a	 simple	 graph	 with	 n	 vertices	must	 be	 connected	 if	 it	 has
more	than	[(n	−	1)(n	−	2)]/2	edges.	(Hint:	Use	Theorem	2-3.)

2-9. Prove	that	if	a	connected	graph	G	is	decomposed	into	two	subgraphs	g1
and	g2,	there	must	be	at	least	one	vertex	common	between	g1	and	g2.

2-10. 	 Prove	 that	 a	 connected	 graph	G	 remains	 connected	 after	 removing	 an
edge	ei	from	G,	if	and	only	if	ei	is	in	some	circuit	in	G.

2-11. Draw	 a	 connected	 graph	 that	 becomes	 disconnected	when	 any	 edge	 is
removed	from	it.

2-12. Prove	that	a	graph	with	n	vertices	satisfying	the	condition	of	Problem	2-
11	is	(a)	simple,	and	(b)	has	exactly	n	−	1	edges.

2-13. What	is	the	length	of	the	path	from	the	entrance	to	the	center	of	the	maze
in	Problem	1-7?



2-14. List	all	the	different	paths	between	vertices	5	and	6	in	Fig.	2-5(a).	Give
the	length	of	each	of	these	paths.

2-15. Group	 the	paths	 listed	 in	Problem	2-14	 into	sets	of	edge-disjoint	paths.
Demonstrate	that	the	union	of	two	edge-disjoint	paths	between	a	pair	of
vertices	forms	a	circuit.

2-16. In	 a	 graph	G	 let	 p1	 and	 p2	 be	 two	 different	 paths	 between	 two	 given
vertices.	Prove	that	p1	⊕	p2	is	a	circuit	or	a	set	of	circuits	in	G.

2-17. Let	 a,	 b,	 and	 c	 be	 three	 distinct	 vertices	 in	 a	 graph.	 There	 is	 a	 path
between	a	and	b	and	also	there	is	a	path	between	b	and	c.	Prove	that	there
is	a	path	between	a	and	c.

2-18. If	 the	 intersection	 of	 two	 paths	 is	 a	 disconnected	 graph,	 show	 that	 the
union	of	the	two	paths	has	at	least	one	circuit.

2-19. You	are	given	a	10-piece	domino	set	whose	titles	have	the	following	set
of	dots:	(1,	2);	(1,	3);	(1,	4);	(1,	5);	(2,	3);	(2,	4);	(2,	5);	(3,	4);	(3,	5);	(4,
5).	 Discuss	 the	 possibility	 of	 arranging	 the	 tiles	 in	 a	 connected	 series
such	 that	one	number	on	a	 title	always	 touches	 the	same	number	on	 its
neighbor.	(Hint:	Use	a	five-vertex	complete	graph	and	see	if	it	is	an	Euler
graph.)

2-20. Is	 it	 possible	 to	move	 a	 knight	 on	 a	 chessboard	 such	 that	 it	 completes
every	 permissible	move	 exactly	 once?	A	move	between	 two	 squares	 is
counted	as	one	regardless	of	the	direction	in	which	it	 is	made.	(Hint:	Is
the	graph	of	Problem	1-6	unicursal?)

2-21. A	round-robin	tournament	(when	every	player	plays	against	every	other)
among	 n	 players	 (n	 being	 an	 even	 number)	 can	 be	 represented	 by	 a
complete	 graph	 of	 n	 vertices.	 Discuss	 how	 you	 would	 schedule	 the
tournaments	to	finish	in	the	shortest	possible	time.

2-22. Observe	 that	 there	can	be	no	path	 longer	 than	a	Hamiltonian	path	 (if	 it
exists)	in	a	graph.

2-23. Draw	 a	 graph	 that	 has	 a	 Hamiltonian	 path	 but	 does	 not	 have	 a
Hamiltonian	circuit.

2-24. Show	that	neither	of	the	graphs	in	Fig.	2-22	has	a	Hamiltonian	path	(and
therefore	no	Hamiltonian	circuit).	[Hint:	For	Fig.	2-22(a),	of	all	the	edges
incident	 at	 a	 vertex	 only	 two	 can	 be	 included	 in	 a	Hamiltonian	 circuit.
Count	the	number	of	edges	that	have	to	be	excluded.	You	will	find	that
13	edges	must	be	excluded	from	Fig.	2-22(a).	The	number	of	remaining
edges	is	insufficient	to	form	a	Hamiltonian	circuit.	For	Fig.	2-22(b),	first
consider	all	vertices	of	degree	two.]

2-25. Show	that	 the	graph	of	a	 rhombic	dodecahedron	(with	eight	vertices	of



degree	 three	 and	 six	 vertices	 of	 degree	 four)	 has	 no	 Hamiltonian	 path
(and	therefore	no	Hamiltonian	circuit).

2-26. Draw	a	graph	in	which	an	Euler	line	is	also	a	Hamiltonian	circuit.	What
can	you	say	about	such	graphs	in	general?

2-27. Is	 it	possible,	 starting	 from	any	of	 the	64	squares	of	 the	chessboard,	 to
move	a	knight	such	that	it	occupies	every	square	exactly	once	and	returns
to	 the	 initial	 position?	 If	 so,	 give	 one	 such	 tour.	 (Hint:	 Look	 for	 a
Hamiltonian	circuit	in	the	graph	of	Problem	1-6.)

2-28. Prove	that	a	graph	G	with	n	vertices	always	has	a	Hamiltonian	path	if	the
sum	 of	 the	 degrees	 of	 every	 pair	 of	 vertices	 vi,	 vj	 in	 G	 satisfies	 the
condition

d(vi)	+	d(vj)	≥	n	−	1.

(Hint:	First	show	that	G	is	connected.	Then	use	induction	on	path	length	in	G.)
2-29. Using	 the	 result	 of	 Problem	 2-28,	 show	 that	 in	 a	 dancing	 ring	 of	 n

children	it	is	always	possible	to	arrange	the	children	so	that	everyone	has
a	friend	at	each	side	if	every	child	enjoys	friendship	with	at	least	half	the
children.

†For	brevity,	a	vertex	with	odd	degree	is	called	an	odd	vertex,	and	a	vertex	with	even	degree	an	even	vertex.
†	Proof:	 .	Squaring	both	sides,

or	 	nonnegative	cross	terms	=	n2	+	k2	−	2nk	because	(ni	−	1)	≥	0,	for	all	i.	Therefore,	
	.	

†lf	an	edge	ei	is	in	two	graphs	G1	and	G2,	its	end	vertices	in	G1	must	have	the	same	labels	as	in	G2.



3	TREES	AND	FUNDAMENTAL	CIRCUITS

The	 concept	 of	 a	 tree	 is	 probably	 the	 most	 important	 in	 graph	 theory,
especially	for	 those	 interested	 in	applications	of	graphs.	 In	 the	first	half	of	 this
chapter	we	shall	define	a	tree	and	study	its	properties.	As	usual,	we	shall	point
out	 some	 of	 its	 applications	 to	 simple	 situations	 and	 puzzles	 and	 games,
deferring	 the	applications	 to	more	complex	scientific	problems	 till	Chapter	12.
Other	 graph-theoretic	 terms	 related	 to	 trees	 will	 also	 be	 introduced	 and
discussed.
The	 second	 part	 of	 the	 chapter	 introduces	 the	 spanning	 tree—another

important	notion	in	the	theory	of	graphs.	The	relationships	among	circuits,	trees,
and	so	on,	in	a	graph	are	explored.	Unavoidably,	as	with	Chapters	1	and	2,	this
chapter	 also	has	 a	 large	number	of	definitions.	 In	 studying	 any	new	branch	of
mathematics,	there	is	no	way	to	avoid	new	terms	and	definitions.

3-1. TREES

A	 tree	 is	 a	 connected	graph	without	 any	circuits.	The	graph	 in	Fig.	3-1,	 for
instance,	is	a	tree.	Trees	with	one,	two,	three,	and	four	vertices	are	shown	in	Fig.
3-2.	 As	 pointed	 out	 in	 Chapter	 1,	 a	 graph	must	 have	 at	 least	 one	 vertex,	 and
therefore	 so	must	 a	 tree.	 Some	 authors	 allow	 the	null	 tree,	 a	 tree	without	 any
vertices.	We	have	excluded	such	an	entity	from	being	a	tree.	Similarly,	as	we	are
considering	only	finite	graphs,	our	trees	are	also	finite.
It	follows	immediately	from	the	definition	that	a	tree	has	to	be	a	simple	graph,

that	 is,	 having	 neither	 a	 self-loop	 nor	 parallel	 edges	 (because	 they	 both	 form
circuits).
Trees	 appear	 in	 numerous	 instances.	 The	 genealogy	 of	 a	 family	 is	 often

represented	by	means	of	a	tree	(in	fact	the	term	tree	comes	from	family	tree).	A
river	 with	 its	 tributaries	 and	 subtributaries	 can	 be	 represented	 by	 a	 tree.	 The
sorting	of	mail	according	to	zip	code	and	the	sorting	of	punched	cards	are	done



according	to	a	tree	(called	decision	tree	or	sorting	tree).

Fig.	3-1	Tree.

Fig.	3-2	Trees	with	one,	two,	three,	and	four	vertices.

Fig.	3-3	Decision	tree.

Figure	3-3	might	represent	the	flow	of	mail.	All	the	mail	arrives	at	some	local
office,	vertex	N.	The	most	significant	digit	in	the	zip	code	is	read	at	N,	and	the



mail	 is	 divided	 into	10	piles	N1,	N2,	 .	 .	 .	 ,	N9,	 and	N0,	 depending	on	 the	most
significant	 digit.	 Each	 pile	 is	 further	 divided	 into	 10	 piles	 according	 to	 the
second	 most	 significant	 digit,	 and	 so	 on,	 till	 the	 mail	 is	 subdivided	 into	 105
possible	piles,	each	representing	a	unique	five-digit	zip	code.
In	many	sorting	problems	we	have	only	two	alternatives	(instead	of	10	as	in

the	 preceding	 example)	 at	 each	 intermediate	 vertex,	 representing	 a	 dichotomy,
such	as	large	or	small,	good	or	bad,	0	or	1.	Such	a	decision	tree	with	two	choices
at	each	vertex	occurs	frequently	in	computer	programming	and	switching	theory.
We	shall	deal	with	such	trees	and	their	applications	in	Section	3-5.	Let	us	first
obtain	a	few	simple	but	important	theorems	on	the	general	properties	of	trees.

3-2. SOME	PROPERTIES	OF	TREES

THEOREM	3-1

There	is	one	and	only	one	path	between	every	pair	of	vertices	in	a	tree,	T.

Proof:	 Since	 T	 is	 a	 connected	 graph,	 there	 must	 exist	 at	 least	 one	 path
between	every	pair	of	vertices	 in	T.	Now	suppose	 that	between	 two	vertices	a
and	b	of	T	there	are	two	distinct	paths.	The	union	of	these	two	paths	will	contain
a	circuit	and	T	cannot	be	a	tree.	

Conversely:

THEOREM	3-2

If	in	a	graph	G	there	is	one	and	only	one	path	between	every	pair	of	vertices,
G	is	a	tree.

Proof:	 Existence	 of	 a	 path	 between	 every	 pair	 of	 vertices	 assures	 that	G	 is
connected.	A	circuit	in	a	graph	(with	two	or	more	vertices)	implies	that	there	is
at	least	one	pair	of	vertices	a,	b	such	that	there	are	two	distinct	paths	between	a
and	b.	Since	G	has	one	and	only	one	path	between	every	pair	of	vertices,	G	can
have	no	circuit.	Therefore,	G	is	a	tree.	

THEOREM	3-3

A	tree	with	n	vertices	has	n	−	1	edges.

Proof:	The	theorem	will	be	proved	by	induction	on	the	number	of	vertices.



Fig.	3-4	Tree	T	with	n	vertices.

It	 is	 easy	 to	 see	 that	 the	 theorem	 is	 true	 for	n	=	 1,	 2,	 and	 3	 (see	Fig.	 3-2).
Assume	that	the	theorem	holds	for	all	trees	with	fewer	than	n	vertices.
Let	us	now	consider	a	tree	T	with	n	vertices.	In	T	let	ek	be	an	edge	with	end

vertices	vi	and	vj.	According	to	Theorem	3-1,	 there	 is	no	other	path	between	vi
and	vj	except	ek.	Therefore,	deletion	of	ek	 from	T	will	disconnect	 the	graph,	as
shown	in	Fig.	3-4.	Furthermore,	T	−	ek	consists	of	exactly	two	components,	and
since	 there	were	no	circuits	 in	T	 to	begin	with,	 each	of	 these	 components	 is	 a
tree.	Both	these	trees,	 t1	and	 t2,	have	fewer	than	n	vertices	each,	and	therefore,
by	 the	 induction	 hypothesis,	 each	 contains	 one	 less	 edge	 than	 the	 number	 of
vertices	in	it.	Thus	T	−	ek	consists	of	n	−	2	edges	(and	n	vertices).	Hence	T	has
exactly	n	−	1	edges.	

THEOREM	3-4

Any	connected	graph	with	n	vertices	and	n	−	1	edges	is	a	tree.

Proof:	The	proof	of	the	theorem	is	left	to	the	reader	as	an	exercise	(Problem
3-5).

You	 may	 have	 noticed	 another	 important	 feature	 of	 a	 tree:	 its	 vertices	 are
connected	 together	with	 the	minimum	number	 of	 edges.	A	 connected	 graph	 is
said	 to	be	minimally	connected	 if	 removal	of	any	one	edge	from	it	disconnects
the	 graph.	 A	minimally	 connected	 graph	 cannot	 have	 a	 circuit;	 otherwise,	 we
could	remove	one	of	the	edges	in	the	circuit	and	still	leave	the	graph	connected.
Thus	a	minimally	connected	graph	is	a	tree.	Conversely,	if	a	connected	graph	G
is	not	minimally	connected,	there	must	exist	an	edge	ei	in	G	such	that	G	−	ei	is
connected.	Therefore,	ei	 is	 in	 some	 circuit,	which	 implies	 that	G	 is	 not	 a	 tree.
Hence	the	following	theorem:



THEOREM	3-5

A	graph	is	a	tree	if	and	only	if	it	is	minimally	connected.

The	 significance	of	Theorem	3-5	 is	 obvious.	 Intuitively,	 one	 can	 see	 that	 to
interconnect	n	distinct	points,	the	minimum	number	of	line	segments	needed	is	n
−	1.	 It	 requires	no	background	 in	 electrical	 engineering	 to	 realize	 that	 to	 short
(electrically)	 n	 pins	 together,	 one	 needs	 at	 least	 n	 −	 1	 pieces	 of	 wire.	 The
resulting	structure,	according	to	Theorem	3-5,	is	a	tree.

Fig.	3-5	Edge	e	added	to	G	=	g1	⋃	g2.

We	showed	 that	 a	 connected	graph	with	n	 vertices	 and	without	 any	 circuits
has	n	−	1	edges.	We	can	also	 show	 that	 a	graph	with	n	 vertices	which	has	no
circuit	and	has	n	−	1	edges	is	always	connected	(i.e.,	it	is	a	tree),	in	the	following
theorem.

THEOREM	3-6

A	graph	G	with	n	vertices,	n	−	1	edges,	and	no	circuits	is	connected.

Proof:	 Suppose	 there	 exists	 a	 circuitless	 graph	G	with	n	 vertices	 and	n	 −	 1
edges	 which	 is	 disconnected.	 In	 that	 case	 G	 will	 consist	 of	 two	 or	 more
circuitless	 components.	 Without	 loss	 of	 generality,	 let	 G	 consist	 of	 two
components,	g1	 and	g2.	Add	an	 edge	e	 between	a	vertex	v1	 in	g1	 and	v2	 in	g2
(Fig.	 3-5).	 Since	 there	was	 no	 path	 between	 v1	 and	 v2	 in	G,	 adding	 e	 did	 not
create	a	circuit.	Thus	G	⋃	e	 is	a	circuitless,	connected	graph	 (i.e.,	 a	 tree)	of	n
vertices	and	n	edges,	which	is	not	possible,	because	of	Theorem	3-3.	

The	results	of	 the	preceding	six	 theorems	can	be	summarized	by	saying	 that
the	 following	 are	 five	 different	 but	 equivalent	 definitions	 of	 a	 tree.	 That	 is,	 a
graph	G	with	n	vertices	is	called	a	tree	if



1. G	is	connected	and	is	circuitless,	or

2. G	is	connected	and	has	n	−	1	edges,	or

3. G	is	circuitless	and	has	n	−	1	edges,	or

4. There	is	exactly	one	path	between	every	pair	of	vertices	in	G,	or

5. G	is	a	minimally	connected	graph.

3-3. PENDANT	VERTICES	IN	A	TREE

You	must	have	observed	that	each	of	the	trees	shown	in	the	figures	has	several
pendant	vertices	(a	pendant	vertex	was	defined	as	a	vertex	of	degree	one).	The
reason	 is	 that	 in	a	 tree	of	n	 vertices	we	have	n	−	1	edges,	 and	hence	2(n	−	1)
degrees	to	be	divided	among	n	vertices.	Since	no	vertex	can	be	of	zero	degree,
we	must	have	at	least	two	vertices	of	degree	one	in	a	tree.	This	of	course	makes
sense	only	if	n	≥	2.	More	formally:

Fig.	3-6	Tree	of	the	monotonically	increasing	sequences	in	4,	1,	13,	7,	0,	2,	8,	11,	3.

THEOREM	3-7



In	any	tree	(with	two	or	more	vertices),	there	are	at	least	two	pendant	vertices.

An	 Application:	 The	 following	 problem	 is	 used	 in	 teaching	 computer
programming.	Given	a	sequence	of	integers,	no	two	of	which	are	the	same,	find
the	 largest	 monotonically	 increasing	 subsequence	 in	 it.	 Suppose	 that	 the
sequence	given	to	us	is	4,	1,	13,	7,	0,	2,	8,	11,	3;	it	can	be	represented	by	a	tree	in
which	 the	vertices	 (except	 the	start	vertex)	 represent	 individual	numbers	 in	 the
sequence,	and	the	path	from	the	start	vertex	to	a	particular	vertex	v	describes	the
monotonically	 increasing	 subsequence	 terminating	 in	v.	As	 shown	 in	Fig.	 3-6,
this	sequence	contains	four	longest	monotonically	increasing	subsequences,	that
is,	(4,	7,	8,	11),	(1,	7,	8,	11),	(1,	2,	8,	11),	and	(0,	2,	8,	11).	Each	is	of	length	four.
Such	a	 tree	used	 in	 representing	data	 is	 referred	 to	 as	 a	data	 tree	by	computer
programmers.

3-4.	DISTANCE	AND	CENTERS	IN	A	TREE

The	 tree	 in	 Fig.	 3-7	 has	 four	 vertices.	 Intuitively,	 it	 seems	 that	 vertex	 b	 is
located	more	“centrally”	 than	any	of	 the	other	 three	vertices.	We	shall	explore
this	idea	further	and	see	if	in	a	tree	there	exists	a	“center”	(or	centers).	Inherent
in	the	concept	of	a	center	 is	 the	idea	of	“distance,”	so	we	must	define	distance
before	we	can	talk	of	a	center.

Fig.	3-7	Tree.

In	a	connected	graph	G,	the	distance	d(vi,	vj)	between	two	of	its	vertices	vi	and
vj	is	the	length	of	the	shortest	path	(i.e.,	the	number	of	edges	in	the	shortest	path)
between	them.
The	definition	of	distance	between	any	two	vertices	is	valid	for	any	connected

graph	 (not	necessarily	 a	 tree).	 In	 a	graph	 that	 is	not	 a	 tree,	 there	 are	generally
several	paths	between	a	pair	of	vertices.	We	have	 to	enumerate	all	 these	paths
and	find	the	length	of	the	shortest	one.	(There	may	be	several	shortest	paths.)



For	instance,	some	of	the	paths	between	vertices	v1	and	v2	in	Fig.	3-8	are	(a,
e),	(a,	c,	f),	(b,	c,	e),	(b,	f),	(b,	g,	h),	and	(b,	g,	i,	k).	There	are	two	shortest	paths,
(a,	e)	and	(b,	f),	each	of	length	two.	Hence	d(v1,	v2)	=	2.
In	a	tree,	since	there	is	exactly	one	path	between	any	two	vertices	(Theorem	3-

1),	the	determination	of	distance	is	much	easier.	For	instance,	in	the	tree	of	Fig.
3-7,	d(a,	b)	=	1,	d(a,	c)	=	2,	d(c,	b)	=	1,	and	so	on.

A	Metric:	Before	we	can	legitimately	call	a	function	f(x,	y)	of	two	variables	a
“distance”	between	them,	this	function	must	satisfy	certain	requirements.	These
are

Fig.	3-8	Distance	between	v1	and	v2	is	two.

1. Nonnegativity:	f(x,	y)	≥	0,	and	f(x,	y)	=	0	if	and	only	if	x	=	y.

2. Symmetry:	f(x,	y)	=	f(x,	y).

3. Triangle	inequality:	f(x,	y)	≤	f(x,	z)	+	f(z,	y)	for	any	z.

A	 function	 that	 satisfies	 these	 three	 conditions	 is	 called	 a	 metric.	 That	 the
distance	d(vi,	vj)	between	two	vertices	of	a	connected	graph	satisfies	conditions	1
and	 2	 is	 immediately	 evident.	 Since	d(vi,	 vj)	 is	 the	 length	 of	 the	 shortest	 path
between	vertices	vi	and	vj,	this	path	cannot	be	longer	than	another	path	between
vi	and	vj,	which	goes	through	a	specified	vertex	vk.	Hence	d(vi,	vj)	≤	d(vi,	vk)	+
d(vk,	vj).	Therefore,

THEOREM	3-8

The	distance	between	vertices	of	a	connected	graph	is	a	metric.

Coming	back	to	our	original	topic	of	relative	location	of	different	vertices	in	a



tree,	let	us	define	another	term	called	eccentricity	(also	referred	to	as	associated
number	or	separation)	of	a	vertex	in	a	graph.
The	eccentricity	E(v)	of	a	vertex	v	in	a	graph	G	is	the	distance	from	v	to	the

vertex	farthest	from	v	in	G;	that	is,

A	 vertex	 with	minimum	 eccentricity	 in	 graph	G	 is	 called	 a	 center	 of	G.	 The
eccentricities	of	the	four	vertices	in	Fig.	3-7	are	E(a)	=	2,	E(b)	=	1,	E(c)	=	2,	and
E(d)	=	2.	Hence	vertex	b	 is	 the	center	of	that	tree.	On	the	other	hand,	consider
the	tree	in	Fig.	3-9.	The	eccentricity	of	each	of	its	six	vertices	is	shown	next	to
the	 vertex.	 This	 tree	 has	 two	 vertices	 having	 the	 same	minimum	 eccentricity.
Hence	this	tree	has	two	centers.	Some	authors	refer	to	such	centers	as	bicenters;
we	shall	call	them	just	centers,	because	there	will	be	no	occasion	for	confusion.
The	 reader	 can	 easily	 verify	 that	 a	 graph,	 in	 general,	 has	many	 centers.	For

example,	in	a	graph	that	consists	of	just	a	circuit	(a	polygon),	every	vertex	is	a
center.	In	the	case	of	a	tree,	however,	König	[1-7]	proved	the	following	theorem:

THEOREM	3-9

Every	tree	has	either	one	or	two	centers.

Fig.	3-9	Eccentricities	of	the	vertices	of	a	tree.



Fig.	3-10	Finding	a	center	of	a	tree.

Proof:	 The	 maximum	 distance,	 max	 d(v,	 vi),	 from	 a	 given	 vertex	 v	 to	 any
other	vertex	vi	occurs	only	when	vi	is	a	pendant	vertex.	With	this	observation,	let
us	start	with	a	 tree	T	having	more	 than	 two	vertices.	Tree	T	must	have	 two	or
more	 pendant	 vertices	 (Theorem	 3-7).	 Delete	 all	 the	 pendant	 vertices	 from	T.
The	resulting	graph	T′	is	still	a	tree.	What	about	the	eccentricities	of	the	vertices
in	T′?	A	little	deliberation	will	reveal	that	removal	of	all	pendant	vertices	from	T



uniformly	reduced	the	eccentricities	of	the	remaining	vertices	(i.e.,	vertices	in	T′)
by	one.	Therefore,	all	vertices	that	T	had	as	centers	will	still	remain	centers	in	T′.
From	T′	we	can	again	remove	all	pendant	vertices	and	get	another	 tree	T″.	We
continue	this	process	(which	is	illustrated	in	Fig.	3-10)	until	there	is	left	either	a
vertex	 (which	 is	 the	 center	 of	T)	 or	 an	 edge	 (whose	 end	 vertices	 are	 the	 two
centers	of	T).	Thus	the	theorem.	

COROLLARY

From	the	argument	used	in	proving	Theorem	3-9,	we	see	that	if	a	tree	T	has
two	centers,	the	two	centers	must	be	adjacent.

A	Sociological	Application:	Suppose	that	 the	communication	among	a	group
of	14	persons	in	a	society	is	represented	by	the	graph	in	Fig.	3-10(a),	where	the
vertices	 represent	 the	 persons	 and	 an	 edge	 represents	 the	 communication	 link
between	its	two	end	vertices.	Since	the	graph	is	connected,	we	know	that	all	the
members	can	be	reached	by	any	member,	either	directly	or	through	some	other
members.	 But	 it	 is	 also	 important	 to	 note	 that	 the	 graph	 is	 a	 tree—minimally
connected.	The	group	cannot	afford	to	lose	any	of	the	communication	links.
The	eccentricity	of	each	vertex,	E(v),	represents	how	close	v	is	to	the	farthest

member	of	the	group.	In	Fig.	3-10(a),	vertex	c	should	be	the	leader	of	the	group,
if	closeness	of	communication	were	the	criterion	for	leadership.

Radius	and	Diameter:	 If	 a	 tree	has	 a	 center	 (or	 two	centers),	does	 it	 have	a
radius	 also?	Yes.	 The	 eccentricity	 of	 a	 center	 (which	 is	 the	 distance	 from	 the
center	of	the	tree	to	the	farthest	vertex)	in	a	tree	is	defined	as	the	radius	of	the
tree.	For	instance,	the	radius	of	the	tree	in	Fig.	3-10(a)	is	three.	The	diameter	of	a
tree	T,	on	the	other	hand,	is	defined	as	the	length	of	the	longest	path	in	T.	It	 is
left	as	an	exercise	for	the	reader	(Problem	3-6)	to	show	that	a	radius	in	a	tree	is
not	necessarily	half	its	diameter.

3-5. ROOTED	AND	BINARY	TREES

A	tree	in	which	one	vertex	(called	the	root)	is	distinguished	from	all	the	others
is	called	a	rooted	tree.	For	instance,	in	Fig.	3-3	vertex	N,	from	where	all	the	mail
goes	 out,	 is	 distinguished	 from	 the	 rest	 of	 the	 vertices.	 Hence	 N	 can	 be
considered	the	root	of	the	tree,	and	so	the	tree	is	rooted.	Similarly,	in	Fig.	3-6	the
start	vertex	may	be	considered	as	the	root	of	the	tree	shown.	In	a	diagram	of	a
rooted	 tree,	 the	 root	 is	 generally	 marked	 distinctly.	 We	 will	 show	 the	 root



enclosed	in	a	small	triangle.	All	rooted	trees	with	four	vertices	are	shown	in	Fig.
3-11.	 Generally,	 the	 term	 tree	 means	 trees	 without	 any	 root.	 However,	 for
emphasis	 they	 are	 sometimes	 called	 free	 trees	 (or	 nonrooted	 trees)	 to
differentiate	them	from	the	rooted	kind.

Fig.	3-11	Rooted	trees	with	four	vertices.

Binary	Trees:	A	special	class	of	rooted	trees,	called	binary	rooted	trees,	is	of
particular	 interest,	 since	 they	 are	 extensively	 used	 in	 the	 study	 of	 computer
search	 methods,	 binary	 identification	 problems,	 and	 variable-length	 binary
codes.	A	binary	tree	is	defined	as	a	tree	in	which	there	is	exactly	one	vertex	of
degree	two,	and	each	of	the	remaining	vertices	is	of	degree	one	or	three	(Fig.	3-
12).	 (Obviously,	we	are	 talking	about	 trees	with	 three	or	more	vertices.)	Since
the	vertex	of	degree	two	is	distinct	from	all	other	vertices,	this	vertex	serves	as	a
root.	 Thus	 every	 binary	 tree	 is	 a	 rooted	 tree.	 Two	 properties	 of	 binary	 trees
follow	directly	from	the	definition:

1. The	number	of	vertices	n	 in	 a	binary	 tree	 is	 always	odd.	This	 is	because
there	is	exactly	one	vertex	of	even	degree,	and	the	remaining	n	−	1	vertices
are	of	odd	degrees.	Since	from	Theorem	1-1	the	number	of	vertices	of	odd
degrees	is	even,	n	−	1	is	even.	Hence	n	is	odd.

2. Let	p	be	the	number	of	pendant	vertices	in	a	binary	tree	T.	Then	n	−	p	−	1
is	the	number	of	vertices	of	degree	three.	Therefore,	the	number	of	edges	in
T	equals

hence



A	nonpendant	vertex	in	a	tree	is	called	an	internal	vertex.	It	follows	from	Eq.
(3-1)	 that	 the	 number	 of	 internal	 vertices	 in	 a	 binary	 tree	 is	 one	 less	 than	 the
number	of	pendant	vertices.	In	a	binary	tree	a	vertex	vi	is	said	to	be	at	level	li	if	vi
is	at	a	distance	of	li	from	the	root.	Thus	the	root	is	at	level	0.	A	13-vertex,	four-
level	binary	tree	is	shown	in	Fig.	3-12.	The	number	of	vertices	at	levels	1,	2,	3,
and	4	are	2,	2,	4,	and	4,	respectively.
One	 of	 the	 most	 straightforward	 applications	 of	 binary	 trees	 is	 in	 search

procedures.	 Each	 vertex	 of	 a	 binary	 tree	 represents	 a	 test	 with	 two	 possible
outcomes.	We	start	at	the	root,	and	the	outcome	of	the	test	at	the	root	sends	us	to
one	of	the	two	vertices	at	the	next	level,	where	further	tests	are	made,	and	so	on.
Reaching	 a	 specified	 pendant	 vertex	 (the	 goal	 of	 the	 search)	 terminates	 the
search.	For	 such	 a	 search	procedure	 it	 is	 often	 important	 to	 construct	 a	 binary
tree	in	which,	for	a	given	number	of	vertices	n,	the	vertex	farthest	from	the	root
is	as	close	to	the	root	as	possible.	Clearly,	there	can	be	only	one	vertex	(the	root)
at	level	0,	at	most	two	vertices	at	level	1,	at	most	four	vertices	at	level	2,	and	so
on.	Therefore,	the	maximum	number	of	vertices	possible	in	a	k-level	binary	tree
is

20	+	21	+	22	+	.	.	.	+	2k	≥	n.

Fig.	3-12	A	13-vertex,	4-level	binary	tree.

The	maximum	level,	lmax,	of	any	vertex	in	a	binary	tree	is	called	the	height	of	the
tree.	It	is	easy	to	see	that	the	minimum	possible	height	of	an	n-vertex	binary	tree
is

where	[n]	denotes	the	smallest	integer	greater	than	or	equal	to	n.



On	 the	 other	 hand,	 to	 construct	 a	 binary	 tree	 for	 a	 given	 n	 such	 that	 the
farthest	 vertex	 is	 as	 far	 as	 possible	 from	 the	 root,	 we	must	 have	 exactly	 two
vertices	at	each	level,	except	at	the	0	level.	Therefore,

For	n	=	11,	binary	trees	realizing	both	these	extremes	are	shown	in	Fig.	3-13.

Fig.	3-13	Two	11-vertex	binary	trees.

In	analysis	of	algorithms	we	are	generally	interested	in	computing	the	sum	of
the	 levels	 of	 all	 pendant	 vertices.	 This	 quantity,	 known	 as	 the	 path	 length	 (or
external	 path	 length)	of	 a	 tree,	 can	 be	 defined	 as	 the	 sum	 of	 the	 path	 lengths
from	the	root	to	all	pendant	vertices.	The	path	length	of	the	binary	tree	in	Fig.	3-
12,	for	example,	is

1	+	3	+	3	+	4	+	4	+	4	+	4	=	23.

The	path	lengths	of	trees	in	Figs.	3-13(a)	and	(b)	are	16	and	20,	respectively.	The
importance	of	the	path	length	of	a	tree	lies	in	the	fact	that	this	quantity	is	often
directly	related	to	the	execution	time	of	an	algorithm.
It	 can	be	 shown	 that	 the	 type	of	binary	 tree	 in	Fig.	3-13(a)	 (i.e.,	 a	 tree	with

2lmax-1	vertices	at	level	lmax	−	1)	yields	the	minimum	path	length	for	a	given	n.

Weighted	 Path	 Length:	 In	 some	 applications,	 every	 pendant	 vertex	 vj	 of	 a
binary	tree	has	associated	with	it	a	positive	real	number	wj.	Given	w1,	w2,	.	.	.	,



wm	 the	 problem	 is	 to	 construct	 a	 binary	 tree	 (with	 m	 pendant	 vertices)	 that
minimizes

where	lj	is	the	level	of	pendant	vertex	vj,	and	the	sum	is	taken	over	all	pendant
vertices.	Let	us	illustrate	the	significance	of	this	problem	with	a	simple	example.

A	Coke	machine	is	to	identify,	by	a	sequence	of	tests,	the	coin	that	is	put	into
the	machine.	Only	pennies,	nickels,	dimes,	and	quarters	can	go	through	the	slot.
Let	us	assume	 that	 the	probabilities	of	a	coin	being	a	penny,	a	nickel,	 a	dime,
and	a	quarter	 are	 .05,	 .15,	 .5,	 and	 .30,	 respectively.	Each	 test	has	 the	effect	of
partitioning	 the	 four	 types	 of	 coins	 into	 two	 complementary	 sets	 and	 asserting
the	unknown	coin	to	be	in	one	of	the	two	sets.	Thus	for	four	coins	we	have	23	−
1	such	tests.	 If	 the	 time	taken	for	each	 test	 is	 the	same,	what	sequence	of	 tests
will	minimize	the	expected	time	taken	by	the	Coke	machine	to	identify	the	coin?
The	 solution	 requires	 the	 construction	 of	 a	 binary	 tree	 with	 four	 pendant

vertices	 (and	 therefore	 three	 internal	 vertices)	 v1,	 v2,	 v3,	 and	 v4	 and
corresponding	weights	w1	=	 .05,	w2	=	 .15,	w3	=	 .5,	 and	w4	=	 .3,	 such	 that	 the
quantity	∑	liwi	is	minimized.	The	solution	is	given	in	Fig.	3-14(a),	for	which	the
expected	time	is	1.7t,	where	t	is	the	time	taken	for	each	test.	Contrast	this	with
Fig.	3-14(b);	for	which	the	expected	time	is	2t.	An	algorithm	for	constructing	a
binary	tree	with	minimum	weighted	path	length	can	be	found	in	[3-6].
In	this	problem	of	a	Coke	machine,	many	interesting	variations	are	possible.

For	example,	not	all	possible	tests	may	be	available,	or	they	may	not	all	consume
the	same	time.
Binary	 trees	 with	 minimum	 weighted	 path	 length	 have	 also	 been	 used	 in

constructing	variable-length	binary	codes,	where	 the	 letters	of	 the	alphabet	 (A,
B,	 C,	 .	 .	 .	 ,	 Z)	 are	 represented	 by	 binary	 digits.	 Since	 different	 letters	 have
different	 frequencies	 of	 occurrence	 (frequencies	 are	 interpreted	 as	weights	w1,
w2,	.	.	.	,	w26),	a	binary	tree	with	minimum	weighted	path	length	corresponds	to	a
binary	code	of	minimum	cost;	see	[3-6].	For	more	on	minimumpath	binary	trees
and	their	applications	the	reader	is	referred	to	[3-5]	and	[3-7].



Fig.	3-14	Two	binary	trees	with	weighted	pendant	vertices.

3-6. ON	COUNTING	TREES

In	 1857,	 Arthur	 Cayley	 discovered	 trees	 while	 he	 was	 trying	 to	 count	 the
number	of	 structural	 isomers	of	 the	 saturated	hydrocarbons	 (or	paraffin	 series)
CkH2k+2	 .He	 used	 a	 connected	 graph	 to	 represent	 the	 CkH2k+2	 molecule.
Corresponding	to	their	chemical	valencies,	a	carbon	atom	was	represented	by	a
vertex	of	degree	four	and	a	hydrogen	atom	by	a	vertex	of	degree	one	(pendant
vertices).	The	total	number	of	vertices	in	such	a	graph	is

n	=	3k	+	2,

and	the	total	number	of	edges	is

Since	 the	 graph	 is	 connected	 and	 the	 number	 of	 edges	 is	 one	 less	 than	 the
number	of	vertices,	it	is	a	tree.	Thus	the	problem	of	counting	structural	isomers
of	 a	 given	 hydrocarbon	 becomes	 the	 problem	 of	 counting	 trees	 (with	 certain
qualifying	properties,	to	be	sure).
The	first	question	Cayley	asked	was:	what	is	the	number	of	different	trees	that

one	can	construct	with	n	distinct	(or	labeled)	vertices?	If	n	=	4,	for	instance,	we
have	16	trees,	as	shown	in	Fig.	3-15.	The	reader	can	satisfy	himself	that	there	are



no	more	trees	of	four	vertices.	(Of	course,	some	of	these	trees	are	isomorphic—
to	be	discussed	later.)
A	graph	in	which	each	vertex	is	assigned	a	unique	name	or	label	(i.e.,	no	two

vertices	 have	 the	 same	 label),	 as	 in	 Fig.	 3-15,	 is	 called	 a	 labeled	 graph.	 The
distinction	between	a	labeled	and	an	unlabeled	graph	is	very	important	when	we
are	counting	the	number	of	different	graphs.	For	instance,	the	four	graphs	in	the
first	 row	 in	Fig.	3-15	are	counted	as	 four	different	 trees	 (even	 though	 they	are
isomorphic)	 only	 because	 the	 vertices	 are	 labeled.	 If	 there	were	 no	 distinction
made	between	A,	B,	C,	or	D,	these	four	trees	would	be	counted	as	one.	A	careful
inspection	 of	 the	 graphs	 in	 Fig.	 3-15	will	 reveal	 that	 the	 number	 of	 unlabeled
trees	with	 four	 vertices	 (no	 distinction	made	 between	A,	B,	C,	 and	D)	 is	 only
two.	But	first	we	shall	continue	with	counting	labeled	trees.

Fig.	3-15	All	16	trees	of	four	labeled	vertices.

The	 following	 well-known	 theorem	 for	 counting	 trees	 was	 first	 stated	 and
proved	by	Cayley,	and	is	therefore	called	Cayley′s	theorem.

THEOREM	3-10



The	number	of	labeled	trees	with	n	vertices	(n	≥	2)	is	nn-2.

Proof:	 The	 result	 was	 first	 stated	 and	 proved	 by	 Cayley.	 Many	 different
proofs	 with	 various	 approaches	 (all	 somewhat	 involved)	 have	 been	 published
since.	An	excellent	summary	of	10	such	proofs	is	given	by	Moon	[3-9].	We	will
give	one	proof	in	Chapter	10.

Unlabeled	Trees:	In	the	actual	counting	of	isomers	of	CkH2k+2,	Theorem	3-10
is	not	 enough.	 In	 addition	 to	 the	constraints	on	 the	degree	of	 the	vertices,	 two
observations	should	be	made:

1. Since	the	vertices	representing	hydrogen	are	pendant,	they	go	with	carbon
atoms	 only	 one	 way,	 and	 hence	 make	 no	 contribution	 to	 isomerism.
Therefore,	we	need	not	show	any	hydrogen	vertices.

2. Thus	 the	 tree	 representing	 CkH2k+2	 reduces	 to	 one	 with	 k	 vertices,	 each
representing	a	carbon	atom.	In	this	tree	no	distinction	can	be	made	between
vertices,	and	therefore	it	is	unlabeled.

Thus	for	butane,	C4H10,	there	are	only	two	distinct	trees	(Fig.	3-16).	As	every
organic	chemist	knows,	there	are	indeed	exactly	two	different	types	of	butanes:
n-butane	and	isobutane.	It	may	be	noted	in	passing	that	the	four	trees	in	the	first
row	of	Fig.	3-15	are	isomorphic	to	the	one	in	Fig.	3-16(a);	and	the	other	12	are
isomorphic	to	Fig.	3-16(b).

Fig.	3-16	All	trees	of	four	unlabeled	vertices.

The	problem	of	counting	 trees	of	different	 types	will	be	 taken	up	again	and
discussed	more	thoroughly	in	Chapter	10.



3-7. SPANNING	TREES

So	far	we	have	discussed	the	tree	and	its	properties	when	it	occurs	as	a	graph
by	itself.	Now	we	shall	study	the	tree	as	a	subgraph	of	another	graph.	A	given
graph	 has	 numerous	 subgraphs—from	 e	 edges,	 2e	 distinct	 combinations	 are
possible.	Obviously,	some	of	these	subgraphs	will	be	trees.	Out	of	these	trees	we
are	 particularly	 interested	 in	 certain	 types	 of	 trees,	 called	 spanning	 trees—as
defined	next.
A	tree	T	is	said	to	be	a	spanning	tree	of	a	connected	graph	G	if	T	is	a	subgraph

of	G	and	T	contains	all	vertices	of	G.	For	instance,	the	subgraph	in	heavy	lines	in
Fig.	3-17	is	a	spanning	tree	of	the	graph	shown.
Since	the	vertices	of	G	are	barely	hanging	together	in	a	spanning	tree,	it	is	a

sort	of	skeleton	of	the	original	graph	G.	This	is	why	a	spanning	tree	is	sometimes
referred	to	as	a	skeleton	or	scaffolding	of	G.	Since	spanning	trees	are	the	largest
(with	maximum	 number	 of	 edges)	 trees	 among	 all	 trees	 in	G,	 it	 is	 also	 quite
appropriate	to	call	a	spanning	tree	a	maximal	tree	subgraph	or	maximal	tree	of
G.
It	 is	 to	 be	noted	 that	 a	 spanning	 tree	 is	 defined	only	 for	 a	 connected	graph,

because	a	tree	is	always	connected,	and	in	a	disconnected	graph	of	n	vertices	we
cannot	 find	 a	 connected	 subgraph	with	n	 vertices.	Each	 component	 (which	 by
definition	is	connected)	of	a	disconnected	graph,	however,	does	have	a	spanning
tree.	 Thus	 a	 disconnected	 graph	 with	 k	 components	 has	 a	 spanning	 forest
consisting	of	k	spanning	trees.	(A	collection	of	trees	is	called	a	forest.)
Finding	a	spanning	tree	of	a	connected	graph	G	is	simple.	If	G	has	no	circuit,

it	is	its	own	spanning	tree.	If	G	has	a	circuit,	delete	an	edge	from	the	circuit.	This
will	 still	 leave	 the	 graph	 connected	 (Problem	2-10).	 If	 there	 are	more	 circuits,
repeat	 the	 operation	 till	 an	 edge	 from	 the	 last	 circuit	 is	 deleted—leaving	 a
connected,	circuit-free	graph	that	contains	all	the	vertices	of	G.	Thus	we	have

Fig.	3-17	Spanning	tree.



THEOREM	3-11

Every	connected	graph	has	at	least	one	spanning	tree.

An	edge	in	a	spanning	tree	T	is	called	a	branch	of	T.	An	edge	of	G	that	is	not
in	a	given	spanning	tree	T	is	called	a	chord.	In	electrical	engineering	a	chord	is
sometimes	referred	to	as	a	tie	or	a	link.	For	instance,	edges	b1,	b2,	b3,	b4,	b5,	and
b6	are	branches	of	the	spanning	tree	shown	in	Fig.	3-17,	while	edges	c1,	c2,	c3,
c4,	c5,	c6,	c7,	and	c8	are	chords.	It	must	be	kept	in	mind	that	branches	and	chords
are	defined	only	with	respect	to	a	given	spanning	tree.	An	edge	that	is	a	branch
of	one	spanning	tree	T1	 (in	a	graph	G)	may	be	a	chord	with	respect	 to	another
spanning	tree	T2.
It	is	sometimes	convenient	to	consider	a	connected	graph	G	as	a	union	of	two

subgraphs,	T	and	 ;	that	is,

where	 T	 is	 a	 spanning	 tree,	 and	 	 is	 the	 complement	 of	 Tin	G.	 Since	 the
subgraph	 	is	the	collection	of	chords,	it	is	quite	appropriately	referred	to	as	the
chord	set	(or	tie	set	or	cotree)	of	T.	From	the	definition,	and	from	Theorem	3-3,
the	following	theorem	is	evident.

THEOREM	3-12

With	respect	to	any	of	its	spanning	trees,	a	connected	graph	of	n	vertices	and	e
edges	has	n	−	1	tree	branches	and	e	−	n	+	1	chords.

For	example,	the	graph	in	Fig.	3-17	(with	n	=	7,	e	=	14),	has	six	tree	branches
and	eight	chords	with	respect	to	the	spanning	tree	{	b1,	b2,	b3,	b4,	b5,	b6}	.	Any
other	spanning	tree	will	yield	the	same	numbers.
If	we	have	an	electric	network	with	e	elements	(edges)	and	n	nodes	(vertices),

what	 is	 the	 minimum	 number	 of	 elements	 we	 must	 remove	 to	 eliminate	 all
circuits	 in	 the	network?	The	answer	 is	e	−	n	+	1.	Similarly,	 if	we	have	a	 farm
consisting	of	six	walled	plots	of	land,	as	shown	in	Fig.	3-18,	and	these	plots	are
full	of	water,	how	many	walls	will	have	to	be	broken	so	that	all	the	water	can	be
drained	out?	Here	n	=	10	and	e	=	15.	We	shall	have	to	select	a	set	of	six	(15	−	10
+	1	=6)	walls	such	that	the	remaining	nine	constitute	a	spanning	tree.	Breaking
these	six	walls	will	drain	the	water	out.



Fig.	3-18	Farm	with	walled	plots	of	land.

Rank	 and	 Nullity:	When	 someone	 specifies	 a	 graph	G,	 the	 first	 thing	 he	 is
most	likely	to	mention	is	n,	the	number	of	vertices	in	G.	Immediately	following
comes	e,	the	number	of	edges	in	G.	Then	k,	the	number	of	components	G	has.	If
k	=	1,	G	 is	 connected.	How	are	 these	 three	numbers	of	a	graph	 related?	Since
every	component	of	a	graph	must	have	at	least	one	vertex,	n	≥	k.	Moreoever,	the
number	of	edges	 in	a	component	can	be	no	less	 than	the	number	of	vertices	 in
that	component	minus	one.	Therefore,	e	≥	n	−	k.	Apart	from	the	constraints	n	−	k
≥	0	and	e	−	n	+	k	≥	0,	these	three	numbers	n,	e,	and	k	are	independent,	and	they
are	fundamental	numbers	in	graphs.	(Needless	to	mention,	these	numbers	alone
are	not	enough	to	specify	a	graph,	except	for	trivial	cases.)
From	 these	 three	 numbers	 are	 derived	 two	 other	 important	 numbers	 called

rank	and	nullity,	defined	as

rank	r	=	n	−	k,

nullity	µ	=	e	−	n	+	k.

The	rank	of	a	connected	graph	is	n	−	1,	and	the	nullity,	e	−	n	+	1.	Although	the
real	significance	of	these	numbers	will	be	clear	in	Chapter	7,	it	may	be	observed
here	that

rank	of	G	= number	of	branches	in	any	spanning	tree	(or	forest)	of	G,
nullity	of	G	= number	of	chords	in	G,

rank	+	nullity	= number	of	edges	in	G.

The	nullity	of	a	graph	is	also	referred	to	as	its	cyclomatic	number,	or	first	Betti
number.



3-8. FUNDAMENTAL	CIRCUITS

You	may	have	noticed	that	if	we	add	an	edge	between	any	two	vertices	of	a
tree	(say,	in	Fig.	3-1)	a	circuit	is	created.	This	is	because	there	already	exists	one
path	between	any	two	vertices	of	a	tree;	adding	an	edge	between	them	creates	an
additional	 path,	 and	 hence	 a	 circuit.	 Along	 this	 line	 of	 reasoning,	 it	 is	 not
difficult	to	prove

THEOREM	3-13

A	connected	graph	G	is	a	tree	if	and	only	if	adding	an	edge	between	any	two
vertices	in	G	creates	exactly	one	circuit.

Let	us	now	consider	a	 spanning	 tree	T	 in	 a	 connected	graph	G.	Adding	any
one	chord	to	T	will	create	exactly	one	circuit.	Such	a	circuit,	formed	by	adding	a
chord	to	a	spanning	tree,	is	called	a	fundamental	circuit.
How	many	 fundamental	 circuits	does	a	graph	have?	Exactly	as	many	as	 the

number	of	chords,	µ	(=	e	−	n	+	k).	How	many	circuits	does	a	graph	have	in	all?
We	know	that	one	circuit	is	created	by	adding	any	one	chord	to	a	tree.	Suppose
that	 we	 add	 one	 more	 chord.	 Will	 it	 create	 exactly	 one	 more	 circuit?	 What
happens	if	we	add	all	the	chords	simultaneously	to	the	tree?
Let	us	look	at	the	tree	{b1,	b2,	b3,	b4,	b5,	b6}	in	Fig.	3-17.	Adding	c1	to	it,	we

get	 a	 subgraph	 {b1,	b2,	b3,	b4,	b5,	b6,	 c1},	which	has	 one	 circuit	 (fundamental
circuit),	{b1,	b2,	b3,	b4,	b5,	c1}.	Had	we	added	the	chord	c2	(instead	of	c1)	to	the
tree,	we	would	 have	 obtained	 a	 different	 fundamental	 circuit,	 {b2,	b3,	b5,	 c2}.
Now	suppose	that	we	add	both	chords	c1	and	c2	to	the	tree.	The	subgraph	{b1,	b2,
b3,	b4,	b5,	b6	c1,	c2},	has	not	only	 the	 fundamental	circuits	we	 just	mentioned,
but	 it	 has	 also	 a	 third	 circuit,	 {b1,	c1,	c2},	which	 is	 not	 a	 fundamental	 circuit.
Although	there	are	75	circuits	in	Fig.	3-17	(enumerated	by	computer),	only	eight
are	 fundamental	 circuits,	 each	 formed	 by	 one	 chord	 (together	 with	 the	 tree
branches).
Two	 comments	 may	 be	 appropriate	 here.	 First,	 a	 circuit	 is	 a	 fundamental

circuit	 only	 with	 respect	 to	 a	 given	 spanning	 tree.	 A	 given	 circuit	 may	 be
fundamental	with	respect	to	one	spanning	tree,	but	not	with	respect	to	a	different
spanning	 tree	of	 the	same	graph.	Although	 the	number	of	 fundamental	circuits
(as	 well	 as	 the	 total	 number	 of	 circuits)	 in	 a	 graph	 is	 fixed,	 the	 circuits	 that
become	fundamental	change	with	the	spanning	trees.
Second,	 in	 most	 applications	 we	 are	 not	 interested	 in	 all	 the	 circuits	 of	 a



graph,	 but	 only	 in	 a	 set	 of	 fundamental	 circuits,	 which	 fortuitously	 are	 a	 lot
easier	to	track.	The	concept	of	a	fundamental	circuit,	introduced	by	Kirchhoff,	is
of	enormous	significance	in	electrical	network	analysis.	What	Kirchhoff	showed,
which	now	every	sophomore	 in	electrical	engineering	knows,	 is	 that	no	matter
how	 many	 circuits	 a	 network	 contains	 we	 need	 consider	 only	 fundamental
circuits	with	 respect	 to	 any	 spanning	 tree.	The	 rest	of	 the	 circuits	 (as	we	 shall
prove	rigorously	in	Chapter	7)	are	combinations	of	some	fundamental	circuits.

3-9. FINDING	ALL	SPANNING	TREES	OF	A	GRAPH

Usually,	 in	 a	 given	 connected	 graph	 there	 are	 a	 large	 number	 of	 spanning
trees.	In	many	applications	we	require	all	spanning	trees.	One	reasonable	way	to
generate	spanning	trees	of	a	graph	is	to	start	with	a	given	spanning	tree,	say	tree
T1	 (a	 b	 c	 d	 in	 Fig.	 3-19).	 Add	 a	 chord,	 say	 h,	 to	 the	 tree	 T1.	 This	 forms	 a
fundamental	circuit	(b	c	h	d	in	Fig.	3-19).	Removal	of	any	branch,	say	c,	 from
the	fundamental	circuit	b	c	h	d	 just	formed	will	create	a	new	spanning	tree	T2.
This	generation	of	one	spanning	tree	from	another,	through	addition	of	a	chord
and	 deletion	 of	 an	 appropriate	 branch,	 is	 called	 a	 cyclic	 interchange	 or
elementary	tree	transformation.	(Such	a	transformation	is	a	standard	operation	in
the	iteration	sequence	for	solving	certain	transportation	problems.)

Fig.	3-19	Graph	and	three	of	its	spanning	tree

In	the	above	procedure,	instead	of	deleting	branch	c,	we	could	have	deleted	d
or	b	and	thus	would	have	obtained	two	additional	spanning	trees	a	b	c	h	and	a	c
h	d.	Moreover,	after	generating	these	three	trees,	each	with	chord	h	in	it,	we	can
restart	with	T1	 and	 add	 a	 different	 chord	 (e,	 f,	 or	g)	 and	 repeat	 the	 process	 of
obtaining	 a	 different	 spanning	 tree	 each	 time	 a	 branch	 is	 deleted	 from	 the
fundamental	circuit	formed.	Thus	we	have	a	procedure	for	generating	spanning
trees	for	any	given	graph.



As	we	shall	 see	 in	Chapter	13,	 the	 topological	 analysis	of	 a	 linear	electrical
network	essentially	reduces	to	the	generation	of	trees	in	the	corresponding	graph.
Therefore,	finding	an	efficient	procedure	for	generating	all	trees	of	a	graph	is	a
very	important	practical	problem.
The	procedure	outlined	above	raises	many	questions.	Can	we	start	 from	any

spanning	tree	and	get	a	desired	spanning	tree	by	a	number	of	cyclic	exchanges?
Can	we	get	all	spanning	trees	of	a	given	graph	in	this	fashion?	How	long	will	we
have	 to	continue	exchanging	edges?	Out	of	all	possible	 spanning	 trees	 that	we
can	start	with,	is	there	a	preferred	one	for	starting?	Let	us	try	to	answer	some	of
these	questions;	others	will	have	to	wait	until	Chapters	7,	10,	and	11.
The	distance	between	two	spanning	trees	Ti	and	Tj	of	a	graph	G	is	defined	as

the	number	of	edges	of	G	present	in	one	tree	but	not	in	the	other.	This	distance
may	be	written	as	d(Ti,	Tj).	For	instance,	in	Fig.	3-19	d(Ti,	Tj)	=	3.
Let	Ti	⊕	Tj	be	the	ring	sum	of	two	spanning	trees	Ti	and	Tj	of	G	(as	defined	in

Chapter	2,	Ti	⊕	Tj	is	the	subgraph	of	G	containing	all	edges	of	G	that	are	either
in	Ti	or	in	Tj	but	not	in	both).	Let	N(g)	denote	the	number	of	edges	in	a	graph	g.
Then,	from	definition,

It	 is	 not	 difficult	 to	 see	 that	 the	 number	 d(Ti,	 Tj)	 is	 the	 minimum	 number	 of
cyclic	interchanges	involved	in	going	from	Ti	to	Tj.	The	reader	is	encouraged	to
prove	the	following	two	theorems.

THEOREM	3-14

The	 distance	 between	 the	 spanning	 trees	 of	 a	 graph	 is	 a	metric.	 That	 is,	 it
satisfies

d(Ti,	Tj)	≥	0	and	d(Ti,	Tj)	=	0	if	and	only	if	Ti	=	Tj,
d(Ti,	Tj)	=	d(Tj,	Ti),
d(Ti,	Tj)	≤	d(Ti,	Tk)	+	d(Tk,	Tj).

THEOREM	3-15

Starting	from	any	spanning	tree	of	a	graph	G,	we	can	obtain	every	spanning
tree	of	G	by	successive	cyclic	exchanges.

Since	in	a	connected	graph	G	of	rank	r	(i.e.,	of	r	+	1	vertices)	a	spanning	tree



has	r	edges,	we	have	the	following	results:
The	maximum	distance	between	any	two	spanning	trees	in	G	is

Also,	 if	 µ	 is	 the	 nullity	 of	 G,	 we	 know	 that	 no	 more	 than	 µ	 edges	 of	 a
spanning	tree	Ti	can	be	replaced	to	get	another	tree	Tj.

Hence max	d(Ti,	Tj)	≤	µ

combining	the	two,

max	d(Ti,	Tj)	≤	min(µ,	r),

where	min(µ,	r)	is	the	smaller	of	the	two	numbers	µ	and	r	of	the	graph	G.

Central	Tree:	For	a	spanning	tree	T0	of	a	graph	G,	 let	max	d(T0	 ,	Ti)	denote
the	maximal	distance	between	T0	and	any	other	spanning	tree	of	G.	Then	T0	 is
called	a	central	tree	of	G	if

The	concept	of	a	central	tree	is	useful	in	enumerating	all	trees	of	a	given	graph.
A	central	tree	in	a	graph	is,	in	general,	not	unique.	For	more	on	central	trees	the
reader	should	see	[3-1]	and	[3-4].

Tree	Graph:	The	tree	graph	of	a	given	graph	G	is	defined	as	a	graph	in	which
each	vertex	corresponds	to	a	spanning	tree	of	G,	and	each	edge	corresponds	to	a
cyclic	interchange	between	the	spanning	trees	of	G	represented	by	the	two	end
vertices	 of	 the	 edge.	 From	 Theorem	 3-15	 we	 know	 that	 starting	 from	 any
spanning	tree	we	can	obtain	all	other	spanning	trees	through	cyclic	interchanges
(or	 elementary	 tree	 transformations).	 Therefore,	 the	 tree	 graph	 of	 any	 given
(finite,	connected)	graph	 is	connected.	For	additional	properties	of	 tree	graphs,
the	reader	should	see	[3-3].



3-10. SPANNING	TREES	IN	A	WEIGHTED	GRAPH

As	discussed	earlier	in	this	chapter,	a	spanning	tree	in	a	graph	G	is	a	minimal
subgraph	connecting	all	the	vertices	of	G.	If	graph	G	is	a	weighted	graph	(i.e.,	if
there	 is	 a	 real	 number	 associated	 with	 each	 edge	 of	G),	 then	 the	weight	 of	 a
spanning	tree	T	of	G	is	defined	as	the	sum	of	the	weights	of	all	the	branches	in
T.	In	general,	different	spanning	trees	of	G	will	have	different	weights.	Among
all	 the	 spanning	 trees	 of	 G,	 one	 with	 the	 smallest	 weight	 is	 of	 practical
significance.	(There	may	be	several	spanning	trees	with	the	smallest	weight;	for
instance,	 in	 a	 graph	 of	 n	 vertices	 in	 which	 every	 edge	 has	 unit	 weight,	 all
spanning	trees	have	a	weight	of	n	−	1	units.)	A	spanning	tree	with	the	smallest
weight	in	a	weighted	graph	is	called	a	shortest	spanning	tree	or	shortest-distance
spanning	tree	or	minimal	spanning	tree.
One	possible	application	of	the	shortest	spanning	tree	is	as	follows:	Suppose

that	we	are	to	connect	n	cities	v1,	v2,	 .	 .	 .	 ,	vn	 through	a	network	of	roads.	The
cost	cij	of	building	a	direct	road	between	vi	and	vj	is	given	for	all	pairs	of	cities
where	roads	can	be	built.	(There	may	be	pairs	of	cities	between	which	no	direct
road	can	be	built.)	The	problem	is	then	to	find	the	least	expensive	network	that
connects	 all	 n	 cities	 together.	 It	 is	 immediately	 evident	 that	 this	 connected
network	must	be	a	tree:	otherwise,	we	can	always	remove	some	edges	and	get	a
connected	graph	with	 smaller	weight.	Thus	 the	problem	of	 connecting	n	 cities
with	a	least	expensive	network	is	the	problem	of	finding	a	shortest	spanning	tree
in	 a	 connected	 weighted	 graph	 of	 n	 vertices.	 A	 necessary	 and	 sufficient
condition	for	a	spanning	tree	to	be	shortest	is	given	by

THEOREM	3-16

A	 spanning	 tree	 T	 (of	 a	 given	 weighted	 connected	 graph	G)	 is	 a	 shortest
spanning	tree	(of	G)	if	and	only	if	there	exists	no	other	spanning	tree	(of	G)	at	a
distance	of	one	from	T	whose	weight	is	smaller	than	that	of	T.

Proof:	The	necessary	or	the	“only	if”	condition	is	obvious;	otherwise,	we	shall
get	 another	 tree	 shorter	 than	 T	 by	 a	 cyclic	 interchange.	 The	 fact	 that	 this
condition	is	also	sufficient	is	remarkable	and	is	not	obvious.	It	can	be	proved	as
follows:
Let	T1	be	a	spanning	tree	in	G	satisfying	the	hypothesis	of	the	theorem	(i.e.,

there	is	no	spanning	tree	at	a	distance	of	one	from	T1	which	is	shorter	than	T1	).
The	 proof	will	 be	 completed	 by	 showing	 that	 if	T2	 is	 a	 shortest	 spanning	 tree



(different	from	T1)	in	G,	the	weight	of	T1	will	also	be	equal	to	that	of	T2.	Let	T2
be	a	shortest	spanning	tree	in	G.	Clearly,	T2	must	also	satisfy	the	hypothesis	of
the	theorem	(otherwise	there	will	be	a	spanning	tree	shorter	than	T2	at	a	distance
of	one	from	T2,	violating	the	assumption	that	T2	is	shortest).
Consider	 an	 edge	 e	 in	 T2	 which	 is	 not	 in	 T1.	 Adding	 e	 to	 T1	 forms	 a

fundamental	circuit	with	branches	in	T1.	Some,	but	not	all,	of	the	branches	in	T1
that	 form	 the	 fundamental	 circuit	 with	 e	 may	 also	 be	 in	 T2;	 each	 of	 these
branches	 in	T1	 has	 a	weight	 smaller	 than	 or	 equal	 to	 that	 of	e,	 because	 of	 the
assumption	on	T1.	Amongst	all	those	edges	in	this	circuit	which	are	not	in	T2	at
least	 one,	 say	 bj,	 must	 form	 some	 fundamental	 circuit	 (with	 respect	 to	 T2)
containing	e.	Because	of	the	minimality	assumption	on	T2	weight	of	bj	cannot	be
less	 than	 that	 of	 e.	 Therefore	 bj	 must	 have	 the	 same	 weight	 as	 e.	 Hence	 the
spanning	 tree	 	=	 (T1	⋃e	−	bj),	obtained	 from	T1	 through	one	cycle	exchange,
has	the	same	weight	as	T1.	But	T1	has	one	edge	more	in	common	with	T2,	and	it
satisfies	 the	 condition	 of	 Theorem	 3-16.	 This	 argument	 can	 be	 repeated,
producing	a	series	of	trees	of	equal	weight,	T1	,	T1	,	T1,	.	.	.	,	each	a	unit	distance
closer	to	T2,	until	we	get	T2	itself.
This	 proves	 that	 if	 none	 of	 the	 spanning	 trees	 at	 a	 unit	 distance	 from	 T	 is

shorter	than	T,	no	spanning	tree	shorter	than	T	exists	in	the	graph.	

Algorithm	for	Shortest	Spanning	Tree:	There	are	several	methods	available	for
actually	finding	a	shortest	spanning	tree	in	a	given	graph,	both	by	hand	and	by
computer.	One	algorithm	due	to	Kruskal	[3-8]	is	as	follows:	List	all	edges	of	the
graph	G	 in	 order	 of	 nondecreasing	weight.	Next,	 select	 a	 smallest	 edge	 of	G.
Then	 for	 each	 successive	 step	 select	 (from	 all	 remaining	 edges	 of	G)	 another
smallest	edge	that	makes	no	circuit	with	the	previously	selected	edges.	Continue
until	n	−	1	edges	have	been	selected,	and	these	edges	will	constitute	the	desired
shortest	spanning	tree.	The	validity	of	the	method	follows	from	Theorem	3-16.
Another	 algorithm,	 which	 does	 not	 require	 listing	 all	 edges	 in	 order	 of

nondecreasing	weight	or	checking	at	each	step	if	a	newly	selected	edge	forms	a
circuit,	is	due	to	Prim	[3-10].	For	Prim′s	algorithm,	draw	n	isolated	vertices	and
label	them	v1,	v2,	.	.	.	,	vn.	Tabulate	the	given	weights	of	the	edges	of	G	in	an	n
by	n	 table.	 (Note	 that	 the	entries	 in	 the	 table	are	symmetric	with	respect	 to	 the
diagonal,	 and	 the	 diagonal	 is	 empty.)	 Set	 the	 weights	 of	 nonexistent	 edges
(corresponding	to	those	pairs	of	cities	between	which	no	direct	road	can	be	built)
as	very	large.



Start	 from	vertex	v1	and	connect	 it	 to	 its	nearest	neighbor	(i.e.,	 to	 the	vertex
which	has	the	smallest	entry	in	row	1	of	the	table),	say	vk.	Now	consider	v1	and
vk	as	one	subgraph,	and	connect	 this	subgraph	to	 its	closest	neighbor	(i.e.,	 to	a
vertex	other	than	v1and	vk	that	has	the	smallest	entry	among	all	entries	in	rows	1
and	k).	Let	this	new	vertex	be	vi.	Next	regard	the	tree	with	vertices	v1,	vk,	and	vi
as	 one	 subgraph,	 and	 continue	 the	 process	 until	 all	 n	 vertices	 have	 been
connected	by	n	−	1	edges.	Let	us	now	illustrate	this	method	of	finding	a	shortest
spanning	tree.

Fig.	3-20	Shortest	spanning	tree	in	a	weighted	graph.

A	connected	weighted	graph	with	6	vertices	and	12	edges	is	shown	in	Fig.	3-
20(a).	The	weight	of	its	edges	is	tabulated	in	Fig.	3-20(b).	We	start	with	v1	and
pick	the	smallest	entry	in	row	1,	which	is	either	(v1,	v2)	or	(v1,	v5).	Let	us	pick
(v1,	v5).	[Had	we	picked	(v1,	v2)	we	would	have	obtained	a	different	shortest	tree
with	the	same	weight.]	The	closest	neighbor	of	subgraph	(v1,	v5)	is	v4	,	as	can	be
seen	 by	 examining	 all	 the	 entries	 in	 rows	 1	 and	 5.	The	 three	 remaining	 edges
selected	following	the	above	procedure	turn	out	to	be	(v4,	v6),	(v4,	v3),	and	(v3,
v2)	 in	 that	 sequence.	The	 resulting	 tree—a	shortest	 spanning	 tree—is	shown	 in
Fig.	3-20(a)	in	heavy	lines.	The	weight	of	this	tree	is	41.5	units.

Degree-Constrained	 Shortest	 Spanning	 Tree:	 In	 a	 shortest	 spanning	 tree
resulting	 from	 the	 preceding	 construction,	 a	 vertex	 vi	 can	 end	 up	 with	 any
degree;	 that	 is,	1	≤	d(vi)	≤	n	−	1.	In	some	practical	cases	an	upper	limit	on	the
degree	of	 every	vertex	 (of	 the	 resulting	 spanning	 tree)	 has	 to	 be	 imposed.	For
instance,	in	an	electrical	wiring	problem,	one	may	be	required	to	wire	together	n



pins	 (using	 as	 little	 wire	 as	 possible)	 with	 no	more	 than	 three	wires	 wrapped
around	any	individual	pin.	Thus,	in	this	particular	case,

d(vi)	≤ 3	for	every	vi.

Such	a	spanning	tree	is	called	a	degree-constrained	shortest	spanning	tree.
In	general,	the	problem	may	be	stated	as	follows:	Given	a	weighted	connected

graph	G,	find	a	shortest	spanning	tree	T	in	G	such	that

d(vi)	≤	k for	every	vertex	vi	in	T.

If	 k	 =	 2,	 this	 problem,	 in	 fact,	 reduces	 to	 the	 problem	 of	 finding	 the	 shortest
Hamiltonian	 path,	 as	 well	 as	 the	 traveling-salesman	 problem	 (without	 the
salesman	returning	to	his	home	base),	discussed	at	the	end	of	Chapter	2.	So	far,
no	 efficient	 method	 of	 finding	 an	 arbitrarily	 degree-constrained	 shortest
spanning	tree	has	been	found.

SUMMARY

This	 chapter	 dealt	 with	 a	 particular	 type	 of	 connected	 graph	 called	 a	 tree.
Because	of	their	wide	applications,	trees	form	the	most	important	topic	in	graph
theory.	 Different	 types	 of	 trees,	 such	 as	 labeled	 and	 unlabeled,	 rooted	 and
unrooted,	were	discussed,	together	with	their	properties	and	applications.
Of	 special	 interest	 are	 those	 trees	 that	 are	 subgraphs	 of	 a	 given	 connected

graph	G	containing	all	vertices	of	G.	Such	trees	are	called	spanning	trees	of	G.
Finding	all	spanning	trees	of	a	given	graph	is	of	great	practical	importance,	and
so	is	the	problem	of	finding	a	shortest	spanning	tree	in	a	given	weighted	graph.
Other	 related	 concepts,	 such	 as	 centers,	 radius,	 and	 diameter	 of	 a	 tree,	 rank

and	 nullity	 of	 a	 graph,	 fundamental	 circuits,	 branches	 and	 chords,	 cyclic
interchange,	 distance	 between	 spanning	 trees,	 and	 tree	 graphs,	 were	 also
introduced	 and	 studied.	 Trees,	 spanning	 trees,	 and	 fundamental	 circuits	 will
continue	to	appear	from	time	to	time	in	most	of	the	succeeding	chapters.
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PROBLEMS

3-1. Draw	all	trees	of	n	labeled	vertices	for	n	=	1,	2,	3,	4,	and	5.
3-2. Draw	all	trees	of	n	unlabeled	vertices	for	n	=	1,	2,	3,	4,	and	5.
3-3. Draw	all	unlabeled	rooted	trees	of	n	vertices	for	n	=	1,	2,	3,	4,	and	5.
3-4. It	can	be	shown	that	there	are	only	six	different	(nonisomorphic)	trees	of

six	vertices.	Two	such	trees	are	given	in	Fig.	2-4.	Draw	the	other	four.
3-5. Prove	Theorem	3-4.
3-6. Show	a	tree	in	which	its	diameter	is	not	equal	to	twice	the	radius.	Under

what	condition	does	this	inequality	hold?	Elaborate.
3-7. Cite	three	different	situations	(games,	activities,	or	problems)	that	can	be

represented	by	trees.	Explain.
3-8. How	many	isomers	does	pentane	C5H1	2	have?	Hexane,	C6H14?
3-9. Suppose	you	are	given	eight	coins	and	are	told	that	seven	of	them	are	of

equal	weight,	and	one	coin	is	either	heavier	or	lighter	than	the	rest.	You
are	provided	with	an	equal-arm	balance,	which	you	may	use	only	 three
times,	 for	 comparing	coins.	Sketch	a	 strategy	 in	 the	 form	of	 a	decision
tree	 for	 identifying	 the	 nonconforming	 coin,	 as	well	 as	 for	 finding	 out
whether	it	is	heavier	or	lighter	than	the	rest.

3-10. Sketch	 all	 (unlabeled)	 binary	 trees	 with	 six	 pendant	 vertices.	 Find	 the
path	length	of	each.	[Hint:	Distribute	the	11	vertices	(because	n	=	6	+	5)
among	different	levels.	Observe	that	level	0	has	exactly	one	vertex,	level
1	has	exactly	 two	vertices;	 level	2	can	have	either	 two	or	 four	vertices;
and	so	on.	There	are	six	such	trees,	and	two	of	them	are	shown	in	Fig.	3-
13.]

3-11. Sketch	all	spanning	trees	of	the	graph	in	Fig.	2-1.
3-12. Show	that	a	path	is	its	own	spanning	tree.
3-13. Prove	 that	 a	pendant	 edge	 (an	 edge	whose	one	 end	vertex	 is	 of	degree

one)	in	a	connected	graph	G	is	contained	in	every	spanning	tree	of	G.



3-14. Prove	that	any	subgraph	g	of	a	connected	graph	G	is	contained	in	some
spanning	tree	of	G	if	and	only	if	g	contains	no	circuit.

3-15. What	is	the	nullity	of	a	complete	graph	of	n	vertices?
3-16. Show	that	a	Hamiltonian	path	is	a	spanning	tree.
3-17. Prove	 that	 any	 circuit	 in	 a	 graph	 G	 must	 have	 at	 least	 one	 edge	 in

common	with	a	chord	set.
3-18. Prove	Theorem	3-13.
3-19. Find	a	spanning	tree	at	a	distance	of	four	from	spanning	tree	{b1,	b2,	b3,

64,	b5,	b6}	in	Fig.	3-17.	List	all	fundamental	circuits	with	respect	to	this
new	spanning	tree.

3-20. Show	 that	 the	 distance	 between	 two	 spanning	 trees	 as	 defined	 in	 this
chapter	is	a	metric.

3-21. Can	you	construct	a	graph	if	you	are	given	all	its	spanning	trees?	How?
3-22. Prove	that	the	nullity	of	a	graph	does	not	change	when	you	either	insert	a

vertex	 in	 the	middle	 of	 an	 edge,	 or	 remove	 a	 vertex	 of	 degree	 two	 by
merging	two	edges	incident	on	it.

3-23. Prove	 that	any	given	edge	of	a	connected	graph	G	 is	a	branch	of	some
spanning	tree	of	G.	Is	it	also	true	that	any	arbitrary	edge	of	G	is	a	chord
for	some	spanning	tree	of	G?

3-24. Suggest	a	method	for	determining	the	total	number	of	spanning	trees	of	a
connected	graph	without	actually	listing	them.

3-25. Prove	that	two	colors	are	necessary	and	sufficient	to	paint	all	n	vertices
(n	≥	2)	of	a	tree,	such	that	no	edge	in	the	tree	has	both	of	its	end	vertices
of	 the	 same	 color.	 (This	 fact	 is	 expressed	 by	 the	 statement	 that	 the
chromatic	number	of	a	tree	is	two.)

3-26. Suppose	 that	 you	 are	 given	 a	 set	 of	 n	 positive	 integers.	 State	 some
necessary	conditions	of	 this	set	so	 that	 the	set	can	be	 the	degrees	of	all
the	n	vertices	of	a	tree.	Are	these	conditions	sufficient	also?

3-27. Let	 v	 be	 a	 vertex	 in	 a	 connected	 graph	 G.	 Prove	 that	 there	 exists	 a
spanning	tree	T	in	G	such	that	the	distance	of	every	vertex	from	v	is	the
same	both	in	G	and	in	T.

3-28. Let	T1	and	T2	be	two	spanning	trees	of	a	connected	graph	G.	If	edge	e	is
in	T1	but	not	in	T2,	prove	that	there	exists	another	edge	f	in	T2	but	not	in
T1	such	 that	subgraphs	(T1	−	e)	⋃	 f	and	(T2	−	 f)	⋃	e	are	also	spanning
trees	of	G.

3-29. Construct	a	tree	graph	(with	16	vertices,	each	corresponding	to	a	tree	in
Fig.	3-15)	of	a	labeled	complete	graph	of	four	vertices.

3-30. In	 the	 tree	 graph	 obtained	 in	 Problem	 3-29,	 observe	 the	 following



properties	(discovered	by	R.	L.	Cummins).	A	tree	graph	has	at	least	one
Hamiltonian	circuit,	and	an	arbitrary	edge	of	a	tree	graph	can	be	included
in	a	Hamiltonian	circuit.

3-31. In	a	given	connected	weighted	graph	G,	suppose	there	exists	an	edge	es
whose	weight	 is	 smaller	 than	 that	 of	 any	 other	 in	G.	 Prove	 that	 every
shortest	spanning	tree	in	G	must	contain	es.

3-32. Let	G	 be	 a	 connected	weighted	 graph	 in	which	 every	 edge	 belongs	 to
some	circuit.	If	el	 is	the	edge	with	weight	greater	than	that	of	any	other
edge	in	G,	show	that	no	shortest	spanning	tree	in	G	will	contain	el.

3-33. Show	by	constructing	counterexamples	 that	 in	Problems	3-31	and	3-32
the	 same	 cannot	 be	 said	 of	 the	 second	 smallest	 and	 the	 second	 largest
edges,	respectively.

3-34. Use	 the	 algorithm	 of	 Kruskal,	 as	 outlined	 in	 this	 chapter,	 to	 find	 a
shortest	spanning	tree	in	the	graph	of	Fig.	3-20(a).

3-35. Pick	 15	 large	 cities	 in	 the	 United	 States	 and	 obtain	 the	 105	 intercity
distances	from	an	atlas.	Find	the	shortest	spanning	tree	connecting	these
cities	 by	 using	 (a)	Kruskal’s	method,	 and	 (b)	Prim’s	method.	Compare
their	relative	efficiencies.



4	CUTSETS	AND	CUT-VERTICES

In	Chapter	 3	we	 studied	 the	 spanning	 tree—a	 special	 type	 of	 subgraph	of	 a
connected	graph	G—which	kept	all	the	vertices	of	G	together.	In	this	chapter	we
shall	study	the	cut-set—another	type	of	subgraph	of	a	connected	graph	G	whose
removal	from	G	separates	some	vertices	from	others	in	G.	Properties	of	cutsets
and	their	applications	will	be	covered.	Other	related	topics,	such	as	connectivity,
separability,	and	vulnerability	of	graphs,	will	also	be	discussed.

4-1. CUTSETS

In	a	 connected	graph	G,	 a	cut-set	 is	 a	 set	of	 edges†	whose	 removal	 from	G
leaves	G	 disconnected,	 provided	 removal	 of	 no	 proper	 subset	 of	 these	 edges
disconnects	G.	For	instance,	in	Fig.	4-1	the	set	of	edges	{a,	c,	d,	f}	is	a	cut-set.
There	are	many	other	cutsets,	such	as	{a,	b,	g}	,	{a,	b,	e,	f}	,	and	{d,	h,	f}.	Edge
{k}	alone	is	also	a	cut-set.	The	set	of	edges	{a,	c,	h,	d}	,	on	the	other	hand,	is	not
a	cut-set,	because	one	of	its	proper	subsets,	{a,	c,	h},	is	a	cut-set.
To	emphasize	the	fact	that	no	proper	subset	of	a	cut-set	can	be	a	cut-set,	some

authors	refer	to	a	cut-set	as	a	minimal	cut-set,	a	proper	cut-set,	or	a	simple	cut-
set.	Sometimes	a	cut-set	is	also	called	a	cocycle.	We	shall	just	use	the	term	cut-
set.
A	 cut-set	 always	 “cuts”	 a	 graph	 into	 two.	 Therefore,	 a	 cut-set	 can	 also	 be

defined	as	a	minimal	set	of	edges	in	a	connected	graph	whose	removal	reduces
the	rank	of	the	graph	by	one.	The	rank	of	the	graph	in	Fig.	4.1(b),	for	instance,	is
four,	one	less	than	that	of	the	graph	in	Fig,	4.1(a).	Another	way	of	looking	at	a
cut-set	 is	 this:	 if	we	partition	 all	 the	vertices	of	 a	 connected	graph	G	 into	 two
mutually	 exclusive	 subsets,	 a	 cut-set	 is	 a	 minimal	 number	 of	 edges	 whose
removal	 from	 G	 destroys	 all	 paths	 between	 these	 two	 sets	 of	 vertices.	 For
example,	in	Fig.	4-1(a)	cut-set	{a,	c,	d,	f}	connects	vertex	set	{v1,	v2	,	v6}	with
{v3,	v4,	v5}.	(Note	that	one	or	both	of	these	two	subsets	of	vertices	may	consist



of	 just	one	vertex.)	Since	removal	of	any	edge	from	a	 tree	breaks	 the	 tree	 into
two	parts,	every	edge	of	a	tree	is	a	cut-set.

Fig.	4-1	Removal	of	a	cut-set	{a,	c,	d,	f}	from	a	graph	“cuts”	it	into	two.

Cutsets	are	of	great	importance	in	studying	properties	of	communication	and
transportation	networks.	Suppose,	 for	example,	 that	 the	six	vertices	 in	Fig.	4-1
(a)	represent	six	cities	connected	by	telephone	lines	(edges).	We	wish	to	find	out
if	there	are	any	weak	spots	in	the	network	that	need	strengthening	by	means	of
additional	telephone	lines.	We	look	at	all	cutsets	of	the	graph,	and	the	one	with
the	 smallest	 number	 of	 edges	 is	 the	 most	 vulnerable.	 In	 Fig.	 4-1(a),	 the	 city
represented	 by	 vertex	 v3	 can	 be	 severed	 from	 the	 rest	 of	 the	 network	 by	 the
destruction	 of	 just	 one	 edge.	 After	 some	 additional	 study	 of	 the	 properties	 of
cutsets,	we	shall	return	to	their	applications.

4-2. SOME	PROPERTIES	OF	A	CUT-SET

Consider	a	spanning	tree	T	in	a	connected	graph	G	and	an	arbitrary	cutset	S	in
G.	Is	it	possible	for	S	not	to	have	any	edge	in	common	with	T?	The	answer	is	no.
Otherwise,	 removal	 of	 the	 cut-set	 S	 from	G	 would	 not	 disconnect	 the	 graph.
Therefore,

THEOREM	4-1

Every	cut-set	in	a	connected	graph	G	must	contain	at	least	one	branch	of	every



spanning	tree	of	G.

Will	the	converse	also	be	true?	In	other	words,	will	any	minimal	set	of	edges
containing	at	least	one	branch	of	every	spanning	tree	be	a	cut-set?	The	answer	is
yes,	by	the	following	reasoning:
In	a	given	connected	graph	G,	 let	Q	be	a	minimal	set	of	edges	containing	at

least	one	branch	of	every	spanning	tree	of	G.	Consider	G	−	Q,	the	subgraph	that
remains	 after	 removing	 the	 edges	 in	 Q	 from	 G.	 Since	 the	 subgraph	 G	 −	 Q
contains	no	spanning	tree	of	G,	G	−	Q	is	disconnected	(one	component	of	which
may	just	consist	of	an	isolated	vertex).	Also,	since	Q	 is	a	minimal	set	of	edges
with	this	property,	any	edge	e	from	Q	returned	to	G	−	Q	will	create	at	least	one
spanning	 tree.	 Thus	 the	 subgraph	 G	 −	 Q	 +	 e	 will	 be	 a	 connected	 graph.
Therefore,	Q	 is	 a	minimal	 set	 of	 edges	whose	 removal	 from	G	 disconnects	G.
This,	by	definition,	is	a	cut-set.	Hence

THEOREM	4-2

In	 a	 connected	 graph	G,	 any	 minimal	 set	 of	 edges	 containing	 at	 least	 one
branch	of	every	spanning	tree	of	G	is	a	cut-set.

THEOREM	4-3

Every	circuit	has	an	even	number	of	edges	in	common	with	any	cut-set.

Proof:	 Consider	 a	 cut-set	 S	 in	 graph	 G	 (Fig.	 4-2).	 Let	 the	 removal	 of	 S
partition	 the	vertices	of	G	 into	 two	 (mutually	 exclusive	or	 disjoint)	 subsets	V1
and	V2.	 Consider	 a	 circuit	 Γ	 in	G.	 If	 all	 the	 vertices	 in	 Γ	 are	 entirely	 within
vertex	set	V1	 (or	V2),	 the	number	of	edges	common	to	S	and	Γ	 is	zero;	 that	 is,
N(S	⋂	Γ)	=	0,	an	even	number.†
If,	on	the	other	hand,	some	vertices	in	Γ	are	in	V1and	some	in	V2,	we	traverse

back	and	forth	between	the	sets	V1	and	V2	as	we	traverse	the	circuit	(see	Fig.	4-
2).	Because	of	 the	 closed	nature	of	 a	 circuit,	 the	number	of	 edges	we	 traverse
between	V1	and	V2	must	be	even.	And	since	very	edge	in	S	has	one	end	in	V1	and
the	 other	 in	V2,	 and	 no	 other	 edge	 in	G	 has	 this	 property	 (of	 separating	 sets
V1and	V2),	the	number	of	edges	common	to	S	and	Γ	is	even.	



Fig.	4-2	Circuit	and	a	cut-set	in	G.

4-3. ALL	CUTSETS	IN	A	GRAPH

In	Section	4-1	it	was	shown	how	cutsets	are	used	to	identify	weak	spots	in	a
communication	 net.	 For	 this	 purpose	 we	 list	 all	 cutsets	 of	 the	 corresponding
graph,	and	find	which	ones	have	the	smallest	number	of	edges.	It	must	also	have
become	apparent	to	you	that	even	in	a	simple	example,	such	as	in	Fig.	4-1,	there
is	 a	 large	 number	 of	 cutsets,	 and	 we	 must	 have	 a	 systematic	 method	 of
generating	all	relevant	cutsets.
In	the	case	of	circuits,	we	solved	a	similar	problem	by	the	simple	technique	of

finding	 a	 set	 of	 fundamental	 circuits	 and	 then	 realizing	 that	 other	 circuits	 in	 a
graph	 are	 just	 combinations	 of	 two	 or	 more	 fundamental	 circuits.	 We	 shall
follow	a	similar	strategy	here.	Just	as	a	spanning	tree	is	essential	for	defining	a
set	 of	 fundamental	 circuits,	 so	 is	 a	 spanning	 tree	 essential	 for	 a	 set	 of
fundamental	 cutsets.	 It	 will	 be	 beneficial	 for	 the	 reader	 to	 look	 for	 the
parallelism	between	circuits	and	cutsets.

Fundamental	 CutSets:	 Consider	 a	 spanning	 tree	T	 of	 a	 connected	 graph	G.
Take	any	branch	b	in	T.	Since	{b}	is	a	cut-set	in	T,	{b}	partitions	all	vertices	of
T	 into	 two	disjoint	 sets—one	 at	 each	 end	of	b.	Consider	 the	 same	partition	of
vertices	in	G,	and	the	cut	set	S	 in	G	 that	corresponds	to	this	partition.	Cutset	S
will	contain	only	one	branch	b	of	T,	and	 the	rest	 (if	any)	of	 the	edges	 in	S	are
chords	with	respect	to	T.	Such	a	cut-set	S	containing	exactly	one	branch	of	a	tree
T	 is	 called	 a	 fundamental	 cut-set	with	 respect	 to	T.	 Sometimes	 a	 fundamental
cut-set	 is	 also	 called	 a	 basic	 cut-set.	 In	 Fig.	 4-3,	 a	 spanning	 tree	T	 (in	 heavy
lines)	and	all	five	of	the	fundamental	cutsets	with	respect	to	T	are	shown	(broken



lines	“cutting”	through	each	cut-set).

Fig.	4-3	Fundamental	cutsets	of	a	graph.

Just	 as	 every	chord	of	 a	 spanning	 tree	defines	a	unique	 fundamental	 circuit,
every	 branch	 of	 a	 spanning	 tree	 defines	 a	unique	 fundamental	 cut-set.	 It	must
also	be	kept	in	mind	that	the	term	fundamental	cut-set	(like	the	term	fundamental
circuit)	has	meaning	only	with	respect	to	a	given	spanning	tree.
Now	we	shall	show	how	other	cutsets	of	a	graph	can	be	obtained	from	a	given

set	of	cutsets.

THEOREM	4-4

The	ring	sum	of	any	two	cutsets	in	a	graph	is	either	a	third	cut-set	or	an	edge-
disjoint	union	of	cutsets.

Outline	of	Proof:	Let	S1	and	S2	be	two	cutsets	in	a	given	connected	graph	G.
Let	V1	and	V2	be	the	(unique	and	disjoint)	partitioning	of	the	vertex	set	V	of	G
corresponding	 to	 S1.	 Let	 V3	 and	 V4	 be	 the	 partitioning	 corresponding	 to	 S2.
Clearly	[see	Figs.	4-4(a)	and	(b)],

V1	⋃	V2	=	V	and	V1	⋂	V2	=	Ø,
V3	⋃	v4	=	V	and	V3	⋂	V4	=	Ø.

Now	let	the	subset	(V1	⋂	V4)	⋃	(V2	⋂	V3)	be	called	V5,	and	this	by	definition
is	the	same	as	the	ring	sum	V1	⊕	V3.	Similarly,	let	the	subset	(	V1	⋂	V3)	⋃	(V2	⋂
V4)	be	called	V6,	which	is	the	same	as	V2	⊕	V3.	See	Fig.	4-4(c).
The	ring	sum	of	the	two	cutsets	S1	⊕	S2	can	be	seen	to	consist	only	of	edges

that	join	vertices	in	V5	to	those	in	V6.	Also,	there	are	no	edges	outside	S1	⊕	S2



that	join	vertices	in	V5	to	those	in	V6.
Thus	the	set	of	edges	S1	⊕	S2	produces	a	partitioning	of	V	into	V5	and	V6	such

that

V5	⋃	v6	=	V	and	V5	⋂	V6	=	Ø.

Hence	S1	⊕	S2	 is	 a	 cut-set	 if	 the	 subgraphs	containing	V5	 and	V6	 each	 remain
connected	 after	 S1	⊕	 S2	 is	 removed	 from	G.	 Otherwise,	 S1	⊕	 S2	 is	 an	 edge-
disjoint	union	of	cutsets.

Example:	In	Fig.	4-3	let	us	consider	ring	sums	of	the	following	three	pairs	of
cutsets.



Fig.	4-4	Two	cutsets	and	their	partitionings.

So	we	have	a	method	of	generating	additional	cutsets	from	a	number	of	given
cutsets.	Obviously,	we	 cannot	 start	with	 any	 two	 cutsets	 in	 a	 given	 graph	 and
hope	 to	 obtain	 all	 its	 cutsets	 by	 this	 method.	 What	 then	 is	 a	 minimal	 set	 of
cutsets	from	which	we	can	obtain	every	cut-set	of	G	by	taking	ring	sums?	The
answer	 (to	 be	 proved	 in	 Chapter	 6)	 is	 the	 set	 of	 all	 fundamental	 cutsets	 with
respect	to	a	given	spanning	tree.

4-4. FUNDAMENTAL	CIRCUITS	AND	CUTSETS

Consider	a	 spanning	 tree	T	 in	a	given	connected	graph	G.	Let	ci	be	a	chord
with	 respect	 to	 T,	 and	 let	 the	 fundamental	 circuit	 made	 by	 ci	 be	 called	 Γ,
consisting	of	k	branches	b1,	b2,	.	.	.	,	bk	in	addition	to	the	chord	ci;	that	is,

Γ	=	{ci,	b1,	b2,	.	.	.	,	bk)	is	a	fundamental	circuit	with	respect	to	T.



Every	branch	of	any	spanning	tree	has	a	fundamental	cut-set	associated	with
it.	Let	S1	be	the	fundamental	cut-set	associated	with	bl,	consisting	of	q	chords	in
addition	to	the	branch	b1;	that	is,

S1	=	{bl,	cl,	c2,	.	.	.	,	cq}	is	a	fundamental	cut-set	with	respect	to	T.

Because	of	Theorem	4-3,	there	must	be	an	even	number	of	edges	common	to
Γ	 and	S1.	 Edge	b1	 is	 in	 both	 Γ	 and	S1,	 and	 there	 is	 only	 one	 other	 edge	 in	 Γ
(which	is	ci)	that	can	possibly	also	be	in	S1.	Therefore,	we	must	have	two	edges
b1	and	ci	common	to	S1	and	Γ.	Thus	the	chord	ci	is	one	of	the	chords	c1,	c2,	.	.	.
cq.
Exactly	the	same	argument	holds	for	fundamental	cutsets	associated	with	b2,

b3,	.	.	.	,	and	bk.	Therefore,	the	chord	ci	is	contained	in	every	fundamental	cut-set
associated	with	branches	in	Γ.
Is	 it	possible	for	 the	chord	ci	 to	be	 in	any	other	fundamental	cut-set	S′	 (with

respect	 to	T,	 of	 course)	 besides	 those	 associated	with	b1,	b2,	 .	 .	 .	 and	bk?	The
answer	is	no.	Otherwise	(since	none	of	the	branches	in	Γ	are	in	S′),	there	would
be	only	one	edge	ci	common	to	S′	and	Γ,	a	contradiction	to	Theorem	4-3.	Thus
we	have	an	important	result.

THEOREM	4-5

With	 respect	 to	 a	 given	 spanning	 tree	 T,	 a	 chord	 ci	 that	 determines	 a
fundamental	 circuit	 Γ	 occurs	 in	 every	 fundamental	 cut-set	 associated	with	 the
branches	in	Γ	and	in	no	other.

As	 an	 example,	 consider	 the	 spanning	 tree	 {b,	 c,	 e,	 h,	 k},	 shown	 in	 heavy
lines,	in	Fig.	4-3.	The	fundamental	circuit	made	by	chord	f	is

{f,	e,	h,	k}.

The	three	fundamental	cutsets	determined	by	the	three	branches	e,	h,	and	k	are

determined	by	branch	e:	{d,	e,	f},
determined	by	branch	h:	{f,	g,	h},
determined	by	branch	k:	{f,	g,	k}.

Chor	 f	occurs	 in	each	of	 these	 three	 fundamental	cutsets,	and	 there	 is	no	other
fundamental	cut-set	that	contains	f.	The	converse	of	Theorem	4-5	is	also	true.



THEOREM	4-6

With	 respect	 to	 a	 given	 spanning	 tree	 T,	 a	 branch	 bi	 that	 determines	 a
fundamental	cut-set	S	 is	contained	in	every	fundamental	circuit	associated	with
the	chords	in	S,	and	in	no	others.

Proof:	The	proof	consists	of	arguments	similar	to	those	that	led	to	Theorem	4-
5.	Let	the	fundamental	cut-set	S	determined	by	a	branch	bi	be

S	=	{bi,	c1,	c2,	.	.	.	,	cp},

and	let	Γ1	be	the	fundamental	circuit	determined	by	chord	c1:

T1	=	{c1,	b1,	b2,	.	.	.	,	bq}.

Since	the	number	of	edges	common	to	S	and	Γ1	must	be	even,	bi	must	be	in	Γ1.
The	same	is	true	for	the	fundamental	circuits	made	by	chords	c2,	c3,	.	.	.	,	cp.
On	the	other	hand,	suppose	that	bi	occurs	in	a	fundamental	circuit	Γp+1	made

by	a	chord	other	than	c1,	c2,	.	.	.	,	cp.	Since	none	of	the	chords	c1,	c2,	.	.	.	,	cp	is	in
Γp+1,	there	is	only	one	edge	bi	common	to	a	circuit	Γp+1	and	the	cut-set	S,	which
is	not	possible.	Hence	the	theorem.	

Turning	 again	 for	 illustration	 to	 the	 graph	 in	 Fig.	 4-3,	 consider	 branch	 e	 of
spanning	tree	{b,	c,	e,	h,	k}.	The	fundamental	cut-set	determined	by	e	is

{e,	d,	f}.

The	two	fundamental	circuits	determined	by	chords	d	and	f	are

determined	by	chord	d:	{d,	c,	e},
determined	by	chord	f:	{f,	e,	h,	k}.

Branch	 e	 is	 contained	 in	 both	 these	 fundamental	 circuits,	 and	 none	 of	 the
remaining	three	fundamental	circuits	contains	branch	e.

4-5. CONNECTIVITY	AND	SEPARABILITY

Edge	Connectivity:	Each	cut-set	of	a	connected	graph	G	consists	of	a	certain



number	of	edges.	The	number	of	edges	 in	 the	smallest	cut-set	 (i.e.,	cutset	with
fewest	number	of	edges)	is	defined	as	the	edge	connectivity	of	G.	Equivalently,
the	 edge	 connectivity	 of	 a	 connected	 graph†	 can	 be	 defined	 as	 the	 minimum
number	of	edges	whose	removal	(i.e.,	deletion)	reduces	the	rank	of	the	graph	by
one.	The	edge	connectivity	of	a	tree,	for	instance,	is	one.	The	edge	connectivities
of	the	graphs	in	Figs.	4-1(a),	4-3,	4-5	are	one,	two,	and	three,	respectively.

Vertex	 Connectivity:	 On	 examining	 the	 graph	 in	 Fig.	 4-5,	 we	 find	 that
although	 removal	 of	 no	 single	 edge	 (or	 even	 a	 pair	 of	 edges)	 disconnects	 the
graph,	 the	 removal	 of	 the	 single	 vertex	 v	 does.†	Therefore,	we	 define	 another
analogous	 term	 called	 vertex	 connectivity.	 The	 vertex	 connectivity	 (or	 simply
connectivity)	 of	 a	 connected	 graph	G	 is	 defined	 as	 the	 minimum	 number	 of
vertices	 whose	 removal	 from	 G	 leaves	 the	 remaining	 graph	 disconnected.‡
Again,	the	vertex	connectivity	of	a	tree	is	one.	The	vertex	connectivities	of	the
graphs	in	Figs.	4-1(a),	4-3,	and	4-5	are	one,	two,	and	one,	respectively.	Note	that
from	 the	 way	 we	 have	 defined	 it	 vertex	 connectivity	 is	 meaningful	 only	 for
graphs	that	have	three	or	more	vertices	and	are	not	complete.

Fig.	4-5	Separable	graph.

Separable	 Graph:	 A	 connected	 graph	 is	 said	 to	 be	 separable	 if	 its	 vertex
connectivity	 is	 one.	 All	 other	 connected	 graphs	 are	 called	 nonseparable.	 An
equivalent	definition	is	that	a	connected	graph	G	is	said	to	be	separable	if	there
exists	a	subgraph	g	in	G	such	that	 	(the	complement	of	g	in	G)	and	g	have	only
one	vertex	 in	common.	That	 these	 two	definitions	are	equivalent	can	be	easily
seen	(Problem	4-7).	In	a	separable	graph	a	vertex	whose	removal	disconnects	the
graph	is	called	a	cut-vertex,	a	cut-node,	or	an	articulation	point.	For	example,	in
Fig.	4-5	the	vertex	v	is	a	cut-vertex,	and	in	Fig.	4-1(a)	vertex	v4	is	a	cut-vertex.	It
can	be	shown	(Problem	4-18)	that	in	a	tree	every	vertex	with	degree	greater	than
one	is	a	cut-vertex.	Moreover:



THEOREM	4-7

A	vertex	v	in	a	connected	graph	G	is	a	cut-vertex	if	and	only	if	there	exist	two
vertices	x	and	y	in	G	such	that	every	path	between	x	and	y	passes	through	v.

The	proof	of	the	theorem	is	quite	easy	and	is	left	as	an	exercise	(Problem	4-
17).	The	implication	of	the	theorem	is	very	significant.	It	states	that	v	is	a	crucial
vertex	in	the	sense	that	any	communication	between	x	and	y	(if	G	represented	a
communication	network)	must	“pass	through”	v.

Fig.	4-6	Graph	with	8	vertices	and	16	edges.

An	Application:	Suppose	we	are	given	n	stations	that	are	to	be	connected	by
means	of	e	lines	(telephone	lines,	bridges,	railroads,	tunnels,	or	highways)	where
e	 ≥	 n	 −	 1.	What	 is	 the	 best	 way	 of	 connecting?	 By	 “best”	 we	mean	 that	 the
network	 should	 be	 as	 invulnerable	 to	 destruction	 of	 individual	 stations	 and
individual	lines	as	possible.	In	other	words,	construct	a	graph	with	n	vertices	and
e	 edges	 that	 has	 the	 maximum	 possible	 edge	 connectivity	 and	 vertex
connectivity.
For	 example,	 the	 graph	 in	 Fig.	 4-5	 has	 n	 =	 8,	 e	 =	 16,	 and	 has	 vertex

connectivity	of	one	and	edge	connectivity	of	three.	Another	graph	with	the	same
number	of	vertices	and	edges	(8	and	16,	respectively)	can	be	drawn	as	shown	in
Fig.	4-6.
It	 can	 easily	 be	 seen	 that	 the	 edge	 connectivity	 as	 well	 as	 the	 vertex

connectivity	of	this	graph	is	four.	Consequently,	even	after	any	three	stations	are
bombed,	or	any	three	lines	destroyed,	the	remaining	stations	can	still	continue	to
“communicate”	with	each	other.	Thus	the	network	of	Fig.	4-6	is	better	connected
than	that	of	Fig.	4-5	(although	both	consist	of	the	same	number	of	lines—16).
The	next	question	is	what	is	the	highest	vertex	and	edge	connectivity	we	can

achieve	for	a	given	n	and	e?	The	following	theorems	constitute	the	answer.



THEOREM	4-8

The	 edge	 connectivity	 of	 a	 graph	G	 cannot	 exceed	 the	 degree	 of	 the	 vertex
with	the	smallest	degree	in	G.

Proof:	Let	vertex	vi	be	the	vertex	with	the	smallest	degree	in	G.	Let	d(vi)	be
the	degree	of	vi.	Vertex	vi	can	be	separated	from	G	by	removing	the	d(vi)	edges
incident	on	vertex	vi.	Hence	the	theorem.	

THEOREM	4-9

The	 vertex	 connectivity	 of	 any	 graph	 G	 can	 never	 exceed	 the	 edge
connectivity	of	G.

Proof:	Let	α	denote	the	edge	connectivity	of	G.	Therefore,	there	exists	a	cutset
S	in	G	with	α	edges.	Let	S	partition	the	vertices	of	G	into	subsets	V1	and	V2.	By
removing	at	most	a	vertices	from	V1	(or	V2)	on	which	the	edges	in	S	are	incident,
we	can	effect	 the	removal	of	S	 (together	with	all	other	edges	 incident	on	 these
vertices)	from	G.	Hence	the	theorem.	

COROLLARY

Every	cut-set	in	a	nonseparable	graph	with	more	than	two	vertices	contains	at
least	two	edges.

THEOREM	4-10

The	 maximum	 vertex	 connectivity	 one	 can	 achieve	 with	 a	 graph	 G	 of	 n
vertices	and	e	edges	(e	≥	n	−	1)	is	the	integral	part	of	the	number	2e/n;	 that	is,
⌊2e/n⌋.
Proof:	 Every	 edge	 in	G	 contributes	 two	 degrees.	 The	 total	 (2e	 degrees)	 is

divided	 among	 n	 vertices.	 Therefore,	 there	 must	 be	 at	 least	 one	 vertex	 in	G
whose	degree	is	equal	to	or	less	than	the	number	2e/n.	The	vertex	connectivity	of
G	cannot	exceed	this	number,	in	light	of	Theorems	4-8	and	4-9.
To	show	that	this	value	can	actually	be	achieved,	one	can	first	construct	an	n-

vertex	regular	graph	of	degree	⌊2e/n⌋	and	then	add	the	remaining	e	−	(n/2)·⌊2e/n⌋
edges	arbitrarily.	The	completion	of	the	proof	is	left	as	an	exercise.	

The	results	of	Theorems	4-8,	4-9,	and	4-10	can	be	summarized	as	follows:

vertex	connectivity	≤	edge	connectivity	≤	 	,



and

maximum	vertex	connectivity	possible	=	 .

Thus,	 for	 a	 graph	 with	 8	 vertices	 and	 16	 edges	 (Figs.	 4-5	 and	 4-6),	 for
example,	we	can	achieve	a	vertex	connectivity	(and	therefore	edge	connectivity)
as	high	as	four	(=2	·16/8).
A	 graph	G	 is	 said	 to	 be	 k-connected	 if	 the	 vertex	 connectivity	 of	G	 is	 k;

therefore,	a	1-connected	graph	is	the	same	as	a	separable	graph.

THEOREM	4-11

A	connected	graph	G	is	k-connected	if	and	only	if	every	pair	of	vertices	in	G
is	 joined	 by	 k	 or	 more	 paths	 that	 do	 not	 intersect,†	 and	 at	 least	 one	 pair	 of
vertices	is	joined	by	exactly	k	nonintersecting	paths.

THEOREM	4-12

The	edge	connectivity	of	a	graph	G	is	k:	if	and	only	if	every	pair	of	vertices	in
G	 is	 joined	by	k	or	more	edge-disjoint	paths	 (i.e.,	paths	 that	may	 intersect,	but
have	no	edges	in	common),	and	at	least	one	pair	of	vertices	is	joined	by	exactly	k
edge-disjoint	paths.
The	reader	is	referred	to	Chapter	5	of	[1-5]	for	 the	proofs	of	Theorems	4-11

and	4-12.	Note	 that	our	definition	of	k-connectedness	 is	slightly	different	 from
the	 one	 given	 in	 [1-5].	A	 special	 result	 of	 Theorem	 4-11	 is	 that	 a	 graph	G	 is
nonseparable	 if	and	only	 if	any	pair	of	vertices	 in	G	can	be	placed	 in	a	circuit
(Problem	4-13).
The	 reader	 is	 encouraged	 to	verify	 these	 theorems	by	enumerating	 all	 edge-

disjoint	and	vertex-disjoint	paths	between	each	of	the	15	pairs	of	vertices	in	Fig.
4-3.

4-6. NETWORK	FLOWS

In	a	network	of	telephone	lines,	highways,	railroads,	pipelines	of	oil	(or	gas	or
water),	 and	 so	 on,	 it	 is	 important	 to	 know	 the	 maximum	 rate	 of	 flow	 that	 is
possible	 from	 one	 station	 to	 another	 in	 the	 network.	 This	 type	 of	 network	 is
represented	by	a	weighted	connected	graph	in	which	the	vertices	are	the	stations
and	 the	 edges	 are	 lines	 through	 which	 the	 given	 commodity	 (oil,	 gas,	 water,
number	 of	 messages,	 number	 of	 cars,	 etc.)	 flows.	 The	 weight,	 a	 real	 positive



number,	associated	with	each	edge	represents	the	capacity	of	the	line,	that	is,	the
maximum	amount	of	 flow	possible	per	unit	of	 time.	The	graph	 in	Fig.	4-7,	 for
example,	 represents	a	 flow	network	consisting	of	12	stations	and	31	 lines.	The
capacity	of	each	of	these	lines	is	also	indicated	in	the	figure.
It	 is	 assumed	 that	 at	 each	 intermediate	 vertex	 the	 total	 rate	 of	 commodity

entering	is	equal	to	the	rate	leaving.	In	other	words,	there	is	no	accumulation	or
generation	of	the	commodity	at	any	vertex	along	the	way.	Furthermore,	the	flow
through	a	vertex	is	limited	only	by	the	capacities	of	the	edges	incident	on	it.	In
other	words,	 the	vertex	 itself	 can	handle	 as	much	 flow	as	 allowed	 through	 the
edges.	Finally,	the	lines	are	lossless.

Fig.	4-7	Graph	of	a	flow	network.

In	such	a	flow	problem	the	questions	to	be	answered	are

1. What	 is	 the	 maximum	 flow	 possible	 through	 the	 network	 between	 a
specified	pair	of	vertices—say,	from	B	to	M	in	Fig.	4-7?

2. How	do	we	achieve	this	flow	(i.e.,	determine	the	actual	flow	through	each
edge	when	the	maximum	flow	exists)?

Theorem	 4-13,	 perhaps	 the	most	 important	 result	 in	 the	 theory	 of	 transport
networks,	answers	the	first	question.	The	second	question	is	answered	implicitly
by	a	constructive	proof	of	the	theorem.	To	facilitate	the	statement	and	proof	of
the	theorem,	let	us	define	a	few	terms.
A	cut-set	with	respect	to	a	pair	of	vertices	a	and	b	in	a	connected	graph	G	puts

a	 and	 b	 into	 two	 different	 components	 (i.e.,	 separates	 vertices	 a	 and	 b).	 For
instance,	in	Fig.	4-3	cut-set	{d,	e,	f}	is	a	cut-set	with	respect	to	v1	and	v6.	The	set
{f,	g,	h}	is	also	a	cut-set	with	respect	to	v1	and	v6.	But	the	cut-set	{f,	g,	h}	is	not



a	 cut-set	 with	 respect	 to	 v1	 and	 v6.	 The	 capacity	 of	 cut-set	 S	 in	 a	 weighted
connected	 graph	 G	 (in	 which	 the	 weight	 of	 each	 edge	 represents	 its	 flow
capacity)	is	defined	as	the	sum	of	the	weights	of	all	the	edges	in	S.

THEOREM	4-13

The	maximum	 flow	 possible	 between	 two	 vertices	 a	 and	 b	 in	 a	 network	 is
equal	to	the	minimum	of	the	capacities	of	all	cutsets	with	respect	to	a	and	b.

Proof:	 Consider	 any	 cut-set	S	 with	 respect	 to	 vertices	a	 and	b	 in	G.	 In	 the
subgraph	G	 −	S	 (the	 subgraph	 left	 after	 removing	S	 from	G)	 there	 is	 no	 path
between	a	 and	b.	Therefore,	 every	path	 in	G	 between	a	 and	b	must	 contain	at
least	 one	 edge	 of	S.	 Thus	 every	 flow	 from	a	 to	b	 (or	 from	b	 to	a)	must	 pass
through	 one	 or	more	 edges	 of	S.	Hence	 the	 total	 flow	 rate	 between	 these	 two
vertices	 cannot	 exceed	 the	 capacity	 of	 S.	 Since	 this	 holds	 for	 all	 cutsets	 with
respect	to	a	and	b,	the	flow	rate	cannot	exceed	the	minimum	of	their	capacities.	

To	 show	 that	 this	 flow	 can	 actually	 be	 achieved	 is	 somewhat	 involved.	 It
requires	some	concepts	that	are	to	be	introduced	later.	The	complete	proof	will
therefore	 be	 deferred	 till	 Chapter	 14,	 where	 flow	 problems	 will	 be	 treated	 in
much	greater	detail.

4-7. 1-ISOMORPHISM

A	separable	graph	consists	of	 two	or	more	nonseparable	 subgraphs.	Each	of
the	largest	nonseparable	subgraphs	is	called	a	block.	(Some	authors	use	the	term
component,	but	to	avoid	confusion	with	components	of	a	disconnected	graph,	we
shall	use	the	term	block.)	The	graph	in	Fig.	4-5	has	two	blocks.	The	graph	in	Fig.
4-8	 has	 five	 blocks	 (and	 three	 cut-vertices	 a,	 b,	 and	 c);	 each	 block	 is	 shown
enclosed	by	a	broken	line.	Note	that	a	nonseparable	connected	graph	consists	of
just	one	block.



Fig.	4-8	Separable	graph	with	three	cut-vertices	and	five	blocks.

Fig.	4-9	Disconnected	graph	1-isomorphic	to	Fig.	4-8.

Visually	compare	the	disconnected	graph	in	Fig.	4-9	with	the	one	in	Fig.	4-8.
These	 two	 graphs	 are	 certainly	 not	 isomorphic	 (they	 do	 not	 have	 the	 same
number	of	vertices),	but	they	are	related	by	the	fact	that	the	blocks	of	the	graph
in	 Fig.	 4-8	 are	 isomorphic	 to	 the	 components	 of	 the	 graph	 in	 Fig.	 4-9.	 Such
graphs	are	said	to	be	1-isomorphic.	More	formally:
Two	graphs	G1	and	G2	are	said	to	be	1-isomorphic	if	they	become	isomorphic

to	each	other	under	repeated	application	of	the	following	operation.

Operation	 1:	 “Split”	 a	 cut-vertex	 into	 two	 vertices	 to	 produce	 two	 disjoint
subgraphs.
From	 this	 definition	 it	 is	 apparent	 that	 two	 nonseparable	 graphs	 are	 1-

isomorphic	if	and	only	if	they	are	isomorphic.

THEOREM	4-14

If	G1	and	G2	are	two	1-isomorphic	graphs,	the	rank	of	G1	equals	the	rank	of
G2	and	the	nullity	of	G1	equals	the	nullity	of	G2.

Proof:	Under	operation	1,	whenever	a	cut-vertex	in	a	graph	G	 is	“split”	 into
two	vertices,	 the	number	of	 components	 in	G	 increases	by	one.	Therefore,	 the



rank	of	G	which	is

number	of	vertices	in	G	−	number	of	components	in	G

remains	invariant	under	operation	1.

Also,	since	no	edges	are	destroyed	or	new	edges	created	by	operation	1,	two
1-isomorphic	 graphs	 have	 the	 same	 number	 of	 edges.	 Two	 graphs	with	 equal
rank	and	with	equal	numbers	of	edges	must	have	the	same	nullity,	because

nullity	=	number	of	edges	−	rank.	

What	if	we	join	two	components	of	Fig.	4-9	by	“gluing”	together	two	vertices
(say	vertex	x	to	y)	?	We	obtain	the	graph	shown	in	Fig.	4-10.
Clearly,	the	graph	in	Fig.	4-10	is	1-isomorphic	to	the	graph	in	Fig.	4-9.	Since

the	blocks	of	the	graph	in	Fig.	4-10	are	isomorphic	to	the	blocks	of	the	graph	in
Fig.	4-8,	these	two	graphs	are	also	1-isomorphic.	Thus	the	three	graphs	in	Figs.
4-8,	4-9,	and	4-10	are	1-isomorphic	to	one	another.

Fig.	4-10	Graph	1-isomorphic	to	Figs.	4-8	and	4-9.

4-8. 2-ISOMORPHISM

In	Section	4-7	we	generalized	the	concept	of	 isomorphism	by	introducing	1-
isomorphism.	A	graph	G1	was	1-isomorphic	to	graph	G2	if	the	blocks	of	G1	were
isomorphic	to	the	blocks	of	G2.	Since	a	nonseparable	graph	is	just	one	block,	1-
isomorphism	for	nonseparable	graphs	is	the	same	as	isomorphism.	However,	for
separable	graphs	(i.e.,	graphs	with	vertex	connectivity	of	one),	1-isomorphism	is



different	 from	isomorphism.	Graphs	 that	are	 isomorphic	are	also	1-isomorphic,
but	1-isomorphic	graphs	may	not	be	isomorphic.	This	generalized	isomorphism
is	very	useful	in	the	study	of	separable	graphs.
We	can	generalize	 this	 concept	 further	 to	broaden	 its	 scope	 for	2-connected

graphs	(i.e.,	graphs	with	vertex	connectivity	of	two),	as	follows:
In	 a	 2-connected	 graph	G	 let	 vertices	 x	 and	 y	 be	 a	 pair	 of	 vertices	 whose

removal	from	G	will	leave	the	remaining	graph	disconnected.	In	other	words,	G
consists	of	a	subgraph	g1	and	its	complement	 	such	that	g1	and	 	have	exactly
two	 vertices,	 x	 and	 y,	 in	 common.	 Suppose	 that	 we	 perform	 the	 following
operation	 2	 on	 G	 (after	 which,	 of	 course,	 G	 no	 longer	 remains	 the	 original
graph).

Operation	2:	“Split”	the	vertex	x	into	x1	and	x2	and	the	vertex	y	into	y1	and	y2
such	that	G	is	split	into	g1	and	 .	Let	vertices	x1	and	y1	go	with	g1	and	x2	and	y2
with	 .	Now	 rejoin	 the	graphs	g1	 and	 	by	merging	x1	with	y2	 and	x2	with	y1.
(Clearly,	edges	whose	end	vertices	were	x	and	y	in	G	could	have	gone	with	g1	or	
,	without	affecting	the	final	graph.)
Two	 graphs	 are	 said	 to	 be	 2-isomorphic	 if	 they	 become	 isomorphic	 after

undergoing	operation	1	 (in	Section	4-7)	or	operation	2,	or	both	operations	any
number	of	times.	For	example,	Fig.	4-11	shows	how	the	two	graphs	in	Figs.	4-
11(a)	and	(d)	are	2-isomorphic.	Note	that	in	(a)	the	degree	of	vertex	x	is	four,	but
in	(d)	no	vertex	is	of	degree	four.
From	the	definition	it	follows	immediately	that	isomorphic	graphs	are	always

1-isomorphic,	 and	 1-isomorphic	 graphs	 are	 always	 2-isomorphic.	 But	 2-
isomorphic	 graphs	 are	 not	 necessarily	 1-isomorphic,	 and	 1-isomorphic	 graphs
are	not	necessarily	 isomorphic.	However,	 for	graphs	with	connectivity	 three	or
more,	isomorphism,	1-isomorphism,	and	2-isomorphism	are	synonymous.



Fig.	4-11	2-isomorphic	graphs	(a)	and	(d).

It	is	clear	that	no	edges	or	vertices	are	created	or	destroyed	under	operation	2.
Therefore,	the	rank	and	nullity	of	a	graph	remain	unchanged	under	operation	2.
And	 as	 shown	 in	 Section	 4-7,	 the	 rank	 or	 nullity	 of	 a	 graph	 does	 not	 change
under	operation	1.	Therefore,	2-isomorphic	graphs	are	equal	in	rank	and	equal	in
nullity.	The	fact	that	the	rank	r	and	nullity	µ	are	not	enough	to	specify	a	graph
within	 2-isomorphism	 can	 easily	 be	 shown	 by	 constructing	 a	 counterexample
(Problem	4-23).

Circuit	 Correspondence:	 Two	 graphs	G1	 and	G2	 are	 said	 to	 have	 a	 circuit
correspondence	 if	 they	 meet	 the	 following	 condition:	 There	 is	 a	 one-to-one
correspondence	 between	 the	 edges	 of	 G1	 and	 G2	 and	 a	 one-to-one
correspondence	 between	 the	 circuits	 of	 G1	 and	G2,	 such	 that	 a	 circuit	 in	G1
formed	by	certain	edges	of	G1	has	a	corresponding	circuit	in	G2	formed	by	the
corresponding	edges	of	G2,	and	vice	versa.	Isomorphic	graphs,	obviously,	have
circuit	correspondence.
Since	 in	 a	 separable	 graph	G	 every	 circuit	 is	 confined	 to	 a	 particular	 block

(Problem	4-15),	every	circuit	in	G	retains	its	edges	as	G	undergoes	operation	1
(in	Section	4-7).	Hence	1-isomorphic	graphs	have	circuit	correpondence.
Similarly,	 let	 us	 consider	 what	 happens	 to	 a	 circuit	 in	 a	 graph	G	 when	 it



undergoes	operation	2,	as	defined	in	this	section.	A	circuit	T	in	G	will	fall	in	one
of	three	categories:

1. Γ	is	made	of	edges	all	in	g1,	or

2. Γ	is	made	of	edges	all	in	 ,	or

3. Γ	is	made	of	edges	from	both	g1	and	 ,	and	in	that	case	T	must	include	both
vertices	x	and	y.

In	cases	1	and	2,	Γ	is	unaffected	by	operation	2.	In	case	3,	Γ	still	has	the	original
edges,	except	 that	 the	path	between	vertices	x	 and	y	 in	g1,	which	constituted	a
part	of	Γ,	is	“flipped	around.”	Thus	every	circuit	in	a	graph	undergoing	operation
2	 retains	 its	 original	 edges.	 Therefore,	 2-isomorphic	 graphs	 also	 have	 circuit
correspondence.
Theorem	4-15,	which	is	considered	the	most	important	result	for	2-isomorphic

graphs,	is	due	to	H.	Whitney.

THEOREM	4-15

Two	graphs	are	2-isomorphic	if	and	only	if	they	have	circuit	correspondence.

Proof:	The	“only	if”	part	has	already	been	shown	in	the	argument	preceding
the	 theorem.	 The	 “if”	 part	 is	 more	 involved,	 and	 the	 reader	 is	 referred	 to
Whitney’s	original	paper	[4-7].
As	we	shall	observe	 in	subsequent	chapters,	 the	 ideas	of	2-isomorphism	and

circuit	 correspondence	 play	 important	 roles	 in	 the	 theory	 of	 contact	 networks,
electrical	networks,	and	in	duality	of	graphs.

SUMMARY

Our	main	concern	in	this	chapter	was	with	answering	the	following	question
about	 a	 connected	 graph:	 Which	 part	 of	 a	 connected	 graph,	 when	 removed,
breaks	the	graph	apart?	Clearly,	the	answer	to	this	question	does	specify	a	graph
in	many	aspects	and	tells	a	great	deal	about	 it.	Some	of	 these	properties	are	of
considerable	significance	both	in	theory	and	applications	of	graphs.
In	pursuit	of	the	answer	to	the	above	question,	we	came	across	the	concepts	of

cutsets,	 cut-vertices,	 connectivity,	 and	 so	 on.	 Many	 of	 the	 theorems	 showed
relationships	between	these	characteristics	of	a	graph.
In	 contrast	 to	 a	 spanning	 tree	 (which	 keeps	 the	 vertices	 together),	 a	 cutset



separates	the	vertices.	Consequently,	there	was	bound	to	be	a	close	relationship
between	a	spanning	tree	and	a	cut-set.	Some	of	the	theorems	(and	the	problems
at	the	end	of	this	chapter)	describe	this	relationship	between	spanning	trees	and
cutsets.
In	 terms	 of	 the	minimum	 number	 of	 vertices	 whose	 removal	 disconnects	 a

graph,	all	graphs	can	be	classified	according	to	Fig.	4-12.

Fig.	4-12	Classification	of	graphs	according	to	their	connectivity.

A	very	important	and	practical	result	of	this	chapter	was	the	max-flow	min-cut
theorem	(Theorem	4-13).
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PROBLEMS

4-1. Pick	 an	 arbitrary	 spanning	 tree	 in	 the	 graph	 given	 in	 Fig.	 4-6.	 List	 all
seven	(because	n	−	1	=	7)	fundamental	cutsets	with	respect	to	this	tree.

4-2. By	 taking	 the	 ring	 sum	 of	 the	 seven	 fundamental	 cutsets	 obtained	 in
Problem	4-1,	list	all	other	cutsets	of	the	graph.

4-3. List	all	cutsets	with	respect	to	the	vertex	pair	v2,	v3	in	the	graph	in	Fig.	4-
1	(a).

4-4. Show	that	the	edge	connectivity	and	vertex	connectivity	of	the	graphs	in
Fig.	2-2	are	each	equal	to	three.

4-5. What	is	the	edge	connectivity	of	the	complete	graph	of	n	vertices?



4-6. Prove	that	in	a	connected	graph	G	the	complement	of	a	cut-set	in	G	does
not	contain	a	spanning	tree	and	the	complement	of	a	spanning	tree	(i.e.,
chord	set)	does	not	contain	a	cut-set.

4-7. Show	 that	 the	 two	 definitions	 of	 separability	 in	 Section	 4-5	 are
equivalent.

4-8. Prove	 that	 in	a	nonseparable	graph	G	 the	set	of	edges	 incident	on	each
vertex	of	G	is	a	cut-set.

4-9. Why	is	the	result	of	Problem	4-8	not	applicable	to	separable	graphs	also?
Explain.

4-10. Prove	that	in	a	connected	graph	G	a	vertex	v	is	a	cut-vertex	if	and	only	if
there	exist	two	(or	more)	edges	x	and	y	incident	on	v	such	that	no	circuit
in	G	includes	both	x	and	y.

4-11. Prove	that	every	connected	graph	with	three	or	more	vertices	has	at	least
two	vertices	which	are	not	cut-vertices.

4-12. Prove	 that	 a	 nonseparable	 graph	 has	 a	 nullity	µ	 =	 1	 if	 and	 only	 if	 the
graph	is	a	circuit.

4-13. Show	that	a	graph	G	is	nonseparable	if	and	only	if	every	vertex	pair	in	G
can	be	placed	in	some	circuit	in	G.

4-14. Show	that	a	simple	graph	is	nonseparable	if	and	only	if	for	any	two	given
arbitrary	edges	a	circuit	can	always	be	found	that	will	include	these	two
edges.

4-15. How	can	you	utilize	the	result	of	Problem	4-13	to	obtain	an	algorithm	for
identifying	every	block	of	a	large	separable	graph?

4-16. What	 is	 a	 necessary	 and	 sufficient	 condition	 that	 any	 n	 −	 1	 cutsets	 in
Problem	4-8	constitute	a	set	of	fundamental	cutsets	in	G?

4-17. Prove	Theorem	4-7.
4-18. Prove	 that	 in	 a	 tree	 every	 vertex	 of	 degree	 greater	 than	 one	 is	 a	 cut-

vertex.
4-19. Show	 that	 a	 graph	with	n	 vertices	 and	with	vertex	 connectivity	k	must

have	at	least	kn/2	edges.	(A	special	case	of	this	result	is	that	the	degree	of
every	vertex	in	a	nonseparable	graph	is	at	least	two.)

4-20. Is	 every	 regular	 graph	 of	 degree	d(d	 ≥	 3)	 nonseparable?	 If	 not,	 give	 a
simple	regular	graph	of	degree	three	that	is	separable.

4-21. Complete	the	proof	of	Theorem	4-10.	4-22.	In	a	connected	graph	G,	 let
Q	be	a	set	of	edges	with	the	following	properties:
(a)	Q	 has	 an	 even	 number	 (zero	 included)	 of	 edges	 in	 common	 with
every	cut-set	of	G.

(b)	There	is	no	proper	subset	of	Q	that	satisfies	property	(a).	Prove	that	Q
is	a	circuit.



4-23. Construct	a	graph	G	with	the	following	properties:	Edge	connectivity	of
G	=	4,	vertex	connectivity	of	G	=	3,	and	degree	of	every	vertex	of	G	≥	5.

4-24. Show	 (by	 drawing	 them)	 that	 two	 graphs	 with	 the	 same	 rank	 and	 the
same	nullity	need	not	be	2-isomorphic.

4-25. In	Fig.	4-7,	between	vertices	A	and	M,	pick	out	a	complete	set	of
(a)	Edge-disjoint	paths.
(b)	Vertex-disjoint	paths.
From	this,	verify	Theorems	4-11	and	4-12.

4-26. Suppose	 that	 a	 singles	 tennis	 tournament	 is	 to	 be	 arranged	 among	 n
players	and	the	number	of	matches	planned	is	a	fixed	number	e	(where	n
−	1	<	e	<	n(n	−	 l)/2).	For	 the	sake	of	fairness,	how	will	you	make	sure
that	 some	players	do	not	 group	 together	 and	 isolate	 an	 individual	 (or	 a
small	group	of	players)?

4-27. Let	 us	 define	 a	 new	 term	 called	 edge	 isomorphism	 as	 follows:	 Two
graphs	 G1	 and	 G2	 are	 edge	 isomorphic	 if	 there	 is	 a	 one-to-one
correspondence	between	the	edges	of	G1	and	G2	such	that	two	edges	are
incident	 (at	 a	 common	 vertex)	 in	G1	 if	 and	 only	 if	 the	 corresponding
edges	 are	 also	 incident	 in	 G2.	 Discuss	 the	 properties	 of	 edge
isomorphism.	 Construct	 an	 example	 to	 prove	 that	 edge-isomorphic
graphs	may	not	be	isomorphic.

4-28. Prove	that	an	Euler	graph	cannot	have	a	cut-set	with	an	odd	number	of
edges.	(Hint:	Use	Theorem	1-1.)

†Since	a	set	of	edges	(together	with	their	end	vertices)	constitutes	a	subgraph,	a	cutset	in	G	is	a	subgraph	of
G.
†	As	in	Chapter	3,	N(g)	stands	for	the	number	of	edges	in	subgraph	g.
†Although	we	 shall	 talk	 of	 edge	 connectivity	 and	 vertex	 connectivity	 only	 for	 a	 connected	 graph,	 some
authors	define	both	the	edge	connectivity	and	vertex	connectivity	of	a	disconnected	graph	as	zero.
†	 Recall	 that	 removal	 of	 a	 vertex	 implies	 the	 removal	 of	 all	 the	 edges	 incident	 on	 that	 vertex,	 because
without	both	the	end	vertices	an	edge	does	not	exist.	On	the	other	hand,	when	we	delete	or	remove	an	edge
from	a	graph,	the	end	vertices	of	the	edge	are	still	left	in	the	graph.
‡See	the	footnote	on	p.	75.
†Paths	 with	 no	 common	 vertices,	 except	 the	 two	 terminal	 vertices,	 are	 called	 nonintersecting	 paths	 or
vertex-disjoint	paths.



5	PLANAR	AND	DUAL	GRAPHS

In	 Chapters	 2,	 3,	 and	 4	 we	 studied	 properties	 of	 subgraphs,	 such	 as	 paths,
circuits,	 spanning	 trees,	 and	 cut-sets,	 in	 a	 given	 connected	 graph	 G.	 In	 this
chapter	we	shall	subject	the	entire	graph	G	to	the	following	important	question:
Is	it	possible	to	draw	G	in	a	plane	without	its	edges	crossing	over?
This	question	of	planarity	 is	of	great	significance	from	a	 theoretical	point	of

view.	 In	 addition,	 planarity	 and	 other	 related	 concepts	 are	 useful	 in	 many
practical	 situations.	 For	 instance.	 in	 the	 design	 of	 a	 printed-circuit	 board,	 the
electrical	engineer	must	know	if	he	can	make	the	required	connections	without
an	extra	layer	of	insulation.	The	solution	to	the	puzzle	of	three	utilities,	posed	in
Chapter	 1,	 requires	 the	 knowledge	 of	whether	 or	 not	 the	 corresponding	 graph
can	be	drawn	in	a	plane.
But	before	we	attempt	to	draw	a	graph	in	a	plane,	let	us	examine	the	meaning

of	“drawing”	a	graph.

5-1. COMBINATORIAL	VERSUS	GEOMETRIC	GRAPHS

As	mentioned	in	Chapter	1,	a	graph	exists	as	an	abstract	object,	devoid	of	any
geometric	 connotation	 of	 its	 ability	 of	 being	 drawn	 in	 a	 three-dimensional
Euclidean	space.	For	example,	an	abstract	graph	G1	can	be	defined	as

G1	=	(V,	E,	Ψ)

where	the	set	V	consists	of	the	five	objects	named	a,	b,	c,	d,	and	e,	that	is,

V	=	{a,	b,	c,	d,	e},

and	the	set	E	consists	of	seven	objects	(none	of	which	is	in	set	V)	named	1,	2,	3,
4,	5,	6,	and	7,	that	is,



E	=	{1,	2,	3,	4,	5,	6,	7},

and	 the	 relationship	between	 the	 two	 sets	 is	defined	by	 the	mapping	Ψ,	which
consists	of

Here,	 the	 symbol	1	→	(a,	c)	 says	 that	object	1	 from	set	E	 is	mapped	onto	 the
(unordered)	pair	(a,	c)	of	objects	from	set	V.
Now	 it	 so	 happens	 that	 this	 combinatorial	 abstract	 object	 G1	 can	 also	 be

represented	by	means	of	 a	geometric	 figure.	 In	 fact,	 the	 sketch	 in	Fig.	2-13	 is
one	 such	 geometric	 representation	 of	 this	 graph.	Moreover,	 it	 is	 also	 true	 that
any	 graph	 can	 be	 represented	 by	 means	 of	 such	 a	 configuration	 in	 three-
dimensional	Euclidean	space.
It	is	important	to	realize	that	what	is	sketched	in	Fig.	2-13	is	merely	one	(out

of	 infinitely	many)	 representation	of	 the	graph	G1	 and	not	 the	graph	G1	 itself.
We	could	have,	for	 instance,	 twisted	some	of	the	edges	or	could	have	placed	e
within	the	triangle	a,	d,	b	and	thereby	obtained	a	different	figure	representing	G1.
However,	when	there	is	no	chance	of	confusion,	a	pictorial	representation	of	the
graph	has	been	and	will	be	regarded	as	the	graph	itself.
This	 convenient	 slurring	over	 is	 done	deliberately	 for	 the	 sake	of	 simplicity

and	clarity.	Learning	graph	theory	for	the	first	time	without	any	diagrams	would
be	extremely	difficult	and	little	fun.†
Unlike	 in	 the	 last	 four	 chapters,	 in	 this	 chapter	 it	will	 often	be	necessary	 to

make	a	distinction	between	the	abstract	(or	combinatorial)	graph	and	a	geometric
representation	of	a	graph.

5-2. PLANAR	GRAPHS

A	graph	G	is	said	to	be	planar	if	there	exists	some	geometric	representation	of



G	which	 can	 be	 drawn	 on	 a	 plane	 such	 that	 no	 two	 of	 its	 edges	 intersect.†	A
graph	that	cannot	be	drawn	on	a	plane	without	a	crossover	between	its	edges	is
called	nonplanar.
A	drawing	of	a	geometric	representation	of	a	graph	on	any	surface	such	that

no	 edges	 intersect	 is	 called	 embedding.	 Thus,	 to	 declare	 that	 a	 graph	 G	 is
nonplanar,	we	have	to	show	that	of	all	possible	geometric	representations	of	G
none	can	be	embedded	in	a	plane.	Equivalently,	a	geometric	graph	G	is	planar	if
there	exists	a	graph	isomorphic	to	G	that	is	embedded	in	a	plane.	Otherwise,	G	is
nonplanar.	 An	 embedding	 of	 a	 planar	 graph	 G	 on	 a	 plane	 is	 called	 a	 plane
representation	of	G.
For	 instance,	 consider	 the	 graph	 represented	 by	 Fig.	 1-3.	 The	 geometric

representation	shown	in	Fig.	1-3	clearly	is	not	embedded	in	a	plane,	because	the
edges	e	and	f	are	intersecting.	But	if	we	redraw	edge	f	outside	the	quadrilateral,
leaving	the	other	edges	unchanged,	we	have	embedded	the	new	geometric	graph
in	the	plane,	thus	showing	that	the	graph	which	is	being	represented	by	Fig.	1-3
is	 planar.	 As	 another	 example,	 the	 two	 isomorphic	 diagrams	 in	 Fig.	 2-2	 are
different	 geometric	 representations	 of	 one	 and	 the	 same	 graph.	 One	 of	 the
diagrams	is	a	plane	representation;	the	other	one	is	not.	The	graph,	of	course,	is
planar.	 On	 the	 other	 hand,	 you	 will	 not	 be	 able	 to	 draw	 any	 of	 the	 three
configurations	 in	Fig.	2-3	on	a	plane	without	edges	 intersecting.	The	 reason	 is
that	 the	 graph	 which	 these	 three	 different	 diagrams	 in	 Fig.	 2-3	 represent	 is
nonplanar.
A	natural	question	now	is:	How	can	we	tell	if	a	graph	G	[which	may	be	given

by	an	abstract	notation	G	=	(V,	E,	Ψ)	or	by	one	of	its	geometric	representations]
is	planar	or	nonplanar?	To	answer	this	question,	let	us	first	discuss	two	specific
nonplanar	 graphs	 which	 are	 of	 fundamental	 importance.	 These	 are	 called
Kuratowski’s	graphs,	 after	 the	Polish	mathematician	Kasimir	Kuratowski,	who
discovered	their	unique	property.

5-3. KURATOWSKI’S	TWO	GRAPHS

THEOREM	5-1

The	complete	graph	of	five	vertices	is	nonplanar.

Proof:	Let	the	five	vertices	in	the	complete	graph	be	named	v1	v2,	v3,	v4,	and
v5.	A	complete	graph,	as	you	may	recall,	is	a	simple	graph	in	which	every	vertex
is	joined	to	every	other	vertex	by	means	of	an	edge.	This	being	the	case,	we	must



Fig.	5-1	Building	up	of	the	five-vertex	complete	graph.

have	a	circuit	going	from	v1	to	v2	to	v3	to	v4	to	v5	to	v1—that	is,	a	pentagon.	See
Fig.	5-1(a).	This	pentagon	must	divide	the	plane	of	 the	paper	 into	two	regions,
one	inside	and	the	other	outside	(Jordan	curve	theorem).
Since	vertex	v1	is	to	be	connected	to	v3	by	means	of	an	edge,	this	edge	may	be

drawn	inside	or	outside	the	pentagon	(without	intersecting	the	five	edges	drawn
previously).	 Suppose	 that	 we	 choose	 to	 draw	 a	 line	 from	 v1	 to	 v3	 inside	 the
pentagon.	 See	 Fig.	 5-1(b).	 (If	 we	 choose	 outside,	 we	 end	 up	 with	 the	 same
argument.)	Now	we	have	to	draw	an	edge	from	v2	to	v4	and	another	one	from	v2
to	 v5.	 Since	 neither	 of	 these	 edges	 can	 be	 drawn	 inside	 the	 pentagon	without
crossing	 over	 the	 edge	 already	 drawn,	 we	 draw	 both	 these	 edges	 outside	 the
pentagon.	 See	 Fig.	 5-1(c).	 The	 edge	 connecting	 v3	 and	 v5	 cannot	 be	 drawn



outside	the	pentagon	without	crossing	the	edge	between	v2	and	v4.	Therefore,	v3
and	v5	have	to	be	connected	with	an	edge	inside	the	pentagon.	See	Fig.	5-1(d).
Now	we	 have	 yet	 to	 draw	 an	 edge	 between	v1	 and	v4.	 This	 edge	 cannot	 be

placed	inside	or	outside	the	pentagon	without	a	crossover.	Thus	the	graph	cannot
be	embedded	in	a	plane.	See	Fig.	5-1(e).

Some	readers	may	find	this	proof	somewhat	unsatisfactory	because	it	depends
so	 heavily	 on	 visual	 intuition.	 Do	 not	 despair;	 we	 shall	 provide	 you	 with	 an
algebraic	nonvisual	proof	in	the	next	section.
A	 complete	 graph	 with	 five	 vertices	 is	 the	 first	 of	 the	 two	 graphs	 of

Kuratowski.	The	second	graph	of	Kuratowski	is	a	regular†	connected	graph	with
six	vertices	and	nine	edges,	shown	in	its	two	common	geometric	representations
in	 Figs.	 5-2(a)	 and	 (b),	 where	 it	 is	 fairly	 easy	 to	 see	 that	 the	 graphs	 are
isomorphic.
Employing	 visual	 geometric	 arguments	 similar	 to	 those	 used	 in	 proving

Theorem	 5-1,	 it	 can	 be	 shown	 that	 the	 second	 graph	 of	 Kuratowski	 is	 also
nonplanar.	The	proof	of	Theorem	5-2	is,	therefore,	left	as	an	exercise	(Problem
5-1).

Fig.	5-2	Kuratowski’s	second	graph.

THEOREM	5-2

Kuratowski’s	second	graph	is	also	nonplanar.

You	 may	 have	 noticed	 several	 properties	 common	 to	 the	 two	 graphs	 of
Kuratowski.	These	are

1. Both	are	regular	graphs.

2. Both	are	nonplanar.



3. Removal	of	one	edge	or	a	vertex	makes	each	a	planar	graph.

4. Kuratowski’s	 first	graph	 is	 the	nonplanar	graph	with	 the	smallest	number
of	vertices,	and	Kuratowski’s	second	graph	is	the	nonplanar	graph	with	the
smallest	number	of	edges.	Thus	both	are	the	simplest	nonplanar	graphs.

In	 the	 literature,	 Kuratowski’s	 first	 graph	 is	 usually	 denoted	 by	 K5	 and	 the
second	graph	by	K3.3—letter	K	being	for	Kuratowski.

5-4. DIFFERENT	REPRESENTATIONS	OF	A	PLANAR
GRAPH

In	following	the	proof	of	Theorem	5-1,	it	may	have	appeared	that	one’s	ability
to	draw	a	planar	graph	in	a	plane	depended	on	his	ability	to	draw	many	crooked
lines	through	devious	routes.	This	is	not	the	case.	The	following	important	and
somewhat	 surprising	 result,	 due	 to	Fary,	 tells	 us	 that	 there	 is	 no	 need	 to	 bend
edges	in	drawing	a	planar	graph	to	avoid	edge	intersections.

THEOREM	5-3

Any	simple	planar	graph	can	be	embedded	in	a	plane	such	that	every	edge	is
drawn	as	a	straight	line	segment.

Proof:	 The	 proof	 is	 involved	 and	 does	 not	 contribute	 much	 to	 the
understanding	of	planarity.	The	interested	reader	is,	therefore,	referred	to	pages
74-77	in	[1-2]	or	to	the	original	paper	of	Fary	[5-4].	As	an	illustration,	the	graph
in	Fig.	5-1(d)	can	be	redrawn	using	straight	line	segments	to	look	like	Fig.	5-3.
In	this	theorem,	it	is	necessary	for	the	graph	to	be	simple	because	a	self-loop	or
one	of	two	parallel	edges	cannot	be	drawn	by	a	straight	line	segment.

Region:	A	plane	representation	of	a	graph	divides	the	plane	into	regions	(also
called	windows,	faces,	or	meshes),	as	shown	in	Fig.	5-4.	A	region	is



Fig.	5-3	Straight-line	representation	of	the	graph	in	Fig.	5-1(d).

Fig.	5-4	Plane	representation	(the	numbers	stand	for	regions).

characterized	by	 the	 set	of	edges	 (or	 the	 set	of	vertices)	 forming	 its	boundary.
Note	that	a	region	is	not	defined	in	a	nonplanar	graph	or	even	in	a	planar	graph
not	embedded	in	a	plane.	For	example,	the	geometric	graph	in	Fig.	1-3	does	not
have	regions.	Thus	a	region	is	a	property	of	the	specific	plane	representation	of	a
graph	and	not	of	an	abstract	graph	per	se.

Infinite	Region:	The	portion	of	the	plane	lying	outside	a	graph	embedded	in	a
plane,	such	as	region	4	in	Fig.	5-4,	is	infinite	in	its	extent.	Such	a	region	is	called
the	 infinite,	 unbounded,	 outer,	 or	 exterior	 region	 for	 that	 particular	 plane
representation.	Like	other	regions,	 the	 infinite	region	 is	also	characterized	by	a
set	of	edges	(or	vertices).	Clearly,	by	changing	the	embedding	of	a	given	planar
graph,	we	can	change	the	infinite	region.	For	instance,	Figs.	5-1(d)	and	5-3	are
two	different	embeddings	of	the	same	graph.	The	finite	region	v1	v3	v5	in	Fig.	5-
1(d)	becomes	the	infinite	region	in	Fig.	5-3.	In	fact,	we	shall	shortly	show	that
any	region	can	be	made	the	infinite	region	by	proper	embedding.



Embedding	 on	 a	 Sphere:	 To	 eliminate	 the	 distinction	 between	 finite	 and
infinite	regions,	a	planar	graph	is	often	embedded	in	the	surface	of	a	sphere.	It	is
accomplished	by	stereographic	projection	of	a	sphere	on	a	plane.	Put	the	sphere
on	the	plane	and	call	 the	point	of	contact	SP	(south	pole).	At	point	SP,	draw	a
straight	 line	 perpendicular	 to	 the	 plane,	 and	 let	 the	 point	 where	 this	 line
intersects	the	surface	of	the	sphere	be	called	NP	(north	pole).	See	Fig.	5-5.
Now,	corresponding	to	any	point	p	on	the	plane,	there	exists	a	unique	point	p′

on	the	sphere	and	vice	versa,	where	p′	is	the	point	at	which	the	straight	line	from
point	p	 to	point	NP	intersects	the	surface	of	the	sphere.	Thus	there	is	a	one-to-
one	correspondence	between	the	points	of	the	sphere	and	the	finite	points	on	the
plane,	 and	 points	 at	 infinity	 in	 the	 plane	 correspond	 to	 the	 point	 NP	 on	 the
sphere.
From	this	construction,	it	is	clear	that	any	graph	that	can	be	embedded	in	a	plane
(i.e.,	drawn	on	a	plane	such	that	its	edges	do	not	intersect)	can	also	be	embedded
in	the	surface	of	the	sphere,	and	vice	versa.	Hence

Fig.	5-5	Stereographic	projection.

THEOREM	5-4

A	graph	can	be	embedded	 in	 the	surface	of	a	sphere	 if	and	only	 if	 it	can	be
embedded	in	a	plane.

A	planar	graph	embedded	 in	 the	surface	of	a	sphere	divides	 the	surface	 into
different	 regions.	Each	region	on	 the	sphere	 is	 finite,	 the	 infinite	 region	on	 the
plane	having	been	mapped	onto	 the	 region	 containing	 the	point	NP.	Now	 it	 is
clear	that	by	suitably	rotating	the	sphere	we	can	make	any	specified	region	map
onto	the	infinite	region	on	the	plane.	From	this	we	obtain



THEOREM	5-5

A	planar	 graph	may	be	 embedded	 in	 a	 plane	 such	 that	 any	 specified	 region
(i.e.,	specified	by	the	edges	forming	it)	can	be	made	the	infinite	region.

Thinking	 in	 terms	of	 the	 regions	 on	 the	 sphere,	we	 see	 that	 there	 is	 no	 real
difference	 between	 the	 infinite	 region	 and	 the	 finite	 regions	 on	 the	 plane.
Therefore,	when	we	talk	of	the	regions	in	a	plane	regresentation	of	a	graph,	we
include	the	infinite	region.	Also,	since	there	is	no	essential	difference	between	an
embedding	of	a	planar	graph	on	a	plane	or	on	a	sphere	(a	plane	may	be	regarded
as	 the	 surface	 of	 a	 sphere	 of	 infinitely	 large	 radius),	 the	 term	 “plane
representation”	 of	 a	 graph	 is	 often	 used	 to	 include	 spherical	 as	well	 as	 planar
embedding.

Euler’s	 Formula:	 Since	 a	 planar	 graph	 may	 have	 different	 plane
representations,	 we	 may	 ask	 if	 the	 number	 of	 regions	 resulting	 from	 each
embedding	 is	 the	 same.	 The	 answer	 is	 yes.	 Theorem	 5-6,	 known	 as	 Euler’s
formula,	gives	the	number	of	regions	in	any	planar	graph.

THEOREM	5-6

A	connected	planar	graph	with	n	vertices	and	e	edges	has	e	−	n	+	2	regions.

Proof:	It	will	suffice	to	prove	the	theorem	for	a	simple	graph,	because	adding
a	 self-loop	 or	 a	 parallel	 edge	 simply	 adds	 one	 region	 to	 the	 graph	 and
simultaneously	 increases	 the	 value	 of	 e	 by	 one.	 We	 can	 also	 disregard	 (i.e.,
remove)	all	edges	that	do	not	form	boundaries	of	any	region.	Three	such	edges
are	 shown	 in	 Fig.	 5-4.	 Addition	 (or	 removal)	 of	 any	 such	 edge	 increases	 (or
decreases)	e	by	one	and	increases	(or	decreases)	n	by	one,	keeping	the	quantity	e
−	n	unaltered.
Since	any	simple	planar	graph	can	have	a	plane	representation	such	that	each

edge	is	a	straight	 line	(Theorem	5-3),	any	planar	graph	can	be	drawn	such	that
each	 region	 is	 a	polygon	 (a	polygonal	net).	Let	 the	polygonal	net	 representing
the	given	graph	consist	of	f	regions	or	faces,	and	let	kp	be	the	number	of	p-sided
regions.	Since	each	edge	is	on	the	boundary	of	exactly	two	regions,

where	kr	is	the	number	of	polygons,	with	maximum	edges.	Also.

The	sum	of	all	angles	subtended	at	each	vertex	in	the	polygonal	net	is



Recalling	that	the	sum	of	all	interior	angles	of	a	p-sided	polygon	is	π(p	−	2),	and
the	sum	of	the	exterior	angles	is	π(p	+	2),	let	us	compute	the	expression	in	(5-3)
as	the	grand	sum	of	all	interior	angles	of	f	−	1	finite	regions	plus	the	sum	of	the
exterior	angles	of	the	polygon	defining	the	infinite	region.	This	sum	is

Equating	(5-4)	to	(5-3),	we	get

2π(e	−	f)	+	4π	=	2πn,
or e	−	f	+	2	=	n.

Therefore,	the	number	of	regions	is

f	=	e	−	n	+	2.

COROLLARY

In	any	simple,	connected	planar	graph	with	f	regions,	n	vertices,	and	e	edges
(e	>	2),	the	following	inequalities	must	hold	:

Proof:	 Since	 each	 region	 is	 bounded	 by	 at	 least	 three	 edges	 and	 each	 edge
belongs	to	exactly	two	regions,

Substituting	for	f	from	Euler’s	formula	in	inequality	(5-5),

Inequality	 (5-6)	 is	 often	 useful	 in	 finding	 out	 if	 a	 graph	 is	 nonplanar.	 For



example,	in	the	case	of	K5,	the	complete	graph	of	five	vertices	[Fig.	5-1(e)],

n	=	5, e	=	10, 3n	−	6	=	9	<	e.

Thus	the	graph	violates	inequality	(5-6),	and	hence	it	is	not	planar.
Incidentally,	this	is	an	alternative	and	independent	proof	of	the	nonplanarity	of

Kuratowski’s	first	graph,	as	promised	in	Section	5-3.
The	reader	must	be	warned	that	inequality	(5-6)	is	only	a	necessary,	but	not	a

sufficient,	condition	for	the	planarity	of	a	graph.	In	other	words,	although	every
simple	 planar	 graph	must	 satisfy	 (5-6),	 the	mere	 satisfaction	 of	 this	 inequality
does	not	guarantee	the	planarity	of	a	graph.	For	example,	Kuratowski’s	second
graph,	K3.3,	satisfies	(5-6),	because

e	=	9
3n	−	6	=	3·6	−	6	=	12.

Yet	the	graph	is	nonplanar.
To	prove	the	nonplanarity	of	Kuratowski’s	second	graph,	we	make	use	of	the

additional	fact	that	no	region	in	this	graph	can	be	bounded	with	fewer	than	four
edges.	Hence,	if	this	graph	were	planar,	we	would	have

2e	≥	4f,
and,	substituting	for	f	from	Euler’s	formula,

2e	≥	4(e	−	n	+	2),

or 2·9	≥	4(9	−	6	+	2),

or 18	≥	20,	a	contradiction.

Hence	the	graph	cannot	be	planar.

Plane	 Representation	 and	 Connectivity:	 In	 a	 disconnected	 graph	 the
embedding	of	each	component	can	be	considered	independently.	Therefore,	it	is
clear	that	a	disconnected	graph	is	planar	if	and	only	if	each	of	its	components	is
planar.	Similarly,	 in	a	separable	(or	1-connected)	graph	the	embedding	of	each
block	 (i.e.,	maximal	 nonseparable	 subgraph)	 can	 be	 considered	 independently.
Hence	a	separable	graph	is	planar	if	and	only	if	each	of	its	blocks	is	planar.
Therefore,	 in	 questions	 of	 embedding	 or	 planarity,	 one	 need	 consider	 only

nonseparable	graphs.
Does	a	nonseparable	planar	graph	G	have	a	unique	embedding	on	a	sphere?

Before	 answering	 this	 question,	 we	 must	 define	 the	 meaning	 of	 unique



embedding.	Two	embeddings	of	a	planar	graph	on	spheres	are	not	distinct	if	the
embeddings	can	be	made	to	coincide	by	suitably	rotating	one	sphere	with	respect
to	 the	 other	 and	 possibly	 distorting	 regions	 (without	 letting	 a	 vertex	 cross	 an
edge).	If	of	all	possible	embeddings	on	a	sphere	no	two	are	distinct,	the	graph	is
said	to	have	a	unique	embedding	on	a	sphere	(or	a	unique	plane	representation).
For	 example,	 consider	 two	 embeddings	 of	 the	 same	 graph	 in	 Fig.	 5-6.	 The

embedding	(b)	has	a	region	bounded	with	five	edges,	but	embedding	(a)	has	no
region	with	five	edges.	Thus,	rotating	the	two	spheres	on	which	(a)	and	(b)	are
embedded	will	not	make	them	coincide.	Hence	the	two	embeddings	are	distinct,
and	the	graph	has	no	unique	plane	representation.
On	the	other	hand,	the	embeddings	in	Figs.	5-1(d)	and	5-3,	when	considered

on	a	sphere,	can	be	made	to	coincide.	(Remember	that	edges	can	be	bent,	and	in
a	spherical	embedding	there	is	no	infinite	region.)	Theorem	5-7,	due	to	Whitney,
tells	us	exactly	when	a	graph	is	uniquely	embeddable	in	a	sphere.	For	a	proof	of
the	theorem,	the	reader	is	referred	to	[5-9].

THEOREM	5-7

The	spherical	embedding	of	every	planar	3-connected	graph	is	unique.

This	theorem	plays	a	very	important	role	in	determining	if	a	graph	is	planar	or
not.	The	 theorem	states	 that	a	3-connected	graph,	 if	 it	 can	be	embedded	at	all,
can	be	embedded	in	only	one	way.

Fig.	5-6	Two	distinct	plane	representations	of	the	same	graph.

5-5. DETECTION	OF	PLANARITY

How	to	tell	if	a	given	graph	G	is	planar	or	nonplanar	is	an	important	problem,
and	 “find	 out	 by	 drawing	 it”	 is	 obviously	 not	 a	 good	 answer.	We	must	 have



some	 simple	 and	 efficient	 criterion.	 Toward	 that	 goal,	 we	 take	 the	 following
simplifying	steps:

Elementary	Reduction

Step	 1:	 Since	 a	 disconnected	 graph	 is	 planar	 if	 and	 only	 if	 each	 of	 its
components	is	planar,	we	need	consider	only	one	component	at	a	time.	Also,	a
separable	graph	is	planar	if	and	only	if	each	of	its	blocks	is	planar.	Therefore,	for
the	given	arbitrary	graph	G,	determine	the	set

G	=	{G1,	G2,	.	.	.	,	Gk},

where	each	Gi	 is	a	nonseparable	block	of	G.	Then	we	have	 to	 test	each	Gi	 for
planarity.

Step	 2:	 Since	 addition	 or	 removal	 of	 self-loops	 does	 not	 affect	 planarity,
remove	all	self-loops.

Step	 3:	 Since	 parallel	 edges	 also	 do	 not	 affect	 planarity,	 eliminate	 edges	 in
parallel	by	removing	all	but	one	edge	between	every	pair	of	vertices.

Step	4:	Elimination	of	a	vertex	of	degree	two	by	merging	two	edges	in	series†
does	not	affect	planarity.	Therefore,	eliminate	all	edges	in	series.
Repeated	application	of	steps	3	and	4	will	usually	reduce	a	graph	drastically.

For	example,	Fig.	5-7	illustrates	the	series-parallel	reduction	of	the	graph	of	Fig.
5-6(b).
Let	the	nonseparable	connected	graph	Gi	be	reduced	to	a	new	graph	Hi	after

the	repeated	application	of	steps	3	and	4.	What	will	graph	Hi	look	like?	Theorem
5-8	has	the	answer.

THEOREM	5-8

Graph	Hi	is

1. A	single	edge,	or

2. A	complete	graph	of	four	vertices,	or

3. A	nonseparable,	simple	graph	with	n	≥	5	and	e	≥	7.



Fig.	5-7	Series-parallel	reduction	of	the	graph	in	Fig.	5-6(b).

Proof:	The	theorem	can	be	proved	by	considering	all	connected	nonseparable
graphs	of	six	edges	or	less.	The	proof	is	left	as	an	exercise	(Problem	5-9).

In	Theorem	5-8,	all	Hi	falling	in	categories	1	or	2	are	planar	and	need	not	be
checked	further.
From	 now	 on,	 therefore,	 we	 need	 to	 investigate	 only	 simple,	 connected,

nonseparable	 graphs	 of	 at	 least	 five	 vertices	 and	 with	 every	 vertex	 of	 degree
three	or	more.	Next,	we	can	check	to	see	if	e	≤	3n	−	6.	If	this	inequality	is	not
satisfied,	the	graph	Hi	is	nonplanar.	If	the	inequality	is	satisfied,	we	have	to	test
the	graph	further	and,	with	this,	we	come	to	Kuratowski’s	theorem	(Theorem	5-
9),	perhaps	the	most	important	result	of	this	chapter.

Homeomorphic	 Graphs:	 Two	 graphs	 are	 said	 to	 be	 homeomorphic	 if	 one
graph	can	be	obtained	from	the	other	by	the	creation	of	edges	in	series	(i.e.,	by
insertion	of	vertices	of	degree	two)	or	by	the	merger	of	edges	in	series.	The	three
graphs	 in	Fig.	5-8	are	homeomorphic	 to	each	other,	 for	 instance.	A	graph	G	 is
planar	if	and	only	if	every	graph	that	is	homeomorphic	to	G	is	planar.	(This	is	a
restatement	of	series	reduction,	step	4	in	this	section.)



THEOREM	5-9

A	necessary	and	sufficient	condition	for	a	graph	G	to	be	planar	is	that	G	does
not	 contain	 either	 of	Kuratowski’s	 two	 graphs	 or	 any	 graph	 homeomorphic	 to
either	of	them.

Fig.	5-8	Three	graphs	homeomorphic	to	each	other.

Proof:	 The	 necessary	 condition	 is	 clear,	 because	 a	 graph	 G	 cannot	 be
embedded	 in	 a	 plane	 if	G	 has	 a	 subgraph	 that	 cannot	 be	 embedded.	 That	 this
condition	 is	 also	 sufficient	 is	 surprising,	 and	 its	 proof	 is	 involved.	 Several
different	 proofs	 of	 the	 theorem	 have	 appeared	 since	 Kuratowski	 stated	 and
proved	it	in	1930.	For	a	complete	proof	of	the	theorem,	the	reader	is	referred	to
Harary	 [1-5],	 pages	 108–112,	 Berge	 [1-1],	 pages	 211-213,	 or	 Busacker	 and
Saaty	[1-2],	pages	70-73.

Note	 that	 it	 is	 not	 necessary	 for	 a	 nonplanar	 graph	 to	 have	 either	 of	 the
Kuratowski	graphs	as	a	subgraph,	as	 this	 theorem	 is	sometimes	misstated.	The
nonplanar	 graph	may	 have	 a	 subgraph	 homeomorphic	 to	 a	Kuratowski	 graph.
For	example,	the	graph	in	Fig.	5-9(a)	is	nonplanar,	and	yet	it	does	not	have	either
of	the	Kuratowski	graphs	as	a	subgraph.	However,	if	we	remove	edges	(a,	x)	and
(A,	 C)	 from	 this	 graph,	 we	 get	 a	 subgraph,	 as	 shown	 in	 Fig.	 5-9(b).	 This
subgraph	 is	 homeomorphic	 (merge	 two	 series	 edges	 at	 vertex	 x)	 to	 the	 one
shown	 in	 Fig.	 5-9(c).	 The	 graph	 of	 Fig.	 5-9(c)	 clearly	 is	 isomorphic	 to	K3,3,
Kuratowski’s	second	graph,	and	this	demonstrates	the	nonplanarity	of	the	graph
in	Fig.	5-9(a).



Fig.	5-9	Nonplanar	graph	with	a	subgraph	homeomorphic	to	K3,3.

The	 example	 just	 discussed	 also	 points	 out	 that	 although	 Theorem	 5-9
(Kuratowski’s	 theorem)	 gives	 an	 elegant	 and	 simple-looking	 criterion	 for
planarity	of	a	graph,	 the	 theorem	 is	difficult	 to	apply	 in	 the	actual	 testing	of	a
large	 graph	 (say,	 a	 simple,	 nonseparable	 graph	 of	 25	 vertices,	 each	 of	 degree
three	or	more).	There	have	been	several	alternative	characterizations	of	a	planar
graph.	 One	 of	 these	 characterizations,	 the	 existence	 of	 a	 dual	 graph,	 is	 the
subject	of	the	next	two	sections.

5-6. GEOMETRIC	DUAL

Consider	the	plane	representation	of	a	graph	in	Fig.	5-10(a),	with	six	regions
or	faces	F1,	F2,	F3,	F4,	F5,	and	F6,	Let	us	place	six	points	p1,	p2,	.	.	.	,	p6,	one	in
each	of	 the	 regions,	as	shown	 in	Fig.	5-10(b).	Next	 let	us	 join	 these	six	points
according	to	the	following	procedure:



Fig.	5-10	Construction	of	a	dual	graph.

If	two	regions	Fi	and	Fj	are	adjacent	(i.e.,	have	a	common	edge),	draw	a	line
joining	 points	 pi	 and	 pj	 that	 intersects	 the	 common	 edge	 between	 Fi	 and	 Fj
exactly	once.	 If	 there	 is	more	 than	one	edge	common	between	Fi	and	Fj,	draw
one	line	between	points	pi	and	pj	for	each	of	the	common	edges.	For	an	edge	e
lying	entirely	 in	one	 region,	 say	Fk,	 draw	a	 self-loop	at	point	pk	 intersecting	e
exactly	once.
By	this	procedure	we	obtain	a	new	graph	G*	[in	broken	lines	in	Fig.	5-10(c)]

consisting	 of	 six	 vertices,	p1,	p2,	 .	 .	 .	 ,	p6	 and	 of	 edges	 joining	 these	 vertices.
Such	a	graph	G*	is	called	a	dual	(or	strictly	speaking,	a	geometric	dual)	of	G.
Clearly,	 there	 is	a	one-to-one	correspondence	between	 the	edges	of	graph	G

and	 its	 dual	 G*−one	 edge	 of	 G*	 intersecting	 one	 edge	 of	 G.	 Some	 simple
observations	that	can	be	made	about	the	relationship	between	a	planar	graph	G
and	its	dual	G*	are

1. An	edge	forming	a	self-loop	in	G	yields	a	pendant	edge†	in	G*.

2. A	pendant	edge	in	G	yields	a	self-loop	in	G*.

3. Edges	that	are	in	series	in	G	produce	parallel	edges	in	G*.

4. Parallel	edges	in	G	produce	edges	in	series	in	G*.



5. Remarks	1-4	 are	 the	 result	 of	 the	general	 observation	 that	 the	number	of
edges	constituting	the	boundary	of	a	region	Fi	in	G	is	equal	to	the	degree	of
the	corresponding	vertex	pi	in	G*,	and	vice	versa.

6. Graph	G*	is	also	embedded	in	the	plane	and	is	therefore	planar.

7. Considering	the	process	of	drawing	a	dual	G*	from	G,	it	is	evident	that	G
is	a	dual	of	G*	[see	Fig.	5-10(c)].	Therefore,	instead	of	calling	G*	a	dual	of
G,	we	usually	say	that	G	and	G*	are	dual	graphs.

8. If	n,	e,	f,	r,	and	µ	denote	as	usual	the	numbers	of	vertices,	edges,	regions,
rank,	and	nullity	of	a	connected	planar	graph	G,	and	if	n*,	e*,	f*,	r*,	and
µ*	are	the	corresponding	numbers	in	dual	graph	G*,	then

n*	=	f,

e*	=	e,

f*	=	n.

Using	the	above	relationship,	one	can	immediately	get

r*	=	µ,

µ*	=	r.
Uniqueness	of	Dual	Graphs:	 Is	a	 (geometric)	dual	of	a	graph	unique?	 In	other
words,	 are	 all	 duals	 of	 a	 given	 graph	 isomorphic?	 From	 the	 method	 of
constructing	a	dual,	it	is	reasonable	to	expect	that	a	planar	graph	G	will	have	a
unique	 dual	 if	 and	 only	 if	 it	 has	 a	 unique	 plane	 representation	 or	 unique
embedding	on	a	sphere.

Fig.	5-11	Duals	of	graphs	in	Fig.	5-6.



For	 instance,	 in	 Fig.	 5-6	 the	 same	 graph	 (isomorphic)	 had	 two	 distinct
embeddings,	(a)	and	(b).	Consequently,	the	duals	of	these	isomorphic	graphs	are
nonisomorphic,	as	shown	in	Fig.	5-11.
The	 graphs	 in	 Fig.	 5-11,	 however,	 are	 2-isomorphic.	 Theorem	 5-10,	 stated

without	proof,	is	a	generalization	of	this	example.

THEOREM	5-10

All	duals	of	a	planar	graph	G	are	2-isomorphic;	and	every	graph	2-isomorphic
to	a	dual	of	G	is	also	a	dual	of	G.

With	this	qualification	in	mind,	it	is	quite	appropriate	to	refer	to	a	dual	as	the
dual	of	a	planar	graph.
Since	a	3-connected	planar	graph	has	a	unique	embedding	on	a	sphere,	its	dual

must	 also	 be	 unique.	 In	 other	 words,	 all	 duals	 of	 a	 3-connected	 graph	 are
isomorphic.

5-7. COMBINATORIAL	DUAL

So	 far	 we	 have	 defined	 and	 discussed	 duality	 of	 planar	 graphs	 in	 a	 purely
geometric	 sense.	 The	 following	 provides	 us	 with	 an	 equivalent	 definition	 of
duality	independent	of	geometric	notions.

THEOREM	5-11

A	necessary	and	sufficient	 condition	 for	 two	planar	graphs	G1	 and	G2	 to	be
duals	of	each	other	is	as	follows:	There	is	a	one-to-one	correspondence	between
the	edges	in	G1	and	the	edges	in	G2	such	that	a	set	of	edges	in	G1	forms	a	circuit
if	and	only	if	the	corresponding	set	in	G2	forms	a	cut-set.

Proof:	Let	us	consider	a	plane	representation	of	a	planar	graph	G.	Let	us	also
draw	(geometrically)	a	dual	G*	of	G.	Then	consider	an	arbitrary	circuit	T	in	G.
Clearly,	T	will	form	some	closed	simple	curve	in	the	plane	representation	of	G−
dividing	the	plane	into	two	areas.	(Jordan	Curve	Theorem).	Thus	the	vertices	of
G*	are	partitioned	into	two	nonempty,	mutually	exclusive	subsets−one	inside	T
and	the	other	outside.	In	other	words,	the	set	of	edges	Γ*	in	G*	corresponding	to
the	set	Γ	in	G	is	a	cut-set	in	G*.	(No	proper	subset	of	Γ*	will	be	a	cut-set	in	G*;
why?).	Likewise	it	is	apparent	that	corresponding	to	a	cut-set	S*	in	G*	there	is	a
unique	circuit	 consisting	of	 the	corresponding	edge-set	S	 in	G	 such	 that	S	 is	 a



circuit.	This	proves	the	necessity	portion	of	Theorem	5-11.
To	prove	 the	 sufficiency,	 let	G	 be	 a	 planar	 graph	 and	 let	G’	 be	 a	 graph	 for

which	 there	 is	 a	 one-to-one	 correspondence	 between	 the	 cut-sets	 of	 G	 and
circuits	of	G′,	and	vice	versa.	Let	G*	be	a	dual	graph	of	G.	There	is	a	one-to-one
correspondence	between	 the	circuits	of	G′	 and	cut-sets	of	G,	 and	also	between
the	 cut-sets	 of	 G	 and	 circuits	 of	 G*.	 Therefore	 there	 is	 a	 one-to-one
correspondence	between	the	circuits	of	G′	and	G*,	implying	that	G′	and	G*	are
2-isomorphic	(Theorem	4-15).	According	to	Theorem	5-10,	G′	must	be	a	dual	of	G

Dual	of	a	Subgraph:	Let	G	be	a	planar	graph	and	G*	be	its	dual.	Let	a	be	an
edge	in	G,	and	the	corresponding	edge	in	G*	be	a*.	Suppose	that	we	delete	edge
a	from	G	and	then	try	to	find	the	dual	of	G	−	a.	If	edge	a	was	on	the	boundary	of
two	regions,	removal	of	a	would	merge	these	two	regions	into	one.	Thus	the	dual
(G	−	a)*	can	be	obtained	 from	G*	by	deleting	 the	corresponding	edge	a*	and
then	fusing	the	two	end	vertices	of	a*	in	G*	−	a*.	On	the	other	hand,	if	edge	a	is
not	on	the	boundary,	a*	forms	a	self-loop.	In	that	case	G*	−	a*	is	the	same	as	(G
−	a)*.	Thus	 if	a	graph	G	has	a	dual	G*,	 the	dual	of	any	subgraph	of	G	can	be
obtained	by	successive	application	of	this	procedure.

Dual	of	a	Homeomorphic	Graph:	Let	G	be	a	planar	graph	and	G*	be	its	dual.
Let	a	be	an	edge	in	G,	and	the	corresponding	edge	in	G*	be	a*.	Suppose	that	we
create	an	additional	vertex	in	G	by	introducing	a	vertex	of	degree	two	in	edge	a
(i.e.,	a	now	becomes	two	edges	in	series).	How	will	this	addition	affect	the	dual?
It	will	simply	add	an	edge	parallel	to	a*	in	G*.	Likewise,	the	reverse	process	of
merging	two	edges	in	series	(step	4	in	Section	5-5)	will	simply	eliminate	one	of
the	corresponding	parallel	edges	in	G*.	Thus	if	a	graph	G	has	a	dual	G*,	the	dual
of	 any	 graph	 homeomorphic	 to	 G	 can	 be	 obtained	 from	 G*	 by	 the	 above
procedure.
So	far	we	have	been	studying	duality	for	planar	graphs	only.	This	was	forced

upon	 us	 because	 the	 very	 definition	 of	 duality	 depended	 on	 the	 graph	 being
embedded	 in	 a	 plane.	 However,	 now	 that	 Theorem	 5-11	 provides	 us	 with	 an
equivalent	 abstract	 definition	 of	 duality	 (namely,	 the	 correspondence	 between
circuits	 and	 cut-sets),	 which	 does	 not	 depend	 on	 a	 plane	 representation	 of	 a
graph,	we	will	see	if	the	concept	of	duality	can	be	extended	to	nonplanar	graphs
also.	In	other	words,	given	a	nonplanar	graph	G,	can	we	find	another	graph	G′
with	one-to-one	correspondence	between	their	edges	such	that	every	circuit	in	G
corresponds	 to	 a	 unique	 cut-set	 in	 G′,	 and	 vice	 versa?	 The	 answer	 to	 this
question	is	no,	as	shown	in	the	following	important	theorem,	due	to	Whitney.



THEOREM	5-12

A	graph	has	a	dual	if	and	only	if	it	is	planar.

Proof:	We	need	prove	just	the	“only	if”	part.	That	is,	we	have	only	to	prove
that	a	nonplanar	graph	does	not	have	a	dual.	Let	G	be	a	nonplanar	graph.	Then
according	 to	 Kuratowski’s	 theorem,	 G	 contains	 K5	 or	 K3,3	 or	 a	 graph
homeomorphic	to	either	of	these.	We	have	already	seen	that	a	graph	G	can	have
a	dual	only	if	every	subgraph	g	of	G	and	every	graph	homeomorphic	to	g	has	a
dual.	Thus	if	we	can	show	that	neither	K5	nor	K3,3	has	a	dual,	we	have	proved
the	theorem.	This	we	shall	prove	by	contradiction	as	follows:
(a)	Suppose	that	K3,3	has	a	dual	D.	Observe	that	the	cut-sets	in	K3.3	correspond

to	 circuits	 in	 D	 and	 vice	 versa	 (Theorem	 5-10).	 Since	 K3.3	 has	 no	 cut-set
consisting	 of	 two	 edges,	D	 has	 no	 circuit	 consisting	 of	 two	 edges.	 That	 is,	D
contains	no	pair	of	parallel	edges.	Since	every	circuit	in	K3.3	is	of	length	four	or
six,	D	has	no	cut-set	with	 less	 than	 four	edges.	Therefore,	 the	degree	of	every
vertex	in	D	is	at	least	four.	As	D	has	no	parallel	edges	and	the	degree	of	every
vertex	is	at	least	four,	D	must	have	at	least	five	vertices	each	of	degree	four	or
more.	That	is,	D	must	have	at	least	(5	x	4)/2	=	10	edges.	This	is	a	contradiction,
because	K3,3	has	nine	edges	and	so	must	its	dual.	Thus	K3,3	cannot	have	a	dual.
Likewise,
(b)	Suppose	that	the	graph	K5	has	a	dual	H.	Note	that	K5	has	(1)	10	edges,	(2)

no	 pair	 of	 parallel	 edges,	 (3)	 no	 cut-set	with	 two	 edges,	 and	 (4)	 cut-sets	with
only	 four	or	 six	edges.	Consequently,	graph	H	must	have	 (1)	10	edges,	 (2)	no
vertex	with	degree	less	than	three,	(3)	no	pair	of	parallel	edges,	and	(4)	circuits
of	length	four	and	six	only.	Now	graph	H	contains	a	hexagon	(a	circuit	of	length
six),	and	no	more	than	three	edges	can	be	added	to	a	hexagon	without	creating	a
circuit	of	length	three	or	a	pair	of	parallel	edges	[see	Fig.	5-2(b)].	Since	both	of
these	 are	 forbidden	 in	 H	 and	 H	 has	 10	 edges,	 there	 must	 be	 at	 least	 seven
vertices	in	H.	The	degree	of	each	of	these	vertices	is	at	least	three.	This	leads	to
H	having	at	least	11	edges.	A	contradiction.

This	 proof	 of	 theorem	 5-12	 is	 not	 the	 one	 originally	 given	 by	 Whitney.
Whitney’s	 proof,	 though	more	 rigorous,	 is	much	more	 involved.	Our	 proof	 is
based	on	one	given	by	Parson	[5-7].
There	is	yet	another	equivalent	combinatorial	definition	of	duality,	also	given

by	Whitney	and	proved	equivalent	to	the	earlier	two	definitions	[5-10].
Two	planar	graphs	G	and	G*	are	said	to	be	duals	(or	combinatorial	duals)	of



each	other	 if	 there	 is	a	one-to-one	correspondence	between	the	edges	of	G	and
G*	such	that	 if	g	 is	any	subgraph	of	G	and	h	 is	 the	corresponding	subgraph	of
G*,	then

This	relationship	is	shown	diagrammatically	in	Fig.	5-12.

Fig.	5-12	Combinatorial	duals.
As	an	example,	consider	the	graph	in	Fig.	5-6(a)	and	its	dual	in	Fig.	5-11(a).

Take	the	subgraph	{e4,	e5,	e6,	e7}	in	Fig.	5-6(a)	and	the	corresponding	subgraph	
	in	Fig.	5-11(a).

and

2	=	3	−	1.

Clearly,	this	definition	is	also	independent	of	the	geometric	connotation.	It	is
therefore	 often	 preferred	 for	 proving	 results	 in	 purely	 algebraic	 fashion.
However,	 in	 deciding	 whether	 or	 not	 two	 given	 graphs	 are	 dual	 the
combinatorial	definitions	are	difficult	to	use.
The	 proof	 of	 equivalence	 of	 combinatorial	 and	 geometric	 duals	 is	 quite

involved.	The	interested	reader	is	referred	to	the	original	papers	of	Whitney	[5-
10,	 5-12]	 or	 to	 Seshu	 and	Reed	 [1-13],	 pages	 45-50.	 Since	 the	 geometric	 and
combinatorial	duals	are	one	and	the	same,	we	simply	refer	to	them	as	the	dual,
rather	than	the	geometric	or	combinatorial	dual.



Self-Dual	 Graphs:	 If	 a	 planar	 graph	G	 is	 isomorphic	 to	 its	 own	 dual,	 it	 is
called	 a	 self-dual	 graph.	 It	 can	 be	 easily	 shown	 that	 the	 four-vertex	 complete
graph	 is	 a	 self-dual	 graph	 (Problem	 5-20).	 Self-dual	 graphs	 have	 interesting
properties	and	pose	some	unsolved	problems.

5-8. MORE	ON	CRITERIA	OF	PLANARITY

Theorems	 5-9	 (Kuratowski’s	 theorem)	 and	 5-12	 (Whitney’s	 theorem)
provided	 us	with	 two	different	 and	 alternative	ways	 of	 characterizing	 a	 planar
graph.	The	third	classic	planarity	criterion,	due	to	MacLane	[5-6],	is	given	next.

Set	of	Basic	Circuits:	A	set	C	of	circuits	in	a	graph	is	said	to	be	a	complete	set
of	basic	circuits	if	(i)	every	circuit	in	the	graph	can	be	expressed	as	a	ring	sum	of
some	or	all	circuits	in	C,	and	(ii)	no	circuit	in	C	can	be	expressed	as	a	ring	sum
of	others	in	C.	The	significance	of	complete	sets	of	basic	circuits	will	be	clearer
in	 Chapter	 6,	 in	 relation	 to	 the	 vector	 space	 of	 a	 graph.	 It	 may,	 however,	 be
mentioned	here	that	whereas	a	set	of	fundamental	circuits	(as	defined	in	Chapter
3	 with	 respect	 to	 a	 spanning	 tree)	 always	 constitutes	 a	 complete	 set	 of	 basic
circuits,	the	converse	does	not	hold	for	all	graphs	(Problem	5-15).
In	a	planar	graph	a	complete	set	of	basic	circuits	has	an	additional	property,

which	we	will	observe	next.
In	 a	 plane	 representation	 of	 a	 planar,	 connected	 graph	G	 the	 set	 of	 circuits

forming	the	interior	regions	constitutes	a	complete	set	of	basic	circuits.	For	any
circuit	 Γ	 in	G	 can	 be	 expressed	 as	 the	 ring	 sum	 of	 the	 circuits	 defining	 the
regions	contained	in	Γ.	Observe	that	every	edge	appears	in	at	most	two	of	these
basic	circuits.	Thus	for	every	planar	graph	G	we	can	find	a	complete	set	of	basic
circuits	such	that	no	edge	appears	in	more	than	two	of	these	basic	circuits.	This
result	 and	 its	 converse	 (proof	 of	which	 can	 be	 found	 in	 [5-6])	 lead	 to	 another
well-known	characterization	of	planar	graphs.

THEOREM	5-13

A	graph	G	is	planar	if	and	only	if	there	exists	a	complete	set	of	basic	circuits
(i.e.,	all	µ	of	them,	µ	being	the	nullity	of	G)	such	that	no	edge	appears	in	more
than	two	of	these	circuits.

All	 three	 of	 these	 classic	 characterizations	 suffer	 from	 two	 shortcomings.
First,	they	are	extremely	difficult	to	implement	for	a	large	graph.	Second,	in	case
the	graph	is	planar	they	do	not	give	a	plane	representation	of	the	graph.



These	 drawbacks	 have	 prompted	 recent	 discoveries	 of	 several
mapconstruction	 methods,	 where	 the	 testing	 of	 planarity	 itself	 is	 based	 on	 an
attempt	to	produce	a	plane	representation	of	the	graph.	One	such	method	is	given
by	Tutte	[5-9].	Several	other	construction	methods,	some	of	them	quite	similar,
have	 been	 implemented	 on	 digital	 computers	 [5-2,	 5-8].	 In	 most	 of	 these
methods,	 the	given	graph	 is	 first	 reduced	 to	one	or	more	simple,	nonseparable
graphs	with	every	vertex	of	degree	three	or	more	and	with	e	≤	3n	−	6.	Then	the
construction	 algorithm	 is	 applied	 such	 that	 either	 one	 succeeds	 in	 obtaining	 a
planar	 realization	of	 the	graph	or	 the	graph	 is	nonplanar.	More	will	be	said	on
such	algorithms	in	Chapter	11.
Some	 algorithms	 are	 better	 than	 others,	 but	 all	 are	 laborious	 and	 time-

consuming.	The	search	for	a	simple,	elegant,	and	practical	characterization	of	a
planar	graph	is	far	from	over.

5-9. THICKNESS	AND	CROSSINGS

Having	found	that	a	given	graph	G	 is	nonplanar,	 it	 is	natural	 to	ask,	what	 is
the	minimum	number	of	planes	necessary	for	embedding	G?	The	least	number	of
planar	subgraphs	whose	union	is	the	given	graph	G	is	called	the	thickness	of	G.
In	a	printed-circuit	board,	for	instance,	the	number	of	insulation	layers	necessary
is	the	thickness	of	the	corresponding	graph.
By	definition,	 then,	 the	 thickness	of	 a	planar	graph	 is	one.	The	 thickness	of

each	of	Kuratowski’s	graphs	is	clearly	two.	The	reader	can	show,	by	sketching
them,	that	the	thickness	of	the	complete	graph	of	eight	vertices	is	two,	while	the
thickness	 of	 the	 complete	 graph	 of	 nine	 vertices	 is	 three	 (Problem	 5-19).
Although	there	are	several	results	available	on	the	thickness	of	special	types	of
graphs	 [1-5,	 pages	 120-121],	 the	 thickness	 of	 an	 arbitrary	 graph	 is	 in	 general,
difficult	to	determine.
Another	 question	 one	 might	 ask	 about	 a	 nonplanar	 graph	 is:	 What	 is	 the

fewest	number	of	 crossings	 (or	 intersections)	necessary	 in	order	 to	 “draw”	 the
graph	in	a	plane?
The	crossing	number	of	a	planar	graph	is,	by	definition,	zero,	and	of	either	of

Kuratowski’s	graphs,	it	is	one.	The	crossing	numbers	of	only	a	few	graphs	have
been	determined.	No	formula	exists	to	give	the	crossing	number	of	an	arbitrary
graph.

SUMMARY



Can	a	given	graph	be	placed	in	a	plane	without	its	edges	crossing	over?	This
is	 clearly	 a	 geometric	 question	 about	 the	 graph−an	 object	 that	 exists	 in	 two
different	worlds,	 purely	 combinatorial	 and	 purely	 geometric.	 To	 quote	Harary
[1-5],	page	106,	“one	of	the	most	fascinating	areas	of	study	.	.	.	is	the	interplay
between	 considering	 a	 graph	 as	 a	 combinatorial	 object	 and	 as	 a	 geometric
figure.”
On	 probing	 a	 bit	 further,	 we	 discovered	 that	we	 needed	 to	 investigate	 only

simple,	 nonseparable	 graphs	 which	 have	 no	 vertex	 of	 degree	 less	 than	 three.
Moreover,	we	found	that	any	graph	with	 the	number	of	edges	e	>	3n	−	6	need
not	be	investigated	any	further,	because	such	a	graph	is	nonplanar.
Three	 equivalent,	 but	 very	 different,	 planarity	 characterizations,	 those	 of

Kuratowski,	Whitney,	and	MacLane,	were	presented	and	their	significance	and
drawbacks	 discussed.	 For	 graphs	 that	 are	 nonplanar,	 additional	 relevant
properties,	 such	 as	 thickness	 and	 number	 of	 crossings,	 were	 defined	 and
discussed.	There	are	many	unsolved	problems	in	this	field	of	study.	Because	of
the	 current	 interest	 in	 such	 areas	 as	 automatic	 wiring	 of	 complex	 systems,
technology	of	printed	circuits,	and	design	of	large-scale	integrated	circuits,	these
geometrical	properties	of	graphs	are	of	practical	importance.
The	existence	of	a	dual	graph,	 in	addition	 to	being	a	condition	equivalent	 to

that	 of	 planarity,	 is	 important	 in	 its	 own	 right.	 The	 underlying	 structural
relationship	between	dual	graphs	becomes	very	clear	in	terms	of	the	vector	space
of	the	graph,	a	subject	for	the	next	chapter.
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PROBLEMS

5-1. Using	geometric	arguments	similar	to	those	used	in	proving	Theorem	5-
1,	prove	that	Kuratowski’s	second	graph	is	also	nonplanar.

5-2. If	 every	 region	 of	 a	 simple	 planar	 graph	 (with	n	 vertices	 and	 e	 edges)
embedded	in	a	plane	is	bounded	by	k	edges,	show	that



5-3. A	simple	planar	graph	to	which	no	edge	can	be	added	without	destroying
its	 planarity	 (while	 keeping	 the	 graph	 simple,	 of	 course)	 is	 called	 a
maximal	 planar	 graph.	 Prove	 that	 every	 region	 in	 a	 maximal	 planar
graph	is	a	triangle.

5-4. Prove	that	a	planar	graph	of	n	vertices	(n	≥	4)	has	at	 least	four	vertices
with	 degree	 five	 or	 less.	 This	 will	 also	 prove	 that	 there	 are	 no	 6-
connected	planar	graphs.	(Hint:	Use	the	result	of	Problem	5-3.)

5-5. A	planar	graph	G	 is	 said	 to	be	completely	 regular	 if	 the	degrees	of	 all
vertices	of	G	are	equal	and	every	region	is	bounded	by	the	same	number
of	edges.	The	graphs	in	Figs.	2-20(a)	and	2-21(b)	are	completely	regular,
for	 example.	 Show	 that	 there	 are	 only	 five	 possible	 simple	 completely
regular	 planar	 graphs,	 excluding	 the	 trivial	 graphs	 with	 degree	 ≤	 2.
Sketch	them.	(Hint:	Use	Euler’s	formula.)

5-6. Prove	 that	 an	 infinite	 pattern	 formed	 of	 a	 regular	 polygon	 repeating
itself,	such	as	those	found	in	mosaics	and	tiled	floors	(see	infinite	graphs
in	 Fig.	 1-10),	 can	 consist	 of	 only	 three	 types	 of	 polygons−square,
triangular,	and	hexagonal.

5-7. Redraw	 the	 graph	 in	 Fig.	 5-4	 such	 that	 region	 2	 becomes	 the	 infinite
region.

5-8. Using	Kuratowski’s	theorem,	show	that	the	graphs	in	Fig.	2-3	(known	as
Petersen’s	graph)	are	nonplanar.

5-9. By	 sketching	 all	 (don’t	 panic,	 their	 number	 is	 small)	 simple,
nonseparable	graphs	with	n	≤	4	and	e	≤	6,	prove	Theorem	5-8.

5-10. Draw	the	geometric	dual	of	the	graph	in	Fig.	5-4.
5-11. Show	 by	 actual	 construction	 that	 the	 geometric	 dual	 of	 the	 two	 (2-

isomorphic)	graphs	in	Figs.	4-11	(a)	and	(d)	are	isomorphic.
5-12. Construct	 an	 example	 to	demonstrate	 that	G**,	 the	dual	 of	 a	 dual	 of	 a

graph	G,	may	not	be	isomorphic	to	G,	but	is	2-isomorphic	to	it.
5-13. Prove	 that	 the	 geometric	 dual	 of	 a	 self-loop-free	 nonseparable	 planar

graph	is	also	nonseparable.
5-14. Prove	that	a	self-loop-free	planar	graph	is	2-connected	if	and	only	if	its

dual	is	also	2-connected.
5-15. Give	an	example	of	a	graph	which	has	at	least	one	complete	set	of	basic

circuits	not	constituting	a	set	of	fundamental	circuits	(with	respect	to	any
spanning	tree).

5-16. Show	 that	 the	 edges	 forming	 a	 spanning	 tree	 in	 a	 planar	 graph	 G
correspond	to	the	edges	forming	a	set	of	chords	in	the	dual	G*.

5-17. Show	that	a	set	of	fundamental	circuits	in	a	planar	graph	G	corresponds
to	a	set	of	fundamental	cut-sets	in	its	dual	G*.



5-18. Determine	the	number	of	crossings	and	the	thickness	of	the	graph	in	Fig.
2-3.

5-19. Show,	by	sketching,	that	the	thickness	of	the	eight-vertex	complete	graph
is	two,	whereas	that	of	the	nine-vertex	complete	graph	is	three.

5-20. Show	that	the	complete	graph	of	four	vertices	is	self-dual.	Give	another
example	of	a	self-dual	graph.

†	 At	 this	 point	 I	 cannot	 resist	 quoting	 the	 following	 comment	 by	 Hadamard:	 “Descartes	 distrusts	 that
intervention	of	imagination,	and	wishes	to	eliminate	it	completely	from	science	.	.	.	.	More	recently,	another
rigorous	treatment	of	.	.	.	geometry	.	.	.	freed	from	any	appeal	to	intuition,	has	been	developed	.	.	.	by	the
celebrated	mathematician	Hilbert.	Logically,	every	intervention	of	geometrical	sense	is	eliminated.	But	is	it
the	same	from	the	psychological	point	of	view?	Certainly	not	 .	 .	 .	 .	Diagrams	appear	at	practically	every
page	(of	Hilbert’s	book).”
†Note	that	the	“meeting”	of	edges	at	a	vertex	is	not	considered	an	intersection.
†Recall	that	a	graph	in	which	all	vertices	are	of	equal	degree	is	called	a	regular	graph.
†in	a	graph,	two	edges	are	said	to	be	in	series	if	they	have	exactly	one	vertex	in	common	and	if	this	vertex
is	of	degree	two.	Edges	e5	and	e6	(and	also	e1	and	e2)	are	in	series	in	Fig.	5-6.
†An	edge	incident	on	a	pendant	vertex	is	called	a	pendant	edge.



6	VECTOR	SPACES	OF	A	GRAPH

Modern	 abstract	 algebra	 is	 a	 powerful	 tool	 in	 the	 theory	 as	 well	 as	 in	 the
applications	of	graphs.	It	is	essential	for	a	thorough	understanding	of	graphs	and
a	 must	 for	 those	 wishing	 to	 do	 research	 in	 the	 field.	 Moreover,	 since	 digital
computers	do	not	(at	least	internally)	work	on	pictorial	graphs,	it	is	necessary	to
represent	a	graph	algebraically	and	to	manipulate	it	algebraically,	if	one	wishes
to	enlist	the	aid	of	a	computer	in	solving	graph-theory	problems.

6-1.	SETS	WITH	ONE	OPERATION

Set:	A	set	is	a	collection	of	objects	(called	the	elements	of	the	set).
Note	that	there	is	no	specification	on	the	nature	of	the	elements	or	the	number

of	 elements.	Nor	do	 the	 elements	 have	 anything	 to	do	with	 each	other,	 except
belong	 to	 the	 same	 set.	 Braces	 are	 used	 to	 enclose	 the	 elements	 of	 a	 set.	 For
instance,	a	set	S	consisting	of	five	objects	a,	b,	c,	x,	and	y	may	be	written	as	S	=
{a,	 b,	 c,	 x,	 y}.	 Since	 the	 order	 in	 which	 these	 elements	 appear	 is	 of	 no
significance,	 we	 could	 have	 written	 the	 same	 set	 as	 S	 =	 {x,	 b,	 a,	 y,	 c},	 for
instance.	The	symbol	a	∈	S	is	used	to	indicate	that	element	a	is	in	set	S.

A	subset	S′	of	a	set	S	is	a	collection	of	some	of	the	elements	of	S.	If	S′	has	at
least	 one	 element	 that	 is	 not	 in	S′	 then	 S”	 is	 called	a.proper	 subset	 of	S.	 The
empty	set	or	null	set,	written	∅,	has	no	element	in	it	and	is	considered	a	subset
of	every	set.	The	 two	most	common	combinations	of	sets	are	 the	union	∪	and
intersection	∩,	defined	as

S1	∪	S3	=	S3, a	set	containing	all	the	elements	of	S1	and	S2,

S1	∩	S2	=	S4, a	set	containing	only	those	elements	that	are	both	in	S1	and	in	S2.

In	 this	chapter	we	shall	be	concerned	with	 the	combination	of	 two	elements



within	a	set	rather	than	the	combination	of	two	different	sets.
Operation:	 Let	 us	 introduce	 a	 rule	 of	 combination	 called	 binary	 operation

(also	 called	 binary	 composition,	 law	 of	 composition,	 or	 internal	 law	 of
composition)	 between	 two	 elements	 of	 a	 set.	 Addition,	 multiplication,
subtraction,	and	division	are	some	of	the	familiar	binary	operations	between	two
elements	in	a	set	of	numbers.	To	keep	the	binary	operation	general	enough,	we
shall	use	 the	 symbol	*	 (rather	 than	using	+,	−,	×,	÷,	 etc.)	 to	denote	 the	binary
operation.	A	 set	with	operations	defined	on	 it	 is	 called	 an	algebraic	 system	 or
just	algebra.
Special	Types	of	Algebras:	Now	we	have	a	set,	say	S	=	{a,	b,	c,	 .	 .	 .},	and	a

binary	operation	*	(written	as	a	*	b)	between	the	elements	of	S.	Depending	on
the	 nature	 of	 the	 binary	 operation	 *,	 set	S	 can	 be	 classified	 as	 one	 of	 several
special	types	of	algebras.	For	instance,	if	*	satisfies	postulates	1	and	2	below,	set
S	is	called	a	semigroup:

1. Closure:	If	a	and	b	are	in	S,	then	a	*	b	is	also	in	S.
2. Associative:	If	the	elements	a,	b,	and	c	are	in	S,	then	(a	*	b)	*	c	=	a	*	(b	*
c).

Semigroups	have	many	 interesting	properties	and	have	been	studied	 in	great
detail.	In	fact,	there	are	several	thick	books	written	on	the	theory	of	semigroups.
But	since	semigroups	as	such	are	not	applicable	to	the	business	at	hand,	we	shall
move	on	to	more	specialized	semigroups.
A	semigroup	that	satisfies	postulate	3,	below,	is	called	a	monoid.

3. Identity	 element:	 There	 exists	 a	 unique	 element	 e	 in	 S	 such	 that	 for	 any
element	x	in	S,	x	*	e	=	e	*	x	=	x.

A	monoid	that	satisfies	postulate	4,	below,	is	called	a	group.

4. Inverse:	For	every	element	x	in	S	there	exists	a	unique	element	x′	in	S	such
that	x	*	x′	=	x′	*	x	=	e.	Element	x′	is	called	the	inverse	of	x,	with	respect	to
operation	*.

A	semigroup	that	satisfies	postulate	5,	below,	is	called	an	abelian	semigroup
or	commutative	semigroup.

5. Commutative:	If	a	and	b	are	in	S,	then	a	*	b	=	b	*	a.



Fig.	6-1	Algebraic	systems	with	one	internal	operation.

If	 an	 abelian	 semigroup	 also	has	 an	 identity	 element,	 it	 is	 called	 an	abelian
monoid	(or	an	abelian	semigroup	with	identity	element).
A	set	S	with	an	operation	*	that	satisfies	all	these	five	postulates	is	called	an

abelian	group	(or	a	commutative	group).
Figure	6-1	summarizes	the	definitions	of	these	“algebraic	systems”	and	shows

the	 relationships	 among	 them.	 The	 arrows	 point	 toward	 the	 direction	 of
increasing	 restriction	 on	 the	 set	 S.	 The	 number	 next	 to	 a	 line	 indicates	 the
particular	postulate	that	converts	one	algebraic	system	into	another.
It	 ought	 to	 be	mentioned	 here	 that	 an	 algebraic	 system	 in	which	 the	 binary

operation	 does	 not	 satisfy	 even	 the	 closure	 and	 associative	 rules	 is	 of	 little
mathematical	interest.	Another	observation	that	may	be	made	is	that	postulate	4
cannot	be	satisfied	before	3.	In	view	of	these	two	remarks,	Fig.	6-1	does	show	all
possible	combinations	of	the	five	postulates.

Examples:	Some	examples	are	in	order	now.
Consider	 the	 set	of	all	positive	 integers,	S1	=	{1,	2,	3,	 .	 .	 .}.	Set	S1	 satisfies



closure	 and	 associative	 rules	 if	 the	 binary	 operation	 *	 is	 the	 ordinary	 addition
operation	+.	Moreover,	 it	also	satisfies	 the	commutative	 requirement.	Hence	S1
under	addition	is	a	commutative	semigroup.	Note	 that	 in	S1	 there	 is	no	identity
element	 (an	 element	 when	 added	 to	 any	 other	 element	 results	 in	 the	 latter
element).
Consider	the	same	set	S1	=	{1,	2,	3,	.	.	.}	under	the	ordinary	division	operation

÷.	Since	S1	contains	no	fractions,	clearly	S1	does	not	satisfy	the	closure	rule,	and
hence	is	not	a	semigroup.
Again,	the	same	set	S1	under	multiplication	·	is	an	abelian	monoid,	because	it

has	 an	 identity	 element,	 1.	 The	 set	 S1,	 however,	 is	 not	 a	 group	 under	 the
multiplication	operation	because	S1	does	not	have	the	inverse	of	every	element
(because	S1	has	no	fractions).
The	set	of	all	 integers	S2	=	{.	 .	 .	 ,	−3,	−2,	−1,	0,	1,	2,	3,	 .	 .	 .}	 is	an	abelian

group	under	the	addition	operation	(hence	an	additive	abelian	group).
The	reader	can	verify	(Problem	6-2)	that	the	set	consisting	of	the	four	fourth

roots	of	unity,	which	is	{1,	−1,	i,	−i}	(where	i	=	 ),	is	an	abelian	group	under
the	multiplication	operation	(therefore,	a	multiplicative	abelian	group).
Groups	 of	 Subgraphs:	Now	we	 shall	 show	 that	 sets	 of	 certain	 subgraphs	 of

any	given	graph	G	 satisfy	 the	preceding	postulates	and	 thus	 form	their	groups.
These	are	very	fundamental	and	important	results	in	graph	theory.

THEOREM	6-1

The	ring	sum	of	two	circuits	in	a	graph	G	is	either	a	circuit	or	an	edge-disjoint
union	of	circuits.

Proof:	Let	Γ1	and	Γ2	be	any	two	circuits	in	a	graph	G.	If	the	two	circuits	have
no	 edges	 or	 vertices	 in	 common,	 their	 ring	 sum	 Γ1	⊕	 Γ2	 is	 a	 disconnected
subgraph	 of	G,	 and	 is	 obviously	 an	 edge-disjoint	 union	 of	 circuits.	 If,	 on	 the
other	 hand,	Γ1	 and	Γ2	 do	 have	 edges	 and/or	 vertices	 in	 common,	we	have	 the
following	possible	situations	:
Since	the	degree	of	every	vertex	in	a	graph	that	is	a	circuit	is	two,	every	vertex

v	in	subgraph	Γ1	⊕	Γ2	has	degree	d(v),	where

d(v)	=	2 if	v	is	in	Γ1	only,	or	in	Γ2	only;	or	if	one	of	the
edges	formerly	incident	on	v	was	in	both	Γ1	and	Γ2;	or



d(v)	=	4 if	Γ1	and	Γ2	just	intersect	at	v	(without	a	common	edge).

There	is	no	other	type	of	vertex	in	Γ1	⊕	Γ2.	Thus	Γ1	⊕	Γ2	is	an	Euler	graph,	and
therefore	 consists	 of	 either	 a	 circuit	 or	 an	 edge-disjoint	 union	 of	 circuits
(Theorem	2-6).	

It	is	immediate	from	Theorem	6-1	that	the	ring	sum	of	any	two	edge-disjoint
unions	of	circuits	is	also	a	circuit	or	another	edge-disjoint	union	of	circuits.

THEOREM	6-2

The	 set	 consisting	of	 all	 the	 circuits	 and	 the	 edge-disjoint	 unions	of	 circuits
(including	 the	null	set	∅)	 in	a	graph	G	 is	an	abelian	group	under	 the	ring-sum
operation	⊕.

Proof:	 It	 is	 required	 to	 prove	 that	 this	 set	 under	 the	 operation	⊕	 satisfies
postulates	1–5	in	this	section.	That	the	closure	postulate	is	satisfied	has	just	been
proved	in	Theorem	6-1.	Associative	and	commutative	postulates	are	also	clearly
satisfied.	The	null	graph	serves	as	 the	 identity	element	∅,	because	∅	⊕	g	=	g,
for	any	subgraph	g	of	G.	What	about	the	inverse?
A	circuit	or	an	edge-disjoint	union	of	circuits	Γ	is	its	own	inverse,	because

Γ	⊕	Γ	=	∅.

Hence	the	theorem.	

THEOREM	6-3

The	 set	 consisting	 of	 all	 the	 cutsets	 and	 the	 edge-disjoint	 unions	 of	 cutsets
(including	 the	null	set	∅)	 in	a	graph	G	 is	an	abelian	group	under	 the	ring	sum
operation.
Proof:	It	is	follows	from	Theorem	4-4	that	this	set	satisfies	the	closure	axiom.

Associativity	 and	 commutativity	 are	 also	 immediately	 apparent.	And	 so	 is	 the
existence	of	the	identity	element	∅.	Just	as	in	the	case	of	circuits,	a	cut-set	or	an
edge-disjoint	union	of	cutsets	is	its	own	inverse.	Thus	the	theorem.	

6-2.	SETS	WITH	TWO	OPERATIONS



Now	 suppose	 that	 on	 the	 elements	 of	 an	 abelian	 group	 we	 impose	 another
binary	operation	⊙,	 in	addition	to	 the	operation	*	 imposed	in	Section	6-1.	The
five	 postulates	 on	⊙	 can	 be	 written	 as	 follows	 (note	 that	 these	 are	 the	 same
postulates	as	in	Section	6-1,	but	they	are	for	a	different	binary	operation	⊙):

6. Closure:	If	a	and	b	are	in	S,	then	a	⊙	b	is	also	in	5.
7. Associative:	If	a,	b,	and	c	are	in	S,	then	(a	⊙	b)	⊙	c	=	a	⊙	(b	⊙	c).
8. Identity	 element:	 There	 exists	 a	 unique	 element	 i	 in	 S	 such	 that	 for	 any

element	 x	 in	 S,	 x	⊙	 i	 =	 i	⊙	 x	 =	 x.	 This	 element	 i	 is	 called	 the	 identity
element	(or	unity)	with	respect	to	operation	⊙.

9. Inverse:	For	every	element	(except	for	the	identity	element	e	of	postulate	3
in	Section	6-1)	x	in	S,	there	exists	a	unique	element	x−1	in	S	such	that	x	⊙
x−1	=	x−1	⊙	x	=	 i.	Element	x−1	 is	 called	 the	 inverse	of	x,	with	 respect	 to
operation	⊙.

10. Commutative:	If	a	and	b	are	in	S,	then	a	⊙	b	=	b	⊙	a.

And	to	relate	these	two	different	binary	operations,	postulate	11	is	introduced.

11. Distributive:	The	operation	⊙	is	distributive	with	respect	to	the	operation	*
;	that	is,	for	elements	a,	b,	and	c	in	S

a	⊙	(b	*	c)	=	a	⊙	b	*	a	⊙	c,
and (b	*	c)	⊙	a	=	b	⊙	a	*	c	⊙	a.

Just	 as	 in	 Section	 6-1,	 the	 different	 combinations	 of	 these	 postulates,	 in
addition	 to	 postulates	 1–5,	 will	 render	 different	 types	 of	 algebraic	 systems.
These	are

Ring:	An	abelian	group	with	respect	to	*	that	satisfies	postulates	6,	7,	and	11
is	called	a	ring.

Ring	with	Unity:	A	ring	that	has	a	unity	or	identity	element	i	with	respect	to
the	second	operation	⊙.

Commutative	Ring:	A	ring	that	satisfies	the	commutative	postualate	(10)	with
respect	to	⊙.

Commutative	 Ring	 with	 Unity:	 A	 commutative	 ring	 that	 has	 an	 identity
element	(8)	with	respect	to	⊙.



Division	Ring	(or	Skew	Field	or	S-Field):	A	ring	with	unity	that	also	satisfies
the	inverse	postulate	(9)	with	respect	to	⊙.

Field	(sometimes	called	Commutative	Field):	A	division	ring	that	satisfies	the
commutative	postulate	 (10)	with	 respect	 to	⊙.	Thus	 a	 field	 satisfies	 all	 eleven
postulates,	 and	 therefore	may	 be	 regarded	 as	 the	 “strongest”	 algebraic	 system
considered	here.

The	relationship	among	these	algebraic	systems	is	summarized	in	Fig.	6-2.
Examples:	As	mentioned	in	Section	6-1,	the	set	of	all	integers

S2	=	{.	.	.	,	−3,	−2,	−1,	0,	1,	2,	3,	.	.	.}

is	 an	 abelian	 group	 under	 +,	 the	 usual	 addition	 operation.	Moreover,	 ordinary
multiplication	 between	 elements	 of	 S2	 also	 satisfies	 the	 closure,	 associative,
distributive,	and	commutative	postulates,	and	there	 is	a	unity	element,	1,	 in	S2.
Thus	S2	 is	 a	commutative	 ring	with	unity.	However,	 since	S2	 does	not	contain
fractions,	it	does	not	satisfy	postulate	9,	and	hence	S2	is	not	a	field.
The	 set	 of	 all	 rational	 numbers	 does	 satisfy	 postulate	 9,	 in	 addition	 to	 the

other	 ten	 satisfied	 by	 S2.	 Therefore,	 the	 set	 of	 all	 rational	 numbers	 is	 a	 field
under	addition	and	multiplication.	The	set	of	all	real	numbers	also	forms	a	field
under	addition	and	multiplication.	All	complex	numbers	also	form	a	field	under
the	usual	addition	and	multiplication.
In	this	book	we	shall	mainly	be	concerned	with	groups	and	fields.	The	rest	of

the	algebraic	systems	are	defined	simply	for	your	general	interest.



Fig.	6-2	Algebraic	systems	with	two	internal	operations.

6-3.	MODULAR	ARITHMETIC	AND	GALOIS	FIELDS

Consider	a	system	of	numbers	that	has	only	three	numbers	in	it,	ordinary	0,	1,
and	 2.	 And	 let	 the	 rules	 for	 addition	 and	multiplication	 in	 this	 system	 be	 the
same	as	ordinary	addition	and	multiplication	with	the	following	exception:	If	a
number	 q	 (resulting	 from	 addition	 or	 multiplication	 operations)	 equals	 or
exceeds	3,	it	is	to	be	divided	by	3,	the	quotient	is	discarded,	and	the	remainder	is
used	 in	 place	 of	 q.	 The	 addition	 and	 multiplication	 tables	 for	 such	 a	 number
system	are	given	in	Fig.	6-3,	and	are	called	addition	modulo	3	and	multiplication
modulo	3.	Together	they	are	called	modulo	3	arithmetic.	For	example,	in	modulo
3	arithmetic,

1	+	1	+	2	·	2	+	1	+	2	+	1	=	1 (mod	3).

Similarly,	 we	 can	 define	 any	 modulo	 m	 arithmetic	 system	 consisting	 of	 m



elements	0,	1,	2,	.	.	.	,	m	−	1	and	the	relationship	for	any	q	>	m	−	1	:

Fig.	6-3	Addition	and	multiplication	tables	for	arithmetic	modulo	3.

q	=	m	·	p	+	r	=	r (mod	m) and r	<	m.

It	is	suggested	that	the	reader	write	down	arithmetic	tables	for	m	=	4,	5,	6,	and	7
(Problem	6-7).

Finite	Fields:	From	the	tables	in	Fig.	6-3,	it	can	be	verified	that	the	set	{0,	1,
2}	with	 addition	 and	multiplication	modulo	3	 is	 a	 field.	There	 is	 an	 identity	 0
with	 respect	 to	modulo	3	 addition,	 and	an	 identity	1	with	 respect	 to	modulo	3
multiplication.	Every	element	has	a	unique	additive	inverse,	and	every	element
other	than	0	has	a	multiplicative	inverse.
By	means	of	actual	tables,	like	those	in	Fig.	6-3,	it	can	be	easily	verfied	that

modulo	2,	5,	and	7	systems	are	also	fields.	On	the	other	hand,	the	set	{0,	1,	2,	3}
with	modulo	4	addition	and	multiplication	is	not	a	field,	because	no	inverse	of	2
exists	with	respect	to	modulo	4	multiplication	(Problem	6-8).
In	fact,	it	turns	out	that	every	finite	set

Zm	=	{0,	1,	2,	.	.	.	,	m	−	1}

with	modulo	m	addition	and	multiplication	is	a	field	if	and	only	if	m	is	a	prime
number.	Such	a	field	is	called	a	Galois	field	modulo	m,	or	GF(m).

As	we	 shall	 see	 shortly,	 in	 representing	 graphs	we	 are	 concerned	 only	with
GF(2),	Galois	field	modulo	2.	It	consists	of	{0,	1}	and	the	addition	modulo	2	and
multiplication	modulo	2	operations.	The	two	arithmetic	tables	are	given	in	Fig.
6-4.	(Those	familiar	with	computer	logic	will	readily	recognize	that	in



Fig.	6-4	Addition	and	multiplication	tables	of	GF(2)

Fig.	6-4,	+	 is	 the	same	as	“EXCLUSIVE	OR”	and	 •	 is	 the	same	as	“AND”	of
Boolean	logic.)

6-4.	VECTORS	AND	VECTOR	SPACES

In	an	ordinary	two-dimensional	(Euclidean)	plane,	a	point	is	represented	by	an
ordered	pair	of	numbers	X	=	(x1,	x2).	Point	X	can	also	be	regarded	as	a	vector
emanating	 from	 the	 origin	 0	 =	 (0,	 0)	 to	 the	 point	 (x1,	 x2).	 Similarly,	 in	 three-
dimensional	 Euclidean	 space	 the	 triplet	 (7,	 2.1,	 −	 3)	 represents	 a	 vector.
Sometimes,	instead	of	row	notation	a	column	notation	is	used,	for	example,

The	three	components	7,	2.1,	and	−3	in	the	example	above	are	from	the	field
of	 real	 numbers.	 Every	 point	 (of	 the	 infinitely	many	 points)	 in	E3,	 the	 three-
dimensional	 Euclidean	 space,	 corresponds	 to	 a	 unique	 ordered	 triplet	 (of	 the
infinitely	many	triplets)	consisting	of	three	real	numbers.
Now	suppose	that	we	are	working	with	GF(2),	the	field	of	integers	modulo	2.

Then	 every	 number	 in	 a	 triplet	 can	 only	 be	 either	 0	 or	 1.	Thus	 there	 are	 only
eight	(23	=	8)	vectors	possible	(instead	of	infinitely	many	as	in	the	real	number
system)	 in	 a	 three-dimensional	 space	 if	 our	 numbers	 are	 restricted	 to	 GF(2).
These	are

(0,	0,	0), (1,	0,	0), (0,	1,	0), (0,	0,	1), (1,	1,	0), (1,	0,	1), (0,	1,	1), (1,
1,	1).



This	 concept	 of	 representing	 vectors	 can	 be	 extended	 to	 representation	 of	 a
vector	in	k-dimensional	space	by	means	of	an	ordered	k-tuple.	For	instance,	the
7-tuple	 (0,	 1,	 1,	 0,	 1,	 0,	 1,)	 represents	 a	 vector	 in	 a	 seven-dimensional	 vector
space	over	the	field	GF(2).
The	numbers	in	a	field	are	sometimes	called	scalars	(to	distinguish	them	from

vectors).	The	scalars	in	the	field	GF(2)	are	0	and	1.
A	vector	space,	in	addition	to	being	made	up	of	k-tuples	(from	some	specified

field),	 must	 satisfy	 certain	 other	 conditions	 regarding	 combinations	 of	 two
vectors,	 or	 operation	 of	 a	 vector	 with	 a	 scalar,	 and	 the	 like.	 These	 can	 be
summarized	in	the	following	definition.

DEFINITION

A	k-dimensional	vector	space	(or	a	linear	vector	space)	over	the	field	F,	is	an
object	consisting	of

1. A	field	F	(with	its	set	of	elements	S,	and	two	operations	*	and	⊙).
2. A	set	W	of	k-tuples	(all	numbers	taken	from	F).
3. A	binary	operation	⊞	(called	vector	sum)	between	the	elements	of	the	set
W,	such	that	W	is	an	abelian	group	under	this	operation	⊞.

4. A	binary	 operation	⊡	 (called	 scalar	multiplication),	which	when	 applied
between	any	scalar	c	in	F	and	a	vector	X	=	(xl,	x2,	.	.	.	,	xk)	in	W	produces
another	 vector	 P	 in	W.	 P	 is	 called	 the	 scalar	 product	 of	 c	 and	X,	 and	 is
given	by

P	=	c	⊡	X	=	(c	⊙	x1,	c	⊙	x2,	.	.	.	,	c	⊙	xk).
Furthermore,	scalar	multiplication	satisfies	the	following:

Let	 us	 now	 leave	 the	 general	 vector	 space,	 and	 concern	 ourselves	 with	 the
specific	vector	space	associated	with	a	graph	G.

6-5.	VECTOR	SPACE	ASSOCIATED	WITH	A	GRAPH



Let	us	consider	the	graph	G	in	Fig.	6-5	with	four	vertices	and	five	edges	e1,	e2,
e3,	 e4,e5.	 Any	 subset	 of	 these	 five	 edges	 (i.e.,	 any	 subgraph	 g)	 of	G	 can	 be
represented	by	a	5-tuple:

x	=	(x1,	x2,	x3,	x4,	x5)

such	that

xi	=	1 if	ei	is	in	g	and
xi	=	0 if	ei	is	not	in	g.

For	instance,	the	subgraph	g1	in	Fig.	6-5	will	be	represented	by	(1,	0,	1,	0,	1).

Fig.	6-5	Graph	and	two	of	its	subgraphs.

Altogether	there	are	25	or	32	such	5-tuples	possible,	including	the	zero	vector
0	=	(0,	0,	0,	0,	0),	which	represents	a	null	graph,†	and	(1,	1,	1,	1,	1),	which	is	G
itself.
It	 is	 not	 difficult	 to	 see	 that	 the	 ring-sum	 operation	 between	 two	 subgraphs

corresponds	to	the	modulo	2	addition	between	the	two	5-tuples	representing	the
two	subgraphs.	For	example,	consider	two	subgraphs

g1	=	{e1,	e3,	e5} represented	by	(1,	0,	1,	0,	1),	and
g2	=	{e2,	e3,	e4} represented	by	(0,	1,	1,	1,	1).

The	ring	sum

g1	⊕	g2	=	{e1,	e2,	e4,	e5} represented	by	(1,	1,	0,	1,	1),

which	is	clearly	modulo	2	addition	of	the	5-tuples	for	g1	and	g2.
Now,	generalizing	this	example,	we	can	make	the	most	important	observation

of	this	chapter:	There	is	a	vector	space	WG	associated	with	every	graph	G,	and



this	vector	space	consists	of

1. Galois	field	modulo	2	;	that	is,	set	{1,	0}	with	operation	addition	modulo	2
written	 as	 +	 such	 that	 0	 +	 0	 =	 0,	 1	 +	 0	 =	 1	 =	 0	 +	 1,	 1	 +	 1	 =	 0,	 and
multiplication	modulo	2	written	as	·	such	that	0·0	=	0	=	1·0	=	0·1,	and	1·1	=
1.

2. 2e	vectors	(e-tuples),	where	e	is	the	number	of	edges	in	G.
3. An	addition	operation	between	two	vectors	X,	Y	in	this	space,	defined	as

the	vector	sum‡

X	⊕	Y	=	(x1	+	y1,	x2	+	y2,	.	.	.	,	xe	+	ye),
+	being	addition	modulo	2.

4. And	 a	 scalar	 multiplication	 between	 a	 scalar	 c	 in	 Z2	 and	 a	 vector	 X,
defined	as	c·X	=	(c·x1,	.	.	.	,	c·xe).

The	reader	can	verify	that	the	vector	space	WG	associated	with	a	graph	G,	as
defined	 above,	 does	 indeed	 satisfy	 all	 the	 requirements	 of	 a	 vector	 space
(Problem	6-11).	Note	that	the	identity	element	(for	the	vector	sum	operation)	in	a
vector	space	is	0,	the	zero	vector.

6-6.	BASIS	VECTORS	OF	A	GRAPH

Linear	Dependence:	A	set	of	vectors	X1,	X2,	 .	 .	 .,	Xr	 (over	 some	 field	F)	 is
said	to	be	linearly	independent	if	for	scalars	c1,	c2,	.	.	.	,	cr	in	F	the	expression

c1X1	+	c2X2	+	.	.	.	+	crXr	=	0

holds	only	if	c1	=	c2	=	.	 .	 .	=	cr	=	0.	Otherwise,	 the	set	of	vectors	is	said	to	be
linearly	dependent.	For	example,	consider	the	set	of	three	vectors,	over	the	field
of	real	numbers	:

An	arbitrary	linear	combination	of	these	three	vectors	set	to	zero	gives



That	is,	2c2	=	0,	4c1	+	c2	=	0,	and	c1	+	3c3	=	0,	which	hold	only	if	c1	=	c2	=	c3
=	0.	Thus	the	set	of	vectors	{X1,	X2,	X3}	is	linearly	independent.
On	the	other	hand,	consider	another	set	of	vectors	(over	the	same	field	of	real

numbers)	:

Setting	an	arbitrary	linear	combination	of	these	vectors	to	zero,

gives	c4	=	−	c5	=	 .5c6	=	α,	where	α	can	be	any	 real	number	not	necessarily
zero.	Therefore,	the	set	{X4,	X5,	X6}	is	linearly	dependent.

Basis	Vectors:	To	the	set	of	three	linearly	independent	vectors	{X1,	X2,	X3}	in
the	first	example,	let	us	add	another	vector

Now	 you	 can	 show	 without	 much	 difficulty	 that	 the	 set	 {X1,	 X2,	 X3,	 Y}	 is
linearly	dependent	regardless	of	what	Y	is.	In	other	words,	you	can	find	a	set	of
four	real	numbers	a,	b,	c,	and	d	(not	all	of	which	are	zero)	such	that†

Rewriting	Eq.	(6-1),



Thus	a	vector	Y	can	be	expressed	as	a	linear	combination	of	the	vectors	X1,	X2,
X3.	 Such	 a	 set	 of	 k	 linearly	 independent	 vectors	 is	 called	 a	 basis	 (or	 the
coordinate	system)	in	the	vector	space.	More	formally:
If	every	vector	in	a	vector	space	W	can	be	expressed	as	a	linear	combination

of	 a	 given	 set	 of	 vectors,	 this	 set	 is	 said	 to	 span	 the	 vector	 space	 W.	 The
dimension	of	the	vector	space	W	is	the	minimal	number	of	linearly	independent
vectors	required	to	span	W.	Any	set	of	k	linearly	independent	vectors	that	spans
W,	a	k-dimensional	vector	space,	is	called	a	basis	for	the	vector	space	W.
For	 example,	 the	 following	 set	 of	 k	 unit	 vectors	 in	 a	 k-dimensional	 vector

space	 is	a	basis.	This	 is	 the	most	commonly	used	basis,	and	 is	often	called	 the
natural	or	standard	basis.

It	is	clear	that	any	vector	in	the	k-dimensional	vector	space	(over	the	field	of	real
numbers)	can	be	expressed	as	a	linear	combination	of	these	k	vectors.

Basis	Vectors	of	a	Graph:	In	Section	6-5	it	was	shown	that	there	was	a	vector
space	WG	associated	with	every	graph	G.	Corresponding	to	each	subgraph	of	G
there	was	a	vector	 in	WG,	 represented	by	an	e-tuple.	The	natural	basis	 for	 this
vector	space	WG	 is	a	 set	of	e	 linearly	 independent	vectors,	each	 representing	a
subgraph	consisting	of	one	edge	of	G.	For	instance,	for	the	graph	in	Fig.	6-5,	the
set	of	the	following	five	vectors	serves	as	a	basis	for	WG,

(1,	0,	0,	0,	0),
(0,	1,	0,	0,	0),
(0,	0,	1,	0,	0),



(0,	0,	1,	0,	0),
(0,	0,	0,	1,	0),
(0,	0,	0,	0,	1).

Any	of	the	possible	32	subgraphs	(including	G	as	well	as	the	null	graph)	can	be
represented	 by	 a	 suitable	 (and	 unique)	 linear	 combination	 of	 these	 five	 basic
vectors.

6-7.	CIRCUIT	AND	CUT-SET	SUBSPACES

A	 nonempty	 subset	 of	 vectors	 in	 a	 space	 is	 called	 a	 subspace	 if	 the	 subset
satisfies	 the	 axioms	 of	 a	 vector	 space.	 To	 check	 whether	 a	 given	 subset	 of
vectors	 is	 a	 subspace	 we	 have	 only	 to	 check	 for	 closure	 under	 scalar
multiplication	and	vector	addition.	Since	the	scalar	product	of	0	and	a	vector	X
is	the	zero	vector	0,	the	closure	under	scalar	multiplication	assures	the	presence
of	0.	Closure	under	scalar	multiplication	also	assures	the	inverse	of	every	vector
[because	 the	 inverse	 of	 vector	 X	 is	 the	 vector	 (−	 1)·X].	 If	 the	 associative,
commutative,	and	distributive	axioms	hold	in	the	original	space,	they	must	also
hold	 for	 every	 subset	 of	 vectors.	Thus	 a	 subset	 of	 vectors	 closed	under	 vector
addition	and	multiplication	by	scalars	is	a	subspace.

A	vector	space	is	trivially	its	own	subspace.	The	null	space,	consisting	of	0,	is
also	 a	 subspace.	A	Euclidean	plane	E2	 through	 the	origin	 is	 a	 subspace	of	 the
three-dimensional	Euclidean	space	E3.	A	line	E1	through	the	origin	is	a	subspace
of	both	E2	and	E3.

The	dimension	 of	 a	 subspace	 is	 the	 number	 of	 linearly	 independent	 vectors
required	to	span	the	subspace.

Subspaces	in	WG

In	 the	 vector	 space	WG	 (over	 the	 Galois	 field	modulo	 2)	 associated	 with	 a
graph	G,	let	us	consider	the	following	two	types	of	vectors:	A	circuit	vector	is	a
vector	in	WG	representing	either	a	circuit	or	a	union	of	edge-disjoint	circuits	in
graph	G.	 A	 cut-set	 vector	 is	 a	 vector	 in	WG	 representing	 either	 a	 cut-set	 or	 a
union	of	edge-disjoint	cutsets	in	G.

We	know	that	 in	 the	vector	space	WG	 the	 linear	combination	of	 two	vectors



(which	is	simply	modulo	2	addition	of	their	components)	corresponds	to	the	ring
sum	of	 the	corresponding	subgraphs	 in	G.	From	Theorem	6-2,	 the	 ring	sum	of
two	circuits	(or	unions	of	edge-disjoint	circuits)	is	a	circuit	or	a	union	of	edge-
disjoint	circuits.	Therefore,	the	linear	combination	of	two	circuit	vectors	is	also	a
circuit	vector.	Hence

THEOREM	6-4

The	set	of	all	circuit	vectors	in	WG	forms	a	subspace	WΓ.

Based	on	parallel	arguments	and	on	Theorem	6-3,	we	have	an	identical	result
for	cut-set	vectors.

THEOREM	6-5

The	set	of	all	cut-set	vectors	in	WG	forms	a	subspace	Ws.

Quite	naturally,	subspaces	WΓ	and	Ws	are	called	the	circuit	subspace	and	cut-
set	subspace,	respectively.

Bases	of	Ws	and	WΓ

After	having	discovered	that	a	particular	set	of	vectors	constitutes	a	subspace,
the	questions	 that	one	asks	next	are	 :	What	 is	 the	dimension	of	 this	 subspace?
How	 many	 vectors	 does	 the	 subspace	 contain?	 These	 questions	 about	 the
subspaces	WΓ	and	Ws	are	answered	by	the	following	important	results.

THEOREM	6-6

The	 set	 of	 circuit	 vectors	 corresponding	 to	 the	 set	 of	 fundamental	 circuits,
with	respect	to	any	spanning	tree,	forms	a	basis	for	the	circuit	subspace	WΓ.

Proof:	Consider	a	spanning	tree,	T,	in	a	connected	graph	G,	with	n	−	1	=	r	tree
branches	 and	 e	 −	 n	 +	 1	 =	 μ	 chords.	 Adding	 a	 chord	 c1	 to	 T	 produces	 a
fundamental	circuit,	and	the	corresponding	circuit	vector	can	be	included	in	the
basis	 of	WΓ.	 Adding	 another	 chord	 c2	 to	 subgraph	 T	∪	 c1	 produces	 another
fundamental	circuit,	with	at	 least	one	edge	that	was	not	 in	 the	previous	circuit.
Therefore,	the	circuit	vector	representing	the	second	fundamental	circuit	and	the
first	circuit	vector	are	 linearly	 independent.	Thus	both	 these	circuit	vectors	can



be	included	in	the	basis.	Adding	a	third	chord	to	T	∪	c1	∪	c2	will	give	another
fundamental	circuit	with	at	least	one	edge	not	in	either	of	the	previous	circuits.
Therefore,	this	third	circuit	vector	can	also	be	included	in	the	basis.	Continuing
with	this	argument,	we	see	that	all	the	μ	vectors	successively	obtained	this	way
are	linearly	independent,	because	each	represents	a	circuit	containing	at	least	one
edge	 not	 present	 in	 any	 of	 the	 previous	 ones.	Therefore,	 these	μ	 vectors,	 each
corresponding	to	a	fundamental	circuit,	are	linearly	independent.

Now	we	have	to	show	that	every	circuit	vector	is	a	linear	combination	of	these
μ	vectors.

Consider	an	arbitrary	circuit	Γ1	in	G,	such	that

Γ1	=	{e1,	e2,	.	.	.	,	ei,	ei+1,	.	.	.	,	em},

where	edges	e1,	e2,	.	.	.	,	ei	are	chords	with	respect	to	T,	and	ei+1,	ei+2,	.	.	.	,	em	are
branches	of	T.
Let	 g	 be	 a	 subgraph	 obtained	 by	 taking	 the	 ring	 sum	 of	 the	 i	 fundamental

circuits	formed	by	the	chords	e1,	e2,	.	.	.	,	and	et.
Because	 of	 Theorem	 6-1,	 subgraph	g	must	 be	 a	 circuit	 or	 a	 union	 of	 edge-

disjoint	 circuits.	 Assume	 Γ1	 ≠	 g.	 Then	 the	 subgraph	 Γ1	⊕	 g	must	 be	 either	 a
circuit	or	a	union	of	edge-disjoint	circuits.	But	since	both	Γ1	and	g	contain	 the
chords	e1,	e2,	.	.	.	,	ei	and	no	other	chords,	the	subgraph	Γ1	⊕	g	will	not	contain
any	chord	with	respect	to	T.	Hence	Γ1	⊕	g	has	no	circuit,	a	contradiction.	So	Γ	=
g.
Thus	 we	 have	 shown	 that	 any	 circuit	 (and	 by	 extension	 a	 union	 of	 edge-

disjoint	circuits)	in	G	can	be	expressed	as	a	ring	sum	of	some	of	the	fundamental
circuits	 with	 respect	 to	 T.	 The	 vectors	 corresponding	 to	 a	 set	 of	 fundamental
circuits	must	therefore	span	WΓ.	

As	was	brought	out	in	Chapter	5,	every	set	of	fundamental	circuits	constitutes
a	basis	in	the	circuit	subspace	WΓ	(i.e.,	forms	a	set	of	basic	circuits),	but	every
basis	in	the	circuit	subspace	need	not	correspond	to	a	set	of	fundamental	circuits.
(See	Problems	5-15	and	6-18.)

COROLLARY



The	dimension	of	the	circuit	subspace	WΓ	is	equal	to	the	nullity	μ	of	the	graph,
and	the	number	of	circuit	vectors	(including	0)	in	WΓ	is	2μ.
Employing	an	argument	parallel	to	that	used	in	proving	Theorem	6-6,	it	can	be

shown	 that	 the	 r	 cut-set	 vectors,	 each	 corresponding	 to	 a	 fundamental	 cut-set
with	respect	to	a	spanning	tree,	are	linearly	independent.
Also,	by	a	parallel	 argument	 it	 can	be	proved	 that	 any	cut-set	or	 a	union	of

edge-disjoint	cutsets	can	be	obtained	by	taking	the	ring	sum	of	a	subset	of	the	r
fundamental	cutsets	with	 respect	 to	a	spanning	 tree.	And	 thus	we	get	a	similar
result	for	the	cut-set	subspace.

THEOREM	6-7

The	set	of	cut-set	vectors	corresponding	to	the	set	of	fundamental	cutsets,	with
respect	to	any	spanning	tree,	forms	a	basis	for	the	cut-set	subspace	Ws.

COROLLARY

The	dimension	of	the	cut-set	subspace	Ws	is	equal	to	the	rank	r	of	the	graph,
and	the	number	of	cut-set	vectors	(including	0)	in	Ws	is	2r.

Example:	Let	us	now	illustrate	these	results	with	an	example.

For	the	graph	G	in	Fig.	6-5

number	of	edges,	e	=	5,
rank,	r	=	3,

nullity,	μ	=	2.

The	number	of	vectors	in	the	circuit	subspace,	therefore,	is	22	=	4,	and	these
are



The	 first	 two	 of	 these	 vectors	 correspond	 to	 the	 set	 of	 fundamental	 circuits
with	respect	to	either	of	the	spanning	trees	in	Fig.	6-5,	and	therefore	they	form	a
basis	for	WΓ.	(In	fact,	any	two	of	the	first	three	vectors	form	a	basis	of	WΓ.)	The
three	 subgraphs,	 each	 corresponding	 to	 a	 nonzero	 vector	 in	WΓ,	 are	 shown	 in
Fig.	6-6.
The	cut-set	subspace	Ws	has	a	dimension	of	three,	and	therefore	the	number	of

vectors	in	Ws	is	23	=	8.	These	cut-set	vectors	are

The	 first	 three	 vectors	 correspond	 to	 the	 three	 fundamental	 cutsets	 with
respect	to	the	tree	g2	in	Fig.	6-5.	The	rest	of	the	vectors	can	easily	be	seen	to	be
the	vector	sums	of	any	two	or	three	of	these	basis	vectors.	The	seven	subgraphs,
each	corresponding	to	a	nonzero	cut-set	vector,	are	sketched	in	Fig.	6-7.

Fig.	6-6	Circuits	in	graph	G	of	Fig.	6-5.



Fig.	6-7	Cutsets	and	union	of	edge-disjoint	cutsets	in	graph	G	of	Fig.	6-5.

In	 this	 example	you	may	have	observed	 that	 the	 subgraph	{el,	 e2,	 e4,	 e5}	 is
both	a	circuit	and	a	union	of	two	edge-disjoint	cutsets.	The	vector	(1,	1,0,	1,	1)
corresponding	to	this	subgraph,	therefore,	occurs	in	both	subspaces	WΓ	and	Ws.

Another	observation	you	may	have	also	made	is	that	there	are	at	least	(2e	−	2μ

−	2r	+	1)	nonzero	vectors	which	are	neither	in	WΓ	nor	in	Ws.	In	this	example	we
must	have	at	least	21	(=	25	−	23	−	22	+	1)	such	vectors.	Since	there	is	one	vector
common	to	WΓ	and	WS,	we	have	in	fact	22	vectors	in	WG	that	are	neither	circuit
vectors	nor	cut-set	vectors.

Having	obtained	some	insight	 into	the	circuit	subspace	and	cut-set	subspace,
let	us	now	explore	the	relationship	between	these	two	subspaces.

6-8.	ORTHOGONAL	VECTORS	AND	SPACES

Consider	two	vectors	(4,	2)	and	(−3,	6)	in	a	plane	(which	is	also	called	a	two-
dimensional	 Euclidean	 space	 E2),	 as	 shown	 in	 Fig.	 6-8.	 These	 vectors	 are
orthogonal	because	their	dot	product	4·(−3)	+	2·6	=	0.	Generalizing	this	notion	to
a	k-dimensional	vector	space,	we	have	the	following	definitions:

Dot	Product:	The	dot	product	of	two	vectors	X	and	Y	in	a	vector	space	W	is	a
scalar	quantity	defined	as



X·Y	=	(x1,	x2,	.	.	.	,xk)·(y1,	y2,	.	.	.	,	yk)
=	x1	·	y1	+	x2	·	y2	+	.	.	.	+	xk	·	yk.

Fig.	6-8	Pair	of	orthogonal	vectors	in	space	E2.

Orthogonal	Vectors:	Two	vectors	are	called	orthogonal	if	their	dot	product	is
zero;	and	two	subspaces	are	said	to	be	orthogonal	to	each	other	if	every	vector	in
one	is	orthogonal	to	every	vector	in	the	other.
Returning	 to	 the	vector	 space	 associated	with	 a	graph	G,	 the	dot	product	of

two	 vectors,	 each	 representing	 a	 subgraph	 of	G,	 is	 the	 modulo	 2	 sum	 of	 the
products	of	 the	 corresponding	 entries	 in	 the	 two	vectors.	For	 example,	 the	dot
product	of	the	vectors	representing	subgraphs	g1	and	g2	in	Fig.	6-5	is

The	number	of	nonzero	entries	in	the	sum	of	products	above	is	the	number	of
edges	common	to	g1	and	g2.	Theorem	6-8	follows	directly	from	the	definition	of
the	dot	product	of	two	vectors.

THEOREM	6-8

The	dot	product	of	 two	vectors,	one	representing	a	subgraph	g	and	the	other
g′,	is	zero	if	the	number	of	edges	common	to	g	and	g′	is	even;	the	dot	product	is
1	if	the	number	of	common	edges	is	odd.

THEOREM	6-9



In	 the	vector	space	of	a	graph,	 the	circuit	 subspace	and	 the	cut-set	 subspace
are	orthogonal	to	each	other.

Proof:	According	to	Theorem	4-3,	 the	number	of	edges	common	to	a	circuit
and	a	 cut-set	 is	 even.	What	 about	 the	number	of	 edges	 common	 to	 a	union	of
edge-disjoint	circuits	and	a	union	of	edge-disjoint	cutsets?	That	this	is	also	even
can	be	shown	as	follows:
Let	g1	be	a	union	of	three	edge-disjoint	circuits	Γ1,	Γ2,	and	Γ3	 in	a	graph	G,

and	g2	be	a	union	of	two	edge-disjoint	cutsets	S1	and	S2	in	G.
Let	the	number	of	edges	common	to

Γ1	and	S1	be	2a,
Γ1	and	S2	be	2b,
Γ2	and	S1	be	2c,
Γ2	and	S2	be	2d,
Γ3	and	S1	be	2e,
Γ3	and	S2	be	2f.

Since	there	is	no	edge	common	between	S1	and	S2,	or	between	Γ1	and	Γ2	and	Γ3,
the	 six	 sets	of	common	edges	enumerated	above	are	all	distinct	 (some	may	be
empty).	Therefore,	the	number	of	edges	common	to	g1	and	g2	is

2a	+	2b	+	2c	+	2d	+	2e	+	2f, an	even	number.

This	example	can	be	extended	to	g1	and	g2	to	include	the	union	of	any	finite
numbers	of	edge-disjoint	circuits	and	Cutsets,	respectively.	From	Theorem	6-8,
the	 dot	 product	 of	 a	 circuit	 vector	 and	 a	 cut-set	 vector	 is	 zero.	 Hence	 every
vector	 in	 each	 of	 these	 subspaces	 is	 orthogonal	 to	 every	 vector	 in	 the	 other.
Therefore,	the	theorem.	

For	instance,	the	dot	product	of	the	cut-set	vector	(0,	1,	1,	1,	0)	and	the	circuit
vector	(1,	1,	1,	0,	0)	in	the	example	in	Section	6-7	(i.e.,	Fig.	6-5)	is

(0,	1,	1,	1,	0)·(1,	1,	1,	0,	0)	=	0·1	+	1·1	+	1·1	+	1·0	+	0·0
=	0	(mod	2).



6-9.	INTERSECTION	AND	JOIN	OF	WΓ	AND	Ws

Given	the	two	subspaces	WΓ	and	Ws	of	the	vector	space	WG,	it	is	interesting	to
ask	what	is	the	largest	set	of	vectors	that	belongs	to	both	circuit	subspace	WΓ	and
the	cut-set	subspace	Ws;	and	what	is	the	smallest	set	of	vectors	containing	both
WΓ	 and	Ws?	Clearly,	 the	null	or	zero	vector	0	 is	 in	both	WΓ	 and	Ws,	but	 there
may	also	be	 some	nonzero	vectors	contained	 in	 the	 intersection	WΓ	∩	Ws.	For
example,	the	vector

for	the	graph	in	Fig.	6-5	is	in	both	subspaces.	It	is	not	difficult	to	show	that	the
set	of	vectors	WΓ	∩	Ws	always	forms	a	vector	subspace	in	WG.

On	 the	 other	 hand,	 the	 smallest	 subspace	 containing	 both	WΓ	 and	Ws	 must
contain	 the	 set	 union	 WΓ	 ∪	 WS,	 of	 course,	 but	 (because	 of	 the	 closure
requirements	for	a	subspace)	it	will	usually	contain	some	additional	vectors	not
in	WΓ	∪	Ws.	 For	 example,	 for	 the	graph	 in	Fig.	 6-5	 set	WΓ	∩	Ws	 contains	10
vectors	(union	of	Figs.	6-6	and	6-7),	while	the	smallest	subspace	containing	set
WΓ	 ∩	Ws,	 that	 is,	 the	 subspace	 spanned	 by	 the	 set	 of	 vectors	 in	WΓ	∪	Ws,
consists	 of	 16	 vectors.	 (What	 are	 the	 remaining	 six	 subgraphs	 not	 included	 in
Figs.	6-6	and	6-7?)	The	subspace	spanned	by	WΓ	∪	Ws	is	called	the	join	of	WΓ
and	Ws,	and	is	written	as	WΓ	V	Ws.
The	following	is	a	well-known	result	from	linear	algebra:	If	X	and	Y	are	two

subspaces	in	a	finite-dimensional	vector	space,	then	the	dimension	of	their	join,
dim(X	V	Y),	is	given	by

dim(X	V	Y)	=	dim	X	+	dim	Y	−	dim(X	∩	Y).

Using	this	result,	we	get



dim(WΓ	V	Ws)	=	e	−	dim(WΓ	∩	Ws).

Two	subspaces	of	a	vector	 space	are	said	 to	be	orthogonal	complements	 if	 the
subspaces	are	orthogonal	to	each	other,	and	they	together	span	the	entire	vector
space.	Thus	we	have	the	following	interesting	result.

THEOREM	6-10

Subspaces	WΓ	and	Ws	are	orthogonal	complements	if	and	only	if

dim(WΓ	∩	Ws)	=	0, i.e., WΓ	∩	Ws	=	0.

In	other	words,	a	set	of	basis	vectors	of	WΓ	together	with	a	set	of	basis	vectors	of
Ws	form	a	basis	for	WG	if	and	only	if	WΓ	∩	Ws	=	0.	Consequently,	any	subgraph
g	of	G	can	be	uniquely	expressed	as	a	ring	sum	of	two	subgraphs,	one	a	circuit
or	 an	 edge-disjoint	 union	 of	 circuits	 and	 the	 other	 a	 cutset	 or	 an	 edge-disjoint
union	of	cutsets,	if	and	only	if

WΓ	∩	Ws	=	0.

These	properties	are	illustrated	in	Fig.	6-9.
In	the	case

WΓ	∩	Ws	≠	0

we	 have	 nonzero	 vectors	 each	 orthogonal	 to	 itself.	 This	 seemingly	 peculiar
situation	 arises	 from	 the	 finiteness	 of	 the	 field.	 In	 fact,	 the	dot	 product	 of	 any
vector	over	GF(2)	with	 itself	 is	zero	 if	and	only	 if	 the	vector	contains	an	even
number	of	l′s.



Fig.	6-9	Graph	and	its	different	subspaces.

Now,	since

dim(WΓ	∩	Ws)	≠	0,

the	two	subspaces	WΓ	and	Ws	are	not	orthogonal	complements.	Nor	is	it	possible
to	 express	 every	 vector	 in	WG	 as	 a	 sum	of	 two	 vectors,	 one	 from	WΓ	 and	 the
other	from	Ws.	For	example,	in	Fig.	6-5	no	linear	combination	of	vectors	in	WΓ
and	Ws	will	yield	the	vector



In	 fact,	 for	Fig.	6-5	 there	 are	16	 such	vectors	 in	WG	 that	 are	not	 in	WΓ	V	Ws,
because

dim(WΓ	V	Ws)	=	e	−	dim(WΓ	∩	Ws)	=	5	−	1	=	4.

The	reader	 is	encouraged	 to	sketch	a	 figure	 like	Fig.	6-9,	using	 the	graph	 in
Fig.	6-5.	Identify	all	32	subgraphs,	and	place	them	in	subspaces	WΓ,	Ws,	(Ws	∩
WΓ),	and	(Ws	V	WΓ).	For	more	on	properties	of	these	subspaces	see	[6-8]	and	[6-
1].

SUMMARY

In	 this	 chapter	 various	 algebraic	 or	 number	 systems	were	 introduced,	 and	 it
was	shown	that	to	every	graph	G	corresponds	a	vector	space	WG	over	the	field	of
integers	modulo	2	[i.e.,	GF(2)].	For	a	graph	G	with	e	edges	the	dimension	of	WG

is	e,	and	the	number	of	vectors	in	WG	is	2e,	each	corresponding	to	a	subgraph	of
G.
Cutsets	and	unions	of	edge-disjoint	cutsets	formed	an	r-dimensional	subspace

Ws	 in	WG.	 The	 number	 of	 vectors	 in	 subspace	Ws	 is	 naturally	 2r,	 each	 vector
corresponding	 to	 a	 cut-set	 or	 a	 union	 of	 edge-disjoint	 cutsets.	 Similarly,	 the
circuits	and	union	of	edge-disjoint	circuits	correspond	to	a	μ-dimensional	vector
space	WΓ,	 with	 2μ	 vectors.	 Out	 of	 many	 bases	 available,	 the	 set	 of	 μ	 vectors
representing	all	fundamental	circuits,	with	respect	to	any	spanning	tree,	forms	a
convenient	 basis	 in	 the	 circuit	 subspace.	 Likewise,	 the	 set	 of	 r	 fundamental
cutsets,	 with	 respect	 to	 any	 spanning	 tree,	 provides	 a	 basis	 in	 the	 cut-set
subspace.
The	cut-set	 subspace	and	circuit	 subspace	of	a	graph	are	orthogonal	 to	each

other.	 The	 intersection	 of	 these	 two	 subspaces	 is	 not	 necessarily	 {0};	 that	 is,
there	may	be	 nonzero	 vectors	 common	 to	 cut-set	 and	 circuit	 subspaces.	Every



one	of	these	vectors	in	Ws	∩	WΓ	is	orthogonal	to	itself,	and	they	(including	the
origin	0)	form	another	vector	subspace.	The	set	of	vectors	in	the	union	Ws	∪	WΓ
does	not	necessarily	form	a	vector	space.
It	was	also	shown	that	WG	has,	in	general,	a	large	number	of	vectors	(2e	−	2μ	−

2r	+	1	vectors	or	more)	which	belong	neither	to	the	cut-set	subspace	nor	to	the
circuit	subspace.
On	one	hand,	a	graph	provides	an	elegant	and	concrete	example	of	“spaces”	of

more	 than	 three	 dimensions,	 which	 often	 appear	 frighteningly	 mysterious	 to
many	nonmathematicians.	A	graph	also	provides	an	example	of	a	vector	space
over	 a	 field	 other	 than	 those	 of	 usual	 real	 or	 complex	 numbers.	 On	 the	 other
hand,	a	study	of	the	vector	space	of	a	graph	and	the	nature	of	different	subspaces
shows	 us	 “what	 makes	 a	 graph	 tick.”	 It	 gives	 us	 an	 additional	 mathematical
footing	 in	 analysis	 and	applications	of	graphs,	 such	 as	 in	 coding	 theory	 (to	be
covered	in	Chapter	12).
Vectors	and	matrices	are	closely	related.	In	 the	next	chapter	we	will	explore

various	matrices	associated	with	a	graph,	and	tie	the	vector	spaces	and	matrices
of	graphs	together.
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PROBLEMS
6-1. Show	 that	 the	 usual	 operation	 of	 subtraction	 does	 not	 satisfy	 the

associative	axiom.
6-2. Show	that	the	set	of	the	four	fourth	roots	of	unity	that	is,	{1,	−	1,	i,	−	i},

satisfies	 all	 five	 criteria	 for	 being	 an	 abelian	 group	 under	 the	 ordinary
multiplication	operation.

6-3. Given	a	set	{x,	y,	z}	of	three	elements,	show	that	there	is	only	one	group
possible	with	this	set.

6-4. From	the	table	in	Fig.	6-3(a),	show	that	each	element	in	the	set	{0,	1,	2}
has	 a	 unique	 inverse	 under	 modulo	 3	 addition.	 What	 about	 under
multiplication	modulo	3?	Use	the	table	in	Fig.	6-3(b).

6-5. Show	 that	 there	 are	 only	 two	 different	 groups	 possible	 with	 four
elements,	and	that	both	these	groups	are	abelian.

6-6. Given	 a	 set	 {a,	 b,	 c,	 d}	 of	 four	 elements,	 construct	 two	 four	 by	 four
tables	 for	 operations	 *	 and	⊙,	 such	 that	 the	 set	 is	 a	 field.	 Identify	 the
letters	playing	the	roles	of	identities	with	respect	to	*	and	⊙	(i.e.,	0	and
1).

6-7. Write	down	the	addition	and	multiplication	tables	for	each	of	modulo	4,
5,	6,	and	7	arithmetics	(similar	to	those	in	Figs.	6-3	and	6-4).

6-8. From	the	appropriate	table	in	Problem	6-7,	show	that	not	every	nonzero
element	 (i.e.,	 1,2,	 and	 3)	 has	 a	 unique	 inverse	 under	 the	 modulo	 4
multiplication	operation.

6-9. Show	that	the	modulo	6	system	is	an	abelian	ring	with	unity,	but	is	not	a
field.



6-10. Prove	 that	 in	 any	vector	 space	 the	null	 vector	 0	 is	 orthogonal	 to	 every
vector	in	the	space.

6-11. Show	that	WG,	as	defined	in	Section	6-5,	satisfies	all	four	conditions	for
being	a	vector	space,	as	stated	in	Section	6-4.

6-12. In	vector	space	WG,	do	the	vectors	associated	with	the	spanning	trees	of
G	form	a	vector	space	over	GF(2)?	Explain.

6-13. Let	G	be	a	graph	consisting	of	a	circuit	of	 length	 four.	Depict	 the	 four
subspaces	Ws,	WΓ,	WΓ,	 ∩	Ws,	 and	WΓ	 V	Ws	 as	 was	 done	 in	 Fig.	 6-9.
Draw	 the	 corresponding	 subgraphs.	 Have	 all	 16	 subgraphs	 of	 G	 been
accounted	for?

6-14. Repeat	Problem	6-13	for	a	complete	graph	of	four	vertices.	Find	a	basis
for	Ws	and	WΓ,.

6-15. If	a	graph	G	is	a	tree	(or	a	forest),	show	that	the	cut-set	subspace	Ws	fills
the	entire	vector	space	WG	of	graph	G.

6-16. Characterize	a	graph	for	which	the	circuit	space	contains	the	vector	(1,	1,
.	.	.	,	1).

6-17. Prove	that	the	number	of	distinct	bases	possible	in	a	cut-set	subspace	is

where	r	is	the	rank	of	the	graph.
6-18. Prove	 that	 the	 number	 of	 spanning	 trees	 in	 a	 connected	 labeled	 graph

with	nullity	p	cannot	exceed	the	number

(Hint:	 Associated	 with	 each	 spanning	 tree	 there	 is	 a	 distinct	 basis	 in
subspace	 WΓ,	 corresponding	 to	 the	 set	 of	 fundamental	 circuits.
Therefore,	there	are	at	least	as	many	distinct	bases	in	WΓ	as	the	number
of	different	spanning	trees.)

6-19. Sketch	 a	 graph	G	 that	 has	 the	 following	 vectors	 (among	 others)	 in	 its
circuit	subspace:	(0,	1,	1,	1,	1,	0,	0,	1),	(0,	1,	1,	1,	0,	1,	1,	0),	(0,	1,	0,	0,	1,
0,	1,	0),	(0,	1,	0,	0,	0,	1,	0,	1),	(1,	0,	1,	0,	1,	1,	0,	1),	(1,	0,	1,	0,	0,	0,	1,	0),
(1,	0,	0,	1,	1,	1,	1,	0),	and	(1,	0,	0,	1,	0,	0,	0,	1).

6-20. Given	 that	 a	 graph	 is	 connected	 and	 that	WΓ,	 ∩	Ws	 ≠	 0,	 investigate
further	 the	 properties	 of	 the	 subgraphs	 corresponding	 to	 the	 vectors	 in
subspaces	(a)	WΓ	∩	Ws	and	(b)	WΓ	V	Ws.



†	In	considering	vector	spaces	of	graphs,	isolated	vertices	are	of	no	consequence.	Hence	a	null	graph	of	four
vertices	is	not	distinguished	from	a	null	graph	of	100	vertices.
‡	The	 same	 symbol	⊕	 has	 been	 used	 for	 the	 ring	 sum	 of	 two	 subgraphs,	 as	well	 as	 for	 the	 vector	 sum
between	the	two	vectors	representing	the	two	subgraphs.	This	is	done	as	much	to	eliminate	an	extra	symbol
as	to	remind	the	reader	that	a	ring	sum	between	two	subgraphs	amounts	to	the	same	thing	as	vector	sum	of
the	corresponding	vectors.	There	will	be	no	occasion	for	ambiguity.
†	One	possible	solution	(out	of	infinitely	many)	that	satisfies	Eq.	(6-1)	is



7	MATRIX	REPRESENTATION	OF	GRAPHS

Although	a	pictorial	representation	of	a	graph	is	very	convenient	for	a	visual
study,	 other	 representations	 are	 better	 for	 computer	 processing,	 A	matrix	 is	 a
convenient	and	useful	way	of	representing	a	graph	to	a	computer.	Matrices	lend
themselves	easily	to	mechanical	manipulations.	Besides,	many	known	results	of
matrix	algebra	can	be	readily	applied	to	study	the	structural	properties	of	graphs
from	an	algebraic	point	of	view.	In	many	applications	of	graph	theory,	such	as	in
electrical	network	analysis	and	operations	research,	matrices	also	turn	out	to	be
the	natural	way	of	expressing	the	problem.
In	 this	 chapter	 we	 shall	 consider	 two	 most	 frequently	 used	 matrix

representations	of	a	graph.	Also	a	correspondence	between	some	graph-theoretic
properties	 and	 matrix	 properties	 will	 be	 established.	 In	 view	 of	 the	 close	 tie
between	matrices	and	vector	spaces,	this	chapter	should,	in	fact,	be	looked	upon
as	 a	 continuation	of	Chapter	6.	A	 rudimentary	knowledge	of	matrix	 algebra	 is
assumed.

7-1.	INCIDENCE	MATRIX

Let	G	be	a	graph	with	n	vertices,	e	edges,	and	no	self-loops.	Define	an	n	by	e
matrix	A	=	[aij],	whose	n	 rows	correspond	 to	 the	n	vertices	and	 the	e	columns
correspond	to	the	e	edges,	as	follows	:
The	matrix	element

aij	=	1, if	jth	edge	ej	is	incident	on	ith	vertex	vi,and

=	0, otherwise.



Fig.	7-1	Graph	and	its	incidence	matrix.

Such	a	matrix	A	is	called	the	vertex-edge	incidence	matrix,	or	simply	incidence
matrix.	Matrix	A	for	a	graph	G	is	sometimes	also	written	as	A(G).	A	graph	and
its	incidence	matrix	are	shown	in	Fig.	7-1.
The	 incidence	matrix	contains	only	 two	elements,	0	and	1.	Such	a	matrix	 is

called	a	binary	matrix	or	a	(0,	1)-matrix.	Let	us	stipulate	that	these	two	elements
are	from	Galois	field	modulo	2.†	Given	any	geometric	representation	of	a	graph
Without	self-loops,	we	can	readily	write	its	incidence	matrix.

On	the	other	hand,	if	we	are	given	an	incidence	matrix	A(G),	we	can	construct
its	 geometric	 graph	 G	 without	 ambiguity.	 The	 incidence	 matrix	 and	 the
geometric	graph	contain	the	same	information†—they	are	simply	two	alternative
ways	of	representing	the	same	(abstract)	graph.
The	following	observations	about	the	incidence	matrix	A	can	readily	be	made:



1. Since	every	edge	is	incident	on	exactly	two	vertices,	each	column	of	A	has
exactly	two	l′s.

2. The	 number	 of	 l′s	 in	 each	 row	 equals	 the	 degree	 of	 the	 corresponding
vertex.

3. A	row	with	all	0′s,	therefore,	represents	an	isolated	vertex.

4. Parallel	edges	in	a	graph	produce	identical	columns	in	its	incidence	matrix,
for	example,	columns	1	and	2	in	Fig.	7-1.

5. If	a	graph	G	is	disconnected	and	consists	of	two	components	g1	and	g2,	the
incidence	matrix	A(G)	of	graph	G	can	be	written	in	a	block-diagonal	form
as

where	A(g1)	and	A(g2)	are	the	incidence	matrices	of	components	g1	and	g2.
This	 observation	 results	 from	 the	 fact	 that	 no	 edge	 in	 g1	 is	 incident	 on
vertices	 of	 g2,	 and	 vice	 versa.	 Obviously,	 this	 remark	 is	 also	 true	 for	 a
disconnected	graph	with	any	number	of	components.

6. Permutation	 of	 any	 two	 rows	 or	 columns	 in	 an	 incidence	matrix	 simply
corresponds	 to	 relabeling	 the	 vertices	 and	 edges	 of	 the	 same	graph.	This
observation	leads	us	to	Theorem	7-1.

THEOREM	7-1

Two	graphs	G1	and	G2	are	isomorphic	if	and	only	if	their	incidence	matrices
A(G1)	and	A(G2)	differ	only	by	permutations	of	rows	and	columns.

Rank	of	the	Incidence	Matrix:	Each	row	in	an	incidence	matrix	A(G)	may	be
regarded	as	a	vector	over	GF(2)	in	the	vector	space	of	graph	G.	Let	the	vector	in
the	first	row	be	called	A,,	in	the	second	row	A2,	and	so	on.	Thus



Since	 there	 are	 exactly	 two	 1’s	 in	 every	 column	 of	 A,	 the	 sum	 of	 all	 these
vectors	 is	 0	 (this	 being	 a	 modulo	 2	 sum	 of	 the	 corresponding	 entries).	 Thus
vectors	A1,	A2,	.	.	.	,	An	are	not	linearly	independent.	Therefore,	the	rank	of	A	is
less	than	n;	that	is,	rank	A	≤	n	−	1.
Now	consider	the	sum	of	any	m	of	these	n	vectors	(m	≤	n	−	1).	If	the	graph	is

connected,	A(G)	cannot	be	partitioned,	as	in	Eq.	(7-1),	such	that	A(g1)	is	with	m
rows	and	A(g2)	with	n	−	m	rows.	In	other	words,	no	m	by	m	submatrix	of	A(G)
can	be	found,	for	m	≤	n	−	1,	such	that	the	modulo	2	sum	of	those	m	rows	is	equal
to	zero.
Since	 there	 are	only	 two	constants	 0	 and	1	 in	 this	 field,	 the	 additions	of	 all

vectors	 taken	m	 at	 a	 time	 for	m	=	1,	2,	 .	 .	 .	 ,	 n−	1	exhausts	 all	possible	 linear
combinations	 of	 n	 −	 1	 row	 vectors.	 Thus	 we	 have	 just	 shown	 that	 no	 linear
combination	 of	 m	 row	 vectors	 of	 A	 (for	 m	 ≤	 n	 −	 1)	 can	 be	 equal	 to	 zero.
Therefore,	the	rank	of	A(G)	must	be	at	least	n	−	1.
Since	the	rank	of	A(G)	is	no	more	than	n	−	1	and	is	no	less	than	n	−	1,	it	must

be	exactly	equal	to	n	−	1.	Hence	Theorem	7-2.

THEOREM	7-2

If	A(G)	 is	 an	 incidence	matrix	 of	 a	 connected	 graph	G	with	n	 vertices,	 the
rank	of	A(G)	is	n	−	1.

The	argument	leading	to	Theorem	7-2	can	be	extended	to	prove	that	the	rank
of	A(G)	is	n	−	k,	if	G	is	a	disconnected	graph	with	n	vertices	and	k	components
(Problem	7-3).	This	is	the	reason	why	the	number	n	−	k	has	been	called	the	rank
of	a	graph	with	k	components.
If	we	remove	any	one	row	from	the	incidence	matrix	of	a	connected	graph,	the

remaining	(n	−	1)	by	e	submatrix	is	of	rank	n	−	1	(Theorem	7-2).	In	other	words,
the	remaining	n	−	1	row	vectors	are	linearly	independent.	Thus	we	need	only	n	−
1	rows	of	an	incidence	matrix	to	specify	the	corresponding	graph	completely,	for
n	−	1	rows	contain	the	same	amount	of	information	as	the	entire	matrix.	(This	is
obvious,	 since	 given	 n	 −	 1	 rows	 we	 can	 easily	 reconstitute	 the	 missing	 row,
because	each	column	in	the	matrix	has	exactly	two	1’s.)
Such	an	(n	−	1)	by	e	submatrix	Af	of	A	is	called	a	reduced	incidence	matrix.

The	vertex	corresponding	to	the	deleted	row	in	Af	is	called	the	reference	vertex.
Clearly,	any	vertex	of	a	connected	graph	can	be	made	the	reference	vertex.
Since	a	tree	is	a	connected	graph	with	n	vertices	and	n	−	1	edges,	its	reduced

incidence	matrix	is	a	square	matrix	of	order	and	rank	n	−	1.	In	other	words,



COROLLARY

The	reduced	incidence	matrix	of	a	tree	is	nonsingular.

A	graph	with	n	vertices	and	n	−	1	edges	that	is	not	a	tree	is	disconnected.	The
rank	of	the	incidence	matrix	of	such	a	graph	will	be	less	than	n	−	1.	Therefore,
the	 (n	 −	 1)	 by	 (n	 −	 1)	 reduced	 incidence	matrix	 of	 such	 a	 graph	 will	 not	 be
nonsingular.	 In	 other	 words,	 the	 reduced	 incidence	 matrix	 of	 a	 graph	 is
nonsingular	if	and	only	if	the	graph	is	a	tree.

7-2.	SUBMATRICES	OF	A(G)

Let	g	 be	 a	 subgraph	 of	 a	 graph	G,	 and	 let	A(g)	 and	A(G)	 be	 the	 incidence
matrices	of	g	and	G,	respectively.	Clearly,	A(g)	is	a	submatrix	of	A(G)	(possibly
with	 rows	or	columns	permuted).	 In	 fact,	 there	 is	a	one-to-one	correspondence
between	 each	n	 by	 k	 submatrix	 of	A(G)	 and	 a	 subgraph	 of	G	with	 k	 edges,	 k
being	any	positive	integer	less	than	e	and	n	being	the	number	of	vertices	in	G.
Submatrices	 of	 A(G)	 corresponding	 to	 special	 types	 of	 subgraphs,	 such	 as

circuits,	 spanning	 trees,	 or	 cut-sets	 in	 G,	 will	 undoubtedly	 exhibit	 special
properties.	Theorem	7-3	gives	one	such	property.

THEOREM	7-3

Let	A(G)	be	an	incidence	matrix	of	a	connected	graph	G	with	n	vertices.	An
(n	−	1)	by	(n	−	1)	submatrix	of	A(G)	is	nonsingular	if	and	only	if	the	n	−	1	edges
corresponding	to	the	n	−	1	columns	of	this	matrix	constitute	a	spanning	tree	in	G.

Proof:	Every	square	submatrix	of	order	n	−	1	in	A(G)	is	the	reduced	incidence
matrix	of	 the	 same	 subgraph	 in	G	with	n	−	1	 edges,	 and	vice	versa.	From	 the
remarks	 following	Theorem	7-2,	 it	 is	 clear	 that	 a	 square	 submatrix	 of	A(G)	 is
nonsingular	if	and	only	if	the	corresponding	subgraph	is	a	tree.	The	tree	in	this
case	 is	 a	 spanning	 tree,	because	 it	 contains	n	−	1	 edges	of	 the	n-vertex	graph.
Thus	the	theorem.	

7-3.	CIRCUIT	MATRIX

Let	the	number	of	different	circuits	in	a	graph	G	be	q	and	the	number	of	edges



in	G	be	e.	Then	a	circuit	matrix	B	=	[bij]	of	G	is	a	q	by	e,	(0,	1)-matrix	defined	as
follows:

bij	=	1, if	ith	circuit	includes	jth	edge,	and
=	0, otherwise.

To	emphasize	 the	 fact	 that	B	 is	 a	 circuit	matrix	of	graph	G,	 the	 circuit	matrix
may	also	be	written	as	B(G).
The	graph	in	Fig.	7-1(a)	has	four	different	circuits,	{a,	b},	{c,	e,	g},	{d,	f,	g},

and	{c,	d,	f,	e}.	Therefore,	its	circuit	matrix	is	a	4	by	8,	(0,	l)-matrix	as	shown:

The	 following	 observations	 can	 be	 made	 about	 a	 circuit	 matrix	 B(G)	 of	 a
graph	G:

1. A	column	of	all	zeros	corresponds	to	a	noncircuit	edge	(i.e.,	an	edge	that
does	not	belong	to	any	circuit).

2. Each	row	of	B(G)	is	a	circuit	vector.

3. Unlike	 the	 incidence	matrix,	 a	 circuit	matrix	 is	 capable	of	 representing	 a
self-loop—the	corresponding	row	will	have	a	single	1.

4. The	 number	 of	 1’s	 in	 a	 row	 is	 equal	 to	 the	 number	 of	 edges	 in	 the
corresponding	circuit.

5. If	 graph	G	 is	 separable	 (or	 disconnected)	 and	 consists	 of	 two	 blocks	 (or
components)	g1	and	g2,	the	circuit	matrix	B(G)	can	be	written	in	a	block-
diagonal	form	as

where	 B(g1)	 and	 B(g2)	 are	 the	 circuit	 matrices	 of	 g1	 and	 g2.	 This
observation	results	from	the	fact	that	circuits	in	g1	have	no	edges	belonging
to	g2,	and	vice	versa	(Problem	4-14).

6. Permutation	 of	 any	 two	 rows	 or	 columns	 in	 a	 circuit	 matrix	 simply



corresponds	to	relabeling	the	circuits	and	edges.

7. Two	graphs	G1	and	G2	will	have	the	same	circuit	matrix	if	and	only	if	G1
and	 G2	 are	 2-isomorphic	 (Theorem	 4-15).	 In	 other	 words,	 (unlike	 an
incidence	matrix)	the	circuit	matrix	does	not	specify	a	graph	completely.	It
only	 specifies	 the	 graph	 within	 2-isomorphism.	 For	 instance,	 it	 can	 be
easily	verified	that	the	two	graphs	in	Figs.	4-11	(a)	and	(d)	have	the	same
circuit	matrix,	yet	the	graphs	are	not	isomorphic.

An	important	theorem	relating	the	incidence	matrix	and	the	circuit	matrix	of	a
self-loop-free	graph	G	is

THEOREM	7-4

Let	B	and	A	be,	respectively,	the	circuit	matrix	and	the	incidence	matrix	(of	a
self-loop-free	graph)	whose	columns	are	arranged	using	the	same	order	of	edges.
Then	every	row	of	B	is	orthogonal	to	every	row	A;	that	is,

where	superscript	T	denotes	the	transposed	matrix.

Proof:	Consider	a	vertex	v	and	a	circuit	Γ	in	the	graph	G.	Either	v	is	in	Γ	or	it
is	not.	If	v	is	not	in	Γ,	there	is	no	edge	in	the	circuit	Γ	that	is	incident	on	v.	On
the	other	hand,	 if	v	 is	 in	Γ,	 the	number	of	 those	edges	 in	 the	circuit	Γ	 that	are
incident	on	v	is	exactly	two.
With	 this	 remark	 in	mind,	 consider	 the	 ith	 row	 in	A	 and	 the	 jth	 row	 in	 B.

Since	 the	 edges	 are	 arranged	 in	 the	 same	 order,	 the	 nonzero	 entries	 in	 the
corresponding	positions	occur	only	 if	 the	particular	 edge	 is	 incident	 on	 the	 ith
vertex	and	is	also	in	the	jth	circuit.
If	the	ith	vertex	is	not	in	the	jth	circuit,	there	is	no	such	nonzero	entry,	and	the

dot	product	of	the	two	rows	is	zero.	If	the	ith	vertex	is	in	the	jth	circuit,	there	will
be	exactly	two	1’s	in	the	sum	of	the	products	of	individual	entries.	Since	1	+	1	=
0	(mod	2),	the	dot	product	of	the	two	arbitrary	rows−one	from	A	and	the	other
from	B−is	zero.	Hence	the	theorem.	

As	an	example,	let	us	multiply	the	incidence	matrix	and	transposed	circuit	of
the	graph	in	Fig.	7-1(a),	after	making	sure	that	the	edges	are	in	the	same	order	in
both.



7-4.	FUNDAMENTAL	CIRCUIT	MATRIX	AND	RANK	OF	B

A	set	of	fundamental	circuits	(or	basic	circuits)	with	respect	to	any	spanning
tree	 in	 a	 connected	 graph,	 as	 discussed	 in	 Chapters	 3	 and	 6,	 are	 the	 only
independent	circuits	in	a	graph.	The	rest	of	the	circuits	can	be	obtained	as	ring
sums	(i.e.,	linear	combinations)	of	these	circuits.	Thus,	in	a	circuit	matrix,	if	we
retain	 only	 those	 rows	 that	 correspond	 to	 a	 set	 of	 fundamental	 circuits	 and
remove	all	other	rows,	we	would	not	lose	any	information.	The	remaining	rows
can	 be	 reconstituted	 from	 the	 rows	 corresponding	 to	 the	 set	 of	 fundamental
circuits.	For	example,	in	the	circuit	matrix	in	Eq.	(7-3),	the	fourth	row	is	simply
the	mod	2	sum	of	the	second	and	third	rows.
A	 submatrix	 (of	 a	 circuit	 matrix)	 in	 which	 all	 rows	 correspond	 to	 a	 set	 of

fundamental	 circuits	 is	 called	a	 fundamental	circuit	matrix	Bf.	A	graph	and	 its
fundamental	 circuit	matrix	with	 respect	 to	 a	 spanning	 tree	 (indicated	by	heavy
lines)	are	shown	in	Fig.	7-2.
As	 in	 matrices	 A	 and	 B,	 permutations	 of	 rows	 (and/or	 of	 columns)	 do	 not

affect	Bf.	If	n	is	the	number	of	vertices	and	e	the	number	of	edges	in	a	connected
graph,	then	Bf	is	an	(e	−	n	+	1)	by	e	matrix,	because	the	number	of	fundamental
circuits	is	e	−	n	+	1,	each	fundamental	circuit	being	produced	by	one	chord.



Let	us	arrange	the	columns	in	Bf	such	that	all	the	e	−	n	+	1	chords	correspond
to	the	first	e	−	n	+	1	columns.	Furthermore,	let	us	rearrange	the	rows	such	that
the	 first	 row	 corresponds	 to	 the	 fundamental	 circuit	made	 by	 the	 chord	 in	 the
first	column,	the	second	row	to	the	fundamental	circuit	made	by	the	second,	and
so	on.	This	 indeed	is	how	the	fundamental	circuit	matrix	 is	arranged	in	Fig.	7-
2(b).

Fig.	7-2	Graph	and	its	fundamental	circuit	matrix	(with	respect	to	the	spanning	tree	shown	in	heavy	lines).

A	matrix	Bf	thus	arranged	can	be	written	as

where	Iµ	is	an	identity	matrix	of	order	µ	=	e	−	n	+	1,	and	Bt	is	the	remaining	µ	by
(n	−	1)	submatrix,	corresponding	to	the	branches	of	the	spanning	tree.
From	Eq.	(7-5)	it	is	clear	that	the

rank	of	Bf	=	µ	=	e	−	n	+	1.

Since	Bf	is	a	submatrix	of	the	circuit	matrix	B,	the

rank	of	B	≥	e	−	n	+	1.

In	fact,	we	can	prove	Theorem	7-5.



THEOREM	7-5

If	B	is	a	circuit	matrix	of	a	connected	graph	G	with	e	edges	and	n	vertices,

rank	of	B	=	e	−	n	+	1.

Proof:	If	A	is	an	incidence	matrix	of	G,	from	Eq.	(7-4)	we	have

A.BT	=	0	(mod	2).

Therefore,	according	to	Sylvester′s	theorem	(Appendix	B),

rank	of	A	+	rank	of	B	≤	e;

that	is,

rank	of	B	≤	e	−	rank	of	A.

Since rank	of	A	=	n	−	1

we	have	 rank	of	B	≤	e	−	n	+	1.

But	 rank	of	B	≥	e	−	n	+	1.

Therefore,	we	must	have

rank	of	B	=	e	−	n	+	1.	

An	 Alternative	 Proof:	 Theorem	 7-5	 can	 also	 be	 proved	 by	 considering	 the
circuit	subspace	WΓ	in	the	vector	space	WG	of	a	graph,	as	discussed	in	Chapter	6.
Every	 row	 in	 circuit	matrix	 B	 is	 a	 vector	 in	WΓ	 and	 since	 the	 rank	 of	 any

matrix	is	equal	 to	the	number	of	 linearly	independent	rows	(or	columns)	in	the
matrix,	we	have.

rank	of	matrix	B	=	number	of	linearly	independent	rows	in	B;

but	 the	 number	 of	 linearly	 independent	 rows	 in	 B	 ≤	 number	 of	 linearly
independent	vectors	in	WΓ,	and	the	number	of	linearly	independent	vectors	in	WΓ
=	 dimension	 of	WΓ	 =	µ.	 Therefore,	 rank	 of	B	 ≤	 e	 −	n	 +	 1.	 Since	we	 already
showed	that	rank	of	B	≥	e	−	n	+	1,	Theorem	7-5	follows.	



Note	that	 in	talking	of	spanning	trees	of	a	graph	G	 it	 is	necessary	to	assume
that	G	 is	 connected.	 In	 the	 case	 of	 a	 disconnected	 graph,	 we	 would	 have	 to
consider	a	spanning	forest	and	fundamental	circuits	with	respect	to	this	forest.	It
is	 not	 difficult	 to	 show	 (considering	 component	 by	 component)	 that	 if	G	 is	 a
disconnected	graph	with	k	components,	e	edges,	and	n	vertices,

rank	of	B	=	µ	=	e	−	n	+	k.

7-5.	APPLICATION	TO	A	SWITCHING	NETWORK

Suppose	you	are	given	a	box	that	contains	a	switching	network	consisting	of
eight	switches	a,	b,	c,	d,	e,	f,	g,	and	h.	The	switches	can	be	turned	on	or	off	from
outside.	You	are	asked	to	determine	how	the	switches	are	connected	inside	the
box,	without	opening	the	box,	of	course.
One	way	to	find	the	answer	is	to	connect	a	lamp	at	the	available	terminals	in

series	with	a	battery	and	an	additional	switch	k,	as	shown	in	Fig.	7-3.	And	then
find	out	which	of	the	various	combinations	light	up	the	lamp.

Fig.	7-3	Black	box	with	a	switching	network.

In	 this	 experiment,	 suppose	 you	discover	 that	 the	 combinations	 that	 turn	 on
the	lamp	are	eight:

(a,	b,	f,	h,	k),	(a,	b,	g,	k),	(a,	e,	f,	g,	k),	(a,	e,	h,	k),	(b,	c,	e,	h,	k),	(c,	f,	h,	k),	(c,	g,	k),	(d,	k).

Solution:	Consider	 the	 switching	 network	 as	 a	 graph	whose	 edges	 represent
switches.	We	can	assume	that	the	graph	is	connected,	and	has	no	self-loop.	Since
a	lit	lamp	implies	the	formation	of	a	circuit,	we	can	regard	the	preceding	list	as	a
partial	list	of	circuits	in	the	corresponding	graph.	With	this	list	we	form	a	circuit
matrix	:



Next,	 to	 simplify	 the	 matrix,	 we	 should	 remove	 the	 obviously	 redundant
circuits.	 Observe	 that	 the	 following	 ring	 sums	 of	 circuits	 give	 rise	 to	 other
circuits	:

(a,	b,	g,	k)	⊕	(c,	f,	h,	k)	⊕	(c,	g,	k)	=	(a,	b,	h,	k),
(a,	b,	g,	k)	⊕	(a,	e,	h,	k)	⊕	(c,	g,	k)	=	(b,	c,	e,	h,	k),
(a,	e,	h,	k)	⊕	(c,	f,	a,	k)	⊕	(c,	g,	k)	=	(a,	e,	f,	g,	k).

Therefore,	we	can	delete	 the	first,	 third,	and	fifth	rows	from	matrix	B,	without
any	loss	of	information.	Remaining	is	a	5	by	9	matrix	B1:

Our	 next	 goal	 is	 to	 bring	 matrix	 B1	 to	 the	 form	 of	 Eq.	 (7-5).	 For	 this	 we
interchange	columns	to	get	B2:



Adding	the	fourth	row	in	B2	to	the	first,	we	get	B3.

We	 note	 that	 there	 are	 no	 redundant	 circuits	 in	 matrix	 B3,	 and	 B3	 is	 a
fundamental	 circuit	matrix	 of	 the	 required	graph.	Since	 the	 rank	of	B3	 is	 five,
and	 the	 network	 was	 assumed	 to	 be	 connected,	 we	 have	 the	 following
information	about	the	graph:

number	of	edges	e	=	9,
nullity	µ	=	5,
rank	r	=	4,

number	of	vertices	n	=	5.

Constructing	a	graph	 from	 its	 incidence	matrix	 is	 simple,	but	 constructing	a
graph	 from	 its	 fundamental	 circuit	 matrix	 is	 difficult.	 We	 shall,	 therefore,
construct	an	incidence	matrix	from	B3.
Since	 the	 rows	 in	 the	 incidence	 matrix	 are	 orthogonal	 to	 those	 in	 B3—

according	to	Eq.	(7-4)—we	must	first	 look	for	a	4	by	9	matrix	M,	whose	rows
are	linearly	independent	and	are	orthogonal	to	those	of	B3.
Since,

B3	=	[I5	¦	F],



an	orthogonal	matrix	to	B3	is

M	=	[—FT	¦	I4]
=	[FT	¦	I4],

because	in	mod	2	arithmetic	−1	=	1,	[i.e.,	in	GF(2)	the	additive	inverse	of	1	is	1].
Thus

Clearly,	the	rank	of	M	is	four,	and	it	is	easy	to	check	that

B3	·	MT	=	0.
Before	M	can	be	regarded	as	a	reduced	incidence	matrix,	it	must	have	at	most

two	1′s	in	each	column.	This	can	be	achieved	by	adding	(mod	2)	the	third	row	to
the	fourth	in	M,	which	gives	us	M′.

Matrix	M′	 is	 the	 reduced	 incidence	matrix.	 The	 incidence	matrix	A	 can	 be
obtained	by	adding	a	fifth	row	to	M′	such	that	there	are	exactly	two	1′	in	every
column;	that	is,



From	the	incidence	matrix	A	we	can	readily	construct	the	graph	and	hence	the
corresponding	switching	network,	as	shown	in	Fig.	7-4.

Fig.	7-4	Graph	and	the	corresponding	switching	network.



7-6.	CUT-SET	MATRIX

Analogous	to	a	circuit	matrix,	we	can	define	a	cut-set	matrix	C	=	[cij]	in	which
the	rows	correspond	to	the	cut-sets	and	the	columns	to	the	edges	of	the	graph,	as
follows:

cij	=	1, if	ith	cut-set	contains	jth	edge,	and
=	0, otherwise.

For	example,	a	graph	and	its	cut-set	matrix	are	shown	in	Fig.	7-5.
The	following	remarks	may	be	made	about	a	cut-set	matrix	C(G)	of	a	graph

G.

1. As	in	the	case	of	the	incidence	matrix,	a	permutation	of	rows	or	columns	in
a	 cut-set	 matrix	 corresponds	 simply	 to	 a	 renaming	 of	 the	 cut-sets	 and
edges,	respectively.

2. Each	row	in	C(G)	is	a	cut-set	vector.

3. A	column	with	all	0’s	corresponds	to	an	edge	forming	a	self-loop.

4. Parallel	 edges	 produce	 identical	 columns	 in	 the	 cut-set	matrix	 (e.g.,	 first
two	columns	in	Fig.	7-5).

5. In	a	nonseparable	graph,	every	set	of	edges	incident	on	a	vertex	is	a	cut-set
(Problem	4-8).	Therefore,	every	row	of	incidence	matrix	A(G)	is	included
as	 a	 row	 in	 the	 cut-set	 matrix	 C(G).	 In	 other	 words,	 for	 a	 nonseparable
graph	G,	C(G)	contains	A(G).	For	a	separable	graph,	the	incidence	matrix
of	each	block	is	contained	in	the	cut-set	matrix.	For	example,	the	incidence
matrix	of	the	block	{c,	d,	e,	f,	g}	in	Fig.	7-5	is	the	4	by	5	submatrix	of	C
left	after	deleting	rows	a,	b,	and	h	and	columns	1,	2,	5,	and	8.

6. In	view	of	observation	5,

rank	of	C(G)	≥	rank	of	A(G).
Hence,	for	a	connected	graph	of	n	vertices,

7. Since	 the	 number	 of	 edges	 common	 to	 a	 cut-set	 and	 a	 circuit	 is	 always
even,	every	row	in	C	is	orthogonal	to	every	row	in	B,	provided	the	edges	in
both	B	and	C	are	arranged	in	the	same	order.	In	other	words,



Fig.	7-5	Graph	and	its	cut-set	matrix.

On	applying	Sylvester’s	theorem	to	Eq.	(7-7),

rank	of	B	+	rank	of	C	≤	e.

and	since	for	a	connected	graph

rank	of	B	=	e	−	n	+	1



Combining	Eqs.	(7-6)	and	(7-8),

rank	of	C	=	n	−	1.

Thus	we	have	the	following	important	theorem	for	a	connected	graph	G.

THEOREM	7-6

The	rank	of	cut-set	matrix	C(G)	 is	equal	 to	 the	 rank	of	 the	 incidence	matrix
A(G),	which	equals	the	rank	of	graph	G.

As	 in	 the	 case	 of	 the	 circuit	 matrix,	 the	 cut-set	 matrix	 generally	 has	 many
redundant	 (or	 linearly	 dependent)	 rows.	Therefore,	 it	 is	 convenient	 to	 define	 a
fundamental	cut-set	matrix,	Cf,	as	follows:
A	fundamental	cut-set	matrix	Cf	(of	a	connected	graph	G	with	e	edges	and	n

vertices)	is	an	(n	−	1)	by	e	submatrix	of	C	such	that	the	rows	correspond	to	the
set	of	fundamental	cut-sets	with	respect	to	some	spanning	tree.
As	in	the	case	of	a	fundamental	circuit	matrix,	a	fundamental	cut-set	matrix	Cf

can	also	be	partitioned	into	two	submatrices,	one	of	which	is	an	identity	matrix
In−1,	of	order	n	−	1.	That	is,

where	the	last	n	−	1	columns	forming	the	identity	matrix	correspond	to	the	n	−	1
branches	 of	 the	 spanning	 tree,	 and	 the	 first	 e	 −	 n	 +	 1	 columns	 forming	 Cc
correspond	to	the	chords.
A	 connected	 graph	 and	 a	 fundamental	 cut-set	 matrix	 with	 respect	 to	 a

spanning	tree	(shown	in	heavy	lines)	are	given	in	Fig.	7-6.
Again	note	 that	 in	 talking	of	cut-set	matrices	we	have	confined	ourselves	 to

connected	 graphs	 only.	 This	 treatment	 can	 be	 generalized	 to	 include
disconnected	graphs	by	considering	one	component	at	a	time.

7-7.	RELATIONSHIPS	AMONG	Af,	Bf,	AND	Cf

In	this	section	we	shall	explore	the	relationships	among	the	reduced	incidence
matrix	Af,	the	fundamental	circuit	matrix	Bf,	and	the	fundamental	cut-set	matrix
Cf	of	a	connected	graph.
It	has	been	shown	that



where	 subscript	 t	 denotes	 the	 submatrix	 corresponding	 to	 the	 branches	 of	 a
spanning	 tree,	 and	 subscript	 c	 denotes	 the	 submatrix	 corresponding	 to	 the
chords.
Let	the	spanning	tree	T	in	Eqs.	(7-5)	and	(7-9)	be	the	same,	and	let	the	order

of	 the	 edges	 in	 both	 equations	 be	 the	 same.	 Furthermore,	 in	 the	 reduced
incidence	matrix	Af	−	of	size	(n	−	1)	by	e	−	let	the	edges	(i.e.,	the	columns)	be
arranged	in	the	same	order	as	in	Bf	and	Cf.	Partition	Af	into	two	submatrices:

Fig.	7-6	Spanning	tree	in	a	graph	and	the	corresponding	fundamental	cut-set	matrix.

where	A,	 consists	 of	 the	n	 −	 1	 columns	 corresponding	 to	 the	 branches	 of	 the
spanning	tree	T,	and	Ac	is	the	remaining	submatrix	corresponding	to	the	e	−	n	+
1	chords.



Since	the	columns	in	Af	and	Bf	are	arranged	in	the	same	order,	from	Eq.	(7-4)
we	have	(in	mod	2	arithmetic)

Since	At	is	nonsingular,	its	inverse	 	exists.	Premultiplying	both	sides	of	Eq.
(7-11)	by	 ,	we	get

Since	in	mod	2	arithmetic	−1	=	1,

Similarly,	 since	 the	 columns	 in	 Bf	 and	 Cf	 are	 arranged	 in	 the	 same	 order,
according	to	Eq.	(7-4),	we	have	(in	mod	2	arithmetic)

For	example,	let	us	look	at	the	following	three	matrices	for	the	graph	used	in
Figs.	7-1,	7-5,	and	7-6.	Using	{a,	e,f,	g,	h}	as	the	spanning	tree,	and	dropping	the
sixth	row	from	matrix	A	in	Fig.	7-1	to	get	Af,	we	have



	is	immediate.	It	can	also	be	readily	verified	that

This	leads	to	three	conclusions	:

1. Given	 A	 or	 Af,	 we	 can	 readily	 construct	 Bf	 and	 Cf,	 starting	 from	 an
arbitrary	spanning	tree	and	its	subgraph	A,	in	Af.

2. Given	either	Bf	or	Cf,	we	can	construct	the	other.	Thus	since	Bf	determines
a	graph	within	2-isomorphism,	so	does	Cf.

3. Given	either	Bf	or	Cf,	Af	in	general	cannot	be	determined	completely.

7-8.	PATH	MATRIX



Another	 (0,	 l)-matrix	 often	 convenient	 to	 use	 in	 communication	 and
transportation	networks	is	the	path	matrix,	A	path	matrix	is	defined	for	a	specific
pair	of	vertices	in	a	graph,	say	(x,	y),	and	is	written	as	P(x,y).	The	rows	in	P(x,	y)
correspond	 to	 different	 paths	 between	 vertices	 x	 and	 y,	 and	 the	 columns
correspond	to	the	edges	in	G.	That	is,	the	path	matrix	for	(x,	y)	vertices	is	P(x,	y)
=	[pij],	where

pij	=	1, if	jth	edge	lies	in	ith	path,	and
=	0, otherwise.

As	an	 illustration,	 consider	 all	 paths	between	vertices	v3	 and	v4	 in	Fig.	 7-1(a).
There	are	three	different	paths;	{h,	e},	{h,	g,	c},	and	{h,	f,	d,	c}.	Let	us	number
them	1,	2,	and	3,	respectively.	Then	we	get	the	3	by	8	path	matrix	P(v3,	v4):

Some	of	the	observations	one	can	make	at	once	about	a	path	matrix	P(x,	y)	of
a	graph	G	are

1. A	column	of	 all	0’s	 corresponds	 to	an	edge	 that	does	not	 lie	 in	 any	path
between	x	and	y.

2. A	column	of	all	1’s	corresponds	to	an	edge	that	lies	in	every	path	between
x	and	y.

3. There	is	no	row	with	all	0’s.

4. The	 ring	 sum	 of	 any	 two	 rows	 in	 P(x,	 y)	 corresponds	 to	 a	 circuit	 or	 an
edge-disjoint	union	of	circuits.

THEOREM	7-7

If	 the	 edges	 of	 a	 connected	 graph	 are	 arranged	 in	 the	 same	 order	 for	 the
columns	of	the	incidence	matrix	A	and	the	path	matrix	P(x,	y),	then	the	product
(mod	2)

A·PT(x,	y)	=	M,



where	the	matrix	M	has	l′s	in	two	rows	x	and	y,	and	the	rest	of	the	n	−	2	rows	are
all	0’s.

Proof:	The	proof	is	left	as	an	exercise	for	the	reader	(Problem	7-14).

As	 an	 example,	multiply	 the	 incidence	matrix	 in	 Fig.	 7-1	 to	 the	 transposed
P(v3,	v4),	just	discussed.

Other	properties	of	the	path	matrix,	such	as	the	rank,	are	left	for	the	reader	to
investigate	 on	 his	 own.	 It	 should	 be	 noted	 that	 a	 path	 matrix	 contains	 less
information	about	the	graph	in	general	than	any	of	the	matrices	A,	B,	or	C	does.

7-9.	ADJACENCY	MATRIX

As	an	alternative	to	the	incidence	matrix,	it	is	sometimes	more	convenient	to
represent	a	graph	by	 its	adjacency	matrix	or	connection	matrix.	The	adjacency
matrix	of	a	graph	G	with	n	vertices	and	no	parallel	edges	is	an	n	by	n	symmetric
binary	matrix	X	=	[xij]	defined	over	the	ring	of	integers	such	that

xij	=	1, if	there	is	an	edge	between	ith	and	jth	vertices,	and



=	0, if	there	is	no	edge	between	them.

Fig.	7-7	Simple	graph	and	its	adjacency	matrix.

A	simple	graph	and	its	adjacency	matrix	are	shown	in	Fig.	7-7.
Observations	that	can	be	made	immediately	about	the	adjacency	matrix	X	of	a

graph	G	are

1. The	entries	along	the	principal	diagonal	of	X	are	all	0′s	 if	and	only	if	 the
graph	has	no	self-loops.	A	self-loop	at	the	ith	vertex	corresponds	to	xij	=	1.



2. The	definition	of	adjacency	matrix	makes	no	provision	for	parallel	edges.
This	is	why	the	adjacency	matrix	X	was	defined	for	graphs	without	parallel
edges.†

3. If	the	graph	has	no	self-loops	(and	no	parallel	edges,	of	course),	the	degree
of	a	vertex	equals	the	number	of	1′s	in	the	corresponding	row	or	column	of
X.

4. Permutations	of	rows	and	of	 the	corresponding	columns	imply	reordering
the	vertices.	It	must	be	noted,	however,	that	the	rows	and	columns	must	be
arranged	 in	 the	 same	order.	Thus,	 if	 two	 rows	are	 interchanged	 in	X,	 the
corresponding	columns	must	also	be	 interchanged.	Hence	 two	graphs	G1,
and	G2	with	no	parallel	edges	are	isomorphic	if	and	only	if	their	adjacency
matrices	X(Gt)	and	X(G2)	are	related:

X(G2)	=	R−1	·	X(G1)·R,
where	R	is	a	permutation	matrix.

5. A	graph	G	is	disconnected	and	is	in	two	components	g1	and	g2	if	and	only
if	its	adjacency	matrix	X(G)	can	be	partitioned	as

where	X(g1)	is	the	adjacency	matrix	of	the	component	g1	and	X(g2)	is	that
of	the	component	g2.
This	 partitioning	 clearly	 implies	 that	 there	 exists	 no	 edge	 joining	 any
vertex	in	subgraph	g1	to	any	vertex	in	subgraph	g2.

6. Given	any	square,	symmetric,	binary	matrix	Q	of	order	n,	one	can	always
construct	a	graph	G	of	n	vertices	(and	no	parallel	edges)	such	that	Q	is	the
adjacency	matrix	of	G.

Powers	 of	 X:	 Let	 us	 multiply	 by	 itself	 the	 6	 by	 6	 adjacency	 matrix	 of	 the
simple	 graph	 in	 Fig.	 7-7.	 The	 result,	 another	 6	 by	 6	 symmetric	matrix	 X2,	 is
shown	 below	 (note	 that	 this	 is	 ordinary	 matrix	 multiplication	 in	 the	 ring	 of
integers	and	not	mod	2	multiplication)	:



The	value	of	an	off-diagonal	entry	in	X2,	that	is,	ijth	entry	(i	8800;	j)	in	X2,
= number	of	1′s	in	the	dot	product	of	ith	row	and	jth	column	(or	jth	row)	of
X.

= number	of	positions	in	which	both	ith	and	jth	rows	of	X	have	1′s.
= number	of	vertices	that	are	adjacent	to	both	ith	and	jth	vertices.
= number	of	different	paths	of	length	two	between	ith	and	jth	vertices.

Similarly,	the	ith	diagonal	entry	in	X2	is	the	number	of	1‛s	in	the	ith	row	(or
column)	 of	matrix	X.	 Thus	 the	 value	 of	 each	 diagonal	 entry	 in	X2	 equals	 the
degree	of	the	corresponding	vertex,	if	the	graph	has	no	self-loops.
Since	a	matrix	commutes	with	matrices	that	are	its	own	power,

X·X2	=	X2·X	=	X3.

And	since	the	product	of	two	square	symmetric	matrices	that	commute	is	also	a
symmetric	matrix,	X3	is	a	symmetric	matrix.	(Again	note	that	this	is	an	ordinary
product	and	not	mod	2.)
The	matrix	X3	for	the	graph	of	Fig.	7-7	is



Let	us	now	consider	the	ijth	entry	of	X3.

ijth	entry	of	X3	=	dot	product	of	ith	row	X2	and	jth	column	(or	row)	of	X.
=	 	ikth	entry	of	X2·kjth	entry	of	X.
=	 	number	all	different	edge	squences	of	three	edges	from	ith

jth	vertex	via	kth	vertex.
=	number	of	different	edge	sequences†	of	three	edges	between

ith	and	jth	vertices.

For	example,	consider	how	the	1,5th	entry	on	X3	for	the	graph	of	Fig.	7-7	is
formed.	It	is	given	by	the	dot	product

row	1	of	X2	·	row	5	of	X	=	(3,	1,	0,	3,	1,	0)·(l,	1,	0,	1,	0,	0)

=	3	+	1	+	0	+	3	+	0	+	0	=	7.

These	seven	different	edge	sequences	of	three	edges	between	v1	and	v5	are

{e1,	e1,	e2}	{e2,	e2,	e2}	{e6,	e6,	e2}	{e2,	e3,	e3}
{e6,	e5,	e7}	{e2,	e5,	e5}	{e1,	e4,	e5}

Clearly	this	list	includes	all	the	paths	of	length	three	between	v1	and	v5,	that	is,
{e6,	e7,	e5}	and	{el,	e4,	e5}.
It	is	left	as	an	exercise	for	the	reader	to	show	(Problem	7-19)	that	the	nth	entry

in	X3	equals	twice	the	number	of	different	circuits	of	length	three	(i.e.,	triangles)
in	the	graph	passing	through	the	corresponding	vertex	vi.
The	general	result	that	includes	the	properties	of	X,	X2,	and	X3	discussed	so



far	is	expressed	in	Theorem	7-8.

THEOREM	7-8

Let	X	be	the	adjacency	matrix	of	a	simple	graph	G.	Then	the	ijth	entry	in	Xris
the	number	of	different	edge	sequences	of	r	edges	between	vertices	vi	and	vj.

Proof:	The	 theorem	holds	 for	r	=	1,	 and	 it	has	been	proved	 for	r	=	2	and	3
also.	It	can	be	proved	for	any	positive	integer	r,	by	induction.
In	other	words,	assume	that	it	holds	for	r	−	1,	and	then	evaluate	the	ijth	entry

in	X,	with	the	help	of	the	relation

Xr	=	Xr−1	·	X,
as	was	done	for	X3.

The	rest	of	the	proof	is	left	as	an	exercise	(Problem	7-17).

COROLLARY	A

In	a	connected	graph,	the	distance	between	two	vertices	vi	and	vj	(for	i	≠	j)	is
k,	if	and	only	if	h	is	the	smallest	integer	for	which	the	ijth	entry	in	xk	is	nonzero.
This	is	a	useful	result	in	determining	the	distances	between	different	pairs	of

vertices.

COROLLARY	B
If	X	is	the	adjacency	matrix	of	a	graph	G	with	n	vertices,	and

Y	=	X	+	X2	+	X3	+	.	.	.	+	Xn-1, (in	the	ring	of	integers),

then	G	 is	disconnected	if	and	only	if	there	exists	at	least	one	entry	in	matrix	Y
that	is	zero.

Relationship	Between	A(G)	and	X(G):	Recall	 that	 if	 a	 graph	G	 has	no	 self-
loops,	its	incidence	matrix	A(G)	contains	all	the	information	about	G.	Likewise,
if	G	has	no	parallel	edges,	its	adjacency	matrix	X(G)	contains	all	the	information
about	G.	Therefore,	if	a	graph	G	has	neither	self-loops	nor	parallel	edges	(i.e.,	G
is	a	simple	graph),	both	A(G)	and	X(G)	contain	the	entire	information.	Thus	it	is
natural	to	expect	that	either	matrix	can	be	obtained	directly	from	the	other,	in	the
case	of	a	simple	graph.	This	relationship	is	given	in	Problem	7-23.



SUMMARY

The	 theory	of	matrices	has	been	brought	 to	bear	upon	 the	 theory	of	graphs.
The	 use	 of	 matrices	 in	 studying	 graphs	 has	 been	 amply	 demonstrated	 in	 this
chapter.
We	 have	 seen	 that	 there	 are	 several	matrices	which	 can	 be	 associated	with

graphs.	 Two	 of	 these,	 the	 incidence	 matrix	 A	 and	 the	 adjacency	 matrix	 X,
describe	a	simple	graph	completely,	that	is,	up	to	isomorphism.	Two	others,	the
circuit	matrix	B	and	the	cut-set	matrix	C,	display	some	important	features	of	the
graph	and	describe	the	graph	only	within	2-isomorphism.	The	path	matrix	P(x,	y)
contains	even	less	information	than	B	or	C	does.
To	see	further	into	the	structure	of	the	graph,	we	investigated	these	matrices,

pulled	out	submatrices	Af,	Bf,	Cf,	 Iµ,	 In−1,	Bt,	Bc,	Ct,	and	Cc,	and	studied	 them
and	their	interrelationships.
The	properties	 brought	 out	 in	 this	 chapter	 do	not	 by	 any	means	 exhaust	 the

list.	Many	 interesting	 and	 useful	 results	 are	 contained	 in	 the	 problems	 of	 this
chapter:
The	converse	problem	of	finding	a	graph	to	represent	a	given	matrix	has	been

touched	upon	 lightly	 in	Section	7-5.	The	problem	of	 realizability,	 that	 is,	what
conditions	must	 a	 given	matrix	B	 satisfy	 so	 that	 a	 graph	 can	 be	 found	whose
circuit	 matrix	 is	 B,	 is	 very	 useful	 and	 interesting.	 We	 shall	 encounter	 this
problem	of	realizability	again	in	Chapter	12.
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PROBLEMS
7-1. Write	 the	 incidence	 matrices	 for	 the	 labeled	 simple	 graphs	 shown	 in

Figs.	1-12	and	4-1	(b).	Put	the	incidence	matrix	of	the	graph	of	Fig.	4-1
(b)	in	the	block-diagonal	form	of	Eq.	(7-1).

7-2. Consider	the	graph	in	Fig.	4-3.	With	respect	to	the	spanning	tree	{b,	c,	e,
h,	k},	write	matrices	Af,	Bf,	and	Cf	in	the	forms	of	Eqs.	(7-10),	(7-5),	and
(7-9),	respectively.	Verify	by	actual	computation	Eqs.	(7-13)	and	(7-15).

7-3. Show	that	for	a	simple	disconnected	graph	of	k	components,	n	vertices,
and	e	edges	the	ranks	of	matrices	A,	B,	and	C	are	n	−	k,	e	−	n	+	k,	and	n
−	k,	respectively.

7-4. Label	the	edges	of	the	graph	in	Fig.	4-8,	and	write	down	its	circuit	matrix
B.	Verify	observations	1-5	made	 in	Section	7-3	about	 the	properties	of
matrix	B.

7-5. Draw	 two	 nonisomorphic,	 connected,	 simple,	 and	 nonseparable	 graphs
G1	 and	G2,	with	 as	 small	 a	 number	 of	 edges	 as	 you	 can,	 such	 that	 the
circuit	matrices	B(G1)	=	B(G2).	(Hint:	G1	and	G2	are	2-isomorphic,	and
must	be	2-connected.)

7-6. A	black	box	containing	a	switching	network	of	seven	switches−1,	2,	3,	4,
5,	6,	and	7−was	subjected	to	the	experiment	shown	in	Fig.	7-3.	The	lamp
was	lit	when	each	of	the	following	combinations	of	switches	was	turned
on,	in	addition	to	the	external	switch	k,	of	course:	(1,	4,	5),	(1,4,	6,	7),	(2,
5,	 7),	 (2,	 6),	 (3,	 5),	 and	 (3,	 6,	 7).	 Show	 the	 switching	 network
configuration.

7-7. In	 Section	 7-5	 a	 graph	 was	 obtained	 corresponding	 to	 a	 given
fundamental	circuit	matrix.	Similarly,	sketch	a	procedure	for	obtaining	a
graph	 if	 its	 fundamental	 cut-set	 matrix	 Cf	 is	 given.	 Can	 you	 get	 two
different	(nonisomorphic)	graphs	for	the	same	Cf?	If	yes,	how	are	these
different	graphs	related?

7-8. Show	that	you	can	determine	a	graph	within	2-isomorphism	if	you	were
given	 the	 set	 of	 all	 spanning	 trees.	 (Hint:	 From	 the	 set	 of	 all	 spanning
trees	every	cut-set	can	be	determined,	using	Theorem	4-2.	And	the	set	of



all	cut-sets	determines	a	graph	within	2-isomorphism.)
7-9. If	the	following	is	the	list	of	all	spanning	trees	of	a	graph	G,	determine

G.

{a,	c,	d,	e},	{a,	c,	d,	f},	{b,	c,	d,	e},	{b,	c,	d,	f},
{a,	c,	e,	f},	{b,	c,	e,	f},	{a,	d,	e,	f},	{b,	d,	e,	f},
{a,	b,	d,	e},	{a,	b,	d,	f},	{a,	b,	e,	f}.

7-10. Express	the	relationship	of	dualism	between	two	planar,	simple	graphs	in
terms	of	appropriate	matrices.

7-11. Characterize	simple,	self-dual	graphs	in	terms	of	their	circuit	and	cut-set
matrices.

7-12. Prove	that

7-13. Write	 down	 the	 path	matrix	 P(v1,	 v6)	 for	 the	 graph	 in	 Fig.	 4-3.	Verify
observations	1-4	in	Section	7-8	and	Theorem	7-7.

7-14. Prove	Theorem	7-7.
7-15. Characterize	 Af,	 Bf,	 Cf,	 and	 X	 matrices	 of	 the	 complete	 graph	 of	 n

vertices.
7-16. After	having	labeled	the	graph	in	Fig.	4-8	(as	required	in	Problem	7-4),

write	 its	 adjacency	 matrix	 X.	 How	 does	 the	 fact	 that	 the	 graph	 is
separable	 reflect	 in	 X?	 Characterize	 the	 adjacency	 matrix	 X	 of	 a
separable	graph,	in	general.

7-17. Complete	the	proof	of	Theorem	7-8.
7-18. The	diameter	of	a	connected	graph	is	defined	(Chapter	3)	as	the	largest

distance	between	 two	vertices	 in	 the	graph.	Given	 the	adjacency	matrix
X,	 how	 will	 you	 determine	 the	 diameter	 of	 the	 corresponding	 graph?
(Hint:	Consider	a	sum	of	the	powers	of	X.)

7-19. Show	that	each	diagonal	entry	in	X3	equals	twice	the	number	of	triangles
passing	through	the	corresponding	vertex.

7-20. Prove	that	the	number	of	spanning	trees	in	a	connected	graph	equals	the
value	of

where	Af	is	the	reduced	incidence	matrix	of	the	graph,	and	the	arithmetic
operations	are	carried	out	in	the	real	field	and	not	mod	2.



7-21. Similar	to	the	circuit	or	cut-set	matrix,	define	a	spanning-tree	matrix	for
a	connected	graph,	and	observe	some	of	its	properties.

7-22. Let	C	be	the	cut-set	matrix	of	a	nonseparable	graph	G,	and	let	C(x,	y)	be
the	submatrix	of	C,	containing	only	 those	 rows	of	C	 that	 represent	cut-
sets	 with	 respect	 to	 vertices	 x	 and	 y.	 Show	 that	 C(x,	 y)	 contains	 a
fundamental	cut-set	matrix	Cf	of	G.

7-23. For	a	labeled	graph	G	of	n	vertices,	define	an	n	by	n	diagonal	matrix	D
(called	 the	 degree	 matrix	 of	G)	 such	 that	 the	 ith	 diagonal	 entry	 in	 D
equals	 the	 degree	 of	 the	 ith	 vertex	 in	 G.	 Define	 another	 matrix	 E,
obtained	from	the	incidence	matrix	A	of	G	by	arbitrarily	replacing	one	of
the	 two	 l′s	 in	 every	 column	 by	 a	 −1.	 Show	 that	 if	 G	 is	 a	 simple,
connected	graph	the	following	holds	(the	computations	are	in	the	ring	of
integers	and	not	mod	2):
(a)	E	·	ET	=	D	-	X.
(b)	All	cofactors	of	the	matrix	D	−	X	are	equal.
(c)	Each	 cofactor	 of	D	−	X	 equals	 the	 number	 of	 spanning	 trees	 in	G,

where	X	is	as	usual	the	adjacency	matrix	of	G.
7-24. Use	 the	 result	 obtained	 in	 Problem	 7-23(c)	 to	 prove	 Cayley′s	 formula

(Theorem	3-10).
7-25. Let	x	and	y	be	a	pair	of	vertices	in	a	simple	nonseparable	graph	G,	and

P(x,	y)	be	the	corresponding	path	matrix	of	G.	Prove	that	every	circuit	in
G	 is	obtained	as	a	mod	2	sum	of	 two	rows	of	P(x,	y).	From	this	 result,
prove	that	a	path	matrix	in	a	simple,	nonseparable	graph	determines	the
graph	within	2-isomorphism.	[Hint:	Every	circuit	Г	 in	G	falls	 in	one	of
three	categories:	(1)	Г	passes	through	both	x	and	y;	(2)	T	passes	through
neither	x	nor	y;	or	(3)	T	passes	 through	either	x	or	y.	Consider	all	 three
cases,	and	use	Theorem	4-11.]

7-26. Prove	that	for	a	connected,	self-loop-free	graph	G,	subspaces	WГ	and	Ws
are	orthogonal	complements	of	WG	over	GF(2)	if	and	only	if	the	number
of	spanning	trees	in	G	is	odd.	[Hint:	Define	a	new	e	by	e	matrix	
Compute	 det(MMT),	 using	 the	 identity	 ,	 and	 the	 Binet-
Cauchy	theorem	(see	Appendix	A).	Show	that	det(MMT)	=	1	(mod	2)	if
and	only	if	G	has	an	odd	number	of	spanning	trees.]

†	Although	matrices	are	customarily	defined	over	a	commutative	 ring	with	 identity,	which	need	not	be	a
field	 (such	 as	 the	 ring	 of	 integers),	 we	 have	 defined	matrix	A	 over	 a	 field,	 GF(2),	 in	 keeping	with	 our
definition	of	the	vector	space	WG	in	Chapter	6.
†	 Just	 as	 in	 any	 two	 alternative	 methods	 of	 representation,	 some	 properties	 are	 more	 evident	 in	 one



representation	 than	 in	 the	 other.	 For	 example,	 the	 fact	 that	 the	 graph	 is	 planar	 is	 obvious	 in	Fig.	 7-1(a),
whereas	it	is	not	at	all	obvious	from	the	matrix	in	Fig.	7-1(b).
†	Some	authors	(see	Busacker	and	Saaty	[1-2],	page	109,	for	example)	define	xij	as	equal	to	the	number	of
edges	incident	on	both	vertices	i	and	j,	and	thus	take	into	account	parallel	edges.
†	An	edge	sequence	is	a	sequence	of	edges	in	which	each	edge	(except,	of	course,	the	first	and	the	last)	has
one	vertex	in	common	with	the	edge	preceding	it	and	one	vertex	in	common	with	the	edge	following	it.	A
path,	a	circuit,	and	a	walk	are	all	 special	examples	of	an	edge	sequence.	An	edge	may	appear	more	 than
once	in	an	edge	sequence.



8	COLORING,	COVERING,	AND	PARTITIONING

Suppose	that	you	are	given	a	graph	G	with	n	vertices	and	are	asked	to	paint	its
vertices	 such	 that	 no	 two	 adjacent	 vertices	 have	 the	 same	 color.	What	 is	 the
minimum	number	of	colors	that	you	would	require?	This	constitutes	a	coloring
problem.	Having	painted	the	vertices,	you	can	group	them	into	different	sets—
one	 set	 consisting	 of	 all	 red	 vertices,	 another	 of	 blue,	 and	 so	 forth.	 This	 is	 a
partitioning	problem.	The	coloring	and	partitioning	can,	of	course,	be	performed
on	edges	or	vertices	of	a	graph.	In	the	case	of	a	planar	graph,	one	may	even	be
interested	 in	 coloring	 the	 regions.	 These	 are	 the	 types	 of	 questions	 to	 be
considered	in	this	chapter.
Earlier	we	came	across	the	subject	of	partitioning	the	edges	of	a	given	graph

into	sets	with	some	specified	properties.	For	example,	finding	a	spanning	tree	in
a	connected	graph	is	equivalent	to	partitioning	the	edges	into	two-sets—one	set
consisting	of	the	edges	included	in	the	spanning	tree,	and	the	other	consisting	of
the	 remaining	 edges.	 Identification	 of	 a	 Hamiltonian	 circuit	 (if	 it	 exists)	 is
another	partitioning	of	the	set	of	edges	in	a	given	graph.
The	 coloring	 and	 partitioning	 of	 vertices	 (or	 edges)	 is	 not	 performed	out	 of

mere	 playfulness,	 as	 it	 may	 appear	 from	 this	 introduction.	 Partitioning	 is
applicable	 to	 many	 practical	 problems,	 such	 as	 coding	 theory,	 partitioning	 of
logic	in	digital	computers,	and	state	reduction	of	sequential	machines.

8-1.	CHROMATIC	NUMBER

Painting	 all	 the	 vertices	 of	 a	 graph	 with	 colors	 such	 that	 no	 two	 adjacent
vertices	have	the	same	color	is	called	the	proper	coloring	(or	sometimes	simply
coloring)	of	a	graph.	A	graph	 in	which	every	vertex	has	been	assigned	a	color
according	 to	 a	 proper	 coloring	 is	 called	 a	 properly	 colored	 graph.	 Usually	 a
given	graph	can	be	properly	colored	in	many	different	ways.	Figure	8-1	shows
three	different	proper	colorings	of	a	graph.



Fig.	8-1	Proper	colorings	of	a	graph.

The	proper	coloring	which	is	of	interest	to	us	is	one	that	requires	the	minimum
number	 of	 colors.	 A	 graph	 G	 that	 requires	 κ	 different	 colors	 for	 its	 proper
coloring,	and	no	less,	is	called	a	κ-chromatic	graph,	and	the	number	κ	is	called
the	 chromatic	 number	 of	G.	 You	 can	 verify	 that	 the	 graph	 in	 Fig.	 8-1	 is	 3-
chromatic.
In	coloring	graphs	there	is	no	point	in	considering	disconnected	graphs.	How

we	color	vertices	in	one	component	of	a	disconnected	graph	has	no	effect	on	the
coloring	of	the	other	components.	Therefore,	it	is	usual	to	investigate	coloring	of
connected	graphs	only.	All	parallel	edges	between	two	vertices	can	be	replaced
by	 a	 single	 edge	 without	 affecting	 adjacency	 of	 vertices.	 Self-loops	 must	 be
disregarded.	 Thus	 for	 coloring	 problems	 we	 need	 to	 consider	 only	 simple,
connected	graphs.
Some	observations	that	follow	directly	from	the	definitions	just	introduced	are

1. A	graph	consisting	of	only	isolated	vertices	is	1-chromatic.

2. A	graph	with	one	or	more	edges	(not	a	self-loop,	of	course)	 is	at	 least	2-
chromatic	(also	called	bichromatic).

3. A	 complete	 graph	 of	 n	 vertices	 is	 n-chromatic,	 as	 all	 its	 vertices	 are
adjacent.	 Hence	 a	 graph	 containing	 a	 complete	 graph	 of	 r	 vertices	 is	 at
least	r-chromatic.	For	instance,	every	graph	having	a	triangle	is	at	least	3-
chromatic.

4. A	graph	consisting	of	simply	one	circuit	with	n	≥	3	vertices	is	2-chromatic
if	n	 is	even	and	3-chromatic	 if	n	 is	odd.	 (This	can	be	seen	by	numbering
vertices	1,	2,	.	.	.,	n	in	sequence	and	assigning	one	color	to	odd	vertices	and



another	to	even.	If	n	is	even,	no	adjacent	vertices	will	have	the	same	color.
If	n	is	odd,	the	nth	and	first	vertex	will	be	adjacent	and	will	have	the	same
color,	thus	requiring	a	third	color	for	proper	coloring.)

Proper	coloring	of	a	given	graph	is	simple	enough,	but	a	proper	coloring	with
the	minimum	number	of	colors	is,	 in	general,	a	difficult	 task.	In	fact,	 there	has
not	 yet	 been	 found	 a	 simple	way	 of	 characterizing	 a	 κ-chromatic	 graph.	 (The
brute-force	method	of	using	all	possible	combinations	can,	of	course,	always	be
applied,	 as	 in	 any	 combinatorial	 problem.	 But	 brute	 force	 is	 highly
unsatisfactory,	 because	 it	 gets	 out	 of	 hand	 as	 soon	 as	 the	 size	 of	 the	 graph
increases	beyond	a	few	vertices.)	Chromatic	numbers	of	some	specific	types	of
graphs	will	be	discussed	in	the	rest	of	this	section.

THEOREM	8-1

Every	tree	with	two	or	more	vertices	is	2-chromatic.

Proof:	Select	any	vertex	v	 in	the	given	tree	T.	Consider	T	as	a	rooted	tree	at
vertex	v.	Paint	v	with	color	1.	Paint	all	vertices	adjacent	to	v	with	color	2.	Next,
paint	 the	 vertices	 adjacent	 to	 these	 (those	 that	 just	 have	 been	 colored	with	 2)
using	color	1.	Continue	this	process	till	every	vertex	in	T	has	been	painted.	(See
Fig.	8-2).	Now	in	T	we	find	that	all	vertices	at	odd	distances	from	v	have	color	2,
while	v	and	vertices	at	even	distances	from	v	have	color	1.
Now	along	any	path	in	T	the	vertices	are	of	alternating	colors.	Since	there	is

one	 and	 only	 one	 path	 between	 any	 two	 vertices	 in	 a	 tree,	 no	 two	 adjacent
vertices	have	the	same	color.	Thus	T	has	been	properly	colored	with	two	colors.
One	color	would	not	have	been	enough	(observation	2	in	this	section).	

Though	 a	 tree	 is	 2-chromatic,	 not	 every	 2-chromatic	 graph	 is	 a	 tree.	 (The
utilities	graph,	for	instance,	is	not	a	tree.)	What	then	is	the	characterization	of	a
2-chromatic	 graph?	 Theorem	 8-2	 (due	 to	König)	 characterizes	 all	 2-chromatic
graphs.



Fig.	8-2	Proper	coloring	of	a	tree.

THEOREM	8-2

A	graph	with	at	least	one	edge	is	2-chromatic	if	and	only	if	it	has	no	circuits
of	odd	length.

Proof:	 Let	 G	 be	 a	 connected	 graph	 with	 circuits	 of	 only	 even	 lengths.
Consider	a	spanning	tree	T	in	G.	Using	the	coloring	procedure	and	the	result	of
Theorem	8-1,	let	us	properly	color	T	with	two	colors.	Now	add	the	chords	to	T
one	 by	 one.	 Since	G	 had	 no	 circuits	 of	 odd	 length,	 the	 end	 vertices	 of	 every
chord	 being	 replaced	 are	 differently	 colored	 in	T.	 Thus	G	 is	 colored	with	 two
colors,	 with	 no	 adjacent	 vertices	 having	 the	 same	 color.	 That	 is,	 G	 is	 2-
chromatic.
Conversely,	 if	G	 has	 a	 circuit	 of	 odd	 length,	 we	 would	 need	 at	 least	 three

colors	just	for	that	circuit	(observation	4	in	this	section).	Thus	the	theorem.	

An	upper	limit	on	the	chromatic	number	of	a	graph	is	given	by	Theorem	8-3,
whose	proof	is	left	as	an	exercise	(Problem	8-1).

THEOREM	8-3
If	dmax	is	the	maximum	degree	of	the	vertices	in	a	graph	G,

chromatic	number	of	G	≤	1	+	dmax.

Brooks	 [8-1]	 showed	 that	 this	upper	bound	can	be	 improved	by	1	 if	G	 has	no
complete	graph	of	dmax	+	1	vertices.	In	that	case

chromatic	number	of	G	≤	dmax.



A	graph	G	 is	called	bipartite	 if	 its	vertex	set	V	can	be	decomposed	into	 two
disjoint	subsets	V1	and	V2	such	that	every	edge	in	G	joins	a	vertex	in	V1	with	a
vertex	in	V2.	Thus	every	tree	is	a	bipartite	graph.	So	are	the	graphs	in	Figs.	8-6
and	 8-8.	 Obviously,	 a	 bipartite	 graph	 can	 have	 no	 self-loop.	 A	 set	 of	 parallel
edges	 between	 a	 pair	 of	 vertices	 can	 all	 be	 replaced	 with	 one	 edge	 without
affecting	bipartiteness	of	a	graph.
Clearly,	 every	 2-chromatic	 graph	 is	 bipartite	 because	 the	 coloring	 partitions

the	vertex	set	into	two	subsets	V1	and	V2	such	that	no	two	vertices	in	V1	(or	V2)
are	 adjacent.	 Similarly,	 every	 bipartite	 graph	 is	 2-chromatic,	 with	 one	 trivial
exception;	a	graph	of	two	or	more	isolated	vertices	and	with	no	edges	is	bipartite
but	is	1-chromatic.
In	generalizing	this	concept,	a	graph	G	is	called	p-partite	if	its	vertex	set	can

be	decomposed	 into	p	 disjoint	 subsets	V1,V2,	 .	 .	 .	 ,	Vp,	 such	 that	no	edge	 in	G
joins	the	vertices	in	the	same	subset.	Clearly,	a	κ-chromatic	graph	is	p-partite	if
and	only	if

κ	≤	p.

With	 this	 qualification,	 the	 results	 of	 this	 section	on	κ-chromatic	 graphs	 are
applicable	to	κ-partite	graphs	also.

8-2.	CHROMATIC	PARTITIONING

A	proper	 coloring	of	 a	graph	naturally	 induces	 a	partitioning	of	 the	vertices
into	 different	 subsets.	 For	 example,	 the	 coloring	 in	 Fig.	 8-1(c)	 produces	 the
partitioning

{v1,	v4},	{v2},	and	{v3,	v5}.

No	 two	vertices	 in	any	of	 these	 three	 subsets	 are	adjacent.	Such	a	 subset	of
vertices	is	called	an	independent	set;	more	formally:
A	 set	 of	 vertices	 in	 a	 graph	 is	 said	 to	 be	 an	 independent	 set	 of	 vertices	 or

simply	an	 independent	set	 (or	an	 internally	stable	set)	 if	no	two	vertices	 in	 the
set	 are	 adjacent.	 For	 example;’	 in	 Fig.	 8-3,	 {a,	 c,	d}	 is	 an	 independent	 set.	A
single	vertex	in	any	graph	constitutes	an	independent	set.
A	 maximal	 independent	 set	 (or	 maximal	 internally	 stable	 set)	 is	 an

independent	 set	 to	which	 no	 other	 vertex	 can	 be	 added	without	 destroying	 its



independence	property.	The	set	{a,	c,	d,	f}	in	Fig.	8-3	is	a	maximal	independent
set.	The	set	{b,	f}	is	another	maximal	independent	set.	The	set	{b,	g}	is	a	third
one.	From	the	preceding	example,	it	 is	clear	that	a	graph,	in	general,	has	many
maximal	 independent	 sets;	 and	 they	 may	 be	 of	 different	 sizes.	 Among	 all
maximal	 independent	 sets,	 one	with	 the	 largest	 number	 of	 vertices	 is	 often	 of
particular	interest.
Suppose	 that	 the	graph	 in	Fig.	8-3	describes	 the	following	problem.	Each	of

the	 seven	 vertices	 of	 the	 graph	 is	 a	 possible	 code	 word	 to	 be	 used	 in	 some
communication.	 Some	 words	 are	 so	 close	 (say,	 in	 sound)	 to	 others	 that	 they
might	be	confused	for	each	other.	Pairs	of	such	words	that	may	be	mistaken	for
one	another	are	joined	by	edges.	Find	a	largest	set	of	code	words	for	a	reliable
communication.	 This	 is	 a	 problem	 of	 finding	 a	maximal	 independent	 set	with
largest	number	of	vertices.	In	this	simple	example,	{a,	c,	d,	f}	is	an	answer.

Fig.	8-3

The	number	of	vertices	 in	 the	 largest	 independent	set	of	a	graph	G	 is	called
the	independence	number	(or	coefficient	of	internal	stability),	β{G).
Consider	a	κ-chromatic	graph	G	of	n	vertices	properly	colored	with	κ	different

colors.	 Since	 the	 largest	 number	 of	 vertices	 in	G	 with	 the	 same	 color	 cannot
exceed	the	independence	number	β(G),	we	have	the	inequality

Finding	 a	 Maximal	 Independent	 Set:	 A	 reasonable	 method	 of	 finding	 a
maximal	independent	set	in	a	graph	G	will	be	to	start	with	any	vertex	v	of	G	in
the	set.	Add	more	vertices	to	the	set,	selecting	at	each	stage	a	vertex	that	is	not
adjacent	to	any	of	those	already	selected.	This	procedure	will	ultimately	produce
a	 maximal	 independent	 set.	 This	 set,	 however,	 is	 not	 necessarily	 a	 maximal
independent	set	with.a	largest	number	of	vertices.



Finding	All	Maximal	 Independent	 Sets:	A	 reasonable	 (but	 not	 very	 efficient
for	large	graphs)	method	for	obtaining	all	maximal	independent	sets	in	any	graph
can	be	developed	using	Boolean	arithmetic	on	the	vertices.	Let	each	vertex	in	the
graph	be	 treated	as	a	Boolean	variable.	Let	 the	 logical	(or	Boolean)	sum	a	+	b
denote	 the	 operation	 of	 including	 vertex	 a	 or	 b	 or	 both;	 let	 the	 logical
multiplication	ab	denote	the	operation	of	including	both	vertices	a	and	6,	and	let
the	Boolean	complement	a′	denote	that	vertex	a	is	not	included.
For	a	given	graph	G	we	must	find	a	maximal	subset	of	vertices	that	does	not

include	the	two	end	vertices	of	any	edge	in	G.	Let	us	express	an	edge	(x,	y)	as	a
Boolean	product,	xy,	of	its	end	vertices	x	and	y,	and	let	us	sum	all	such	products
in	G	to	get	a	Boolean	expression

φ	=	Σ	xy	for	all	(x,	y)	in	G.

Let	us	further	take	the	Boolean	complement	φ′	of	this	expression,	and	express	it
as	a	sum	of	Boolean	products	:

φ′	=	f1	+	f2	+	.	.	.	+	fk.

A	vertex	set	is	a	maximal	independent	set	if	and	only	if	φ	=	0	(logically	false),
which	is	possible	if	and	only	if	φ′	=	1	(true),	which	is	possible	if	and	only	if	at
least	one	fi.	=	1,	which	is	possible	if	and	only	if	each	vertex	appearing	in	f1,	(in
complemented	form)	is	excluded	from	the	vertex	set	of	G.	Thus	each	fi	will	yield
a	maximal	independent	set,	and	every	maximal	independent	set	will	be	produced
by	 this	method.	This	 procedure	 can	 be	 best	 explained	 by	 an	 example.	 For	 the
graph	G	in	Fig.	8-3,

φ	=	ab	+	bc	+	bd	+	be	+	ce	+	de	+	ef	+	eg	+	fg,
φ′	=	(a′	+	b′)(b′	+	c′)(b′	+	d′)(b′	+	e′)(c′	+	e′)(d′	+	e′)

(e′	+	f′)(e′	+	g′)(f′	+	g′).

Multiplying	these	out	and	employing	the	usual	identities	of	Boolean	arithmetic,
such	as



we	get

φ′	=	b′e′f	+	b′e′g′	+	a′c′d′e′f	+	a′c′d′e′g	+	b′c′d′f′g′.

Now	 if	we	 exclude	 from	 the	 vertex	 set	 of	G	 vertices	 appearing	 in	 any	 one	 of
these	 five	 terms,	 we	 get	 a	 maximal	 independent	 set.	 The	 five	 maximal
independent	sets	are

acdf,	acdg,	bg,	bf,	and	ae.

These	are	all	the	maximal	independent	sets	of	the	graph.

Finding	 Independence	 and	 Chromatic	 Numbers:	 Once	 all	 the	 maximal
independent	sets	of	G	have	been	obtained,	we	find	the	size	of	the	one	with	the
largest	 number	 of	 vertices	 to	 get	 the	 independence	 number	 β(G).	 The
independence	number	of	the	graph	in	Fig.	8-3	is	four.
To	 find	 the	 chromatic	 number	 of	G,	we	must	 find	 the	minimum	number	 of

these	(maximal	 independent)	sets,	which	collectively	 include	all	 the	vertices	of
G.	 For	 the	 graph	 in	Fig.	 8-3,	 sets	 {a,	c,	d,	 f},	 {b,g},	 and	 {a,	e},	 for	 example,
satisfy	this	condition.	Thus	the	graph	is	3-chromatic.

Chromatic	 Partitioning:	 Given	 a	 simple,	 connected	 graph	 G,	 partition	 all
vertices	 of	G	 into	 the	 smallest	 possible	 number	 of	 disjoint,	 independent	 sets.
This	 problem,	 known	 as	 the	 chromatic	 partitioning	 of	 graphs,	 is	 perhaps	 the
most	important	problem	in	partitioning	of	graphs.
By	enumerating	all	maximal	independent	sets	and	then	selecting	the	smallest

number	of	sets	that	include	all	vertices	of	the	graph,	we	just	solved	this	problem.
The	 following	 four	 are	 some	chromatic	 partitions	of	 the	graph	 in	Fig.	 8-3,	 for
example.

{(a,	c,	d,	f),	(b,	g),	(e)},
{(a,	c,	d,	g),	(b,	f),	(e)},
{(c,	d,	f),	(b,	g),	(a,	e)},
{(c,	d,	g),	(b,	f),	(a,	e)}.



Fig.	8-4	A	3-chromatic	graph.

This	method	of	chromatic	partitioning	(requiring	enumeration	of	all	maximal
independent	 sets)	 is	 inefficient	 and	 needs	 prohibitively	 large	 amounts	 of
computer	 memory.	 A	 more	 efficient	 method	 for	 computer	 implementation	 is
proposed	in	[8-6].

Uniquely	Colorable	Graphs:	A	graph	that	has	only	one	chromatic	partition	is
called	 a	 uniquely	 colorable	 graph.	 The	 graph	 in	 Fig.	 8-3	 is	 not	 a	 uniquely
colorable	graph,	but	 the	one	 in	Fig.	8-4	 is	 (Problem	8-2).	For	some	 interesting
properties	of	uniquely	colorable	graphs,	 the	 reader	 is	 referred	 to	Chapter	12	of
[1-5].
A	concept	related	to	that	of	the	independent	set	and	chromatic	partitioning	is

the	dominating	set,	to	be	discussed	next.

Dominating	Sets:	A	dominating	set	(or	an	externally	stable	set)	in	a	graph	G	is
a	set	of	vertices	that	dominates	every	vertex	v	in	G	in	the	following	sense:	Either
v	is	included	in	the	dominating	set	or	is	adjacent	to	one	or	more	vertices	included
in	the	dominating	set.	For	instance,	 the	vertex	set	{b,	g}	is	a	dominating	set	 in
Fig.	8-3.	So	is	the	set	{b,	g,	b,	g,	f}	a	dominating	set.	A	dominating	set	need	not
be	independent.	For	example,	the	set	of	all	 its	vertices	is	trivially	a	dominating
set	in	every	graph.
In	 many	 applications	 one	 is	 interested	 in	 finding	 minimal	 dominating	 sets

defined	as	follows:
A	minimal	dominating	 set	 is	 a	 dominating	 set	 from	which	no	vertex	 can	be

removed	without	 destroying	 its	 dominance	 property.	 For	 example,	 in	Fig.	 8-3,
{b,	 e}	 is	 a	 minimal	 dominating	 set.	 And	 so	 is	 {a,	 c,	 d,	 f}.	 Observations	 that
follow	from	these	definitions	are



1. Any	one	vertex	in	a	complete	graph	constitutes	a	minimal	dominating	set.

2. Every	dominating	set	contains	at	least	one	minimal	dominating	set.

3. A	graph	may	have	many	minimal	dominating	sets,	and	of	different	sizes.
[The	number	of	vertices	in	the	smallest	minimal	dominating	set	of	a	graph
G	is	called	the	domination	number,	α(G).]

4. A	minimal	dominating	set	may	or	may	not	be	independent.

5. Every	maximal	independent	set	is	a	dominating	set.	For	if	an	independent
set	does	not	dominate	the	graph,	there	is	at	least	one	vertex	that	is	neither
in	the	set	nor	adjacent	to	any	vertex	in	the	set.	Such	a	vertex	can	be	added
to	 the	 independent	 set	without	 destroying	 its	 independence.	But	 then	 the
independent	set	could	not	have	been	maximal.

6. An	 independent	 set	 has	 the	 dominance	 property	 only	 if	 it	 is	 a	 maximal
independent	 set.	 Thus	 an	 independent	 dominating	 set	 is	 the	 same	 as	 a
maximal	independent	set.

7. In	any	graph	G,

α(G)	≤	ß(G).

Finding	 Minimal	 Dominating	 Sets:	 A	 method	 for	 obtaining	 all	 minimal
dominating	sets	in	a	graph	will	now	be	developed.	The	method,	like	the	one	for
finding	all	maximal	independent	sets,	also	uses	Boolean	arithmetic.
To	 dominate	 a	 vertex	 vi	 we	 must	 either	 include	 vi	 or	 any	 of	 the	 vertices

adjacent	 to	vi	A	minimum	 set	 satisfying	 this	 condition	 for	 every	vertex	vi	 is	 a
desired	set.	Therefore,	for	every	vertex	vi	in	G	let	us	form	a	Boolean	product	of
sums	(vi	+	vi1	+	vi2	+	.	.	.	+	vi3),	where	vi1,	vi2	,	.	.	.	,	vi3	are	the	vertices	adjacent
to	vi,	and	d	is	the	degree	of	vi

θ	=	Π	(vi	+	vi1	+	vi2	+	.	.	.	vi3)	for	all	vi	in	G.

When	 θ	 is	 expressed	 as	 a	 sum	 of	 products,	 each	 term	 in	 it	 will	 represent	 a
minimal	dominating	set.	Let	us	illustrate	this	algorithm	using	the	graph	of	Fig.	8-
3:
Consider	the	following	expression	θ	for	Fig.	8-3:

θ	=	(a	+	b)	(b	+	c	+	d	+	e	+	a)(c	+	b	+	e)(d	+	b	+	e)
(e	+	b	+	c	+	d	+	f	+	g)(f	+	e	+	g)(g	+	e	+	f).



Since	in	Boolean	arithmetic	(x	+	y)x	=	x,

θ	=	(a	+	b)(b	+	c	+	e)(b	+	d	+	e)(e	+	f	+	g)
=	ae	+	be	+	bf	+	bg	+	acdf	+	acdg.

Each	 of	 the	 six	 terms	 in	 the	 preceding	 expression	 represents	 a	 minimal
dominating	set.	Clearly,	α(G)	=	2,	for	this	example.

8-3.	CHROMATIC	POLYNOMIAL

In	 general,	 a	 given	 graph	G	 of	 n	 vertices	 can	 be	 properly	 colored	 in	many
different	ways	 using	 a	 sufficiently	 large	 number	 of	 colors.	 This	 property	 of	 a
graph	 is	 expressed	 elegantly	 by	 means	 of	 a	 polynomial.	 This	 polynomial	 is
called	the	chromatic	polynomial	of	G	and	is	defined	as	follows	:
The	value	of	the	chromatic	polynomial	Pn(λ)	of	a	graph	with	n	vertices	gives

the	number	of	ways	of	properly	coloring	the	graph,	using	λ	or	fewer	colors.
Let	ci	 be	 the	different	ways	of	properly	 coloring	G	 using	 exactly	 i	 different

colors.	Since	i	colors	can	be	chosen	out	of	λ	colors	in

there	are	 	different	ways	of	properly	coloring	G	using	exactly	i	colors	out	of	λ
colors.
Since	i	can	be	any	positive	integer	from	1	to	n	(it	is	not	possible	to	use	more

than	n	colors	on	n	vertices),	 the	chromatic	polynomial	is	a	sum	of	these	terms;
that	is,

Each	ci	has	to	be	evaluated	individually	for	the	given	graph.	For	example,	any
graph	with	even	one	edge	 requires	at	 least	 two	colors	 for	proper	coloring,	 and



therefore

c1	=	0.

A	graph	with	n	vertices	and	using	n	different	colors	can	be	properly	colored	in	n!
ways;	that	is,

cn	=	n!.
As	an	illustration,	let	us	find	the	chromatic	polynomial	of	the	graph	given	in

Fig.	8-4.

Since	the	graph	in	Fig.	8-4	has	a	triangle,	it	will	require	at	least	three	different
colors	for	proper	coloring.	Therefore,

c1	=	c2	=	0	and	c5	=	5!.

Moreover,	to	evaluate	c3,	suppose	that	we	have	three	colors	x,	y,	and	z.	These
three	colors	can	be	assigned	properly	to	vertices	v1,	v2,	and	v3	in	3!	=	6	different
ways.	Having	done	that,	we	have	no	more	choices	 left,	because	vertex	v5	must
have	the	same	color	as	v3,	and	v4	must	have	the	same	color	as	v2.	Therefore,

c3	=	6.

Similarly,	with	four	colors,	v1,	v2,	and	v3	can	be	properly	colored	in	4·6	=	24
different	ways.	The	fourth	color	can	be	assigned	to	v4	or	v5,	thus	providing	two
choices.	The	fifth	vertex	provides	no	additional	choice.	Therefore,

c4	=	24·2	=	48.

Substituting	these	coefficients	in	P5(λ),	we	get,	for	the	graph	in	Fig.	8-4,

P5(λ)	=	λ	(λ	−	1)(λ	−	2)	+	2λ(λ	−	1)(λ	−	2)(λ	−	3)
+	λ(λ	−	1)(λ	−	2)(λ	−	3)(λ	−	4)



=	λ(λ	−	1)(λ	−	2)(λ2	−	5λ	+	7).

The	presence	of	factors	λ	–	1	and	λ	–	2	indicates	that	G	is	at	least	3-chromatic.
Chromatic	polynomials	have	been	studied	in	great	detail	in	the	literature.	The

interested	 reader	 is	 referred	 to	 [8-5]	 for	 a	 more	 thorough	 discussion	 of	 their
properties.	Theorems	8-4,	8-5,	and	8-6	should	provide	a	glimpse	into	the	colorful
world	of	chromatic	polynomials.

THEOREM	8-4

A	 graph	 of	 n	 vertices	 is	 a	 complete	 graph	 if	 and	 only	 if	 its	 chromatic
polynomial	is

Pn(λ)	=	λ(λ	−	1)(λ	−	2)	.	.	.	(λ	−	n	+	1).

Proof:	With	λ	colors,	there	are	λ	different	ways	of	coloring	any	selected	vertex
of	a	graph.	A	second	vertex	can	be	colored	properly	in	exactly	λ	–	1	ways,	the
third	in	λ	–	2	ways,	the	fourth	in	λ	–	3	ways,	.	.	.	,	and	the	nth	in	λ	–	n	+	1	ways	if
and	 only	 if	 every	 vertex	 is	 adjacent	 to	 every	 other.	 That	 is,	 if	 and	 only	 if	 the
graph	is	complete.	

THEOREM	8-5

An	n-vertex	graph	is	a	tree	if	and	only	if	its	chromatic	polynomial

Pn(λ)	=	λ(λ	−	1)n	−	1

Proof:	That	the	theorem	holds	for	n	=	1,	2	is	immediately	evident.	It	is	left	as
an	exercise	to	prove	the	theorem	by	induction	(Problem	8-9).

THEOREM	8-6

Let	 a	 and	 b	 be	 two	 nonadjacent	 vertices	 in	 a	 graph	G.	 Let	G′	 be	 a	 graph
obtained	by	adding	an	edge	between	a	and	b.	Let	G″	be	a	simple	graph	obtained
from	G	 by	 fusing	 the	 vertices	 a	 and	 b	 together	 and	 replacing	 sets	 of	 parallel
edges	with	single	edges.	Then

Pn(λ)	of	G	=	Pn(λ)	of	G′	+	Pn	−	1(λ)	of	G″.

Proof:	The	number	of	ways	of	properly	coloring	G	can	be	grouped	 into	 two
cases,	one	such	that	vertices	a	and	b	are	of	the	same	color	and	the	other	such	that



a	and	b	are	of	different	colors.	Since	the	number	of	ways	of	properly	coloring	G
such	 that	a	and	b	have	different	colors	=	number	of	ways	of	properly	coloring
G′,	and	number	of	ways	of	properly	coloring	G	such	that	a	and	b	have	the	same
coloi	=	number	of	ways	of	properly	coloring	G″,

Fig.	8-5	Evaluation	of	a	chromatic	polynomial.

P(λ)	of	G	=	Pn(λ)	of	G′	+	Pn	−	1	(λ)	of	G″.	

Theorem	8-6	is	often	used	in	evaluating	the	chromatic	polynomial	of	a	graph.
For	example,	Fig.	8-5	illustrates	how	the	chromatic	polynomial	of	a	graph	G	is
expressed	as	a	sum	of	the	chromatic	polynomials	of	four	complete	graphs.	The
pair	 of	 nonadjacent	 vertices	 shown	 enclosed	 in	 circles	 is	 the	 one	 used	 for
reduction	at	that	stage.
In	the	last	three	sections	we	have	been	concerned	with	proper	coloring	of	the

vertices	 in	a	graph.	Suppose	 that	we	are	 interested	 in	coloring	 the	edges	rather
than	the	vertices.	It	is	reasonable	to	call	two	edges	adjacent	if	they	have	one	end



vertex	in	common	(but	are	not	parallel).	A	proper	coloring	of	edges	then	requires
that	 adjacent	 edges	 should	 be	 of	 different	 colors.	 Some	 results	 on	 proper
coloring	 of	 edges,	 similar	 to	 the	 results	 given	 in	Sections	 8-1	 and	 8-2,	 can	 be
derived	(Problem	8-19).
Moreover,	 a	 set	 of	 edges	 in	 which	 no	 two	 are	 adjacent	 is	 similar	 to	 an

independent	set	of	vertices.	Such	a	set	of	edges	is	called	a	matching,	the	subject
of	the	next	section.

8-4.	MATCHINGS

Fig.	8-6	Bipartite	graph.

Suppose	that	four	applicants	a1,	a2,	a3,	and	a4	are	available	to	fill	six	vacant
positions	p1,	p2,	p3,	p4,	p5,	and	p6.	Applicant	a1	is	qualified	to	fill	position	p2	or
p5.	Applicant	a2	can	fill	p2	or	p5.	Applicant	a3	is	qualified	for	p1,	p2,	p3,	p4,	or	p6.
Applicant	a4	can	fill	jobs	p2	or	p5.	This	situation	is	represented	by	the	graph	in
Fig.	 8-6.	 The	 vacant	 positions	 and	 applicants	 are	 represented	 by	 vertices.	 The
edges	represent	the	qualifications	of	each	applicant	for	filling	different	positions.
The	graph	clearly	is	bipartite,	the	vertices	falling	into	two	sets	V1	=	{a1,	a2,	a3,
a4}	and	V2	=	{p1,	p2,	p3,	p4,	p5,	p6}.

Fig.	8-7	Graph	and	two	of	its	maximal	matchings.



The	questions	one	 is	most	 likely	 to	ask	 in	 this	situation	are:	 Is	 it	possible	 to
hire	all	the	applicants	and	assign	each	a	position	for	which	he	is	suitable?	If	the
answer	is	no,	what	is	the	maximum	number	of	positions	that	can	be	filled	from
the	given	set	of	applicants?
This	 is	 a	 problem	 of	matching	 (or	 assignment)	 of	 one	 set	 of	 vertices	 into

another.	More	formally,	a	matching	in	a	graph	is	a	subset	of	edges	in	which	no
two	edges	are	adjacent.	A	single	edge	in	a	graph	is	obviously	a	matching.
A	maximal	 matching	 is	 a	 matching	 to	 which	 no	 edge	 in	 the	 graph	 can	 be

added.	For	example,	 in	a	complete	graph	of	 three	vertices	 (i.e.,	 a	 triangle)	any
single	edge	is	a	maximal	matching.	The	edges	shown	by	heavy	lines	in	Fig.	8-7
are	two	maximal	matchings.	Clearly,	a	graph	may	have	many	different	maximal
matchings,	and	of	different	sizes.	Among	these,	the	maximal	matchings	with	the
largest	number	of	edges	are	called	the	largest	maximal	matchings.	In	Fig.	8-7(b),
a	largest	maximal	matching	is	shown	in	heavy	lines.	The	number	of	edges	in	a
largest	maximal	matching	is	called	the	matching	number	of	the	graph.
Although	matching	is	defined	for	any	graph,	it	is	mostly	studied	in	the	context

of	bipartite	graphs,	as	suggested	by	the	introduction	to	this	section.	In	a	bipartite
graph	having	a	vertex	partition	V1	and	V2,	a	complete	matching	of	vertices	in	set
V1	into	those	in	V2	is	a	matching	in	which	there	is	one	edge	incident	with	every
vertex	in	V1.	In	other	words,	every	vertex	in	V1	is	matched	against	some	vertex
in	V2.	Clearly,	a	complete	matching	(if	it	exists)	is	a	largest	maximal	matching,
whereas	the	converse	is	not	necessarily	true.
For	the	existence	of	a	complete	matching	of	set	V1	 into	set	V2,	first	we	must

have	at	least	as	many	vertices	in	V2	as	there	are	in	V1.	In	other	words,	there	must
be	 at	 least	 as	 many	 vacant	 positions	 as	 the	 number	 of	 applicants	 if	 all	 the
applicants	 are	 to	 be	 hired.	 This	 condition,	 however,	 is	 not	 sufficient.	 For
example,	 in	 Fig.	 8-6,	 although	 there	 are	 six	 positions	 and	 four	 applicants,	 a
complete	matching	does	not	 exist.	Of	 the	 three	 applicants	a1,	a2;	 and	a4,	 each
qualifies	 for	 the	 same	 two	 positions	p2	 and	p5,	 and	 therefore	 one	 of	 the	 three
applicants	cannot	be	matched.
This	leads	us	to	another	necessary	condition	for	a	complete	matching;	Every

subset	of	r	vertices	in	V1	must	collectively	be	adjacent	to	at	least	r	vertices	in	V2,
for	all	values	of	r	=	1,	2,	.	.	.	,	 |	V1	 |.	This	condition	is	not	satisfied	in	Fig.	8-6.
The	subset	{a1,	a2,	a4}	of	three	vertices	has	only	two	vertices	p2	and	p5	adjacent
to	 them.	 That	 this	 condition	 is	 also	 sufficient	 for	 existence	 of	 a	 complete
matching	 is	 indeed	surprising.	Theorem	8-7	 is	a	 formal	statement	and	proof	of
this	result.



THEOREM	8-7

A	complete	matching	of	V1	 into	V2	 in	 a	bipartite	graph	exists	 if	 and	only	 if
every	subset	of	r	vertices	in	V1	is	collectively	adjacent	to	r	or	more	vertices	in	V2
for	all	values	of	r.

Proof:	 The	 “only	 if”	 part	 (i.e.,	 the	 necessity	 of	 a	 subset	 of	 r	 applicants
collectively	 qualifying	 for	 at	 least	 r	 jobs)	 is	 immediate	 and	 has	 already	 been
pointed	out.	The	sufficiency	(i.e.,	the	“if”	part)	can	be	proved	by	induction	on	r,
as	 the	 theorem	 trivially	 holds	 for	 r	 =	 1.	 For	 a	 complete	 proof,	 the	 student	 is
referred	to	Theorem	11-1	in	[8-3],	Theorem	5-19	in	[4-5],	or	Chapter	4	in	[1-9].

Let	us	illustrate	this	important	theorem	with	an	example.

Problem	 of	 Distinct	 Representatives:	 Five	 senators	 s1,	 s2,	 s3,	 s4,	 and	 s5	 are
members	of	three	committees,	c1,	c2,	and	c3.	The	membership	is	shown	in	Fig.	8-
8.	One	member	from	each	committee	is	to	be	represented	in	a	super-committee.
Is	it	possible	to	send	one	distinct	representative	from	each	of	the	committeest	†?
This	problem	is	one	of	finding	a	complete	matching	of	a	set	V1	into	set	V2	in	a

bipartite	 graph.	 Let	 us	 use	 Theorem	 8-7	 and	 check	 if	 r	 vertices	 from	 V1	 are
collectively	adjacent	to	at	least	r	vertices	from	V2,	for	all	values	of	r.	The	result
is	shown	in	Table	8-1	(ignore	the	last	column	for	the	time	being).
Thus	for	this	example	the	condition	for	the	existence	of	a	complete	matching

is	 satisfied	 as	 stated	 in	 Theorem	 8-7.	 Hence	 it	 is	 possible	 to	 form	 the	 super-
committee	with	one	distinct	representative	from	each	committee.

Fig.	8-8	Membership	of	committees.

	 V1 V2 r	–	q

–1



r	=	1 {c1} {s1,	s2}
–1

	 {c2} {s1,	s3,	s4} –2

	 {c3} {s3,	s4,	s5} –2

r	=	2 {c1,	c2} {s1,	s2,	s3,	s4} –	2

	 {c2,	c3} {s1,	s3,	s4,	s5} –2

	 {c3,	c1} {s1,	s2,	s3,	s4,	s5} –3

r	=	3 {c1,	c2,	c3} {s1,	s2,	s3,	s4,	s5} –2

Table	8-1

The	problem	of	distinct	representatives	just	solved	was	a	small	one.	A	larger
problem	would	have	become	unwieldy.	If	there	are	M	vertices	in	V1,	Theorem	8-
7	requires	that	we	take	all	2M	–	1	nonempty	subsets	of	V1	and	find	the	number	of
vertices	of	V2	adjacent	collectively	to	each	of	these.	In	most	cases,	however,	the
following	 simplified	 version	 of	 Theorem	 8-7	 will	 suffice	 for	 detection	 of	 a
complete	matching	in	any	large	graph.

THEOREM	8-8

In	a	bipartite	graph	a	complete	matching	of	V1	into	V2	exists	if	(but	not	only
if)	there	is	a	positive	integer	m	for	which	the	following	condition	is	satisfied	:

degree	of	every	vertex	in	V1	≥	m	≥	degree	of	every	vertex	in	V2.

Proof:	Consider	a	subset	of	r	vertices	in	V1.	These	r	vertices	have	at	least	m·r
edges	incident	on	them.	Each	m·r	edge	is	incident	to	some	vertex	in	V2.	Since	the
degree	of	every	vertex	in	set	V2	is	no	greater	than	m,	these	m·r	edges	are	incident
on	at	least	(m·r)/m	=	r	vertices	in	V2.
Thus	 any	 subset	 of	 r	 vertices	 in	 V1	 is	 collectively	 adjacent	 to	 r	 or	 more

vertices	 in	 V2.	 Therefore,	 according	 to	 Theorem	 8-7,	 there	 exists	 a	 complete
matching	of	V1	into	V2.	
In	the	bipartite	graph	of	Fig.	8-8,

degree	of	every	vertex	in	V1	≥	2	≥	degree	of	every	vertex	in	V2.



Therefore,	there	exists	a	complete	matching.
In	the	bipartite	graph	of	Fig.	8-6	no	such	number	is	found,	because	the	degree

of	p2	=	4	>	degree	of	a1.
It	 must	 be	 emphasized	 that	 the	 condition	 of	 Theorem	 8-8	 is	 a	 sufficient

condition	and	not	necessary	for	the	existence	of	a	complete	matching.	It	will	be
instructive	 for	 the	 reader	 to	 sketch	 a	 bipartite	 graph	 that	 does	 not	 satisfy
Theorem	8-8	and	yet	has	a	complete	matching	(Problem	8-15).
The	matching	problem	or	the	problem	of	distinct	representatives	is	also	called

the	marriage	 problem	 (whose	 solution,	 unfortunately,	 is	 of	 little	 use	 to	 those
with	real	marital	problems!)	See	Problem	8-16.
If	one	fails	to	find	a	complete	matching,	he	is	most	likely	to	be	interested	in

finding	a	maximal	matching,	that	is,	to	pair	off	as	many	vertices	of	V1	with	those
in	V2	 as	possible.	For	 this	purpose,	 let	us	define	a	new	 term	called	deficiency,
δ(G),	of	a	bipartite	graph	G.
A	set	of	r	vertices	in	V1	is	collectively	incident	on,	say,	q	vertices	of	V2.	Then

the	maximum	value	of	the	number	r	–	q	taken	over	all	values	of	r	=	1,	2,.	.	.	and
all	subsets	of	V1	is	called	the	deficiency	δ(G)	of	the	bipartite	graph	G.
Theorem	 8-7,	 expressed	 in	 terms	 of	 the	 deficiency,	 states	 that	 a	 complete

matching	in	a	bipartite	graph	G	exists	if	and	only	if

δ(G)	≤	0.

For	example,	the	deficiency	of	the	bipartite	graph	in	Fig.	8-7	is	–	1	(the	largest
number	in	the	last	column	of	Table	8-1).	It	is	suggested	that	you	prepare	a	table
for	the	graph	of	Fig.	8-6,	similar	to	Table	8-1,	and	verify	that	the	deficiency	is
+1	for	this	graph	(Problem	8-17).
Theorem	8-9	gives	the	size	of	the	maximal	matching	for	a	bipartite	graph	with

a	positive	deficiency.

THEOREM	8-9

The	maximal	number	of	vertices	in	set	V1	that	can	be	matched	into	V2	is	equal
to

number	of	vertices	in	V1	–	δ(G),

The	 proof	 of	 Theorem	 8-9	 can	 be	 found	 in	 [8-3],	 page	 288.	 The	 size	 of	 a
maximal	matching	in	Fig.	8-6,	using	Theorem	8-9,	is	obtained	as	follows:



number	of	vertices	in	V1	–	δ(G)	=	4	–	1	=	3.

Matching	 and	 Adjacency	 Matrix:	 Consider	 a	 bipartite	 graph	 G	 with
nonadjacent	 sets	 of	 vertices	V1	 and	V2,	 having	 number	 of	 vertices	 n1	 and	 n2,
respectively,	 and	 let	 n1	 ≤	 n2,	 n1	 +	 n2	 =	 n,	 the	 number	 of	 vertices	 in	G.	 The
adjacency	matrix	X(G)	of	G	can	be	written	in	the	form

where	the	submatrix	X12	is	the	n1	by	n2,	(0,	l)-matrix	containing	the	information
as	to	which	of	the	n1	vertices	of	V1	are	connected	to	which	of	the	n2	vertices	of
V2.	Matrix	 	is	the	transpose	of	X12.
Clearly,	all	the	information	about	the	bipartite	graph	G	is	contained	in	its	X12

matrix.
A	matching	V1	into	V2	corresponds	to	a	selection	of	the	l’s	in	the	matrix	XI2

such	that	no	line	(i.e.,	a	row	or	a	column)	has	more	than	one	1.
The	 matching	 is	 complete	 if	 the	 n1	 by	 n2	 matrix	 made	 of	 selected	 1’s	 has

exactly	one	1	in	every	row.	For	example,	the	X12	matrix	for	Fig.	8-8	is

A	complete	matching	of	V1	into	V2	is	given	by

A	maximal	matching	corresponds	to	the	selection	of	a	largest	possible	number



of	1’s	from	X12	such	that	no	row	in	it	has	more	than	one	1.	Therefore,	according
to	Theorem	8-9,	in	matrix	X12	the	largest	number	of	1’s,	no	two	of	which	are	in
one	row,	is	equal	to

number	of	vertices	in	V1	–	δ	(G),

Matching	problems	in	bipartite	graphs	can	also	be	formulated	in	terms	of	the
flow	problem	(see	Section	14-5).	All	edges	are	assumed	to	be	of	unit	capacity,
and	 the	 problem	 of	 finding	 a	maximal	matching	 is	 reduced	 to	 the	 problem	 of
maximizing	flow	from	the	source	to	the	sink	(also	see	[8-3]).

8-5.	COVERINGS

In	a	graph	G,	a	set	g	of	edges	is	said	to	cover	G	if	every	vertex	in	G	is	incident
on	at	least	one	edge	in	g.	A	set	of	edges	that	covers	a	graph	G	 is	said	to	be	an
edge	covering,	a	covering	subgraph,	or	simply	a	covering	of	G.	For	example,	a
graph	G	is	trivially	its	own	covering.	A	spanning	tree	in	a	connected	graph	(or	a
spanning	 forest	 in	 an	 unconnected	 graph)	 is	 another	 covering.	 A	Hamiltonian
circuit	(if	it	exists)	in	a	graph	is	also	a	covering.
Just	any	covering	is	too	general	to	be	of	much	interest.	We	have	already	dealt

with	 some	 coverings	 with	 specific	 properties,	 such	 as	 spanning	 trees	 and
Hamiltonian	circuits.	In	this	section	we	shall	investigate	the	minimal	covering–a
covering	 from	which	no	edge	can	be	 removed	without	destroying	 its	 ability	 to
cover	the	graph.	In	Fig.	8-9	a	graph	and	two	of	its	minimal	coverings	are	shown
in	heavy	lines.

Fig.	8-9	Graph	and	two	of	its	minimal	coverings.

The	following	observations	should	be	made:



1. A	 covering	 exists	 for	 a	 graph	 if	 and	 only	 if	 the	 graph	 has	 no	 isolated
vertex.

2. A	covering	of	an	n-vertex	graph	will	have	at	least	⌈n/2⌉	edges.	(⌈n⌉	denotes
the	smallest	integer	not	less	than	x.)

3. Every	pendant	edge	in	a	graph	is	included	in	every	covering	of	the	graph.

4. Every	covering	contains	a	minimal	covering.

5. If	we	denote	the	remaining	edges	of	a	graph	by	(G	–	g),	the	set	of	edges	g
is	a	covering	if	and	only	if,	for	every	vertex	V,	the	degree	of	vertex	in	(G	–
g)	≤	(degree	of	vertex	v	in	G)	–	1.

6. No	minimal	covering	can	contain	a	circuit,	 for	we	can	always	remove	an
edge	 from	 a	 circuit	 without	 leaving	 any	 of	 the	 vertices	 in	 the	 circuit
uncovered.	Therefore,	a	minimal	covering	of	an	n-vertex	graph	can	contain
no	more	than	n	–	1	edges.

7. A	 graph,	 in	 general,	 has	 many	 minimal	 coverings,	 and	 they	 may	 be	 of
different	sizes	(i.e.,	consisting	of	different	numbers	of	edges).	The	number
of	edges	in	a	minimal	covering	of	 the	smallest	size	 is	called	the	covering
number	of	the	graph.

THEOREM	8-10

A	covering	g	of	a	graph	is	minimal	if	and	only	if	g	contains	no	paths	of	length
three	or	more.

Fig.	8-10	Star	graphs	of	one,	two,	three,	and	four	edges.

Proof:	Suppose	that	a	covering	g	contains	a	path	of	length	three,	and	it	is

v1e1v2e2v3e3v4.

Edge	e2	 can	be	 removed	without	 leaving	 its	 end	vertices	v2	 and	v3	 uncovered.
Therefore,	g	is	not	a	minimal	covering.



Conversely,	 if	 a	 covering	g	 contains	no	path	of	 length	 three	or	more,	 all	 its
components	must	be	star	graphs	 (i.e.,	graphs	 in	 the	 shape	of	 stars;	 see	Fig.	8-
10).	 From	 a	 star	 graph	 no	 edge	 can	 be	 removed	 without	 leaving	 a	 vertex
uncovered.	That	is,	g	must	be	a	minimal	covering.	

Suppose	that	the	graph	in	Fig.	8-9	represents	the	street	map	of	a	part	of	a	city.
Each	 of	 the	 vertices	 is	 a	 potential	 trouble	 spot	 and	 must	 be	 kept	 under	 the
surveillance	of	a	patrol	car.	How	will	you	assign	a	minimum	number	of	patrol
cars	to	keep	every	vertex	covered?
The	answer	is	a	smallest	minimal	covering.	The	covering	shown	in	Fig.	8-9(a)

is	an	answer,	and	it	requires	six	patrol	cars.	Clearly,	since	there	are	11	vertices
and	 no	 edge	 can	 cover	 more	 than	 two,	 less	 than	 six	 edges	 cannot	 cover	 the
graph.

Minimization	of	Switching	Functions†:	An	important	step	in	the	logical	design
of	 a	 digital	 machine	 is	 to	 minimize	 Boolean	 functions	 before	 implementing
them.	 Suppose	 we	 are	 interested	 in	 building	 a	 logical	 circuit	 that	 gives	 the
following	function	F	of	four	Boolean	variables	w,	x,	y,	and	z.

where	+	denotes	logical	OR,	xy	denotes	x	AND	y,	and	 	denotes	NOT	x.
Let	us	represent	each	of	the	seven	terms	in	F	by	a	vertex,	and	join	every	pair

of	vertices	that	differ	only	in	one	variable.	Such	a	graph	is	shown	in	Fig.	8-11.
An	edge	between	two	vertices	represents	a	term	with	three	variables.
A	 minimal	 cover	 of	 this	 graph	 will	 represent	 a	 simplified	 form	 of	 F,

performing	the	same	function	as	F,	but	with	less	logic	hardware.
The	pendant	edges	1	and	7	must	be	included	in	every	covering	of	the	graph.

Therefore,	the	terms



Fig.	8-11	Graph	representation	of	a	Boolean	function.

Fig.	8-12

	and	xyz	are	essential.

Two	additional	edges	3	and	6	(or	4	and	5	or	3	and	5)	will	cover	the	remainder.
Thus	a	simplified	version	of	F	is

This	expression	can	again	be	represented	by	a	graph	of	four	vertices,	as	shown	in
Fig.	8-12.
The	 essential	 terms	 	 and	 xyz	 cannot	 be	 covered	 by	 any	 edge,	 and	 hence

cannot	be	minimized	further.	One	edge	will	cover	the	remaining	two	vertices	in
Fig.	8-12.	Thus	the	minimized	Boolean	expression	is



Dimer	 Problem:	 In	 crystal	 physics,	 a	 crystal	 is	 represented	 by	 a	 three-
dimensional	 lattice.	Each	vertex	 in	 the	 lattice	 represents	 an	 atom,	 and	 an	 edge
between	vertices	represents	the	bond	between	the	two	atoms.	In	the	study	of	the
surface	properties	of	crystals,	one	is	interested	in	two-dimensional	lattices,	such
as	the	two	shown	in	Fig.	1-10.
To	 obtain	 an	 analytic	 expression	 for	 certain	 surface	 properties	 of	 crystals

consisting	of	diatomic	molecules	(also	called	dimers),	one	is	required	to	find	the
number	of	ways	 in	which	all	atoms	on	a	 two-dimensional	 lattice	can	be	paired
off	 as	molecules	 (each	 consisting	of	 two	atoms).	The	problem	 is	 equivalent	 to
finding	 all	 different	 coverings	 of	 a	 given	 graph	 such	 that	 every	 vertex	 in	 the
covering	 is	of	degree	one.	Such	a	covering	 in	which	every	vertex	 is	of	degree
one	 is	 called	 a	dimer	 covering	 or	 a	1-factor.	A	 dimer	 covering	 is	 obviously	 a
matching	because	no	two	edges	in	it	are	adjacent.	Moreover,	a	dimer	covering	is
a	 maximal	 matching.	 This	 is	 why	 a	 dimer	 covering	 is	 often	 referred	 to	 as	 a
perfect	matching.
Two	different	dimer	coverings	are	shown	in	heavy	lines	in	the	graph	in	Fig.	8-

13.
Clearly,	 a	 graph	 must	 have	 an	 even	 number	 of	 vertices	 to	 have	 a	 dimer

covering.	This	condition,	however,	is	not	enough	(Problem	8-21).

Fig.	8-13	Two	dimer	coverings	of	a	graph.



8-6.	FOUR-COLOR	PROBLEM

So	far	we	have	considered	proper	coloring	of	vertices	and	proper	coloring	of
edges.	Let	us	briefly	consider	 the	proper	coloring	of	 regions	 in	a	planar	graph
(embedded	on	a	plane	or	sphere).	Just	as	 in	coloring	of	vertices	and	edges,	 the
regions	of	a	planar	graph	are	said	to	be	properly	colored	if	no	two	contiguous	or
adjacent	 regions	 have	 the	 same	 color.	 (Two	 regions	 are	 said	 to	 be	 adjacent	 if
they	 have	 a	 common	 edge	 between	 them.	 Note	 that	 one	 or	 more	 vertices	 in
common	does	not	make	two	regions	adjacent.)	The	proper	coloring	of	regions	is
also	called	map	coloring,	referring	to	the	fact	that	in	an	atlas	different	countries
are	colored	such	that	countries	with	common	boundaries	are	shown	in	different
colors.
Once	 again	we	 are	 not	 interested	 in	 just	 properly	 coloring	 the	 regions	 of	 a

given	graph.	We	are	 interested	 in	a	coloring	 that	uses	 the	minimum	number	of
colors.	 This	 leads	 us	 to	 the	 most	 famous	 conjecture	 in	 graph	 theory.	 The
conjecture	is	 that	every	map	(i.e.,	a	planar	graph)	can	be	properly	colored	with
four	colors.	The	four-color	conjecture,	already	referred	to	in	Chapter	1,	has	been
worked	on	by	many	famous	mathematicians	for	the	past	100	years.	No	one	has
yet	been	able	to	either	prove	the	theorem	or	come	up	with	a	map	(in	a	plane)	that
requires	more	than	four	colors.
That	at	least	four	colors	are	necessary	to	properly	color	a	graph	is	immediate

from	 Fig.	 8-14,	 and	 that	 five	 colors	 will	 suffice	 for	 any	 planar	 graph	 will	 be
shown	shortly.
Two	remarks	may	be	made	here	in	passing.	Paradoxically,	for	surfaces	more

complicated	 than	 the	 plane	 (or	 sphere)	 corresponding	 theorems	 have	 been
proved.	 For	 example,	 it	 has	 been	 proved	 that	 seven	 colors	 are	 necessary	 and
sufficient	 for	properly	coloring	maps	on	 the	surface	of	a	 torus.†	Second,	 it	has
been	 proved	 that	 all	 maps	 containing	 less	 than	 40	 regions	 can	 be	 properly
colored	 with	 four	 colors.	 Therefore,	 if	 in	 general	 the	 four-color	 conjecture	 is
false,	the	counterexample	has	to	be	a	very	complicated	and	large	one.

Vertex	 Coloring	 Versus	 Region	 Coloring:	 From	 Chapter	 5	 we	 know	 that	 a
graph	has	a	dual	if	and	only	if	it	 is	planar.	Therefore,	coloring	the	regions	of	a
planar	 graph	G	 is	 equivalent	 to	 coloring	 the	 vertices	 of	 its	 dual	G*,	 and	 vice
versa.	Thus	 the	 four-color	 conjecture	 can	 be	 restated	 as	 follows:	Every	 planar
graph	has	a	chromatic	number	of	four	or	less.



Fig.	8-14	Necessity	of	four	colors.

Five-Color	 Theorem:	 We	 shall	 now	 show	 that	 every	 planar	 map	 can	 be
properly	colored	with	five	colors:

THEOREM	8-11

The	vertices	of	every	planar	graph	can	be	properly	colored	with	five	colors.

Proof:	 The	 theorem	 will	 be	 proved	 by	 induction.	 Since	 the	 vertices	 of	 all
graphs	 (self-loop-free,	 of	 course†)	with	 1,	 2,3,4,	 or	 5	 vertices	 can	 be	 properly
colored	with	five	colors,	let	us	assume	that	vertices	of	every	planar	graph	with	n
–	1	vertices	can	be	properly	colored	with	five	colors.	Then,	if	we	prove	that	any
planar	graph	G	with	n	 vertices	will	 require	no	more	 than	 five	 colors,	we	 shall
have	proved	the	theorem.
Consider	the	planar	graph	G	with	n	vertices.	Since	G	is	planar,	it	must	have	at

least	one	vertex	with	degree	five	or	less	(Problem	5-4).	Let	this	vertex	be	v.
Let	G′	be	a	graph	(of	n	–	1	vertices)	obtained	from	G	by	deleting	vertex	v	(i.e.,

v	 and	 all	 edges	 incident	 on	 v).	 Graph	G′	 requires	 no	 more	 than	 five	 colors,
according	to	the	induction	hypothesis.	Suppose	that	the	vertices	in	G′	have	been
properly	 colored,	 and	 now	 we	 add	 to	 it	 v	 and	 all	 edges	 incident	 on	 v.	 If	 the
degree	of	v	is	1,	2,	3,	or	4,	we	have	no	difficulty	in	assigning	a	proper	color	to	v.
This	 leaves	 only	 the	 case	 in	which	 the	 degree	 of	 v	 is	 five,	 and	 all	 the	 five

colors	have	been	used	in	coloring	the	vertices	adjacent	to	v,	as	shown	in	Fig.	8-
15(a).	(Note	that	Fig.	8-15	is	part	of	a	planar	representation	of	graph	G′.)



Fig.	8-15	Reassigning	of	colors.

Suppose	that	there	is	a	path	in	G′	between	vertices	a	and	c	colored	alternately
with	colors	1	and	3,	as	shown	in	Fig.	8-15(b).	Then	a	similar	path	between	b	and
d,	 colored	 alternately	 with	 colors	 2	 and	 4,	 cannot	 exist;	 otherwise,	 these	 two
paths	will	 intersect	and	cause	G	to	be	nonplanar.	(This	is	a	consequence	of	the
Jordan	curve	theorem,	used	in	Section	5-3,	also.)
If	 there	 is	 no	path	between	b	 and	d	 colored	 alternately	with	 colors	2	 and	4,

starting	 from	 vertex	 b	 we	 can	 interchange	 colors	 2	 and	 4	 of	 all	 vertices
connected	 to	b	 through	vertices	of	alternating	colors	2	and	4.	This	 interchange
will	paint	vertex	b	with	color	4	and	yet	keep	G′	properly	colored.	Since	vertex	d
is	still	with	color	4,	we	have	color	2	left	over	with	which	to	paint	vertex	v.
Had	we	assumed	that	 there	was	no	path	between	a	and	c	of	vertices	painted

alternately	with	colors	1	and	3,	we	would	have	released	color	1	or	3	instead	of
color	2.	And	thus	the	theorem.	

Regularization	 of	 a	 Planar	 Graph:	 Removing	 every	 vertex	 of	 degree	 one
(together	with	the	pendant	edge)	from	the	graph	G	does	not	affect	the	regions	of
a	 planar	 graph.	 Nor	 does	 the	 elimination	 of	 every	 vertex	 of	 degree	 two,	 by
merging	 the	 two	edges	 in	series	 (Fig.	5-6),	have	any	effect	on	 the	regions	of	a
planar	graph.
Now	consider	a	typical	vertex	v	of	degree	four	or	more	in	a	planar	graph.	Let

us	 replace	 vertex	 v	 by	 a	 small	 circle	 with	 as	 many	 vertices	 as	 there	 were
incidences	on	v.	This	 results	 in	a	number	of	vertices	each	of	degree	 three	 (see
Fig.	8-16).
Performing	 this	 transformation	 on	 every	 vertex	 of	 degree	 four	 or	more	 in	 a

planar	graph	G	will	produce	another	planar	graph	H	in	which	every	vertex	is	of
degree	 three.	 When	 the	 regions	 of	 H	 have	 been	 properly	 colored,	 a	 proper



coloring	of	the	regions	of	G	can	be	obtained	simply	by	shrinking	each	of	the	new
regions	back	to	the	original	vertex.
Such	a	transformation	may	be	called	regularization	of	a	planar	graph,	because

it	 converts	 a	 planar	 graph	 G	 into	 a	 regular	 planar	 graph	 H	 of	 degree	 three.
Clearly,	if	H	can	be	colored	with	four	colors,	so	can	G.	Thus,	for	map-coloring
problems,	it	is	sufficient	to	confine	oneself	to	(connected)	planar,	regular	graphs
of	degree	three.	And	the	four-color	conjecture	may	be	restated	as	follows:

Fig.	8-16	Regularization	of	a	graph.

The	 regions	 of	 every	 planar,	 regular	 graph	 of	 degree	 three	 can	 be	 colored
properly	with	four	colors.
If,	in	a	planar	graph	G,	every	vertex	is	of	degree	three,	its	dual	G*	is	a	planar

graph	in	which	every	region	is	bounded	by	three	edges;	that	is,	G*	is	a	triangular
graph.	 Thus	 the	 four-color	 conjecture	 may	 again	 be	 restated	 as	 follows:	 The
chromatic	number	of	every	triangular,	planar	graph	is	four	or	less.

SUMMARY

In	 the	 first	 three	 sections	 of	 this	 chapter,	 we	 were	 concerned	 with	 proper
coloring	of	 the	vertices	of	a	graph.	This	 led	us	 to	 the	chromatic	partitioning	of
the	vertices.	In	the	process	we	also	developed	the	concept	of	an	independent	set
of	 vertices	 and	 a	 dominating	 set	 of	 vertices.	Associated	 in	 a	 natural	way	with
these	sets	we	found	maximal	independent	sets,	largest	maximal	independent	sets,
and	 the	 independence	 number;	 minimal	 dominating	 sets,	 smallest	 minimal
dominating	sets,	and	the	domination	number.	The	chromatic	polynomial,	studied
in	Section	8-3,	was	also	a	direct	consequence	of	proper	coloring	of	vertices.
Sections	8-4	 and	8-5	 contain	 developments	 parallel	 to	 those	 in	Sections	8-1

and	8-2,	except	that	Sections	8-4	and	8-5	are	concerned	with	proper	coloring	of



the	edges	of	a	graph	rather	than	the	vertices.	A	matching	is	an	independent	set	of
edges,	that	is,	a	set	of	edges	no	two	of	which	are	adjacent.	A	maximal	matching
is	a	maximal	set	of	independent	edges.	An	edge	covering	is	somewhat	similar	to
a	dominating	set	of	edges	in	the	sense	that	every	edge	in	the	graph	is	either	in	a
covering	 or	 is	 adjacent	 to	 it.	 A	 dimer	 covering	 is	 a	 perfect	 matching.	 An
independent	set	is	also	a	dominating	set	if	and	only	if	it	is	maximal.	Likewise,	a
matching	 is	also	a	covering	 if	and	only	 if	 it	 is	perfect.	The	sketch	 in	Fig.	8-17
summarizes	 the	 relationships	 among	 these	 concepts.	 The	 arrows	 indicate	 the
direction	of	increasing	restriction.
The	last	section	deals	with	proper	coloring	of	regions	in	a	planar	graph	rather

than	vertices	or	edges.
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Fig.	8-17	Structure	of	terms.
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PROBLEMS

8-1. Prove	that	the	chromatic	number	of	a	graph	will	not	exceed	by	more	than
one	the	maximum	degree	of	the	vertices	in	a	graph.

8-2. Show	that	the	graph	in	Fig.	8-4	has	only	one	chromatic	partition.	What	is
it?

8-3. Show	 that	 the	 chromatic	 number	 of	 a	 graph	 G	 cannot	 exceed	 the
diameter	(i.e.,	the	length	of	the	longest	path)	of	G	by	more	than	one.

8-4. Show	 that	 a	 simple	 graph	with	 n	 vertices	 and	more	 than	 ⌊n2/4⌋	 edges
cannot	be	a	bipartite	graph.

8-5. A	bipartite	graph	is	said	to	be	a	complete	bipartite	graph	if	there	is	one
edge	between	every	vertex	of	set	V1	to	every	vertex	of	set	v2.	Show	that
the	maximum	number	of	edges	in	a	complete	bipartite	graph	of	n	vertices
is	⌊n2/4⌋.

8-6. Show	that	if	a	bipartite	graph	has	any	circuits,	 they	must	all	be	of	even
lengths.

8-7. In	a	chessboard,	show	the	positions	of
(a) The	minimum	 number	 of	 queens	 that	 collectively	 dominate	 all	 64

squares	(an	example	of	a	minimal	dominating	with	smallest	number
of	vertices).

(b) The	maximum	number	of	 queens	 such	 that	 none	of	 them	can	 take
another	 (an	 example	 of	 a	 maximal	 independent	 set	 with	 largest
number	of	vertices).



8-8. Find	the	chromatic	polynomial	of	the	graph	in	Fig.	8-7.

8-9. Using	induction	on	n,	prove	Theorem	8-5.	(Hint:	Use	a	technique	similar
to	one	used	in	proving	Theorem	3-3.)

8-10. Show	that	the	chromatic	polynomial	of	a	graph	of	n	vertices	satisfies	the
inequality

Pn(λ)≤	λ(λ	−	1)n	−	1.
(Hint:	Use	Theorem	8-5.)

8-11. Show	 that	 the	 chromatic	 polynomial	 of	 a	 graph	 consisting	 of	 a	 single
circuit	of	length	n	(i.e.,	an	n-gon)	is

Pn(λ)	=	(λ	−	1)n	+	(λ	−	1)(λ	−	1)n.

8-12. Show	 that	 the	 absolute	 value	 of	 the	 second	 coefficient	 of	 λn	 −	 1	 in	 the
chromatic	polynomial	Pn(λ)	of	a	graph	equals	the	number	of	edges	in	the
graph.

8-13. Sketch	 two	 different	 (i.e.,	 nonisomorphic)	 graphs	 that	 have	 the	 same
chromatic	polynomial.

8-14. Suppose	 that	you	are	 required	 to	make	a	 class	 schedule	 in	 a	university.
There	 are	 a	 total	 of	n	 courses	 to	 be	 taught	 in	m	 available	 hours	 of	 the
week.	There	are	pairs	of	courses	 that	cannot	be	 taught	at	 the	same	 time
because	 some	 students	 might	 like	 to	 take	 both.	 Explain	 how	 you	 will
make	the	schedule.	State	the	condition	when	it	will	be	impossible	to	make
a	 compatible	 schedule.	 (Hint:	 Try	 properly	 coloring	 n	 vertices	 with	m
available	colors.)

8-15. Sketch	a	bipartite	graph	that	does	not	satisfy	the	condition	in	Theorem	8-
8	and	yet	has	a	complete	matching.

8-16. In	a	village	there	are	an	equal	number	of	boys	and	girls	of	marriageable
age.	Each	boy	dates	a	certain	number	of	girls	and	each	girl	dates	a	certain
number	of	boys.	Under	what	condition	 is	 it	possible	 that	every	boy	and
girl	 gets	 married	 to	 one	 of	 their	 dates?	 (Polygamy	 and	 polyandry	 not
allowed.)

8-17. Make	 a	 complete	 table	 (like	 Table	 8-1)	 for	 the	 graph	 of	 Fig.	 8-6	 to
determine	whether	or	not	a	complete	matching	exists.	Find	the	deficiency
number	from	this	table.

8-18. Show	 that	 a	 nonnull	 graph	 is	 2-chromatic	 if	 and	 only	 if,	 for	 all	 odd	 r,



every	diagonal	entry	in	matrix	Xr	is	zero.	The	matrix	X	is	the	adjacency
matrix	of	the	graph.
(Hint:	Use	Theorem	8-2.)

8-19. Just	 as	with	 an	 independent	 set	 of	 vertices	 (or	 simply	 independent	 set),
define	 an	 independent	 set	 of	 edges	 in	 a	 graph	 as	 a	 set	 of	 nonadjacent
edges	 (not	 incident	 on	 a	 common	 vertex).	 Make	 some	 observations
parallel	to	those	in	Section	8-2.	Observe	that	matching	is	an	independent
set	of	 edges.	What	are	complete	matchings,	maximal	matchings,	 and	 so
on?

8-20. Explore	how	the	covering	number	of	a	graph	G	with	n	vertices	is	related
to	the	diameter	of	G.

8-21. Sketch	 a	 graph	 with	 an	 even	 number	 of	 vertices	 that	 has	 no	 dimer
covering.

8-22. Show	that	the	regions	of	a	simple	planar	graph	G	can	be	colored	properly
with	two	colors	if	and	only	if	every	vertex	in	G	is	of	even	degree.	(Hint:
Use	Theorem	8-2	and	Problem	4-28.)

8-23. From	v	 distinct	 objects	 one	 can	 select	v!/[k!(v	 –	k)!]	 combinations	 of	k
objects.	 Two	 such	 combinations	 are	m-related	 if	 they	 have	m	 or	 more
objects	in	common,	m	≤	k.	This	relationship	can	be	expressed	by	means
of	a	graph	with	v!/[k!(v	–	k)!]	vertices	and	with	edges	between	every	pair
of	m-related	combinations.	Make	observations	on	the	properties	of	such	a
graph.	Give	 conditions	 for	 which	 this	 graph	 is	 (a)	 a	 null	 graph;	 (b)	 a
complete	graph.	How	will	you	select	a	largest	set	of	combinations	that	are
not	m-related?	Illustrate	your	method	by	sketching	the	graph	for	v	=	6,	k	=
3,	and	m	=	2.

8-24. An	N	by	N	square	in	which	objects	a1,	a2,	.	.	.	.	,	aN	are	arranged	in	such	a
way	that	each	object	appears	exactly	once	in	each	row	and	exactly	once	in
each	 column	 is	 called	 a	 Latin	 square.	 A	 Latin	 square	 can	 also	 be
represented	by	a	complete	bipartite	graph	of	2N	vertices.	What	is	the	total
number	 of	 different	 matchings	 in	 such	 a	 graph?	 How	 many	 of	 these
matchings	are	edge	disjoint?

8-25. Call	a	subset	of	vertices	that	includes	at	least	one	vertex	incident	on	every
edge	of	G	 a	vertex	cover	of	G.	Show	 that	 the	number	of	vertices	 in	 the
smallest	vertex	cover	is	equal	to	or	less	than	the	domination	number	of	G.

†	This	problem,	known	as	the	problem	of	distinct	representatives,	was	first	formulated	and	studied	by	the
English	mathematician,	Philip	Hall,	in	1935.



†	Those	not	familiar	with	switching	functions	may	skip	this	subsection.
†	In	fact,	the	Heawood	map-coloring	theorem	gives	the	exact	number	of	colors	required	for	every	orientable
surface	more	complicated	than	that	of	a	sphere.	See	page	136,	[1-5],	or	page	94,	[1-2].
†	See	“Regularisation	of	a	Planar	Graph”	in	this	section.



9	DIRECTED	GRAPHS

The	 graphs	 studied	 in	 this	 book	 so	 far	 have	 been	 undirected	 graphs.	 No
direction	was	assigned	 to	 the	edges	 in	a	graph.	An	edge	ek	between	vertices	vi
and	vj	could	be	considered	as	going	from	vertex	vi	to	vertex	vj	or	from	vj	to	vi.	In
this	 chapter	 we	 shall	 consider	 directed	 graphs–graphs	 in	 which	 edges	 have
directions.
Many	physical	situations	require	directed	graphs.	The	street	map	of	a	city	with

one-way	streets,	flow	networks	with	valves	in	the	pipes,	and	electrical	networks,
for	example,	are	represented	by	directed	graphs.	Directed	graphs	are	employed
in	 abstract	 representations	 of	 computer	 programs,	where	 the	 vertices	 stand	 for
the	 program	 instructions	 and	 the	 edges	 specify	 the	 execution	 sequence.	 The
directed	graph	is	an	invaluable	tool	in	the	study	of	sequential	machines.	Directed
graphs	in	the	form	of	signal-flow	graphs	are	used	for	system	analysis	in	control
theory.
Most	of	the	concepts	and	terminology	of	undirected	graphs	are	also	applicable

to	 directed	 graphs.	 For	 example,	 the	 planarity	 of	 a	 graph	 does	 not	 depend	 on
whether	the	graph	is	directed	or	undirected,	and	therefore	Chapter	5	is	applicable
to	both	directed	and	undirected	graphs.	The	 same	 is	 true	 for	most	other	 topics
covered	so	far.	It	would	be	wasteful	to	devote	another	eight	chapters	to	the	study
of	directed	graphs,	mostly	repeating,	with	minor	changes,	what	has	already	been
said.	 In	 this	 chapter,	 therefore,	 we	 shall	 mainly	 bring	 out	 those	 properties	 of
directed	graphs	that	are	not	shared	by	undirected	graphs.

9-1.	WHAT	IS	A	DIRECTED	GRAPH?
A	directed	graph	 (or	a	digraph	 for	short)	G	consists	of	a	set	of	vertices	V	=

{v1,	v2,	.	.	.},	a	set	of	edges	E	=	{e1,	e2,	.	.	.},	and	a	mapping	Ψ	that	maps	every
edge	 onto	 some	 ordered	 pair	 of	 vertices	 (vi,	 vj).	 As	 in	 the	 case	 of	 undirected
graphs,	a	vertex	is	represented	by	a	point	and	an	edge	by	a	line	segment	between



vi	 and	 vj	with	 an	 arrow	 directed	 from	 vi	 to	 vj.	 For	 example,	 Fig.	 9-1	 shows	 a
digraph	 with	 five	 vertices	 and	 ten	 edges.	 A	 digraph	 is	 also	 referred	 to	 as	 an
oriented	graph.†

Fig.	9-1	Directed	graph	with	5	vertices	and	10	edges.

In	a	digraph	an	edge	is	not	only	incident	on	a	vertex,	but	is	also	incident	out	of
a	vertex	and	incident	into	a	vertex.	The	vertex	vi,	which	edge	ek	is	incident	out
of,	 is	 called	 the	 initial	 vertex	 of	ek.	The	vertex	vj,	which	ek	 is	 incident	 into,	 is
called	the	terminal	vertex	of	ek.	In	Fig.	9-1,	v5	is	the	initial	vertex	and	v4	is	the
terminal	vertex	of	edge	e7.	An	edge	for	which	the	initial	and	terminal	vertices	are
the	same	forms	a	self-loop,	such	as	e5.	(Some	authors	reserve	the	term	arc	for	an
oriented	or	directed	edge.	We	use	the	term	edge	to	mean	either	an	undirected	or
a	directed	edge.	Whenever	there	is	a	possibility	of	confusion,	we	shall	explicitly
state	directed	or	undirected	edge.)
The	number	of	 edges	 incident	out	of	 a	vertex	vi	 is	 called	 the	out-degree	 (or

out-valence	or	outward	demidegree)	of	vi	 and	 is	written	d+(vi).	The	number	of
edges	incident	into	vi	is	called	the	in-degree	(or	invalence	or	inward	demidegree)
of	v1	and	is	written	as	d−(vi).	In	Fig.	9-1,	for	example,

d	+	(v1)	=	3, d	−	(v1)	=	1,

d	+	(v2)=	1, d	−(v2)	=	2,

d	+	(v5)	=	4, d	−	(v5)	=	0.



It	is	not	difficult	to	prove	(Problem	9-1)	that	in	any	digraph	G	the	sum	of	all
in-degrees	 is	 equal	 to	 the	 sum	of	 all	 out-degrees,	 each	 sum	being	 equal	 to	 the
number	of	edges	in	G;	that	is,

An	 isolated	vertex	 is	 a	vertex	 in	which	 the	 in-degree	and	 the	out-degree	are
both	equal	to	zero.	A	vertex	v	in	a	digraph	is	called	pendant	if	it	is	of	degree	one,
that	is,	if

d	+(v)	+	d	−	(v)	=	1.

Two	directed	edges	are	said	to	be	parallel	 if	 they	are	mapped	onto	the	same
ordered	 pair	 of	 vertices.	 That	 is,	 in	 addition	 to	 being	 parallel	 in	 the	 sense	 of
undirected	edges,	parallel	directed	edges	must	also	agree	in	the	direction	of	their
arrows.	In	Fig.	9-1,	edges	e8,	e9,	and	e10	are	parallel,	whereas	edges	e2	and	e3	are
not.
Since	many	properties	of	directed	graphs	are	the	same	as	those	of	undirected

ones,	 it	 is	often	convenient	 to	disregard	 the	orientations	of	edges	 in	a	digraph.
Such	 an	 undirected	graph	obtained	 from	a	 directed	 graph	G	will	 be	 called	 the
undirected	graph	corresponding	to	G.
On	the	other	hand,	given	an	undirected	graph	H,	we	can	assign	each	edge	of	H

some	 arbitrary	 direction.	 The	 resulting	 digraph,	 designated	 by	 	 is	 called	 an
orientation	 of	 H	 (or	 a	 digraph	 associated	 with	 H).	 Note	 that	 while	 a	 given
digraph	has	a	unique	(within	isomorphism)	undirected	graph	corresponding	to	it,
a	given	undirected	graph	may	have	”different“	orientations	possible.	This	is	why
we	say	the	undirected	graph	corresponding	to	a	digraph,	but	an	orientation	of	a
graph.
This	brings	us	 to	 the	question:	When	 are	 two	digraphs	 considered	 to	be	 the

same	or	isomorphic?



Fig.	9-2	Two	nonisomorphic	digraphs.

Isomorphic	 Digraphs:	 Isomorphic	 graphs	 were	 defined	 such	 that	 they	 have
identical	behavior	in	terms	of	graph	properties.	In	other	words,	if	their	labels	are
removed,	 two	 isomorphic	graphs	 are	 indistinguishable.	For	 two	digraphs	 to	 be
isomorphic	not	only	must	their	corresponding	undirected	graphs	be	isomorphic,
but	the	directions	of	the	corresponding	edges	must	also	agree.	For	example,	Fig.
9-2	shows	 two	digraphs	 that	are	not	 isomorphic,	although	 they	are	orientations
of	the	same	undirected	graph.
Figure	 9-2	 immediately	 suggests	 a	 problem.	What	 is	 the	 number	 of	 distinct

(i.e.,	nonisomorphic)	orientations	of	a	given	undirected	graph?	The	problem	was
solved	by	F.	Harary	and	E.	M.	Palmer	in	1966.	Some	specific	cases	are	left	as	an
exercise	(Problem	9-3).

9-2.	SOME	TYPES	OF	DIGRAPHS

Like	their	undirected	sisters,	digraphs	come	in	many	varieties.	In	fact,	due	to
the	 choice	 of	 assigning	 a	 direction	 to	 each	 edge,	 directed	 graphs	 have	 more
varieties	than	undirected	ones.

Simple	Digraphs:	A	digraph	that	has	no	self-loop	or	parallel	edges	is	called	a
simple	digraph	(Figs.	9-2	and	9-3,	for	example).

Asymmetric	Digraphs:	Digraphs	that	have	at	most	one	directed	edge	between
a	pair	of	vertices,	but	 are	allowed	 to	have	 self-loops,	 are	called	asymmetric	 or
antisymmetric.

Symmetric	 Digraphs:	 Digraphs	 in	 which	 for	 every	 edge	 (a,	 b)	 (i.e.,	 from
vertex	a	to	b)	there	is	also	an	edge	(b,	a).

A	 digraph	 that	 is	 both	 simple	 and	 symmetric	 is	 called	 a	 simple	 symmetric
digraph.	 Similarly,	 a	 digraph	 that	 is	 both	 simple	 and	 asymmetric	 is	 simple



asymmetric.	 The	 reason	 for	 the	 terms	 symmetric	 and	 asymmetric	 will	 be
apparent	in	the	context	of	binary	relations	in	Section	9-3.

Complete	 Digraphs:	 A	 complete	 undirected	 graph	 was	 defined	 as	 a	 simple
graph	in	which	every	vertex	is	joined	to	every	other	vertex	exactly	by	one	edge.
For	 digraphs	 we	 have	 two	 types	 of	 complete	 graphs.	 A	 complete	 symmetric
digraph	 is	 a	 simple	 digraph	 in	which	 there	 is	 exactly	 one	 edge	 directed	 from
every	vertex	to	every	other	vertex	(Fig.	9-3),	and	a	complete	asymmetric	digraph
is	an	asymmetric	digraph	in	which	there	is	exactly	one	edge	between	every	pair
of	vertices	(Fig.	9-2).
A	complete	asymmetric	digraph	of	n	vertices	contains	n(n	–	l)/2	edges,	but	a

complete	symmetric	digraph	of	n	vertices	contains	n(n	–	1)	edges.	A	complete
asymmetric	digraph	 is	 also	called	a	 tournament	 or	 a	complete	 tournament	 (the
reason	for	this	term	will	be	made	clear	in	Section	9-10).
A	digraph	is	said	to	be	balanced	if	for	every	vertex	vi	the	in-degree	equals	the

out-degree;	that	is,	d	+(vi)	=	d	−(vi).	(A	balanced	digraph	is	also	referred	to	as	a
pseudosymmetric	 digraph,	 or	 an	 isograph.)	 A	 balanced	 digraph	 is	 said	 to	 be
regular	 if	 every	 vertex	 has	 the	 same	 in-degree	 and	 out-degree	 as	 every	 other
vertex.

Fig.	9-3	Complete	symmetric	digraph	of	four	vertices.

9-3.	DIGRAPHS	AND	BINARY	RELATIONS

The	 theory	of	graphs	and	 the	calculus	of	binary	 relations	are	closely	 related
(so	much	so	that	some	people	often	mistakenly	come	to	regard	graph	theory	as	a
branch	of	the	theory	of	relations).



In	a	set	of	objects,	X,	where

X	=	(x1,	x2,	.	.	.},

a	binary	relation	R	between	pairs	(xi,	xj)	may	exist.	In	which	case,	we	write

xiRxj

and	say	that	xi	has	relation	R	to	xj.
Relation	 R	 may	 for	 instance	 be	 “is	 parallel	 to,”	 “is	 orthogonal	 to,”	 or	 “is

congruent	to”	in	geometry.	It	may	be	“is	greater	than,”	“is	a	factor	of,”	“is	equal
to,”	and	so	on,	in	the	case	when	X	consists	of	numbers.	On	the	other	hand,	if	the
set	X	is	composed	of	people,	the	relation	R	may	be	“is	son	of,”	“is	spouse	of,”	“is
friend	 of,”	 and	 so	 forth.	 Each	 of	 these	 relations	 is	 defined	 only	 on	 pairs	 of
numbers	of	the	set,	and	this	is	why	the	name	binary	relation.	Although	there	are
relations	other	than	binary	(xi	“is	a	product	of”	xj	and	xk,	for	example,	will	be	a
tertiary	relation),	binary	relations	are	the	most	important	in	mathematics,	and	the
word	“relation”	implies	a	binary	relation.
A	digraph	is	the	most	natural	way	of	representing	a	binary	relation	on	a	set	X.

Each	xi	∈	X	is	represented	by	a	vertex	xi	If	xi	has	the	specified	relation	R	to	xj,	a
directed	edge	is	drawn	from	vertex	xi	to	xj,	for	every	pair	(xi	xj).	For	example,	the
digraph	in	Fig.	9-4	represents	the	relation	“is	greater	than”	on	a	set	consisting	of
five	numbers	(3,	4,	7,	5,	8}.
Clearly,	every	binary	relation	on	a	finite	set	can	be	represented	by	a	digraph

without	parallel	edges.	Conversely,	every	digraph	without	parallel	edges	defines
a	binary	relation	on	the	set	of	its	vertices.

Fig.	9-4	Digraph	of	a	binary	relation.



Fig.	9-5	Graphs	of	symmetric	binary	relation.

Reflexive	Relation:	For	some	relation	R	it	may	happen	that	every	element	is	in
relation	R	to	itself.	For	example,	a	number	is	always	equal	to	itself,	or	a	line	is
always	parallel	to	itself.	Such	a	relation	R	on	set	X	that	satisfies

xiRxi

for	every	xi	∈	X	is	called	a	reflexive	relation.	The	digraph	of	a	reflexive	relation
will	 have	 a	 self-loop	 at	 every	 vertex.	 Such	 a	 digraph	 representing	 a	 reflexive
binary	relation	on	its	vertex	set	may	be	called	a	reflexive	digraph.	A	digraph	in
which	no	vertex	has	a	self-ioop	is	called	an	irreflexive	digraph.

Symmetric	Relation:	For	some	relation	R	it	may	happen	that	for	all	xi	and	xi	if

xiRxj	holds,	then	xjRxj	also	holds.

Such	a	relation	is	called	a	symmetric	relation.	“Is	spouse	of”	is	a	symmetric	but
irreflexive	relation.	“Is	equal	to”	is	both	symmetric	and	reflexive.
The	digraph	of	a	symmetric	relation	is	a	symmetric	digraph	because	for	every

directed	edge	from	vertex	xi	to	xj	there	is	a	directed	edge	from	xj	to	xi.	Figure	9-
5(a)	shows	the	graph	of	an	irreflexive,	symmetric	binary	relation	on	a	set	of	four
elements.	 The	 same	 relation	 can	 also	 be	 represented	 by	 drawing	 just	 one
undirected	edge	between	every	pair	of	vertices	that	are	related,	as	in	Fig.	9-5(b).
Thus	 every	 undirected	 graph	 is	 a	 representation	 of	 some	 symmetric	 binary
relation	(on	the	set	of	 its	vertices).	Furthermore,	every	undirected	graph	with	e
edges	can	be	thought	of	as	a	symmetric	digraph	with	2e	directed	edges.	(A	two-
way	street	is	equivalent	to	two	one-way	streets	pointed	in	opposite	directions.)

Transitive	 Relation:	 A	 relation	 R	 is	 said	 to	 be	 transitive	 if	 for	 any	 three
elements	xi,	xj,	and	xk	in	the	set,



xiRxj	and	xjRxk

always	imply

xiRxk.

The	binary	relation	“is	greater	than,”	for	example,	is	a	transitive	relation.	If	xi	>
xj	and	xi	>	xk,	clearly	xi	>	xk.	“Is	descendent	of”	is	another	example	of	a	transitive
relation.
The	digraph	of	a	transitive	(but	irreflexive	and	asymmetric)	binary	relation	is

shown	 in	 Fig.	 9-4.	 Note	 the	 triangular	 subgraphs.	 A	 digraph	 representing	 a
transitive	relation	(on	its	vertex	set)	is	called	a	transitive	directed	graph.

Equivalence	Relation:	A	binary	relation	is	called	an	equivalence	relation	if	it
is	reflexive,	symmetric,	and	transitive.	Some	examples	of	equivalence	relations
are	“is	parallel	to,”	“is	equal	to,”	“is	congruent	to,”	“is	equal	to	modulo	m,”	and
“is	isomorphic	to.”
The	graph	representing	an	equivalence	relation	may	be	called	an	equivalence

graph.	What	 does	 an	 equivalence	graph	 look	 like?	Let	 us	 look	 at	 an	 example,
consisting	of	the	equivalence	relation	“is	congruent	to	modulo	3”	defined	on	the
set	of	11	 integers,	10	 through	20.	The	graph	 is	 shown	 in	Fig.	9-6.	 (Recall	 that
each	undirected	edge	in	Fig.	9-6	represents	two	parallel	but	oppositely	directed
edges.)
In	Fig.	9-6	we	see	that	the	vertex	set	of	the	graph	is	divided	into	three	disjoint

classes,	 each	 in	 a	 separate	 component.	 Each	 component	 is	 an	 undirected
subgraph	(due	to	symmetry)	with	a	self-loop	at	each	vertex	(due	to	reflexivity).
Furthermore,	 in	 each	 component	 every	 vertex	 is	 related	 to	 (i.e.,	 joined	 by	 an
edge	to)	every	other	vertex.

Fig.	9-6	Equivalence	graph.

In	general,	an	equivalence	relation	on	a	set	partitions	the	elements	of	 the	set



into	classes	(called	equivalence	classes)	such	that	two	elements	are	in	the	same
class	if	and	only	if	they	are	related.	Symmetry	ensures	that	there	is	no	ambiguity
regarding	 membership	 in	 the	 equivalence	 class;	 otherwise,	 xi	 may	 have	 been
related	to	xj	but	not	vice	versa.	Transitivity	ensures	that	in	each	component	every
vertex	is	joined	to	every	other	vertex,	because	if	a	is	related	to	b	and	b	is	related
to	c,	a	is	also	related	to	c.	Transitivity	also	guarantees	that	no	element	can	be	in
more	than	one	class.	Reflexivity	allows	an	element	to	be	in	a	class	by	itself,	if	it
is	not	related	to	any	other	element	in	the	set.

Relation	Matrices:	A	binary	relation	R	on	a	set	can	also	be	represented	by	a
matrix,	 called	 a	 relation	 matrix.	 It	 is	 a	 (0,	 1),	 n	 by	 n	 matrix,	 where	 n	 is	 the
number	of	elements	in	the	set.	The	i,	j	th	entry	in	the	matrix	is	1	if	xiRxj	is	true,
and	 is	0,	otherwise.	For	example,	 the	 relation	matrix	of	 the	 relation	“is	greater
than”	on	the	set	of	integers	(3,	4,	7,	5,	8]	is

We	shall	see	in	Section	9-8	that	 this	 is	precisely	the	adjacency	matrix	of	 the
digraph	representing	the	binary	relation.

9-4.	DIRECTED	PATHS	AND	CONNECTEDNESS

Walks,	paths,	and	circuits	in	a	directed	graph,	in	addition	to	being	what	they
are	 in	 the	 corresponding	 undirected	 graph,	 have	 the	 added	 consideration	 of
orientation.	For	example,	in	Fig.	9-1,	the	sequence	of	vertices	and	edges	v5	e8	v3
e6	 v4	 e3	 v1	 is	 a	 path	 “directed”	 from	 v5	 to	 v1z,	 whereas	 v5	 e7	 v4	 e6	 v3	 e1	 v1
(although	a	path	 in	 the	corresponding	undirected	graph)	has	no	such	consistent
direction	from	v5	 to	v1	A	distinction	must	be	made	between	these	two	types	of
paths.	 It	 is	 natural	 to	 call	 the	 first	 one	 a	 directed	 path	 from	 v5	 to	 v1,	 and	 the
second	 one	 a	 semipath.	 The	 word	 “path”	 in	 a	 digraph	 could	 mean	 either	 a
directed	path	or	a	semipath,	and	similarly	for	walks,	circuits,	and	cutsets.	More



precisely:
A	directed	walk	 from	a	vertex	vi	 to	vj	 is	 an	 alternating	 sequence	of	vertices

and	edges,	beginning	with	vi.	and	ending	with	vj,	such	that	each	edge	is	oriented
from	the	vertex	preceding	it	 to	 the	vertex	following	it.	Of	course,	no	edge	in	a
directed	walk	appears	more	than	once,	but	a	vertex	may	appear	more	than	once,
just	as	in	the	case	of	undirected	graphs.	A	semiwalk	in	a	directed	graph	is	a	walk
in	 the	corresponding	undirected	graph,	but	 is	not	 a	directed	walk.	A	walk	 in	 a
digraph	can	mean	either	a	directed	walk	or	a	semiwalk.
The	 definitions	 of	 circuit,	 semicircuit,	 and	 directed	 circuit	 can	 be	 written

similarly.	Let	 us	 turn	 to	Fig.	 9-1	once	more.	The	 set	 of	 edges	 (e1,	e6,	e3}	 is	 a
directed	circuit.	But	{e1,	e6,	e2}	is	a	semicircuit.	Both	of	them	are	circuits.

Connected	Digraphs:	In	Chapter	2	a	graph	(i.e.,	undirected	graph)	was	defined
as	connected	 if	 there	was	at	 least	one	path	between	every	pair	of	vertices.	 In	a
digraph	 there	 are	 two	 different	 types	 of	 paths.	 Consequently,	 we	 have	 two
different	types	of	connectedness	in	digraphs.	A	digraph	G	is	said	to	be	strongly
connected	if	there	is	at	least	one	directed	path	from	every	vertex	to	every	other
vertex.	 A	 digraph	 G	 is	 said	 to	 be	 weakly	 connected	 if	 its	 corresponding
undirected	graph	is	connected	but	G	is	not	strongly	connected.	In	Fig.	9-2	one	of
the	digraphs	is	strongly	connected,	and	the	other	one	is	weakly	connected.	The
statement	 that	 a	 digraph	G	 is	 connected	 simply	 means	 that	 its	 corresponding
undirected	graph	is	connected;	and	thus	G	may	be	strongly	or	weakly	connected.
A	directed	graph	that	is	not	connected	is	dubbed	as	disconnected.
Since	 there	 are	 two	 types	of	 connectedness	 in	 a	digraph,	we	can	define	 two

types	 of	 components	 also.	 Each	 maximal	 connected	 (weakly	 or	 strongly)
subgraph	of	a	digraph	G	will	still	be	called	a	component	of	G.	But	within	each
component	 of	G	 the	maximal	 strongly	 connected	 subgraphs	will	 be	 called	 the
fragments	(or	strongly	connected	fragments)	of	G.
For	 example,	 the	 digraph	 in	 Fig.	 9-7	 consists	 of	 two	 components.	 The

component	 g1	 contains	 three	 fragments	 {e1,	 e2},	 {e5,	 e6,	 e7,	 e5},	 and	 {e10}.
Observe	that	e3,	e4,	and	e9	do	not	appear	in	any	fragment	of	g1.



Fig.	9-7	Disconnected	digraph	with	two	components.

Fig.	9-8	Condensation	of	Fig.	9-7.

Condensation:	The	condensation	Gc	of	a	digraph	G	is	a	digraph	in	which	each
strongly	connected	fragment	is	replaced	by	a	vertex,	and	all	directed	edges	from
one	strongly	connected	component	 to	another	are	 replaced	by	a	single	directed
edge.	The	condensation	of	the	digraph	G	in	Fig.	9-7	is	shown	in	Fig.	9-8.
Two	observations	can	be	made	from	the	definition:

1. The	condensation	of	a	strongly	connected	digraph	is	simply	a	vertex.

2. The	condensation	of	a	digraph	has	no	directed	circuit.

Accessibility:	 In	 a	digraph	a	vertex	b	 is	 said	 to	be	accessible	 (or	 reachable)
from	 vertex	 a	 if	 there	 is	 a	 directed	 path	 from	 a	 to	 b.	 Clearly,	 a	 digraph	G	 is
strongly	connected	if	and	only	if	every	vertex	in	G	is	accessible	from	every	other



vertex.

9-5.	EULER	DIGRAPHS

The	notion	of	the	Euler	graph	can	be	extended	to	digraphs	also.	In	a	digraph	G
a	 closed	 directed	 walk	 (i.e.,	 a	 directed	 walk	 that	 starts	 and	 ends	 at	 the	 same
vertex)	which	traverses	every	edge	of	G	exactly	once	is	called	a	directed	Euler
line.	A	digraph	containing	a	directed	Euler	line	is	called	an	Euler	digraph.	The
graph	in	Fig.	9-9	is	an	Euler	digraph,	in	which	the	walk	a	b	c	d	e	f	 is	an	Euler
line.
When	is	a	digraph	an	Euler	digraph?	Clearly,	the	digraph	must	be	connected,

with	the	possible	exception	of	isolated	vertices;	otherwise,	every	edge	cannot	be
traversed	 in	 one	 walk.	 In	 fact,	 an	 Euler	 digraph	 must	 be	 strongly	 connected,
although	 every	 strongly	 connected	 digraph	 need	 not	 be	 an	 Euler	 digraph
(Problem	9-13).	Theorem	9-1	 (whose	 proof	 follows	 the	 proof	 of	Theorem	2-4
almost	 verbatim)	provides	 a	very	 simple	 test	 for	 determining	whether	or	 not	 a
digraph	has	an	Euler	line.

Fig.	9-9	Euler	digraph.

THEOREM	9-1

A	digraph	G	is	an	Euler	digraph	if	and	only	if	G	is	connected	and	is	balanced
[i.e.,	d	−(v)	=	d	+(v)	for	every	vertex	v	in	G].

Let	 us	 now	 consider	 an	 application	 of	 the	 Euler	 digraph	 for	 solving	 an
important	 problem	 in	 communication	 theory.	 The	 problem,	 which	 is	 often
referred	to	as	the	teleprinter’s	problem,	was	solved	in	1940	by	I.	G.	Good	using
the	digraph,	and	was	presented	in	a	classic	paper	in	1946	[9-2].



Teleprinter’s	Problem:	How	long	is	a	longest	circular	(or	cyclic)	sequence	of
l’s	 and	 0’s	 such	 that	 no	 subsequence	 of	 r	 bits	 appears	more	 than	 once	 in	 the
sequence?	Construct	one	such	longest	sequence.

Solution:	Since	there	are	2r	distinct	r-tuples	formed	from	0	and	1,	the	sequence
can	 be	 no	 longer	 than	 2r	 bits	 long.	 Using	 Theorem	 9-1,	 we	 shall	 construct	 a
circular	sequence	2r	bits	long	with	the	required	property	that	no	subsequence	of	r
bits	be	repeated.
Construct	 a	 digraph	G	 whose	 vertices	 are	 all	 (r	 −	 l)-tuples	 of	 0’s	 and	 l’s.

Clearly,	there	are	2r−1	vertices	in	G.	Let	a	typical	vertex	be

α1	α2	.	.	.	αr−1,	 where	αi	=	0	or	1.

Draw	an	edge	directed	from	this	vertex	(α1	α2	.	.	.	αr−1)	to	each	of	two	vertices
(α2	α3	.	.	.	αr−10)	and	(α2	α3	.	.	.	αr−11);	label	these	directed	edges	α1	α2	.	.	.	αr−10
and	α1	α2	.	.	.	αr−11,	respectively.	Draw	two	such	edges	directed	from	each	of	the
2r−l	vertices.	(A	self-loop	will	result	in	each	of	the	two	cases	when	α1	=	α2	=	⋯
=	αr−1	=	0	or	1.)
The	 resulting	 digraph	 is	 an	 Euler	 digraph	 because	 for	 each	 vertex	 the	 in-

degree	equals	the	out-degree	(each	being	equal	to	two).	A	directed	Euler	line	in
G	consists	of	the	2r	edges,	each	with	a	distinct	r-bit	label.	The	labels	of	any	two
consecutive	edges	in	the	Euler	line	are	of	the	form	α1α2	.	.	.	αr−1	αr;	α2	α3	.	.	.	αr
αr+1	 ;	 that	 is,	 the	 r	 −	 1	 trailing	bits	 of	 the	 first	 edge	 are	 identical	 to	 the	 r	 −	 1
leading	bits	of	the	second	edge.	Thus	in	the	sequence	of	2r	bits,	made	of	the	first
bit	of	each	of	 the	edges	 in	 the	Euler	 line,	every	possible	subsequence	of	r	bits
occurs	as	the	label	of	an	edge;	and	since	no	two	edges	have	the	same	label,	no
subsequence	 occurs	more	 than	 once.	 The	 circular	 arrangement	 is	 achieved	 by
joining	the	two	ends	of	the	sequence.)



Fig.	9-10	Euler	digraph	for	maximum-length	sequence.

For	r	=	4,	the	graph	in	Fig.	9-10	illustrates	the	procedure	of	obtaining	such	a
maximum-length	 sequence.	 One	 such	 sequence	 is	 0000101001101111
corresponding	to	the	walk	e1	e2	e3	e4	e5	e6	e7	e8	e9	e10	e11	e12	e13	e14	e15	e16.
This	problem	 is	also	encountered	 in	 locating	 the	position	of	a	 rotating	drum

(Problem	 9-19)	 with	 the	 surface	 carrying	 two	 different	 types	 of	 marks.	 The
problem	of	the	rotating	drum	is	similar	to	that	of	a	feedback	shift	register	(to	be
discussed	in	Chapter	12).	The	quest	for	a	word	in	which	each	arrangement	of	r
letters	of	a	given	alphabet	appears	exactly	once,	encountered	in	cryptography,	is
also	the	same	problem	(Problem	9-20).
It	 is	not	difficult	 to	see	 that	 the	alphabet	size	need	not	be	2.	 It	could	be	any

number	m.	In	that	case,	the	maximum-length	sequence	is	mr	symbols	long.	The
in-degree	 and	 out-degree	 of	 each	 vertex	 in	 the	 corresponding	 Euler	 digraph
equals	m,	rather	than	two.

Number	of	Euler	Lines:	In	Fig.	9-10	there	is	more	than	one	Euler	line.	In	fact,
the	digraph	has	16	distinct	Euler	lines.	(Note	that	rotations	of	the	same	sequence
of	 edges	 are	 not	 considered	 distinct.)	 Finding	 the	 number	 of	 distinct	 directed
Euler	lines	in	a	given	Euler	digraph	is	also	of	interest	in	many	applications.	This
problem	of	enumeration	was	solved	by	N.	G.	deBruijn	in	1946	for	those	regular



Euler	 digraphs	 in	 which	 the	 in-degree	 and	 out-degree	 of	 every	 vertex	 were
exactly	 two,	 the	 digraph	 in	 Fig.	 9-10,	 for	 example.	 In	 1951	 van	 Aardeniie-
Ehrenfest	 and	deBruijn	 [9-9]	 solved	 the	more	general	problem	of	 counting	 the
number	of	distinct	directed	Euler	lines	in	any	Euler	digraph.
The	number	of	distinct	Euler	lines	in	a	balanced,	connected	digraph	G	can	be

obtained	by	counting	certain	types	of	spanning	trees	 in	G,	 to	be	covered	in	the
next	section.

9-6.	TREES	WITH	DIRECTED	EDGES

A	tree	(for	undirected	graphs)	was	defined	as	a	connected	graph	without	any
circuit.	 The	 basic	 concept	 as	 well	 as	 the	 term	 “tree”	 remains	 the	 same	 for
digraphs.	A	 tree	 is	a	connected	digraph	 that	has	no	circuit	−	neither	a	directed
circuit	nor	a	semicircuit.	A	tree	of	n	vertices	contains	n	−	1	directed	edges	and
has	properties	similar	to	those	with	undirected	edges.	Trees	with	directed	edges
are	of	great	importance	in	many	applications,	such	as	electrical	network	analysis,
game	 theory,	 theory	 of	 languages,	 computer	 programming,	 and	 counting
problems,	to	name	a	few.
In	 addition	 to	 being	 trees	 in	 the	 undirected	 sense,	 trees	 in	 digraphs	 have

additional	properties	and	variations	resulting	from	the	relative	orientations	of	the
edges.	 One	 such	 particularly	 useful	 type	 of	 rooted	 tree	with	 directed	 edges	 is
called	an	arborescence	and	is	defined	as	follows:

Arborescence:	A	digraph	G	is	said	to	be	an	arborescence	if

1. G	contains	no	circuit	−	neither	directed	nor	semicircuit.

2. In	G	there	is	precisely	one	vertex	v	of	zero	in-degree.

This	vertex	v	is	called	the	root	of	the	arborescence.	An	arborescence	is	shown	in
Fig.	9-11.



Fig.	9-11	Arborescence.

THEOREM	9-2

An	arborescence	is	a	tree	in	which	every	vertex	other	than	the	root	has	an	in-
degree	of	exactly	one.

Proof:	An	arborescence	with	n	vertices	can	have	at	most	n	−	1	edges	because
of	condition	1.	Therefore,	the	sum	of	in-degrees	of	all	vertices	in	G

d	−(v1)	+	d	−(v2)	+	⋯	+	d	−(vn)	≤	n	−	l.

Of	the	n	terms	on	the	left-hand	side	of	this	equation,	only	one	is	zero	because	of
condition	2;	others	must	all	be	positive	integers.	Therefore,	they	must	all	be	1’s.
Now,	since	there	are	exactly	n	−	1	vertices	of	in-degree	one	and	one	vertex	of	in-
degree	 zero,	 digraph	G	 has	 exactly	n	 −	 1	 edges.	 Since	G	 is	 also	 circuitless,	 it
must	be	connected,	and	hence	a	tree.	

An	 arborescence	 is	 in	 a	 sense	 a	 tree	 directed	 out	 of	 the	 root.	 Therefore,	 an
arborescence	is	sometimes	referred	to	as	an	out-tree.	(Reversing	the	direction	of
every	edge	in	an	arborescence	will	produce	what	may	be	called	an	in-tree.)

THEOREM	9-3

In	 an	 arborescence	 there	 is	 a	 directed	 path	 from	 the	 root	R	 to	 every	 other
vertex.	Conversely,	a	circuitless	digraph	G	is	an	arborescence	if	there	is	a	vertex
v	in	G	such	that	every	other	vertex	is	accessible	from	v,	and	v	is	not	accessible
from	any	other	vertex.

Proof:	(a)	In	an	arborescence	consider	a	directed	path	P	starting	from	the	root
R	 and	 continuing	 as	 far	 as	 possible.	 P	 can	 end	 only	 at	 a	 pendant	 vertex;



otherwise,	we	get	a	vertex	whose	in-degree	is	two	or	more.	A	contradiction.
Since	an	arborescence	 is	 connected,	 every	vertex	 lies	on	 some	directed	path

from	the	root	R	to	each	of	the	pendant	vertices.
(b)	Conversely,	 since	 every	 vertex	 in	G	 is	 accessible	 from	 v,	 and	G	 has	 no

circuit,	G	is	a	tree.	Moreover,	since	v	is	not	accessible	from	any	other	vertex,	d
−(v)	=	0.	Every	other	vertex	is	accessible	from	v,	and	therefore	the	in-degree	of
each	of	these	vertices	must	be	at	least	one.	The	in-degree	cannot	be	greater	than
one	because	there	are	only	n	−	1	edges	in	G	(n	being	the	number	of	vertices	in
G).	

The	 following	 is	 an	 important	 application	 of	 arborescences	 to	 the	 theory	 of
computer	algorithms.

Polish	Notation:	Consider	the	arithmetic	expression

In	a	procedural	language	(such	as	FORTRAN	or	ALGOL)	this	expression	might
be	written	as

where	↑	denotes	exponentiation.
In	 evaluating	 this	 expression	 the	 computer	 must	 perform	 the	 arithmetic

operations	 in	 a	 certain	order;	 otherwise,	 it	will	 produce	 a	wrong	 result.	Let	 us
number	 the	 operations	 in	 this	 expression	 in	 the	 order	 in	which	 they	might	 be
performed.

To	evaluate	such	an	expression,	the	machine	will	have	to	scan	the	expression
back	and	forth	to	find	the	sequence	of	operations	to	be	performed.
To	 avoid	 scanning	 back	 and	 forth,	 the	 computer	 niakes	 a	 preliminary

translation	of	expressions	such	as	(9-2)	into	the	Polish	notation	(invented	by	the
Polish	 logician,	 Lukasiewicz).	 Polish	 notation	 is	 also	 called	 parenthesis-free
notation,	because	it	contains	no	parentheses.	This	notation	has	the	advantage	that
the	operations	appear	exactly	in	the	same	order	as	they	are	performed.
The	basic	idea	in	Polish	notation	is	that	a	binary	operator	appears	just	to	the

left	of	the	two	operands	rather	than	in	between	the	two	operands.	Thus	x	+	y	is



written	 as	 +	 xy.	 The	 translation	 of	 expressions	 from	 procedural	 language	 into
Polish	notation	is	extremely	important	in	compiling	and	can	be	accomplished	by
first	representing	the	given	expression	by	means	of	an	arborescence	as	follows	:
Each	 variable	 (or	 constant)	 appearing	 in	 the	 expression	 is	 represented	 by	 a
pendant	vertex.	Each	internal	vertex	represents	a	binary	operator	having	the	two
subarborescences	as	its	operands.	An	arborescence	for	expression	(9-2)	is	shown
in	Fig.	9-12.

To	 obtain	 the	 expression	 in	 Polish	 notation,	 we	 traverse	 the	 arborescence
starting	from	the	root	from	left	to	right	and	from	top	to	bottom,	as	indicated	by
the	dotted	line	in	Fig.	9-12.	Each	time	we	come	across	a	vertex	that	has	not	been
traversed	before,	we	append	its	label	to	the	existing	string.	This	process	in	Fig.
9-12	yields

Fig.	9-12	Arborescence	for	a	+	b	−	c	·	d	÷	(g	↑	x	–	f).

An	expression	in	Polish	notation	is	evaluated	as	follows:	We	start	at	the	right
extreme	and	move	to	the	left.	Whenever	an	operator	is	encountered	the	operation
is	performed	between	the	two	operands	immediately	to	 the	right	of	 it.	After	an
operation	 is	 performed,	 the	 resultant	 is	 regarded	 as	 one	 operand	 for	 the	 next
operation.	You	can	verify	that	under	this	procedure	expression	(9-4)	is	equal	to
(9-2).	The	advantage	of	expression	(9-4)	over	(9-2)	is	that	in	(9-4)	there	are	no
parentheses	 and	 the	operators	 appear	 in	 the	order	 (from	 right	 to	 left)	 in	which
they	 are	 to	 be	 acted	 upon.	 Therefore,	 no	 back	 and	 forth	 scanning	 is	 required



during	the	computation.

Ordered	Trees:	You	must	have	noticed	that	in	the	expression	arborescence	of
Fig.	9-12	the	relative	positions	of	the	vertices	in	the	plane	of	the	paper	—	left	or
right,	up	or	down	—	are	 important	and	must	be	preserved.	 In	 this	sense	 it	 is	a
“rigid”	graph,	and	a	graph	isomorphic	to	it	may	not	preserve	its	properties.	This
in	fact	is	not	purely	a	graph-theoretic	problem;	and	this	is	the	first	and	only	time
in	this	book	we	shall	consider	such	a	structure.
In	computer	literature	a	tree	in	which	the	relative	order	of	subtrees	meeting	at

each	vertex	must	be	preserved	is	called	an	ordered	tree	or	a	planar	tree	(because
the	 tree	 can	 be	 visualized	 as	 rigidly	 embedded	 in	 the	 plane	 of	 the	 paper).	 In
computer	science	the	term	tree	usually	means	an	ordered	tree,	and	by	convention
a	tree	is	drawn	hanging	down	with	the	root	at	the	top.

Spanning	 Arborescence:	 A	 spanning	 tree	 in	 an	 nvertex	 connected	 digraph,
analogous	 to	a	spanning	 tree	 in	an	undirected	graph,	consists	of	n	−	1	directed
edges.	A	spanning	arborescence	in	a	connected	digraph	is	a	spanning	tree	that	is
an	arborescence.	For	example,	a	spanning	arborescence	in	Fig.	9-13	is	{f,	b,	d}.
There	 is	 a	 striking	 relationship	between	 a	 spanning	 arborescence	 and	 an	Euler
line.	This	is	brought	out	by	Theorems	9-4	and	9-5.

Fig.	9-13	Euler	digraph.

THEOREM	9-4

In	a	connected,	balanced	digraph	G	of	n	vertices	and	m	edges,	let	W	=	(e1,	e2,	.
.	.	,	em)	be	an	Euler	line,	which	starts	and	ends	at	a	vertex	v	(i.e.,	v	is	the	initial
vertex	of	e1	and	the	terminal	vertex	of	em).	Among	the	m	edges	in	W	there	are	n
−	1	edges	that	“enter”	each	of	n	−	1	vertices,	other	than	v,	for	the	first	time.	The
subdigraph	 g	 of	 these	 n	 −	 1	 directed	 edges	 together	 with	 the	 n	 vertices	 is	 a
spanning	arborescence	of	G,	rooted	at	vertex	v.



Illustration:	Before	proving	the	theorem,	let	us	look	at	an	example.	In	Fig.	9-
13,	W	=	(b	d	c	e	 f	g	h	a)	 is	an	Euler	 line,	starting	and	ending	at	vertex	2.	The
subdigraph	{b,	d,	f}	is	a	spanning	arborescence	rooted	at	vertex	2.

Proof:	 In	 the	 subdigraph	 g,	 vertex	 v	 is	 of	 in-degree	 zero,	 and	 every	 other
vertex	is	of	in-degree	one;	for	g	includes	exactly	one	edge	going	to	each	of	the	n
−	1	vertices,	and	no	edge	going	to	v.	Moreover,	the	way	g	is	defined	in	W,	g	is
connected	 and	 contains	 n	 −	 1	 directed	 edges.	 Therefore,	 g	 is	 a	 spanning
arborescence	in	G	and	is	rooted	at	v.	

Theorem	9-4	provides	a	method	of	obtaining	a	spanning	arborescence	rooted
at	 any	 specified	 vertex,	 provided	 the	 digraph	 is	 Eulerian.	 Conversely,	 given	 a
spanning	 arborescence	 in	 an	 Euler	 digraph,	 an	 Euler	 line	 can	 be	 constructed
using	 Theorem	 9-5.	 This	 important	 result	 discovered	 by	 T.	 van	 Aardenne-
Ehrenfest	and	N.	G.	deBruijn	in	1951	is	used	in	counting	the	number	of	distinct
Euler	lines.
For	 the	 sake	 of	 traversing	 the	 edges	 along	with	 rather	 than	 opposite	 to	 the

direction	of	edges,	it	is	better	to	express	Theorem	9-5	in	terms	of	an	in-tree,	that
is,	 an	 arborescence	 in	which	 the	 direction	 of	 every	 edge	has	 been	 inverted.	 In
Fig.	9-14	the	subdigraph	{e2,	e3,	e7,	e10,	e11	}is	a	spanning	in-tree.

THEOREM	9-5

Let	G	be	an	Euler	digraph	and	T	be	a	spanning	in-tree	in	G,	rooted	at	a	vertex
R.	Let	e1	be	an	edge	in	G	incident	out	of	the	vertex	R.	Then	a	directed	walk	W	=
(e1,	e2,	.	.	.	,	em)	is	a	directed	Euler	line,	if	it	is	constructed	as	follows:

Fig.	9-14	Spanning	in-tree	rooted	at	R.



1. No	edge	is	included	in	W	more	than	once.

2. In	exiting	a	vertex	 the	one	edge	belonging	to	T	 is	not	used	until	all	other
outgoing	edges	have	been	traversed.

3. The	walk	is	terminated	only	when	a	vertex	is	reached	from	which	there	is
no	edge	left	on	which	to	exit.

Proof:	The	walk	W	must	terminate	at	R,	because	all	vertices	must	have	been
entered	 as	often	 as	 they	have	been	 left	 (because	G	 is	 balanced).	Now	suppose
there	 is	an	edge	a	 in	G	 that	has	not	been	 included	 in	W.	Let	v	be	 the	 terminal
vertex	of	a.	Since	G	is	balanced,	v	must	also	be	the	initial	vertex	of	some	edge	b
not	included	in	W.	Edge	b	going	out	of	vertex	v	must	be	in	T,	according	to	rule	1.
This	omitted	edge	 leads	 to	another	omitted	edge	c	 in	T,	and	so	on.	Ultimately,
we	 arrive	 at	 R,	 and	 find	 an	 outgoing	 edge	 there	 not	 included	 in	 W.	 This
contradicts	rule	3.	

The	number	of	distinct	Euler	lines	formed	from	a	given	in-tree	T,	and	starting
with	edge	e1	at	R,	can	be	computed	by	considering	all	 the	choices	available	at
each	vertex,	after	starting	with	e1.
Since	there	is	exactly	one	outgoing	edge	in	T	at	each	vertex	and	this	edge	is	to

be	selected	last	(rule	2),	the	remaining	d+(vi)	−	1	edges	at	vertex	vi	can	be	chosen
in

[d	+(vi)	−	1]!	ways.

And	since	these	are	independent	choices,	we	have	altogether

different	Euler	lines	that	meet	the	three	rules	in	Theorem	9-5.
Let	us	apply	these	three	rules	to	obtain	different	directed	Euler	lines	in	Fig.	9-

14,	 from	 the	 in-tree	 {e2,	 e3,	 e7,	 e10,	 e11},	 starting	 with	 edge	 e1.	 We	 get	 the
following	two	directed	Euler	lines:

(e1	e12	e5	e6	e7	e8	e9	e10	e11	e2	e4	e3),

and



(e1	e12	e8	e9	e10	e11	e5	e6	e7	e2	e4	e3).

The	value	of	expression	(9-5)	for	Fig.	9-14	is	2.	Note	that	 these	are	not	all	 the
directed	 Euler	 lines	 in	 the	 digraph,	 but	 only	 those	 that	 are	 generated	 by	 the
specific	in-tree	in	accordance	with	the	rules	in	Theorem	9-5.
The	result	 in	Theorem	9-5	may	seem	contrived	at	 first	sight,	but	 it	 is	a	very

natural	step	in	counting	the	number	of	distinct	directed	Euler	lines	in	a	digraph,
which	will	be	undertaken	in	Section	9-9.

9-7.	FUNDAMENTAL	CIRCUITS	IN	DIGRAPHS

The	edges	of	a	connected	digraph	not	included	in	a	specified	spanning	tree	T
are	also	called	chords	with	respect	to	T.	Just	as	in	the	case	of	undirected	graphs,
every	chord	ci	when	added	to	the	spanning	tree	T	produces	a	fundamental	circuit
(which	may	be	a	directed	circuit	or	a	semicircuit).
A	cut-set	in	a	connected	digraph	G	(just	as	in	an	undirected	graph)	induces	a

partitioning	of	the	vertices	of	G	into	two	disjoint	subsets	V1	and	V2	such	that	the
cut-set	consists	of	all	those	edges	that	have	one	end	vertex	in	V1	and	the	other	in
V2.	All	edges	in	the	cut-set	may	be	directed	from	V1	to	V2,	or	vice	versa,	or	some
edges	may	be	directed	from	V1	to	V2	and	others	from	V2	to	Vj.†
The	concepts	of	spanning	trees,	fundamental	circuits,	and	fundamental	cutsets

are	illustrated	in	Fig.	9-15.	A	spanning	tree	is	shown	in	heavy	lines.	Observe	that
some	of	the	fundamental	circuits	are	directed	circuits	and	others	are	semicircuits.
The	 five	 fundamental	 cutsets,	 each	 corresponding	 to	 an	 edge	 in	 the	 spanning
tree,	are	also	shown.

Ring	Sum	of	Circuits:	Just	as	 in	undirected	graphs,	we	can	define	operations
between	subgraphs	of	a	digraph.	In	particular,	the	ring	sum	of	two	subdigraphs
g1	⊕	g2	 is	another	subdigraph	consisting	of	edges	 that	are	either	 in	g1	or	 in	g2
but	not	in	both.
As	in	undirected	graphs,	the	ring	sum	of	two	circuits	(directed	or	semicircuit)

in	a	digraph	is	either	a	third	circuit	or	a	union	of	edge-disjoint	circuits.	For	if	we
disregard	 the	 directions	 of	 edges	 in	 the	 circuits,	 the	 earlier	 results	 from
undirected	graphs	are	also	applicable	to	digraphs.	Under	the	ring-sum	operation,
⊕,	circuits	and	unions	of	edge-disjoint	circuits	form	a	group.	Every	element	of
this	group	can	be	expressed	as	a	 ring	sum	of	some	of	 the	 fundamental	circuits
with	respect	to	a	spanning	tree.	The	same	holds	for	cutsets	also.



Set	of	Directed	Circuits	Only:	The	most	important	property	of	a	set	of	μ	(=	e	−
n	+	1)	 fundamental	 circuits	 in	 a	 connected	graph	G	 (directed	or	undirected)	 is
that	 these	 circuits	 form	 a	 basis	 for	 all	 circuits	 in	G.	 Any	 circuit	 (directed	 or
semicircuit	in	a	digraph)	can	be	obtained	as	a	ring	sum	of	some	of	these	circuits.
But	in	many	applications	we	are	interested	only	in	the	set	of	directed	circuits	in	a
digraph.	Is	there	a	similar	basis	for	all	directed	circuits?
The	answer,	unfortunately,	is	no.	The	ring	sum	of	two	directed	circuits	is	not

necessarily	 another	 directed	 circuit	 or	 edge-disjoint	 union	 of	 directed	 circuits.
For	example,	in	Fig.	9-15	the	ring	sum	of	directed	circuits	a	c	b	⊕	a	d	g	b	=	d	g
c,	 a	 semicircuit.	 In	 fact,	 it	 can	 be	 shown	 that	 there	 exists	 no	 binary	 operation
under	which	all	directed	circuits	 (and	edge-disjoint	unions	of	directed	circuits)
form	a	group,	let	alone	a	vector	space.

Fig.	9-15	Directed	graph	and	a	spanning	tree.



The	 practical	 significance	 of	 this	 situation	 is	 to	 be	 discussed	 in	 connection
with	acyclic	digraphs,	the	topic	of	Section	9-11.

9-8.	MATRICES	A,	B,	AND	C	OF	DIGRAPHS

The	matrices	associated	with	a	digraph	are	quite	similar	to	those	discussed	in
Chapter	7	for	an	undirected	graph,	with	the	following	basic	difference.	In	order
to	 account	 for	 the	 orientation	 of	 the	 edges,	 the	 incidence,	 circuits,	 and	 cut-set
matrices	consist	of	+	1,	0,	−	1	(instead	of	only	0	and	1	for	undirected	graphs).
The	numbers	+1,	0,	−	1	 are	 regarded	as	ordinary	 real	numbers.	Their	 addition
and	multiplication	 are	 interpreted	 as	 in	 ordinary	 arithmetic	 (and	 not	modulo	 2
arithmetic	 as	 in	 the	 case	 of	 undirected	 graphs).	Consequently,	 the	 vectors	 and
vector	spaces	associated	with	a	digraph	and	its	subdigraphs	are	over	the	field	of
all	real	numbers,	and	not	GF(2).

Incidence	Matrix:	The	incidence	matrix	of	a	digraph	with	n	vertices,	e	edges,
and	 no	 self-loops	 is	 an	 n	 by	 n	 matrix	 A	 =	 [aij],	 whose	 rows	 correspond	 to
vertices	and	columns	correspond	to	edges,	such	that

aij	=	1, if	jth	edge	is	incident	out	of	ith	vertex,
=	−	1, if	jth	edge	is	incident	into	ith	vertex,
=	0, if	jth	edge	is	not	incident	on	ith	vertex.

A	digraph	and	 its	 incidence	matrix	are	 shown	 in	Fig.	9-16.	Observe	 that	 if	we
disregard	 the	orientations	of	 the	edges	and	correspondingly	change	−	1	 to	1	 in
the	incidence	matrix,	Fig.	9-16	becomes	identical	to	Fig.	7-1.
Observations	 1-6	 made	 in	 Section	 7-1	 on	 the	 properties	 of	 the	 incidence

matrix	of	an	undirected	graph,	with	minor	changes,	also	hold	for	digraphs.
Since	 the	 sum	 (in	 the	 real	 field)	 of	 each	 column	 is	 zero,	 the	 rank	 of	 the

incidence	matrix	of	a	digraph	of	n	 vertices	 is	 less	 than	n.	 In	 fact,	we	have	 the
following	theorem,	identical	to	Theorem	7-2,	which	can	be	proved	along	similar
lines.

THEOREM	9-6

If	A(G)	is	the	incidence	matrix	of	a	connected	digraph	of	n	vertices,	the	rank
of	A(G)	=n	−	1.

Deleting	any	one	row	from	A	we	get	Af,	 the	(n	−	1)	by	e	 reduced	incidence
matrix.	 The	 vertex	 corresponding	 to	 the	 deleted	 row	 is	 called	 the	 reference



vertex.

Unimodularity	of	A:	 It	was	observed	 in	Chapter	7	 that	 if	A	 is	 the	 incidence
matrix	of	an	undirected	graph,	the	determinant	of	every	square	submatrix	of	A	is
either	0	or	1.	This	was	a	 result	of	 the	 fact	 that	 the	determinant	was	defined	 in
modulo	2	arithmetic	and,	therefore,	could	have	no	other	value.
In	the	case	of	digraphs,	the	incidence	matrix	A	is	in	the	real	field,	and	on	first

sight	 it	 would	 appear	 that	 the	 determinants	 of	 its	 square	 submatrices	 could
acquire	 any	 integral	 value.	 This,	 however,	 is	 not	 the	 case,	 as	 shown	 in	 the
following	important	theorem.

THEOREM	9-7

The	 determinant	 of	 every	 square	 submatrix	 of	A,	 the	 incidence	matrix	 of	 a
digraph,	is	1,	−	1,	or	0.

Proof:	The	theorem	can	be	proved	directly	by	expanding	the	determinant	of	a
square	 submatrix	 of	 A.	 Consider	 a	 k	 by	 k	 submatrix	 M	 of	 A.	 If	 M	 has	 any
column	or	row	consisting	of	all	zeros,	det	M	is	clearly	zero.	Also	det	M	=	0	if
every	column	of	M	contains	the	two	nonzero	entries,	a	1	and	a	−	1.



Fig.	9-16	Digraph	and	its	incidence	matrix.

Now	 if	 det	M	 ≠	 0	 (i.e.,	M	 is	 nonsingular),	 then	 the	 sum	 of	 entries	 in	 each
column	of	M	cannot	be	zero.	Therefore,	M	must	have	a	column	in	which	there	is
a	single	nonzero	element	that	is	either	+1	or	−	1.	Let	this	single	element	be	in	the
(i,	j)th	position	in	M.	Thus

det	M	=	±	l.det	Mij,

where	Mij	is	the	submatrix	of	M	with	its	ith	row	and	jth	column	deleted.	The	(k	−
1)	 by	 (k	 −	 1)	 submatrix	 Mij	 is	 also	 nonsingular	 (because	 M	 is	 nonsingular);
therefore,	it	too	must	have	at	least	one	column	with	a	single	nonzero	entry,	say



in	 the	 (p,	 q)th	 position.	 Expanding	 det	 Mij	 about	 this	 element	 in	 the	 (p,q)th
position,

det	Mij	=	±[determinant	of	a	nonsingular
(k	−	2)	by	(k	−	2)	submatrix	of	M].

Repeated	application	of	this	procedure	yields

det	M	=	±1.
Hence	the	theorem.	

Any	matrix	with	every	square	submatrix	having	a	determinant	of	1,	−	1,	or	0
is	called	a	unimodular	matrix.	(Unimodular	matrices	also	play	an	important	role
in	linear	programming.)

Circuit	Matrix	of	a	Digraph:	Let	G	be	a	digraph	with	e	edges	and	q	circuits
(directed	 circuits	 or	 semicircuits).	 An	 arbitrary	 orientation	 (clockwise	 or
counterclockwise)	is	assigned	to	each	of	the	q	circuits.	Then	a	circuit	matrix	B	=
[bij]	of	the	digraph	G	is	a	q	by	e	matrix	defined	as

bij	=	1, if	ith	circuit	includes	jth	edge,	and	the	orientations	of	the	edge	and	circuit	coincide,
=	−	1, if	ith	circuit	includes	jth	edge,	but	the	orientations	of	the	two	are	opposite,
=	0, if	ith	circuit	does	not	include	the	jth	edge.

For	example,	a	circuit	matrix	of	the	digraph	in	Fig.	9-16	is

Note	 that	 the	 orientation	 assigned	 to	 each	 of	 the	 four	 circuits	 is	 entirely
arbitrary.	 The	 circuit	 in	 the	 first	 row	 is	 assigned	 clockwise	 orientation,	 in	 the
second	 row	 counterclockwise,	 the	 third	 counterclockwise,	 and	 the	 fourth
clockwise.	Changing	the	orientation	of	any	circuit	will	simply	change	the	sign	of
every	nonzero	entry	in	the	corresponding	row.	Also	note	that	if	we	subtract	the
first	row	from	the	second,	we	get	the	third	row.	Thus	the	rows	are	not	all	linearly
independent	(in	the	real	field,	of	course).



Observations	1-7	made	in	Section	7-3	about	the	circuit	matrix	of	an	undirected
graph	are	applicable	to	the	circuit	matrix	of	a	digraph	also	—	with	some	obvious
minor	changes.	Just	as	for	undirected	graphs,	the	rows	of	the	circuit	matrix	are
orthogonal	 to	 the	 rows	 of	 the	 incidence	matrix	 (this	 time	 in	 the	 real	 field),	 as
proved	in	Theorem	9-8.

THEOREM	9-8

Let	B	and	A	be,	respectively,	the	circuit	matrix	and	incidence	matrix	of	a	self-
loop-free	digraph	such	that	the	columns	in	B	and	A	are	arranged	using	the	same
order	of	edges.	Then

A·BT	=	B·AT	=	0,

where	superscript	T	denotes	the	transposed	matrix.

Proof:	Consider	the	mth	row	in	B	and	the	kth	row	in	A.	If	the	circuit	m	does
not	include	any	edge	incident	on	vertex	k,	the	product	of	the	two	rows	is	clearly
zero.	If,	on	the	other	hand,	vertex	k	 is	in	circuit	m,	 there	are	exactly	two	edges
(say	x	and	y)	incident	on	k	that	are	also	in	circuit	m.	This	situation	can	occur	in
only	four	different	ways,	as	shown	in	Fig.	9-17.	(The	other	four	cases	with	the
orientation	of	m	reversed	are	identical	to	these	when	x	and	y	are	interchanged.)
The	possible	entries	in	row	k	of	A	and	row	m	of	B	in	column	positions	x	and	y

are	tabulated	for	each	of	these	four	cases.

In	each	case,	the	dot	product	is	zero.	Therefore,	the	theorem.	

Using	Sylvester’s	theorem	(Appendix	B)	and	Theorem	9-8,	it	can	be	shown



Fig.	9-17	Vertex	k	in	circuit	m.

that	in	a	digraph	with	e	edges

rank	of	B	+	rank	of	A	=	e.

Morever,	for	a	connected	graph

rank	of	A	=	n	−	1,

and	therefore

rank	of	B	=	e	−	n	+	1.

The	following	two	important	properties	of	matrices	A	and	B	hold	for	digraphs
also,	and	can	be	proved	as	was	done	for	undirected	graphs	in	Chapter	7	(except
that	 here	 we	 are	 working	 in	 ordinary	 real	 arithmetic	 and	 not	 in	 modulo	 2
arithmetic).

1. The	 nonsingular	 submatrices	 of	 order	 n	 −	 1	 of	 A	 are	 in	 one-to-one
correspondence	 with	 the	 spanning	 trees	 of	 the	 connected	 digraph	 of	 n
vertices.



2. The	nonsingular	submatrices	of	B	of	order	µ	(=	e	−	n	+	1)	are	in	one-to-
one	correspondence	with	the	chord	set	(complement	of	the	spanning	tree)
of	the	connected	digraph	of	n	vertices	and	e	edges.

Sign	 of	 a	 Spanning	 Tree:	 For	 a	 digraph	 the	 determinant	 of	 the	 nonsingular
submatrix	of	A	corresponding	to	a	spanning	tree	T	can	assume	either	a	value	of
+1	or	−	1.	This	is	referred	to	as	the	sign	of	T.
As	we	shall	see	 in	Chapter	13,	 in	 the	analysis	of	a	certain	class	of	electrical

networks	 it	 is	necessary	 to	know	 the	signs	of	 the	spanning	 trees.	Note	 that	 the
sign	of	a	spanning	tree	 is	defined	only	for	a	particular	ordering	of	vertices	and
edges	in	A	(because	interchanging	two	rows	or	columns	in	a	matrix	changes	the
sign	of	 its	 determinant).	Thus	 the	 sign	of	 a	 spanning	 tree	 is	 relative.	Once	 the
sign	of	one	spanning	tree	is	arbitrarily	chosen,	the	sign	of	every	other	spanning
tree	is	determined	as	positive	or	negative	with	respect	to	this	spanning	tree.

Number	 of	 Spanning	 Trees:	 We	 have	 Theorem	 9-9	 for	 determining	 the
number	 of	 spanning	 trees	 in	 a	 connected	 digraph.	 (An	 identical	 result	 for
undirected	graphs	was	given	in	Problem	7-20.)

THEOREM	9-9

Let	 Af	 be	 the	 reduced	 incidence	 matrix	 of	 a	 connected	 digraph.	 Then	 the
number	of	spanning	trees	in	the	graph	equals	the	value	of

Proof:	According	to	the	Binet-Cauchy	theorem	(Appendix	A)

Every	major	of	Af	or	 	is	zero	unless	it	corresponds	to	a	spanning	tree,	in	which
case	its	value	is	1	or	−	1.	Since	both	majors	of	Af	and	 	have	the	same	value	+	1
or	−	1,	the	product	is	+1	for	each	spanning	tree.

Fundamental	 Circuit	 Matrix:	 The	 μ	 fundamental	 circuits	 each	 made	 by	 a
chord	(with	respect	to	some	specified	spanning	tree)	define	a	fundamental	circuit
matrix	Bf	 for	 a	 digraph.	 The	 orientation	 assigned	 to	 each	 of	 the	 fundamental



circuits	 is	 chosen	 to	 coincide	 with	 that	 of	 the	 chord.	 Therefore,	 Bf,	 a	 μ	 by	 e
matrix,	can	be	expressed	exactly	in	the	same	form	as	in	the	case	of	an	undirected
graph	in	Section	7-4:

Bf	=	[Iμ	¦	Bt],

where	Iμ	 is	 the	identity	matrix	of	order	μ,	and	the	columns	of	B,	correspond	to
the	edges	in	a	spanning	tree.	This	is	illustrated	in	Fig.	9-18.

Fig.	9-18	Digraph	and	its	fundamental	circuit	matrix.

The	 cut-set	matrix	C	of	 a	 digraph	G	 is	 also	 similarly	 defined.	And	 so	 is	 its
submatrix	Cf,	 the	 fundamental	 cut-set	matrix	with	 respect	 to	 a	 given	 spanning
tree	in	G.

9-9.	ADJACENCY	MATRIX	OF	A	DIGRAPH

Another	important	matrix	used	in	the	representation	and	study	of	digraphs	is
the	adjacency	matrix	 defined	 as	 follows	 :	Let	G	 be	 a	 digraph	with	n	 vertices,



containing	no	parallel	edges.	Then	the	adjacency	matrix	X	=	[xij]	of	the	digraph
G	is	an	n	by	n	(0,	l)-matrix	whose	element

xij	=	1,	 if	there	is	an	edge	directed	from	ith	vertex	to	jth	vertex,
=	0, otherwise.

A	digraph	and	its	adjacency	matrix	are	shown	in	Fig.	9-19.
The	adjacency	matrix	occurs	in	many	different	disciplines,	and	therefore	has

different	names.	 In	 the	 theory	of	 sequential	machines	 it	 is	called	 the	 transition
matrix.	In	the	calculus	of	relations	it	is	called	the	relation	matrix.	(Observe	that
the	relation	matrix	defined	in	Section	9-3	is	the	same	as	the	adjacency	matrix	of
the	corresponding	digraph.)	In	network	flows	it	is	called	the	connection	matrix.
It	 is	 also	 known	 as	 the	 precedence	 matrix	 or	 preference	 matrix	 in	 some
sociological	applications.	In	scheduling	and	critical-path	analysis	 the	adjacency
matrix	is	known	as	the	predecessor	matrix.
Let	 us	 make	 the	 following	 observations	 on	 the	 properties	 of	 the	 adjacency

matrix	X	of	a	digraph	G.

Fig.	9-19	Digraph	and	its	adjacency	matrix.

1. X	is	a	symmetric	matrix	if	and	only	if	G	is	a	symmetric	digraph.

2. Every	nonzero	element	on	 the	main	diagonal	 represents	a	self-loop	at	 the
corresponding	vertex.

3. There	is	no	way	of	showing	parallel	edges	in	X.	This	is	why	the	adjacency
matrix	is	defined	only	for	a	digraph	without	parallel	edges.

4. The	 sum	of	 each	 row	 equals	 the	 out-degree	 of	 the	 corresponding	 vertex,
and	 the	 sum	 of	 each	 column	 equals	 the	 in-degree	 of	 the	 corresponding
vertex.	The	number	of	nonzero	entries	in	X	equals	the	number	of	edges	in
G.

5. Permutation	 of	 any	 two	 rows	 accompanied	 by	 a	 permutation	 of	 the



corresponding	 columns	does	not	 alter	 the	graph.	The	permutation	merely
corresponds	 to	 a	 reordering	 of	 the	 vertices.	 Thus	 two	 digraphs	 are
isomorphic	 if	 and	 only	 if	 their	 adjacency	 matrices	 differ	 only	 by	 such
permutations.

6. If	X	is	the	adjacency	matrix	of	a	digraph	G,	then	the	transposed	matrix	XT

is	the	adjacency	matrix	of	a	digraph	GR	obtained	by	reversing	the	direction
of	every	edge	in	G.

7. For	any	square	(0,	l)-matrix	Q	of	order	n,	there	exists	a	unique	digraph	G
of	n	vertices,	such	that	Q	is	the	adjacency	matrix	of	G.

The	 adjacency	 matrix	 is	 used	 as	 a	 tool	 to	 investigate	 the	 properties	 of	 a
digraph,	 specially	 by	 means	 of	 a	 digital	 computer.	 For	 example,	 the
connectedness	of	a	digraph	is	reflected	in	its	adjacency	matrix	in	the	following
fashion.

Connectedness	 and	 the	Adjacency	Matrix:	A	 digraph	 is	 disconnected	 if	 and
only	if	its	vertices	can	be	ordered	in	such	a	way	that	its	adjacency	matrix	X	can
be	expressed	as	the	direct	sum	of	two	square	submatrices	X1	and	X2	as	follows:

Such	 a	 partitioning	 is	 possible	 if	 and	 only	 if	 the	 vertices	 in	 the	 submatrix	X1
have	no	edge	going	to	or	coming	from	the	vertex	set	in	X2.
Similarly,	 a	 digraph	 is	 weakly	 connected	 if	 and	 only	 if	 its	 vertices	 can	 be

ordered	in	such	a	way	that	its	adjacency	matrix	X	can	be	expressed	in	the	form
(9-7)	or	(9-8):

where	X1	and	X2	are	square	submatrices.	Form	(9-7)	 represents	 the	case	when
there	is	no	directed	edge	going	from	the	subdigraph	corresponding	to	X1	to	the
one	 corresponding	 to	 X2.	 Form	 (9-8)	 represents	 the	 case	 when	 there	 is	 no
directed	edge	going	to	the	subdigraph	corresponding	to	X1.



A	 digraph	 that	 is	 neither	 unconnected	 nor	 weakly	 connected	 is	 strongly
connected.	Therefore,	we	conclude	that	a	digraph	G	is	strongly	connected	if	and
only	if	the	vertices	of	G	cannot	be	ordered	such	that	its	adjancency	matrix	X	is
expressible	in	the	form	(9-6),	(9-7),	or	(9-8).

Number	of	Edge	Sequences:	We	have	the	following	result,	similar	to	Theorem
7-8,	concerning	the	powers	of	the	adjacency	matrix	X	of	a	digraph	G.

THEOREM	9-10

The	(i,j)th	entry	in	Xr	equals	the	number	of	different,	directed	edge	sequences
of	r	edges	from	the	ith	vertex	to	the	jth.

Proof:	(By	induction)	The	theorem	is	trivially	true	for	r	=	1.	As	the	inductive
hypothesis,	 assume	 that	 the	 theorem	 holds	 for	 Xr-1.	 The	 (i,	 j)th	 entry	 in	Xr(=
Xr−1.X)

according	 to	 the	 induction	 hypothesis.	 In	 (9-9),	 xkj	 =	 1	 or	 0,	 depending	 on
whether	or	not	there	is	a	directed	edge	from	k	to	j.	Thus	a	term	in	the	sum	(9-9)
is	nonzero	if	and	only	if	there	is	a	directed	edge	sequence	of	length	r	from	i	to	j,
whose	last	edge	is	from	k	to	j.	If	the	term	is	nonzero,	its	value	equals	the	number
of	such	edge	sequences	from	i	to	j	via	k.	This	holds	for	every	vertex	k,	1	≤	k	≤	n.
Therefore,	 (9-9)	 is	equal	 to	 the	number	of	all	possible	directed	edge	sequences
from	i	to	j.	

As	in	the	case	of	Theorem	7-7,	it	must	be	kept	in	mind	that	the	(i,	j)th	entry	in
Xr	gives	the	number	of	all	directed	edge	sequences	from	vertex	i	to	j.	These	edge
sequences	fall	in	three	different	categories:

1. Directed	 paths	 from	 i	 to	 j:	 Those	 directed	 edge	 sequences	 in	 which	 no
vertex	is	traversed	more	than	once.

2. Directed	 walks	 from	 i	 to	 j:	 Those	 directed	 edge	 sequences	 in	 which	 a
vertex	may	 be	 traversed	more	 than	 once,	 but	 no	 edge	 is	 traversed	more
than	once.



3. Those	 directed	 edge	 sequences	 in	 which	 an	 edge	 may	 also	 be	 traversed
more	than	once.

Unfortunately,	there	is	no	easy	way	of	separating	these,	say,	category	1	from	2
and	 3.	 This	 is	 why	 this	 simple	 method	 cannot	 be	 employed	 for	 enumerating
directed	paths	or	directed	circuits	of	a	specified	length.
For	example,	examine	the	fourth	power	of	the	adjacency	matrix	of	the	digraph

in	Fig.	9-19:

The	 entry	 in	 the	 second	 row	 and	 third	 column	 represents	 two	 directed	 edge
sequences	of	length	four:	c	b	g	f	(a	directed	walk	from	2	to	3)	and	d	d	c	b	(not	a
walk).	The	third	diagonal	entry	represents	two	directed	edge	sequences	of	length
four	beginning	and	ending	at	vertex	3	:	g	e	c	b	(a	directed	circuit)	and	g	f	g	f	(not
a	directed	circuit).	The	reader	should	also	examine	the	remaining	entries	in	X4.

Number	 of	 Arborescences:	 A	 method	 of	 counting	 the	 number	 of	 spanning
trees	 in	a	 labeled,	undirected	graph	was	suggested	 in	Problem	7-23.	There	 is	a
similar	formula	for	counting	the	number	of	spanning	arborescences	in	a	labeled,
connected,	 simple	 digraph.	 (Counting	 of	 the	 spanning	 arborescences	 in	 any
connected	digraph	is	a	trivial	extension	of	counting	them	in	a	simple,	connected
digraph.	The	self-loops	can	be	discarded	 right	away,	and	addition	of	a	parallel
edge	b	to	an	existing	edge	a	simply	doubles	the	number	of	the	arborescences	−
repeating	the	same	arborescences	with	a	replaced	by	b.)
In	 preparation	 for	 the	 arborescence	 counting	 formula,	 let	 us	 define,	 for	 a

simple	 digraph	G	 of	 n	 vertices,	 an	 n	 by	 n	 matrix	 called	 the	Kirchhoff	 matrix
K(G)	or	K	=	[kij]:

kii	=	d−(vi),	 in-degree	of	the	ith	vertex,

kij	=	−	xij,	 (i,	j)th	entry	in	the	adjacency	matrix,	with	a	negative	sign.

For	example,	a	digraph	and	its	K	matrix	are	shown	in	Fig.	9-20.



The	sum	of	the	entries	in	each	column	in	a	K	matrix	is	equal	to	zero,	which
means	that	the	n	rows	are	linearly	dependent;	therefore,

det	K	=	0.

Next	we	explore	the	special	property	of	the	K	matrix	of	an	arborescence.

THEOREM	9-11

A	simple	digraph	G	of	n	vertices	and	n	−	1	directed	edges	is	an	arborescence
rooted	at	v1	if	and	only	if	the	(1,	1)	cofactor	of	K(G)	is	equal	to	1.

Proof:	(a)	Let	G	be	an	arborescence	with	n	vertices	and	rooted	at	vertex	v1.
Relabel	the	vertices	as	v1,	v2,	 .	 .	 .	 ,	vn	such	that	vertices	along	every	directed

path	from	the	root	v1	have	increasing	indices.	Permute	the	rows	and	columns	of
K(G)	to	conform	with	this	relabeling.
Since	 the	 in-degree	 of	 v1	 equals	 zero,	 the	 first	 column	 contains	 only	 zeros.

Other	entries	in	K(G)	are

kij	=	0,	 i	>	j,

kij	=	−	xij, i	<	j,

kii	=	1, i<1.

Then	the	K	matrix	of	an	arborescence	rooted	at	v1	is	of	the	form

Clearly,	the	cofactor	of	the	(1,	1)	entry	is	1	;	that	is,	det	K11	=	1.
(b)	Conversely,	let	G	be	a	simple	digraph	of	n	vertices	and	n	−	1	edges,	and	let

the	(1,	1)	cofactor	of	its	K	matrix	be	equal	to	1	;	that	is,	det	K11	=	1.
Since	 det	 K11	 ≠	 0,	 every	 column	 in	 K11	 has	 at	 least	 one	 nonzero	 entry.



Therefore,

d	−	(vi)	≥	1,	 for	i	=	2,	3,	.	.	.	,	n.

There	are	only	n	−	1	edges	to	go	around.	Therefore,

d	−	(vi)	=	1,	 for	i	=	2,	3,	.	.	.,	n,

and

d	−	(v1)	=	0.

Now	since	no	vertex	 in	G	has	an	 in-degree	of	more	 than	one,	 if	G	can	have
any	 circuit	 at	 all,	 it	 has	 to	 be	 a	 directed	 circuit.	 Suppose	 that	 such	 a	 directed
circuit	exists,	which	passes	through	vertices	vi1,	vi2,	.	.	.	,	vir.	Then	the	sum	of	the
columns	 i1,	 i2,	 .	 .	 .	 ,	 ir	 in	 k11	 is	 zero.	 (This	 is	 because	 each	 of	 these	 columns
contains	exactly	two	nonzero	entries,	a	1	on	the	main	diagonal,	and	a	−	1	for	the
incoming	edge	from	the	vertex	preceding	it	in	the	directed	circuit.)	Thus	these	r
columns	 in	 K11	 are	 linearly	 dependent.	 Hence	 det	 K11	 =	 0,	 a	 contradiction.
Therefore,	G	has	no	circuits.
If	G	has	n	−	1	edges	and	no	circuits,	it	must	be	a	tree.	Since	in	this	tree

d	−	(v1)	=	0,

and

d	−	(vi)	=	1,	for	i	=	2,	3,	.	.	.	,	n,

G	must	be	an	arborescence	rooted	at	vertex	v1.

The	arguments	in	(a)	and	(b)	are	valid	for	an	arborescence	rooted	at	any	vertex
vq.	Any	reordering	of	the	vertices	in	G	corresponds	to	identical	permutations	of
rows	and	columns	in	K(G).	Such	permutations	do	not	alter	the	value	or	sign	of
the	determinant.	

Next	we	come	 to	an	 important	 result,	which	was	first	discovered	by	R.	Bott
and	J.	P.	Mayberry	and	was	proved	by	W.	T.	Tutte.



THEOREM	9-12

Let	K(G)	be	the	Kirchhoff	matrix	of	a	simple	digraph	G.	Then	the	value	of	the
(q,	q)	cofactor	of	K(G)	is	equal	to	the	number	of	arborescences	in	G	rooted	at	the
vertex	vq.

Proof:	The	proof	depends	on	the	result	of	Theorem	9-11	and	on	the	fact	that
the	 determinant	 of	 a	 square	 matrix	 is	 a	 linear	 function	 of	 its	 columns.
Specifically,	 if	 P	 is	 a	 square	 matrix	 consisting	 of	 n	 column	 vectors,	 each	 of
dimension	n,	that	is,

then

In	graph	G	suppose	that	vertex	vj	has	in-degree	of	dj.	The	jth	column	of	K(G)
can	 be	 regarded	 as	 the	 sum	 of	 dj	 different	 columns,	 each	 corresponding	 to	 a
graph	in	which	vj	has	in-degree	one.	And	then	(9-10)	can	be	repeatedly	applied.
After	 this,	 splitting	 of	 columns	 can	 be	 carried	 out	 for	 each	 y,	 j	 ≠	 q,	 and	 det
Kqq(G)	can	be	expressed	as	a	sum	of	determinants	of	subgraphs;	that	is,

where	g	is	a	subgraph	of	G,	with	the	following	properties	:

1. Every	vertex	in	g	has	an	in-degree	of	exactly	one,	except	vq.

2. g	has	n	−	1	vertices,	and	hence	n	−	1	edges.
From	Theorem	9-11,

det	Kqq(g)	=	1,	 if	and	only	if	g	is	an	arborescence	rooted
at	q,

=	0, otherwise.

Thus	 the	 summation	 in	 (9-11)	 carried	 over	 all	 g’s	 equals	 the	 number	 of
arborescences	rooted	at	vq.	



Theorem	9-12	 is	 illustrated	 in	 Fig.	 9-20.	The	 cofactor	 of	 every	 entry	 in	 the
second	 row	 of	 the	 K	 matrix	 is	 3.	 The	 digraph	 does	 indeed	 have	 three
arborescences	rooted	at	vertex	2.
For	an	Euler	digraph	G,	all	cofactors	of	K(G)	are	equal,	because	 the	sum	of

each	row	and	the	sum	of	each	column	equals	zero.	Let	this	common	value	of	all
cofactors	of	K(G)	be	σ.	This	σ	is	the	number	of	different	arborescences	rooted	at
any	given	vertex	in	G.	The	number	of	different	Euler	lines	associated	with	each
of	these	distinct	arborescences	is	given	by	Eq.	(9-5).	Therefore,	Theorem	9-13	is
obtained.

Fig.	9-20	Digraph	G,	its	K	matrix,	and	all	arborescences	rooted	at	2.

THEOREM	9-13

In	an	Euler	digraph	the	number	of	Euler	lines	is

From	 this	 theorem	 we	 can	 compute	 the	 number	 of	 Euler	 lines	 in	 any
connected	balanced	digraph.	As	an	example,	let	us	compute	the	number	of	Euler
lines	in	Fig.	9-10.	Its	K	matrix	is



(In	 this	 matrix,	 vertices	 appear	 in	 the	 order	 as	 they	 do	 in	 the	 directed
Hamiltonian	path	e2	e3	e4	e11e12e14	e15.)
The	cofactor	of	any	term	in	this	matrix	is	16,	and	therefore	σ	=	16	in	Theorem

9-13.	Since	d−(vt)	=	2	for	each	vi	in	Fig.	9-10,

Therefore,	the	number	of	Euler	lines	in	Fig.	9-10	is	16.

However,	for	a	regular	Euler	digraph,	such	as	the	one	in	Fig.	9-10,	it	is	often
easier	to	compute	the	number	of	Euler	lines	by	other	methods	(Problem	9-18).

9-10.	PAIRED	COMPARISONS	AND	TOURNAMENTS

In	many	experiments,	specially	in	the	social	sciences,	one	is	required	to	rank	a
number	 of	 given	 objects	 by	 comparing	 only	 two	 at	 a	 time.	 This	 is	 called	 the
method	 of	 paired	 comparisons,	 and	 is	 used	 in	 situations	 where	 a	 numerical
measurement	is	difficult,	for	example,	individual	preference	for	pieces	of	music.
The	 items	are	presented	 two	at	a	 time	 to	a	 subject	and	he	 is	asked	 to	 state	his
preference.	 After	 having	 noted	 the	 results	 of	 all	 possible	 n(n	 −	 l)/2	 paired
comparisons	of	 the	n	 objects,	 the	 experimenter	 ranks	 the	n	 objects	 in	 order	 of
preference.
A	digraph	is	a	natural	way	of	representing	the	results	of	a	paired-comparison

experiment.	The	 results	 of	 a	 classic	 experiment	 of	Kendall	 [9-5]	 are	 shown	 in
Fig.	9-21.	Six	different	dog	foods	{1,2,.	.	.,	6}	were	to	be	ranked.	Each	day	two
of	the	six	delicacies	were	served	to	a	dog,	and	the	dog	established	preference	for
one	 food	 over	 the	 other	 according	 to	 which	 plate	 he	 finished	 first.	 The



experiment	was	conducted	for	15	days,	so	that	all	possible	pairs	could	be	tried.
In	the	graph	representation,	an	edge	is	drawn	from	the	preferred	dish	to	the	less
preferred.	For	example,	1	was	preferred	to	2	in	Fig.	9-21.	Such	a	graph	is	called
a	preference	graph.
Establishing	a	rank	from	a	given	preference	graph	is,	in	general,	not	easy.	In

Fig.	9-21,	for	example,	due	to	some	canine	inconsistency,	the	dog	preferred	food
1	over	2,	2	over	4,	and	then	4	over	1.	So	which	of	the	three	is	the	best?

Fig.	9-21	Results	of	a	paired-comparison	experiment.

On	 Tournaments:	 A	 similar	 situation	 is	 encountered	 in	 tournaments.	 The
results	 of	 a	 round-robin	 tournament	 in	 which	 every	 player	 has	 played	 against
every	other	may	also	be	represented	by	a	digraph	in	which	an	edge	directed	from
vertex	 a	 to	 b	 represents	 the	 victory	 of	 player	 a	 over	 player	 b.	 This	 is	 why	 a
complete	asymmetric	digraph	was	called	a	tournament	or	a	complete	tournament
in	Section	9-2.	The	digraph	in	Fig.	9-21	can	also	be	viewed	as	the	result	of	a	six-
player	tournament.	The	problem	of	ranking	players	in	a	tournament	is	identical
to	that	of	ranking	in	a	paired-comparison	experiment.

Ranking	by	Score:	A	straightforward	method	of	ranking,	and	the	one	that	has
been	traditionally	used	in	round-robin	tournaments,	is	to	rank	each	player	by	his
score.	The	score	is	the	number	of	games	the	player	has	won.	In	terms	of	the	dog
food,	the	number	of	times	the	particular	dish	was	preferred	is	its	score.	The	score
of	a	player	in	a	tournament	equals	the	out-degree	of	the	corresponding	vertex	in
the	digraph.
Thus	if	we	use	the	scores	for	ranking,	we	would	rank	the	six	dog	foods	as

(1,3),	(2,5,6),	and	4.

That	is,	foods	1	and	3	are	tied	for	the	first	rank;	there	is	a	three-way	tie	for	the
second	rank;	and	food	4	is	the	least	preferred.



Ranking	the	vertices	according	to	their	out-degrees	is	not	always	a	satisfactory
method,	although	it	is	the	easiest.	In	particular,	this	method	loses	significance	if
the	 tournament	 is	 incomplete	 (that	 is,	 the	 players	 do	 not	 compete	 in	 the	 same
number	of	games).

Ranking	by	Hamiltonian	Path:	Another	method	sometimes	used	is	to	rank	the
players	 in	 a	 directed	Hamiltonian	 path,	 such	 that	 each	 player	 has	 defeated	 his
successor.	One	such	 ranking	 in	Fig.	9-21	 is	1	3	2	5	6	4.	 In	 this	context,	 let	us
prove	the	following	result	regarding	Hamiltonian	paths	in	a	tournament.

THEOREM	9-14

Every	complete	tournament	has	a	directed	Hamiltonian	path.

Proof:	The	theorem	will	be	proved	by	induction	on	the	number	of	vertices.	By
actual	sketching,	the	theorem	can	be	shown	to	hold	for	all	complete	tournaments
of	1,2,	3,	and	4	vertices.	Let	us	make	the	inductive	assumption	that	the	theorem
is	 true	 for	 all	 complete	 tournaments	 of	 n	 vertices,	 and	 then	 prove	 that	 it	 also
holds	for	all	tournaments	of	n	+	1	vertices.
Let	G	 be	 any	 complete	 tournament	 of	 n	 +	 1	 vertices.	 Let	 g	 be	 an	 nvertex

complete	 subtournament	 of	 G.	 By	 inductive	 assumption,	 g	 has	 a	 directed
Hamiltonian	path.	Let	that	path	be	v1	v2	 .	 .	 .	vn.	Let	the	vertex	present	in	G	but
not	in	g	be	called	vn	+	1.
Since	G	is	a	complete	tournament	of	n	+	1	vertices,	the	vertex	vn	+	1	in	G	has	a

directed	 edge	 either	 to	 or	 from	 each	 of	 the	 other	 vertices	 v1	 v2	 .	 .	 .	 ,	 vi.	 The
following	three	cases	are	possible.

Case	1:	The	edge	between	vn	+	1	and	v1	is	directed	toward	v1.	Then	we	have	a
Hamiltonian	 path	 vn	 +	 1	 v1	 v2	 .	 .	 .	 vn	 in	G,	 and	 the	 proof	 is	 complete	 [Fig.	 9-
22(a)].



Fig.	9-22	Three	cases	of	Theorem	9-14.

Case	 2:	 There	 is	 an	 edge,	 directed	 from	 vn	 to	 vn	 +	 1.	 Then	 also	 we	 have	 a
Hamiltonian	path	in	G,	which	is	v1	v2	.	.	.	vn	vn	+	1	and	the	proof	is	complete	[Fig.
9-22(b)].
Case	3:	Instead,	both	these	edges	are	directed	from	v1	to	vn	+	1	and	from	vn	+	1

to	vn.	In	this	case,	as	we	move	from	v1	to	vn,	we	encounter	a	reversal	of	direction
in	the	edges	incident	on	vn	+	1	.	This	reversal	must	occur	because	edge	(v1,	vn+1)
is	directed	toward	vn	+	1	but	edge	(vn,	vn	+	1)	is	directed	away	from	vn	+	1.	Call	the
vertex	at	which	the	first	such	reversal	occurs	vi	(vi	may	be	vn	itself).	Then	edge
(vn	−	1,	vn	+	1	)	must	be	directed	toward	vn	+	1	.	See	Fig.	9-22(c).	In	this	case	we
have	 a	 directed	Hamiltonian	 path	 v1	 v2	 .	 .	 .	 vi	 −	 1	 vn	 +	 1	 vi	 vi	 +	 1	 .	 ..	 vn	 in	G.
Therefore,	the	theorem.	

Coming	back	 to	 the	original	problem	of	 ranking	 the	vertices,	we	now	know
that	if	the	digraph	is	a	complete	tournament,	at	least	one	Hamiltonian	ranking	is
always	possible.
However,	this	method	of	ranking	also	suffers	from	some	drawbacks.	For	one,

there	may	be	discrepancies	between	such	a	ranking	and	the	scores	of	the	players.
Second,	a	 tournament	may	have	more	 than	one	directed	Hamiltonian	path,	and



therefore	several	different	rankings	are	possible.	In	Fig.	9-21,	for	instance,	1	3	2
5	6	4	and	1	3	5	6	2	4	are	two	different	Hamiltonian	rankings.

Ranking	with	Minimum	Violations:	 For	 a	 given	 ranking	 of	 the	n	 vertices	 in
any	 tournament	 (complete	 or	 incomplete),	 a	 violation	 is	 defined	 as	 an	 edge
directed	from	vi	to	vj	if	vj	precedes	vi	in	the	ranking.	For	example,	in	Fig.
9-21	the	order	1	3	2	5	6	4	has	the	following	two	violations	−	edges	4	to	1	and	6
to	2.	The	order	3	2	5	6	4	1	has	five	violations,	edges	1	to	3,	1	to	2,	6	to	2,	1	to	5,
and	1	to	6.
Ranking	 with	 the	 minimum	 number	 of	 violations	 represents	 the	 fewest

possible	 upsets	 for	 a	 given	 tournament.	 It	 can	 be	 shown	 that	 a	 ranking	 with
minimum	violations	 automatically	 includes	 the	 ranking	according	 to	 scores,	 as
well	as	a	Hamiltonian	ranking.	Moreover,	a	minimum-violation	ranking	 is	also
meaningful	 for	 incomplete	 tournaments.	 Thus	 this	may	 be	 considered	 the	 best
method	of	ranking.
However,	out	of	all	n!	possible	orders	of	n	vertices,	to	find	one	with	minimum

violations	 is	 computationally	 difficult.	A	method	 using	 dynamic	 programming
has	been	used	and	is	the	best	available	so	far,	but	it	is	computationally	slow	and
cumbersome.
A	minimum	number	of	violations	among	all	n!	rankings	represents	a	smallest

set	of	edges	whose	removal	from	the	digraph	will	eliminate	all	directed	circuits,
that	 is,	 make	 the	 digraph	 acyclic.	 Acyclic	 digraphs	 are	 discussed	 in	 the	 next
section.

9-11.	ACYCLIC	DIGRAPHS	AND	DECYCLIZATION
In	many	situations	 semicircuits	 are	of	no	 significance,	 and	one	 is	 concerned

only	with	whether	or	not	a	given	digraph	has	a	directed	circuit.	A	digraph	that
has	no	directed	circuit	is	called	acyclic.	Let	us	make	the	following	observations
about	acyclic	digraphs:

1. Every	tree	(with	directed	edges)	is	an	acyclic	digraph,	but	the	converse	is
not	true.	For	example,	the	digraph	in	Fig.	9-4	is	acyclic,	but	it	is	not	a	tree.

2. An	acyclic	digraph	cannot	be	condensed.	That	 is,	 the	condensation	Gc	of
an	acyclic	digraph	G	is	G	itself.	The	converse	is	also	true,	because	if	Gc	=
G,	obviously	G	has	no	directed	circuit.

3. An	acyclic	digraph	represents	an	 irreflexive,	asymmetric	relation.	But	 the
digraph	 of	 an	 irreflexive,	 asymmetric	 relation	 is	 not	 necessarily	 acyclic.



(Why?)

4. A	 digraph	G	 is	 acyclic	 if	 and	 only	 if	 every	 directed	walk	 in	G	 is	 also	 a
directed	path.

5. Observation	 4	 has	 a	 significant	 implication:	 If	 a	 digraph	 is	 acyclic,	 the
(i,j)th	 entry	 in	Xk	 gives	 the	 number	 of	 distinct	 directed	 paths	 of	 length	k
from	the	ith	vertex	to	the	jth	vertex.

THEOREM	9-15

Every	 acyclic	 digraph	G	 has	 at	 least	 one	 vertex	with	 zero	 in-degree	 and	 at
least	one	vertex	with	zero	out-degree.
Proof:	Consider	any	maximal	directed	path	(i.e.,	a	path	whose	length	cannot

be	increased	by	an	edge	at	either	end)	P	in	G.	Let	v	be	the	vertex	where	P	starts
and	w	be	the	vertex	where	it	ends.	Since	G	is	acyclic,	v	and	w	must	be	distinct.
Now	the	vertices	in	G	can	be	divided	into	two	classes:	The	set	V1	of	vertices	that
are	on	P,	and	the	set	V2	of	the	remaining	vertices.
There	is	no	edge	incident	into	vertex	v	from	any	vertex	in	V1	 .	Otherwise,	G

would	have	a	directed	circuit.	Also,	 there	 can	be	no	edge	 incident	 into	v	 from
any	vertex	in	V2;	otherwise,	the	length	of	P	could	have	been	increased	by	adding
this	 edge.	Thus	 the	 in-degree	 of	v,	d−(v)	 =	 0.	 Similarly,	 vertex	w	 has	 no	 edge
incident	out	of	it;	that	is,	d	+	(w)	=	0.	

THEOREM	9-16

A	digraph	G	is	acyclic	if	and	only	if	its	vertices	can	be	ordered	such	that	the
adjacency	matrix	X	is	an	upper	(or	lower)	triangular	matrix.

Proof:	(a)	Let	us	assume	that	X	is	upper	triangular;	that	is,

xij	=	0 for	i	≥	j.

It	can	be	seen	by	direct	multiplication	that	X2	is	also	upper	triangular,	and	so	are
X3,	X4,	 .	 .	 .	 ,	all	powers	of	X.	Since	every	diagonal	entry	in	all	powers	of	X	is
zero,	G	has	no	directed	circuit.	That	is,	G	is	acyclic.
(b)	 For	 the	 second	 part	 of	 the	 theorem,	 assume	 that	G	 is	 acyclic	 and	 then

reorder	 the	 vertices	 of	G,	 as	 follows:	 According	 to	 Theorem	 9-15,	 there	 is	 at
least	one	vertex	in	G	whose	in-degree	is	zero.	In	the	reordering	of	the	vertices	let
this	be	the	first	vertex	v1	.	Now,	remove	v1	and	edges	incident	on	v1	from	G.	The



remaining	 digraph	 G	 −	 v1	 must	 also	 be	 acyclic,	 because	 G	 was	 acyclic.
Therefore,	G	−	v1	has	also	at	least	one	vertex,	whose	in-degree	in	G	−	v1	is	zero.
Let	v2	be	this	second	vertex	in	the	reordering.	Next	remove	v2	from	G	−	v1	.	By
continuing	this	process	all	the	vertices	are	reordered†	as	v1,	v2,	.	.	.	.
Now	consider	the	adjacency	matrix	X	of	G	with	the	vertices	appearing	in	this

order.	The	first	column	(corresponding	to	v1)	has	all	zeros.	The	second	column
below	 the	 first	 row	 represents	 vertex	 v2	 in	G	 −	 v1,	 and	 therefore	 contains	 all
zeros.	And	so	forth.
Thus	 the	 adjacency	 matrix	 is	 upper	 triangular.	 This	 proves	 part	 (b)	 of	 the

theorem.
The	 lower	 triangular	 portion	 of	 the	 theorem	 can	 also	 be	 proved	 either	 by

reordering	of	the	vertices	with	zero	out-degrees,	or	by	considering	XT	and	GR.	

Given	 the	 adjacency	matrix	X	 of	 a	 digraph	G,	 the	 following	 result	 is	 quite
useful	in	finding	out	whether	or	not	G	is	acyclic.

THEOREM	9-17

Digraph	G	is	acyclic	if	and	only	if	det(l	−	X)	is	not	equal	to	zero,	where	I	is
the	identity	matrix	of	the	same	size	as	X.

Proof:	Det(l	−	X)	≠	0	if	and	only	if	the	inverse	(l	−	X)−1	exists.	But

This	inverse	(1	−	X)−1	exists	if	and	only	if	the	infinite	series	(9-13)	converges;
that	is,	X*	=	0	for	all	k	≤	some	N	(because	X	contains	only	nonnegative	entries).
However,	 Xk	 =	 0	 for	 all	 k	 ≥	N	 if	 and	 only	 if	G	 contains	 no	 directed	 edge

sequence	of	length	N	or	larger.	And	this	is	possible	if	and	only	if	G	contains	no
cycle	of	any	length.	

Decyclization:	 Acyclic	 digraphs	 are	 of	 enormous	 importance	 in	 many
applications.	It	was	pointed	out	that	directed	circuits	represent	inconsistencies	in
ranking	 by	 paired	 comparisons.	 Directed	 circuits	 may	 represent	 undesirable
feedback	paths	in	an	electrical	network.	In	the	project	graph	of	a	CPM	(critical
path	 method)	 or	 PERT	 (program	 evaluation	 and	 review	 technique)	 a	 directed
circuit	 represents	 a	 serious	 error,	 and	 must	 be	 eliminated.	 This	 is	 because	 a
directed	 circuit,	 say	 abca,	 implies	 that	 activity	 a	 must	 be	 completed	 before
activity	 b,	 and	 b	 before	 c,	 and	 c	 before	 a.	 Obviously,	 this	 is	 an	 impossible



situation	 and	 nothing	 will	 get	 done.	 A	 similar	 situation	 in	 computer
programming	often	arises	and	is	justifiably	known	as	the	deadly	encounter	or	the
deadly	embrace	(Problem	9-26).
In	deductive	logic	(where	vertices	represent	axioms	or	statements	and	directed

edges	 represent	 the	 theorems	 or	 derivation	 of	 one	 statement	 from	 others),	 a
directed	circuit	implies	circular	reasoning	and	hence	a	fallacy.
Thus	 it	 is	 important	 to	 know	 how	 to	 break	 these	 vicious	 cycles	 with	 a

minimum	of	effort.	In	other	words,	find	a	smallest	set	of	directed	edges	whose
removal	will	render	the	given	digraph	G	acyclic.
Consider,	 for	 example,	 Fig.	 9-2(a).	 The	 digraph	 contains	 several	 directed

circuits:	 e1	 e2	 e3,	 e4	 e6	 e3,	 and	 e4e5e2e3.	 In	 this	 simple	 case,	 one	 can	 tell	 by
inspection	that	the	removal	of	edge	e3	will	eliminate	all	directed	circuits.	This	is
the	 smallest	 set	of	edges	whose	 removal	makes	 the	 remaining	digraph	acyclic.
Such	 a	 smallest	 set	 of	 edges	 whose	 removal	 destroys	 all	 directed	 circuit	 in	 a
digraph	G	is	known	as	a	minimum-feedback	arc	set	in	electrical	engineering.	In
general,	 a	 digraph	may	 possess	 several	minimum-feedback	 arc	 sets.	Obtaining
one	such	smallest	set	of	edges	may	be	called	minimal	decyclization	of	a	digraph.
Minimal	decyclization	of	an	arbitrary	directed	graph	is	at	best	a	tedious	affair.

No	simple	method	has	been	found	so	far.	One	method	proposed	in	the	literature
(in	1969)	uses	Theorem	9-16,	 as	 follows:	Make	 the	 adjacency	matrix	X	upper
triangular	 as	 much	 as	 possible	 by	 interchanging	 rows	 (and	 corresponding
columns).	The	 l’s	 remaining	below	 (and	on)	 the	principal	diagonal	 represent	 a
minimum-feedback	arc	set.	Another	method	can	be

1. Obtain	 all	 directed	 circuits	 in	 the	 given	 digraph	G	 (using	 the	 result	 of
Problem	9-11,	say).

2. Express	each	directed	circuit	as	a	Boolean	sum	of	its	edges.

3. Take	 the	 Boolean	 product	 of	 all	 directed	 circuit	 expressions	 obtained	 in
step	2.	(The	absorption	laws	of	Boolean	algebra	are	applied,	such	as	a·a	=
a,	a	+	a	=	a,	and	a	+	ab	=	a.)

4. Each	of	 the	resulting	 terms	 in	 the	sum	of	 the	products	 represents	a	set	of
edges	 whose	 removal	 will	 destroy	 all	 directed	 circuits.	 Pick	 a	 term	 that
consists	of	the	smallest	number	of	edges;	 this	is	a	minimum-feedback	arc
set.

To	illustrate	the	procedure,	let	us	consider	the	digraph	in	Fig.	9-2(a).	All	the
directed	circuits	are



e1e2e3,	e3e4e6,	and	e2e3e4e5.

Expressing	 these	 as	 a	 product	 of	 Boolean	 sums	 and	 multiplying	 out	 and
simplifying,	we	get

(e1	+	e2	+	e3)(e3	+	e4	+	e6)(e2	+	e3	+	e4	+	e5)
=	e1e4	+	e1e6e5	+	e2e4	+	e2e6	+	e3.

Clearly,	any	one	of	these	terms	represents	the	set	of	edges	whose	removal	would
break	 all	 directed	 circuits	 in	 Fig.	 9-2(a).	 The	 set	 with	 the	 smallest	 number	 of
edges,	{e3},	is	the	answer	we	were	seeking.	Both	these	methods	are	impractical
for	large	digraphs.

SUMMARY

Most	 of	 the	 important	 and	 fundamental	 features	 of	 directed	 graphs	 were
investigated	 in	 this	 chapter.	 We	 saw	 that	 there	 are	 two	 different	 aspects	 of
digraphs:	one	in	which	their	properties	are	similar	to	those	of	undirected	graphs,
such	as	planarity,	thickness,	spanning	trees,	fundamental	circuits,	and	cutsets;	in
their	second	aspect,	digraphs	have	properties	altogether	different	 from	those	of
undirected	 graphs,	 such	 as	 strong	 connectedness,	 arborescence,	 decyclization,
and	so	on.
The	 close	 relationship	 between	 binary	 relations	 and	 digraphs	was	 explored.

Applications	of	digraphs	are	virtually	unlimited.	Some	 important	ones,	such	as
in	 sequence	 generation	 in	 telecommunications	 and	 paired	 comparisons,	 were
dealt	with	in	detail.	Others	were	simply	mentioned.

Undoubtedly,	 a	great	deal	more	 remains	 to	be	 said.	Additional	properties	of
digraphs	are	presented	in	the	form	of	problems	at	the	end	of	this	chapter.	For	the
rest	the	reader	must	explore	on	his	own,	using	the	tools	and	results	presented	in
the	chapter.
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PROBLEMS
9-1. Prove	 that	 in	 any	 digraph	 the	 sum	 of	 the	 in-degrees	 of	 all	 vertices	 is

equal	to	the	sum	of	their	out-degrees;	and	this	sum	is	equal	to	the	number
of	edges	in	the	digraph.

9-2. Sketch	 all	 different	 (nonisomorphic)	 simple	 digraphs	 with	 1,2,	 and	 3
vertices.

9-3. Sketch	all	 distinct	 (nonisomorphic)	orientations	of	 a	 complete	graph	of
four	 vertices.	 Characterize	 each	 of	 the	 resulting	 digraphs	 in	 terms	 of
binary	relations.

9-4. An	 irreflexive,	 asymmetric,	 transitive	 relation	on	a	 set	 is	 called	a	strict
partial	order.	Give	 two	examples	of	 strict	partial	orders.	Show	 that	 the
digraph	of	a	strict	partial	order	is	acyclic.	Is	the	converse	also	true?

9-5. The	combinations	of	reflexivity,	symmetry,	and	transitivity	define	eight
(23	=	8)	types	of	binary	relations.	Two	such	relations	are	equivalence	and
partial	order.	List	the	other	six	and	sketch	a	digraph	for	each.

9-6. Define	and	study	the	directed	Hamiltonian	circuit	and	semi-Hamiltonian
circuit	in	a	digraph.

9-7. Prove	that	every	edge	in	a	digraph	belongs	either	to	a	directed	circuit	or	a
directed	cut-set.

9-8. For	 an	nvertex	digraph,	define	 an	n	 by	n	accessibility	 (or	 reachability)
matrix	R	=	[rij]	as	follows:

rij	=	1, if	 there	is	a	directed	path	of	length	one	or	more
from	i	to	j,

=	0, otherwise.
Devise	a	method	of	obtaining	R	from	the	powers	of	the	adjacency	matrix
X.	(Note	that	this	reachability	matrix	is	slightly	different	from	that	in	[9-
3],	 because	 we	 do	 not	 include	 paths	 of	 zero	 length;	 i.e.,	 rij	 is	 not
necessarily	one.)

9-9. Is	 it	 possible	 for	 two	 nonisomorphic	 digraphs	 to	 have	 the	 same
reachability	matrix	R?	Explain.

9-10. Show	that	if	R	is	the	reachability	matrix	of	a	digraph	G,	the	value	of	the
ith	 entry	 in	 the	 principal	 diagonal	 of	 R2	 gives	 the	 number	 of	 vertices
included	in	the	strongly	connected	fragment	containing	the	ith	vertex.

9-11. Show	that	the	following	procedure	applied	to	the	adjacency	matrix	X	=
[xij]	of	a	digraph	G	will	yield	the	reachability	matrix	R	of	G.
Step	1:	Let	x1i,	x1j,	 .	 .	 .	 .	 ,	x1m	be	 the	nonzero	elements	 in	 the	first	row.



Add	 the	 ith,	 jth,	 .	 .	 .	 ,	mth	 rows	 to	 the	 first	 row.	Replace	each	nonzero
element	by	a	1	(Boolean	sum).
Step	2:	Suppose	that	there	are	k	additional	nonzero	elements	p,	q,	.	.	.	,	r
generated	in	the	first	row	as	a	result	of	step	1.	Add	the	pth,	qth,	.	.	.	,	rth
rows	to	the	first	row,	and	replace	each	nonzero	element	by	a	1.
Step	3:	Repeat	step	2	until	no	additional	l’s	can	be	added	to	the	first	row
by	this	process.
Step	4:	Repeat	the	process	on	every	row	of	X.

9-12. Prove	 that	 an	n-vertex	 digraph	 is	 strongly	 connected	 if	 and	 only	 if	 the
matrix	M,	defined	by

M	=	X	+	X2	+	X3	+	.	.	.	+	Xn,
has	no	zero	entry.	X	is	the	adjacency	matrix.

9-13. Prove	 that	 every	 Euler	 digraph	 (without	 isolated	 vertices)	 is	 strongly
connected.	 Also	 show,	 by	 constructing	 a	 counterexample,	 that	 the
converse	is	not	true.

9-14. List	all	16	distinct	directed	Euler	lines	in	Fig.	9-10.
9-15. The	Euler	 digraph	 in	 Fig.	 9-10	 is	 called	 the	 teleprinter	 diagram	 or	 the

Good	diagram	for	r	=	4	[abbreviated	as	GD(4)].	Sketch	and	label	GD(3)
and	GD(5).	 Find	 one	 directed	Euler	 line	 and	 one	 directed	Hamiltonian
circuit	in	each.	[Hint:	GD(r)	has	2r	−	1	vertices	and	2r	edges.	A	vertex	in
GD(r	+	1)	corresponds	to	an	edge	in	GD(r).]

9-16. An	 edge	 digraph	 or	 a	 line	 digraph	 L(G)	 of	 a	 digraph	G	 is	 defined	 as
follows:
1. There	is	exactly	one	vertex	vi	in	L(G)	for	every	edge	ei	in	G.
2. Whenever	edges	ei	and	ej	(for	a	self-loop	ej	=	ei)	are	such	that	ei	 is

incident	into	a	vertex	v	and	ej	is	incident	out	of	the	same	vertex	v,	an
edge	is	drawn	from	the	corresponding	vi	to	vj	in	L(G).

Show	that	GD(r	+	1)	is	a	line	digraph	of	GD(r).
9-17. If	E|G|	is	the	number	of	Euler	lines	in	an	n-vertex	Euler	digraph	G,	show

that	2n	−	1	·	E	|	G	|	is	the	number	of	Euler	lines	in	L(G).
9-18. Prove	that	the	number	of	directed	Euler	lines	in	GD(r)	is

22r−1−r
(Hint:	Use	the	results	of	Problem	9-16	or	use	Theorem	9-13.)

9-19. A	drum	rotates	in	discrete	steps	of	θ	degrees,	and	you	are	to	determine	its
precise	position	as	follows.	Divide	the	surface	of	the	drum	into	k	=	360°/
θ	 sectors,	 and	 paint	 each	 sector	 black	 or	 white	 (or	 conducting	 or



nonconducting).	Mount	 r	 consecutive	 reading	 heads	 −	 each	 capable	 of
detecting	the	color	of	the	sector.

Given	 some	 0,	 express	 k	 and	 r	 in	 terms	 of	 θ.	 Sketch	 one	 such
arrangement	of	colors	on	the	drum	for	k	=	16.

9-20. What	 is	 the	 longest	 circular	 sequence	 formed	 out	 of	 three	 symbols
(1etters)	x,	y,	and	z	such	that	no	subsequence	(words)	of	four	symbols	is
repeated.	Give	one	 such	 sequence.	 [Hint:	Form	a	 regular	Euler	digraph
with	d−(vi)	=	d+(vt)	=	3,	in	the	manner	of	Fig.	9-10.]

9-21. Prove	that	any	acyclic	digraph	G	is	an	arborescence	if	and	only	if	there	is
a	vertex	v	in	G	such	that	every	vertex	is	accessible	from	v.

9-22. Prove	 that	 for	 every	 n	 ≤	 3	 there	 exists	 at	 least	 one	 acyclic	 complete
tournament	of	n	vertices.	(Hint:	Use	induction.)

9-23. Let	R(G)	be	the	reachability	matrix	of	a	digraph	G,	and	let	the	vertices	in
G	be	ordered	such	that	the	sums	of	the	rows	in	R(G)	are	nonincreasing;
that	is,

Show	with	 this	ordering	of	vertices	 in	R(G)	 that	digraph	G	 is	acyclic	 if
and	only	if	R(G)	is	an	upper	triangular	matrix.

9-24. Prove	 that	 a	 digraph	G	 is	 acyclic	 if	 and	 only	 if	 every	 element	 on	 the
principal	 diagonal	 of	 its	 reachability	 (or	 accessibility)	 matrix	 R(G)	 is
zero.	 9-25.	 Prove	 that	 an	 acyclic	 digraph	G	 of	n	 vertices	 has	 a	 unique
directed	Hamiltonian	path	if	and	only	if	the	number	of	nonzero	elements
in	R(G)	is	n(n	−	l)/2.

9-26. There	are	15	computer	programs	that	must	be	processed	according	to	the
following	set	of	orders	:

1	>	2,7,13,

2	>	3,	8,14,

3	>	9,15,

4>3,

5>4,11,

6	>	5,12,

7>6,

8	>	7,	9,14,



9>	15,

10	>	4,	9,

11	>	10,

12	>	11,

13	>	7,	12,

14	>	13,15,
where	1	>	2,	7,	13	means	 that	programs	2,	7,	 and	13	can	be	processed
only	after	program	1	has	been	processed.	Is	it	possible	for	the	programs
to	 be	 processed?	 If	 so,	 give	 a	 processing	 sequence.	 [Hint:	Write	X(G);
derive	R(C)	from	X(G)	using	Problem	9-11.	Use	Problem	9-23	to	check
if	G	is	acyclic]

9-27. A	 digraph	 defined	 on	 the	 relation	 “is	 a	 parent	 of”	 is	 called	 a	 genetic
digraph.	 (Genetic	 digraphs	 are	 useful	 in	 biology.)	 Investigate	 the
properties	of	genetic	digraphs.

9-28. Use	digraphs	to	solve	the	classical	problem	of	“three	cannibals	and	three
edible	missionaries	seeking	to	cross	a	river	in	a	boat	that	can	hold	at	most
two	people,	and	all	the	missionaries	and	one	of	the	cannibals	can	row	the
boat.	Also,	 at	no	 time	 should	 the	 cannibals	outnumber	 the	missionaries
on	either	shore.”	 (Hint:	Represent	each	state	by	a	vertex	and	a	possible
transition	by	a	directed	edge.)

†Some	authors	make	a	distinction	between	the	terms	“oriented	graph”	and	“directed	graph”	by	reserving	the
former	for	only	those	digraphs	which	have	at	most	one	directed	edge	between	a	pair	of	vertices.	This	often
leads	to	confusion;	therefore,	we	use	these	two	terms	synonymously.
†A	cut-set	in	which	all	edges	are	oriented	in	the	same	direction	is	called	a	directed	cut-set.
†This	is	called	a	topological	sorting.	See	Section	14-8	also.
†This	identity	can	be	seen	by	premultiplying	both	sides	of	(9-13)	with	the	matrix	(I	−	X).



10	ENUMERATION	OF	GRAPHS

Arthur	Cayley	 (1857),	 one	 of	 the	 founding	 fathers	 of	 graph	 theory,	 became
interested	 in	 graph	 theory	 for	 the	 purpose	 of	 counting	 trees.	 The	 number	 of
different	 trees	 of	 n	 vertices	 gave	 him	 the	 number	 of	 isomers	 of	 the	 saturated
hydrocarbon	with	n	carbon	atoms,	that	is,	CnH2n+2.	Since	Cayley’s	classic	paper,
a	 great	 deal	 of	 work	 has	 been	 done	 on	 counting	 (also	 called	 enumeration)	 of
different	 types	 of	 graphs,	 and	 the	 results	 have	 been	 applied	 in	 solving	 some
practical	problems.
Some	enumeration	problems	have	already	been	introduced	in	earlier	chapters.

For	example,	 in	Chapter	2	 the	number	of	edge-disjoint	Hamiltonian	circuits	 in
the	complete	graph	of	n	vertices	was	discussed.	Enumeration	of	trees	in	Section
3-6;	 finding	 all	 spanning	 trees	 in	 Section	 3-9;	 the	 number	 of	 different	 edge
sequences	 of	 length	 r	 between	 a	 specified	 pair	 of	 vertices	 (Theorem	 7-8);
Problems	7-20,	7-23,	and	7-24;	the	number	of	different	arborescences	rooted	at	a
given	vertex	in	Chapter	9;	and	the	number	of	different	directed	Euler	lines	in	a
digraph,	also	in	Chapter	9,	were	all	problems	of	counting	graphs.	In	this	chapter
a	 more	 unified	 approach	 to	 enumerating	 graphs	 will	 be	 taken.	 Certain
enumerative	techniques	will	be	developed	and	used	for	counting	certain	types	of
graphs.	A	thorough	exposition	of	Pólya’s	counting	 theorem,	 the	most	powerful
tool	in	graph	enumeration,	is	the	central	feature	of	this	chapter.

10-1. TYPES	OF	ENUMERATION

All	graph-enumeration	problems	fall	into	two	categories:

1. Counting	the	number	of	different	graphs	(or	digraphs)	of	a	particular	kind,
for	 example,	 all	 connected,	 simple	 graphs	 with	 eight	 vertices	 and	 two
circuits.

2. Counting	the	number	of	subgraphs	of	a	particular	type	in	a	given	graph	G,



such	as	 the	number	of	 edge-disjoint	paths	of	 length	k	 between	vertices	a
and	b	in	G.

The	second	type	of	problem	usually	involves	a	matrix	representation	of	graph
G	and	manipulations	of	this	matrix.	Such	problems,	although	often	encountered
in	 practical	 applications,	 are	 not	 as	 varied	 and	 interesting	 as	 those	 in	 the	 first
category.	We	shall	not	consider	such	problems	in	this	chapter.
In	problems	of	type	1	the	word	“different”	is	of	utmost	importance	and	must

be	 clearly	understood.	 If	 the	graphs	 are	 labeled	 (i.e.,	 each	vertex	 is	 assigned	a
name	distinct	from	all	others),	all	graphs	are	counted.	On	the	other	hand,	in	the
case	of	unlabeled	graphs	 the	word	 “different”	means	nonisomorphic,	 and	 each
set	of	isomorphic	graphs	is	counted	as	one.
As	an	example,	let	us	consider	the	problem	of	constructing	all	simple	graphs

with	n	vertices	and	e	edges.	There	are	n(n	−	1)/2	unordered	pairs	of	vertices.	If
we	regard	the	vertices	as	distinguishable	from	one	another	(i.e.,	labeled	graphs),
there	are

ways	of	 selecting	e	 edges	 to	 form	 the	graph.	Thus	expression	 (10-1)	gives	 the
number	of	simple	labeled	graphs	with	n	vertices	and	e	edges.
Many	 of	 these	 graphs,	 however,	 are	 isomorphic	 (that	 is,	 they	 are	 the	 same

except	 for	 the	 labels	of	 their	vertices).	Hence	 the	number	of	 simple,	unlabeled
graphs	of	n	vertices	and	e	edges	is	much	smaller	than	that	given	by	(10-1).
Among	 a	 collection	 of	 graphs,	 isomorphism	 is	 an	 equivalence	 relation

(Problem	 10-1).	 The	 number	 of	 different	 unlabeled	 graphs	 (of	 a	 certain	 type)
equals	 the	 number	 of	 equivalence	 classes,	 under	 isomorphism,	 of	 the	 labeled
graphs.	For	example,	we	have	16	different	labeled	trees	of	four	vertices	(Fig.	3-
15),	and	these	trees	fall	into	two	equivalence	classes,	under	isomorphism.	In	Fig.
3-15	the	4	trees	in	the	top	row	fall	into	one	equivalence	class,	and	the	remaining
12	into	another.	Thus	we	have	only	two	different	unlabeled	trees	of	four	vertices
(Fig.	3-16).
Let	us	now	proceed	with	counting	certain	specific	types	of	graphs.

THEOREM	10-1

The	number	of	simple,	labeled	graphs	of	n	vertices	is



Proof:	The	numbers	of	simple	graphs	of	n	vertices	and	0,	1,	2,	.	.	.	,	n(n	−	1)/2
edges	are	obtained	by	substituting	0,	1,	2,	.	.	.	,	n(n	−	1)/2	for	e	in	expression	(10-
1).	 The	 sum	 of	 all	 such	 numbers	 is	 the	 number	 of	 all	 simple	 graphs	 with	 n
vertices.	Then	the	use	of	the	following	identity	proves	the	theorem:

10-2. 	COUNTING	LABELED	TREES

Expression	(10-1)	can	be	used	to	obtain	the	number	of	simple	labeled	graphs
of	n	vertices	and	n	−	1	edges.	Some	of	these	are	going	to	be	trees	and	others	will
be	 unconnected	 graphs	 with	 circuits.	 Let	 us	 now	 prove	 Theorem	 3-10,	 which
gives	the	number	of	trees.

THEOREM	3-10

There	are	nn-2	labeled	trees	with	n	vertices	(n	≥	2).

Proof	of	Theorem	3-10:	Let	the	n	vertices	of	a	tree	T	be	labeled	1,	2,	3,	.	.	.	,	n.
Remove	 the	 pendant	 vertex	 (and	 the	 edge	 incident	 on	 it)	 having	 the	 smallest
label,	which	is,	say,	a1.	Suppose	that	b1	was	the	vertex	adjacent	to	a1.	Among	the
remaining	n	−	1	vertices	let	a2	be	the	pendant	vertex	with	the	smallest	label,	and
b2	 be	 the	 vertex	 adjacent	 to	 a2.	 Remove	 the	 edge	 (a2,	 b2).	 This	 operation	 is
repeated	on	the	remaining	n	−	2	vertices,	and	then	on	n	−	3	vertices,	and	so	on.
The	process	is	terminated	after	n	−	2	steps,	when	only	two	vertices	are	left.	The
tree	T	defines	the	sequence

uniquely.	For	example,	for	the	tree	in	Fig.	10-1	the	sequence	is	(1,	1,	3,	5,	5,	5,
9).	Note	that	a	vertex	i	appears	in	sequence	(10-3)	if	and	only	if	it	is	not	pendant
(see	Problem	10-2).
Conversely,	given	a	sequence	(10-3)	of	n	−	2	labels,	an	n-vertex	tree	can	be



Fig.	10-1	Nine-vertex	labeled	tree,	which	yields	sequence	(1,	1,	3,	5,	5,	5,	9).

constructed	uniquely,	as	follows:	Determine	the	first	number	in	the	sequence

that	does	not	appear	in	sequence	(10-3).	This	number	clearly	is	a1.	And	thus	the
edge	(a1,	b1)	is	defined.	Remove	b1	from	sequence	(10-3)	and	a1	from	(10-4).	In
the	 remaining	sequence	of	 (10-4)	 find	 the	 first	number	 that	does	not	appear	 in
the	remainder	of	(10-3).	This	would	be	a2,	and	thus	the	edge	(a2,	b2)	is	defined.
The	 construction	 is	 continued	 till	 the	 sequence	 (10-3)	 has	 no	 element	 left.
Finally,	the	last	two	vertices	remaining	in	(10-4)	are	joined.	For	example,	given
a	sequence

(4,	4,	3,	1,	1),

we	 can	 construct	 a	 seven-vertex	 tree	 as	 follows:	 (2,	 4)	 is	 the	 first	 edge.	 The
second	is	(5,	4).	Next,	(4,	3).	Then	(3,	1),	(6,	1),	and	finally	(7,	1),	as	shown	in
Fig.	10-2.



Fig.	10-2	Tree	constructed	from	sequence	(4,	4,	3,	1,	1).

For	each	of	the	n	−	2	elements	in	sequence	(10-3)	we	can	choose	any	one	of	n
numbers,	thus	forming

(n	−	2)-tuples,	each	defining	a	distinct	labeled	tree	of	n	vertices.	And	since	each
tree	 defines	 one	 of	 these	 sequences	 uniquely,	 there	 is	 a	 one-to-one
correspondence	between	the	trees	and	the	nn-2	sequences.	Hence	the	theorem.	

Rooted	Labeled	Trees:	In	a	rooted	graph	one	vertex	is	marked	as	the	root.	For
each	of	the	nn-2	labeled	trees	we	have	n	rooted	labeled	trees,	because	any	of	the	n
vertices	can	be	made	a	root.	Therefore,

THEOREM	10-2

The	number	of	different	rooted,	labeled	trees	with	n	vertices	is

All	rooted	trees	for	n	=	1,	2,	and	3	are	given	in	Fig.	10-3.

10-3. 	COUNTING	UNLABELED	TREES

The	problem	of	enumeration	of	unlabeled	trees	is	more	involved	and	requires
familiarity	with	the	concepts	of	generating	functions	and	partitions.



Fig.	10-3	Rooted	labeled	trees	of	one,	two,	and	three	vertices.

Generating	Functions

One	 of	 the	 most	 useful	 tools	 in	 enumeration	 techniques	 is	 the	 generating
function.	A	generating	function	f(x)	is	a	power	series

in	some	dummy	variable	x.	The	coefficient	ak	of	xk	is	the	desired	number,	which
depends	 on	 a	 collection	 of	 k	 objects	 being	 enumerated.	 For	 example,	 in	 the
generating	function

the	 coefficient	 of	 xk	 gives	 the	 number	 of	 distinct	 combinations	 of	 n	 different
objects	taken	k	at	a	time.
As	another	example,	consider	the	following	generating	function:



The	 coefficient	 of	 xk	 in	 (10-9)	 gives	 the	 ways	 of	 selecting	 k	 objects	 from	 n
(distinct)	 objects	 with	 unlimited	 repetitions.†	 Note	 that	 the	 variable	 x	 has	 no
significance.	We	are	interested	only	in	the	coefficients.
The	 generating	 function	 is	 used	 as	 a	 counting	 device	 and	 is	 therefore	 also

called	a	counting	series	or	an	enumerator.	An	operation	on	a	generating	function
is	simpler	 than	 the	corresponding	operation	on	 the	sequence	of	coefficients	a0,
a1,	 a2,	 .	 .	 .	 .	 For	 a	 detailed	 treatment	 of	 generating	 functions,	 the	 reader	 is
referred	to	Chapter	2	in	[3-11]	or	Chapter	3	in	[10-1].

Partitions

Another	useful	and	important	concept	in	enumerative	combinatorics	is	that	of
a	partition	of	a	positive	integer.	When	a	positive	integer	p	is	expressed	as	a	sum
of	positive	integers

the	q-tuple	is	called	a	partition	of	integer	p.	For	example,	(5),	(4	1),	(3	2),	(3	1	1),
(2	2	1),	(2	1	1	l),	and	(1	1	1	1	1)	are	the	seven	different	partitions	of	the	integer	5.
The	integers,	λi′s,	are	called	parts	of	the	partitioned	number	p.	It	is	convenient

to	represent	the	repeated	parts	by	means	of	exponents;	for	example,	partition	(2	1
1	1)	is	written	as	(2	13).
The	 partitions	 of	 an	 integer	 p	 may	 be	 unrestricted	 or	 may	 have	 some

restrictions	on	them,	such	as	no	repetition	of	any	part	[i.e.,	λi	≠	λj	in	(10-10)],	or
no	part	greater	than	k	is	allowed.	The	number	of	partitions	of	a	given	integer	p	is
often	 obtained	 with	 the	 help	 of	 some	 generating	 function.	 For	 example,	 the
coefficient	of	xk	in	the	polynomial

gives	the	number	of	partitions,	without	repetition,	of	an	integer	k	≤	p	(see	page
111,	[3-11]).



Partitions	are	important	to	us	because	many	graph-enumeration	problems	can
be	expressed	in	the	form	of	partition	problems.

Rooted	Unlabeled	Trees

Coming	back	to	counting	trees,	let	us	recall	that	a	rooted,	unlabeled	tree	is	one
in	which	all	vertices	except	the	root	are	assumed	alike.	Let	un	be	the	number	of
unlabeled,	rooted	trees	of	n	vertices,	and	let	un(m)	be	the	number	of	those	rooted
trees	of	n	vertices	in	which	the	degree	of	the	root	is	exactly	m.	Then

Fig.	10-4	Rooted	tree	decomposed	into	rooted	subtrees.

Any	 rooted	 tree	T	 of	n	 vertices	 and	with	 root	R	 of	 degree	m	 can	be	 looked
upon	as	composed	of	m	rooted	subtrees,	each	attached	to	R	by	means	of	an	edge
between	 its	 root	 and	R.	 For	 example,	 in	 Fig.	 10-4	 an	 11-vertex,	 rooted	 tree	 is
composed	of	four	rooted	subtrees.
In	an	n-vertex	tree	T	the	n	−	1	vertices	are	distributed	among	the	m	subtrees,

and	thus	T	defines	an	m-part	partition	of	the	number	n	−	1.	Suppose	that	kj	is	the
number	of	such	subtrees	(in	T)	with	j	vertices.	Then

and

Note	that	Eqs.	(10-12)	and	(10-13)	represent	an	m-part	partition	of	integer	n	−



1,	in	which	integer	i	appears	ki	times	(0	≤	ki	≤	n	−	1).
In	Fig.	10-4,	for	example,

One	 can	 construct	 uj	 distinct	 rooted	 trees	 with	 j	 unlabeled	 vertices.	 Out	 of
these	 trees	 we	 select	 kj	 trees	 to	 form	 subtrees	 of	T.	 Since	 the	 same	 tree	may
appear	more	 than	 once	 as	 a	 subtree	 of	T,	we	 have	 the	 problem	 of	 finding	 the
number	of	ways	of	selecting	kj	objects	out	of	uj	objects	with	unlimited	repetition.
According	to	Eq.	(10-9),	this	number	is

Since	 each	 such	 selection	 can	 be	made	 independently,	 the	 possible	 number	 of
distinct	trees	for	this	specific	partition	is

where	 un(k1,	 k2,	 .	 .	 .	 ,	 kn-1)	 stands	 for	 the	 number	 of	 n-vertex,	 rooted	 trees
corresponding	to	the	partition

1k1	2k2	3k3	.	.	.	(n-1)kn-1

Addition	of	un(k1,	k2,	.	.	.	,	kn-1)	over	all	possible	partitions	of	n	−	1	yields	the
total	number	of	spanning	trees.	That	is,

What	we	have	obtained	in	(10-16)	is	a	recurrence	relation−a	solution	typical
of	many	 combinatorial	 problems.	 It	 gives	 un,	 the	 number	 of	 rooted,	 unlabeled



trees	of	n	vertices,	in	terms	of	u1,	u2,	.	.	.	,	un-1.	To	use	this	relation,	one	builds	up
numerical	tables	in	a	step-by-step	fashion.	For	example,

To	evaluate	u4,	we	first	have	to	find	all	partitions	of	integer	3.	These	are

(3),	(2,	1),	and	(1,	1,	1).

The	sum	of	the	respective	terms	contributed	by	these	partitions	is

Similarly,	 to	 evaluate	 u5	 we	 observe	 that	 the	 integer	 4	 has	 five	 different
partitions,	and	these	are

(4),	(3,	1),	(2,	2),	(2,	1,	1),	and	(1,	1,	1,	1).

Fig.	10-5	Rooted,	unlabeled	trees	of	one,	two,	three,	and	four	vertices.

The	 number	 of	 rooted	 trees	 corresponding	 to	 each	 of	 these	 five	 partitions	 is
obtained	using	(10-15).	The	sum	yields	u5:



And	so	on.	In	Fig.	10-5,	all	rooted,	unlabeled	trees	of	one,	two,	three,	and	four
vertices	are	shown.
Clearly,	computation	of	un	for,	say,	n	=	20,	using	(10-16)	is	extremely	tedious

and	involved.	It	requires	obtaining	all	possible	partitions	of	integer	19	(there	are
490	 partitions	 of	 19),	 computing	 u19,	 u18,	 .	 .	 .	 ,	 u2,	 u1	 evaluation	 of	 the
combinatorial	product	term

for	each	partition,	and	then	taking	the	sum	of	all	490	such	terms.

Counting	 Series	 for	 un:	 To	 circumvent	 some	 of	 these	 difficulties	 in
computation	of	un,	 let	 us	 find	 its	 counting	 series	 (i.e.,	 the	generating	 function)
u(x),	where

Substitution	of	(10-16)	in	(10-17)	and	substitution	of	n	−	1	by	its	partition	as	in
(10-12)	yields

Observing	that	every	sequence	of	positive	integers	forms	a	partition	of	some
integer,	(10-18)	can	be	rearranged	as



Substituting	the	identity

in	(10-19)	gives	us	the	desired	counting	series.	That	is,

Calculation	of	un	from	(10-20)	involves	building	up	a	table	of	ui	for	i	=	1,	2,	3,
.	.	.	,	n	−	1,	and	substituting	the	values	in	(10-20).	The	first	10	terms	in	the	series
(10-20)	are

The	reader	should	verify	(10-20a)	himself	and	extend	the	expansion	 through
another	10	terms.
The	 generating	 function	 u(x)	 can	 be	 expressed	 in	 an	 alternative	 form	 as

follows:
Taking	the	natural	logarithms	of	both	sides	of	Eq.	(10-20),	we	get



Therefore,

Form	(10-21)	is	due	to	George	Pólya,	whereas	(10-20)	is	Arthur	Cayley’s.
To	 obtain	 the	 generating	 function	 for	 (free)	 unlabeled	 trees	 from	 rooted

unlabeled	trees,	one	can	look	at	a	(free)	tree	as	composed	of	subtrees,	rooted	at
some	sort	of	central	vertex	distinct	from	all	other	vertices	in	the	tree.	For	this,	we
shall	use	the	concept	of	centroid	in	a	tree.

Centroid

In	a	tree	T,	at	any	vertex	v	of	degree	d,	there	are	d	subtrees	with	only	vertex	v
in	common.	The	weight	of	each	subtree	at	v	is	defined	as	the	number	of	branches
in	 the	 subtree.	Then	 the	weight	 of	 the	 vertex	 v	 is	 defined	 as	 the	weight	 of	 the
heaviest	of	the	subtrees	at	v.	A	vertex	with	the	smallest	weight	in	the	entire	tree
T	is	called	a	centroid	of	T.
Just	as	in	the	case	of	centers	of	a	tree	(Section	3-4),	it	can	be	shown	that	every

tree	has	either	one	centroid	or	two	centroids.	It	can	also	be	shown	that	if	a	tree
has	two	centroids,	the	centroids	are	adjacent.	In	Fig.	10-6	a	tree	with	a	centroid
(called	 a	 centroidal	 tree)	 and	 a	 tree	 with	 two	 centroids	 (called	 a	 bicentroidal
tree)	are	shown.	The	centroids	are	shown	enclosed	 in	circles,	and	 the	numbers
next	to	the	vertices	are	the	weights.

Free	Unlabeled	Trees

Let	 t′(x)	be	the	counting	series	for	centroidal	 trees,	and	 t″(x)	be	the	counting
series	 for	 bicentroidal	 trees.	 Then	 t(x),	 the	 counting	 series	 for	 all	 (unlabeled,
free)	trees,	is	the	sum	of	the	two.	That	is,

To	obtain	 t″(x),	observe	that	an	n-vertex	bicentroidal	tree	can	be	regarded	as
consisting	 of	 two	 rooted	 trees	 each	with	 n/2	 =	m	 vertices,	 and	 joined	 at	 their
roots	 by	 an	 edge.	 (A	 bicentroidal	 tree	 will	 always	 have	 an	 even	 number	 of
vertices;	why?)	Thus	the	number	of	bicentroidal	trees	with	n	=	2m	vertices	is



Fig.	10-6	Centroid	and	bicentroids.
given	by

and	therefore

The	number	of	vertices,	n,	in	a	centroidal	tree	can	be	odd	or	even.	If	n	is	odd,
the	 maximum	 weight	 the	 centroid	 could	 have	 is	 .	 This	 maximum	 is
achieved	only	when	the	tree	consists	of	a	path	of	n	−	1	edges.	On	the	other	hand,
if	n	 is	 even	and	 the	 tree	 is	centroidal,	 the	maximum	weight	 the	centroid	could
possibly	 have	 is	 .	 This	 maximum	 is	 achieved	 when	 the	 degree	 of	 the
centroid	is	three,	and	one	of	the	subtrees	consists	of	just	one	edge.
Thus,	 regardless	whether	n	 is	 odd	or	 even,	 it	 is	 clear	 that	 an	n-vertex	 (free)

centroidal	tree	can	be	regarded	as	composed	of	several	rooted	trees,	rooted	at	the
centroid,	 and	none	of	 these	 rooted	 trees	 can	have	more	 than	 ⌊n	 −	1)/2⌋	 edges,
where	 ⌊x⌋	 denotes	 the	 largest	 integer	 no	 greater	 than	 x.	 In	 view	 of	 this
observation,	an	involved	manipulation	of	Eq.	(10-21)	leads	to	the	following	(for
missing	steps	see	[10-3]):

Adding	(10-23)	and	(10-24),	we	get	the	desired	counting	series:



This	 relation,	 which	 gives	 the	 tree-counting	 series	 in	 terms	 of	 the	 rooted-tree
counting	 series,	was	 first	 obtained	 by	Richard	Otter	 in	 1948	 and	 is	 known	 as
Otter’s	formula.	The	first	10	terms	of	(10-25)	are

t(x)	=	x	+	x2	+	x3	+	2x4	+	3x5	+	6x6	+	11x7

+	23x8	+	47x9+	106x10+	.	.	.

The	reader	is	encouraged	to	extend	it	by	another	10	terms.	The	first	26	terms	of
both	u(x)	and	t(x)	are	given	in	Riordan’s	book	[3-11],	page	138.
By	 now	 you	 must	 have	 the	 impression	 that	 enumeration	 of	 graphs	 is	 an

involved	subject.	And	indeed	it	is.	So	far	we	have	enumerated	only	four	types	of
graphs−rooted	and	free	trees,	both	labeled	and	unlabeled	varieties.	It	is	difficult
to	proceed	further	without	some	additional	enumerative	tool.	This	is	provided	by
a	general	counting	theorem	due	to	Pólya.	We	shall	first	state	and	discuss	Pólya’s
theorem	and	then	show	how	it	can	be	applied	for	counting	graphs.

10-4. 	POLYA’S	COUNTING	THEOREM

To	 understand	 Pólya’s	 theorem,	 we	 need	 a	 few	 additional	 concepts	 in
combinatorial	theory.	In	this	section	we	shall	first	define	a	permutation	and	see
how	 it	 can	be	 represented	 in	different	ways.	Then	we	shall	 show	how	a	 set	of
permutations	P	 can	 form	 a	 group	 (called	 a	 permutation	 group)	 under	 a	 binary
operation	called	composition.	Then	we	 shall	 introduce	a	polynomial	 called	 the
cycle	index	of	a	permutation	group	P.	Finally,	we	shall	show	that	all	mappings
fi’s	from	a	domain	D	 to	a	range	R	 (both	D	and	R	being	finite)	are	divided	into
equivalence	classes	by	any	permutation	group	P	acting	on	the	domain	D.
After	 introducing	 these	 concepts	 we	 shall	 define	 figure-counting	 series	 and

configuration-counting	series.	And	this	will	be	followed	by	the	statement	of	the
celebrated	 theorem	of	Pólya,	which	expresses	 the	configuration-counting	series
in	 terms	 of	 the	 figure-counting	 series	 and	 the	 cycle	 index	 of	 the	 permutation
group.	 The	 statement	 of	 the	 theorem	will	 be	 followed	 by	 discussion	 and	 two
illustrative	examples.
If	Pólya’s	 theorem	and	 the	buildup	 to	 it	do	not	appear	very	 intuitive	 to	you,

don’t	worry;	you	are	not	alone.	What	is	important	is	to	understand	the	theorem
and	be	able	to	use	it	for	counting	different	types	of	graphs.



Permutation

On	a	 finite	 set	A	 of	 some	objects,	 a	 permutation	π	 is	 a	 one-to-one	mapping
from	A	onto	itself.	For	example,	consider	a	set	{a,	b,	c,	d}.	A	permutation

takes	a	into	b,	b	into	d,	c	into	c,	and	d	into	a.	Alternatively,	we	could	write

π1(a)	=	b,
π1(b)	=	d,
π1(c)	=	c,
π1(d)	=	a.

The	number	of	elements	in	the	object	set	on	which	a	permutation	acts	is	called
the	degree	of	the	permutation.	The	degree	of	π1	in	the	above	example	is	four.
A	 permutation	 can	 also	 be	 represented	 by	 a	 digraph,	 in	 which	 each	 vertex

represents	 an	 element	 of	 the	 object	 set	 and	 the	 directed	 edges	 represent	 the
mapping.	 For	 example,	 the	 permutation	 π1	 =	 	 is	 represented
diagrammatically	by	Fig.	10-7.

Fig.	10-7	Digraph	of	a	permutation.

Observe	that	the	in-degree	and	the	out-degree	of	every	vertex	in	the	digraph	of
a	permutation	is	one.	Such	a	digraph	must	decompose	into	one	or	more	vertex-
disjoint	directed	circuits	(why?).	This	suggests	yet	another	way	of	representing	a
permutation−as	 a	 collection	 of	 the	 vertex-disjoint,	 directed	 circuits	 (called	 the
cycles	of	 the	permutation).	Permutation	 	can	 thus	be	written	as	 (a	b	d)(c).
This	compact	and	popular	representation	is	called	the	cyclic	representation	of	a
permutation.	The	number	of	edges	in	a	permutation	cycle	is	called	the	length	of
the	cycle	in	the	permutation.



Often	 the	only	 information	of	 interest	 about	 a	permutation	 is	 the	number	of
cycles	of	various	lengths.	A	permutation	π	of	degree	k	is	said	to	be	of	type	(σ1,
σ2,	 .	 .	 .	 ,	σk)	 if	π	 has	σi	 cycles	 of	 length	 i	 for	 i	 =	 1,	 2,	 .	 .	 .	 ,	 k.	 For	 example,
permutation	(a	b	d)(c)	is	of	type	(1,	0,	1,	0)	and	permutation	(a	b	f)(c)(d	e	h)(g)
is	of	type	(2,	0,	2,	0,	0,	0,	0,	0).	Clearly,

Another	useful	method	for	indicating	the	type	of	a	permutation	is	to	introduce
k	dummy	variables,	say,	yl,	y2,	.	.	.	,	yk,	and	then	show	the	type	of	permutation	by
the	expression

Expression	 (10-27)	 is	 called	 the	 cycle	 structure	 of	 π.	 For	 example,	 the	 cycle
structure	of	the	eight-degree	permutation	(a	b	f)(c)(d	e	h)(g)	is

Note	that	the	dummy	variable	yi	has	no	significance	except	as	a	symbol	to	which
subscripts	 (indicating	 the	 lengths)	 and	 exponents	 (indicating	 the	 number	 of
cycles)	are	attached.	Two	distinct	permutations	 (acting	on	 the	same	object	 set)
may	have	the	same	cycle	structure	(page	149	in	[10-1]).
So	 far	 we	 have	 discussed	 only	 the	 representation	 and	 properties	 of	 a

permutation	individually.	Let	us	now	examine	a	set	of	permutations	collectively.
On	 a	 set	 A	 with	 k	 objects,	 we	 have	 a	 total	 of	 k!	 possible	 permutations—

including	 the	 identity	 permutation,	 which	 takes	 every	 element	 into	 itself.	 For
example,	the	following	are	the	six	permutations	on	a	set	of	three	elements	{a,	b,
c}:

(a)(b)(c),	(a	b)(c),	(a	c)(b),	(a)(b	c),	(a	b	c),	(a	c	b).

Their	cycle	structures,	respectively,	are

Composition	of	Permutations

Consider	the	two	permutations	π1	and	π2	on	an	object	set	{1,	2,	3,	4,	5}:



A	composition	of	 these	 two	permutations	π2π1	 is	 another	permutation	obtained
by	first	applying	π1	and	then	applying	π2	on	the	resultant.	That	is,

Thus	among	a	collection	of	permutations	on	the	same	object	set,	composition	is
a	binary	operation.

Permutation	Group

A	collection	of	m	permutations	P	=	{π1,	π2,	.	.	.	,	πm}	acting	on	a	set

A	=	{a1,	a2,	.	.	.	,	ak}

forms	 a	 group	 under	 composition,	 if	 the	 four	 postulates†	 of	 a	 group,	 that	 is,
closure,	associativity,	identity,	and	inverse	(see	Section	6-1),	are	satisfied.	Such
a	group	is	called	a	permutation	group.	For	example,	it	can	be	easily	verified	that
the	set	of	four	permutations

acting	on	the	object	set	{a,	b,	c,	d}	forms	a	permutation	group.
The	number	of	permutations	m	in	a	permutation	group	is	called	its	order,	and

the	number	of	elements	in	the	object	set	on	which	the	permutations	are	acting	is
called	 the	degree	of	 the	permutation	group.	 In	 the	example	 just	cited,	both	 the
degree	and	order	of	the	permutation	group	is	four.	It	can	be	shown	that	the	set	of
all	k!	permutations	on	a	set	A	of	k	elements	forms	a	permutation	group.	Such	a
group,	of	order	k!	and	degree	k,	is	called	the	full	symmetric	group,	Sk.



Cycle	Index	of	a	Permutation	Group

For	a	permutation	group	P,	of	order	m,	if	we	add	the	cycle	structures	of	all	m
permutations	in	P	and	divide	the	sum	by	m,	we	get	an	expression	called	the	cycle
index	Z(P)	of	P.	For	example,	the	cycle	index	of	S3,	the	full	symmetric	group	of
degree	three,	according	to	(10-28)	comes	out	to	be

Similarly,	 the	 cycle	 index	 of	 the	 permutation	 group	 (of	 degree	 four	 and	 order
four)	shown	in	(10-29)	is

Since	 the	 cycle	 index	 is	 the	 most	 important	 concept	 in	 this	 section,	 let	 us
illustrate	it	with	another	example.	Let	us	find	Z(S4).
Table	 10-1	 gives	 the	 different	 types	 of	 permutations	 possible	 in	S4,	 the	 full

symmetric	group	of	degree	four.
Table	10-1	is	easy	to	understand	and	to	construct.	For	example,	we	have	six

permutations	of	type	(2,	1,	0,	0)	on	the	object	set	{a,	b,	c,	d}:

(a)(b)(c	d),	(a)(c)(b	d),	(a)(d)(b	c),
(b)(c)(a	d),	(b)(d)(a	c),	(c)(d)(a	b).

Permutation	Type Number	of	Such	Permutations Cycle	Structures
(4,	0,	0,	0) 1
(2,	1,	0,	0) 6
(1,	0,	1,	0) 8 y1	y3
(0,	2,	0,	0) 3
(0,	0,	0,	1) 6 y4

Table	10-1

To	 get	 the	 cycle	 index	 of	S4	 from	Table	 10-1,	we	multiply	 the	 corresponding
entries	 in	 the	 second	 and	 third	 columns,	 add	 the	products,	 and	 then	divide	 the
sum	by	4!,	the	order	of	the	group.	Thus



To	display	the	variables	involved,	the	cycle	index	of	a	permutation	group	P	is
often	written	as

Z(P)	=	Z(P;	yl,	y2,	.	.	.	,	yk)

It	 is	 evident	 that	 computation	of	 the	cycle	 index	of	an	arbitrary	permutation
group	can	become	quite	involved	and	laborious.	There	are	certain	groups,	such
as	Sk,	whose	cycle	indices	have	been	derived	in	closed	forms.	These	are	related
to	 the	 partitions	 of	 integer	 k	 satisfying	 Eq.	 (10-26).	 For	 more	 on	 methods	 of
obtaining	cycle	indices,	the	reader	should	see	[10-1]	and	[1-5].

Cycle	Index	of	the	Pair	Group

When	the	n	vertices	of	a	graph	G	are	subjected	to	permutation,	the	n(n	−	1)/2
unordered	vertex	pairs	also	get	permuted.	For	example,	let	V	=	{a,	b,	c,	d}	be	the
set	of	vertices	of	a	four-vertex	graph.	The	permutation

on	 the	 vertices	 induces	 the	 following	 permutation	 on	 the	 six	 unordered	 vertex
pairs:

The	diagrams	of	permutation	ß	 and	 the	 induced	permutation	are	shown	 in	Fig.
10-8.
Notice	that	a	y1	y3	permutation	on	the	vertex	set	induces	a	 	permutation	on

the	vertex-pair	set.



Fig.	10-8	Permutation	on	vertex	set	and	the	induced	permutation	on	vertex-pair	set.

Similarly,	 each	 of	 the	n!	 possible	 permutations	 on	 the	n	 vertices	 of	 a	 graph
results	in	some	permutation	of	the	n(n	−	1)/2,	unordered,	vertex	pairs	(or	n(n	−
1)	ordered	vertex	pairs,	 in	 the	case	of	digraphs).	Furthermore,	 it	can	be	shown
that	 if	 a	 set	 of	 permutations	 on	 the	 vertices	 forms	 a	 group,	 the	 induced	 set	 of
permutations	on	the	pair	of	vertices	will	also	form	a	group	(Problem	10-5).	For
instance,	the	full	symmetric	group	Sn	on	n	vertices	of	a	graph	induces	a	group	Rn
of	n!	permutations	on	the	pairs	of	vertices.	†	Such	an	induced	group	is	called	the
pair	 group	 Rn.	 Let	 us	 work	 out	 the	 pair	 group	 R4	 induced	 by	 S4,	 the	 full
symmetric	group	on	the	vertices	of	a	four-vertex	graph.
The	identity	permutation	on	the	four	vertices	of	a	graph	produces	an	identity

permutation	on	the	six	pairs	of	vertices.	A	permutation	with	two	cycles	of	length
one	 and	 one	 cycle	 of	 length	 two	 produces	 two	 cycles	 of	 length	 one	 and	 two
cycles	of	length	two.	And	so	on.	The	cycle	structures	of	permutations	in	S4	and
the	 corresponding	 cycle	 structures	 of	 the	 induced	permutations	 on	 the	 pairs	 of
vertices	are	shown	in	Table	10-2.

Term	in	Z(S4) Induced	Term	in	Z(R4) No.	of	Permutations

1
6

y1	y3 8

3
y4 y2	y4 6

Table	10-2

Therefore,	the	cycle	index	of	the	pair	group	R4	(induced	on	the	pairs	of	vertices
by	S4)	is

For	a	general	expression	for	Z(R	)	see	[10-2].

Equivalence	Classes	of	Functions

As	a	further	preliminary	to	describing	Pólya’s	theorem,	let	us	introduce	some



additional	concepts.	Consider	two	sets	D	and	R,	with	the	number	of	elements	|	D
|	 and	 |	 R	 |,	 respectively.	 Let	 f	 be	 a	 mapping	 (or	 function)	 which	 maps	 each
element	d	from	domain	D	to	a	unique	image	f(d)	in	range	R.	Since	each	of	the	|
D	 |	 elements	 can	 be	 mapped	 into	 any	 of	 the	 |	 R	 |	 elements,	 the	 number	 of
different	functions	from	D	to	R	is	|	R	||	D	|.
Now	let	there	be	a	permutation	group	P	on	the	elements	of	set	D.	Then	define

two	mappings	f1	and	f2	as	P-equivalent	if	there	is	some	permutation	π	in	P	such
that	for	every	d	in	D	we	have

That	 the	 relationship	 defined	 by	 (10-33)	 is	 an	 equivalence	 relation	 can	 be
shown	as	follows:

1. Since	P	 is	 a	 permutation	 group,	 it	 contains	 the	 identity	 permutation,	 and
thus	(10-33)	is	reflexive.

2. If	P	 contains	 permutation	π,	 it	 also	 contains	 the	 inverse	 permutation	π-1.
Therefore,	the	relation	is	symmetric	also.

3. Furthermore,	if	P	contains	permutations	π1	and	π2,	it	must	also	contain	the
permutation	π1π2.	This	makes	P-equivalence	a	transitive	relation.

Since	 an	 equivalence	 relation	 divides	 a	 set	 into	 equivalence	 classes,	 all
mappings	 from	D	 to	R	 are	 divided	 into	 equivalence	 classes	 by	 a	 permutation
group	P	acting	on	set	D.	As	an	example,	let	D	=	{a,	b,	c}	and	R	=	{s,	t}.	There
are	23	=	8	mappings	f1,	f2,	.	.	.	,	f8	from	D	to	R,	as	shown	in	Table	10-3.

Table	10-3

Now	suppose	a	permutation	group	P	=	{(a)(b)(c),	(a	b	c),	(a	c	b)}	is	acting	on	D.
The	reader	can	verify	that	the	eight	mappings	in	Table	10-3	will	be	divided	into
four	equivalence	classes.	They	are



{f1},	{f2,	f3,	f4},	{f5,	f6,	f7},	{f8}.

Pólya′s	Counting	Theorem

Let	 us	 consider	 two	 finite	 sets,	 domain	 D	 and	 range	 R,	 together	 with	 a
permutation	group	P	on	D.	To	each	element	ρ	∊	R	let	us	assign	a	quantity	w[ρ]
and	call	 it	 the	content	 (or	weight)	 of	 the	 element	ρ.	The	weight	w[ρ]	 can	be	 a
symbol	 or	 a	 real	 number.	 A	 mapping	 f	 from	D	 to	 R	 can	 be	 described	 by	 a
sequence	of	 |	D	|	elements	of	set	R	such	that	the	ith	element	in	the	sequence	is
the	 image	of	 the	 ith	 element	of	 set	D	 under	 f.	Therefore	 the	 content	W(f)	 of	 a
mapping	f	can	be	defined	as	the	product	of	the	contents	of	all	its	images.	That	is,

Clearly,	all	functions	belonging	to	the	same	equivalence	class	defined	by	(10-
33)	 have	 identical	 weights.	 Therefore,	 we	 define	 the	 weight	 of	 an	 entire
equivalence	class	(of	functions	from	domain	D	to	range	R)	to	be	the	(common)
weight	 of	 the	 functions	 in	 this	 class.	 Our	 problem	 is	 to	 count	 the	 number	 of
equivalence	classes	with	various	weights,	given	D,	R,	permutation	group	P	on	D,
and	weights	w[ρ]	for	each	ρ	∊	R.	This	is	exactly	what	Pólya’s	counting	theorem
gives.
In	Pólya’s	terminology,	elements	ρ	of	set	R	are	called	figures,	and	functions	f

from	D	 to	R	 are	 called	configurations.	Often	 the	weights	of	 the	elements	of	R
can	be	expressed	as	powers	of	some	common	quantity	x.	In	that	case	the	weight
assignment	to	elements	of	set	R	can	be	neatly	described	by	means	of	a	counting
series	A(x)

where	 aq	 is	 the	 number	 of	 elements	 in	 set	 R	 with	 weight	 xq.†	 Likewise,	 the
number	 of	 configurations	 can	 be	 expressed	 in	 terms	 of	 another	 series,	 called
configuration	counting	series	B(x),	such	that

where	bm	 is	 the	number	of	different	configurations	having	weight	xm.	Now	we
can	state	the	following	powerful	result	known	as	Pólya’s	counting	theorem.



THEOREM	10-3

The	configuration-counting	series	B(x)	 is	obtained	by	substituting	the	figure-
counting	series	A(xi)	 for	each	yi	 in	 the	cycle	 index	Z(P;	y1,	y2,	 .	 .	 .	 ,	yk)	of	 the
permutation	group	P.	That	is,

The	 proof	 of	 Pólya’s	 theorem,	 although	 not	 complicated,	 is	 not	 particularly
illuminating	and	is	therefore	left	out.	The	reader	can	find	it	in	[10-1],	page	157.
Our	 interest	 is	mainly	 in	 the	application	of	 the	 theorem;	let	us	 illustrate	 it	with
some	examples.

Example	 1:	 Suppose	 that	we	 are	 given	 a	 cube	 and	 four	 (identical)	 balls.	 In
how	 many	 ways	 can	 the	 balls	 be	 arranged	 on	 the	 corners	 of	 the	 cube?	 Two
arrangements	are	considered	the	same	if	by	any	rotation	of	the	cube	they	can	be
transformed	into	each	other.
The	 answer	 is	 seven,	 as	 can	 be	 seen	 by	 inspection	 in	 Fig.	 10-9.	 In	 Pólya’s

terms	the	domain	D	is	the	set	of	the	eight	corners	of	the	cube,	and	the	range

Fig.	10-9	Attaching	four	balls	to	corners	of	a	cube.

R	consists	of	 two	elements	(i.e.,	 figures),	“presence	of	a	ball”	or	“absence	of	a
ball,”	with	contents	x1	and	x0,	respectively.	The	figure-counting	series	is

since	 a0,	 the	 number	 of	 figures	 with	 content	 0,	 is	 one,	 and	 a1	 the	 number	 of
figures	 with	 content	 1,	 is	 also	 one.	 The	 configurations	 are	 28	 =	 256	 different
mappings	that	assign	balls	to	the	corners	of	the	cube.	The	permutation	group	P



on	D	is	the	set	of	all	those	permutations	that	can	be	produced	by	rotations	of	the
cube.	These	permutations	with	their	cycle	structures	are

1. One	identity	permutation.	Its	cycle	structure	is	 	.

2. Three	180°	rotations	around	lines	connecting	the	centers	of	opposite	faces.
Its	cycle	structure	is	 	.

3. Six	 90°	 rotations	 (clockwise	 and	 counterclockwise)	 around	 lines
connecting	the	centers	of	opposite	faces.	The	cycle	structure	is	 	.

4. Six	180°	rotations	around	lines	connecting	the	midpoints	of	opposite	edges.
The	corresponding	cycle	structure	is	 	.

5. Eight	120°	rotations	around	lines	connecting	opposite	corners	in	the	cube.
The	cycle	structure	of	the	corresponding	permutation	is	 	.

The	cycle	index	of	this	group	consisting	of	these	24	permutations	is,	therefore,

Using	Pólya’s	theorem,	we	now	substitute	the	figure-counting	series,	that	is	1	+
x	 for	 y1,	 1	 +	 x2	 for	 y2,	 1	 +	 x3	 for	 y3,	 and	 1	 +	 x4	 for	 y4.	 This	 yields	 the
configuration-counting	series.

The	coefficient	of	x4	 in	B(x)	gives	the	number	of	P-inequivalent	configurations
of	 content	 x4	 (i.e.,	 with	 four	 balls).	 This	 verifies	 the	 answer	 obtained	 by
exhaustive	inspection	in	Fig.	10-9.
The	total	number	of	P-inequivalent	configurations	(with	contents	x0,	x1,	x2,	.	.

.	 ,	x8)	 is	obtained	by	adding	all	coefficients	 in	 (10-39),	which	 is	23.	 It	may	be
observed	that	this	is	the	number	of	distinct	ways	of	painting	the	eight	vertices	of
a	cube	with	two	colors	(one	color	corresponds	to	the	“presence	of	a	ball”	and	the
other	with	the	“absence	of	a	ball”).

Example	 2:	 In	 example	 1	we	were	 given	 four	 identical	 balls.	Now	 suppose
that	we	are	given	two	red	balls	and	two	blue	balls,	and	are	again	asked	to	find
the	number	of	distinct	arrangements	on	 the	corners	of	 the	cube.	Clearly,	D,	P,
and	Z(P)	will	remain	the	same	as	they	were	in	example	1.	Only	the	range	R	and
the	 figure-counting	 series	 A(x)	 will	 change.	 The	 range	 will	 contain	 three
elements:	(1)	presence	of	no	ball,	(2)	presence	of	a	red	ball,	and	(3)	presence	of	a



blue	ball.	Choosing	x	to	indicate	the	presence	of	a	red	ball	and	x′	to	indicate	the
presence	 of	 a	 blue	 ball,	 the	 three	 elements	 in	 the	 range	mentioned	 above	will
have	 the	 contents	 x0x′0,	 x1x′0,	 and	 x0x′1,	 respectively.	 Therefore	 the	 figure-
counting	series	is

A(x,	x′)	=	x0x′0	+	x1	x′0	+	x0x′1	=	1	+	x	+	x′.

Substituting	 this	 figure-counting	 series	 in	 (10-38),	 we	 get	 the	 configuration-
counting	series

The	coefficient	of	x′x′b	in	(10-40)	is	the	number	of	distinct	arrangements	with	r
red	 balls,	 b	 blue	 balls	 and	 8	 −	 r	 −	 b	 corners	 with	 no	 balls.	 The	 number	 of
arrangements	with	two	red	and	two	blue	balls	is,	therefore,	22.
For	 some	 other	 non-graph-theoretic	 examples	 of	 the	 applications	 of	 Pólya’s

theorem,	the	reader	should	work	out	Problems	10-10,	10-11,	10-14,	and	10-15.
Let	us	now	return	to	the	counting	of	graphs.

10-5. 	GRAPH	ENUMERATION	WITH	POLYA’s	THEOREM

Enumeration	of	Simple	Graphs:	Let	us	consider	 the	problem	of	counting	all
unlabeled,	simple	graphs	of	n	vertices.	Any	such	graph	G	can	be	regarded	as	a
mapping	 (i.e.,	 configuration)	 of	 the	 set	 D	 of	 all	 	 unordered	 pairs	 of
vertices	 (for	 digraphs	 n(n	 −	 1)	 pairs	 of	 vertices).	 Range	 R	 consists	 of	 two
elements	s	and	t,	with	contents	x1	and	x0,	respectively.	If	a	vertex	pair	is	joined



by	 an	 edge	 in	 G,	 the	 vertex	 pair	 maps	 into	 s,	 an	 element	 with	 content	 x1	 ;
otherwise,	into	t,	an	element	with	content	x0	=	1.	Thus	the	figure-counting	series
is

A(x)	=	∑aqxq	=	1	+	x

The	relevant	permutation	group	in	 this	case	 is	Rn,	 the	group	of	permutations
on	the	pairs	of	vertices	induced	by	Sn	(the	full	symmetric	group	on	the	n	vertices
of	 the	 graph).†	 Therefore,	 the	 configuration-counting	 series	 is	 obtained	 by
substituting	1	+	x	for	y1,	1	+	x2	for	y2,	1	+	x3	for	y3,	and	so	on	in	Z(Rn).	Some
specific	cases	are
(1)	For	n	=	3,

Therefore,	the	configuration-counting	series	is

The	coefficient	of	xi	 in	B(x)	 is	 the	number	of	configurations	with	content	xi.
The	content	of	a	configuration	here	is	the	number	of	edges	in	the	corresponding
graph.	Thus	the	number	of	nonisomorphic	simple	graphs	of	three	vertices	with	0,
1,	2,	and	3	edges	is	each	one.	This	is	how	it	should	be,	as	shown	in	Fig.	10-10.
(2)	For	n	=	4,	the	cycle	index	Z(R4)	is	given	in	(10-32).	Substituting	1	+	xi	for

yi	in	(10-32),	we	get

In	 (10-41)	 the	 coefficient	 of	 xr	 gives	 the	 number	 of	 simple	 graphs	 with	 four
vertices	and	r	edges.	The	validity	of	series	(10-41)	is	verified	in	Fig.	10-11.



Fig.	10-10	Simple	unlabeled	graphs	of	three	vertices.

Fig.	10-11	Simple	unlabeled	graphs	of	four	vertices.

(3)	For	n	=	5,	the	cycle	index	Z(R5)	is	given	in	Problem	10-9.	Substituting	1	+
xi	 for	 yi	 in	 Z(R5),	 we	 get	 the	 counting	 series	 B(x)	 for	 simple	 graphs	 of	 five
vertices,	as	follows:

Again,	for	each	r	 the	coefficient	of	xr	 in	(10-42)	gives	the	number	of	simple
graphs	of	five	vertices	and	r	edges.
The	 number	 of	 simple,	 unlabeled	 graphs	 with	 n	 vertices	 for	 any	 n	 can	 be

counted	similarly.

Enumeration	 of	 Multigraphs:	 Suppose	 that	 we	 are	 interested	 in	 counting
multigraphs	of	n	vertices,	in	which	at	most	two	edges	are	allowed	between	a	pair
of	vertices.
In	this	case	the	domain	and	the	permutation	group	are	the	same	as	they	were



for	 simple	graphs.	The	 range,	however,	 is	different.	A	pair	of	vertices	may	be
joined	 by	 (1)	 no	 edge,	 (2)	 one	 edge,	 or	 (3)	 two	 edges.	Thus	 range	R	 contains
three	elements,	 say,	s,	 t,	u,	with	contents	x0,	xl,	 and	x2,	 respectively;	 that	 is,	xi
indicates	the	presence	of	i	edges	between	a	vertex	pair,	for	i	=	0,	1,	2.	Threfore,
the	figure-counting	series	becomes

Substitution	of	1	+	xr	+	x2r	 for	yr	 in	Z(Rn)	will	yield	the	desired	configuration-
counting	series.	For	n	=	4,	using	the	cycle	index	from	(10-32),	we	get

The	 coefficient	 of	 xi	 in	 (10-44)	 is	 the	 number	 of	 distinct,	 unlabeled,
multigraphs	of	four	vertices	and	i	edges	(such	that	there	are	at	most	two	parallel
edges	between	any	vertex	pair).	For	example,	the	coefficient	of	x3	is	5,	and	these
five	multigraphs	are	shown	in	Fig.	10-12.
Instead	of	allowing	at	most	two	parallel	edges	between	a	pair	of	vertices,	had

we	allowed	any	number	of	parallel	edges	the	figure-counting	series	would	be	the
infinite	series

Fig.	10-12	Unlabeled	multigraphs	of	four	vertices,	three	edges,	and	at	most	two	parallel	edges.

Enumeration	of	Digraphs:	For	enumerating	digraphs	we	have	to	consider	all
n(n	 −	 1)	 ordered	 pairs	 of	 vertices	 as	 constituting	 the	 domain.	 The	 relevant
permutation	group	will	 consist	of	permutations	 induced	on	all	ordered	pairs	of
vertices	by	Sn.	The	cycle	index	of	this	permutation	group,	Mn,	can	be	obtained	in
the	same	fashion	as	was	done	in	the	case	of	Rn.	For	example,	for	n	=	4,	Table	10-
4	gives	the	terms	in	Z(Mn)	induced	by	each	term	in	Z(Sn).



Table	10-4

Therefore,	the	cycle	index	is

For	 a	 simple	 digraph	 the	 figure-counting	 series	 A(x)	 =	 1	 +	 x	 is	 applicable,
because	a	given	ordered	pair	of	vertices	 (a,	b)	either	does	or	does	not	have	an
edge	(directed)	from	a	to	b.	On	substituting	1	+	xi	for	every	yi	in	(10-46),	we	get
the	following	configuration-counting	series	for	four-vertex,	simple	digraphs.

Fig.	10-13	Simple	unlabeled	digraphs	of	four	vertices	and	two	edges.

The	 coefficient	 of	 xj	 in	 (10-47)	 is	 the	 number	 of	 simple	 digraphs	 with	 four
vertices	and	 j	edges.	For	example,	the	five	digraphs	of	two	edges	are	shown	in
Fig.	10-13.
The	general	expression	for	 the	cycle	 index,	Z(Mn),	of	 the	permutation	group

on	n(n	−	1)	ordered	pairs	 induced	by	Sn	 is	given	 in	 [1-5],	 page	180.	Digraphs
with	 parallel	 edges	 can	 be	 enumerated	 by	 substituting	 the	 appropriate	 figure-



counting	series,	say	(10-43),	in	Z(Mn).

SUMMARY

Enumeration	of	graphs	is	one	of	the	most	involved	areas	in	graph	theory	and
deserves	 an	 entire	 volume	 to	 itself.	 In	 this	 chapter,	we	 have	 briefly	 presented
some	 enumerative	 techniques−the	 most	 important	 of	 them	 being	 Pólya’s
counting	 theorem.	The	major	 problem	 in	 using	 Pólya’s	 theorem	 is	 finding	 the
appropriate	permutation	group	and	then	obtaining	its	cycle	index.
One	could	 think	of	a	hundred	different	 types	of	graphs	 to	be	counted—each

presenting	 a	 special	 problem.	We	 have,	 in	 this	 chapter,	 counted	 the	 following
five	 types	of	unlabeled	graphs	 (enumeration	of	 labeled	graphs	 is	much	easier):
(1)	rooted	trees,	(2)	free	trees,	(3)	simple	graphs,	(4)	multigraphs,	and	(5)	simple
digraphs.	 Important	as	 these	 types	of	graphs	are,	 they	were	enumerated	mainly
as	illustrations.	One	could,	for	example,	be	interested	in	counting	all	unlabeled,
simple	 graphs	 with	 n	 vertices	 that	 are	 (1)	 connected,	 or	 (2)	 planar,	 or	 (3)
nonseparable,	or	(4)	self-dual,	and	so	on.
Many	 such	 types	 of	 graphs	 have	 been	 enumerated	 and	 reported	 as	 research

papers	 in	 the	 literature,	but	 there	are	many	 types	of	graphs	 that	have	yet	 to	be
counted.
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found.	The	latest	list	of	27	unsolved	problems	in	graph	enumeration	is	discussed
in	another	 article	by	Harary	 [10-5].	For	a	 lucid	exposition	of	Pólya’s	 counting
theorem,	see	the	paper	by	deBruijn,	which	appears	as	Chapter	5	in	[10-1],	or	see
Chapter	 5	 of	 the	 book	 by	 Liu	 [8-3].	 For	 some	 excellent	 illustrations	 of
applications	of	Pólya’s	theorem	to	graph	enumeration,	see	[10-2],	[10-6],	[10-7],
[10-8],	and	Chapter	6	of	[3-11].
Many	counting	problems	 in	chemistry,	physics,	biology,	 information	 theory,

and	 so	 on,	 can	 be	 regarded	 as	 graph-enumeration	 problems.	A	 survey	 of	 such



applications	is	given	in	Chapter	6	of	[10-1]	and	in	[10-4].	A	detailed	treatment	of
an	 application	 to	 a	 problem	 in	 statistical	 mechanics	 is	 given	 in	 [10-9].	 An
application	to	counting	of	distinct	automata	is	given	in	[12-5].
The	pioneering	papers	of	Cayley,	Redfield,	and	Pólya	are	not	included	in	the

following	list.	They	have	been	referred	to	in	most	of	the	following:
10-1. BECKENBACH,	 E.	 F.	 (ed.),	 Applied	 Combinatorial	 Mathematics,	 John

Wiley	&	Sons,	Inc.,	New	York,	1964.
10-2. HARARY,	 F.,	 “The	Number	 of	 Linear,	Directed,	Rooted	 and	Connected

Graphs,”	Trans.	Am.	Math.	Soc,	Vol.	78,	1955,	445–463.
10-3. HARARY,	 F.,	 “Note	 on	 the	 Pólya	 and	 Otter	 Formulas	 for	 Enumerating

Trees,”	Michigan	Math	Journal,	Vol.	3,	1956,	109–112.
10-4. HARARY,	 F.,	 “Graphical	Enumeration	Problems,”	 in	Graph	Theory	 and

Theoretical	 Physics	 (F.	Harary,	 ed.),	Academic	 Press,	 Inc.,	New	York,
1967,	1–41.

10-5. HARARY,	F.,	“Enumeration	Under	Group	Action:	Unsolved	Problems	in
Graphical	Enumeration	 IV,”	J.	Combinatorial	Theory,	Vol.	8,	1970,	1–
11.

10-6. PALMER,	E.	M.,	“Methods	 for	 the	Enumeration	of	Multigraphs,”	 in	The
Many	 Facets	 of	 Graph	 Theory	 (G.	 Chartrand	 and	 S.	 F.	 Kapoor,	 eds.),
Springer-Verlag	New	York,	Inc.,	New	York,	1969,	251–261.

10-7. READ,	 R.	 C,	 “On	 the	 Number	 of	 Self-Complementary	 Graphs	 and
Digraphs,”	J.	London	Math.	Soc,	Vol.	38,	1963,	99–104.

10-8. ROBINSON,	 R.	 W.,	 “Enumeration	 of	 Nonseparable	 Graphs,”	 J.
Combinatorial	Theory,	Vol.	9,	No.	4,	Dec.	1970,	327–356.

10-9. UHLENBECK,	 G.	 E.,	 and	 G.	 W.	 FORD,	 “Theory	 of	 Linear	 Graphs	 with
Applications	to	the	Theory	of	the	Virial	Development	of	the	Properties	of
Gases,”	in	Studies	in	Statistical	Mechanics,	Vol.	1	(J.	de	Boer	and	G.	E.
Uhlenbeck,	 eds.),	 North-Holland	 Publishing	 Company,	 Amsterdam,
1962,	123–211.

PROBLEMS
10-1. Satisfy	 yourself	 that	 for	 a	 set	 of	 graphs	 isomorphism	 (as	 defined	 in

Section	 2-1)	 is	 indeed	 an	 equivalence	 relation.	 That	 is,	 the	 relation	 is
reflexive,	symmetric,	and	transitive.

10-2. Prove	 that	a	vertex	v	appears	 in	sequence	(10-3)	m	 times	 if	and	only	 if
degree	of	v	=	m	−	1.



10-3. Prove	that	a	digraph	in	which	the	in-degree	as	well	as	the	out-degree	of
every	vertex	is	one	can	be	decomposed	into	one	or	more	vertex-disjoint
directed	circuits.	(Hint:	In	such	a	digraph	every	component	is	a	directed
circuit.)

10-4. Prove	 that	 a	 subset	A	 of	 a	 finite	 group	 forms	 a	 subgroup	 if	 the	 subset
satisfies	the	closure	postulate.	(Hint:	Show	the	existence	of	the	inverse	of
an	element	a	∊	A	as	follows:	Elements	a,	a2,	a3,	.	.	.	cannot	all	be	distinct
because	 the	 group	 is	 finite,	 but	 they	 must	 all	 be	 in	 A	 because	 of	 the
closure	property.	Suppose	that	ap	=	aq,	where	p	>	q.	Therefore,	ap-q	=	1
or	a-1	=	ap-q-1.)

10-5. Prove	that	if	a	set	of	permutations	P	on	an	object	set	S	forms	a	group,	the
set	R	of	all	permutations	induced	by	P	on	set	S	x	S	also	forms	a	group.
[Hint:	 Prove	 closure	 by	 showing	 that	 the	 composition	 of	 two
permutations	on	S	x	S	 induced	by	any	two	permutations	π1,	π2	 (in	P)	 is
the	 permutation	 induced	 by	 the	 composition	 (π2·π1).	Then	 use	Problem
10-4.]

10-6. Show	 that	 the	 cycle	 index	 of	 a	 group	 consisting	 of	 the	 identity
permutation	only	is	 ,	k	being	the	number	of	elements	in	the	object	set.

10-7. Show	 that	 the	 cycle	 index	of	 the	 induced	pair	 group	R3	 is	 the	 same	as
that	of	S3.	That	is,

10-8. Show	that	the	cycle	index	of	S5,	the	full	symmetric	group	of	degree	five,
is

10-9. Show	that	the	cycle	index	of	the	unordered	pair	group	R5	(on	the	set	of
10	unordered	pairs	induced	by	S5)	is



(Hint:	Use	the	result	of	Problem	10-8.)

10-10. Find	the	different	ways	of	painting	the	six	vertices	of	an	octahedron	with
three	 colors.	 Two	 octahedrons	 are	 colored	 distinctly	 if	 they	 cannot	 be
made	to	coincide	by	any	rotation.	[Hint:	First	show	that	the	cycle	index
of	the	permutation	group	is

Then	substitute	the	figure-counting	series	1	+	x	+	x′.]

10-11. List	all	partitions	of	5,	and	use	them	to	find	u6,	the	number	of	unlabeled
trees	of	six	vertices.	(You	may	use	the	values	of	u1,	u2,	.	.	.	u5,	given	in
this	chapter.)

10-12. Given	 a	 square,	 show	 that	 there	 are	 exactly	 eight	 distinct	 motions
(combinations	 of	 rotations	 and	 reflections)	which	 bring	 the	 square	 into
coincidence	 with	 itself.	 Show	 that	 these	 motions	 form	 a	 group	 (called
dihedral	group	D4).	Furthermore,	show	that	the	cycle	index	of	this	group
is

10-13. Show	that	the	order	of	Dn,	the	group	of	symmetries	of	a	regular	n-sided
polygon,	is	2n.	Find	the	cycle	index	of	Dn.

10-14. Suppose	that	we	are	 to	make	necklaces	with	four	beads−some	blue	and
some	green.	How	many	distinct	necklaces	are	possible?	Two	necklaces
are	considered	indistinguishable	if	one	can	be	made	identical	to	the	other
by	any	combination	of	rotation	and	flipping.	[Hint:	Use	Z(D4)	and	follow
the	procedure	of	example	1.]

10-15. Find	the	number	of	different	ways	of	painting	the	four	faces	of	a	pyramid
with	two	colors.

10-16. Find	 the	 counting	 series	 for	 unlabeled,	 simple,	 connected	 graphs	 with
exactly	one	circuit.	[Hint:	Use	Z(Dn)	and	consider	the	graph	as	consisting
of	a	single	circuit	with	one	or	more	trees	attached	to	its	vertices.]

10-17. Find	 the	counting	series	 for	 the	structural	 isomers	of	saturated	alcohols
CnH2n+1OH.	(Hint:	Consider	the	compound	as	an	n-vertex	rooted	tree	in



which	each	vertex	 is	 a	 carbon	atom.	The	carbon	atom	carrying	 the	OH
radical	 corresponds	 to	 the	 root.	 Then	 find	 the	 counting	 series	 for
unlabeled,	 rooted	 trees	 in	which	 the	 root	 is	at	most	of	degree	 three	and
the	nonroot	vertices	are	at	most	of	degree	four.)

10-18. A	permutation	π	 applied	 on	 the	 vertex	 set	V	 of	 a	 graph	G	 is	 called	 an
automorphism	 of	 G,	 if	 π	 preserves	 the	 adjacency.	 That	 is,	 an
automorphism	of	G	is	an	isomorphism	with	itself.	Prove	that	the	set	of	all
automorphisms	 Ω(G)	 on	 G	 forms	 a	 group.	 (Hint:	 This	 group	 will
obviously	 be	 a	 subgroup	 of	 Sn.	 Use	 the	 result	 of	 Problem	 10-4,	 after
observing	 that	 an	 automorphism	 followed	 by	 another	 is	 also	 an
automorphism.)

10-19. Find	the	automorphism	group	Ω(G)	of	a	graph	G	 if	G	 is	(a)	a	complete
graph	of	n	yertices,	and	 (b)	a	circuit	with	n	vertices.	Find	a	graph	with
minimum	number	of	vertices	n	>	1	 in	which	Ω(G)	 consists	of	only	 the
identity	permutation.

10-20. Prove	 that	 the	 number	 of	 ways	 an	 unlabeled	 n-vertex	 graph	 can	 be
labeled	is	n!/|Ω(G)|,	where	|Ω(G)|	is	the	order	of	the	automorphism	group
Ω(G)	 of	G.	 (Hint:	The	problem	 requires	 some	additional	 knowledge	of
group	theory.	The	proof	can	be	found	on	page	180	in	[1-5].)

†The	result	can	be	proved	as	follows:	Let	the	n	objects	be	labeled	1,	2,	3,	.	.	.	,	n,	and	let	a	specific	selection
be	a	list	of	k	integers	a1,	a2,	.	.	.	,	ak	arranged	in	nondecreasing	order.	The	ai′s	are	not	necessarily	distinct.
From	this	list	we	get	a	new	list	a1,	a2	+	1,	a3	+	2,	.	.	.	,	ak	+	k	−	1	by	adding	0	to	a1,	1	to	a2,	and	so	on.
Each	 term	 in	 the	 new	 list	 is	 distinct.	 Thus	 every	 selection	 with	 unlimited	 repetitions	 can	 be	 identified
uniquely	as	a	selection	of	k	distinct	integers	from	integers	1,	2,	.	.	.	,	n	+	k	−	1.
†In	 fact,	 it	 can	 be	 shown	 that	 if	 a	 collection	 of	 permutations	 is	 closed	with	 respect	 to	 composition,	 the
remaining	three	postulates	are	automatically	satisfied	(Problem	10-4).
†Except	for	n	=	2,	in	which	case	the	number	of	possible	permutations	on	the	pair	is	1,	rather	than	2.
†If	 the	content	assigned	 to	 figures	cannot	be	expressed	as	powers	of	a	 single	quantity	x,	 then	 the	 figure-
counting	series	will	be	a	multinomial	in	different	variables,	rather	than	in	just	one	variable	x.
†Because	in	an	unlabeled	graph,	all	n	vertices	are	indistinguishable.	Were	we	to	count	labeled	graphs	the
permutation	group	would	have	consisted	of	only	the	identity	permutation.	Substitution	of	1	+	x	in	its	cycle
index	would	have	yielded	the	simple	result	of	expression	(10-1).



11	GRAPH-THEORETIC	ALGORITHMS	AND	COMPUTER
PROGRAMS

To	 be	 able	 to	 use	 a	 digital	 computer	 in	 solving	 graph-theoretic	 problems	 is
undoubtedly	 an	 important	 part	 of	 learning	 graph	 theory,	 especially	 for	 those
interested	 in	 applications.	Most	 of	 the	 practical	 problems	which	 call	 for	 graph
theory	 involve	 large	 graphs—graphs	 that	 are	 virtually	 impossible	 for	 hand
computation.	In	fact,	one	of	the	reasons	for	the	recent	growth	of	interest	in	graph
theory	has	been	the	arrival	of	the	high-speed	electronic	computer.	Problems	that
hitherto	 were	 of	 academic	 interest	 only	 are	 suddenly	 being	 solved	 by	 the
computer,	 and	 their	 solutions	 are	 applied	 to	 practical	 situations.	 Computer
programs	have	been	written	 to	handle	successfully	 large	graphs	encountered	 in
PERT,	 flow	 problems,	 transportation	 networks,	 electrical	 networks,	 circuit
layouts,	and	the	like.
We	must	 hasten	 to	 add,	 however,	 that	 although	our	 computers	 are	 very	 fast

and	operate	at	nanosecond	(10-9	second)	speeds,	they	quickly	reach	their	limit	if
used	as	a	brute	force	to	solve	graph-theory	problems	(in	fact,	any	combinatorial
problem).	 Consider,	 for	 example,	 the	 problem	 of	 finding	 a	 lowest-weight
Hamiltonian	 circuit	 in	 a	 weighted	 complete	 graph	 of	 n	 vertices,	 that	 is,	 the
traveling	 salesman	 problem.	 There	 are	 	 different	 Hamiltonian	 circuits.
One	may	be	tempted	to	use	brute	force	and	generate	all	Hamiltonian	circuits	and
compare	their	weights.	For	a	graph	with	10	vertices,	the	number	of	Hamiltonian
circuits	 is	 !	=	181,440,	 and	 this	method	may	be	all	 right.	But	 for	 a
graph	of	20	vertices,	we	have

and	 to	perform	 	operations	at	 the	rate	of	even	one	operation	per	nanosecond
would	require	about



Thus	it	is	amply	clear	that	without	the	aid	of	mathematical	tools	one	cannot	hope
to	 get	 the	 desired	 numerical	 answer,	 regardless	 of	 the	 speed	 of	 the	 electronic
computer.	The	power	of	 the	computer	must	be	combined	with	 the	 ingenuity	of
mathematical	techniques.
As	is	the	case	with	all	combinatorial	problems,	the	manipulation	and	analysis

of	graphs	and	subgraphs	is	essentially	nonnumerical.	That	is,	in	graph-theoretic
programs	it	is	primarily	the	decision-making	ability	of	the	computer	that	is	used
rather	than	its	ability	to	perform	arithmetic	operations.
In	 this	 chapter	 it	 is	 assumed	 that	 the	 reader	 has	 some	 familiarity	 with

computer	programming.

11-1.	ALGORITHMS

An	 algorithm	 is,	 in	 essence,	 a	 recipe	 for	 solving	 a	 certain	 mathematical
problem.	It	consists	of	a	set	of	instructions	that	when	followed	step	by	step	will
lead	 to	 the	 solutions	 of.the	 problem.	 Every	 step	 in	 an	 algorithm	 must	 be
precisely	 and	 unambiguously	 defined,	 and	 an	 algorithm	 must	 terminate	 after
having	solved	the	given	problem	in	a	finite	number	of	steps.	As	pointed	out	by
Knuth	 [11-39],	 page	 4,	 every	 algorithm	 must	 have	 five	 important	 features:
finiteness,	definiteness,	input,	output,	and	effectiveness.
An	 algorithm	 can	 be	 expressed	 in	 different	 for	 ms:	 (1)	 the	 steps	 may	 be

written	 in	English;	 (2)	 it	may	be	 in	 the	form	of	a	computer	program	written	 in
complete	detail	in	the	language	understandable	by	the	machine	in	use;	or	(3)	the
algorithm	may	 be	 expressed	 in	 a	 form	between	 these	 two	 extremes,	 such	 as	 a
flow	 chart.	 Each	 form	 has	 certain	 advantages	 and	 shortcomings.	 Usually,	 an
algorithm	 is	 first	 expressed	 in	 ordinary	 language,	 then	 converted	 into	 a	 flow
chart,	and	finally	written	in	the	detailed	and	precise	language	so	that	a	machine
can	execute	it.
For	 our	 purpose	 the	 flow	 chart	 is	 the	 best.	 It	 is	 the	 most	 popular	 form	 of

expressing	an	algorithm.	It	is	independent	of	the	programming	language	and	of
the	 computer	 the	 student	 may	 have	 at	 his	 disposal.	 As	 examples	 of	 actual
programs,	 listings	 of	 several	 tested	 programs	 are	 provided	 at	 the	 end	 of	 this
chapter.	One	 of	 the	 programs	 is	 in	APL	 (A	Programming	 Language),	 and	 the
others	are	in	FORTRAN.



Efficiency	of	Algorithms:	An	algorithm	must	not	only	do	what	it	is	supposed
to	 do,	 but	 must	 do	 it	 efficiently.	 The	 two	 main	 criteria	 for	 efficiency	 of	 an
algorithm	are	 the	memory	and	computation-time	 requirements	as	a	 function	of
the	size	of	the	input.	In	our	case	the	input	is	a	graph,	and	its	size	is	the	number	of
vertices,	n,	 and	 the	number	of	 edges,	e.	For	most	graph	problems	 the	memory
requirement	is	generally	not	the	bottleneck,	but	the	computation	time	can	be	(as
we	saw	in	the	opening	remarks	of	this	chapter).
In	 evaluating	 the	 figure	 of	merit	 of	 an	 algorithm	 one	may	 seek	 the	 “worst-

case“	execution	time	(i.e.,	the	time	taken	for	the	worst	possible	choice	of	a	graph
of	the	given	size),	or	the	“best-case“	execution	time	or	the	“average-case.“
Often,	more	than	one	algorithm	is	available	for	one	graph-theoretic	problem.

Sometimes	one	algorithm	can	easily	be	seen	to	be	more	efficient	than	others,	for
all	 nontrivial	 graphs.	 In	many	 cases,	 however,	 the	 relative	 efficiencies	 can	 be
compared	 only	 in	 the	 context	 of	 the	 size	 and	 structure	 of	 the	 graph,	 detailed
implementation	of	the	algorithms,	and	the	computer	used.
A	 detailed	 analysis	 of	 the	 performance	 of	 a	 graph-theoretic	 algorithm	 is

extremely	involved.	We	will	not	indulge	in	such	analyses,	as	that	would	require
a	 chapter	 in	 itself.	 We	 will,	 however,	 make	 some	 gross	 observations	 on
complexities	 of	 the	 algorithms;	 namely	 how	 the	 computation	 time	 grows	 as	 a
function	of	n	or	e,	as	n	and	e	become	very	 large,	assuming	that	 the	worst-case
graph	is	provided	as	the	input.	Such	an	index	of	performance,	too	unrealistic	to
be	 useful	 in	 estimating	 the	 expected	 computation	 time	 of	 a	 program,	 is	 often
valuable	in	classifying	algorithms	and	in	their	theoretical	studies.

11-2.	INPUT:	COMPUTER	REPRESENTATION	OF	A	GRAPH

An	algorithm	has	some	inputs—the	data	with	which	the	algorithm	begins	(just
as	 a	 recipe	 for	 a	 dish	 calls	 for	 raw	 ingredients).	 Naturally,	 the	 input	 for	 our
algorithms	here	will	be	one	or	more	graphs	(or	digraphs).	A	graph	is	generally
presented	 to	 and	 is	 stored	 in	 a	 digital	 computer	 in	 one	 of	 the	 following	 five
forms.	 Each	 has	 advantages	 and	 disadvantages.	 The	 choice	 depends	 on	 the
graph,	 the	problem,	 the	 language,	 the	 type	of	machine,	and	whether	or	not	 the
graph	is	modified	during	the	course	of	the	computation.

(a)	Adjacency	Matrix:	The	most	popular	form	in	which	a	graph	or	digraph	is
fed	to	a	computer	is	its	adjacency	matrix.	For	example,	algorithms	described	in
[11-25]	and	[11-47]	use	the	adjacency	matrix.	After	assigning	a	distinct	number
to	 each	of	 the	n	 vertices	 of	 the	given	graph	 (or	 digraph)	G,	 the	n	 by	n	 binary



matrix	X(G)	is	used	for	representing	G	during	input,	storage,	and	output.	Since
each	of	the	n2	entries	is	either	a	0	or	a	1,	the	adjacency	matrix	requires	n2	bits	of
computer	memory.	Bits	can	be	packed	into	words.	Let	w	be	the	word	length	(i.e.,
the	number	of	bits	 in	a	computer	word)	and	n	be	 the	number	of	vertices	 in	 the
graph.	Then	each	row	of	the	adjacency	matrix	may	be	written	as	a	sequence	of	n
bits	 in	 [n/w]	machine	words.	 ([x]	 denotes	 the	 smallest	 integer	not	 less	 than	x.)
The	number	of	words	required	to	store	the	adjacency	matrix	is,	therefore,	n[n/w].
The	 adjacency	 matrix	 of	 an	 undirected	 graph	 is	 symmetric,	 and	 therefore

storing	only	the	upper	triangle	is	sufficient.	This	requires	only	n(n	−	1)/2	bits	of
storage.	This	saving	in	storage,	however,	often	costs	in	increased	complexity	and
computation	time.	In	some	problems	it	is	worth	it.
It	must	be	kept	in	mind	that	the	adjacency	matrix	is	defined	for	graphs	without

parallel	edges.	As	discussed	in	Chapter	7,	it	is	not	possible	to	represent	parallel
edges	in	an	adjacency	matrix.

(b)	 Incidence	 Matrix:	 Occasionally,	 an	 incidence	 matrix	 is	 also	 used	 for
storing	and	manipulation	of	a	graph.	The	algorithm	in	[11-68],	for	example,	uses
the	 incidence	 matrix	 A(G).	 An	 incidence	 matrix	 requires	 n·e	 bits	 of	 storage,
which	might	be	more	 than	 the	n2	bits	needed	for	an	adjacency	matrix,	because
the	number	of	edges	e	is	usually	greater	than	the	number	of	vertices	n.	On	rare
occasions	 it	 may	 be	 advantageous	 to	 use	 the	 incidence	matrix	 rather	 than	 the
adjacency	matrix,	 in	 spite	 of	 the	 increased	 requirements	 in	 storage.	 Incidence
matrices	are	particularly	favored	for	electrical	networks	and	switching	networks.

(c)	Edge	Listing:	Another	representation	often	used	is	 to	list	all	edges	of	 the
graph	 as	vertex	pairs,	 having	numbered	 the	n	 vertices	 in	 some	arbitrary	order.
For	 example,	 the	 digraph	 in	 Fig.	 11-1	would	 appear	 as	 a	 set	 of	 the	 following
ordered	pairs:	(1,	2),	(2,	1),	(2,	4),	(3,	2),	(3,	3),	(3,	4),	(4,1),	(4,1),	(5,2).	Had	this
graph	been	undirected,	we	would	simply	ignore	the	ordering	in	each	vertex	pair.
Clearly,	parallel	edges	and	self-loops	can	be	included	in	this	representation	of

a	graph	or	digraph.
The	number	of	bits	required	to	label	(1	through	n)	each	vertex	is	b,	where

2b−1	<	n	≤2b.

And	 since	 each	 of	 the	 e	 edges	 requires	 storing	 two	 such	 numbers,	 the	 total
storage	required	is

2e·b	bits.



Comparing	this	with	n2,	we	see	that	this	representation	is	more	economical	than
the	adjacency	matrix	if

2e·b	<	n2.

In	other	words,	for	a	graph	whose	adjacency	matrix	is	sparse†,	edge	listing	is
a	more	efficient	method	of	storing	the	graph.
Edge	listing	is	a	very	convenient	form	for	inputting	a	graph	into	the	computer,

but	 the	 storage,	 retrieval,	 and	 manipulation	 of	 the	 graph	 within	 the	 computer
become	 quite	 difficult.	 For	 example,	 extensive	 search	 techniques	 would	 be
required	 for	 finding	 out	 whether	 or	 not	 a	 graph	 is	 connected	 (Algorithm	 1	 in
Section	11-4).

(d)	Two	Linear	Arrays:	A	 slight	 variation	of	 edge	 listing	 is	 to	 represent	 the
graph	by	two	linear	arrays,	say	F	=	(f1,	f2,	.	.	.	,	fe)	and	H	=	(h1,	h2,	.	.	.	,	he).	Each
entry	in	these	arrays	is	a	vertex	label.	The	ith	edge	ei	is	from	vertex	fi	to	vertex	hi
if	G	 is	a	digraph.	(If	G	 is	undirected,	just	consider	ei	as	between	fi	and	hi.)	For
example,	the	digraph	in	Fig.	11-1	would	be	represented	by	the	two	arrays

Fig.	11-1	A	digraph.

F	=	(5,	2,	1,	3,	2,	4,	4,	3,3),
H	=	(2,	1,	2,	2,	4,	1,	1,	4,	3).

This	 representation,	which	was	used	 in	 the	algorithm	in	[11-58],	 lends	 itself	 to
convenient	sorting	in	weighted	graphs.	The	storage	requirements	are	the	same	as
in	(c).

(e)	Successor	Listing:	Another	efficient	method	used	frequently	for	graphs	in
which	the	ratio	e/n	is	not	large	is	by	means	of	n	linear	arrays.	After	assigning	the



vertices,	in	any	order,	the	numbers	1,	2,	.	.	.	,	n,	we	represent	each	vertex	k	by	a
linear	 array,	 whose	 first	 element	 is	 k	 and	 whose	 remaining	 elements	 are	 the
vertices	 that	 are	 immediate	 successors	 of	 k,	 that	 is,	 the	 vertices	which	 have	 a
directed	 path	 of	 length	 one	 from	 k.	 (In	 an	 undirected	 graph	 these	 are	 simply
vertices	 adjacent	 to	 k.)	 The	 five-vertex	 digraph	 in	 Fig.	 11-1	 will	 appear	 as
follows	in	this	representation.

1:	2
2:	1,	4
3:	2,	3,	4
4:	1,	1
5:	2

For	 an	 undirected	 graph	 the	 neighbors	 (rather	 than	 the	 successors)	 of	 every
vertex	are	listed.	Therefore,	each	edge	appears	twice−an	obvious	redundancy.
To	compare	its	storage	efficiency	with	that	of	the	adjacency	matrix,	let	dav	be

the	average	degree	 (out-degrees	 in	 the	case	of	a	digraph)	of	 the	vertices	 in	 the
graph.	Assuming	that	one	computer	word	is	needed	for	the	label	of	each	vertex,
the	total	storage	requirement	for	an	n	vertex	graph	is	n(1	+	dav)	words.	Thus	the
successor	listing	is	more	efficient	than	the	adjacency	matrix	if

w	being	the	word	length.
The	 successor	 or	 neighbor	 listing	 form	 is	 extremely	 convenient	 for	 path-

finding	algorithms,	and	for	a	depth-first	search	on	the	graph	[11-61].

You	must	have	observed	 that	 the	 foregoing	methods	of	graph	 representation
are	not	entirely	different.	In	fact,	they	are	necessarily	related	in	that	they	convey
the	same	information.	Simple	programs	can	be	written	to	convert	one	form	into
another	 (Problem	 11-2).	 Additional	 variations	 in	 these	 representations	 can	 be
made	 to	 suit	 the	 requirements	 at	 hand.	 For	 instance,	 a	weighted	 graph	 can	 be
represented	 by	 an	 n	 by	 n	 weight	 matrix	 (also	 called	 cost	 matrix	 or	 distance
matrix),	which	is	like	the	adjacency	matrix	except	that	instead	of	1’s	the	weights
of	 the	edges	appear	as	 the	entries	 in	 the	matrix.	 It	 should,	however,	be	kept	 in
mind	that	in	many	problems	the	efficiency	of	the	algorithm	may	depend	on	the
form	 in	 which	 the	 graph	 is	 presented.	 Thus	 the	 proper	 choice	 of	 the	 data
structure	is	important.



11-3.	OUTPUT

Every	algorithm	has	an	output—the	cooked	dish	from	the	recipe.	Unlike	 the
input,	 which	 is	 one	 or	 more	 graphs,	 the	 output	 will	 vary	 from	 problem	 to
problem.	If	the	output	consists	of	subgraphs,	we	may	make	the	program	print	the
appropriate	adjacency	matrices.	On	the	other	hand,	if	an	output	is,	for	instance,	a
yes	or	no	to	the	question	of	planarity	of	a	given	graph,	we	may	ask	the	program
to	simply	print	YES	or	NO.	In	addition,	if	the	answer	is	YES,	we	may	choose	to
get	the	planar	representation	of	the	graph;	or	if	the	answer	is	NO,	we	may	ask	for
the	thickness	of	the	graph.	For	a	shortest-path	algorithm,	we	may	simply	wish	to
print	the	distance	(shortest)	between	a	pair	of	specified	vertices	x	and	y.	Or	one
may	desire	to	output	a	sequence	of	edges	(or	vertices)	which	describes	a	shortest
path	between	x	and	y.	And	so	forth.	The	outputs	are	as	varied	as	the	algorithms.
Let	us	now	proceed	with	some	specific	algorithms.

11-4.	SOME	BASIC	ALGORITHMS

Algorithm	1	:	Connectedness	and	Components

The	first	questions	one	is	most	likely	to	ask	when	encountering	a	new	graph	G
will	be:	Is	G	connected?	If	G	is	not	connected,	what	are	the	components	of	G?
Therefore,	our	first	algorithm	will	be	one	that	determines	the	connectedness	and
components	of	a	given	graph.
In	 addition	 to	 being	 an	 important	 question	 in	 its	 own	 right,	 the	 question	 of

connectedness	 and	 components	 arises	 in	many	 other	 algorithms.	 For	 example,
before	testing	a	graph	G	for	separability,	planarity,	or	isomorphism	with	another
graph,	it	may	be	better	for	the	sake	of	efficiency	to	determine	the	components	of
G	and	 then	subject	each	component	 to	 the	desired	scrutiny.	The	connectedness
algorithm	is	very	basic	and	may	serve	as	a	subroutine	in	more	involved	graph-
theoretic	algorithms.	(The	reader	may	be	reminded	here	that	although	in	drawing
a	graph	one	might	see	whether	a	graph	is	connected	or	not,	the	connectedness	is
by	no	means	obvious	to	a	computer	or	human	being	if	the	graph	is	presented	in
other	forms,	such	as	those	discussed	in	Section	11-2.)
Given	the	adjacency	matrix	X	of	a	graph,	it	is	possible	to	determine	whether

or	 not	 the	 graph	 is	 connected	 by	 trying	 various	 permutations	 of	 rows	 and	 the
corresponding	columns	of	X,	and	then	checking	if	it	is	in	a	block-diagonal	form.
(See	 observation	 5	 in	 Section	 7-9.)	 This,	 however,	 is	 an	 inefficient	 method,
because	 it	may	 involve	n!	 permutations.	A	more	 efficient	method	would	be	 to



use	Corollary	B	of	Theorem	7-8,	and	check	for	zeros	in	the	matrix

Y	=	X	+	X2	+	.	.	.	+	Xn-1.

This	 too	 is	 not	 very	 efficient,	 as	 it	 involves	 a	 large	 number	 of	 matrix
multiplications.	The	following	is	an	efficient	algorithm:

Description	of	the	Algorithm:	The	basic	step	in	this	algorithm	is	the	fusion	of
adjacent	vertices	(recall	Section	2-7).	We	start	with	some	vertex	in	the	graph	and
fuse	all	vertices	that	are	adjacent	to	it.	Then	we	take	the	fused	vertex	and	again
fuse	with	it	all	those	vertices	that	are	adjacent	to	it	now.	This	process	of	fusion	is
repeated	 until	 no	 more	 vertices	 can	 be	 fused.	 This	 indicates	 that	 a	 connected
component	has	been	“fused”	to	a	single	vertex.	If	 this	exhausts	every	vertex	in
the	graph,	 the	graph	 is	 connected.	Otherwise,	we	 start	with	a	new	vertex	 (in	a
different	component)	and	continue	the	fusing	operation.
In	 the	 adjacency	 matrix	 the	 fusion	 of	 the	 jth	 vertex	 to	 the	 ith	 vertex	 is

accomplished	by	OR-ing,	 that	 is,	 logically	adding	 the	 jth	row	to	 the	 ith	row	as
well	as	the	jth	column	to	the	ith	column.	(Remember	that	in	logical	adding	1	+	0
=	0	+	1	=	1	+	1	=	1	and	0	+	0	=	0.)	Then	 the	 jth	 row	and	 the	 jth	column	are
discarded	 from	 the	matrix.	 (If	 it	 is	 difficult	 or	 time	 consuming	 to	 discard	 the
specified	 rows	 and	 columns,	 one	 may	 leave	 these	 rows	 and	 columns	 in	 the
matrix,	taking	care	that	they	are	not	considered	again	in	any	fusion.)
Note	 that	 a	 self-loop	 resulting	 from	 a	 fusion	 appears	 as	 a	 1	 in	 the	 main

diagonal,	but	parallel	edges	are	automatically	replaced	by	a	single	edge	because
of	the	logical	addition	(or	OR-ing)	operation.	These,	of	course,	have	no	effect	on
the	connectedness	of	a	graph.
The	 maximum	 number	 of	 fusions	 that	 may	 have	 to	 be	 performed	 in	 this

algorithm	is	n	−	1,	n	being	the	number	of	vertices.	And	since	in	each	fusion	one
performs	at	most	n	 logical	additions,	 the	upper	bound	on	 the	execution	 time	 is
proportional	to	n(n	−	1).



Fig.	11-2	Algorithm	1	:	Components	of	G.

A	proper	choice	of	the	initial	vertex	(to	which	adjacent	vertices	are	fused)	in
each	 component	 would	 improve	 the	 efficiency,	 provided	 one	 did	 not	 pay	 too
much	of	a	price	for	selecting	the	vertex	itself	(see	Problem	11-6).
A	flow	chart	of	the	“Connectedness	and	Components	Algorithm”	is	shown	in

Fig.	11-2.



A	 complete	 computer	 program,	 ready	 to	 be	 executed,	 written	 in	 APL\360,
together	with	the	legend	identifying	the	variables	used	in	the	program,	is	given	at
the	 end	 of	 the	 chapter.	Note	 that	 the	 program	 selects	 a	 vertex	with	maximum
degree	as	the	initial	vertex	in	each	component.
To	 illustrate	 the	 program,	 an	 input	 and	 the	 resulting	 output	 are	 shown	 as

follows:	 The	 input	 is	 a	 20	 by	 20	 adjacency	 matrix	 representing	 a	 20-vertex
graph,	and	the	output	is	a	list	of	components	(COMP)	followed	by	the	names	of
vertices	 (VERT)	 included	 in	 each	 component.	 Vertex	 i	 corresponds	 to	 the	 ith
row	and	column	in	X.

A	slightly	modified	program	(without	selecting	vertices	of	maximum	degree
as	the	initial	vertices	and	without	discarding	the	rows	and	columns	after	they	are
OR-ed	 with	 the	 initial	 row)	 took	 35	 FORTRAN	 statements	 to	 write.	 The
execution	 time	of	 this	FORTRAN	program	for	a	 typical	50-vertex	graph	 (with
varying	number	of	edges	and	components)	on	the	IBM	7044	was	 	second.



Algorithm	2:	A	Spanning	Tree

Perhaps	the	best	known	and	most	frequently	used	algorithms	in	graph	theory
are	the	spanning-tree	algorithms.	In	its	simplest	form	a	spanning-tree	algorithm
yields	 one	 spanning	 tree	 in	 a	 given	 connected	 graph.	 If	 the	 graph	 is
disconnected,	 the	algorithm	should	produce	a	 spanning	 forest	containing	n	−	p
edges,	 where	 p	 >	 1	 is	 the	 number	 of	 components	 in	 the	 disconnected	 graph.
Clearly	then,	as	a	by-product	of	such	an	algorithm,	we	can	find	out	whether	or
not	the	graph	is	connected,	and	if	the	graph	is	disconnected,	its	components	can
be	 identified.	 In	 fact,	 sometimes	 a	 spanning-tree	 algorithm	 is	 used	 for	 testing
connectedness	of	a	graph.	If,	on	the	other	hand,	the	given	graph	has	a	weight	or
distance	 associated	 with	 each	 edge	 (weighted	 graph),	 we	 may	 wish	 to	 find	 a
spanning	tree	with	smallest	possible	weight.	The	significance	of	an	algorithm	for
such	a	tree	(called	minimal	or	shortest	spanning	tree)	was	discussed	in	Section	3-
10.	A	spanning	tree	is	also	needed	for	obtaining	a	fundamental	set	of	circuits.	As
we	saw	in	Section	3-9,	some	algorithms	for	generation	of	all	spanning	trees	(a
much	 more	 difficult	 task)	 in	 a	 given	 connected	 graph	 G	 also	 start	 by	 first
obtaining	one	spanning	tree.

Description	 of	 the	Algorithm:	 Let	 the	 given	 undirected	 self-loop-free	 (if	 the
graph	has	any	self-loops,	they	may	be	discarded)	graph	G	contain	n	vertices	and
e	edges.	Let	the	vertices	be	labeled	1,	2,	.	.	.	,	n,	and	the	graph	be	described	by
two	linear	arrays	F	and	H	[i.e.,	in	the	form	(d)	of	Section	11-2]	such	that	f1,	∈	F
and	h1	∈	H	are	the	end	vertices	of	the	ith	edge	in	G.
At	each	stage	in	the	algorithm	a	new	edge	is	tested	to	see	if	either	or	both	of

its	end	vertices	appear	in	any	tree	formed	so	far.†	At	the	kth	stage,	1	≤	k	≤	e,	in
examining	the	edge	(fk,	hk)	five	different	conditions	may	arise:

1. If	neither	vertex	fk	nor	hk	is	included	in	any	of	the	trees	constructed	so	far
in	G,	 the	 kth	 edge	 is	 named	 as	 a	 new	 tree	 and	 its	 end	 vertices	 fk,	hk	 are
given	the	component	number	c,	after	incrementing	the	value	of	c	by	1.

2. If	vertex	fk	is	in	some	tree	Ti	(i	=	1,	2,	.	.	.	,	c)	and	hk	in	tree	Tj	(j	=	1,	2,	.	.	.
,	c,	and	i	≠	j),	the	kth	edge	is	used	to	join	these	two	trees;	therefore,	every
vertex	 in	Tj	 is	 now	given	 the	 component	 number	of	Ti	The	value	of	c	 is
decremented	by	1.

3. If	both	vertices	are	in	the	same	tree,	the	edge	(fk,	hk)	forms	a	fundamental
circuit	and	is	not	considered	any	further.



4. If	vertex	fk	is	in	a	tree	Ti	and	hk	is	in	no	tree,	the	edge	(fk,	hk)	is	added	to	Ti
by	assigning	the	component	number	of	Tt	to	hk	also.

5. If	vertex	fk	is	in	no	tree	and	hk	is	in	a	tree	Tj	the	edge	(fk,	hk)	is	added	to	Tj
by	assigning	the	component	number	of	Tj	to	fk	also.

These	 five	 cases	 are	 marked	 by	 circled	 numbers	 in	 the	 flow	 chart	 of	 the
algorithm	shown	in	Fig.	11-3.
The	efficiency	of	a	computer	program	based	on	this	algorithm	depends	mainly

on	the	speed	with	which	we	can	test	whether	or	not	the	end	vertices	of	the	edge
under	consideration	have	occurred	in	any	tree	formed	so	far.	For	this	testing,	we
maintain	a	linear	array	(called	VERTEX	in	the	program	listing)	of	size	n.	When
an	edge	(i,	j)	is	included	in	the	cth	tree,	the	ith	and	jth	entries	in	this	array	are	set
to	c.	Subsequently,	when	another	edge	(fk,	hk)	is	examined,	it	is	only	necessary	to
check	if	the	fkth	and	the	hkth	entries	in	array	VERTEX	are	nonzero.	A	zero	in	the
qth	position	in	the	array	indicates	that	the	vertex	q	has	not	so	far	been	included
in	 any	 tree.	 At	 the	 end	 of	 the	 execution,	 this	 array	 VERTEX	 identifies	 the
components	of	the	graph.
Unlike	 a	 component,	 a	 tree	 cannot	 be	 described	 by	 a	 set	 of	 vertices	 alone.

Therefore,	we	must	have	an	array	of	edges	as	the	output.	Let	this	linear	array	be
called	 EDGE.	 If	 the	 kth	 edge	 (in	 the	 original	 order	 in	 which	 the	 edges	 were
placed)	is	in	the	cth	tree,	EDGE(k)	=	c;	otherwise,	it	is	zero.	All	zero	entries	in
array	 EDGE	 correspond	 to	 the	 chords	 (i.e.,	 the	 edges	 not	 included	 in	 the
spanning	 tree	 or	 forest).	 This	 array,	 together	 with	 arrays	 F	 and	 H,	 uniquely
identifies	the	spanning	tree	(or	forest)	generated	by	this	algorithm.
In	 this	 algorithm	 the	main	 loop	 is	 executed	 e	 times	 (e	 being	 the	 number	 of

edges).	The	time	required	to	test	whether	or	not	the	end	vertices	have	appeared
in	any	tree	is	constant−independent	of	both	e	and	n.	Thus	the	time	bound	for	the
execution	of	 the	 algorithm	 is	 proportional	 to	e.	 †	 In	 case	 the	 ratio	e/n	 is	 high,
execution	 time	can	be	 reduced	by	 introducing	a	new	variable	 to	keep	count	of
the	edges	included	in	the	tree.	When	this	variable	reaches	the	value	of	n	−	1,	the
program	would	 terminate	 (only	 if	 the	 graph	 is	 connected;	 otherwise,	we	must
examine	every	edge).
A	 ready-to-be-executed	 program	 in	 FORTRAN	 language,	 based	 on	 this

algorithm,	is	given	at	the	end	of	this	chapter.	For	an	ALGOL	listing	of	the	same
program,	see	[11-58].	A	randomly	generated	graph	of	50	vertices	took	 	second
on	the	IBM	7044,	using	FORTRAN	IV.



Fig.	11-3	Algorithm	2:	Spanning	tree/forest.

Minimal-Spanning-Tree	Algorithms:	As	discussed	in	Section	3-10,	we	can	use
the	algorithm	suggested	by	Kruskal	to	find	a	shortest	spanning	tree	in	a	graph	G



in	which	every	edge	has	a	distance	 (or	weight)	 associated	with	 it.	This	 can	be
accomplished	 with	 the	 algorithm	 just	 described.	 The	 only	 additional	 work
required	 is	 to	 first	 sort	 the	 edges	 in	 a	 nondecreasing	 order	 of	 their	 weights,
before	 representing	 them	 by	 F	 and	 H	 arrays.	 That	 is,	 the	 following	 set	 of
inequalities	must	be	satisfied:

wt	of	edge	(fi,	hi)	≤	wt	of	(fi+1,	hi+1), for	all	1	≤	i	≤	e	−	1.

Because	of	the	sorting	involved,	Kruska’s	algorithm	is	not	as	efficient	as	the
one	 due	 to	 Prim	 [3-10]	 (which	was	 also	 discovered	 independently	 by	Dijkstra
[11-16]).	 The	 latter	 algorithm,	 as	 outlined	 in	 Sec.	 3-10,	 requires	 no	 sorting	 of
edges,	 but	 builds	 up	 a	 minimal	 spanning	 tree	 by	 successively	 connecting	 the
partially	 formed	 tree	 to	 its	 nearest	 neighbor.	 For	 a	 FORTRAN	 listing	 of	 an
efficient	 implementation	 of	 Prim’s	 minimal-spanning-tree	 algorithm,	 see	 [11-
70].	The	 computation	 time	 of	 this	 algorithm	 is	 proportional	 to	n2,	n	 being	 the
number	of	vertices,	[11-22].
Minimal	spanning	tree	has	been	found	quite	useful	in	providing	a	lower	bound

on	the	length	of	the	traveling	salesman’s	route	[11-28].

Spanning	Trees	with	Desired	Properties:	 Instead	of	a	shortest	spanning	tree,
one	may	wish	to	find	a	longest	spanning	tree.	Or	one	may	be	interested	in	trees
with	 other	 desired	 properties	 and	 constraints,	 such	 as	 a	 spanning	 tree	 with	 a
specified	maximum	degree	or	diameter.	Algorithm	2	with	appropriate	additional
sorting	or	testing	can	be	used	for	such	purposes	also.

Generating	 All	 Spanning	 Trees:	 As	we	 shall	 see	 in	Chapter	 13,	 analysis	 of
electrical	 networks	 basically	 reduces	 to	 finding	 all	 spanning	 trees	 in	 graphs.
Because	of	this	important	application,	more	than	a	dozen	different	algorithms	for
generation	of	all	spanning	trees	have	been	proposed.	In	Section	3-9	we	discussed
one	 of	 these	methods,	 the	method	 of	 cyclic	 interchange.	 Since	 the	 number	 of
spanning	 trees	 even	 in	 a	 small	 graph	 is	 very	 large,	 the	 efficiency	 of	 these
algorithms	is	of	paramount	importance.	A	survey	of	these	methods	was	done	by
Chase	in	his	Ph.D.	thesis	[11-8].	He	concludes	that	the	most	efficient	algorithm
is	 of	 the	 type	 suggested	 by	 Minty	 [11-43],	 which	 essentially	 consists	 of
successively	reducing	a	graph	by	operations	of	deletion	of	an	edge	and	fusion	of
its	 end	 vertices.	 From	 the	 spanning	 trees	 of	 reduced	 graphs	 (which	 are	 much
smaller)	the	spanning	trees	of	the	original	graph	are	obtained.	To	ensure	that	the
algorithm	 terminates,	 graphs	 below	 a	 certain	 size	 are	 not	 reduced	 any	 further;
instead	 their	spanning	 trees	are	obtained	directly.	A	compact	ALGOL	program
based	on	this	method	is	given	in	[11-42].



Algorithm	3:	A	Set	of	Fundamental	Circuits

Sometimes	we	 are	 required	 to	 find	 a	 set	 of	 fundamental	 circuits	 in	 a	 given
graph.	 The	 spanning-tree	 algorithm	 just	 described	 can	 be	 used	 for	 generating
fundamental	circuits	if	the	following	additional	work	is	performed	:
While	 examining	 the	 kth	 edge	 (fk,	 hk)	 in	Algorithm	 2,	 if	 condition	 3	 arises

(i.e.,	 both	 vertices	 fk	 and	hk	 occur	 in	 the	 same	 tree	Ti),	 then	 instead	 of	 simply
rejecting	this	edge	we	must	find	those	edges	in	Tt	that	form	the	path	between	fk
and	hk.	This	path	and	the	edge	(fk,	hk)	constitute	a	fundamental	circuit.	Finding
this	path	is	the	main	problem	here.	In	[11-52]	a	tree-felling	procedure	has	been
suggested,	where	the	edge	(fk,	hk)	is	added	to	Ti,	and	all	pendant	vertices	of	the
resulting	 graph	 are	 deleted	 iteratively.	 This	 method,	 however,	 turns	 out	 to	 be
inefficient.	 More	 efficient	 methods	 have	 been	 proposed	 by	 Welch	 [11-68],
Gottlieb	 and	 Corniel	 [11-25],	 and	 Paton	 [11-47].	 Among	 these	 three,	 Paton’s
algorithm	appears	to	be	the	most	efficient,	and	is	as	follows	:

Description	of	the	Algorithm:	Here	also	each	edge	is	tested	to	see	if	it	forms	a
circuit	 with	 the	 tree	 constructed	 so	 far;	 but	 instead	 of	 taking	 the	 edges
themselves	in	an	arbitrary	order	(as	was	done	in	Algorithm	2),	we	select	a	vertex
z	and	examine	this	vertex	by	looking	at	every	edge	incident	on	z.	(Vertex	z,	as
we	 shall	 shortly	 see,	 is	 the	 vertex	 added	most	 recently	 to	 the	 partially	 formed
tree.)	Let	the	vertices	of	the	given	connected	graph	G	=	(V,	E)	be	labeled	1,	2,	.	.
.	,	n,	and	the	graph	be	given	by	its	adjacency	matrix	X.	Let	T	be	the	current	set	of
vertices	in	the	partially	formed	tree,	and	let	W	be	the	set	of	vertices	that	are	yet
to	be	examined	(i.e.,	those	vertices,	in	T	as	well	as	not	in	T,	which	have	one	or
more	unexamined	edges	incident	on	them).	Initially,	T	=	∅	and	W	=	V,	the	entire
set	of	vertices.
We	start	the	algorithm	by	setting	T	=	1,	the	first	vertex,	and	W	=	V.	Vertex	1

will	 be	 regarded	 as	 the	 root	 of	 the	 tree	 to	 be	 formed.	 After	 initialization,	 the
following	procedure	is	used	:

1. If	T	∩	W	=	∅,	then	the	algorithm	is	terminated.
2. If	T	∩	W	≠	∅,	choose	a	vertex	z	in	T	∩	W.
3. Examine	z	by	considering	every	edge	incident	on	z.	If	there	is	no	such	edge

left,	remove	z	from	W,	and	go	to	step	1.

4. If	there	is	such	an	edge	(z,	p),	test	if	vertex	p	is	in	T.

5. If	p	∈	T,	find	the	fundamental	circuit	consisting	of	edge	(z,	p)	together	with



the	unique	path	from	z	 to	p	 in	the	tree	(formed	so	far).	Delete	edge	(z,	p)
from	the	graph,	and	go	to	step	3.

6. If	p	∈	T,	add	edge	(z,	p)	to	the	tree	and	vertex	p	to	set	T.	Delete	edge	(z,	p)
from	the	graph,	and	go	to	step	3.

As	mentioned	earlier,	the	only	tricky	part	in	this	algorithm	is	in	step	5.	How
do	we	 find	 the	 unique	 path	 from	 z	 to	 p	 in	 the	 tree?	 The	 following	 procedure
provides	an	answer:
We	 maintain	 a	 pushdown	 list	 (a	 stack)	 TW	 =	 T	 ∩	W,	 which	 stores	 those

vertices	 in	 the	 tree	 that	 have	not	 yet	 been	 examined.	The	most	 recently	 added
vertex	is	at	the	top	of	the	stack.	Each	time	a	vertex	is	taken	for	examination	it	is
taken	 from	 the	 top	 of	 this	 stack,	 and	 is	 removed	 from	 the	 stack.	 Two	 linear
arrays	of	 length	n	are	employed:	LEVEL(i)	being	the	distance	of	vertex	i	from
the	root	of	the	spanning	tree	(i.e.,	vertex	1),	and	PRED(i)	being	a	vertex	v	such
that	(i,	v)	is	an	edge	in	the	tree	with	v	nearer	the	root.	In	other	words,	PRED(i)	is
the	predecessor	of	i	in	the	path	from	the	root	to	i.	LEVEL(i)	=	−	1	if	and	only	if
vertex	i	is	not	in	set	T,	the	current	set	of	tree	vertices.	Initially,	LEVEL(1)	is	set
to	0	and	LEVEL(i)	to	−	1	for	i	=	2,	3,	.	.	.	,	n.

In	step	5	vertex	z	is	under	examination	and	an	edge	(z,	p)	has	been	found	such
that	vertex	p	∈	T.	To	find	the	fundamental	circuit	formed	by	(z,	p)	with	the	tree,
we	 trace	 the	 unique	 path	 from	 z	 to	 p	 in	 the	 tree	 by	 successively	 finding	 the
predecessors	PRED(z),	PRED(PRED(z)),	 .	 .	 .	 ,	 till	we	encounter	PRED(p),	 the
predecessor	of	p.	In	other	words,	as	shown	in	Fig.	11-4,	the	fundamental	circuit
generated	is



Fig.	11-4	Generation	of	a	fundamental	circuit.

z,	PRED(z),	PRED(PRED(z)),	.	.	.	,	PRED(p),	p,	z.

The	most	 important	 thing	 to	 note	 is	 that	 the	 predecessor	 PRED(k)	 of	 every
vertex	k	in	T	is	a	vertex	which	is	either	already	examined	or	is	being	examined.
That	is,	if	k	∈	T	∩	W,	then

PRED(k)	∉	W but PRED(k)	∈	T.

A	flow	chart	of	the	algorithm	is	given	in	Fig.	11-5,	and	a	ready-to-be-executed
FORTRAN	program	is	provided	at	the	end	of	the	chapter.
The	execution	time	is	bounded	by	nv,	2	≤	v	≤	3,	and	the	value	of	v	depends	on

the	structure	of	the	graph	and	also	on	the	labeling	of	vertices	[11-47].



Fig.	11-5	Algorithm	3:	Fundamental	circuits.

Although	for	simplicity	we	assumed	that	the	graph	is	connected,	the	algorithm



will	 work	 for	 disconnected	 graphs	 also.	 First,	 it	 will	 produce	 all	 fundamental
circuits	 in	 the	 component	 containing	 the	 starting	 vertex	 1.	 After	 having
exhausted	the	first	component,	we	select	a	vertex	y	such	that	LEVEL(y)	=	−	1,
and	 start	with	 y	 as	 the	 root	 of	 a	 spanning	 tree	 in	 the	 second	 component.	 This
procedure	continues	till	there	is	no	vertex	left	with	—	1	as	its	LEVEL.
Typically	 for	 a	 graph	 of	 50	 vertices	 and	 132	 edges	 the	 IBM	 7044	 (using

FORTRAN	IV)	took	 	second	to	generate	a	set	of	fundamental	circuits.

All	Circuits	in	an	Undirected	Graph:	All	circuits	of	an	undirected	graph	might
be	 found	by	first	 forming	 the	set	of	all	 linear	combinations	 (i.e.,	 ring	sums)	of
the	 fundamental	 circuits	 and	 then	discarding	 from	 this	 set	 all	 those	circuit	 sets
that	contain	other	circuits.	(This	is	because	a	linear	combination	of	circuits	can
be	 either	 a	 circuit	 or	 a	 union	 of	 edge-disjoint	 circuits.	 And	 a	 union	 of	 edge-
disjoint	circuits	contains	other	circuits.)	Such	an	algorithm,	however,	would	be
very	 inefficient.	 From	µ	 fundamental	 circuits	 2µ	 −	µ	 −	 1	 linear	 combinations
must	 be	made,	 and	 then	 each	 of	 these	must	 be	 compared	 pairwise	with	 every
other	to	test	for	containment.	Therefore,	a	different	approach	has	to	be	taken.
To	reduce	the	storage	requirement	and	the	number	of	comparisons,	one	may

be	tempted	to	suggest	discarding	every	edge-disjoint	union	of	circuits	as	soon	as
it	 is	 generated.	 This	 approach,	 however,	 is	 faulty.	 For	 we	 might	 find	 that	 a
genuine	 circuit	 was	 a	 combination	 of	 some	 discarded	 circuit	 set	 and	 another
circuit	generated	later.
Welch	[11-68]	proposed	a	scheme	of	ordering	the	fundamental	circuits	so	that

one	 could	 discard	 a	 union	 of	 edge-disjoint	 circuits	 as	 it	 is	 produced	 before
generating	all	2µ	−	µ	−	1	combinations	and	then	make	pairwise	comparisons.	In
a	 more	 recent	 paper	 [11-24],	 Gibbs	 has	 pointed	 out	 an	 error	 in	 Welch’s
algorithm	and	has	proposed	a	modification.	Gibbs’s	algorithm	for	generation	of
all	circuits	from	a	set	of	fundamental	circuits	is	essentially	an	exhaustive	method
and	 requires	 storage	 proportional	 to	 2µ.	 Finding	 an	 efficient	 algorithm	 for
identifying	 all	 circuits	 in	 a	 graph	 is	 an	 open	 problem.	For	 a	 survey	 of	 circuit-
generation	algorithms	see	Prabhaker	[11-50].

Algorithm	4:	Cut-Vertices	and	Separability

Having	found	out	that	a	graph	G	 is	connected,	the	next	question	one	is	most
likely	 to	 ask	 is:	 Is	 the	 graph	G	 separable?	 That	 is,	 is	 there	 one	 or	 more	 cut-
vertices	in	G?	If	the	answer	is	yes,	one	would	like	to	find	the	cut-vertices	and	the
blocks	(maximal	nonseparable	subgraphs)	of	G.
As	 pointed	 out	 in	 Section	 4-5,	 cut-vertices	 are	 important	 in	 the	 study	 of



vulnerability	of	a	communication	network.	Moreover,	 this	algorithm	may	serve
as	a	subroutine	for	other	algorithms,	such	as	for	planarity	and	isomorphism.
Preliminary	 Simplification:	 In	 this	 algorithm,	 as	 in	 most	 others,	 it	 pays	 to

perform	some	preliminary	simplification.	If	the	given	graph	has	the	possibility	of
being	disconnected,	we	could	apply	Algorithm	1	and	consider	each	component
as	a	connected	graph.	It	will	be	a	waste	of	computer	memory	and	execution	time
to	drag	along	all	the	components	of	a	disconnected	graph.	Similarly,	if	the	graph
is	not	simple,	we	can	immediately	discard	all	 the	self-loops	and	parallel	edges,
since	their	presence	or	absence	has	no	effect	on	separability.	Third,	if	the	graph
has	any	pendant	vertices,	we	can	prune	the	graph	by	repeatedly	deleting	pendant
vertices.	(In	the	pruning	process	we	must	keep	in	mind	that	every	vertex	adjacent
to	 a	 pendant	 vertex	 is	 a	 cut-vertex,	 except	 in	 the	 trivial	 case	where	 the	 graph
consists	of	 just	one	edge.)	Usually	 these	simplifications	will	have	substantially
reduced	the	size	of	the	original	graph.†
A	straightforward	method	(which	was	used	in	[5-8],	for	example)	for	testing

separability	of	a	graph	would	be	to	remove	each	vertex	in	turn	(by	deleting	the
corresponding	row	and	column	from	its	adjacency	matrix	X)	and	then	to	test	the
resulting	graph	for	connectedness,	using	Algorithm	1.	But	 this	 is	an	 inefficient
method,	and	we	can	do	better	using	a	different	approach,	suggested	by	Read	[11-
53].
Let	us	recall	a	result	from	Chapter	4:	Two	edges	are	in	the	same	block	if	and

only	if	there	exists	at	least	one	circuit	that	contains	both	these	edges	(Problem	4-
10).	At	 first	 sight	 it	may	appear	 that	 to	use	 this	characterization	of	a	block	we
would	have	 to	generate	 all	 circuits—an	obviously	 time-and	 storage-consuming
affair.	 The	 following	 two	 results,	 however,	 reveal	 that	 it	 would	 suffice	 to
generate	only	a	set	of	fundamental	circuits:

LEMMA	1

A	nonempty	 intersection	of	 two	 fundamental	 circuits	 in	 a	graph	 is	 always	 a
path.

Proof:	With	 respect	 to	 some	specified	 spanning	 tree	T,	 let	e1	 and	e2	 be	 two
chords	 forming	 fundamental	 circuits	 f1	 and	 f2,	 respectively.	 Then	 if	 f1	 ∩	 f2
contains	 two	 edges,	 x	 and	 y,	 not	 connected	 in	 f1	∩	 f2,	 there	 is	 a	 path	P1	 in	 f1
between	x	and	y	 (that	 is,	a	path	between	one	of	 the	end	vertices	of	edge	x	and
one	 of	 the	 end-vertices	 of	 edge	 y);	 and	 this	 path	 does	 not	 contain	 chord	 e1.
Similarly,	 there	 is	 a	 path	P2	 in	 f2	 between	x	 and	y	 that	 does	 contain	 chord	e2.



Then	the	subgraph

P1	∨	P2	∨	{x,	y]

contains	a	circuit	without	containing	any	chord,	which	is	impossible.	

LEMMA	2

In	a	graph	G	if	edges	a	and	b	belong	to	a	fundamental	circuit	fi,	and	if	edges	b
and	c	belong	 to	another	 fundamental	circuit	 fj	 such	 that	a	∉	 fj	and	c	∉	 fi,	 then
there	exists	some	circuit	Γ	in	G	such	that	a	and	c	both	are	in	T.

Proof:	The	proof	follows	from	Lemma	1,	because	fi	∩	fj	is	a	path	containing	b
but	 not	 a	 or	 c.	 Therefore,	 fi	⊕	 fj	 is	 a	 circuit	 (not	 an	 edge-disjoint	 union	 of
circuits)	containing	a	and	c.	

Description	of	the	Algorithm:	If	we	generate	fundamental	circuits	one	by	one,
and	as	each	fundamental	circuit	is	generated	we	label†	(or	relabel)	all	its	edges
identically,	using	the	following	procedure,	we	will	have	identified	the	blocks	in
the	graph:
Each	edge	in	the	first	fundamental	circuit	is	labeled	with	2’s.	When	the	second

fundamental	circuit	is	found,	it	will	have	either	all	its	edges	unlabeled,	or	some
of	 its	 edges	 would	 be	 labeled	 2.	 In	 the	 former	 case,	 label	 every	 edge	 of	 the
second	 fundamental	circuit	with	3’s,	and	 in	 the	 latter	case	with	2’s.	When	 this
process	reaches	 the	mth	 (1	≤	m	≤	e	−	n	+	1)	 fundamental	circuit,	we	may	find
any	one	of	three	conditions:

1. If	every	edge	in	the	mth	fundamental	circuit	is	unmarked,	label	all	of	them
with	a	new	integer	q	+	1.

2. If	some	edges	 in	 the	mth	 fundamental	circuit	are	marked	u	and	all	others
are	unmarked,	label	each	of	the	unlabeled	ones	as	u	also.

3. Suppose	 that	 some	 edges	 in	 the	mth	 fundamental	 circuit	 are	 marked	 u,
others	v,	and	others	w,	.	.	.	,	and	some	are	unmarked.	Let	u	<	v	<	w	<	.	.	.	.
Then	relabel	all	edges	marked	v,	w,	.	.	.	,	in	G	as	u,	and	label	all	unmarked
edges	in	the	mth	fundamental	circuit	as	u	also.

When	this	process	terminates,	after	having	generated	fundamental	circuits	and
labeled	the	edges	in	each	of	them,	the	following	has	been	accomplished:



Every	 edge	 that	 belongs	 to	 a	 circuit	 has	 been	 labeled.	 Moreover,	 any	 two
edges	have	 the	 same	 label	 if	 and	only	 if	 they	are	 together	 in	 some	circuit	 (not
necessarily	 a	 fundamental	 circuit).	 In	 other	 words,	 each	 set	 of	 edges	 carrying
identical	labels	constitutes	a	block.	If	there	is	more	than	one	block	in	the	graph,
the	 graph	 is	 separable.	Any	vertex	 incident	 on	 edges	with	 different	 labels	 is	 a
cut-vertex.	An	edge	that	has	not	acquired	any	label	is	a	bridge.	(A	bridge	is	an
edge	whose	removal	disconnects	the	graph.)
In	this	algorithm	an	edge	belonging	to	a	circuit	gets	relabeled	many	times−an

obvious	 source	 of	 inefficiency.	 An	 improvement	 suggested	 by	 Paton	 [11-48]
reduces	 the	 relabeling	of	 edges	by	 the	 following	devices:	 Instead	of	 relabeling
the	edges	in	a	fundamental	circuit	as	soon	as	it	is	generated,	we	wait	till	a	vertex
z	in	Algorithm	3	has	been	completely	examined,	and	then	assign	identical	labels
to	 the	 fundamental	 circuits	 (passing	 through	 z)	 thus	 generated.	 Therefore,
labeling	has	to	be	performed	only	n	 times	and	not	µ	 times.	Moreover,	we	need
not	 label	 every	 edge	 in	 the	 graph	 (Problem	 11-11).	 It	 is	 left	 for	 the	 reader	 to
construct	a	flow	chart	for	the	block-identification	algorithm	in	which	Algorithm
3	is	completely	embedded.	Remaining	details	can	be	found	in	[11-48].
Using	an	entirely	different	approach,	Hopcroft	and	Tarjan	[11-31]	and	Tarjan

[11-61]	 have	 given	 an	 algorithm	which	 is	 faster	 than	 the	 algorithm	 described
here	 for	certain	 types	of	graphs.	Their	algorithm	uses	depth-first	 search	on	 the
graph	(to	be	discussed	later	 in	this	chapter),	and	the	graph	is	 to	be	input	 in	the
successor-listing	form.	Its	execution	time	is	proportional	to	e,	whereas	the	time
bound	for	the	Read-Paton	algorithm	described	here	is	proportionalio	nγ	where	1
≤	 γ	 <	 2,	 depending	on	 the	 structure	 of	 the	 graph.	Analysis	 and	 extensive	 tests
show	 that	 for	a	 typical	graph	of	n	vertices	and	e	 edges,	Hopcroft	 and	Tarjan’s
algorithm	outperforms	(on	IBM	7044)	Paton’s	algorithm	as	long	as	e	≤	5n.	For
graphs	 of	 much	 higher	 densities	 (Problem	 11-1)	 Paton’s	 algorithm	 performed
better.	 Thus	 for	 planar	 graphs	 (since	 e	 ≤	 3n	 −	 6),	 Hopcroft	 and	 Tarjan’s
algorithm	will	in	general	be	faster.	Typically,	for	an	80-vertex	400-edge	graph,
the	 IBM	7044	 took	 about	 7	 seconds	 for	 block	 identification	with	 either	 of	 the
two	algorithms.

Algorithm	5:	Directed	Circuits

One	of	the	most	important	things	about	a	digraph	is	its	directed	circuits	(also
called	 cycles).	 The	 significance	 of	 directed	 circuits	 in	 many	 applications	 was
discussed	 in	 Chapter	 9.	Unlike	 the	 case	 of	 undirected	 graphs,	 no	 technique	 is
known	by	which	we	can	obtain	a	basic	 set	of	directed	circuits	 such	 that	 every
directed	circuit	 in	 the	digraph	 is	obtained	as	a	 linear	combination	of	 this	basic



set.	Therefore,	Algorithm	3	is	of	little	help	in	obtaining	all	directed	circuits	of	a
digraph.	We	must	generate	every	directed	circuit	individually.	For	this	we	must
examine	each	edge	(unless	 the	edge	 is	known	a	priori	 to	belong	 to	no	directed
circuit)	many	times.

Preliminary	 Simplification:	 Although	 it	 is	 not	 necessary,	 in	 most	 cases	 the
prior	application	of	the	following	two	steps	will	simplify	a	given	digraph.	First,
if	 the	 digraph	 is	 likely	 to	 be	 disconnected,	 use	 Algorithm	 1	 [with	 slight
modification	 for	 a	 digraph	 (Problem	 11-7)]	 to	 identify	 the	 connected
components,	 and	 then	consider	one	component	at	 a	 time.	Second,	 successively
delete	all	vertices	(and	the	edges	 incident	on	them)	that	have	zero	 in-degree	or
zero	out-degree.	Clearly,	such	a	vertex	cannot	lie	in	any	directed	circuit.	These
vertices	are	easy	to	identify	because	they	correspond	to	entire	rows	[for	d+(v)	=
0]	or	columns	[for	d-(v)	=	0]	of	zeros	in	the	adjacency	matrix	X.	For	example,	if
the	 digraph	 given	 was	 the	 one	 in	 Fig.	 9-16,	 edges	 a,	 b,	 and	 h	 would	 be
eliminated.	Then	in	the	next	go-round	edges	e	and	c	would	be	deleted,	leaving	us
a	 digraph	 of	 only	 three	 edges,	 d,	 f,	 and	 g.	 On	 the	 other	 hand,	 this	method	 of
simplification	will	not	reduce	the	digraph	shown	in	Fig.	9-21.

Description	of	 the	Algorithm:	This	 algorithm,	 first	proposed	by	Roberts	 and
Flores	 [11-56]	 and	 subsequently	 systematized	 by	 Tiernan	 [11-63],	 uses	 an
exhaustive	search	to	find	all	directed	circuits	in	a	given	digraph	G.	As	usual,	the
vertices	 of	G	 are	 assigned	 integers	 1,	 2,.	 .	 .,	 n	 as	 their	 names.	 The	 algorithm
depends	on	starting	from	a	vertex	p1	and	building	a	directed	path	P	=	(P1,	P2,	.	.	.
,	Pk)	 until	 no	 further	 vertices	 (satisfying	 certain	 conditions)	 are	 “available”	 at
vertex	pk.	At	pk,	when	it	is	not	possible	to	extend	the	directed	path	any	further,
the	algorithm	checks	 to	see	 if	 there	 is	a	directed	edge	 from	pk	 to	pv	 If	 there	 is
such	an	edge,	a	directed	circuit	(p1,	p2,	.	.	.	,	Pk,	P1)	has	been	found	and	is	duly
recorded.	If	there	is	no	such	edge	in	the	digraphs,	we	move	back	one	vertex	to
pk-1	and	try	extending	the	path	again	from	pk-1	along	a	different	edge	(if	there	is
one).	Whether	a	directed	circuit	 is	found	or	not,	 the	algorithm	makes	vertex	pk
forbidden	 for	 the	next	 extension	 from	pk-1	 (thus	 avoiding	going	over	 the	 same
path).
This	process	of	looking	for	directed	.circuits	and	then	moving	back	a	vertex	is

continued	till	we	finally	backtrack	to	the	vertex	p1,	itself.	Thus	all	directed	paths
starting	 from	 p1	 have	 been	 examined	 and	 directed	 circuits	 recorded.	 Starting
with	 the	 next	 vertex,	 the	 entire	 process	 is	 repeated.	 The	 iteration	 starts	 with
vertex	p1	=	1	and	ends	with	p1	=	n.



In	 this	 exhaustive	 search	 for	 directed	 paths	 we	 must	 take	 the	 following
precautions	:

1. In	 the	 process	 of	 extending	 each	 directed	 path,	 going	 round	 and	 round	 a
directed	 circuit	 must	 be	 avoided.	 This	 is	 achieved	 by	 insisting	 that	 any
vertex	that	has	already	been	included	in	the	directed	path	is	“not	available”
for	extending	the	path.

2. Generating	a	directed	circuit	of	q	vertices	q	times—once	at	each	vertex	in
the	 circuit—must	 be	 avoided.	 This	 is	 accomplished	 by	 insisting	 that	 no
vertex	i	≤	p1	is	available	for	path	extension,	if	the	path	begins	with	vertex
p1	 This	 rule	 assures	 that	 the	 search	 for	 a	 particular	 directed	 circuit
commences	only	when	its	lowest-numbered	vertex	is	at	the	path	initiation.

3. The	 same	 path	 must	 not	 be	 considered	 more	 than	 once	 during	 the	 path
extension.	 This	 is	 accomplished	 by	 keeping	 an	 updated	 list	 of	 forbidden
vertices	 in	 a	binary	n	 by	n	matrix	H	=	 [hij].	The	1	 entries	 in	 the	 ith	 row
correspond	to	the	vertices	that	are	forbidden	from	vertex	i(i.e.,	if	vertex	j	is
forbidden	from	vertex	i,	set	hij	←	1).	A	0	entry	indicates	that	the	vertex	is
not	forbidden	(i.e.,	if	hij	=	0,	then	vertex	j	is	not	forbidden	from	vertex	i).
Matrix	H	is	reset	 to	zero	each	time	a	new	vertex	is	chosen	as	the	starting
vertex.

The	 digraph	 is	 inputted	 as	 its	 adjacency	 matrix	 [see	 Section	 11-2(a)].	 The
vertices	are	labeled	as	usual	with	integers	1,	2,	.	.	.	,	n.	The	directed	path	under
consideration	is	represented	by	a	linear	array

P	=	(p1,	p2,	.	.	.	,	pk-1,	pk,	0,	0,	.	.	.	,	0,	0)

of	order	n.	The	first	vertex	of	every	path	is	p1	and	the	last	one	is	pk.



Fig.	11-6	Digraph.

The	 algorithm	can	be	 best	 explained	with	 an	 example.	When	 applied	 to	 the
digraph	of	Fig.	11-6,	the	following	steps	will	be	performed:



The	flow	chart	of	this	algorithm,	which	is	a	modified	version	of	the	algorithm
given	in	[11-63],	is	shown	in	Fig.	11-7.
You	must	have	observed	that	this	algorithm	is	nothing	more	than	a	systematic

and	exhaustive	search	for	directed	circuits.	As	shown	in	the	example,	the	same
directed	 path	 is	 traversed	 many	 times.	 Even	 a	 directed	 circuit	 is	 usually
examined	 and	 rejected	 several	 times	 before	 its	 turn	 to	 be	 accepted	 arrives.
Consequently,	 the	 algorithm	 is	 very	 slow,	 and	 there	 is	 room	 for	 considerable
improvement.	 To	 quote	 Tiernan	 [11-63],	 this	 algorithm	 “would	 be	 costly	 to
utilize	 on	 a	 graph	 containing	more	 than	50	 arcs	 or	 7	 vertices”—a	 small	 graph
indeed.
The	algorithm	could	be	easily	modified	 to	generate	all	directed	Hamiltonian

circuits.	This,	 in	 fact,	was	 the	original	purpose	of	 the	algorithm	as	 reported	by
Roberts	and	Flores	[11-56].
A	 random	directed	graph	of	20	vertices,	55	edges,	 and	434	directed	circuits

took	 about	 17	 seconds	 on	 the	 IBM	 7044.	 This	 indicates	 that	 this	 method,
involving	 a	 systematic	 but	 exhaustive	 search,	 is	 quite	 inefficient	 in	 terms	 of
execution	time.
A	 similar	 algorithm	 but	 somewhat	 more	 involved,	 considerably	 faster,	 but

requiring	more	storage	was	proposed	by	Weinblatt	[11-67].	See	also	[11-50].

11-5.	SHORTEST-PATH	ALGORITHMS

A	 large	 number	 of	 optimization	 problems	 are	 mathematically	 equivalent	 to
finding	 shortest	 paths	 in	 a	 graph.	 Consequently,	 shortest-path	 algorithms	 have
been	worked	 over	more	 thoroughly	 than	 any	 other	 algorithm	 in	 graph	 theory.
More	than	100	papers	have	been	published	and	dozens	of	algorithms	have	been
proposed.	Some	of	these	algorithms	are	better	than	others,	some	are	more	suited
for	 a	 particular	 structure	 than	 others,	 and	 some	 are	 only	 minor	 variations	 of



earlier	 algorithms.	 For	 a	 good	 comparative	 study	 of	 various	 shortest-path
algorithms	through	the	year	1968,	a	survey	paper	by	Dreyfus	[11-17]	 is	highly
recommended.

Fig.	11-7	Algorithm	5:	Directed	circuits.

There	 are	 different	 types	 of	 shortest-path	 problems.	 Most	 frequently
encountered	among	these	are	the	following	five,	of	which	we	shall	solve	the	first
three:



1. Shortest	path	between	two	specified	vertices.

2. Shortest	paths	between	all	pairs	of	vertices.

3. Shortest	paths	from	a	specified	vertex	to	all	others.

4. Shortest	 path	 between	 specified	 vertices	 that	 passes	 through	 specified
vertices.

5. The	second,	third,	and	so	on,	shortest	paths.

In	a	worst-case	situation,	type	1	becomes	identical	to	3,	because	(as	we	shall	see
shortly)	 in	 the	 process	 of	 finding	 the	 shortest	 path	 from	 a	 specified	 vertex	 to
another	specified	vertex,	we	may	have	to	determine	the	shortest	paths	to	all	other
vertices.	Let	us	deal	with	type	1	first.

Algorithm	 6:	 Shortest	 Path	 from	 a	 Specified	Vertex	 to	Another	 Specified
Vertex

The	problem	of	finding	the	shortest	path	from	a	specified	vertex	s	to	another
specified	vertex	t,	can	be	stated	as	follows:
A	simple	weighted	digraph†	G	of	n	vertices	is	described	by	an	n	by	n	matrix

D	=	[dij],	where

dij	=	length	(or	distance	or	weight)	of	the	directed	edge	from	vertex	i	to	vertex
j,	dij	≥	0,

dii	=	0

dij	=	∞,	if	there	is	no	edge	from	i	to	j	(in	carrying	out	a	program	∞	is	replaced
by	a	large	number,	say	9999999).

In	general,	dij	≠	dji	and	the	triangle	inequality	need	not	be	satisfied.	That	is,	dij	+
djk	may	be	less	than	dik.	[In	fact,	if	the	triangle	inequality	is	satisfied,	for	every	i,
j,	and	k,	the	problem	would	be	trivial	because	the	direct	edge	(x,	y)	would	be	the
shortest	 path	 from	 vertex	 x	 to	 vertex	 y.]	 The	 distance	 of	 a	 directed	 path	P	 is
defined	to	be	the	sum	of	the	lengths	of	the	edges	in	P.	The	problem	is	to	find	the
shortest	possible	path	and	its	length	from	a	starting	vertex	s	to	a	terminal	vertex
t.
Among	 several	 algorithms	 that	 have	 been	 proposed	 for	 the	 shortest	 path

between	a	specified	vertex	pair,	perhaps	 the	most	efficient	one	 is	an	algorithm
due	to	Dijkstra	[11-16].



Description	 of	 the	Algorithm:	Dijkstra’s	 algorithm	 labels	 the	 vertices	 of	 the
given	 digraph.	 At	 each	 stage	 in	 the	 algorithm	 some	 vertices	 have	 permanent
labels	 and	 others	 temporary	 labels.	 The	 algorithm	 begins	 by	 assigning	 a
permanent	 label	 0	 to	 the	 starting	 vertex	 s,	 and	 a	 temporary	 label	 ∞	 to	 the
remaining	n	—	1	vertices.	From	then	on,	in	each	iteration	another	vertex	gets	a
permanent	label,	according	to	the	following	rules	:

1. Every	 vertex	 j	 that	 is	 not	 yet	 permanently	 labeled	 gets	 a	 new	 temporary
label	whose	value	is	given	by

where	 i	 is	 the	 latest	vertex	permanently	 labeled,	 in	 the	previous	 iteration,
and	 dij	 is	 the	 direct	 distance	 between	 vertices	 i	 and	 j.	 If	 i	 and	 j	 are	 not
joined	by	an	edge,	then	dij	=	∞.

2. The	 smallest	 value	 among	 all	 the	 temporary	 labels	 is	 found,	 and	 this
becomes	the	permanent	label	of	the	corresponding	vertex.	In	case	of	a	tie,
select	any	one	of	the	candidates	for	permanent	labeling.

Steps	 1	 and	 2	 are	 repeated	 alternately	 until	 the	 destination	 vertex	 t	 gets	 a
permanent	label.
The	first	vertex	to	be	permanently	labeled	is	at	a	distance	of	zero	from	s.	The

second	vertex	to	get	a	permanent	label	(out	of	the	remaining	n	−	1	vertices)	is	the
vertex	 closest	 to	 s.	 From	 the	 remaining	 n	 −	 2	 vertices,	 the	 next	 one	 to	 be
permanently	labeled	is	the	second	closest	vertex	to	s.	And	so	on.	The	permanent
label	of	each	vertex	is	the	shortest	distance	of	that	vertex	from	s.	This	statement
can	 be	 proved	 by	 induction	 (Problem	 11-13).	 As	 an	 illustration	 of	 Dijkstra’s
procedure,	 let	us	 find	 the	distance	from	vertex	B	 to	G	 in	 the	digraph	shown	in
Fig.	 11-8.	We	 shall	 use	 a	 vector	 of	 length	 seven	 to	 show	 the	 temporary	 and
permanent	 labels	of	 the	vertices	as	we	go	 through	 the	solution.	The	permanent
labels	 will	 be	 shown	 enclosed	 in	 a	 square,	 and	 the	 most	 recently	 assigned
permanent	label	in	the	vector	is	indicated	by	a	tick	 .	The	labeling	proceeds	as
follows:



Fig.	11-8	Simple	weighted	digraph.

All	 steps	 are	 easily	 programmed	 except	 for	 the	 job	 of	 distinguishing	 the
permanently	labeled	vertices	from	the	temporarily	labeled	ones,	which	is	slightly
tricky.	An	efficient	method	of	accomplishing	this	is	to	associate	indices	1,	2,	.	.	.
,	n	with	 the	vertices,	 and	keep	 a	binary	vector	VECT	of	order	 n.When	 the	 ith
vertex	 becomes	 permanently	 labeled,	 the	 ith	 element	 in	 this	 binary	 vector
changes	from	0	to	1.
A	flow	chart	of	this	algorithm	is	given	in	Fig.	11-9,	and	a	FORTRAN	listing

of	the	program	is	provided	at	the	end	of	the	chapter.
The	 algorithm	 described	 does	 not	 actually	 list	 the	 shortest	 path	 from	 the

starting	 vertex	 to	 the	 terminal	 vertex;	 it	 only	 gives	 the	 shortest	 distance.	 The
shortest	path	can	be	easily	constructed	by	working	backward	from	the	terminal
vertex	 such	 that	 we	 go	 to	 that	 predecessor	 whose	 label	 differs	 exactly	 by	 the
length	 of	 the	 connecting	 edge.	 (A	 tie	 indicates	 more	 than	 one	 shortest	 path.)
Alternatively,	 the	 shortest	 path	 can	 be	 determined	 by	 keeping	 a	 record	 of	 the
vertices	 from	which	 each	 vertex	was	 labeled	 permanently.	 This	 record	 can	 be



maintained	 by	 another	 linear	 array	 of	 length	 n,	 such	 that	 whenever	 a	 new
permanent	 label	 is	 assigned	 to	 vertex	 j,	 the	 vertex	 from	 which	 j	 is	 directly
reached	is	recorded	in	the	jth	position	of	this	array.

Remarks

1. In	 this	 algorithm,	 had	we	 continued	 the	 labeling	 until	 every	 vertex	 got	 a
permanent	 label	 (rather	 than	 stopping	 at	 the	 permanent	 labeling	 of	 the
destination	vertex	 t),	we	would	have	gotten	an	algorithm	 for	 the	 shortest
paths	from	starting	vertex	s	to	all	other	vertices.	A	computer	program	for
this	purpose,	written	in	ALGOL,	is	given	in	[11-6].

2. If	we	 take	 a	 shortest	 path	 from	 the	 starting	 vertex	 s	 to	 each	 of	 the	 other
vertices	(which	are	accessible	from	s),	then	the	union	of	these	paths	will	be
an	arborescence	T	rooted	at	vertex	s.	Every	path	in	T	from	s	is	the	(unique)
shortest	path	in	the	digraph	(or	graph,	as	the	case	may	be).	Such	a	tree	is
called	the	shortest-distance	arborescence	(and	shortest-distance	tree	in	an
undirected	 graph−not	 to	 be	 confused	 with	 the	 shortest	 spanning	 tree
introduced	 in	Chapter	3).	This	 arborescence	may	be	 constructed	 as	 a	by-
product	in	Algorithm	6,	if	the	labeling	is	continued	till	every	vertex	gets	a
permanent	 label,	 and	 if	 each	 time	 a	 vertex	 is	 labeled	 permanently,	 the
corresponding	 edge	 is	 added	 to	 the	 arborescence.	 For	 example,	 the
shortest-distance	arborescence	of	Fig.	11-8	is	given	in	Fig.	11-10.



Fig.	11-9	Algorithm	6:	Shortest	distance	from	s	to	t.



Fig.	11-10	Shortest-distance	arborescence	of	Fig.	11-8.

3. In	this	algorithm,	as	more	vertices	acquire	permanent	labels	the	number	of
additions	 and	 comparisons	 needed	 to	 modify	 the	 temporary	 labels
continues	 to	 decrease.	 In	 the	 case	 where	 every	 vertex	 gets	 permanently
labeled,	we	need	n(n	−	1)/2	additions	and	2n(n	−	1)	comparisons.	Thus	the
computation	time	is	proportional	to	n2.

4. Notice	 that	 for	 a	 given	 n	 the	 computation	 time	 is	 independent	 of	 the
number	 of	 edges	 the	 digraph	 may	 have.	 This	 is	 because	 it	 is	 tacitly
assumed	that	the	digraph	is	complete−each	missing	edge	is	simply	given	a
very	 large	 weight.	 This	 observation	 is	 also	 borne	 out	 by	 the	 following
typical	 data:	On	 the	 IBM	7044,	 for	 a	 random	digraph	of	 80	vertices	 and
3200	 edges,	 it	 took	 	 second	 to	 find	 the	 shortest	 distance	 from	 a	 given
vertex	to	all	others.	Another	random	graph	with	80	vertices	but	only	1000
edges	also	took	 	second	for	the	same	computation.

5. If	 the	digraph	 is	 sparse	 [i.e.,	 the	number	of	edges	e	 is	much	smaller	 than
n(n	 −	 1)],	 it	 is	 possible	 to	 reduce	 the	 time	 of	 computation.	 This	 can	 be
achieved	by	incorporating	another	test	which	alters	the	temporary	labels	of
only	 those	 vertices	 that	 are	 successors	 of	 the	 most	 recent	 permanently
labeled	vertex.	There	is,	of	course,	a	trade	off	here	between	the	time	taken
for	 testing	and	 the	 time	 that	 is	 saved	as	 a	 result	 of	 this	 test.	An	ALGOL
program	of	Dijkstra’s	algorithm,	which	 takes	advantage	of	 the	sparseness
of	 the	graph,	 is	given	in	[11-38],	pages	43-44.	For	another	 technique	that
reduces	computation	time	in	sparse	graphs,	see	remark	3	in	Algorithm	7.

6. If	 the	given	digraph	G	 is	 not	weighted,	 every	 edge	 in	G	 has	 a	weight	of
one,	and	matrix	D	is	the	same	as	the	adjacency	matrix.	Then	the	problem	is
simpler.	We	perform	logical	operations	rather	than	real	arithmetic.

7. We	have	assumed	the	distances	dn	are	all	nonnegative	numbers.	If	some	of



the	distances	are	negative,	Algorithm	6	will	not	work.	(Negative	distances
in	a	network	may	represent	costs	and	the	positive	ones	profits.)	The	reason
for	the	failure	of	Algorithm	6	is	that	once	a	vertex	is	permanently	labeled
its	 label	 cannot	 be	 altered.	 Shortest-path	 algorithms	 have,	 however,	 been
proposed	(see	[11-17])	that	will	solve	this	problem,	provided	the	sum	of	all
dij	around	every	directed	circuit	is	positive.	(The	problem	has	no	solution	if
a	 negative-weight	 circuit	 having	 a	 vertex	 on	 a	 directed	 path	 from	 s	 to	 t
exists,	because	then	one	could	continue	minimizing	the	distance	to	−	∞	by
going	round	and	round	this	circuit.)	The	computation	time	of	 the	existing
algorithms	that	can	handle	negative	dij	is	n3	and	not	n2.

8. It	 was	 suggested	 by	 T.	 A.	 J.	 Nicholson	 that	 carrying	 the	 shortest-path
algorithm	simultaneously	from	both	ends	s	and	t	would	improve	the	speed.
Dreyfus	 [11-17]	 has,	 however,	 shown	 that	 the	 double-ended	 procedure
would	improve	the	efficiency	only	in	certain	types	of	digraphs.	In	the	case
where	 nearly	 all	n	 vertices	must	 be	 permanently	 labeled	 from	 either	 one
end	or	the	other,	the	double-ended	procedure	is	actually	less	efficient	than
Dijkstra’s	 one-ended	 procedure.	 For	 an	 ALGOL	 listing	 of	 Nicholson’s
double-ended	program	see	Algorithm	22	in	[11-6].

Algorithm	7:	Shortest	Path	Between	All	Pairs	of	Vertices

Sometimes	one	is	interested	in	finding	the	shortest	paths	between	all	n(n	−	1)
ordered	pairs	of	vertices	in	a	digraph	(or	n(n	−	1)/2	unordered	pairs	of	vertices	in
an	 undirected	 graph).	 If	 we	 were	 to	 use	 Algorithm	 6	 for	 this	 purpose,	 the
computation	 time	 would	 be	 proportional	 to	 n4.	 There	 are	 several	 algorithms
available	 that	can	do	better.	Among	 these,	 two	are	considered	best,	both	being
equally	efficient.	One	is	due	to	Dantzig	[11-15]	as	improved	by	Tabourier	[11-
60];	 the	 other	 one	 is	 due	 to	 Floyd	 [11-21],	 based	 on	 a	 procedure	 by	Warshall
[11-65].	Both	algorithms	require	computation	time	proportional	to	n3.	We	shall
describe	the	Warshall-Floyd	algorithm.

Description	of	the	Algorithm:	The	algorithm	works	by	inserting	one	or	more
vertices	into	paths,	whenever	it	is	advantageous	to	do	so.
Starting	 with	 the	 n	 by	 n	 matrix	 D	 =	 [dij]	 of	 direct	 distances,	 n	 different

matrices	D1,	D2,	.	.	.	,	Dn	are	constructed	sequentially.	Matrix	Dk,	1	≤	k	≤	n,	may
be	thought	of	as	 the	matrix	whose	(i,	 j)th	entry	gives	 the	 length	of	 the	shortest
directed	 path	 among	 all	 directed	 paths	 from	 i	 to	 j,	 with	 vertices	 1,	 2,	 .	 .	 .	 ,	 k
allowed	as	the	intermediate	vertices.	Matrix	Dk	=	 	is	constructed	from	Dk-



1	according	to	the	following	rule:

That	is,	in	iteration	1,	vertex	1	is	inserted	in	the	path	from	vertex	i	to	j	if	di1	>	d1j
+	dij	In	iteration	2,	vertex	2	is	inserted,	and	so	on.
Suppose,	for	example,	that	the	shortest	directed	path	from	vertex	7	to	3	is	7	4

1	9	5	3.	The	following	replacements	occur:

Once	the	shortest	distance	is	obtained	in	 ,	the	value	of	this	entry	will	not	be
altered	in	subsequent	operations.
The	flow	chart	of	the	algorithm	is	given	in	Fig.	11-11	and	a	FORTRAN	listing

is	given	at	the	end	of	the	chapter.	Its	ALGOL	listing	can	be	found	in	[11-21].
The	algorithm	described	so	far	does	not	actually	list	the	path;	it	only	gives	the

shortest	 distances.	 Obtaining	 the	 path	 is	 slightly	 more	 involved	 than	 in
Algorithm	6,	because	now	 there	are	n(n	—	1)	paths	 required,	not	 just	one.	An
efficient	method	 of	 obtaining	 the	 intermediate	 vertices	 in	 each	 of	 the	 shortest
paths	 is	 by	 constructing	 a	 matrix	 Z	 =	 [zij]	 (referred	 to	 as	 the	 optimal-policy
matrix),	such	that	entry	zij	is	the	first	vertex	from	i	along	the	shortest	path	from	i
to	j.	The	optimal-policy	matrix	Z	can	be	constructed	as	follows:
Initially	we	set

zij	=	j, if	dij	≠	∞,
=	0, if	dij	=	∞.

In	the	kth	iteration	if	vertex	k	is	inserted	between	i	and	j,	element	zij	is	replaced
by	the	current	value	of	zik,	for	all	i	and	y.	This	updating	of	the	Z	matrix	is	done
during	each	iteration	k,	where	k	=	1,	2,	.	.	.	,	n.	At	the	end,	the	shortest	path	(i,	v1,



v2,	.	.	.	,	vq,	j)	from	i	to	j	is	derived	as	a	sequence	of	vertex	numbers	from	matrix
Z	as	follows	(see	Problem	11-15):



Fig.	11-11	Algorithm	7:	Shortest	path	between	every	vertex-pair.

Remarks

1. Notice	 that	 for	 computational	 purposes	 we	 need	memory	 space	 for	 only
one	n	by	n	matrix.	Other	constructed	matrices	can	be	overwritten	on	 this
matrix.



2. To	estimate	the	execution	time,	note	that	we	have	to	construct	n	matrices
D1,	D2,	.	.	.	,	Dn,	sequentially.	For	each	matrix	Dk	the	number	of	elements
to	be	computed	 is	 (n	−	1)(n	−	2),	because	 in	Eq.	(11-2)	 i	≠	 j,	 i	≠	k,	 j	≠	k
(although,	for	simplicity,	in	the	flow	chart	we	have	not	taken	advantage	of
this	slight	saving).	Thus	the	execution	time	is	proportional	to	n(n	−	1)	(n	-
2)≃	n3.

3. Whenever	 	 in	 Eq.	 (11-2),	 it	 is	 possible	 to	 circumvent	 n	 −	 1
additions	 and	 comparisons	 in	 exchange	 for	 an	 additional	 test.	 This	 is	 a
trade	off	just	as	in	Algorithm	6,	but	since	the	execution	time	for	Algorithm
7	 is	 proportional	 to	n3,	 it	 pays	 to	 include	 this	 extra	 test	 for	 almost	 every
digraph.	(Note	that	the	test	is	not	included	in	the	flow	chart.)

4. If	the	graph	is	sparse,	that	is,	the	number	of	edges	are	far	fewer	than	n(n	−
1),	 it	 is	possible	 to	 take	advantage	of	 the	special	structure	and	reduce	 the
labor	 by	 decomposing	 the	 graph.	 Shortest	 paths	 are	 obtained	 in	 each
subgraph	and	these	are	put	together	to	obtain	the	shortest	paths	in	the	entire
graph.	As	an	extreme	example,	consider	 the	case	in	which	à	digraph	of	n
vertices	consists	of	 the	 two	digraphs	of	n/2	vertices	each.	The	number	of
computations	 reduces	 from	n3	 to	2(n/2)3,	 a	 reduction	of	75	per	 cent.	See
Hu	and	Torres	[11-33]	for	decomposition	algorithms.

5. As	 in	 Algorithm	 6,	 if	 the	 digraph	 is	 unweighted,	 that	 is,	 D	 =	 X,	 the
computational	 time	can	be	reduced	by	replacing	 the	arithmetic	operations
with	logical	operations.

Transitive	Closure	of	a	Digraph:	Let	G	be	a	simple,	nvertex	digraph.	Let	us
construct	another	simple	nvertex	digraph	by	adding	edges	to	G	as	follows:	Add
an	edge	(i,j)	directed	from	vertex	i	to	j	if	and	only	if	there	is	a	directed	path	(of
any	length	2,	3,	.	.	.	,	n	−	1)	from	i	to	j	in	G.	Digraph	H	is	called	the	transitive
closure	of	G.	In	other	words,

X	(H)	=	R(G),

where	 X(H)	 is	 the	 adjacency	 matrix	 of	 H	 and	 R(G)	 is	 the	 reachability	 (or
accessibility)	matrix	of	G.
It	is	easy	to	see	that	the	transitive	closure	of	a	given	digraph	G	can	be	obtained

by	applying	ALGORITHM	7	to	the	adjacency	matrix	X(G),	i.e.	by	setting	D	←
X.	The	time	taken	by	this	method	of	obtaining	transitive	closure	is	proportional
to	n3.	We	can,	however,	do	better.	For	discussions	of	more	efficient	algorithms



for	transitive	closure	see	[11-45].
Longest-Path	Analysis:	Sometimes,	notably	in	critical	path	analysis	of	activity

networks	(see	Chapter	14),	one	needs	the	longest	paths	(rather	than	the	shortest)
from	 a	 specified	 vertex	 to	 all	 others.	 One	 would	 expect	 that	 maximization
procedures	 analogous	 to	 the	 minimization	 procedures	 in	 Algorithms	 6	 and	 7
would	yield	the	desired	paths.	But	for	an	arbitrary	digraph	this	will	not	work.	For
in	the	process	of	maximization,	one	could	go	round	and	round	a	directed	circuit
and	 the	 length	 would	 be	 made	 arbitrarily	 large.	 Another	 difficulty	 is	 the
following:	 In	 the	shortest-path	problem,	 if	 (s,	 t,	u,	 .	 .	 .	 ,f)	 is	a	shortest	directed
path	from	s	to	t,	then	the	subpath	(t,	u,	.	.	.	,f)	is	a	shortest	path	from	t	to	f.	It	is
this	property	on	which	the	shortest-path	algorithms	are	based.	On	the	other	hand,
if	 (s,	 t,	 u,	 .	 .	 .	 ,f)	 is	 a	 longest	directed	path	 from	s	 to	 f,	 there	may	well	 exist	 a
directed	path	from	t	to	f	via	s	that	is	longer	than	the	subpath	(t,	u,	.	.	.	,f).
Both	these	difficulties	disappear	if	 the	given	digraph	is	acyclic	(which	is	 the

case	for	activity	networks).	Dijkstra’s	algorithm	can	then	be	used	to	find	longest
paths	from	a	given	vertex	to	all	others	in	an	acyclic	digraph.	The	details	are	left
as	an	exercise	(Problem	11-16).
In	addition	to	the	three	shortest-path	problems	dealt	with	in	Algorithms	6	and

7,	 there	 are	 several	 other	 shortest-path	 problems.	 For	 example,	 one	 may	 be
interested	 in	 finding	 the	 second-shortest	 path	 from	 s	 to	 f	 Or	 one	 may	 be
interested	 in	 finding	 a	 shortest	 path	 from	 s	 to	 f	 that	 passes	 through	 certain
specified	 vertices.	 For	 these	 and	 more,	 [11-17]	 and	 [11-3]	 are	 recommended,
while	we	move	on	to	an	altogether	different	problem.

11-6.	DEPTH-FIRST	SEARCH	ON	A	GRAPH

In	 this	 section	 we	 shall	 discuss	 a	 powerful	 technique	 of	 systematically
traversing	 the	edges	of	a	given	graph	such	 that	every	edge	 is	 traversed	exactly
once	and	each	vertex	 is	visited	at	 least	once.	This	 technique,	 called	 the	depth-
first	search	(DFS)	or	backtracking	on	a	graph	was	first	formalized	and	used	by
Hopcroft	 and	 Tarjan	 [11-31]	 and	 was	 subsequently	 studied	 in	 some	 depth	 by
Tarjan	[11-61].
It	 is	evident	 that	 for	answering	almost	any	nontrivial	question	about	a	given

graph	G	we	must	examine	every	edge	(and	in	the	process	every	vertex)	of	G	at
least	once.	For	example,	before	declaring	a	graph	G	to	be	disconnected	we	must
have	looked	at	every	edge	in	G;	for	otherwise,	it	might	happen	that	the	one	edge
we	had	decided	to	ignore	could	have	made	the	graph	connected.	The	same	can
be	said	for	questions	of	separability,	planarity,	and	the	like.



There	are	two	natural	ways	of	scanning	or	searching	the	edges	of	a	graph	as
we	move	from	vertex	to	vertex:	(i)	once	at	a	vertex	v	we	scan	all	edges	incident
on	v	and	then	move	to	an	adjacent	vertex	w.	At	w	we	scan	all	edges	incident	on
w.	This	process	is	continued	till	all	edges	in	the	graph	are	scanned.	This	method
of	 fanning	 out	 at	 each	 vertex	 is	 referred	 to	 as	 the	 breadth-first	 search	 of	 the
graph.	This	was	the	method	used	in	Algorithm	3.	It	was	also	employed	implicitly
in	Algorithms	1	 and	6.	 (ii)	An	opposite	 approach	 is	 instead	of	 scanning	 every
edge	incident	on	vertex	v,	we	move	to	an	adjacent	vertex	w	(a	vertex	not	visited
before)	 as	 soon	 as	 possible,	 leaving	 v	 with	 possibly	 unexplored	 edges	 for	 the
time	being.	In	other	words,	we	trace	a	walk	through	the	graph	going	on	to	a	new
vertex	whenever	possible.	This	method	of	traversing	the	graph,	called	the	depth-
first	search	(DFS),	has	been	found	to	be	very	useful	in	simplifying	many	graph-
theoretic	 algorithms,	 because	 of	 the	 resulting	 numbering	 of	 the	 vertices	 and
orientations	imposed	on	the	edges.

Numbering	Vertices	and	Orienting	Edges	in	DFS:	During	a	DFS	on	a	graph,
whenever	 a	 vertex	 v	 is	 visited	 for	 the	 first	 time	 we	 assign	 it	 a	 distinct	 serial
number	NUM(v),	so	that	NUM(v)	=	i	if	v	was	the	ith	vertex	to	be	visited	during
the	traversal.	Also	an	orientation	is	imposed	on	each	edge	along	the	route	of	the
traversal.	When	the	search	terminates	the	undirected	graph	G	on	which	the	DFS
was	being	performed,	becomes	a	digraph	 	with	its	vertices	numbered	1,	2,	.	.	.	,
n.	The	details	of	the	DFS	algorithm	can	be	best	described	by	the	following	steps:

Description	 of	 the	 DFS	 Algorithm:	 Let	 G	 be	 the	 given	 undirected	 graph,
inputted	 as	neighbor	 listings	 (i.e.,	 representation	 (e)	 in	Section	11-2).	Let	x	 be
the	 specified	 vertex	 from	which	 the	 search	 is	 to	 begin.	 PALM	and	FRON	are
two	disjoint	subsets	into	which	the	edges	of	G	are	to	be	partitioned.

Step	1	:	Set	v	←	x,	i	←	0,	PALM	←	Ø,	FRON	←	Ø

Step	2:	Set	i	←	i	+	1,	NUM(v)	←	i

Step	3:	Look	for	an	untraversed	edge	incident	on	v.
(a) If	there	is	no	such	edge	(i.e.,	every	edge	incident	on	v	has	already

been	traversed),	go	to	Step	5;	otherwise,
(b) Pick	 the	 first	 untraversed	 edge	 at	 v,	 say	 (v,	w),	 and	 traverse	 this

edge.	Orient	the	edge	(v,	w)	from	v	to	w.	Now	you	are	at	vertex	w.
Step	4:	(a) If	w	is	a	vertex	which	has	not	been	visited	before	during	this	search

(that	 is,	 if	 NUM(w)	 is	 undefined),	 add	 edge	 (v,	 w)	 to	 the	 set
PALM.	Set	v	←	w	and	go	to	Step	2.

(b) If	w	is	a	vertex	which	has	been	visited	earlier	(that	is,	NUM	(w)	<



NUM(v)),	add	edge	(v,	w)	to	the	set	FRON.	Go	to	Step	3.	You	are
back	at	vertex	v.

Step	5:	Check	 to	see	 if	 there	exists	some	 traversed	edge	(u,	v)	 in	set	PALM
oriented	toward	v.

(a)	If	there	is	such	an	edge	move	back	to	vertex	u.	(Note	that	u	is	the
vertex	from	which	v	was	visited	for	the	first	time.)	Set	v	←	u	and
go	to	Step	2.

(b)	If	there	is	no	such	edge	(u,	v),	stop	(we	are	back	at	root	x,	having
traversed	every	edge	and	visited	every	vertex	connected	to	x).

The	DFS	algorithm	just	described	is	illustrated	by	an	example	in	Fig.	11-12.
In	 the	 given	 graph	G	 of	 five	 vertices	 and	 eight	 edges,	 the	 starting	 vertex	 x	 is
specified.	The	order	in	which	the	edges	are	explored	is	given	in	Fig.	11-12	(b),
and	for	this	order	of	traversal	 	is	given	in	Fig.	11-12(c).

Fig.	11-12	Depth-first	search	on	a	graph.

Palm	Tree	and	Fronds:

It	 is	not	difficult	 to	see	 that	 if	 this	DFS	procedure	 is	applied	 to	any	connected,
undirected	 graph	 G	 (with	 n	 vertices	 and	 e	 edges),	 it	 will	 terminate	 after
numbering	the	vertices	1,2,	.	.	.	,n	and	orienting	every	edge	in	G.	Let	 	be	the
resulting	 digraph.	 Consider	 PALM,	 the	 set	 of	 n	 −	 1	 oriented	 edges,	 each	 of
which	led	to	a	new	vertex	during	the	DFS.	This	subdigraph	(defined	by	the	edge
set	 PALM)	 is	 a	 spanning	 arborescence	 in	 ,	 because	 every	 vertex	 in	 this
subdigraph,	except	the	root	x,	has	an	in-degree	equal	to	one,	and	the	in-degree	of
x	 is	 zero.	 (Review	 Sec.	 9-6,	 to	 recall	 arborescence	 and	 its	 properties.)	 This
spanning	arborescence	is	referred	to	as	a	palm	tree.	Edges	not	 in	 the	palm	tree



(i.e.,	edges	belonging	to	the	set	FRON)	are	called	fronds.	Since	for	every	frond
(a,	b)	vertex	b	was	visited	before	a,	NUM(b)	<	NUM(a).	In	other	words,	every
frond	is	oriented	from	a	higher-numbered	vertex	to	a	lower-numbered	vertex.
The	 DFS	 by	 itself	 does	 not	 reveal	 properties	 of	 a	 given	 graph	 G	 (except

whether	or	not	G	is	connected).	What	it	does,	however,	is	to	number	the	vertices
in	a	systematic	manner	and	partition	the	edges	into	two	sets	PALM	and	FRON,
with	properties	just	discussed.	It	is	this	which	makes	DFS	a	powerful	tool	in	the
construction	 of	 efficient	 algorithms	 for	 solving	 a	 surprisingly	 large	 number	 of
graph-theory	 problems.	 The	 following	 are	 some	 of	 the	 problems	 for	 which
algorithms	have	been	constructed	employing	DFS.
(1)	Identification	of	components.	(2)	Identification	of	blocks	and	cut-vertices,

[11-61].	 (3)	 Identification	of	maximal	 subgraphs	of	 connectivity	 three	or	more
[11-32].	 (4)	 Planarity	 [11-31],	 and	 [11-62].	 (5)	 Isomorphism	 of	 planar	 graphs
[11-32].	 (6)	 Identification	 of	 fragments	 (i.e.,	 maximal	 strongly	 connected
subgraphs)	in	a	digraph	[11-61].
It	has	been	shown	(see	the	appropriate	reference)	that	the	computation	time	of

all	these	six	algorithms	is	proportional	to	e,	the	number	of	edges,	if	the	graph	is
given	in	the	neighbor-listing	form	of	Sec.	11-2(e).	And	since	every	edge	must	be
examined	 at	 least	 once,	 this	 is	 also	 the	 lower	 bound	 on	 these	 algorithms,
disregarding	multiplicative	constants,	of	course.
We	 shall	 now	 sketch	 the	 planarity	 algorithm,	 a	 problem	 to	which	DFS	 has

been	 applied	 with	 spectacular	 success,	 resulting	 in	 drastic	 improvements	 in
computation	time	over	earlier	methods.

Algorithm	8:	Planarity	Testing

The	 problem	 of	 determining	 whether	 or	 not	 a	 given	 graph	 is	 planar	 is	 an
important	 one.	 As	 pointed	 out	 in	 Chapter	 5,	 the	 planarity	 characterizations	 of
Kuratowski,	 Whitney,	 or	 MacLane	 (although	 theoretically	 elegant)	 are
unsuitable	 for	 testing	 by	 a	 computer.	 They	 are	 difficult	 to	 implement;	 and,
besides,	if	a	graph	is	planar,	these	methods	do	not	yield	a	plane	representation,
which	 is	 often	 what	 is	 needed.	 It	 has	 been	 shown,	 for	 example,	 that	 if
Kuratowski’s	characterization	is	used	to	test	planarity	of	an	n-vertex	graph	(n	>
5),	the	computation	time	is	at	least	proportional	to	n6	(see	[5-8]).
In	recent	years	many	algorithms	for	planarity	testing	have	been	proposed	and

programmed	 on	 computers	 (see	 [5-8]	 for	 a	 survey).	 Most	 of	 these	 methods
employ	 the	 map-construction	 approach,	 which	 works	 as	 follows:	 A	 planar
subgraph	 g	 (in	 most	 algorithms	 g	 is	 a	 circuit)	 of	 the	 given	 graph	G	 is	 first
selected	and	mapped	on	a	plane.	Then	gradually	the	remaining	edges	are	added



to	g,	such	that	no	crossings	occur.	If	we	succeed	in	the	reconstruction,	graph	G	is
obviously	planar,	and	we	have	obtained	a	plane	representation	of	G.	If	we	fail,	G
is	nonplanar.
The	 only	 difficult	 part	 of	 such	 an	 algorithm	 is	 that	 in	 the	 early	 stages	 of

adding	 edges	 to	g	we	 have	 choices	 available	 (i.e.,	 ambiguity)	 in	 placement	 of
edges.	A	wrong	choice	made	earlier	may	later	prevent	us	from	adding	an	edge,
even	 if	 the	 graph	 is	 planar.	 For	 example,	 in	 Fig.	 11-13(a),	 suppose	 that	 the
starting	subgraph	g	was	the	circuit	{e1,	e2,	e3,	e4,	e5}.	Then	we	add	edges	e6,	e7,
e8,	and	e9,	without	any	crossover.	Now	we	find	that	the	last	edge	e10	cannot	be
added	without	 a	 crossing.	 From	 this	we	might	 erroneously	 conclude	 that	G	 is
nonplanar.	On	the	other	hand,	had	we	selected	a	different	face	for	placing	vertex
v,	we	would	have	obtained	a	planar	representation,	as	shown	in	Fig.	11-13(b).

Fig.	11-13	Two	mappings	of	a	graph.

This	 essentially	 is	 the	 problem	 in	 the	map-construction	method	 of	 planarity
testing,	and	different	procedures	have	been	devised	to	solve	it.

Preliminary	Simplification:	As	pointed	out	in	Section	5-5,	an	arbitrary	graph
can,	 in	 general,	 be	 reduced	 to	 a	 much	 smaller	 graph	 if	 subjected	 to	 certain
simplifying	steps.	These	steps	do	not	affect	the	planarity	(or	the	nonplanarity)	of
a	graph.

1. Apply	 Algorithm	 1	 to	 check	 for	 connectedness.	 If	 the	 graph	 is
disconnected,	consider	only	one	component	at	a	time.

2. Remove	 all	 self-loops,	 and	 replace	 each	 set	 of	 parallel	 edges	 by	 a	 single
edge.

3. Eliminate	every	vertex	of	degree	two	by	merging	the	two	edges	incident	on
the	 vertex.	Apply	 steps	 2	 and	 3	 alternately	 and	 repeatedly,	 till	 the	 graph
cannot	be	reduced	any	further.



4. Apply	 Algorithm	 4	 to	 partition	 the	 graph	 into	 its	 blocks	 (i.e.,	 maxima!
nonseparable	subgraphs).

5. Subject	 each	 block	 to	 reduction	 steps	 3	 and	 2	 alternately	 till	 no	 further
reduction	is	possible.

6. Each	simplified	block	thus	obtained,	with	e	edges	and	n	vertices,	is	tested
for

If	any	of	these	three	inequalities	is	not	satisfied,	our	job	is	finished,	and
we	move	on	to	the	next	block.	Every	graph	with	n	<	5	or	e	<	9	is	planar,
and	every	simple	graph	with	e	>	3n	−	6	is	nonplanar.

One	 planarity	 testing	 algorithm	due	 to	Bruno,	Steiglitz,	 and	Weinberg	 [5-2]
goes	a	step	further	in	simplification.	Each	nonseparable	graph	is	further	broken
down	 into	 its	 maximum	 3-connected	 subgraphs	 (called	 3-connected
components).	Then	the	following	result,	due	to	W.	T.	Tutte,	is	used:	A	graph	is
planar	 if	 and	 only	 if	 all	 of	 its	 3-connected	 components	 are	 planar.	 This
algorithm,	however,	is	not	as	efficient	as	the	one	due	to	Hopcroft	and	Tarjan	[11-
31],	which	will	be	described	next.

Description	 of	 the	 Algorithm:	 The	 planarity-testing	 algorithm	 is	 quite
involved.	We	 shall	 sketch	 only	 its	 essential	 features.	 To	 understand	 the	 main
algorithm,	 let	 us	 consider	 the	 following	 decomposition	 procedure	 applied	 to	 a
given	simple,	nonseparable	graph	G	with	n	vertices	and	e	edges:

Circuit-Path	Decomposition:
Step	1	:	Find	some	circuit	K	in	G.	Set	g	←	K.	Label	the	vertices	and	edges	of

g	as	v1	v2,.	.	.,	and	e1,	e2,.	.	.,	respectively.	Set	i	←	1.
Step	2:	If	there	is	an	unlabeled	edge	in	G,	find	a	path	pi,	that	begins	and	ends

at	 labeled	vertices	but	consists	only	of	unlabeled	edges.	Store	pi.	 If	 there	 is	no
unlabeled	edge	left	in	G,	go	to	step	4.
Step	3	:	Set	g	←	g	⋃	pi	Set	i	←	i	+	1.	Label	the	unlabeled	edges	and	vertices

in	g.	Return	to	step	2.
Step	4:	Stop.	Print	g,	p1,	p2	.	.	.	,	pm.
It	 can	 be	 shown	 ([5-8])	 that	 the	 procedure	 just	 outlined	 decomposes	 the



simple,	 nonseparable	 graph	G	 into	 one	 circuit	 and	m	 =	e	 −	n	 paths.	 Since	 the
circuit	may	 be	 looked	 upon	 as	 two	 edge-disjoint	 paths,	G	 is	 thus	 decomposed
into	e	−	n	+	2	paths.	 It	may	be	noted	 that	although	such	a	decomposition	of	a
graph	G	may	not	be	unique,	the	number	of	paths	into	which	G	is	decomposed	is
constant	 and	 equals	 one	 circuit	 and	 e	 −	 n	 paths.	 For	 example,	 in	 Fig.	 11-13
consider	two	distinct	decompositions,	each	with	one	circuit	and	four	(10	−	6	=	4)
paths:

{e1,	e2,	e3,	e4,	e5},	{e6},	{e10},	{e7,	e9},	{e8},

and

{e1,	e2,	e3,	e4,	e5},	{e7,	e5},	{e9},	{e6},	{e10}.

In	 this	circuit-path	decomposition,	we	can	map	 the	circuit	k	on	a	plane,	and
continue	 to	add	new	paths	p1,	p2,..	 .,	as	 they	are	generated.	A	new	path	pi	will
either	divide	an	existing	face	into	two	new	faces,	or	will	make	g	⋃	p	nonplanar,
when	added	to	the	planar	map	g.	This	method	of	arbitrarily	adding	paths	as	they
are	 generated	may	 lead	 to	 a	 situation	 shown	 in	 Fig.	 11-13,	which	 has	 already
been	discussed.	To	solve	this	problem,	one	can	either

1. Continue	adding	paths	till	no	path	can	be	added.	Then	backtrack	to	explore
the	alternative	choices	he	could	have	made	earlier,	or

2. Continue	 to	 look	at	different	paths	but	not	add	 them	 to	K,	 till	 it	 is	 found
which	 face	 a	 path	must	 be	 placed	 in,	 or	 it	 is	 ascertained	 that	 it	 does	 not
matter	which	face	the	path	is	placed	in.

Some	algorithms	(see	[11-53])	use	approach	1,	but	Hopcroft	and	Tarjan	[11-
31]	have	used	approach	2	and	have	shown	that	their	algorithm	is	more	efficient
because	of	it.	They	use	list	processing	and	have	an	elaborate	program	(985	lines
of	ALGOL).	The	gist	of	their	technique	of	resolving	ambiguity	in	adding	paths,
is	as	follows	:
Suppose	 that	 at	 any	 stage	we	 have	 a	 path	 pi	 (on	 top	 of	 a	 pushdown	 list	 of

paths)	whose	ambiguity	we	are	trying	to	resolve.	Let	a	and	b	be	the	end	vertices
of	pi.	The	flow	chart	in	Fig.	11-14	shows	the	different	cases	that	may	arise	and
what	action	is	taken	for	each.	These	steps	are	explained	by	means	of	Fig.	11-15.
In	Fig.	11-15(a)	path	pi,	can	be	swiveled	at	vertices	a	and	b,	and	therefore	can

divide	either	the	face	“above”	or	“below”	the	path	pj.	This	ambiguity	of	path	pi



must	be	resolved.	To	resolve	this	ambiguity,	starting	from	some	vertex	x	on	path
pi	a	new	path	pk	 is	constructed.	(The	path	pk	consists	of	unlabeled	edges	and	it
terminates	as	soon	as	it	touches	a	labeled	vertex.)
If	both	end	vertices	x	and	y	of	pk	are	on	path	pi,	as	shown	in	Fig.	11-15(b),	pk

can	be	swiveled	at	vertices	x	and	y	and	thus	divides	either	of	the	two	faces−	one
“above“	 pi	 and	 the	 other	 “below.”	 Thus	 not	 only	 did	 we	 not	 resolve	 the
ambiguity	in	placement	of	path	pi,	but	we	have	a	new	path	pk	whose	ambiguity
must	 be	 resolved	 first.	 Path	 pk	 is	 put	 above	 pi	 in	 the	 stack,	 and	 we	 begin
resolving	its	ambiguity	just	as	we	were	doing	for	pi.
Another	possibility	is	that	the	end	vertex	y	is	neither	on	path	pi	nor	on	pj	but

on	a	different	path,	as	shown	in	Fig.	11-15(c).	In	this	case	pi	cannot	be	swiveled,
and	therefore	there	is	no	ambiguity	as	to	which	face	pi.	divides
As	in	Fig.	11-15(d),	 if	path	pi.	ends	on	a	vertex	in	path	pj.	between	a	and	b,

then	pi.	 (together	with	pk)	 can	 still	 be	 swiveled	 about	a	 and	b.	 Therefore,	 the
ambiguity	 in	 pi	 remains.	 The	 path	 pk,	 however,	 divides	 the	 face	 a	 x	 b	 y	 a
unambiguously.	Therefore,	we	shall	have	to	generate	another	path	from	a	vertex
on	pi.	for	resolving	ambiguity	in	the	placement	of	pi.
Finally	in	the	case	where	path	pk	ends	on	a	vertex	on	pj	but	not	between	a	and

b,	 we	 have	 the	 situation	 shown	 in	 Fig.	 11-15(e).	 The	 path	 pi.	 can	 still	 be
swiveled.	But,	unlike	Fig.	11-15(b),	there	is	no	ambiguity	in	path	pk	with	respect
to	pi.	Therefore,	 a	new	path	must	be	generated	 to	 resolve	ambiguity	 in	pi,	 and
that	path	can	be	generated	starting	from	any	vertex	in	path	y	a	x	b,	which	is	path
pi	extended	up	to	vertex	y	on	pj.
In	summary,	the	planarity	algorithm	consists	of	routines	(a)	for	finding	blocks

(i.e.,	maximal	nonseparable	subgraphs),	(b)	for	partitioning	each	block



Fig.	11-14	Resolution	of	ambiguity	of	path	pi.



Fig.	11-15	Resolution	of	ambiguity	of	path	pi.

Thus	the	theoretical	time	bound	for	the	entire	algorithm	is	proportional	to	n	log
n.	 (Because	 of	 Euler’s	 equation	 e	 is	 proportional	 to	 n,	 in	 graphs	 subjected	 to
planarity	algorithm.)
This	algorithm	has	subsequently	been	improved	and	was	reported	in	Tarjan’s

Ph.D.	Thesis	[11-61].	The	time	taken	by	the	improved	version	is	proportional	to
just	 n.	 A	 somewhat	 simplified	 form	 of	 the	 improved	 version	 appeared	 as	 a
Cornell	University	technical	report	[11-61].

11-7.	ALGORITHM	9:	ISOMORPHISM



The	graph	 isomorphism	problem	 is	 to	determine	 if	 there	exists	 a	one-to	one
correspondence	between	the	vertices	of	two	graphs	G1	and	G2	that	preserves	the
adjacency	of	vertices.	The	problem	of	graph	isomorphism	arises	in	many	fields,
such	 as	 chemistry,	 switching	 theory,	 information	 retrieval,	 and	 linguistics.
Consequently,	 the	 isomorphism	 problem	 has	 been	 studied	 extensively.	 For	 a
survey	and	references,	see	Corneil’s	Ph.D.	thesis	[11-9],	and	[11-12].
Theoretically,	it	is	always	possible	to	determine	whether	or	not	two	graphs	G1

and	G2	 are	 isomorphic	 by	 keeping	G1	 fixed	 and	 reordering	 vertices	 of	G2	 to
check	if	their	adjacency	matrices	become	identical.	This	process	may	require	all
n!	 reordering	 and	 comparisons,	 n	 being	 the	 number	 of	 vertices.	 Such	 an
inefficient	procedure,	 in	which	 the	 running	 time	grows	factorially	with	n,	 is	of
limited	 use	 for	 practical	 problems.	 An	 algorithm	 guaranteeing	 a	 solution	 in
running	 time	 proportional	 to	 a	 constant	 power	 of	 n	 is	 desirable,	 but	 no	 such
algorithm	 has	 been	 discovered	 for	 determining	 if	 two	 arbitrary	 graphs	 are
isomorphic.†
There	 are,	 however,	 efficient	 isomorphism	 algorithms	 available	 for	 certain

types	of	graphs.	Some	of	these	are

1. Isomorphism	in	trees:	[11-9],	pages	V-44-V-52.

2. Isomorphism	in	planar	graphs:	[11-32].

3. Isomorphism	 in	 graphs	 containing	 no	 k-strongly	 regular	 subgraphs	 for
large	k	:	see	[11-9]	for	definition	of	a	k-strongly	regular	graph.

4. Isomorphism	in	partially	labeled	graphs	with	special	structure:	[11-59]	and
[11-64].	(See	also	Chapter	15	in	this	book.)

Heuristic	Procedure

If	two	given	graphs	Gl	and	G2	are	arbitrary,	the	usual	approach	is	first	to	try	to
show	if	G1	and	G2	are	not	 isomorphic.	This	is	done	by	asking	questions	of	the
following	type:

1. Do	G1	and	G2	have	the	same	number	of	vertices?

2. Do	G1	and	G2	have	the	same	number	of	edges?

3. Is	the	number	of	vertices	ni	with	degree	i	the	same	in	both,	for	i	=	1,	2,	.	.	.?

4. Do	both	graphs	have	the	same	number	of	components?



5. For	each	component	are	questions	1,	2,	and	3	answered	in	the	affirmative?

6. Are	the	characteristic	polynomials†	of	their	adjacency	matrices	X(G1)	and
X(G2)	the	same	(taken	in	the	field	of	real	numbers)?

And	so	on.
Clearly,	 if	 the	 answer	 to	 any	 of	 these	 questions	 is	 no,	 G1	 and	 G2	 are
nonisomorphic.	A	yes	answer,	however,	does	not	guarantee	an	isomorphism.
An	 invariant	 of	 a	 graph	 G	 is	 a	 number	 that	 is	 the	 same	 for	 all	 graphs

isomorphic	to	G.	Some	examples	of	invariants	are	number	of	vertices	n,	number
of	 edges	 e,	 rank	 R,	 nullity	 μ,	 number	 of	 components	 p,	 connectivity,	 and
coefficients	in	the	characteristic	polynomial	of	the	adjacency	matrix.	A	complete
set	of	 invariants	 is	a	 set	of	 invariants	 that	completely	describes	a	graph	within
isomorphism.
The	problem	of	graph	isomorphism	is	solved	if	we	can	find	a	complete	set	of

invariants	for	G1	and	G2	and	then	check	to	see	if	they	are	identical.
The	problem	of	finding	a	complete	set	of	invariants	can	also	be	thought	of	as

the	coding	of	a	graph.	 If	we	could	find	a	complete	set	of	 invariants,	we	would
place	 them	 in	 a	 sequence.	 This	 sequence	 would	 contain	 all	 the	 essential
information	about	a	graph.	Two	graphs	would	be	isomorphic	if	and	only	if	their
codes	 were	 the	 same.	 The	 problem	 of	 coding	 trees	 and	 some	 other	 types	 of
graphs	has	been	solved,	[11-54],	[11-66].	But	there	exists	no	method	of	coding
an	arbitrary	graph	with	a	large	number	of	vertices.
Numerous	heuristic	procedures	have	been	proposed	(and	programmed)	based

on	 the	 idea	 that	 if	 you	 compute	many	 invariants,	 and	 if	 they	 are	 the	 same	 for
both	G1	and	G2,	it	is	likely	that	G1	and	G2	are	isomorphic.	Heuristic	approaches
work	well	 for	 graphs	 of	 small	 orders.	 For	 example,	 it	 can	 be	 shown	 that	 two
simple,	 connected	 graphs	 with	 n	 ⩽	 7	 which	 have	 affirmative	 answers	 for
questions	 3	 and	 6	 are	 isomorphic.	But	 these	 heuristic	 algorithms	 fail	 for	 large
arbitrary	graphs.
Sometimes	 heuristic	 procedures	 are	 also	 used	 for	 simplifying	 the	 last-resort

method	 involving	 vertex-by-vertex	 correspondence	 between	 G1	 and	 G2.	 For
example,	the	number	of	comparisons	can	always	be	reduced	from	n!	to

where



This	 is	 because	 in	 reordering	 the	 vertices	 in	 G2	 it	 suffices	 to	 permute	 only
vertices	with	the	same	degree.	For	a	graph	that	does	not	have	a	large	percentage
of	its	vertices	with	the	same	degree,	the	number	∑ni!	is	much	smaller	than	n!.

11-8.	OTHER	GRAPH-THEORETIC	ALGORITHMS

The	algorithms	described	so	far,	although	very	important	and	basic,	are	only	a
few	 samples	 out	 of	 scores	 of	 graph-theoretic	 algorithms	 available	 in	 the
literature.	Obviously,	 it	 is	 not	 possible	 to	 include	 them	 all.	 Some	 of	 the	 other
commonly	used	algorithms	for	graphs	are

1. Find	all	fragments	(i.e.,	maximal	strongly	connected	subgraphs)	in	a	given
digraph	G	[11-61].

2. Find	a	Hamiltonian	path	(if	there	is	one)	in	a	given	undirected	graph.	See
[11-49].

3. Find	 all	 directed	 Hamiltonian	 circuits	 in	 a	 given	 digraph.	 See	 [11-13],
pages	35-37.

4. Find	a	maximal	complete	subgraph	(clique)	in	a	given	graph	G.	See	[11-1]
and	[11-44].

5. Find	a	maximal	matching	in	a	bipartite	graph.	An	algorithm,	known	as	the
Hungarian	method,	is	often	used	for	solving	this	assignment	problem.	The
Hungarian	method	is	available	as	a	standard	subroutine	in	most	operations
research	 computer	 program	 packages.	 See	 [9-4],	 pages	 265-269.	 The
computation	time	for	the	Hungarian	method,	for	a	graph	of	n	vertices	and	e
edges,	is	proportional	to	e·n.	Recently	a	more	efficient	algorithm	has	been
proposed	 by	 Hopcroft	 and	 Karp	 [11-30];	 it	 takes	 time	 proportional	 to	

.

6. Given	 a	 connected	 weighted	 digraph	G	 in	 which	 the	 weight	 of	 an	 edge
represents	the	maximum	rate	of	flow	through	that	edge,	find	the	maximum
possible	 flow	 from	a	vertex	x	 to	 another	 vertex	y	 in	G.	This	 is	 the	well-
known	 maximum-flow	 problem	 and	 is	 solved	 by	 the	 Ford-Fulkerson
algorithm	 (discussed	 in	 Sections	 4-6	 and	 14-1).	 The	 Ford-Fulkerson
algorithm	is	also	a	standard	program	in	operations	research.	See	[9-4].	For



a	more	recent	and	improved	algorithm	see	Edmonds	and	Karp	[11-19].

7. Find	the	chromatic	number	of	a	given	graph.	See	[11-26].

8. Given	an	acyclic	digraph,	perform	a	topological	sorting	of	its	vertices.	See
Section	14-8	for	definition,	an	algorithm,	and	references.

9. Given	 a	 connected	 weighted	 graph	 G,	 partition	 the	 vertices	 of	 G	 into
subsets	 no	 larger	 than	 a	 given	 size	 so	 as	 to	minimize	 the	 total	weight	 of
edges	cut	 in	 the	process.	For	a	heuristic	algorithm	to	solve	 this	 important
but	difficult	problem,	see	[11-36].	Also,	see	[11-35].

10. Given	 a	 connected	 weighted	 graph	 G,	 find	 a	 Hamiltonian	 circuit	 with
smallest	 weight.	 This	 is	 the	 traveling-salesman	 problem,	 for	 which	 no
satisfactory	solution	has	been	found	so	far.	For	heuristic	algorithms	see	[2-
1].

11. In	a	given	graph	G	=	(V,	E),	find	a	smallest	subset	(i.e.,	subset	of	minimum
cardinality)	of	edges	E'	⊆	E	such	that	every	vertex	of	G	 is	 incident	on	at
least	one	of	 the	edges	 in	E'.	This	problem	of	 finding	a	 smallest	 covering
was	discussed	in	Section	8-5.	See	[11-18]	for	an	efficient	algorithm.

12. In	a	given	graph	G	=	(V,	E),	find	a	smallest	subset	of	vertices	V	such	that
every	vertex	of	G	not	included	in	V	is	adjacent	to	at	least	one	vertex	in	V.
This	problem	of	finding	a	smallest	dominating	set	was	discussed	in	Section
8-2.	Superficially	similar	to	11,	this	problem	is	much	more	difficult.

13. In	a	given	digraph	G,	find	a	smallest	set	of	edges	which	when	deleted	from
G	would	destroy	all	directed	circuits.	A	method	of	 finding	 this	minimum
decyclization	edge	set	 (or	feedback	are	set)	was	outlined	 in	Section	9-11,
but	 the	 computation	 time	 grew	 exponentially	 with	 n,	 the	 number	 of
vertices.

14. In	the	previous	problem	instead	of	finding	a	smallest	set	of	edges	we	now
wish	 to	 find	 a	 smallest	 set	 of	 vertices	 in	G	 whose	 removal	 destroys	 all
directed	circuits	in	G.	Just	as	for	13	no	efficient	algorithm	is	known	for	this
problem.

15. Given	a	connected	weighted	graph	G	=	(K,	E),	and	a	subset	V'	of	V.	Find	a
minimal	tree	in	G	which	spans	the	vertices	in	V'	(and	possibly	some	more).
Such	a	tree,	known	as	a	Steiner	tree,	is	much	more	difficult	to	obtain	than	a
minimal	 spanning	 tree	 for	 G.	 The	 difficulty	 arises	 from	 the	 fact	 that
inclusion	of	extra	vertices	may	lead	to	a	different	tree	with	a	smaller	total
weight.	 Although	 no	 efficient	 algorithm	 has	 been	 found	 for	 an	 exact
solution	 of	 this	 problem,	 an	 approximate	 solution	 can	 be	 obtained	 by	 an
efficient	algorithm	given	by	S.	K.	Chang	(in	“The	Generation	of	Minimal



Trees	with	 a	 Steiner	Topology,“	 J.	 ACM,	Vol.	 19,	No.	 4,	October	 1972,
699-711).

11-9.	PERFORMANCE	OF	GRAPH-THEORETIC
ALGORITHMS

As	observed	 in	 Section	 11-7,	 for	 a	 given	 graph-theory	 problem	 it	would	 be
desirable	to	have	an	algorithm	which	guarantees	a	solution	in	an	execution	time
proportional	to	some	constant	power	of	n	or	e	(as	usual,	n	and	e	are	the	number
of	 vertices	 and	 edges,	 respectively,	 in	 the	 given	 graph).	 In	 other	 words,	 the
execution	time	t	(for	the	worst	possible	graph)	can	be	expressed	as

t	≦	αnk or t	≦	ßeq,

and	 the	 lower	 the	 value	 of	 k	 and	 q	 the	 better.	 Such	 an	 algorithm	 (whose
computation	time	is	bounded	by	a	polynomial	 in	n	or	e)	 is	called	a	polynomial
bounded	algorithm.	For	example,	Algorithm	1	(connectedness	and	components)
is	 polynomial-bounded,	 since	 k	 =	 2.	 Algorithms	 2,	 3,	 4,	 6,	 7,	 and	 8	 are	 also
polynomial-bounded,	 but	 Algorithms	 5	 and	 9	 are	 not.	 Some	 important
polynomial-bounded	 graph-theoretic	 algorithms	 along	 with	 their	 bounds	 and
relevant	references	are	shown	in	Table	11-1.	Note	that	since	for	a	simple	graph	e
≦	n(n	—	l)/2	≦	n2/2,	bounds	in	terms	of	e	and	n	are	convertible	into	each	other.
It	 should	 also	 be	 kept	 in	mind	 that	 different	 algorithms	 bounded	 by	 the	 same
power	 of	n	may	 take	 very	 different	 amounts	 of	 actual	 computer	 time	 (for	 the
same	graph)	because	of	their	different	multiplicative	constants.

Problems Run-Time	Bounds Relevant	References
Connectedness	and	components n2	or	e [11-29],	[11-61]
Spanning	tree e [11-58]
Minimal	spanning	tree n2 [11-22],	[11-70]
Fundamental	circuit-set nv,	2≦	v	≦	3 [11-47]
Cut-vertices	and	blocks n2	or	e [11-48],	[11-61]
Bridges n2	or	e [11-10],	[11-61]
Shortest	path	between	two	vertices n2 [11-16],	[11-73]
Shortest	paths	between	all	vertex-pairs n3 [11-21],	[11-73]



Transitive	closure nα	2	<	α	<	3 [11-45]
Strong	connectedness	and	fragments n2	or	e [11-29],	[11-61]
Planarity e [11-62]
Topological	sorting e [11-39]
Maximal	matching	in	a	bipartite	graph n5/2 [11-30]
Minimal	cut nβ	2	<	β	<	3 [11-19]
Minimal	edge	cover n3 [11-18],	[11-46]

Table	11-1	Polynomial-Bounded	Algorithms

On	the	other	hand,	 there	are	graph-theoretic	problems	for	which	 it	 is	simply
not	 possible	 to	 have	 a	 polynomial-bounded	 algorithm.	 Take,	 for	 example,	 the
problem	 of	 generating	 all	 spanning	 trees	 of	 a	 given	 graph,	 as	 discussed	 in
Section	11-4.	The	number	of	spanning	trees	in	an	n-vertex	simple,	labeled	graph
can	be	as	high	as	nn-2.	Therefore,	if	each	spanning	tree	were	generated	in	c	units
of	time,	the	algorithm	to	generate	all	spanning	trees	would	consume	c·nn-2	units
of	time.	Thus	no	polynomial-bounded	algorithm	can	be	found	for	this	problem.
Similar	 arguments	 hold	 for	 problems	 of	 generating	 all	 cliques,	 all
circuits/directed	circuits,	all	paths,	all	cut-sets,	and	so	forth,	for	a	given	graph.
There	 is	 a	 third	 category	 of	 graph-theoretic	 problems,	 for	 which	 so	 far	 no

polynomial-bounded	algorithms	have	been	discovered,	nor	has	 it	been	possible
to	 show	 that	 polynomial-bounded	 algorithms	 do	 not	 exist	 for	 these	 problems.
Detection	of	isomorphism	(Algorithm	9)	is	one	such	problem.	A	list	of	important
problems	of	this	type	is	given	in	Table	11-2.	The	computation	time	for	solving
these	 problems	 (using	 the	 best	 available	 algorithm	 at	 present,	 and	 the	 worst
possible	graph)	grows	exponentially	or	factorially	(but	not	polynomially)	with	n.
Such	 inefficient	 algorithms	 are	 obviously	 of	 very	 limited	 use	 for	 practical
problems.	Heuristic	techniques	are	the	mainstay	of	their	solutions.
Based	on	a	remarkable	result	of	Stephen	Cook	(1971),	Richard	Karp	[11-34]

showed	the	following	surprising	result:	Except	for	the	isomorphism	problem,	all
other	 problems	 in	 Table	 11-2	 are	 polynomially	 equivalent,	 that	 is,	 if	 a
polynomial-bounded	 algorithm	 exists	 for	 one,	 polynomial-bounded	 algorithms
can	be	found	for	the	others.	The	proof	of	this	equivalence	is	involved	and	is	not
very	relevant	for	us	here.	(The	Cook-Karp	class	of	problems	includes	a	number
of	other	combinatorial	and	graph-theoretic	problems	in	addition	to	the	top	nine
in	Table	11-2.)

Problems Relevant	References



Problems Relevant	References
Chromatic	number [11-26],	[11-41]
Smallest	dominating	set [11-44]
Maximal	clique [11-20]
Hamiltonian	circuit [11-56]
Directed	hamiltonian	circuit [11-56]
Traveling	salesman	problem [11-28]
Minimal	feedback	edge-set [9-6]
Minimal	feedback	vertex	set [9-6]
Steiner	tree Chang	in	Section	11-8
Isomorphism [11-9],	[11-12],	[11-64]

Table	11-2	Nonpolynomial	Algorithms

11-10.	GRAPH-THEORETIC	COMPUTER	LANGUAGES

The	 increasing	 interest	 in	 graph-theoretic	 computations	 has	 led	 to	 the
development	of	several	programming	languages	for	the	sole	purpose	of	handling
graphs.	 The	major	 goal	 of	 such	 a	 language	 is	 to	 enable	 the	 user	 to	 formulate
operations	 on	 graphs	 in	 a	 compact	 and	 natural	 manner,	 as	 if	 he	 were
communicating	with	another	graph	theorist.	For	example,	in	one	such	language
[11-37],	 the	 statement	 SPANTREE	 @	 G	 would	 call	 the	 subroutine	 for	 a
spanning	tree	and	would	find	a	spanning	tree	of	the	graph	G.	Another	statement
IF	 (G,	 PLANAR)	 17,	 3	would	 transfer	 control	 to	 statement	 17	 if	G	 is	 planar,
otherwise	to	statement	3.
Once	 such	 a	 language	 is	 developed	 and	 implemented,	 its	 advantages	 are

enormous.	It	makes	 the	writing	of	graph-theory	programs	easy	and	compact.	 It
frees	the	user	from	having	to	concern	himself	with	many	unnecessary	details	and
allows	 him	 to	 concentrate	 on	 the	 essential	 features	 of	 his	 program.	 The
disadvantage	of	 such	a	 language,	 as	of	 all	 special-purpose	 languages,	 is	 that	 it
takes	 a	 great	 deal	 of	 time,	 trouble,	 and	 expense	 to	 develop	 such	 a	 language,
which	can	be	used	only	for	the	purpose	of	writing	programs	in	graph	theory.
For	such	a	graph-theoretic	computer	language	to	be	useful	to	many	users,	with

different	 problems	 in	graph	 theory,	 the	 language	must	 have	 a	 large	number	of
primitives	 (i.e.,	 basic	 graph-theoretic	 statements)	 such	 as	 “remove	 vertex	 k	 of
G”,	“add	an	edge	between	vertices	x	and	y”,	or	“find	the	shortest	distance	from



vertex	u	to	vertex	v	in	G”.	Moreover,	the	graph-theoretic	language	must	have	all
the	computing	facilities	of	an	existing	symbolic	language	such	as	FORTRAN,	so
that	the	programmer	can	perform	functions	which	are	not	covered	by	primitives.
Since	 there	 is	 little	 to	be	gained	by	developing	an	entirely	new	 language	 from
scratch,	 all	 graph-theoretic	 languages	 available	 and	 being	 developed	 are
extensions	of	some	well-known	programming	language.
Some	graph-theoretic	computer	languages	available	at	present	are

1. Graph-Theoretic	 Language	 (GTPL)	 at	 the	 University	 of	 West	 Indies,
Jamaica	[11-52],	It	is	an	extension	of	FORTRAN.

2. Graph	Algorithm	 Software	 Package	 (GASP)	 at	 the	University	 of	 Illinois
[11-7].	It	is	an	extension	of	PL/1.

3. HINT	 at	 Michigan	 State	 University	 [11-27]	 is	 an	 extension	 of	 the	 list-
processing	language	LISP	1.5.

4. GRASPE	 at	 the	 University	 of	 Houston,	 [11-23]	 and	 [11-51],	 is	 also	 an
extension	of	LISP	1.5.

5. Directed	 Graph	 Processor	 (DIP)	 at	 Carnegie-Mellon	 University	 is	 an
extension	of	PL/1.	(See	a	report	by	Terry	C.	Gleason,	1969.)

6. An	Interactive	Graph	Theory	System	at	 the	University	of	Pennsylvania	 is
an	extension	of	FORTRAN	[11-71].

7. Graphic	 Extended	 ALGOL	 (GEA)	 at	 Instituto	 di	 Elettrotecnica	 ed
Elettronica	del	Politecnico	di	Milano,	Italy	is	an	extension	of	ALGOL:	[11-
13]	and	[11-14].

8. AMBIT/G,	 developed	by	C.	Christensen	 for	manipulation	 of	 digraphs,	 is
an	extension	of	AMBIT	[11-57].

9. GIRL—Graph	Information	Retrieval	Language	[11-4].
10. FORTRAN	 Extended	 Graph	 Algorithmic	 Language	 (FGRAAL)	 at	 the

University	of	Maryland	[11-2].

The	 interested	 reader	 should	 consult	 the	 cited	 references	 for	 the	 details	 of
these	languages.

SUMMARY

Computational	 aspects	 of	 graph	 theory	 were	 presented	 in	 this	 chapter.	 For



anyone	interested	in	applying	graph	theory	to	solve	physical	problems	(such	as
flow	 problems,	 assignment	 problems,	 identification	 of	 a	 chemical	 compound,
topological	 analysis	 of	 an	 electrical	 network,	 layout	 of	 aprinted-circuit	 board,
etc.),	it	is	essential	to	be	able	to	enlist	the	help	of	the	digital	computer.	Without
the	help	of	high-speed	electronic	computers,	he	cannot	hope	to	handle	a	graph	of
a	size	generally	encountered	in	solving	a	nontrivial	practical	problem.
A	computer	that	has	been	“taught“	elementary	graph	theory	(such	as,	find	out

if	graph	G	is	separable,	or	pick	out	a	spanning	tree	in	G)	can	be	of	immense	aid
even	to	a	“pure“	graph	theorist.	It	can,	for	instance,	relieve	him	of	the	drudgery
of	 finding	 graphs	 with	 special	 properties	 to	 serve	 as	 examples	 and
counterexamples.
To	 be	 able	 to	 teach	 graph	 theory	 to	 a	 computer,	 one	must	 obviously	 know

both	 computer	 programming	 and	 graph	 theory.	 In	 addition,	 one	 must	 find
efficient	 algorithms.	 The	 most	 important	 prerequisite	 of	 any	 useful	 graph-
theoretic	algorithm	is	that	the	running	time	of	its	program	on	the	computer	must
not	rise	factorially	or	even	exponentially	with	n.	It	should	be	proportional	to	nk,
where	k	is	some	fixed	number—preferably	a	low	number.
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PROBLEMS

11-1. 	For	studying	the	behavior	of	an	algorithm,	random	graphs	are	often	used.
A	graph	 is	 random	if	 its	edges	are	drawn	at	 random	from	 the	set	of	all
distinct	 pairs	 of	 vertices.	 Write	 a	 subroutine	 for	 generating	 simple



random	graphs	of	a	given	n	and	density,	where	density	is	defined	as	the
ratio	2e/n(n	—	1)	for	a	directed	graph	and	2e/n(n	—	1)	for	an	undirected
graph.	 (Hint:	Use	 an	 appropriate	 pseudorandom-number	 generator,	 and
obtain	the	adjacency	matrix.)

11-2. 	Write	subroutines	for	converting	the	following	graph	representations:
(a) Adjacency	matrix	to	incidence	matrix.
(b) Incidence	matrix	to	adjacency	matrix.
(c) Adjacency	matrix	to	edge	listing.
(d) Edge	listing	to	successor	listing.
(e) Successor	listing	to	adjacency	matrix.

11-3. 	Write	a	program	in	the	assembly	language	of	the	machine	you	may	have
to	pack	a	given	adjacency	matrix	X(n,	n).	Assume	that	the	given	matrix
uses	full	words	for	each	entry	whether	it	is	0	or	1.

11-4. Write	 a	 FUNCTION	 subprogram	AD	 J,	which	when	 supplied	with	 the
subscripts	(i,j)	gives	the	(i,j)	entry	of	the	(packed)	adjacency	matrix	as	its
value.	Assume	that	the	packed	adjacency	matrix	is	in	a	COMMON	area.

11-5. The	algorithm	for	connectedness	given	in	the	text	modifies	the	adjacency
matrix.	How	will	you	restore	it?	(Hint:	Observe	that	only	one	row	of	the
adjacency	matrix	is	getting	changed	at	a	time.)

11-6. Analyze	to	determine	when	it	would	be	profitable	to	determine	the	vertex
of	maximum	 degree	 in	 each	 component	 before	 fusion	 in	 Algorithm	 1.
Assume	the	graph	is	given	in	the	form	of	an	adjacency	matrix.

11-7. Will	Algorithm	1	 require	 any	modification	 to	 find	 the	 components	of	 a
digraph?	Also	write	a	program	for	identifying	all	fragments	of	a	digraph.

11-8. In	Algorithm	3,	after	an	edge	(z,	p)	has	been	considered	it	is	deleted	from
the	graph;	 that	 is,	 in	 adjacency	matrix	X	entries	xz,P	 and	xP,Z	 are	made
zero.	What	could	be	done	if	one	wanted	to	avoid	modifying	X?

11-9. While	considering	 the	edge	 (z,	p)	 if	we	found	 that	p	was	already	 in	 the
tree,	 we	 went	 ahead	 to	 discover	 the	 fundamental	 circuit.	 Let	 L	 =
LEVEL(z)	—	LEVEL(p).	Prove	that	the	fundamental	circuit	will	contain
all	and	only	edges	on	the	path	of	length	L	from	z	to	the	root	of	the	tree,
apart	from	the	two	edges	(z,p)	and	(p,	PRED(p)).

11-10. Use	 the	 following	 convention	 in	 drawing	 the	 tree	 developed	 by
Algorithm	3.	Draw	the	tree	downward	from	the	root,	and	add	vertex	p	at
depth	LEVEL(p)	below	 the	 root.	When	vertex	z	 is	being	examined,	 the
edges	 (z,	 p)	 are	 added	 from	 left	 to	 right.	 If	 z	 is	 the	 vertex	 under
examination,	define	the	trunk	as	the	path	in	the	tree	T	from	z	to	the	root.
Then	show	that	the	vertices	in	T	fall	into	four	classes	:



1. Vertex	z	that	is	being	examined.
2. Vertices	below	z—unexamined	and	added	during	 the	examination	of

z.
3. Vertices	 to	 the	“left	of”	 the	 trunk—unexamined	and	at	a	distance	of

one	from	the	trunk.
4. Vertices	on	and	“to	the	right	of”	the	trunk—examined.

11-11. In	 Algorithm	 4	 let	 f1	 be	 a	 fundamental	 circuit	 found	 while	 examining
vertex	z1,	and	f2	be	a	fundamental	circuit	found	later	while	examining	z2.
If	f1⋂f2	≠	ø,	show	that	the	tree	edge	(z1,	PRED(z1))	is	in	both	f1	and	f2.Is
this	why	it	was	not	necessary	to	label	the	chords?

11-12. In	Algorithm	5	suggest	a	quick	way	of	testing	whether	a	vertex	v,	which
is	being	considered	for	extension,	is	already	in	the	path	array	P.	[Getting
every	p(i)	for	i	=	1,	.	.	.	,	k,	where	k	is	the	length	of	the	path	built	so	far,
and	 comparing	 with	 v	 is	 obviously	 bad.]	 Give	 a	 flow	 chart	 for	 the
algorithm	incorporating	this.

11-13. In	Algorithm	6	suppose	you	suspect	 that	 the	graph	 is	disconnected	and
the	starting	and	the	terminal	vertex	may	not	be	in	 the	same	component.
The	flow	chart	given	in	Fig.	works	for	this	case	also,	but	it	is	inefficient.
Suggest	a	method	of	speeding	up	 the	detection	 in	 this	case.	 (Hint:	You
will	have	to	add	a	test	box	at	an	appropriate	place	in	the	flow	chart,	on
the	outcome	of	which	you	would	decide	whether	or	not	to	continue.)

11-14. Modify	Algorithm	6	so	that	it	lists	all	shortest	paths	from	s	to	t.
11-15. Given	the	optimal-policy	matrix	Z	as	mentioned	in	Algorithm	7,	write	a

subroutine	that	returns	the	shortest	path	(i,	.	.	.	,	j)	for	a	specified	i	and	j,
as	a	sequence	of	vertex	numbers.

11-16. Write	 a	 program	 similar	 to	Algorithm	 6	 to	 obtain	 the	 longest	 distance
from	 a	 vertex	 s	 to	 all	 vertices	 accessible	 from	 s	 in	 a	 given	 acyclic
digraph.

11-17. Algorithm	7	can	also	be	used	for	detecting	whether	or	not	a	given	graph
is	connected.	(An	∞	in	matrix	Dk	represents	nonexistence	of	a	path.)	As
presented,	 the	 algorithm	 is	 inefficient	 for	 this	 purpose.	 Rewrite
Algorithm	7	solely	for	the	purpose	of	identifying	various	components	in
a	 graph.	 (Hint:	Use	X	 rather	 than	D	 and	 logical	 operations	 rather	 than
arithmetic	ones.)	Compare	its	efficiency	with	that	of	Algorithm	1.

11-18. Give	an	algorithm	to	find	a	cut-set	with	respect	to	a	given	pair	of	vertices
a,	b.	Assume	that	 the	graph	 is	given	 in	 terms	of	 its	F-H	 representation.
You	are	allowed	to	scan	the	F-H	arrays	only	twice.	[Hint:	If	there	is	no



edge	(a,	b),	add	one.	Choose	the	edge	(a,	b).	Shrink	an	edge	e	 in	G	not
parallel	 to	 (a,	 b)	 by	 fusing	 its	 end	 vertices.	 Some	 edges	 might	 now
become	parallel;	continue	shrinking.]

11-19. Given	 an	 edge	 e*,	 write	 an	 efficient	 algorithm	 to	 determine	 if	 e*	 is	 a
bridge.	(Hint:	Edge	e*	is	a	bridge	if	and	only	if	{e*}	is	a	cut-set.	Use	the
result	of	Problem	11-18.)

11-20. Write	 a	 program	 for	 generating	 all	 spanning	 trees,	 based	 on	 Minty’s
method	described	in	Section

APPENDIX	OF	PROGRAMS

Program	 listings	 of	 some	 of	 the	 algorithms	 described	 are	 given	 in	 the
following	pages.	Program	11-1	is	written	in	APL\360;	the	rest	are	in	FORTRAN
IV	in	the	form	of	subroutines.	The	variables	in	the	subroutines	are	dimensioned
such	that	a	graph	with	no	more	than	100	vertices	can	be	given	as	input.

Program	11-1	:	Connectedness	and	Components

X Adjacency	matrix	of	g
N



N
Number	of	vertices	in	G

C Label	of	a	component
1 Vertex	with	maximum	degree	in	g
VA Ith	row	of	X
VN Logical	complement	of	VA
R List	of	vertices	in	g
NA Vertices	not	adjacent	to	1
SL Relabeled	list	of	vertices	in	g

Program	11-2:	Spanning	Tree/Forest

	 SUBROUTINE	SPTREE	(	F	,	H	,	N	.	E	,	EDGE	,	C	)
	 INTEGER	C	,	E	,	EDGE(E)	,	F(E)	,	H(E)	,	VERTEX(100)	V1	,	V2
	 DO	4	L	=	1	,	N
4 VERTEX(L)	=	0
	 DO	6	L	=	1	,	E
6 EDGE(L)	=	0
	 C	=	0
	 M	=	0
	 K	=	0
10 K	=	K	+	1
	 V1	=	F(K)
	 I	=	VERTEX(V1)
	 IF	(	I	.EQ.	0	)	GO	TO	39
	 V2	=	H(K)
	 J	=	VERTEX(V2)
	 IF	(	J	.EQ.	0	)	GO	TO	36
	 IF	(	I	-	J)	21,	50,	18
18 IJI	=	J
	 J	=	I
	 I	=	IJI
21 DO	26	L	=	1	,	N



21 DO	26	L	=	1	,	N
	 IF	(	VERTEX(L)	-	J	)	26,	23,	25
23 VERTEX(L)	=	I
	 GO	TO	26
25 VERTEX(L)	=	VERTEX(L)	-	1
26 CONTINUE
	 DO	32	L	=	1	,	E
	 IF	(	EDGE(L)	-	J	)	32,	29,	31
29 EDGE(L)	=	I
	 GO	TO	32
31 EDGE(L)	=	EDGE(L)	-	1
32 CONTINUE
	 C	=	C	-	1
	 EDGE(K)	=	I
	 GO	TO	49
36 EDGE(K)	=	1
	 VERTEX(V2)	=	1
	 GO	TO	49
39 V2	=	H(K)
	 J	=	VERTEX(V2)
	 IF	(	J	.EQ.	0	)	GO	TO	45
	 EDGE(K)	=	J
	 VERTEX(V1)	=	J
	 GO	TO	49
45 C	=	C	+	1
	 EDGE(K)	=	C
	 VERTEX(V1)	=	C
	 VERTEX(V2)	=	C
49 M	=	M	+	1
50 IF	(M	.EQ.	(N	-	1)	.OR.	K	.EQ.	E)	RETURN
	 GO	TO	10
	 END



Program	11-3:	Fundamental	Circuits

	 SUBROUTINE	FCRKTS	(	X	,	N	,	NULTY	)
	 INTEGER	CIRKIT(100)	,	LEVEL(100)	,	P	,	PRED(100)	,	PREDOP
	 1	,	TW(100)	,	X(N,N)	,Z
	 NULTY	=	0
	 DO	5	L	=	1	,	N

5 LEVEL(L)	=	-	1
	 NROOT	=	1

7 ITW	=	1
	 TW(1)	=	NROOT
	 LEVEL(NROOT)	=	0
10 IF	(	ITW	.EQ.	0	)	GO	TO	38

	 Z	-	TW(ITW)
	 LVLSUC	=	LEVEL(Z)	+	1
	 DO	35	P	=	1	,	N
	 IF	(	X(Z.P)	)	35	,	35	,	15
15 IF	(	LEVEL(P)	+	1	.NE.	0	)	GO	TO	21

	 TW(ITW)	=	P
	 ITW	=	ITW	+	1
	 PRED(P)	=	Z
	 LEVEL(P)	=	LVLSUC
	 GO	TO	33
21 NULTY	=	NULTY	+	1

	 PREDOP	=	PRED(P)
	 M	=	1
	 CIRKIT(1)	=	Z
	 J	=	Z
26 J	=	PRED(J)

	 M	=	M	+	1
CIRKIT(M)	=	J



	
CIRKIT(M)	=	J

	 IF	(	J	.NE.	PREDOP	)	GO	TO	26
	 M	=	M	+	1
	 CIRKIT(M)	=	P
	 PRINT	1000	,	NULTY	.	(	CIRKIT(J)	,	J	=	1	,	M	)	,	CIRKIT(1)
33 X(Z,P)	=	0

	 X(P,Z)	=	0
35 CONTINUE

	 ITW	=	ITW	-	1
	 GO	TO	10
38 DO	39	NROOT	=	NROOT	,	N
39 IF	(	LEVEL(NROOT)	.EQ.	(	-	1	)	)	GO	TO	7
40 RETURN

1000 FORMAT	(	4H	THE	I	4	,	24H	FUNDAMENTAL	CIRCUIT	IS	(	20	I	4
)	)	END

Program	11-4:	Shortest	Distance	from	s	to	t

	 SUBROUTINE	DYSTRA	(	D	,	N	,	S	,	T	,	LABELT	)
c 	
c 9999999	IS	OUR	INFINITY
c 	
	 DIMENSION	LABEL(100)
	 INTEGER	D(N,N)	,	P	,	S	,	T	,	VECT(100)	,	Z
	 DO	6	L	=	1	,	N
	 LABEL(L)	=	9999999
6 VECT(L)	=	0
	 LABEL(S)	=	0
	 VECT(S)	=	1
	 I	=	S
10 M	=	9999999
	 DO	18	J	=	1	,	N

IF	(	VECT(J)	.EQ.	1	)	GO	TO	18



	 IF	(	VECT(J)	.EQ.	1	)	GO	TO	18
	 Z	=	D(I,J)	+	LABEL(I)
	 IF	(	Z	.LT.	LABEL(J)	)	LABEL(J)	=	Z
	 IF	(	LABEL(J)	.GT.	M	)	GO	TO	18
	 M	=	LABEL(J)
	 P	=	J
18 CONTINUE
	 VECT(P)	=	1
	 IF	(	P	.EQ.	T	)	GO	TO	23
	 I	=	P
	 GO	TO	10
23 LABELT	=	LABEL(T)
	 RETURN
	 END

Program	11-5:	Shortest	Path	Between	Every	Vertex	Pair

	 SUBROUTINE	FLOYD	(	D	,	N	)
c 	
c 9999999	IS	OUR	INFINITY
c 	
	 INTEGER	D(N,N)	,	S
	 DATA	INFNTY	9999999
	 DO	12	K	=	1	,	N
	 DO	12	I	=	1	,	N
	 IF	(	D(I,K)	.EQ.	INFNTY	)	GO	TO	12
	 DO	11	J	=	1	,	N
	 IF	(	D(K,J)	.EQ.	INFNTY	)	GO	TO	11
	 S	=	D(I,K)	+	D(K,J)
	 IF	(	S	.LT.	D(I,J)	)	D(U)	=	S
11 CONTINUE
12 CONTINUE



12 CONTINUE
	 RETURN
	 END

†	A	matrix	that	contains	many	zero	elements	is	called	a	sparse	matrix.	A	sparse	adjacency	matrix	implies	a
small	e/n	ratio.
†	(Initially	there	is	no	tree	formed.	The	very	first	edge	(f1,	h1)	considered	will	always	occur	in	a	spanning
tree	(or	forest).	Thus	the	spanning	tree	(or	forest)	generated	by	this	algorithm	is	very	much	dependent	on	the
ordering	of	the	edges.
†	The	time	required	for	merging	two	partial	trees	(Ti,	Tj)	as	implemented	in	the	FORTRAN	program	is	not
independent	 of	 n.	 There	 are,	 however,	 very	 efficient	 set-merging	 algorithms	 available	 which	 almost
accomplish	this.
†	A	preliminary	simplification	is	to	be	performed	only	if	it	produces	a	net	saving	in	running	time.
†	This	 labeling	can	be	conveniently	performed	using	 the	adjacency	matrix	X	and	by	writing	over	 it.	The
edge	between	the	ith	and	jth	vertices	is	labeled	q	(q	=	2,	3,	.	.	.	,	e	−	n	+	1),	simply	by	replacing	xij	and	xji
with	q	(xij	only,	if	the	upper	triangle	is	used).	Entries	that	are	still	1’s	correspond	to	unlabeled	edges.	Others
will	have	labels	2,	3,	.	.	.	,	and	so	on.
†	lf	the	given	digraph	is	not	simple,	it	can	be	simplified	by	discarding	all	self-loops,	and	replacing	every	set
of	parallel	edges	by	the	shortest	(least-weight)	edge	among	them.	Also,	the	graph	need	not	be	directed.	For
an	undirected	graph	dij	—	dji	and	effectively	each	undirected	edge	is	replaced	by	two	oppositely	directed
edges	of	the	same	weight.	If	the	graph	is	not	weighted,	assume	dij	=	1,	and	the	adjacency	matrix	becomes
the	distance	matrix.
†There	are	problems	for	which	only	factorially	or	exponentially	growing	algorithms	exist,	and	better	ones
may	never	be	found.	In	such	cases,	one	does	have	to	live	with	an	inefficient	algorithm	and	use	it	for	small
graphs.
†It	 is	not	difficult	 to	show	that	 the	characteristic	polynomial,	det(X	—	λI),	 is	 independent	of	 the	order	 in
which	the	vertices	appear	in	the	adjacency	matrix	X.



12	GRAPHS	IN	SWITCHING	AND	CODING	THEORY

The	emphasis	in	the	previous	chapters	has	been	on	introducing	more	concepts
of	graph	theory.	Some	applications	were	given,	but	mainly	to	make	the	concepts
clearer.	In	the	remaining	chapters	we	shall	discuss	in	detail	some	applications.
In	Section	7-5	we	saw	how	the	configuration	of	a	switching	network	inside	a

black	box	could	be	determined	with	the	help	of	graph	theory.	Again,	in	Section
8-5	a	minimal	cover	of	a	graph	led	to	the	minimization	of	a	switching	function.
In	this	chapter	graph	theory	will	be	applied	to	study	switching	networks	further.
Switching	 theory	 came	 into	 being	 with	 the	 publication	 of	 Paul	 Ehrenfest’s

paper	 in	1910,	 in	which	he	suggested	 that	Boolean	algebra	could	be	applied	 to
automatic	 telephone	 exchanges.	 The	 first	 mathematical	 formulation	 of	 the
behavior	of	a	contact	network	(a	particular	type	of	switching	network)	was	given
by	 C.	 Shannon	 in	 1938.	 Since	 1938,	 switching	 theory	 has	 developed	 rapidly.
Originally,	 it	was	 intended	 to	 provide	 the	 communications	 engineer	with	 tools
for	 analysis	 and	 synthesis	 of	 large-scale	 relay	 switching	 networks,	 such	 as	 a
telephone	exchange.	In	recent	years,	however,	the	enormous	growth	of	switching
theory	has	been	mainly	motivated	by	its	use	in	the	design	of	digital	computers.
Unlike	 the	signals	 in	a	classical	electrical	network	 (say,	 in	a	 radio	 receiver),

switching	 network	 signals	 have	 only	 two	 values—designated	 as	 0	 and	 1.
Switching	networks	are	designed	to	process	and	store	such	binary	signals.
A	switching	network	can	be	classified	as	either	a	combinational	network	or	a

sequential	network.	A	combinational	switching	network	is	one	whose	output	at	a
given	 time	 depends	 only	 on	 the	 input	 at	 that	 time.	 A	 sequential	 switching
network,	on	the	other	hand,	is	one	whose	output	at	a	given	time	is	a	function	of
the	 input	 at	 that	 time	 and	 during	 its	 entire	 past	 history.	 In	 other	 words,	 a
sequential	network	has	memory,	whereas	a	combinational	network	does	not.	All
digital	 systems,	 from	 the	 largest	 multimillion-dollar	 computer	 to	 the	 smallest
desk	 calculator,	 are	 constructed	 from	 these	 two	 basic	 types	 of	 circuitry—
combinational	and	sequential.
A	combinational	switching	network	can	further	be	classified	as	(1)	a	contact



network,	or	(2)	a	gate	network	(see	[12-5],	page	77).	It	is	in	the	study	of	contact
networks	that	graphs	appear	as	the	most	natural	representation	of	the	switching
network,	as	we	shall	see	in	the	next	section.	Although	attempts	have	been	made,
little	 has	 been	 accomplished	 by	 the	 use	 of	 graph	 theory	 in	 gate	 networks	 (see
Section	9-3	of	[1-13]).	We	shall	therefore	confine	ourselves	to	the	contact-type
networks	in	this	chapter.

12-1. CONTACT	NETWORKS

A	 relay	 contact	 (or	 a	contact,	 for	 brevity)	 can	be	 thought	 of	 as	 an	ordinary
household	 switch	 used	 for	 controlling	 the	 light.	 It	 is	 a	 two-terminal	 device
having	 two	 states;	 in	 the	 open	 state	 there	 is	 no	 conductive	 path	 between	 the
terminals;	 in	 the	 closed	 state	 there	 exists	 a	 path	 that	 will	 allow	 the	 electric
current	to	flow	in	either	direction.	Thus	a	contact	is	a	bilateral	device.	Usually,	a
contact	is	represented	by	one	of	the	symbols	shown	in	Fig.	12-1.

Fig.	12-1	Symbols	used	to	represent	a	switch	or	contact.

A	contact	network	is	a	network	of	interconnected	contacts	(see	Fig.	12-2	for
an	example).	Every	contact	network	can	be	represented	by	a	graph,	in	which	the
edges	are	the	contacts	and	the	vertices	are	the	terminals.	In	fact,	for	our	purpose,
the	 following	 is	 the	 definition	 of	 a	 contact	 network:	 A	 contact	 network	 is	 an
undirected,	 connected	 graph	G	 (with	 no	 self-loops)	 in	which	 each	 edge	 has	 a
binary	variable	xi	associated	with	it,	which	can	assume	only	two	values,	1	or	0.
The	binary	variable	xi	assigned	to	a	contact	is	1	when	the	contact	is	closed	and	is
0	when	the	contact	is	open.
The	 input-output	 behavior	 of	 a	 contact	 network	 is	 usually	 expressed	 in	 the

form	of	functions,

fi(x1,	x2,	.	.	.	,	xk),

of	 the	 binary	 variables.	 Such	 a	 function	 fi,	 is	 called	 a	 switching	 (or	 Boolean)
function	 and	 must	 itself	 assume	 a	 value	 of	 0	 or	 1.	 Boolean†	 (or	 switching)
algebra,	which	 is	 used	 in	 expressing	 and	manipulating	 switching	 functions,	 is
defined	as	follows:



A	Boolean	algebra	(like	rings	and	fields	in	Chapter	6)	consists	of	a	finite	set
xl,	x2,	.	.	.	,	xk	and	two	binary	operations	+	(called	Boolean	addition)	and	•	(called
Boolean	multiplication)	satisfying	the	following	postulates:

1. Either	xi	=	1	or	xi	=	0.

2. For	 every	 xi	 there	 exists	 another	 variable	 ,	 called	 the	 complement	 of	 xi,
such	that	if	xi	=	0,	 	=	1,	and	if	xi	=	1,	 	=	0.

With	 these	 simple	postulates	 a	number	of	 interesting	 results	 can	be	derived,
which	 are	 very	 useful	 in	 the	 simplification	 of	 switching	 expressions.	 For
example,	it	can	be	easily	shown	that	xi	+	xixj	=	xi.
In	 contact	 networks	 one	 encounters	 two	 types	 of	 problems—the	 problem	of

analysis	and	the	problem	of	synthesis.	In	analysis	we	are	given	a	contact	network
G	 and	 are	 asked	 to	 find	 conditions	 under	 which	 there	 will	 be	 an	 electrically
conducting	path	between	a	pair	of	vertices	(vi,	vj)	in	G.	In	synthesis,	on	the	other
hand,	we	are	asked	to	design	(as	cheaply	as	possible)	a	network	that	can	meet	the
given	 requirements.	We	 shall	 deal	with	 the	 problem	 of	 analysis	 first	 and	 then
with	that	of	synthesis.

12-2. ANALYSIS	OF	CONTACT	NETWORKS

Consider	any	two	vertices	in	a	contact	network	G.	Since	G	is	connected,	there
are	 one	or	more	 paths	 between	 these	 two	vertices.	Each	of	 these	 paths	 can	be
identified	by	 the	Boolean	product	of	 the	variables	associated	with	 the	edges	 in
the	path.	For	 example,	 in	Fig.	 12-2	 the	 eight	 distinct	 paths	 between	vertices	a
and	b	are

Each	of	these	products	is	called	a	path	product	between	vertices	a	and	b	in	the
contact	network	G.
Clearly,	the	value	of	a	path	product	is	1	if	and	only	if	each	variable	in	the	path



product	has	a	value	of	1;	otherwise,	it	is	0.	The	value	1	of	a	path	product	implies
the	 existence	 of	 an	 electrically	 conducting	 path	 between	 a	 and	 b	 through	 the
corresponding	contacts	in	the	network.	For	an	electrical	conduction	between	the
two	vertices,	it	is	necessary	and	sufficient	that	at	least	one	of	the	path	products
be	1.	In	other	words,	the	Boolean	sum	of	all	path	products	between	a	specified
pair	of	vertices	(vi,	vj)	 is	1	 if	and	only	if	 the	 terminals	vi	and	vj	are	electrically
connected	in	the	contact	network.	Therefore,	the	Boolean	sum	of	path	products
is	 referred	 to	 as	 the	 transmission	 of	 the	 contact	 network	 between	 the	 two
specified	 vertices.	 For	 example,	 the	 transmission	 between	 vertices	 a	 and	 b	 in
Fig.	12-2	is

Fig.	12-2	Contact	network	with	six	vertices	and	nine	contacts.

Finding	 the	 transmission	 between	 specified	 vertices	 in	 a	 given	 contact
network	consists	of	enumerating	all	paths	between	the	two	vertices,	and	finding
the	 Boolean	 sum	 of	 the	 path	 products.	 Furthermore,	 possible	 simplifications
based	on	the	postulates	of	the	Boolean	algebra	are	also	performed.	For	example,
in	the	path	products	listed	in	(12-1),	the	following	identities	are	evident:

x1	x′3	x1 	=	x1	x′3,

x2	x3	x′3	x5 	=	0,

x2	x′1	x1 	=	0

and



x3	x4	x′3	x5 	=	0.

Therefore,	the	switching	function	between	vertices	a	and	b	in	Fig.	12-2	is

Clearly,	Fab	gives	all	different	conditions	under	which	a	conductive	path	exists
between	a	and	b.

Normal	 Form:	 A	 switching	 function	 can	 be	 expressed	 in	 many	 different
forms.	For	example,	another	way	of	expressing	(12-3)	is

A	Boolean	function	F(x1,	x2,	.	.	.	,	xm)	of	m	binary	variables	x1,	x2,	.	.	.	,	xm	when
expressed	as	a	sum	of	products	(Boolean,	of	course)	of	the	variables	is	said	to	be
in	the	normal	or	natural	form.	Function	Fab	 in	(12-3)	is	in	normal	form,	but	in
(12-4)	it	is	not	in	normal	form.
Occasionally,	one	is	 interested	in	finding	the	 transmissions	between	all	pairs

of	vertices	in	a	given	contact	network	G.	The	result	is	best	expressed	as	an	n	by
n	matrix	called	the	transmission	matrix	T	=	[tij]	of	G,	where	n	is	the	number	of
vertices,	and	tij	is	the	transmission	between	vertices	i	and	j	in	G.	Clearly,	T	is	a
symmetric	matrix	with	every	diagonal	entry	tii	=	1.

Fig.	12-3	Contact	network.

The	transmission	matrix	for	the	contact	network	shown	in	Fig.	12-3	is



The	determination	of	a	transmission	matrix	involves	enumeration	of	all	paths
between	 every	 vertex	 pair	 in	 a	 network.	 A	 better	 method	 of	 determining	 a
transmission	matrix	is	from	the	primitive	connection	matrix,	defined	as	follows	:
The	primitive	connection	matrix	Q	=	[qij]	of	an	n-vertex	contact	network	G	is

an	n	by	n	matrix,	whose	elements	qij	are	defined	as

qii
=

1,	for	all	i,

qij
=

0,	if	vertices	i	and	j	are	not	directly	joined	by	a	contact;	otherwise,

qij
=

Boolean	sum	of	the	variables	associated	with	all	edges	directly	joining
vertices	i	and	j.

The	primitive	connection	matrices	for	the	contact	networks	in	Figs.	12-3	and	12-
2,	respectively	are

The	 primitive	 connection	 matrix	 is	 also	 symmetric,	 and	 it	 contains	 the
complete	information	about	a	contact	network.
Let	Qk	 be	 the	 kth	 Boolean	 power	 of	Q	 (i.e.,	Q	multiplied	 by	 itself	 k	 times,

using	the	rules	of	Boolean	algebra,	as	defined	in	Section	12-1)	for	some	positive
integer	k.	Furthermore,	let	each	entry	in	Qk	be	simplified,	such	as



x	+	1	=	x	+	x′	=	1, xx′	=	0,
and x	+	x	=	xx	=	x	+	xy	=	x.

Then	examine	the	ijth	entry	in	the	simplified	Qk.	What	we	have	done	amounts	to
tracing	all	edge	sequences	of	length	1,	2,	.	.	.	,	k	between	the	vertices	i	and	j;	and
by	 employing	 the	 simplification	 process,	we	have	 eliminated	 all	 redundancies,
including	 that	of	going	over	 the	same	edge	more	 than	once	(xx	=	x)	and	going
over	the	same	vertex	more	than	once	(x	+	xy	=	x).	Thus	the	ijth	entry	in	matrix
Qk	 represents	all	paths	of	 length	k	or	 less	between	vertices	 i	 and	 j	Since	 in	an
nvertex	graph	the	longest	path	is	of	length	n	−	1,	we	have

THEOREM	12-1

The	 transmission	 matrix	 T	 of	 an	 n-vertex	 contact	 network,	 with	 primitive
connection	matrix	Q,	is	given	by

T	=	Qn-1.

In	case	one	is	interested	in	evaluating	the	switching	function	only	between	a
specified	 pair	 of	 vertices,	 Theorem	 12-1,	 which	 computes	 the	 switching
functions	 between	 all	 n(n	 −	 l)/2	 pairs,	 is	 wasteful.	 Theorem	 12-2	 is	 more
efficient:

THEOREM	12-2

Let	Qi	 j	be	the	 ijth	minor	of	the	primitive	connection	matrix	Q	(computed	in
Boolean	 algebra	 and	 simplified	 using	 Boolean	 identities).	 Then	 the	 switching
function	Fi	j	equals	Qi	j.

Theorem	12-2	 can	be	 proved	using	 arguments	 similar	 to	 those	which	 led	 to
Theorem	12-1.	The	details	of	the	proof	are	left	as	an	exercise.
Even	 the	evaluation	of	 the	minor	Qi	 j	 is	quite	 laborious	and	cumbersome.	A

simpler	 method,	 called	 the	 node-removal	 method,	 is	 often	 employed	 in
evaluating	Fi	 j.	The	 interested	 reader	 is	 referred	 to	 [12-10],	pages	315-323,	 for
details	on	node-removal	techniques.

12-3. SYNTHESIS	OF	CONTACT	NETWORKS



Designing	 a	 network	 from	 given	 requirements	 is	 the	 general	 problem	 of
network	synthesis.	We	can	assume	that	the	requirements	of	the	contact	network
to	be	designed	are	given	in	the	form	of	switching	functions.	(If	they	are	given	in
any	other	form,	they	can	be	converted	into	switching	functions.)	We	can	further
assume	that	the	switching	functions	are	given	in	normal	form	(i.e.,	as	a	Boolean
sum	of	products).
Two-Terminal	 Contact	 Networks:	 In	 a	 two-terminal	 synthesis	 we	 are	 given

just	one	switching	function	F(x1,	x2,	.	.	.	,	xm)	of	m	variables,	in	normal	form,	and
we	are	 to	design	a	network	 realizing	 this	 function	as	 the	 transmission	between
two	of	its	vertices.
This	problem	is	trivial	if	we	are	not	concerned	with	economizing	the	number

of	contacts,	because	any	switching	function	in	a	natural	form	can	be	realized	by
a	 sufficiently	 large	 number	 of	 contacts.	 But	 such	 an	 extravagant	 realization	 is
usually	not	acceptable.	A	realization	to	be	useful	should	contain	as	few	contacts
as	possible.	It	 is	this	requirement	that	makes	the	synthesis	problem	difficult.	In
Fig.	12-4,	for	example,	are	shown	three	of	many	possible	realizations	of	a	very
simple	 switching	 function	 (with	 only	 four	 variables).	 The	 simplest	 among	 the
three	 networks	 is	 the	 one	 in	 Fig.	 12-4(c).	 We	 may	 ask	 if	 this	 is	 the	 most
economic	realization	possible.	If	so,	how	can	we	be	sure?	Are	there	any	methods
that	will	guarantee	our	arriving	at	a	most	efficient	contact	network	 for	a	given
function?
The	problem	of	finding	a	contact	network	that	realizes	an	arbitrary	switching

function	with	a	minimum	number	of	contacts	has	not	been	solved	yet	(except	by
exhaustive	 enumeration)	 and	 is	 not	 likely	 to	 be	 solved	 in	 the	 near	 future.
However,	 if	we	 consider	 a	 restricted	 type	 of	 switching	 network,	 called	 single-
contact	networks,	the	problem	becomes	manageable.



Fig.	12-4	Three	different	realizations	of	Fab	=	wx	+	wy	+	wz	+	xyz.

Single-Contact	Network:	A	contact	network	in	which	every	binary	variable	xi
(either	 in	uncomplemented	or	complemented	form)	 is	associated	with	only	one
edge	 is	 called	 a	 single-contact	 (or	 SC)	 network.	 Thus	 each	 contact	 in	 an	 SC
network	 can	 be	 opened	 or	 closed	 independently.	 For	 example,	 the	 network	 in
Fig.	12-3	is	an	SC	network,	but	those	in	Figs.	12-2	and	12-4	are	not.
Any	 transmission	 that	 can	 be	 realized	 by	 an	 SC	 network	 is	 called	 a	 single-

contact	 function	 (or	 SC	 function).	 Since	 in	 an	 SC	 network	 a	 variable	 appears
only	once,	it	is	not	possible	to	simplify	the	sum	of	its	path	products	any	further
[the	type	of	simplification	performed	on	expression	(12-2)	to	produce	expression
(12-3)].	 In	 other	 words,	 an	 SC	 function	 contains	 no	 redundant	 terms.	 Every
product	 term	 represents	 a	 distinct	 path	 between	 the	 specified	 terminals,	 and
every	 literal	 in	 a	 product	 term	 corresponds	 to	 a	 distinct	 edge	 in	 the	 path.	 For
example,	switching	function	 	is	not	an	SC	function.
Realization	of	 an	SC	Function:	Once	we	 are	 assured	 that	 a	 given	 switching

function	Fab	 is	 an	 SC	 function,	 we	 know	 unambiguously	 every	 path	 between
vertices	a	 and	b	 in	 the	 network	we	 intend	 to	 design.	The	 following	procedure
shows	how	to	design	an	SC	network	for	an	SC	switching	function.	The	network
is	unique	up	to	2-isomorphism.	This	is	because	the	set	of	all	paths	between	a	pair
of	vertices	specifies	a	graph	uniquely	within	2-isomorphism	(see	Section	4-8	and



Problem	7-25).

Procedure	for	Realizing	a	Given	SC	Function	of	m	Variables	xl,	x2,	.	.	.	,	xm:
Step	1	:	From	Fab	obtain	the	path	matrix	P(a,	b)	with	respect	to	the	vertex	pair

(a,	b).
Step	2:	Append	a	column	of	all	1’s	to	P(a,	b).	This	implies	the	addition	of	an

edge	(with	associated	variable,	say,	x0)	between	a	and	b,	 thus	converting	every
path	into	a	circuit.	Let	the	resulting	circuit	matrix	be	denoted	as	B.
Step	3:	Use	Jordan’s	method	of	elimination	(mod	2)	to	eliminate	all	dependent

rows	 in	 B.	 Rearrange	 the	 resulting	 fundamental	 circuit	 matrix	 Bf	 into	 the
standard	form	(review	Section	7-4,	if	necessary)	:

Step	4:	From	Bf	obtain	the	fundamental	cut-set	matrix	Cf,	given	by

Step	 5	 :	 From	Cf	 obtain	Af,	 the	 reduced	 incidence	matrix,	 by	 appropriately
performing	 modulo	 2	 sums	 of	 rows	 in	 Cf.	 This	 corresponds	 to	 obtaining	 a
nonsingular	transformation	matrix	R	such	that

Af	=	R	•	Cf,

where	Af	has	at	most	two	l’s	in	each	column.	In	step	5	we	are	essentially	taking
different	 ring	 sums	 of	 fundamental	 cut-sets	 so	 that	 they	 produce	 sets	 of	 edges
incident	at	each	vertex.	This	 is	 the	most	 laborious	step	 in	 the	entire	procedure,
and	becomes	prohibitive	for	large	graphs	(more	on	this	later).
Step	6:	Form	the	incidence	matrix	A	by	adding	the	missing	row	to	Af	(so	that

each	column	has	exactly	 two	1’s).	From	matrix	A	draw	the	graph,	and	remove
edge	x0.

Example:	Let	us	 apply	 this	procedure	 to	obtain	 a	graph	 that	 realizes	 the	SC
function



Step	1	:	The	path	matrix	is

Step	2:	Appending	a	column	of	1’s	at	the	end	of	matrix	P(a,	b)	and	identifying
the	column	by	variable	x0,	we	get	circuit	matrix	B:

Step	 3:	 This	 step	 is	 somewhat	 involved.	 Jordan’s	 method	 of	 elimination
consists	 of	 adding	 (mod	 2)	 rows	 to	 other	 rows	 so	 as	 to	 form	 an	 identity
submatrix.	For	example,	adding	the	first	row	to	the	second	as	well	as	to	the	third
in	B	we	get



In	B1	adding	the	second	row	to	the	fourth	and	sixth	rows,	we	get

In	 this	attempt	 to	eliminate	all	but	one	1	 in	a	column	 (making	sure	 the	1	 in
each	column	occurs	in	a	different	row),	we	ultimately	get

From	this	matrix	we	get	the	fundamental	circuit	matrix	in	standard	form:



Now	we	have	the	following	information	about	the	desired	network:

rank	of	circuit	matrix	B	=	μ	=	e	−	n	+	1	=	4,

number	of	edges	(including	x0) e	=	9,

Therefore

number	of	vertices	n	=	6,

rank	of	the	cut-set	matrix	=	n	−	1	=	5.

Step	4:	The	fundamental	cut-set	matrix	(with	respect	to	the	same	tree	as	Bf	in
step	3)	is	immediately	obtained	as

Step	 5	 :	 After	 many	 trials	 we	 find	 that	 if	 we	 perform	 the	 following	 three
elementary	row	operations	on	Cf	we	get	a	matrix	 that	contains	at	most	 two	1’s
per	column.	The	operations	are

Add	(mod	2)	row	5	to	row	1,

Add	(mod	2)	row	3	to	row	5,

Add	(mod	2)	row	4	to	row	3.



The	resulting	reduced	incidence	matrix	Af	is

Step	6:	We	get	the	incidence	matrix	A	by	adding	a	row	at	the	bottom	such	that
every	column	now	has	exactly	two	1’s.

Finally,	 the	 required	 contact	 network	 is	 constructed	 (see	 Fig.	 12-5)	 from	 the
incidence	matrix	A,	and	then	edge	x0	is	deleted.

Fig.	12-5	Realization	of	Fab	in	expression	(12-5).

In	this	six-step	synthesis	of	an	SC	switching	function,	we	see	that	steps	1,	2,	4,
and	 6	 are	 easy	 and	 require	 no	 conditions	 on	Fab	 for	 their	 completion.	 Step	 3



involves	some	labor,	but	it	is	also	guaranteed	to	terminate.	Any	matrix	of	rank	k
can	be	reduced	by	Jordan’s	process	of	elimination	to	one	of	the	following	forms
(see	[7-3]):

Realizability:	Steps	1,	2,	3,	and	4	can	always	be	performed	whether	or	not	the
given	switching	function	F	is	an	SC	function.	The	procedure	will	fail	at	step	5	if
F	 is	 not	 an	 SC	 function,	 and	 we	 will	 not	 succeed	 in	 obtaining	 a	 reduced
incidence	matrix	 by	 elementary	 row	operations.	This	 leads	 us	 to	 an	 extremely
important	question	in	graph	theory:	When	can	a	given	(0,	1)-matrix	be	a	cut-set
matrix	of	some	graph?	An	arbitrary	(0,	1)-matrix	M	may	or	may	not	be	a	cut-set
matrix.	For	example,	the	matrix

cannot	be	a	cut-set	matrix	of	any	graph.	This	can	be	verified	by	considering	all
seven	possible	 (mod	2)	 sums	of	 the	 three	 rows,	 and	observing	 that	 this	matrix
cannot	be	transformed	by	elementary	row	operations	into	a	matrix	with	at	most
two	 1’s	 per	 column.	 In	 other	 words,	 no	 incidence	 matrix	 can	 be	 found	 to
correspond	with	L	as	a	cut-set	matrix.
The	matrix	L	is	unique.	It	can	be	shown	that	this	is	the	smallest	(0,	1)-matrix

which	cannot	be	a	cut-set	matrix	of	any	graph.	It	is	also	clear	that	any	matrix	M,
if	it	contains	L	as	a	submatrix,	cannot	be	a	cut-set	matrix	either.
Let	us	look	at	another	facet	of	the	situation.	A	cut-set	matrix	of	a	graph	G	is

also	 the	 circuit	matrix	 of	 its	 dual	G*	 if	 and	 only	 if	G	 is	 planar.	 Suppose	 that
matrix	 	contains	a	submatrix	which	we	know	to	be	the	circuit	matrix	of
some	nonplanar	graph	H;	then	M	cannot	be	a	cut-set	matrix;	otherwise,	we	have
a	situation	where	a	nonplanar	subgraph	has	a	dual,	which	is	impossible.	Thus	we
have	a	second	necessary	condition:	if	a	matrix	 	is	to	be	a	cut-set	matrix,
it	must	not	contain	the	circuit	matrix	of	any	nonplanar	graph.	From	Theorem	5-
9,	we	know	that	a	graph	is	nonplanar	if	and	only	if	it	has	as	a	subgraph	either	of
the	 two	 Kuratowski	 graphs	 or	 any	 graph	 homeomorphic	 to	 either	 of	 them.
Therefore,	if	M	 is	 to	be	a	cut-set	matrix,	it	must	not	contain	a	circuit	matrix	of
either	Kuratowski	graph,	or	any	graph	homeomorphic	to	either	of	them.



It	 has	 been	 shown	 by	 Tutte	 in	 a	 remarkable	 paper	 that	 the	 two	 necessary
conditions	 discussed	 so	 far	 are	 also	 sufficient.	 The	 proof	 of	 sufficiency	 is
extremely	 long	 and	 is	 based	 on	 the	 theory	 of	 matroids.	 The	 realizability
conditions	for	a	cut-set	matrix	are	precisely	stated	in	Theorem	12-3	(for	a	proof
see	[12-11]	or	[12-14]).

THEOREM	12-3

Necessary	 and	 sufficient	 conditions	 for	 the	 (0,	 1)-matrix	M	 to	 be	 a	 cut-set
matrix	are	that

1. M	does	not	contain	L	or	LT	as	a	submatrix.

2. M	does	not	contain	 the	circuit	matrix	of	either	Kuratowski	graph,	or	 any
graph	homeomorphic	to	either	of	them.

Realizability	of	M	as	a	Circuit	Matrix

Suppose	 that	 we	 want	 to	 find	 whether	 or	 not	 a	 matrix	M	 =	 [Ik	 M2]	 is	 the
fundamental	 circuit	 matrix	 (rather	 than	 cut-set	 matrix)	 of	 some	 graph.	 The
following	result,	 the	analog	of	Theorem	12-3	and	proved	by	Tutte	 in	 the	same
paper,	has	the	answer.

THEOREM	12-4

Necessary	 and	 sufficient	 conditions	 for	 the	 (0,	 1)-matrix	M,	 to	 be	 a	 circuit
matrix	are	that

1. M	does	not	contain	L	or	LT	as	a	submatrix.

2. M	does	not	contain	 the	cut-set	matrix	of	either	Kuratowski	graph,	or	any
graph	homeomorphic	to	either	of	them.

Note	that	an	arbitrary	(0,	1)-matrix	M	falls	into	one	of	four	categories:

1. M	 is	 a	 fundamental	 cut-set	 matrix	 of	 some	 graph	G	 and	 a	 fundamental
circuit	matrix	of	another	graph	G*	(graphs	G	and	G*	are	planar).

2. M	 is	 a	 fundamental	 cut-set	matrix	 of	 some	 graph	G,	 but	 is	 not	 a	 circuit
matrix	of	any	graph	(G	is	nonplanar).

3. M	is	a	circuit	matrix	of	 some	graph	G,	but	 is	not	a	cut-set	matrix	of	any
graph	(G	is	nonplanar).

4. M	is	neither	a	cut-set	matrix	nor	a	circuit	matrix	of	any	graph.



12-4. SEQUENTIAL	SWITCHING	NETWORKS

So	 far,	 we	 have	 considered	 only	 combinational	 switching	 networks.	 Let	 us
now	 study	 the	 sequential	 switching	 networks	 (better	 known	 as	 sequential
machines†).	 As	 pointed	 out	 earlier	 in	 the	 chapter,	 the	 output	 of	 a	 sequential
network	depends	not	only	on	the	present	inputs	but	also	on	their	past	history.	A
sequential	machine	must,	therefore,	be	able	to	retain	information	about	the	past
inputs.	This	introduces	the	concept	of	“state”	of	a	sequential	network,	where	the
“state”	 corresponds	 to	 the	 memory	 of	 the	 past	 inputs.	 Mathematically,	 a
sequential	machine	is	defined	as	follows:
A	sequential	machine	is	a	mathematical	system	M,	which	consists	of‡

1. A	finite	set	V	=	[v1,	v2,	.	.	.	,	vn}	of	internal	states	(or	simply	states).

2. A	finite	set	X	=	{x1,	x2,	.	.	.	,	xm}	of	inputs	called	the	input	alphabet.

3. A	finite	set	Z	=	{z1,	z2,	.	.	.	,	zp}	of	outputs	called	the	output	alphabet.

4. A	 function	 or	mapping	 that	 assigns	 to	 every	 combination	 of	 the	 present
state	and	the	present	input	(vi,	xj)	a	next	state	vk.	This	function	is	called	the
transition	function	of	M.

5. Another	function,	called	the	output	function,	assigns	an	output	zs	 to	every
combination	(vi,	xj)	of	the	present	state	and	the	present	input.

There	 are	 two	 equivalent	methods	of	 describing	 a	 sequential	machine:	 (1)	 a
tabular	form,	called	the	state	table,	and	(2)	a	weighted,	directed	graph,	called	the
state	graph	(or	state	diagram).
Each	vertex	in	the	state	graph	corresponds	to	a	state	of	the	sequential	machine,

and	each	directed	edge	represents	a	transition	from	the	present	state	to	the	next.
Every	 edge	 (vi,	 vj)	 has	 an	 ordered	 pair	 of	 weights	 xk,	 zq	 assigned	 to	 it.	 This
weight	pair	represents	the	fact	that	if	the	present	state	of	the	machine	is	vi	and	if
the	present	input	is	xk	an	output	zq	results,	and	the	next	state	will	be	vj	The	state
table	and	the	state	graph	of	a	sequential	machine	with

states V	=	{A,	B,	C,	D},

inputs X	=	{1,	2},



outputs Z	=	{a,	b,	c}

are	shown	in	Fig.	12-6.	In	the	state	graph	the	edge	with	weight	pair	from	vertex
A	to	B,	for	example,	indicates	that	when	the	machine	is	in	state	A	and	the	input	1
is	applied	the	machine	produces	an	output	a	and	will	go	into	state	B.

Fig.	12-6	State	graph	and	state	table	for	a	sequential	machine.

Properties	of	State	Graphs

The	following	observations	can	be	made	about	the	properties	of	state	graphs:

1. In	 response	 to	 each	 specified	 input	 the	machine	 in	 a	 given	 present	 state
goes	into	a	specific	next	state.	Therefore,	the	out-degree	of	each	vertex	is
m,	one	for	each	input;	and	the	state	graph	has	nm	edges.	Note	that	there	is
no	similar	restriction	on	the	in-degrees.

2. Since	 an	 input	may	 leave	 a	 sequential	machine	 in	 its	 present	 state,	 self-
loops	may	occur	in	a	state	graph.

3. A	 state	 graph	may	 also	 have	 parallel	 edges,	 but	 they	will	 have	 different
weight	pairs.



4. In	most	cases	one	of	the	states	of	a	sequential	machine	is	designated	as	a
starting	 state,	 and	 the	machine	 is	 required	 to	 be	 in	 this	 state	 before	 any
input	 is	 applied.	The	 state	 graph	of	 a	machine	with	 a	 designated	 starting
state	is	regarded	as	a	rooted	digraph,	the	root	being	the	starting	state.

5. A	 state	 (if	 any)	 that	 the	machine	 cannot	 leave,	 no	matter	which	 input	 is
applied,	is	called	a	persistent	state.	If	a	sequential	machine	has	a	persistent
state,	the	corresponding	vertex	will	have	no	directed	edge	going	from	it	to
another	vertex.

6. A	sequential	machine	is	said	to	be	strongly	connected	 if	 its	state	graph	is
strongly	connected.	Thus	a	sequential	machine	M	 is	strongly	connected	if
and	 only	 if	M	 can	 be	 brought	 to	 any	 state	 from	 any	 other	 state	 by	 an
appropriate	input	sequence.

The	state	graph	of	a	sequential	machine	contains	all	the	information	about	the
machine.	Therefore,	it	is	possible	to	study	the	properties	of	a	given	machine	by
studying	 its	 state	 graph.	 Some	 of	 the	 problems	 that	 arise	 in	 the	 theory	 of
sequential	machines	are

1. Analysis:	In	analyzing	the	behavior	of	a	machine,	we	may,	for	instance,	be
interested	in	determining	the	response	(next	states	and	outputs)	of	a	given
machine	 to	a	certain	 input	sequence.	Or	we	may	be	 interested	 in	drawing
some	 conclusion	 about	 the	 internal	 behavior	 of	 a	machine	 by	 applying	 a
series	of	 inputs	and	observing	 the	outputs.	 If	 a	machine	has	a	designated
starting	state,	the	application	of	a	given	input	sequence	results	in	a	unique
output	sequence.

2. Synthesis:	 To	 design	 a	machine	 having	 a	 desired	 behavior,	we	 start	with
the	statement	of	the	desired	response	and	construct	a	state	graph.	Consider
the	following	example	:

Problem:	 Design	 a	 sequential	 machine	 to	 respond	 to	 an	 arbitrary	 input
sequence	of	0’s	and	1’s.	The	machine	should	produce	an	output	of	1	whenever
there	 appears	 a	 set	 of	 four	 consecutive	 input	 bits	 of	 value	 greater	 than	 9	 in	 a
serial	 8-4-2-1	BCD	code	 (the	 least	 significant	 bit	 comes	 to	 the	machine	 first).
Whenever	the	value	of	a	four-bit	sequence	is	9	or	less	(i.e.,	0000,	0001,	0010,	.	.
.	,	1001),	the	output	should	be	0.

Solution:	The	machine	should	store	the	last	three	consecutive	bits	and	should
examine	and	 respond	 to	 the	next	bit.	Therefore,	we	should	 start	with	an	eight-
state	(23	=	8)	sequential	machine.	Let	 the	eight	states	000,	001,	010,	011,	100,



101,	110,	and	111	be	designated	by	A,	B,	C,	D,	E,	F,	G,	and	H,	respectively.	The
input	alphabet	consists	of	{0,	1},	and	the	output	alphabet	also	consists	of	{0,	1}.
When	 a	 new	bit	 arrives	 at	 the	 left,	 the	machine	 drops	 the	 rightmost	 bit	 and

stores	the	new	bit	together	with	the	two	old	ones.	For	example,	if	the	machine	is
in	state	C	(i.e.,	010)	and	a	1	arrives,	the	next	state	is	101	(i.e.,	F)	and	the	output
is	 1	 (corresponding	 to	 1010).	 The	 state	 table	 and	 the	 state	 graph	 of	 such	 a
sequential	machine	can	be	easily	constructed	and	are	shown	in	Fig.	12-7.

Fig.	12-7	State	table	and	state	graph.

3. State	equivalence	and	reduction:	The	eight-state	machine	we	just	obtained
is	not	necessarily	the	“simplest”	one	to	perform	the	specified	task.	The	next
step,	and	a	very	important	step,	is	to	examine	the	state	graph	and	see	if	it
can	be	reduced	to	a	“simpler”	machine.	The	reduction	can	be	accomplished
if	we	can	determine	whether	or	not	 two	states	 in	a	given	machine	 (i.e.,	a



pair	of	vertices	in	the	state	graph)	are	equivalent.	If	two	states	produce	the
same	outputs	and	also	go	to	a	pair	of	equivalent	next	states	for	every	input,
they	can	be	considered	as	one	state	and	given	the	same	label	wherever	they
occur	in	the	state	table.

In	 the	 state	 graphs	we	 can	 fuse	 the	 two	 equivalent	 vertices	 and	 remove	 any
redundant	edges	(parallel	edges	with	identical	weights)	that	may	result	from	the
fusion.	 In	Fig.	12-7	vertices	A	 and	B	 are	equivalent,	and	 therefore	 they	can	be
fused.	This	fusing	results	in	the	seven-state	machine	shown	in	Fig.	12-8(a).
The	process	of	reduction	is	shown	in	Fig.	12-8.	When	completed	it	yields	the

state	graph	of	Fig.	12-8(e).	State	A	in	Fig.	12-8(e)	is	the	replacement	of	A	and	B
in	the	original	state	graph,	state	C	is	for	C	and	D,	and	state	E	is	for	E,	F,	G,	and
H.
The	three-state	sequential	machine	in	Fig.	12-8(e)	performs	the	same	task	as

the	original	eight-state	machine	in	Fig.	12-7	did.	This	simple	example	illustrates
the	importance	of	the	state-reduction	process.

4. State	 assignment:	 The	 next	 step	 is	 the	 implementation	 of	 a	 sequential
machine	 from	 the	 reduced	 state	 graph.	 Assuming	 that	 binary	 memory
devices	 (i.e.,	 two-state	 devices	 such	 as	 flip-flops	 or	 toggle	 switches)	 are
used,	an	n-state	machine	will	require	q	such	devices,	where

2q-1	<	n	≤	2q.

The	q	binary	memory	devices	allow	2q	possible	states.	How	to	assign	n	of	these
2q	states	to	the	n	vertices	of	the	state	graph	such	that	we	get	the	most	economical
machine	is	the	problem	of	state	assignment.
In	graph	 theoretic	 terms	 the	 state	assignment	problem	 is	 the	 same	as	 that	of

labeling	the	vertices	of	an	n-vertex	digraph	with	available	2q	 (≥	n)	 labels,	with
certain	optimizing	criteria.

Finding	an	efficient	algorithm	to	obtain	the	“best”	assignment	is	an	important
unsolved	 problem	 in	 the	 theory	 of	 sequential	 machines.	 Listing	 all	 possible
assignments	and	then	picking	out	the	best	is	impractical	even	for	machines	with
10	states.	However,	for	a	very	small	machine,	such	as	the	three-state	machine	in
Fig.	12-8(e),	it	is	possible	to	look	at	all	distinct	assignments	and	compare	them.
For	n	=	3	and	q	=	2,	the	number	of	distinct	assignments	is	3.	The	following	table
shows	three	distinct	assignments	(y1	and	y2	are	the	two	memory	devices).





Fig.	12-8	Reduction	of	a	state	graph.

If	 you	 are	 familar	 with	 logical	 devices,	 design	 these	 machines	 completely,
using	flip-flops	(or	delay	lines)	and	gates.	You	will	notice	that	one	assignment	is
decidedly	superior	to	the	other	two.
There	 are	 a	 number	 of	 very	 important	 but	 difficult	 problems	 in	 sequential



machine	 theory.	 Graph	 theory	 may	 have	 potential	 for	 solving	 many	 of	 these
outstanding	problems.

12-5. UNIT	CUBE	AND	ITS	GRAPH

Consider	 a	 set	 of	m	 switching	 variables	xl,	x2,	 .	 .	 .	 ,	xm.	 Each	xt	 can	 take	 a
value	of	either	0	or	1.	Therefore,	we	can	form	2m	distinct	m-tuples.	Each	of	these
m-tuples	 can	 be	 represented	 by	 a	 vertex	 of	 the	m-dimensional	 unit	 cube.	Unit
cubes	 for	 m	 =	 1,	 2,	 and	 3	 are	 shown	 in	 Fig.	 12-9.	 The	 extension	 to	m	 ≥	 4,
although	geometrically	difficult,	is	simple	enough	to	visualize.

Fig.	12-9	One-,	two-,	and	three-dimensional	cubes.

The	edges	and	vertices	of	an	m-dimensional	unit	cube	form	a	graph	with	2m
vertices.	Each	vertex	is	labeled	as	a	distinct	binary	Sequence	of	m	bits	such	that
two	vertices	are	adjacent	 if	and	only	 if	 they	 (i.e.,	 their	 labels)	differ	 in	exactly
one	bit.	Such	a	graph	 is	called	an	m-cube	and	will	be	designated	by	Qm.	Once
again,	 how	 we	 draw	 the	 m-cube	 is	 immaterial	 as	 long	 as	 we	 preserve	 the
adjacency	relationships	of	its	vertices.	For	example,	Q3	is	drawn	in	another	way
in	 Fig.	 12-10(a).	 The	 4-cube	 is	 sketched	 in	 Fig.	 12-10(b).	 The	m-cube	 is	 of
interest	 in	 studying	 switching	 functions	 of	 m	 binary	 variables.	 The	 state-
assignment	 problem,	 discussed	 in	 the	 last	 section,	 can	 be	 looked	 upon	 as	 a



problem	of	selecting	and	labeling	vertices	of	an	m-cube.	See	Chapter	13	of	[12-
2].

Fig.	12-10	Graphs	of	3-cube	and	4-cube.

Some	observations	 that	can	be	made	about	 the	properties	of	an	m-cube,	Qm,
are

1. There	are	exactly	m	distinct	labels	that	differ	from	a	given	label	(of	m	bits)
in	one	position.	Therefore,	each	vertex	in	Qm	is	of	degree	m.	Thus	Qm	is	a
regular	graph	of	n	=	2m	vertices	and	e	=	m	·	2m-1	edges.

2. The	distance	δ(vi,	vj)	(i.e.,	the	number	of	edges	in	a	shortest	path)	between
two	vertices	vi	and	vj	 in	an	m-cube	is	equal	 to	 the	number	of	positions	 in
which	 the	 labels	 of	 vi	 and	 vj	 differ.	 For	 example,	 in	Q3	 in	 Fig.	 12-9	 the
distance	 between	 (011)	 and	 (101)	 is	 2.	 This	 distance	 is	 known	 as	 the
Hamming	distance	between	the	two	binary	words.	It	is	easy	to	see	that

δ(vi,	vj)	=	number	of	1’s	in	mod	2	vector	sum	of	the	labels	of	vi	and	vj.

3. The	maximum	distance	possible	between	 two	vertices	 in	an	m-cube	 is	m,
because	two	m-bit	sequences	can	differ	at	most	in	m	positions.

Subcubes:	A	k-dimensional	cube	can	be	looked	upon	as	a	subcube	of	higher-
dimensional	cubes.	Similarly,	graph	Qk	may	be	regarded	as	a	subgraph	of	Qm	(k
≤	m)	such	that	Qk	consists	of	the	2k	vertices	(of	Qm),	whose	labels	have	identical
m	 −	 k	 corresponding	 bits.	 For	 example,	 the	 vertices	 (011),	 (001),	 (111),	 and
(101)	in	Fig.	12-9	have	the	same	last	bit,	and	constitute	a	subcube	Q2	in	Q3.	Each
vertex	is	a	0-cube,	and	any	edge	is	a	1-cube.

Minterms:	A	Boolean	product	containing	each	of	m	variables	xl,	x2,	 .	 .	 .	 ,	xm



exactly	once,	either	complemented	or	uncomplemented,	is	called	a	minterm	(or
canonic	product)	of	m	variables.	For	example,	the	minterms	of	three	variables	=
a,	b,	c	are	{a′	b′	c′),	(a′	b′	c),	(a′	b	c′),	(a′	b	c),	(a	b′	c′),	(a	b′	c),	(a	b	c′),	and	(a	b
c).
There	are	2m	distinct	minterms	of	m	variables,	and	they	can	be	put	into	a	one-

to-one	correspondence	with	the	vertices	of	an	m-cube.	The	minterm	(x′1	x′2	.	.	.
x′m)	corresponds	to	(0	0	.	.	.	0)	vertex,	(x′1	x′2	.	.	.	x′m-1	xm)	corresponds	to	(0	0	.	.
.	0	1)	vertex,	and	so	on;	finally,	the	minterm	(x1	x2.	.	.	xm)	corresponds	to	vertex
(1	1	.	.	.	1)	of	Qm.
Switching	Functions	on	the	m-Cube:	Any	switching	function	f(x1,	x2,	.	.	.	,	xm)

of	m	 variables	 can	be	 expressed	uniquely	 as	 a	Boolean	 sum	of	 a	 subset	 of	 2m
minterms.	This	is	termed	as	the	canonic	form	of	f.	Clearly,	the	function	f	is	1	at
those	and	only	 those	vertices	whose	corresponding	minterms	are	present	 in	 the
canonic	form	of	f.	At	all	other	vertices	the	function	f	is	0.	The	vertices†	of	Qm	at
which	f	is	1	are	called	true	vertices	with	respect	to	function	f	and	the	vertices	at
which	 f	 is	 0	 are	 called	 the	 false	 vertices	 of	Qm	with	 respect	 to	 function	 f.	 For
example,	consider	the	following	function	of	three	variables:

f(x1,	x2,	x3)	=	x′1	x′2	x′3	+	xl	x′2	x′3	+	x′1	x2	x′3	+	x′l	x2	x3.

The	true	vertices	for	this	function	on	Q3	are	shown	encircled	in	Fig.	12-11.

Fig.	12-11	True	vertices	on	a	Q3	for	a	given	function.

Thus	every	switching	function	of	m	variables	uniquely	partitions	the	vertices
of	 the	graph	Qm	 into	 two	sets,	one	consisting	of	 the	 true	vertices	and	the	other

consisting	 of	 the	 false	 vertices.	 There	 are	 22
m
	 such	 partitions,‡	 each

corresponding	to	a	distinct	switching	function	of	m	variables.	Thus	the	properties
of	 switching	 functions	 can	 be	 determined	 by	 studying	 the	 properties	 of	 the



subgraph	of	Qm	defined	by	the	true	vertices	with	respect	to	the	given	function.

12-6. GRAPHS	IN	CODING	THEORY

Gray	Codes:	Often,	when	 information	 is	 converted	 from	 analog	 form	 to	 its
digital	equivalent,	one	 requires	a	 list	of	distinct	binary	m-tuples	such	 that	each
differs	 from	 the	 one	 preceding	 it	 in	 just	 one	 coordinate.	 For	 example,	 to
determine	the	angular	position	of	a	rotating	shaft,	the	angles	in	adjacent	quantum
intervals	are	encoded	into	m-tuples	(using	m	brushes	on	a	commutator)	of	binary
digits	 that	 differ	 in	 just	 one	 place.	 Taking	m	 =	 3,	 for	 instance,	 as	 the	 angle
increases	 from	 0	 to	 360°,	 the	 binary	 code	 for	 angles	 might	 go	 through	 the
succession

000	for	0−45°,

001	for	45−90°,

011	for	90−135°,

010	for	135−180°,

110	for	180−225°,

111	for	225−270°,

101	for	270−315°,

100	for	315−360°,

and	back	to

000	for	0−45°.

Such	a	code,	which	requires	the	changing	of	only	one	bit	at	a	time,	is	called
the	Gray	code,	the	reflected	binary	code,	circuit	code,	or	cyclic	code.	In	contrast
to	the	Gray	code,	other	codes	may	require	changing	of	several	bits	when	going
from	one	number	to	the	next	higher	number.	For	example,	going	from	7	to	8	in
8-4-2-1	 BCD	 (i.e.,	 from	 0111	 to	 1000)	 involves	 a	 change	 in	 all	 four	 bits
simultaneously.	Because	of	variations	in	the	construction	of	the	equipment,	such
multiple	changes	may	not	register	simultaneously.	Thus,	during	the	change,	false
code	combinations	are	supplied.	Such	false	code	words	are	eliminated	in	a	Gray
code,	 and	 this	 is	 why	 Gray	 codes	 are	 so	 important	 in	 analog-to-digital



conversion	of	information.
An	m-bit	Gray	code	corresponds	to	a	circuit	in	an	m-cube.	For	instance,	the	3-

bit	Gray	code	 just	 illustrated	for	measuring	 the	angular	position	of	 the	rotating
shaft	 is	defined	by	the	Hamiltonian	circuit	 in	Q3	 in	Fig.	12-12	shown	in	heavy
lines.	The	 reason	 for	 the	 term	 cyclic	 or	 circuit	 code	 should	 be	 clear	 from	 this
figure.
An	m-bit	 code	 that	 uses	 all	 2m	 vertices	 is	 called	 a	 complete	 code.	A	 circuit

code	need	not	be	a	complete	code.	For	example,	when	4-bit	words	are	used	 to
represent	decimal	digits,	we	use	only	10	out	of	16	vertices.

Fig.	12-12	Gray	code	on	Q3.

Snake-in-the-Box	Codes:	 In	 selecting	 an	 incomplete	 code	 from	2m	 available
words,	one	would	like	to	select	a	code	that	has	certain	error-checking	properties.
One	such	code	has	 the	desirable	property	 that	a	 single	binary	error	 (caused	by
malfunctioning	of	 the	equipment)	 in	a	word	results	 in	either	(1)	 the	next	word,
(2)	the	preceding	word,	or	(3)	a	word	that	does	not	appear	in	the	code	at	all.	The
last	 case	 indicates	 a	detected	 error,	 and	 the	 first	 two	 cases	 introduce	 errors	 of
relatively	small	magnitude.	Such	a	code	is	called	a	snake-in-the-box	(SIB)	code,
or	unit-distance	error-checking	code.
An	SIB	code	corresponds	 to	a	circuit	 in	Qm	 such	 that	no	 two	nonsuceessive

vertices	on	the	circuit	are	adjacent.	A	6-word,	SIB	code	in	Q3	 is	shown	in	Fig.
12-13.



Fig.	12-13	Snake-in-the-box	code	on	Q3.

The	 SIB	 codes	 can	 be	 generalized	 to	 codes	 with	 additional	 error-checking
properties,	 as	 follows:	 In	 graph	Qm,	 a	 circuit	Cs	 is	 said	 to	 be	 of	 spread	 s	 if	 a
person	going	around	Cs	cannot	find	a	shortcut	(i.e.,	a	path	with	no	edge	from	Cs)
between	 two	 vertices	 of	Cs	 consisting	 of	 fewer	 than	 s	 edges	 of	Qm.	With	 this
definition,	every	circuit	in	Qm	is	of	spread	1,	and	an	SIB	code	corresponds	to	a
circuit	of	spread	2.
For	a	given	m	and	a	specified	s,	one	would	like	to	find	as	large	a	circuit	Cs	as

possible.	At	present	no	relationship	is	known	that	gives	the	size	of	the	largest	Cs
in	a	Qm	for	arbitrary	m	and	s.	For	a	survey	of	such	problems	on	codes	in	Qm,	the
reader	is	referred	to	a	paper	by	Klee	[12-8].

Huffman	 Graph-Theoretic	 Codes:	 We	 shall	 now	 briefly	 discuss	 the
application	 of	 graphs	 to	 an	 entirely	 different	 type	 of	 coding.	 A	 binary	 group
code	 is	a	set	of	binary	code	words	with	 the	property	 that	 the	modulo	2	sum	of
arty	 two	 code	words	 in	 the	 set	 is	 also	 a	 code	word	 in	 the	 set.†	 Binary	 group
codes	 are	 of	 importance	 in	 information	 transmission,	 both	 for	 analytic	 and
practical	reasons.	The	group	structure	facilitates	their	mathematical	study	as	well
as	their	implementation.	For	more	details	on	group	codes	see	[12-12].
Since	 the	 ring	 sum	of	 two	cut-sets	 in	 a	graph	 is	 another	 cut-set	 or	 an	 edge-

disjoint	union	of	cut-sets,	it	is	evident	that	the	set	of	all	cut-sets	and	edge-disjoint
union	of	cut-sets	can	be	used	to	define	a	binary	group	code.	In	other	words,	the
vectors	 (2r	of	 them,	r	being	 the	 rank	of	 the	graph)	 in	 the	cut-set	 subspace	WS,
over	GF(2),	constitute	a	binary	group	code.
The	rows	of	a	fundamental	cut-set	matrix	can	be	used	to	generate	this	binary

group	code.	Such	a	code	is	called	a	Huffman	graph-theoretic	code.
For	 example,	 consider	 a	 graph	 and	 its	 fundamental	 cut-set	matrix	Cf	 in	Fig.



12-14.	The	rows	of	Cf	their	modulo	2	sums,	and	the	zero	vector	yield	the	5-bit,
8-word	code	shown	in	Fig.	12-14.

Fig.	12-14	Graph	and	its	cut-set	code.

Analogously,	the	fundamental	circuit	matrix	of	a	graph	also	generates	a	binary
group	 code.	 Thus	 we	 have	 two	 graph-theoretic	 codes	 associated	 with	 every
graph.

A	graph-theoretic	code	is	generally	specified	by	three	numbers—the	number
of	edges	e	in	the	graph,	the	dimension	of	the	associated	subspace,	WS	or	WΓ	(i.e.,
rank	r	or	nullity	μ),	and	the	smallest	number	of	1’s	in	a	nonzero	code	word.	Thus
the	graph-theoretic	code	generated	by	the	cut-sets	of	the	graph	in	Fig.	12-14	is	a
(5,	3,	2)	code.
Now	that	we	know	how	to	generate	a	code	(in	fact	two	codes)	from	any	graph,

we	can	investigate	codes	corresponding	to	important	kinds	of	graphs—	such	as
complete	graphs,	bipartite	graphs,	regular	graphs,	and	planar	graphs.	Conversely,
we	 can	 look	 for	 graphs	 that	 generate	 group	 codes	 with	 certain	 specified
properties,	such	as	efficiency	and	error-correcting	capability.	This	 is	an	area	of
current	 research.	 Some	 relationships	 between	 the	 properties	 of	 graphs	 and	 the
properties	 of	 the	 associated	 codes	 have	 been	 investigated	 by	Huffman	 [12-7],
Frazer	[12-3],	Hakimi	and	Bredeson	[12-4],	and	Saltzer	[12-13].



SUMMARY

In	 this	 chapter	 graph	 theory	 was	 applied	 to	 switching	 circuits,	 automata
theory,	 and	 coding	 theory.	 The	 applicability	 of	 graphs	 to	 digital	 systems	 and
signals	is	not	surprising,	because	both	operate	in	GF(2).
For	 lack	 of	 space,	 only	 selected	 applications	 in	 switching	 theory	 were

discussed.	 Many	 related	 topics,	 such	 as	 the	 study	 of	 series-parallel	 contact
networks,	planar	and	nonplanar	contact	networks,	and	regular	expressions,	were
not	 even	 mentioned.	 Several	 other	 topics,	 such	 as	 the	 graphs	 of	 gate-type
networks,	 generalized	 SIB	 codes,	 and	 properties	 of	Huffman	 codes,	were	 also
left	out.	These	are	some	of	the	areas	of	current	research	in	switching	theory.	It	is
hoped	that	the	serious	reader	will	go	to	the	references	cited	for	a	fuller	account
of	this	fascinating	application	of	graph	theory.

REFERENCES

Certain	 familiarity	 with	 switching	 theory	 was	 assumed	 in	 this	 chapter.	 For
introductory	 switching	 theory,	 Caldwell	 [12-2],	 one	 of	 the	 earliest	 books	 in
switching	 theory,	 is	still	one	of	 the	best,	and	Chapters	5,	8,	10,	12,	and	13	are
particularly	relevant	to	the	subject	of	this	chapter.	For	a	more	abstract	and	formal
treatment	 of	 switching	 theory,	 Harrison	 [12-5]	 is	 recommended.	 Chapter	 5	 of
Miller	 [12-10]	 is	 excellent	 for	 graph-theoretic	 treatment	 of	 contact	 networks.
Chapter	10	in	Hill	and	Peterson	[12-6]	is	good	for	understanding	the	problems	in
synthesis	of	sequential	circuits.	For	coding	theory,	the	classic	book	of	Peterson
[12-12]	 is	 recommended.	 Birkhoff	 and	 Bartee	 [12-1]	 may	 be	 read	 for	 an
appreciation	of	why	graph	 theory	 should	be	 so	 readily	 applicable	 to	 switching
theory	 and	 coding.	 Other	 sources	 referred	 to	 in	 the	 text	 are	 included	 in	 the
following	list	of	references.
12-1. BIRKHOFF,	G.,	and	T.	C.	BARTEE,	Modern	Applied	Algebra,	McGraw-Hill

Book	Company,	New	York,	1968.
12-2. CALDWELL,	S.	H.,	Switching	Circuits	and	Logical	Design,	John	Wiley	&

Sons,	Inc.,	New	York,	1958.
12-3. FRAZER,	W.	D.,	“A	Graph-Theoretic	Approach	 to	Linear	Codes,”	Proc.

Second	Annual	Allerton	Conf.	on	Circuit	and	System	Theory,	1964,	888–
898.

12-4. HAKIMI,	 S.	L.,	 and	 J.	G.	BREDESON,	 “Graph	Theoretic	Error-Correcting
Codes,”	IEEE	Trans.	Inform.	Theory,	Vol.	IT-14,	No.	4,	July	1968,	584–
591.



12-5. HARRISON,	 M.	 A.,	 Introduction	 to	 Switching	 and	 Automata	 Theory,
McGraw-Hill	Book	Company,	New	York,	1965.

12-6. HILL,	F.	 J.,	 and	G.	R.	PETERSON,	 Introduction	 to	Switching	Theory	and
Logical	Design,	John	Wiley	&	Sons,	Inc.,	New	York,	1968.

12-7. HUFFMAN,	 D.	 A.,	 “A	 Graph-Theoretic	 Formulation	 of	 Binary	 Group
Codes,”	summaries	of	papers	presented	at	1964	ICMCI,	pt.	3,	29–30.

12-8. KLEE,	V.,	“The	Use	of	Circuit	Codes	in	Analog-to-Digital	Conversion,”
in	Graph	Theory	and	Its	Applications	 (B.	Harris,	ed.),	Academic	Press,
Inc.,	New	York,	1970,	121–131.

12-9. MAYEDA,	 W.,	 “Synthesis	 of	 Switching	 Functions	 by	 Linear	 Graph
Theory,”	IBM	J.	Res.	Develop.,	Vol.	4,	July	1960,	320–328.

12-10. MILLER,	 R.	 E.,	 Switching	 Theory.	 Volume	 I:	 Combinational	 Circuits,
John	Wiley	&	Sons,	Inc.,	New	York,	1965.

12-11. MINTY,	G.	J.,	“On	the	Axiomatic	Foundations	of	the	Theories	of	Directed
Linear	 Graphs,	 Electrical	 Networks,	 and	 Network	 Programming,”	 J.
Math.	Mech.,	Vol.	15,	1966,	485–520.

12-12. PETERSON,	 W.	 W.,	 Error	 Correcting	 Codes,	 The	 M.I.T.	 Press,
Cambridge,	Mass.,	1961.

12-13. SALTZER,	 C,	 “Topological	 Codes,”	 in	 Error	 Correcting	 Codes	 (H.	 B.
Mann,	ed.),	John	Wiley	&	Sons,	Inc.,	New	York,	1968.

12-14. TUTTE,	W.	T.,	Introduction	to	the	Theory	of	Matroids,	American	Elsevier
Publishing	Company,	Inc.,	New	York,	1971.

12-15. WELSH,	 D.	 J.	 A.,	 “Matroids	 and	 Their	 Applications,”	 Seminar	 Notes,
University	of	Michigan	(to	appear).

†Switching	algebra,	as	defined	here,	 is	actually	a	special	case	of	Boolean	algebra.	However,	 in	switching
theory	these	two	terms	are	often	used	interchangeably,	as	it	causes	no	confusion.
†Sequential	switching	networks	are	also	called	sequential	networks,	sequential	machines,	sequential	nets,
or	sequential	circuits.	The	terms	finite-state	machines	and	automata	are	also	used	for	sequential	switching
networks.	The	form	sequential	machine	is	perhaps	the	most	commonly	employed	term	and	we	shall	use	this
term.
‡This	definition	of	a	sequential	machine	is	somewhat	restricted.	It	is	the	Mealy	model	of	a	deterministic	and
completely	specified	sequential	machine.
†Those	familiar	with	Karnaugh	map	will	recognize	that	a	vertex	in	Qm	corresponds	to	a	square	in	Karnaugh
map.
‡This	includes	two	extreme	cases	when	all	2m	vertices	are	true	(i.e.,	f	=	1),	and	all	vertices	are	false	(i.e.,	f	=
0).	Usually,	partitions	do	not	have	empty	subsets,	but	here	we	have	called	these	two	cases	also	partitions.
†Note	that	we	are	and	have	been	discussing	only	binary	codes	and	only	those	binary	codes	in	which	each
code	word	consists	of	 the	same	number	of	bits.	Such	a	code	 is	called	a	uniform	binary	code	or	a	binary
block	code.	Gray	codes	and	binary	group	codes	are	examples	of	binary	block	codes.



13	ELECTRICAL	NETWORK	ANALYSIS	BY	GRAPH
THEORY

One	 of	 the	 reasons	 for	 the	 recent	 revival	 of	 interest	 in	 graph	 theory	 among
students	 of	 electrical	 engineering	 is	 the	 application	 of	 graph	 theory	 to	 the
analysis	and	design	of	electrical	networks	(more	commonly	known	as	electrical
circuits).	 The	 idea	 of	 using	 graph	 theory	 for	 predicting	 the	 behavior	 of	 an
electrical	network	 is	not	new.	 It	originated	with	G.	Kirchhoff	 in	1847	and	was
improved	 upon	 by	 J.	 C.	 Maxwell	 in	 1892.	 However,	 for	 hand	 computations
(which	 were	 necessarily	 limited	 to	 small	 networks),	 the	 application	 of	 graph
theory	to	network	analysis	offered	little	real	advantage	over	the	more	elementary
methods	of	node	or	loop	analysis.
The	picture	has	 changed	and	 is	 changing	 since	 the	arrival	of	 the	high-speed

digital	computer.	A	milestone	in	graph-theoretic	analysis	of	electrical	networks
was	achieved	by	W.	S.	Percival,	when	he	extended	the	Kirchhoff	and	Maxwell
methods	 to	 networks	 with	 active	 elements.	 Computer	 programs	 are	 now
available	 for	 analysis	 of	 large	 networks	 [13-2]	 based	 on	 the	 graph-theoretic
approach.	More	efficient	and	less	user-oriented	computer	programs	for	analyzing
larger	and	more	general	 types	of	networks	are	 in	 the	offing.	In	 this	chapter	we
shall	present	the	underlying	principle	of	graph-theoretic	analysis	of	networks—
which	is	how	to	use	spanning	trees	(or	chord	sets)	for	evaluating	determinants	of
a	matrix.

Reminder	 on	 Terminology:	 Different	 disciplines	 using	 graph	 theory	 have
developed	 somewhat	 different	 terminology.	 In	 electrical	 engineering,	 the	 term
branch	 is	 used	 for	 edge,	 node	 for	 vertex,	 and	 loop	 for	 circuit.	 An	 electrical
network	 is	 more	 commonly	 known	 as	 an	 electrical	 circuit.	 For	 the	 sake	 of
consistency,	 however,	 the	 same	 graph	 theory	 terminology	 has	 been	 used
throughout	this	book.



13-1.	WHAT	IS	AN	ELECTRICAL	NETWORK?

An	electrical	network	is	a	collection	of	interconnected	electrical	elements	(or
devices)	 such	 as	 resistors,	 capacitors,	 inductors,	 diodes,	 transistors,	 vacuum
tubes,	switches,	storage	batteries,	 transformers,	delay	 lines,	power	sources,	and
the	 like.	The	behavior	 (such	as	 the	 response	 to	a	unit	 impulse)	of	an	electrical
network	 is	 a	 function	 of	 two	 factors:	 (1)	 the	 characteristics	 of	 each	 of	 the
electrical	 elements,	 and	 (2)	 how	 they	 are	 connected	 together,	 that	 is,	 their
topology.	It	is	the	latter	factor	that	brings	graph	theory	into	the	picture.

An	electrical	element	can	be

1. Lumped	or	distributed.

2. One-port	(i.e.,	two-terminal)	or	multiport.

3. Linear	or	nonlinear.

4. Time	invariant	or	time	varying.

5. Passive	or	active.

6. Bilateral	or	nonbilateral.

To	avoid	using	partial	differential	equations,	a	distributed	element,	such	as	a
transmission	 line,	 is	 either	 approximated	 by	 lumped	 elements	 or	 is	 considered
separately.	 Thus	 an	 electrical	 network	 almost	 by	 definition	 implies	 a	 network
consisting	 of	 lumped	 elements	 only.	 Also,	 a	 multiport	 device	 such	 as	 a
transformer	or	a	pentode	can	be	replaced	by	a	set	of	interconnected	two-terminal
elements,	such	as	resistors,	inductors,	and	dependent	power	sources	(see	Fig.	13-
7).	 Thus	 we	 can	 confine	 ourselves	 to	 a	 network	 of	 lumped,	 two-terminal
elements.
A	 two-terminal	 electrical	 element	 is	 represented	 by	 an	 edge	 ek.	 Associated

with	each	edge	are	two	edge	variables,	vk(t)	and	ik(t).	The	variable	vk(t)	is	called
the	 edge	 voltage	 and	 may	 be	 regarded	 as	 a	 cross	 variable,	 because	 it	 exists
across	the	two	end	vertices	of	the	edge.	The	other	variable	ik(t)	is	called	the	edge
current	and	may	be	 thought	of	as	a	 through	variable,	because	 it	 flows	through
the	edge.	Since	the	variables	are	directional,	every	edge	is	assigned	an	arbitrary
orientation	 (see	Fig.	 13-1).	The	 characteristics	 of	 each	 element	 are	 completely
described	in	terms	of	these	two	variables.	(The	physics	of	an	electrical	element
and	 its	mathematical	 description	 form	another	 subject	 in	 electrical	 engineering



and	are	of	little	concern	to	us	here.)
Thus	 an	 electrical	 network	 for	 us	 is	 a	 connected	 directed	 graph	G	 in	which

each	edge	ek	is	assigned	two	variables	vk(t)	and	ik(t).	The	edge	variables	of	each
edge	satisfy	a	relationship	imposed	by	the	nature	of	the	corresponding	element.
Let	the	directed	graph	G	have	n	vertices	1,	2,	3,.	.	.	,	n	and	e	edges

Fig.	13-1	Electrical	element	and	its	representation	as	an	edge	of	a	directed	graph	(the	voltage	+	is	always	at
tail	of	current	arrow).

b1,	b2,	.	.	.	,be.	Let	the	values	of	currents	flowing	through	these	edges	at	a	given
time	 be	 represented	 by	 a	 column	 vector	 (called	 the	 edge-current	 vector)	 i(t),
where

Similarly,	the	edge	voltages	across	the	e	edges	are	represented	by	another	vector
(called	the	edge-voltage	vector)	v(t),	where

13-2.	KIRCHHOFF’S	CURRENT	AND	VOLTAGE	LAWS

It	was	mentioned	that	each	element	in	an	electrical	network	is	governed	by	a
specific	 relationship	 imposed	 upon	 its	 two	 edge	 variables.	When	 the	 elements
are	 interconnected	 to	 form	 a	 network,	 is	 there	 any	 additional	 relationship
imposed	 on	 these	 edge	 variables	 collectively?	 The	 answer,	 as	 every	 electrical



engineer	 knows,	 is	 yes.	 The	 edge	 variables	 must	 also	 obey	 the	 two	 laws	 of
Kirchhoff	’s:

Kirchhoff’s	 Current	 Law	 (KCL):	 For	 any	 lumped	 electrical	 network,	 at	 any
time	the	net	sum	(taking	into	account	the	orientations)	of	all	the	currents	leaving
any	 node	 (or	 vertex)	 is	 zero.	 That	 is,	 at	 the	 rth	 vertex	 of	 the	 corresponding
directed	graph	G,	we	must	have

where	ark	is	the	rkth	entry	in	the	incidence	matrix	A	of	G,	and	ik(t)	is	the	amount
of	 current	 flowing	 through	 the	 kth	 edge	 of	 G.	 Since	 Eq.	 (13-1)	 holds
simultaneously	for	r	=	1,	2,	.	.	.,	n,	it	can	also	be	written	in	the	matrix	form

Kirchhoff’s	 Voltage	 Law	 (KVL):	 For	 any	 lumped	 electrical	 network,	 at	 any
time	the	net	sum	(taking	into	account	the	orientations)	of	the	voltages	around	a
loop	 (i.e.,	 circuit)	 is	 zero.	 In	 terms	 of	 the	 corresponding	 digraph,	 for	 the	 rth
circuit	we	must	have

where	brk	is	the	rkth	entry	in	the	circuit	matrix	B	of	G,	and	vk(t)	is	the	amount	of
voltage	 across	 the	 kth	 edge.	 Since	 Eq.	 (13-3)	 holds	 simultaneously	 for	 every
circuit	in	G,	it	can	be	represented	in	the	matrix	form	as

13-3.	LOOP	CURRENTS	AND	NODE	VOLTAGES

Consider	the	vector	space	WG	(over	the	field	of	real	numbers)	associated	with
the	 directed	 graph	G.	 Here	G	 is	 a	 connected	 directed	 graph	 of	 e	 edges	 and	 n
vertices,	 representing	 an	 electrical	 network.	 From	 Eq.	 (13-2),	 we	 see	 that	 the
edge-current	vector	i(t)	is	orthogonal	to	each	of	the	row	vectors	in	the	incidence
matrix	A.	 Since	 the	 row	 vectors	 in	A	 span	 the	 entire	 cut-set	 subspace	Ws	 (of
dimension	 n	 −	 1),	 i(t)	 is	 orthogonal	 to	Ws.	 Therefore,	 i(t)	 lies	 in	 the-circuit
subspace	WΓ	(of	dimension	µ	=	e	−	n	+	l)	of	G.



Since	 i(t)	 is	 contained	 in	WΓ,	 there	must	 be	 a	 set	 of	μ	 vectors	 in	WΓ	whose
linear	combination	will	produce	i(t).	An	obvious	choice	for	this	set	of	μ	linearly
independent	vectors	in	WΓ	is	the	rows	of	the	fundamental	circuit	matrix	Bf	with
respect	to	some	spanning	tree.	(Clearly,	Bf	is	contained	in	B.)	Let	the	coordinates
(or	coefficients)	of	i(t)	in	this	basis	formed	by	the	rows	b1,	b2,	 .	 .	 .,	bμ	of	Bf	be
iL1(t),	iL2(t)	.	.	.	,	iLμ(t).	In	other	words,

Thus	each	of	the	e	edge	currents	can	be	expressed	as	a	linear	combination	of	μ
quantities	 iL1(t)	 iL2(t),	 .	 .	 .	 ,	 iLμ(t).	 These	 are	 called	 loop	 currents	 (or	 mesh
currents);	 they	 represent	 current	 flowing	 in	 the	 μ	 independent	 circuits
corresponding	to	the	rows	of	Bf.
Substituting	Eq.	(13-5)	into	Eq.	(13-2),	we	get

Similarly,	from	Eq.	(13-4)	we	see	that	the	column	vector	v(t)	representing	the
edge	voltages	is	orthogonal	to	the	circuit	subspace	WΓ	and	is,	therefore,	in	cut-
set	subspace	Ws.	Thus	v(t)	can	be	expressed	as	a	linear	combination	of	the	n	−	1
rows	of	the	reduced	incidence	matrix	Af.	That	is,



Fig.	13-2	Electrical	network	and	its	graph.

That	is,

Thus	each	of	e	edge	voltages	can	be	expressed	as	a	linear	combination	of	n	−	1
quantities	vN1(t),	vN2(t)	 .	 .	 .,	vN(n-1(t).	These	are	called	node	voltages,	 and	 they
represent	 the	voltage	at	 each	of	n	−	1	 independent	vertices	with	 respect	 to	 the
reference	vertex.

Substituting	Eq.	(13-7)	into	Eq.	(13-4),	we	get



Let	us	now	illustrate	with	an	example	the	loop	currents	and	node	voltages	and
how	 they	 are	 obtained	 from	 the	 edge	 currents	 and	 edge	voltages,	 respectively.
Figure	13-2(a)	shows	an	electrical	network	with	 five	vertices	and	seven	edges.
The	 corresponding	directed	graph	 is	 shown	 in	Fig.	 13-2(b).	 For	 this	 graph	 the
reduced	 incidence	 matrix	 Af	 with	 respect	 to	 vertex	 N5	 and	 the	 fundamental
circuit	matrix	Bf,	with	respect	to	the	spanning	tree	{1,	4,	5,	7}	(shown	in	heavy
lines),	are

The	edge-current	vector	expressed	in	terms	of	loop-current	vector	is

The	edge	voltages	in	terms	of	the	node	voltages	(with	respect	to	N5)	are



13-4.	RLC	NETWORKS	WITH	INDEPENDENT	SOURCES:
NODAL	ANALYSIS

In	 this	 section	 we	 shall	 restrict	 ourselves	 to	 electrical	 networks	 containing
resistors,	 inductors,	and	capacitors	(RLC)	with	 independent	voltage	and	current
sources.	In	spite	of	its	inherent	simplicity,	the	RLC	network	covers	a	very	large
class	of	electrical	networks	in	practice.	In	fact,	it	has	been	shown	by	Brune	and
Bott	 and	Duffin	 that	 any	 time-invariant,	 two-terminal,	 linear,	passive	electrical
element	 can	 be	 formed	 by	 a	 combination	 of	 R,	 L,	 and	C	 (with	 real	 positive
values	of	R,	L,	and	C).	A	further	stipulation	may	be	made,	without	any	loss	of
generality,	 that	 the	voltage	 sources	may	only	be	 connected	 in	 series	with	RLC
elements	and	that	current	sources	may	only	be	connected	in	parallel	with	these
elements.	This	stipulation	allows	us	to	convert	all	the	energy	sources	either	into
a	set	of	voltage	sources	or	into	a	set	of	current	sources.
Noda.	Analysis:	Consider	an	RLC	network	 in	which	all	energy	sources	have

been	 converted	 into	 current	 sources.	 At	 each	 node	 combine	 all	 these	 current
sources.	Let	the	net	current	entering	from	the	current	sources	into	the	rth	node	be
jr(t).	For	the	n	−	1	independent	nodes,	let	the	column	vector



The	n	−	1	linearly	independent	equations	from	KCL	can	be	expressed	as

where	Af	is	the	reduced	incidence	matrix	of	the	corresponding	graph,	and	i(t)	is
the	e	by	1	column	vector	of	currents	in	each	of	the	e	passive	edges.
Taking	the	Laplace	transform	of	Eq.	(13-9),

But	the	voltage-current	relation	in	the	kth	edge,	consisting	only	of	RLC	elements,
is	given	by

where	Ik(s)is	the	Laplace	transform	of	the	current	through	the	kth	edge,	Vk(s)	is
the	 Laplace	 transform	 of	 the	 voltage	 across	 the	 kth	 edge,	 and	 Yk(s)	 is	 the
admittance	(or	self-admittance)	of	 the	kth	edge.	Writing	Eq.	 (13-11)	 for	all	 the
edges	in	matrix	form,

More	compactly,



where	I(s)	is	the	Laplace-transformed	column	vector	of	the	edge	currents,	V(s)	is
the	 Laplace-transformed	 column	 vector	 of	 the	 edge	 voltages,	 and	 Y(s)	 is	 the
edge	admittance	matrix.
Substituting	Eq.	(13-12)	into	(13-10),

Eq.	 (13-7)	provided	a	means	of	expressing	 the	edge-voltage	vector	 in	 terms	of
the	node-voltage	vector.	Taking	the	Laplace	transform	of	Eq.	(13-7),

and	substituting	Eq.	(13-14)	into	(13-13),

The	(n	−	1)	by	(n	−	1)	matrix	 	is	called	the	node	admittance	matrix	and	is
written	as	YN(s).	Note	 that	 in	deriving	Eq.	(	13-15)	 it	was	assumed	that	all	 the
initial	conditions	were	zero.	This	too	implies	no	loss	of	generality,	because	any
energy	stored	in	capacitors	or	inductors	at	time	t	=	0	can	always	be	replaced	by
an	appropriate	energy	source	and	hence	incorporated	into	j(t).



Fig.	13-3	Passive	RLC	network	and	its	graph.

Let	us	 illustrate	 these	concepts	with	an	example.	An	RLC	network	with	 two



independent	 sources—one	 voltage	 source	 and	 one	 current	 source—is	 given	 in
Fig.	 13-3(a).	 Figure	 13-3(b)	 shows	 an	 equivalent	 network	 with	 only	 current
sources.	A	directed	graph	of	the	network	is	shown	in	Fig.	13-3(c).	The	reduced
incidence	matrix	Af	(with	vertex	4	as	reference)	is

The	edge	admittance	matrix	is

The	node	admittance	matrix	 	is

J(s)	column	vector	for	this	example	is



Network	 Analysis	 Problem:	 Let	 us	 pause	 for	 a	 moment	 and	 focus	 on	 the
problem	 that	we	 are	 solving.	The	 general	 problem	of	 network	 analysis	 can	 be
formally	stated	as	follows:	Given	a	network	whose	structure	determines	matrix
A,	 given	 its	 edge	 admittance	matrix	Y(s),	 and	 given	 the	 current	 source	 vector
J(s),	find	the	node	voltages.	[If	edge	voltages	or	edge	currents	are	required,	they
can	be	readily	obtained	using	Eqs.	(13-7)	and	(13-12).]
This	 clearly	 requires	 solving	 Eq.	 (13-15),	 which	 involves	 inversion	 of	 the

matrix	 YN(s).	 Inversion	 of	 a	 matrix	 (which	 must	 be	 nonsingular,	 of	 course)
requires	computation	of	its	determinant	and	of	all	its	cofactors.	The	conventional
determinant	 technique	 is	 inefficient	 because	 of	 extra	 labor	 involved	 in
computing	many	terms	that	eventually	cancel	out.	Moreover,	the	entries	in	YN(s)
consist	 of	 polynomials	 in	 s,	 and	must	 be	 carried	 in	 literal	 form	 until	 after	 the
matrix	 inversion.	 Therefore,	 the	 usual	 methods	 of	 matrix	 inversion	 are
computationally	difficult	to	implement.
Both	 these	problems	are	circumvented	by	using	graph	theory	 to	evaluate	 the

determinant	 and	 cofactors.	 For	 this	 we	 invoke	 the	 Binet-Cauchy	 theorem
(Appendix	A)	and	use	the	fact	that	a	major	determinant	(or	simply	major)	of	the
reduced	 incidence	 matrix	 Af	 is	 nonzero	 if	 and	 only	 if	 it	 corresponds	 to	 a
spanning	tree.

Determinant	 of	 the	 Node	 Admittance	 Matrix:	 Let	 us	 denote	 by	 ΔN	 the
determinant	of	the	node	admittance	matrix	YN(s).	That	is,

Using	the	Binet-Cauchy	theorem,

Had	 every	 branch	 in	 the	 network	 been	 a	 1-ohm	 resistor,	 Y(s)	 would	 be	 an
identity	matrix	and	det	YN(s)	would	equal	det	 ,	which	is	equal	 to	the	total
number	 of	 the	 spanning	 trees	 in	 the	 network	 (Chapter	 9).	 But	 for	 an	 RLC
network,	in	general,	Y(s)	is	not	an	identity	matrix.	It	is,	however,	diagonal,	and
therefore	AfY(s)	has	the	same	structure	as	Af	except	that	the	kth	column	in	Af	is
multiplied	by	Yk(s).	Every	nonzero	major	determinant	in	AfY(s),	as	well	as	Af,
still	corresponds	to	a	spanning	tree	of	the	network.
If	we	 call	 the	 product	 of	 all	 n	 −	 1	 edges	 of	 a	 specific	 spanning	 tree	 a	 tree



admittance	product,	Eq.	(13-16)	becomes.

Equation	 (13-17)	was	proposed	by	Maxwell	and	hence	 is	known	as	Maxwell’s
formula.	To	 calculate	 the	 node	 admittance	 determinant	 by	Maxwell’s	 formula,
one	must	 find	 all	 the	 spanning	 trees	 of	 the	 network,	multiply	 the	 n	 −	 1	 edge
admittances	of	 each	 spanning	 tree,	 and	 then	 add	 the	 resulting	products.	Let	 us
illustrate	Maxwell’s	formula	for	the	network	of	Fig.	13-3.	The	spanning	trees	of
this	graph	are	abd,	abe,	acd,	ace,	ade,	bcd,	bce,	and	bde.	Multiplying	the	edge
admittances	 in	 each	 spanning	 tree	and	adding	 them,	we	get	 the	determinant	of
the	node	admittance	matrix	ΔN

Note	 that	 to	 compute	ΔN	we	 do	 not	 need	 to	write	YN(s).	Also	 note	 that	 no
terms	 are	 canceled	 in	 this	 method	 of	 computing	 ΔN.	 The	 reader	 is	 urged	 to
compute	 det	 YN(s)	 directly	 from	 matrix	 YN(s)	 and	 verify	 that	 it	 equals	 the
expression	for	ΔN	just	obtained.	Observe	the	large	number	of	terms	that	cancel	in
the	process	of	directly	evaluating	det	YN(s).	Also	note	that	ΔN	is	independent	of
the	 reference	vertex	chosen	because	 the	 trees	of	a	graph	do	not	depend	on	 the
reference	vertex	in	writing	Af.



Cofactors	of	YN(s)	and	2-Trees

Evaluation	of	cofactors	of	the	node	admittance	matrix	YN(s)	is	slightly	more
involved	than	det	YN(s).	Let	the	cofactor	of	the	ijth	entry	in	YN(s)	be	designated
by	Δ	ij.	Then	by	definition

Since	 ,	deleting	the	ith	row	from	Af	and	the	jth	column	from	Af	will
delete	 the	 ith	row	and	 jth	column	from	YN(s),	 respectively.	Moreover,	deleting
the	jth	column	from	 	is	equivalent	to	deleting	the	jth	row	in	Af	Therefore.

where	 Af-i	 denotes	 the	 submatrix	 of	 Af	 remaining	 after	 its	 ith	 row	 has	 been
deleted.

If	 Af	 is	 the	 reduced	 incidence	 matrix	 of	 a	 graph	G,	 what	 does	 matrix	 Af-i
represent?	Matrix	Af—i	is	the	reduced	incidence	matrix	of	the	graph	Gi	obtained
from	G	by	fusing	its	ith	vertex	with	the	reference	vertex	and	removing	any	self-
loop	resulting	from	the	fusion	(Problem	13-14).
Let	us	first	evaluate	symmetric	cofactors	Δii	,	which	according	to	Eq.	(13-18)

is

Δii	=	det[Af-iY(s)(Af-i)T],

and	the	right-hand	side	of	this	equation	is	simply	the	sum	of	the	tree	admittance
products	for	the	graph	Gi	Therefore,

Now	look	at	a	spanning	tree	of	Gt	as	a	subgraph	of	the	original	graph	G.	This
subgraph	has	n	−	2	edges,	n	vertices,	and	no	circuits.	Therefore,	it	must	consist
of	 two	components	 (one	of	which	may	possibly	be	an	 isolated	vertex).	Such	a
subgraph	is	called	a	2-tree	of	G.	For	example,	in	Fig.	13-4	the	subgraph	ad	is	a



spanning	 tree	 of	G3	 and	 is	 a	 2-tree	 in	G.	 (Note	 that	G3	 is	 obtained	 by	 fusing
vertex	3	 to	 the	reference	vertex	4	and	removing	 the	resulting	self-loop	of	edge
e.)

Fig.	13-4	Spanning	tree	of	G3	is	a	2-tree	(3,	4)	of	G.

Moreover,	 in	 this	 2-tree	 of	 G,	 the	 vertex	 i	 and	 the	 reference	 vertex	 r	 must
occur	 in	 different	 components;	 otherwise,	 fusing	 them	 would	 yield	 a	 circuit.
Such	2-trees	 in	which	 two	specified	vertices	occur	 in	different	components	are
designated	by	2-tree	(i,	r).	For	example,	in	Fig.	13-4	subgraph	ad	is	a	2-tree	(3,
4).	Thus	Eq.	(13-19)	can	be	rewritten	as

Let	us	now	use	Eq.	(13-20)	to	evaluate	the	cofactor	Δ33	of	the	network	in

Fig.	13-3.	It	has	five	2-trees	of	(3,	4)	type,	and	these	are,	as	seen	from	Fig.	13-
4(b),

ab,	ab,	ad,	bc,	and	bd.
Therefore,

To	evaluate	Δij,	the	cofactor	of	an	off-diagonal	entry,	observe	that	in	Eq.	(13-



18)	 the	 nonzero	majors	 of	Af-tY(s)	 correspond	 to	 2-trees	 (i,	 r),	where	 r	 is	 the
reference	node.	The	nonzero	majors	of	Af-j	correspond	to	2-trees	(j,	r).	The	terms
that	contribute	to	Δij	in	Eq.	(13-18)	must	be	due	to	both	2-trees	of	(i,	r)	and	(j,	r).
Since	 a	 2-tree	 has	 only	 two	 components	 and	 vertex	 r	 must	 be	 in	 one	 of	 the
components,	 both	 i	 and	 j	 vertices	 must	 be	 in	 the	 other.	 Such	 a	 2-tree	 is
designated	by	a	2-tree	(ij,	r).	Thus

In	Eq.	(13-20)	we	did	not	have	to	worry	about	the	sign	of	the	nonzero	majors,
because	corresponding	majors	of	both	Af−i	 and	 (Af−i)T	had	 the	same	sign.	The
situation	in	Eq.	(13-21),	however,	is	different.	Since	Af−i	and	Af−j	are	different
matrices,	 we	 have	 no	 assurance	 that	 the	 signs	 of	 the	 products	 of	 the
corresponding	majors	will	be	positive.	In	fact,	it	can	be	shown	(Problem	13-15)
that

Therefore,

Returning	to	the	example	of	Fig.	13-3,	once	more

Node	 Voltages:	 Now	 we	 can	 compute	 any	 node	 voltage	 required.	 For
example,	the	voltage	at	node	3	in	Fig.	13-3	is	given	by



Network	Functions:	Now	that	we	have	formulas	for	the	determinant	and	every
cofactor	 Δij	 of	 the	 node	 admittance	 matrix,	 any	 network	 function	 that	 was
originally	expressed	in	terms	of	node	admittance	matrix	can	now	be	expressed	in
terms	of	various	tree-admittance	products.	For	example,	the	open-circuit	transfer
function	of	a	three-terminal	network	in	Fig.	13-5(a)	(all	driving	currents	zeroed
except	J1),	taking	4	as	the	reference,	is

Formulas	like	these	are	called	topological	formulas	for	networks.



Fig.	13-5	Three-terminal	RLC	network.

Applying	this	topological	formula	to	the	network	in	Fig.	13-5(b),	which	is	the
same	as	the	network	in	Fig.	13-3	with	its	driving	sources	removed,	we	get

13-5.	RLC	NETWORKS	WITH	INDEPENDENT	SOURCES:
LOOP	ANALYSIS



In	 Section	 13-4,	 had	 we	 considered	 KVL	 instead	 of	 KCL	 (converting	 any
current	source	into	an	equivalent	voltage	source),	we	would	have	obtained	a	set
of	μ	=	e	−	n	+	1	simultaneous	loop	equations,

where	Bf	 is	the	fundamental	circuit	matrix	of	the	network	with	respect	to	some
spanning	 tree,	 and	 	 is	 its	 transpose.	 The	 e	 by	 e	 matrix	 Z(s)	 is	 the	 edge
impedance	matrix,	 describing	 the	 electrical	 property	 of	 each	 of	 e	 edges	 in	 the
network;	that	is.

Note	that	for	an	RLC	network	the	edge	impedance	matrix	Z(s)	is	the	inverse	of
its	 edge	 admittance	 matrix	 Y(s).	 IL(s)	 is	 the	 Laplace	 transform	 of	 the	 loop
current	vector	iL(t)	and	E(s)	is	the	Laplace	transform	of	the	voltage	sources	(or
equivalent	voltage	sources)	applied	externally	in	the	μ	fundamental	circuits.
The	step-by-step	derivation	of	Eq.	(13-24)	 is	similar	 to	 the	derivation	of	Eq.

(13-15)	and	is	left	as	an	exercise	(Problem	13-9).
The	μ	by	μ	matrix	 	in	Eq.	(13-24)	is	called	the	loop	impedance	matrix

and	is	usually	denoted	by	ZL(s).	Thus	Eq.	(13-24)	is	rewritten	as



Fig.	13-6	Network	of	Fig.	13-3(a)	for	loop	analysis.

For	example,	consider	 the	electrical	network	of	Fig.	13-3(a),	once	again.	By
replacing	 the	 current	 source	x(t)	with	 an	 equivalent	voltage	 source,	we	get	 the
network	as	shown	in	Fig.	13-6(a)	and	its	graph	as	in	Fig.	13-6(b).

The	solution	of	Eq.	(13-25)	requires	obtaining	the	determinant	and	cofactors	of
ZL(s).	The	expression	 for	ΔL,	 the	determinant	of	ZL(s),	according	 to	 the	Binet-
Cauchy	theorem	is	given	by



Since	a	major	of	Bf	is	nonzero	if	and	only	if	it	corresponds	to	a	chord	set,	Eq.
(13-26)	becomes

Equation	 (13-27)	 was	 originally	 given	 by	 Kirchhoff	 for	 a	 purely	 resistive
network.	For	the	network	of	Fig.	13-6(b),	all	possible	chord	sets	are	ce,	cd,	be,
bd,	bc,	ae,	ac,	and	ad.	Therefore,

The	expressions	for	the	cofactors	of	ZL(s)	both	symmetrical	and	asymmetrical
can	be	obtained	in	a	fashion	similar	to	those	for	YN(s)	(Problems	13-11	and	13-
12).
Note	the	duality	between	the	nodal	and	loop	analyses	(Problem	13-16).

13-6.	GENERAL	LUMPED,	LINEAR,	FIXED	NETWORKS

Topological	 formulas	 for	 ΔN,	 ΔL,	 Δij,	 and	 so	 on,	 derived	 in	 the	 last	 two
sections	were	dependent	on	two	important	restrictions	on	the	network:

1. Existence	of	edge	admittance	matrix	Y(s)	[or	edge	impedance	matrix	Z(s)],
which	 implied	 that	 the	 network	 elements	 were	 lumped,	 linear,	 and	 time
invariant.

2. The	 edge	 admittance	matrix	Y(s)	 [and	 therefore	 also	Z(s)]	was	 diagonal.
This	 implied	 that	 there	 was	 no	 mutual	 coupling	 between	 edges	 of	 the



network.	 Thus	 three-or	 four-terminal	 devices	 (which	 produce	 couplings
between	 two	 vertex	 pairs),	 such	 as	 transformers,	 transistors,	 tubes,	 and
gyrators,	could	not	have	been	included.

In	this	section	we	shall	still	retain	restriction	1,	but	do	away	with	2.	This	will
allow	 us	 to	 handle	 a	 general	 linear	 network	 containing	 lumped,	 linear,	 time-
invariant,	r-terminal	(r	≥	2)	elements—passive	devices	like	transformers	(which
are	bilateral	also)	and	gyrators	(which	are	nonbilateral),	as	well	as

Fig.	13-7	(a)	Network	with	a	transformer	and	a	transistor;	(b)	Its	equivalent	network;	(c)	Graph
representation	of	(b).



active	devices,	 such	as	 tubes	and	 transistors.	An	example	of	 such	a	network	 is
shown	in	Fig.	13-7.
In	 the	 network	 in	 Fig.	 13-7	 (which	 has	 six	 edges	 and	 five	 vertices),	 we

observe	that	the	current	through	edge	5	is	dependent	not	only	on	V5	but	also	on
V4,	 the	 voltage	 across	 edge	 6.	 Similarly,	 the	 currents	 through	 1	 and	 2	 are
dependent	 on	 the	 voltage	 across	 each	 other.	 Thus	 edges	 1	 and	 2	 are	mutually
coupled	and	so	are	5	and	4.	(Edges	such	as	3	and	6	that	have	no	coupling	with
any	other	edge	are	called	ordinary	edges.)	The	edge	admittance	matrix	Y(s)	 is
shown	in	the	following	equation,	I(s)	=	Y(s)V(s)	for	the	network:

where

Clearly,	Y(s)	is	not	diagonal.

Node	Admittance	Matrix
Just	 as	 in	 Section	 13-4,	 Kirchhoff’s	 current	 law	 in	 its	 Laplace	 transformed

form	will	yield

and	therefore	the	node	admittance	matrix	is



The	difference	between	Eqs.	(13-15)	and	(13-28)	is	only	that	 in	(13-15)	matrix
Y(s)	was	diagonal,	whereas	it	is	not	diagonal	in	Eq.	(13-28).
For	the	network	and	its	graph	shown	in	Fig.	13-7,

and	the	node	admittance	matrix	 	is

Determinant	ΔN

Again,	 our	 aim	 is	 to	 evaluate	 the	 determinant	 and	 cofactors	 of	 the	 node
admittance	matrix	YN(s).	We	write

Using	the	Binet-Cauchy	theorem,

where	the	subscript	α	denotes	a	set	of	n	−	1	columns	of	AfY(s)	and	Af	(same	as	a
set	 of	 n	 −	 1	 rows	 of	 .	 Thus	 a	 also	 denotes	 a	 set	 of	 n	 −	 1	 edges	 of	 the
corresponding	graph.	In	Eq.	(13-29),	Y(s)	is	not	diagonal;	therefore,	the	product
Af(s)	is	not	as	simply	related	to	Af	as	it	was	in	Eq.	(13-15).	So	we	apply	again



the	Binet-Cauchy	theorem	to	evaluate	det	[AfY(s)]α.	And	since

[AfY(s)]α	=	Af[Y(s)]α,

We	get

where	[Af]ß	is	a	set	of	n	−	1	columns	of	Af	and	 	is	the	corresponding	set	of	n
−	 1	 rows	 of	 [Y(s)]a.	 Thus	 	 is	 an	 (n	 −	 1)	 by	 (n	 −	 1)	 submatrix	 of	 Y(s).
Substituting	Eq.	(13-30)	into	(13-29),	we	get

In	Eq.	(13-31)	the	summation	is	over	all	possible	pairs	of	sets	of	n	−	1	edges
of	 the	 graph,	 but	 det[Af]α	 and	 det[Af]β	 are	 zero	 unless	α	 and	 ß	 correspond	 to
spanning	trees	of	the	network,	in	which	case	they	are	+1	or	−	1.	Therefore,

summed	over	all	possible	spanning	tree	pairs	(α,	ß).	The	term	∊aß	is	the	product
of	the	signs	of	spanning	trees	α	and	β.
In	general,	α	and	ß	can	represent	different	spanning	trees.	If	Y(s)	is	diagonal,

det	 	=	0,	unless	α	=	ß.	But	if	α	=	β,	ϵaß	=	1	and	Eq.	(13-32)	reduces	to	(13-
17).
But	if	Y(s)	is	not	diagonal,	a	spanning	tree	α,	besides	making	a	tree	pair	with

itself,	may	be	able	to	“pair-up”	with	some	other	spanning	trees.	These	terms	will
be	contributions	to	ΔN	due	to	the	couplings	between	edges.

Pairs	 of	 Spanning	 Trees:	 The	 following	method	 of	 picking	 out	 all	 pairs	 of
spanning	 trees	 (α,	ß)	 for	which	 det	 	 ≠	 0	 depends	 on	 the	 fact	 that	 for	 any
(lumped,	 linear,	 time-invariant)	 electrical	 network	 the	 edge	 admittance	 matrix
Y(s)	can	be	expressed	as



where	 the	 nonzero	 submatrices	 Y1(s),	 Y2(s),	 .	 .	 .,	 Yh(s)	 are	 relatively	 small
square	matrices.	See,	for	example,	the	edge	admittance	matrix	of	the	network	in
Fig.	13-7.
Assuming	 that	 we	 have	 the	 list	 of	 all	 spanning	 trees	 of	 the	 graph,	 the

following	 principle	 determines	 which	 spanning	 tree	 ß	 pairs	 with	 a	 given
spanning	tree	a,	such	that	det	 	≠	0.
The	set	of	rows	ß	must	be	selected	such	that	 	contains	no	row	or	column

entirely	of	zeros.	Therefore,	if	α	contains	edge	ρ	and	column	ρ	in	Y(s)	contains
nonzero	entries	in	rows	x,	y,	.	.	.,	then	ß	must	contain	one	(or	more)	of	the	edges
x,	y,	.	.	.	.	Thus,	if	columnp	falls	in	the	submatrix	Yk(s)	of	Y(s),	at	least	one	of	the
rows	must	also	be	in	the	submatrix	Yk(s).
A	corollary	of	the	observation	just	made	is	that	if	spanning	tree	α	contains	an

ordinary	edge	u,	ß	must	also	contain	that	ordinary	edge	u.
Let	 us	 illustrate	 the	 selection	 principle	 by	 means	 of	 the	 example	 of	 the

network	in	Fig.	13-7.	The	graph	has	eight	spanning	trees:

(1,2,3,5),	(1,2,3,6),	(1,2,4,5),	(1,2,4,6),	(1,2,5,6),
(1,3,4,5),	(1,3,4,6),	(1,3,5,6).

Since	3	and	6	are	ordinary	edges,	 the	 following	five	are	 the	only	candidates
for	possible	pairings	out	of	the	total	of	(8	×	7)/2	=	28	pairs	of	spanning	trees:

1. {(1,	2,	3,	5)	and	(1,	3,	4,	5)}:	both	have	edge	3.

2. {(1,	2,	4,	6)	and	(1,	2,	5,	6)}:	both	have	edge	6.

3. {(1,	2,	3,	6)	and	(1,	3,	4,	6)}:	both	have	3	and	6.

4. {(1,	2,	3,	6)	and	(1,	3,	5,	6)}:	both	with	3	and	6.

5. {(1,	3,	4,	6)	and	(1,	3,	5,	6)}:	both	with	3	and	6.



The	existence	of	 the	 same	 set	 of	 ordinary	 edges	 is	 only	 a	necessary	 and	not	 a
sufficient	condition	for	pairing.
Let	us	now	apply	the	tree-pair	selection	principle	to	nonordinary	edges:

1. If	Yk(s)	is	a	2	by	2	square	submatrix,	it	corresponds	to	a	transformer	or	a
gyrator,	and	its	contribution	to	ΔN	is

2. If	Yk(s)	 is	 a	 2	 by	 2	 triangular	matrix,	 it	 corresponds	 to	 a	 transistor	 or	 a
vacuum	tube.	In	that	case



In	light	of	these	two	tables,	let	us	look	at	the	five	tree	pairs	that	are	possible
candidates	in	the	network	of	Fig.	13-7.
Three	of	 the	 five	pairs,	1,	3,	 and	4,	do	not	 form	valid	 tree	pairs,	because	 in

each	of	the	three	one	spanning	tree	contains	both	edges	1	and	2,	while	the	other
one	contains	only	edge	1.
The	remaining	two	pairs	[(1,	2,	5,	6),	(1,	2,	4,	6)]	and	[(1,	3,	5,	6),	(1,	3,	4,	6)]

satisfy	the	tree-pair-solution	criterion,	and	their	contributions	to	ΔN	are

respectively.
The	criterion	of	selection	of	pairs	of	spanning	trees	can	be	easily	extended	to

Yk(s)	of	sizes	larger	than	2	by	2	(see	[13-7]).
Signs	of	Tree	Pairs:	 In	 the	 case	 of	 a	 spanning	 tree	α	 consisting	of	 ordinary

edges	only,	the	spanning	tree	pairs	only	with	itself,	and	we	need	not	know	if	det
[Af]α	=	+1	or	−	1	because

ϵαα	=	det	[Af]	·	det	[Af]	=	+1.

But	for	tree	pairs	(α	,	β)	consisting	of	nonordinary	edges	(and	therefore	α	≠	β,	we
must	know	the	relative	(not	absolute)	signs	of	the	spanning	trees	in	each	pair.



According	to	the	method	of	sign	determination	discussed	in	Chapter	9,	for	the
tree	pair	in	Fig.	13-7,

[(1,2,	5,	6),	(1,2,	4,	6)], ϵα	β,	=	+1,

and	for

[(1,3,5,6),	(1,3,4	6)], ϵα	β	=	+l.

Thus	ΔN	as	a	sum	of	the	eight	spanning	admittance	products	(α,	α	pairings)	and
two	additional	terms	due	to	(α,	β)	pairings	is	expressed	as

Note	once	again	that	there	is	no	cancellation	of	terms.
The	derivation	of	cofactors	Δij	for	active	networks	can	be	carried	on	similarly

by	 a	 combination	 of	 the	 technique	 discussed	 in	 Section	 13-4	 and	 the	 use	 of
spanning-tree	pairs.

SUMMARY

The	technique	developed	in	this	chapter	can	be	extended	to	solve	any	linear-
system	problem.	Roughly	speaking,	any	linear-system	problem	can	be	expressed
in	the	following	form:

AX*	=	Y*,

where	∧	is	a	linear	operator,	Y*	a	known	vector,	and	X*	an	unknown	vector	for
which	the	solution	is	sought.
A	 standard	 method	 of	 solving	 this	 equation	 is	 to	 find	 an	 operator	 ∧-1

(assuming	it	exists	and	is	unique),	the	inverse	of	A,	and	then	to	premultiply	both
sides	to	obtain	the	required	vector

X*	=	∧-1Y*.



In	an	electrical	network	consisting	of	 lumped,	 linear,	 time-invariant	devices,
the	 problem	 consists	 of	 solving	 a	 set	 of	 simultaneous,	 linear,	 differential
equations	 with	 constant	 coefficients.	 Application	 of	 the	 Laplace	 transform
converts	 these	 differential	 equations	 into	 linear	 algebraic	 equations.	 Thus	 the
operator	A	is	a	matrix	whose	entries	are	functions	of	s,	the	Laplace	variable,	and
Y*	is	the	vector	of	independent	driving	voltages	(or	currents).
Thus	 the	 electrical	 network	 problem	 (like	 most	 linear-system	 problems)

consists	of	matrix	inversion,	which	is	the	same	as	finding	the	determinants	and
cofactors.	And	all	that	has	been	done	in	this	chapter	is	to	show	how	graph	theory
can	be	used	 (rather	 than	algebra)	 to	evaluate	determinants	and	cofactors	of	 the
nonsingular	matrix	∧,	if	∧	could	be	expressed	as	a	triple	matrix	product

∧	=	PMPT,

where	P	is	a	unimodular	(0,	l)-matrix—a	reduced	incidence	(or	fundamental	cut-
set	or	 fundamental	circuit	matrix)	of	a	graph—describing	 the	“structure”	of	A;
and	M	is	a	matrix	describing	the	values	of	the	nonzero	entries	in	A.
The	 same	 approach	 can	 be	 used	 for	 solution	 of	 any	 lumped,	 linear,	 time-

invariant	 system,	 provided	 a	 “system	 graph”	 can	 be	 found.	 This	 has	 a	 direct
bearing	 on	 the	 realizability	 problem	 discussed	 in	 Section	 12-5,	 as	 to	 when	 a
given	unimodular	matrix	P	can	be	the	cut-set	or	circuit	matrix	of	a	graph.
Whether	 there	 is	 any	 computational	 advantage	 in	 using	 graph	 theory	 for

network	analysis	is	totally	dependent	on	whether	one	can	generate	all	spanning
trees,	2-trees,	and	 the	 like,	of	a	 large	graph	 rapidly	and	without	duplication.	A
graph	 of	moderate	 size	 (20	 vertices	 and	 50	 edges)	 could	 have	 several	million
spanning	trees.	Even	the	storing	of	all	the	trees	in	a	computer	memory	can	be	a
problem.	The	algorithm	should	therefore	be	such	that	spanning	trees	are	rapidly
generated,	 one	 at	 a	 time,	 and	 its	 admittance	 product	 is	 added	 to	 or	 subtracted
from	 (depending	 on	 the	 sign)	 the	 cumulative	 sum.	 The	 algorithm	 should
guarantee	 that	 no	 spanning	 tree	will	 be	 generated	 twice,	 so	 that	 one	 does	 not
have	 to	 check	 every	 newly	 obtained	 tree	 against	 all	 the	 trees	 previously
generated.	Moreover,	the	algorithm	must	also	guarantee	that	no	spanning	tree	in
the	graph	is	left	out.
As	 discussed	 in	 Chapter	 11,	 a	 number	 of	 algorithms	 for	 generating	 all

spanning	trees	of	a	graph	have	been	proposed	in	the	literature.	The	best	ones	do
generate	 one	 spanning	 tree	 at	 a	 time	 without	 duplication	 and	 generate	 all
spanning	 trees.	 But	 the	 algorithms	 are	 still	 not	 as	 efficient	 as	 one	 would	 like
them	to	be.
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PROBLEMS

13-1. Show	 that	Kirchhoff’s	voltage	 and	current	 laws	 imply	 “conservation	of
power.”	[Hint:	Using	Eqs.	(13-5)	and	(13-7),	show	that	 .]

13-2. An	electrical	network	with	e	edges	has	2e	unknowns	(the	current	through
and	voltage	across	each	edge).	Identify	the	2e	independent	equations,	and
discuss	the	existence	and	uniqueness	of	the	solutions.

13-3. 	 Kirchhoff’s	 current	 law	 may	 be	 expressed	 in	 more	 general	 form	 as
follows:	The	net	sum	(taking	into	account	the	orientations)	of	all	currents
flowing	 across	 a	 cut-set	 is	 zero.	 Using	 a	 cut-set	 matrix	 (instead	 of
incidence	matrix)	 and	 this	 form	 of	KCL,	 develop	 equations	 parallel	 to
Eqs.	(13-2),	(13-7),	(13-8),	(13-15),	and	(13-17).

13-4. In	Fig.	13-2(b)	list	all	spanning	trees	and	all	2-trees	(N3N1,	N5).
13-5. In	Fig.	13-4(a)	sketch	all	2-trees	(2,4)	and	all	2-trees	(23,	4).
13-6. Of	Kirchhoff’s	 and	Maxwell’s	 formulas,	which	one	will	 you	prefer	 for

evaluating	ΔN	and	ΔL?	Why?
13-7. In	Fig.	13-2,	assume	the	resistance	value	Ri	or	capacitance	value	Ci	 (as

the	case	may	be)	in	the	ith	edge	of	the	network.	Let	x(t)	be	the	value	of
the	independent	voltage	source	shown,	and	let	N5	be	the	reference	node.
Convert	 x(t)	 into	 an	 equivalent	 current	 source	 in	 parallel	 with	R1.	 Use
Maxwell’s	 formula	 to	evaluate	ΔN	 and	Δ31.	Using	 these	 two	quantities,
evaluate	the	voltage	at	node	N3.

13-8. In	 Problem	 13-7,	 keep	 the	 voltage	 source	 in	 series	 with	R1.	Write	 the
loop-impedance	 matrix	 Z(s)	 of	 the	 network.	 Write	 ZL(s).	 Evaluate	 ΔL
using	Eq.	(13-27).	Evaluate	the	appropriate	cofactor	of	ZL(s)	required	for
obtaining	V2(s).	Finally,	obtain	V2(s),	and	compare	the	result	with	that	of
Problen	13-7.

13-9. In	a	step-by-step	fashion	derive	Eq.	(13-24).
13-10. For	an	RLC	network,	prove	that



[Hint:	Yi(s)Zi(s)	=	1,	and	therefore	for	each	spanning	tree	T	in	the	network,

13-11. Similarly	 to	 Eq.	 (13-20),	 show	 that	 the	 (i,i)th	 cofactor	 of	 the	 loop
impedance	matrix	ZL(s)	of	an	RLC	network	G	is	equal	to	the	sum	of	the
chord	 impedance	 products	 for	 all	 spanning	 trees	 of	 the	 network	 G’,
obtained	from	G	by	deleting	the	ith	chord.

13-12. Attempt	 an	 expression	 for	 the	 (i,j)th	 cofactor	 of	 the	 loop	 impedance
matrix	ZL	of	an	RLC	network.

13-13. In	 deriving	 expressions	 for	 ΔN	 and	 ΔL,	 we	 tacitly	 assumed	 the
nonsingularities	 of	YN(S)	 and	 ZL(s).	Discuss	 the	 requirements	 imposed
on	 an	 electrical	 network	 because	 of	 the	 nonsingularity	 requirements.
[Hint:	 The	 network	 should	 have	 (1)	 each	 voltage	 source	 only	 in	 series
with	some	passive	element,	(2)	each	current	source	only	in	parallel	with
some	 passive	 element,	 and	 (3)	 no	 perfectly	 coupled	 transformer;	 i.e.,
L1L2	>	 .]

13-14. Let	 Af	 be	 the	 (n	 −	 1)	 by	 e	 reduced	 incidence	 matrix	 of	 a	 connected
(directed	or	undirected)	graph	G	of	n	vertices	and	e	edges,	with	respect	to
some	 reference	 vertex	 r.	 And	 let	Gt	 be	 the	 graph	 obtained	 from	G	 by
fusing	 its	 ith	vertex	with	 the	 reference	vertex	r,	and	removing	any	self-
loops	 produced	 in	 the	 process.	 Prove	 that	Af-i,	 the	 (n	 −	 2)	 by	 e	matrix
obtained	from	Af	by	deleting	its	ith	row,	is	the	reduced	incidence	matrix
(with	the	fused	vertex	as	the	reference	vertex)	of	Gi.	[Hint:	In	Gi	the	n	−
2	 vertices	 have	 exactly	 the	 same	 incidences	 as	 they	 had	 in	 G.
Correspondingly,	 the	n	−	2	 rows	of	Af	 are	 left	 intact	 in	Af-i.	The	edges
incident	 between	 r	 and	 i	 are	 gone,	 but	 the	 edges	 that	were	 incident	 on
either	r	or	i	but	not	on	both	have	one	end	incident	on	the	fused	vertex.]

13-15. In	 Problem	 13-14,	 show	 that	 the	 product	 of	 any	 two	 corresponding
nonzero	majors	of	(n	−	2)	by	e	unimodular	matrices	Af-i	and	Af-j	is	equal
to	 (−1)i+j,	 providing	 the	 rows	 and	 columns	 of	 both	 these	 matrices	 are
arranged	in	the	same	order.

13-16. Draw	a	dual	electrical	network	to	the	one	in	Fig.	13-2,	and	then	study	the
dual	 relationship	between	various	quantities	between	 the	 two	networks,
such	as	the	loop	equations	in	one	being	the	node	equation	in	the	other.



13-17. For	 a	 one-port	 RLC	 network,	 shown	 in	 Fig.	 13-8(a),	 show	 that	 the
driving	point	admittance	at	terminals	(1,	r)	is

Fig.	13-8	One-and	two-port	RLC	networks.

13-18. A	 two-port	 network	 has	 four	 short-circuit	 admittance	 functions.	Derive
the	 topological	 formula	 for	 each	 in	 the	 two-port	 RLC	 network	 with
common	reference	vertex	r	shown	in	Fig.	13-8(b).



14	GRAPH	THEORY	IN	OPERATIONS	RESEARCH

Graph	theory	is	a	very	natural	and	powerful	tool	in	combinatorial	operations
research.	In	earlier	chapters	we	have	already	applied	graph	theory	to	operations-
research	 problems.	 The	 traveling-salesman	 problem	 (Chapter	 2),	 finding	 the
shortest	 spanning	 tree	 in	 a	 weighted	 graph	 (Chapter	 3),	 obtaining	 an	 optimal
matching	of	 jobs	 and	men	 (Chapter	 8),	 and	 locating	 the	 shortest	 path	between
two	 vertices	 in	 a	 graph	 (Chapter	 11)	 are	 some	 examples	 of	 the	 uses	 of	 graph
theory	 in	 operations	 research.	 This	 chapter	will	 be	 devoted	 entirely	 to	 solving
problems	 in	 operations	 research	using	graph-theoretic	 tools.	We	 shall	 consider
three	 related	 areas	 of	 operations	 research	 in	 which	 graph	 theory	 is	 used	most
frequently	 and	 profitably.	 They	 are	 transport	 networks,	 activity	 networks,	 and
the	theory	of	games.

14-1.	TRANSPORT	NETWORKS

In	Section	4-6	we	saw	how	a	graph	can	be	used	as	a	model	for	a	network	of
pipelines	 through	 which	 some	 commodity	 is	 transported	 from	 one	 place	 to
another.	 The	 general	 problem	 in	 such	 a	 transport	 network	 (also	 called	 a	 flow
network)	is	to	maximize	the	flow	or	minimize	the	cost	of	a	prescribed	flow.	This
is	an	operations-research	problem	and	can	be	solved	by	linear	programming,	but
the	 graph-theoretic	 approach	 has	 been	 found	 to	 be	 computationally	 more
efficient.	 In	 this	 section	 we	 shall	 see	 how	 network-flow	 problems	 can	 be
formulated	and	solved	using	graphs.	Let	us	first	define	some	terms.

Transport	 Network:	 A	 simple,	 connected,	 weighted,	 digraph	G	 is	 called	 a
transport	(or	flow)	network	if	the	weight	associated	with	every	directed	edge	in
G	 is	 a	 nonnegative	 number.	 In	 a	 transport	 network	 this	 number	 represents	 the
capacity	of	the	edge	and	is	designated	as	cij	for	the	edge	directed	from	vertex	i	to
vertex	j.	A	transport	network	is	shown	in	Fig.	14-1,	where	the	numbers	written



beside	the	edge	are	the	edge	capacities.

Fig.	14-1	Transport	network.

The	capacity	cij	of	an	edge	(i,j)	can	be	thought	of	as	the	maximal	amount	of
some	commodity	(such	as	water,	gas,	electrical	energy,	number	of	cars,	bits	of
information,	etc.)	that	can	be	transported	from	station	i	to	j,	along	the	edge	(i,j),
per	unit	of	time	in	a	steady	state.	Then	a	natural	question	is:	What	is	the	maximal
amount	of	the	commodity	flow	from	a	given	vertex	s	to	another	specified	vertex
t	via	the	entire	network?	Let	us	first	formulate	the	question	mathematically.

Maximal	flow:	In	a	given	transport	network	G,	a.	flow	(or	a	static	flow)	is	an
assignment	of	a	nonnegative	number	fij	to	every	directed	edge	(i,	j)	such	that	the
following	conditions	are	satisfied:

1. For	every	directed	edge	(i,	j)	in	G

2. There	is	a	specified	vertex	s	in	G,	called	the	source,	for	which

where	the	summations	are	taken	over	all	vertices	in	G.	Quantity	w	is	called	the
value	of	the	flow.

3. There	is	another	specified	vertex	t	in	G,	called	the	sink,	for	which

4. All	 other	 vertices	 are	 called	 intermediate	 vertices.	 For	 each	 intermediate
vertex	j,



Condition	 (14-1)	 states	 that	 the	 flow	 through	 any	 edge	 does	 not	 exceed	 its
capacity.	The	other	three	conditions	state	that	the	net	flow	out	of	the	source	is	w,
the	net	 flow	 into	 the	 sink	 is	w,	 and	 the	 flow	 is	conserved	at	 each	 intermediate
vertex.	This	is	why	w	is	called	the	value	of	the	flow	from	s	to	t.	Condition	(14-3)
can,	in	fact,	be	derived	from	(14-2)	and	(14-4),	and	is	therefore	not	independent.
It	is	understood	that	if	there	is	no	edge	from	vertex	p	to	q,	fpq	=	0.	An	edge	(i,	j)
for	which	fij	=	cij	is	said	to	be	saturated.
A	set	of	flows	fij’s	for	all	(i,	j)’s	in	G	is	called	a	flow	pattern.	A	flow	pattern

that	 maximizes	 the	 quantity	 w	 is	 called	 a	 maximal	 flow	 pattern.	 The	 first
problem	 one	 encounters	 in	 a	 transport	 network	 is:	 Given	G,	 s,	 and	 t,	 find	 a
maximal	flow	pattern.

Linear	 Programming	 Formulation:	 Those	 familiar	with	 linear	 programming
(LP)	will	 recognize	 this	 as	 an	 LP	 problem.	As	 an	 example,	 take	 the	 transport
network	in	Fig.	14-1.	The	variables	are	the	flows	through	each	of	the	10	edges.
Although	w	=	 fab	+	 fsd	−	 fcs,	we	can	regard	w	as	another	variable.	Let	 the	flow
pattern	be	denoted	by	a	column	vector	f:

and	let

denote	the	variable	vector	of	the	LP	problem.	Let	h	denote	the	row	vector

(1,0,0,0,0,0,0,0,0,0,0).



(1,0,0,0,0,0,0,0,0,0,0).

Then	the	problem	is	to	maximize	h·f′	subject	to	the	constraints

A′·f′	=	0,	f	≤	c,	and	f′	≥	0,

where

and

Observe	that	A′	is	the	incidence	matrix	of	a	digraph	obtained	by	adding	an	edge
from	t	to	s	in	the	transport	network	of	Fig.	14-1.	Also	note	that	the	edges	in	f,	c,
and	A′	must	appear	in	the	same	order.
Clearly,	a	maximal	flow	can	be	obtained	by	solving	this	LP	problem,	but,	as

mentioned	 earlier,	 the	 graph-theoretic	 approach	 is	 more	 efficient.	 Using	 the
graph-theoretic	 concept,	 we	 shall	 now	 state	 and	 prove	 the	 max-flow	 mincut
theorem,	the	most	important	result	in	the	theory	of	transport	networks.

Cut	and	Its	Capacity:	Ignoring	the	directions	of	edges	in	a	transport	network,
let	us	consider	a	cut-set	with	respect	to	vertices	s	and	t,	that	is,	a	cut-set	which



separates	the	source	s	from	sink	t.	Such	a	set	of	edges	in	a	transport	network	is
called	a	cut.	The	notation	(P,	 )	is	used	to	denote	a	cut	that	partitions	the	vertices
into	two	subsets	P	and	 ,	where	P	contains	s	and	P	contains	t.	The	capacity	of	a
cut	denoted	by	c(P,	 )	 is	defined	to	be	the	sum	of	the	capacities	of	those	edges
directed	from	the	vertices	in	set	P	to	the	vertices	in	 ;	that	is,

For	example,	in	Fig.	14-1	the	cut	(dashed	line)	separating	P	=	{s,	b}	from	 	=	{c,
d,	t}	has	a	capacity	of	5	+	5	+	2	=	12.

THEOREM	14-1

In	a	given	transport	network	G,	the	value	of	flow	w	from	source	s	to	sink	t	is
less	than	or	equal	to	the	capacity	of	any	cut	separating	s	from	t.

Proof:	Let	(P,	 )	be	an	arbitrary	cut	such	that	the	source	s	is	in	vertex	set	P	and
the	sink	t	is	in	vertex	set	 .	Let	us	write	Eq.	(14-4)	for	all	intermediate	vertices	in
P	and	add	them	to	Eq.	(14-2).	This	yields

which	can	be	rewritten	as

But

Therefore,

Since	 	is	always	a	nonnegative	quantity,	we	have



In	the	following	theorem	we	shall	prove	that	it	is	possible	to	achieve	a	value
of	the	flow	which	equals	the	capacity	of	the	smallest	cut	separating	s	from	t.

THEOREM	14-2	(MAX-FLOW	MIN-CUT	THEOREM)

In	a	given	 transport	network	G,	 the	maximum	value	of	a	 flow	from	s	 to	 t	 is
equal	to	the	minimum	value	of	the	capacities	of	all	the	cuts	in	G	that	separate	s
from	t.

Proof:	In	view	of	Theorem	14-1	we	need	only	to	prove	that	there	exists	a	flow
pattern	in	G	such	that	the	value	of	the	flow	w0	from	s	to	t	is	equal	to	c(P0	 )	the
capacity	of	some	cut	(P0,	 )	separating	s	from	t.
Let	there	be	some	flow	pattern	in	G	such	that	the	value	of	the	flow	from	s	to	t

is	at	 its	maximum	possible	value	w0.	Define	a	vertex	set	P	 in	G	 recursively	as
follows:
(a)s	∈	P.
(b)	If	vertex	i	∈	P	and	either	fij	<	cij	or	fji	>	0,	then	j	∈	P.	Any	vertex	not	in	P

belongs	to	 .
Now	vertex	t	cannot	be	in	P.	If	it	were,	there	would	be	a	path	ρ	(see	Fig.	14-2)

from	s	 to	 t,	say,	s,	v1	v2,	 .	 .	 .,	vj,	vj+1	 .	 .	 .	 ,	vk,	 t,	for	which	in	every	edge	either
flow	fvjvj+1	<	Cvjvj+1	or	fvj	+	1vj	>	0.	In	path	ρ	an	edge	(vj	vj+1)	directed	from	vj	to	vj+1
is	called	a	forward	edge	and	an	edge	(vj+1,	vj)	directed	from	vj+1	to	vj	is	called	a
backward	edge	(Fig.	14-2).

Fig.	14-2	Path	ρ	in	the	proof	of	Theorem	14-2.

In	path	ρ	let	δ1	be	the	minimum	of	all	differences	[cVjvj+1	−fvjvj+1]	in	forward
edges	and	δ2	be	the	minimum	of	all	flows	in	backward	edges.	Both	δ1	and	δ2	are
positive	quantities.	Let	δ	=	mjn(δ1,δ2).	Then	 the	 flow	 in	 the	network	G	 can	be
increased	by	increasing	the	flow	in	each	forward	edge	and	decreasing	the	flow	in
each	backward	edge	by	an	amount	δ.	[Conditions	(14-1),	(14-2),	(14-3),	and	(14-
4)	are	still	satisfied.]	This	contradicts	the	assumption	that	w0	was	the	maximum
flow.



Thus	 t	must	 be	 in	 the	vertex	 set	 .	 In	other	words,	 the	 cut	 (P,	 )	 separates	 s
from	t.	Furthermore,	according	to	condition	(b),	for	each	vertex	p	in	P	and	i	in	 ,
we	have

fpi	=	cpi	and	fip	=	0.

Therefore,	from	Eq.	(14-5)	we	get	the	value	of	the	flow:

which	proves	the	theorem.	

As	an	example,	let	us	consider	the	transport	network	of	Fig.	14-1,	once	again.
It	has	eight	(23)	cuts	that	separate	s	from	t.	These	cuts	(identified	by	vertex	set	P)
and	their	capacities	are

Vertex	Set	P c(P,	 )
{s}
{s,	b}
{s,	c}
{s,	d}
{s,	b,	c}
{s,	b,	d}
{s,	c,	d}
{s,	b,	c,	d}

9
12
19
7
11
10
16
8

The	cut	with	minimum	capacity	among	these	is	the	one	in	which	P	=	{s,	d}	and	
is	{b,	c,	 t}.	The	maximum	flow	possible	 in	s	 to	 t	 in	 the	network	 is	 therefore	7
units.
The	 proof	 does	 not	 include	 an	 algorithm	 for	 finding	 the	 actual	 value	 of	 the

maximal	 flow	wmax.	Nor	does	 it	give	a	 flow	pattern	 that	 realizes	 this	maximal
flow.	If	we	were	interested	only	in	finding	wmax,	we	would	take	some	algorithm
for	 generating	 a	minimal	 cut	 (see,	 for	 instance,	 Plisch	 [14-19]	 for	 an	 efficient
computer	 code	 to	generate	 all	minimal	 cuts	 in	 a	given	 transport	 network),	 and
then	compute	its	capacity.
For	those	wanting	to	construct	a	maximal	flow	pattern,	an	algorithm	based	on



the	foregoing	proof	of	the	max-flow	min-cut	theorem	is	also	available.	This	is	an
efficient	 algorithm,	 and	 it	 uses	 a	 vertex-labeling	 process	 for	 constructing	 a
maximal	 flow	 pattern.	 However,	 the	 proof	 that	 this	 algorithm	 terminates	 in	 a
finite	number	of	steps	depends	on	the	edge	capacities	being	integers.	For	more
on	this	labeling	algorithm	and	its	modifications,	see	[14-7],	[14-9],	or	[14-12].

14-2.	EXTENSIONS	OF	MAX-FLOW	MIN-CUT	THEOREM

The	max-flow	min-cut	theorem	as	stated	is	applicable	to	a	transport	network
(simple,	weighted,	connected	digraph)	with	one	source	and	one	sink.	There	are,
however,	 many	 other	 types	 of	 network-flow	 problems	 that	 can	 be	 solved	 by
extending	 the	 max-flow	 min-cut	 theorem	 appropriately.	 Some	 of	 these
extensions	 are	 straightforward	 and	 others	 are	 quite	 involved.	 Let	 us	 consider
them	in	increasing	order	of	difficulty.

1. Multiple	Sources	and	Sinks:	If	there	are	several	sources	s1,	s2,	.	.	.	,	sk	and
several	sinks	t1,	t2,	.	.	.	tr	and	if	the	flow	from	any	source	can	be	sent	to	any
sink,	 then	 this	 problem	 can	 be	 converted	 immediately	 into	 a	 one-source
and	one-sink	problem	as	follows:	Introduce	a	supersource	s	with	edges	(of
unlimited	 capacity)	 directed	 to	 sl,	 s2,	 o..,	 sk	 and	 a	 supersink	 t	with	 edges
(also	of	unlimited	capacity)	directed	from	t1,	t2	.	.	.,	tr,	as	shown	in	Fig.	14-
3.	The	problem	of	maximizing	the	total	value	of	the	flow	from	all	sources
is	then	the	same	as	that	of	maximizing	the	value	of	the	flow	from	s	to	t.

Fig.	14-3	Multi-source	multi-sink	transport	network.

However,	if	the	restriction	is	made	that	the	flow	from	a	specified	source	si	must
be	sent	to	a	specified	sink	ti,	the	problem	becomes	much	more	difficult.	Such	a
flow,	known	as	the	multicommodity	flow,	will	be	discussed	shortly	as	a	separate
topic.

2. Vertices	 with	 Specified	 Capacity:	 Suppose	 that	 we	 have	 a	 transport
network	in	which	some	(or	all)	vertices	also	have	specified	capacities.	The



total	flow	into	a	vertex	v	must	not	exceed	its	capacity	c(v),	a	real	positive
number.	This	network	can	be	converted	into	an	ordinary	transport	network
by	 replacing	 each	 such	vertex	v	with	 two	vertices	v′	 and	v″	 and	 an	 edge
from	 v′	 to	 v″	with	 capacity	 c(v).	 All	 edges	 originally	 incident	 into	 v	 are
made	 incident	 into	v′	 and	 all	 edges	 originally	 incident	 out	 of	v	 are	made
incident	out	of	v″,	as	illustrated	in	Fig.	14-4.

Fig.	14-4	Replacement	of	a	vertex	v	with	v′	and	v″.

3. Networks	Containing	Undirected	Edges:	Often	one	encounters	the	problem
of	maximizing	a	flow	through	a	network	in	which	some	or	all	of	the	edges
are	 undirected.	 In	 such	 a	 network	 an	 undirected	 edge	 between	 vertices	p
and	q	of	capacity	cpq	implies	that	the	flow	can	occur	in	either	direction,	and

fpq	≤	Cpq,
fqp	≤	Cpq.

Moreover,	since	simultaneous	flows	in	opposite	directions	cancel	each	other,	the
flow	is	assumed	to	be	in	only	one	direction.	That	is,

fpq	·	fqp	=	0.

Thus	the	maximum-flow	problem	in	a	network	containing	undirected	edges	can
be	solved	by	 replacing	each	undirected	edge	with	a	pair	of	oppositely	directed
edges,	each	having	a	capacity	of	the	original	edge.†

4. Lower	 Bound	 on	 Edge	 Flows:	 So	 far	 we	 have	 assumed	 that	 the	 lower
bound	 on	 a	 flow	 through	 an	 edge	 in	 a	 transport	 network	 is	 zero.
Occasionally,	one	encounters	a	practical	situation	that	requires	a	minimum
flow	bij	through	an	edge	(for	instance,	an	oil	pipeline	in	Alaska	may	need	a



specified	minimum	flow	to	keep	it	from	freezing).	That	is,	conditions

replace	(14-1),	where	bij	is	a	nonnegative	real	number	no	larger	than	cij.
For	some	network	there	may	not	even	exist	a	feasible	flow	pattern,	that	is,	one

which	satisfies	the	constraints	(14-2),	(14-3),	(14-4),	and	(14-6).	For	example,	all
fij	=	0	is	not	a	feasible	flow	pattern,	unlike	in	the	case	with	no	lower	bounds	on
the	edge	 flows.	Therefore,	we	have	 to	 first	determine	 if	 indeed	 there	 is	 a	 flow
pattern	in	G	 that	satisfies	all	the	upper	and	lower	bounds,	and	if	so	how	do	we
get	a	flow.
It	can	be	shown	using	the	arguments	of	Theorem	14-1	that	the	value	w	for	any

feasible	 flow	pattern	must	 satisfy	 the	 following	 simultaneous	 requirements	 for
every	cut	(P,	 )	in	G	separating	s	and	t:

where

Furthermore,	analogous	to	Theorem	14-2,	it	can	be	shown	that	if	there	exists	a
flow	 pattern	 satisfying	 the	 lower	 and	 upper	 bounds,	 a	 maximum	 flow	 can	 be
achieved,	and	the	value	of	the	flow	equals	the	minimum	value	of	the	quantity

taken	 over	 all	 cuts	 (P,	 )	 separating	 vertices	 s	 and	 t.	 Similarly,	 the	 minimum
value	of	a	flow	equals	the	maximum	value	of

taken	over	all	cuts	(Q,	 )	separating	vertices	s	and	t.
The	 problem	 of	 determining	 conditions	 under	 which	 a	 flow	 pattern	 exists

satisfying	constraints	(14-2),	(14-3),	(14-4),	and	(14-6)	is	slightly	more	involved.
The	 reader	 is	 referred	 to	 Liu	 [8-3],	 pages	 270-275,	 or	 Chapter	 2	 of	 Ford	 and
Fulkerson	[4-3]	for	further	discussions.



5. Lossy	Networks:	So	far	we	have	assumed	that	the	flow	does	not	vary	along
an	 edge.	 In	 many	 practical	 transport	 networks,	 however,	 the	 flow	 does
suffer	 loss	during	transmission,	due	to	 leakage,	evaporation,	and	so	forth,
Such	networks	are	called	lossy	transport	networks	(or	lossy	networks).

A	lossy	network	has	an	additional	parameter,	called	efficiency,	λij,	associated
with	each	directed	edge	(i,	 j).	For	each	edge	(i,	 j)	 there	are	two	flows	:	flow	 fij
entering	 the	 edge	 and	 flow	 	 leaving	 the	 edge.	These	 quantities	 are	 related	 as
follows:

The	 efficiency	 λij	 is	 a	 positive	 number.	 It	 is	 less	 than	 unity	 if	 there	 is	 a	 loss
during	 transmission	 and	 is	 more	 than	 unity	 of	 there	 is	 a	 gain	 (for	 instance,
improvement	in	the	signal	due	to	repeaters	in	a	communication	line).
At	each	intermediate	vertex	the	total	outgoing	flow	must	still	be	equated	to	the

total	 incoming	 flow.	 The	 larger	 of	 the	 two	 quantities	 fij	 and	 	 must	 still	 not
exceed	 cip	 the	 capacity	 of	 the	 edge	 (i,	 j).	As	 in	 the	 case	 of	 ordinary	 transport
networks	 (in	which	 λij	 =	 1,	 for	 every	 edge),	 the	 goal	 is	 to	maximize	 the	 flow
arriving	at	 the	 sink	 t.	Moreover,	 for	 the	 same	value	of	 the	 flow	arriving	at	 the
sink,	 we	 may	 have	 different	 values	 of	 flow	 leaving	 the	 source.	 Therefore,
another	goal	is	to	find	a	flow	pattern	that	gives	the	maximum	flow	arriving	at	the
sink	for	a	minimum	amount	leaving	the	source.	This	is	called	an	optimal	flow	in
a	lossy	network.
The	 max-flow	 min-cut	 theorem	 has	 been	 extended	 to	 lossy	 networks.

Conditions	for	optimality	have	been	obtained,	and	algorithms	for	optimal	flows
have	been	devised.	For	details,	see	the	paper	by	Onaga	[14-18]	or	pages	277-288
in	[14-7].

14-3.	MINIMAL-COST	FLOWS

Suppose	that	associated	with	each	edge	(i,	j)	in	a	transport	network	G	there	is
an	 additional	 number	 dij,	 which	 may	 be	 thought	 of	 as	 the	 cost	 of	 unit	 flow
through	(i,	j).	It	is	desired	to	construct	a	flow	pattern	sending	a	specified	value	w
from	source	s	 to	sink	 t	 satisfying	constraints	 (14-1),	 (14-2),	 (14-3),	and	(14-4),
which	minimizes	the	total	flow	cost,



over	all	flows	that	send	w	units	from	s	to	t.
This	is	one	of	the	most	practical	problems	in	network	flows.	It	is	also	a	classic

problem	 in	 linear	 programming	 and	 is	 known	 as	 the	 transportation	 problem.
Many	 problems	 in	 operations	 research	 can	 be	 formulated	 as	 a	 transportation
problem.
To	find	a	 flow	pattern	 that	minimizes	 the	cost,	we	start	with	a	minimal-cost

directed	path	from	s	to	t	and	saturate	this	path	(i.e.,	assign	a	flow	to	the	path	such
that	 at	 least	 one	 edge	 in	 the	 path	 reaches	 its	 capacity).	 Then	 by	 using	 the
following	 theorem	 recursively	 we	 obtain	 the	 minimal-cost	 flow	 pattern	 of
desired	value.	Let	us	call	a	path	from	s	to	t	unsaturated	for	a	given	flow	in	G	if	fij
≤	cij	for	every	forward	edge	(i,	j)	and	fij	≥	0	for	every	backward	edge	(see	Fig.
14-2).

THEOREM	14-3

Let	 f	be	the	minimal-cost	flow	pattern	of	value	w	 from	s	 to	 t.	Then	the	flow
pattern	 f′,	 obtained	 from	 f	 by	 adding	 δ	 ≤	 0	 to	 the	 flow	 in	 forward	 edges	 of	 a
minimal-cost	unsaturated	path,	and	subtracting	δ	from	the	flow	in	the	backward
edges	of	the	path,	is	a	minimal-cost	flow	of	value	w	+	δ.

This	 theorem	 is	 of	 central	 importance	 in	 constructing	 minimal-cost	 flow
patterns.	 For	 a	 formal	 proof	 of	 this	 intuitively	 obvious	 result,	 the	 reader	 is
referred	to	Ford	and	Fulkerson	[4-3],	pages	121-122.	Theorem	14-3	states	that	at
every	stage	of	construction	each	additional	unit	of	flow	is	to	be	sent	through	the
least-cost	 available	 path.	All	 unsaturated	 paths	 from	 s	 to	 t	 are	 available	 paths,
and	in	computing	the	cost	of	an	available	path	p	one	takes	into	account	not	only
the	cost	of	adding	the	flow	to	the	forward	edges	in	p	but	also	the	savings	due	to
reduction	 of	 existing	 flows	 in	 the	 backward	 edges	 of	 p.	 Let	 us	 illustrate	 the
application	of	the	theorem	with	an	example.
In	Fig.	14-5	we	have	a	transport	network.	Of	the	pair	of	numbers	written	next

to	an	edge,	the	first	number	is	the	capacity	cij	and	the	second	one	is	the	cost	dtj	of
a	unit	flow.	To	find	a	minimal-cost	maximal	flow	from	s	to	t,	we	go	through	the
following	steps.



Fig.	14-5	Minimal-cost	flow.

1. The	 minimal-cost	 path	 is	 syxt,	 and	 total	 path	 cost	 is	 4.	 We	 can	 send	 a
maximum	possible	flow	of	11	units	through	this	path,	thus	saturating	edge
(y,	x)	in	this	path.

2. We	modify	the	network	by	subtracting	11	from	the	current	capacities	of	all
edges	in	syxt.	Set	dyx	=	∞.

3. In	the	modified	network,	the	minimal-cost	path	from	s	to	t	is	sxt.	The	cost
is	 5.	We	 sent	 the	maximum	 possible	 flow	 of	 3	 units	 through	 sxt,	 which
saturates	edge	(x,	t)	in	the	path.

4. We	further	update	the	network	by	sending	the	capacities	in	the	path	sxt	and
setting	dxt	=	∞.

5. In	the	resulting	network	the	minimal-cost	path	is	syzt	of	cost	6	and	capacity
5.	Sending	5	units	of	flow	through	syzt	saturates	(s,	y).

6. Appropriate	updating	yields	the	network	in	Fig.	14-5(b).

7. In	Fig.	14-5(b)	the	minimal-cost	path	is	sxyzt	with	a	cost	of	4	–	2	+	3	+	2	=
7.	Sending	3	units	along	this	path	saturates	a	cut-set	and	thus	the	algorithm
terminates.	The	desired	flow	pattern	obtained	is	given	in	Fig.	14-5(c).	The
value	of	the	flow	from	s	to	t	is	11	+	3	+	5	+	3	=	22	units,	and	the	cost	is	4	×



11	+	5	×	3	+	6	×	5	+	7	×	3	=	110.

14-4.	MULTICOMMODITY	FLOW

In	some	practical	situations	it	becomes	necessary	to	deal	with	several	distinct
commodities	 flowing	 simultaneously	 through	 a	 given	 transport	 network.	 Each
commodity	 has	 its	 own	 source	 and	 its	 own	 sink.	 All	 flows	 share	 the	 edge
capacity,	 and	 therefore,	 as	 in	 the	 single-commodity	 case,	 the	 sum	of	 all	 flows
through	an	edge	must	not	exceed	the	capacity	of	the	edge.	For	each	commodity
the	flow	is	preserved	at	every	intermediate	vertex.
For	 illustration,	 let	 us	 consider	 the	 transport	 network	 in	 Fig.	 14-6	 through

which	commodities	1	and	2	are	flowing.	Commodity	1	is	to	be	transported	from
s1	to	t1	and	commodity	2	from	s2	to	t2.
For	a	two-commodity	case,	let	 	and	 	be	the	flows	of	commodities	1

Fig.	14-6	Two-commodity	transport	network.

and	2,	 respectively,	 through	an	edge	 (i,	 j)	 in	G.	Then,	analogous	 to	 the	single-
commodity	case,	the	constraints	in	Fig.	14-6	are

and



These	constraints	can	be	easily	written	down	for	a	k-commodity	flow.	In	such
flows	 two	 problems	 are	 usually	 raised:	 (1)	 Construct	 patterns	 for	 all	 k-
commodities	such	 that	 the	 total	 sum	of	 the	 flow	values	w1	+	w2	+	 .	 .	 .	+	wk	 is
maximized;	(2)	Given	the	flow	values	w1,	w2,	.	.	.	,	wk	for	each	commodity	and	a
network	G,	find	out	if	these	values	of	flows	can	be	achieved	simultaneously.
Simply	sending	the	maximum	amount	of	each	commodity	will	not	in	general

maximize	the	total	value.	This	can	be	seen	even	in	the	simple	case	of	Fig.	14-6.
If	we	maximize	w1	 alone,	we	get	w1	=	15	and	w2	=	0.	On	 the	other	hand,	 the
maximum	 value	 of	 w1	 +	 w2	 is	 obtained	 with	 w1	 =	 5	 and	 w2	 =	 20.	 Thus	 to
maximize	 the	 total	 value,	we	must	know	how	 to	 allocate	 commodities	 to	 each
edge.
There	 is	 no	 result	 similar	 to	 the	 max-flow	 min-cut	 theorem	 for	 the

multicommodity	flow	in	general.	Only	in	some	special	cases	(such	as	when	G	is
undirected	 and	 there	 are	 only	 two	 commodities)	 has	 it	 been	 possible	 to	 get	 a
theorem	analogous	to	the	max-flow	min-cut	theorem.
For	further	reading	in	this	specialized	and	rather	involved	topic,	the	interested

reader	 is	 referred	 to	Chapter	11	of	Hu’s	book	[14-12],	Chapter	3	of	Frank	and
Frisch	[14-7],	and	the	Ph.D.	dissertation	of	Sakarovitch	[14-20].

14-5.	ADDITIONAL	APPLICATIONS

We	 have	 been	 discussing	 how	 various	 types	 of	 shipping	 problems	 can	 be
solved	 by	means	 of	 network-flow	 techniques.	 In	 addition	 to	 these,	 there	 are	 a
surprisingly	large	number	of	combinatorial	problems	in	operations	research	that
can	 be	 formulated	 (and	 then	 solved)	 as	 network-flow	 problems.	 Take	 for
instance	the	matching	or	assignment	problem	discussed	in	Section	8-4.	We	have
p	men	Ml,	M2,	.	.	.	,	Mp	and	q	jobs	J1,	J2,	.	.	.	,	Jq	and	it	is	known	which	men	are
qualified	for	which	jobs.	When	is	it	possible	to	fill	all	jobs	with	qualified	men	or
when	is	it	possible	to	assign	each	man	a	job	he	is	qualified	for?
The	problem	can	be	formulated	as	a	network-flow	problem,	as	shown	in	Fig.

14-7.	Construct	a	p-source	q-sink	flow	network,	such	that	an	edge	(Mi,	Jk)	exists
if	and	only	if	man	Mi	is	qualified	for	job	Jk.	Join	all	sources	to	a	supersource	s
and	all	sinks	to	a	supersink	t.	Assign	capacities	of	one	unit	to	each	(s,	Mi)	and	to
each	 (Ji,	 t).	The	 capacities	 of	 the	 remaining	 edges	 are	made	 infinite.	Then	 the
optimal	 assignment	 problem	 becomes	 that	 of	 constructing	 a	 flow	 pattern	with
maximum	value	from	s	to	t.



Fig.	14-7	Flow	network	for	an	assignment	problem.

Observe	that	in	such	a	flow	pattern

fsMi	=	1, if	ith	man	is	assigned	to	a	job,

=	0, otherwise,
fJki	=	1, if	kth	job	has	been	assigned,

=	0, otherwise,
fMiJk	=	1 if	ith	man	is	assigned	to	the	kth	job,

=	0, otherwise.

More	 complicated	 personnel	 assignment	 problems	 have	 been	 formulated	 in
terms	of	network	flow.	Numerous	other	types	of	problems	have	also	been	solved
as	 flow	 problems.	 For	 these	 the	 reader	 is	 referred	 to	 the	 bibliography	 in	 the
survey	paper	by	Fulkerson	[14-9].

14-6.	MORE	ON	FLOW	PROBLEMS

Flow	 problems	 may	 be	 looked	 upon	 as	 a	 generalization	 of	 connectivity
problems,	studied	in	Chapter	4.	The	study	of	connectivity	involves	a	search	for
paths	between	pairs	of	vertices	in	a	graph.	A	path	from	a	vertex	x	to	a	vertex	y
implies	that	some	amount	of	flow	can	be	sent	from	x	to	y.	To	find	how	much,	we
have	to	consider	the	capacities	of	the	edges	in	the	path.
The	maximum	number	of	edge-disjoint	paths	between	a	pair	of	vertices	x,	y	is

equal	to	the	minimum	number	of	edges	that	when	removed	from	the	graph	leave
no	path	between	x	 and	y.	This	number	 is	precisely	 the	number	of	edges	 in	 the
smallest	cut-set	with	respect	 to	x	and	y.	This	concept,	when	applied	 to	a	graph



with	edge	capacities,	becomes	the	max-flow	min-cut	theorem.	It	equates	the	sum
of	maximum	capacities	of	paths	between	x	and	y	to	the	capacity	of	the	minimum
cut-set	with	respect	to	x	and	y.

Fig.	14-8	Some	types	of	flow	networks.



It	 is	 natural	 to	 seek	 results	 as	 elegant	 as	 the	max-flow	min-cut	 theorem	 for
more	general	 networks.	Some	generalizations	 are	 easily	made.	Others,	 such	 as
for	the	multicommodity	flow,	have	not	been	possible	so	far.	A	summary	of	some
common	types	of	flow	networks	is	given	in	Fig.	14-8.
It	 is	 interesting	 to	 compare	 transport	 networks	 with	 electrical	 networks,

studied	in	Chapter	13.	A	transport	network	can	be	thought	of	as	a	special	type	of
resistor	network	 that	obeys	Kirchhoff’s	current	 law	(KCL),	but	not	 the	voltage
law	(KVL).	Moreover,	 the	resistors	have	no	resistance	for	currents	(i.e.,	 flows)
up	 to	 a	 certain	 value	 cij	 and	 then	 have	 an	 infinite	 resistance	 for	 current	 larger
than	 that.	 In	 such	 a	 network	 no	 voltage	 (potential,	 pressure,	 or	 tension)	 exists
across	any	branch.
Conversely,	 an	 electrical	network	problem	can	also	be	 formulated	as	 a	 flow

problem.	Consider	a	resistor	network	G	with	current	sources	in	which	we	wish	to
find	 currents	 (i.e.,	 flows)	 fij	 flowing	 through	 every	 edge	 (i,	 j).	 The	 upper	 and
lower	bounds	on	the	currents	are

ctj	=	∞,
btJ	=	–	∞.

The	flow	pattern	must	satisfy	KCL;	that	is,

for	every	vertex	j	in	G.	The	flow	pattern	must	also	satisfy	KVL.	It	was	observed
by	J.	C.	Maxwell	in	1893	that	among	all	flow	patterns	satisfying	(14-4)	the	one
that	minimizes	the	power	dissipation

is	the	one	that	satisfies	Kirchhoff’s	voltage	law	also.	Quantity	rij	is	the	electrical
resistance	 of	 the	 edge	 (i,	 j).	 [That	 minimization	 of	 (14-8)	 is	 equivalent	 to
satisfying	KVL,	 assuming	KCL,	 in	 a	 resistive	 network	with	 current	 sources	 is
left	as	an	exercise.]
Thus	an	electrical	network	problem	can	be	viewed	as	a	flow	problem,	which

minimizes	a	quadratic	flow-cost	function	(14-8)	subject	to	linear	constraints	(14-
4).	Obviously,	then,	an	electrical	network	problem	(subject	to	KCL	and	KVL)	is
not	an	LP	problem.



14-7.	ACTIVITY	NETWORKS	IN	PROJECT	PLANNING

One	of	the	most	popular	and	successful	applications	of	networks	in	operations
research	is	in	the	planning	and	scheduling	of	large	complicated	projects.	The	two
best-known	names	in	this	connection	are	CPM	(Critical	Path	Method)	and	PERT
(Program	 Evaluation	 and	 Review	 Technique).	 A	 project	 is	 divided	 into	many
well-defined	 and	 nonoverlapping	 individual	 jobs,	 called	 activities.	 Due	 to
technical	 restrictions,	 some	 jobs	must	 be	 finished	 before	 others	 can	 be	 started
(such	as	washing	before	drying,	putting	foundation	before	erecting	walls,	etc.).
In	 addition	 to	 this	 precedence	 relationship	 among	 the	 activities,	 each	 activity
also	requires	a	certain	time,	called	the	duration	of	the	activity.	Given	the	list	of
activities	in	a	project,	the	list	of	immediate	prerequisites	(i.e.,	predecessors)	for
each	activity,	and	the	durations,	a	weighted	digraph	can	be	drawn	to	depict	the
project,	 as	 follows:	Each	 edge	 represents	 an	 activity,	 and	 its	weight	 represents
the	 duration	 of	 the	 activity.	 The	 vertices	 represent	 beginnings	 and	 endings	 of
activities	 and	 are	 called	 events	 or	milestones	 in	 the	 project.	 An	 activity	 (i,	 j)
cannot	be	started	before	all	activities	leading	to	the	event	i	have	been	completed.
Each	 event	 in	 the	 project	 is	 a	 well-defined	 occurrence	 in	 time	 (such	 as	 walls
erected,	 shipment	 arrived,	 etc.).	 Such	 a	 weighted,	 connected	 digraph
representing	activities	in	a	project	is	called	an	activity	network.
Let	 us	 take	 an	 extremely	 simple	 example.	 Suppose	 that	 we	 have	 a	 project

consisting	of	six	activities	A,	B,	C,	D,	E;	and	F,	with	the	restriction	that	A	must
precede	C	and	D;	B	and	D	must	precede	E;	and	C	must	precede	F.	The	durations
for	the	activities	A,	B,	C,	D,	E,	and	F	are	5,	7,	6,	4,	15,	and	2	days,	respectively.
The	activity	network	of	this	project	is	shown	in	Fig.	14-9.

Fig.	14-9	Activity	network.

Observe	that	an	activity	network	must	be	acyclic;	otherwise,	we	would	have
an	 impossible	 situation	 in	 which	 no	 activity	 in	 the	 directed	 circuit	 could	 be
initiated—a	vicious	cycle.	Also	observe	that	the	vertex	denoting	the	start	of	the
project	 must	 have	 zero	 in-degree,	 since	 no	 activity	 precedes	 this	 vertex.



Likewise,	the	vertex	denoting	the	termination	of	the	project	must	have	zero	out-
degree,	as	no	activity	follows	this	vertex.

Dummy	Activity:	In	the	example	of	the	activity	network	considered	in	Fig.	14-
9,	 suppose	we	had	an	additional	 restriction	 that	 activity	F	 could	not	be	 started
before	B	and	D	were	completed.	We	can	incorporate	this	precedence	relationship
by	drawing	an	edge	from	vertex	x	to	y	(Fig.	14-10).	Such	an

Fig.	14-10	Dummy	activity	in	a	network.

edge,	 which	 represents	 only	 a	 precedence	 relationship	 and	 not	 any	 job	 in	 the
project,	 is	 called	 a	dummy	 activity.	Dummy	 activities	 become	 necessary	when
the	 existing	 activities	 are	 not	 enough	 to	 portray	 all	 precedence	 relationships
accurately.	All	dummy	activities	are	of	zero	duration	and	are	usually	shown	in
broken	lines.
Two	parallel	edges	(i.e.,	activities	having	the	same	immediate	predecessor	and

the	 same	 immediate	 successor)	 may	 be	 replaced	 by	 a	 single	 edge,	 combining
both	activities	into	one	[Fig.	14-11(a)].	If,	however,	the	activities	are	to	be	kept
track	of	separately,	then	a	dummy	activity	and	a	dummy	event	must	be	created
[Fig.	14-11(b)].	And,	as	there	can	be	no	self-loop	in	an	activity	network,	we	have
only	simple	digraphs	for	an	activity	network.



Fig.	14-11	Replacement	of	parallel	edges.

An	activity	network	can	be	assumed	to	have	exactly	one	vertex	with	zero	in-
degree	 and	 exactly	 one	 vertex	with	 zero	 out-degree.	 If	 there	 is	more	 than	 one
vertex	 having	 zero	 in-degree,	 one	 arbitrarily	 selects	 one	 of	 these	 for	 the	 start
event	 and	draws	dummy	activities	 from	 this	 to	 the	other	vertices.	The	vertices
with	zero	out-degrees	are	handled	similarly.
In	brief,	an	activity	network	is	a	representation	of	two	aspects	of	a	project:	(1)

precedence	 relationships	 among	 the	 activities,	 and	 (2)	 their	 durations.	 It	 is	 a
connected,	weighted,	simple,	acyclic	digraph	with	exactly	one	vertex	of	zero	in-
degree	and	exactly	one	vertex	of	zero	out-degree.

14-8.	ANALYSIS	OF	AN	ACTIVITY	NETWORK

A	newly	constructed	network	should	first	be	checked	for	any	directed	circuit.
A	directed	circuit	implies	inconsistency	in	the	network,	which	must	be	corrected.
Although	Theorem	9-17	gives	an	algorithm	for	finding	whether	or	not	a	digraph
has	a	directed	circuit,	a	more	efficient	method	is	provided	by	topological	sorting
of	vertices,	defined	as	follows:
Topological	Sorting:	The	vertices	of	a	digraph	G	are	said	to	be	in	topological



order	if	they	are	labeled	1,	2,	3,	.	.	.	,	n	such	that	every	edge	in	G	leads	from	a
smaller	numbered	vertex	 to	a	 larger	one.	That	 is,	 for	every	edge	 (i,	 j)	 in	G	we
have	 i	 <	 j.	 The	 process	 of	 relabeling	 the	 vertices	 such	 that	 they	 are	 in	 a
topological	 order	 is	 called	 topological	 sorting.	Clearly,	 if	 a	 digraph	 contains	 a
directed	circuit,	 it	 is	not	possible	 to	put	 its	vertices	 in	a	 topological	order.	The
following	 construction	 procedure	 shows	 that	 the	 vertices	 of	 every	 acyclic
digraph	G	can	be	put	in	a	topological	order.
Start	with	a	vertex	with	zero	in-degree	and	label	it	1.	Delete	vertex	1	from	G,

and	in	the	remaining	digraph	(G	−	1)	find	a	vertex	with	zero	in-degree	and	label
it	 2.	 From	 (G	 −	 1)	 delete	 vertex	 2	 and	 repeat	 the	 process,	 till	 either	 (1)	 every
vertex	is	labeled,	or	(2)	we	find	a	subdigraph	g	in	which	there	is	no	vertex	with
zero	in-degree.	In	view	of	Theorem	9-15,	case	(2)	is	possible	only	if	g	contains	a
directed	circuit.	Thus	we	can	state

THEOREM	14-4

The	vertices	in	a	digraph	can	be	arranged	in	a	topological	order	if	and	only	if
the	digraph	is	acyclic.

Topological	 sorting	 performs	 two	 functions	 in	 an	 activity	 network:	 (1)	 it
detects	 directed	 circuits,	 if	 any,	 in	 the	 network,	 and	 (2)	 it	 puts	 the	 events	 in	 a
topological	 order	 1,	 2,	 3,	 .	 .	 .	 ,	 n,	 where	 1	 is	 the	 start	 event	 and	 n	 is	 the
completion	event	of	the	project.

Topological	sorting	is	an	important	process	in	many	problems	besides	activity
network	analysis.	For	example,	if	we	want	to	arrange	the	words	in	a	glossary	so
that	no	term	is	used	before	it	has	been	defined,	we	resort	to	a	topological	sorting.
We	shall	therefore	present	an	algorithm	for	this	important	process	in	a	step-by-
step	fashion.

Algorithm	for	Topological	Sorting

1. Set	i	←	1.

2. Find	an	unlabeled	vertex	with	zero	in-degree,	and	label	this	vertex	i.	If	no
such	vertex	exists,	go	to	step	4.

3. Set	i	←	i	+	1	;	and	go	to	step	2.

4. If	every	vertex	in	G	has	been	labeled,	stop.	Otherwise,	go	to	step	5.

5. If	the	out-degree	of	any	vertex	labeled	so	far	is	nonzero,	remove	all	edges
incident	 out	 of	 every	 labeled	 vertex	 and	 go	 to	 2.	 If	 there	 are	 some



unlabeled	 vertices	 and	 the	 out-degree	 of	 each	 of	 the	 labeled	 vertices	 is
zero,	we	have	a	directed	circuit	in	the	network,	stop.

Note	that	there	may	be	more	than	one	topological	ordering	of	the	vertices	in	a
given	acyclic	digraph,	because	at	 step	2	 in	 the	algorithm	 it	 is	possible	 to	have
more	than	one	vertex	with	zero	in-degree.

Critical	 Path:	 Having	 made	 sure	 that	 the	 activity	 network	 G	 contains	 no
directed	 circuits	 and	 (in	 the	 process)	 having	 placed	 the	 vertices	 of	 G	 in	 a
topological	order	1,	2,	.	.	.	,	n,	our	next	task	is	to	determine	the	project	duration.
The	minimum	time	required	to	complete	the	entire	project	is	equal	to	the	length
(i.e.,	sum	of	the	activity	durations)	of	the	longest	directed	path	in	G.	(The	longest
directed	 path	 is,	 of	 course,	 from	1	 to	n.)	 The	 longest	 directed	 path	 is	 called	 a
critical	path	(CP).	The	vertices	and	edges	in	a	CP	are	called	the	critical	events
and	the	critical	activities,	because	any	delay	in	them	will	delay	the	entire	project.
In	Fig.	14-9	the	critical	path	is	ADE	and	the	project	duration	is	5	+	4	+	15	=	24
days.	There	may	be	more	than	one	critical	path	in	a	given	activity	network.
Instead	of	determining	the	longest	path	only	from	1	to	n,	let	us	determine	the

longest	paths	from	vertex	1	to	every	vertex	k	 in	G,	where	k	=	2,	3,	 .	 .	 .,	n.	The
length	of	the	longest	path	from	1	to	k	is	called	the	earliest	event	time	for	event	k,
because	this	is	the	earliest	possible	time	at	which	event	k	can	be	realized.
Since	 digraph	G	 is	 acyclic,	 the	 method	 of	 obtaining	 shortest	 paths	 from	 a

specified	 vertex	 to	 all	 others,	 given	 in	Chapter	 11,	 can	 be	 easily	modified	 for
finding	 the	 longest	 paths.	 In	 fact,	 since	 the	 vertices	 are	 already	 topologically
ordered,	the	task	is	even	simpler.	Let

tij	=	duration	of	activity	(i,	j)	in	G,

and	let

T(k)	=	length	(i.e.,	time)	of	longest	path
from	1	to	k, for	k	=	1,	2,	3,	.	.	.	,	n.

Clearly,	T(1)	=	0.	Vertex	2	can	be	 reached	only	 from	vertex	1	 (because	of	 the
topological	order),	and	therefore

T(2)	=	T(1)	+	t12	=	t12.

Vertex	3	cannot	be	reached	from	any	vertex	except	from	1	and	2.	Therefore,



T(3)	=	max[T(1)	+	t13	T(2)	+	t23].

Similarly,	vertex	4	can	possibly	be	reached	only	from	1,	2,	and	3.	Therefore,

T(4)	=	max[T(1)	+	t14,	T(2)	+	t24,	T(3)	+	t34].

And	so	on.	The	general	expression	can	thus	be	written	as

where	the	maximum	is	over	all	vertices	i	from	which	there	is	a	directed	edge	(i,
k)	to	vertex	k.
The	solutions	of	these	equations	can	be	performed	one	by	one,	and	T(1),	T(2),

.	.	.	,	T(n)	obtained	successively.	Let	us	take	a	simple	example:

Fig.	14-12	Activity	network.

An	 activity	 network	 consisting	 of	 8	 events,	 12	 activities,	 and	 1	 dummy
activity	 is	 shown	 in	 Fig.	 14-12.	 The	 event	 labels	 are	 shown	 inside	 the	 small
circles	 representing	 the	vertices.	They	are	 in	 topological	order	1,	2,	3,	 .	 .	 .	 ,	8.
(Since	 the	 vertices	 are	 identified	 and	 the	 digraph	 is	 simple,	 the	 activity	 labels
have	been	dispensed	with.)	The	durations	of	activities	(in	some	unit	of	time)	are
shown	next	to	the	edges.	Let	us	compute	the	earliest	event	times	T(i)	for	i	=	l,	2,
3,	.	.	.	,	8.

T(1)	=	0,
T(2)	=	t12	=	8,
T(3)	=	10.

With	successive	application	of	Eq.	(14-9),	we	get



Similarly,

T(6)	=	21, T(7)	=	16, T(8)	=	28.

Thus	 the	 project	 duration	T(8)	 =	 28.	 The	 critical	 path	 is	 1,	 3,	 5,	 6,	 8,	 and	 is
shown	in	heavy	lines	in	Fig.	14-12.
This	computation	of	earliest	times	of	topological	ordered	events	by	tracing	the

longest	paths	from	vertex	1	to	vertices	2,	3,	.	.	.	,	n,	successively,	is	referred	to	as
forward	calculation.

Latest	Event	Time:	To	ensure	that	the	project	is	finished	at	time	T(n),	we	have
to	make	sure	that	none	of	the	critical	activities	is	delayed.	There	is,	however,	a
certain	 amount	 of	 latitude	 in	 scheduling	 noncritical	 activities.	 A	 noncritical
activity	may	be	allowed	to	slip	(and	thereby	save	money	or	nerves)	to	a	certain
extent	 without	 delaying	 the	 project	 completion.	 The	 latest	 time	 by	 which	 an
event	 k	 must	 be	 realized	 without	 increasing	 the	 project	 duration	 is	 called	 the
latest	event	time	T′(k).	For	example,	in	Fig.	14-12	event	7	may	be	realized	latest
by	 time	 unit	 22	 (and	 no	 later)	 without	 affecting	 the	 completion	 time	 of	 the
project.	It	is	not	difficult	to	see	that	the	latest	event	time	is	given	by	the	relation

T′(k)	=	T(n)	–	time	taken	along	longest	path	from	vertex	k	to	n.
If	we	reverse	the	direction	of	every	edge	in	the	network,	the	vertices	will	still

be	 topologically	 sorted,	 but	 the	 order	would	 be	 reversed,	n,	 n	 −	 1,	 .	 .	 .	 ,	 2,	 1.
Starting	from	vertex	n,	one	could	move	toward	vertex	1	and	compute	the	times
taken	 along	 the	 longest	 paths,	 using	 Eq.	 (14-9)	 successively	 in	 the	 reversed
network.	Starting	with	relation

T′(n)	=	T(n),

we	get	the	following	recursive	relation	for	the	latest	event	time	for	vertex	k:

where	 the	minimization	 is	over	vertices	 i	 to	which	 there	 is	directed	edge	 (k,	 i)
from	vertex	k.	For	example,	in	Fig.	14-12,



T′(7)	=	28	−	6	=	22,
T′(6)	=	28	−	7	=	21,
T′(5)	=	min[T′(7)	−	0,	T′(6)	−	5]	=	16,

and	 so	 on.	 Table	 14-1	 shows	 all	 earliest	 and	 latest	 event	 times	 in	 the	 activity
network	of	Fig.	14-12.	Note	that	T(i)	=	T′(i)	if	and	only	if	vertex	i	is	in	a	critical
path.

Table	14-1	Earliest	and	Latest	Event	Times

Slacks:	As	a	measure	of	maximum	latitude	available	in	a	noncritical	activity,
let	us	look	at	the	following	quantity	called	total	slack	(or	float)	of	activity	(i,	j).

Quantity	sij	represents	the	maximum	permissible	delay	in	activity	(i,	j),	which	is
possible	 when	 i	 is	 realized	 as	 early	 as	 possible,	 and	 j	 is	 delayed	 as	 much	 as
possible.
Since	 each	 activity	 has	 two	 end	 vertices,	 each	 one	 of	 which	 has	 two	 time

values,	 it	 is	 possible	 to	define	 four	different	 slacks	 for	 each	 activity.	We	have
considered	 only	 the	 most	 important	 one,	 the	 total	 slack.	 The	 second	 most
important	slack	is	the	free	slack,	vij	defined	as

This	is	the	amount	by	which	an	activity	(i,	j)	can	be	delayed	without	delaying	the
early	start	of	any	other	activity.	Total	slacks	and	free	slacks	for	all	activities	in
the	network	of	Fig.	14-12	are	shown	in	Table	14-2.
Observe	 that	 the	 total	 slack	 sij	 =	 0	 if	 and	 only	 if	 (i,	 j)	 is	 a	 critical	 activity,



whereas	vij	may	be	zero	even	if	(i,	j)	is	not	a	critical	activity.	Also	note	that	sij	≥
vij	≥	0.

Activity Total	Slack Free	Slack
(1,2)
(1,3)
(1,4)
(2,4)
(2,5)
(2,6)
(3,5)
(3,7)
(4,5)
(5,6)
(5,7)
(6,8)
(7,8)

4
0
6
4
6
4
0
8
4
0
6
0
6

0
0
2
0
6
4
0
2
4
0
0
0
6

Table	14-2	Total	and	Free	Slacks	of	Activities	in	Network	of	Fig.	14-12

In	the	foregoing	analysis	of	a	network,	called	the	critical	path	method	(CPM),
we	have	accomplished	the	following:

1. Checked	for	directed	circuits.

2. Arranged	events	in	topological	order.

3. Identified	critical	path	(or	paths)	and	computed	the	project	duration.

4. Computed	earliest	event	time	T(k)	for	each	event.

5. Computed	latest	event	time	T′(k)	for	each	event.

6. Computed	slacks	for	each	activity.

Having	identified	the	critical	activities,	we	can	concentrate	only	on	these	and
by	expediting	them	reduce	the	total	project	duration.	Second,	 the	slacks	can	be
utilized	to	reduce	the	peak	demands	for	certain	machines	or	skilled	workers.

Project	Cost	Curve:	Although	we	have	assumed	a	constant	duration	for	each
activity,	in	practice	allocation	of	more	money	can	usually	get	a	job	done	faster.
Given	a	fixed	budget	for	the	project,	how	should	the	money	be	allocated	among
the	activities	so	that	the	project	is	completed	at	the	earliest	possible	date?	If	for



each	activity	the	time-cost	relation	is	linear,	this	problem	can	be	shown	to	be	a
minimal-cost	flow	problem	(see	pages	151-162	of	[4-3]	or	[14-8]).	The	solution
of	the	problem	will	be	a	curve	showing	project	cost	versus	project	duration,	and,
depending	on	the	budget	(or	the	target	completion	date),	one	would	pick	a	point
on	this	curve.	Such	a	curve	is	known	as	the	project	cost	curve.
Often	 in	 activity	 networks,	 in	 addition	 to	 time	 and	 cost,	 there	 may	 be	 other
parameters,	 such	 as	 personnel	 required,	 shop	 facilities	 necessary,	 and	 so	 forth,
associated	with	each	edge.
In	CPM	networks	activity	durations	were	assumed	to	be	precisely	known.	If

the	activity	durations	are	random	variables	with	given	probability	distributions,
the	 network	 goes	 by	 the	 acronym	 PERT	 (Program	 Evaluation	 and	 Review
Technique).	Whereas	CPM	focuses	on	optimizing	the	total	project	cost,	PERT	is
more	 concerned	 with	 estimates	 of	 completion	 dates,	 scheduling	 requirements,
and	 so	 forth.	 Activity	 networks	 with	 variations	 of	 these	 two	 are	 also
encountered.

14-9.	FURTHER	COMMENTS	ON	ACTIVITY	NETWORKS

In	 this	 chapter	 vertices	 were	 used	 to	 represent	 events	 and	 the	 edges	 to
represent	activities.	There	is	another	representation	often	used	in	the	literature	in
which	the	vertices	denote	activities	and	the	edges	represent	only	the	precedence
relationships	among	the	activities.	Obviously,	for	a	given	set	of	activities	 these
two	will	yield	different	graphs.	For	example,	 the	project	activities	of	Fig.	14-9
are	shown	in	both	representations	in	Fig.	14-13.

Fig.	14-13	Two	representations	for	the	same	activities.

It	is	not	difficult	to	transform	the	event-vertex	representation	into	the	activity-
vertex	 representation	 and	 vice	 versa	 (see	 [14-5]).	 In	 fact,	 the	 activity-vertex



representation	 is	 the	 edge	 digraph	 (see	 Problem	 9-16)	 of	 the	 event-vertex
representation,	 if	 we	 disregard	 the	 dummy	 activities	 in	 the	 latter.	 There	 is	 no
need	 of	 dummy	 activities	 in	 the	 activity-vertex	 representation.	 Both	 types	 of
representations	 are	 widely	 used	 in	 the	 literature.	 Each	 has	 its	 own	 slight
advantage	over	the	other,	but	there	is	no	basic	difference	between	the	two	as	far
as	their	analyses	are	concerned.
The	 activity	 network	 and	 its	 application	 in	 project	 planning	 have	 been	 in

existence	only	since	1957.	 In	 these	 few	years	 its	 success	has	been	spectacular.
Computer	 programs	 for	 analyzing	 CPM	 and	 PERT	 networks	 are	 part	 of	 the
standard	 program	 library	 of	 almost	 every	 computing	 center.	 Large	 networks
consisting	of	thousands	of	activities	are	often	analyzed.
Generally,	the	network	is	constructed	from	a	list	of	activities	and	a	precedence

table.	Generation	of	 a	precedence	 table	 is	 a	manual	 job	because	 it	 involves	 an
intimate	 knowledge	 of	 the	 processes	 in	 the	 project.	 The	 construction	 of	 the
activity	network,	including	the	dummy	activities,	from	the	precedence	table	can
be	 relegated	 to	 the	 computer,	 although	 it	 is	 still	 done	 mostly	 manually.
Construction	of	a	composite	network	from	subnetworks	can	also	be	programmed
[14-22].
A	typical	computer	program	for	critical-path	analysis	consists	of	three	phases:

(1)	 cycle-checking	 and	 topological-sorting	 phase,	 (2)	 forward-time-calculation
phase,	and	(3)	backward-time-calculation	phase.	Shortcuts	have	been	suggested
that	 can	 complete	 the	 critical-path	 analysis	 in	 a	 single	 phase,	 and	 save
computation	time	in	the	case	of	large	networks	[14-17].
We	have	presented	the	bare	essentials	of	the	activity	network	analysis.	Much

more	can	be	done	with	graph	theory	in	project	planning.

14-10.	GRAPHS	IN	GAME	THEORY

The	theory	of	games	has	become	an	important	field	of	mathematical	research
since	the	publication	of	the	first	book	on	the	subject	by	John	von	Neumann	and
Oskar	Morgenstern	in	1944.	Game	theory	is	applied	to	problems	in	engineering,
economics,	and	war	science	to	find	the	optimal	way	of	performing	certain	tasks
in	a	competitive	environment.
The	 general	 idea	 of	 game	 theory	 is	 the	 same	 as	 the	 one	 we	 associate	 with

parlor	 games	 such	 as	 chess,	 bridge,	 and	 checkers.	 The	 distinction	 between	 a
puzzle	 and	 a	 game	 is	 that	 in	 a	 game	 one	 plays	 against	 one	 or	 more	 human
opponents,	whereas	a	puzzle	involves	a	solitary	effort	to	solve	a	problem.
A	game	may	be	played	between	two	persons,	such	as	chess,	or	among	more



than	two	persons,	such	as	poker.	The	former	is	called	a	two-person	game	and	the
latter	an	n-person	game.	Another	classification	of	games	is	based	on	whether	or
not	 an	 element	of	 randomness	 is	 introduced,	 such	as	by	dice	or	 cards.	A	 third
element	 in	 categorizing	 a	 game	 is	 whether	 or	 not	 a	 player	 has	 complete
information	on	the	position	of	a	game	at	every	move.	A	game	such	as	chess,	in
which	 each	 player	 knows	 exactly	 where	 the	 game	 stands	 is	 called	 a	 perfect-
information	 game.	 Bridge,	 in	 which	 one	 does	 not	 know	 what	 cards	 the	 other
players	have,	 is	an	 imperfect-information	game.	A	game	is	called	 finite	 if	each
player	has	a	finite	number	of	choices	available	at	each	move	and	the	game	must
end	after	 a	 finite	number	of	moves.	An	 infinite	 game	 is	one	 in	which	a	player
chooses	a	move	from	an	infinite	set	of	moves.
We	shall	confine	ourselves	to	the	study	of	two-person,	perfect-information,	finite
games	without	 chance	moves.	A	 digraph	 is	 a	 natural	 representation	 of	 such	 a
game.	The	vertices	 represent	 the	positions	 (also	called	states)	 in	 the	game	and
the	edges	represent	the	moves.	There	is	a	directed	edge	from	vertex	vi	to	vj	if	and
only	 if	 the	 game	 can	 be	 transformed	 from	 position	 (state)	 vi	 to	 vj	 by	 a	move
permissible	 under	 the	 rules	 of	 the	 game.	As	 an	 example,	 let	 us	 look	 at	 a	 very
simple	game.	It	is	a	simplified	version	of	a	game	called	nim.

Simplified	Nim:	Two	piles	of	sticks	are	given	and	players	A	and	B	take	turns,
each	 taking	any	number	of	sticks	 from	any	one	pile.	The	player	who	 takes	 the
last	stick	wins,	and	since	the	finite	quantity	of	sticks	will	eventually	be	exhusted,
it	 is	 obvious	 that	 the	 game	 allows	 no	 draw.	As	 a	 further	 simplification,	 let	 us
start	with	two	piles	containing	two	sticks	each.	The	complete	game	is	described
by	the	digraph	in	Fig.	14-14.	Each	state	of	the	game	is	described	by	an	ordered
pair	of	 labels	 (x,	y),	 indicating	 the	number	of	sticks	 in	 the	 first	and	 the	second
pile,	respectively.

Fig.	14-14	Simplified	game	of	nim.



Let	 us	 observe	 some	 properties	 of	 such	 a	 game	 digraph	 (a	 digraph
representing	 a	 two-person,	 perfect-information,	 finite	 game	 without	 chance
moves):

1. The	 digraph	 has	 a	 unique	 vertex	 with	 a	 zero	 in-degree.	 This	 vertex
represents	 the	 starting	 position	 in	 the	 game	 and	 is	 therefore	 called	 the
starting	vertex.	Vertex	(2,	2)	in	Fig.	14-14	is	the	starting	vertex.

2. There	are	one	or	more	vertices	with	zero	out-degree.	These	correspond	to
the	 closing	 positions	 in	 the	 game,	 and	 are	 called	 the	 closing	 vertices.
Vertex	(0,	0)	is	the	closing	vertex	in	Fig.	14-14.

3. A	game	digraph	is	a	connected,	acyclic	digraph.	A	directed	circuit	would
imply	that	the	game	could	go	on	indefinitely.	(In	practice,	in	a	game	such
as	 chess,	 where	 the	 game	 may	 return	 to	 a	 state,	 endless	 matches	 are
prevented	by	means	of	a	rule	 that	after	a	certain	number	of	repetitions	of
the	same	move,	the	game	is	declared	stalemated.)

4. Each	directed	path	 from	 the	 starting	vertex	 to	a	closing	vertex	 represents
one	complete	play	of	the	game.	This	path	consists	of	edges	representing	the
moves	of	the	two	players	alternately.

The	most	important	question	in	a	game	is	the	following:	When	and	how	can	a
player	choose	his	moves	so	that	he	is	certain	of	winning?	We	shall	first	answer
this	question	for	the	specific	game	in	Fig.	14-14,	and	then	generalize	it.

Let	 us	 call	 a	 position	 “won”	 if	 the	 player	 who	 brought	 the	 game	 to	 this
position	can	force	a	victory.	Conversely,	a	position	is	dubbed	“lost”	if	the	player
who	brought	the	game	to	this	position	can	be	forced	to	lose.	In	keeping	with	this
characterization	of	vertices,	 the	closing	vertex	in	Fig.	14-14	is	 to	be	marked	as
won,	 because	 the	 player	who	 brought	 the	 game	 to	 this	 position	 is	 the	winner.
Having	marked	 this	vertex	as	won,	 let	us	use	 the	 following	procedure	 to	mark
the	remaining	vertices	as	won	or	lost.
Mark	an	unmarked	vertex	won	if	all	its	successors	are	marked	lost,	and	mark

an	unmarked	vertex	lost	if	at	least	one	of	its	successors	is	marked	won.	(This	is
because	it	is	assumed	that	each	player	is	intelligent	and	makes	the	best	possible
move	 at	 each	 stage.)	 This	 results	 in	 vertices	 (0,	 0),	 (1,	 1),	 and	 (2,	 2)	 being
marked	as	won	and	 the	 remaining	as	 lost.	And	 thus	 the	player	who	makes	 the
second	move	has	the	winning	strategy,	since	he	can	force	his	opponent	to	move
to	the	vertices	marked	as	lost.
To	 generalize	 the	 foregoing	 method	 of	 finding	 a	 winning	 strategy,	 let	 us

introduce	the	concept	of	kernel	in	a	digraph.



Kernel	of	a	Digraph:	A	set	of	vertices	K	in	a	digraph	G	is	called	a	kernel	(or
nucleus)	of	G	if

1. No	two	vertices	in	K	are	joined	by	an	edge.

2. Every	vertex	v	not	in	K	has	an	edge	directed	from	v	to	some	vertex	in	K.

Conditions	1	and	2	correspond	respectively	to	definitions	of	an	independent	set
and	a	dominating	set	 in	an	undirected	graph	(recall	Chapter	8).	What	are	some
types	of	digraphs	that	have	kernels?	Theorem	14-5	characterizes	one	such	type.

THEOREM	14-5

Every	acyclic	digraph	has	a	unique	kernel.

Proof:	The	theorem	will	be	proved	by	a	constructive	procedure,	at	the	end	of
which	 all	 vertices	 forming	 the	 kernel	will	 be	 painted	 red.	 Let	G	 be	 the	 given
acyclic	 digraph.	According	 to	Theorem	9-15,	G	must	 have	 at	 least	 one	 vertex
with	zero	out-degree.	Let	V1	be	the	set	of	all	vertices	in	G	with	zero	out-degree.
Since	these	vertices	must	all	be	in	the	kernel	of	G,	paint	them	red.
Next,	let	W1	be	the	set	of	all	 those	vertices	in	G	from	which	there	is	at	least

one	directed	edge	to	some	vertex	in	V1.	Clearly,	no	vertex	in	W1	can	be	included
in	the	kernel.	Delete	from	G	all	vertices	in	W1	(together	with	the	edges	incident
on	them,	of	course),	and	thus	obtain	subgraph	(G	−	W1).
Subgraph	(G	−	W1)	is	also	acyclic.	Let	V2	be	the	set	of	all	vertices	with	zero

out-degree	in	(G	−	W1).	Since	in	the	original	digraph	G	no	vertex	in	set	V2	had	a
zero	out-degree,	every	vertex	in	V2	had	to	have	at	least	one	edge	going	to	some
vertex	in	W1.	Moreover,	in	digraph	G	no	vertex	in	V2	could	have	been	adjacent
to	any	vertex	in	V1.	Nor	could	any	vertex	in	V2	have	been	adjacent	to	any	other
vertex	in	V2,	because	the	out-degree	of	each	vertex	in	set	V2	of	(G	−	W1)	is	zero.
Thus	we	conclude	that	every	vertex	in	V2	must	also	be	included	in	the	kernel

of	G	and	therefore	be	painted	red.
This	procedure	is	continued	till	every	vertex	in	G	is	either	deleted	or	painted

red.	The	unique	set	of	vertices	painted	red	constitutes	the	kernel	of	the	digraph.	

As	an	illustration,	let	us	find	the	kernel	in	the	acyclic	digraph	in	Fig.	14-14.	It
is	easily	seen	that	the	set	of	three	vertices	marked	(0,0),	(1,	1),	and	(2,2)	is	 the
kernel.
Let	A	be	the	player	who	makes	the	first	move	in	the	game	and	B	be	the	player



who	makes	the	second	move.	Assuming	that	the	rule	of	the	game	is	such	that	the
player	who	 is	 able	 to	make	 the	 last	 possible	move	 in	 the	 game	 is	 always	 the
winner,	we	have	the	following	important	result.

THEOREM	14-6

In	the	game	digraph	if	the	starting	vertex	is	not	in	the	kernel	K,	then	player	A
is	assured	of	a	win,	and	A	can	win	by	always	selecting	vertices	in	K.

Proof:	Since	the	starting	vertex	is	not	in	set	K,	player	A	can	move	the	game	to
a	vertex	x	 in	K.	 If	 this	vertex	x	 is	a	closing	vertex,	A	 is	 the	winner.	 If	not,	 the
second	player	B	will	have	to	move	to	some	vertex	y,	which	is	not	in	the	kernel	K.
In	his	next	move	A	can	take	the	game	to	some	vertex	in	K.	The	game	continues,
with	B	forced	to	take	it	out	of	K	and	A	bringing	it	back	into	K.	Eventually,	the
play	will	be	brought	to	a	closing	vertex	by	A,	because	all	closing	vertices	are	in
K.	Thus	A	wins	the	game.	

COROLLARY

It	 follows	 from	 the	proof	of	 this	 theorem	 that	 if	 the	 starting	vertex	 is	 in	 the
kernel,	the	second	player	B	has	the	winning	strategy;	and	B	can	win	by	always
selecting	vertices	in	the	kernel.

In	the	foregoing	analysis	the	rules	of	the	game	were	assumed	to	be	such	that
the	 player	who	made	 the	 last	 possible	move	was	 always	 the	winner.	 In	many
games	(such	as	chess	or	tic-tac-toe)	some	of	the	closing	vertices	represent	a	draw
and	 others	 a	win.	 In	 such	 a	 game	 choosing	 vertices	 from	 the	 kernel	will	 only
assure	a	player	a	win	or	a	draw.
There	are	also	games	in	which	the	rule	is	such	that	the	player	who	is	forced	to

make	 the	 last	 move	 is	 the	 loser	 rather	 than	 the	 winner.	 From	 such	 a	 game
digraph,	 if	we	remove	all	edges	corresponding	to	the	last	moves,	 the	game	can
be	converted	to	the	type	in	which	the	winner	is	the	player	making	the	last	move.
In	other	words,	the	game	is	decided	at	the	time	the	second-to-the-last	moves	are
made.	 For	 example,	 let	 us	 modify	 the	 nim	 game	 of	 Fig.	 14-14	 such	 that	 the
player	forced	to	take	the	last	stick	is	the	loser.	Then	erasing	the	last	moves	from
the	 digraph,	 we	 get	 Fig.	 14-15.	 The	 three	 vertices	marked	won	 constitute	 the
kernel	in	this	digraph.	Even	in	this	game	player	B	has	the	winning	strategy.



Fig.	14-15	Game	digraph.

Thus,	 at	 least	 in	 theory,	 it	 is	possible	 to	 construct	 the	game	digraph	 for	 any
two-person,	perfect-information,	 finite	game	with	no	chance	moves,	and,	 since
the	digraph	is	acyclic,	 it	 is	also	possible	 to	obtain	its	kernel.	Therefore,	 if	each
player	plays	according	to	his	best	strategy,	the	outcome	is	predetermined.	It	will
be	either	a	draw	or	a	certain	win	for	the	player	who	makes	the	first	move	if	the
starting	vertex	is	not	in	the	kernel,	or	for	the	player	who	makes	the	second	move
if	 the	 starting	vertex	 is	 in	 the	 kernel.	 In	 this	 sense,	 every	game	of	 this	 type	 is
either	“unfair”	or	“futile.”
In	reality	the	situation	is	not	so	bleak	as	it	appears.	In	most	nontrivial	games,

such	as	checkers	or	chess,	the	number	of	positions	(i.e.,	the	vertices	in	the	game
digraph)	 is	 so	 enormous	 that	 the	 game	 digraph	 cannot	 even	 be	 stored	 in	 the
memory	unit	of	any	existing	or	contemplated	computer.
This	 is	 precisely	why	 in	 real	 problems	 in	 operations	 research	 the	 theory	 of

games	 provides	 an	 approach	 rather	 than	 a	 complete	 analysis.	Moreover,	 graph
theory	is	applicable	only	to	a	very	special	but	important	class	of	games.

SUMMARY

We	 have	 considered	 three	 important	 classes	 of	 problems	 in	 combinatorial
operations	 research:	 transportation	 problems,	 activity	 networks,	 and	 game
theory.	These	problems	can	be	expressed	and	solved	elegantly	as	graph-theory
problems	 involving	connected	and	weighted	 (mostly	acyclic)	digraphs.	From	a



practical	point	of	view,	all	these	problems	are	trivial	(and	so	is	any	combinatorial
problem)	if	 the	network	is	small.	Many	real-life	situations,	however,	consist	of
huge	networks,	and	therefore	it	is	important	to	look	at	these	network	problems	in
terms	of	solving	them	on	computers.
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15	SURVEY	OF	OTHER	APPLICATIONS

In	 the	 last	 three	 chapters	 we	 have	 explored	 in	 considerable	 detail	 the
application	 of	 graph	 theory	 to	 three	 disciplines,	 switching	 and	 coding	 theory,
electrical	networks,	and	operations	research.	In	this	final	chapter	we	shall	briefly
describe	 how	 graph	 theory	 is	 used	 in	 a	 number	 of	 other	 areas.	 The	 first	 three
sections	 are	 somewhat	 related.	 They	 all	 deal	 with	 representation	 of	 a	 system
structure	by	means	of	a	weighted,	connected	digraph	and	subsequent	analysis	of
the	system	through	an	appropriate	study	of	the	digraph.	In	Section	15-1	a	linear
system	is	modeled	as	a	weighted	digraph,	which	has	proved	to	be	a	convenient
tool	for	analysis.	Section	15-2	deals	with	representation	of	a	stochastic	process
(a	discrete	Markov	process)	by	a	digraph	and	makes	use	of	Section	15-1	for	its
analysis.	 Section	 15-3	 uses	 weighted	 digraphs	 for	 the	 analysis	 of	 computer
programs.	 A	 discrete	 Markov	 process	 is	 an	 appropriate	 model	 for	 many
programs,	and	thus	Section	15-2	is	made	use	of	in	Section	15-3.
Section	 15-4,	 in	 which	 graph	 theory	 is	 used	 as	 a	 tool	 for	 identification	 of

chemical	 compounds,	 is	 an	 isolated	 section.	 It	 is,	 however,	 an	 important
application	 of	 graph	 theory.	 Finally,	 Section	 15-5	 lists	 some	 miscellaneous
applications,	with	relevant	references.

15-1.	SIGNAL-FLOW	GRAPHS

Most	problems	in	analysis	of	a	linear	system	are	eventually	reduced	to	solving
a	 set	 of	 simultaneous,	 linear	 algebraic	 equations.	This	problem,	usually	 solved
by	 matrix	 methods,	 can	 also	 be	 solved	 via	 graph	 theory.	 The	 graph-theoretic
approach	is	often	faster,	and,	more	importantly,	it	displays
cause-effect	relationships	between	the	variables—something	totally	obscured	in
the	matrix	approach.	This	graph-theoretic	analysis	of	a	linear	system	consists	of
two	 parts:	 (1)	 constructing	 a	 labeled,	 weighted	 digraph	 called	 the	 signal-flow



graph,	and	(2)	solving	for	the	required	dependent	variable	from	the	signal-flow
graph.
In	a	signal-flow	graph	each	vertex	represents	a	variable	and	is	 labeled	so.	A

directed	edge	from	xi	to	xj	implies	that	variable	xj	depends	on	variable	xi	(but	not
the	reverse).	The	coefficients	in	the	equations	are	assigned	as	the	weights	of	the
edges	such	that	the	variable	xk	is	equal	to	the	sum	of	all	products	wikxi,	where	wik
is	the	weight	of	the	edge	coming	into	xk	from	xi.	As	an	example,	let	us	construct
a	signal-flow	graph	for	the	system	given	by	the	set	of	three	equations,

which	can	be	rewritten	as

The	signal-flow	graph	representing	Eqs.	(15-2)	is	given	in	Fig.	15-1.

Fig.	15-1	Signal-flow	graph	for	Eqs.	(15-2).



Clearly,	the	in-degree	of	a	vertex	v	in	a	signal-flow	graph	is	zero	if	and	only	if
v	 represents	 an	 independent	 variable.	 Also	 note	 that	 a	 signal-flow	 graph	 is
connected;	 otherwise,	 we	 have	 two	 uncoupled	 (unrelated)	 systems	 thrown
together.
A	 signal-flow	 graph	 can	 be	 compared	 to	 a	 signal	 transmission	 network,	 in

which	the	vertices	corresponding	to	the	independent	variables	are	signal	sources,
and	 the	 other	 vertices	 are	 repeaters,	 which	 act	 as	 receiving,	 summing,	 and
transmitting	 devices.	 The	 signals	 travel	 along	 the	 edges	 and	 are	 multiplied
(amplified	or	attenuated)	by	the	weights	of	the	edges	traversed.	The	label	xi	of	a
vertex	equals	the	sum	of	all	incoming	signals,	and	is	the	strength	of	the	signal	in
each	outgoing	 edge	 from	xi	 It	 is	 from	 this	 analogy	 that	 the	 name	 “signal-flow
graph”	comes.	For	the	same	reason	the	edge	weights	are	called	edge	gains,	and
independent	variable	vertices	are	referred	to	as	source	vertices.
Note	that	a	signal-flow	graph	contains	the	same	information	as	the	equations

from	which	 it	 is	derived;	but	 there	does	not	exist	a	one-to-one	correspondence
between	 the	 system	 of	 equations	 and	 the	 digraph.	 From	 the	 same	 set	 of	 n
equations	we	can	obtain	n!	different	signal-flow	graphs	(some	of	which	may	be
isomorphic),	 depending	on	 the	order	 in	which	 the	variables	xi’s	 are	written	on
the	right-hand	side,	say,	in	Eqs.	(15-2).
Now,	given	a	set	of	algebraic	equations

how	do	we	obtain	the	weight	matrix	of	the	signal-flow	graph	without	first	having
to	 draw	 the	 digraph?	 (Like	 any	 weighted	 digraph,	 the	 signal-flow	 graph	 is
completely	described	by	its	weight	matrix.)

THEOREM	15-1

The	weight	matrix	W	=	[wij]	of	 the	signal-flow	graph	corresponding	 to	Eqs.
(15-3)	is	given	by

where	 I	 is	 the	 identity	 matrix	 of	 the	 same	 order	 as	 C,	 and	 the	 superscript	 T
denotes	the	transposed	matrix.

The	theorem	is	not	difficult	 to	prove	and	is	left	as	an	exercise.	Note	that	the
columns	 of	 all	 zeros	 in	 W	 correspond	 to	 the	 y	 vertices	 (i.e.,	 independent



variables).
Although	 signal-flow	 graphs	 can	 always	 be	 constructed	 from	 a	 set	 of

equations,	in	many	physical	problems,	particularly	in	electrical	systems,	signal-
flow	 graphs	 are	 drawn	 directly	 without	 first	 writing	 the	 equations.	 Usually,	 a
signal-flow	graph	can	be	drawn	as	easily	as	the	equations	are	formulated.	Also,
writing	 equations	 from	 a	 signal-flow	 graph	 is	 a	 simple	 matter,	 because	 each
vertex	xk	represents	one	equation	of	the	system	in	which	xk	is	equal	to	the	sum	of
the	products	of	weights	of	all	incoming	edges	and	the	labels	of	the	initial	vertices
of	these	edges.	For	example,	the	system	of	equations	for	the	signal-flow	graph	of
Fig.	15-2	can	be	immediately	written	down	as

Fig.	15-2	Signal-flow	graph.

These	can	be	rewritten	in	the	same	form	as	Eq.	(15-3),	where



Reduction	of	Signal-Flow	Graphs

The	 signal-flow	 graph	method	 of	 analysis	 is	 most	 useful	 when	we	want	 to
solve	 for	only	one	unknown	variable,	 say	xj,	 as	 a	 function	of	one	 independent
variable,	 say	yk.	We	 solve	by	 eliminating	 all	 other	vertices	one	by	one,	 taking
care	 that	 this	 elimination	 process	 does	 not	 alter	 the	 net	 product	 of	 the	 edge
weights	of	directed	paths	from	yk	to	xj.	This	graph	reduction	corresponds	exactly
to	 the	 algebraic	 method	 of	 eliminating	 all	 other	 variables	 by	 systematic
substitution.	 Some	 elementary	 reductions	 of	 a	 signal-flow	 graph	 are	 shown	 in
Fig.	 15-3.	Repeated	 application	 of	 such	 reduction	 steps,	 selected	 visually,	will
eventually	 lead	 to	 elimination	 of	 all	 intermediate	 vertices.	 (Apply	 these
reduction	steps	successively	to	Fig.	15-2	to	eliminate	all	vertices	except	y1	and
x3.)



Fig.	15-3	Reductions	of	signal-flow	graphs.

Although	our	ability	to	reduce	the	digraph	by	simple	inspection	adds	much	to
the	power	and	flexibility	of	signal-flow	graphs,	 it	 is	often	better	 to	use	a	more
methodical	 technique	 that	 does	 not	 depend	 on	 visual	 inspection.	 And	 such	 a
method	is	provided	by	Mason’s	gain	formula.

Mason’s	Gain	Formula:	 Let	ρ	 be	 a	 directed	 path	 from	 a	 vertex	a	 to	b	 in	 a



signal-flow	graph	G.	Then	the	product	of	the	weights	of	all	edges	in	this	path	is
called	 the	 path	 gain	 of	 ρ	 (same	 as	 path	 product	 defined	 in	 Section	 12-2	 for
undirected	 graphs).	 Similarly,	 the	 product	 of	 the	 weights	 of	 all	 edges	 in	 a
directed	circuit	(or	cycle)	Γ	is	called	the	cycle	gain	of	Γ.	For	example,	a	list	of	all
directed	circuits	and	their	gains	in	Fig.	15-2	is

Directed	Circuit Cycle	Gain
x2x2	(self-loop	at	x2)
x1x2x1
x1x3x1
x3x4x3
x4x5x4
x1x2x3x1

f
ab
cd
gh
ij
bed

Furthermore,	for	a	given	signal-flow	graph	G	let	us	define	the	following:

t1 =	sum	of	cycle	gains	of	all	directed	circuits
t2 =	sum	of	products	of	cycle	gains	of	all	vertex-disjoint	directed	circuits	taken

two	at	a	time
t3 =	sum	of	products	of	cycle	gains	of	all	vertex-disjoint	directed	circuits	taken

three	at	a	time
.	.	.

tk =	sum	of	products	of	cycle	gains	of	all	vertex-disjoint	directed	circuits	taken
k	at	a	time.

Thus,	for	the	signal-flow	graph	of	Fig.	15-2	we	have

t1 =	f	+	ab	+	cd	+	gh	+	ij	+	bed,
t2 =	fcd	+	fgh	+	fij	+	abgh	+	abij	+	cdij	+	bedij,
t3 =	fcdij,

and

t4 =	t5	=	···	=	0,

as	the	maximum	number	of	vertex-disjoint	directed	circuits	in	Fig.	15-2	is	only
three.



Now	 we	 are	 ready	 to	 state	 and	 illustrate	 two	 theorems,	 which	 together
constitute	the	most	important	result	concerning	signal-flow	graphs.

THEOREM	15-2

Let	a	signal-flow	graph	G	characterize	a	set	of	equations	Cx	=	y;	then	Δ,	the
determinant	of	matrix	C,	is	given	by

where	q	is	the	maximum	number	of	vertex-disjoint	directed	circuits	in	G.

THEOREM	15-3

Let	a	signal-flow	graph	G	characterize	a	set	of	equations	Cx	=	y;	then	the	ijth
cofactor	of	C,	Cij,	is	given	by

where	Pk	 is	 the	path	gain	of	 the	kth	directed	path	 from	vertex	 i	 to	 j,	Δk	 is	 the
value	 of	 Δ	 in	 Eq.	 (15-6)	 for	 that	 part	 of	 the	 digraph	 having	 no	 vertices	 in
common	with	the	kth	directed	path,	and	the	summation	is	over	all	directed	paths
from	i	to	j.

Combining	 Theorems	 15-2	 and	 15-3,	 we	 get	Mason’s	 gain	 formula,	 which
gives	the	response	x	due	to	the	forcing	function	yi	as

where	Cij	and	Δ	are	computed	from	the	signal-flow	graph	G,	using	Eqs.	(15-6)
and	(15-7).
Besides	 the	 original	 proofs	 given	 by	 S.	 J.	Mason,	many	 different	 proofs	 of

Theorems	 15-2	 and	 15-3	 have	 been	 published.	 All	 are	 involved—some	 more
than	others.	A	particularly	elegant	proof,	due	to	R.	Ash,	is	given	in	[13-5],	pages
102–109.	We	shall	simply	illustrate	the	application	of	Mason’s	gain	formula	by
means	of	an	example.
For	Fig.	15-2,



That	this	indeed	is	the	determinant	of	the	corresponding	matrix	C	as	given	in
Eq.	(15-5)	can	be	easily	verified	by	direct	computation.
There	are	two	directed	paths	from	y1	to	x3:

ρ1	=	y1x1x3 with	path	weight	p1	=	c
and ρ2	=	y1x1x2x3 with	path	weight	p2	=	be.

Correspondingly,

Δ1	=	1	−	f	−	ij	+	fij
and Δ2	=	1	−	ij.

Therefore,	according	to	Theorem	(15-3),	the	(1,	3)th	cofactor	is

C13	=	Δ1P1	+	Δ2P2
=	(1	−	f	−	ij	+	fij)c	+	(1	−	ij)be.

This	too	can	easily	be	verified	by	directly	computing	the	(1,	3)th	cofactor	of	the
matrix	in	Eq.	(15-5).	Thus	the	gain

is	 obtained	 purely	 by	 graph-theoretic	 computation.	 The	 result	 can	 be	 easily
verified	by	inverting	the	corresponding	matrix	C	as	given	in	Eq.	(15-5).

Remarks	and	References

The	chief	advantage	of	using	signal-flow	graphs	(over	substitution	method	or
matrix	method)	lies	in	their	ability	to	highlight	the	cause-effect	relationships	in
the	system.	For	example,	the	feedback	edges	shown	are	indeed	the	feedbacks	in
the	 actual	 system.	 A	 signal-flow	 graph	 can	 also	 be	 used	 very	 effectively	 for
simplifying	the	system	of	equations	before	solving	through	matrix	methods.	The
simplification	 is	 accomplished	by	 flow-graph	 reductions.	As	 can	be	 seen	 from



the	 literature	 cited	 in	 the	 next	 section,	 signal-flow	 graphs	 have	 been	 widely
applied	in	the	study	of	Markov	systems.
For	 a	 computerized	 solution	 of	 a	 general	 problem,	 perhaps	matrix	methods

would	 be	 faster.	 For	 in	 using	Mason’s	 gain	 formula,	 an	 important	 step	 is	 the
generation	 of	 all	 directed	 circuits	 in	 the	 signal-flow	 graph;	 and	 as	 we	 saw	 in
Chapter	 11,	 the	 algorithms	 (suitable	 for	 computers)	 available	 for	 this	 are	 not
very	efficient.
Several	 variations	 of	 signal-flow	 graphs	 have	 been	 proposed	 and	 studied	 in

the	 literature,	 following	 Mason’s	 pioneering	 papers,	 [15-4]	 and	 [15-5].	 For	 a
survey	 of	 different	 variations,	 see	 [15-1].	 Some	 of	 these	 variations	may	 offer
slight	 computational	 advantage,	 but	 they	 do	 so	 by	 sacrificing	 the	 cause-effect
relationship,	which	 is	so	nicely	brought	out	 in	signal-flow	graphs,	as	presented
here.	 Consequently,	 not	 much	 has	 come	 out	 of	 these	 other	 types	 of	 graph
representations,	and	Mason’s	original	graphs	are	widely	used	in	control	theory,
electrical	network	analysis,	electrical	machine	theory,	heat	transfer,	and	analysis
of	mechanical	structures.
An	 elementary	 but	 thorough	 treatment	 of	 signal-flow	 graphs	 with	 many

applications	can	be	found	in	any	of	the	following	three	monographs:	[15-1],	[15-
3],	 and	 [15-6].	 All	 three	 use	 the	 original	 signal-flow	 graphs	 as	 proposed	 by
Mason,	without	the	later	variations.

15-1. ABRAHAMS,	J.	R.	and	G.	P.	COVERLEY,	Signal	Flow	Analysis,	Pergamon
Press,	Inc.,	Elmsford,	N.Y.,	1965.

15-2. GHOSH,	 S.	 N.,	 and	 P.	 K.	 GHOSH,	 “Flow	 Graphs	 and	 Linear	 Systems,”
Intern.	J.	Control,	Vol.	14	No.	5,	Nov.	1971,	961-975.

15-3. LORENS,	 C.	 S.,	Flowgraphs:	 For	 the	Modeling	 and	 Analysis	 of	 Linear
Systems,	McGraw-Hill	Book	Company,	New	York,	1964.

15-4. MASON,	 S.	 J.,	 “Feedback	 Theory:	 Some	 Properties	 of	 Signal	 Flow
Graphs,”	Proc.	I.R.E.,	Vol.	41,	No.	9,	Sept.	1953,	1144-1156.

15-5. MASON,	 S.	 J.,	 “Feedback	 Theory:	 Further	 Properties	 of	 Signal	 Flow
Graphs,”	Proc.	I.R.E.,	Vol.	44,	No.	7,	July	1956,	920-926.

15-6. ROBICHAUD,	L.	P.	A.,	M.	BOISVERT,	and	J.	ROBERT,	Signal	Flow	Graphs
and	Applications,	Prentice-Hall,	Inc.,	Englewood	Cliffs,	N.J.,	1962.

15-2.	GRAPHS	IN	MARKOV	PROCESSES

The	simplest	random	process	is	one	in	which	the	outcomes	of	successive	trials
are	 independent	 of	 each	 other.	 In	 a	 coin-tossing	 experiment,	 for	 example,	 the



outcome	 of	 the	 kth	 tossing	 is	 independent	 of	 the	 outcome	 of	 all	 previous
tossings.	Many	phenomena,	however,	cannot	be	described	by	this	simple	model.
There	 are	 random	 processes	 in	 nature	 in	 which	 the	 outcome	 depends	 on	 the
outcome	 of	 previous	 trials.	 For	 example,	 the	 probability	 of	 an	 offspring
inheriting	 a	 genetic	 feature	 does	 depend	 on	 the	 presence	 (or	 absence)	 of	 this
feature	in	his	ancestors.
A	Markov	process	is	 the	simplest	generalization	that	permits	 the	outcome	of

any	 trial	 to	be	dependent	on	 the	outcome	of	 the	 trial	 immediately	preceding	 it,
and	 on	 no	 other.†	 This	 simple	 but	 powerful	 generalization	 gives	 the	Markov
process	 an	 ability	 to	 describe	 random	 processes	 in	 such	 diverse	 areas	 as
statistical	 information	 theory,	 control	 theory,	 genetics,	 inventory	 control,
analysis	 of	 computer	 proprams,	 and	 the	 study	 of	 social	 mobility	 of	 different
classes,	to	name	a	few.
A	Markov	process	is	a	stochastic	system	capable	of	assuming	one	of	n	states

s1,	s2,	.	.	.,	sn,	and	the	states	change	only	at	discrete	points	in	time.	The	state	at
the	kth	instant	depends	only	on	the	state	of	the	(k	−	1)th	instant	and	not	on	any	of
the	 previous	 states.	 In	 other	 words,	 in	 a	 successive	 sequence	 of	 trials	 the
outcome	of	the	kth	trial	depends	only	on	the	outcome	of	the	(k	−	l)th	trial,	and
not	on	any	of	the	preceding	ones.†

Transition	Probabilities:	To	describe	a	Markov	process,	we	must	specify	for
each	state,	si,	the	probability	of	making	the	next	transition	to	each	of	the	n	states.
The	 transition	 probability	 pij	 is	 the	 probability	 that	 if	 the	 present	 state	 of	 the
process	is	si,	the	next	state	will	be	sj.	These	probabilities,	pij,	must	satisfy

the	 latter	 because	 the	 sum	 of	 probabilities	 of	 transitions	 to	 all	 possible	 states
from	a	given	state	must	be	unity.	(Note	that	we	have	assumed	that	the	transition
probabilities	are	constants,	and	do	not	vary	with	time.	Such	a	process	is	called	a
stationary	process	or	a	time-invariant	process	†).

Transition	Matrix:	The	n2	transition	probabilities	describing	a	Markov	process
can	most	conveniently	be	given	in	 the	form	of	an	n	by	n	transition	matrix	P	=
[pij],	subject,	of	course,	 to	the	two	conditions	in	Eq.	(15-8).	Any	square	matrix
with	 real,	 nonnegative	 elements	 in	which	 the	 sum	of	 each	 row	 is	1	 is	 called	 a
stochastic	matrix.	Thus	every	stochastic	matrix	is	the	transition	matrix	of	some
Markov	process,	and	vice	versa.	Let	us	 look	at	some	properties	of	a	stochastic



matrix	P.

1. If	P	is	a	stochastic	matrix,	its	kth	power	Pk	is	also	a	stochastic	matrix,	for	k
=	0,	1,	2,	.	.	.	(matrix	P°	=	I,	the	identity	matrix).

2. If	all	rows	of	P	are	identical,	then

P	=	P2	=	P3	=	P4=	.	.	.	.

3. Since	 each	 row	of	 a	 stochastic	matrix	 adds	 up	 to	 1,	 only	n	 −	 1	 columns
need	be	given:	the	remaining	column	can	be	derived	from	them.

In	 addition	 to	 the	 transition	 matrix,	 we	 also	 need	 to	 know	 the	 initial
probabilities

π(0)	=	[π1(0),	π2(0),	.	.	.,	π(0)],

where	πj(0)	is	the	probability	of	the	Markov	process	being	in	state	Sj	at	the	start,
that	 is,	 at	 the	 time	 instant	 0.	Clearly,	 the	 probabilities	 in	π(0)	must	 satisfy	 the
following	conditions:
For	i	=	1,	2,	.	.	.,	n,

Any	real-valued	vector	whose	components	satisfy	the	conditions	in	Eq.	(15-9)	is
called	a	probability	vector.	The	initial	probability	vector	π(0)	and	the	transition
matrix	completely	determine	a	Markov	process.	They	are	sufficient	to	predict	the
probability	of	the	process	being	in	any	state	at	any	time	instant	k.
Stochastic	 Graph:	 An	 alternative	 means	 of	 describing	 an	 n-state	 Markov

process	 is	 an	 n-vertex,	 weighted,	 connected	 digraph	 G.	 The	 vertices	 of	 G
correspond	to	the	states,	and	an	edge	(si,	sj)	with	a	nonzero	weight	pij	represents
the	 nonzero	 transition	 probability	 from	 state	 si	 to	 sj.	 Such	 a	 digraph,	 called	 a
transition	graph,	is	not	only	of	great	value	in	visualizing	a	Markov	process,	but
is	also	a	powerful	analytic	 tool	 in	studying	the	process.	Clearly,	 the	weights	of
the	edges	in	the	transition	graph	G	must	satisfy	the	conditions	in	Eqs.	(15-8).	A
digraph	in	which	the	edge	weights	are	positive	quantities	and	the	sum	of	weights
of	edges	emanating	from	a	vertex	is	unity	is	called	a	stochastic	graph.



Fig.	15-4	Transition	matrix	and	diagram	for	a	Markov	process.

As	an	example	of	a	Markov	process,	let	us	consider	the	following	version	of
the	classic	problem	of	random	walk:
Suppose	that	a	particle	moves,	according	to	a	probabilistic	mechanism,	along

a	 straight	 line	 n	 =	 2m	 units	 long	 between	 two	 walls.	 At	 each	 transition	 the
particle	moves	either	one	unit	left	or	one	unit	right,	each	with	the	probability	 .	If
the	particle	hits	 the	 left	wall,	 it	 gets	 reflected;	but	 if	 it	hits	 the	 right	wall,	 it	 is
absorbed	into	the	wall.
At	a	given	time	the	process	is	in	one	of	n	=	2m	states	(i.e.,	the	particle	is	at	one

of	the	n	points	along	the	line).	Only	the	present	state	is	relevant	to	what	the	next
state	 may	 be	 and	 not	 any	 of	 the	 previous	 states.	 This	 is	 an	 n-state	 Markov
process.	 For	 n	 =	 6,	 the	 transition	 matrix	 and	 the	 transition	 diagram	 for	 this
process	are	given	in	Fig.	15-4.
Note	 the	 similarities	 between	 a	 Markov	 process	 and	 a	 sequential	 machine,

discussed	 in	Section	12-8.	Both	have	a	finite	number	of	states,	and	 in	both	 the
state	transitions	occur	at	discrete	points	in	time.	The	main	difference	between	the
two	is	that	in	Markov	processes	we	deal	with	probabilities,	which	are	real-valued



quantities	 instead	 of	 a	 set	 of	 symbols,	 as	 in	 the	 case	 of	 sequential	 machines.
Transitions	 in	 a	Markov	 process	 do	 not	 depend	 on	 any	 (externally	 controlled)
inputs,	 but	 are	 governed	 by	 probability	 distributions.	 Moreover,	 there	 are	 no
outputs	associated	with	a	Markov	process.

Multistep	Transition	Probabilities

An	 important	 question	 regarding	 a	Markov	 process	 is	 the	 following:	 Given
that	 the	 process	was	 initially	 in	 state	 si,	what	 is	 the	 probability	 of	 its	 being	 in
state	 sj	 after	 exactly	 k	 transitions?	 This	 probability	 ϕij(k),	 called	 the	 k-step
transition	probability	from	state	si	to	sj,	is	given	by

THEOREM	15-4

In	a	Markov	process	the	k-step	transition	probability	ϕij(k)	from	state	si	to	sj	is
equal	to	the	ijth	entry	in	matrix	Pk,	the	kth	power	of	the	transition	matrix	P.

Proof:	 Consider	 the	 transition	 digraph.	 The	weight	pij	 of	 edge	 (si,	 sj)	 is	 the
probability	 of	 going	 from	 vertex	 si	 to	 sj	 in	 one	 step.	 Since	 the	 transition
probabilities	at	each	step	are	stochastically	independent,	the	product

Pir	·	Prj

gives	the	probability	 that	 the	process	will	go	from	state	si	 to	sr	 in	 the	first	step
and	 then	 from	 sr	 to	 sj	 in	 the	 second	 step.	 Continuing	 this	 argument,	 the
probability	of	going	from	vertex	si	to	sj	along	a	directed	edge	sequence	of	length
k	 is	given	by	 the	product	of	 the	weights	of	 these	edges.	But	 the	probability	of
going	from	si	to	sj	in	exactly	k	steps	is	the	sum	of	the	probabilities	of	going	from
si	 to	 sj	 along	 all	 directed	 edge	 sequences	 of	 length	k	 in	 the	 transition	 digraph.
That	 this	 sum	 is	 given	 by	 the	 ijth	 entry	 in	 matrix	 Pk	 can	 be	 easily	 seen	 by
arguments	used	in	Theorem	9-10.



Fig.	15-5	Three-state	Markov	Process.

To	 illustrate	 Theorem	 15-4,	 let	 us	 consider	 a	 three-state	 Markov	 process
whose	transition	digraph	is	given	in	Fig.	15-5.	The	transition	matrix	and	some	of
its	powers	are

The	 ijth	 entry	 in	P4,	 for	 example,	 is	 the	probability	 that	 the	 process	will	 go
from	state	si	to	sj	in	exactly	four	steps.	Let	us,	for	instance,	examine	all	directed
edge	sequences	of	length	four	from	s3	to	s2	in	Fig.	15-5.	These	are

s3s2s2s2s2 with	probability	of	traversing	(.5)(.6)3	=	.108,
s3s2s1s3s2 with	probability	of	traversing	(.5)2(.4)(1)	=	.1,
s3s1s3s2s2 with	probability	of	traversing	(.5)(1)(.5)(.6)	=	.15.

The	sum	of	their	probabilities,	.358,	is	exactly	the	entry	in	the	(3,	2)	position	of
P4.
For	this	example,	 let	us	make	some	further	observations	on	the	properties	of

matrix	Pk.

1. Beyond	a	certain	value	of	k,	Pk	contains	only	nonzero	entries.	This	implies
that	there	is	at	least	one	directed	edge	sequence	of	length	k	(and	therefore	a
directed	path	of	length	k	or	less)	from	every	vertex	to	every	other	vertex	in
Fig.	15-5.



2. All	rows	of	Pk	tend	to	become	identical	as	k	increases.	This	means	that	the
k-step	 transition	 probability	ϕij(k)	 becomes	 independent	 of	 i	 for	 large	 k.
This	result	should	not	come	as	a	surprise,	because	the	effect	of	the	starting
state	si	should	wear	off	after	sufficiently	many	transitions.

3. As	 a	 direct	 consequence	 of	 item	 2,	 the	 higher	 powers	 of	 P	 become
identical;	that	is,

pk	=	p·pk	=	p·pk+1	=	.	.	.

because	P	is	a	stochastic	matrix	and	Pk	has	identical	rows.

Does	Pk	of	every	Markov	process	exhibit	these	properties,	or	is	this	example	a
special	 case?	 To	 answer	 this	 question,	 let	 us	 take	 a	 closer	 look	 at	 stochastic
digraphs,	and	try	to	classify	them.

Classification	of	States

A	set	S	of	states	is	said	to	be	closed,	trapping,	or	absorbing	if	no	state	outside
S	can	be	reached	from	any	state	si	in	S.	In	other	words,	there	is	no	directed	edge
from	any	vertex	si	in	S	to	any	vertex	outside	S.	For	example,	{s4,	s5,	s3}	in	Fig.
15-6	 is	 a	 closed	 set	 of	 states.	 So	 is	 {s4}.	A	 single	 state	 sk	 is	 an	 absorbing	 or
trapping	state	if	and	only	if	it	has	a	self-loop	with	weight	one,	such	as	s4	in	Fig.
15-6.	Clearly,	the	entire	set	of	states	in	a	Markov	process	trivially	constitutes	a
closed	 set.	 If	 there	 exists	 no	 other	 closed	 set	 of	 states	 except	 the	 entire	 set	 of
states	 of	 the	Markov	 process,	 the	 process	 is	 called	 ergodic	 or	 irreducible.	 In
other	words,	 a	 process	 is	 ergodic	 if	 and	only	 if	 its	 transition	graph	 is	 strongly
connected;	that	is,	there	is	a	nonzero	probability	of	going	from	any	state	to	any
other	 state.	 For	 example,	 in	 Fig.	 15-5	 the	 process	 is	 ergodic,	 but	 the	 process
shown	in	Fig.	15-6	is	not.	A	strongly	connected	closed	set	of	states	is	called	an
ergodic	or	irreducible	set.



Fig.	15-6	Nonergodic	Markov	process	showing	closed	sets.

Regular	 Process:	 Of	 special	 interest	 among	 ergodic	 Markov	 processes	 are
those	 in	 which	 there	 exists	 a	 directed	 edge	 sequence	 exactly	 of	 length	 k	 (for
some	positive	 integer	k)	 from	every	vertex	 to	 every	other	 vertex	 in	G.	 Such	 a
process	 is	 called	 a	 regular	 Markov	 process.	 Clearly,	 every	 regular	 process	 is
ergodic,	but	the	converse	is	not	true.	For	example,	in	Fig.	15-7(a)	the	process	is
ergodic	but	not	 regular.	For	 there	 is	 no	directed	 edge	 sequence	of	 even	 length
from	 s1	 to	 s2	 and	no	directed	 sequence	of	odd	 length	 from	 s1	 to	 s3;	 thus	 there
exists	 no	k	 for	which	 there	 is	 a	directed	 edge	 sequence	of	k	 edges	 from	every
vertex	to	every	other	vertex.



Fig.	15-7	Some	ergodic	stochastic	digraphs.

The	 significance	 of	 a	 regular	Markov	 process	 lies	 in	 the	 fact	 that	 for	 some
integer	k	 there	 is	a	nonzero	probability	of	going	from	each	state	 to	every	other
state	in	exactly	k	steps.	In	terms	of	the	k-step	transition	matrix	Pk	=	Φ(k),	we	can
make	 the	 following	 statement	 :	A	Markov	process	 is	 regular	 if	 and	only	 if	 for
some	integer	k	every	entry	in	the	k-step	transition	matrix	Φ(k)	is	positive.
Given	 the	 transition	 digraph	 G	 of	 an	 ergodic	 process	 (i.e.,	 G	 is	 strongly

connected),	how	can	we	tell	if	the	process	is	regular?	To	answer	this	question,	let
us	 introduce	 the	 following	definition	 :	A	strongly	connected	 subdigraph	g	 in	a
digraph	G	is	said	to	be	a	minimal	if	g	has	no	proper	subdigraph	of	two	or	more
vertices	that	is	strongly	connected.

THEOREM	15-5

Let	G	be	a	strongly	connected	stochastic	digraph,	and	let	g1,	g2,	.	.	.	,	gr	be	its
minimal	 strongly	 connected	 subdigraphs,	 having	 n1,	 n2,	 .	 .	 .	 ,	 nr	 vertices,
respectively.	 Then	G	 represents	 a	 regular	 Markov	 process	 if	 and	 only	 if	 the
greatest	common	divisor	(g.c.d.)	of	n1,	n2,	.	.	.	,	nr	is	1.

For	 a	 proof	 of	 this	 theorem,	 see	 Rosenblatt’s	 paper	 [15-14].	 Let	 us	 simply



illustrate	 it	with	 some	examples.	The	digraph	 in	Fig.	 15-7(c)	 has	 two	minimal
strongly	 connected	 subdigraphs,	 with	 vertex	 sets	 {s3,	 s4)	 and	 {s1,	 s2,	 s3,	 s4}.
Since	the	g.c.d.	(4,	2)	=	2,	the	process	is	not	regular.	On	the	other	hand,	Fig.	15-
7(f)	 also	 has	 two	 minimal,	 strongly	 connected	 subdigraphs,	 one	 with	 five
vertices	 and	 the	 other	 with	 three.	 Since	 the	 g.c.d.	 (5,	 3)	 =	 1,	 the	 process	 is
regular.
Clearly,	 if	 a	 strongly	 connected	 transition	 digraph	 contains	 a	 self-loop,	 the

g.c.d.	 is	 1	 ;	 therefore,	 the	 process	 is	 regular	 [e.g.,	 Fig.	 15-7(d)].	 The	 reader	 is
encouraged	to	write	down	the	transition	matrix	P	for	each	of	the	six	digraphs	in
Fig.	15-7,	and	verify	Theorem	15-5	by	directly	computing	Pk	(for	appropriate	k).

Periodic	Markov	Process:	An	ergodic	process	is	said	to	be	periodic	 if	every
state	can	only	be	entered	at	certain	periodic	intervals.	The	simplest	example	of	a
cyclic	process	is	one	with	two	states	s1	and	s2	in	which	only	the	transitions	s1	→
s2	→	s1	→	s2	 .	 .	 .	are	possible.	The	 transition	matrix	P	and	 its	powers	 for	 this
process	are

As	another	example,	consider	the	process	in	Fig.	15-7(c).	Its	transition	matrix	is

for	k	odd	and	very	large.

A	Markov	process	is	periodic	if	and	only	if	its	states	can	be	partitioned	into	q
subsets	 (q	 >	 1)	 such	 that	 the	 process	 dwells	 in	 each	 of	 these	 q	 subsets	 in	 q
consecutive	transitions.



It	 can	be	 shown	 that	every	ergodic	process	 is	either	 regular	or	periodic	 [15-
11].

Markov	 Processes	 with	 Transient	 States:	 So	 far	 we	 have	 been	 considering
ergodic	 Markov	 processes	 (i.e.,	 those	 in	 which	 the	 transition	 digraphs	 are
strongly	connected).	Let	us	now	examine	the	processes	for	which	the	transition
digraph	is	weakly	connected.	A	weakly	connected	digraph	G	consists	of	two	or
more	fragments	(i.e.,	maximal	strongly	connected	subdigraphs).
Let	 us	 consider	 a	 fragment	g	 of	G	 (remember	 fragment	g	 could	 be	 a	 single

vertex).	If	there	is	no	edge	directed	out	of	g,	then	g	has	to	have	at	least	one	edge
going	into	it,	and	the	vertices	in	g	are	closed.	In	that	case,	we	can	delete	all	edges
going	 into	 g,	 and	 then	 study	 g	 independently	 as	 an	 ergodic	 process	 [the	 edge
weights	will	satisfy	Eqs.	(15-8)].	On	the	other	hand,	if	there	is	an	edge	going	out
of	 g,	 the	 vertices	 of	 g	 cannot	 constitute	 an	 ergodic	 process,	 because	 (g	 being
maximal	 strongly	connected)	once	exited,	g	 cannot	be	 reentered.	Such	a	 set	of
states,	 which	 once	 left	 cannot	 be	 entered	 and	 which	 among	 themselves	 are
accessible	from	each	other,	is	called	a	transient	set	of	states.	Sets	{s1,	s2,	s6}	and
{s3,	s5}	in	Fig.	15-6	are	transient	sets.
The	 vertices	 of	 a	 weakly	 connected	 stochastic	 digraph	 can	 be	 uniquely

partitioned	into	sets	T,	V1,	V2,	.	.	.	,	Vq	such	that	T	is	the	set	of	all	transient	states
and	each	Vi	is	irreducible,	that	is,	there	is	no	edge	(a,	b)	for	a	∈	Vi,	b	∉	Vi,	and
the	vertex	set	Vi	is	strongly	connected.	For	example,	in	Fig.	15-6

T	=	{s1,	s2,	s6,	s3,	s5],	V1	=	{s7,	S8},	V2	=	{s4}.

Clearly,	a	(weakly	connected)	stochastic	digraph	cannot	consist	of	set	T	alone
—there	must	be	at	least	one	set	Vi.	In	other	words,	it	is	not	possible	that	all	states
of	 a	 Markov	 process	 are	 transient	 (remember	 we	 are	 only	 considering	 finite
Markov	processes).
After	a	large	number	of	transitions,	a	Markov	process	with	transient	states	will

eventually	settle	down	into	one	of	its	irreducible	subsets.	Such	a	system	has	two
types	of	distinct	behavior,	 and	one	may	be	 interested	 in	either	or	both:	 (1)	 the
behavior	of	 the	 system	before	 it	 enters	 an	 irreducible	 set	of	 states,	 and	 (2)	 the
behavior	 of	 the	 system	 after	 it	 enters	 an	 irreducible	 set.	 Behavior	 2	 is	 no
different	 from	 that	 of	 an	 ergodic	 system.	 For	 once	 the	 system	 enters	 an
irreducible	set,	it	can	never	leave	it,	and	thus	the	existence	of	states	outside	this
set	 is	 immaterial.	 Behavior	 1	 will	 be	 studied	 briefly	 in	 Section	 15-3	 while
analyzing	computer	programs.



Thus	as	far	as	the	asymptotic	behavior	of	Markov	processes	is	concerned,	we
need	 to	study	only	ergodic	processes.	Among	ergodic	processes,	also,	only	 the
regular	 processes	 are	 of	 importance.†	Therefore,	 in	 the	 rest	 of	 this	 section	we
shall	study	the	asymptotic	behavior	of	a	regular	Markov	process.

Asymptotic	Behavior	of	a	Regular	Markov	Process

One	of	the	most	important	questions	about	a	Markov	process	is	what	happens
to	it	after	many	many	transitions?	That	is,	after	the	transients	die	down,	does	the
system	reach	a	steady	state,	independent	of	the	initial	probabilities?	If	so,	what	is
the	steady-state	probability	vector	π(∞)	and	how	do	we	compute	it?	The	answer
lies	in	the	behavior	of	Pk	as	k	tends	to	infinity,	and	Theorem	15-6	provides	it	for
a	regular	Markov	process:

THEOREM	15-6

If	P	is	a	transition	matrix	of	a	regular	Markov	process,	then	its	powers,	Pk,	as	k
tends	 to	 infinity,	approach	a	stochastic	matrix	Φ	=	 [ϕij]	having	 identical	 rows,
and	each	row	w	of	Φ	is	a	probability	vector.

Outline	of	the	Proof:	We	first	note	that	since	the	process	is	regular	there	exists
some	positive	integer	r	such	that	Pr	=	M	contains	only	positive	entries.	Second,
we	 observe	 that	 premultiplying	 any	 column	 vector	 y	 by	 a	 stochastic	 matrix
having	only	positive	entries	has	an	averaging	effect	on	 the	elements	of	y.	This
averaging	 effect	 applied	 again	 and	 again	 would	 eventually	 smooth	 out
differences	 that	 may	 have	 existed	 among	 the	 elements	 of	 y.	 That	 is,	 all
components	of	vector	Mhy	=	Prhy	=	Pky	will	have	identical	elements,	as	h	(and
therefore	 k)	 becomes	 very	 large.	 Finally,	 let	 us	 observe	 that	 this	 condition	 is
equivalent	 to	 Pk	 approaching	 a	 limit	Φ	 as	 k	 tends	 to	 infinity,	 and	 the	 rows	 of
matrix	Φ	are	 identical—each	a	probability	vector.	The	 reader	 is	encouraged	 to
fill	in	the	details.

Theorem	15-6	 is	 perhaps	 the	most	 important	 result	 in	 the	 theory	of	Markov
processes.	 Many	 interesting	 and	 useful	 results	 for	 a	 regular	 Markov	 process
depend	on	the	existence	of	this	limit	for	Pk,	as	k	→	∞.
Since	P∞	(which	is	a	shorthand	notation	for	lim	Pk	as	k	→	∞)	exists,	we	can

express	the	steady-state	probability



Writing	this	equation	in	terms	of	its	elements,

Now,	since	all	rows	of	Φ	are	identical,	each	element	ϕij	is	equal	to	a	value	Wj
that	depends	only	on	the	column	index	j.	Thus

Thus	 a	 regular	 Markov	 process	 approaches	 the	 same	 limiting	 probability
distribution	 w	 regardless	 of	 where	 it	 started.	 Moreover,	 this	 final	 probability
vector,	π(∞)	=	w,	is	the	one	that	appears	as	rows	of	matrix	Φ.
For	a	given	regular	Markov	process,	how	does	one	compute	this	fixed	vector

w,	that	is,	the	vector	that	makes	up	all	the	rows	of	Φ	and	is	also	equal	to	π(∞)?
Several	 methods	 are	 available.	 Raising	 the	 transition	 matrix	 P	 to	 higher	 and
higher	powers	is	one,	but	it	is	obviously	not	a	good	method.	A	most	frequently
used	method	is	the	following:
Successive	state	probability	vectors	must	satisfy

If	 the	 state	probability	vector	has	attained	 its	 limiting	value	π(∞),	 it	must	 then
satisfy

and	since	π(∞)	=	w,	according	to	Eq.	(15-12),	it	can	be	rewritten	as

Equation	(15-15)	implies	n	simultaneous	equations,	which	can	be	rewritten	as

But	 since	P	 is	 a	 stochastic	matrix,	 the	 sum	of	 rows	of	matrix	 I	−	P	 is	 zero.
Therefore,	I	−	P	is	a	singular	matrix;	that	is,	 the	n	equations	in	Eq.	(15-16)	are



not	 linearly	 independent.	 It	 can	 be	 shown,	 however,	 that	 any	 n	 −	 1	 of	 these
equations	are	linearly	independent,	and	thus	we	need	only	one	more	equation	to
solve	 for	 the	n	unknowns	 in	 the	 row	vector	w.	This	 is	 readily	provided	by	 the
relation

Thus	in	Eq.	(15-16)	if	we	replace	any	one	column,	say	the	jth,	of	the	matrix	I
−	P	on	the	left-hand	side	and	change	the	jth	entry	from	0	to	1	in	the	right-hand
side,	we	would	incorporate	Eq.	(15-17)	into	Eq.	(15-16).	Let	this	new	equation
be	denoted	by

where	vj,	is	a	row	vector	of	length	n	with	all	zero	entries	except	the	jth,	which	is
1.	Equation	(15-18)	can	be	solved	by	either	directly	inverting	the	matrix	 	or
by	 using	 signal-flow	 graphs,	 as	 shown	 in	 Section	 15-1.	 For	 illustration,	 let	 us
consider	 the	 three-state	 regular	Markov	 process	 given	 in	 Fig.	 15-5.	 Applying
Eqs.	(15-15)	and	(15-17)	directly,	we	get

which	is

w1	=	.4w2	+	.5w3,

w2	=	.6w2	+	.5w3,

w3	=	w1.

Hence w1	=	w3	=	.8w2,

which	combined	with

w1	+	w2	+	w3	=	1,

immediately	yields	the	limiting	probability	vector	 .	This	indeed	is	the
result	we	had	obtained	earlier	by	trying	17th	and	higher	powers	of	P.
Solving	the	same	problem	using	the	form	of	Eq.	(15-18)	gives



Replacing	any	one	of	the	columns,	say	the	second,	with	all	l’s	we	get

which	on	inverting	yields

Finally,

which	checks	with	the	value	of	w	obtained	earlier.
Instead	of	solving	Eq.	(15-18)	by	algebraic	inversion	of	matrix	 ,	often	it	is

more	efficient	to	use	a	signal-flow	graph	to	solve	Eq.	(15-20),	particularly	when
matrix	P	is	relatively	sparse.
The	signal-flow	graph	corresponding	to	Eq.	(15-18)	is	directly	obtained	from

the	transition	graph	of	the	process	by	a	simple	modification:

1. Replace	the	vertex	labels	si’s	with	wi’s.

2. Remove	all	edges	incoming	into	the	specified	vertex	sj.

3. Put	edges	of	weight	−	1	from	every	other	vertex	to	sj.

4. Reverse	 the	 direction	 of	 every	 edge.	 [Inverting	 the	 edge	 direction
corresponds	to	transposing	the	matrix—as	required	by	Eq.	(15-4).]

5. Add	 a	 new	 vertex	with	 label	 1	 to	 the	 digraph	 and	 draw	 an	 edge	 of	 unit
weight	from	this	new	vertex	to	sj.



In	 this	signal-flow	graph	we	can	obtain	 the	gain	from	v	 to	every	vertex,	which
will	give	the	elements	of	w.

Fig.	15-8	Signal-flow	graph	for	a	Markov	system.

Once	again,	modifying	Fig.	15-5	we	get	the	appropriate	digraph,	as	shown	in
Fig.	15-8.	For	this	signal-flow	graph	[using	Eq.	(15-5)]	the	determinant	is	given
by

Δ	=	1	−	t1	+	t2	−	t3	+	.	.	.
=	1	−	t1
=	1	−	(.5	−	.4	−	.4)	=	1.3,

and	the	three	relevant	cofactors	needed	in	Eq.	(15-6)	are

Δ12	=	.4,
Δ22	=	.5,
Δ32	=	.4,

which	again	checks	with	the	results	obtained	earlier.
Medvedev	 [15-12]	 has	 a	 different	 method	 of	 obtaining	 vector	 w	 from	 the

signal-flow	graph,	and	through	some	examples	he	has	shown	that	there	are	cases
when	 graph-theoretic	 methods	 are	 superior	 to	 algebraic	 ones.	 Another
computational	formula	using	transition	digraphs	is	given	in	[15-7].	For	more	on
computing	vector	w	via	transition	graphs,	see	[15-8].

Transient	Analysis	of	a	Markov	Process

Matrix	 Φ	 =	 P∞	 for	 a	 regular	 Markov	 process	 gives	 us	 the	 steady-state
distribution,	but	it	does	not	reveal	the	transient	behavior	of	the	process.	It	does
not	tell	us	how	fast	Pk	converges	to	the	limit	Φ,	nor	does	it	give	the	frequencies
with	 which	 various	 states	 in	 the	 system	 were	 visited	 before	 the	 steady-state



condition	was	reached.	The	answer	to	these	questions	lies	in	the	behavior	of	the
sequence	P,	P2,	P3,	P4,	The	problem	is	then	to	find	a	closed-form	expression	for
matrix	Pk	(as	a	function	of	k).	This	can	be	obtained	using	z-transforms:
From	Eq.	(15-13)	we	know	that

π(k	+	1)	=	π(k)P.

Taking	the	z-transform	of	both	sides	of	this	equation,	we	get

where	Π(z)	is	the	z-transform	of	π(k).	Rearranging	Eq.	(15-19),	we	get

Application	of	inverse	z-transform	to	both	sides	of	Eq.	(15-20)	gives

Thus

Equation	(15-21)	gives	the	probability	vector	after	k	transitions	have	taken	place,
for	k	=	1,	2,	.	.	.	,	and	Eq.	(15-22)	provides	the	value	of	Pk,	as	a	function	of	k,	in	a
closed	form	for	any	Markov	process	(not	necessarily	regular).
Matrix	 I	−	 zP	can	be	 inverted	by	direct	matrix	methods,	 but	 the	 flow-graph

method,	as	used	for	inverting	(I	−	P)*	in	Eq.	(15-18),	is	often	found	to	be	more
efficient.	 The	 weight	 of	 each	 edge	 ptj	 is	 now	 multiplied	 by	 z.	 Informally
speaking,	 z	 is	 the	 transform	 of	 the	 unit	 delay,	 and	multiplying	 each	 transition
probability	by	z	corresponds	 to	 the	delay	associated	with	each	 transition.	For	a
thorough	 treatment	 of	 transient	 analysis	 of	 a	 Markov	 process	 via	 signal-flow
graphs,	see	Chapters	3	and	4	of	[15-9].
For	illustration,	let	us	consider	the	Markov	process	depicted	in	Fig.	15-5.	we

have



Let	us	now	compute	the	inverse	(I	−	zP)−1	by	a	signal-flow	graph	rather	than
algebraically.	The	signal-flow	graph	is	nothing	but	the	transition	graph	in	which
each	edge	is	multiplied	by	z,	and	the	direction	of	every	edge	is	reversed.	See	Fig.
15-9,	which	is	obtained	directly	from	Fig.	15-5.

Fig.	15-9	Signal-flow	graph	corresponding	to	Fig.	15-5.

From	 Fig.	 15-9	we	 immediately	 obtain	 the	 cycle	 product	 terms	 [as	 used	 in
Eqs.	(15-6)	and	(15-7)]	as	follows:

A	cofactor



Δ13	=	.5z(1	−	.6z)	+	.2z2

=	z(.5	−	.1z),

which	is	in	agreement	with	the	3,1	entry	in	Eq.	(15-23).
Now	taking	the	inverse	z-transform	of	both	sides	of	Eq.	(15-23),	we	get
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15-3.	GRAPHS	IN	COMPUTER	PROGRAMMING

Analysis	of	 a	given	computer	program	has	been	an	 important	problem	 from
the	early	days	of	computer	programming.	The	purpose	of	such	an	analysis	could
be	 to	 estimate	 the	 running	 time	 or	 storage	 requirement	 of	 a	 program,	 to
subdivide	a	large	program	into	a	number	of	subprograms,	to	detect	certain	types
of	 structural	 errors	 in	 the	 program,	 to	 document	 a	 program,	 or	 simply	 to
understand	a	program	written	by	someone	else.	For	all	these	purposes	it	is	very
convenient	 to	 represent	 a	 program	 as	 a	 digraph.	 Each	 vertex	 represents	 a
program	block,	that	is,	a	sequence	of	computer	instructions	having	the	property
that	each	time	any	instruction	in	the	sequence	is	executed	all	are	executed.	Each
program	block	has	one	entry	point	(the	first	instruction	in	the	sequence)	and	one
exit	 point	 (the	 last	 instruction	 in	 the	 sequence).	Each	 edge	 (νi,	νj)	 represents	 a
possible	 transfer	of	control	 from	 the	 last	 instruction	 in	 the	program	block	νi	 to
the	first	instruction	in	the	program	block	νj.	Such	a	digraph	is	called	a	program
digraph.	A	program	digraph	can	also	be	 thought	of	as	an	abstraction	of	a	flow
chart	 in	which	 the	 boxes	 are	 shrunk	 to	 vertices	 and	 arrows	become	 the	 edges.
For	example,	Fig.	15-10	shows	the	program	digraph	of	the	flow	chart	in	Fig.	11-
9.	[Ignore	dashed	line	(ν14,	ν1	for	now.]



Fig.	15-10	Program	digraph	of	Fig.	11-9.

Note	that	there	may	be	more	than	one	program	digraph	for	a	given	program,
because	 one	 program	 block	 may	 be	 split	 into	 several.	 Also	 observe	 that
programs	that	modify	their	own	control	and	processing	instructions	in	the	course
of	execution	cannot	be	represented	in	this	fashion.	(Declarative	statements,	such
as	formats	and	dimension	statements,	are	ignored	in	program	digraphs.)
Some	 obvious	 but	 important	 properties	 of	 a	 digraph	 representing	 any	 valid

computer	program	are

1. A	program	digraph	must	be	connected.

2. It	has	precisely	one	vertex	of	zero	in-degree,	and	this	vertex	corresponds	to
the	 start	 of	 the	 program.	 (If	 the	 program	 has	 several	 starting	 points,	 an
additional	start	vertex	can	be	introduced	from	which	directed	edges	can	be
drawn	to	all	of	these	vertices.)

3. There	 is	 precisely	 one	 vertex	 of	 zero	 out-degree,	 and	 this	 vertex
corresponds	 to	 the	 end	 of	 the	 program.	We	 shall	 call	 it	 the	 stop	 vertex.
(Existence	 of	more	 than	 one	 stopping	 point	 in	 the	 program	 can	 be	 taken
care	of	as	in	item	2.)

4. Every	 vertex	 in	 the	 program	 digraph	 must	 be	 accessible	 from	 the	 start



vertex.

5. The	 stop	 vertex	 must	 be	 accessible	 from	 every	 vertex	 in	 the	 program
digraph.

Detection	of	Programming	Errors

To	detect	and	report	certain	types	of	structural	errors	in	a	source	program	is	an
essential	 part	 of	 a	 compiler’s	 job.	 The	 most	 common	 of	 these	 errors	 can	 be
checked	by	tracing	directed	paths	from	the	start	vertex	to	the	stop	vertex	in	the
program	digraph.	Path	tracing	will	detect	program	blocks	that	are	never	entered,
or	 program	 blocks	 from	 which	 there	 is	 no	 exit	 leading	 to	 the	 stop	 vertex,	 or
disjoint	parts,	such	as	a	subroutine	that	is	never	called	[15-33].

Estimation	of	Program	Running	Time

Given	 a	 computer	 program	 and	 the	 execution	 time	 for	 each	 of	 the	 program
blocks,	we	are	often	required	to	estimate	the	running	time	of	the	program.	The
situation	is	represented	by	a	program	digraph	having	a	weight	ti	associated	with
each	 vertex	 νi,	 where	 ti	 is	 the	 execution	 time	 of	 the	 corresponding	 program
block.	 If	we	 can	 estimate	 the	number	of	 times	 each	vertex	 is	 entered	 (i.e.,	 the
program	block	is	executed),	the	running	time	of	the	program	can	be	determined
(for	a	particular	computer,	of	course).
In	 the	 program	 digraph	 let	 each	 directed	 edge	 ei	 be	 assigned	 a	 nonnegative

integer	 fi,	where	 fi	 is	 the	number	of	 times	 edge	ei	 is	 traversed.	The	number	of
times	a	vertex	is	entered	must	equal	the	number	of	times	it	is	exited,	except	for
the	start	vertex	and	the	stop	vertex.	These	two	exceptions	can	also	be	taken	care
of	by	adding	an	edge	of	unit	weight	directed	from	the	stop	vertex	νn	to	the	start
vertex	 ν1	 (see	 the	 dashed	 edge	 in	 Fig.	 15-10).	 Now	 the	 edge	 weights	 in	 this
modified	 digraph	 satisfy	 the	 Kirchhoff	 current	 law	 (KCL)	 at	 every	 vertex.
(Quantity	 fi	may	 be	 looked	 upon	 as	 a	 flow	 through	 the	 ith	 edge	ei.	Recall	 the
electrical	networks	in	Chapter	13	and	the	flow	networks	in	Chapter	14.)
If	we	apply	KCL	to	a	weighted,	connected	digraph	of	n	vertices	and	e	edges,

we	get	n	−	1	linearly	independent	equations	in	e	unknowns,	the	unknowns	being
the	 weights	 of	 (i.e.,	 the	 flows	 through)	 the	 edges.	 Thus	 we	 can	 choose
independently	only	a	set	of	μ	=	e	−	n	+	1	flows,	corresponding	to	the	chords	with
respect	to	any	spanning	tree	in	the	digraph.	The	remaining	n	−	1	flows	through
the	tree	branches	can	be	expressed	in	terms	of	these	μ	flows.	For	example,	in	the
program	digraph	of	Fig.	15-10,	μ	=	18	−	14	+	1	=	5.	Therefore,	the	flow	through



every	 edge	 can	 be	 expressed	 in	 terms	 of	 five	 unknowns.	 Thus	 the	 iteration
counts	 through	14	boxes	 in	 the	 flow	 chart	 are	 expressed	 in	 terms	of	 only	 five
unknowns.	These	five	unknowns	can	also	be	chosen	conveniently	by	picking	a
spanning	tree.	For	example,	in	Fig.	11-9	we	know	that	the	iteration	count	of	the
edge	(ν4,	ν7)	is	N	−	1,	where	N	is	the	number	of	vertices	in	the	original	graph	on
which	 Algorithm	 6	 was	 being	 applied.	 The	 flows	 through	 the	 remaining	 four
chords	are	data	dependent	in	a	more	involved	fashion.	The	minimum,	maximum,
and	 average	 running	 times	 of	 the	 program	 can	 be	 estimated	 by	 assuming
appropriate	probable	values	of	these	four	unknowns.	At	this	point	the	problem	of
estimating	the	running	time	becomes	quite	difficult.	For	some	simple	examples,
the	reader	is	referred	to	[15-25],	[15-26],	and	pages	95–102	and	364–369	of	[11-
39].
In	this	connection	an	interesting	question	is	as	follows:
Given	a	connected	digraph	G	with	vertices	ν1,	ν2,	.	.	.	,	vn	and	e	edges,	having

weights	f1,	f2,	.	.	.	,	fe	associated	with	the	edges,	what	are	necessary	and	sufficient
conditions	that	G	corresponds	to	some	program	digraph	such	that	ν1	is	the	start
vertex	and	vn	is	the	stop	vertex?	Some	necessary	conditions	are	obvious:	Each	fi,
must	be	a	nonnegative	integer.	The	in-degree	of	ν1	=	0	=	out-degree	of	vn.	Also,
the	fi’s	must	satisfy	KCL	at	each	vertex	except	at	v1	and	vn.	Moreover,	the	sum
of	weights	 of	 edges	 going	out	 of	ν1	 should	be	 equal	 to	 the	 sum	of	weights	 of
edges	 going	 into	νn,	 both	 being	 equal	 to	 unity.	Are	 these	 conditions	 sufficient
also?	The	answer,	as	given	by	the	following	construction,	is	yes.
From	the	given,	weighted	digraph	G	let	us	construct	an	unweighted	digraph	H

as	follows:	Replace	every	edge	ej	with	fj	parallel	edges,	where	fj	is	the	weight	of
the	edge	ej	in	the	digraph	G.	Clearly,	the	digraph	H	will	be	balanced	[i.e.,	d+(ν)	=
d−(ν)	for	every	vertex	ν	in	H]	if	and	only	if	KCL	is	satisfied	at	every	vertex	in	G.
Now,	 from	 Theorem	 9-1,	 a	 digraph	 is	 balanced	 if	 and	 only	 if	 it	 is	 an	 Euler
digraph;	 that	 is,	 there	 exists	 a	 directed	Euler	walk	 from	 ν1	 to	 vn	 in	H.	 This	 is
possible	if	and	only	if	there	exists	a	directed	edge	sequence	in	G	from	vertex	ν1
to	vn	such	that	every	edge	ek	appears	in	it	exactly	fk	times,	and	the	edge	(vn,	ν1)
does	not	appear	in	this	directed	edge	sequence.	The	last	statement	is	equivalent
to	G	being	a	program	digraph	with	ν1	as	start	vertex	and	vn	as	stop	vertex.	Thus
we	have.

THEOREM	15-7



Let	G	be	a	connected,	weighted	digraph	with	n	vertices	and	e	edges.	Let	all
the	edge	weights	f1,	f2,	.	.	.	,	fe	be	nonnegative	integers,	and	such	that	they	satisfy
KCL	at	each	vertex,	except	ν1	and	vn.	Furthermore,	let	the	in-degree	of	ν1	=	0	=
out-degree	of	vn,	and	the	sum	of	the	weights	of	the	edges	going	out	of	v1	=	the
sum	 of	 the	 weights	 of	 the	 edges	 going	 into	 vn	 =	 1.	 Then	G	 corresponds	 to	 a
program	 digraph	 in	which	 ν1	 is	 the	 start	 vertex,	 vn	 is	 the	 stop	 vertex,	 and	 the
weight	 fi	 of	 the	 ith	 edge	 is	 the	 number	 of	 times	 that	 edge	 is	 traversed	 in	 the
program.

Program	Segmentation

Sometimes	 one	 comes	 across	 a	 program	 so	 large	 that	 it	 cannot	 be
accommodated	 in	 its	 entirety	 into	 the	 working	 memory	 of	 the	 available
computer.	In	such	a	case	the	program	must	be	segmented	before	execution.	Then
the	 segments	 (pieces)	 of	 the	program	are	brought	 from	 the	 slow	bulk	memory
(drum,	disk,	or	tape)	and	executed	one	at	a	time.	The	size	of	each	segment	must
be	small	enough	to	be	accommodated	into	the	working	memory	and	yet	must	be
large	 enough	 so	 that	 there	 would	 not	 be	 too	 many	 transfers	 between	 the	 fast
working	memory	and	the	slow	bulk	memory.	Thus	we	have	a	problem	of	finding
an	 optimal	 partitioning	 of	 the	 program	 digraph	 into	 subdigraphs	 such	 that	 the
sum	 of	 weights	 of	 vertices	 (here	 the	 weight	 si	 of	 vertex	 vi	 is	 the	 amount	 of
storage	 space	 required	 by	 the	 ith	 program	 block)	 does	 not	 exceed	 a	 specified
value.	 A	 similar	 problem	 arises	 in	 a	 multiaccess,	 timesharing	 environment,
where	 each	 user	 is	 given	 a	 burst	 of	 service	 of	 fixed	 duration.	 The	 program
segments	 have	 to	 be	 chosen	 judiciously,	 not	 so	 large	 that	 its	 execution	 will
exceed	 the	 allotted	 time	 and	 yet	 not	 too	 short	 to	 require	 inefficient	 transfers
between	memories.
If	the	program	digraph	is	acyclic	(i.e.,	the	program	has	no	loops,	which	is	rare

for	any	nontrivial	computer	program),	the	partitioning	problem	is	solved	easily.
We	sort	the	vertices	in	a	topological	order,	and	starting	from	the	first	vertex,	we
partition	 the	 sequence	 into	 largest	possible	 (topologically	 sorted)	 subsequences
such	that	the	total	vertex	weight	of	no	subsequence	exceeds	the	specified	value.
The	 difficulty	 in	 segmentation	 arises	 because	 of	 directed	 circuits	 in	 the

program	 digraphs	 (i.e.,	 loops	 in	 the	 program).	 A	 cut	 made	 across	 a	 directed
circuit	 implies	interchanges	between	the	two	segments,	and	hence	between	fast
and	 slow	 memory.	 Thus	 one	 would	 like	 to	 avoid	 a	 segmentation	 that	 causes
vertices	of	one	directed	circuit	to	belong	to	more	than	one	segment.	The	simplest
method	 to	 accomplish	 this	 is	 to	 identify	 all	 fragments	 (i.e.,	 maximal	 strongly



connected	 subdigraphs)	 in	 the	 program	 digraph.	 Then	 compute	 the	 memory
requirement	 of	 each	 fragment	 by	 adding	 the	 weights	 of	 all	 its	 vertices.	 If	 the
largest	of	 these	memory	 requirements	does	not	exceed	 the	 size	of	 the	working
memory,	 then	 the	problem	 is	 solved.	For	we	need	not	cut	 any	directed	circuit,
and	small	 fragments	can	always	be	combined	 to	yield	a	segment	of	 reasonable
size.
In	practice,	however,	it	is	found	that	the	largest	fragment	is	usually	too	large

to	 fit	 in	 the	 working	 memory.	 For	 example,	 in	 Fig.	 15-10	 almost	 the	 entire
program	 digraph	 forms	 a	 fragment.	 In	 such	 a	 case,	 cutting	 across	 directed
circuits	 is	 unavoidable.	The	 simplest	 approach	 suggested	 in	 the	 literature	 is	 to
find	a	partition	that	severs	the	least	number	of	directed	circuits.	This	is	a	difficult
problem.	 To	 enumerate	 all	 strongly	 connected	 subdigraphs	 in	 the	 program
digraph	and	 then	consider	each	as	a	possible	segment,	although	suggested	as	a
solution	 in	 the	 literature	 [15-32],	 is	 a	 horrendous	 task.	 Even	 generation	 of	 all
directed	 circuits	 in	 a	 digraph	 is	 extremely	 time	 consuming,	 as	we	 observed	 in
Chapter	 11.	 Another	 method	 suggested	 for	 program	 segmentation	 is	 by	 first
ordering	the	vertices	in	a	certain	fashion	[15-20].	This	method	of	segmentation
involves	more	labor	than	finding	all	fragments,	but	less	labor	than	generating	all
strongly	connected	subdigraphs	of	the	program	digraph.
Segmentation	of	a	program	is	a	very	difficult	problem,	to	say	the	least.	We	are

quite	 far	 from	 having	 found	 a	 procedure	 for	 an	 efficient	 solution	 for	 this
important	and	interesting	graph-theoretic	problem.
Even	 if	we	were	 able	 to	obtain	 a	partitioning	 that	minimized	 the	number	of

severed	 directed	 circuits,	 the	 solution	 might	 not	 be	 optimal.	 Every	 directed
circuit	is	not	traversed	the	same	number	of	times.	Obviously,	cutting	a	directed
circuit	with	higher	iteration	count	is	worse	than	cutting	one	with	lower	iteration
count.	 We	 must	 have	 the	 iteration	 count	 of	 each	 loop—information	 rarely
available	ab	initio,	because	of	its	data	dependence.	A	stochastic	analysis	of	the
program,	 assuming	 that	 it	 behaves	 as	 a	Markov	 system,	 is	often	 the	 answer	 to
this	problem.

Stochastic	Model	of	a	Program

One	method	used	to	estimate	the	relative	frequencies	of	traversal	of	different
edges	and	vertices	is	to	assume	the	program	digraph	to	be	a	stochastic	digraph,
in	which	 the	weight	pij	 of	 edge	 (νi,	 νj)	 is	 the	 conditional	 probability†	 that	 the
program	 execution	will	 go	 to	 program	 block	 νj	 given	 that	 it	 has	 executed	 the
program	block	νi.	Once	the	program	reaches	νn,	 the	stop	vertex,	the	probability



of	its	branching	to	any	other	vertex	is	zero.	To	satisfy	the	conditions	in	Eq.	(15-
8),	we	add	a	self-loop	of	weight	one	at	vertex	νn.	Thus	νn	is	an	absorbing	state,
the	only	absorbing	state	in	the	system,	and	the	remaining	vertices	correspond	to
transient	 states.	 A	 very	 simple	 stochastic	 program	 digraph	 and	 its	 transition
matrix	P	are	shown	in	Fig.	15-11.

Fig.	15-11	Stochastic	program	digraph	and	its	transition	matrix.

The	transition	matrix	P	of	any	stochastic	program	digraph	can	be	expressed	in
the	form

where	Q	is	an	(n	−	1)	by	(n	−	1)	submatrix	corresponding	to	the	transient	states,
T	is	an	(n	−	1)	by	1	column	vector,	and	0	is	the	row	vector	of	n	−	1	zeros.
Let	us	 look	at	matrix	Pk,	which	 represents	 the	k-step	 transition	probabilities.

Clearly,



(T′	is	a	matrix	that	we	need	not	compute	here.)
The	ijth	entry	in	Qk	is	the	probability	of	being	in	transient	state	νj	after	exactly

k	 transitions	from	the	starting	state	νi	 (also	transient).	Let	us	first	show	that	Qk

becomes	0	as	k	becomes	large.
In	 the	stochastic	program	digraph	G	with	n	vertices,	 let	pi	be	 the	probability

that	starting	from	vertex	νi	 the	program	will	not	reach	νn	stop	vertex	in	n	steps
(or	 less).	Since	 there	 exists	 at	 least	 one	directed	path	 (of	 length	n	−	1	or	 less)
with	a	nonzero	path	product	from	νi	to	νn,	quantity	pi	<	1.	Let	p	be	the	largest	of
all	pi’s.	The	probability	of	not	reaching	νn	in	n	steps	is	less	than	p,	in	2n	steps	it
is	less	than	p2,	and	so	on.	Since	p	<	1,	these	probabilities	tend	to	zero.	That	is,
the	sum	of	the	entries	in	the	ith	row	of	Qk	as	k	→	∞	becomes	zero,	for	i	=	1,	2,	.	.
.	,	n	−	1.	Now	since	Qk	=	0	for	some	large	k,	we	can	write

which	can	be	easily	verified	by	multiplying	both	sides	with	I	−	Q.	Equation	(15-
26)	says	that	matrix	I	−	Q	is	nonsingular.	For	brevity,	let	us	denote	matrix	(I	−
Q)−1	by	R	=	[rij].
The	sum	of	probabilities	of	reaching	νj	from	νi	in	1	step,	2	steps,	3	steps,	.	.	.	,

and	k	−	1	steps	is	equal	to	rij,	the	ijth	entry	in	(I	−	Q)−1,	according	to	Eq.	(15-26).
This	 is	 precisely	 the	 average	number	of	 times	vertex	νj	 appears	 in	 the	 random
paths	starting	from	νi.	In	a	program,	since	we	always	start	from	ν1	and	end	at	νn,
the	 first	 row	 of	 R	 gives	 us	 the	 average	 iteration	 counts	 of	 all	 n	 −	 1	 transient
vertices.	That	is,

r1j	 = the	 average	 number	 of	 times	 program	 block	 νj	 will	 be	 executed	 in	 a
typical	run.

Matrix	 R	 =	 (I	 −	Q)−1,	 besides	 giving	 the	 average	 number	 of	 occurences	 of
different	vertices,	 is	a	storehouse	of	a	 lot	of	other	useful	 information	about	 the
transient	behavior	of	the	stochastic	program	digraph.	For	example,	let	hij	denote
the	probability	that	the	program	will	ever	execute	νj	having	executed	νi.	Clearly,

rij	= hij·(average	number	of	times	νj	occurs,	given	that	the	system	started	in	νj)

=	hij·rjj.



Therefore,

To	 extract	 another	 piece	 of	 information	 from	 matrix	 R,	 let	 βj	 denote	 the
probability	that	the	program	starting	from	νj	will	never	return	to	νj.	Now,	to	pass
rjj	times	through	a	vertex	νj,	the	process	must	reach	νj	once	and	then	return	there
rjj	−	1	times.	Therefore,	the	probability	of	returning	to	νj	after	leaving	it	once	is
given	by

Hence	the	probability,	βj,	of	never	returning	to	νj	after	leaving	it	once	is

Finally,	 let	 αj	 denote	 the	 probability	 that	 νj	 is	 executed	 exactly	 k	 times
(starting	from	the	start	vertex	ν1).	Then

For	illustration	let	us	continue	with	the	example	of	Fig.	15-11.	The	Q	matrix	is

and	matrix	R	=	(I	−	Q)−1	comes	out	to	be



Therefore,

r12	= 	is	the	average	number	of	times	vertex	ν2	gets	executed,

h12	= 	is	the	probability	that	ν4	will	be	executed,

β3	= 	 is	 the	probability	 that	ν3	will	never	be	executed	given	 that	 it	has	 just
been	executed.

And	so	on.
Having	computed	the	average	number	of	executions	of	each	vertex	νj,	one	can

immediately	get	the	expected	execution	time	for	the	entire	program	as

where	tj	is	the	execution	time	of	the	program	block	νj.	Equation	(15-30)	assumes
that	 there	 is	 no	 parallel	 processing	 (i.e.,	 no	 two	 program	 blocks	 are	 executed
simultaneously).
For	 the	purpose	of	segmenting	a	fragment	g	 in	 the	program	digraph,	we	can

compute	 the	 least	 frequently	 used	 edge	 in	 g,	 delete	 it	 from	 the	 fragment,	 and
check	 if	 the	 resulting	 digraph	 can	 be	 partitioned	 into	 appropriate	 size
subfragments.	If	not,	we	remove	the	least	frequently	used	edge	in	the	remaining
digraph.	 This	 process	 is	 continued	 till	 subfragment	 g	 is	 segmented	 into	 the
required	 size	 subfragments.	 This	 is	 the	 stochastic	 segmentation	 procedure
suggested	in	[15-33].
The	most	 difficult	 part	 of	 stochastic	 analysis	 of	 a	 program	 is	 the	 labor	 and

inaccuracies	 involved	 in	 the	 evaluation	 of	 the	 transition	matrix	 P,	 because	 the
branching	probabilities	are	data	dependent.	They	can,	however,	be	estimated	by
simulation	methods	using	 sample	 input	 data	 [15-33].	Another	 difficulty	 is	 that
for	 many	 programs	 the	 assumption	 about	 the	 weights	 pij’s	 being	 statistically
independent	is	not	valid.

Remarks	and	References

In	analysis	and	design	of	application	programs	and	system	software	you	are
likely	 to	 encounter	 graph	 theory	 more	 often	 than	 any	 other	 branch	 of
mathematics.	As	we	have	 just	 seen,	a	weighted	digraph	 is	a	natural	and	useful
representation	of	a	computer	program,	and	is	of	immense	aid	in	timing	analysis,
segmentation,	 and	 in	 detecting	 certain	 common	 types	 of	 structural	 errors.	 In



addition,	there	are	other	programming	applications	that	were	not	discussed	here.
Some	of	these	are

1. Program	optimization,	[15-16].

2. Automatic	flow	charting,	[15-19]	and	[11-4],	page	245.

3. Graphs	as	data	structures,	[15-34].

4. Parallel-processing	design	and	evaluation,	[15-23].

5. In	proving	equivalence	of	two	programs,	or	proving	validity	of	a	program
by	transforming	the	program	digraph	into	canonical	forms.

The	following	list	of	papers	is	a	sample	of	the	growing	literature	on	utilization
of	graphs	in	the	art	of	computer	programming.
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15-4.	GRAPHS	IN	CHEMISTRY

Although	 Arthur	 Cayley	 used	 trees	 to	 represent	 the	 structures	 of	 organic
molecules	100	years	ago	(and,	indeed,	much	of	the	early	interest	in	the	study	of
trees	 was	 motivated	 by	 this	 representation),	 it	 is	 only	 recently	 that	 graph-
theoretic	 techniques	 are	 coming	 into	use	 for	 characterization	and	 identification
of	chemical	compounds.	This	is	due	to	(1)	the	advent	of	the	electronic	computer



with	 its	 ability	 to	 handle	 graphs,	 and	 (2)	 the	 ever-intensifying	 need	 of	 the
chemist	 to	 have	 a	mechanized	 information	 retrieval	 system	 capable	 of	 dealing
with	the	millions	of	organic	compounds	known	today.
Given	 a	 chemical	 substance	 and	 some	 of	 its	 properties	 (such	 as	 molecular

weight,	 chemical	 composition,	mass	 spectrum,	 etc.),	 the	 chemist	would	 like	 to
find	 out	 if	 this	 substance	 is	 a	 known	 compound.	 If	 he	 is	 able	 to	 identify	 this
compound,	he	may	like	to	know	some	additional	properties	of	the	compound,	or
if	the	compound	is	“new”	he	would	like	to	know	its	structure,	and	then	include	it
in	 the	 dictionary	 of	 known	 compounds.	 It	 is	 essential,	 therefore,	 to	 have	 a
standard	representation	for	a	compound,	and	the	representation	must	be	compact,
unambiguous,	and	amenable	to	classification.
It	was	shown	in	Section	3-6	how	a	chemical	compound	can	be	represented	by

means	 of	 a	 connected	 graph,	 with	 the	 atoms	 as	 the	 vertices	 and	 the	 bonds
between	them	as	edges.	For	compactness	the	hydrogen	atoms	are	omitted	from
the	 representation,	 as	 they	 are	 implied	 by	 every	 unused	 valence	 of	 the	 other
atoms.	For	example,	 the	structural	graph	of	aminoacetone	C3H7NO,	with	 its	H
atoms	stripped	off,	 is	 shown	 in	Fig.	15-12.	 [Recall	 that	 the	valence	 for	carbon
(C)	is	4,	for	nitrogen	(N)	it	is	3,	and	for	oxygen	(O)	it	is	2.]

Fig.	15-12	Structural	graph	of	aminoacetone.

The	structural	graph	of	a	chemical	compound,	in	general,	contains	much	more
information	 than	 the	 molecular	 formula	 does.	 For	 example,	 the	 molecular
formula	 C10H22	 can	 denote	 any	 of	 its	 75	 isomers	 (75	 being	 the	 number	 of
unlabeled	 trees	 with	 10	 vertices	 and	 with	 no	 vertex	 of	 degree	 five	 or	 more),
while	 the	 graph	 specifies	 the	 exact	 isomer.	 It	must	 be	 kept	 in	mind,	 however,
that	a	structural	graph	does	not	contain	all	the	information	contained	in	the	three-
dimensional	 model	 of	 the	 chemical	 compound.	 The	 structural	 graph	 does	 not
specify	 the	bond	distances	or	 the	bond	angles	of	 the	molecule.	Since	 these	are
known	only	for	a	small	number	of	organic	molecules	anyway,	this	is	not	much
of	a	handicap.	A	slightly	more	serious	shortcoming	of	a	graph	is	its	inability	to
distinguish	 between	 stereoisomers	 [15-40].	 Thus,	 except	 for	 stereochemistry



purposes,	 the	 structural	 graph	 gives	 a	 reasonably	 adequate	 description	 of	 a
chemical	compound.

Canonical	Representation	of	a	Molecule

As	 pointed	 out	 above,	 a	 standard	 representation	 of	 chemical	 structures	 is	 a
precondition	 for	 a	 computerized	 information	 retrieval	 system.	 From	 the
structural	point	of	view,	organic	molecules	can	be	divided	into	two	classes:	(1)
the	aliphatic	compounds,	and	(2)	the	ring	compounds.	The	structural	graph	of	an
aliphatic	compound	has	no	circuit,	except	possibly	circuits	of	length	two	arising
out	of	multiple	bonds,	which	are	represented	by	parallel	edges,	as	shown	in	Fig.
15-12.	The	graph	of	a	ring	compound	contains	at	least	one	circuit	of	length	three
or	more.
Since	 the	 graph	 of	 an	 aliphatic	 compound	 is	 a	 tree	 (if	 we	 ignore	 parallel

edges),	 it	can	easily	be	given	a	canonical	 representation	as	 follows:	Every	 tree
has	 a	 unique	 centroid	 or	 a	 pair	 of	 centroids	 (parallel	 edges	 are	 considered	 as
single	edges	for	the	purposes	of	locating	the	centroid).	The	centroid	can	be	used
as	the	root	of	the	tree	(recall	Section	10-3),	and	each	subtree	attached	to	the	root
is	a	radical.	The	subtrees	can	be	ordered	by	the	number	of	vertices	they	contain
in	 a	 nondecreasing	 order.	 Each	 radical	 is	 further	 subdivided	 into	 subradicals,
which	 are	 ordered	 in	 the	 same	 fashion.	 This	 process	 produces	 a	 unique	 linear
code	for	each	tree—a	string.	For	example,	the	code	for	the	tree	in	Fig.	15-12	is
C(C)	(=O)(C(N)).	For	more	details	on	coding	of	aliphatic	compounds,	see	[15-
42].
Cyclic	 compounds	 are	 less	 tractable,	 because	 no	unique	 centroid	 (or	 pair	 of

centroids)	can	be	defined	in	a	graph	with	circuits.	Fortunately,	the	chemist	need
not	 be	 concerned	with	 the	general	 problem	of	 coding	 a	graph	 (a	very	difficult
problem,	as	discussed	in	Chapter	11).	The	structural	graph	of	almost	every	ring
compound	is	 (1)	planar,	 (2)	a	 regular	graph	of	degree	 three,	and	(3)	contains	a
Hamiltonian	circuit.	It	is	not	very	difficult	to	find	a	unique	linear	code	for	such	a
graph.	 There	 exists	 an	 n-sided	 polygon	 in	 such	 a	 graph	 of	 n	 vertices,	 and	 a
description	of	the	graph	requires	only	some	notation	for	the	remaining	n/2	edges.
These	edges	may	be	represented	by	a	sequence	of	n	numbers	consisting	of	their
end	 vertices.	 For	 details	 on	 this	 coding	 scheme	 for	most	 ring	 compounds,	 see
[15-42].

Matching	of	Chemical	Structure

The	problem	of	determining	whether	or	not	two	chemical	compounds	(having



the	same	chemical	formula)	are	identical	is	the	same	as	the	graph	isomorphism
problem,	considerably	simplified	by	the	labels	of	the	vertices.	Finding	a	unique
code	 for	 a	 graph	 implies	 the	 solution	 of	 the	 isomorphism	 problem	 as	 well,
because	 two	 graphs	 would	 be	 isomorphic	 if	 and	 only	 if	 their	 codes	 were	 the
same.	For	chemical	structures,	however,	it	is	generally	easier	to	perform	a	direct
vertex-by-vertex	matching	 than	 to	 first	 find	 a	unique	 code	 for	 each	graph.	We
shall	describe	one	such	algorithm	for	matching	of	chemical	structures	based	on
Sussenguth’s	paper	[11-59],
The	underlying	idea	behind	this	algorithm	is	to	use	various	properties	(such	as

labels,	degrees,	adjacencies,	etc.)	of	vertices	in	the	two	graphs	to	generate	pairs
of	 vertex	 subsets,	 which	 must	 match	 if	 the	 graphs	 are	 to	 be	 isomorphic.	 An
increasing	 number	 of	 properties	 are	 used	 to	 partition	 vertices	 into	 smaller	 and
smaller	subsets.	Eventually,	either	every	vertex	in	one	graph	is	uniquely	paired
off	with	a	vertex	in	the	other	graph,	or	two	subsets	of	vertices	characterized	by
identical	properties	in	the	two	graphs	do	not	have	the	same	number	of	vertices.
(A	 third	 case	 arises	when	more	 than	 one	 isomorphism	 exists	 between	 the	 two
graphs.)	The	process	can	be	best	explained	with	an	example:

Fig.	15-13	Structural	graphs	of	two	molecules.

Let	us	determine	whether	or	not	the	two	molecules	in	Fig.	15-13	are	identical
(H	atoms	are	not	shown,	as	usual).	The	vertices	are	arbitrarily	named	(1),	(2),	.	.	.
,	(8)	in	G	and	(a),	(b),	.	.	.	,	(h)	in	J.
The	 process	 of	 generating	 matching	 subsets	 with	 common	 properties	 is

outlined	 in	 Table	 15-1.	 For	 instance,	 vertices	 representing	 carbon	 atoms	 in	G
must	correspond	to	those	representing	carbon	atoms	in	J.	Of	these,	the	pendant	C
vertices	in	G	must	correspond	to	pendant	C	vertices	in	J,	and	so	on.	(Note	that
Table	 15-1	 shows	 only	 a	 part	 of	 the	 subsets	 that	 are	 actually	 generated	 and
matched.)	From	Table	15-1,	we	conclude	 that	G	 and	J	 are	 isomorphic	and	 the
vertex	correspondence	is



A	similar	 procedure	 can	be	used	 to	 identify	one	given	graph	 as	 a	 subgraph	of
another.

Table	15-1	Matching	of	Chemical	Structures

Computerized	Chemical	Identification

Given	the	chemical	formula	of	a	“new”	substance	and	the	valence	rules,	one
can	 generate	 the	 list	 of	 all	 distinct	 chemical	 structures	 possible,	 using	 graph
enumeration	 techniques.	Computer	programs	have	been	written	 to	perform	this
operation.	 (It	 is	 necessary,	 of	 course,	 to	have	 a	 coding	 scheme	 that	 provides	 a
unique	 representation	 for	 a	 structural	 graph.)	 This	 method	 of	 producing	 an
exhaustive	list	of	all	possible	isomers	gets	out	of	hand	as	the	number	of	atoms	in
the	molecule	increases.	For	example,	there	are	over	 	million	structures	possible
for	 C20H41OH.	 It	 is	 therefore	 necessary	 to	 provide	 additional	 chemical



information	(such	as	the	type	of	radicals	ruled	out	as	unstable)	to	keep	the	list	to
a	manageable	size.	A	computer	program	can	be	written	to	compare	each	of	the
structures	 in	 the	 list	 against	 various	 sets	 of	 analytical	 data,	 particularly	 mass
spectra.
As	a	part	of	the	continuing	effort	toward	a	system	of	automated	identification

of	 chemical	 compounds,	 a	 computer	 language,	 called	 DENDRAL,	 has	 been
developed	at	Stanford	University.	See	[15-38]	and	[15-39].	One	of	the	programs
in	DENDRAL	generates	the	list	of	all	tree-type	potential	isomers	from	an	input
of	 molecular	 formula	 and	 mass	 spectrum.	 The	 program,	 written	 in	 LISP
language,	consists	of	40,000	words,	and	is	run	on	a	PDP-6	timesharing	system	at
Stanford.	One	of	 the	 long-term	goals	of	 such	an	effort	 is	 to	develop	a	 tool	 for
automated	chemical	exploration	of	the	planets	[15-42].

Remarks	and	References

Lederberg	and	Feigenbaum	and	 their	 team	at	Stanford	University	have	done
the	pioneering	work	in	computerized	chemical	identification	via	graph	theory.	A
number	 of	 technical	 reports	 and	 papers	 (four	 of	 them	 referenced	 in	 [15-44])
describe	 various	 aspects	 of	 the	 DENDRAL	 program.	 See	 also	 [15-37].	 For	 a
very	 readable	 description	 of	 the	 essentials	 of	 DENDRAL,	 see	 the	 paper	 by
Feigenbaum	 and	 Lederberg	 [15-38].	 Another	 paper	 by	 Lederberg	 [15-40]	 is
recommended	 as	 a	 well-written	 exposition	 of	 how	 graphs	 can	 be	 used	 for
representing	structures	of	organic	molecules—both	tree	type	and	ring	type.
Sussenguth	in	his	doctoral	thesis	and	in	a	subsequent	paper	[11-59]	has	given

an	algorithm	for	matching	chemical	structures.	He	reports	 that	 the	computation
time	in	his	algorithm	varies	only	as	the	square	of	the	number	of	vertices;	and	that
his	 computer	 program	 when	 run	 on	 an	 IBM	 7090	 took	 6	 to	 7	 seconds	 for
matching	50-vertex	graphs	and	only	a	few	thousandths	of	a	second	 to	detect	 if
the	graphs	were	not	matched.
A	survey	of	computer	methods	in	handling	chemical	structures	is	available	in

[15-44],	 which	 includes	 most	 of	 the	 relevant	 references	 through	 1966.	 Other
papers	 recommended	 are	 [15-38],	 [15-43],	 and	 [11-59].	The	 search	 for	 a	 good
coding	system	is	far	from	over.	Papers	proposing	alternative	notational	systems
continue	to	appear	in	the	Journal	of	Chemical	Documentation.
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15-5.	MISCELLANEOUS	APPLICATIONS

There	is	virtually	no	end	to	the	list	of	problems	that	can	be	solved	with	graph
theory.	 In	 addition	 to	 applications	 covered	 in	 the	 last	 four	 chapters,	 many
applications	were	mentioned	in	earlier	chapters,	for	example,	binary	search	trees
for	 file	 organization	 (Chapter	 3),	 design	 of	 printed-circuit	 board	 (Chapter	 5),
dimers	problem	in	crystal	physics	(Chapter	8),	teleprinter’s	problem	(Chapter	9),
and	 ranking	problem	(Chapter	9).	The	 following	are	some	additional	examples
of	applications.

Information	 Retrieval:	 In	 a	 modern	 information	 retrieval	 system	 each
document	carries	a	number	of	 index	 terms	 (also	called	descriptors).	The	 index
terms	 are	 represented	 as	 vertices,	 and	 if	 two	 index	 terms	 νt	 and	 νj	 are	 closely
related	 (such	as	“graph”	and	“tree“),	 they	are	 joined	with	an	edge	 (νn,	νj).	The
simple,	 undirected	 (and	 possibly	 disconnected)	 large	 graph	 thus	 produced	 is
called	 the	similarity	graph.	Components	 (i.e.,	maximally	connected	subgraphs)
of	 this	graph	produce	a	very	natural	classification	of	documents	 in	 the	system.



For	 retrieval,	 one	 specifies	 some	 relevant	 index	 terms,	 and	 the	 maximal
complete	 subgraph	 that	 includes	 the	 corresponding	 vertices	 will	 give	 the
complete	 list	of	 index	terms	which	specify	 the	needed	documents.	Establishing
graph	 isomorphism	 is	 needed	 in	 a	 situation	 such	 as	 an	 information	 retrieval
system	 for	 chemical	 compounds.	 The	 reader	 is	 referred	 to	 Salton	 [15-60]	 for
more	on	the	subject.	Reference	[11-1]	is	also	recommended.

Analysis	 of	Lumped	Physical	 Systems:	 In	Chapter	 13	we	 saw	how	a	 system
consisting	of	two-terminal	electrical	components	was	represented	(and	analyzed)
by	means	of	a	graph.	In	that	case	the	graph	looked	very	much	like	the	network
schematic	diagram.	This	approach	can	be	generalized	so	that	a	graph	(called	the
system	graph)	is	used	to	model	any	physical	system	built	from	a	finite	number	of
interconnected	components,	given	the	model	of	each	component,	of	course.	The
system	graph	is	a	convenient	tool	in	analysis	of	the	entire	physical	system.	See
Trent	[15-61]	or	Koenig,	Tokad,	and	Kesavan	[15-57]	for	more	details.

Matrix	Inversion:	For	inverting	a	large	(say,	100	by	100)	sparse	matrix	M	by	a
computer,	the	straightforward	application	of	the	Gaussian	elimination	method	is
inefficient,	 is	 susceptible	 to	 poor	 accuracy,	 and	 causes	 storage	 problems.	 The
following	graph-theoretic	method	has	been	found	to	be	better:

1. Replace	each	nonzero	entry	 in	 the	given	matrix	M	with	a	1,	and	permute
the	rows	and	 the	corresponding	columns	of	 the	resulting	binary	matrix	 to
make	all	diagonal	entries	as	l’s.

2. The	matrix	X	 so	 obtained	 is	 now	 regarded	 as	 the	 adjacency	matrix	 of	 a
digraph	 G	 (the	 self-loops	 corresponding	 to	 l’s	 along	 the	 diagonal	 are
deleted).

3. The	resulting	digraph	is	partitioned	into	its	fragments.

4. A	 fragment,	 if	 too	 large,	 is	 “torn”	 further	 into	 smaller	 fragments	 by
removing	an	appropriate	edge.

5. The	 smaller	 matrices	 are	 inverted,	 and	 from	 them	 the	 inverse	 of	 the
original	matrix	M−1	is	obtained.

For	further	details	see	Harary	[15-54]	and	Iyer	[15-56].

Graphs	 of	 Groups:	 Cayley	 showed	 that	 every	 group	 of	 order	 n	 can	 be
represented	by	a	strongly	connected	digraph	of	n	vertices,	in	which	each	vertex
corresponds	 to	a	group	element	and	edges	carry	 the	 label	of	a	generator	of	 the
group	 (originally,	 Cayley	 used	 edges	 of	 different	 colors	 to	 show	 different



generators).	Thus	the	graph	of	a	cyclic	group	of	order	n	is	a	directed	circuit	of	n
vertices	in	which	every	edge	has	the	same	label.	The	digraph	of	a	group	uniquely
defines	the	group	by	specifying	how	every	product	of	elements	corresponds	to	a
directed	edge	sequence.	This	digraph,	known	as	the	Cayley	diagram,	is	useful	in
visualizing	and	studying	abstract	groups.	For	more	details	on	graphs	of	groups,
see	[15-52].

Linguistics:	Graphs	have	been	used	in	linguistics	to	depict	parsing	diagrams.
The	 vertices	 represent	words	 and	word	 strings	 and	 the	 edges	 represent	 certain
syntactical	relationships	between	them.	A	set	of	words	(vocabulary)	and	a	set	of
rules	(grammar)	for	forming	strings	(sentences)	characterize	a	language.	In	other
words,	 the	 language	 then	 is	 a	 set	 of	 all	 legal	 strings	 so	 generated.	 (Natural
languages,	because	of	 their	 complexity,	 have	defied	 attempts	 at	 such	complete
specifications.)	One	problem	in	computational	 linguistics	is	 to	identify	whether
or	not	a	given	string	belongs	to	a	language,	whose	vocabulary	and	grammar	are
given.	For	more	on	graphs	in	computational	linguistics,	see	[15-55].

Sociological	Structures:	Digraphs	under	the	name	sociograms	have	been	used
to	 represent	 relationships	 among	 individuals	 in	 a	 society	 (or	 group).	Members
are	 represented	 by	 vertices	 and	 the	 relationship	 (admiration,	 association,
influence,	 etc.)	 by	 directed	 edges.	 Connectedness,	 separability,	 complete
subdigraphs,	 size	 of	 fragments,	 and	 so	 forth,	 in	 a	 sociogram	 can	 be	 given
immediate	significance.	A	number	of	tribes	have	been	studied	by	anthropologists
and	are	classified	according	 to	 their	kinship	structures.	For	more	on	 this	 topic,
see	Flament	[15-51],	Harary	[15-53],	and	Chapter	8	of	Anderson	[15-45].
Graph	theory	has	also	been	used	in	economics	[15-46],	logistics,	cybernetics,

artificial	 intelligence,	 pattern	 recognition,	 genetics,	 reliability	 theory,	 fault
diagnosis	 in	 computers,	 studying	 the	 structure	 of	 computer	 memory,	 and	 the
study	 of	Martian	 canals	 [15-63].	A	mathematical	model	 of	 disarmament	 [1-2]
has	been	attempted	with	graph	theory	and	so	have	the	conflict	in	the	Middle	East
and	 the	 structure	of	Mozart’s	 opera,	Cosi	 fan	 tutte	 [15-53].	And	 thus	goes	 the
ever-increasing	list	of	applications	of	graph	theory.	Admittedly,	in	some	of	these
applications	 a	 graph	 is	 used	 only	 as	 a	means	 of	 visual	 representation,	 and	 no
more	 than	 a	 trivial	 use	 is	made	 of	 graph	 theory	 itself.	 There	 are	many	 cases,
however,	 where	 important	 and	 not-so-obvious	 results	 are	 obtained	 through	 a
deeper	use	of	graph	theory.

Bibliographies	and	Further	Reading:	Although	 throughout	 the	 text	we	have
provided	 selected	 readings,	 the	number	of	published	papers	on	graph	 theory	 is
much	larger	(over	3000).	There	are	several	good	bibliographies	available,	where



most	of	 the	published	material	on	 the	subject	 is	 listed.	The	best	known	among
these	 are	 Zykov	 [15-64],	 Turner	 and	Kautz	 [15-63],	 Turner	 [15-62],	 and	Deo
[15-49].	An	informative	article	containing	a	systematic	 list	of	definitions	and	a
bibliography	of	graph	 theory	as	applied	 to	physics	 is	 [15-50].	Some	additional
books	recommended	are	Mayeda	[15-59],	Chen	[15-48],	Marshall	 [15-58],	and
Behzad	 and	 Chartrand	 [15-47].	 I	 hope	 your	 interest	 in	 graph	 theory	 has	 been
aroused	sufficiently	so	that	you	will	go	exploring	in	the	cited	literature	on	your
own.

15-45. ANDERSON,	 S.,	 Graph	 Theory	 and	 Finite	 Combinatorics,	 Markham
Publishing	Company,	Chicago,	1970.

15-46. AVONDO-BODINO,	 G.,	Economic	 Applications	 of	 the	 Theory	 of	 Graphs,
Gordon	and	Breach,	Science	Publishers,	Inc.,	New	York,	1962.

15-47. BEHZAD,	M.,	and	G.	CHARTRAND,	Introduction	to	the	Theory	of	Graphs,
Allyn	and	Bacon,	Inc.,	Boston,	1972.

15-48. CHEN,	W.,	Applied	Graph	Theory,	North-Holland	Publishing	Company,
Amsterdam,	1971.

15-49. DEO,	 N.,	 “An	 Extensive	 English	 Language	 Bibliography	 on	 Graph
Theory	 and	 Its	 Applications,”	 National	 Aeronautics	 and	 Space
Administration/JPL	 (California	 Institute	 of	 Technology)	 Technical
Report	32-1413,	October	1969;	Supplement	1,	April	1971.

15-50. ESSAM,	 J.	 W.,	 and	 M.	 E.	 FISHER,	 “Some	 Basic	 Definitions	 in	 Graph
Theory,”	Rev.	Mod.	Phys.,	Vol.	42,	No.	2,	April	1970,	272–288.

15-51. FLAMENT,	C,	Applications	of	Graph	Theory	to	Group	Structure,	Prentice-
Hall,	Inc.,	Englewood	Cliffs,	N.J.,	1963.

15-52. GROSSMAN,	I.,	and	W.	MAGNUS,	Groups	and	Their	Graphs,	The	Random
House/Singer	School	Division,	New	York,	1964.

15-53. HARARY,	 F.,	 “Graph	 Theory	 as	 a	 Structural	 Model	 in	 the	 Social
Sciences,”	 in	 Graph	 Theory	 and	 Its	 Applications	 (B.	 Harris,	 ed.),
Academic	Press,	Inc.,	New	York,	1970,	1–16.

15-54. HARARY,	F.,	“Sparse	Matrices	and	Graph	Theory,”	in	Large	Sparse	Sets
of	Linear	Equations	 (J.	K.	Reid,	ed.),	Academic	Press,	Inc.,	New	York,
1971,	139–150.

15-55. HARRIS,	 Z.,	Mathematical	 Structure	 of	 Language,	 John	Wiley	&	Sons,
Inc.	(Interscience	Division),	New	York,	1968.

15-56. IYER,	 C,	 “Computer	 Analysis	 of	 Large-Scale	 Systems,”	 Ph.D.	 Thesis,
Department	 of	 Electrical	 Engineering,	University	 of	Hawaii,	Honolulu,
May	1971.

15-57. KOENIG,	 H.	 E.,	 Y.	 TOKAD,	 and	 H.	 K.	 KESAVAN,	 Analysis	 of	 Discrete



Physical	Systems,	McGraw-Hill	Book	Company,	New	York,	1967.
15-58. MARSHALL,	 C.	 W.,	 Applied	 Graph	 Theory,	 John	 Wiley	 &	 Sons,	 Inc.,

(Interscience	Division),	New	York,	1971.
15-59. MAYEDA,	 W.,	 Graph	 Theory,	 John	 Wiley	 &	 Sons,	 Inc.,	 (Interscience

Division),	New	York,	1972.
15-60. SALTON,	 G.,	 Automatic	 Information	 Organization	 and	 Retrieval,

McGraw-Hill	Book	Company,	New	York,	1968.
15-61. TRENT,	 H.	 M.,	 “Isomorphism	 Between	 Oriented	 Linear	 Graphs	 and

Lumped	Physical	Systems,”	J.	Acoust.	Soc.	Am.,	Vol.	27,	1955,	500–527.
15-62. TURNER,	 J.,	 “Key-Word	 Indexed	 Bibliography	 of	 Graph	 Theory,”	 in

Proof	 Techniques	 in	 Graph	 Theory	 (F.	 Harary,	 ed.),	 Academic	 Press,
Inc.,	1969,	189–330.

15-63. TURNER,	J.,	and	W.	H.	KAUTZ,	“A	Survey	of	Progress	in	Graph	Theory	in
the	Soviet	Union,”	SIAM	Rev.,	Supplement	Issue,	Vol.	12,	1970,	1–68.

15-64. ZYKOV,	 A.	 A.,	 “Bibliography	 of	 Graph	 Theory,”	 in	 Theory	 of	 Graphs
and	Its	Applications	(M.	Fiedler,	ed.),	Academic	Press,	Inc.,	New	York,
1964.

†This	model	originated	by	Andrei	Andreivich	Markov	(in	1907)	is	a	landmark	in	probability	theory.	Unlike
previous	mathematicians,	who	had	modeled	a	random	process	as	a	sequence	of	independent	trials,	Markov
saw	the	advantage	of	introducing	dependence	of	each	trial	on	the	outcome	of	its	predecessor.	Attempts	have
of	course	been	made	to	study	models	with	more	involved	dependency	of	the	present	trial	on	the	outcome	of
the	past	trials,	but	such	studies	generally	have	led	to	intractable	results.
†A	Markov	process	 is	often	called	a	Markov	chain	 if	 the	number	of	 states	 is	countable.	A	 finite	Markov
chain	is	one	in	which	the	number	of	states	is	finite.	In	this	book	we	are	considering	only	stationary,	finite
Markov	 chains	 in	 which	 the	 time	 also	 changes	 in	 discrete	 steps	 (and	 not	 continuously).	 As	 there	 is	 no
possibility	of	confusion,	such	a	process	will	simply	be	referred	to	as	a	Markov	process	hereafterwards.
†To	 quote	 Feller,	 “The	 classification	 into	 persistent	 and	 transient	 states	 is	 fundamental,	 whereas	 the
classification	into	periodic	and	aperiodic	states	concerns	a	technical	detail.	It	represents	a	nuisance	in	that	it
requires	 constant	 reference	 to	 trivialities;”	 W.	 Feller,	 An	 Introduction	 to	 Probability	 Theory	 and	 Its
Applications,	Volume	I,	3rd	ed.,	John	Wiley	&	Sons,	Inc.,	New	York,	1968,	387.
†Note	that	these	weights	pij’s	have	nothing	to	do	with	weights	fκ’s	assigned	in	the	previous	analysis	of	the
program	digraph.	While	fk’s	obey	KCL	at	each	vertex,	pij’s	obey	Eq.	(15-8).



APPENDIX	A
BINET-CAUCHY	THEOREM

The	following	classical	result,	known	as	the	Binet–Cauchy	theorem,	is	useful
in	calculating	the	determinant	of	the	product	of	two	matrices:	If	Q	and	R	are	k	by
m	 and	m	 by	 k	matrices,	 respectively,	with	 k	 <	m,	 then	 the	 determinant	 of	 the
product	det(QR)	= the	sum	of	the	products	of	corresponding	major	determinants
of	Q	and	R.

The	 term	 major	 determinant	 (or	 simply	 major)	 means	 the	 determinant	 of	 the
largest	square	submatrix	of	Q	(or	R)	formed	by	taking	any	k	columns	(or	rows)
out	of	m.	The	term	corresponding	implies	that	if	columns	i1,	i2,	.	.	.	,	ik	of	Q	are
chosen	for	a	particular	major,	the	corresponding	major	of	Q	must	consist	of	rows
i1,	i2,	.	.	.	ik	of	Q.	Clearly,	there	are	 	such	product	terms.
Before	proving	the	theorem,	let	us	illustrate	with	an	example:	Let

Proof:	To	evaluate	det(QR),	let	us	devise	and	multiply	two	(m	+	k)	by	(m	+	k)



partitioned	 matrices:	

where	Im	and	Ik	are	identity	matrices	of	order	m	and	k,	respectively.	Therefore,	

That	is,

Let	us	now	apply	Cauchy’s	expansion	method	to	the	right-hand	side	of	Eq.	(A-
1),	and	observe	that	the	only	nonzero	minors	of	any	order	in	matrix	−Im	are	its
principal	minors	of	that	order.	We	thus	find	that	the	Cauchy	expansion	consists
of	these	minors	of	order	m	−	k	multiplied	by	their	cofactors	of	order	k	in	Q	and	R	together.



APPENDIX	B
NULLITY	OF	A	MATRIX	AND	SYLVESTER’S	LAW

If	Q	is	an	n	by	n	matrix,	then	Qx	=	0	has	a	nontrivial	solution	x	≠	0	if	and	only
if	Q	 is	singular;	 that	 is,	det	Q	=	0.	The	set	of	all	vectors	x	 that	satisfy	Qx	=	0
forms	 a	 vector	 space	 called	 the	 null	 space	 of	 matrix	 Q.	 The	 rank	 of	 the	 null
space	 is	 called	 the	 nullity	 of	 Q.	 Furthermore,	 it	 can	 be	 shown	 that	

These	 definitions	 and	 Eq.	 (B-1)	 also	 hold	when	Q	 is	 not	 square	 but	 a	 k	 by	n
matrix,	k	<	n.
An	important	result	involving	nullity	of	matrices	is	Sylvester’s	law	of	nullity,

which	can	be	stated	as	follows	:	Sylvester’s	Law:	If	Q	is	a	k	by	n	matrix	and	R	is
an	n	by	p	matrix,	 then	 the	nullity	of	 the	product	cannot	exceed	 the	sum	of	 the
nullities	 of	 the	 factors;	 that	 is,	

Proof:	Since	every	vector	x	that	satisfies	Rx	=	0	must	certainly	satisfy	QRx	=
0,	 we	 have	

Let	s	be	the	nullity	of	matrix	R.	Then	there	exists	a	set	of	s	linearly	independent
vectors	{x1,	x2,	.	.	.	,	xs}

forming	a	basis	of	the	null	space	of	R.	Thus

Now	 let	 s	 +	 t	 be	 the	 nullity	 of	matrix	QR.	Then	 there	must	 exist	 a	 set	 of	 t
linearly	independent	vectors	{xs+1,	xs+2,	.	.	.	xs+t}



such	that	the	set

{x1,	x2,	.	.	.	xs,	xs+1,	xs+2,	.	.	.	,	xs+t}

forms	 a	 basis	 for	 the	 null	 space	 of	 matrix	 QR.	 Thus	

In	other	words,	of	the	s	+	t	vectors	xi	forming	a	basis	of	the	null	space	of	QR,	the
first	s	vectors	are	sent	to	zero	by	matrix	R	and	the	remaining	nonzero	Rxi’s	(i	=	s
+	1,	s	+	2,	.	.	.	,	s	+	t)	are	sent	to	zero	by	matrix	Q.	Vectors	Rxs+1,	Rxs+2,	.	.	.	,
Rxs+t

are	linearly	independent;	for	if

0	=	a1Rxs+1	+	a2Rxs+2	+	.	.	.	+	atRxs+t
=	R(a1xs+1	+	a2xs+2	+	.	.	.	+	atxs+t),	then	vector	(a1xs+1	+	a2xs+2	+	.
.	.	+	atxs+t)	must	be	the	null	space	of	R,	which	is	possible	only	if
a1	=	a2	=	.	.	.	=	at	=	0.

Thus	we	have	found	that	there	are	at	least	t	linearly	independent	vectors	which
are	sent	to	zero	by	matrix	Q,	and	therefore	nullity	of	Q	≥	t.

But	since

t	=	(s	+	t)	−	s	=	nullity	of	QR	−	nullity	of	R,

Eq.	(B-2)	follows.
Substituting	 Eq.	 (B-1)	 into	 Eq.	 (B-2),	 we	 find	 that	

Furthermore,	 in	 Eq.	 (B-6)	 if	 the	 matrix	 product	 QR	 is	 zero,	 then	



SUBJECT	INDEX

A

Abelian	group,	114,	116
Abelian	monoid,	114
Abelian	semigroup:
definition,	113
with	identity	element,	114

Absorbing	state,	429
Abstract	graph,	88-89
Accessible,	203
Activities:
critical,	403
definition,	400
dummy,	401
duration	of,	400

Activity	network,	400
Activity-vertex	representation,	408
Acyclic	digraph,	230,	410
Acyclic	network,	400
Adjacency	matrix,	157-161,	220-227
as	data	structure	in	algorithms,	270
powers	of,	159,	222
properties	of,	158,	220
relationship	with	other	matrices,	161

Adjacent:
definition,	7
edges,	177

Algebra	(see	Algebraic	system)



Algebraic	system:
definition,	113
with	one	operation,	114
with	two	operations,	118

Algorithms,	268-327
bridge-finding,	323
chromatic	number,	313
circuit	generation,	287
connectedness	and	components,	274
cut-vertices	and	blocks,	284
definition,	269
efficiency	of,	269
feedback	edge-set,	313
feedback	vertex-set,	313
fundamental	circuits,	280
fragment-finding,	304
generating	all	directed	circuits,	287
Hamiltonian	circuit,	313
isomorphism,	310
minimal	cut,	312
minimal	edge	cover,	313
minimal	 spanning	 tree	 (see	 Algorithms,	 shortest	 spanning	 tree)	 maximal
clique,	312

maximal	matching,	312
planarity-testing,	304
shortest-path,	290
shortest	path	between	all	pairs	of	vertices,	297
shortest	path	from	specified	vertex	to	another	vertex,	292
shortest	path	from	specified	vertex	to	all	others,	292
shortest	spanning	tree,	62,	279
smallest	dominating	set,	313
spanning-tree,	277
Steiner	tree,	313
transitive	closure,	300
traveling	salesman	problem,	313
topological	sorting,	403

AMBIT/G,	317
Arbitrarily	traceable	graphs,	29
Arborescence,	206



number	of,	223,	238
root	of,	206

Articulation	point	(see	Cut-vertex)
Assignment	problem,	178,	396
Automata	(see	Sequential	machines)
Automatic	flow	charting,	448
Automorphism,	267

B

Backtrack,	288,	301
Balanced	digraph,	197
Bases	of	circuit	subspace,	126
Bases	of	cut-set	subspace,	127
Basic	cut-set	(see	Fundamental	cut-sets)
Basis	vectors,	124
BCD	code,	344
Bicenters,	47
Bicentroidal	trees,	248
Bichromatic	graph,	166
Binary	operation,	113
Binary	group	code,	352
Binary	matrix,	138
Binary	relation,	198
Binary	tree,	49
Binet-cauchy	theorem,	219,	366,	373,	458
Bipartite,	complete,	192
Bipartite	graph,	168
Block,	80,	284
Block-diagonal	form,	274
Boolean	addition,	330
Boolean	algebra,	328
Boolean	arithmetic,	170,	173
Boolean	function,	329
Boolean	multiplication,	330
Branch,	3	(see	also	Edge)	Branch	of	tree,	56
Breadth-first	search,	302
Bridge,	286



C

Canonic	form	of	switching	function,	350
Canonic	form	of	program	digraph,	448
Canonical	representation	of	molecules,	450
Cayley	diagram,	456
Cayley’s	theorem,	54,	164
Center	of	tree,	45
Central	tree,	60
Centroidal	tree,	248
Chain	(see	Walk)
Characteristic	polynomial,	311
Chemical	identification,	451,	453
Chord,	56,	212,	278
Chord-set,	56
Chromatic	number,	166,	171,	313
Chromatic	partitioning,	169,	171
Chromatic	polynomial,	174,	177
Circuit,	20
directed,	202
fundamental,	57
Hamiltonian,	30
subspace,	126,	130

Circuit	correspondence	between	graphs,	84
Circuit-generation	algorithms,	284
Circuit	matrix,	141-145,	216-217,	337,	359,	380
Circuit-path	decomposition,	306
Circuit	vector,	125
Classification	of	graphs	according	to	connectivity,	85
Clique,	32,	312
Closed	state,	429
Cocycle	(see	Cut-set)
Coding	a	graph,	311
Coefficient	 of	 internal	 stability	 (see	 Independence	 number)	 Coloring	 problem,
165

Combinatorial	dual,	104,	106
Combinatorial	graph	(see	Abstract	graph)
Combinatorial	optimization	problem,	396
Commutative	field,	117



Commutative	group,	114
Commutative	ring,	117
Commutative	semigroup,	113
Complete	graph,	32
Complete	matching,	178
Completely	regular	graph,	111
Completely	specified	machine,	342
Component,	21,	55,	202,	274,	275,	278
Computation	time	of	algorithms,	270
Computer	logic,	partitioning	of,	165
Computer	programs	as	digraphs,	194,	439
Condensation,	203,	230
Configurations:
counting	series,	257
definition,	257

Connectedness:
definition,	21
in	digraph,	202,	221
minimal,	42
strong,	202
weak,	202

Connectedness	and	components	algorithm,	274

Connection	matrix	(see	Adjacency	matrix)
Contact	network,	329
Cook-Karp	class	of	algorithms,	316
Cotree	(see	Chord-set)
Counting	series,	243,	257
Counting	trees	(see	Enumeration,	of	trees)
Covering	(see	Edge-covering)
Covering	subgraph	(see	Edge-covering)
Covering	number,	183
Critical	path	method	(CPM),	400-408
Cross	variable,	357
Cut,	387
Cut-node	(see	Cut-vertex)
Cut-set,	68-71

capacity,	80
minimal,	68



proper,	68
properties	of,	69-71
simple,	68
subspace,	130

Cut-set	matrix,	151,	153,	220,	380
Cut-set	vector,	125
Cut-vertex,	76,	284
Cycle	(see	Circuit,	Directed	circuits)
Cycle	gain,	421
Cycle	index,	253-254
Cycle	structure,	252
Cyclic	code,	351
Cyclic	exchange,	59
Cyclic	interchange	(see	Cyclic	exchange)
Cyclic	representation	of	permutation,	251
Cyclomatic	number	(see	Nullity)

D

Data	structure	in	graph	algorithms,	270-273
Decanting	problem,	13
Decision	tree,	41
Decyclization,	232
Deficiency,	181
Degree:
matrix,	139,	164
of	a	permutation,	251
of	a	vertex,	7

Degree-constrained	shortest	spanning	tree,	63
Deletion	of	edge,	27
Deletion	of	vertex,	27
DENDRAL,	453
Depth-first	search,	301-304
Deterministic	sequential	machine,	342
Diameter:

of	a	graph,	163
of	a	tree,	48

Digraph,	194-237



acyclic,	301,	410
adjacency	matrix	of,	220
asymmetric,	197
balanced,	197
complete,	197
definition,	194
disconnected,	202
edge,	236
Euler,	203
game,	410
irreflexive,	199
kernel	of,	411
pseudosymmetric,	197
reflexive,	199
regular,	197
representation	of	permutations,	251
simple,	197
strongly	connected,	202
symmetric,	197,	199
transitive,	200
weakly	connected,	202
weighted,	400

Dihedral	group,	266
Dimension	of	vector	space,	124
Dimer	problem,	185-186
DIP,	317
Directed	circuits,	202,	212,	230,	232,	287,	291,	421,	443
Directed	graph	(see	Digraph)
Directed	Hamiltonian	circuits,	312
Directed	path,	231,	288,	403,	423
Disconnected	graph,	21,	139,	159,	161
Distance	 matrix,	 61,	 273	 (see	 also	 Weight	 matrix)	 Distance	 between	 two
spanning	trees,	59

Distinct	representatives,	179
Division	ring,	117
Dominating	set,	172-173
Domination	number,	173
Dummy	activity,	401
Dual	of	graph,	103,	105,	190



E

Eccentricity	of	vertex,	46
Edge,	1
adjacent,	177
backward,	389
capacity	of,	79,	385
covering,	182-183
current,	357
directed,	195
edge-current	vector,	358
edge	digraph,	236,	408
forward,	389
gain,	418
incident	into	a	vertex,	195
incident	out	of	a	vertex,	195
initial	vertex	of,	195
isomorphism,	87
listing,	271
parallel,	2
pendant,	183
sequences	of,	160,	222,	333
series,	9
terminal	vertex	of,	195
train,	20	(see	also	Walk)	variables,	357
voltage,	357
weight	of,	61

Edge,	connectivity,	75
Edge	covering,	182-183
Edge	current,	357
Edge	digraph,	236,	408
Edge	gain,	418
Edge	isomorphism,	87

Edge	listing,	271
Edge	train,	20	(see	also	Walk)	Edge	variables,	357
Edge	voltage,	357
Edge-current	vector,	358



Edge-disjoint	Hamiltonian	circuits,	32
Edge-disjoint	subgraphs,	17
Edge-disjoint	union	of	circuits,	115,	212
Edge-disjoint	union	of	cut-sets,	71
Edge-voltage	vector,	358
Electrical	network:
application	of	graph	theory	to,	356-383
as	flow	problems,	399
use	of	computers	in,	268
use	of	incidence	matrices	in,	271

Elementary	reduction,	99
Elementary	tree	transformation	(see	Cyclic	exchange)
Embedding:
of	graph,	90
on	sphere,	94

Enumeration:
of	digraphs,	263
of	multigraphs,	262
of	simple	graphs,	260
of	trees,	52,	240-250

Enumerator,	243
Equivalence	classes,	201
Equivalence	relation,	239
Ergodic	process,	429
Error-checking	code,	352,	354
Euler	graph,	23,	115,	210
Euler	lines:
directed,	203,	210,	225,	227
number	of,	205,	226,	238
in	spanning	arborescence,	210

Euler’s	formula,	96
Events:
critical,	403
in	projects,	400

Event-vertex	representation,	408
Execution	time	(see	Computation	time)
Exterior	region,	94

F



Faces	(see	Regions)
False	vertices,	350
Fary’s	theorem,	93
Field,	117
Figure	counting	series,	258
Finite	fields,	119
Finite-state	machines	(see	Sequential	machines)
First	Betti	number	(see	Nullity)
Five-color	theorem,	188
Float	of	activity,	406
Flow,	385
Flow	chart,	269
Flow	network,	384,	398
Flow	problem,	384-399
matching	problem,	as,	182,	396

use	of	computers	in,	268
Forest,	55
Fortran	Extended	Graph	Theoretic	Language	(FGRAAL),	317
Forward	calculation,	405
Four-color	conjecture,	10,	187-190
Fragments:
definition,	202
finding	all,	312
in	program	segmentation,	443

Free	trees:
definition,	48
number	of	unlabeled,	248

Fronds,	303
Full	symmetric	group,	253
Function:
definition,	256
equivalence	classes	of,	256

Fundamental	circuits:

algorithm,	280-284
and	cut-sets,	73
definition,	57,	71
for	digraph,	212
matrix,	144



application	in	electrical	networks,	359
deriving	of,	144
for	digraph,	219

Fundamental	cut-sets:

definition,	71
for	digraph,	212
matrix,	153
relationship	with	other	matrices,	153
in	synthesis	of	contact	networks,	336-339

Fusion	of	vertices,	28,	274

G

Galois	field:
modulo	m,	118-119
modulo	2,	138

Game,	409-413
comparison	with	puzzle,	409
digraph	of,	410
finite,	409
perfect-information,	409
states	in,	410
two-person,	409

Generating	functions,	241
Geometric	dual	of	a	graph,	103
Geometric	representation	of	a	graph,	89
Graph	Information	Retrieval	Language	(GIRL),	317
Graph	Algorithm	Software	Package	(GASP),	316
Graph	Extended	Algol	(GEA),	317
Graphs:
arbitrarily	traceable,	29
as	data	structures,	448
bipartite,	168
bichromatic,	166
circuit-free,	55
in	coding	theory,	351-353
complement	of,	56,	76
complete,	32



complete	bipartite,	192
connected,	21
decomposition	of,	26
definition,	1
directed	(see	Digraph)
disconnected,	21
drawing	of,	2
equivalence,	200
Euler,	23,	28
finite,	7
in	game	theory,	409-413
general,	2
infinite,	7
isomorphic,	14,	139
Kuratowski,	90,	93
labeled,	53
linear,	1
nonplanar,	90
nonseparable,	151
null,	9
nullity	of,	57,	60
operations	on,	26
oriented,	195	(see	also	Digraph)	planar,	90
rank	of,	57
regular,	8
“rigid“,	209
ring	sum	of,	26
separable,	142
self	dual,	107
signal-flow,	416-423
similarity,	455
simple,	2
stochastic,	426
subspaces	of,	133
transition,	426
tree,	60
two-connected,	83
union	of,	26
unicursal,	24



uniquely	colorable,	172
universal,	32
unlabeled,	53
number	of,	239

vertex,	9
weighted,	34,	61-63

Graph-theoretic	algorithms,	269-316
performance,	270

Graph-theoretic	languages,	316-317
GRASPE,	317
Gray	codes,	351
Group:
abelian,	114
definition,	113
permutation,	250
of	subgraphs,	115

Graph	Theoretic	Programming	Language	(GTPL),	316

H

Hamiltonian	circuit,	30-34
number	of,	268
origin	of,	10

Hamiltonian	path,	30-34
finding,	in	a	graph,	312
shortest,	63	(see	also	Traveling	salesmai	problem)	Hamming	distance,	349

Height	of	a	tree,	50

Heuristic	procedure,	310
HINT,	317
Homeomorphic	graphs,	100
Huffman	graph-theoretic	codes,	352

I

Identification	of	chemical	compounds,	449
Identity	element,	113,	116
Identity	permutation,	252
Immediate	successors,	272



Impedance	matrix,	371
Incidence,	7
Incidence	matrix,	137-140
for	digraph,	214
in	electrical	networks,	359
as	input	in	algorithms,	271
rank	of,	140
reduced,	141,	214
relationship	with	other	matrices,	161
in	synthesis	of	contact	networks,	336

In-degree,	195,	287,	400
Independence	number,	170-171
Independent	circuits,	144
Independent	set	of	vertices,	169-170
Independent	set	of	edges,	193
Infinite	graph,	7
Infinite	region,	94
Information	retrieval,	449,	454
Instant	Insanity,	18
Intermediate	vertices,	386
Internal	states,	342
Internal	vertices,	49
Internally	stable	set,	169
Intersection	of	graph,	26
Intersection	of	subspaces,	131
In-tree,	207	(see	also	Arborescence)	In-valence	(see	In-degree)
Invariant	of	a	graph,	311
Inward	demidegree	(see	In-degree)
Isograph	(see	Balanced	digraph)
Isolated	vertex,	8
Isomorphic	graphs,	14,	139
Isomorphic	digraphs,	196
Isomorphism,	14,	53,	159,	209,	239,	274,	284,	310,	451

J

Join,	132
Jordan	curve	theorem,	91,	189
Jordan’s	method	of	elimination,	337



K

κ-chromatic	graph,	166
k	-connected	graph,	78
Kernel,	411
Kirchhoff	matrix,	223
Kirchhoff’s	current	law,	358,	441
Kirchhoff	s	voltage	law,	359
Kōnigsberg	bridge	problem,	3,	23
Kruska’s	algorithm,	62,	280
Kuratowski	graphs,	90,	93,	341
Kuratowski’s	theorem,	100

L

Labeled	graph,	53
Labeled	trees,	240
Latin	square,	193
Level	of	vertex,	49
Line	digraph,	236
Line:
Euler,	23
unicursal,	24
(See	also	Edge)

Linear	combination,	123
Linear	complex,	3	(tee	also	Graphs)	Linear	dependence,	123
Linear	programming,	216,	386
Linearly	independent,	123,	216
Linguistics,	graphs	in,	456
Link	(see	Chord)
Longest-path	analysis,	301
Loop:
definition,	1,	21
in	electrical	networks,	360

Loop	impedance	matrix,	371
Lossy	networks,	392
Lower	bound	on	edge	capacity,	392
Lumped	physical	systems,	455



M

Map	coloring,	187
Map-construction	approach,	304
Markov	chain,	425
Markov	process,	424-439
asymptotic	behavior,	433
definition,	424
periodic,	431
transient	analysis,	437
with	transient	states,	432

Marriage	problem,	180
Mason’s	gain	formula,	421-422
Matching,	177-182
in	bipartite	graphs,	182
definition,	177
maximal,	178
perfect,	186

Matching	number,	178
Matching	problem	(see	Assignment	problem)
Matrix:
adjacency,	157-159
circuit,	142-143
cut-set,	151,	153
incidence,	137,	139
inversion,	455
relation,	201
representing	a	graph,	137
stochastic,	425
transition,	425
transmission,	332
weight,	61

Max-flow	min-cut	theorem,	86,	387-388
Maximal	complete	subgraph,	312
Maximal	flow,	312,	385-386
Maximal	matching,	178,	312
Maximal	planar	graph,	111
Maximal	strongly	connected	subgraphs	(see	Fragments)
Maxwell’s	formula,	366



Meshes	(see	Regions)
Method	of	paired	comparisons,	227
Minimal	cost	flow,	393-395
Minimal	covering,	184,	328
Minimal	decyclization,	232,	313
Minimal	spanning	tree,	61,	277-279
Minimum-feedback	arcs,	232
Monoid,	113
Multicommodity	flow,	395-396
Multiple	sources	and	sinks,	390

N

Network	analysis	problem,	305
Network:
activity,	400-409
contact,	329-341
electrical,	5,	356-381
in	planning	and	scheduling,	400
synthesis	of,	334
transport,	384-389

Network	flows,	79
Network	functions,	370
Nim,	410
Nodal	analysis,	362
Node	(see	Vertex)
Node	admittance	matrix,	363
Node-removal	method,	334
Node	voltages,	361,	370
Nonplanar	graph,	90,	306,	341
Nonpolynomial	algorithms,	315
Nonseparable	graph,	76,	284
Null	graph,	9,	122
Nullity	of	a	graph,	57,	60
Number	of	different	arborescences,	238
Number	of	different	directed	Euler	lines,	238
Number	of	free	unlabeled	trees,	248
Number	of	labeled	graphs,	239
Number	of	labeled	trees,	240



Number	of	rooted	labeled	trees,	241
Number	of	rooted	unlabeled	trees,	243
Number	of	unlabeled	graphs,	239

O

1-connected	graph,	78
1-factor	(see	Matching,	perfect)
1-isomorphic,	81
One	simplex,	3	(see	also	Edge)	Operation	on	graphs,	26
Operations	research,	graphs	in,	384-414
Optimal-policy	matrix,	298
Ordered	trees,	209
Orientation	of	graph,	195-196
Orthogonal	complements,	132
Orthogonal	vectors,	130
Otter’s	formula,	249
Out-degree,	195,	287,	343,	400
Outer	region	(see	Infinite	region)
Out-tree,	207	(see	also	Arborescence)	Out-valence	(see	Out-degree)
Outward	demidegree	(see	Out-degree)

P

Pair	group,	255
Palm	tree,	303
Parallel	edges,	2,	271,	401
Parallel	processing	design,	448
Parenthesis-free	notation	(see	Polish	notation)
p-partite,	168
Partitioning	algorithm,	313
Partitioning	problem,	165
Partitions,	243
Passive	edges,	363
Path:
critical,	403
compared	with	walk	and	circuit,	21
directed,	201
Hamiltonian,	31



length	of,	20
Path	length,	51
Path	matrix,	156,	336
Path	product,	330
Path-finding	algorithm,	273
Paton’s	algorithm,	281
Pendant	vertex,	9,	43,	196
Performance	of	graph-theoretic	algorithms,	314
Permutation,	250-255
degree	of,	253

Permutation	group,	250,	253,	256
Persistent	state,	344
PERT,	232,	268,	400-409
Planar	graph,	90,	108,	165
Planarity	testing	algorithm,	99,	304-310
Plane	representation,	90,	95,	97,	273
Planning	and	scheduling	of	networks,	400-409
Point	(see	Vertex)
Polish	notation,	208
Pólya’s	counting	theorem,	238,	250,	257-264
Polynomial-bounded	algorithms,	314
Precedence	matrix,	220
Precedence	relationship,	400
Predecessor	matrix,	220
Preference	graph,	227
Primitive	connection	matrix,	332
Prim’s	algorithm,	62,	279
Probability	vector,	426
Program:
error	detection	in,	441
optimization	of,	448
segmentation	of,	443

Program	block,	440
Program	digraph,	440,	445
Project	cost	curve,	406
Proper	coloring,	165-168
definition,	165
of	edges,	177
of	regions,	186



Q

Quadratic	flow-cost	function,	399

R

Radius	of	a	tree,	48
Random	digraph,	296
Random	graph,	278,	321
Random	processes,	424
Random	walk,	427
Randomly	generated	graph	(see	Random	graph)
Rank:

of	graph,	57,	60
of	incidence	matrix,	214

Ranking	by	Hamiltonian	path,	228
Ranking	by	score,	228
Ranking	with	minimum	violations,	229
Reachability	algorithm,	300
Reachability	matrix,	235
Reachable	vertex,	203
Realizability:
of	a	circuit	matrix,	341
of	matrices,	162
of	a	single-contact	function,	335,	340

Reduced	incidence	matrix,	153,	339
Reference	vertex,	214
Reflected	binary	code,	351
Regions,	93
adjacent,	187
coloring,	187

Regular	graph,	92
Regular	Markov	process,	430
Regularization	of	planar	graph,	189
Relation,	198-201
digraph	of,	220
equivalence,	200
matrix	of,	201
reflexive,	199



symmetric,	199
transitive,	200

Relay	contact,	329
Ring,	117
Ring	sum,	26
of	circuits,	115,	212
of	cut-sets,	72

RLC	network,	362
Rooted	tree,	48,	241,	243
number	of	unlabeled,	243

Running	time,	439,	441

S

s-fîeld	(see	Skew	field)
Scaffolding	(see	Spanning	tree)
Search	techniques,	271
Seating	problem,	6,	32
Second-shortest	path,	301
Self-dual	graphs,	107
Self-loop,	1,	195,	271
Semicircuits,	202,	212
Semigroup,	113
Semipath,	201
Semiwalk,	201
Separable	graph,	76,	284
Sequential	circuits,	342
Sequential	machines,	165,	194,	342,	344
Series	edges,	99
Set:
of	basic	circuits,	107
definition,	112
empty,	112
null,	112
with	one	operation,	112-116
with	two	operations,	116-119

Shift	register,	205
Shortest-distance	arborescence,	294
Shortest-distance	tree,	294



Shortest-path	algorithms,	290
Signal-flow	graph,	194,	416-423,	436
Signal	transmission	network,	418
Single-contact	network,	335
Sink,	385
Skeleton	of	graph	(see	Spanning	tree)
Skew	field,	117
Slack:
free,	406
total,	406

Snake-in-the-box	code,	352
Sociograms,	456
Source,	385
Source	vertices,	418
Spanning	arborescence,	209,	303
Spanning	forest,	55,	146,	277
Spanning	tree:
algorithm	for,	277-279
all,	in	a	graph,	55,	58,	238,	277,	280,	376
application	to	electrical	networks,	356,	359
computer	running	time,	use	in	estimating,	442
definition,	55,	73,	209,	277
degree-constrained	shortest,	63
minimal,	61,	279
number	of,	218
root	of,	281
shortest	(see	Minimal	spanning	tree)
sign	of,	218,	376
weight	of,	61

Spanning	tree	matrix,	164
Sparse	graph,	300
Sparse	matrix,	271
Star	graph,	184
Start	vertex,	441
Starting	state,	344
State:
absorbing	(see	Closed	state)
closed,	429
ergodic,	429



persistent,	344
transient,	432
trapping	(see	Closed	state)

State	assignment	problem,	346
State	diagram	(see	State	graph)
State	equivalence,	345
State	graph:
definition,	342
properties,	343
reduction	of,	347

State	table,	342
Static	flow,	385
Stationary	process,	425
Steady-state	probabilities,	434
Steiner	tree,	313
Stereographic	projection,	95
Stochastic	graph,	426
Stochastic	matrix,	425
Stochastic	program-digraph,	445
Stochastic	system,	425
Stochastically	independent	transition	probabilities,	427
Stop	vertex,	441
Storage	requirement	of	program,	439
Strongly	connected,	202,	203,	222,	312
Structural	isomers,	53
Subgraph,	16,	21,	141,	273
Submatrix,	141
Subnetworks,	408
Subsequence,	largest	monotonically	increasing,	44

Subset,	112
Subspace,	125
Successor	listing,	272
Supersink,	390
Supersource,	390
Switching	function,	184,	329
Switching	network,	146,	271,	328
Sylvester’s	law,	146,	152,	460
System	graph,	380,	455



T

Teleprinter’s	problem,	204-205
Terminal	vertex	of	path,	20
Thickness,	109
Three-terminal	devices,	373
Through	variable,	357
Tie	(see	Chord-set)
Time-invariant	process,	425
Topological	order,	402,	443
Topological	sorting,	231,	313,	402
Tournament,	197,	227-230
Transient	vertices,	446
Transition	function,	342
Transition	matrix,	220,	425,	444
Transition	probabilities,	425,	427
multistep,	427

Transitive	closure	of	digraph,	300
Transitivity	(see	Relation)
Transmission,	331
Transmission	matrix,	332
Transport	network,	384-389
Transportation	problem,	393
Trapping	state	(see	Closed	state)
Traveling	salesman	problem,	34,	280,	313
Tree,	39-54
binary,	48
centers	in	a,	45
central,	60
decisional
diameter	of,	48
in	digraphs,	206-211
external	path	length	of,	51
family,	41
free,	48
height	of,	50
labeled,	54
null,	39
number	of,	238



ordered,	209
path	length	of,	51
radius	of,	48
rooted,	48
sorting	(see	Decision	tree)
shortest-distance,	294
spanning,	55
unlabeled,	54

Tree	admittance	product,	366
Tree	graph,	60
Tree	pairs,	379
Tree-felling	procedure,	280
True	vertices,	350
Tutte’s	map-construction	method,	108
Two-connected	graphs,	83
Two-chromatic	graph,	166-167
Two-isomorphic	graphs,	104,	143,	336
Two-person	games,	409
Two-terminal	contact	network,	334
Two-tree,	368

U

Unicursal	graph,	24
Unicursal	line,	24
Unimodular	matrix,	214,	380
Union	of	graphs,	26
Unique	code	for	graph,	451
Unique	embedding,	98
Uniquely	colorable	graphs,	172
Uniqueness	of	dual	graphs,	103
Universal	graph,	32
Unlabeled	graphs,	number	of,	239
Utilities	problem,	4,	88

V

Valency	(see	Degree)
Vector:



definition,	120
orthogonal,	130

Vector	space,	120-121
application	in	analysis	of	networks,	359
of	graph,	121-122

Vertex,	1
closing,	410
degree	of,	7
eccentricity	of,	46
end,	9
even,	22
forbidden,	288

Vertex,	fusion	of,	28
intermediate,	20
internal,	49
isolated,	8
label	of,	15
level	of,	49
merged	(see	Vertex,	fusion	of)
odd,	22
pendant,	9,	43,	196
reference,	141
starting,	410

Vertex	coloring,	165-169,	187
Vertex	connectivity,	75,	78
Vertex	cover,	193
Vertex	graph,	9	(see	also	Null	graph)	Vertex-disjoint	subgraphs,	17
Vertex-edge	incidence	matrix	(see	Incidence	matrix)
Vertex-labeling	process,	390
Violation	in	ranking,	229
Vulnerability,	77,	284

W

Walk,	19-21
closed,	20
compared	with	path	and	circuit,	21
different	types	of,	35
directed,	201



open,	20
Weight:
of	edge,	61
of	spanning	tree,	61
of	subtree,	248
of	vertex,	248

Weight	matrix,	61,	273,	418
Weighted	graph,	61-63
complete,	34

Whitney’s	theorem,	98,	106
Windows	(see	Regions)
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