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Preface

This book grew out of lectures the author gives at the Technische Universität Dresden.
These lectures are entitled “Computational Methods for Reinforced Concrete Structures” and
“Design of Reinforced Concrete Structures.” Reinforced concrete is a composite of concrete
and reinforcement connected by bond. Bond is a key item for the behavior of the composite
which utilizes compressive strength of concrete and tensile strength of reinforcement while
leading to considerable multiple cracking. This makes reinforced concrete unique compared
to other construction materials such as steel, wood, glass, masonry, plastic materials, fiber
reinforced plastics, geomaterials, etc.

Numerical methods like the finite element method on the other hand disclose a way for
a realistic computation of the behavior of structures. But the implementations generally
present themselves as black boxes in the view of users. Input is fed in and the output has to
be trusted. The assumptions and methods in between are not transparent. This book aims to
establish transparency with special attention for the unique properties of reinforced concrete
structures. Appropriate approaches will be discussed with their potentials and limitations
while integrating them in the larger framework of computational mechancis and connecting
aspects of numerical mathematics, mechanics, and reinforced concrete.

This is a wide field and the scope has to be limited. The focus will be on the behavior of
whole structural elements and structures and not on local problems like tracking single cracks
or mesoscale phenomena. Basics of multiaxial material laws for concrete will be treated but
advanced theories for multiaxial concrete behavior are not a major subject of this book. Such
theories are still a field of ongoing research which by far seems not to be exhausted up to
date.

The book aims at advanced students of civil and mechanical engineering, academic teach-
ers, designing and supervising engineers involved in complex problems of reinforced concrete,
and researchers and software developers interested in the broad picture. Chapter 1 describes
basics of modeling and discretization with finite element methods and solution methods for
nonlinear problems insofar as is required for the particular methods applied to reinforced
concrete structures. Chapter 2 treats uniaxial behavior of concrete and its combination with
reinforcement while discussing mechanisms of bond and cracking. This leads to the model
of the reinforced tension bar which provides the basic understanding of reinforced concrete
mechanisms. Uniaxial behavior is also assumed for beams and frames under bending, nor-
mal forces and shear which is described in Chapter 3. Aspects of prestressing, dynamics
and second-order effects are also treated in this chapter. Chapter 4 deals with strut-and-tie
models whereby still a uniaxial material behavior is assumed. This chapter also refers to
rigid plasticity and limit theorems.

Modeling of multiaxial material behavior within the framework of macroscopic contin-
uum mechanics is treated in Chapter 5. The concepts of plasticity and damage are described
with simple specifications for concrete. Multiaxial cracking is integrated within the model of
continuous materials. Aspects of strain softening are treated leading to concepts of regular-
ization to preserve the objectivity of discretizations. A bridge from microscopic behavior to
macroscopic material modeling is given with a sketch of the microplane theory. Chapter 6
treats biaxial states of stress and strain as they arise with plates or deep beams. Reinforce-
ment design is described based on linear elastic plate analysis and the lower bound limit
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VI Preface

theorem. While the former neglects kinematic compatibility, this is involved again with
biaxial specifications of multiaxial stress–strain relations including crack modeling.

Slabs are described as the other type of plane surface structures in Chapter 7. But in
contrast to plates their behavior is predominantly characterized by internal forces like bending
moments. Thus, an adaption of reinforcement design based on linear elastic analysis and the
lower bound limit theorem is developed. Kinematic compatibility is again brought into play
with nonlinear moment–curvature relations. Shell structures are treated in Chapter 8. A
continuum-based approach with kinematic constraints is followed to derive internal forces
from multiaxial stress–strain relations suitable for reinforced cracked concrete. The analysis
of surface structures is closed in this chapter with the plastic analysis of simple slabs based
on the upper bound limit theorem. Chapter 9 gives an overview about uncertainty and in
particular about the determination of the failure probability of structures and safety factor
concepts. Finally, the appendix adds more details about particular items completing the core
of numerical methods for reinforced concrete structures.

Most of the described methods are complemented with examples computed with a soft-
ware package developed by the author and coworkers using the Python programming lan-
guage.

• Programs and example data should be available under www.concrete-fem.com. More
details are given in Appendix F.

These programs exclusively use the methods described in this book. Programs and methods
are open for discussion with the disclosure of the source code and should give a stimulation
for alternatives and further developments.

Thanks are given to the publisher Ernst & Sohn, Berlin, and in particular to Mrs. Clau-
dia Ozimek for the engagement in supporting this work. My education in civil engineering,
and my professional and academic career were guided by my academic teacher Prof. Dr.-Ing.
Dr.-Ing. E.h. Dr. techn. h.c. Josef Eibl, former head of the department of Concrete Structures
at the Institute of Concrete Structures and Building Materials at the Technische Hochschule
Karlsruhe (nowadays KIT – Karlsruhe Institute of Technology), to whom I express my grat-
itude. Further thanks are given to former or current coworkers Patrik Pröchtel, Jens Hartig,
Mirko Kitzig, Tino Kühn, Joachim Finzel and Jörg Weselek for their specific contributions.
I appreciate the inspiring and collaborative environment of the Institute of Concrete Struc-
tures at the Technische Unversität Dresden. It is my pleasure to teach and research at this
institution. And I have to express my deep gratitude to my wife Caroline for her love and
patience.

Ulrich Häussler-Combe Dresden, in spring 2014

mailto:Ulrich.Haeussler-Combe@tu-dresden.de
http://www.tu-dresden.de/biwitb/mbau
http://www.tu-dresden.de
www.concrete-fem.com


Contents

Notations XI

1 Finite Elements Overview 1
1.1 Modeling Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Discretization Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Material Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.5 Weak Equilibrium and Spatial Discretization . . . . . . . . . . . . . . . . . . 13
1.6 Numerical Integration and Solution Methods for Algebraic Systems . . . . . . 17
1.7 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2 Uniaxial Structural Concrete Behavior 27
2.1 Scales and Short–Term Stress–Strain Behavior of Homogenized Concrete . . . 27
2.2 Long-Term Behavior – Creep and Imposed Strains . . . . . . . . . . . . . . . 34
2.3 Reinforcing Steel Stress–Strain Behavior . . . . . . . . . . . . . . . . . . . . . 40
2.4 Bond between Concrete and Reinforcing Steel . . . . . . . . . . . . . . . . . . 42
2.5 The Smeared Crack Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.6 The Reinforced Tension Bar . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.7 Tension Stiffening of Reinforced Tension Bar . . . . . . . . . . . . . . . . . . 52

3 Structural Beams and Frames 55
3.1 Cross-Sectional Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.1.1 Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.1.2 Linear Elastic Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.1.3 Cracked Reinforced Concrete Behavior . . . . . . . . . . . . . . . . . . 59

3.1.3.1 Compressive Zone and Internal Forces . . . . . . . . . . . . . 59
3.1.3.2 Linear Concrete Compressive Behavior with Reinforcement . 61
3.1.3.3 Nonlinear Behavior of Concrete and Reinforcement . . . . . 65

3.2 Equilibrium of Beams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.3 Finite Element Types for Plane Beams . . . . . . . . . . . . . . . . . . . . . . 71

3.3.1 Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.3.2 Finite Elements for the Bernoulli Beam . . . . . . . . . . . . . . . . . 72
3.3.3 Finite Elements for the Timoshenko Beam . . . . . . . . . . . . . . . . 75

mailto:Ulrich.Haeussler-Combe@tu-dresden.de
http://www.tu-dresden.de/biwitb/mbau
http://www.tu-dresden.de


VIII Contents

3.4 System Building and Solution Methods . . . . . . . . . . . . . . . . . . . . . . 77
3.4.1 Elementwise Integration . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.4.2 Transformation and Assemblage . . . . . . . . . . . . . . . . . . . . . 78
3.4.3 Kinematic Boundary Conditions and Solution . . . . . . . . . . . . . . 80

3.5 Further Aspects of Reinforced Concrete . . . . . . . . . . . . . . . . . . . . . 83
3.5.1 Creep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
3.5.2 Temperature and Shrinkage . . . . . . . . . . . . . . . . . . . . . . . . 86
3.5.3 Tension Stiffening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
3.5.4 Shear Stiffness for Reinforced Cracked Concrete Sections . . . . . . . . 92

3.6 Prestressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
3.7 Large Deformations and Second-Order Analysis . . . . . . . . . . . . . . . . . 101
3.8 Dynamics of Beams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4 Strut-and-Tie Models 115
4.1 Elastic Plate Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
4.2 Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
4.3 Solution Methods for Trusses . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
4.4 Rigid-Plastic Truss Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
4.5 More Application Aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5 Multiaxial Concrete Material Behavior 135
5.1 Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.1.1 Continua and Scales . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
5.1.2 Characteristics of Concrete Behavior . . . . . . . . . . . . . . . . . . . 136

5.2 Continuum Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
5.2.1 Displacements and Strains . . . . . . . . . . . . . . . . . . . . . . . . . 138
5.2.2 Stresses and Material Laws . . . . . . . . . . . . . . . . . . . . . . . . 139
5.2.3 Coordinate Transformations and Principal States . . . . . . . . . . . . 141

5.3 Isotropy, Linearity, and Orthotropy . . . . . . . . . . . . . . . . . . . . . . . . 143
5.3.1 Isotropy and Linear Elasticity . . . . . . . . . . . . . . . . . . . . . . . 143
5.3.2 Orthotropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
5.3.3 Plane Stress and Strain . . . . . . . . . . . . . . . . . . . . . . . . . . 145

5.4 Nonlinear Material Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
5.4.1 Tangential Stiffness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
5.4.2 Principal Stress Space and Isotropic Strength . . . . . . . . . . . . . . 148
5.4.3 Strength of Concrete . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
5.4.4 Phenomenological Approach for the Biaxial Anisotropic Stress–Strain

Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
5.5 Isotropic Plasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

5.5.1 A Framework for Multiaxial Elastoplasticity . . . . . . . . . . . . . . . 157
5.5.2 Pressure-Dependent Yield Functions . . . . . . . . . . . . . . . . . . . 161

5.6 Isotropic Damage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
5.7 Multiaxial Crack Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

5.7.1 Basic Concepts of Crack Modeling . . . . . . . . . . . . . . . . . . . . 171
5.7.2 Multiaxial Smeared Crack Model . . . . . . . . . . . . . . . . . . . . . 174

5.8 The Microplane Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

mailto:Ulrich.Haeussler-Combe@tu-dresden.de
http://www.tu-dresden.de/biwitb/mbau
http://www.tu-dresden.de


Contents IX

5.9 Localization and Regularization . . . . . . . . . . . . . . . . . . . . . . . . . . 180
5.9.1 Mesh Dependency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
5.9.2 Regularization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
5.9.3 Gradient Damage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

5.10 General Requirements for Material Laws . . . . . . . . . . . . . . . . . . . . . 190

6 Plates 193
6.1 Lower Bound Limit Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

6.1.1 The General Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
6.1.2 Reinforced Concrete Contributions . . . . . . . . . . . . . . . . . . . . 195
6.1.3 A Design Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

6.2 Crack Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
6.3 Linear Stress–Strain Relations with Cracking . . . . . . . . . . . . . . . . . . 209
6.4 2D Modeling of Reinforcement and Bond . . . . . . . . . . . . . . . . . . . . 213
6.5 Embedded Reinforcement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

7 Slabs 221
7.1 A Placement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
7.2 Cross-Sectional Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

7.2.1 Kinematic and Kinetic Basics . . . . . . . . . . . . . . . . . . . . . . . 222
7.2.2 Linear Elastic Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . 225
7.2.3 Reinforced Cracked Sections . . . . . . . . . . . . . . . . . . . . . . . . 226

7.3 Equilibrium of Slabs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
7.3.1 Strong Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
7.3.2 Weak Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
7.3.3 Decoupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

7.4 Structural Slab Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
7.4.1 Area Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
7.4.2 A Triangular Kirchhoff Slab Element . . . . . . . . . . . . . . . . . . . 235

7.5 System Building and Solution Methods . . . . . . . . . . . . . . . . . . . . . . 237
7.6 Lower Bound Limit Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

7.6.1 General Approach and Principal Moments . . . . . . . . . . . . . . . . 240
7.6.2 Design Approach for Bending . . . . . . . . . . . . . . . . . . . . . . . 242
7.6.3 Design Approach for Shear . . . . . . . . . . . . . . . . . . . . . . . . 247

7.7 Kirchhoff Slabs with Nonlinear Material Behavior . . . . . . . . . . . . . . . . 250

8 Shells 255
8.1 Approximation of Geometry and Displacements . . . . . . . . . . . . . . . . . 255
8.2 Approximation of Deformations . . . . . . . . . . . . . . . . . . . . . . . . . . 258
8.3 Shell Stresses and Material Laws . . . . . . . . . . . . . . . . . . . . . . . . . 260
8.4 System Building . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
8.5 Slabs and Beams as a Special Case . . . . . . . . . . . . . . . . . . . . . . . . 264
8.6 Locking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
8.7 Reinforced Concrete Shells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270

8.7.1 The Layer Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
8.7.2 Slabs as Special Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272
8.7.3 The Plastic Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 276

mailto:Ulrich.Haeussler-Combe@tu-dresden.de
http://www.tu-dresden.de/biwitb/mbau
http://www.tu-dresden.de


X Contents

9 Randomness and Reliability 281
9.1 Basics of Uncertainty and Randomness . . . . . . . . . . . . . . . . . . . . . . 281
9.2 Failure Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
9.3 Design and Safety Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291

A Solution of Nonlinear Algebraic Equation Systems 297

B Crack Width Estimation 303

C Transformations of Coordinate Systems 309

D Regression Analysis 313

E Reliability with Multivariate Random Variables 317

F Programs and Example Data 321

Bibliography 325

Index 333

mailto:Ulrich.Haeussler-Combe@tu-dresden.de
http://www.tu-dresden.de/biwitb/mbau
http://www.tu-dresden.de


Notations

The same symbols may have different meanings in some cases. But the different meanings
are used in different contexts and misunderstandings should not arise.

firstly used
General

•T transpose of vector or matrix • Eq. (1.5)
•−1 inverse of quadratic matrix • Eq. (1.13)
δ• virtual variation of •, test function Eq. (1.5)
δ• solution increment of • within an iteration of Eq. (1.70)

nonlinear equation solving
•̃ • transformed in (local) coordinate system Eq. (5.15)
•̇ time derivative of • Eq. (1.4)

Normal lowercase italics

as reinforcement cross section per unit width Eq. (7.70)
b cross-section width Section 3.1.2
bw crack-band width Section 2.1
d structural height Section 7.6.2
e element index Section 1.3
f strength condition Eq. (5.42)
fc uniaxial compressive strength Section 2.1

of concrete (unsigned)
fct uniaxial tensile strength of concrete Section 2.1
ft uniaxial failure stress – reinforcement Section 2.3
fyk uniaxial yield stress – reinforcement Section 2.3
fE probability density function Eq. (9.2)

of random variable E
gf specific crack energy per volume Section 2.1
h cross-section height Section 3.1.2
mx,my,mxy moments per unit width Eq. (7.8)
n total number of degrees of freedom Section 1.2

in a discretized system
nE total number of elements Section 3.3.1
ni order of Gauss integration Section 1.6
nN total number of nodes Section 3.3.1
nx, ny, nxy normal forces per unit width Eq. (7.8)
p pressure Eq. (5.8)
pF failure probability Eq. (9.18)
p̄x, p̄z distributed beam loads Eq. (3.58)
r local coordinate Section 1.3
s local coordinate Section 1.3
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XII Notations

sbf slip at residual bond strength Section 2.4
sbmax slip at bond strength Section 2.4
t local coordinate Section 1.3
t time Section 1.2
tx, ty, txy couple force resultants per unit width Eq. (7.67)
u specific internal energy Eq. (5.12)
vx, vy shear forces per unit width Eq. (7.8)
w deflection Eq. (1.56)
w fictitious crack width Eq. (2.4)
wcr critical crack width Section 5.7.1
z internal lever arm Section 3.5.4

Bold lowercase roman

b body forces Section 1.2
f internal nodal forces Section 1.2
p external nodal forces Section 1.2
n normal vector Eq. (5.5)
t surface traction Section 1.2
tc crack traction Eq. (5.123)
u displacement field Section 1.2
υ nodal displacements Section 1.2
wc fictitious crack width vector Eq. (5.122)

Normal uppercase italics

A surface Section 1.2, Eq. (1.5)
A cross-sectional area of a bar or beam Eq. (1.54)
As cross-sectional area reinforcement Example 2.4
At surface with prescribed tractions Section 1.2, Eq. (1.5)
Au surface with prescribed displacements Eq. (1.53)
C material stiffness coefficient Eq. (2.32)
CT tangential material stiffness coefficient Eq. (2.34)
D scalar damage variable Eq. (5.106)
DT tangential material compliance coefficient Eq. (5.160)
DcT tangential compliance coefficient Eq. (5.132)

of cracked element
DcLT tangential compliance coefficient of crack band Eq. (5.132)
E Young’s modulus Eq. (1.43)
E0 initial value of Young’s modulus Eq. (2.13)
Ec initial value of Young’s modulus of concrete Section 2.1
Es initial Young’s modulus of steel Section 2.3
ET tangential modulus Eq. (2.2)
F yield function Eq. (5.64)
FE distribution function of random variable E Eq. (9.1)
G shear modulus Eq. (3.8)
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Notations XIII

G flow function Eq. (5.63)
Gf specific crack energy per surface Eq. (2.7)
I1 first invariant of stress Eq. (5.20)
J determinant of Jacobian Eq. (1.67)
J2, J3 second, third invariant of stress deviator Eq. (5.20)
Lc characteristic length of an element Eq. (6.32)
Le length of bar or beam element Section 1.3
M bending moment Section 3.1.2
N normal force Section 3.1.2
P probability Eq. (9.1)
T natural period Eq. (3.211)
V shear force Section 3.1.2
V volume Section 1.2, Eq. (1.5)

Bold uppercase roman

B matrix of spatial derivatives of shape functions Section 1.2, Eq. (1.2)
C material stiffness matrix Eq. (1.47)
CT tangential material stiffness matrix Eq. (1.50)
D material compliance matrix Eq. (1.51)
DT tangential material compliance matrix Eq. (1.51)
E coordinate independent strain tensor Eq. (8.15)
G1,G2,G3 unit vectors of covariant system Eq. (8.16)
G1,G2,G3 unit vectors of contravariant system Eq. (8.17)
I unit matrix Eq. (1.85)
J Jacobian Eq. (1.20)
K stiffness matrix Eq. (1.11)
Ke element stiffness matrix Eq. (1.61)
KT tangential stiffness matrix Eq. (1.66)
KTe tangential element stiffness matrix Eq. (1.65)
M mass matrix Eq. (1.60)
Me element mass matrix Eq. (1.58)
N matrix of shape functions Section 1.2, Eq. (1.1)
Q vector/tensor rotation matrix Eq. (5.15)
S coordinate independent stress tensor Eq. (8.24)
T element rotation matrix Eq. (3.109)
Vn shell director Section 8.1
Vα,Vβ unit vectors of local shell system Eq. (8.2)

Normal lowercase Greek

α tie inclination Eq. (3.157)
αE , αR sensitivity parameters Eq. (9.13)
α coefficient for several other purposes
β shear retention factor Eq. (5.137)
β reliability index Eq. (9.12)
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XIV Notations

βt tension stiffening coefficient Section 2.7
ε uniaxial strain Section 1.4, Eq. (1.43)
ε strain of a beam reference axis Section 3.1.1, Eq. (3.4)
ε1, ε2, ε3 principal strains Section 5.2.3
εct concrete strain at uniaxial tensile strength Section 2.1
εcu concrete failure strain at uniaxial tension Eq. (5.152)
εc1 concrete strain at Section 2.1

uniaxial compressive strength (signed)
εcu1 concrete failure strain at Section 2.1

uniaxial compression (signed)
εI imposed uniaxial strain Section 2.2
εV volumetric strain Eq. (5.102)
φ cross-section rotation Eq. (3.1)
φ angle of external friction Eq. (5.91)
ϕ angle of orientation Section 6.1, Eq. (6.5)
ϕ creep coefficient Eq. (2.26)
ϕc creep coefficient of concrete Eq. (3.119)
γ shear angle Eq. (3.1)
γE , γR partial safety factors Eq. (9.44)
κ curvature of a beam reference axis Section 3.1.1, Eq. (3.4)
κp state variable for plasticity Section 5.5.1
κd state variable for damage Section 5.6
µE mean of random variable E Section 9.1
ν Poisson’s ratio Eq. (1.44)
ν coefficient of variation Eq. (9.46)
θ strut inclination Eq. (3.148)
θ deviatoric angle Eq. (5.46)
ϑ angle of internal friction Eq. (5.89)
ρ deviatoric length Eq. (5.45)
ρs reinforcement ratio Eq. (6.8)
%s specific mass Eq. (1.52)
σ uniaxial stress Section 1.4, Eq. (1.43)
σ1, σ2, σ3 principal stresses Section 5.2.3
σE standard deviation of random variable E Section 9.1
τ bond stress Section 2.4, Eq. (2.44)
τ time variable in time history Section 2.2
τbf residual bond strength Section 2.4
τbmax bond strength Section 2.4
ω circular natural frequency Eq. (3.211)
ξ hydrostatic length Eq. (5.44)

Bold lowercase Greek

ε small strain Section 1.2
ε generalized strain Eq. (1.33)
εp plastic small strain Eq. (5.61)
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Notations XV

κ vector of internal state variables Eq. (5.39)
σ Cauchy stress Section 1.2
σ generalized stress Eq. (1.34)
σ′ deviatoric part of Cauchy stress Section 5.2.2

Normal uppercase Greek

Φ standardized normal distribution function Eq. (9.19)

Bold uppercase Greek

Σ viscous stress surplus Eq. (1.76)
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Chapter 1

Finite Elements Overview

1.1 Modeling Basics

“There are no exact answers. Just bad ones, good ones and better ones. Engineering is the
art of approximation.” Approximation is performed with models. We consider a reality of
interest, e.g., a concrete beam. In a first view, it has properties such as dimensions, color,
surface texture. From a view of structural analysis the latter ones are irrelevant. A more
detailed inspection reveals a lot of more properties: composition, weight, strength, stiffness,
temperatures, conductivities, capacities, and so on. From a structural point of view some
of them are essential. We combine those essential properties to form a conceptual model.
Whether a property is essential is obvious for some, but the valuation of others might be
doubtful. We have to choose. By choosing properties our model becomes approximate
compared to reality. Approximations are more or less accurate.

On one hand, we should reduce the number of properties of a model. Any reduction of
properties will make a model less accurate. Nevertheless, it might remain a good model. On
the other hand, an over-reduction of properties will make a model inaccurate and therefore
useless. Maybe also properties are introduced which have no counterparts in the reality of
interest. Conceptual modeling is the art of choosing properties. As all other arts it cannot
be performed guided by strict rules.

The chosen properties have to be related to each other in quantitative manner. This
leads to a mathematical model. In many cases, we have systems of differential equations
relating variable properties or simply variables. After prescribing appropriate boundary and
initial conditions an exact, unique solution should exist for variables depending on spatial
coordinates and time. Thus, a particular variable forms a field. Such fields of variables are
infinite as space and time are infinite.

As analytical solutions are not available in many cases, a discretization is performed
to obtain approximate numerical solutions. Discretization reduces underlying infinite space
and time into a finite number of supporting points in space and time and maps differential
equations into algebraic equations relating a finite number of variables. This leads to a
numerical model.

Computational Methods for Reinforced Concrete Structures. First Edition. Ulrich Häussler-Combe.
© 2015 Ernst & Sohn GmbH & Co. KG. Published 2015 by Ernst & Sohn GmbH & Co. KG.
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2 Chapter 1 Finite Elements Overview

Figure 1.1: Modeling (a) Type of models following [83]. (b) Relations between model and
reality.

A numerical model needs some completion as it has to be described by means of program-
ming to form a computational model. Finally, programs yield solutions through processing
by computers. The whole cycle is shown in Fig. 1.1. Sometimes it is appropriate to merge
the sophisticated sequence of models into the model.

A final solution provided after computer processing is approximate compared to the
exact solution of the underlying mathematical model. This is caused by discretization and
round-off errors. Let us assume that we can minimize this mathematical approximation
error in some sense and consider the final solution as a model solution. Nevertheless, the
relation between the model solution and the underlying reality of interest is basically an
issue. Both – model and reality of interest – share the same properties by definition or
conceptual modeling, respectively. Let us also assume that the real data of properties can
be objectively determined, e.g., by measurements.

Thus, real data of properties should be properly approximated by their computed model
counterparts for a problem under consideration. The difference between model solution data
and real data yields a modeling error. In order to distinguish between bad (inaccurate),
good (accurate), and better model solutions, we have to choose a reference for the modeling
error. This choice has to be done within a larger context, allows for discretion and again is
not guided by strict rules like other arts. Furthermore, the reference may shift while getting
better model solutions during testing.

A bad model solution may be caused by a bad model – bad choice of properties, poor
relations of properties, insufficient discretization, programming errors – or by incorrect model
parameters. Parameters are those properties which are assumed to be known in advance for
a particular problem and are not object to a computation. Under the assumption of a
good model, the model parameters can be corrected by a calibration. This is based upon
appropriate problems from the reality of interest with the known real data. On one hand
calibration minimizes the modeling error by adjusting of parameters. On the other hand,
validation chooses other problems with known real data and assesses the modeling error
without adjusting of parameters. Hopefully model solutions are still good.

Regarding reinforced concrete structures, calibrations usually involve the adaption of
material parameters like strength and stiffness as part of material models. These parameters
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1.2 Discretization Outline 3

are chosen such that the behavior of material specimen observed in experiments is reproduced.
A validation is usually performed with structural elements such as bars, beams, plates, and
slabs. Computational results of structural models are compared with the corresponding
experimental data.

This leads to basic peculiarities. Reproducible experiments performed with structural
elements are of a small simplified format compared with complex unique buildings. Fur-
thermore, repeated experimental tests with the same nominal parameters exhibit scattering
results. Standardized benchmark tests carving out different aspects of reinforced concrete
behavior are required. Actually a common agreement about such benchmark tests exists
only in the first attempts. Regarding a particular problem a corresponding model has to
be validated on a case-by-case strategy using adequate experimental investigations. Their
choice again has no strict rules as the preceding arts.

Complex proceedings have been sketched hitherto outlining a model of modeling. Some
benefit is desirable finally. Thus, a model which passed validations is usable for predictions.
Structures created along such predictions hopefully prove their worth in the reality of interest.

This textbook covers the range of conceptual models, mathematical models, and numerical
models with special attention to reinforced concrete structures. Notes regarding the compu-
tational model including available programs and example data are given in Appendix F. A
major aspect of the following is modeling of ultimate limit states: states with maximum bear-
able loading or acceptable deformations and displacements in relation to failure. Another
aspect is given with serviceability: Deformations and in some cases oscillations of structures
have to be limited to allow their proper usage and fulfillment of intended services. Durability
is a third important aspect for building structures: deterioration of materials through, e.g.,
corrosion, has to be controlled. This is strongly connected to cracking and crack width in
the case of reinforced concrete structures. Both topics are also treated in the following.

1.2 Discretization Outline
The finite element method (FEM) is a predominant method to derive numerical models from
mathematical models. Its basic theory is described in the remaining sections of this chapter
insofar as it is needed for its application to different types of structures with reinforced
concrete in the following chapters.

The underlying mathematical model is defined in one-, two-, or three-dimensional fields
of space related to a body and one-dimensional space of time. A body undergoes deformations
during time due to loading. We consider a simple example with a plate defined in 2D space,
see Fig. 1.2. Loading is generally defined depending on time whereby time may be replaced
by a loading factor in the case of quasistatic problems. Field variables depending on spatial
coordinates and time are, e.g., given by the displacements.

• Such fields are discretized by dividing space into elements which are connected by
nodes, see Fig. 1.3a. Elements adjoin but do not overlap and fill out the space of the
body under consideration.

• Discretization basically means interpolation,, i.e., displacements within an element are
interpolated using the values at nodes belonging to the particular element.
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4 Chapter 1 Finite Elements Overview

Figure 1.2: Model of a plate.

In the following this will be written as

u = N · υ (1.1)

with the displacements u depending on spatial coordinates and time, a matrix N of shape
functions depending on spatial coordinates and a vector υ depending on time and collecting
all displacements at nodes. The number of components of υ is n. It is two times the number
of nodes in the case of the plate as the displacement u has components ux, uy. Generally
some values of υ may be chosen such that the essential or displacement boundary conditions
of the problem under consideration is fulfilled by the displacements interpolated by Eq. (1.1).
This is assumed for the following.

Figure 1.3: (a) Elements and nodes (deformed). (b) Nodal quantities.

Strains are derived from displacements by differentiation with respect to spatial coordi-
nates. In the following, this will be written as

ε = B · υ (1.2)
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1.2 Discretization Outline 5

with the strains ε depending on spatial coordinates and time, a matrix B of spatial derivatives
of shape functions depending on spatial coordinates and the vector υ as has been used in
Eq. (1.1). The first examples for Eqs. (1.1, 1.2) will be given in Section 1.3.

• A field variable u is discretized with Eqs. (1.1, 1.2), i.e., the infinite field in space is
reduced into a finite number n of variables in supporting spatial points or nodes which
are collected in υ.

Thereby kinematic compatibility should be assured regarding interpolated displacements, i.e.,
generally spoken a coherence of displacements and deformations should be given.

Strains ε lead to stresses σ. A material law connects both. Material laws for solids are a
science in itself. This textbook mainly covers their flavors for reinforced concrete structures.
To begin with, such laws are abbreviated with

σ = f(ε) (1.3)

Beyond total values of stress and strain their small changes in time t have to be considered.
They are measured with time derivatives

ε̇ =
∂ε

∂t
, σ̇ =

∂σ

∂t
(1.4)

Nonlinear material behavior is mainly formulated as a relation between ε̇ and σ̇. The first
concepts about material laws are given in Section 1.4.

An equilibrium condition is the third basic element of structural analysis beneath kine-
matic compatibility and material laws. It is advantageously formulated as principle of virtual
work leading to ∫

V

δεT · σ dV =

∫
V

δuT · b dV +

∫
At

δuT · t dA (1.5)

for quasistatic cases with the volume V of the solid body of interest, its body forces b,
its surface A, and its surface tractions t which are prescribed at a part At of the whole
boundary A. Furthermore, virtual displacements δu and the corresponding virtual strains δε
are introduced. They are arranged as vectors and δuT , δεT indicate their transposition into
row vectors to have a proper scalar product with σ,b, t which are also arranged as vectors.
Fields of b and t are generally prescribed for a problem under consideration while the field
of stresses σ remains to be determined. Surface tractions t constitute the natural or force
boundary conditions.

• Stresses σ and loadings b, t are in static equilibrium for the problem under considera-
tion if Eq. (1.5) is fulfilled for arbitrary virtual displacements δu and the corresponding
virtual strains δε.

Thereby, δu is zero at the part Au of the whole boundary A with prescribed displacement
boundary conditions. Applying the displacement interpolation equation (1.1) to virtual dis-
placements leads to

δu = N · δυ, δε = B · δυ (1.6)

and using this with Eq. (1.5) to

δυT ·
[∫

V

BT · σ dV

]
= δυT ·

[∫
V

NT · b dV +

∫
At

NT · t dA

]
(1.7)
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6 Chapter 1 Finite Elements Overview

with transpositions δυT ,BT ,NT of the vector δυ and the matrices B,N. As δυ is arbitrary
a discretized condition of static equilibrium is derived in the form

f = p (1.8)

with the vector f of internal nodal forces and the vector p of external nodal forces

f =

∫
V

BT · σ dV

p =

∫
V

NT · b dV +

∫
At

NT · t dA
(1.9)

Corresponding to the length of the vector υ the vectors f , p have n components.

• By means of σ = f(ε) and ε = B · υ, Eq. (1.8) constitutes a system of n nonlinear
algebraic equations whereby the nodal displacements υ have to be determined such that
– under the constraint of displacement boundary conditions – internal nodal forces f
are equal to prescribed external nodal forces p.

Nonlinear stress–strain relations, i.e., physical nonlinearities, are always an issue for rein-
forced concrete structures. It is a good practice in nonlinear simulation to start with a
linearization to have a reference for the refinements of a conceptual model. Physical linearity
is described with

σ = C · ε (1.10)

with a constant material matrix C. Thus, using Eq. (1.2) internal forces f (Eq. (1.9)) can
be formulated as

f = K · υ, K =

∫
V

BT ·C ·B dV (1.11)

with a constant stiffness matrix K leading to

K · υ = p (1.12)

This allows for a direct determination of nodal displacements which is symbolically written
as

υ = K−1 · p (1.13)

Actually the solution is not determined with a matrix inversion but with more efficient
techniques, e.g., Gauss triangularization. Stresses σ and strains ε follow with a solution υ
given. A counterpart of physical linearity is geometric linearity:

• Small displacements and geometric linearity are assumed throughout the following if
not otherwise stated.

This was a fast track for the finite element method. The rough outline will be filled out in
the following. Comprehensive descriptions covering all aspects are given in, e.g., [98], [99],
[9], [3]. The special aspects of reinforced concrete structures are treated in [16], [44], [81].
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1.3 Elements 7

1.3 Elements
Interpolation performed with finite elements will be described with more details in the fol-
lowing. We consider the mechanical behavior of material points within a body. A material
point is identified by its spatial coordinates. It is convenient to use a different coordinate
system simultaneously. First of all, the global Cartesian coordinate system, see Appendix C,
which is shared by all material points of a body. Thus, a material point is identified by global
Cartesian coordinates

x = ( x y z )T (1.14)

in 3D space. In the following, we assume that the space occupied by the body has been
divided into finite elements. Thus, a material point may alternatively be identified by the
label I of the element it belongs to and its local coordinates

r = ( r s t )T (1.15)

related to a particular local coordinate system belonging to the element e. A material point
undergoes displacements. In the case of translations they are measured in the global Cartesian
system by

u = ( u v w )T (1.16)

Displacements in a general sense may also be measured by means of rotations

ϕ = ( ϕx ϕy ϕz )T (1.17)

if we consider a material point embedded in some neighborhood of surrounding points. The
indices indicate the respective reference axes of rotation.

Isoparametric interpolation will be used in the following. The general interpolation form
(Eq. (1.1)) is particularized as

u = N(r) · υe (1.18)

whereby the global coordinates of the corresponding material point are given by

x = N(r) · xe (1.19)

The vector υe collects all nodal displacements of all nodes belonging to the element e and
the vector xe all global nodal coordinates of that element. Isoparametric interpolation is
characterized by the same interpolation for geometry and displacements with the same shape
functions N(r). Global and local coordinates are related by the Jacobian

J =
∂x

∂r
(1.20)

which may be up to a 3× 3 matrix for 3D cases. Strains may be derived with displacements
related to global coordinates through isoparametric interpolation. Their definition depends
on the type of the structural problem. A general formulation

ε = B(r) · υe (1.21)

is used. Strains ε finally lead to stresses σ. Examples are given in the following.
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8 Chapter 1 Finite Elements Overview

– Two-node bar element along a line.
The line is measured by a coordinate x. Each coordinate has a cross section with a
cross-sectional area. The kinematic assumption of a bar is that every material point in
the cross section has the same displacement in the line direction.
A bar element e has nodes I, J with coordinates xI , xJ . The nodes have the displace-
ments uI , uJ along the line. The origin of the local coordinate r is placed in the center
between the two nodes. Regarding Eqs. (1.18, 1.19) we have

x =
(
x
)
, u =

(
u
)

N =
[

1
2 (1− r) 1

2 (1 + r)
]

xe =

(
xI
xJ

)
, υe =

(
uI
uJ

) (1.22)

This leads to a scalar Jacobian
J =

∂x

∂r
=
Le
2

(1.23)

Strains are uniaxial and defined by

ε =
∂u

∂x
=
∂u

∂r

∂r

∂x
(1.24)

leading to

B =
2

Le

[
− 1

2
1
2

]
(1.25)

with a bar length Le = xJ −xI and finally, regarding Eq. (1.3), to uniaxial strains and
stresses

ε = ( ε ), σ = ( σ ) (1.26)

which are constant along the element.

– Two-node bar element in a plane
The plane is measured by coordinates x, y. The center axis of a bar is a line in this
plane. Each point of the center axis again has a cross-sectional area and again the
kinematic assumption of this bar is that every material point in the cross section has
the same displacement in the direction of the center axis.
A bar element e has nodes I, J with coordinates xI , yI , xJ , yJ . The nodes have the
displacements uI , vJ , uI , vJ in a plane. The origin of the local coordinate r is placed
in the center between the two nodes. Regarding Eqs. (1.18) and (1.19) we have

x =

(
x
y

)
, u =

(
u
v

)
N =

[
1
2 (1− r) 0 1

2 (1 + r) 0
0 1

2 (1− r) 0 1
2 (1 + r)

]

xe =


xI
yI
xJ
yJ

 , υe =


uI
vI
uJ
vJ


(1.27)
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1.3 Elements 9

Uniaxial strain is measured in the direction of the bar’s center axis, i.e., in a rotated
coordinate system x′, y′ with x′ being aligned to the center axis. The rotation angle
α (counterclockwise positive) and the transformation matrix T for global coordinates
and displacements are given by

T =

[
cosα sinα
− sinα cosα

]
, cosα =

xJ − xI
Le

, sinα =
yJ − yI
Le

(1.28)

with a bar length Le =
√

(yJ − yI)2 + (xJ − xI)2. The scalar Jacobian is similar as
before

J =
∂x′

∂r
=
Le
2

(1.29)

Strains are again uniaxial and defined by

ε =
∂u′

∂x′
=
∂u′

∂r

∂r

∂x′
(1.30)

leading to

B =
2

LI

[
− 1

2
1
2

]
·
[
cosα sinα 0 0

0 0 cosα sinα

]
(1.31)

regarding Eqs. (1.222, 1.28). Uniaxial strains and stresses have a form as given by
Eq. (1.26).

– Two-node spring element along a line.

The line is measured by a coordinate x. A spring element e has nodes I, J with coor-
dinates xI , xJ . The nodes may coincide and have the same coordinates. A kinematic
assumption for springs may be stated as follows: only the displacement difference of
two nodes is relevant irrespective of their original distance.

Springs are an abstract concept and do not occupy a space. They miss material points,
local coordinates, and a Jacobian. Thus, regarding Eq. (1.21) it is

ε =
(
∆u
)
, B =

[
−1 1

]
, υe =

(
uI
uJ

)
(1.32)

whereby this particular strain ε =
(
∆u
)
corresponds to a difference in displacements

of nodes and leads to a force σ =
(
F
)
. The relation between ∆u and F or spring

characteristics may be linear or nonlinear.

– Two-node spring element in a plane.

The plane is measured with coordinates x, y. A spring element e has nodes I, J with
coordinates xI , yI , xJ , yJ which may again coincide. In analogy to Eq. (1.32)

ε =

(
∆u
∆v

)
, B =

[
−1 −1 0 0
0 0 1 1

]
, υe =


uI
vI
uJ
vJ

 (1.33)
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10 Chapter 1 Finite Elements Overview

Generalized strain ε leads to a generalized stress

σ =

(
Fx
Fy

)
(1.34)

The relation between ε and σ may again be linear or nonlinear. It may be appropriate to
transform ε to a rotated coordinate system before evaluating σ using a transformation
matrix as given by T in Eq. (1.28). This requires back transformation of σ to the
original coordinate system with the transposed TT .

– Four-node continuum element in a plane or quad element

The plane is measured with coordinates x, y. A continuum element has nodes I, J,K,L
with coordinates xi, yi, i = I, . . . , L. They span a quad and are ordered counterclock-
wise. The following local coordinates are assigned: I : rI = −1, sI = −1; J : rJ =
1, sJ = −1; K : rK = 1, sK = 1; L : rL = −1, sL = 1. The kinematic assumption of
a continuum is that displacements are continuous, i.e., no gaps or overlapping occur.
Regarding Eqs. (1.18, 1.19), we have

x =

(
x
y

)
, u =

(
u
v

)
Ni(r, s) =

1

4

[
(1 + rir)(1 + sis) 0

0 (1 + rir)(1 + sis)

]
xe,i =

(
xi
yi

)
, υe,i =

(
ui
vi

) (1.35)

with i = I, . . . , L and

x(r, s) =
∑

i
Ni(r, s) · xe,i, u(r, s) =

∑
i
Ni(r, s) · υe,i (1.36)

This leads to a Jacobian matrix

J(r, s) =

[
∂x
∂r

∂y
∂r

∂x
∂s

∂y
∂s

]
, J = det J (1.37)

The Jacobian relates the partial derivatives of a function • with respect to local and
global coordinates (

∂•
∂r
∂•
∂s

)
= J ·

(
∂•
∂x
∂•
∂y

)
→

(
∂•
∂x
∂•
∂y

)
= J−1 ·

(
∂•
∂r
∂•
∂s

)
(1.38)

with the inverse J−1 of J. Small strains are defined by

ε =

 εx
εy
γxy

 =


∂u
∂x
∂v
∂y

∂u
∂y + ∂v

∂x

 =


∂u
∂r

∂r
∂x + ∂u

∂s
∂s
∂x

∂v
∂r

∂r
∂y + ∂v

∂s
∂s
∂y

∂u
∂r

∂r
∂y + ∂u

∂s
∂s
∂y + ∂v

∂r
∂r
∂x + ∂v

∂s
∂s
∂x

 (1.39)

leading to
ε(r, s) =

∑
i
Bi(r, s) · υe,i (1.40)
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with i = I . . . J and

Bi(r, s) =
1

4

ri(1 + sis)
∂r
∂x + si(1 + rir)

∂s
∂x 0

0 ri(1 + sis)
∂r
∂y + si(1 + rir)

∂s
∂y

ri(1 + sis)
∂r
∂y + si(1 + rir)

∂s
∂y ri(1 + sis)

∂r
∂x + si(1 + rir)

∂s
∂x

 (1.41)

The partial derivatives ∂r/∂x . . . are given the components of the inverse Jacobian J−1.
Matrices Ni,Bi related to single nodes are assembled in larger matrices to yield N,B.
Finally, Cauchy stresses

σ =

 σx
σy
σxy

 (1.42)

correspond to strains in a plane. Lateral strains εz or stresses σz come into play with
the distinction of plane stress, that is σz = 0, which may lead to a lateral strain εz 6= 0,
or plane strain, that is εz = 0 which may lead to a lateral stress σz 6= 0. The particular
values in the z-direction have to be determined indirectly with a material law, see
Section 1.4.

All mentioned stresses and the corresponding strains are conjugate with respect to energy,
i.e., the product σ · ε̇ corresponds to a rate of internal energy or a rate of specific internal
energy. The concept of stresses may be generalized:

• Depending on the type of structural element σ may stand for components of Cauchy
stresses or for components of forces or for components of internal forces in a beam cross
section, see Section 3.1.1. Strains ε are generalized correspondingly in order to lead to
internal energy, e.g., including displacements in the case forces or curvature in the case
of moments.

A basic property of the aforementioned elements is that they approximate coordinates and
displacements by interpolation: nodal values and interpolated values are identical at nodes.
For instance, for the four-node continuum element we have u = υe,i for r = ri, s = si i =
I, . . . , L. This property is shared by all types of finite elements.

Another issue concerns continuity: For the four-node continuum element the interpo-
lation is continuous between adjacent elements along their common boundary. One sided
first derivatives of interpolation exist for each element along the boundary but are differ-
ent for each element. Thus, the four-node continuum element has C0-continuity with these
properties. Furthermore, the integrals for internal and external nodal forces (Eq. (1.9)) are
evaluable. Other elements may require higher orders of continuity for nodal forces to be
integrable.

Finally, the issue of element locking has to be mentioned. The four-node continuum
element, e.g., does not allow us to model the behavior of incompressible solids. Constraining
Eqs. (1.41) with the condition of incompressibility εx + εy + εz = 0 makes the element much
to stiff if internal nodal forces are exactly integrated [9, 8.4]. First basic hints to treat locking
are given in Section 1.7. The locking problem is exemplary treated for shells in Section 8.6.

Only a few element types were touched up to now. Further elements often used are 3D-
continuum elements, 2D- and 3D-beam elements, shell elements and slab elements as a special
case of shell elements. Furthermore, elements imposing constraints like contact conditions
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12 Chapter 1 Finite Elements Overview

have become common in practice. For details see, e.g., [3]. Regarding the properties of
reinforced concrete more details about 2D-beam elements including Bernoulli beams and
Timoshenko beams are given in Section 3.3, about slabs in Section 7.4 and about shells in
Chapter 8.

1.4 Material Behavior

From a mechanical point of view, material behavior is primarily focused on strains and
stresses. The formal definitions of strains and stresses assume a homogeneous area of matter
[64]. Regarding the virgin state of solids their behavior initially can be assumed as linear
elastic in nearly all relevant cases. Furthermore, the behavior can be initially assumed as
isotropic in many cases, i.e., the reaction of a material is the same in all directions. The
concepts of isotropy and anisotropy are discussed in Section 5.3 with more details.

The following types of elasticity are listed exemplary:

– Uniaxial elasticity
σ = E ε (1.43)

with uniaxial stress σ, Young’s modulus E, and uniaxial strain ε.

– Isotropic plane strain σx
σy
σxy

 =
E(1− ν)

(1 + ν)(1− 2ν)

 1 ν
1−ν 0

ν
1−ν 1 0

0 0 1−2ν
2(1−ν)

 ·
 εx
εy
γxy

 (1.44)

with stress components σx, σy, σxy, Young’s modulus E, Poisson’s ratio ν, and strain
components εx, εy, γxy. This is a subset of the triaxial isotropic linear elastic law as is
described in Section 5.3.

– Isotropic plane stress  σx
σy
σxy

 =
E

1− ν2

1 ν 0
ν 1 0
0 0 1−ν

2

 ·
 εx
εy
γxy

 (1.45)

ensuring σz = 0 for every combination εx, εy, γxy

– Plane bending
M = EJ κ (1.46)

with the moment M , curvature κ, Young’s modulus E, and cross-sectional moment of
inertia J . This is covered by the concept of generalized stresses with σ =

(
M
)
and

generalized strains ε =
(
κ
)
.

Equations (1.43)–(1.45) are a special case of

σ = C · ε (1.47)
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1.5 Weak Equilibrium and Spatial Discretization 13

with the constant material stiffness matrix C describing a linear material behavior. At the
latest upon approaching material strength, the behavior becomes physically nonlinear. A
simple case is given by the uniaxial elastoplastic law

σ =

{
E (ε− εp) for − εp ≤ ε ≤ εp
signε fy otherwise

(1.48)

and
ε̇p = ε̇ for |σ| = fy (1.49)

with a yield stress fy (unsigned) and an internal state variable εp. The internal state variable
indicates the actual remaining strain upon unloading, i.e., σ = 0 for ε = εp. An internal state
variable captures the preceding load history. The approach covers elastic loading, yielding,
elastic unloading and reloading, ongoing yielding in the opposite uniaxial range. This cycle
may be repeated whereby yielding is without hardening. Equation (1.49) is a simple evolution
law for internal state variables. More details about plasticity are given in Section 5.5.

In the case of nonlinear material equations at least an incremental form

σ̇ = CT · ε̇ (1.50)

should exist with the tangential material stiffness CT , which is no longer constant anymore
but might depend on stress, strain, and internal state variables. On occasion the compliance
is needed, as a counterpart of stiffness, i.e.,

ε = D · σ or ε̇ = DT · σ̇ (1.51)

whereby compliance matrices are inverses of stiffness matrices: D = C−1, DT = C−1
T .

1.5 Weak Equilibrium and Spatial Discretization

The preceding sections gave an introduction of (1) kinematic compatibility within the con-
text of spatial discretization and of (2) material laws. The third cornerstone of structural
mechanics is equilibrium which is formulated in a weak form as a principle of virtual work.

Boundary conditions have to be regarded in advance. Given a point on a boundary of
a body, either a displacement boundary condition or a force boundary condition (zero force
is also a condition) has to be prescribed for this point. Let us assume that displacements
are prescribed with ū on surface part Au, tractions are prescribed with t̄ on surface part At
while Au together with At contain the whole surface A but do not overlap. Thus, equilibrium
is given by ∫

V

δεT · σ dV +

∫
V

δuT · ü %dV =

∫
V

δuT · p̄ dV +

∫
At

δuT · t̄ dA (1.52)

under the conditions
u = ū onAu, δu = 0 onAu (1.53)

and δu arbitrary otherwise. The meaning of the symbols is summarized as follows:
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14 Chapter 1 Finite Elements Overview

(•)T transpose of column vector (•) leading to row vector
u field of displacement vector
ü field of acceleration vector
δu field of test functions or virtual displacement vector
δε field of virtual strain vector corresponding to δu
σ field of stress vector
% specific mass
p̄ prescribed field of loads distributed in the body
t̄ prescribed field of tractions distributed over surface of the body
V body volume
A body surface
Au part of surface with prescribed displacements
At part of surface with prescribed tractions

Formulation (1.52) covers structural dynamics and includes quasistatics as a special case.
Concentrated loads are not explicitly included. For mathematically precise formulations
also covering generalized variational principles see [96]. All listed parameters have to be
considered as generalized. The following evaluations of are listed exemplary:

• In the case of a uniaxial bar, Eq. (1.52) becomes∫
L

δε σ Adx+

∫
L

δu ü %Adx =

∫
L

δu p̄dx+ [δu t̄]L0 (1.54)

with 0 ≤ x ≤ L under the conditions

u0 = ū0, δu0 = 0 and/or uL = ūL, δuL = 0 (1.55)

with a cross-sectional area A and a load per length p̄ in the bar direction whereby
the formulation of the last term indicates the boundary term of a partial integration.
Surface tractions degenerate to end forces t̄ which are prescribed at either x = 0 or
x = L (or none, but not both at the same time).

• In the case of a plane Bernoulli beam equation (1.52) becomes∫
L

δw ẅ m̄dx+

∫
L

δκM dx =

∫
L

δw p̄dx− [δϕ M̄ ]L0 + [δw V̄ ]L0 (1.56)

with 0 ≤ x ≤ L, the deflection w, the beam’s slope ϕ, moment M , shear force V , a dis-
tributed mass m̄ per length and a distributed lateral load p̄ per length. Two boundary
conditions can be given at each end x = 0 and x = L. There are corresponding pairs
(ϕ, M) and (w, V ). Only one quantity out of a pair can be prescribed at a boundary.
Furthermore, at least two displacement boundary conditions should be given with at
least one deflection w̄0 and/or w̄L.

The principle of virtual work or weak integral forms of equilibrium conditions treat a body
as a whole. Strong differential forms consider forces applied to infinitesimally small sections
or differentials of a body and lead to differential equations. Both are equivalent from a
mechanical point of view. This is exemplary demonstrated for beams in Section 3.2. Weak
forms are the starting point for discretization with finite elements. This has the following
steps regarding Eq. (1.52):
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1.5 Weak Equilibrium and Spatial Discretization 15

1. Mesh generation

The respective body has to be to filled with elements. No gaps between elements and
no overlapping of elements are allowed in the body’s interior. Elements may form facets
or polygons on the exterior.

Proportions and geometric distortions of single element may have a considerable influ-
ence on the mathematical approximation error.

2. Spatial interpolation of displacements with Eq. (1.18)

An infinite number of degrees of freedom u is reduced to a finite number of nodal degrees
of freedom υe with trial functions according to Eq. (1.18). This leads to discretized
strains ε with Eq. (1.21).

3. Spatial interpolation of virtual displacements

Interpolation of virtual displacements δu is performed with test functions. The method
of Bubnov–Galerkin is generally used with the same functions as trial functions and
test functions implying virtual nodal degrees of freedom δυe

δu = N · δυe, δε = B · δυe (1.57)

and virtual δε strains are determined in the same way as strains.

4. Evaluation of stresses σ from stains ε according to a prescribed material law

This has to be performed by the integration of the incremental form (Eq. (1.50)). The
details depend on the material and structural type and are a major issue in all what
follows in this textbook.

5. The evaluation of integrals is performed element by element∫
Ve

δεT · σ dV = δυTe · fe, fe =

∫
Ve

BT · σ dV∫
Ve

δuT · ü %dV = δυTe ·Me · ϋe, Me =

∫
Ve

NT ·N %dV∫
Ve

δuT · p̄ dx = δυTe · p̄e, p̄e =

∫
Ve

NT · p̄ dV∫
Ae,t

δuT · t̄ dA = δυTe · t̄e, t̄e =

∫
Ae,t

NT · t̄ dA

(1.58)

with an element index e. This includes the element’s internal nodal forces fe, its mass
matrix Me and its external nodal forces or loadings p̄e, t̄e which are prescribed. For
integration methods, see Section 1.6. Internal nodal forces in the end are functions of
nodal displacements fe = fe(υe).

6. Assembling of element contributions into a whole system

Regarding, e.g., global internal nodal forces f , the vector has entries for every degree
of freedom of every global node. On the other hand, every meshing should have a table
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16 Chapter 1 Finite Elements Overview

which connects an element to the global nodes belonging to it. This table relates the
position of the entries in fe to a position in f .
As a node generally gets contributions from more than one element, the value of an
entry in fe has to be added to the corresponding entry in f . This is symbolically
described by ∫

V

δεT · σ dV = δυT · f =
∑

e
δυTe · fe (1.59)

The same argumentation holds for δυe → δυ, υe → υ, Me → M, p̄e → p̄, t̄e → t̄.
Global internal nodal forces in the end are a function of global nodal displacements
f = f(υ).

7. Regarding arbitrary values of δυ a spatially discretized system

M · ϋ + f(υ) = p̄ + t̄ (1.60)

finally results with the system’s mass matrix M, its internal nodal forces f and its
loadings p̄, t̄. This is a set of ordinary differential equations of second order in time t
for nodal displacements υ. It might be nonlinear due to the nonlinear dependence of
internal nodal forces f on υ.

This procedure allows for physical nonlinearities. In the special case of physical linearity the
linear material stiffness σ = C · ε leads to internal nodal forces

fe =

∫
Ve

BT ·C ·B dV · υe = Ke · υe (1.61)

see Eqs. (1.58)1 and (1.21), with a constant element stiffness matrix Ke. Assembling leads
to a system stiffness matrix K

f(υ) = K · υ (1.62)

and regarding Eq. (1.60) to
M · ϋ + K · υ = p̄ + t̄ (1.63)

which is a system of linear ordinary differential equations of second order in time t.
To treat physical nonlinearities the system’s tangential stiffness is involved. The tangential

stiffness matrix is needed for the solution of the nonlinear system and furthermore reveals
characteristic properties, e.g., regarding stability properties. The tangential stiffness of an
element is derived with

dfe =
∂fe
∂υe

· dυe = KTe · dυe or ḟe = KTe · υ̇e (1.64)

with
KTe =

∫
Ve

BT · ∂σ
∂ε
· ∂ε
∂υe

dV =

∫
Ve

BT ·CT ·B dV (1.65)

see Eqs. (1.58)1, (1.50), and (1.21), and a system tangential stiffness KT

df = KT · dυ or ḟ = KT · υ̇ (1.66)

Finally, the system (1.60) or (1.63) should be constrained with appropriate conditions re-
garding υ to prevent rigid body displacements.
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1.6 Numerical Integration and Solution Methods
for Algebraic Systems

The integral formulation of equilibrium conditions requires the evaluation of integrals as given
by Eq. (1.58). The evaluation is performed element by element. The integration of a quad
element, see Section 1.3, is exemplary discussed in the following. A general function f(x, y)
indicates the integrand. The isoparametric quad element has a local coordinate system r, s
with −1 ≤ r, s,≤ 1, see Section 1.3. Thus, integration is performed by∫

VI

f(x, y) dV =

∫ +1

−1

∫ +1

−1

f(r, s) J(r, s) bdrds (1.67)

with the determinant J of the Jacobian, see Eq. (1.37), and a thickness b. As closed analytical
forms generally are not available for f(r, s) a numerical integration has to be performed∫ +1

−1

∫ +1

−1

f(r, s) J(r, s) bdrds = b

ni∑
i=0

ni∑
j=0

ηiηj f(ξi, ξj) J(ξi, ξj) (1.68)

with integration order ni, sampling points ξ, and weighting factors η. An appropriate scheme
is given by the Gauss integration. Its sampling points and weighting factors are listed in
Table 1.1 up to an integration order ni = 3. Weighting factors obey a rule

∑ni
i=0 ηi = 2.

Accuracy of integration is a key issue.

• Integration accuracy increases with increasing integration order. On the other hand,
numerical integration leads to a major contribution to computational costs.

Gauss integration generally is most efficient compared to other numerical integration schemes:
an integration order ni gives exact results for polynoms of order 2ni + 1 disregarding round-
off errors, e.g., a uniaxial integration of order 1 with two sampling points exactly integrates
a polynomial of the order 3. Alternative numerical integration schemes are given by schemes
of Simpson, Newton–Cotes, Lobatto.

Discretization and integration lead to a system of ordinary differential equations of sec-
ond order in time for unknown nodal displacements υ, see Eq. (1.60). To begin with a

ni ξi ηi
0 0.0 2.0
1 ±0.57735 02691 89626 1.0
2 ±0.77459 66692 41483 0.55555 55555 55556

0.0 0.88888 88888 88889
3 ±0.86113 63115 94053 0.34785 48451 37454
±0.33998 10435 84856 0.65214 51548 62546

...
...

...

Table 1.1: Sampling points and weights for Gauss integration (15 digits shown).
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18 Chapter 1 Finite Elements Overview

quasistatic analysis is considered with ϋ = 0 leading to

r(υ) = p− f(υ) = 0, p = p̄ + t̄ (1.69)

with a residual r, internal nodal forces f depending on displacements υ and external nodal
loads p, which are assumed to be independent of υ. The general case is nonlinear dependence
of f on υ. Thus, the solution of Eq. (1.69) has to be determined by an iteration with a
sequence υ(0), . . . ,υ(ν). Regarding an arbitrary iteration step (ν) we have r(υ(ν)) 6= 0 and
seek for a correction δυ. A linear Taylor expansion is used as a basic approach

r(υ(ν) + δυ) ≈ r(υ(ν)) + K
(ν)
T · δυ

= 0
(1.70)

with a tangential stiffness matrix, see also Eq. (1.65)

K
(ν)
T = − ∂r

∂υ

∣∣∣∣
υ=υ(ν)

=
∂f

∂υ

∣∣∣∣
υ=υ(ν)

(1.71)

leading to the Newton–Raphson method

δυ =
[
K

(ν)
T

]−1

· r(υ(ν))

υ(ν+1) = υ(ν) + δυ
(1.72)

with (hopefully) an improved value υ(ν+1). Iteration may stop if ‖r(υ(ν+1))‖ � 1 and
‖δυ‖ � 1 with a suitable norm ‖ · ‖ transforming a vector into a scalar. The method
generally has a fast convergence but is relatively costly. The tangential stiffness matrix
has to be computed in every iteration step (ν) and a decomposition in order to solve (LU
decomposition instead of inversion) has to be performed on it to determine δυ. Alternative
iteration methods use variants of the iteration matrix like the modified Newton–Raphson
method or the BFGS method or other quasi-Newton methods [3, 8.4], [9, 6.3],[99, 7]. For
more details, see Appendix A.

Iterative methods like Newton–Raphson are embedded in an incrementally iterative
scheme. Thus, loading is given as a history: p = p(t). An appropriate choice is 0 ≤ t ≤ 1
for the scaling of the load history time, which is different from real time in the case of a
quasistatic analysis. The following steps are performed in the incrementally iterative scheme:

1. Discrete time values ti are regarded with a time step ∆t = ti+1− ti and an initial time
t0 = 0. A loading pi = p(ti) is prescribed for all time steps. The incremental material
law (Eq. (1.50))

σ̇(t) = CT · ε̇(t) (1.73)

is integrated by a numerical integration of stresses and strains using a trapezoidal rule

σi+1 = σi + ∆t [ασ̇i+1 + (1− α) σ̇i]
εi+1 = εi + ∆t [αε̇i+1 + (1− α) ε̇i]

(1.74)

with σi = σ(ti), εi = ε(ti) and an integration parameter α. The parameters α, ∆t
rule stability and accuracy of the numerical approach.
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2. The implicit scheme with α = 1 is used in the following to gain unconditional stability.
Thus, Eqs. (1.73, 1.74) lead to

σi+1 = σi + CT,i+1 · (εi+1 − εi) (1.75)

whereby CT,i+1 indicates dependence of the tangential material stiffness on σi+1 and/or
εi+1.

3. Unknowns are nodal displacements υi = υ(ti) leading to strains εi, stresses σi and
internal nodal forces fi except the initial state. This state described by υ0, ε0, σ0, f0
is assumed to be known and initial equilibrium is given by r0 = p0 − f0 = 0.

4. The solution starts with t1 and υ1 has to be determined. This is performed with
an iteration υ(0)

1 , . . . ,υ
(ν)
1 with, e.g., the Newton–Raphson method using an initial

υ
(0)
1 = υ0. The iteration involves ε(ν)

1 , σ
(ν)
1 , C

(ν)
T,1 according to Eq. (1.75).

5. A converged υ1 and the corresponding strains ε1 and stresses σ1 serve as a base for t2
and so on until a target time is reached.

The procedure is illustrated in Fig. 1.4 and combined with integration according to Eq. (1.58)
and assembling according to Eq. (1.59). The time t serves as a loading parameter in the
quasistatic case. A scaling of time, i.e., multiplying time with a constant factor in each
occurrence, does not have any influence upon the results.

This starts to become different with a transient analysis. A material behavior like creep, see
Section 2.2, has to be regarded as transient. Such a behavior is modeled by incorporating
viscosity [64, 6.4]. Thus, the incremental material law (Eq. (1.73)) is extended as

σ̇ = CT · ε̇+ Σ (1.76)

Figure 1.4: Flow of displacement-based nonlinear calculation.
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with an additional term Σ depending on stress σ(t) and strain ε(t). In a similar way as done
with Eq. (1.73) leading to Eq. (1.75) this is integrated with

σi+1 = σi + CT,i+1 · (εi+1 − εi) + ∆tΣi+1 (1.77)

Internal nodal forces are determined according to Eq. (1.58)1

fi+1 =

∫
V

BT · σi+1 dV = fi + KT,i+1 ·∆υ + ∆t f̄i+1 (1.78)

with element index e omitted and ∆υ = υi+1 − υi and

fi =

∫
V

BT · σi dV

KT,i+1 =

∫
V

BT ·CT,i+1 ·B dV

f̄i+1 =

∫
V

BT ·Σi+1 dV

(1.79)

The contributions KT,i+1, f̄i+1 may involve nonlinearities due to the dependence of CT,i+1,Σi+1

on strains and stresses. Equilibrium at a time ti+1 has the condition

ri+1 = pi+1 − fi+1

= pi+1 − fi −KT,i+1 ·∆υ −∆t f̄i+1

= 0
(1.80)

according to Eqs. (1.69, 1.78). We apply the Newton–Raphson method (Eq. (1.72)) to solve
this system of algebraic equations within in incrementally iterative scheme, see Eq. (1.72).
An extended tangential stiffness, see Eq. (1.71), is given by

A
(ν)
T,i+1 = K

(ν)
T,i+1 + ∆t

∂ f̄

∂υ

∣∣∣∣
υ=υ(ν)

i+1

(1.81)

with the iteration counter (ν) leading to an iteration scheme

υ
(ν+1)
i+1 = υ

(ν)
i+1 +

[
A

(ν)
T,i+1

]−1

· r(ν+1)
i+1 (1.82)

The exact formulation of the extended tangential stiffness depends on the particular form of
f̄ or Σ, respectively. In the case of time steps ∆t being small is A

(ν)
T ≈ K

(ν)
T .

A particular case is given by the viscoelasticity of materials, see Section 2.2, leading to

Σ = V · ε−W · σ (1.83)

with constant material terms V, W, see Eq. (2.27). Thus, Σi+1 = V · εi+1 −W · σi+1 and
stress from Eq. (1.77) becomes

σi+1 = σi + CT,i+1 · (εi+1 − εi) + ∆tV · εi+1 −∆tW · σi+1 (1.84)
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leading to

σi+1 = [I + ∆tW]
−1 ·

(
[CT,i+1 + ∆tV] · (εi+1 − εi) + σi + ∆tV · εi

)
(1.85)

with the unit matrix I. Internal nodal forces according to Eq. (1.58)1 are given by

fi+1 =

∫
V

BT · σi+1 dV = f̄i + K̄T,i+1 ·∆υ (1.86)

with ∆υ as before and

f̄i = [I + ∆tW]
−1
∫
V

BT · (σi + ∆tV · εi) dV

K̄T,i+1 = [I + ∆tW]
−1
∫
V

BT · [CT,i+1 + ∆tV] ·B dV
(1.87)

The residual, see Eq. (1.80), is given by

ri+1 = pi+1 − f̄i − K̄T,i+1 ·∆υ (1.88)

leading to an iteration scheme

υ
(ν+1)
i+1 = υ

(ν)
i+1 +

[
K̄

(ν)
T,i+1

]−1

· r(ν+1)
i+1 (1.89)

All quantities at time ti can assumed to be known within a time stepping scheme. A potential
source of nonlinearity is still given by CT,i+1. Formulation (1.87) is used as solution method
for Examples 2.2 and 3.3.

Real time t is also a key factor for a dynamic analysis regarding inertia. Based on Eq. (1.60)
we have in analogy to Eq. (1.69)

r = p(t)−M · ϋ − f = 0, p(t) = p̄(t) + t̄(t) (1.90)

whereby the loading p is a prescribed function of the time t. The displacements υ(t) and
all derived values (velocities υ̇(t), accelerations ϋ(t), internal nodal forces f) are unknown
before solution. Equation (1.90) is discretized in the spatial domain, but not yet in the time
domain, i.e., it is system of ordinary differential equations of second order in time. Beneath
displacement boundary conditions this problem needs initial conditions for the displacements
υ0 = υ(0) and velocities υ̇0 = υ̇(0).

A widespread approach for the temporal discretization of acceleration together with ve-
locities is given in the Newmark method

υ̇i+1 = υ̇i + ∆t
[
γϋi+1 + (1− γ)ϋi

]
υi+1 = υi + ∆t υ̇i + ∆t2

[
βϋi+1 + ( 1

2 − β)ϋi

] (1.91)

with υi+1 = υ(ti+1), υ̇i+1 = υ̇(ti+1), ϋi+1 = ϋ(ti+1) a time step length ∆t = ti+1 − ti and
integration parameters γ, β. Equations (1.91) are solved for the acceleration and velocity in
time step i+ 1. We get

ϋi+1 =
1

β∆t2
[υi+1 − υ̃i+1] (1.92)
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with an auxiliary quantity

υ̃i+1 = υi + ∆t υ̇i +
∆t2

2
(1− 2β) ϋi (1.93)

and the velocity

υ̇i+1 =
γ

β∆t
[υi+1 − υi] +

(
1− γ

β

)
υ̇i + ∆t

(
1− γ

2β

)
ϋi (1.94)

Finally, dynamic equilibrium equation (1.90) is applied for the time step i + 1 with the
acceleration according to Eq. (1.92):

ri+1 = pi+1 −
1

β∆t2
M · [υi+1 − υ̃i+1]− fi+1 = 0 (1.95)

With the given parameters γ, β,∆t, a given previous state υi, υ̇i, ϋi, given mass matrix M
and load pi+1, Eq. (1.95) has to be solved for υi+1 whereby the dependence of fi+1 on υi+1

is crucial and might be nonlinear.
We apply again the Newton–Raphson method (Eq. (1.72)). An extended tangential stiff-

ness, see Eq. (1.71), is given by

A
(ν)
T =

1

β∆t2
M +

∂f

∂υ

∣∣∣∣
υ=υ(ν)

i+1

=
1

β∆t2
M + K

(ν)
T (1.96)

leading to an iteration scheme

υ
(ν+1)
i+1 = υ

(ν)
i+1 +

[
A

(ν)
T

]−1

·
(

pi+1 −
1

β∆t2
M ·

(
υ

(ν)
i+1 − υ̃i+1

)
− f

(ν)
i+1

)
(1.97)

This includes the linear case with

f
(ν)
i+1 = K · υ(ν)

i+1, A
(ν)
T = A =

1

β∆t2
M + K (1.98)

and Eq. (1.97) simplifies to

υi+1 = A−1 ·
(

pi+1 +
1

β∆t2
M · υ̃i+1

)
(1.99)

with no iteration necessary [2, 9.2.4]. Numerical integration parameters γ, β rule consistency
and numerical stability of the method.

– Stability means that an amount of error introduced in a certain step due to a finite
time step length ∆t is not is not increased in the subsequent steps.

– Consistency means that the iteration scheme converges to the differential equation for
∆t→ 0.

Stability and consistency are necessary to ensure that the error of the numerical method
remains within some bounds for a finite time step length ∆t. A choice β = 1

4 , γ = 1
2 is

reasonable for the Newmark method to reach consistency and stability [2, 9.4].
This section completes the basic discussion of procedures as they are directly used to

solve problems of reinforced concrete structures. The following last section of this chapter
touches some theoretical background regarding the finite element method.
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1.7 Convergence
The major contribution to the mathematical approximation error, see Section 1.1, is the
discretization error arising from the difference between mathematical and numerical model,
see Fig. 1.1. This difference should become smaller with a mesh refinement, i.e., the nu-
merical model should converge with respect to the underlying mathematical model. Under
the assumption of geometrical and physical linearity the convergence behavior of the finite
element method can be analyzed theoretically. Quasistatic problems are considered in the
following.

The following mathematical symbols are used in this section:

∀ for all
∈ element of
⊂ subset of
∃ it exists
∩ intersection
∪ union

Given a linear material law
σ = C · ε (1.100)

the condition of weak, integral equilibrium equation (1.52), can be written as∫
V

δεT ·C · ε dV =

∫
V

δuT · p̄ dV +

∫
At

δuT · t̄ dA (1.101)

with a given body geometry V and given values for C, p̄ and t̄. The boundary A of V is
composed of Au and At whereby A = At ∪ Au and At ∩ Au = 0. Displacement boundary
conditions or Dirichlet conditions are prescribed on Au and force boundary conditions or
Neumann conditions on At with t̄ = n · σ with the boundary’s normal n. Displacement
boundary conditions have to prevent rigid body motions.

Generalized strains ε, δε are derived from the generalized displacements u, δu by a differ-
ential operator depending on the type of the structural problem under consideration. The
trial functions according to Eq. (1.18) and test functions according to Eq. (1.57) are assumed
to belong to a Sobolev function space H (→ square integrable functions [2, 4.3.4]) defined
over the body V and to fulfill the displacement boundary conditions.

Equation (1.101) can be written in a general form as

a(u,v) = (f ,v) ∀v ∈ H (1.102)

with a symmetric, bilinear operator a(·, ·), a further linear operator (f , ·), and v formally
replacing δu. This has the following properties:

– Symmetry
a(u,v) = a(v,u) (1.103)

– Bilinearity
a(γ1u1 + γ2u2,v) = γ1a(u1,v) + γ2a(u2,v)
a(u, γ1v1 + γ2v2) = γ1a(u,v1) + γ2a(u,v2)

(1.104)
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– Linearity
(f , γ1v1 + γ2v2) = γ1(f ,v1) + γ2(f ,v2) (1.105)

A norm maps a function v into a nonnegative number. Sobolev norms ||v||i of order i are
used in this context [2, 4.3.4,(4.76)]. Sobolev norms are built from integration of squares of
functions and squares of their derivatives up to order i. It is assumed that i = 1 is appropriate
for the following. It can then be shown that a has the properties

– Continuity

∃M > 0 : |a(v1,v2)| ≤M ‖v1‖1 ‖v2‖1 ∀v1,v2 ∈ H (1.106)

– Ellipticity
∃α > 0 : a(v,v) ≥ α ‖v‖21 ∀v ∈ H (1.107)

whereby M,α depend on problem type and material values but not on v1,v2,v.

Due to Eq. (1.107) a(v,v) ≥ 0, i.e., a is a norm and may be physically interpreted as energy.
It is twice the internal strain energy. It can be shown that the problem Eq. (1.102) – i.e.,
determine a function u ∈ H such that Eq. (1.102) is fulfilled for all v ∈ H – has a unique
solution u, see, e.g., [2, 4.3]. This is the exact solution of the mathematical model, see
Fig. 1.1.

Discretization uses trial and test functions uh,vh ∈ Hh of a subset Hh ⊂ H based
upon the concept of meshes and interpolation with elements and nodes, see Section 1.3. To
simplify the derivations, a uniform mesh of elements is assumed with a mesh size parameter
h, e.g., a diameter or length of a generic element. For nonuniform meshes see [2, 4.3.5]. The
approximate solution uh ∈ Hh of Eq. (1.102) is determined by

a(uh,vh) = (f ,vh) ∀vh ∈ Hh (1.108)

The difference between approximate and exact solution gives the discretization error

eh = u− uh (1.109)

The approximation uh is known forHh given, it can be determined according to the procedure
described in Section 1.5. The error eh has to be estimated. The approximate solution has
the following properties:

– Orthogonality of error, see [2, (4.86)]

a(eh,vh) = 0 ∀vh ∈ Hh (1.110)

– Energy of approximation is smaller than exact energy, see [2, (4.89)]

a(uh,uh) ≤ a(u,u) (1.111)

– Energy of error is minimized, see [2, (4.91)]

a(eh, eh) ≤ a(u− vh,u− vh) ∀vh ∈ Hh (1.112)
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Combination of Eqs. (1.107), (1.112), and (1.106) leads to

α ‖eh‖21 = α ‖u− uh‖21 ≤ a(eh, eh)

= infvh∈Hh a(u− vh,u− vh) ≤M infvh∈Hh ‖u− vh‖21
(1.113)

where inf is infimum, the largest lower bound1. This is rewritten as

‖u− uh‖1 ≤ c d(u, Hh) (1.114)

with
d(u, Hh) = inf

vh∈Hh
‖u− vh‖1 , c =

√
M/α (1.115)

d is a “distance” of functions in Hh to the exact solution u, c depends on the structural
problem type and the values of its parameters, but not on Hh.

• Convergence means uh → u or ‖u− uh‖1 → 0 with mesh size h→ 0.

Convergence can be reached with an appropriate selection of function spaces Hh whereby
reducing the distance d(u, Hh).

A more precise statement is possible using interpolation theory. This introduces the
interpolant2 ui ∈ Hh of the exact solution u. Complete polynomials3 of degree k are used
for discretization and interpolation. Interpolation theory estimates the interpolation error
with

‖u− ui‖1 ≤ ĉ hk ‖u‖k+1 (1.116)

with the mesh size h and a constant ĉ which is independent of h [2, (4.99)]. ‖u‖k+1 is the k+1-
order Sobolev norm of the exact solution. On the other hand a relation infvh∈Hh ‖u− vh‖1 ≤
‖u− ui‖1 must hold as ui ∈ Hh. Using this and Eqs. (1.114, 1.116) yields

‖u− uh‖1 ≤ cĉ h
k ‖u‖k+1 (1.117)

The value cĉ can be merged to c, which depends on the structural problem type and the
values of its parameters, but not on h. A further merging of c and ‖u‖k+1 leads to the
well-known formulation

‖u− uh‖1 ≤ c h
k (1.118)

whereby c depends on the structural problem type, the values of its parameters and the norm
of the exact solution.

The following conditions for convergence can be derived [2, 4.3.2]:

– A prerequisite is theoretical integrability of all quantities. This leads to requirements
for the integrands of the energy a and the arguments of the Sobolov norms, which are
uh,vh,u or derivatives thereof.
This corresponds to the requirement of compatibility or continuity – with a different
meaning compared to Eq. (1.106) –, respectively, of finite element interpolation func-
tions – generally displacement interpolations – along inter element boundaries.

1 ‖u− vh‖1 ,vh ∈ Hh is a subset of real numbers. infvh∈Hh ‖u− vh‖1 is the largest number less or equal
to the numbers in this subset.

2 u and ui coincide at nodes, but generally not apart from nodes. Generally is ui 6= uh.
3 A polynomial in x, y is complete of order 1 if it includes x, y, complete of order 2 if of order 1 and including
x2, xy, y2, complete of order 3 if complete of order 2 and including x3, x2y, xy2, y3 and so on.
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– According to Eq. (1.118), a sequence of approximate solutions uh with h → 0 will
converge4 with respect to ‖u− uh‖1 if k ≥ 1.

The case k = 1 is covered by the patch test, i.e., the ability to model fields with
constant first derivatives of finite element interpolation functions in arbitrary element
configurations [9, 8.3.2]).

– The convergence rate will be higher for larger values of k, i.e., if the finite element
interpolation has a higher order of completeness.

Limitations of these arguments have to be mentioned. Under certain conditions the coefficient
c may become so large that acceptable solutions, i.e., a sufficiently small value ||u − uh||,
cannot be reached with realizable values h small enough. A particular occurrence is given
by locking of approximate solutions with incompressible or nearly incompressible materials.

The locking problem motivates the inclusion of extended weak forms of equilibrium con-
ditions. Equations (1.101, 1.102) are weak forms of displacement based methods, as a solution
is given by a displacement field. Strains and stresses are derived from this solution. Extended
weak forms allow us to involve fields for stresses and strains as independent solution vari-
ables. Most prominent are the principles of Hu-Washizu and Hellinger-Reissner [2, 4.4.2].
An abstract extended problem definition analogous to Eq. (1.108) is given by [3, (16)]

a(uh,vh) + b(εh,vh) = (f ,vh) ∀vh ∈ Hh

b(wh,uh)− c(εh, eh) = 0 ∀wh ∈Wh
(1.119)

in which a, c are symmetric bilinear forms, b is a bilinear form, f is a linear form, Hh,Wh

are appropriate functions spaces, uh ∈ Hh, εh ∈ Wh are the approximate solutions. In most
cases εh stands for an independent field of strains or stresses. Such an approach requires
an extension of the foregoing discussion related to displacement based methods including
the widely referenced inf-sup condition [3]. The provided framework to include independent
interpolations for displacements, strains, and stresses may avoid locking problems to a large
degree. Cases of locking risks will be discussed individually if necessary in the following.

The foregoing discussion is related to linear problems. They cannot be strictly applied to
nonlinear problems – physically nonlinear and/or geometrically nonlinear. But the conclu-
sions to be drawn regarding element selection and discretization should also be considered
for nonlinear and dynamic problems.

4 Converge with respect to first order Sobolev norm ‖u− uh‖1 may not be sufficient if generalized strains
are derived from higher derivatives of displacements, e.g., with beams, slabs, shells. The theory has to be
extended for this case.
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Chapter 2

Uniaxial Structural Concrete
Behavior

2.1 Scales and Short–Term Stress–Strain Behavior
of Homogenized Concrete

Structural elements such as bars, beams, and columns are characterized by uniaxial states of
stress and strain. Thus, it is sufficient to describe material behavior by uniaxial stress–strain
relations for such elements. This simplifies stress–strain relations to a large extent.

On the other hand, different time scales have to be regarded for the behavior of concrete.
This is related to the type and the duration of load application. We assume a monotonic
loading which is uniformly applied from zero to a final value during a loading time and then
holds its value constant after loading time. Another parameter to be considered is loading
speed which is load magnitude related to loading time. Furthermore, material specimen with
states of stress and strain constant or continuous in space, i.e homogeneous states of stress
and strain are considered. Material behavior may be classified as follows with respect to time
scales:

– Short-term behavior is observed as immediate response of a material specimen exposed
to a loading whereby loading speed is slow. A slow loading speed does not have an
influence on the stress–strain relation. It is only influenced by the magnitude of loading.
In the case of concrete, the corresponding time horizon typically covers minutes up to
days.

– Long-term behavior extends the time horizon beyond the application time of the loading.
Material behavior is observed as delayed response of a material specimen after load
application. Corresponding phenomena are creep and relaxation. The time horizon
typically covers weeks up to years.

– Highly dynamical behavior is related to such as high loading speeds that loading speed
influences stress–strain relations beneath the magnitude of loading itself. A correspond-
ing phenomenon is the strain-rate effect where concrete strength is increased due to

Computational Methods for Reinforced Concrete Structures. First Edition. Ulrich Häussler-Combe.
© 2015 Ernst & Sohn GmbH & Co. KG. Published 2015 by Ernst & Sohn GmbH & Co. KG.
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28 Chapter 2 Uniaxial Structural Concrete Behavior

high strain rates. The time horizon is restricted to milliseconds as very high loadings
are reached within very short times due a high loading speed.
The strain-rate effect is still an open object of research. A first approach is given in
[18].

Observation of uniaxial short-term behavior under monotonic loading is the first approach
to characterize the behavior of materials. A typical stress–strain relation as is observed for
concrete with a cylindrical or cubic specimen under compression is shown in Fig. 2.1a. The
relation has the following parts:

– The initial linear part with the initial Young’s modulus Ec.

– A nonlinear hardening part with decreasing tangential material stiffness but still in-
creasing stress.

– A nonlinear softening part with negative tangential material stiffness and decreasing
stress.

Figure 2.1: Uniaxial compressive stress–strain behavior of concrete.

Characteristic values are given by the maximum stress which corresponds to the compres-
sive strength fc (unsigned), the corresponding strain εc1 (signed), and the ultimate failure
strain εcu1 (signed). A large variety of analytical forms are available for such a course. The
approach of Saenz [21, 8.8.1] is chosen as an example. Stress σ depending on strain ε is given
by

σ =
Ec ε

1 +
(
Ec
Ec1
− 2
)

ε
εc1

+
(

ε
εc1

)2 , 0 ≥ ε ≥ εcu1 (2.1)

with the secant modulus Ec1 = −fc/εc1 at compressive strength fc. Equation (2.1) yields
σ = −fc for ε = εc1. Alternatives to the approach of Saenz are described by the Modelcode
2010 [18, 5.1.8.1] and the Eurocode 2 [26, 3.1.5].

The tangential material stiffness, see Eq. (1.50), is given by the tangential modulus

Et =
∂σ

∂ε
=

Ec

(
1− ε2

ε2c1

)
(

1 +
(
Ec
Ec1
− 2
)

ε
εc1

+ ε2

ε2c1

)2 (2.2)
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which leads to Et = Ec for ε = 0; furthermore, Et = 0 for ε = εc1 and ET < 0 for
ε < εc1, |ε| > |εc1|. Uniaxial tension in a simplified first approach is described by

σ =

{
Ec ε, ε ≤ fct/Ec

0, else (2.3)

with the uniaxial tensile strength fct. The tangential stiffness corresponds to the initial
stiffness ET = Ec for ε ≤ fct/Ec.

• These types of uniaxial stress–strain relations are the base for modeling and design of
structural elements like bars and beams.

Spatial dimensions of bars and beams have a scale of meters (m) for spans or (m−1) for
cross sections. The latter is also the dimension of cylindrical or cubic specimen. This
corresponds to the macroscale. A material description as given by Eqs. (2.1)–(2.3) is derived
from macroscale specimen. Thus, it is only applicable to macroscale structures.

Other spatial scales are the mesoscale with spatial dimensions of millimeters (m−3) and
the microscale with spatial dimensions of micrometers (m−6). A strict demarcation between
spatial scales is not possible but depends on the particular problem under consideration. Fur-
ther aspects regarding material models, scales, and the fundamental concept of homogeneity
are discussed in Section 5.1.1.

Concrete obviously cannot be considered as homogeneous in the mesoscale. A spatial
resolution of millimeters reveals its composition of aggregates and mortar leading to dis-
continuities in material properties. But the comprehension of the mesoscale is necessary to
understand the failure of concrete. We consider uniaxial tensile failure. Its process is shown
in Fig. 2.2a. The following successive phases can be distinguished:

– Development of microcracks with random distribution but progressing crack alignment
normal to the stress direction.

– Coalescence of microcracks to larger cracks which form several branches and are still
bridged by crack bridges.

– Fracturing of crack bridges and fusion of branched cracks into a macrocrack.

Figure 2.2: (a) Cracking in mesoscale. (b) Uniaxial tensile stress–strain behavior.
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The notions of stresses and strains obviously become questionable in this view. But a change
of view back to the macroscale and performing a homogenization, see Section 5.1.1, allows
us to derive stress–strain relations. A characteristic course is shown in Fig. 2.2b. This is
again characterized by an initial linear part, a hardening part with increasing strains and
stresses and a tension softening part with increasing strains and decreasing stresses.

Uniaxial tension occurs with tension bars. The phenomenon of softening leads to a
localization of strains within tension bars. Due to scatter the tensile strength measured over
cross sections varies along a bar. Thus, tensile failure will start in the cross section with the
smallest tensile strength. Due to tension softening the tensile force applied to the bar has to
be reduced to avoid a sudden failure.

– The failing cross section reaches a point B on the stress–strain curve, see Fig. 2.2b,
while other cross sections, which were still in the hardening range, unload to point A.

– Strains increase in the failing cross section while strains decrease in the other cross
sections with ongoing unloading.

– Softening spreads over a process zone with some thickness bw as cracking involves
microcracking, crack branches and crack bridges, see Fig. 2.2a. A synonym for process
zone is the crack band.

Figure 2.3: Scheme of localization in a tension bar.

– Relatively high increasing strains develop in the process zone compared to decreasing
strains in the rest of the bar, see Fig. 2.3.

– The process ends with a macrocrack in the failing cross section while the rest of the
bar has zero stresses and strains.

This qualitative description is illustrated with the following example.

Example 2.1 Concrete tensile bar with localization
A scheme of system and discretization is shown in Fig. 2.4. The following properties are
chosen:

– Uniaxial two-node bar elements are used for discretization, see Section 1.3. The length
of the whole bar is chosen as L = 0.5 m, its cross section as Ac = 0.1 × 0.1 m2. The
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element length has to be small compared to the length of the crack band to resolve
the high strain gradient within it. Thus, the element length is determined with Le =
0.001 m leading to 500 elements.

Figure 2.4: Example 2.1 scheme of system and discretization.

– The material properties are chosen according to a concrete grade C 40 as is described
in [18, 5.1.5,5.1.7] with an initial Young’s modulus Ec = 36 000 MN/m2 and a tensile
strength fct = 3.5 MN/m2. The damage formulation, see Section 5.6, is used to model
material behavior. This formulation allows describing tension softening.
On the other hand, modeling of tension softening with finite elements needs a regular-
ization, see Section 5.9. The gradient damage approach is used for the current example.
This requires a characteristic length R as material parameter which corresponds to the
length of the crack band and is chosen with R = 0.03 m.

– Boundary conditions are prescribed with zero displacements on the left and with the
prescribed displacement uN = 0.1333 · 10−3 m corresponding to a medium strain of
ε = 0.2667 · 10−3. An ideal clamping is assumed at both ends which prevents damage
at the ends only.

– An incrementally iterative approach, see Section 1.6, is used for nonlinear problem
solving. The size of loading increments is determined with arc length control: the
prescribed displacement increment size is chosen such that a norm of the vector of
local displacements has a prescribed fixed value, see Appendix A.

The computation leads to the following results:

– The load–displacement curve is shown in Fig. 2.5b. This starts with a linear behavior
followed by nonlinear hardening while reaching the tensile strength. But in contrast
to Fig. 2.2b, which exposes material behavior, this curve shows a snap-back after a
short range of softening. Snap-back indicates nonhomogeneous structural behavior
and is characterized by decreasing reaction forces and simultaneously decreasing dis-
placements.
In the case of a relatively short length of the softening crack band, its elongation cannot
compensate for elastic shortening of the elastic parts with the reduction of stress. The
prescribed displacement of the right end has to be reduced in order to maintain equi-
librium and kinematic compatibility. The resulting bar elongation nominally proceeds
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Figure 2.5: Example 2.1 (a) reaction force–displacement relation, (b) strains along bar.

when stress are reduced to zero. The snap-back characteristics depend on the ratio of
the length of the crack band compared to the total length of the bar. With smaller
ratios the snap-back behavior becomes more pronounced.

The whole process may be unstable under quasistatic conditions and it is difficult to
realize experimentally as a displacement control of the softening area is required.

– Strain distributions along the bar for two loaded states are shown in Fig. 2.5b. Curve
A shows the strain distribution before reaching the tensile strength in the hardening
range, that is point A in Fig. 2.5a. Strain moderately increases in the mid-range of the
bar due to prescribed zero nonlocal damage on both ends. Curve B in Fig. 2.5b shows
the strain distribution in the softening range, that is point B in Fig. 2.5a. Strains
strongly increase as a localization occurs within a short length and otherwise decrease
due to the load decrease.

In a real specimen, the localization will not center exactly in the mid-point but in the weakest
cross section. This cross section will arise due to the stochastic variation of material strength.
Its cross-sectional strength and location cannot be determined exactly but only with their
statistical parameters.

End Example 2.1

Computation of whole structural elements has to rely on the macroscale and homogenization
of concrete behavior. A corresponding course1 of strains εc(x) across the process zone with
x1 ≤ x ≤ x2 and a crack band width bw = x2 − x1 are shown in Fig. 2.3.

• The magnitude of the crack band width bw is estimated from experimental observation
with two to three times the largest aggregate size, see Fig. 2.2a.

This leads to the fictitious crack with a width

w =

∫ x2

x1

εc(x) dx (2.4)

1 Actually this is a calculational course under the assumption of a homogenized material.
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as the difference between the displacements of the left- and right-hand cross sections bounding
the process zone. A further homogenization leads to

w = bw εc (2.5)

with the mean value εc of εc(x). The crack strain εc corresponds to the strain of the stress–
strain relation shown in Fig. 2.2b. Thereby the softening range is bounded by the strain εct
corresponding to the tensile strength fct and the strain εcr where no stresses are transferred
anymore: σc = 0 for εc ≥ εcr. Equation (2.5) leads to a crack width for εc = εct, but this is
at first a calculational value.

• A stress transfer across a crack in progress related to a fictitious crack width is denoted
as cohesive crack.

As cracking is an irreversible process leading to the creation of new surfaces energy is dissi-
pated within the process zone. The volume-specific crack energy is given by

gf =

∫ εcr

εct

σ(ε′) dε′ (2.6)

with σ(ε′) according to Fig. 2.2a. Its integration along the thickness of the process zone leads
to the surface-specific crack energy or simply crack energy

Gf = bw gf (2.7)

The crack energy Gf indicates energy dissipation due to creation of new surfaces. Its value
corresponds to the shaded area in Fig. 2.2a. Due to current state of knowledge it is assumed
as a constant material parameter, so that Eq. (2.7) leads to a constraint for a σ− εc relation.

• Crack energy or energy dissipation due to cracking of concrete contributes to the duc-
tility of concrete structures, i.e., the ability to deform while internal forces retain their
level, and insofar is a significant property.

The extension of the uniaxial case to modeling of multiaxial cracking is described in Sec-
tion 5.7, a biaxial application in Section 6.2 including aspects of unloading.

The failure mode is different under uniaxial compression but its understanding again
requires the comprehension of the mesoscale. A model for the composition of aggregates and
mortar within a concrete specimen is shown in Fig. 2.6. Furthermore, this figure schematically
shows the mechanism of compressive force transfer which concentrates upon aggregates which
are relatively stiff compared to the mortar. This is obviously connected with a redirection of
forces leading to some lateral tensile forces which also have to be sustained by the mortar.

• As a consequence, concrete will fail due to internal lateral tension under homogeneous
uniaxial compressive loading.

This is a diffuse failure – in contrast to local failure under tensile loading – as failure spreads
throughout a whole specimen and is not localized. Actually, a bunch of cracks occur with
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Figure 2.6: Simplified model for force transfer in composition of aggregates and mortar.

crack directions aligned to the load direction. But this requires an adequate experimental
setup with minimized lateral constraints on the loaded faces of a plain concrete specimen.

While uniaxial material modeling of concrete is sufficient for structural elements like bars
and beams a multiaxial approach is necessary for plates, slabs, and shells. Multiaxial material
modeling of concrete is discussed in Section 5.1.1.

2.2 Long-Term Behavior – Creep and Imposed Strains

Creep occurs as a delayed response of a material specimen after load application. A concrete
specimen exposed to a loading within minutes will have increasing strains within months
while its loading is hold constant. The complementary phenomenon to creep is relaxation.
Deformations imposed to a concrete specimen within minutes will lead to immediate stresses
but these stresses will decrease within months while the imposed deformation is hold constant.

Mechanisms of creep and relaxation have to be treated in the microscale of materials
and are connected to a relatively slow redistribution in the arrangement of microstructures
and, in the case of mortar, water. All solids undergo creep and relaxation but its extent is
different for different materials. Its extent is relatively large for, e.g., mortar and thus for
concrete. A first approach to describe the development of uniaxial strain ε with time t for a
constant uniaxial stress σ0 is given by

ε(t) = J(t) σ0 (2.8)

with a creep function J(t). The creep function is specific for every material. Creep strain
is proportional to the applied stress with this approach. Such a linear characteristic with
respect to stress or linear creep is valid for moderate stress levels relative to strength. A
qualitative course of a uniaxial creep strain derived from experimental data is shown in
Fig. 2.7. Equation (2.8) is generalized as

ε(t) =

∫ t

0

J(t, τ) σ̇(τ) dτ, 0 ≤ τ ≤ t (2.9)
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Figure 2.7: Uniaxial strain depending on time for a material with creep.

for stresses σ variable in time t with a stress time derivative σ̇(τ) and an extended creep
function J(t, τ). It describes the effect of a stress increment occurring in time τ on strain in
the current time t. The following general approach is appropriate within this context:

J(t, τ) =
∑Nµ

µ=0
Jµ(t, τ) (2.10)

with

Jµ(t, τ) =
1

Eµ

(
1− e−[yµ(t)−yµ(τ)]

)
, yµ(τ) =

(
τ

τµ

)qµ
(2.11)

and material parameters τµ, qµ, Eµ. For alternative approaches see, e.g., [4], [84, Sec. 28]. The
parameter τµ has a dimension of time and the Eµ a dimension of stress. Equations (2.9-2.11)
may be written as

ε(t) =
∑Nµ

µ=0
εµ(t), εµ(t) =

∫ t

0

Jµ(t, τ) σ̇(τ) dτ (2.12)

A time parameter τµ approaching zero (τµ → 0) yields a constant compliance Jµ = 1/Eµ as
a special case of creep. A choice Nµ = 0, τ0 = 0, E0 = const. recovers linear elasticity

ε(t) =
1

E0
σ(t) (2.13)

This has at least to be extended with Nµ = 1, τµ > 0 to gain a qualitative course as is shown
in Fig. 2.7.

We consider a sudden jump of stress at a time τ0 from zero to a value σ0. The Dirac-Delta
function δ(τ − τ0) is used to describe the time derivative of stress for this case. It is defined
as

δ(τ − τ0) =

{
∞ τ = τ0
0 τ 6= τ0

,

∫ ∞
−∞

δ(τ − τ0) dτ = 1 (2.14)

Its integral is given by the Heaviside function

H(τ − τ0) =

{
0 τ < τ0
1 τ ≥ τ0

(2.15)
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The Delta-Dirac function has the property∫ τ2

τ1

F (τ) δ(τ − τ0) dτ = F (τ0), τ1 < τ0 < τ2 (2.16)

We write σ(τ) = σ0H(τ − τ0), σ̇(τ) = σ0 δ(τ − τ0) which yields from Eqs. (2.12, 2.16)

εµ(t) = σ0

∫ t

0

Jµ(t, τ) δ(τ − τ0) dτ = σ0 Jµ(t, τ0) (2.17)

Finally, regarding Eq. (2.11) with τ0 = 0

εµ(t) = σ0 Jµ(t, 0) = σ0
1

Eµ

(
1− e−yµ(t)

)
, yµ(t) = (t/τµ)

qµ (2.18)

Thus, the creep strain εµ starts with zero for t = 0 and has an asymptotic value σ0/Eµ. The
approaching to the asymptotic value during time is ruled by the parameters τµ, qµ. A variety
of functions Jµ allow us to adopt to experimental creep data with any desired accuracy with
a calibration of Nµ times a set Eµ, τµ, qµ.

The assumption qµ = 1 allows for more simplifications. Regarding Eq. (2.11) all terms in
Eq. (2.12) are trivially integrated leading to

εµ(t) =
σ(t)

Eµ
− e
− t
τµ

Eµ

∫ t

0

σ̇(τ) e
τ
τµ dτ (2.19)

The time derivative of this strain is given by

ε̇µ(t) =
1

τµ

e
− t
τµ

Eµ

∫ t

0

σ̇(τ) e
τ
τµ dτ (2.20)

Thus, the strain εµ(t) fulfills the differential equation

ηµ ε̇µ(t) + Eµ εµ(t) = σ(t), ηµ = Eµτµ (2.21)

Equation (2.21) describes a Kelvin–Voigt element with a spring and a viscous damper in
parallel, see Fig. 2.8a. Equation (2.12)1 yields a simple Kelvin–Voigt chain, i.e., a spring and
a Kelvin–Voigt element in a row, see Fig. 2.8b. An alternative basic combination with spring
and damper in a row is given by the Maxwell element, see Fig. 2.8a. The Maxwell element
can be treated in analogy to the Kelvin–Voigt element by formally interchanging stress and
strain and using a relaxation function R(t, τ) instead of a creep function J(t, τ). Creep and
relaxation functions can be inverted into each other mathematically. A simple combination
of a spring and a Maxwell element in parallel leads to a Maxwell series.

• Kelvin–Voigt elements and Maxwell elements are the basic blocks of viscoelasticity.
Together with springs they may be combined in series and/or chains to form rheological
models to describe linear creep and relaxation.
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Figure 2.8: (a) Kelvin–Voigt and Maxwell element. (b) Chain and series.

The Kelvin–Voigt chain as shown in Fig. 2.8b is discussed in the following. The stress is the
same in each member of the chain but the member’s strains ε0 and ε1 add up to the total
strain

ε(t) = ε0(t) + ε1(t), ε̇(t) = ε̇0(t) + ε̇1(t) (2.22)

The relations for the partial strains are

E0 ε0(t) = σ(t), η1 ε̇1(t) + E1 ε1(t) = σ(t) (2.23)

see Fig. 2.8b. The combination of Eqs. (2.22, 2.23) results in

ε1(t) = ε(t)− σ(t)

E0
, ε̇1(t) = ε̇(t)− σ̇(t)

E0
(2.24)

This is inserted in Eq. (2.23)2 to yield after a rearrangement

σ̇(t) +
E0 + E1

η1
σ(t) = E0 ε̇(t) +

E0E1

η1
ε(t) (2.25)

We introduce a final stiffness 1/E = 1/E0 + 1/E1; consider E0 as an initial stiffness and
introduce a dimensionless creep coefficient ϕ defined by ϕ = E0/E − 1. This leads to E1 =
E0/ϕ and Eq. (2.25) may be reformulated as

σ̇(t) +
1 + ϕ

ζ
σ(t) = E0 ε̇(t) +

E0

ζ
ε(t), ζ =

ϕη1

E0
(2.26)

The parameter ζ has the dimension of time and is called creep time in the following. The
differential equation (2.26) is a mathematical model for the conceptual model of the Kelvin–
Voigt chain.

• The Kelvin–Voigt chain is a simple model for uniaxial linear creep and relaxation
characterized by an initial Young’s modulus E0, a creep coefficient ϕ, and a creep time
ζ. It can be used to model creep for bars and beams.
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38 Chapter 2 Uniaxial Structural Concrete Behavior

The mathematical model allows for variable stresses and strains. It is rewritten in a more
general form as

σ̇(t) = E0 ε̇(t) + V ε(t)−W σ(t) (2.27)

for use in numerical solution methods, see Section 1.6, by

V =
E0

ζ
, W =

1 + ϕ

ζ
(2.28)

according to Eqs. (1.76, 1.83). Its application is demonstrated with Examples 2.2 and 3.3.
To get a better insight of the meaning of ϕ and ζ Eq. (2.26) may be analytically solved

for a constant stress σ(t) = σ0, σ̇ = 0 with an initial strain ε(0) = σ0/E0. The solution is

ε(t) =
σ0

E0

[
1 + ϕ

(
1− e−

t
ζ

)]
(2.29)

The asymptotic strain is εasym = (1+ϕ)σ0/E0 with a creep portion ϕσ0/E0, i.e., ϕ-times the
initial strain. The value of ϕ has to be determined from experimental data or see [26, 3.1.4],
[18, 5.9.1.4]. Experimental data also provide a time t? where a fraction α of the asymptotic
creep part occurs with 0 ≤ α < 1 . This leads to

1− e−t
?/ζ = α → ζ = − t?

ln(1− α)
(2.30)

If, e.g., half of asymptotic creep occurs at time t? with α = 0.5 then ζ ≈ 1.44 t?. Thus,
at least three points of an experimental uniaxial stress–strain relation are reproduced by
the Kelvin–Voigt chain: the immediate strain after load application, the final asymptotic
strain and an intermediate value at a time t?. A better approximation of experimental data
requires extended Kelvin–Voigt chains or the combination of Maxwell elements.

Strains resulting from a mechanical loading have been discussed up to now. But strains are
also imposed by a change of temperature or, in the case of concrete, shrinkage. Shrinkage
results from enduring drying of concrete. Uniaxial temperature strains are given by

εT = αT ∆T (2.31)

with the thermal expansion coefficient αT and a temperature change ∆T (signed). Concrete
shrinkage strains εcs mainly depend on time, humidity conditions, and ratio of surface to
volume [26, 3.1.4], [18, 5.9.1.4]. The total measurable strain results from stresses and imposed
strains. For the uniaxial case, it is given by

ε =
σ

C
+ εI , εI = εT + εcs (2.32)

with the uniaxial stress σ and a scalar material stiffness C, see Eq. (1.47). This leads to the
basic form of a material law regarding imposed strains

σ = C (ε− εI) , εI = εT + εcs (2.33)

with an incremental formulation

σ̇ = CT (ε̇− ε̇I) , ε̇I = ε̇T + ε̇cs (2.34)
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see Eq. (1.50). Stresses due to temperature or shrinkage are given by σI = −C εI . A bar
which is fully constrained, that is, ε = 0 in Eq. (2.33), gets tensile stresses σI with an imposed
contraction εI < 0 and compressive stresses σI with an imposed elongation εI > 0.

• Constraint stresses resulting from imposed strains are proportional to the stiffness of
the material or the stiffness of the structure, respectively.

Aspects of temperature loading for beams are discussed in Section 3.5.2 and with Exam-
ple 3.4.

Stresses from constraints may be reduced by creep or relaxation. To model this behavior
Eq. (2.27) covering creep and relaxation is extended in analogy to Eq. (2.34) to include
imposed strains:

σ̇(t) = CT
[
ε̇(t)− ε̇I(t)

]
+ V

[
ε(t)− εI(t)

]
−W σ(t) (2.35)

Appropriate solution methods for this type of material model leading to a transient problem
have been described in Section 1.6. This is demonstrated with the following example.

Example 2.2 Concrete tensile bar with creep and imposed strains
The following properties are chosen:

– A homogeneous uniaxial state of stress and strain is assumed to expose pure material
behavior. Thus, the absolute spatial dimensions and number of finite elements are
basically irrelevant. Nevertheless, some data have to be chosen with a bar length of
L = 1.0 m, a cross-sectional area Ac = 1.0 m2 and a discretization with five uniaxial
two-node bar elements, see Section 1.3.

– Material properties are the focus of the problem. Concrete is chosen with a Young’s
modulus E0 = 30 000 MN/m2. Creep properties are assumed with a creep coefficient
ϕ = 2.0 and a time t? = 100 [d] for α = 0.5, i.e., half of total creep occurs after 100
days for a constant stress load. With Eq. (2.30), creep time is given by

ζ = − 100

ln 0.5
= 144 d (2.36)

Equation (2.28) leads to

V = 207.94
MN

m2d
, W = 0.020794

1

d
(2.37)

– Regarding boundary conditions the displacement of one bar end is prescribed with zero
while a stress or a prescribed displacement is applied at the other bar end.

– An incrementally iterative approach according to Eq. (1.87) is chosen for problem
solving. The time step is chosen with ∆t = 10 days while a period of 500 days is
regarded.
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Figure 2.9: Example 2.2 time dependencies (a) Strain. (b) Stress.

The following cases are considered for the computation:

– A loading σ0 = 3.0 MN/m2 constant in time

The computed strain depending on time is shown in Fig. 2.9a. An exact solution for
this case is given by Eq. (2.29). Differences between exact solution and numerically
computed solution are small and are not visible in the figure.

– An immediate right-end displacement corresponding to an immediate strain ε0 =
σ0/E0 = 0.1‰ is applied and hold constant in time.

The computed stress depending on time is shown in Fig. 2.9b, case 2. In contrast to
the case before relaxation occurs with stress decreasing to an asymptotic value.

– A slow imposed contraction of 0.15‰ is linearly increased over a period of t = 100
days and then hold constant. The displacements of both ends are prescribed with zero.
As total strain ε is prescribed with zero a tensile constraint stress is induced.

The computed stress depending on time is shown in Fig. 2.9b, case 3. It becomes
obvious that a constraint stress due to a slowly increasing imposed strain is strongly
reduced already during its initiation.

End Example 2.2

While analytical, exact solutions are available for cases 1 and 2, the numerical approach
is necessary for arbitrarily prescribed loads or displacements. Furthermore, more complex
creep models, see e.g., [64, 6.4], [84, 28, 29], can only be solved with numerical models.

2.3 Reinforcing Steel Stress–Strain Behavior

Reinforcing steel has to be considered as a second basic component beneath plain concrete.
Steel can be considered as homogeneous already in the mescoscale – with spatial dimen-
sions of millimeters – in contrast to concrete. Furthermore, steel has the same behavior
under compression and tension. Typical uniaxial stress–strain relations as are derived from
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2.3 Reinforcing Steel Stress–Strain Behavior 41

Figure 2.10: Reinforcing steel (a) Uniaxial stress–strain behavior. (b) Cyclic behavior with
hardening.

experimental data are shown in Fig. 2.10a. The relation has the following major parts:

– The initial linear elastic part.

– The transition part with the initiation of yielding.

– The yielding part with high strains and slightly increasing stresses.

– A relatively short softening part closed by failure.

The characteristic of these parts varies with different types of steel. Relevant design proper-
ties of reinforcing steel are given in [26, 3.2],[18, 5.2]. A bilinear approximation of uniaxial
stress–strain relations is generally used for the design and computation of reinforced concrete
structures. It is characterized by the initial Young’s modulus Es, an initial yield stress fyk
(unsigned), a failure stress ft (unsigned) and a corresponding failure strain εu (unsigned). As
ft > fyk a hardening occurs, i.e., the material gains strength. The yield strain and tangential
material stiffness in the hardening range are given by

εy =
fyk
Es

, ET =
ft − fyk
εu − εy

(2.38)

Nonlinear steel behavior is characterized by elastoplasticity. Such nonlinear material behavior
becomes obvious with unloading from the yielding part.

• Plasticity is characterized by approximately the same material stiffness for initial elas-
tic loading and unloading. Thus, plastic strains remain as permanent strains while
unloading from yielding to zero stresses.

This phenomenon results from sliding in the crystal microstructure. It is schematically
illustrated in Fig. 2.10b with the cyclic behavior. Unloading from, e.g., a tensile regime
may proceed to reloading into the compressive regime while crossing a zero stress. With the
maximum stress fy reached for tensile hardening the material behaves linear elastic during
reloading until stress reaches −fy and plastic yielding continues with further hardening in

mailto:Ulrich.Haeussler-Combe@tu-dresden.de
http://www.tu-dresden.de/biwitb/mbau
http://www.tu-dresden.de
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the compressive range. The cycle of loading–unloading–reloading–unloading with isotropic
hardening is indicated in Fig. 2.10b. The uniaxial stress–strain relation for each branch is
described by

σ =

{
Es (ε− εp) if εp − fy

Es
≤ ε ≤ εp +

fy
Es

signε fy else
(2.39)

with the sign function, the current yield stress fy and the actual plastic strain εp (signed)
as an internal state parameter, see also Eq. (1.48). The evolution law for the internal state
variable and the rule for hardening are given by

ε̇p = ε̇

ḟy = ET |ε̇|

}
if ε ε̇ > 0 and |σ| = fy (2.40)

with a tangential material stiffness or hardening modulus ET , see Eq. (2.38)2. Finally

σ = 0 if |ε| > εu and for all strains following (2.41)

The hardening under consideration is isotropic as hardening in the tensile range also leads
to a compressive strength increase and vice versa. Equations (2.39, 2.40) are an extension
of Eqs. (1.48, 1.49) as the latter do not cover hardening. This yields a hardening modulus
ET = 0 which might lead to a singular tangential material stiffness CT , see also Eq. (1.50),
and finally to a singular tangential stiffness matrix KTe, see also Eq. (1.65). The latter may
prevent a solution determination, see Eq. (1.72). It is appropriate to assume some amount
of hardening from a numerical point of view and the stress–strain relations (2.39, 2.40) are
used for reinforcing steel in the following.

Elastoplasticity allows for closed cycles of stress–strain behavior, i.e., a particular point
σ, ε in the hardening range can again be reached after a cycle with two times of unloading
and reloading, see also Fig. 2.10b. The area within such a cycle amounts to the specific
internal dissipated energy. On the other hand, energy dissipation in a structure contributes
to its ductility, i.e., its ability to deform while its internal forces retain their level.

2.4 Bond between Concrete and Reinforcing Steel

Due to the limited tensile strength of concrete a reinforcement has to take over tensile forces.
An experimental setup to expose transmission of forces between concrete and a rebar is shown
in Fig. 2.11a: a single rebar is pulled out of a concrete block. The system is characterized
by measures for the relative displacement of the rebar compared to the concrete block and
the force system of rebar tension and concrete block retention. Transmission of forces relies
on three mechanisms:

– Adhesion as a rigid connection of boundary layers of concrete and steel.

– Friction as slip between the boundary layers of concrete and steel combined with lateral
pressure.

– Ordinary rebars have profiled surfaces with ribs or dents acting like consoles.
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Figure 2.11: (a) Basic bond setup. (b) Main bond mechanism.

The last-mentioned console mechanism contributes the largest amount to the rebar force for
a given relative rebar displacement. Such an interaction due to profiled surfaces leads to a
triaxial state of stresses within the concrete body immediately surrounding the rebar. This
is schematically illustrated in Fig. 2.11b. A system of skew concrete struts braces against
rebar ribs in the view of a plane cross section. These concrete struts form a cone in the
spatial view. A circumferential tensile ring is necessary to redirect the cone compression into
a kind of a cylinder compression aligned to the rebar force.

The tensile cylinder around the rebar is activated through tensile stresses within the
concrete body. A bond failure may occur with concrete splitting along a rebar in case that
such tensile stresses exceed the limited tensile strength of concrete. This can be prevented by
placing a lateral secondary reinforcement or through reducing tensile stresses by increasing
the radial concrete cross section or by providing sufficient concrete cover, respectively.

Bond is a complex mechanical problem which requires the mesocale view for a thorough
understanding and analysis whereby each rebar and concrete has to be considered as three-
dimensional solids with nonlinear material behavior. A simplified model is necessary to make
bond treatable from a macroscopic view. Such a model is shown in Fig. 2.12a. A cut in the

Figure 2.12: (a) Schematic bond equilibrium. (b) Typical bond law.
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interface between a simplified cylindrical rebar and the concrete body exposes a bond force
flow T which is a force related to length and obeys a relation

T =
dFs
dx

=
dFc
dx

(2.42)

with the rebar force Fs and the resulting force Fc in the concrete body. The relative dis-
placement between rebar and concrete is measured by a slip s. The notion of slip assumes
the deformation of concrete in a cross section, see Fig. 2.12a, as approximately homogeneous
beyond the immediate surroundings of the rebar and defines slip s as the difference between
the longitudinal displacements of the outer concrete area and the center axis of the rebar.
Thus, slip has a dimension of length.

The force variable T and kinematic variable s are connected by a bond law for the flexible
bond

T = fT (s) (2.43)

An alternative formulation assumes a constant circumference U of a rebar and derives a bond
stress τ = T/U with the dimension of stress leading to

τ = fτ (s) (2.44)

Such a formulation is generally used as it is independent from specific geometric properties
and may be considered as a special case of a material law. A characteristic smoothed course
of a bond law is shown in Fig. 2.12b. It has the following parts [18, 6.1.1]:

– A initial part with increasing nonlinear mechanisms due to nonlinear behavior of con-
crete and reinforcing steel.

– A point or range of maximum bond stress corresponding to bond strength τmax which
is related to the tensile strength of concrete, see the foregoing discussion of the console
mechanism.

– A softening part with increasing slip and decreasing bond stress due to softening in the
concrete’s tensile range, see Fig. 2.2b.

– A final horizontal part with approximately constant bond stress τf and increasing slip
due to the friction of sheared concrete consoles.

The particular curve of Fig. 2.12b is composed of a quadratic, cubic and linear polynomial
with continuous derivatives at the connection points which improves convergence when ap-
plying, e.g., the Newton–Raphson method, see Eq. (1.71), for nonlinear problem solving.
This course is ruled by the values of τbmax, τbf and the corresponding slip values sbmax, sbf .
These characteristic values of a bond law have to be determined from experimental data.
Some generalizing rules are given in [18, 6.1.1.1]. Analytical or numerical simulation models
which cover the complex bond situation and yield reliable bond laws are not available due
to current state of knowledge.

• Phenomenological bond laws are generally used in numerical macroscale models in case
flexible bond has to be regarded.
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Bond stress changes direction in the case of a reversed slip, i.e., the course of Fig. 2.12b can
be mirrored for values s, τ < 0. Monotonic loading with increasing slip was described up to
now. Bond behavior in the case of unloading and reloading is discussed in [18, 6.1.1.4], [40].

A simpler, more convenient approach based on the concept of damage is as follows: begin
with unloading from a point (s′, τ ′) on a curve as given in Fig. 2.12b and the respective
τ–s-relation goes through the origin on a straight line with reloading until a point (−s′,−τ ′)
is reached. The mirrored course is followed subsequently The application of the flexible
bond is illustrated with the following Example 2.4. Basic ideas of damage are discussed in
Section 5.6.

2.5 The Smeared Crack Model
Cracking, as has been discussed in Section 2.1, in its final stage of a macrocrack leads to a
discontinuity of displacements regarding the crack surfaces. In the case of a uniaxial concrete
tension bar the displacement field u(x) has a jump at the place of a macrocrack. On the
other hand, common finite elements as have been described in Section 1.3 do not allow for
discontinuities in the displacement fields. The smeared crack model combines macrocracking
and continuous displacement fields. This is discussed for the uniaxial two-node bar element,
see Section 1.3 and includes not only the final macrocrack but also the foregoing tension
softening process.

We consider the cracked element as a black box whose inner state cannot be inspected.
The mean strain of such an element is assumed as

ε =
1

Le
[(Le − bw) εu + bw εc]

= (1− ξ) εu + ξ εc
, ξ =

bw
Le

(2.45)

with the element length Le and the strain εu of the uncracked material. For the crack band
width bw and the crack strain εc, see Section 2.1. The approach is illustrated in Fig. 2.13.
The element length Le results from a discretization while the crack band width bw is assumed
as the material constant. The ratio ξ is a constant for each element. A restriction 0 < ξ ≤ 1
is appropriate.

Figure 2.13: Smeared crack concept.
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46 Chapter 2 Uniaxial Structural Concrete Behavior

• A characteristic element length – corresponding to the element length Le of uniaxial
elements – should not be smaller than the crack band width for the smeared crack
model.

bw ≤ Le (2.46)

The strains εu, εc are still open. Thus, the smeared crack is connected with the concept of
a cohesive crack, see Section 2.1. A typical relation for a uniaxial stress related to a crack
strain is shown in Fig. 2.2b. A general form

σ = fc(εc) (2.47)

is assumed. The key point is that this relation may be resolved for the crack strain

εc = f−1
c (σ) (2.48)

On the other hand, a material law describes the relation between stress and strain in the
uncracked material. A general form

σ = fu(εu) (2.49)

is assumed. A corresponding compliance yields the material strain

εu = f−1
u (σ) (2.50)

whereby the stress σ is the same for the uncracked material and within the crack band width
due to equilibrium reasons. The combination of Eqs. (2.45, 2.48, 2.50) leads to

ε = (1− ξ) f−1
u (σ) + ξ f−1

c (σ) = d(σ) (2.51)

with a compliance d for the smeared crack model. A further inversion leads to the stiffness

σ = d−1(ε) (2.52)

of the crack band model.

Example 2.3 Simple uniaxial smeared crack model
A linear elastic law with the limited tensile strength is used for material behavior

σ = fu(εu) = E εu (2.53)

with Young’s modulus E. Furthermore, a linear relation is used for the cohesive crack

σ = fc(εc) =

 fct

(
1− εc − εct

εcr − εct

)
, εct < εc ≤ εcr

0, εcr < εc

(2.54)

with εct = fct/E, the concrete tensile strength fct and the critical strain εcr. This critical
strain is determined with Gf = 1

2bwfct(εcr− εct) or εcr = 2Gf/(bwfct) + εct and recovers the
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crack energy Gf , see Eq. (2.7). The strain range fct
E < ε ≤ εcr is regarded firstly. Resolving

Eqs. (2.53, 2.54) for εu, εc leads to

εu =
σ

E
, εc = (εcr − εct)

(
1− σ

fct

)
+ εct (2.55)

and using Eqs. (2.51, 2.52) to

σ = fct
ξ εcr − ε
ξ εcr − εct

, εct ≤ ε ≤ ξ εcr (2.56)

This relation is limited in several ways.

– ξ = 1: The crack fully occupies the element length and σ = fct (εcr − ε)/(εcr − εct).

– ξ < 1 and ξ → εct/εcr makes σ infinite and gives a lower bound for ξ.

– Neglecting crack energy with Gf = 0 leads to sudden stress drop to zero for ε > εct.

Finally, σ = 0 for εc > ξ εcr.
End Example 2.3

A stress–strain relation like Eq. (2.56) blends or smears strains of uncracked parts and crack-
ing strains into a unified continuous strain. Thus, common finite element interpolations, see
Section 1.3, may still be used while regarding cracking of elements.

• The smeared crack model leads to a modification of the material law of the uncracked
material. Thus, it is applied to integration points within elements, which have a fixed
position. But an exact crack position is not determined.

Furthermore, geometric characteristics of elements are introduced in the stress–strain rela-
tions. This particular feature makes the smeared crack model together with the cohesive
crack suitable for regularization, see Section 5.9. The smeared crack model may be extended
to two and three dimensions. This is demonstrated for the 2D case in Section 6.2.

2.6 The Reinforced Tension Bar

Basic components and mechanisms of reinforced concrete have been described up to now.
Their interaction is demonstrated with the reinforced tension bar. The basic setup is shown
in Fig.2.14a. A single reinforcement bar is embedded in a concrete bar. The left end of the
rebar is fixed, while a displacement is prescribed for its right end. The conceptual model is
also shown. It consists of a concrete part, a reinforcement part and a bond part. The basic
scheme for a discretization is indicated together with the conceptual model.

The model is one-dimensional with a coordinate x and displacements u. The concrete
part and the reinforcement part are discretized in the same way but each with its own nodes
and elements. Concrete nodes and rebar nodes share the same x-position initially. They are
connected by bond elements. The following properties are given for each part:

mailto:Ulrich.Haeussler-Combe@tu-dresden.de
http://www.tu-dresden.de/biwitb/mbau
http://www.tu-dresden.de


48 Chapter 2 Uniaxial Structural Concrete Behavior

Figure 2.14: Example 2.4 (a) Geometry scheme of reinforced tension bar. (b) Force–
displacement curve.

– A linear elastic behavior is assumed for the tensile behavior of concrete with a limited
tensile strength fct

σ =

{
Ec ε, ε ≤ fct

Ec
0, else

(2.57)

with a concrete Young’s modulus Ec. The interpolation of displacements is performed
with the two-node uniaxial bar element, see Section 1.3. This leads to a constant strain
within an element.

– The rebar is modeled with the uniaxial elastoplastic material law with hardening, see
Eqs. (2.39, 2.40). The interpolation of displacements is performed with the same ele-
ments as for the concrete part.

– The bond law is given by Fig. 2.12b and described in Section 2.4. It is characterized
by the bond strength τbmax, the residual strength τbf and the corresponding slip values
sbmax, sbf .

The interpolation of the displacements is performed with the two-node spring element
along a line, see Section 1.3. The variable ∆u stands for the slip s and the variable F
for the bond force flow T times element length Le. Bond force flow is derived from the
bond law by multiplying with a rebar circumference.

– The smeared crack model, see Section 2.4, is used for treating the cracking of concrete
elements.

With determined element types – leading to forms for N, B, see Eqs. (1.18, 1.21) – and
determined material behavior – leading to stresses σ and tangential material stiffness CT

– the numerical model may be built according to the procedure described in Section 1.5.
Numerical integration is performed according to the one-dimensional variant of Eq. (1.68)
with the integration order ni = 0. The lowest order is sufficient due to constant strains and
stresses within each element.

Most simple element types are used for the tension bar model to interpolate displacements
and perform a discretization, respectively. A model complexity arises from the particular
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material laws and the interaction of parts leading a nonlinear behavior. An incrementally
iterative scheme has to be used for the solution, see Fig. 1.4. The application of the tension
bar model is demonstrated with the following example.

Example 2.4 Reinforced concrete tension bar
The following geometric properties are chosen:

– Bar length L = 1.0 m, cross-sectional area of concrete Ac = 0.1× 0.1 m2, reinforcement
1� 16 with cross-sectional area As = 2.01 cm2 and circumference Us = 5.02 cm.

– The concrete and the reinforcement part are each discretized with 100 bar elements
with 101 nodes. This leads to 101 bond elements connecting concrete nodes and rein-
forcement nodes and 202 nodes totally and the same number of degrees of freedom.

– Bar element length is Le = 0.01 m corresponding to a crack band width bw = 0.01 m,
see Eq. (2.46). This corresponds to a fine grained concrete and the crack energy Gf is
neglected to simplify the calculation. As bw = Le crack width of a cracked element is
calculated by

w = Le ε (2.58)

see Eq. (2.5) with bw = Le and the crack strain εc corresponding to the element strain
ε.

The chosen material properties are shown in Table 2.1. The corresponding equations for the
material behavior are Eqs. (2.39, 2.40, 2.57). The bond law is derived from the characteristic
values as a sequence of parabola, cubic polynomial, and horizontal line with the same slope in
the connecting points. Bond strength is related to concrete tensile strength by the empirical
relation τmax ≈ 1.8 fct.

The loading of the tension bar is applied with prescribed displacement boundary con-
ditions: Zero displacement for the left-hand reinforcement node, a prescribed displacement
uN = 2.4 mm for the reinforcement node on the right-hand incrementally applied in 100
steps during a loading time 0 ≤ t ≤ 1. This leads to a final mean strain εmean = 2.4‰.

Concrete
Young’s modulus Ec MN/m2 35 000
Tensile strength fct MN/m2 3.5

Reinforcing steel
Young’s modulus Es MN/m2 200 000
Yield strength fsy MN/m2 500

Bond
Strength τbmax MN/m2 6.0
Slip at strength sbmax mm 0.1
Residual strength τbf MN/m2 3.0
Slip at residuum sbf mm 1.0

Table 2.1: Example 2.4 material parameters of RC tensile bar.
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50 Chapter 2 Uniaxial Structural Concrete Behavior

The BFGS method, see Appendix A, is used to determine a solution within a loading step,
i.e., an increment of prescribed displacements, as the Newton–Raphson method fails due to
discontinuities in the tangent stiffness.

The computed relation between reaction force and displacement is shown in Fig. 2.14b.
The following states which are characteristic for reinforced concrete behavior can be seen:

– Uncracked state I with concrete stresses below tensile strength.

– Crack formation state IIa. Cracks develop in a sequence whereby each sudden reaction
force decrease corresponds to a crack. The reaction force decrease results from a stiffness
reduction of the bar due to cracking. A characteristic saw tooth pattern develops. This
pattern is smoothed in case a crack energy is regarded for the smeared crack model,
see Example 2.3.

– Stabilized cracking state IIb before rebar yielding. No new cracks occur while the bar’s
stiffness is significantly reduced compared to state I.

– Limit state III with rebar yielding. The slight increase in reaction forces results from
rebar hardening. A numerical solution cannot be determined without the assumption
of hardening as a singularity of the system’s stiffness matrix would occur.

The stress distributions along the bar are shown in Figs. 2.15 and 2.16a for half-loading
t = 0.5, uN = 1.2 mm and for full loading t = 1.0, uN = 2.4 mm.

– Concrete stresses are shown in Fig. 2.15a with zero stresses in a cracked element. Three
cracks occur according to three peaks in the load–displacement curve, see Fig. 2.14b.
Concrete tensile stresses for full loading are only slightly larger compared to full loading
and remain below concrete tensile strength.

– Reinforcement stresses are shown in Fig. 2.15b with peak stresses at a crack and the
characteristic garland pattern. Yielding of the reinforcement occurs in each cracked
element for full loading with stresses slightly above the yield limit and high strains
compared to all uncracked elements.

Figure 2.15: Example 2.4 (a) concrete stresses (b) rebar stresses.
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2.6 The Reinforced Tension Bar 51

Figure 2.16: Example 2.4 (a) bond stresses (b) displacements.

– Bond stresses transfer forces among concrete and reinforcement between cracks, see
Fig. 2.16a. Bond stresses have maximum absolute values near cracks and change sign
across a crack. Bond strength is reached already after half loading. A more rectangular
shape is given for full loading with a slight softening at cracks due to large slip and the
prescribed bond law, see Fig. 2.12b.

Displacements u along the bar and the axis x are shown in Fig. 2.16b for all parts at full
loading.

– Displacements of concrete elements and reinforcement elements are different due to the
flexible bond. The difference of the values results in slip leading to bond stresses.

– Four nearly horizontal plateaus of concrete displacements arise with three cracks in
between. The cracks jumps in concrete displacements correspond to the crack widths
which are also given by the difference of the nodal displacements of a cracked element
in accordance with Eq. (2.58). A typical value2 is w ≈ 0.6 mm for full loading with
reinforcement yielding.

– Rebar displacements are given by an approximately straight line with small kinks at
cracks. These kinks with increased displacement slope correspond to high strains for
rebar elements corresponding to cracked concrete elements. These high rebar strains
are related to the yielding of rebar elements.

End Example 2.4

The behavior of the model for reinforced concrete tension bar shows the typical characteristics
of reinforced concrete behavior. It gives the base for the understanding of other structures
like reinforced concrete beams and plates.

2 y-value of Fig. 2.16b has to be divided by scale value. Dimension is [m].
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2.7 Tension Stiffening of Reinforced Tension Bar

The tension bar has a lower limiting case with a rebar without concrete contributing to load
bearing. The is indicated in Fig. 2.14b. The difference between the computed behavior and
load bearing by the rebar alone indicates the tension stiffening effect.

• Tension stiffening results from the contribution of concrete between cracks to load bear-
ing. This leads to a larger stiffness of a cracked reinforced concrete element compared
to the corresponding rebar stiffness.

Tension stiffening will not increase the ultimate load of a reinforced tension bar, i.e., its
ultimate load will be the same as for the corresponding rebar. An elaborated model has been
derived in Section 2.6 to describe the contribution of concrete between cracks. This contri-
bution leads to concrete tensile stresses below tensile strength and to reduced reinforcement
stresses between cracks, see Fig. 2.15.

A simplified model to quantify tension stiffening can be derived based on the concept of
mean stresses between cracks. It is assumed that the reinforcement has not yet reached its
yield strength and that rebar strains have the same shape as rebar stresses. Thus, the end
displacement of a tension bar can be determined from a mean rebar strain εsm multiplied by
the bar length L. The bar force is ruled by the peak stresses σsc of the rebar at a crack –
concrete does not contribute here by definition – multiplied by the rebar cross-sectional area
As. Thus, the load–displacement behavior is determined by a relation deriving σsc from εsm
independent from the particular geometric properties L, As. But some minimum length of a
structural element is required to make such a relation applicable which is basically the crack
distance or a small multiple of it, respectively.

A key to quantify a relation σsc and εsm is to consider the characteristics of stresses
in crack situations. This is illustrated in Fig. 2.17a which gives a schematic cutout and
aggregation of Fig. 2.15. The mean value of reinforcement strain between cracks may be
estimated with

εsm =
1

Es
(σsc − βt ∆σs) (2.59)

Figure 2.17: (a) Cracks and stresses. (b) Tension stiffening model.
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with reinforcement Young’s modulus Es, reinforcement stress decline ∆σs from crack to
minimum value between cracks and a parameter 0 < βt < 1 for the shape of reinforcement
stress distribution.

• The value of βt characterizes the quality of bond. A value βt = 0 indicates no stress
transfer from rebar to concrete, i.e., no bond effective, a value βt = 1 indicates imme-
diate stress transfer from rebar to concrete, i.e., a perfect bond with no slip between
concrete and rebar.

Values are assumed in the range 0.4 ≤ βt ≤ 0.6. The validity of such a range is determined by
computations as shown in Example 2.4, even more sophisticated models and especially pure
observation or phenomenology, respectively. Code provisions are also given for the choice of
βt, see for kt in [26, 7.3.4] and for β in [18, 7.6.4.4]. This value will be assumed as given in
the following.

A further parameter arises with the stress decline parameter ∆σs. Two states of cracking
have to be distinguished to derive an estimation for this parameter, stabilized cracking and
the crack formation. Cracks occur one after the other during loading and not simultaneously.
But all cracks generally occur within a relatively small band of deformations and an even
smaller band of the corresponding forces or stresses, respectively. This is also indicated in
Fig. 2.14b. The passage through these bands is connected with a formation of cracks and
ends with stabilized cracking. Basically, no further cracks arise if cracking is stabilized.

The following relation is assumed for reinforcement stress decline in the case of stabilized
cracking:

As ∆σs = Ac,eff fct (2.60)

with the effective concrete cross-sectional area Ac,eff . This value is smaller than a concrete
cross-sectional area Ac as not all parts of a larger concrete cross section take part in the
exchange of stresses with the reinforcement. Code provisions are given for the choice of Ac,eff

[26, 7.3.2]. Equation (2.60) leads to

∆σs =
fct
%eff

(2.61)

with the effective reinforcement ratio %eff = As/Ac,eff . Combining Eqs. (2.59, 2.61) the
relation for the reinforcement stress in cracks depending on the mean reinforcement strain is
given by

σsc = Es εsm + βt
fct
%eff

(2.62)

for stabilized cracking. This corresponds to a shift of the pure rebar stiffness to the left, see
Fig. 2.17b, i.e., a given mean strain has a higher stress with tension stiffening. This is limited
by the yielding plateau of the reinforcement.

The corresponding relation for crack formation has two limiting points within a load–
displacement relation or a rebar stress–mean strain relation, respectively. The first point is
the point of the first crack, and the second point is the initial point of stabilized cracking,
see Fig. 2.14b. The first point has a stress fct/%eff and a strain fct/Ec with Young’s modulus
Ec of concrete. The following assumption is made for crack formation starting with the first
limiting point:

σsc = k

(
εsm −

fct
Ec

)
+
fct
%eff

, εsm ≥
fct
Ec

(2.63)
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with a slope k which still has to be determined. This line should meet relation (2.62) at a
stress ασsc,i. leading to

k = Ec
α− 1

α− βt − n%eff
, n =

Es
Ec

(2.64)

The coefficient α marks the final stress point of crack formation or the initial stress point of
stabilized cracking, i.e., the increase factor of the reinforcement stress during crack formation.
Parameter studies and experimental data show that a value around α ≈ 1.3 is appropriate.
The strain ε′sm belonging to this stress value can be determined with Eq. (2.62) and σsc =
ασsc,i leading to

ε′sm =
1

Es

fct
%eff

(α− βt) (2.65)

A more simplified version might straighten the initial kink, see Fig. 2.17b, with

σsc =
αfct
%effε′sm

εsm (2.66)

in the initial range up to the beginning of stabilized cracking. Further reference for tension
stiffening and its comprehension into analysis are given in [7], [12], [18, 7.6.5.2, 7.6.7.2],
[27]. In the following chapter, tension stiffening will be included as an option for reinforced
concrete beams, see Section 3.5.3.
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Chapter 3

Structural Beams and Frames

3.1 Cross-Sectional Behavior

3.1.1 Kinematics

Kinematic assumptions characterize the different types of models for structures thereby en-
suring kinematic compatibility. Different types of such assumptions have already been dis-
cussed for bar, spring, and continuum elements in Section 1.3. Kinematic assumptions for
beams need more elaboration but form the base for the powerful structural beam theory.
Plane beams will be considered in the following which are straight in their undeformed con-
figuration. Small displacements are assumed if not otherwise stated.

A beam first of all is characterized by a longitudinal direction with a reference axis and a
longitudinal coordinate x. Every reference coordinate x has a cross section with a transverse
height coordinate z, see Fig. 3.1. Every height coordinate z has a width which may be
variable. Height and width form a cross section which is perpendicular to the reference axis
in the undeformed configuration. It is not necessary to assume that the reference axis goes
through the center of area of cross sections.

Figure 3.1: Kinematics of plane beam.

Computational Methods for Reinforced Concrete Structures. First Edition. Ulrich Häussler-Combe.
© 2015 Ernst & Sohn GmbH & Co. KG. Published 2015 by Ernst & Sohn GmbH & Co. KG.
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56 Chapter 3 Structural Beams and Frames

A kinematic assumption restrains the mathematical description of displacements:

• The Bernoulli–Navier hypothesis states that undeformed plane cross sections of a beam
remain plane during a deformation.

Deformations are connected to displacements. The displacements of every material point
of a beam with the coordinates x, z are given by the longitudinal displacement u(x, z) in
the x-direction and with the lateral displacement w(x, z) in the z-direction. The Bernoulli
hypothesis is included in the following formulation:

w(x, z) = w(x, 0)
= w̄(x)

u(x, z) = ū(x)− z φ(x)

= ū(x)− z
[
∂w̄(x)

∂x
− γ(x)

] (3.1)

with a cross-sectional rotation angle φ(x), a shear angle γ(x), and a longitudinal ū(x) and
lateral displacement w̄(x) of the reference axis.

– Equation (3.1)1 states that every material point in a cross section has the same lateral
displacement but it may change with the longitudinal coordinate.

– Equation (3.1)3 states that a cross section rotates by an angle φ during deformation.

– Equation(3.1)4 decouples the rotation of the cross section φ and the slope of the refer-
ence axis ∂w̄/∂x by the angle γ. The relation is

φ =
∂w̄

∂x
− γ (3.2)

The connection of γ with shear becomes evident with its relation to the shear strain,
see Eq. (3.3)3.

– The case γ � φ with the assumption γ = 0 leads to the Bernoulli beam where cross
sections remain rectangular to the reference axis after deformation. The inclusion of
shear deformation leads to the Timoshenko beam. Cross sections remain plane but are
not rectangular to the reference axis after deformation for the Timoshenko beam.

The Timoshenko beam theory is more general. It will be treated in the following and the
Bernoulli beam will be derived as a special case if appropriate.

Beam kinematics may be considered as restrained kinematics of plate kinematics, see
Section 1.3. Thus, strains are defined according to Eq. (1.39) with y, v replaced by z, w.
This leads to

εx(x, z) =
∂u

∂x
=
∂ū

∂x
− z

[
∂2w̄

∂x2
− ∂γ

∂x

]
εz(x, z) = 0

γxz(x, z) =
∂u

∂z
+
∂w

∂x
= −∂w̄

∂x
+ γ +

∂w̄

∂x
= γ

(3.3)
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regarding Eq. (3.1). A notation ∂ • /∂x = •′, ∂2 • /∂x2 = •′′ is used in the following for
abbreviation. Furthermore, the overbars on ū, w̄ will be omitted in the following. To simplify
the notation, u,w will be written instead. It is appropriate to introduce the variables

ε(x) = u′, κ(x) = φ′ (3.4)

and φ′ = w′′ − γ′. The variable ε has the meaning of the strain of the reference axis in the
context of beams while εx indicates the longitudinal strain in a cross section varying with z.
With Eq. (3.3) this leads to longitudinal strains

εx(x, z) = ε(x)− z κ(x) (3.5)

linearly varying along the beam height with extreme values on the top and bottom of the
cross section.

• The variables ε, κ, γ are chosen as generalized strains for beams whereby ε indicates
the longitudinal strain of the reference axis, κ the curvature of deformed cross sections
and γ the shearing angle of deformed cross sections relative to the reference axis.

The curvature κ = φ′ is different compared to the second derivative w′′ of the lateral dis-
placement w of the reference axis. Both are related by Eq. (3.4).

To describe material behavior, deformation variables have to be connected to force vari-
ables which are moment M , normal force N and shear force V in the case of plane beams.
The following dependences are assumed

M = M(ε, κ), N = N(ε, κ), V = V (γ) (3.6)

Basics of beam theory look conclusive but there are some inconsistencies:

• A shear strain γxz, which is constant over the cross section leads to nonvanishing shear
stress at the lower and upper side of a beam. But this contradicts the local equilibrium
conditions.

• On the other hand, a parabolic or other nonlinear course of shear stresses according
to equilibrium conditions with linear normal stresses leads to a curved course of shear
strains with vanishing values on top and bottom sides.

These contradictions can be resolved with the plate theory. Plane beam theory is its limiting
case or a very useful approximation, respectively.

3.1.2 Linear Elastic Behavior
As longitudinal strains are given by Eq. (3.5) and shear strains by Eq. (3.3)3 depending on
generalized strains corresponding stresses may be determined with a material law. We start
with linear elastic behavior; see Section 1.4 and refer to isotropic plane stress Eq. (1.45). The
coordinate direction y has to be replaced by z according to beam conventions.

• In addition to the kinematic assumptions, Poisson’s effect has to be neglected for beams
with Poisson’s ratio assumed as ν = 0.
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58 Chapter 3 Structural Beams and Frames

Thus, combining Eqs. (1.45, 3.3, 3.5) yields stresses

σx = E εx = E [ε(x)− z κ(x)]
σz = E εz = 0
σxz = Gγxz = Gγ

(3.7)

with Young’s modulus E and the beam’s shear modulus

G =
1

2
E (3.8)

Internal forces of a beam are derived by the integration of stresses in a cross section leading
to the normal force N , the bending moment M , and the shear force V

N =

∫ z2

z1

σx bdz =E

∫ z2

z1

bdz ε− E
∫ z2

z1

z bdz κ

M = −
∫ z2

z1

σx z bdz =− E
∫ z2

z1

z bdz ε+ E

∫ z2

z1

z2 bdz κ

V =

∫ z2

z1

σxz bdz =G

∫ z2

z1

γxz bdz = αG

∫ z2

z1

bdz γ

(3.9)

with the coordinate z1 of the cross-section bottom line, the coordinate z2 of the top line, the
cross-section height

h = z2 − z1 (3.10)

and the cross-section width b.
A shear correction factor α is introduced for the shear force V to compensate for the

difference between mean shearing strain/stress over the cross section – see concluding remarks
of Section 3.1.1 – and the shearing strain/stress γ, Gγ in the reference point z = 0 [36]. It
is α = 5/6 in the case of a rectangular cross-section shape with a reference axis through the
center of area.

Evaluation of integrals in Eq. (3.9) leads to section properties with cross-sectional area
A, sectional modulus S and second moment of area J

A =

∫ z2

z1

bdz, S =

∫ z2

z1

z bdz, J =

∫ z2

z1

z2 bdz (3.11)

In case that the reference axis x coincides with the center of area

S =

∫ z2

z1

z bdz = 0 (3.12)

which formally simplifies the linear elastic case but is not mandatory. Finally, the linear
elastic case with S = 0 yields the well-known relations

N = EAε, M = EJ κ, V = αGAγ (3.13)

The sign of the moment is different compared to classical structural beam theory. The dif-
ference results from a different orientation of the z-axis, see Fig. 3.1. According to Eq. (1.47)
these relations are collected in

σ = C · ε (3.14)
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with

σ =

 N
M
V

 , C =

 EA 0 0
0 EJ 0
0 0 αGA

 , ε =

 ε
κ
γ

 (3.15)

with the generalized stresses, generalized strains, and a material stiffness C. Tangential
material stiffness CT , see Eq. (1.50), is identical to C for linear materials. The subset

σ =

(
N
M

)
, C =

[
EA 0
0 EJ

]
, ε =

(
ε
κ

)
(3.16)

is applied for the Bernoulli beam.

3.1.3 Cracked Reinforced Concrete Behavior
3.1.3.1 Compressive Zone and Internal Forces

Linear elasticity assumes unlimited strength of materials, both for compression and tension.
This assumption is not valid for reinforced concrete (RC), in particular for the very limited
tensile strength of concrete. Thus, cracked concrete cross sections have to be regarded in
which longitudinal beam strains εx exceed the tensile limit strain εct of concrete. Section
properties as have been defined by Eq. (3.11) and also the notion of a center of area loose
their immediate applicability. Nevertheless, the position of cross sections relative to the
reference axis has to be defined.

• The reference axis is placed in the lateral center of a cross section irrespective of the
shape of the cross section. The bottom side has the coordinate z = z1 = −h/2 and the
top side has the coordinate z = z2 = h/2 with a cross-section height h.

The strain εx = ε1 at the bottom side and that εx = ε2 on the top side are given by

ε1 = ε− z1 κ = ε+
h

2
κ, ε2 = ε− z2 κ = ε− h

2
κ (3.17)

with Eq. (3.5). This leads to a relation for the curvature

κ =
ε1 − ε2
h

, h = z2 − z1 (3.18)

Correct signs for strains have to be considered, e.g., ε1 > 0, ε2 < 0 in bending with com-
pression on the top side. The lateral coordinate of a line with a given strain εx = ε′x is also
determined by Eq. (3.5)

z′ =
ε− ε′x
κ

(3.19)

with the strain ε of the reference axis. The line with zero strains or zero line is determined
as a special case with ε′x = 0 and

z0 =
ε

κ
(3.20)

The vertical z-coordinates of the concrete’s tensile limit strain εct or compressive limit strain
εcu1 are be determined in a similar way. A value εct = 0 with an exclusion of concrete tensile
stresses is assumed in the following. This assumption is not mandatory but simplifies the
discussion.
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60 Chapter 3 Structural Beams and Frames

• The contribution of concrete to cross-sectional behavior is determined through the
compression zone. Its extent is determined by the position of the zero line.

Edge strains according to Eq. (3.17) and the position of the zero line according to Eq. (3.20)
allow a classification

z0 < −h/2 and ε1 < 0 cross section totally under compression
z0 < −h/2 and ε1 ≥ 0 totally under tension
−h/2 ≤ z0 ≤ h/2 and ε2 < 0 upper bending compressive zone
−h/2 ≤ z0 ≤ h/2 and ε1 < 0 lower bending compressive zone
z0 > h/2 and ε2 < 0 totally under compression
z0 > h/2 and ε2 ≥ 0 totally under tension

A precise localization is given by the lower and upper compression zone coordinates zc1, zc2:

cross section totally under compression zc1 = z1, zc2 = z2

totally under tension no concrete contribution
upper bending compressive zone zc1 = z0, zc2 = z2

lower bending compressive zone zc1 = z1, zc2 = z0

with cross-section bottom and top coordinates z1, z2. This approach may be easily extended
to consider a concrete’s restricted compressive limit strain εcu1 or an tensile limit strain εct
larger than zero through Eq. (3.19) with ε′x = εct and/or ε′x = εcu1.

Cross-section strain values εx > εct have to be considered regarding integrated cross-
sectional behavior, e.g., for the inclusion of a reinforcement as shown in Fig. 3.2. A lower
rebar has a coordinate zs1 = −h/2 + d1 and a upper rebar has a coordinate zs2 = h/2− d2

where d1, d2 give the edge distances. Equation (3.5) leads to rebar strains

εs1 = ε−
(
h

2
− d1

)
κ, εs2 = ε+

(
h

2
− d2

)
κ (3.21)

This approach is not restricted to an upper and a lower reinforcement but may be extended
to an arbitrary number of rebar layers.

Figure 3.2: Reinforced-concrete cross section.
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The strain of rebars with tension and the concrete strain within the compression zone
share the same straight line according to the linear strain distribution following from
Eq. (3.5). This implies perfect bond with disregarded slip between concrete and reinforce-
ment in contrast to flexible bond, see also Sections 2.4 and 2.7.

• The extent of the compression zone, the concrete strains within it and the reinforcement
strains are completely determined by the generalized beam strains ε and κ as has been
shown in the preceding discussion.

With longitudinal strains given the concrete stresses are determined by, e.g., Eqs. (2.1, 2.3)
and rebar stresses by Eq. (2.39). The corresponding internal forces are determined similar
to Eq. (3.9) with a normal force

N = As1 σs1 +As2 σs2 +

∫ zc2

zc1

σc bdz (3.22)

and a moment
M = −As1σs1 zs1 −As2σs2 zs2 −

∫ zc2

zc1

σc z bdz (3.23)

The sign conventions follow the conventions of Fig. 3.2. Stresses in all cases have to be signed
as positive for tension and negative for compression. The integration limits zc1, zc2 may be
variable due to the variable values of ε, κ.

• An analytical evaluation of integrals in Eqs. (3.22, 3.23) is generally not possible. A
numerical integration has to be used instead.

As the course of concrete stresses is smooth, a simple integration scheme like the trapezoidal
rule [54] with an interval number of the order of 10 is sufficient in most cases. A variable
cross-section width b(z) is easily regarded within a numerical integration scheme.

A relation between shear force V and shear angle γ cannot be derived within the isolated
scope of a cracked cross section indicated by Fig. 3.2. An approach based on the truss model
for shear is described in Section 3.5.4.

3.1.3.2 Linear Concrete Compressive Behavior with Reinforcement

Equations (3.22, 3.23) leading to internal forces are still open for various forms of uniaxial
stress–strain relations. A linear relation may be assumed for concrete under compression

σc = E′c εx, E′c =

{
Ec εx ≤ 0
0 else (3.24)

while excluding tensile strength. Exclusion of tensile strength is a first distinctive feature
compared to the linear elastic approach (Eq. (3.7)). The assumption of linear compressive
is appropriate for moderate stress levels up to roughly 60% of the strength. Corresponding
states of loading are investigated in the context of serviceability of structures, e.g., for the
calculation of deformations.

A cross section with height h and width b is considered. The width may basically be
variable along the cross section. With the given generalized beam strains ε, κ, a compressive
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62 Chapter 3 Structural Beams and Frames

zone is determined, see Section 3.1.3.1. The compressive zone has an extension zc1 ≤ z ≤ zc2
with a height hc = zc2 − zc1 and edge strains

εce = Bε · ε (3.25)

with
εce =

(
εc1
εc2

)
, Bε =

[
1 −zc1
1 −zc2

]
, ε =

(
ε
κ

)
(3.26)

This leads to edge stresses

σce =

(
σc1
σc2

)
= E′c εce = E′c Bε · ε, (3.27)

In the range zc1 ≤ z ≤ zc2 concrete stresses are linearly interpolated with

σc(z) =
σc1zc2 − σc2zc1

zc2 − zc1
+
σc2 − σc1
zc2 − zc1

z (3.28)

Thus, concrete contributions to internal forces are given by

Nc =

∫ zc2

zc1

σc(z) bdz =
σc1zc2 − σc2zc1

hc
Ac −

σc1 − σc2
hc

Sc

Mc = −
∫ zc2

zc1

σc(z)z bdz = −σc1zc2 − σc2zc1
hc

Sc +
σc1 − σc2

hc
Jc

(3.29)

see also Eq. (3.9), with cross-sectional values

Ac =

∫ zc2

zc1

bdz, Sc =

∫ zc2

zc1

z bdz, Jc =

∫ zc2

zc1

z2 bdz (3.30)

A matrix notation of Eq. (3.29) is given by

σc = Aσ · σce (3.31)

with
σc =

(
Nc
Mc

)
, Aσ =

1

hc

[
zc2Ac − Sc −zc1Ac + Sc
−zc2Sc + Jc zc1Sc − Jc

]
, (3.32)

whereby σc and σce have to be clearly distinguished: σc is the vector of internal forces and
σce the vector of edge stresses. The matrix Aσ is decomposed through

Aσ = A ·Bσ, A =

[
Ac −Sc
−Sc Jc

]
, Bσ =

1

hc

[
zc2 −zc1
1 −1

]
(3.33)

The combination of Eqs. (3.27, 3.31) leads to

σc = Cc · ε (3.34)

with
Cc = E′c Aσ ·Bε

= E′c A ·Bσ ·Bε

= E′c A
(3.35)

as Bσ ·Bε = I with the unit matrix I. The matrix Cc is the material stiffness regarding the
compression zone only. It is similar to to Eq. (3.16), but Eq. (3.34) couples normal force Nc
as well as moment Mc each to both ε and κ.
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• Beneath having a coupling effect the material stiffness of a cracked concrete cross
section is nonlinear as the extent of the compression zone depends on the generalized
beam strains ε, κ.

In the case of rectangular cross sections with the constant width b the cross-sectional values
are evaluated to Ac = b(zc2 − zc1), Sc = b

2 (z2
c2 − z2

c1), Jc = b
3 (z3

c2 − z3
c1), and in the case of

zc1 = −h/2, zc2 = h/2 to Ac = bh, Sc = 0, Jc = bh3/12.
The incremental form of Eq. (3.34) with a tangential stiffness CcT is derived in the

following. As σc is a function of edge stresses σc1, σc2, see Eq. (3.29), its rate may be written
as (

Ṅc
Ṁc

)
=

[
∂Nc
∂σc1

∂Nc
∂σc2

∂Mc

∂σc1
∂Mc

∂σc2

]
·
(
σ̇c1
σ̇c2

)
+

[
∂Nc
∂zc1

∂Nc
∂zc2

∂Mc

∂zc1
∂Mc

∂zc2

]
·
(
żc1
żc2

)
(3.36)

or
σ̇c = Aσ · σ̇ce + Az · żc (3.37)

with Aσ according to Eqs. (3.31, 3.32). The second term Az · żc considers the change of
integration borders. To simplify Az a linear variation of width b is assumed with b1 =
b(zc1), b2 = b(zc2). This yields

Az =
1

6

 −σc1b2 − 2σc1b1 − 2σc2b2 − σc2b1 σc1b2 + 2σc1b1 + 2σc2b2 + σc2b1

(b2zc1 + zc2b2 + zc1b1)σc2+
(b2zc1 − zc2b1 + 3zc1b1)σc1

(b2zc1 − 3zc2b2 − zc2b1)σc2−
(zc1b1 + zc2b2 + zc2b1)σc1


(3.38)

The variables zc1, zc2 stand for lower or upper edges of the concrete compression zone. This
may include the zero line determined by

z0 =
ε

κ
, ż0 =

ε̇

κ
− ε

κ2
κ̇ (3.39)

see Eq. (3.20). The following cases have to be considered:

1. Dominating bending with lower compression zone zc1 = −h/2, zc2 = z0 < h/2 and
żc1 = 0, σc2 = 0, σ̇c2 = 0 and(

zc1
zc2

)
=

(
−h

2
ε
κ

)
,

(
żc1
żc2

)
=

[
0 0
1
κ − ε

κ2

]
·
(

ε̇
κ̇

)
(3.40)

2. Dominating normal forces with fully compressed cross section zc1 = −h/2, żc1 =
0, zc2 = h/2, żc2 = 0, hc = h and(

zc1
zc2

)
=

(
−h2
h
2

)
,

(
żc1
żc2

)
=

[
0 0
0 0

]
·
(

ε̇
κ̇

)
(3.41)

3. Dominating bending with upper compression zone zc1 = z0 > −h/2, zc2 = h/2 and
żc2 = 0, σc1 = 0, σ̇c1 = 0 and(

zc1
zc2

)
=

(
ε
κ
h
2

)
,

(
żc1
żc2

)
=

[
1
κ − ε

κ2

0 0

]
·
(

ε̇
κ̇

)
(3.42)
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Anyway, we set

żc = Bz · ε̇ (3.43)

with Bz according to one of the preceding cases. The rate of the edge stresses σce in Eq. (3.37)
is given by

σ̇ce = E′c ε̇ce (3.44)

Equations (3.25, 3.43) lead to the rate of the edge strains

ε̇ce = Bε · ε̇− κ żc
= (Bε − κBz) · ε̇

(3.45)

The combination of Eq. (3.45) with Eq. (3.37) yields the tangential material stiffness

σ̇c = E′c Aσ · (Bε − κBz) · ε̇+ Az ·Bz · ε̇
=

[
Cc + (Az − κE′c Aσ) ·Bz

]
· ε̇

= CcT · ε̇
(3.46)

also considering the change of the extension of the concrete compressive zone beneath the
material stiffness Cc itself.

The contribution of the reinforcement is derived from Eq. (3.22, 3.23) by

σs = As · σse (3.47)

with

σs =

(
Ns
Ms

)
, As =

[
As1 As2

−As1ys1 −As2ys2

]
, σse =

(
σs1
σs2

)
(3.48)

Reinforcement strains are given through Eq. (3.21)

εs = Bs · ε (3.49)

with

εs =

(
εs1
εs2

)
, Bs =

[
1 −zs1
1 −zs2

]
, ε =

(
ε
κ

)
(3.50)

A linear elastic reinforcement behavior σs = Es εs is assumed according to the assumption
of the moderate loading level. Finally, this leads to

σs = Es As ·Bs · ε
= Cs · ε

(3.51)

which has to be superposed to the concrete part σc. The tangential material stiffness equals
the material stiffness CsT = Cs in the case of linear elastic behavior. The described approach
may be easily extended for multiple reinforcement layers.
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3.1.3.3 Nonlinear Behavior of Concrete and Reinforcement

Nonlinear stress–strain relations have to be regarded beneath a variable concrete compression
zone to model limit states of structures. Such relations have already been introduced in
Eq. (2.1) for the compression of concrete and in Eq. (2.39) for the reinforcement. Such
relations can be used in Eqs. (3.22, 3.23) to determine internal forces for beams. Uniaxial
strains serve as input. They are derived from the generalized beam strains by Eqs. (3.5,
3.21) whereby the extent of the compression zone is determined as has been described in
Section 3.1.3.1. The evaluation of integrals in Eqs. (3.22, 3.23) generally has to be performed
numerically and leads to nonlinear relations M(ε, κ) and N(ε, κ). In contrast to the linear
elastic relations Eq. (3.16) moments M also depend on the strain ε of the reference axis
beneath curvature κ and normal forces also depend on κ beneath ε.

Nonlinear material behavior leads to nonlinear system behavior which may be solved ac-
cording to the approach described in Section 1.6. Thus, a tangential stiffness matrix together
with a tangential material stiffness is required. The basic aspects regarding the general ap-
proaches (Eqs. (3.22, 3.23)) are discussed in the following. Uniaxial strain dependence on
the generalized beam strains is given in Eq. (3.5) and leads to

∂εx
∂ε

= 1,
∂εx
∂κ

= −z (3.52)

This is used for the derivatives of the normal forces (Eq. (3.22)) with respect to the generalized
beam strains

∂N

∂ε
= As1

∂σs1
∂εx

∂εx
∂ε

+As2
∂σs2
∂εx

∂εx
∂ε

+

∫ zc2

zc1

∂σc
∂εx

∂εx
∂ε

bdz

= As1
∂σs1
∂εx

+As2
∂σs2
∂εx

+

∫ zc2

zc1

∂σc
∂εx

bdz

∂N

∂κ
= As1

∂σs1
∂εx

∂εx
∂κ

+As2
∂σs2
∂εx

∂εx
∂κ

+

∫ zc2

zc1

∂σc
∂εx

∂εx
∂κ

bdz

= −As1
∂σs1
∂εx

zs1 −As2
∂σs2
∂εx

zs2 −
∫ zc2

zc1

∂σc
∂εx

z bdz

(3.53)

and for the derivatives of moments (Eq. (3.23))

∂M

∂ε
= −As1

∂σs1
∂εx

∂εx
∂ε

zs1 −As2
∂σs2
∂εx

∂εx
∂ε

zs2 −
∫ zc2

zc1

∂σc
∂εx

∂εx
∂ε

z bdz

= −As1
∂σs1
∂εx

zs1 −As2
∂σs2
∂εx

zs2 −
∫ zc2

zc1

∂σc
∂εx

z bdz

=
∂N

∂κ
∂M

∂κ
= −As1

∂σs1
∂εx

∂εx
∂κ

zs1 −As2
∂σs2
∂εx

∂εx
∂κ

zs2 −
∫ zc2

zc1

∂σc
∂εx

∂εx
∂κ

z bdz

= As1
∂σs1
∂εx

z2
s1 +As2

∂σs2
∂εx

z2
s2 +

∫ zc2

zc1

∂σc
∂εx

z2 bdz

(3.54)

mailto:Ulrich.Haeussler-Combe@tu-dresden.de
http://www.tu-dresden.de/biwitb/mbau
http://www.tu-dresden.de


66 Chapter 3 Structural Beams and Frames

The change of integration borders zc1, zc2, which has been considered in the previous ap-
proach, see Eq. (3.37), is disregarded in this approach to simplify the discussion and to avoid
a blow-out of relations.

• Thus, the key for the derivatives of internal forces is given with the derivatives ∂σs1
∂εx

,
∂σs2
∂εx

, ∂σc
∂εx

of stresses with respect to strains. They are derived according to the dis-
cussion of uniaxial concrete behavior in Section 2.1 and reinforcing steel behavior in
Section 2.3.

The terms are collected in a tangential material stiffness

CT =


∂N

∂ε

∂N

∂κ
∂M

∂ε

∂M

∂κ

 (3.55)

The linear elastic, diagonal system is derived as a special case with ∂σs1
∂εx

= ∂σs2
∂εx

= Es,
∂σc
∂εx

= Ec and
∫
bdz = A,

∫
z bdz = 0,

∫
z2 bdz = J . To include shear forces, Eq. (3.55) has

to be extended to

CT =


∂N

∂ε

∂N

∂κ
0

∂M

∂ε

∂M

∂κ
0

0 0
∂V

∂γ

 (3.56)

whereby a coupling of shear with longitudinal actions has been neglected. The remaining
coefficient ∂V

∂γ may be determined according to Section 3.5.4.
Regarding an isolated cross section the general nonlinear approach allows for several

calculation types:

– Specification of strain ε, curvature κ and calculation of M,N .

This is a standard procedure as has been described at the beginning of this subsection.

– Specification of curvature κ and normal force N and calculation of moment M . A
result for ε occurs as side effect.

This is a procedure to derive moment–curvature relations parametrized by a normal
force. With N,κ given the nonlinear equation f(ε, κ) −N = 0 has to be solved for ε.
This may efficiently be done with a Newton–Raphson iteration, i.e.,

ε(ν+1) = ε(ν) − 1

∂f
∂ε

∣∣∣
ε=ε(ν)

(
f(ε(ν), κ)−N

)
(3.57)

see Eq. (1.72). The starting value is ε(0) = 0. The derivative ∂f/∂ε is given by
Eq. (3.53)1. With κ given and ε calculated, M = f(ε, κ) can be determined.
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3.1 Cross-Sectional Behavior 67

– Specification of moment M , normal force N and the calculation of κ and ε.

This is the inverse to the standard procedure to derive deformations from given inter-
nal forces. From Eqs. (3.22, 3.23), a nonlinear algebraic system arises for unknowns
κ, ε after the evaluation of integrals of σs1, σs2, σc. This may also be solved with the
Newton–Raphson method.

The second calculation type leads to moment–curvature relations which is demonstrated with
the following example.

Example 3.1 Computation of moment–curvature relations for the given normal forces
An RC cross section of rectangular shape is given by the following properties:

– Cross-section height h = 0.4 m and width b = 0.2 m.

– Concrete grade C 30/37 according to [26, Table 3.1] with a strength fc = 38 MN/m
2 and

characteristic strains εc1 = −2.2‰, εcu1 = −3.5‰, see Fig. 2.1. The stress–strain curve
is chosen as proposed by [26, 3.1.5]. The initial Young’s modulus isEc = 33 000 MN/m

2.
A tensile strength is not considered.

– Reinforcement behavior is assumed according to Section 2.3 and [26, 3.2.7] with fyk =

500 MN/m
2, ft = 525 MN/m

2, εy0 = 2.5‰ and εu = 25‰, see Fig. 2.10a.

– Upper and lower reinforcement each with a geometry 4 � 20, As2 = As1 = 12.57 cm2,
d2 = d1 = 5 cm.

All these values are not modified by safety factors. The moment–curvature relations are
computed for N = 0,−1,−2 MN. The curvature κ is increased starting from zero and N,κ
serve as input values for nonlinear computation. The computed moments are of primary
interest and lead to moment–curvature curves, see Fig. 3.3.

– The stiffness is ruled by the following factors: (1) height of the compression zone, (2)
stiffness of concrete, (3) stiffness of steel. The cases with normal compression initially

Figure 3.3: Example 3.1 moment–curvature relation.
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68 Chapter 3 Structural Beams and Frames

have a higher compression zone leading to a higher stiffness with roughly the same
material stiffness for all three cases.

– The contribution of stiffness reduces with increasing curvature due to the nonlinearity
of the stress–strain curve, see Fig. 2.1. This is more pronounced in case with normal
compression.

– The upper kinks result from the beginning of yielding of the reinforcement.

– The signed end points mark the state when ultimate concrete compressive stress of
εc1u = −0.0035 is reached. Ultimate moments increase with moderate normal com-
pression due to the eccentricity of the resulting concrete force, see Fig. 3.2, but the
ductility decreases.

The case of the uncracked, linear elastic cross section is shown as reference, furthermore
the case with linear elastic reinforcement alone without concrete contribution. The initial
bending stiffness of concrete alone is EJc = 32.5 MN/m2, the initial bending stiffness of
reinforcement alone is EJs = 11.3 MN/m2 and the total initial stiffness is EJ = 43.8 MN/m2.

End Example 3.1

A generalization of RC is given by fiber models. Every line along the beam axis cut by the
cross section may be regarded as a fiber. Each fiber is strained according to beam kinematics
which leads to a longitudinal stress. With the integration of stresses to result in internal
forces any type of a uniaxial material law may be used for fibers. The quality of such fiber
models is influenced by numerical integration methods. Simple methods like trapezoidal rule
or Simpson rule may be used with a sufficient number of intervals. Gauss integration is not
optimal, as the important upper and lower edges are not captured. Lobatto integration is
an alternative.

3.2 Equilibrium of Beams
Kinematic compatibility and material laws for beams have been discussed in the preceding
sections. Equilibrium remains to be added. We regard a loading p̄x(x, t), p̄z(x, t) varying
with place x and time t, see Fig. 3.4. Inertial effects will be considered. Therefore, the bar’s
(inertial) mass per length m and the second moment of inertia Θ have to be regarded.

The strong differential formulation of dynamic equilibrium for an infinitesimal section of
a plane beam is given by differential equations

p̄x +N ′ = m · ü
p̄z + V ′ = m · ẅ
V +M ′ = Θ · φ̈

(3.58)

according to Newton’s law – force = mass × acceleration – with the longitudinal acceleration
ü, the lateral acceleration ẅ and the acceleration of the cross-sectional rotation angle φ̈.

To begin with, linear elastic case will be considered to connect these equations to well-
known formulations. From Eq. (3.13)

N = EAε = EAu′, M = EJ κ = EJ φ′, Q = GA? γ (3.59)
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Figure 3.4: Equilibrium of infinitesimal beam element.

with A? = αA. The combination of Eqs. (3.58, 3.59) leads to

mü− EAu′′ = p̄x
mẅ −GA? γ′ = p̄z

Θ (ẅ′ − γ̈)− EJ (w′′′ − γ′′) = GA? γ
(3.60)

Equation (3.60)1 represents the one-dimensional wave equation. We can set m = %A with
the specific mass % and p̄x = 0 to gain the familiar form. In the case of a normal, slender
beam the shear rotation γ is small compared to the total rotation w′. The same holds true
for the derivatives. Thus, we have φ′′ ≈ w′′′ and φ̈ ≈ ẅ′. Furthermore, the term Θ (ẅ′ − γ̈)
is neglected as Θ� 1. Combining the derivative of Eqs. (3.60)3 and (3.60)2 finally leads to

mẅ + EJ w′′′′ = p̄z (3.61)

representing the differential equation of dynamic beam bending including the quasistatic case
with m = 0.

Equilibrium has to be reformulated as weak integral formulation to have a base for dis-
cretization with finite elements. Such formulations utilize test functions or the so-called
virtual displacements δu, δw, δγ, δφ = δw′− δγ, see also Section 1.5, which are independent
from each other. These test functions have to be kinematically compatible, i.e., they should
be continuous and their first derivatives should exist.

Regarding a bar of finite length L with a longitudinal coordinate 0 ≤ x ≤ L and

• admitting all continuous functions of x as test functions

an equivalent to the strong form (Eq. (3.58)) is given by

L∫
0

δumü dx−
L∫

0

δuN ′ dx+

L∫
0

δwmẅ dx−
L∫

0

δwQ′ dx+

L∫
0

δφΘφ̈dx−
L∫

0

δφM ′ dx

=

∫ L

0

δu p̄x dx+

∫ L

0

δw p̄z dx+

L∫
0

(δw′ − δγ)V dx

(3.62)
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The solutions of Eq. (3.62) also solve Eq. (3.58) and vice versa. Each differential equation is
multiplied by its own test function, the product integrated over the beam length and finally
all parts are added. Those terms with derivatives of internal forces are partially integrated
in a further step:∫ L

0

δuN ′ dx =
[
δu(L)N(L)− δu(0)N(0)

]
−

∫ L

0

δεN dx∫ L

0

δφM ′ dx =
[
δφ(L)M(L)− δφ(0)M(0)

]
−

∫ L

0

δκM dx∫ L

0

δw V ′ dx =
[
δw(L)V (L)− δw(0)V (0)

]
−

∫ L

0

δw′ V dx

(3.63)

with virtual deformations δε = δu′, δκ = δφ′. Using this for Eq. (3.62) leads to∫ L

0

δumüdx+

∫ L

0

δφΘφ̈dx+

∫ L

0

δwmẅ dx+

∫ L

0

δεN dx+

∫ L

0

δκM dx+

∫ L

0

δγ V dx

=

∫ L

0

δu p̄x dx+

∫ L

0

δw p̄z dx+
[
δuN

]L
0

+
[
δφM

]L
0

+
[
δw V

]L
0

(3.64)

whereby the boundary terms in Eq. (3.63) have been abbreviated. The last equation may be
interpreted as the virtual work principle and has the following parts:

– Inertial forces with the first three terms of the left-hand side.

– Internal forces with the last three terms of the left-hand side.

– Distributed loading with the first two terms of the right-hand side.

– Finally, the boundary terms with the forces at the beam’s ends with the last three
terms of the right-hand side.

A generalizing matrix notation of Eq. (3.64) is given by∫ L

0

δεT · σ dx+

∫ L

0

δuT ·m · ü dx =

∫ L

0

δuT · p̄ dx+ δUT · t̄ (3.65)

see also Eq. (1.52). In the case of beams the vector and matrix quantities have the components

ε =

 ε
γ
κ

 , σ =

 N
V
M


u =

 u
w
φ

 , m =

 m 0 0
0 m 0
0 0 Θ

 , p̄ =

 p̄x
p̄z
0



U =


u0

w0

φ0

uL
wL
φL

 , t̄ =


N0

V0

M0

NL
VL
ML



(3.66)
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with •L = •(L), •0 = •(0) and φ = w′ − γ, κ = φ′ = w′′ − γ′. The boundary force t̄

would need a sign convention t̄ =
(
−N0 −V0 −M0 NL VL ML

)T to be consistent
with Eq. (3.63), but regarding a finite element discretization a global sign convention is
more appropriate: internal forces on the left cross section are assumed as positive with the
same directions as on the right cross section. Regarding the beam’s ends, i.e., its boundary
conditions, from each pair (u,N), (w, V ), (φ,M) one quantity has to be prescribed for every
end. In the case of prescribed forces they are marked with an overbar, i.e., N → N̄ , . . . .

Shear deformations are still included up to now covering the Timoshenko beam. In the
case of a normal, slender beam the shear rotation γ is small compared to the total rotation
w′. The same holds true for the derivatives and

φ = w′, κ = φ′ = w′′ (3.67)

is assumed. With γ = 0, the contribution δγ V vanishes in Eq. (3.64). Thus, we set

ε =

(
ε
κ

)
, σ =

(
N
M

)
(3.68)

and get the formulation for the Bernoulli beam. With N, M given the shear force V is
determined by postprocessing using Eq. (3.58)3 which still holds true for γ = 0. Apart from
σ, ε all other quantities in Eqs. (3.66) remain unchanged for the Bernoulli beam.

Mass inertia is still included up to now and the formulations are applicable to dynamics.
A simplification may be taken as the rotational inertia Θ generally is relatively small. Thus,
the corresponding contributions may be neglected with Θ = 0.This applies to the Timoshenko
beam as well as for the Bernoulli beam. Finally, quasistatics is included for both beam types
with mass inertia m = 0, Θ = 0 leading to a mass matrix m = 0 in Eq. (3.65).

The boundary terms U, t̄ of Eq. (3.65) remain unchanged for all cases mentioned. The
conditions (1.53) concerning the prescribed boundary displacements have to be applied also
for the case of beams. It is easy to choose displacement trial functions such that they fulfill
prescribed displacements on boundaries. Thus, test functions or virtual displacement may
be set to zero along boundaries with kinematic boundary conditions. As a further conse-
quence such end force components in t̄ belonging to prescribed displacement components in
U, see Eq.(3.66)6 must not be specified. They come into play as reaction forces whereby
corresponding to internal nodal forces, see Eq. (1.58)1.

3.3 Finite Element Types for Plane Beams

3.3.1 Basics

A general form of displacement interpolation with finite elements is given by Eq. (1.18). This
is specified for the interpolation of the beam displacement variables u, w, φ in the following
whereby the considerations of Section 1.3 are applied to beams.

A beam with a coordinate range 0 ≤ x ≤ L is subdivided into a number nE of elements.
Each element has two nodes in a first approach leading to nN = nE + 1 nodes. An element
e, e = 1, . . . , nE , has the global nodal coordinates xI , xJ , a length Le = xJ − xI and a local
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coordinate r. The relation between local and global coordinates is given by

x =
[

1
2 (1− r) 1

2 (1 + r)
]
·
(
xI
xJ

)
(3.69)

with x(−1) = xI , x(1) = xJ . This yields a Jacobian J

J =
∂x

∂r
=
Le
2

(3.70)

which is needed for the numerical integration, see Eq. (1.67). The inverse relation r =
(2x− xJ − xI)/LI leads to

∂r

∂x
=

2

Le
= J−1 (3.71)

Polynomial forms
y(r, t) =

∑n

i=0
ai(t) · ri (3.72)

are chosen to interpolate displacement variables within an element. The coefficients ai are
functions of time t while y represents the displacement variables u,w, and φ. A particu-
lar formulation yields a trial function. According to the method of Bubnov–Galerkin test
functions are chosen in the same way as the trial functions

δy(r, t) =
∑n

i=0
δai(t) · ri (3.73)

Deformation variables ε, γ, κ and their variations are defined from displacement variables
according to Section 3.1.1. With the given trial and test functions they are determined with
the derivatives of Eqs. (3.72, 3.73).

Derivatives should be finite across elements to ensure the integrability of Eq. (3.65), see
also Section 1.7. This leads to the following requirements for trial and test functions:

– In the case of Bernoulli kinematics φ = w′ and κ = w′′, i.e., deformation results from
the second derivative of displacements. Thus, first derivatives of test functions have to
be continuous across elements (C1-continuity).

– In the case of Timoshenko kinematics κ = φ′ and φ and w are decoupled by the shear
deformation γ. Deformations result from the first derivatives of displacements and
continuity of test functions across elements is sufficient (C0-continuity).

Specifications of Eq. (3.72) are derived in the following based on these general remarks.

3.3.2 Finite Elements for the Bernoulli Beam
Nodal degrees of freedom of the two-node element for the Bernoulli beam are given by

υe =
(
uI wI φI uJ wJ φJ

)T (3.74)

The dependence on time t is not explicitly notified. A kinematic constraint relating lateral
displacement w and cross-section rotation φ or curvature curvature κ, respectively, is given
by Eq. (3.67)

κ = w′′ (3.75)
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Furthermore, curvature should exist across element boundaries, i.e., the derivative w′ of the
lateral displacement should be continuous across element boundaries. Regarding Eq. (3.72)
a polynomial order i = 3 is required for w and

w =

[
r3

4 −
3r
4 + 1

2
Ler

3

8 − Ler
2

8 − Ler
8 + Le

8 − r
3

4 + 3r
4 + 1

2
Ler

3

8 + Ler
2

8 − Ler
8 −

Le
8

]
cwI
φI
wJ
φJ



w′ =
∂w

∂r

∂r

∂x
=

2

Le

[
3r2

4 −
3
4

3Ler
2

8 − 2Ler
8 − Le

8 − 3r2

4 + 3
4

3Ler
2

8 + 2Ler
8 − Le

8

]
·


wI
φI
wJ
φJ


(3.76)

yielding w(−1) = wI , w(1) = wJ and w′(−1) = φI , w
′(1) = φJ . The longitudinal displace-

ment u is not involved in constraints and interpolated with i = 1 and

u =
[

1
2 (1− r) 1

2 (1 + r)
]
·
(
uI
uJ

)
(3.77)

yielding u(−1) = uI , u(1) = uJ . Equations (3.76, 3.77) are abbreviated as

u = N(r) · υe (3.78)

with υe according to Eq. (3.74) and

u =

(
u
w

)
, N(r) =

[ 1
2 (1− r) 0 0 · · ·

0 r3

4 −
3r
4 + 1

2
Ler

3

8 − Ler
2

8 − Ler
8 + Le

8 · · ·

]
(3.79)

The deformation variables are derived from Eqs. (3.4, 3.67, 3.71, 3.76, 3.79)

ε =
∂u

∂r

∂r

∂x
= 1

Le

[
−1 1

]
·
(
uI
uj

)

κ =
∂w′

∂r

∂r

∂x
= 4

L2
e

[
6r
4

6Ler
8 − 2Le

8 − 6r
4

6Ler
8 + 2Le

8

]
·


wI
φI
wJ
φJ

 (3.80)

This is abbreviated as
ε = B(r) · υe (3.81)

using

ε =

(
ε
κ

)
, B(r) =

1

Le

[
−1 0 0 1 0 0
0 6r

Le
3r − 1 0 − 6r

Le
3r + 1

]
(3.82)
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This formulation of B establishes that ε is constant within the element while κ is linear. This
is no problem in the case of linear elastic material behavior according to Eq. (3.16) with N
decoupled from κ and M decoupled from ε but may lead to artificial constraints in the case
of coupled material behavior as is characteristic for the cracked RC, see Eq. (3.55).

This is discussed with a simple test. A single element is regarded with uI = wI = φI = 0
and a material matrix

C =

[
C11 C12

C21 C22

]
(3.83)

leading to

N = C11 uJ −
6

Le
C12 r wJ + C12 (3r + 1)φJ

M = C21 uJ −
6

Le
C22 r wJ + C22 (3r + 1)φJ

V = −M ′ =
6

L2
e

C22 (2wJ − φJ Le)

(3.84)

The conditions N = 0, M = 0, V = V̄ are prescribed on the right-hand side r = 1. This
results in displacements uJ = 0, φJ = 1/(2C22)V Le, wJ = 1/(3C22)V L2

e and internal forces

N =
C12

2C22
(1− r)V Le

M =
1

2
(1− r)V Le

V = V̄

(3.85)

While M,V are correctly computed an error in N arises due to the coupling material com-
ponent C12.

The artificial normal forces can be reduced with the introduction of an additional degree
of freedom for the longitudinal displacement. The previous vector of nodal degrees of freedom
according to Eq. (3.74) is extended with a component uK as

υe =
(
uI wI φI uK uJ wJ φJ

)T (3.86)

Trial and test function of the Bernoulli beam element are extended as follows:

N(r) =

[ 1
2r(r − 1) 0 0 1− r2 · · ·

0 r3

4 −
3r
4 + 1

2
Ler

3

8 − Ler
2

8 − Ler
8 + Le

8 0 · · ·

]
(3.87)

This approach replaces the first row of the previous N with quadratic functions whereby
the function corresponding to the additional degree of freedom corresponds to a bubble
function [3]. This degree of freedom is not “visible” from the “outside” and not used for the
interpolation of geometry and lateral displacements. The approach leads to

B(r) =
1

Le

[
2r − 1 0 0 −4r 2r + 1 0 0

0 6r
Le

3r − 1 0 0 − 6r
Le

3r + 1

]
(3.88)

and effects a linear longitudinal strain within an element corresponding to the linear curva-
ture. The vectors u, see Eq. (3.79), and ε, see Eq. (3.82), remain unchanged.

mailto:Ulrich.Haeussler-Combe@tu-dresden.de
http://www.tu-dresden.de/biwitb/mbau
http://www.tu-dresden.de


3.3 Finite Element Types for Plane Beams 75

The simple test is also performed with the extended Bernoulli beam element. Internal
forces are determined with

N = −4C11 r uK + C11(2r + 1)uJ − 6C12 r/Le wJ + C12(3r + 1)φJ
M = −4C21 r uK + C21(2r + 1)uJ − 6C22 r/Le wJ + C22(3r + 1)φJ
V = 2(4C21 uK Le − 2C21 uJ Le + 6C22 wJ − 3C22 φJ Le)/L

2
e

(3.89)

An additional condition N = 0 is prescribed on the left-hand side. This results in displace-
ments uK = 3C12 V Le/8, uJ = C12 V Le/2, wJ = −C11V L

2
e/3, φJ = −C11 V Le/2 with

c = 1/(C12C21 − C11C22) and in internal forces

N = 0
M = 1

2 (r − 1)V Le
V = V̄

(3.90)

All internal forces are correctly determined for the simple test.
The extended Bernoulli beam element will be predominantly for the following examples

but generally it is not part of commercial finite element packages.

3.3.3 Finite Elements for the Timoshenko Beam

Nodal degrees of freedom of the two-node element for the Timoshenko beam are again given
by

υe =
(
uI wI φI uJ wJ φJ

)T (3.91)

but in contrast to the Bernoulli beam no kinematic constraints exist between lateral dis-
placements and cross-section rotations. Regarding Eq. (3.72) a polynomial order i = 1 is
sufficient for u, w, φ and

u =
[

1
2 (1− r) 1

2 (1 + r)
]
·
(
uI
uJ

)
w =

[
1
2 (1− r) 1

2 (1 + r)
]
·
(
wI
wJ

)
φ =

[
1
2 (1− r) 1

2 (1 + r)
]
·
(
φI
φJ

) (3.92)

are assumed. This may again be abbreviated as

u = N(r) · υe (3.93)

with υe according to Eq. (3.91) and

u =

 u
w
φ

 , N(r) =

 1
2 (1− r) 0 0 1

2 (1 + r) 0 0
0 1

2 (1− r) 0 0 1
2 (1 + r) 0

0 0 1
2 (1− r) 0 0 1

2 (1 + r)


(3.94)
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Deformation variables are determined using Eqs. (3.4, 3.2, 3.70)

ε = ∂u
∂r

∂r
∂x = 1

Le

[
−1 1

]
·
(
uI
uJ

)
κ = ∂φ

∂r
∂r
∂x = 1

Le

[
−1 1

]
·
(
φI
φJ

)

γ = ∂w
∂r

∂r
∂x − φ = 1

Le

[
−1 −Le

2 (1− r) 1 −Le2 (1 + r)
]
·


wI
φI
wJ
φJ


(3.95)

This is abbreviated with
ε = B(r) · υe (3.96)

using

ε =

 ε
κ
γ

 , B(r) =
1

Le

 −1 0 0 1 0 0
0 0 −1 0 0 1
0 −1 −Le2 (1− r) 0 1 −Le2 (1 + r)

 (3.97)

The coupling effect arising with Bernoulli beam elements, see Section 3.3.2, is not an issue
here. Both ε, κ are constant within the element and shear is decoupled with a material
matrix (Eq. (3.56)).

But in the case of pure bending or slender beams with a low bending stiffness compared
to shear stiffness the shear angle may be assumed as γ ≈ 0. Thus, Eq. (3.95)3 imposes
a constraint on the nodal variables which is not justified by physics and leads to a severe
artificial stiffening or locking effects. This will be analyzed as a special case of the behavior
of elements for thin shells in Section 8.6.

The artificial locking can also be reduced with the introduction of additional degrees of
freedom to relax stiffness. The previous vector of nodal degrees of freedom according to
Eq. (3.91) is extended with components uK , wK as

υe =
(
uI wI φI uK wK uJ wJ φJ

)T (3.98)

Trial and test function of the Timoshenko beam element are extended with

N(r) =


r(r−1)

2 0 0 1− r2 0 r(1+r)
2 0 0

0 r(r−1)
2 0 0 1− r2 0 r(1+r)

2 0

0 0 (1−r)
2 0 0 0 0 (1+r)

2

 (3.99)

leading to

B(r) = 1
Le

 2r − 1 0 0 −4r 0 2r + 1 0 0
0 0 −1 0 −4r 0 0 1
0 2r − 1 −Le2 (1− r) 0 0 0 2r + 1 −Le2 (1 + r)


(3.100)

The vectors u, see Eq. (3.94), and ε, see Eq. (3.97), remain unchanged. The additional
degrees of freedom again correspond to bubble functions [3]. Further discussion of locking
problems is given in, e.g., [80].
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3.4 System Building and Solution Methods

3.4.1 Elementwise Integration
The cornerstones of structural analysis for beams have been derived from the kinematic
relation in Section 3.1.1, material behavior in Sections 3.1.2 and 3.1.3 and equilibrium in
Section 3.2. The compilation in a numerical method is carried out with the evaluation of the
weak integral equilibrium condition (Eq. (3.65)).

This is performed element by element, see Section 1.5 and Eq. (1.58). The evaluation of
integrals is done numerically according to the one-dimensional variant of Eq. (1.67). In the
case of structural beam elements the Jacobian is given by Eq. (3.70). Internal nodal forces,
see Eq. (1.9)1, are determined by

fe =

∫
Le

BT (x) · σ(x) dx =
Le
2

∫ 1

−1

BT (r) · σ(r) dr (3.101)

where B is given according to the element type chosen and σ according to Eq. (3.66)1 or
Eq. (3.68). The internal force dimension has to match the row dimension of B. According
to Eq. (1.68) the numerical integration is performed through

fe =
Le
2

ni∑
i=0

ηi B
T (ξi) · σ(ξi) (3.102)

The same procedure is applied to determine the tangential element stiffness matrix, see
Eq. (1.65)

KTe =
Le
2

ni∑
i=0

ηi B
T (ξi) ·CT (ξi) ·B(ξi) (3.103)

with the tangential material stiffness according to Eqs. (3.55) or (3.16) in the case of Bernoulli
beams, or (3.56), (3.15) in the case of Timoshenko beams. Furthermore, the element mass
matrix, see Eq. (1.58)2, is

Me =
Le
2

ni∑
i=0

ηi N
T (ξi) ·m ·N(ξi) (3.104)

with m according to Eq. (3.66), and the element distributed loading, see Eq. (1.58)3

p̄e =
Le
2

ni∑
i=0

ηi N
T (ξi) · p̄(ξi) (3.105)

with p̄ according to Eq. (3.66). Boundaries of beams are embodied by nodes. Thus, the
elements boundary loading can be directly taken from Eq. (3.66)7

t̄e =
(
N̄I V̄I M̄I N̄J V̄J M̄J

)T (3.106)

in case that nodal loads are prescribed for a particular element.
The numerical integration has to be as precise as possible to minimize the discretization

error. The integration error of the Gauss integration is determined by the integration order
ni, see Eq. (1.68). Disregarding round-off errors an integration order ni gives exact results
for polynomials of order 2ni + 1.
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– The Bernoulli beam element with strains according to Eq. (3.82) yields a stiffness matrix
KTe with highest polynomial degree 2 in the case of constant material stiffness within
an element. This requires ni = 1 and two sampling points with Gauss integration.

– The same argument holds for the Timoshenko beam element, see Eq. (3.97), due to the
shear deformation parts. Reduced integration ni = 1 neglects the linear contribution of
shear deformations but might solve the locking problem in the case of slender beams.

Finally, integration of an ordinary Bernoulli or Timoshenko beam two-node element ends up
with, e.g., a vector of internal nodal forces

fe =
(
NI VI MI NJ VJ MJ

)T (3.107)

The number of components corresponds to the components of nodal displacements, see
Eqs. (3.74, 3.91) with Ni ↔ ui, Vi ↔ wi, Mi ↔ φi, i = I, J , and to number of columns
in the matrix B or rows in BT . The number of rows in B has to be equal to the dimension
of the material stiffness square matrices C, CT , see Eqs. (3.15, 3.16, 3.55, 3.56). The same
argument applies to the matrix N, if necessary in connection with the mass matrix m, see
Eq. (3.66).

In a similar way as for internal nodal forces fe Eq. (3.105) leads to

p̄e =
(
N̄p
I V̄ pI M̄p

I N̄p
J V̄ pJ M̄p

J

)T (3.108)

where N̄p
I1, . . . should not be confused with N̄I1, . . . from t̄I , see Eq. (3.106). According to

these dimensions the element stiffness matrix KTe according to Eq. (1.65) and the element
mass matrix Me according to Eq. (1.58) have a dimension 6 × 6 for the ordinary two-node
beam elements.

Additional degrees of freedom arise with the extended elements, see Eqs. (3.86, 3.98).
They may be condensed on the element level and then will not arise as additional unknowns
on the system level. Alternatively they can be carried over the system level and are connected
with the corresponding internal and external nodal force components.

3.4.2 Transformation and Assemblage

The longitudinal axis of a beam element and the global x-axis have the same direction up
to now. But a 2D structural beam may have an orientation in 2D space. Thus, we have to
consider a transformation of vectors in 2D Cartesian coordinate systems.

The direction of a straight element is assumed with the first element node as start and the
last element node as end. A rotation angle α is assumed starting from global x-direction to
the local x̃-direction of an element, see Fig. 3.5. Regarding Eq. (C.8) the following relations
hold true for the transformation of nodal displacements, see e.g., Eq. (3.74), and nodal forces,
see Eq. (3.107), of two-node elements from the global system into the local system

υ̃e = T · υe, f̃e = T · fe (3.109)

and vice versa
υe = TT · υ̃e, fe = TT · f̃e (3.110)
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Figure 3.5: Beam orientation in 2D space.

with

T =


cosα sinα 0 0 0 0
− sinα cosα 0 0 0 0

0 0 1 0 0 0
0 0 0 cosα sinα 0
0 0 0 − sinα cosα 0
0 0 0 0 0 1

 (3.111)

whereby •T denotes the transpose of •. The rotation angles φI , φJ and moments MI ,MJ

remain unchanged with this transformation. Equations (3.109) are also valid for increments
dυ̃e, dυe, df̃e, dfe and for loadings p̃e, pe.

The tangential element stiffness matrix is at first defined in the local system of a beam
by

df̃e = K̃Te · dυ̃e (3.112)

see Eq. (1.66). Using the transformation rules of Eq. (3.109) and considering T−1 = TT this
yields

T · dfe = K̃Te ·T · dυe → dfe = TT · K̃Te ·T · dυe (3.113)

and finally results in a transformation rule for the tangential element stiffness matrix

KTe = TT · K̃Te ·T (3.114)

Similar arguments lead to the transformation rule for the element mass matrix

Me = TT · M̃e ·T (3.115)

In the case of the extended two-node Bernoulli element, see Section 3.3.2, the transformation
matrix T is given by

T =



cosα sinα 0 0 0 0 0
− sinα cosα 0 0 0 0 0

0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 cosα sinα 0
0 0 0 0 − sinα cosα 0
0 0 0 0 0 0 1


(3.116)
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The central 1 belongs to the additional degree of freedom of the interior node. This value
should not be rotated as it corresponds to a local longitudinal displacement without relating
to the global system. Apart from the change in T, all transformations remain unchanged.

Element contributions fe,pe,KTe,Me must be assembled to system vectors and matrices,
see Section 1.5. The procedure is basically the same for all element types. Regarding a
particular node which is shared by several elements, the elements contributions to nodal
forces and nodal loads have to sum up to zero with respect to equilibrium.

3.4.3 Kinematic Boundary Conditions and Solution
Displacements at boundaries or kinematic boundary conditions still have to be regarded.
There must be enough boundary conditions to prevent rigid body motions. They are applied
by prescribing nodal values of uIi, wIi, φIi. To simplify the description the quasistatic linear
case

K · u = p (3.117)

is considered, see Eqs. (1.69, 1.62). The lateral displacement wI of an element e with a
prescribed value w̄ is treated exemplary.

If necessary, the value has to be transformed to the global system according to Eq. (3.109).
Let the global index of this degree of freedom be k, see Section 1.5. Let n be the total number
of degrees of freedom. To apply the particular boundary condition one may set

pi = pi −Kik w̄ i = 1, . . . , k − 1, k + 1, . . . , n
pk = w̄
Kkk = 1
Kkj = 0 j = 1, . . . , k − 1, k + 1, . . . , n
Kik = 0 i = 1, . . . , k − 1, k + 1, . . . , n

(3.118)

for the components of the right-hand side and the matrix in Eq. (3.117), i.e., the k-row and
column of K are zeroed. With pk = w̄ and Kkk = 1 this must lead to wk = w̄ after solving
the system of equations. The additional terms Kik w̄ on the right-hand side apply constraint
forces in the case w̄ 6= 0.

The degree of freedom k has to be excluded from balancing equilibrium by summing up
nodal force contributions from elements and loadings, see e.g., Eq. (1.69). The corresponding
internal nodal forces result in a support reaction. The procedure as has been described for
the linear case may also be applied for every iteration step within an incrementally iterative
scheme, see Section 1.6. Thus, fulfillment of kinematic boundary conditions is reached in the
same way for nonlinear and dynamic cases.

Nonlinear systems are given for beams with cracked RC cross sections due to the nonlinear
relations between moment, normal force, curvature, and longitudinal strain. The incremen-
tally iterative scheme is appropriate to solve such systems. A loading history is followed
whereby a real time (→ dynamic or transient case) or a pseudo time (→ quasistatic case)
is used to control the load. Solution increments correspond to time steps. The Newton–
Raphson method, see Eq. (1.72), is generally appropriate for equilibrium iteration within
each increment. Alternative methods like the BFGS method, see Appendix A, may be re-
quired in some cases.

A first application example is given in the following.
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Example 3.2 Simple RC beam
Geometry, discretization, and boundary conditions are chosen as follows:

– Single span beam with L = 5.0 m, square cross section with width b = 0.2 m, and height
h = 0.4 m, see Fig. 3.6a.

– Discretization with nE = 10 extended two-node Bernoulli beam elements, see Section
3.3.2.

– Hinge bearing of left-hand and right-hand node, i.e., lateral displacements are zero but
rotations are not restricted. The longitudinal displacement of the left node is zero, the
right-node displacement is not restricted in the longitudinal direction.

Figure 3.6: Example 3.2 (a) System. (b) Deflection curve at final loading.

The following material properties and loading are assumed:

– Concrete grade C30/37 according to [26, Table 3.1] with an initial Young’s modulus
Ec = 33 000 MN/m2. Concrete compressive strength is assumed with fc = 38 MN/m2

with εc1 = −0.0023, εcu1 = −0.0035, see Fig. 2.1. A tensile strength is disregarded.
The uniaxial stress–strain curve is chosen according to [26, 3.1.5].

– Reinforcing steel according to [26, 3.2.7] with fyk = 500 MN/m
2, ft = 525 MN/m

2,
εy0 = 0.0025, εu = 0.025, see Fig. 2.10a. Reinforcement with 4 � 20, As1 = 12.57 cm2,
d1 = 5 cm. No compression reinforcement.

– In the same way as demonstrated in Example 3.1 an ultimate momentMu ≈ 0.20 MNm
is determined with N = 0. This leads to uniform ultimate load of qu = 8Mu/L

2 =
64 kN/m. A load q = 60 kN/m is chosen for the computation.

An incrementally iterative scheme with Newton–Raphson iteration within each loading in-
crement, as described in Section 1.6, is used as the solution method. A loading step ∆t = 0.1
is chosen for time discretization with the final target 1.
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Figure 3.7: Example 3.2 final loading state (a) Strain of reference axis. (b) Upper concrete
strain and lower reinforcement strain.

The computation leads to the following results:

– As a statically determined system is given the course of the bending moment can
be computed with M = q

2 (l − x)x and a mid-span maximum value Mmax = ql2

8 =
0.125 MNm in this particular case.

Linear statics can only be approximately applied in the case of statically indeterminate
systems as the bending stiffness is no longer constant but depends on internal forces.

– Deflections of cracked concrete beams – even for statically determinate systems – can
no longer be determined with linear elastic statics and require methods as have been
described before.

Fig. 3.6b shows the computed deflection curve. The uncracked linear elastic case with
a bending stiffness EJ = 33 000 · 0.2 · 0.43/12 = 35.2 MNm is shown as comparison.
The difference roughly amounts to a factor of 2.4.

– A special property of cracked reinforced cross sections is given by the fact, that the
reference axis changes its length even if there is no resulting normal force. In the case
of this example, the reference axis and with it the beam becomes slightly longer after
loading, see Fig. 3.6b.

This is connected with longitudinal strains of the reference axis, see Fig. 3.7a. It is
caused by a coupling of normal forces to curvature, i.e., N = N(κ, ε), see Section 3.1.3,
which leads to ε 6= 0 for κ 6= 0 even in the case N = 0.

– Finally, the computed strains of the upper compressed concrete edge and the strains
of the reinforcement, as they can be determined on the basis of Eq. (3.5), are shown in
Fig. 3.7b for the final loading.

They have to be compared to the concrete strain corresponding to strength εc1 =
−0.0023 and to steel strain corresponding to yield εy = fy/Es = 0.0025.

End Example 3.2
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3.5 Further Aspects of Reinforced Concrete

3.5.1 Creep

Creep leads to increasing deformations of concrete structures regarding the long-term be-
havior. This concerns the serviceability of structures with moderate levels of loading. Thus,
the assumption of linear concrete compressive behavior with the exclusion of concrete ten-
sile strength, see Section 3.1.3.2, is appropriate. Furthermore, viscoelastic material laws
according to Section 2.2 can be used to model the creep of cracked RC beams.

We start with collecting previous items. Equations (2.27, 2.28) are applied to concrete

σ̇c = E′c ε̇x +
1

ζc
E′c εx − ψc σc, ψc =

1 + ϕc
ζc

(3.119)

with longitudinal strains εx and E′c according to Eq. (3.24). Reinforcing steel is assumed as
linear for moderate loading levels

σs = Es εx, σ̇s = Es ε̇x (3.120)

Kinematics is ruled by Eq. (3.5)

εx = ε− z κ, ε̇x = ε̇− z κ̇ (3.121)

Strain of reinforcement is considered with

εs1 = ε− zs1 κ, ε̇s1 = ε̇− zs1 κ̇, εs2 = ε− zs2 κ, ε̇s2 = ε̇− zs2 κ̇ (3.122)

according to Eq. (3.21). Finally, regarding Eqs. (3.22, 3.23) internal forces are

Nc =

∫ zc2

zc1

σc bdz

Ns = As1 σs1 +As2 σs2

Mc = −
∫ zc2

zc1

σc z bdz

Ms = −As1σs1 zs1 −As2σs2 zs2

(3.123)

and N = Nc+Ns, M = Mc+Ms. The coordinates zc1, zc2 indicate the range of the concrete’s
compression zone.

Internal forces of concrete σc = ( Nc Mc )T will be connected to the concrete edge
stresses, of the compression zone σce = ( σc1 σc2 )T , see Section 3.1.3.2. A combina-
tion of Eqs. (3.44, 3.45, 3.119) yields rates of edge including visco-elasticity or creep of the
compression zone:

σ̇ce = E′c (Bε − κBz) · ε̇+
E′c
ζc

Bε · ε− ψc σce (3.124)

This is connected to rates of internal forces by Eq. (3.37)

σ̇c = Aσ · σ̇ce + Az · żc (3.125)
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with zc = ( zc1 zc2 )T . Combining edge stresses, Eq. (3.124), internal forces (Eq. (3.125)),
and regarding Eq. (3.43) connecting rates of zc and the generalized beam strains ε leads to

σ̇c = Aσ ·
[
E′c(Bε − κBz) · ε̇+

E′c
ζc

Bε · ε− ψcσce
]

+ Az ·Bz · ε̇

=
[
E′cAσ ·Bε + (Az − κE′c Aσ) ·Bz

]
· ε̇+

E′c
ζc

Aσ ·Bε · ε− ψcAσ · σce
(3.126)

The term in the parenthesis in the second line corresponds to the tangential material stiffness
CcT for elastic behavior in the compression zone, see Eq. (3.46). Furthermore, with A =
Aσ ·Bε, Cc = E′cA and σce = A−1

σ ·σc, see Eqs. (3.31, 3.32, 3.35), Eq. (3.126) is written as

σ̇c = CcT · ε̇+
1

ζc
Cc · ε− ψc σc (3.127)

whereby CcT , Cc, and σc in the end are functions of the generalized beam strains ε. The
material properties are given by Young’s modulus E′c of the compression zone, which is in
CcT , Cc, and the creep parameters ζc, ψc.

The rate of the internal forces of the reinforcement σs = ( Ns Ms )T is determined by
a combination of Eqs. (3.120, 3.122, 3.123):

σs = Cs · ε, σ̇s = Cs · ε̇ (3.128)

with

Cs = Es

[
As1 +As2 −As1zs1 −As2zs2

−As1zs1 −As2zs2 As1z
2
s1 +As2z

2
s2

]
(3.129)

Adding concrete and reinforcement contributions σ = σc + σs, σ̇ = σ̇c + σ̇s yields

σ̇ =
[

CcT + Cs

]
· ε̇+

[
1

ζc
Cc + ψc Cs

]
· ε− ψc σ (3.130)

This forms a system of ordinary differential equations of first order for σ depending on
time t driven by ε(t), ε̇(t). Strains generally come from a superordinated calculation. Equa-
tion (3.130) is a specification of Eqs. (1.76, 1.83)

σ̇ = CT · ε̇+ Σ, Σ = V · ε−W · σ (3.131)

with

σ =

(
N
M

)
, ε =

(
ε
κ

)
CT = CcT + Cs

V =
1

ζc
Cc + ψc Cs, W = ψc I

(3.132)

with the unit matrix I. This is embedded into the incrementally iterative solution method for
transient analysis, see Section 1.6, using Eqs. (1.86–1.89). The application is demonstrated
with the following example.
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Example 3.3 Creep deformations of RC beam
Geometry, boundary conditions, and discretization are adopted from Example 3.2, see
Fig. 3.6a. The following material properties are assumed:

– Concrete grade C 30/37 according to [26, Table 3.1] without tensile strength with a
Young’s modulus Ec = 33 000 MN/m2 in the compressive range. Creep properties with
ϕ = 2.0 and t? = 100 [d] for α = 0.5, i.e., half of total creep occurs after 100 days for a
constant stress load. With Eq. (2.36) ζ = 144 d and with Eq. (3.119) ψ = 0.020793 1/d.

– Reinforcement with 4 � 20, As1 = 12.57 cm2, d1 = 5 cm. Young’s modulus is Es =
200 000 MN/m2 for the reinforcing steel.

The loading and the resulting loading level are determined as follows:

– According to Example 3.2 the ultimate limit moment of the cross section is given
by Mu ≈ 0.20 MNm corresponding to a uniform load of 60 kN/m. Roughly a third
of this is assumed to occur as a permanent load under service conditions, therefore
p = 20 MN/m. This leads to a maximum bending moment of M = 0.0625 MNm.

– The absolute value of the corresponding concrete strain is estimated as a third of the
maximum absolute concrete strain of Example 3.2, see Fig. 3.7b leading to εc ≈ −0.6‰.
This has to be compared with the strain at strength εc1 = −2.3‰, see Fig. 2.1, for
C 30/37. A linear concrete behavior can obviously be assumed in the compressive range
and the loading level can be regarded as moderate.

Thus, the prerequisite of creep modeling as stated at the beginning of this section is fulfilled.
A time step ∆t = 10 days is chosen for time discretization. An incrementally iterative with
Newton–Raphson iteration within each time increment is used for solving as is described in
Section 1.6. A period of 500 days is regarded. This leads to the following results:

– Fig. 3.8 shows the computed mid-span deflection in the course of time. The short-term
uncracked linear elastic deflection value (EJ = 31 900 · 0.2 · 0.43/12 = 34.03 MNm) is
given for comparison to cracked short-term and long-term deflection values.

Figure 3.8: Example 3.3 (a) Mid-span deflection during time. (b) Concrete and reinforcement
strains along beam for certain time steps.
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– Influence of concrete creeping can be characterized as follows: concrete contraction
becomes larger with a constant concrete stress, while reinforcement extension remains
the same. This leads to an increasing curvature, see Eq. (3.18), and an increasing
deflection. But the increase factor is less than 1 +ϕ due to bending and reinforcement.
Small variations of stresses and reinforcement strain result from a small change of the
internal lever arm.

– As a variation, the influence of a compressive reinforcement 2 � 20, As2 = 6.28 cm2,
d2 = 5 cm is regarded. It can be seen, that a compressive reinforcement further reduces
long-term creep deflections, as concrete deformations are constrained to some extent.

End Example 3.3

For the treatment of creep problems, see also [84, Chapter 29]. The creep model may be com-
bined with modeling of imposed strains, see Section 3.5.2, and prestressing, see Section 3.6.

3.5.2 Temperature and Shrinkage
Imposed deformations due to temperature or shrinkage may lead to constraint stresses. This
has to be considered for ultimate limit states and serviceability. Uniaxial considerations for
imposed deformations, see Section 2.2, can be directly transferred to strains and stresses of
beams.

According to Eq. (2.32) rates of measurable longitudinal strains are given by

ε̇x =
1

ET
σ̇x + ε̇Ix, ε̇Ix = ε̇Tx + ε̇cs,x (3.133)

with the longitudinal stress σx, the tangential modulus ET , temperature strains εTx, see
Eq. (2.31), and shrinkage strains εcs,x. leading to

σ̇x = CT (ε̇x − ε̇Ix) (3.134)

A linear variation of imposed longitudinal strains is assumed over the height of a beam cross
section according to Eq. (3.5)

εIx(z) = εI − z κI (3.135)

The imposed strain of the reference axis εI and imposed curvature κI can be determined
with the prescribed imposed strains εI1, εI2 of bottom and top edge of the cross section. The
reference axis is placed in the midpoint of a cross-section height without loss of generality,
see Section 3.1.3.1. Thus, the imposed strain of the reference axis is given by

εI =
εI1 + εI2

2
(3.136)

With the cross-section height h the imposed curvature is given by

κI =
εI1 − εI2

h
(3.137)

in accordance to Eq. (3.18). Equation (3.135) yields εIx(−h/2) = εI1, εIx(h/2) = εI2 with
these definitions.
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The rate of the longitudinal stress (Eq. (3.134)) can be directly integrated in the linear
elastic case ET = E0 = const.

σx = E0 (εx − εIx) (3.138)

Using kinematics according to Eq. (3.5), internal forces relations (3.9) and cross-section
properties (Eq. (3.11)) finally yields

σ = C · (ε− εI) = C · ε− σI (3.139)

with
σ =

(
N
M

)
, C = E0

[
A −S
−S J

]
, ε =

(
ε
κ

)
(3.140)

and the generalized imposed strains and internal constraint forces

εI =

(
εI
κI

)
, σI = C · εI (3.141)

As internal forces lead to internal nodal forces, see Eqs. (1.9, 3.101), internal constraint forces
lead to constraint nodal forces

feI =

∫
Le

BT · σI dx (3.142)

Imposed strains εI and therefore also constraint forces are prescribed as, e.g., function of
time. Thus, constraint nodal forces are also prescribed.

• Constraint forces from imposed strains may be shifted from the internal left-hand side
of the discretized equilibrium condition, see e.g., Eq. (1.8), to the right-external load
side becoming part of the external nodal forces.

This approach can also be used for nonlinear material behavior. Rates of internal constraint
forces are given by

σ̇I = CT · ε̇I (3.143)

in the case of nonlinear material behavior corresponding to Eq. (1.50) and are regarded within
the incrementally iterative scheme, see Section 1.6. The integration of σ̇I or Eq. (3.143) is
performed in the way as is done with σ̇ or Eq. (1.73) using Eq. (1.75). The resulting constraint
forces are larger for stiff materials or smaller for soft materials through the influence of CT .

The influence of imposed strains in form of temperature strains is demonstrated with the
following example.

Example 3.4 Effect of temperature actions on an RC beam
We refer to Example 3.2 with the same system with the exception of boundary conditions.
The original system is statically determinate and thus will have not imposed forces in the case
of temperature actions. It will be changed into a statically indeterminate system through
changed boundary conditions. Furthermore, the amount of upper reinforcement is increased.
The following data are changed or added compared to Example 3.2:

– Left and right node are totally constrained, i.e., lateral and longitudinal displacements
and rotations are set to zero.
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– Upper and lower reinforcement with As1 = As2 = 12.57 cm2, d1 = d2 = 5 cm.

– Thermal expansion coefficient is chosen with αT = 1 · 10−5 K−1 both for concrete and
reinforcement.

The same type of nonlinear material behavior is assumed for concrete and reinforcement as
in Example 3.2 with concrete tensile strength neglected. A corresponding linear elastic case
is regarded as a reference case with a Young’s modulus E = 33 000 MN/m2 and a bending
stiffness EJ = 35.2 MNm2. Two load cases are investigated:

1. Dead and service load with q = 20 kN/m as in Example 3.3.

2. Dead and service load together with temperature loading on the lower edge with T1 =
−10 K and on the upper edge with T2 = 10 K. Such a temperature gradient would cause
an upward movement of a statically indeterminate system, i.e., a positive constraint
has to be applied to reach compatibility with the zero rotation of boundaries.
In the case of physical nonlinearities all loadings have to considered together as a
superposition is not allowed.

The incrementally iterative scheme is chosen as solution method, see Section 1.6, with the
BFGS method for equilibrium iteration in each load increment. This leads to the following
computation results:

– Fig. 3.9a shows the bending moments for the linear elastic reference case whereby the
reinforcement is neglected. Load case 1 has an end moment Me = −0.0402 MNm
and a field moment Mf = 0.0209, which agrees with the analytic solution −qL2/12
and qL2/24, respectively. Small differences may arise as moments are determined in
integration points of elements in finite element calculations.
Load case 2 can be superposed due to linearity with a constantM tem = −EJ κtem with
κtem = αT (T1 − T2)/h = −0.5 · 10−3 leading to M tem = 0.0176.

– Fig. 3.9b shows the bending moments for the case of RC.
First of all distribution of moments in a statically indeterminate system depend on
stiffness relations. Those depend on loading in the case of RC. For RC the bending

Figure 3.9: Example 3.4 bending moments. (a) Linear elastic. (b) RC (different scale!).
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Figure 3.10: Example 3.4 RC. (a) Curvature (b) Strain of the reference axis.

stiffness is generally lower compared to the linear elastic case, but the stiffness relations
do not differ very much. Thus, we get Me = −0.0391, Mf = 0.0220 in load case 1 for
RC, i.e., the field area is somehow stiffer and attracts bending moments.

The computed mid-span deflection is wmax = 1.23 cm in load case 1 for RC and is
higher compared to the linear elastic case with wmax = qL4/384EJ = 0.92 cm due to
overall reduced stiffness.

Superposing is not allowed for load case 2 due to the physical nonlinearities of RC.
Computed total moments are Me = −0.0281, Mf = 0.0330 leading to imposed mo-
ments M tem

e = 0.0391 − 0.0281 = 0.0110, M tem
f = −0.0220 + 0.0330 = 0.0114. The

additional temperature moment is lower compared to the linear elastic case. A compu-
tation with temperature loading alone without other loading would lead to a constant
M tem = 0.0143, i.e., a superposition would not be correct.

– Figure 3.10 shows the deformation state for RC for load case 2.

For the curvature along the beam, see Fig. 3.10a. The course is no longer analog to
the bending moment course as it would be in the linear elastic case.

Figure 3.10b shows the strain of the reference and center axis, respectively. Such
strains arise in contrast to the linear elastic case, as cracked RC beams tend to elongate
without longitudinal displacement restrictions. An overall elongation is not allowed in
the example due to boundary conditions, i.e., a normal compressive force is induced
on one hand, and on the other hand strain values occur depending on M/N -ratio. But
the integral of strains must sum up to zero.

End Example 3.4

As has already been shown in Example 2.2 constraint forces are reduced by creep regarding
the long-term behavior. Regarding beams this may be modeled by a combination of methods
of Examples 2.2 and 3.4. This requires the prescription of temperature and/or shrinkage
histories.
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3.5.3 Tension Stiffening
A model for the tension zone of a bending beam, see Fig. 3.2, is given by the reinforced
tension bar which has been discussed in Section 2.6. Such a bar shows a cracking pattern
whereby cracks arise with specific distances. Such a pattern will also arise in the tension
zone of RC beams. A simple example is shown in Fig. 3.11 with a single span beam with
a constant moment in its center area and stabilized cracking. Crack spacing in connection
with bond, i.e., a transmission of forces between reinforcement and concrete, leads to the
effect of tension stiffening. Due to bond concrete carries tensile stresses between cracks up
to its tensile strength.

Figure 3.11: Crack pattern of RC beam with constant moment.

These mechanisms have already been discussed with the example of the reinforced ten-
sion bar in Section 2.7. The same mechanisms are active in the tensile zone of beams. A
quantitative model works with the reduction of reinforcement strains between cracks, i.e.,
reinforcement strains in cracks are replaced by reinforcement mean strains while the peak
values of reinforcement stresses in cracks are still used. This leads to the following modified
stress–strain relations for the reinforcement, see Eqs. (2.62, 2.66), whereby σsc is replaced by
σs and εsm is replaced by εs

σs =


αfct
%effε′s

εs for εs ≤ ε′s

Es εs + βt
fct
%eff

ε′s < εs ≤ εy
fy + ET (εs − εy) εy < εs

(3.144)

with the reinforcement yield stress fy and

ε′s =
1

Es

fct
%eff

(α− βt), εy =
1

Es

(
fy + βt

fct
%eff

)
(3.145)

and with k according to Eq. (2.64). The relation is shown in Fig. 2.17b and leads to a nominal
stiffening of a rebar’s stress–strain relation.

For the discussion of the parameters βt, α, %eff see Section 2.7. A basic parameter is given
by βt, which controls the quality of bond. The value βt = 0, e.g., indicates no stress transfer
from rebar to concrete and no effective bond. This leads to ε′s = αfct/%eff , εy = fy/Es and
retains the relation σs = Es εs. A reasonable choice for this parameter is βt = 0.4.

It has to be regarded that the tension zone of a beam cross section exposed to bending
is not homogeneous as tension on one side gradually changes into compression on the other
side. This is considered through the effective concrete cross-sectional area Ac,eff and the

mailto:Ulrich.Haeussler-Combe@tu-dresden.de
http://www.tu-dresden.de/biwitb/mbau
http://www.tu-dresden.de


3.5 Further Aspects of Reinforced Concrete 91

effective reinforcement ratio %eff = As/Ac,eff with the reinforcement cross-sectional area As.
The value of Ac,eff is smaller than the area of the tensile zone as not all of its parts contribute
to the exchange of stresses with the reinforcement but only some neighborhood around the
main tensile reinforcement. Code provisions are given for the choice of Ac,eff , see [26, 7.3.2],
which are based on more elaborated models, parameter studies and experimental data.

Finally, the parameter α covers the range of crack formation starting with the first crack
and ending with stabilized cracking. The parameter indicates the increase factor of the rein-
forcement stress during crack formation and can be assumed with α ≈ 1.3 due to parameter
studies and experimental data.

Equation (3.144) may replace σs = Es εs in Eqs. (3.22, 3.23) and all which is derived
from these equations. The tangential material stiffness has to be adjusted in a corresponding
way to reach convergence in equilibrium iterations. The application is demonstrated with
the following example.

Example 3.5 Effect of tension stiffening on an RC beam with external and temperature
loading
We refer to Example 3.2 with the same data. Additionally to the material values of Exam-
ple 3.3 the following values are assumed to model tension stiffening

fct = 3.0 MN/m2, βt = 0.6, α = 1.3 (3.146)

The effective cross-sectional area is determined with an effective height of hc,ef = 0.1 m
according to [26, 7.3.2] leading to Ac,eff = b hc,ef = 0.02 m2 and further to

%eff =
0.1257 · 10−2

0.02
= 0.063, ε′sm = 0.215 · 10−3 (3.147)

with ε′sm according to Eq. (2.65). Three loading values are examined: q = 60 kN/m, which
is near to the ultimate limit load, furthermore q = 40 MN/m and finally q = 20 MN/m
which roughly corresponds to dead load and service load. The mid-span deflections with and
without tension stiffening are determined with

q = 20 q = 40 q = 60
with tension stiffening 0.83 1.86 2.98
without tension stiffening 0.98 2.01 3.13
with a deflection unit of [cm]. The absolute deflection difference for the same loading is
constant. Thus, the influence of tension stiffening is larger for lower loading levels. This
corresponds to the constant horizontal offset of stress–strain relation for the reinforcement.

As beam stiffness is increased due to tension stiffening an influence on constraint forces
may be supposed. To examine this effect, we refer to Example 3.4. All system and loading
parameters are kept but with tension stiffening included. The tension-stiffening parameters of
Eqs. (3.146, 3.147) are used. Load case 2 – dead/service load and temperature – is regarded.
Figure 3.12a shows the computed bending moments for the cases with and without tension
stiffening. The difference is quite small as the stiffness relations basically do not change even
if the absolute values of stiffness change.
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Figure 3.12: Influence tension stiffening Example 3.5. (a) Moment. (b) Normal force.

The induced compression normal force is shown as a further result in Fig. 3.12b. A com-
pression is caused from the potential elongation of the reference axis of cracked RC section,
see Fig. 3.6b, which is prevented by boundary conditions in this case. The potential elonga-
tion is smaller in case with tension stiffening as the same moment has a smaller mean rebar
strain compared to the case without tension stiffening. This induces a smaller compression
in case with tension stiffening.

Some scatter is seen in the normal forces especially in those areas with low moments.
This scatter is caused by the coupling of both normal forces and moments to the strain of
the reference axis ε and the curvature κ, see Eq. (3.55). This scatter effect is erroneous. It
is compensated in the balance of nodal forces as the obvious peak values are computed in
the integration points which compensate in the average of an element. This effect can be
reduced with a finer discretization.

End Example 3.5

3.5.4 Shear Stiffness for Reinforced Cracked Concrete Sections

Up to now a shear stiffness has been derived for the linear elastic material behavior only,
see Eq. (3.15) and the relation between the shear force V and the shear angle γ. This bases
upon the linear elastic relation between shear stresses and shear strains derived from plane
elasticity, see Eq. (3.7)3. The shear behavior of cracked RC sections has to be derived from
the truss model for shear instead [26, 6.2.3]. A square cross section is assumed with geometric
height h and width b to simplify the discussion.

The model has concrete struts and reinforcement ties. The geometry of struts is shown
in Fig. 3.13a. The strut geometry is characterized by a bunch of lines inclined with an angle
θ against the reference axis within a part z of the cross-section height.

• The length z corresponds to the internal lever arm of bending as the distance of com-
pression chord and tensile chord.

Regarding such a strut line its undeformed length is given by

lu =
z

sin θ
(3.148)
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Figure 3.13: Shear stiffness (a) Struts. (b) Ties.

A rotation φ of the cross section is not regarded. Thus, the inclination of the reference axis
corresponds to the shear angle γ, see Fig. 3.13a. With a reference to a longitudinal coordinate
x1 a cross section moves laterally over a length z/ tan θ by γ z/ tan θ and the deformed length
of the respective strut is given by

ld =

√( z

tan θ

)2

+
(
z +

z

tan θ
γ
)2

(3.149)

whereby sign convention for γ has to be considered. With γ � 1 this may be written as

ld = lu
√

1 + 2γ sin θ cos θ (3.150)

whereby γ2 has been neglected. The strut strain is given by

ε1 =
ld − lu
lu

=
√

1 + 2γ sin θ cos θ − 1 (3.151)

The root term is expanded with a Taylor series. As γ � 1, this leads to

ε1 = sin θ cos θ γ (3.152)

A corresponding strut force has to be determined next. A linear material behavior with
Young’s modulus E is assumed. Furthermore, a strut has a width b and a height h1 in its
own cross section and the strut force is given by

F1 = bh1E ε1 = bh1E sin θ cos θ γ (3.153)

whereby in case of γ > 0 forces F1, F2 are directed as shown in Figures 3.13. A cross section
of the beam involves n = z

h1/ cos θ struts, see Fig. 3.13b. Summing up all strut forces of a
cross section leads to

Fstrut = nF1 =
z

h1/ cos θ
F1 = bz E sin θ cos2 θ γ (3.154)
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To have equilibrium a shear force and a strut force are related by V = F1 sin θ. Thus, shear
forces from struts are given by

Vstrut = bz E sin2 θ cos2 θ γ (3.155)

and finally a shear stiffness from struts

∂Vstrut

∂γ
= E bz sin2 θ cos2 θ (3.156)

is derived.
The contribution of shear reinforcement or ties to the shear stiffness can be derived in

the same way. A tie with an inclination α is considered, see Fig. 3.13a. It has an undeformed
length

lu =
z

sinα
(3.157)

a deformed length

ld =

√( z

tanα

)2

+
(
z − z

tanα
γ
)2

= lu
√

1− 2γ sinα cosα (3.158)

whereby the sign convention for γ again has to be considered and a strain

ε2 =
ld − lu
lu

=
√

1− 2γ sinα cosα− 1 ≈ − sinα cosα γ (3.159)

A linear elastic behavior with a Young’s modulus Es is assumed. With a cross section As of
the tie or rebar the force is given by

F2 = AsEs ε2 = −AsEs sinα cosα γ (3.160)

The spacing sc of rebars in a beam cross section and their longitudinal spacing s are related
by sc/s = tanα. Thus, a cross section involves n = z/sc = z/(s tanα) rebars. Summing up
all ties involved in a cross section leads to

Ftie =
z

sc/ tanα
F2 = −z As2

s
Es sin2 α cosα γ (3.161)

A shear force and a tie force are related by V = −F2 sinα for equilibrium. Thus, shear forces
from ties are given by

Vtie = z as2Es sin3 α cosα γ (3.162)

with as = As/s and finally a shear stiffness from ties is

∂Vtie
∂γ

= z as2Es sin3 α cosα (3.163)

Finally, the total shear stiffness is given by

∂V

∂γ
=
∂Vstrut

∂γ
+
∂Vtie
∂γ

= z
(
bEc sin2 θ cos2 θ + as2Es sin3 α cosα

)
(3.164)
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As a special case we consider stirrups as ties with α = π/2 and a strut inclination θ = π/4.
This leads to a shear stiffness

∂V

∂γ
=

1

4
zbEc =

1

2
zbGc (3.165)

with the shear modulus Gc according to Eq. (3.8). We compare this with the linear elastic
case, Eq. (3.13)3, with a geometry coefficient α. Here a relation zb = αcA, αc = z/h is used
with a similar geometry coefficient αc. Thus, relations (3.13)3 and (3.165) differ by a factor
of 2. In the current argument, concrete tensile struts are disregarded due to the limited
tensile strength of concrete and shear reinforcement was assumed as vertical stirrups, which
do not directly contribute to V . Thus, the current setup and the linear elastic case coincide
for θ = π/4.

There is some margin to choose the concrete shear strut angle, see [26, 6.2.3], [18, 7.3.3.3].
The limits are roughly by a range 20° ≤ θ ≤ 45°. As a first estimation, the same strut angle
should be used as for the design of the stirrups.

3.6 Prestressing

Prestressing applies lateral redirection forces and normal forces on a beam, see Fig. 3.14.
While the redirection forces act against dead and variable loads a moderate normal force may
increase the bearing capacity for moments, see Example 3.1. But these positive effects involve
demands for prestressing tendons. A concrete beam and its untensionend reinforcement on
one hand and the tendons with high strength steel on the other hand are regarded as separated
structural elements in the following.

Originally, the generalized stress σ is formulated as a function of the generalized defor-
mations ε, e.g.,

σ = C · ε (3.166)

For C see, e.g., Eq. (3.140). The linearity of C is not necessarily required. This concept is
extended with respect to prestressing, i.e., an additional part is assigned to the generalized
stresses resulting from prestressing tendons

σ = C · ε+ σp (3.167)

Figure 3.14: Redirection forces from prestressing.
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This additional part depends on the tendon profile. In the case of the Bernoulli beam

σp =

(
Np

Mp

)
= −F p

(
cosαp

−zp cosαp

)
(3.168)

compare Eq. (3.68), with the prestressing force F p, the height coordinate or lever arm zp of
the tendon, and the inclination αp = dzp/dx of the tendon against the beam reference axis.
This may be extended with respect to shear forces in combination with the Timoshenko
beam. Using the extended generalized stresses (Eq. (3.167)) for the internal nodal forces
(Eq. (3.101)) leads to a split

fe =

∫
Le

BT · σ dx =

∫
Le

BT ·C · ε dx+

∫
Le

BT · σp dx = f εe + fpe (3.169)

The part −fpe may be regarded as a further contribution to the load vector, see Eq. (1.69).
This approach integrates prestressing in the given framework whereby all procedures but for
a part of load evaluation remain unchanged.

An alternative and conventional view of prestressing of beams is based on Eq. (3.58). We
consider the quasistatic case, split internal forces into a part •ε from beam deformation, a
part •p from prestressing and eliminate shear forces

−N ε′ −Np′ = p̄x

−M ε′′ −Mp′′ = p̄z
(3.170)

Furthermore, Eq. (3.168) is used leading to

−N ε′ = p̄x − (F p cosαp)
′

−M ε′′ = p̄z + (zpF
p cosαp)

′′ (3.171)

The weak form of these differential equations, see Section 3.2, conforms to Eqs. (3.167, 3.168).
A common approximation is F p ≈ const., cosαp ≈ 1 resulting in

−M ε′′ = p̄z + z′′pF
p (3.172)

wherein z′′pF
p is a lateral redirection force in the z-direction from the curvature z′′p of the

tendon geometry. This term may be seen as an additional lateral loading counteracting the
other loadings, see Fig. 3.14 with negative p̄z.

Some characteristic properties of prestressing have to be regarded for the evaluation of
σp or fp, respectively:

– Tendon profile parameters zp, αp may vary with the beam coordinate x according to
prestressing design.

– The prestressing force may vary due to the loss of prestress from friction of the tendon
in a conduit.
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– Furthermore, a beam deformation may lead to a change in the tendon profile after
application and fixing of prestressing. Two cases have to be considered:

1. Prestressing without bond: total length of the tendon changes. This leads to a
global change of the prestressing force.

2. Prestressing with bond: length of the tendon changes locally to keep the geometric
compatibility with the concrete. This leads to locally varying changes in the
prestressing force.

Two subsequent stages have to be considered for prestressing:

– Application stage of prestressing with the prescribed prestressing force F p0
Prestressing is gradually applied at a beam’s ends through anchors. The value of F p0
may vary along the longitudinal beam coordinate x due to friction losses. Such losses
have to determined from prescribed friction coefficients and the curvature of the tendon
geometry. Tendons are grouted at the end of this stage in the case of prestressing with
bond.

– Fixed stage of prestressing with locked anchors

The prestressing force F p0 changes into Fp according to the enumeration above con-
cerning with/without bond. Different approaches are necessary to describe the global
or local change of the tendon geometry for the both cases in this stage.

The tendon geometry plays a key role within this context. It may be described for each finite
beam element in analogy to the Bernoulli beam shape function (Eq. (3.76)) with

zp =
[
r3

4 −
3r
4 + 1

2
Ler

3

8 − Ler
2

8 − Ler
8 + Le

8 − r
3

4 + 3r
4 + 1

2
Ler

3

8 + Ler
2

8 − Ler
8 −

Le
8

]

·


czpI
αpI
zpJ
αpJ

 (3.173)

with the element length Le and the tendon inclination

αP =
∂zp
∂x

=
∂zp
∂r

∂r

∂x
= z′p (3.174)

Lateral tendon position and inclination on the left- and right-element end are given by
zpI , αpI and zpJ , αpJ . The local element coordinate is in the range −1 ≤ r ≤ 1. This
approach reproduces zp(−1) = zpI , z

′
p(−1) = αpI and zp(1) = zpJ , z

′
p(1) = αpJ . The

geometric length of tendon in an element e is given by

LPe =
Le
2

∫ 1

−1

√
(x′p)

2 + (z′p)
2 dr (3.175)

whereby the derivative of the tendon position xp in the longitudinal direction has also to be
regarded. Equation (3.175) has to be integrated numerically for each element, e.g., with a
Gauss integration, see Section 1.6.
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Equation (3.173) for tendon geometry is on one hand applied to the nominal undeformed
tendon geometry according to design with

x′p = 1
zpI
αpI
zpJ
αpJ

 =


zp0I
αp0I
zp0J
αp0J

 (3.176)

with the prescribed values zp0I , αp0I , zp0J , αp0J . On the other hand, Eq. (3.173) gives the
tendon geometry considering beam deformation with

x′p = 1 + ε
zpI
αpI
zpJ
αpJ

 =


zp0I + wI
αp0I + φI
zp0J + wJ
αp0J + φJ

 (3.177)

with the longitudinal strain ε of the beam’s reference axis and the beams nodal displace-
ments wI , φI , wJ , φJ . The total length LP of a tendon is computed by adding all element
contributions.

Regarding prestressing without bond, the tendon length can be determined separately for
application stage, with a value LP0 , and for the fixed stage with a value LP . Equations (3.175,
3.177) can be used with the appropriate deformations or displacements, respectively. Regard-
ing Eq. (3.168), this leads to a prestressing force

F p =
LP

LP0
F p0 (3.178)

in the fixed stage of prestressing.
Regarding prestressing with bond a tendon gets a local elongation after fixing of pre-

stressing due to bond. This local elongation is ruled by the beam’s deformation kinematics
equation (3.5), i.e., the additional strain of the tendon is given by

∆εp(x) = ∆ε(x)− zp ∆κ(x) (3.179)

with the variable values ∆ε, ∆κ of the beam deformations during the fixed stage of prestress-
ing. This leads to to a prestressing force

F p(x) = F p0 + EpAp ∆εp(x) (3.180)

with Young’s modulus Ep of the prestressing steel, the cross section area Ap of prestressing
tendons and F p(x) used in Eq. (3.168).

The particular procedures concerning prestressing can be summarized as follows:

– Define the tendon geometry and prestressing force

– Compute internal forces from prestressing
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– Compute nodal loads from prestressing

– Compute system reaction

– Iterate if neccessary to capture changing in prestressing force

The application is demonstrated with the following example.

Example 3.6 Prestressed RC beam
We refer to Example 3.2 with basically the same system, but the span is doubled to L = 10
m. Thus, the structure’s load bearing capacity is strongly reduced. Prestressing is used to
increase the bearing capacity. The relevant system parameters are as follows:

– A concrete cross section b = 0.2, h = 0.4, a compressive strength fcd = 38 MN/m2

and a lower and upper reinforcement As1 = As2 = 12.57 cm2, d1 = d2 = 5 cm yield
an ultimate bending moment Mu ≈ 0.20 MNm with N = 0, see Example 3.1. This
corresponds to a uniform loading qu = 8Mu/L

2 = 15.2 kN/m which should be increased
by prestressing.

– A nominal uniform concrete prestressing stress of σc0 = −10 MN/m2 is chosen in a first
approach leading to F p0 = 0.8 MN. The nominal tendon geometry of the whole beam
is given by a parabola starting and ending in the center line with a downward camber
hp. This is described by

zp = 4hp

(
x2

L2
− x

L

)
(3.181)

A value hp = 0.15 m is chosen in this example.

– Prestressing tendon and steel properties are chosen with a cross section area Ap =
6 cm2, elastic limit fp0,1 = 1600 MN/m2, strength fp = 1800 MN/m2, and Young’s
modulus Ep = 200 000 MN/m2. Nominal initial steel stress is σp0 = 1 333 MN/m2 with
a strain εp0 = 6.67 ‰.

– A dead load is assumed with q = 5 kN/m.

Loading is applied in two stages: (1) Application of prestressing and dead load, (2) fixing
of prestressing and additional application of a service load qp = 25 kN/m. Frictional losses
are neglected to simplify this example. Both cases – prestressing with and without bond
– are alternatively regarded for the fixed stage of prestressing. The solution method is
incrementally iterative with Newton–Raphson iteration within increments.

This leads to the following results for prestressing without bond:

– The computed increase in prestressing force after load step 2 according to Eq. (3.178)
is minimal with F p/F p0 = 1.002. This results from the low ratio hp/L = 1/67.

– For the computed mid-span displacements, see Fig. 3.15a. The deflection starts with
an uplift during application of prestressing. The final mid-span deflection is quite
large with 0.113 m (≈ 1/90 of the span), but the load-carrying capacity is not yet
exhausted with an upper mid-span concrete compressive strain of −2.2 ‰(limit strain
is −3.5 ‰). Serviceability is presumably not given without further provisions due to
high slenderness (1/25).
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Figure 3.15: Example 3.6 (a) System (b) Mid-span load–deflection curve.

– For the bending moment and normal force in the RC cross section, see Fig. 3.16a.
Total moment from the dead load weight and the service load is Mq = 0.03× 102/8 =
0.375 MNm. The computed RC mid-span contribution isMc = 0.255 and the contribu-
tion from prestressing Mp = 0.120. The increased RC moment compared to the initial
estimation results from the compressive normal force.

Furthermore, the results for prestressing with bond:

– In the case of bond, the tendon gets a local additional strain due to the locally varying
deformation of the beam, see Eq. (3.179). This leads to an additional prestressing force,
see Eq. (3.180) and Fig. 3.16b, and in the end to higher contribution of prestressing to
load bearing capacity and a higher total load bearing capacity.

– Detail results are given by final mid-span deflection 0.12 m, see Fig. 3.15b, RC moment
contribution Mc = 0.220, see Fig. 3.16a, contribution from prestressing Mp = 0.155.

Prestressing roughly leads to a doubling of ultimate limit loads in this example. Aspects of
serviceability have to be treated separately.

Figure 3.16: Final stage Example 3.6 (a) RC bending moment. (b) RC normal force.
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The comparison between prestressing with and without bond in this example is somehow
academic, as in practice prestressing with bond is exposed to more nonmechanical effects,
which might lead to some restrictions to fully utilize the load carrying capacities of the
prestressing steel. Details are ruled in codes.

End Example 3.6

Some remarks concerning prestressing remain to be added. All methods and procedures may
be also applied to material laws of a rate type, see Eq. (1.50), instead of Eq. (3.166) within
an incrementally iterative scheme, see Section 1.6.

Prestressing may be superposed with creep of concrete (Section 3.5.1), temperature and
shrinkage (Section 3.5.2), and tension stiffening (Section 3.5.3). All described approaches are
compatible and may be used in any combination. The application has been demonstrated in
Example 3.6 for a single-span beam which is statically determinate.

• Methods and procedures in same way may be applied to statically indeterminate sys-
tems as solution procedures always simultaneously regard equilibrium, material behav-
ior, and kinematic compatibility.

High strength steel is used for prestressing with roughly three times the strength of ordinary
rebar steel. Relaxation, see Section 2.2, occurs for such types of steel. The approach of, e.g.,
Eq. (2.27) can basically be used for the phenomena of creep and relaxation and in a first
approach for steel as well as for concrete. It can be also applied to the prestressing force F p,
see Eq. (3.168), leading to a transient analysis as in a similar way has already been discussed
in Section 3.5.1.

3.7 Large Deformations and Second-Order Analysis

Up to now, we considered the equilibrium of structures in their undeformed configuration.
The displacements of a structure were neglected in the balance of external actions and internal
forces and a geometrically linear analysis was performed. This is justified for RC beams
which are exposed to predominant bending or tension. Structural deformations generally
will not have an appreciable influence on internal forces in such cases. This might change
for structural members exposed to compression. Depending on their slenderness internal
forces may considerably increase due to structural deformations and deformations have to
be considered regarding equilibrium. This leads to geometrical nonlinearities.

We consider a section of a plane beam in some deformed configuration, see Fig. 3.17. A
quasistatic analysis shall be performed whereby equilibrium should be given in the deformed
configuration. Thus, the integration of the equilibrium condition (Eq. (3.65)) of a section of
length L ∫ L

0

δεT · σ ds =

∫ L

0

δuT · p̄ ds+ δUT · t̄ (3.182)

has to be performed in the deformed configuration with the coordinate s along the beam
axis. It is appropriate to relate the generalized stresses σ and the generalized strains ε, see
Eqs. (3.66, 3.68), to a local corotational coordinate system. A single element is considered in
the following which is straight in the undeformed configuration.
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Figure 3.17: Equilibrium of beam section in the deformed configuration.

• It is assumed that the curvature of a single element is still small in the deformed
configuration and that its deformed geometry can be approximated with a straight line
connecting its end nodes.

This assumption is appropriate for RC structures failing with relatively small strains. Fur-
thermore, the deformed geometry may be approximated with any desired accuracy by refining
the discretization.

The corresponding element orientation is given by the angle αe. Global nodal degrees of
freedom υe are transformed to the local system with Eq. (3.109)

υ̃e = T(αe) · υe (3.183)

Local displacements and strains are given according to Eqs. (3.78, 3.81)

ũ(r) = N(r) · υ̃e, ε(r) = B(r) · υ̃e (3.184)

leading to virtual strains
δεT = δυTe ·TT (αe) ·BT (r) (3.185)

Internal nodal forces of a beam element are given by Eqs. (3.101, 3.110)

fe = TT (αe) ·
Le
2

∫ 1

−1

BT (r) · σ(r) dr (3.186)

with the actual element length Le whereby the orientation αe depends – beneath the ini-
tial coordinates of the element’s nodes – on the values of the nodal degrees of freedom or
displacements, respectively.

• With the internal nodal forces depending on the deformation the problem becomes
geometrically nonlinear. This is combined with physical nonlinearity in the case of RC
beams due to the nonlinear behavior between the generalized strains and stresses.

The evaluation of the tangential stiffness is mandatory for such problems. The tangential
element stiffness matrix is determined by

KTe =
∂fe
∂υe

(3.187)

mailto:Ulrich.Haeussler-Combe@tu-dresden.de
http://www.tu-dresden.de/biwitb/mbau
http://www.tu-dresden.de
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see Eq. (1.64). Regarding Eq. (3.186) this leads to

KTe = KTMe + KTGe (3.188)

with the tangential stiffness contribution from material behavior

KTMe = TT · Le
2

∫ 1

−1

BT · ∂σ
∂ε
· ∂ε
∂υ̃e

· ∂υ̃e
∂υe

dr

= TT · Le
2

∫ 1

−1

BT ·CT ·B dr ·T

= TT · K̃Te ·T

(3.189)

according to Eqs. (1.65, 3.114) and furthermore with the tangential stiffness contribution
from geometry

KTGe =
∂TT

∂αe
· f̃e ·

∂αe
∂υe

T

(3.190)

with the local internal nodal forces

f̃e =
Le
2

∫ 1

−1

BT · σ dr (3.191)

Regarding the Bernoulli beam element, see Section 3.3.2 and Eq. (3.111), the factors of
Eq. (3.190) are given by

∂TT

∂αe
=


− sinαe − cosαe 0 0 0 0
cosαe − sinαe 0 0 0 0

0 0 0 0 0 0
0 0 0 − sinαe − cosαe 0
0 0 0 cosαe − sinαe 0
0 0 0 0 0 0

 (3.192)

and

f̃e =


NI
VI
MI

NJ
VJ
MJ

 ,
∂αe
∂υe

=
1

Le


sinαe
− cosαe

0
− sinαe
cosαe

0

 (3.193)

This leads to a geometric tangential element stiffness

KTGe =


−AI sinαe AI cosαe 0 AI sinαe −AI cosαe 0
BI sinαe −BI cosαe 0 −BI sinαe BI cosαe 0

0 0 0 0 0 0
−AJ sinαe AJ cosαe 0 AJ sinαe −AJ cosαe 0
BJ sinαe −BJ cosαe 0 −BJ sinαe BJ cosαe 0

0 0 0 0 0 0

 (3.194)
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for the two-node Bernoulli beam element with

Ai = sinαeNi + cosαeVi, Bi = cosαeNi − sinαeVi, i = I, J (3.195)

Internal nodal forces from Eq. (3.186) have to be in equilibrium with the external nodal forces.
External nodal forces for distributed loading are determined in analogy to Eq. (3.105) leading
to

p̄e =
Le
2

∫ 1

−1

TT (αe) ·NT (r) ·Q(αe) · p̄(r) dr (3.196)

with the vector rotation matrix Q, see Eq. (C.6), and for the boundary terms with Eq. (3.106)

t̄e =
(
N̄I V̄I M̄I N̄J V̄J M̄J

)T (3.197)

for the two-node Bernoulli beam element. The components of t̄e and p̄, see Eq. (3.66),
are related to the global coordinate system. The extended Bernoulli beam element, see
Section 3.3.2, and the Timoshenko beam elements, see Section 3.3.3, can be treated in the
same way with the adaption of υe, ε, σ and T.

The system equations are assembled from the element contributions, as is described in
Section 1.5, leading to a condition for quasistatic equilibrium

f(υ) = p (3.198)

with p = p̄ + t̄, compare Eq. (1.60). The solution is determined with an incrementally
iterative scheme, see Section 1.6, whereby the tangential stiffness should include material
stiffness and geometric stiffness as are given for single elements with Eqs. (3.189, 3.190).

The described approach corresponds to a corotational updated Lagrangian discretization
[9, 4.4, 4.6]. It may be applied to cases with large deformations and small strains. Second-
order analysis is included as a special case whereby displacements are linearized with respect
to an initially undeformed configuration. A first validation is given by the following example.

Example 3.7 Stability limit of cantilever column
We consider a simple cantilever column with linear elastic behavior and a discretization with
one two-node Bernoulli beam element, see Fig. 3.18. It has a vertical concentrated load at its
top acting along the axis of gravity. A buckling from the initial configuration or instability
will occur within a theory regarding equilibrium in deformed configurations. The buckling
load shall be determined for this simple model.

The model has three degrees of freedom with u,w, φ at the top node. The initial config-
uration is given by αe = π/2. The material stiffness is determined by Eq. (3.189) with B
from Eq. (3.82), CT = C from Eq. (3.16) and T from Eq. (3.111) with αe replacing α. This
yields

KTM =

 12EJ
L3 0 6EJ

L2

0 EA
L 0

6EJ
L2 0 4EJ

L

 (3.199)

for the actual degrees of freedom. The geometric stiffness according to Eq. (3.194) is deter-
mined by

KTG = N̄J K0
TG, K0

TG =

 1
L 0 0
0 0 0
0 0 0

 (3.200)
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Figure 3.18: Cantilever column.

The matrix K0
TG is independent from loading and covers the geometry of the initial unde-

formed configuration.
The incremental system behavior is described by Eq. (1.66)

(KTM + KTG) · dυ = df (3.201)

• An instability is given by nonzero increments of displacements dυ in connection with
zero increments of nodal forces df .

This leads to the generalized eigenvalue problem

KTM · dυ = −NJb K0
TG · dυ (3.202)

with the buckling load NJb. The solution for this model is

NJb =
3EJ

L2
(3.203)

whereby the relation between lateral displacement and rotation is determined with 9w̃J +
6Lφ = 0. The exact solution is given by π2EJ/4L2 ≈ 2.47EJ/L2 according to the well-
known Euler cases for buckling. The error in NJb results from the discretization with one
element which is a rough approximation of the exact cosine solution. A refinement of the
discretization should improve the solution for NJb.

End Example 3.7

The method described for the stability analysis of a cantilever column is based on the gener-
alized eigenvalue problem (3.202). It may be applied to all types of columns and frames with
compressive members in the undeformed configuration. Furthermore, the approach may be
generalized for the stability analysis of all types of structures [9, 6.5].

Up to now, we regarded linear elastic material behavior. The nonlinear behavior of
cracked RC cross sections, see Section 3.1.3, has to be considered in the next step. This will
be described for Bernoulli beams in the following.

A deformed configuration is given within an incremental iterative scheme, see Section 1.6,
with an orientation angle αe and an actual length Le for each element. Generalized strains
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ε and generalized stresses σ or internal forces, see Eq. (3.68), are determined in the local
corotational system. With the generalized strains given the internal forces are determined
from Eqs. (3.22, 3.23) and the tangential stiffness CT from Eq. (3.55). This yields the
basic quantities required for the internal nodal forces in the global system (Eq. (3.186)), the
tangential material stiffness (Eq. (3.189)) and the tangential geometric stiffness (Eq. (3.194)).
The external nodal forces in the global system are finally determined from Eqs. (3.196, 3.197)
for a new loading target. Prescribed displacements are treated as described in Section 3.4.3.
The nonlinear problem – including the continuing updating of αe, Le – is solved by, e.g., the
Newton–Raphson method, see Eqs. (1.71, 1.72).

The application is demonstrated with the following example.

Example 3.8 Ultimate limit for RC cantilever column
The stability of the cantilever column has already been treated in Example 3.7 as a buckling
or the generalized eigenvalue problem whereby resembling the classical Euler case. This
assumes a centered load without eccentricity and a linear elastic material behavior and leads
to an upper bound for the load carrying capacity. A load eccentricity and the nonlinear
behavior of a cracked RC sections are considered while regarding large displacements or
second order effects, respectively. Geometry, discretization, and boundary conditions are as
follows:

– Cantilever column with a height L = 5.0 m, square cross section with width h = 0.4 m
and a depth b = 0.2 m, see Fig. 3.6a.

– Discretization with nE = 10 extended two-node Bernoulli beam elements, see Section
3.3.2.

– The bottom node is clamped with zero displacements and zero rotations.

The column is assumed to be stabilized in the out-of-plane direction. The material properties
and the reinforcement are chosen as with Example 3.1:

– Concrete grade C30/37 according to [26, Table 3.1] with an initial Young’s modulus
Ec = 33 000 MN/m2. Concrete compressive strength is assumed with fc = 38 MN/m2

with εc1 = −0.0023, εcu1 = −0.0035, see Fig. 2.1. A tensile strength is disregarded.
The uniaxial stress–strain relation is chosen according to [26, 3.1.5].

– Reinforcement behavior is assumed according to Section 2.3 and [26, 3.2.7] with fyk =

500 MN/m
2, ft = 525 MN/m

2, εy0 = 2.5‰ and εu = 25‰, see Fig. 2.10a.

– Left and right reinforcement each with a geometry 4 � 20, As2 = As1 = 12.57 cm2,
d2 = d1 = 5 cm.

The elastic in-plane stability limit or buckling load is determined as

Pb =
π2

4

EJ

L2
=
π2

4

33 000 · 0.001067

5.02
= 3.47 MN (3.204)

The vertical downward load target is chosen with P = 2 MN with an eccentricity of e =
0.032 m, see Fig. 3.19a. The moment–curvature for this compressive force has been deter-
mined in Example 3.1 and is shown in Fig. 3.3.
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Figure 3.19: Example 3.8 (a) System (b) Vertical load–horizontal displacement relation.

An incrementally iterative scheme with arc length control to determine load increments,
see Appendix A, and Newton–Raphson iteration within each loading increment, see Section
1.6, is used as the solution method. The computation leads to the following results:

– The computed relation between horizontal top displacement and vertical load is shown
in Fig. 3.19b. It is nonlinear due to both geometrical and physical nonlinearities.
The prescribed maximum is reached with a horizontal displacement of uu = 0.071 m.
The vertical load has to be reduced for larger horizontal displacements to maintain
equilibrium in the deformed configuration. The arc length method is mandatory to
model this structural softening behavior effect.

A load value of P = 2 MN cannot be reached with initial eccentricities e > 0.032 m as
the structural softening behavior will start with lower loads.

– The computed moments along the column are shown in Fig. 3.20a for different load-
ing factors. The computed top moment Mz=4.94 = 0.067 MNm corresponds to the
prescribed eccentricity moment of e P → 0.064 MNm. In the same way the com-
puted bottom moment Mz=0.06 = 0.206 MNm corresponds to the prescribed plus

Figure 3.20: Example 3.8 (a) Moments along column. (b) Strains along column.
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deformation eccentricity moment (e + uu)P → 0.206 MNm. This exceeds the mo-
ment from first-order theory by the factor of 3.2. Using a linear elastic material
behavior with E = 33 000 MN/m2 would lead to a stiffer behavior with a moment
Mx=0.06 = 0.172 MNm.
The maximum bottom bending moment connected to the ultimate structural load
is considerably lower compared to the ultimate cross-sectional moment of Mu =
0.261 MNm, see Example 3.1 with Fig. 3.3, indicating a structural instability.

– Strain distributions along the column for the left-reinforcement and the right-concrete
edge are shown in Fig. 3.20b for the final loading state. The materials limit strains –
e.g., εcu1 = −0.0035 for concrete – are not reached although the system has reached its
limit load.

The cantilever column is the most important case for second order computations for RC
structures. But the described approach may also be directly applied to other types of columns
and to all kinds of plane multistory frames.

End Example 3.8

Considering certain effects like some amount of tensile strength or tension stiffening will
increase the stiffness of the model. Tension stiffening may be regarded with a modification
of the stress–strain relation for the reinforcement, see Section 3.5.3. A value for the tensile
strength is considered with the lower and upper compression zone coordinates zc1, zc2, see
Section 3.1.3.1, with an extended definition of the zero line z0, see Eqs. (3.19, 3.20).

On the other hand, an effect like creep will increase the deformations and also the internal
forces in the deformed configuration. But the load level should be lower as only a permanent
or quasi-permanent loading will lead to creep. The approach for creep as is described in
Section 3.5.1 can be combined with the method for large displacements to investigate creep
effects.

3.8 Dynamics of Beams
Dynamic actions on structures may arise from walking pedestrians, vehicular traffic, rotating
machines, wind, seismicity, impact, and explosions. Decisive is a structure’s largest natural
period compared to a characteristic time of an action. Such characteristic times may come
from the step frequency of pedestrians, velocity of vehicles, rotational frequency of machines,
frequency of gusts or ground motions, duration of impact and explosions. If the largest
natural period of a structure is not considerably smaller than the characteristic action time
a structure’s inertia comes into play. The manifold aspects of dynamics of civil engineering
structures are treated by, e.g., [10], [37], [53].

Basics of inertia for beams are given in Eqs. (3.58, 3.65), which introduce the inertial
mass m per unit length of a beam and the inertial mass moment Θ. In the case the center
line of area coincides with the beam’s reference axis, see Section 3.1.1, they are given by

m = %A, Θ = % J (3.205)

with the material’s specific mass %, the cross-sectional area A and the second moment of area
J . If the center line of area does not coincide with the reference axis the definition of Θ has
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to be modified. On the other hand, contributions connected with the inertial mass moment
Θ are often neglected, as they are relatively small. Some care should be given to the units.

• Specific mass % has to be distinguished from specific weight, i.e., a given specific weight
has to be divided by earth acceleration.

Appropriate methods to solve dynamic problems have already been laid down. The basic
approach for a discretized system is given by Eq. (1.90)

M · ϋ(t) + f(t) = p(t) (3.206)

with the time t and element contributions from

– element mass matrices Me according to Eq. (3.104),

– element nodal displacements υe according to, e.g., Eq. (3.74) or (3.86),

– element internal nodal forces fe according to Eq. (3.102),

– element nodal loads pe = p̄e + t̄e according to Eqs. (3.105, 3.106).

in the case of beams. Nodal loads p(t) are generally defined as a function of t. Equa-
tion (3.206) forms a system of ordinary differential equations of the second order in time t.
Thus, initial conditions have to be prescribed for the nodal displacements and velocities at
a time t = 0. Internal nodal forces are given by

f(t) = K · υ(t) (3.207)

in the case of linear material behavior and small displacements with the element contributions
to the stiffness matrix Ke in analogy to Eq. (3.103). This leads to

M · ϋ(t) + K · υ(t) = p(t) (3.208)

instead of Eq. (3.206). Two fundamental solution approaches are given:

– Modal decomposition

– Direct integration in time

Modal decomposition presupposes constant symmetric matrices M, K and at first neglects
loading p(t). An oscillation may occur with such a system due to initially prescribed dis-
placements or velocities. The system

M · ϋ(t) + K · υ(t) = 0 (3.209)

of ordinary differential equations of second order in time t is solved by

υ = ξ sinωt (3.210)

with a constant vector ξ and a constant number ω. They will come out as eigenvector and
circular natural frequency. Circular natural frequency and natural period are related by

T =
2π

ω
(3.211)
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A generalized matrix eigenvalue problem is derived from Eqs. (3.209, 3.210) with

K · ξ = ω2M · ξ (3.212)

This has n solutions ξi, ωi, i = 1, . . . , n for a system with n nodal degrees of freedom whereby
the length of a vector ξi remains undetermined. For the solution methods for the generalized
matrix eigenvalue problem, see [3, 10., 11.].

The eigenvectors ξi constitute a matrix Ξ used for transformations into the modal space.
Firstly, the transformation υ̃ = Ξ ·υ is applied. Secondly, the transformations K̃ = ΞT ·K ·Ξ
and M̃ = ΞT ·M · Ξ each lead to a diagonal matrix. Thirdly, multiplying Eq. (3.208) from
left with ΞT decouples this set of equations into n single degree of freedom systems of
second differential order in time. This decoupling extremely facilitates the solution. This
short description outlines modal analysis. Only some aspects of modal analysis, which is a
powerful tool for all types of structures, can be given within this context. A comprehensive
presentation is given by, e.g., [43].

A few basic items of linear structural dynamics remain to be added. The smallest circular
natural frequency ω1 is determined through the Rayleigh quotient

ω1 = min

(√
ῡT ·K · ῡ
ῡT ·M · ῡ

)
=

2π

T1
(3.213)

with an appropriate displacement vector ῡ. This also gives the largest natural period T1

which is relevant for the estimation of dynamic situations. In the case of a single-degree of
freedom system – a mass m connected with a base through a spring with stiffness k – this
leads to the well-known relation

ω =

√
k

m
, T = 2π

√
m

k
(3.214)

In the case of multidegree of freedom systems with n > 1, as is given within this framework,
ω1 and T1 may be approximately determined with a ῡ resulting from a quasistatic analysis
with dead loading.

Finally, the relation for the largest natural period of a simple single span hinged beam
shall be derived. The base is given with the homogeneous differential equation of beam
bending (Eq. (3.61))

mẅ + EJ w′′′′ = 0 (3.215)

with a bending stiffness EJ . This is solved by

w(x, t) = sin
π x

L
sinωt (3.216)

with a span L and leads to

ẅ =
∂2w

∂t2
= −ω2 sin

π x

L
sinωt, w′′′′ =

∂4w

∂x4
=
π4

L4
sin

π x

L
sinωt (3.217)

Thus, boundary conditions w(0, t) = w(L, t) = 0 and EJ w′′(0, t) = EJ w′′(L, t) = 0 are
fulfilled. Furthermore, combining Eqs. (3.215, 3.217) yields

ω =
π2

L2

√
EJ

m
(3.218)
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and with Eq. (3.211) the longest natural period of a single span hinged beam

T =
2L2

π

√
m

EJ
(3.219)

This is a useful relation to derive reference values for the longest natural period of beams.
The reciprocal ν = 1/T gives the largest natural frequency, i.e., the number of cycles of a
structure’s free oscillations per time unit.

The application of modal analysis is restricted to linear or linearized problems. Such a
restriction does not apply if the basic Eq. (3.206) is directly integrated in time. A well-known
method for numerical integration in time is given by the Newmark method, see Section 1.6
and Eq. (1.97). This may immediately be applied to Eq. (3.206) and is demonstrated with
the following example.

Example 3.9 Beam under impact load
We refer to Example 3.2 with the same geometry and boundary conditions. A sudden
concentrated single point load or impact is applied in mid span. A linear elastic behavior is
assumed in a first approach to demonstrate basic characteristics of dynamic behavior under
impact. Following data are chosen:

– Young’s modulus is assumed with E = 33 000 MN/m2 and the the specific weight
with 25 kN/m3. With an earth acceleration g ≈ 10 m/s2 this leads to a specific mass
% = 0.025/10 = 2.5× 10−3 MNs2/m4 and with the cross-sectional area A = 0.2 · 0.4 m2

to a beam mass per length m = 0.2× 10−3 MNs2/m2.

– With the given parameters the longest natural period is determined with T =
2L2

π

√
m
EJ = 0.038 s and a frequency ν = 26 Hz.

The point load is characterized by an amplitude P0 and a time variation function

P (t) = P0 f(t) (3.220)

The time function is chosen as a step function with limited duration

f(t) =

{
1 for t ≤ td
0 t > td

(3.221)

Thus, loading is characterized by the parameters P0, td. Values P0 = −0.07 MN and td = 0.1 s
are used for the linear elastic reference case.

The spatial discretization is performed with nE = 20 extended two-node Bernoulli beam
elements, see Section 3.3.2. The Newmark method, see Section 1.6, is used for time integra-
tion with a time step ∆t = 0.001s. The investigated time span is chosen with 0.06 s which
has to be related to the longest natural period, see above.
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112 Chapter 3 Structural Beams and Frames

Figure 3.21: Example 3.9 linear elastic (a) Mid-span deflection with time. (b) Moments
along beam until the first maximum deflection.

Figure 3.21a shows the computed mid-span deflection during time with the following
characteristics:

– A cosine-shaped oscillation occurs.

– The maximum deflection doubles with an absolute value of 0.0106 m compared to the
deflection value 0.0053 m caused by a quasistatic loading P0.

In the same way maximum internal forces are doubled compared to the quasistatic case.
Figure 3.21b shows the bending moments along the beam in certain time steps up to the time
0.02 s when the first mid-span maximum is reached. The following points are remarkable:

– Internal forces do not immediately follow the load due to inertial effects.

– There is no longer a triangular course due to a wave propagation effect of moments. In
the beginning moments are initiated in the impact point, while the support areas are
unaffected. In the following period moment waves travel along the beam and bring the
whole beam into action.

Impact loads often have a short duration. Thus, a small parameter study is performed with
varying load duration td and constant load amplitude P0 = −0.07 MN. Figure 3.22a shows
the computed maximum mid-span deflections related to the quasistatic deflection depending
on td related to the longest natural period. If we consider a very short load duration time,
e.g., td = 0.001 s, the beam gets only roughly 20% of the quasistatic moment. Or in other
words, it may sustain five times the original load to have the same internal forces. This is
generalized by the following conclusion:

• Very short loadings are compensated by inertia and only partially result in internal
forces.
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Figure 3.22: Example 3.9 (a) Related maximum deflection depending on related load duration
time (b) RC deflection time curve.

Figure 3.23: Example 3.9 RC (a) Moments along beam until first maximum displacement.
(b) Normal forces along beam.

Finally, we consider the original reference case P0 = −0.07 MN and td = 0.1 s but with a
nonlinear RC section instead of linear elastic behavior. Material properties and reinforcement
are chosen as in Example 3.2 with an additional reinforcement As2 = 12.57 cm2, d2 = 5 cm
on the upper side. The computation leads to the following results:

– Figure 3.22b shows the mid-span displacement during time. Due to the reduced stiffness
the period of the oscillation grows, compare Fig. 3.21a. Maximum mid-span displace-
ment grows to 0.019 m, roughly a doubling occurs compared to the linear elastic case.

– Figure 3.23a shows the bending moments along the beam up to the time 0.027 s when
first mid-span maximum is reached. The same moments occur with some time shift
compared to the linear elastic case, see Fig. 3.21a.

– In the case of RC some normal forces arise without normal force loading, see Fig. 3.23b.
This is caused by the beam’s movement in the longitudinal direction due to cracking,
which is constrained by the beam’s inertia.
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– The ultimate limit state is not reached for the given load with maximum absolute
values of concrete strain εc ≈ −1‰ and εs ≈ 2‰.

The characteristics of the beam’s response are to a large extent determined by the time
variation function f(t), see Eq. (3.220). The direct integration in time allows for arbitrary
characteristics. A harmonic type would potentially lead to a resonance if the excitation
frequency is near the natural periods. This effect may occur both for linear and nonlinear
behavior.

End Example 3.9

Another aspect of dynamics is damping. Damping leads to a dissipation of energy. A first
model of dissipation has already been given by viscosity, see Fig. 2.8. Dissipation may be
treated on the material level and on the system level.

An example of dissipation on the material level has been given by the cyclic behavior
of steel, see Fig. 2.10b. This is implicitly covered by the incremental material description
(Eq. (1.50)) leading to different tangential stiffness in the case of loading and unloading and
thus to energy dissipation within cycles of stress–strain histories.

Dissipation on the system level can be treated in analogy to Eq. (2.21) describing a
Kelvin–Voigt element which is extended with a term for mass inertia. This extension is
introduced in the generalized form (3.208)

M · ϋ(t) + C · υ̇(t) + K · υ(t) = p(t) (3.222)

with a viscosity matrix C. For aspects determining C in the case of structural systems and
solution methods for Eq. (3.222) see, e.g., [3, 9.3].
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Chapter 4

Strut-and-Tie Models

4.1 Elastic Plate Solutions
Beams are characterized insofar as height and width of their cross section are small compared
to their span. This allows applying the Bernoulli–Navier hypothesis: undeformed plan cross
sections remain plane during a deformation. This kinematic assumption is no longer valid
for plates where height has the same dimension as span.

An example is given with the single-span deep beam with an opening, see Fig. 4.1a, as a
special case of a plate. It is supported by a column on the lower left side and fixed in a larger
shear wall on the right side. The loading is given by a distributed load and a concentrated
load on the upper side.

Even if linear elastic material behavior is assumed an analytic solution is not available
for such a system. A numerical method has to be used instead for solution and the finite
element method is appropriate. The discretization may be performed with the plane four-
node continuum element, see Section 1.3. The displacement field has two degrees of freedom
u, v, see Eq. (1.35). Strains and stresses have components

ε =

 εx
εy
γxy

 , σ =

 σx
σy
σxy

 (4.1)

see Eqs. (1.39, 1.42). The steps of the discretization follow the general outline as has been
described in Section 1.5. The evaluation of integrals is performed with a Gauss integration
according to Section 1.6 and Eq. (1.68). Integration order is 2× 2 with ni = nj = 2.

Regarding the material a linear elastic behavior should be assumed in a first approach
to assess such a problem. Plane strain or plane stress conditions, see Eqs. (1.44, 1.45), can
be assumed for a plate beam depending on the width. With a thickness of b = 0.6 m for
the given example plane stress conditions seem to be more appropriate, but the differences
do not have a major effect. Both are subsumed as 2D states. After prescribing boundary
conditions for u, v and loading a solution can be computed in one step according to Eq. (1.13)
and an equilibrium iteration is not necessary.

Results for the problem formulated in Fig. 4.1a are shown in Fig. 4.1b. Results are given
as principal stresses in each integration point of each element. A principal stress state is

Computational Methods for Reinforced Concrete Structures. First Edition. Ulrich Häussler-Combe.
© 2015 Ernst & Sohn GmbH & Co. KG. Published 2015 by Ernst & Sohn GmbH & Co. KG.
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116 Chapter 4 Strut-and-Tie Models

Figure 4.1: Deep beam (a) System (b) Principal stresses.

characterized by two principal stress values σ1, σ2 and an orientation angle ϕ which indicates
the inclination of the stress component σ1 against the global x-axis. The orientation of the
stress component σ2 is perpendicular. Due to their inclination principal stresses σ1, σ2 are
locally in equilibrium to stresses σx, σy, σxy. More details regarding the principal values will
be given in Sections 5.2.3 and 6.1.2.

The varying orientation of principal stresses leads to principal stress trajectories which
are derived from the orientation of the principal stresses only.

• Plane principal stress trajectories indicate the flow of forces for 2D states.

As an example, Fig. 4.1b basically shows such a flow force. A compression arch arises from
the point of the concentrated load to the lower left and right bearing. The lower left bearing
which may displace horizontally is tied to the right end through a tension band. The upper
right side of the deep beam has a tension band as it is fixed in the shear wall. Furthermore,
the compression arch is disturbed by the opening which leads to a secondary system of
compression and tension bands.

The rough outline of force flow from immediate inspection may be stated more pre-
cisely through a construction of trajectories. Let y(x) be the function describing the course
of a stress trajectory in the x, y-plane and x1, y1 with y1 = f(x1) be a starting point.
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4.2 Modeling 117

Such a starting point should lie on a bounding edge. The fields of stress components
σx(x, y), σy(x, y), σxy(x, y) have to be known. As discrete values are practically given with
results in integration points an interpolation has to be used to construct fields yielding re-
sults for every desired coordinate. Such a method is described in Example 6.1. With this
prerequisite, the equation

dy

dx
= ϕ = f(σx(x, y), σy(x, y), σxy(x, y)) (4.2)

provides an ordinary differential equation whereby the orientation angle ϕ of principal stresses
is determined through, e.g., Eq. (6.5). This problem at least can be solved numerically for
y(x). The inspection of a number starting points on the boundary finally leads to a pattern
of trajectories.

Such a relatively elaborate procedure may be simplified for practical purposes.

• A manual sketch of curves along principal stress orientations underlayed by a diagram
of principal stresses is generally sufficient to approximate trajectories in order to un-
derstand the force flow in a plate.

Some trajectories have to be chosen out of a more or less dense band such that they give a
characteristic pattern of force flow or – more generally – a conceptual model, see Section 1.1.
This task again has not a unique solution but is essential for strut-and-tie models.

4.2 Modeling
The survey of trajectories and a potential way of force flow is a base for the design of plates
consisting of reinforced concrete. Such a design may have as premises:

– Trajectories under compression are assigned to concrete struts.

– Trajectories under tension are assigned to reinforcement ties.

Such assignments are approximate. First of all, trajectories or force flow itself may be
derived by a (presumably) sound estimation. Furthermore, trajectories are curved but struts
and ties should be straight by definition. Thus, the geometries of the chosen characteristic
trajectories are approximated by straight-line segments. A rough approximation with only a
few line segments is generally sufficient. This approach leads to a truss with

– compression members corresponding to struts,

– tensile members corresponding to ties,

– and nodes connecting struts and ties.

which altogether form a strut-and-tie model. A possible model for the example of Fig. 4.1a
is shown in Fig. 4.2a [16, 8.8]. Determination of member layout obviously has a margin of
discretion. An alternative for the same system is given in [17, 6].

The approach using trajectories as orientation or the trajectory method has the load path
method as an alternative. A load path connects the points where loads are applied to a
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118 Chapter 4 Strut-and-Tie Models

Figure 4.2: (a) Example truss system. (b) Compression field as strut-and-tie model.

structure to its support points by straight-line segments with minimized length. From a
statical point of view these line segments correspond to compression members or struts in
most cases. As a load path necessarily involves redirections, redirection forces are necessary
from a statical point of view to ensure equilibrium. Such redirection forces may be com-
pressive corresponding to struts or tensile corresponding to ties. Both the load path method
and the trajectory method should lead to similar results for a given structural task. Both
methods may be combined with criteria of total energy minimization to optimize member
layout of a strut-and-tie modeling.

Such a result of strut-and-tie modeling is used for the reinforcement design of the given
task. This leads to a new aspect in the model of modeling as has been discussed in Section 1.1.

• In contrast to the intention of conventional modeling the layout of strut-and-tie models
to some extent influence the behavior of the corresponding plates or the reality of
interest, respectively.

Plates as all structures of civil engineering initially behave linear elastic as has been sketched
in Section 4.1. This changes during crack formation of reinforced concrete plates: the force
flow changes according to the design of rebars and their interaction of compressive zones.
The strut-and-tie model is “good” if some extent of agreement is given between compression
fields of the reality of interest and the struts of the model.

Anyway, properties have to be assigned to a strut-and-tie model beneath its member
layout. Struts and ties are uniaxial structural elements which must be given a cross section.
While this is naturally given for ties through rebar cross-sectional areas the assignment of
cross sections to struts is artificial to some extent. Struts may be regarded as models of
compression fields as is exemplary shown in Fig. 4.2b with a characteristic oval shape and a
fan-out and fan-in of stresses. A single strut obviously lends itself for a secondary strut-and-
tie model. The strut’s outer oval may be replaced by a rectangle of equal area leading to a
width. A cross-sectional area is determined in combination with depth. This outlines one
approach of alternatives for the cross section determination of struts.

Material properties have to be assigned beside geometric properties. They can be derived
according to Section 2.1 for the uniaxial behavior of concrete and according to Section 2.3
regarding rebars. Tension-stiffening effects on rebars may be treated as is described in Sec-
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tion 2.7. Connection of struts and ties in nodes is outlined in Section 4.5. Code provisions
for strut-and-tie models are given in [26, 5.6.4,6.5], [18, 7.3.6]. Reductions of uniaxial con-
crete strength due to lateral tensile stresses – frequently occurring in biaxial stress fields but
unseizable with a truss – have to be regarded in particular.

The foregoing reasoning should lead to a strut-and-tie model for a given structural prob-
lem together with boundary conditions and loading. A more detailed description of the
method is given in [16, 8], with a comprehensive collection of examples in [17]. Methods to
determine forces in struts and ties and the load-carrying capacity of structures remain to be
described.

4.3 Solution Methods for Trusses
A strut-and-tie model has to be analyzed as truss. Thus, we consider a plane truss with
nE bars and nN nodes. Every node has two degrees of freedom u, v. Some nodes must be
supported and degrees of freedom constrained to keep the truss in position. This leads to
a total number of n degrees of freedom. Structural behavior of trusses is again ruled by
kinematic compatibility, equilibrium, and material behavior.

We start with considering kinematic compatibility or the kinematic assumption for a
truss. A truss member e is given by the end nodes I, J . It has an orientation angle α from
I to J and node displacements ũeJ , ũ

e
I in the longitudinal member direction. The strain ς of

member e is defined as
ςe = ũeJ − ũeI (4.3)

This differs from the conventional definition of strain, but is more convenient for the following
argumentation. Displacements in the longitudinal bar direction have to be transformed into
the global system. This leads to global displacements of nodes I, J

υI =

(
uI
vI

)
=

(
cosαe

sinαe

)
ũeI , υJ =

(
uJ
vJ

)
=

(
cosαe

sinαe

)
ũeJ (4.4)

see Fig. 4.3a, resulting in

ũeI =
(

cosαe sinαe
)
· υI , ũeJ =

(
cosαe sinαe

)
· υJ (4.5)

Figure 4.3: Truss (a) Member strain. (b) Member force and nodal forces.
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Combining Eqs. (4.3, 4.5) leads to the strain of member e depending on global displacements

ςe =
(
− cosαe − sinαe

)
· υI +

(
cosαe sinαe

)
· υJ (4.6)

Collection of all bars in a vector gives a formulation


...
ςe

...

 =


...

...
...

...
· · · − cosαe − sinαe · · · cosαe sinαe · · ·

...
...

...
...

 ·



...
uI
vI
...
uJ
vJ
...


(4.7)

or in a matrix notation

e = B · υ, B ∈ RnE×n, υ ∈ Rn, e ∈ RnE (4.8)

whereby d in Rd indicates the dimension of matrices and vectors. The vector e collects all nE
member strains and υ all n nodal displacements. There is a similarity compared to Eq. (1.2)
for strains within finite elements.

Equilibrium has to be considered in the next step. A member e has end nodes I, J and a
member force se (tension positive, compression negative). Member e contributes forces both
to the nodes I, J , see Fig. 4.3b, leading to global nodal forces

feI =

(
feIx
feIy

)
= se

(
− cosαe

− sinαe

)
, feJ =

(
feJx
feJy

)
= se

(
cosαe

sinαe

)
(4.9)

Local equilibrium condition for nodes I, J with external nodal loads pI , pJ requires∑
e

feI = pI ,
∑
e

feJ = pJ (4.10)

The global equilibrium condition is given through assembling of all node contributions

...
· · · − cosαe · · ·
· · · − sinαe · · ·

...
· · · cosαe · · ·
· · · sinαe · · ·

...


·


...
se

...

 =



...
pIx
pIy
...
pJx
pJy
...


(4.11)

or in a matrix notation
f = p, f ,p ∈ Rn (4.12)
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with
f = BT · s, BT ∈ Rn×nE , s ∈ RnE (4.13)

whereby the vector s collects all nE member forces, f the nodal forces and p all n nodal
loads. Here we see again the matrix B of Eq. (4.8), but it has been transposed. There is a
similarity compared to Eq. (1.58)1 for internal nodal forces of finite elements.

Figure 4.4: Truss system types.

A case nE < n indicates an statically underdeterminate system or kinematic chain, see
Fig. 4.4, nE = n a statically determinate and nE > n a statically indeterminate system.
Member forces for a statically determinate system may be determined directly from Eq. (4.13)
by s = B−1 · p in case B is not singular and the inverse B−1 exists. A singular B indicates
an dysfunctional system. Statically underdeterminate systems are possible for strut-and-tie
models of plates as stability is reached through the concrete body surrounding struts and
ties. Member forces may be determined regarding equilibrium of one node after another in a
sequence of neighbored nodes for such cases. The introduction of blind members should be
considered to make an underdeterminate system determinate. Member forces calculation of
indeterminate systems requires implication of stiffness and kinematic compatibility. This is
resolved in the following.

Material behavior has to be considered in the last step. To begin with, a uniaxial linear
elastic material behavior is assumed, see Eq. (1.43). Ae is used for the cross-sectional area
of a member e, Le as its length and Ee as its Young’s modulus. With se = Ae σe with the
stress σe of member e and εe = ςe/Le, where εe is the physical strain of member e, member
forces are given by

se = Ce ςe, Ce =
EeAe
Le

, e = 1, . . . , nE (4.14)

In a matrix notation this can be written as

s = C · e, C ∈ RnE×nE (4.15)

where the material matrix C is diagonal with coefficients Ce. Combination of Eqs. (4.13,
4.15, 4.8) leads to

K · υ = p, K = BT ·C ·B, K ∈ Rn×n (4.16)
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with a constant symmetric stiffness matrix K. There is a similarity of Eq. (4.16) compared
to Eq. (1.61) for the linear stiffness matrix of finite elements. This completes the linear
elastic framework for trusses. Obviously strong similarities to finite element approaches are
given. In fact, a plane truss member corresponds to a two-node bar element in plane, see
Section 1.3, with a one-point integration. An application is demonstrated with the following
example.

Example 4.1 Deep beam with strut-and-tie model
We refer to the problem given in Fig. 4.1a and linear elastic principal stresses shown in
Fig. 4.1b. This problem is also discussed in [16, 8.8]. The chosen strut-and-tie model is
shown in Fig. 4.2a. Obviously there is some effort to circumvent the central rectangular hole.
The resulting total load has been distributed to upper nodes according to the loading scheme
of Fig. 4.1a.

The system has nE = 36 bars and 21 nodes. Seven nodal degrees of freedom are restrained
by boundary conditions leading to n = 2 · 21 − 7 = 35. Thus, we have “nearly” a statically
determinate system. Internal forces are influenced by the stiffness of the members to a small
extent.

Figure 4.5: Example 4.1 (a) Member stresses. (b) Proposed reinforcement scheme.
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A preliminary computation reveals a distinction between struts (→ compressive) and
ties (→ tensile). The following reference values for Young’s modulus and cross-sectional
area are chosen for the ties: Es = 200 000 MN/m2, As = 10 × 10−3 m2, and for the struts:
Ec = 30 000 MN/m2, Ac = 0.12 m2. The last value corresponds to a deep beam thickness
b = 0.6 m and an assumed strut width of 0.2 m.

Computed stresses of struts and ties are shown in Fig. 4.5a. Negative values with small
amount correspond to struts, and positive values with relatively large amount correspond to
ties. According to each individual stress value the reference value of cross-sectional area may
be increased or reduced for the corresponding member to gain some target stress. Target
stress values may be derived from strength values in codes, see e.g., [26, 6.5].

A reinforcement scheme as proposed in [16, Fig. 8.49] is shown in Fig. 4.5b. Single
vertical ties of the model are distributed as stirrups with a small spacing. The width of
cracks occurring with ties may be estimated according to Appendix B.

End Example 4.1

An iteration has to be considered in the case of statically indeterminate systems as revaluation
of cross-sectional areas of rebars influences the stiffness of ties and insofar the results of a
statically indeterminate calculation. On the other hand, assumptions about the stiffness of
struts are basically uncertain. Thus, statically determinate systems are preferred for strut-
and-tie models.

A nonlinear material behavior is considered for trusses in the following. Actually struts
and ties have limited bearing capacities. This may in a first approach be described with an
uniaxial elastoplastic material law, see Section 2.3 applied to both the reinforcement and the
compressive concrete.

The linear elastic material law (Eq. (4.14)) changes into the incremental form

ṡe = CTe ς̇e, e = 1, . . . , nE (4.17)

or in the matrix notation
ṡ = CT · ė (4.18)

with a diagonal tangential material stiffness CT . The coefficients CTe are determined accord-
ing to Section 2.3 whereby the material model of elastoplasticity is also applied to uniaxial
concrete behavior with adapted material parameters. The combination of Eqs. (4.8, 4.13,
4.17) leads to rates of nodal forces

ḟ = KT · υ̇ (4.19)

with a tangential system stiffness in analogy to Eq. (4.16)

KT = BT ·CT ·B, KT ∈ Rn×n (4.20)

One has to distinguish upper T for transposed from lower T for tangential. Equilibrium has
a condition

r(υ) = p− f(υ) (4.21)

in analogy to Eq. (1.69). The solution may be determined along the outline for the incre-
mentally iterative scheme as has been described in Section 1.6.

mailto:Ulrich.Haeussler-Combe@tu-dresden.de
http://www.tu-dresden.de/biwitb/mbau
http://www.tu-dresden.de


124 Chapter 4 Strut-and-Tie Models

The application of strut-and-tie models is not restricted to deep beams. Every plane
structure which does not behave according to the Bernoulli–Navier hypothesis of plane de-
formed cross sections lends itself for strut-and-tie models. This is demonstrated with the
following corbel example in connection with an elastoplastic analysis.

Example 4.2 Corbel with an elastoplastic strut-and-tie model
Corbel geometry, loading and strut-and-tie model are shown in Fig. 4.6. The model has
nE = 14 members and n = 12 degrees of freedom, i.e., the system is twofold statically
indeterminate. A provisional first calculation has to be performed to distinguish between
tensile and compressive members. Basing upon this calculation member properties are chosen
as follows:

– Tensile members 1–7 are chosen as elastoplastic ties with a Young’s modulus E =
200 000 MN/m2, an initial yield strength fyk = 500 MN/m2 and a reference cross-
sectional area As,ref = 10 cm2 = 10× 10−4 m2. The cross-sectional area of each partic-
ular member is modified by a factor which is also given in Fig. 4.6b.

– Compressive members 8–14 are chosen as struts with a Young’s modulus E =
30 000 MN/m2. Concrete is assumed as elastoplastic in this context with an initial yield
limit fyk = 40 MN/m2. The assumed value is relatively large. Code provisions restrict
allowable concrete stresses to a large extent, see e.g., [26, 6.5]. The cross-sectional
area of all struts is assumed with a width h = 0.05 m and a corbel depth of b = 0.5 m
leading to Ac = 0.025 m2.

– The entity of all struts in the model corresponds to a single oval strut, see Fig. 4.2b. The
redirection forces of this larger oval strut are assigned to the intermediate horizontal
and vertical ties or stirrups.

– Finally, a slight hardening, see Section 2.3, is assumed for the yielding of the reinforcing
steel and the concrete to avoid singularities of the tangential stiffness.

An approach for system building and solution is given by Eqs. (4.19–4.21). The finite element
method with 2D-bar elements in a plane according to Section 1.3, material law according to

Figure 4.6: Corbel example 4.2 (a) System. (b) Strut-and-tie model.
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Figure 4.7: Example 4.2 (a) Load–displacement curve. (b) Member stresses.

Section 2.3, and system building according to Section 3.4 may be applied alternatively and
leads to the same results.

Loading is applied with prescription of the vertical displacement of the load bearing node.
The solution is determined incrementally iterative with the Newton–Raphson approach, see
Section 1.6, and arc length control, see Appendix A. The computed load-displacement curve
is shown in Fig. 4.7a. The deformation behavior can be described as follows:

– A linear elastic behavior is given initially up to reaching the first yielding of a tie.

– A strongly decreased stiffness occurs with the first tie yielding but some more loading
can be applied.

– The ultimate limit state is reached with the yielding of other ties in the statically
indeterminate system such that the system becomes “nearly kinematic.” The system
does not become “really kinematic” with the hardening assumption. Without hardening
the tangential system stiffness would become singular and a unique solution could not
be determined anymore.

The computed member stresses in the final state are shown in Fig. 4.7b. The yield limit is
reached in most ties and slightly exceeded due to hardening. Struts are not critical in this
particular case, but not far away from reaching the nominal yield limit.

End Example 4.2

Inclusion of limited strength, e.g., with elastoplasticity, allows for a direct determination of
ultimate loads of strut-and-tie models. The computed deformation behavior has to be judged
with some caution due to the limited ability of struts to model the behavior of compression
fields.

4.4 Rigid-Plastic Truss Models
Strut-and-tie models offer a relatively simple way to determine the relation between loading
on one hand and reinforcement stresses and estimated demands of concrete on the other hand
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ending up with the ultimate limit loads. The ability of strut-and-tie models to determine
the deformation behavior of real structures is limited as the material laws (Eqs. (4.14, 4.18))
are principally limited in their capability to capture in particular the deformation behavior
of compressions fields.

There is no easy way to overcome this presumable drawback. Thus, we accept it as a
characteristic property of strut-and-tie models. However, a way to simplify the description
of material behavior is opened. We reformulate the problem of elastoplasticity for trusses.
First of all, conditions for kinematic compatibility according to Eq. (4.8) (nE equations) and
equilibrium according to Eq. (4.13) (n equations) are kept. But the material behavior is
described with

– a limit state or strength condition

|se| ≤ seu, seu = fey Ae, e = 1, . . . , nE (4.22)

with signed forces se, unsigned bearing capacities seu, yield strength fey and cross
section areas Ae of members,

– an assumption about strains or flow rule

|ςe|
{

= 0 for |se| < seu
> 0 |se| = seu

, e = 1, . . . , nE . (4.23)

with the member strain according to Eq. (4.3),

– a dissipation condition or Kuhn–Tucker conditions

se ςe ≥ 0, s · e ≥ 0, s, e ∈ RnE (4.24)

Elastic deformations are no longer considered in this rigid-plastic approach. This is conve-
nient regarding the uncertain estimation of elastic stiffness properties of struts.

The balance of equations versus unknowns for a truss with mE members and n nodal
degrees of freedom shows the following: On one hand there are mE member forces s, n nodal
displacements u and nE bar strains e as unknowns, on the other hand there are 2× nE + n
equations (4.8, 4.13, 4.23) plus 2× nE constraint equations (4.22, 4.24).

The solution of this problem is not straightforward. It is provided by methods of opti-
mization and linear programming, see e.g., [63]. For the sake of simplicity, we restrict to a
loading type

p = λp0, λ > 0 (4.25)

with a unit load p0 which is fixed and a loading factor λ. The basic solution idea is regarding
a maximization problem

λ→ max (4.26)

while fulfilling equilibrium and the strength condition, i.e., constraints

BT · s = λp0 and |se| ≤ seu, e = 1, . . . , nE (4.27)

The quantities B, su, p0 are known and s, λ are unknown in this formulation. Equa-
tion (4.26) can be interpreted as maximization of loading.
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Furthermore, linear programming theory states a so-called dual problem associated with
the maximization problem. This is a minimization problem

s̄u · ē→ min (4.28)

where ē collects all |ςe| and s̄u all seu. The notation •̄ should be interpreted as operator on
• in this context. The minimization has constraints

B · e = u and p0 · u = 1 (4.29)

i.e., essentially kinematic compatibility. The quantities B, su, p0 are known and e, u are
unknown in this formulation. Equation (4.28) can be interpreted as minimization of energy.

Linear programming theory finally states that solutions s?, λ? exist for the maximization
and e?, u? for the minimization. The target functions (Eqs. (4.26, 4.28)) have the same
optimal value

λ? = s̄?u · ē? (4.30)

with λ? > 0. It may be shown that the solutions fulfill the conditions

e?e = 0 if |s?e| < seu and s? · e? > 0 (4.31)

The relations may be summarized as follows:

• The solutions s?, λ?, e?, u? of the associated optimization problems for load maxi-
mization and dissipated energy minimization are also the solutions of the rigid-plastic
problem.

The rigid-plastic problem is also fulfilled by s?, λ?, and βe?, βu? with an arbitrary scalar
β > 0. But this may violate the constraint p0 · u = 1 and the minimization problem is no
longer solved. Regarding the rigid-plastic problem the absolute values of the deformations
are indeterminate. Only the relation between the deformation components is determined to
some extent.

The rigid-plastic problem and the corresponding elastoplastic problem – with the same
parameters but additional elasticity before yielding without hardening – share the solution.
The vectors s = s?, p = λ? p0 fulfill Eqs. (4.12, 4.13) and (4.19, 4.21) for arbitrary values of
Young’s modulus for members. Thus, the elastic stiffness does not influence the limit state
for forces and loads. But elasticity influences the deformations of the elastoplastic problem
due to elastic deformations prior to plastic deformations.

The solution method for the optimization problems still needs to be discussed. Primarily
we are interested in loads λp0 and member bar forces s. Thus, we have to solve the maximiza-
tion problem defined in Eqs. (4.26, 4.27). The solution is simple for statically determinate
systems with n = nE and a square and nonsingular B. The maximum value of λ can be
easily found from s = λB−1 · p0, see Eq. (4.27), and the condition |se| ≤ seu, e = 1, . . . , nE .
For small statically indeterminate systems a solution may be found by inspection or trial and
error as is demonstrated in Example 4.3.

Larger problems require systematic methods of linear programming, e.g., the simplex
method or general methods of optimization. The simplex method is a standard method to
solve linear constrained optimization problems whereby a formulation like Eqs. (4.26, 4.27)
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describes problems in all disciplines of science, technology and economics. The detailed
description has to be omitted here for the sake of brevity, but is given, e.g., in [63].

Correspondence of the optimization problems to the rigid-plastic structural problem leads
to the limit theorems of plasticity:

1. Any equilibrium state which fulfills the limit state condition, see Eqs. (4.26, 4.27), gives
a lower bound for the loading factor λ.

2. The work s̄u ·ē of load-bearing capacities on kinematically admissible deformations with
a constraint p0 ·u = 1, see Eqs. (4.28, 4.29), yields an upper bound value for the loading
factor λ. An unconstrained formulation of this theorem is given by s̄u · ē = λp0 · u or

• internal work = external work

leading to the
upper bound of loading factorλ → s̄u · ē

p0 · u
(4.32)

whereby magnitudes of ē, u are arbitrary but proportional.

These theorems are generally stated as a kind of postulates. Actually, their exact formulation
and proof corresponds to linear programming theory.

Finally, deformations are regarded to make the outline complete. The following approach
is appropriate instead of solving the minimization problem. Kinematic compatibility equa-
tion (4.8) is considered and reformulated with a unit matrix InE ∈ RnE×nE

B · u = InE · e, e ∈ RnE , u ∈ Rn, B ∈ RnE×n, nE ≥ n (4.33)

As B has n linear independent rows Eq. (4.33) can be transformed into[
In
0

]
·u =

[
P
Q

]
· e, In ∈ Rn×n, 0 ∈ R(nE−n)×n, P ∈ Rn×nE , Q ∈ R(nE−n)×nE (4.34)

by Gauss elimination, see [54], with a unit matrix In, a zero matrix 0 and generally fully
occupied matrices P, Q. Equation (4.34) leads to

u = P · e, Q · e = 0 (4.35)

Equation (4.35)2 describes the kinematic compatibility of indeterminate systems. In the case
nE = n the matrix P is the inverse of B and Q vanishes. From an analysis of forces and
Eq. (4.23) a set of members can be determined with strains ςi 6= 0, i = 1, . . . , nY and all
other members with ςj = 0, j = nY + 1, . . . , nE . The parameter nY indicates the number of
yielding members. Thus, a submatrix Q′ of Q is given in case nE > n by

Q′ · e′ = 0, e′ ∈ RnY , Q′ ∈ R(nE−n)×nY (4.36)

where e′ collects all yielding ςi. Two cases have to be distinguished.

– nY ≤ nE − n: Eq. (4.36) can only be fulfilled with e′ = 0, i.e., no deformation occurs
at all.
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– nY > nE − n: a number of nY − (nE − n) components of e′ may be chosen arbitrarily
under the condition Eq. (4.24) while the rest is determined by Eq. (4.36). This leaves
the absolute deformations undetermined.

Only the relations of the deformation components are determined to some extent by this
approach. This is a characteristic property of rigid-plastic systems.

Things simplify in the case of a statically determinate system nE = n. Kinematic com-
patibility of indeterminate systems (4.35)2 vanishes and strains of yielding bars may be given
arbitrary values, while all other strains are zero. With given strains e displacements u can
be determined directly by Eq. (4.35)1.

Example 4.3 Corbel with rigid-plastic strut-and-tie model
We refer to Example 4.2. The same system is treated as rigid-plastic using the first limit
theorem of plasticity. This requires the knowledge of the cross-sectional areas of members and
their yield stress. The values are taken from Example 4.2. Young’s modulus and hardening
behavior after reaching the yield limit are not relevant. Basic parameters are: number of
nE = 14 bars, nine nodes, three boundary nodes, and n = 12 degrees of freedom.

The following bases upon a linear elastic precalculation distinguishing between compres-
sive and tensile members. To start with the states fulfilling the first limit theorem of plasticity
are determined. Equilibrium is described by Eq. (4.13)

BT · s = λp0 (4.37)

with the vector of member forces s, a loading factor λ, a unit load

p0 =
(

0 0 0 0 0 0 0 0 0 −1 0 0
)T (4.38)

applied vertically downward on node 7, see Fig. 4.7b, and

BT =

0 0 0 0 0 0 0 0 1 0 0 −0.707 0 0
−1 0 0 0 0 0 0 0 0 0 0 −0.707 0 0
0 0 −1 0 0 0 1 0.243 0 0 0 0 −0.707 0
0 0 0 0 0 0 0 0.971 0 0 0 0 −0.707 0
0 0 0 1 0 0 0 0 0 0 0 0.707 0 −0.243
0 0 0 0 0 0 0 0 0 0 0 0.707 0 −0.971
0 0 0 0 1 −1 0 0 0 0 0 0 0.707 0
0 1 0 0 0 0 0 0 0 0 0 0 0.707 0
0 0 0 0 0 1 0 0 0 0 0.781 0 0 0.243
0 0 0 0 0 0 0 0 0 0 0.625 0 0 0.971
0 0 1 −1 0 0 0 0 0 0.781 −0.781 0 0 0
1 −1 0 0 0 0 0 0 0 0.625 −0.625 0 0 0


(4.39)

whereby the boundary nodes 1, 5, and 9 and their degrees of freedom are disregarded.
A number of n̄E = nE − n + 1 = 3 more or less arbitrary member forces are prescribed

and Eq. (4.37) remains with n = 12 equations for the remaining 11 member forces plus
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the loading factor λ. This is principally solvable for a well-behaved structural system. The
members 1, 7, 11, see Fig. 4.7b, are chosen for prescription by chance. This leads to the
following steps to estimate an admissible loading factor:

– They are prescribed with their bearing capacities s1 = 0.05 MN, s7 = 0.1 MN, s11 =
−0.8 MN. The solution of the modified system (Eq. (4.37)) leads to s2 = 0, s3 =
0.1, s4 = −0.375, s5 = 0.6372, s6 = 0.6372, s8 = 0, s9 = −0.05, s10 = −0.88, s12 =
−0.0707, s13 = 0, s14 = 0.0515 and a loading factor λ = 0.5498.

– The computed member forces lead to stresses σ5 = 637 MN/m2, σ6 = 637, σ10 = −44
for the members 5, 6, and 10. This is not admissible, as the stresses exceed the material
strength and the limit state condition (Eq. (4.22)) is violated for these members. All
other computed member stresses are below material strength.

– All member forces are reduced by the smaller of the factors 500/637 = 0.785 and
−40/− 44 = 0.909 which is 0.785 and leaves members 5 and 6 in a yielding state.

– To maintain equilibrium according to Eq. (4.37), the loading factor also has to be
reduced by the same factor leading to a final loading factor of λ = 0.785 ·0.5498 = 0.43.
This is a lower bound for the real loading factor. The admissible loading is not less but
may be larger.

– Deformations can be determined as described in Section 4.4. With two yielding mem-
bers nY = 2 and nE − n = 2. Thus, the matrix Q′ has 2× 2 dimension and Eq. (4.36)
can only be fulfilled with zero deformations. This solution does not fulfill Eq. (4.23)
and the solution of the rigid-plastic problem is not yet found.

Another choice by chance with the members 9, 11, 13 leads to the lower bound of λ = 0.081
and leaves only member 1 in a yielding state. No nonzero deformation can be found fulfilling
the kinematic compatibility conditions.

Using the binomial coefficient there are(
nE
n̄E

)
=

nE !

n̄E !(nE − n̄E)!
= 364 (4.40)

possibilities for a choice of n̄E = 3 out of nE = 12. This trial and error method to deter-
mine the largest value λ and therewith a solution of the rigid-plastic problem is obviously
cumbersome.

The simplex method can be applied to determine the exact solution. The method yields
the following results:

– The member stresses are shown in Fig. 4.8a with the five yielding members 1, 3, 5, 6,
and 7. The corresponding loading factor is λ = 0.44. The horizontal tie in half-height
is fully utilized which leads to some increase of the limit load.

– The results of Fig. 4.8a have to be compared the results of the elastoplastic calculation,
see Fig. 4.7b. Both approaches basically lead to the same ultimate limit load and a
similar stress distribution.
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Figure 4.8: Example 4.3 (a) Member stresses. (b) Displacement mode.

– Displacements can be determined as is described in Section 4.4. With the five yielding
members 1, 3, 5, 6, and 7 is nY = 5 > nE − n = 2, i.e., three member strains may be
chosen arbitrarily while the remaining two are determined with by Eq. (4.36). A choice
ς1 = 0.1, ς3 = 0.03, ς5 = 0.1 leads to

e =
(

0.1 0 .03 0 0.1 0.1225 0.03125 0 0 0 0 0 0 0
)T (4.41)

With Eq. (4.28) the energy is s̄u · ē = 0.122375

– The displacements can be determined by Eq. (4.35)1. Results are shown in Fig. 4.8b.
The vertical displacement of the loaded node 7 is computed with −0.278125.

– A displacement scaling factor of 1/0.278125 = 3.5955 has to be chosen to fulfill
Eq. (4.29) with p0 from Eq. (4.38). This leads to an energy s̄u · ē = 0.44 and corre-
sponds to the maximum loading factor as is stated by the limit theorem of plasticity.

End Example 4.3

In contrast to the elastoplastic model of Example 4.2 the determination of absolute deforma-
tions is not possible with the rigid-plastic approach due to arbitrary choice of some member
strains. A deformation mode can be determined to some extent.

4.5 More Application Aspects
The focus of strut-and-tie models is on ultimate limit loads of reinforced concrete structures.
This primarily depends on the strength of the ties and struts. Furthermore, strength of
members depends on cross-sectional areas and material strength of materials. While both
data can be reliably – within usual scatter – determined for the reinforcement uncertainties
remain for concrete struts.

A conservative rule to determine the width of struts can be derived from the inspection of
nodes connecting struts and ties. Some hints will be given in the following paragraph. The
estimation of the concrete compressive strength of struts is insofar difficult as pure uniaxial
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Figure 4.9: (a) Compression node. (b) Compression–tension node. (c) Reinforcement redi-
rection node.

compression states are generally not given in plates. A principal compression in many cases
is combined with a more or less pronounced lateral principal tension. An example can be
seen with the introductory example and Fig. 4.1b where the diagonal compression fields with
their major principal compression have a minor principal tension. Such a lateral tension
reduces the compressive strength. Thus, the strength for struts should be reduced compared
to uniaxial compressive strength. Recommendations are given in [26, 6.5.2], [18, 7.3.6.2].

An essential part of strut-and-tie models are nodes. This term gets a specific meaning
in this context different from a node in a finite element discretization. Nodes connect struts
and ties and permit an exchange of forces. The most important types are given by:

– Compression node without ties, see Fig. 4.9a

– Compression tension node with one tie, see Fig. 4.9b

– Compression tension node with two ties, see Fig. 4.9c

A characteristic length is given for each of the three types, e.g., the length of a bearing or the
length of a diagonal connecting the radius of curvature of a rebar. This length determines
the initial width of struts. The width may increase due to a fan out of a compression field,
see Fig. 4.2b, but this may be neglected for a conservative estimation of a strut width.

The mentioned characteristic length also defines a space for the node itself. Complex
multiaxial stress states are given within this space to reach a balance of forces from struts
and ties. A failure of concrete may occur due to this stress states and a check has to be
performed. The uniaxial compressive strength fc serves as basic value. A reference value for
the strength of nodes is derived from

σR = kc νfc (4.42)

with a general reduction factor ν ruled by material ductility, which is different for different
concrete grades, and a factor kc regarding the type of node. Recommendations for the choice
of ν, kc are given in [26, 6.5.4], [18, 7.3.6.4]. Nominal uniaxial stresses σc,i derived from given
strut forces Fc,i, see Fig. 4.9 for the current setup, should fulfill |σc,i| < σR whereby some
safety margin has to be regarded in practice.
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Deformations of strut-and-tie models have been a minor aspect up to now as determina-
tion of ultimate limit loads was the major issue. It has been shown for rigid- or elastoplastic
analyses that the ultimate limit load is reached in a process whereby certain members reach
their yielding strength in a sequence. Yielding of subsequent members in this sequence re-
quires sufficient plastic deformations of prior members. Thus, sufficient plastic deformations
without failure in the sense of collapse are required to reach the ultimate limit load. The
whole structure will become unstable or not reach the potential ultimate limit load in the
case of premature failure of a single member.

• In other words, a justified application of the strut-and-tie model to a real structure
requires a sufficient ductility for the respective structure.

Ductility in this context means that all rebars and compression fields and the areas where
they exchange forces (→ nodes) may have large enough strains with a nearly constant level
of stresses. While this is generally fulfilled for the reinforcement the required ductility is not
necessarily given for concrete. Thus, a minimum orthogonal reinforcement net is required
for plates irrespective of stresses determined with models.
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Chapter 5

Multiaxial Concrete Material
Behavior

5.1 Basics

5.1.1 Continua and Scales

Continuum mechanics provides a framework to describe the behavior of solids. A basic
assumption within this framework is homogeneity, i.e., material parameters are constant or
continuous in space. Two scales are considered to describe structural concrete with continuum
mechanics: mesoscale and macroscale.

• The mesoscale distinguishes the cement matrix, aggregates, and the interfacial transi-
tion zone (ITZ). Each of these material phases is regarded as a homogeneous solid with
its own material law and its own material parameters.

The ITZ generally forms the weakest link. For its characterization, see [61]. Spatial dimen-
sions of the mesoscale have to be chosen in the scale of [mm] to resolve the phases spatially.
A continuous displacement is assumed along contact surfaces of different phases in the case of
deformations. This leads to discontinuities of strains along contact surfaces due to different
stiffness of phases.

Regarding a concrete specimen composed of phases its internal geometric characteristics
are random as a matter of principle, e.g., size, shape, position, and orientation of aggregates
are random. Thus, two samples chosen out of a collection of specimens of same geometry and
with the same material parameters of phases will show different reactions under the same
imposed action. The variation of reactions depends on the size of the specimen relative to
the size of the largest aggregates and the type of the action. The variations of reactions tend
to become smaller for larger specimen sizes. If they are considered to be negligible for the
relevant types of action the specimen size constitutes a representative volume element (RVE).

Regarding concrete the spatial dimensions of an RVE are in a scale of a few times of the
largest dimension of the aggregates or in a scale of [cm], respectively. This corresponds to
the macroscale, see also Section 2.1.

Computational Methods for Reinforced Concrete Structures. First Edition. Ulrich Häussler-Combe.
© 2015 Ernst & Sohn GmbH & Co. KG. Published 2015 by Ernst & Sohn GmbH & Co. KG.
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136 Chapter 5 Multiaxial Concrete Material Behavior

• Concrete, cement matrix, aggregates, and interfacial transition zone are homogenized
within the macroscale with a single type of material law and a corresponding set of
material parameters.

The material parameters of the homogenized continuum may be determined analytically
from the material parameters of the phases by mixture theories, see e.g., [69], [95]. But such
approaches are limited regarding the mesoscale randomness of concrete. As an alternative,
numerical multiscale methods may provide macroscale parameters derived from numerical
mesoscale calculations considering particular actions and phase properties. Finally, param-
eters of macroscale material laws may directly be chosen according to the experimental
behavior of specimens with at least RVE size using parameter identification and calibration
methods.

An initiation and propagation of cracks may occur in a continuum with limited tensile
strength. Thus, a continuum may become a discontinuum along curves or surfaces indicat-
ing a crack geometry. Cracks are macrocracks, see Section 2.1, within the framework of
continuum mechanics with a defined boundary. Microcracks, on the other hand, are mod-
eled inherently through material laws. The phase between micro- and macrocracking, see
Fig. 2.2a, is covered with the cohesive crack model, see Section 5.7. This model assigns sur-
face tractions along fictitious crack boundaries to model crack branching and bridging within
the framework of continuum mechanics under the assumption of homogeneous materials.

Considering methods with a discretization of space like finite element methods a single
element should not be exposed to larger gradients of reactions within itself. This leads to
upper bounds for element sizes or fineness of discretization.

• Due to local inhomogeneities, a discretization of a given structure requires an order of
10 times more elements for each spatial dimension within the mesoscale compared to
discretizations within the macroscale.

Thus, numerical calculations of larger structures are performed in a macroscale using ho-
mogenized material laws derived within continuum mechanics.

5.1.2 Characteristics of Concrete Behavior
The macroscale will be used in the following to describe the stress–strain behavior of concrete.
Due to current state of knowledge the only reliable way to access the characteristics of
concrete behavior is given through observation in general and experiments performed under
controlled conditions in particular. Sizes of specimen at least have to correspond to an RVE
to yield reproducible results. The following major characteristics of concrete behavior –
within the short term time scale, see Section 2.1 – are experimentally derived under this
premise:

– The tensile strength is low compared to the compressive strength.

Uniaxial concrete strength has already been discussed in Section 2.1, see Figs. 2.1,
2.2b. Uniaxial compressive strength fc is roughly 10–15 times higher as the uniaxial
tensile strength fct for normal-graded concrete, see [26, Table 3.1]. Such a relation is
still valid for multiaxial tensile states compared to multiaxial compressive states, see
Section 5.4.3.
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– The compressive strength increases with multiaxial stress states.
Specimen exposed to large (hydrostatic) pressures sustain a compaction but will not fail
under ideal conditions. A lower subordinated lateral confining compression supports a
material’s compressive bearing capacity in a principal orientation. Furthermore, strains
corresponding to states of multiaxial strength increase compared to the uniaxial case.
Modeling of multiaxial strength is also described in Section 5.4.3. Comprehensive
experimental data are available, see e.g., [57], [51], [38].

– A reduced stiffness and permanent strains occur with unloading.
The microstructure of a solid material is changed with the application of loads. Two
major effects can be distinguished: slidings within crystalline structures and formation
of microcracks. These effects lead to a different response with the removal of loads.
Slidings lead to permanent strains which can be modeled with plasticity, see Section 5.5.
Microcracking leads to a reduced material stiffness compared to the virgin unloaded
state and can be modeled with damage, see Section 5.6.

– A softening behavior develops in the postpeak regime.
The postpeak regime comprises material behavior after material strength has been
utilized. Uniaxial softening behavior has also already been discussed in Section 2.1,
see Figs. 2.1 and 2.2b. Due to ongoing microcracking stresses decrease while strains
increase whereby the solid material’s coherence is still preserved.
This effect can be seen for exposures including shear and/or tension. Nevertheless,
in the end every solid material will loose its coherence and will ultimately fail for
such exposures. Ductile materials will fail with relatively large strains, brittle with
relatively small strains. Concrete is classified in between as quasi-brittle. Experimental
investigations are given with, e.g., [90], [91].

– A volume dilatation occurs under compression in the postpeak regime.
The magnitude of stress is generally different in different orientations. Regarding high
compressive stress levels or their postpeak regimes this must lead to a disaggregation
of inhomogeneous materials like concrete, see Fig. 5.1. Hard aggregates dislocate in

Figure 5.1: Concrete in mesoscale.
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138 Chapter 5 Multiaxial Concrete Material Behavior

the relatively soft cement matrix. This is observed as dilatation on the macroscale.
Experimental data are given in [57].

– Anisotropy is induced through loading.

The effect of load-induced anisotropy becomes particularly evident with the formation
of cracking, see Fig. 2.2a. Less or no stresses can be transmitted across a developing
crack, but at least compressive stresses can still be transmitted in the direction of cracks.
Thus, macroscopic relations between stresses and strains depend on the orientation
within a material whereby the evolution of material orientations depend on the loading
history.

– The activation of crack energy, see Section 2.1, leads to size effects.

Crack bands basically have the same width in small concrete structures and large con-
crete structures for the same concrete. Thus, for the same crack pattern crack bands
occupy relatively more volume in small structures and crack energy or energy dissi-
pation, respectively, is relatively larger in small structures. As a consequence, small
concrete structures behave more ductile regarding their load–displacement relations
compared to large concrete structures. This issue is strongly related to fracture me-
chanics and cohesive cracks, see Section 5.7.

These observations indicate the complexity of the mechanical behavior of concrete compared
to other common building materials like metals, wood, glass, and plastics. Further charac-
teristic effects of concrete behavior arise with the long-term time scale on one hand and the
highly dynamical time scale on the other hand.

5.2 Continuum Mechanics

5.2.1 Displacements and Strains

Items of continuum mechanics are introduced in the following as they are necessary for
the formulation of material laws for solids like concrete. A comprehensive description of
continuum mechanics is given in, e.g., [64], [97].

We consider a solid body in space. Space is measured in a 3D Cartesian coordinate
system in the following if not otherwise stated. A space point x has a vector of coordinates
( x1 x2 x3 )T . Indication of coordinate directions is changed compared to Section 1.3
and performed with integer numbers to facilitate the notation.

A body occupies an area of space in a configuration, see Fig. 5.2a. This configuration
changes with time t due to a loading history. A material point is identified by the space
point X it occupies in a reference configuration at a time t0 and X = x for t = t0.

Displacements are defined with u = x − X and have a vector of components u =
( u1 u3 u3 )T . They become zero in the reference configuration per definition. Dis-
placements are considered to be small in the following if not otherwise stated. A notion of
small is that they have a magnitude of millimeters while the body has dimensions in the
magnitude of meters.
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Strain is derived from displacements with small strain components

εij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
= εji, i, j = 1, . . . , 3 (5.1)

Strain components involve two directions: a displacement direction ui, uj and a reference
direction xi, xj . Thus, small strain components form a symmetric tensor of the second order.
The components are arranged in a matrix

εM =

 ε11 ε12 ε13

ε12 ε22 ε23

ε13 ε23 ε33

 (5.2)

or in a vector in the Voigt notation

ε =


ε11

ε22

ε33

γ23

γ13

γ12

 =


ε11

ε22

ε33

2ε23

2ε13

2ε12

 (5.3)

utilizing symmetry of shear-strain components. The Voigt notation also introduces the en-
gineering notation for shear-strain components γij = 2εij , i 6= j which simplifies the writing
of material laws. The components of a second-order tensor obey particular transformation
laws based upon transformation laws for vectors (→ first-order tensors) in the case of a
transformation of the underlying coordinate system, see Appendix C.

5.2.2 Stresses and Material Laws
Strain leads to stress. It is at first defined through Cauchy stress σ with reference to an
infinitesimal tetrahedron at a position x with a tetrahedron base area dA, base normal
n = ( n1 n2 n3 )T exposing a force vector df and a traction vector t = df/dA. The force
df is equilibrated by three force vectors dfi on each coordinate plane i, see Fig. 5.2b. Each
of these forces corresponds to a traction vector ti and each traction has three Cauchy stress
components σij . Thus, nine stress components are given with i, j = 1, . . . , 3. The first index
denotes the coordinate plane’s normal and the second index the global direction. Thus, stress
components form a tensor of the second order. The components are arranged with a matrix

σM =

 σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

 (5.4)

In order to have equilibrium a relation

t = σM · n (5.5)

must hold with the traction vector t on the tetrahedron base and the product of the matrix
σM and the tetrahedron base normal n. Considering equilibrium of an inifinitesimal cube it
can be shown that

σij = σji (5.6)
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Figure 5.2: (a) Body in reference and deformed configuration. (b) Infinitesimal stress tetra-
hedron.

and stress components also form a symmetric tensor of second order. In a similar way as
strain components Cauchy stress components can be arranged in a vector with the Voigt
notation

σ =


σ11

σ22

σ33

σ23

σ13

σ12

 (5.7)

utilizing symmetry of Cauchy stress. Pressure is derived from stress components as

p = −1

3
(σ11 + σ22 + σ33) (5.8)

and the deviatoric stress σ′ as

σ′ =


σ′11

σ′22

σ′33

σ′23

σ′13

σ′12

 =


σ11 + p
σ22 + p
σ33 + p
σ23

σ13

σ12

 =



2
3 σ11 − 1

3 σ22 − 1
3 σ33

2
3 σ22 − 1

3 σ11 − 1
3 σ33

2
3 σ33 − 1

3 σ11 − 1
3 σ22

σ23

σ13

σ12

 (5.9)

This may also be written as

σ′ = Idev · σ, Idev =



2
3 − 1

3 − 1
3 0 0 0

− 1
3

2
3 − 1

3 0 0 0

− 1
3 − 1

3
2
3 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


(5.10)

with the deviatoric unit matrix Idev. Similar relations may be derived for strain.
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Incremental changes of strain and stress with progressing time t are defined with strain
and stress rate

ε̇ =
∂ε

∂t
= lim

∆t→0

∆ε

∆t
, σ̇ =

∂σ

∂t
= lim

∆t→0

∆σ

∆t
(5.11)

Cauchy stress and small strain are conjugate with respect to energy as

u̇ = σ · ε̇ (5.12)

denotes the rate of internal energy per volume for material points within a continuous body
or rate of specific internal energy. This may contain both recoverable and dissipated parts,
see Section 5.10. Other measures for stresses and conjugated strains, which are relevant in
the case of larger displacements, are discussed in, e.g., [9], [64].

The stress–strain relation of a specific material may generally be described through an
incremental material law

σ̇ = CT · ε̇ (5.13)

whereby a material specific tangential material stiffness CT depends on the loading history.
As stress and strain each are a tensor of second order the material stiffness has to be a tensor
of fourth order. The Voigt notation of stresses and strains allows to arrange the components
of CT in a matrix.

If the components of CT are constant with CT = C, Eq. (5.13) may be integrated in
time t to give

σ = C · ε (5.14)

i.e., a linear material law.

5.2.3 Coordinate Transformations and Principal States

Transformations of coordinate systems clarify characteristics of material states and material
behavior. A further Cartesian coordinate system is regarded beneath the basic global system
with the same origin but different orientation or different directions of axes, respectively.
The relation between these systems is ruled by three rotation angles, see Fig. 5.3a, and a

Figure 5.3: (a) Rotation of coordinate system. (b) Principal stress space.
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transformation matrix Q depending on the rotation angles. The matrix Q is orthogonal, i.e.,
Q−1 = QT . Values of the components of stress and strain differ in the two systems. A strain

ε̃ = Q · ε (5.15)

is given in the transformed system corresponding to the strain ε in the initial system. A
stress σ in the initial system is related by

σ = QT · σ̃ (5.16)

to the stress σ̃ in the transformed system. With σ̃ = C̃ · ε̃ the material stiffness transforms
according to

C̃ = Q ·C ·QT , C = QT · C̃ ·Q (5.17)

The rotation matrix Q is a function of the rotation angles only. In the case of 2D states with
one rotation angle the exact form of Q is given in Appendix C.

On basis of Eq. (5.5) a matrix eigenvalue problem

σM ·m = σ m (5.18)

may be stated for a state of stress with given components σij . Due to the symmetry of σM
this problem is solved through real eigenpairs ni, σi with i = 1, . . . , 3. The three orthogonal
unit vectors mi form principal directions and a distinguished Cartesian coordinate system or
principal system, respectively. A transformation matrix Q relating the initial system and the
principal system is constructed from the direction cosines of the principal directions and the
initial coordinate axes. The transformed stress state has principal stresses σ̃11 = σ1, σ̃22 =
σ2, σ̃33 = σ3 and vanishing shear-stress components σ̃12 = σ̃13 = σ̃23 = 0.

• Principal compression is signed as negative and principal tension as positive in the
following.

Principal stresses and principal directions form the principal stress state which is still de-
scribed by six values: the three principal stress values and three values for, e.g., the angles
specifying the principal directions. In the case of 2D states with only one rotation angle ϕ the
angle determining principal directions is given by Eq. (6.5) with σx = σ11, σy = σ22, σxy =
σ12 and the principal stress values are given by Eq. (6.4).

The same approach as for stresses is valid for strains with

εM · n = ε n (5.19)

leading to a principal strain state with principal strains ε1, ε2, ε3 and own corresponding
principal directions n1, n2, n3. Tensorial shear-strain components ε13, ε23, ε12 must be used
for εM in Eq. (5.19). The principal directions of strain must not necessarily coincide with the
principal directions of stress. This depends on the type of the material law which connects
strain and stress and is discussed in Section 5.3.

Principal states furthermore are distinguished as all strains ε̃ transformed according to
Eq. (5.15) have the same principal values and principal directions for arbitrary rotations Q.
The same holds for all stresses σ̃ transformed according to Eq. (5.16).

• Principal states are independent from the choice of coordinate systems. Thus, principal
states indicate a physical point of view of stress and strain.
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Regarding a material point its state of stress and strain is preferably characterized by the
corresponding principal values and directions.

Invariants are often used as alternative formulation for principal values. In the same
way as principal values they do not change with a change of coordinate systems. In the
case of stress its first invariant I1 and the second and third invariant of its deviator are
predominantly used. They are defined as

I1 = σ11 + σ22 + σ33

= σ1 + σ2 + σ3

J2 = 1
2

[
(σ11 − σm)2 + (σ22 − σm)2 + (σ33 − σm)2

]
+σ23σ32 + σ13σ31 + σ12σ21

= 1
6

[
(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2

]
J3 = (σ1 − σm)(σ2 − σm)(σ3 − σm)

(5.20)

with σm = (σ1 + σ2 + σ3)/3. The first invariant corresponds to pressure, see Eq. (5.8), with
p = −I1/3. An interpretation of J2, J3 is demonstrated in Section 5.4.2 with Eqs. (5.45,
5.47). A detailed description of stress and strain invariants is given in [64, 3.3].

5.3 Isotropy, Linearity, and Orthotropy

5.3.1 Isotropy and Linear Elasticity

Isotropy is strongly connected with various aspects of directions. The following types of
directions have to be distinguished:

– Action directions: principal directions of given strains.

– Reaction directions: principal directions of response stresses.

– Material directions: a coordinate system spanned by four material points in the refer-
ence configuration.

An isotropic material behaves in the similar way in every action direction. This can be stated
more precisely as follows:

– The reaction directions coincide with the action directions.

– Principal stress values are independent from action directions, i.e., principal stress
values do not change with a change of action directions relative to material directions
but unchanging principal strain values.

This descriptive definition of isotropy also has to be formulated mathematically. We consider
a given strain or action ε with an associated response σ = C · ε. The loading directions are
rotated into other arbitrary directions ε̃ with ε̃ = Q · ε according to Eq. (5.15).

Isotropy requires, that the rotated associated response σ̃ has the the same material law,
i.e., σ̃ = C · ε̃, while rotating σ according to Eq. (5.16). With σ = QT · σ̃ = QT ·C · ε̃ =
QT ·C ·Q · ε a requirement

C = QT ·C ·Q (5.21)
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follows for arbitrary rotations Q. This imposes restrictions for C. A general form

C =


C11 C12 C13 C14 C15 C16

C21 C22 C23 C24 C25 C26

C31 C32 C33 C34 C35 C36

C41 C42 C43 C44 C45 C46

C51 C52 C53 C54 C55 C56

C61 C62 C63 C64 C65 C66

 (5.22)

is assumed. It can be shown that for arbitrary rotations Q the isotropy requirement
(Eq. (5.21)) can only be fulfilled with a form

C =


C1 C2 C2 0 0 0
C2 C1 C2 0 0 0
C2 C2 C1 0 0 0
0 0 0 1

2 (C1 − C2) 0 0
0 0 0 0 1

2 (C1 − C2) 0
0 0 0 0 0 1

2 (C1 − C2)

 (5.23)

A significant question concerns the principal directions of stress and strain.

• Stresses and strains will have the same principal directions if they are related by an
isotropic material matrix C like Eq. (5.23).

Assuming constant values for C1, C2, Eq. (5.23) corresponds to the triaxal isotropic linear
elastic material law

E =



E(1−ν)
(1+ν)(1−2ν)

Eν
(1+ν)(1−2ν)

Eν
(1+ν)(1−2ν) 0 0 0

Eν
(1+ν)(1−2ν)

E(1−ν)
(1+ν)(1−2ν)

Eν
(1+ν)(1−2ν) 0 0 0

Eν
(1+ν)(1−2ν)

Eν
(1+ν)(1−2ν)

E(1−ν)
(1+ν)(1−2ν) 0 0 0

0 0 0 E
2(1+ν) 0 0

0 0 0 0 E
2(1+ν) 0

0 0 0 0 0 E
2(1+ν)


(5.24)

with Young’s modulus E and Poisson’s ratio ν.

5.3.2 Orthotropy
Different restrictions of the arbitrary choice of Q in Eq. (5.21) applied to Eq. (5.22) lead
to different types of anisotropy. An orthotropic material is given if Eq. (5.21) is fulfilled for
three rotations Q each with an angle 180° around each coordinate axis. This can be fulfilled
with a form

C =


C11 C12 C13 0 0 0
C21 C22 C23 0 0 0
C31 C32 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66

 (5.25)
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with 12 nonzero components [64, (6.2.24)]. This result implies the coincidence of coordi-
nate axes and the material symmetry directions. The material symmetry directions are
given through material directions forming a Cartesian coordinate system in the case of an
orthotropic material.

The same material may be rigidly rotated in space leading to a deviation of the material
symmetry directions from the spatial coordinate directions. The application of Eq. (5.21)
on Eq. (5.22) then leads to a fully occupied matrix C under the assumption of orthotropy.
Formal differences arise compared to Eq. (5.25) but 12 independent material parameters
remain.

• Stresses and strains will have the same principal directions if they coincide with the
material symmetry directions, otherwise not.

Thermodynamic postulates about a nonnegative product ε ·σ = ε ·C ·ε or a positive definite
matrix C, see Section 5.10, require the symmetry of the material stiffness matrix. In the
case of orthotropy with material symmetry directions aligned to coordinate axes this leads
to

C =


C11 C12 C13 0 0 0
C12 C22 C23 0 0 0
C13 C23 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66

 (5.26)

with nine nonzero components. A compliance form, see Eq. (1.51), with some physical
evidence – material coefficients are directly taken from experimental results – is given by

D =



1
E1

−ν12

E1
−ν13

E1
0 0 0

−ν21

E2

1
E2

−ν23

E2
0 0 0

−ν31

E3
−ν32

E3

1
E3

0 0 0

0 0 0 1
G4

0 0

0 0 0 0 1
G5

0

0 0 0 0 0 1
G6


(5.27)

where νij is a measure for the deformation in the i-direction caused by a stress in the j-
direction. Relations ν12/E1 = ν21/E2, . . . and so on must hold to preserve symmetry.

5.3.3 Plane Stress and Strain

Regarding again the isotropic case simplified forms can be derived from Eq. (5.24) for plane
strain or plane stress. In both cases γ23 = γ13 = 0. Plane strain is determined with ε33 = 0
and a direct subset of Eq. (5.24) may be used for σ11

σ22

σ12

 =
E

1 + ν


1−ν
1−2ν

ν
1−2ν 0

ν
1−2ν

1−ν
1−2ν 0

0 0 1
2

 ·
 ε11

ε22

γ12

 (5.28)
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The lateral stress is given by σ33 = Eν
(1+ν)(1−2ν) (ε11 + ε22). Plane stress is determined with

σ33 = 0. Using this condition with Eqs. (5.14, 5.24) leads to σ11

σ22

σ12

 =
E

1− ν2

 1 ν 0

ν 1 0

0 0 1−ν
2

 ·
 ε11

ε22

γ12

 (5.29)

The lateral strain is given by ε33 = − ν
E (σ11 + σ22).

Plane stress shall also be treated for the symmetric orthotropic case whereby material
symmetry directions coincide with the coordinate directions. With σ33 = 0 and γ23 = γ13 = 0
the flexibility form (Eq. (5.27)) leads to ε11

ε22

γ12

 =


1
E1

−ν12

E1
0

−ν21

E2

1
E2

0

0 0 1
G6

 ·
 σ11

σ22

σ12

 (5.30)

The inversion yields the stiffness form σ11

σ22

σ12

 =
1

1− ν12ν21

 E1 ν12E2 0
ν21E1 E2 0

0 0 (1− ν12ν21)G

 ·
 ε11

ε22

γ12

 (5.31)

with G = G6, see also [21, (6.110)]. A notation ν1 = ν12 (→ deformation in 1-direction
caused by a lateral stress in 2-direction) and ν2 = ν21 (→ deformation in 2-direction caused
by a lateral stress in 1-direction) is used in the following. Requiring symmetry ν1E2 = ν2E1

and using a modified Poisson’s ratio

ν̄ =
ν2E1√
E1E2

=
ν1E2√
E1E2

→ ν2 =
ν̄
√
E1E2

E1
, ν1 =

ν̄
√
E1E2

E2
, ν1ν2 = ν̄2 (5.32)

finally leads to  σ11

σ22

σ12

 =


E1

1−ν̄2
ν̄
√
E1E2

1−ν̄2 0

ν̄
√
E1E2

1−ν̄2
E2

1−ν̄2 0

0 0 G

 ·
 ε11

ε22

γ12

 (5.33)

whereby E1, E2 ≥ 0 is assumed.
The material coefficients E1, E2, ν̄ may be relatively easily approximated from experi-

ments with two sets of uniaxial stress–strain data determined from orthogonal directions. A
problem might remain with the experimental determination of the shear modulus G. The
invariance of shear flexibility is postulated to circumvent experimental inconvenience. Re-
garding Eq. (5.21) it is assumed that the shear coefficient G in Eq. (5.33) does not change for
all plane transformations. A plane transformation has a rotation angle ϕ and the rotation
matrix is defined by

Q =

 cos2 ϕ sin2 ϕ − cosϕ sinϕ
sin2 ϕ cos2 ϕ cosϕ sinϕ

2 cosϕ sinϕ −2 cosϕ sinϕ cos2 ϕ− sin2 ϕ

 (5.34)
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leading to a rotation of stresses and strains around the plane’s normal with an arbitrary
angle ϕ, see Appendix C. The requirement of shear invariance can be fulfilled with a form

C =


E1

1−ν̄2
ν̄
√
E1E2

1−ν̄2 0
ν̄
√
E1E2

1−ν̄2
E2

1−ν̄2 0

0 0 E1+E2−2ν̄
√
E1E2

4(1−ν̄2)

 (5.35)

The other coefficients corresponding to C11, C12, C22 are not necessarily invariant with respect
to coordinate transformations. This matrix includes Eq. (5.29) for the isotropic plane stress
state as special case with E = E1 = E2, ν = ν̄.

The uniaxial stress–strain relations in the two material symmetry directions shall be
exposed finally. The 1-direction has σ22 = 0 leading to

σ11 = E1 ε11, ε22 = − ν̄√
E1E2

σ11 (5.36)

With given values for σ11, ε11, ε22 from a test 1 two equations are given for three unknowns
E1, E2, ν̄. The 2-direction has σ11 = 0 leading

σ22 = E2 ε22, ε11 = − ν̄√
E1E2

σ22 (5.37)

With given values for σ22, ε22, ε11 from a test 2 – strains from test 1 and test 2 are not the
same – two further equations are given for one remaining material parameter. Thus, the set
of four equations (5.36, 5.37) is overdetermined for the unknowns E1, E2, µ̄. A best fit may
to be found with a least square approach, see Appendix D.

5.4 Nonlinear Material Behavior

5.4.1 Tangential Stiffness

Regarding the uniaxial case nonlinear material behavior of concrete is characterized by a
decreasing tangential material stiffness, see Fig. 2.1. This basic idea is transferred to the
multiaxial case. A general formulation of nonlinear material behavior has been given in
Eq. (5.13):

σ̇ = CT · ε̇ (5.38)

Regarding initial behavior of previously unloaded, virgin concrete it can be assumed that it
behaves initially as a linear elastic isotropic material. The initial tangential material stiffness
CT is given according to Eq. (5.24). Values for the initial Young’s modulus E and the initial
Poisson’s ratio depending on concrete grade are given by, e.g., [26, 3.1.3], [18, 5.1.7].

But tangential stiffness CT is subject to change beyond the initial state and may depend
on stress σ, strain ε and internal state variables κ

CT = CT (σ, ε,κ) (5.39)
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Internal state variables κ comprise a loading history. They are necessary as an actual state
σ, ε for a given ε̇ may lead to different responses σ̇ for different loading histories. Internal
state variables require evolution laws

κ̇ = F(σ, ε,κ) (5.40)

describing their rates depending on stress and strain and absolute values of internal state
variables.

Aspects of isotropy and anisotropy as have been discussed in Section 5.3 are also an issue
for nonlinear behavior. Isotropic nonlinear behavior is characterized in the same way as has
been formulated in Section 5.3.1. The previous reasoning regarding σ, ε in the same way
applies to rates σ̇, ε̇ leading the same conclusion about the principal directions of the stress
and strain rates and to the same restrictions for the coefficients of an isotropic tangential
material stiffness CT

• A nonlinear isotropic material behaves in the same way in every action direction. Prin-
cipal directions of stress increments coincide with principal directions of strain incre-
ments for a given material state.

The values of principal stress increments are independent from the directions of prin-
cipal strain and principal strain increments.

Thus, an isotropic tangential material stiffness in analogy to Eq. (5.21) obeys a relation

CT = QT ·CT ·Q (5.41)

for arbitrary rotations Q. As a consequence the tangential material stiffness CT has to follow
a form like Eq. (5.23) which allows only for two independent coefficients.

But initially isotropic materials may become anisotropic in higher loading regimes. In
the case of concrete a load-induced anisotropy especially arises with cracking whereby the
direction normal to a crack has a strongly reduced capacity to transmit tensile stresses while
stiffness and strength remain unaffected in the direction of a crack, see Fig. 2.2a.

• Orthotropy may be used to model load-induced anisotropy due to cracking.

The tangential material stiffness CT then has to obey to a form like Eq. (5.26) or to Eq. (5.35)
in the case of plane stress and shear isotropy whereby the matrix coefficients may depend on
stress, strain and loading history according to Eq. (5.39). The orthotropic tangential material
flexibility DT for 3D states gets a form according to Eq. (5.27) with varying coefficients.
The corresponding forms are derived in Section 5.7.2 within the framework of smeared crack
models.

5.4.2 Principal Stress Space and Isotropic Strength
Stress limit states mark the other end compared to initial states. They describe strength of
materials. For initially isotropic materials like concrete such stress limit states may generally
be described by an isotropic strength condition

f(σ1, σ2, σ3) = 0 (5.42)
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using principal stress values σ1, σ2, σ3. Stress states with f(σ1, σ2, σ3) ≤ 0 are admissible,
states f(σ1, σ2, σ3) > 0 cannot be sustained. Orientation of principal stress directions has
no influence in the case of isotropic materials.

• In more general cases the strength condition may be a function of principal stress values
and principal stress directions relative to the material directions.

Stress–strain behavior described by Eq. (5.38) is often separated from strength limit states
described by Eq. (5.42) and formally both are treated independently. To have a consistent
material description the integration of stresses σ̇ from Eq. (5.38) over the loading history
driven by a time t should not lead to stress states violating the strength condition (Eq. (5.42)).
Elastoplastic materials described in Section 5.5 or damaged materials described in Section 5.6
link stress–strain relations and strength in such a way that the consistency of the material
description is assured.

Regarding concrete a load-induced anisotropy – e.g., tensile strength is reached in one
direction while a compressive strength is utilized in orthogonal directions – may be combined
with an isotropic strength condition.

• An isotropic strength condition basically allows for anisotropic stress–strain relations.

Such isotropic conditions are used for concrete and will be considered in the following. In
doing so it is appropriate to have equivalent measures for the principal stress values. Principal
stress values span a triaxial Cartesian coordinate system (→ principal stress space) and the
corresponding stress state may be described by a vector. The following significant elements
of the stress space have to be pointed out:

– Hydrostatic axis: a space diagonal with a direction nξ = ( 1 1 1 )T /
√

3. A direction
is a vector of length 1 by definition.

– The projection of a stress vector σ = ( σ1 σ2 σ3 )T on the hydrostatic axis: ξ =

ξ ( 1 1 1 )T /
√

3 with length ξ = (σ1 + σ2 + σ3)/
√

3. This is different compared to
the mean stress (σ1 + σ2 + σ3)/3 or the hydrostatic pressure −(σ1 + σ2 + σ3)/3.

– With ξ given, its corresponding deviatoric plane: this plane has ξ as normal, i.e.,
(σ − ξ) · ξ = 0 or σ1 + σ2 + σ3 =

√
3ξ.

– The projection of a stress vector σ = ( σ1 σ2 σ3 )T on its deviatoric plane

ρ = σ − ξ =
1

3

 2σ1 − σ2 − σ3

−σ1 + 2σ2 − σ3

−σ1 − σ2 + 2σ3

 (5.43)

– The projection of the particular stress vector σ = ( 1 0 0 )T on the deviatoric plane:
ρ1 = 2/3( 1 − 1

2 − 1
2 )T . It has a direction ρ̄1 =

√
2/3( 1 − 1

2 − 1
2 )T called the

Rendulic direction in the following.

An isotropic strength condition like Eq. (5.42) forms a strength surface in the principal stress
space and defines triaxial strength. A stress vector – and in particular a point on this surface
– can be described by Haigh–Westergaard coordinates with the following components:
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– The hydrostatic length ξ has already been introduced as length of the stress vector on
the hydrostatic axis:

ξ =
1√
3

(σ1 + σ2 + σ3) =
I1√

3
→ I1 =

√
3 ξ (5.44)

– The deviatoric length ρ results from the length of the vector ρ from Eq. (5.43). The
evaluation of the expression leads to the second invariant of the stress deviator, see
Eq. (5.20), and

ρ = |ρ| =
√

2J2 → J2 =
ρ2

2
(5.45)

– The deviatoric angle θ spans between the Rendulic direction and deviatoric direction

cos θ =
1

ρ
ρ · ρ̄1 (5.46)

A commonly used alternative of this formulation is given by

cos 3θ = 4 cos3 θ − 3 cos θ =
3
√

3

2

J3√
J3

2

(5.47)

with the second and third invariant J2, J3 of the stress deviator, see Eq. (5.20). Equa-
tion (5.47) yields one solution in the range 0° ≤ θ ≤ 60°. But any interchanging of
σ1, σ2, σ3 in invariants leads to the same solution θ (Fig. 5.4).

A Rendulic plane is spanned by all stress vectors with a deviatoric angle θ = 0 with arbitrary
values for the hydrostatic length ξ and deviatoric length ρ.

Regarding an isotropic strength surface the principal stress values may interchange
their position in Eq. (5.42) as the orientation of principal stress directions is not relevant
with respect to material directions, i.e., f(σ1, σ2, σ3) = f(σ1, σ3, σ2) = f(σ2, σ3, σ1) =
f(σ2, σ1, σ3) = f(σ3, σ1, σ2) = f(σ3, σ2, σ1). Thus,

σ1 ≥ σ2 ≥ σ3 (5.48)

(signed!) may be set without loss of generality. From this point of view, a state of stress is
uniquely determined by ξ, ρ and θ in the range 0 ≤ θ ≤ 60° as determined by Eq. (5.47).

Figure 5.4: Deviatoric length and angle in the deviatoric plane.
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5.4.3 Strength of Concrete
Strength of solid materials is determined experimentally with specimen of at least a size
of an RVE, see Section 5.1.1. Cylindrical specimen are often used for concrete. A typical
experimental setup is shown in Fig. 5.5 with the triaxial cell. It allows applying longitudinal
and radial pressure independently from another. The radial pressure is connected with a
circumferential pressure of the same value to establish equilibrium. Both form the confining
pressure. A first principal stress directly corresponds to the longitudinal pressure, the con-
fining pressure leads to the identical second- and third-principal stress. A test is started with
identical longitudinal and confining pressures. Then the longitudinal pressure is changed
until it reaches an extremal value corresponding to strength. Such a setup has the following
locations in the principal stress space:

– The compressive meridian with σ1 = σ2 > σ3 (signed): a cylindrical specimen with
compression σ3 < 0 in the longitudinal direction and circumferential confining pressure
σ1 = σ2 < 0, |σ1| < |σ3|. From Eq. (5.20), we get J2 = (σ1 − σ3)2/3 and J3 =
−2(σ1 − σ3)3/27 and from Eq. (5.47) cos 3θ = −1 or θ = 60°.

– The tensile meridian with σ1 > σ2 = σ3 (signed): a cylindrical specimen with circum-
ferential confining pressure σ2 = σ3 < 0 and a longitudinal compression σ1 < 0, |σ1| <
|σ3|. From Eq. (5.20), we get J2 = (σ1 − σ3)2/3 and J3 = 2(σ1 − σ3)3/27 and from
Eq. (5.47) cos 3θ = 1 or θ = 0°.

The compressive and tensile meridian form distinguished curves within the strength surface
as is shown in Fig. 5.6. They are determined as the intersection of the strength surface with
the Rendulic planes with θ = 60° and θ = 0°.

Strength surfaces of concrete themselves form a smoothed, curved tetrahedron, see
Fig. 5.6. Its tip is located in the positive octant (σ1 > 0, σ2 > 0, σ3 > 0) near to the origin.
The origin indicates the triaxial tensile strength. The strength surface opens in the negative
octant(σ1 < 0, σ2 < 0, σ3 < 0) and strength “increases” under pressure.

– More precisely, the admissible deviatoric length increases with increasing pressure for
a certain range of pressures. This also depends on the deviatoric angle.

Figure 5.5: Triaxial cell.
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Figure 5.6: Strength surfaces: (a) general view direction; (b) pressure axis view direction.

– Deviatoric concrete strength under very high pressures is not yet really known. From
a theoretical point of view there is no strength limit for a pure pressure. Practically,
pure pressure is not reachable in experimental setups. Small deviatoric parts cannot
be avoided.

– Many experimental data exist for the compressive and the tensile meridian due to the
relatively simple triaxial cell setup, see Fig. 5.5. Both meridians are slightly curved.
The tensile meridian falls below the compressive meridian if both are sketched in a
plane.

– The range between compressive and tensile meridian with a deviatoric angle 0° <
θ < 60° completes the whole strength surface due to its isotropy. But this range has
three different principal stresses which cannot not be realized with the conventional
triaxial cell according to Fig. 5.5. True triaxial cells are required with a much higher
experimental effort and experimental data are rare in this range [38].

– The tensile strength in multiaxial tension does not significantly differ from uniaxial
tensile strength. Thus, it should be possible to reach the uniaxial tensile strength in
three directions simultaneously. But this has not been proved experimentally up to
now.

A stress–strain relation has to be defined for all states within the strength surface. They
may be assumed as isotropic linear elastic initially and become increasingly nonlinear when
approaching the strength surface itself. Basic approaches to describe nonlinear material
behavior are given with elastoplasticity described in Section 5.5 or damage described in
Section 5.6. A selection of widely referenced formulations for the strength surface of concrete
is given in the following:

– The strength surface of Ottosen [73]

f = a
J2

f2
c

+ λ

√
J2

fc
+ b

I1
fc
− 1 = 0 (5.49)
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with the uniaxial compression strength fc (unsigned), a, b are constants, and λ is a
function of 3θ

λ = k1 cos
[

1
3 arccos(k2 cos 3θ)

]
, for cos 3θ ≥ 0

λ = k1 cos
[
π
3 −

1
3 arccos(−k2 cos 3θ)

]
, for cos 3θ ≤ 0

(5.50)

in which k1, k2 are constants. The four material constants a, b, k1, k2 are determined
from tensile strength fct, biaxial strength, and points on the compressive meridian.

– The strength surface of Hsieh–Ting–Chen [45]

f = a
J2

f2
c

+ b

√
J2

fc
+ c

σ1

fc
+ d

I1
fc
− 1 = 0 (5.51)

with constants a, b, c, d and the largest principal stress σ1. This may be written as

f = ā

(
ρ

fc

)2

+
(
b̄ cos θ + c̄

) ρ

fc
+ d̄

ξ

fc
− 1 = 0 (5.52)

with the hydrostatic length ξ, see Eq. (5.44), deviatoric length ρ, see Eq. (5.45) and
deviatoric angle θ, see Eq. (5.47).

– The strength surface of Willam/Warnke [94], [21, Section 5.5].

ρ̄ =
2ρc(ρ

2
c − ρ2

t ) cos θ + ρc(2ρt − ρc)
√

4(ρ2
c − ρ2

t ) cos2 θ + 5ρ2
t − 4ρtρc

4(ρ2
c − ρ2

t ) cos2 θ + (ρc − 2ρt)2
(5.53)

with
ξ̄ = a0 + a1 ρt + a2 ρ

2
t , ξ̄ = b0 + b1 ρc + b2 ρ

2
c (5.54)

and ξ̄ = ξ/fc, ρ̄ = ρ/fc. The parameters ρt describe the normalized tensile meridian,
i.e., θ = 0° and ρc the normalized compressive meridian, i.e., θ = 60°. The parameters
a0, a1, a2, b0, b1, b2 are material constants. As compressive and tensile meridian should
meet at the same point on the ξ-axis it is a0 = b0.
With the hydrostatic length ξ given the values of ρt, ρc are determined from Eq. (5.54).
This may be used to determine the deviatoric length ρ with Eq. (5.53) depending on θ.

These approaches in a first view provide the same shapes of strength surfaces, see Fig. 5.6.
Differences are given with details, e.g., the simplicity of formulation, the number of mate-
rial constants, the exact course of compressive and tensile meridian, the occurrence of sharp
edges. Sharp edges are curves on the strength surface with nonunique normal. The formu-
lation of Hsieh/Ting/Chen, e.g., has a sharp compressive meridian while the formulation of
Willam/Warnke has no sharp edges.

Triaxial strength includes biaxial strength as a special case with one zero principal stress
or a plane stress state, respectively. Biaxial strength is determined through the intersection
of the triaxial strength surface with any of the planes σ1 = 0 or σ2 = 0 or σ3 = 0. We assume
σ3 = 0 irrespective to the convention equation (5.48). This leads to a closed curve in the
σ1 − σ2 stress plane instead of a surface in the stress space. A curve with biaxial strength
related to uniaxial strength is shown in Fig. 5.7a which is valid for normal-graded concrete
[57]. It has the following characteristics:
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Figure 5.7: (a) Biaxial strength. (b) Stress paths.

– A lateral compression leads to an increased compressive strength in the higher loaded
direction. The highest strength is roughly given for σ2 ≈ 0.5σ3 with |σ3| > |σ2| or vice
versa.

– The tensile strength of a direction is only influenced to a minor extent by lateral
compression or tension.

Biaxial strength includes uniaxial strength as a further special case with two zero principal
stresses. The uniaxial strength is determined through the intersection of the biaxial limit
curve with a stress coordinate axis cutting the uniaxial compressive and tensile strength.

It is generally assumed that multiaxial strength is independent from the stress path,
i.e., different loading histories with different paths aiming at the same point of the strength
surface or strength curve actually have the same ultimate point or strength, respectively. But
the stress–strain behavior may be different. Regarding, e.g., the stress paths D1 and D2 of
Fig. 5.7b, the path D1 will lead to a load-induced anisotropy due to approaching the tensile
strength and cracking while a major amount of compressive strength and stiffness remains in
the orthogonal direction. On the other hand the path D2 will have a more or less isotropic
stress–strain behavior. A simple formulation for load-induced anisotropy under plane stress
conditions will be given in Section 5.4.4. A comprehensive description of the influence of
cracking is given in Section 5.7.

5.4.4 Phenomenological Approach for the Biaxial Anisotropic
Stress–Strain Behavior

Load-induced anisotropy, which is characteristic for concrete, shall be treated for the plane
stress case in a pragmatic direct way discussed in [21]. We consider a material point during
its loading history and assume that its strains are known. Thus, also its principal strain
values and principal strain directions are known. These principal strain directions span a
local Cartesian coordinate system which will be used in the following. The local system may
be different for every material point but this is not relevant for the basic approach. Stresses
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and tangential material matrix which are at first determined in the local system have to be
transformed into the global system in a final step.

A uniaxial behavior is assumed in each local coordinate direction. The uniaxial behavior
is described by a generalized form of Eq. (2.1), see [21, 6.8.2]

σ =
a ε

1 +

(
a εp
σp
− 2

)
ε

εp
+

(
ε

εp

)2 (5.55)

whereby σ, ε are stress and strain in a principal strain direction and σp, εp are experimentally
determined values of maximum stress and the corresponding strain in this principal direction
under biaxial conditions. The value a represents the initial Young’s modulus. It is assumed
as

a =
Ec

1− να
(5.56)

with the initial Young’s modulus Ec under uniaxial loading, the corresponding initial Pois-
son’s ratio ν and the ratio α of the principal stress in the orthogonal direction to the principal
stress in the direction considered. This approach makes a material stiffer under biaxial com-
pression. The parameter α is not known a priori. It also influences the values of σp, εp. Its
value has to be estimated and to be corrected if necessary. The tangential material stiffness
derived from Eq. (5.55) is given by

ET =

a

[
1−

(
ε

εp

)2
]

[(
1− ε

εp

)2

+
a ε

σp

]2 (5.57)

whereby the parameters a, εp, σp are assumed as constant. The tangential material stiffness
in a principal direction depends on the strain in that direction. A value ε = 0 yields ET = a
and ε = εp yields ET = 0.

A combination of Eqs. (5.35), (5.38), and (5.57) is proposed for anisotropic stress–strain
behavior of concrete under plane stress conditions, see [21, 6.8.2], [67, 3.4.2.3], and the
coefficients of Eq. (5.35) are replaced by values according to Eq. (5.57). This approach
intrinsically considers a biaxial strength condition of any choice. The approach considers
a variable tangential modulus but loading and unloading are not distinguished. Thus, it is
classified as hypoelastic. The application is demonstrated with the following Example 5.1.

Example 5.1 Modeling of biaxial stress–strain behavior with orthotropic hypoelasticity
A stress ratio value

α =
σ2

σ1
= 0.5 (5.58)

is assumed, which rules the nonlinear material behavior. The corresponding experimental
results of [57] provide σp1 = −36 MN/m2, εp1 = −0.003 and σp2 = −18 MN/m2, εp2 =
−0.001. Furthermore, Ec = 30 000 MN/m2, ν = 0.2 are assumed. Firstly, this leads to
a = 30 000/(1− 0.2 · 0.5) = 33 333 MN/m2 with Eq. (5.56).
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Figure 5.8: Example 5.1: Tangential material stiffness.

These values yield for the compressive range (Eq. (5.57))

ET1 =

33 333

[
1−

(
ε1

−0.003

)2
]

[(
1− ε1

−0.003

)2

− 33 333
36 ε1

]2 , ET2 =

33 333

[
1−

(
ε2

−0.001

)2
]

[(
1− ε2

−0.001

)2

− 33 333
18 ε2

]2 (5.59)

whereby strains ε1, ε2 have to be considered with their signs. The computed values are shown
in Fig. 5.8a depending on the absolute value of ε1, ε2.

The tangential moduli ET1, ET2 are used in Eq. (5.35) instead of E1, E2 to derive a
tangential material stiffness CT of a hypoelastic type. Regarding the values of the equivalent
Poisson’s ratio ν̄, see Eq. (5.32), ν1 = ν is assumed leading to

ν2 = ν
ET2

ET1
(5.60)

This may yield special effects in the case of, e.g., ET1 ≤ 0, but shall not be examined with
further details.

End Example 5.1

The approach has some limitations:

– The stress ratio parameter α, which has been assumed as constant in deriving the
coefficients of the tangential material stiffness, generally is not constant in applications.
Thus, the values a, εp, σp will change during a load history.

– Principal directions of stress and strain will not coincide due to variations in α. Thus,
shear stresses will arise in the principal directions of strains, which are assmued as
natural coordinate system for load-induced anisotropy.

It has to be concluded that the extension of phenomenological approaches, which work well for
uniaxial behavior, may become awkward for biaxial and especially triaxial behavior. This
motivates for the application of frameworks like damage and plasticity, which generalize
important aspects of mechanical behavior of solids.
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5.5 Isotropic Plasticity

5.5.1 A Framework for Multiaxial Elastoplasticity

Basic properties of plasticity have already been described in Section 2.3. They become
evident with the unloading of a material: the same stiffness occurs for unloading as the
initial stiffness for loading and permanent strains remain for a stress free state. In the case
of an isotropic material the general triaxial stress–strain relation for such a behavior is given
by

σ = E · (ε− εp) (5.61)

with the isotropic linear elastic material matrix E according to Eq.(5.24), total strains ε and
permanent strains εp. This leads to zero stresses σ = 0 in the case of total strains equal to
permanent plastic strains ε = εp. The rate form

σ̇ = E · (ε̇− ε̇p) (5.62)

has to be used for general purposes. Plastic strains are variable. In the case of a stress-based
plasticity they are derived with a flow rule

ε̇p = λ̇
∂G

∂σ
(5.63)

using a flow potential G(σ, κp), a plastic multiplier λ, and an internal state variable κp
comprising the load history. Equation (5.63) may lead to shear components ε23, ε13, ε12

instead of γ23, γ13, γ12, see Eq. (5.3), depending on the formulation of G.
A change of plastic strains or plastic flow occurs in the case of yielding. Yielding is ruled

by a yield function
F (σ, κp) = 0 (5.64)

Yielding may only occur for states of loading. Loading is distinguished from unloading by
Kuhn–Tucker conditions

F ≤ 0, λ̇ ≥ 0, F λ̇ = 0 (5.65)

– In case F < 0 is λ̇ = 0, i.e., elastic loading/reloading or unloading occurs and permanent
strains will not change.

– In case F = 0 is λ̇ ≥ 0, i.e., plastic loading may occur and permanent strains may
chance. This implies a consistency condition

Ḟ =
∂F

∂σ
· σ̇ +

∂F

∂κp
κ̇p = 0 (5.66)

Finally, the formalism has to be completed with an evolution law for the internal state
variable. This is assumed with

κ̇p = λ̇H(σ, κp) (5.67)

The functions F (σ, κp), G(σ, κp), H(σ, κp) are material functions specific for a particular
material. They have to be known and to be defined in advance.
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• To cover initially elastic behavior the state variable κp generally has an initial value
κp0 > 0 for the unloaded virgin material.

The actual state of the material is described by a given stress σ and a given state variable
κp. Thus, the conditions for loading and unloading may be evaluated as follows.

In the case of unloading F < 0 the stress increment is given by

σ̇ = E · ε̇ (5.68)

according to Eq. (5.62).
In the case of loading, i.e., F = 0, Eq. (5.66) is combined with Eqs. (5.62) and (5.67) to

yield
∂F

∂σ
· [E · (ε̇− ε̇p)] +

∂F

∂κp
λ̇H = 0 (5.69)

Using Eq. (5.63) this can be solved for λ̇ leading to

λ̇ =
1

A

∂F

∂σ
·E · ε̇, A = − ∂F

∂κp
H +

∂F

∂σ
·E · ∂G

∂σ
(5.70)

Combining Eqs. (5.70), (5.63), and (5.62) leads to the incremental material law

σ̇ = CT · ε̇ (5.71)

with a tangential material stiffness

CT = E− 1

A
E · ∂G

∂σ

∂F

∂σ
·E (5.72)

with E according to Eq. (5.24). The form ∂G
∂σ

∂F
∂σ is an outer or dyadic product of two vectors.

An outer or dyadic product a b yields a matrix c with components cij = aibj . This is not
necessarily symmetric. A correct evaluation of the tangential material stiffness is essential
for the solution of nonlinear equations, see Section 1.6 and Eq. (1.65). Regarding incremen-
tal approaches or discretization in time such algorithms like radial return and algorithmic
material modulus are appropriate [9, 5.9].

An associated plasticity with identity G = F of flow potential and yield condition simpli-
fies the whole formalism.

Example 5.2 Mises elastoplasticity with special consideration of uniaxial behavior
Mises elastoplasticity is a relatively simple approach and is used to demonstrate the general
procedures of elastoplasticity in this example. It is practically applied to metals and has an
associated flow rule with a yield function limiting the deviatoric length, see Eq. (5.45). The
Mises yield function and the identical flow rule are given by

F = G =

√
3

2
ρσ − κp =

√
3J2 − κp (5.73)
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with the second invariant J2 of the stress deviator, see Eq. (5.20)2. This leads to partial
derivatives

∂F

∂σ
=
∂G

∂σ
=

1

2

√
3

J2
σ′,

∂F

∂κp
= −1 (5.74)

with the stress deviator σ′, see Eq. (5.9). The tensor components σ23, σ32 . . . have to
be distinguished while computing ∂F/∂σ. Regarding the tangential stiffness according to
Eq. (5.72) it can be shown that

∂F

∂σ
·E = G

√
3

J2
σ′, G =

E

2(1 + ν)
(5.75)

with the meaning of G as shear modulus for the current example. Regarding Eq. (5.70)

A = H + 3G (5.76)

finally leads to

CT = E− G

1 + H
3G

1

J2
σ′ σ′ (5.77)

Full tensor notations are required in this context to derive Eq. (5.76). The product σ′ σ′ is
an outer or dyadic product of second-order tensors leading to a fourth-order tensor.

In the case of uniaxial stress with σ22 = σ33 = σ23 = σ13 = σ12 = 0 is

J2 =
1

3
σ2

11, F = σ11 − κp (5.78)

with the initial Young’s modulus E and Poisson’s ratio ν. The full tangential material
stiffness under uniaxial stress conditions after some rearrangements is evaluated as

CT =
E

1 + ν



1
3

(3α+1−3να+ν)
(1−2ν)(1+α)

1
3

(3να+ν+1)
(1−2ν)(1+α)

1
3

(3να+ν+1)
(1−2ν)(1+α) 0 0 0

1
3

(3να+ν+1)
(1−2ν)(1+α)

1
6

(6α+5−6να−4ν)
(1−2ν)(1+α)

1
6

(6να+8ν−1)
(1−2ν)(1+α) 0 0 0

1
3

(3να+ν+1)
(1−2ν)(1+α)

1
6 ( 6να+8ν−1)

(1−2ν)(1+α)
1
6

(6α+5−6να−4ν)
(1−2ν)(1+α) 0 0 0

0 0 0 1
2 0 0

0 0 0 0 1
2 0

0 0 0 0 0 1
2


(5.79)

with α = (1 + ν) 2
3
H
E . In the case of uniaxial stress also is σ̇22 = σ̇33 = σ̇23 = σ̇13 = σ̇12 = 0.

Thus, regarding Eqs. (5.71, 5.79) with the Voigt notation (Eqs. (5.3, 5.7)) leads to γ23 =
γ13 = γ12 = 0 and

ε̇22 = ε̇33 = −3να+ 1 + ν

3α+ 2 + 2ν
ε̇11 (5.80)

This, in turn, may be used to determine

σ̇11 = CT,11 ε̇11 + CT,12 ε̇22 + CT,13 ε̇33 =
αE

α+ 2
3 (1 + ν)

ε̇11 =
H

1 + H
E

ε̇11 (5.81)
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in the case of loading. The elastic part of longitudinal strain may be determined with
ε̇el,11 = σ̇11/E yielding a plastic strain

ε̇p,11 = ε̇11 − ε̇el,11 =
1

H
σ̇11 → σ̇11 = H ε̇p,11 (5.82)

The material function H is assumed as constant for Mises plasticity and corresponds to
the hardening modulus. Regarding Eq. (5.78)2 with F = 0 in the case of loading leads to
σ11 = κp. But the longitudinal stress σ11 also corresponds to a current uniaxial yield stress
fy. Thus κp = fy and fy replaces κp for Mises plasticity.

Pure shear with σ11 = σ22 = σ33 = σ23 = σ13 = 0 and σ12 6= 0 may be treated in an
analogous way leading to

σ̇12 =
H

3 + H
G

γ̇12, γ̇p,12 = γ̇12 − γ̇el,12 =
3

H
σ̇12 (5.83)

This employs the engineering notation for shear strains, see Eq. (5.3), as the inverse of
Eq. (5.77) is used instead of Eq. (5.63) to derive the relation for the plastic shear strain
increment.

Mises plasticity is characterized by four material constants: initial Young’s modulus E,
Poisson’s ratio ν, hardening modulus H, and initial uniaxial yield stress fyk. The value of
fyk may be directly taken from a given uniaxial bilinear stress–strain relation, see Fig. 2.10a.
The value of H is indirectly determined from such a relation by transforming Eq. (5.81) into

H =
∆σ11

∆ε11

1− 1
E

∆σ11

∆ε11

(5.84)

The current yield stress fy starts with the initial value fyk and changes in the case of plastic
loading as is ruled by the hardening modulus. This applies in the same way to tension and
compression. The values for H, fyk derived from a uniaxial bilinear stress–strain relation
may also be used for the general triaxial case whereby fy corresponds to κp and fyk to the
initial κp0. Ideal Mises elastoplasticity is given by H = 0 and fy = fyk = const. as a special
case.

End Example 5.2

The initial isotropy of the material behavior due to the isotropy of E is retained during
a loading history under the condition of Eq. (5.41). This will be the case if the functions
F, G, H depend on stress through principal stress values

F = F (σ1, σ2, σ3, κp), G = G(σ1, σ2, σ3, κp), H = H(σ1, σ2, σ3, κp) (5.85)

or through stress invariants

F = F (I1, J2, J3, κp), G = G(I1, J2, J3, κp), H = H(I1, J2, J3, κp) (5.86)

with I1, J2, J3 according to Eq. (5.20).
The orientation of principal stress directions relative to material directions has no influ-

ence for isotropic materials. This allows the representation of yield functions as surfaces in
principal stress space. Yield functions F are related to multiaxial strength, see Eq. (5.42),
as the latter forms a boundary for yield criteria, i.e., F ≤ f . Multiaxial strength is fixed and
does not depend on state variables in contrast to yield functions. Finally it has to be noted
that isotropic elastoplasticity does not allow to model load-induced anisotropy.
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5.5.2 Pressure-Dependent Yield Functions
Mises elastoplasticity is characterized through its limitation of the deviatoric length of the
stress state. This is independent from pressure and treats compression and tension in the
same way. Thus, Mises elastoplasticity is not adequate to describe multiaxial concrete be-
havior. As an alternative the yield function of Drucker–Prager introduces pressure through
the first stress invariant I1

F = κpa I1 +
√

3J2 − κp (5.87)

with stress invariants I1, J2 according to Eq. (5.20) and the internal state variable κp. Using
Haigh–Westergaard coordinates (Eqs. (5.44–5.47)) Eq. (5.87) may be reformulated as

F = κpa
√

3 ξ +
√

3/2 ρ− κp (5.88)

With F = 0 this forms a circular cone in principal stress space with a radius ρ =
√

2/3κp
in the deviatoric plane ξ = 0 and an apex (→ ρ = 0) located at ξ0 = 1/(

√
3 a), see Fig. 5.9.

The cone opens in the compressive octant with a > 0. Material parameters are given with
the value of a and the initial value κp0 of the internal state variable.

An angle of internal friction ϑ is defined through the ratio of deviatoric length to total
hydrostatic length measured from the cone’s apex. It is given by

tanϑ =
ρ

ξ0 − ξ
(5.89)

This can be written as
tanϑ =

√
2 a κp (5.90)

using F = 0 from Eq. (5.87) or ξ = 1/(a
√

3)−ρ/(κpa
√

2), respectively. Starting from a value
tanϑ0 =

√
2 a κp0 the angle of internal friction changes with the internal state parameter κp.

The Mohr–Coulomb yield function based on Coulomb friction makes the bearable shear
stress τ in a plane dependent on the plane’s normal stress σ

τ = c− σ tanφ (5.91)

Figure 5.9: Surfaces of Mohr–Coulomb and Drucker–Prager yield functions in principal stress
space.
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Figure 5.10: Mohr circle for Mohr–Coulomb yield type.

with a cohesion c and an angle of external friction φ. Regarding triaxial stress states the
maximum shear stress is given by τm = (σ1−σ3)/2 under the condition of Eq. (5.48) and its
attached normal stress by σm = (σ1 +σ3)/2 [64, 3.4]. They are related to a pair τ, σ with the
largest ratio |τ/σ|, see Fig. 5.10, by σ = σm + τm sinφ, τ = τm cosφ. This leads Eq. (5.91)
to

F = cosφ (τ + σ tanφ− c)
= τm + sinφσm − c cosφ

=
1

2
(σ1 − σ3) +

sinφ

2
(σ1 + σ3)− c cosφ

(5.92)

The condition F = 0 spans a plane between the compressive meridian σ2 = σ1 > σ3 (signed!)
and the tensile meridian σ2 = σ3 < σ1. For compressive and tensile meridians see Section
5.4.3. An alternative formulation deriving hydrostatic length ξ from deviatoric length ρ is
given for the compressive meridian with

ξ =

√
3

12

12c cosφ−
√

6ρcomp(3− sinφ)

sinφ
(5.93)

and for the tensile meridian with

ξ =

√
3

12

12c cosφ−
√

6ρtens(3 + sinφ)

sinφ
(5.94)

This leads to a relation
ρcomp

ρtens
=

3 + sinφ

3− sinφ
(5.95)

indicating the different slope of compressive and tensile meridian with respect to the hydro-
static axis. A value of, e.g., φ = 30 ° leads to ρcomp = 7/5 ρtens. This factor becomes larger
for increasing values of φ.

A cyclic interchanging of principal stresses leads to totally six planes forming the hexag-
onal cone with an apex at σ1 = σ2 = σ3 = c cotφ and ξ0 =

√
3c cotφ, see Fig. 5.9. Angles

of internal friction ϑ are derived according to Eq. (5.89). Regarding the Mohr–Coulomb
compressive meridian the value is given with

tanϑ =
ρcomp

ξ0 − ξ
= 2
√

2
sinφ

3− sinφ
(5.96)
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As an example, an angle of external friction φ = 30 ° leads to an angle of internal friction
ϑ = 54.7 ° on the compressive meridian. The external angle of friction may be subject to
change due to the loading history. Thus, it is determined with

φ = κmc φ0 (5.97)

with the internal state variable κmc and an initial angle of internal friction φ0. An initial
value κmc,0 = 1 is appropriate for the internal state variable. With a fixed apex position
σ1 = σ2 = σ3 = ft = c cotφ the cohesion is determined by

c = ft tanφ (5.98)

see also Eq. (5.92). The parameters φ0, ft serve as material constants for the Mohr–Coulomb
yield function whereby ft corresponds to a tensile strength. The yield function has the
Rankine limit function as a special case with tanφ = 1. This restricts sustainable tensile
stresses but allows unbounded compressive stresses.

The actual size of the yield functions of Drucker–Prager and Mohr–Coulomb in the prin-
cipal stress space is ruled by the value of the respective internal state variables κp, κmc. An
evolution law has to be defined for each according to Eqs. (5.67, 5.85). The limits are defined
by initial values κp,0, κmc,0 which mark the elastic range and final values κp,max, κmc,max when
the surface of a yield function reaches a strength surface. This may be followed by a decrease
of κp, κmc leading to a softening behavior. The parameters κp0, κp,max or κmc0, κmc,max have
to be defined as further material parameters for the respective case.

The question of flow rules remains to be treated. In the case of Drucker–Prager a variation
of the yield function (5.87)

G = κpg a I1 +
√

3J2 (5.99)

is often used as flow rule with an own internal state parameter κpg leading to nonassociated
plasticity with G 6= F . In order to derive plastic strain increments according to Eq. (5.63)

ε̇p = λ̇
∂G

∂σ
(5.100)

the derivative with respect to stress is required. The tensor notation is used for stresses and
strains in the following. Regarding Eqs. (5.20, 5.74) the derivatives of the flow function are
given by

∂G

∂σ
= κpg a I +

1

2

√
3

J2
σ′ (5.101)

with the unit matrix I. Volume change is of special interest in the following. It is defined
with the volumetric strain εV as

εV = ε11 + ε22 + ε33 (5.102)

With Eqs. (5.100, 5.101) the rate of plastic volume change is determined as

ε̇pV = ε̇p11 + ε̇p22 + ε̇p33 = 3λ̇κpg a (5.103)

as σ′11 + σ′22 + σ′33 = 0 for deviatoric stresses by definition, see Eq. (5.9). As the material
parameter has a condition a > 0 and λ̇ ≥ 0 due to the Kuhn–Tucker conditions Eq. (5.65) a
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value κpg > 0 indicates a dilation of volume or dilatancy while κpg < 0 indicates a compaction
of volume. In analogy to Eq. (5.90) an angle of dilantancy is defined as

tanϑ′ =
√

2 a κpg (5.104)

For concrete it has to be considered that its most relevant states lie in the compressive octant
of the principal stress state.

• Regarding experimental data a compaction is seen for concrete for moderate compres-
sive stress levels. This turns into dilation for larger ratios of deviatoric length ρ to
hydrostatic length ξ while approaching the strength surface, see [21, 6.2.2].

The evolution law for the internal state parameter κpg for plastic flow has to be formulated
in analogy to Eq. (5.67). A similar approach for nonassociated plasticity may be followed
regarding the Mohr–Coulomb type of plasticity. More details are given, e.g., in [21, 6.4.4].

The deviatoric projections, i.e., the intersections of yield or strength surfaces of Drucker–
Prager and Mohr–Coulomb with the deviatoric plane, are shown in Fig. 5.11. The values of ϑ
for Drucker–Prager and φ for Mohr–Coulomb are chosen such that the compressive meridian
of Mohr–Coulomb coincides with the surface of Drucker–Prager. Both strength surfaces form
limiting cases for the observed behavior of concrete.

A sketch of the deviatoric projection of the Willam–Warnke strength surface Eq. (5.53)
is also given in Fig. 5.11. It shows the drawbacks of Drucker–Prager and Mohr–Coulomb.
Drucker–Prager has identical compressive and tensile meridians, Mohr–Coulomb has sharp
edges along the meridians with undefined yield surface gradients. Other projections show
straight compressive and tensile meridians for both in contrast to experimental data. The
more realistic Willam–Warnke surface in turn may be used a base for a yield function whereby
the material parameters of the strength surface are formulated as functions of internal state
parameters.

The tangential material stiffness according to Eq.(5.71) for both Drucker–Prager and
Mohr–Coulomb in the case of loading is given by Eq. (5.72). This incorporates the elasticity

Figure 5.11: Intersections of Mohr–Coulomb and Drucker–Prager yield surfaces with the
deviatoric plane.
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matrix E and the derivatives of yield function ∂F
∂σ and flow function ∂G

∂σ , respectively. The
scalar parameter A, see Eq. (5.70)2, includes the evolution law H, see Eq. (5.67), for the
internal state variables κp and κmc used in the flow functions.

Flow functions like Mises, Drucker–Prager, or Mohr–Coulomb cover plasticity due to
increasing deviatoric parts of the stress state. No plasticity will arise due to increasing
hydrostatic compression with these types of predominantly deviatoric plasticity. But exper-
imental data indicate a plastic compaction of a concrete’s grain structure under increasing
hydrostatic compression. This effect may also be treated with the formalism of plasticity or
predominantly volumetric plasticity, respectively.

A flow function may be given by a sphere section in the principal stress state for this pur-
pose. Volumetric and deviatoric plasticity may be combined with an extension of Eq. (5.62)

σ̇ = E · (ε̇− ε̇d − ε̇v) (5.105)

Each plastic part has its own yield function F , flow function G, Kuhn–Tucker conditions, see
Eq. (5.65), and evolution laws for internal state variables. This leads to the following cases:

– Loading in the elastic range without yielding.

– Loading in the elastoplastic range with predominantly deviatoric yielding.

– Loading in the elastoplastic range with predominantly volumetric yielding.

– Loading in the elastoplastic range with both deviatoric and volumetric yielding.

– Unloading in the elastic range without yielding.

The occurrence of cases is ruled by the particular Kuhn–Tucker conditions. In the case of both
deviatoric and volumetric yielding the tangential material stiffness CT is determined with
an extended set of equations based on Eqs. (5.69–5.72). Implementations of the foregoing
concepts are given in, e.g., [28], [32], [39].

5.6 Isotropic Damage
Elastoplasticity is characterized through the evolution of permanent strains with a constant
nominal material stiffness. In contrast, damage assumes a degrading material stiffness with-
out permanent strains upon unloading. The basic approach for isotropic damage is

σ = (1−D) E · ε (5.106)

with the isotropic linear elastic material stiffness E according to Eq. (5.24). This is appli-
cable for the triaxial behavior and includes biaxial and uniaxial behavior as special cases.
Equation (5.106) introduces a state variable D. This scalar damage variable by definition
has a range

0 ≤ D ≤ 1 (5.107)

whereby D = 0 denotes a fully undamaged material and D = 1 a fully damaged material
leading to σ = 0 for every ε. The value of D is not allowed to decrease. It may retain its
value or increase during a loading process, i.e., Ḋ ≥ 0. The damage variable D needs a law
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Figure 5.12: Damage variable D depending on equivalent strain κd.

describing its development from 0 to 1. It is generally coupled to an internal state variable κd
which comprises the load history but has not necessarily conditions like 0 ≤ κd ≤ 1, κ̇d ≥ 0.
Stress-based damage uses the stress history to drive κd while strain-based damage uses the
strain history. In the following relatively simple forms of evolution laws are given for κd. The
conventions σ1 ≥ σ2 ≥ σ3 or ε1 ≥ ε2 ≥ ε3 with signed values have to be followed.

The approach for strain-based damage starts with the following relation between damage
variable D and the state variable κd

D(κd) =

{
0 κd ≤ e0

1− e
−
(
κd−e0
ed

)gd
κd > e0

(5.108)

see Fig. 5.12, with constant material parameters e0, ed, gd. This form guarantees the condition
0 ≤ D ≤ 1 for arbitrary values κd ≥ 0. The internal state variable κd is considered as
equivalent strain for strain-based damage. The equivalent strain is related to the strain ε
with a damage function. The formulation of such a relation has a range of alternatives. An
exemplary selection is given in the following:

– The Rankine damage function

F =

{
αε1 − κd ε1 > 0
0 else

(5.109)

with the largest principal strain ε1 and a material constant α. This models tensile
failure in the direction of the largest principal strain or stress, respectively.

– The Hsieh–Ting–Chen damage function

F = c1 J2,ε + κd

(
c2
√
J2,ε + c3 ε1 + c4 I1,ε

)
− κ2

d (5.110)

with the largest principal strain ε1, the first strain invariant I1,ε of ε and the sec-
ond invariant J2,ε of the deviator of ε, see Eq. (5.20) for the definition of invariants.
Strain tensor components are used instead of stress tensor components. The coefficients
c1, . . . , c4 are further constant material parameters.
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This damage function includes uniaxial tension with ε2 = ε3 = −ν ε1 as special case
leading to

J2,ε = 1
3 (1 + ν)2 ε21, I1,ε = (1− 2ν) ε1

F = c1
(1+ν)2

3 ε21 + κd

(
c2

1+ν√
3

+ c3 + c4 (1− 2ν)
)
ε1 − κ2

d

(5.111)

The special case of uniaxial compression is ε1 = ε2 = −ν ε3 leads to

J2,ε = 1
3 (1 + ν)2 ε23, I1,ε = (1− 2ν) ε3

F = c1
(1+ν)2 ε23

3 + κd

(
−c2 1+ν√

3
− c3 ν + c4 (1− 2ν)

)
ε3 − κ2

d

(5.112)

Equation (5.110) has a formal similarity to Eq. (5.51) of the Hsieh–Ting–Chen strength
surface. Actually the damage function (5.110) in the end leads to a multiaxial strength
condition as formulated with Eq. (5.51).

– More alternatives are described in, e.g., [16, 6.2.3].

– A general form is given by F = F (ε1, ε2, ε3, κd) or F = F (I1, J2, J3, κd). The depen-
dency on principal strain values or principal strain invariants ensures the isotropy of
the stress–strain relations according to Eq. (5.21).

We briefly consider the case that this isotropic dependency is not given using, e.g.,
F = αε11 − κd similar to Eq. (5.109) but with the principal value replaced by ε11. A
Poisson’s ratio ν = 0 is assumed. Thus, a uniaxial state in the 1-direction leads to an
equivalent damage strain and a damage. A rotation Q of the coordinate system by 90°
will transform the nonzero strain ε11 into a nonzero strain ε22 and the zero strain ε22

into a zero strain ε11. Damage will vanish due to this transformation. The isotropy
condition (Eq. (5.21)) obviously cannot be fulfilled with the material law Eq. (5.106).

The equivalent strain κd may be connected to damage D by Eq. (5.108) for both damage
functions. Other formulations for the relation between D and κd are possible but should
have the characteristics shown in Fig. 5.12.

Similar to elastoplasticity loading states have to be distinguished from unloading states
for damage. This is again done with Kuhn–Tucker conditions

F ≤ 0, Ḋ ≥ 0, F Ḋ = 0 (5.113)

similar to Eq. (5.65).

– In case F < 0 is Ḋ = 0, i.e., unloading occurs and damage will not change.

– In case F = 0 is Ḋ ≥ 0, i.e., loading occurs and damage may increase. This implies a
consistency condition similar to Eq. (5.66)

Ḟ =
∂F

∂ε
· ε̇+

∂F

∂κd
κ̇d = 0 → κ̇d = − 1

∂F
∂κd

∂F

∂ε
· ε̇ (5.114)

leading to the evolution law for the equivalent strain.
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Finally it has to be noted that scalar damage D and equivalent strain κd are not strictly
coupled by Eq. (5.108) but through the interaction of Eqs. (5.108, 5.113, 5.114), i.e., D and
κd are decoupled in case of κ̇d < 0.

Stress-based damage shall only briefly be mentioned. The internal state variable κd be-
comes an equivalent stress in the case of stress-based damage. Again a damage function may
be used to connect the equivalent stress to the stress state σ. Yield functions as have been
previously derived for elastoplasticity – Drucker–Prager, Mohr–Coulomb or more complex
types to cover characteristics of concrete behavior – may basically be used for this purpose
whereby the internal state parameter of elastoplasticity κp is replaced by an equivalent stress
measure.

The relation between the damage variable D and the equivalent stress has to have another
characteristic as is shown in Fig. 5.12 for strain-based damage as measures of stress in general
and equivalent stress in particular have upper limits due to limited strength. The relations are
not straightforward anymore and have to be formulated implicitly. Finally, the stress-based
damage has to be completed by Kuhn–Tucker conditions in the same way as Eq. (5.113) to
distinguish loading from unloading.

We will refer to strain-based damage in the following and demonstrate aspects of its
application with the following example.

Example 5.3 Uniaxial stress–strain relations with Hsieh–Ting–Chen damage
We assume strain-based damage with damage variable according to Eq. (5.108) and the
damage function according to Hsieh–Ting–Chen equation (5.110). The material parameters
are given in Table 5.1 including the Poissons’s ratio ν and a nominal value E0 of Young’s
modulus. Principal signed strains and stresses are used as stress and strain measure in the
following. A uniaxial stress state is assumed with σ1 6= 0, σ2 = σ3 = 0.

E0 (MN/m2) 30 0000 e0 (−) 2.836× 10−4 c1 (−) 1.738
ν (−) 0.2 ed (−) 1.910× 10−3 c2 (−) 0.608

gd (−) 2 c3 (−) 7.700
c4 (−) 2.993

Table 5.1: Material parameters of Example 5.3.

Considering continuously increasing compression with ε̇3 < 0, Ḋ > 0 and applying Kuhn–
Tucker conditions (5.112) yields F = −ε3 − κd = 0 and κd = −ε3. Equations (5.106, 5.108)
lead to

σ3 = (1−D)E0 ε3 = e
−
(

−ε3−e0
ed

)gd
E0 ε3 (5.115)

in case ε3 ≤ −e0.
Considering continuously increasing tension with ε̇1 > 0, Ḋ > 0, Eq. (5.111) yields

F = α ε1 − κd = 0 and κd = α ε1 with α depending on ν, c1, . . . , c4. The values given in
Table 5.1 result in α = 10. Equations (5.106, 5.108) lead to

σ1 = (1−D)E0 ε1 = e
−
(
αε1−e0
ed

)gd
E0 ε1 (5.116)

in case ε1 ≥ e0/α.
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Figure 5.13: Example 5.3 (a) Uniaxial stress–strain relation. (b) Loading, unloading, and
reloading.

The stress–strain relation evaluated from Eqs. (5.115, 5.116) is shown in Fig. 5.13a. It
has the following properties:

– The stress–strain curve reproduces the empirical curves Fig. 2.1 for compression and
Fig. 2.2b for tension.

– The computed initial value of Young’s modulus – ratio of stress and strain in the
uniaxial case – corresponds to the prescribed value E0 of Table 5.1.

– The uniaxial compressive strength is determined with fc = 30 MN/m2 at a strain
εc1 = −0.0015 = −1.5‰, and the uniaxial tensile strength with fct = 3 MN/m2.

The values of E0, fc, εc1 are provided as basic parameters of concrete properties. While
E0 can directly adopted for the material law the values fc, εc1 are input for a calibration
procedure. A general choice gd = 2 proves to be appropriate. Thus, two unknowns e0, ed
remain in Eq. (5.115) to reproduce σ3 = −fc for ε3 = εc1. This constitutes a small nonlinear
problem which may be solved, e.g., iteratively with the Newton–Raphson method in analogy
to Eq. (1.72).

The corresponding tensile strength is determined by the combination of parameters
c1, . . . , c4 leading to an equivalent strain scaling factor α. A target value fct is reached
with an appropriate choice of c1, . . . , c4. The corresponding strain comes as a result.

Materials with damage considerably differ from elastoplastic materials in the case of
unloading. This is demonstrated with the following loading history:

– Compression loading in a range −1.4× 10−3 ≤ ε3 ≤ 0 with ε̇3 < 0, Ḋ > 0, F = 0.

– Unloading in a range −1.4× 10−3 ≤ ε3 ≤ 0 with ε̇3 > 0, Ḋ = 0, F = −ε3−κ′d < 0, i.e.,
ε3 > −κ′d with κ′d = 1.4 · 10−3.

– Change of index in stress and strain from 3 to 1 due to change from compressive into
tensile regime. The physical direction actually is not changed.
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– Elastic reloading ranging from 0 ≤ ε1 ≤ κ′d/α with ε̇1 > 0, Ḋ = 0, F = ε1α− κ′d < 0.

– Resumed loading ranging from κ′d/α ≤ ε1 ≤ 0.5 · 10−3 with ε̇1 > 0, Ḋ > 0, F = 0.

The resulting stress–strain curve in shown in Fig. 5.13b. In contrast to elastoplasticity there
are no permanent strains after unloading to zero stress. But the unloading stiffness – actually
a secant stiffness – is reduced in contrast to the unloading stiffness of elastoplasticity.

End Example 5.3

The incremental form of the material law for damage (Eq. (5.106)) remains to be added. The
derivative with respect to time t is given by

σ̇ = (1−D) E · ε̇−E · ε Ḋ
= (1−D) E · ε̇− σ0 Ḋ

(5.117)

To derive the rate of Ḋ we consider D as the function of equivalent strain κd, see Eq. (5.108).
A general form is determined by

Ḋ =
dD

dκd
κ̇d = −

dD
dκd
∂F
∂κd

∂F

∂ε
· ε̇ (5.118)

using Eq. (5.114) for κ̇d. Thus, Eq. (5.117) can be written as

σ̇ = CT · ε̇ (5.119)

with

CT =

(1−D) E +
dD
dκd
∂F
∂κd

σ0
∂F
∂ε for loading

(1−D) E unloading
(5.120)

The form σ0
∂F
∂ε is again an outer or dyadic product of two vectors. The quantities ∂F

∂ε ,
∂F
∂κd

,
dD
dκd

have to be computed from the forms for F,D.
The foregoing description covers very basic ideas of damage. A comprehensive treatment

is given in [59]. Several refinements have been developed regarding the characteristics of
concrete behavior:

– Tensile states are distinguished from compressive states using positive and negative
projections of, e.g., strain. Such projections are determined using the spectral de-
composition of the strain tensor. A tensile and compressive damage is assigned to
each projection and each damage type acts independently. This covers the effect that
concrete retains its compressive stiffness and strength after a tensile loading.

– Isotropic damage assigns the same stiffness degradation in every material orienta-
tion. Such an approach cannot capture a load-induced anisotropy, see Section 5.1.2.
Anisotropic damage introduces a stiffness degradation which depends on the orientation
within a material.
A special but relatively convenient form of anisotropic damage is given by orthotropic
damage. This may be realized with the degradation of Young’s moduli of the or-
thotropic compliance (Eq. (5.27)).
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– Isotropic damage and elastoplasticity can be coupled with the combination of Eqs. (5.61,
5.106) leading to

σ = (1−D) E · (ε− εp) (5.121)

comprising damage function, yield function, flow rule, Kuhn–Tucker conditions, inter-
nal state variables and their evolution laws for damage and plasticity.

A combination of all these concepts is basically possible. Implementations are given in, e.g.,
[15], [23], [33], [41], [52].

5.7 Multiaxial Crack Modeling

5.7.1 Basic Concepts of Crack Modeling

Crack formation is a characteristic property of plain and reinforced concrete structures.
Cracks are unavoidable due to the relatively low tensile strength of concrete. Crack formation
changes the relations of stiffness. Thus, it allows for a redistribution of stresses and internal
forces within a structure on one hand, on the other hand crack width has to be limited to
ensure durability and visual integrity of a structure.

The topics of crack formation are part of fracture mechanics. Linear elastic fracture
mechanics (LEFM) forms the core. LEFM analyses given cracks in homogeneous elastic
bodies whereby cracks are surfaces or planes, respectively, within 3D bodies or curves or lines
within 2D bodies defining internal boundaries allowing for discontinuities of displacements.

LEFM distinguishes three basic fracture modes which are amenable for the analytical
treatment within the framework of elasticity:

– Mode-I: Opening arising from a tensile stress normal to the crack plane,

– Mode-II: Sliding from a shear stress parallel to the crack plane but normal to the front
of the crack plane,

– Mode-III: Tearing from a shear stress parallel to the crack plane and parallel to the
front of the crack plane.

see Fig. 5.14. Fracture types are are another category beneath fracture modes. We distin-
guish: brittle fracture, quasi-brittle fracture and ductile fracture. These types are connected
to the material behavior in the case of failure. We consider the uniaxial stress–strain rela-
tions to simplify the discussion, see Fig. 5.14b. The behavior before reaching the strength is
assumed as elastic.

– Brittle fracture is connected with a sudden drop of stress after reaching strength. The
internal elastic energy is transformed into the energy to form new surfaces. This type
of failure is typical for glass.

– Quasi-brittle fracture is connected with decreasing stress after reaching strength. The
internal energies are transformed into process zone creation, see Section 2.1 and
Fig. 2.2a. This type of failure is typical for concrete and many geomaterials.
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Figure 5.14: (a) Fracture modes. (b) Material failure types.

– Ductile fracture is connected with yielding and hardening, i.e., with a slightly increasing
stress after the strain passes the point of yielding. Yielding and hardening go on for
a relatively long range of strain before localization starts ending with rupture. The
internal energies are predominantly transformed into crystalline sliding. This is typical
for metals.

The application of LEFM is restricted to cases with brittle failure. Quasi-brittle failure
will be considered in the following and LEFM is not directly applicable anymore. The
formation of a process zone or crack band ending up in macrocracking has already been
discussed in Section 2.1. Continuum mechanics is not appropriate for a detailed microscopic
or even mesoscopic description of the complex mechanisms during crack-band formation.
Furthermore, the macroscale viewpoint, see Section 5.1.1, requires the homogenization of the
crack band. The transmission of forces via crack bridges and crack branches, see Fig. 2.2a,
is represented with the cohesive crack model.

• The cohesive crack model assigns surface tractions along fictitious crack boundaries. A
cohesive crack law relates surface tractions and fictitious crack widths.

The fictitious crack width is conjugate to crack tractions with respect to energy. Both can
be considered as generalized stresses or strains, respectively. The cohesive crack model is
illustrated with Fig. 5.15 for mode-I. The fictitious crack width w insofar has a physical
meaning as the traction corresponds to strength for w = 0 and the traction becomes zero
for w = wcr whereby the critical crack width wcr corresponds to the beginning macrocrack
width. Such a value can be estimated from experimental data. Furthermore, some physical
interpretation is given in Eqs. (2.4, 2.5).

The fictitious crack implies two crack surfaces as opposite boundaries. These crack sur-
faces change their relative position during cracking and the relative position change is used
as fictitious crack width. One of these surfaces is chosen as reference. Each position on
the reference surface has a tangential cracking plane supporting a local Cartesian coordinate
system with a normal n.

The distance between the crack surfaces is measured by a fictitious crack width normal
component w1 and two fictitious crack width sliding components w2, w3 in the local coordinate
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Figure 5.15: Cohesive crack model.

system. They form a fictitious crack width vector

wc =

 w1

w2

w3

 (5.122)

The cohesive crack model assumes a crack traction vector tc. Due to equilibrium reasons its
components are connected to the local Cauchy stress, see Eqs. (5.5, 5.16), by

tc =

 t1
t2
t3

 =

 σ̃11

σ̃12

σ̃13

 (5.123)

in the tangential cracking plane. A material law relates stresses and strains in a continuum.
In the same way a material law relates crack traction and crack width in a crack. A general
approach is formulated as

t1 = fn(w1), t2 = fs(w2), t3 = fs(w3) (5.124)

with different laws fn for the normal component and fs for the sliding component. The
relation fn for the normal component corresponds to mode-I or uniaxial cracking in the
softening range, see Section 2.1 and Fig. 2.2b. A separation of the horizontal axis in a strain
section up to tensile strength and a following crack width section leads to a form as shown
in Fig. 5.16. The w-section of the horizontal axis has to be scaled according to Eq. (2.5) in
order to reproduce the crack energy equations (2.6) and (2.7). An approach for the sliding is
given with shear retention within the context of the smeared crack model, see Section 5.7.2.

Basically all material frameworks like plasticity or damage may be used to formulate
relations connecting the generalized strain wc with the generalized stress tc. They are written
in a general form as

ṫc = CcLT · ẇc, ẇc = DcLT · ṫc (5.125)

with a local tangential crack stiffness CcLT and a local tangential crack compliance DcLT ,
compare Eqs. (1.50, 1.51).
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Figure 5.16: Material law for cohesive crack model/normal components.

The fictitious crack concept allows one to model crack propagation for quasi-brittle ma-
terials based on continuum mechanics and within the macroscale. It is still connected with a
discontinuity of displacements along crack surfaces or crack curves. The explicit modeling of
such displacement discontinuities requires special methods like the extended finite-element-
method (XFEM) [50], [89] or the element free Galerkin (EFG) method [8], [58]. These
methods describe displacement discontinuities explicitly on the system level with an explicit
description of crack geometry.

• Methods like XFEM and EFG perform a discrete crack modeling.

Alternatives are given with local approaches which model such discontinuities on the element
level with embedded discontinuity formulations [70], [72]. For a comprehensive treatment of
fracture mechanics, cohesive cracks, size effects and other related topics see [6], [49].

5.7.2 Multiaxial Smeared Crack Model
A widely used approach for crack modeling is given by the smeared crack model. It has
already been discussed in Section 2.5 for the uniaxial case. A first question concerns onset of
cracking. Cracking starts in the uniaxial case when the uniaxial stress reaches the uniaxial
tensile strength fct.

This is extended to the multiaxial case with the Rankine criterion. We consider a material
point with a given multiaxial stress state. Cracking starts when the largest principal stress,
see Section 5.2.3, reaches the uniaxial tensile strength fct. Using the uniaxial strength as a
criterion for a multiaxial case is justified by experimental data indicating that for concrete
the values of multiaxial tensile strength do not significantly differ from the uniaxial value
fct, see Section 5.4.3 and Figs. 5.6 and 5.7. The crack direction is assumed as normal to the
direction of the principal stress inducing the crack. Thus, principal direction and the normal
n of the local tangential cracking plane, see Section 5.7.1, coincide.

The local cracking plane provides a coordinate system for components of the fictitious
crack width vector wc, see Eq. (5.122). In analogy to Eq. (2.5) a crack strain for the multiaxial
case is defined as

˙̃εc =
1

bw
L · ẇc (5.126)
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with the crack-band width bw, see Section 2.1, and an incidence matrix L

L =


1 0 0
0 0 0
0 0 0
0 0 0
0 0 1
0 1 0

 (5.127)

assigning differences of displacements to strains in Voigt notation, see Eq. (5.3). The crack
width is connected to crack tractions by Eq. (5.125). Furthermore, in order to keep local
equilibrium crack tractions are related to the local Cauchy stress by Eq. (5.123) which may
be reformulated as

ṫc = LT · ˙̃σ (5.128)

assigning crack tractions to the Cauchy stress in Voigt notation, see Eq. (5.7). This is still
measured in the local coordinate system tangential to the crack surface. As its orientation
in the global coordinate system should be known a coordinate transformation matrix Q′ can
be determined and local crack strains and local Cauchy stresses can be transformed into the
global system according to Eqs. (5.15, 5.16).

Thus, in analogy to Eq. (2.45), we set for the multiaxial case

ε̇ = (1− ξ) ε̇u + ξQ′ · ˙̃εc, ξ =
bw
L

(5.129)

with the total strain ε, the strain εu of the uncracked material and a characteristic length L
of the respective element. The combination of Eqs. (5.1252, 5.126, 5.128, 5.129) yields

ε̇ = (1− ξ) ε̇u + DcT · σ̇ (5.130)

with
DcT =

1

L
[Q′ · L] ·DcLT · [Q′ · L]

T (5.131)

For 1D states this simplifies to

DcT =
1

Le
DcLT (5.132)

with the element length Le, the uniaxial tangential compliance DcT relating stress and strain
and the uniaxial tangential compliance DcLT with respect to crack width and crack traction.

The material behavior of the uncracked material has to be considered in the next step.
We use the general formulations (Eqs. (1.50, 1.51)) for tangential material stiffness and
compliance

σ̇ = CT · ε̇u, ε̇u = DT · σ̇ (5.133)

The combination with Eq. (5.130) leads to

ε̇ = [(1− ξ) DT + DcT ] · σ̇ (5.134)

which can be transformed into

σ̇ = [(1− ξ) I + CT ·DcT ]
−1 ·CT · ε̇ (5.135)
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using CT ·DT = I. This is a generalization of the uniaxial case (Eqs. (2.51, 2.52)). Equa-
tion (5.135) resembles the incremental material law σ̇ = CT · ε̇ for zero crack-band width
ξ = 0 and a rigid crack band DcT = 0. It leads to σ̇ = 1

1−ξ CT · ε̇ for DcT = 0 only.
Basically any type of material law – elasticity, elastoplasticity, damage – may be used for

the material description of the uncracked material or the formulation of the tangential mate-
rial stiffness CT , respectively. An example for biaxial elasticity with limited tensile strength
will be given in Section 6.2. A combination of smeared cracking and triaxial elastoplasticity
is described in [20].

The comprehension of crack formation introduces anisotropy in combination with
isotropic material laws for uncracked materials. This is valid both for explicit discrete
crack modeling and for the smeared crack model. The latter performs a superposition –
smearing – of cracks and uncracked material covering some area of material represented by
a single material point, i.e., an integration point regarding finite elements. This approach
does not require an explicit modeling of displacement discontinuities.

• The multiaxial smeared crack approach can be used as a model for load-induced
anisotropy which is compatible with the standard displacement-based FEM.

Due to smearing a crack geometry cannot be precisely determined unlike to discrete crack
modeling, only some area of cracking.

Multiple cracking can be treated with an extension of Eq. (5.129)

ε̇ = (1− ξ) ε̇u + ξ
(
Q′1 · ˙̃εc,1 + Q′2 · ˙̃εc,2 + · · ·

)
(5.136)

whereby Q′i denotes the orientation of a crack i. This leads to an extended form of Eq. (5.135).
A final question concerns the evolution of crack orientations within the smeared crack model.
This question arises with the usage of the Rankine criterion. Principal stress orientations
may change regarding a load history. This leads to two alternative concepts regarding stress
orientations:

– Fixed crack: The crack orientation is fixed with the position occurring for the onset of
cracking. This corresponds to clearly separated opposite crack surfaces or macrocracks,
see Fig. 2.2a.

– Rotating crack: The crack orientation follows the direction of principal stresses, i.e., it
may change during a load history. This corresponds to crack bands and microcracking,
where the orientation of a bunch of microcracks may change upon a changing of a
principal tensile stress direction. Cracking is limited to mode-I cracking, see Fig. 5.14a,
with rotating cracks.

Although the fixed crack concept seems to be more realistic from a phenomenological point
of view some complications are involved. In many practical applications it yields too a
stiff behavior of the cracked material. Furthermore, it introduces a relative sliding of crack
surfaces with sliding components w2, w3, see Eq. (5.122), leading to in-plane crack tractions
t2, t3, see Eq. (5.123). A sliding law fs, see Eq.(5.124), has to be formulated. Sliding includes
two major components:

– Dowel action: Rebars crossing a crack have to sheared and bended.
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– Aggregate interlock: Crack surfaces are rough especially due to preferable failure of the
interfacial transition zone (ITZ), see Section 5.1.1. This leads especially to friction
between aggregates.

A reliable formulation of a sliding law is difficult due to rare multiaxial experimental data
including rebars in contrast to data for the tensile softening law fn derived from uniaxial
experimental setups with plain concrete. The concept of shear retention is used as a very
approximate approach. It uses the isotropic elastic shear stiffness, see Eq. (5.24), reduced by
a shear retention factor β

fs = β
E

2(1 + ν)
, 0 ≤ β ≤ 1 (5.137)

with an often chosen value β = 0.5. An approach to adopt this factor to increasing crack
width is given in [19] which avoids artificial locking risks. Concepts of cracks may be combined
starting with a rotating crack and switching over to a fixed crack in case some threshold crack
width value is exceeded. But this introduces one more estimate coefficient.

Finally, the effect of crack closure has to be considered: a cracked material more or less
regains stiffness after a reduction of crack width to zero or a relatively small value. An
example is given in Section 6.2.

5.8 The Microplane Model

A deeper inspection of mesoscales or microscales of materials, see Sections 2.1 and 5.1.1,
reveals that stiff parts embedded in a matrix interact in microscopic boundary layers, see
Fig. 5.17a. The microplace concept represents these layers by a variety of microscopic planes.
Stress and strain vectors are defined with respect to these planes and material laws are for-
mulated to relate them. A superposition of microplanes finally yields homogenized relations
between strains and stresses. In another view microplanes may be imagined as the tangent
planes of a sphere surrounding every continuum point, see Fig. 5.17b.

Figure 5.17: Microplane (a) Interaction layers [5]. (b) Microplanes in unit sphere [56]).
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A basic question of the microplane concept concerns how stress and strain tensors are
related to stress and strain vectors. A local approach for stresses is given by Eq. (5.5)

t = σM · n (5.138)

called static constraint with the microplane normal n. The same approach can be used for
strains leading to a strain vector

e = εM · n (5.139)

called kinematic constraint with the strain tensor εM according to Eq. (5.2). As local behavior
is generally driven by prescribed strains derived from a global FEM calculation the kinematic
constraint is chosen as a base.

Thus, we assume a given strain vector e on a particular microplane. The microplane has
a local Cartesian coordinate system with a normal n and two orthogonal in-plane vectors
m, l. The orientation of m, l is arbitrary within the plane. The scalar projections of the
strain vector are given by

εN = nT · e = nT · εM · n
εM = mT · e = mT · εM · n
εL = lT · e = lT · εM · n

(5.140)

with the scalar normal strain εN and the scalar in-plane strains εM , εL. This may be written
as

εN = NT · ε, εM = MT · ε, εL = LT · ε (5.141)

called normal-tangential (N-T) split with vectors N, M, L containing rearranged components
of n, m, l and a strain ε arranged according to the Voigt notation (5.3).

These measures of strain have to be connected to scalar measures of stress σN , σM , σL
through a material law. We anticipate that the values of σN , σM , σL have been determined.
An statically equivalent Cauchy stress σ, see Section 5.2.2, has to be found. Statical equiva-
lence can be formulated with the principle of virtual work, see Eq. (1.5). This is reformulated
regarding a unit sphere [5]

2π

3
δεT · σ =

∫
A

(δεNσN + δεMσM + δεLσL) dA (5.142)

with the unit sphere surfaceA and virtual strains δε and δεN , δεM , δεL. This can be rewritten
as

2π

3
δεT · σ = δεT ·

∫
A

(σN N + σM M + σL L) dA (5.143)

and is fulfilled by

σ =
3

2π

∫
A

(σN N + σM M + σL L) dA (5.144)

for arbitrary virtual strains δε. The evaluation of the integral is performed numerically
whereby the unit sphere surface is approximated by plane facets. Each facet corresponds
to a microplane with its own orientation n, m, l and for a given strain ε each has to be
evaluated with a split according to Eq. (5.140) and related to values for σN , σM , σL. The
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number of facets and the type of numerical integration has a major influence on the final
relations between ε and σ for given material laws connecting σN , σM , σL and εN , εM , εL

A scalar volumetric strain is defined as

εV =
ε11 + ε22 + ε33

3
(5.145)

and a scalar deviatoric strain as

εD = εN − εV = εT ·ND (5.146)

called volumetric-deviatoric (V-D) split. The corresponding scalar measures of stress are
σV , σD with

σV =
σ11 + σ22 + σ33

3
, σD = σN − σV (5.147)

The scalar volumetric stress σV corresponds to pressure p, see Eq. (5.8). The deviatoric part
σ′ of Cauchy stress remains to be evaluated to determine total Cauchy stress, see Eq. (5.9).
Subtracting δεV σV from both sides of Eq. (5.142) and using σN = σV +σD, δεN = δεV +δεD
and δεV σD = 0 leaves after some rearrangements

2π

3
δεT · σ′ =

∫
A

(δεDσD + δεMσM + δεLσL) dA (5.148)

and finally [5]

σ′ =
3

2π

∫
A

(σD ND + σM M + σL L) dA (5.149)

A volumetric-deviatoric-tangential (V-D-T) split combines both forgoing splits and uses
scalar strain measures εV , εD, εM , εL and scalar stress measures σV , σD, σM , σL.

A key issue is the formulation of the respective material laws, i.e., the relations between
scalar measures of strain and stress. We mention the V-D-T split in the following as the
other splits may be treated in the same way. The most general form of a material law is
given by

σV (t) = Vtτ=0 [εV (τ), εD(τ), εM (τ), εL(τ)]
σD(t) = Dtτ=0 [εV (τ), εD(τ), εM (τ), εL(τ)]
σM (t) = Mt

τ=0 [εV (τ), εD(τ), εM (τ), εL(τ)]
σL(t) = Ltτ=0 [εV (τ), εD(τ), εM (τ), εL(τ)]

(5.150)

whereby F ,G,H,L are functionals of the history of the scalar strains in time t. The formats
of linear elasticity, nonlinear elasticity or hypoelasticity, plasticity, damage and combinations
thereof may be used to formulate specific laws. The popular microplane model M4 [5] uses
hypoelastic relations

σ̇V = EV ε̇V , σ̇D = ED ε̇D, σ̇M = ET ε̇M , σ̇L = ET ε̇L (5.151)

whereby scalar tangential material stiffness values EV , ED, ET each may depend on all scalar
strains. This is combined with strength conditions for each scalar stress. Provisions have
to be taken in order that stress values determined from hypoelasticity do not violate such
strength conditions. A damage approach for the microplane model is given in [55], [60], an
elastoplastic approach in [56].
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180 Chapter 5 Multiaxial Concrete Material Behavior

The microplane model shows similarities to the smeared crack model. Both work with
scalar measures of stress and strain. While the smeared crack model considers at most a
very few planes to apply scalar relations the microplane model basically uses all orientations.
Thus, it does not need tensorial relations as the smeared crack model does to have an embed-
ding frame. The microplane model has as major advantageous feature that it models initial
or load-induced anisotropy in a natural and relatively simple way.

5.9 Localization and Regularization

5.9.1 Mesh Dependency
A basic property of the stress–strain behavior of concrete in its limit state is given by strain
softening: stress decreases while strain increases, see Fig. 2.1. The effects of strain softening
on structural behavior have been demonstrated for a tension bar with Example 2.1. A zone of
localization develops in a relatively small area of a structure leading to a snap-back behavior
in the load–displacement relation.

This type of behavior shall again be discussed for a simplified configuration. We consider
a bar model according to Fig. 5.18a. The bar consists of three sections. A linear elastic
behavior σ = E ε is considered for the first and third section. The center section has a linear
elastic behavior initially up to a maximum stress value or strength followed by a linear stress
decrease, see Figs. 2.2b and 5.18b. This softening material behavior is described by

σ =


E ε ε ≤ εct

fct
εcu − ε
εcu − εct

εct < ε ≤ εcu
0 εcu < ε

(5.152)

with fct = E εct. Softening is characteristic for quasi-brittle failure. The total internal
energy of the softening part in a loading state ε ≥ εcu is given by G = 1

2ALe fct εcu with a
bar cross-sectional area A. A part of this energy related to the cracked area

Gf =
1

2
Le fct (εcu − εct) , Le = αL (5.153)

Figure 5.18: (a) Model for softening bar. (b) Material model for softening bar.
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is dissipated as crack energy Gf , see Eqs. (2.6, 2.7), as a state ε ≥ εcu corresponds to a
crack and the initial uncracked state cannot be recovered. The case εct = εcu with a sudden
stress drop to zero corresponds to a perfectly brittle failure. The internal energy difference
(G−AGf ) is theoretically regained within the softening material.

The bar is loaded with a stress σ at the right end and fixed at the left end. All bar
sections have the stress σ due to equilibrium. The displacement of the right end is given by

u = ε1L1 + εLe + ε2L2 (5.154)

with the strains ε1, ε2 for the lateral sections and the strain ε for the center section. This
leads at first to a right-end displacement

u =
σ

E
L, ε ≤ εct (5.155)

Furthermore, we consider the softening of the center section and use Eq. (5.152) for εct ≤
ε ≤ εcu. Lateral strains are ε1 = ε2 = σ/E in this strain range. With Le = αL and
L1 + L2 = (1 − α)L and regarding Eqs. (5.152, 5.154) the stress σ or loading, respectively,
can be determined depending on the displacement. This yields

σ

fct
=

α εcu − u
L

α εcu − εct
(5.156)

We assume εc1 = 0.01, εcu1 = 0.03 for an example. Results for the related loading σ/fct
depending on related displacement u/L are shown in Fig. 5.19 for different values of the
softening length ratio α. The bar behavior after reaching the strength fct strongly depends
on the softening length. A decreasing loading occurs with an increasing strain in the center
softening section while strains decrease elastically in the remaining parts. A relatively small
softening length leads to a snack-back behavior: decreasing elastic strains overcompensate
increasing softening strains leading to a decreasing displacement.

We transfer this setup to a bar discretized with a number nE of two-node bar elements
along a line, see Section 1.3. All elements are chosen with the same length and a material law
according to Eq. (5.152). But we assume one element with a slightly reduced strength fct

Figure 5.19: Load–displacement relations for a softening bar.
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182 Chapter 5 Multiaxial Concrete Material Behavior

or slightly reduced cross section compared to all other nE − 1 elements. Thus, the softening
length ratio is given by α = 1/(nE −1) and the snap-back behavior will be more pronounced
for a finer discretization. The same effect will occur with a homogeneous system, i.e., the
same strength and cross section for all elements, but a nonhomogeneous stress state, e.g.,
due to a distributed loading along the bar.

Basically the same phenomenon can be seen for 2D states along curves which connect 2D
elements and for 3D states along surfaces which connect 3D elements. The spatial thickness
of the softening band will spread over one element – maybe two or three in cases when
the softening band does not align to single element boundaries – and will reduce with finer
discretizations.

• A discretization may have a considerable influence on the numerical results for struc-
tures with softening materials in the case of nonhomogeneous structural properties or
nonhomogenous stress states. Results are mesh dependent. A convergence cannot be
reached with finer discretizations in postpeak regimes.

In the same way the dissipated energy, see Eq. (5.153) for 1D elements, approaches to zero
for an increasing number of elements or decreasing value α. This contradicts to experimental
data of real systems with softening materials which show considerable energy dissipation
while passing the softening process up to an ultimate failure.

5.9.2 Regularization

Strain softening is connected with some amount of dissipation of internal energy in zones
of localization and in particular within crack bands of concrete structures. On the other
hand, a mesh dependency of discretized systems with softening materials becomes evident
– using standard material and element formulations as have been described up to now –
with a dissipated energy converging to zero upon the refinement of the discretization. Thus,
energy dissipation in localization zones or crack energy of concrete models can be used as an
indicator for mesh dependency.

We consider the crack energy of mode-I cracking due to principal tension failure according
to the Rankine criterion, see Section 5.7.2. A setup of mode-I cracking has already been
discussed in Section 2.1, see Fig. 2.2b. The corresponding crack energy Gf has been defined
in Eqs. (2.6, 2.7). Its value is assumed as a constant material parameter due to current state
of knowledge.

• The crack energy should be reproduced for systems with softening materials indepen-
dent from discretization. The corresponding provisions are regarded as regularization.

We consider again the simple three-section bar shown in Fig. 5.18 and the stress–strain
relations (5.152). The center section is modified with the application range of the softening
stress–strain relation

σ = fct
εcu − ε
εcu − εct

, εct < ε ≤ bw
Le

(εcu − εct) (5.157)

with the concrete tensile strength fct, the crack-band width bw, see Section 2.1, and the
section or element length Le, respectively. After this modification of stress–strain relations
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the crack energy, see Eq. (5.153), is given by

Gf =
1

2
bw fct (εcu − εct) (5.158)

This yields the correct crack energy independent from the element length Le. The range of
strain has been scaled in the softening range according to the ratio of crack-band width to
element length. This compensates the influence of element dimensions on the integration of
stress–strain relations to determine the energy: small elements gain a large integration range
of strains, large elements a low integration range. This approach may also be applied to
multiaxial cases as will be demonstrated indirectly.

• A regularization can be reached with a scaling of strains in the softening range of
stress–strain relations. This scaling depends on the ratio of the crack-band width to a
characteristic element length and leads to the crack-band method.

But the stress–strain relations will become dependent on a characteristic element length.
There are strong relations between the crack-band method and the smeared crack method.

This will again be demonstrated for the simple case. Equations (5.157, 5.158) lead to a
tangential material stiffness

CT =
Le
bw

fct
εcu − εct

= Le
f2
ct

2Gf
(5.159)

and a compliance

DT =
1

CT
=

1

Le

2Gf
f2
ct

(5.160)

We compare this to the compliance DcT of the normal components of the cohesive crack
model according to Eq. (5.125). The linear approximation of the relation between t1 and w1

in the range w ≤ wcr, see Fig. 5.16, leads to a crack energy Gf = 1
2 fctwcr. Thus

DcLT =
wcr
fct

=
2Gf
f2
ct

(5.161)

and regarding Eq. (5.160) the crack band compliance is given with

DT =
DcLT

Le
(5.162)

This corresponds to Eq. (5.132) or DT = DcT , respectively, with the compliance DcT of the
smeared crack model. In the same way as for the smeared crack model, the compliance DT of
strains and stresses in a crack band is related through the element length to the compliance
DcLT of crack widths and crack tractions. This may be generalized for multiaxial states.

• The crack-band method and the smeared crack model are basically equivalent. The
smeared crack model leads to a regularization in the same way as the crack-band
method.
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184 Chapter 5 Multiaxial Concrete Material Behavior

The reproduction of crack energy has been defined as major criterion for regularization. The
crack energy contributes to the ductile behavior of whole structures or structural elements.
Ductile behavior concerns the relations between loads and displacements or over-all behavior.
Insofar regularization first of all ensures the correct modeling of the over-all behavior of
structures with softening materials.

The crack-band model reproduces crack energy and over-all behavior of structures but will
not reproduce local behavior. The spatial thickness of the softening band will still spread
over one element and will still reduce with finer discretizations, see Section 5.9.1. What
changes is strain within softening elements which is scaled according to element size in order
to retain the crack energy. The real behavior within crack bands is different and has already
been discussed for the uniaxial or mode-I case, see Fig. 2.3 and Example 2.1.

Nonlocal methods can resolve the local crack-band behavior additionally to regularization.
We consider again the simple three section bar shown in Fig. 5.18 with the stress–strain
relations (5.152). The center section is modified regarding its variable strain argument ε

σ = fct
εcu − ε̄
εcu − εct

, εct < ε ≤ (εcu − εct) (5.163)

with the integral form of nonlocal strain ε̄

ε̄(x) =
1

S

∫
L

g(s) ε(x+ s) ds (5.164)

with a fixed coordinate x, a variable coordinate s, a bar length L and a weighting function

g(s) = e−
s2

2R2 , S =

∫
L

g(s) ds (5.165)

The weighting function g(s) corresponds to a bell-shaped curve with maximum 1 for s = 0.
The parameter R determines the lateral decline of g. Small values cause a steep decline
with a small range while large values cause a flat decline with a large range. The nonlocal
approach according to Eq. (5.164) decreases the local extremal value of ε and broadens the
base depending on the parameter R, see Fig. 5.20. Spatially constant strains would remain
constant in contrast.

The length R is assumed as constant and independent from a discretization. Thus, the
approach Eq. (5.164) spans over a number of neighbored elements depending on the ratio
of R to single element length. This enforces a smoothing of strain peak values independent
from a discretization, see Fig. 5.20, and leads to a crack-band width bw which also does not
depend on the discretization. Furthermore, the value of R and the resulting value of bw are
approximately proportional and have the same magnitude. This corresponds to the physical
significance of the crack-band width, which primarily depends on the concrete aggregate size,
see Section 2.1.

• Nonlocal methods introduce a characteristic length R as a material parameter. This
characteristic length is a measure for the heterogeneity of the material as it is ob-
served in the mesoscale, see Fig. 5.1, and compensates a “loss” of information due to
homogenization.

For a comprehensive treatment of nonlocal methods see [47], [6], [77].
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Figure 5.20: Nonlocal uniaxial strain.

An alternative for the integral nonlocal formulation equation (5.164) shall be derived in
the following [75]. A second-order Taylor expansion of ε(x+ s) leads to

ε(x+ s) ≈ ε(x) +
∂ε

∂x
s+

1

2

∂2ε

∂x2
s2 (5.166)

Insertion into Eq. (5.164) yields a differential nonlocal formulation

ε̄ ≈ 1

S

∫ ∞
−∞

g(s) ds ε+
1

2S

∫ ∞
−∞

g(s) s2 ds
∂2ε

∂x2

= ε+
R2

2

∂2ε

∂x2

(5.167)

under the simplifying assumption of an infinite bar length L and regarding the antisymmetry
of the linear s-term. This form is not yet appropriate for common finite element formulations
due to the second derivative ∂2ε/∂x2. Thus, the second derivative of Eq. (5.167) is formed

∂2ε̄

∂x2
=
∂2ε

∂x2
+
R2

2

∂4ε

∂x4
(5.168)

multiplied by R2/2 and subtracted from Eq. (5.167). This yields

ε̄− R2

2

∂2ε̄

∂x2
= ε− R4

4

∂4ε

∂x4
(5.169)

Neglecting the last term on the basis of the assumption R < 1, R4 � R2 leads to the final
differential form of nonlocal strain

ε̄(x)− R2

2

∂2ε̄(x)

∂x2
= ε(x) (5.170)

This differential equation is driven by a given strain strain function ε(x) determined in
a superordinated calculation. Its solution ε̄(x) is used as strain to determine the stress
according to, e.g., Eq. (5.163).
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Integral or differential nonlocal forms like Eq. (5.164) or Eq. (5.170) may be generalized for
multiaxial cases and may also be applied to internal state variables connected to strain states,
e.g., the equivalent damage strain of the damage material model, see Section 5.6. Both forms
retain their capabilities regarding regularization and the resolution of crack bands with such
applications. But the objective requires a discretization of crack bands itself with a sufficient
number of elements. Thus, common crack-band widths in the dimension of 10−2 m lead to
fine discretizations and large discretized systems.

5.9.3 Gradient Damage

The uniaxial differential form Eq. (5.170) of nonlocal strain in the following is generalized to
multiaxial damage using an equivalent strain measure. The approach is known as gradient
damage. The damage material model described in Section 5.6 is used as frame of application.
The generalized gradient damage form is given by

κ̄(x)− c∆κ̄(x) = κ(x), c =
R2

2
(5.171)

with the spatial coordinate x, the nonlocal equivalent damage strain κ̄(x), the Laplace dif-
ferential operator ∆, the local equivalent damage strain κ(x) and a characteristic material
length R. We replace κd from Section 5.6 with κ to simplify the notation.

The gradient damage approach shall be incorporated in the finite element method. To
begin with, Eq. (5.171) has to be transformed into a weak integral formulation. Such a
procedure has already been demonstrated for beams in Section 3.2 whereby outlining a
standard way. In the case of Eq. (5.171) the standard way starts with∫

V

δκ̄
[
κ− κ̄+ c∆κ̄

]
dV =

∫
V

δκ̄ κdV −
∫
V

δκ̄ κ̄dV +

∫
V

c δκ̄∆κ̄dV = 0 (5.172)

with the volume V of the body under consideration and a test function δκ̄. The product rule
of differentiation leads to

δκ̄∆κ̄ = div (δκ̄∇κ̄)−∇δκ̄ · ∇κ̄ (5.173)

with the scalar product ·, the divergence operator div, and the nabla operator ∇. Application
of the Gauss divergence theorem [54] leads to∫

V

div (δκ̄∇κ̄) dV =

∫
A

δκ̄n · ∇κ̄dA (5.174)

with the surface A of the body and the outer surface normals n. Thus, Eq. (5.172) can be
written in a form∫

V

δκ̄ κ̄dV +

∫
V

c∇δκ̄ · ∇κ̄dV =

∫
V

δκ̄ κdV +

∫
A

c δκ̄n · ∇κ̄dA (5.175)

This form is suited for a discretization with respect to the nonlocal equivalent damage strain
κ̄ while the local value κ is given as driving part.
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The surface integral part remains to be discussed. Additional boundary conditions for the
nonlocal equivalent damage strain are required, i.e., either κ̄ or the normal derivative n · ∇κ̄
have to be specified in every point of the surface A. We assume that κ̄ can be prescribed
along a part Aκ of the whole surface A and that δκ̄ = 0 can be set along Aκ. Furthermore,
we consider cases with strains localizing in narrow bands with approximately perpendicular
orientations to the boundary. As any major damage gradients ∇κ̄ arise perpendicularly to
the band of localization, i.e., in boundary direction, the condition n ·∇κ̄ = 0 can be set along
the that part of A where κ̄ is not prescribed [75]. Thus, Eq. (5.175) is simplified as∫

V

δκ̄ κ̄dV +

∫
V

c∇δκ̄ · ∇κ̄dV =

∫
V

δκ̄ κdV (5.176)

This weak integral formulation of Eq. (5.171) will be used in the following and has to be
combined with the material law.

First of all, the local κ in Eq. (5.108) is replaced by the nonlocal κ̄

D(κ̄) = 1− e
−
(
κ̄−e0
ed

)gd
, κ̄ ≥ e0 (5.177)

and we obtain the increment of damage dD depending on the increment dκ̄ of the nonlocal
equivalent damage

dD =
dD

dκ̄
dκ̄ =

1

h
dκ̄,

1

h
=
gd

(
κ̄−e0
ed

)gd
κ̄− e0

e
−
(
κ̄−e0
ed

)gd
(5.178)

Using Eq. (5.117) the stress increment is given by

dσ = (1−D) E · dε−E · ε dD

= (1−D) E · dε− 1

h
σ0 dκ̄, σ0 = E · ε (5.179)

This completes the material and gradient damage parts. The equilibrium of forces has the
condition ∫

V

δεT · σ dV =

∫
V

δuT · p̄ dV +

∫
At

δuT · t̄ dA (5.180)

according to Eq. (1.52). The weak forms (Eqs. (5.176, 5.180)) are discretized by

u = Nu · υ, κ̄ = Nκ · κ̄ (5.181)

with the matrices Nu, Nκ of form functions and the vectors υ, κ̄ of nodal values of displace-
ment and nonlocal equivalent damage strain as global unknowns. The global unknowns and
their increments are given by

ε = Bu · υ, dε = Bu · dυ
∇κ̄ = Bκ · κ̄, d∇κ̄ = Bκ · dκ̄

(5.182)

The test functions δu, δκ̄ are discretized in the same way. Using Eqs. (5.181, 5.182) together
with the weak forms (Eqs. (5.176, 5.180)) leads to

r = p− f(a) = 0 (5.183)
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with
p =

(
pu
0

)
, f =

(
fu
fκ

)
, a =

(
υ
κ̄

)
(5.184)

and external nodal forces

pu =

∫
V

NT
u · p̄ dV +

∫
At

NT
u · t̄ dA (5.185)

and extended internal nodal forces

fu =

∫
V

BT
u · σ dV, fκ =

∫
V

[
NT
κ (κ̄− κ) + cBT

κ · ∇κ̄
]

dV (5.186)

with fu depending on σ ← ε ← υ and σ ← D ← κ̄ and fκ depending on κ̄ and on the
local κ ← ε ← υ. Thus, fu and fκ are coupled and Eq. (5.183) forms a system of nonlinear
algebraic equations.

The solution of the nonlinear algebraic system requires a tangential stiffness matrix

KT =
∂f

∂a
=

[
∂fu
∂υ

∂fu
∂κ̄

∂fκ
∂υ

∂fκ
∂κ̄

]
=

[
Kuu Kuκ

Kκu Kκκ

]
(5.187)

Equations (5.186)1 and(5.179) yield

Kuu =

∫
V

(1−D) BT
u ·E ·Bu dV, Kuκ = −

∫
V

1

h
BT
u · σ0 ·Nκ dV (5.188)

and Eqs. (5.114) and (5.186)2 for the loading case lead to

Kκu = −
∫
V

1

H
NT
κ · nT ·Bu dV, Kκκ =

∫
V

(
NT
κ ·Nκ + cBT

κ ·Bκ

)
dV (5.189)

with dκ = 1
H n and H = ∂F

∂κ , n = ∂F
∂ε and the damage function F , see Section 5.6. In the case

of unloading is Kuκ = 0. The tangential system stiffness matrix KT is unsymmetrical, but
this occurs generally for damage formulations not derived from potentials with the principle
of maximum dissipation.

The iteration rule is
δa =

[
K

(ν)
T

]−1

· r(a(ν))

a(ν+1) = a(ν) + δa
(5.190)

according the the Newton–Raphson method, see Eq. (1.72). This is generally embedded in
an incremental load application, see Section 1.6.

Example 5.4 Gradient damage formulation for the uniaxial two-node bar
The gradient damage formulation is illustrated with the simple uniaxial tensile case in con-
nection with the uniaxial two-node bar element, see Section 1.3. The same interpolation is
chosen for displacements and nonlocal damage strain Nu = Nκ = N with N from Eq. (1.22).
As elements are assembled according to Section 1.5, it is sufficient to consider a single element.
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The following relations are given for the element level, see Eqs. (1.43, 5.111, 5.179)

E =
[
E
]

σ0 =
(
E ε

)
F = c1

(1+ν)2

3 ε2 + κ
(
c2

1+ν√
3

+ c3 + c4 (1− 2ν)
)
ε− κ2

n = ∂F
∂ε = 2c1

(1+ν)2

3 ε+ κ
(
c2

1+ν√
3

+ c3 + c4 (1− 2ν)
) (5.191)

The uniaxial two-node element has as nodal degrees of freedom

ae =
(
uI κ̄I uJ κ̄J

)T (5.192)

A first lattice for the internal nodal forces and tangential element stiffness matrix is prepared
as

B =

[
BI 0 BJ 0
0 BI 0 BJ

]
, BI = 2

Le

(
− 1

2

)
, BJ = 2

Le

(
1
2

)
, C =

[
(1−D)E 0

0 c

]
(5.193)

leading to a base BT · C · B of the stiffness matrix covering the parts Kuu and the second
part of Kκκ, see Eqs. (5.188, 5.189). The matrix C is variable due to a variable damage
D. Nonlocal damage strains and nodal displacements are still uncoupled with this approach.
Coupling is performed using

N =

[
BI 0 BJ 0
0 NI 0 NJ

]
, NI = 1

2 (1− r), NJ = 1
2 (1 + r), C′ =

[
0 −E εh

− 1
H

∂F
∂ε 1

]
(5.194)

with BI , BJ as in Eq. (5.193). The numerical integration is performed with one point inte-
gration leading to an tangential element stiffness matrix

KTe =
Le
2

[
BT · C ·B + N T · C′ ·N

]
(5.195)

To derive the extended internal nodal forces a generalized strain is defined with

E =

(
ε
∇κ̄

)
= B · ae (5.196)

leading to a general stress
S = C · E (5.197)

and to a base BT · S of the extended internal nodal forces, see Eq. (5.186). The coupling
part NT (κ̄− κ) is still missing. Another general stress like parameter is introduced as

S ′ =

(
0

κ̄− κ

)
(5.198)

finally leading to

fe =
Le
2

(
BT · S + N T · S ′

)
(5.199)

A scaling of the components of the components Kκu,Kκκ of KT , see Eq. (5.187), or of the
second rows in C,C′ may be necessary to avoid large differences of values in KT and a bad
numerical condition. Young’s modulus E is appropriate as scaling factor.

End Example 5.4
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190 Chapter 5 Multiaxial Concrete Material Behavior

The way demonstrated in Example 5.4 may be applied to other element types in an analogous
way. The assemblage of element contributions to the global system is performed in the same
way as for all other element types. The particular implementation example is practiced with
Example 2.1. More aspects concerning gradient damage are given in, e.g., [55], [74], [30],
[76].

5.10 General Requirements for Material Laws

General requirements for material laws fall under the two categories objectivity and thermody-
namic restrictions. Regarding solids the basics of thermodynamics are given in the following
postulates whereby neglecting temperature aspects:

1. The change of internal energy U̇ of a solid body should be equal to the power Ṗ applied
by external forces plus the change in kinetic energy K̇

U̇ = Ṗ + K̇ (5.200)

This is stated for a whole body and may be transformed into a local formulation using
the Gauss divergence theorem [54, 10.7], [64, 5.4]

u̇ = σT · ε̇ (5.201)

with the specific internal energy rate u̇, the Cauchy stress σ and the strain rate ε̇. The
first postulate provides a definition for the specific internal energy.

2. A diversity of formulations exists for the second postulate. Regarding solid materials
the specific internal energy is split into a recoverable energy ψ(ε) depending on the
strain ε only and into a dissipated energy d with

u̇ = ψ̇ + ḋ (5.202)

The Clausius–Duhem formulation postulates

ḋ = u̇− ψ̇ ≥ 0 (5.203)

i.e., energy dissipated in materials should not be negative. In contrast to the first
postulate the second postulate might impose restrictions for the formulation of stress–
strain relations.

A stress–strain relation not fulfilling the Clausius–Duhem inequality is not regarded as suit-
able to describe local material behavior. The fulfillment can generally be proven for simple
nonlinear stress–strain relations. This is shown for isotropic damage, see Section 5.6. The
key is the formulation of the specific recoverable energy ψ. In the case of isotropic damage
with a stress–strain relation according to Eq. (5.106) it is given by

ψ =
1

2
(1−D) εT ·E · ε (5.204)
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with the scalar damage parameter D and the linear elastic material stiffness according to
Eq. (5.24). In the case of vanishing damage D = 0 this yields the strain energy of isotropic
linear elastic materials. The rate is given by

ψ̇ = −Ḋ
2
εT ·E · ε+ (1−D) εT ·E · ε̇

= −Ḋ
2
εT ·E · ε+ σT · ε̇

(5.205)

Equations (5.201, 5.202) lead to a dissipation rate

ḋ =
Ḋ

2
εT ·E · ε (5.206)

Thus, ḋ ≥ 0 as Ḋ ≥ 0 by definition, see Eq. (5.113), and εT · E · ε ≥ 0 as the matrix E is
positive definite.

A further restriction may be formulated with the Drucker stability postulate [13, 3.1], [64,
6.6 Part 2]. It states that

σ̇T · ε̇ ≥ 0 (5.207)

This can obviously not be fulfilled for softening materials of, e.g., a damage type, see
Fig. 5.13a. Regarding the Example 5.3 with uniaxial compressive concrete behavior it is
σ̇ > 0 and ε̇ < 0 and Drucker’s postulate is violated. This corresponds to the fact that
softening materials need a regularization to reach discretization objectivity when used in
numerical methods, see Section 5.9. A regularization is not required for materials fulfilling
the Drucker stability postulate.

Objectivity or material frame indifference of stress–strain relations must be given with
respect to rotating and translating coordinate systems [64, 6.7]. We consider a solid body
with boundary conditions preventing rigid body motions and with some loading applied in
a quasistatic state. This leads to strains ε and stresses σ. The stress–strain relations are
denoted with σ = f(ε).

An arbitrary rotation is applied to this setup. Depending on the reference configuration
– Lagrangian or Eulerian [64, 4.5] – such rotations may be considered as equivalent with
particular types of coordinate transformations and require a transformation of the position
of the body, of the applied forces and of strains and stresses.

Transformation rules for, e.g., plane states are given in Appendix C. The transformation
of strains is denoted with ε→ ε̃ and the transformation of stresses with σ → σ̃. Objectivity
requires that f(ε̃) yields σ̃ with unchanged function f . This issue is relevant for Eulerian
reference configurations with incremental material laws according to Eq. (5.13) and large
displacements leading to the formulation of corotational or objective stress rates [9, 3.7].
This issue is of minor relevance within the context of reinforced concrete structures.
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Chapter 6

Plates

6.1 Lower Bound Limit Analysis

6.1.1 The General Approach

Plates are plane surface structures in contrast to bars and beams which are line structures.
They are characterized by in-plane loading. Length and height are significant as geometrical
properties. Regarding a plate position the state of stress and strain is assumed as con-
stant throughout the thickness. A corresponding kinematic assumption has been given in
Section 1.3.

Plates have already been treated in Section 4.1 in the context of strut-and-tie models.
Strut-and-tie models regard uniaxial stress–strain relations. This is a simple but crude model
to describe the material behavior of concrete. Actually biaxial states are the characteristic
for plates, see e.g., Fig. 4.1. Thus, design and simulation methods for plates of reinforced
concrete regarding biaxial states are described in the following. The limited tensile strength
of concrete still plays a dominant role.

We start with a design method considering local equilibrium on one hand and the limited
strength of concrete and reinforcement on the other hand. This leads to a lower bound limit
analysis performed on plates. An analysis of a similar type has already been described in
Section 4.4 for rigid plastic systems. Plane stress conditions, see Eq. (1.45), are assumed
in the following, but the approach in the same way may be applied to plane strain condi-
tions (1.44).

A plate is given with geometry, boundary conditions, properties, and loading. Loading is
prescribed as unit loading – load or largest load in a combination has a value 1 – multiplied
by a loading factor. It is sufficient to describe the material properties by the concrete’s
initial Young’s modulus Ec and its Poisson’s ratio ν and, most important, by the strength of
concrete and reinforcement. Local equilibrium, which is the first condition of a limit analysis,
can be determined with a linear elastic analysis with the unit loading applied.

• Stresses resulting from a linear analysis due to a unit loading can be linearly scaled
with the loading factor.

Computational Methods for Reinforced Concrete Structures. First Edition. Ulrich Häussler-Combe.
© 2015 Ernst & Sohn GmbH & Co. KG. Published 2015 by Ernst & Sohn GmbH & Co. KG.
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194 Chapter 6 Plates

As a further condition, the loading factor is determined such that the stresses do not exceed
the strength of the materials at any point of the plate. In other words:

• The loading factor is scaled such that stresses reach the strength of the materials exactly
in at least one point of the plate. This includes strength of concrete as well as strength
of reinforcement.

The two conditions – equilibrium and strength – correspond to Eq. (4.27) of the rigid plastic
analysis for truss systems. Their limit theorems of plasticity, see Section 4.4, also apply to
the limit analysis of a plate.

• The loading factor of a limit analysis corresponds to a lower bound of the admissible
load of the plate with respect to setup of the unit loading.

The analysis conforms to a proof of the admissible load for a given system. The crucial point
is to combine strength of concrete and reinforcement in an appropriate way while regarding
the restricted tensile strength of concrete.

A variant is given by the design procedure for a given load, i.e., compressive strength of
concrete or the amount of the reinforcement are adjusted such that the strength condition
is not violated. The shape and dimension of the concrete body are assumed as prescribed in
this context.

The described procedures base upon a linear elastic analysis. Analytical solutions for
plates are available for simple cases, see e.g., [31]. Finite element solutions are appropriate
for more complex situations, an example has been demonstrated in Section 4.1. A suitable
element type is given by the quad element, see Section 1.3. Young’s modulus and Poisson’s
ratio, see Eq. (1.45), can be chosen according to the initial values of concrete.

The calculation with finite elements yields a strain state εx, εy, γxy for every integration
point of every finite element. These integration point strain values may be extrapolated to
every desired point using Eq. (1.40). But these strains are generally discontinuous along
element boundaries compared to the strains of neighbor elements as only the continuity
of displacements is required. As a consequence, stresses derived from strains will also be
discontinuous. This might lead to ambiguities for, e.g., a design based on a limit analysis.
Continuous stress fields can be derived with so-called mixed formulations. An example is
given in the following.

Example 6.1 Continuous interpolation of stress fields with the quad element
Stress fields in a whole body are generally discontinuous along element boundaries. A method
to derive a continuous field from a discontinuous field is derived in the following [98, 12.6].

We consider a given stress field σ determined from a computation with quad elements,
see Section 1.3, which generally leads to stress jumps along the element edges. Another stress
field σ̄ is constructed according to the interpolation of a displacement field, see Eq. (1.18),
leading to

σ̄ = N(r) · σ̄e (6.1)

whereby the vector σ̄e collects the stresses of all nodes belonging to an element e.

• Stress fields interpolated in the same way as displacement fields are continuous through-
out a whole body for an interpolation with quad elements.
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The continuous interpolation arises from the compatibility requirement, see Section 1.7. The
question remains how to determine the nodal stress values σ̄e. An obvious approach is to
minimize the difference between σ and σ̄ in an integral sense. This leads to∫

V

δσ̄T (σ̄ − σ) dV = 0 (6.2)

with the test functions δσ̄ = N · δσ̄e, compare Eqs. (1.57). As with finite element computa-
tions, see Section 1.5, the integration is performed element by element and using Eq. (6.1)
results in ∫

Ve

NT ·N dV · σ̄e =

∫
Ve

NT · σ dV (6.3)

as δσ̄e is arbitrary. The left-hand integral corresponds to a unit mass matrix, see Eq. (1.58)2.
The left-hand and right-hand integrals may be evaluated with a numerical integration proce-
dure, see Section 1.6. Furthermore, element contributions are assembled into a whole system
as is done with finite elements computations. This yields a system of linear algebraic equa-
tions for the unknown nodal values σ̄e. The solution costs for this system may be minimized
with a lumped unit mass matrix [98, (12.69)].

Finally the continuous stress field may be computed using Eq. (6.1). Actually the con-
tinuous field is more accurate than the original stress field with respect to an exact solution.

End Example 6.1

6.1.2 Reinforced Concrete Contributions
The key item of the general setup outlined in the previous section is to find an appropriate
combination of concrete and reinforcement strength as reference values for the calculated
stress state. The following procedure orients at the modified compression field theory [92].
The determination of principal stresses, see also Section 5.2.3, is needed as prerequisite. A
given plane stress state σx, σy, σxy has principal stresses σ1, σ2

σ1 =
σx + σy

2
+

√(
σx − σy

2

)2

+ σ2
xy, σ2 =

σx + σy
2

−

√(
σx − σy

2

)2

+ σ2
xy

(6.4)

with an angle of orientation ϕ

cos 2ϕ =

σx − σy
2√

(
σx − σy

2
)2 + σ2

xy

(6.5)

which is positive from the x-axis in the counterclockwise direction. Equation (6.5) has one
solution for ϕ in the range 0 . . . π/2. The value of ϕ multiplied by the sign of σxy indicates
the direction of σ1 and the direction of σ2 is perpendicular. The relations have a well-known
representation with the Mohr circle, see Fig. 6.1.

An alternative and more general representation of stresses is given by

σ1 = σx cos2 ϕ+ σy sin2 ϕ+ σxy 2 cosϕ sinϕ
σ2 = σx sin2 ϕ+ σy cos2 ϕ− σxy 2 cosϕ sinϕ

(6.6)
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Figure 6.1: Mohr circle.

whereby ϕ indicates the direction of σ1 and ϕ+π/2 the direction of σ2. This form is derived
from the rules for plane coordinate transformations, see Appendix C, Eq. (C.11), and allows
one to control the stress values depending on the orientation angle ϕ. These transformation
rules also require (σy − σx) cosϕ sinϕ+ σxy(cos2 ϕ− sin2 ϕ) = 0 for vanishing shear stresses
under the orientation ϕ. Combining this requirement with Eqs. (6.6) leads to a solution for
σx, σy, σxy depending on σ1, σ2, ϕ

σx = σ1 cos2 ϕ+ σ2 sin2 ϕ
σy = σ1 sin2 ϕ+ σ2 cos2 ϕ
σxy = sinϕ cosϕ (σ1 − σ2)

(6.7)

Equations in the set Eqs. (6.5, 6.4) cannot be mixed with or complemented to equations in
the set Eqs. (6.7). Finally, the relation σ1 ≥ σ2 resulting from Eqs. (6.4) should be regarded
for the following. The following cases have to considered from now on:

– Pure compression with the principal stresses σ1 ≤ 0, σ2 ≤ 0.

– Mixed tension–compression with the principal stresses σ1 > 0, σ2 ≤ 0.

– Pure tension with the principal stresses σ1 > 0, σ2 > 0.

We assume that pure compression does not require contributions from a reinforcement. A
reinforcement is required for mixed tension–compression and pure tension. The contributions
of reinforcement and concrete are separated in the following.

Concrete has its own principal stress state with values σc1, σc2 with an orientation ϕ of
σc1 and σc1 > σc2 (signed!). It is assumed that it can sustain a compression in an orientation
ϕ + π/2, but no stresses are transferred in the orientation ϕ. This implies cracking in the
orientation ϕ + π/2 and principal stresses σc1 = 0, σc2 < 0. A notation σc2 = σc and
ϕc = ϕ+ π/2 is used from now on.

• The orientation ϕc of concrete principal compression and the corresponding compressive
concrete stress σc serve as variables for the limit analysis.
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Using Eqs. (6.7) and regarding sinϕ = − cosϕc, cosϕ = sinϕc the concrete contribution in
the global directions is given by

σc,x = σc cos2 ϕc
σc,y = σc sin2 ϕc
σc,xy = σc sinϕc cosϕc

(6.8)

Further contributions come from the reinforcement. The content of reinforcement can be
measured by the ratio ρs of reinforcement cross area As related to the cross-sectional area A.
Regarding plates more than one major reinforcement orientation appears. Every orientation
i is directed with an angle ϕsi. Corresponding rebars form a reinforcement group with a
reinforcement ratio ρsi. Reinforcement stress is uniaxial by definition. The principal stress
state of a reinforcement group i is determined through a single nonzero value, that is σsi1 6= 0,
while the other principal stress component vanishes, i.e., σsi,2 = 0. A notation σsi = σsi,1 is
used in the following.

• Reinforcement group orientation ϕsi and group stress σsi serve as further variables for
the limit analysis.

Although the approach allows for an arbitrary number of reinforcement orientations their
number is restricted to two, i = 1, 2, in the following to simplify the notation. Thus, Eq. (6.7)
also yields reinforcement contributions in the global directions with

σs1,x = σs1 cos2 ϕs1
σs1,y = σs1 sin2 ϕs1
σs1,xy = σs1 sinϕs1 cosϕs1

(6.9)

and
σs2,x = σs2 cos2 ϕs2
σs2,y = σs2 sin2 ϕs2
σs2,xy = σs2 sinϕs2 cosϕs2

(6.10)

Summed contributions from concrete and reinforcement groups are assumed to be in equi-
librium with the given stress state σx, σy, σxy determined from a superordinated analysis.
Thus, regarding also the reinforcement ratios ρs1, ρs2 the conditions

ρs1 σs1,x + ρs2 σs2,x + σc,x = σx
ρs1 σs1,y + ρs2 σs2,y + σc,y = σy

ρs1 σs1,xy + ρs2 σs2,xy + σc,xy = σxy

(6.11)

must hold in every position of the plate.

• The reinforcement ratios ρsi of every reinforcement group are used as final variables
for the limit analysis.

Inserting Eqs. (6.8)–(6.10) into Eq. (6.11) yields three equations for eight variables ϕc, σc,
ϕs1, σs1, ϕs2, σs2, and ρs1, ρs2. The values of the reinforcement orientations ϕs1, ϕs2 may
be prescribed without loss of generality as they are ruled by practical considerations or
construction site constraints, respectively. As a consequence six variables finally remain with
three equilibrium equations with a prescribed local “loading” σx, σy, σxy.
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Thus, problems cannot yet be solved with the current formulation. The conditions of
kinematic compatibility introducing measures of strain and material laws relating stresses
with strains are still missing. Approaches to consider them are discussed in [46, Chapters 6,7],
[92] introducing strains εx, εy, γxy and principal strains ε1, ε2 as further variables together with
relations between strains and principal strains and uniaxial material laws for reinforcement
and concrete. This yields an extended but complete set of equations. The computed values
εx, εy, γxy will more or less deviate from those directly determined in the initial finite element
computation. Thus, kinematic compatibility would be limited within the current setup.

But such an approach will not be pursued in the following. A limit analysis – supported by
the first limit theorem of plasticity, see Section 4.4 – does not regard kinematic compatibility
and replaces stress–strain relations with material strength conditions leading to a lower bound
for an admissible loading.

We consider a special but very common case. It is assumed that reinforcement directions
are aligned to global coordinate axes leading to ϕs1 = 0, ϕs2 = π/2. Equations (6.9, 6.10)
yield

σs1,x = σs1
σs2,y = σs2

σs1,y = σs1,xy = σs2,x = σs2,xy = 0
(6.12)

Combining Eqs. (6.8)3, (6.11)3, and (6.12) leads to

sinϕc cosϕc =
σxy
σc

(6.13)

where σc < 0 by definition and σxy has to be taken with the correct sign. With a prescribed
value of σxy and an assumed value of σc Eq. (6.13) has two solutions for ϕc in the range
−π/2 ≤ ϕc ≤ π/2 under the condition |σxy/σc| ≤ 0.5, see Fig. 6.2. Using a notation
σs1,x = σsx, σs2,y = σsy and ρs1 = ρx, ρs2 = ρy, Eqs. (6.11)1,2 and Eqs. (6.8)1,2 finally result
in

ρx σsx = σx − σc cos2 ϕc
ρy σsy = σy − σc sin2 ϕc

(6.14)

Figure 6.2: (a) sinϕc cosϕc and solution range of Eq. (6.13). (b) Mohr circles collecting
contributions.
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with concrete stress σc, concrete stress orientation ϕc, reinforcement stresses σsx , σsy, and
reinforcement ratios ρsx, ρsy in the global x- and y-orientation. Their relations can again
be illustrated with Mohr circles, see Fig. 6.1b. Equations (6.13, 6.14) involving prescribed
values σx, σy, σxy and variables ρx, ρy, σsx, σsy, and σc, ϕc are used for design considerations
in the following. Similar approaches are described in [16, Section 2.2], [46, Chapter 4].

A further special case shall be added for completion. We consider again the general
formulation with Eqs. (6.8–6.11) applied to the cross section of a web of a beam with a height
z between chords as a limiting case of a plate. The conditions σy = 0 (no vertical “loading”),
ρs2 = 0 and variable parameters ϕs1, ρs1, σc, ϕc are assumed. Equations (6.11, 6.8, 6.9) yield

ρs cos2 ϕs σs + σc cos2 ϕc = σx
ρs sin2 ϕs σs + σc sin2 ϕc = 0

ρs sinϕs cosϕs σs + σc sinϕc cosϕc = σxy

(6.15)

with the index omitted for the reinforcement group. Furthermore, we use a shear force
V = −z b σxy with a cross section width b, a difference of normal force ∆N = z b σx along
the web height and an admissible reinforcement stress σs = fy with a yield stress fy. Thus,
Eqs. (6.15) lead to

σc = − V

z b (sinϕc cosϕc − cotϕs sin2 ϕc)

ρs =
V

fy z b (sin2 ϕs cotϕc − sinϕs cosϕs)

∆N = −V (cotϕc + cotϕs)

(6.16)

whereby the concrete stress orientation is generally allowed with a range 0 < ϕc < π/2 and
the reinforcement orientation in a range π/2 ≤ ϕs ≤ π for V > 0. In the case of stirrups
with ϕs = π/2 this simplifies to

ρs =
V

fy z cotϕc
, σc = −V

z
(cotϕc + tanϕc), ∆N = −V cotϕc (6.17)

and in the optimal case of diagonal concrete compression ϕc = π/4 and shear reinforcement
ϕs = 3π/4 to

σc = −V
z
, ρs =

V

fy z
, ∆N = 0 (6.18)

These relations are identical to well-known design rules for the shear reinforcement of beams,
see [26, 6.2.3]. A shifting distance a for the bending reinforcement in the upper and lower
chord is defined with a V = z∆N/2. This leads to the well-known equation

a =
z

2
(cotϕc + cotϕs) =

z

2
(cotϕc − cotα) (6.19)

with α = 2π − ϕs, see [26, 9.2.1.3].
The previous case assumes a constant stress state along a cross section of a web and

concentrated forces in the upper and lower chords. Let us consider a setup with four of such
webs in a spatial configuration forming a quadrangular cross section connected with four
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chords. This leads to a hollow box girder. A loading is given by prescribed resulting internal
forces – two bending moments, a torsional moment, a normal force and two shear forces –
derived from external actions. The loading has to be in equilibrium with chord forces and
web stresses. But equilibrium conditions will not suffice to determine them from the internal
forces. Compatible web strains and relations connecting strains with stresses, as have been
mentioned in Section 6.1.2, have to be introduced. Such an approach was elaborated in [78],
[79]. With the finite element method at hand shell elements allowing for membrane forces
in space combined with local bending, see Chapter 8, involving stress–strain relations for
reinforced concrete, see Section 8.7, are another option.

6.1.3 A Design Approach

An arbitrary point is regarded within a plate with a local load given as stress state σx, σy, σxy
determined from a superordinated analysis. Corresponding principal stresses are given by
σ1, σ2. A design approach shall be derived for this setup.

Concrete is assumed as isotropic, see Section 5.4.2. Its biaxial strength is shown in
Fig. 5.7a. A lower strength bound for all compressive states is given by the uniaxial com-
pressive strength fc, i.e., |σc2| < fc, see Fig. 6.3. Tensile stress states with σc1 > 0 are
excluded for concrete within the current scope. Regarding the pure compression state, see
Section 6.1.2, given principal stresses should fulfill the conditions σ1 ≤ fc and σ2 ≤ fc. In
case they do not, the loading has to be scaled down, see Section 6.1.1, or plate dimensions
have to be changed to fulfill the strength conditions. A compressive reinforcement might be
another option. This alternative can be treated as an extension of the tension–compression
case.

Mixed tension–compression and pure tension which require a reinforcement remain to be
described. A special but common case is given with the orientations of the reinforcement
aligned to the x- and y-axis of the global coordinate system. It is ruled by Eqs. (6.13, 6.14).
The amount of reinforcement has to be determined for both orientations while concrete
strength should not be exceeded. As concrete is not allowed to have a tensile stress Eq. (6.13)

Figure 6.3: Strength square for biaxial concrete strength.
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leads to a constraint

ϕc ≤ 0 for σxy ≥ 0 or ϕc > 0 for σxy < 0 (6.20)

and regarding the compressive limit to a constraint

|σc| =
∣∣∣∣ σxy
sinϕc cosϕc

∣∣∣∣ ≤ fc (6.21)

with the concrete compressive orientation ϕc. The “best” case or largest admissible shear
stress |σxy| = 0.5 fc is connected with |ϕc| = π/4, see Fig. 6.2a. The given shear stress
component σxy may not exceed this value. In case it does the loading again has to be scaled
down or plate dimensions have to be changed to fulfill the constraint. We assume that some
margin is possible for ϕc.

• According to a general design practice for reinforced concrete the concrete compressive
orientation ϕc is prescribed as a basic design parameter.

This approach deserves a remark: Reality has a unique “solution” for ϕc. We might miss this
solution in the current approach as the deformation behavior is not taken into account. An
estimation of ϕc value should not be too far away from a comprehensive solution or sound
empirical values. Under this premise, we expect to reach a reliable design.

To begin with, ϕc may freely be chosen within the range not violating the constraint
Eq. (6.21). Thus, Eqs. (6.14) may be used to determine values ρxσsx and ρyσsy for given
values of σx, σy. The uniaxial yield stress fyk, see Fig. 2.10a, is used as a strength for the
reinforcement leading to σsx = σsy = fyk and

ρx =
1

fyk

(
σx − σc cos2 ϕc

)
, ρy =

1

fyk

(
σy − σc sin2 ϕc

)
(6.22)

This is the required result of reinforcement design in the case of computed values ρx > 0 and
ρy > 0. The total amount of reinforcement is given by

ρtot = ρx + ρy =
1

fyk

(
σx − σc cos2 ϕc + σy − σc sin2 ϕc

)
=

1

fyk
(σx + σy − σc)

(6.23)

The contribution −σc is positive due to the constraint (6.20). Thus, for a given value σxy
concrete stress |σc| = |σxy/sinϕc cosϕc| has to be minimized to minimize the total amount
of reinforcement. This is reached with ϕc = ±π/4, see Fig. 6.2a, depending on the sign of
σxy.

• A concrete compressive orientation ϕc = ±π/4 leads to optimal results for the utiliza-
tion of concrete strength and the value of required reinforcement.

The minimum reinforcement amount is determined by

ρtot,min =
1

fyk
(σx + σy + 2|σxy|) (6.24)
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These relations are valid only for orthogonal reinforcement meshes with coordinate directions
aligned to reinforcement directions.

The cases with values ρx < 0 or ρy < 0 computed from Eq. (6.22) are still open. Such
values may be interpreted as required compression reinforcement with a reinforcement stress
σsx = −fyk and/or σsy = −fyk, see Eqs. (6.14). A compression reinforcement can be avoided
in a mixed case, i.e., ρx < 0, ρy > 0, or vice versa.

The case ρx < 0, ρy > 0 is treated exemplary. The basic idea is to prescribe the value
of ρxσsx instead of ϕc. Prescribing ρxσsx = 0 leaves ρy σsy, σc and ϕc as unknowns to be
determined from three Eqs. (6.13, 6.14). This set of equations is nonlinear and cannot be
solved directly. A numerical method like the Newton–Raphson method may be used instead,
see Eq. (1.72). Collecting Eqs. (6.14, 6.13) by

u =

 σc
ρy σsy
ϕc

 , f(u) =

 σx − σc cos2 ϕc
σy − σc sin2 ϕc − ρy σsy
σxy
σc
− sinϕc cosϕc

 = 0 (6.25)

leads to the iteration rule

u(ν+1) = u(ν) −


∂f1

∂u1

∂f1

∂u2

∂f1

∂u3

∂f2

∂u1

∂f2

∂u2

∂f2

∂u3

∂f3

∂u1

∂f3

∂u2

∂f3

∂u3


−1

u=u(ν)

· f(u(ν)) (6.26)

This generally converges with an appropriate start value u(0) and leads to the required
solution for σc, ρyσsy, ϕc. The analogous method can be used in case with prescribed ρyσsy =
0 and unknown values for ρx σsx, σc, ϕc.

The design procedure has to be performed at representative positions of the plate under
consideration. Every position will have its particular result for the required reinforcement.
This is demonstrated with the following example of a deep beam.

Example 6.2 Reinforcement design for a deep beam with linear elastic internal forces
We refer to the example of Fig. 4.1 with the same system and loading. Young’s modulus and
Poisson’s ratio are chosen with E = 31 900 MN/m2, ν = 0.2 for a linear elastic calculation.
The reinforcement yield strength is assumed with fyk = 500 MN/m2. The width of the deep
beam is b = 0.6 m. Safety factors are not regarded. All units are based on [MN] and [m].
Plane stress conditions are assumed.

A state of stress with components σx, σy, σxy is calculated for each integration point
of each element and the design procedure is performed for all these points. This gives
a representative overall picture of the whole deep beam. Four characteristic points with
different types of a stress state are considered.

– Biaxial principal compression:

Element 61 is considered, see Fig. 6.4a, with the lower right integration point. Com-
puted stresses are σx = −0.86, σy = −3.66, σxy = −0.87. This leads to principal
compressive stresses with values −3.91,−0.61. A reinforcement is not necessary from
a structural point of view.
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Figure 6.4: Example 6.2 (a) Characteristic stress points with required reinforcement. (b) Re-
inforcement of the upper right part.

– Biaxial principal tension:

Element 118 is considered with the upper right integration point with σx = 3.90, σy =
2.27, σxy = 2.76 with principal tensile stresses 5.96, 0.21. The direction of concrete
compressive stress is chosen with ϕc = −π/4. Using Eq. (6.13) leads to σc = −2σxy =
−5.52 MN/m2 and Eq. (6.22) yields

ρx =
1

fyk

(
σx − σc cos2 ϕc

)
= 0.0133

ρy =
1

fyk

(
σy − σc sin2 ϕc

)
= 0.0101

(6.27)

This leads to reinforcement cross sections asx = t ρx = 0.00798 m2/m (→ 79.8 cm2/m)
and asy = t ρy = 0.00604 cm2/m (→ 60.4 cm2/m). These related values are required
locally only, not over the whole of a cross-sectional width of 1 m.

A concrete compression part is obviously necessary even in the case of biaxial principal
tension to ensure equilibrium. To reach the state with reinforcement yielding in the
global x- and y-directions and a concrete diagonal under compression some amount of
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redistribution of internal forces might be necessary. This is generally connected with
some amount of cracking with crack directions more or less aligned to the concrete
diagonal.

– Mixed principal stresses:

Element 91 is considered with the upper left integration point with σx = −0.61, σy =
−0.30, σxy = 2.24, and principal stresses −2.70, 1.78. Concrete compressive direction
is again chosen with ϕc = −π/4 leading to σc = −4.48 MN/m2. This yields ρx =
0.0033, ρy = 0.0039 in the same way like Eq. (6.27).

– Mixed principal stresses with initially negative reinforcement ratio

Element 48 is considered with the upper left integration point with σx = 4.01, σy =
−0.11, σxy = 0.02 and principal stress values 4.01,−0.12. A concrete compressive
direction ϕc = −π/4 leads to ρy σsy < 0. Thus, ρy σsy = 0 is prescribed and an iteration
is performed according to Eq. (6.26). This yields σc = −0.10 MN/m2, ϕc = −0.43π,
and ρx = 0.0080 with σsx = fyk.

Local results for the required reinforcement have to be transformed into a general reinforce-
ment layout. A minimum reinforcement ratio is necessary to compensate for effects which
have are not explicitly regarded like temperature and shrinkage gradients and to control the
width of cracks. The minimum ratio is chosen with ρx,min = ρy,min = ρmin = 0.0015 = 0.15 %
supported by [26, 9.7]. This minimum ratio serves as a base for supplementary reinforcement.

Figure 6.4b shows the computed principal stresses for the upper right portion of the deep
beam and the corresponding values for the required reinforcement – horizontal %-ratios for
the x-reinforcement and vertical %-ratios for the y-reinforcement – in case they exceed ρmin.
The final reinforcement layout will use characteristic maximum values to cover larger areas
with the same reinforcement. Single rebars of larger diameter may also be used to treat
smaller areas with higher reinforcement demand. Their contribution may also be calculated
as reinforcement ratio within some near surrounding.

End Example 6.2

The basic procedure – perform a linear elastic calculation for internal forces followed by a
reinforcement design and concrete proof with methods of limit analysis – shows analogies to
the common practice for design and proof of reinforced concrete beams considering bending,
shear, and torsion.

Furthermore, analogies are given to strut-and-tie models, see Section 4.1, as a local sys-
tem of reinforcement ties and a concrete strut is regarded in the plate’s position under
consideration. Thus, similar remarks as are appropriate for strut-and-tie models have to be
added:

– Concrete compressive strength:

The concrete contribution within this scope is basically uniaxial for principal stress
states with tensile components. But lateral tension may actually lead to a decrease in
the compressive concrete strength. This is regarded by reduction factors applied on fc
in the same way as for strut-and-tie models, see Section 4.5. Consider also [16, Section
2.2.7].
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– Ductility requirements:

In order to reach stress limit states a larger redistribution of internal forces may be
necessary. This may require larger deformations or a sufficient ductility of the whole
system, respectively.

– Serviceability:

The current analysis does not consider deformations. But each local tie may be regarded
as a small uniaxial tension bar. Thus, a crack width may be estimated according to
Appendix B. The reinforcement stresses σsx, σsy required for such an estimation are
determined using Eqs. (6.13, 6.14) with given reinforcement ratios ρx, ρy and given
stresses σx, σy, σxy.

In the case of a local diagonal concrete strut ϕc = π/2, see Example 6.2 with the
cases “biaxial principal tension” and “mixed principal stresses,” the crack direction
theoretically deviates from the reinforcement directions by a larger value. This may be
considered for crack width estimation, see Appendix B.

The concept of added contributions of concrete and reinforcement – each with its own prin-
cipal orientation – to reach equilibrium with a local stress state given from a superordinated
calculation may be transferred from biaxial states to triaxial states [29], [71], [93]. This
corresponds to spatial strut-and-tie models with a spatial system of reinforcement ties and
a spatial reinforcement strut leading to design rules as an spatial extension of Eqs. (6.22).

Limit analysis bases upon stresses derived with linear elastic stress–strain relations. Such
linear elastic relations may lead to stress concentrations with small areas of high stresses
characterized by distinct peak values. Such high values may be crucial for the reinforcement
design of plates.

On the other hand, nonlinear stress–strain relations may result in smoothed stress states,
i.e., stress peaks are smoothed while stresses moderately increase in the surrounding. But
such stress–strain relations must be explicitly considered in the model. This is demonstrated
with the following sections. Cracking of concrete again plays a major role.

6.2 Crack Modeling

A major cause of nonlinear behavior of reinforced concrete is given with cracking. Cracking
in uniaxial stress states has already been described in Section 2.1. Its consequences for
the behavior of reinforced tension bars were demonstrated in Example 2.4. The reinforced
tension bar basically also covers the behavior of the cracked tension zone of reinforced cross
sections of a beam, see Section 3.1.3. Finally, cracking in multiaxial stress states has been
treated in Section 5.7. These concepts are adapted for biaxial cracking and combined with a
reinforcement in the following.

Crack initiation is determined with the Rankine criterion, see Section 5.7.1. A crack starts
when the largest principal stress σ1 reaches the tensile strength fct. The crack direction
is given with the direction perpendicular to the direction ϕ, see Eq. (6.5), of σ1. The
determination of crack length depends on a scan method. A scan method first of all defines
how points for testing the cracking criterion are selected.
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Figure 6.5: Scan methods for cracks.

A mesh-based scan method scans a whole domain in discrete points constituting a regular
or irregular mesh, see Fig. 6.5. Regarding finite elements, such a testing mesh is naturally
given by the element integration points. If the testing mesh is sufficiently dense, crack
propagation is described by an increasing number of cracked points, e.g., points with a stress
state fulfilling the Rankine criterion. As a consequence, the crack length question is not
explicitly addressed in the mesh-based scan method.

A boundary-based scan method distinguishes crack initiation and crack propagation. A
crack in most cases initiates from a boundary. Thus, boundary points are scanned for testing
the cracking criterion like the Rankine criterion. If a scanned point fulfills the criterion for
crack initiation, it becomes a crack tip. A crack may propagate with the movement of its
crack tip. Regarding existing crack tips the following items have to be addressed:

– A criterion whether propagation of a crack tip will take place at all for a given state of
strain and stress. This is not necessarily identical with the crack initiation criterion.

– A rule for the direction of a crack tip movement in the case of crack propagation.

– A further rule for the length of the crack tip movement.

The Rankine criterion obviously does not allow for a complete treatment. Energy criteria,
e.g., are proposed as a base for a simultaneous resolution of this set [85]. Taking altogether,
quite sophisticated models are required to describe crack propagation with the boundary-
based scan method.

The mesh-based method will be used in the following. This method has proven its prac-
ticability and avoids dealing with the crack length problem. A drawback may be considered
insofar as a crack geometry is not precisely captured but cracking of concrete is a diffuse mat-
ter anyway. Nevertheless, a number of items arise with this approach, which have already
been touched in Section 5.7, but are rephrased and specified regarding 2D states:

– Rotating crack versus fixed crack:

Testing of a particular point with a known stress state is performed with, e.g., the
Rankine criterion. This decides whether this point has to be regarded as cracked, and
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if so, to determine its orientation. Cracking requires a reformulation of the material
stiffness which depends on the crack orientation.

Regarding a load history, principal stress orientations may change. This leads to two
alternative concepts regarding crack orientations, fixed crack and rotating crack, see
Section 5.7.2. The crack orientation is fixed for the fixed crack with that value occurring
in crack initiation, while crack orientation follows the direction of principal stresses for
the rotating crack, i.e., it may change during a load history.

The fixed crack concept seems to be more realistic from a phenomenological point of
view but in practical applications it yields a behavior of the cracked material which is
generally to stiff. Thus, the rotating crack concept will be used in the following.

– Cohesive crack:

A set of representative points of a plate are controlled for crack initiation with the
mesh-based scan method. A local coordinate system is chosen in every point aligned
to principal stress directions with the x-axis in the principal tensile direction. A crack
initiates if the largest principal tensile stress exceeds the tensile strength. This principal
tensile stress is orthogonal to crack surfaces by definition in the rotating crack concept.
Therefore, the immediate cracking situation can be regarded as uniaxial. A process
zone or crack band, respectively, arises with the crack initiation, see Section 2.1. It is
characterized by high strains within a crack band width bw, see Fig. 2.3. The distance
bw accounts roughly to a small multiple of the largest aggregate diameter and is kept
constant. A crack width w is defined as the distance change between left and right
border of the process zone. This distance starts with a value bw. The crack width is
determined by

w1 = bw εc1 (6.28)

with the mean crack band strain εc, compare also Eq. (2.5). The index 1 is used in the
following to indicate the affiliation with the largest principal stress σ1.

Uniaxial cracking behavior of concrete is characterized by the cohesive crack model with
crack traction depending on crack width, see Section 5.7.1 and Fig. 5.15. A typical crack
traction–crack width relation characterized by softening is shown in Fig. 5.16. This is
simplified as linear in the following, see Fig. 6.6, and leads to a relation

t1 =

 fct

(
1− w1 − bwεct

wcr

)
bwεct < w1 ≤ wcr

0 w1 > wcr

(6.29)

with the concrete strain εct = fct/Ec at crack initiation, the crack traction t1 and the
crack width w1. The gray shaded area corresponds to the crack energyGf , see Eq. (2.7),
which is assumed as material constant. The smallest crack width with vanishing crack
tractions, the critical crack width wcr is determined by

wcr =
2Gf
fct

+ bw εct (6.30)

as a material constant.
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Figure 6.6: Linearized cohesive crack model.

– Smeared crack:

We introduced the notion of a black box embracing of piece of cracked material with
an orientation in the crack normal direction or smeared crack model, see Section 2.5
with Fig. 2.13, and Section 5.7.2. The box is chosen such that one crack or one crack
band, respectively, arises in it. The crack band is within the box but the exact position
is not localized.

Assuming a box with a length Lc ≥ bw leads to a box strain in the crack normal
direction

ε1 =
1

Lc
[(Lc − bw) εu1 + bw εc1] = (1− ξ) εu1 + ξ εc1, ξ =

bw
Lc

(6.31)

see Eqs. (2.45, 5.129), with the strain εu1 of the uncracked bulk material and the mean
strain εc1 of the crack band. The length Lc denotes a characteristic length of the quad
element. Square formatted elements are preferable. A characteristic element length

Lc =

√
A

(ni + 1)2
(6.32)

is appropriate with the element area A and integration order ni. Gauss integration
order ni = 1, e.g., has 2 × 2 integration points for a quad-element, see Table 1.1. A
combination of Eqs. (6.28–6.31) has already been demonstrated in Example 2.3. This
will be extended to biaxial states of stress in the following section.

The smeared crack approach allows one to model cracks, which are more or less discon-
tinuous in reality, using the quad element with a continuous displacement interpolation
as described in Section 1.3.

The concepts of the rotating, cohesive, smeared crack will be used for 2D crack modeling.
This is a relatively simple and convenient approach. Furthermore, it includes a regularization
regarding the softening behavior of concrete in the tension regime, see Section 5.9.2.
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6.3 Linear Stress–Strain Relations with Cracking

Load-induced anisotropy has been described as one of the characteristics of concrete behavior,
see Section 5.1.2. Corresponding stress–strain relations for 2D states will be derived in this
section with the following assumptions:

– Linear elastic, biaxial material behavior with a plane stress state according to
Eq. (1.45).

– A limited tensile strength with crack initiation according to the Rankine criterion, see
Section 5.7.1 and a strength value fct as for the uniaxial tensile strength.

– A cohesive crack behavior according to Eq. (6.29).

– Element strains for cracks are determined with the smeared crack model, see Eq. (6.31).

Each component represents a simplified model within its scope. On the other hand, the
simplifications allow deriving relatively compact stress–strain relations. More realistic models
– for, e.g., nonlinear behavior of concrete in the compressive range or bilinear or nonlinear
relations for the crack-traction depending on the crack width – essentially follow the same
procedure.

We consider a 2D state of strain with given components εx, εy, γxy, see Eq. (5.3), deter-
mined from a superordinated calculation. The notation of indices is adapted for the current
context. Principal strains can be derived in analogy to principal stresses with Eqs. (6.4, 6.5),
whereby εxy = γxy/2 has to be used as shear component. This leads to principal strains ε1, ε2
with ε1 ≥ ε2 and the orientation angle ϕ of ε1. The following states have to be considered,
see Figures 5.16 and 6.7:

1. Initial loading in the tensile range up to crack initiation followed by softening.

2. Unloading until a stress free state is reached.

3. Crack closure with loading in the compressive range.

4. Reloading into the tensile range.

We start with the initial loading in the tensile range. Due to the isotropy properties, see
Section 5.3.1, the linear elastic law (Eq. (1.45)) is also valid in the principal system and yields
relations

ε1 =
1

E
(σ1 − ν σ2) , ε2 =

1

E
(σ2 − ν σ1) . (6.33)

with principal stresses σ1, σ2, a Young’s modulus Ec for concrete and its Poisson’s ratio ν.
A first crack occurs in the case of a computed σ1 ≥ fct.

• The principal stress σ1 in the uncracked material and the crack traction t1, see
Eqs. (5.123, 6.29), are identical for rotating cracks combined with the Rankine crack-
ing criterion due to equilibrium reasons.
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The smeared strain in the normal crack direction is given according to Eq. (6.31). The set
of Eqs. (6.28, 6.29, 6.31, 6.33) comprises the material or system parameters E, ν, bw, Lc, fct
and wcr. The strain

εct =
fct
Ec

(6.34)

will be used instead of fct if appropriate. Principal strain values ε1, ε2 are prescribed. Thus,
there remain five unknowns σ1, σ2, w1, ε1, εc1 with the aforementioned five equations. Two
further assumptions are made:

– bw � Lc or ξ � 1, i.e., the element size is large compared to crack band width. This
is insofar justified as plates, which are currently under consideration, have dimensions
in the range of 101 m while bw is in the range of 10−2 m.

– εct bw � wcr, i.e., elastic energy until cracking is small compared to crack energy.

These assumptions are not mandatory but simplify the stress–strain relations. Regarding a
range ε1 > εct, w1 < wcr a solution for the stresses is given with

σ1 = fct
1− αε1 − ανε2
1− αεct(1− ν2)

σ2 = Ec
(1− αεct)ε2 − αεctν ε1 + εctν

1− αεct(1− ν2)

(6.35)

with α = Lc/wcr and for the crack width with

w1 =
ε1 + ν ε2 − εct(1− ν2)

1− αεct(1− ν2)
Lc (6.36)

Equation (6.35) leads to a tangential material stiffness

CT =
E

1− αεct(1− ν2)

[
−αεct −αεctν
−αεctν 1− αεct

]
(6.37)

The parameter αεct should fulfill a condition αεct < 1 which leads to restrictions for the
characteristic element length Lc of an element for a given material.

Unloading until a stress-free state is assumed to have a damage characteristic, compare
Section 5.6. Unloading starts from a state w1 = w̄1, σ1 = σ̄1 in the softening range of the
crack traction–crack width relation, see Fig. 6.7, and follows the “damage” path until a zero-
state with zero strains, no deformations and initiated crack closure. Relation (6.29) for the
crack traction depending on the crack width is replaced by

σ1 = t1 = σ̄1
w1

w̄1
(6.38)

and the largest crack width w̄1 becomes a state variable. The corresponding stress σ̄1 may
be derived from w̄1. Principal strains ε1, ε2 are again prescribed from a superordinated
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Figure 6.7: Cohesive crack model with unloading and reloading.

calculation. The unknowns σ1, σ2, w1, ε1, εc1 are determined with Eqs. (6.28, 6.31, 6.33,
6.38) leading to

σ1 =
ε1 + νε2

1 + β
E (1− ν2)

β

σ2 =
[E + β] ε2 + νβ ε1

1 + β
E (1− ν2)

w1 =
ε1 + νε2

1 + β
E (1− ν2)

L

Ctan =
1

1 + β
E (1− ν2)

[
E + β νβ
νβ β

]
(6.39)

with β = σ̄1 L/w̄1 and the same simplifying assumptions as for the loading case.
Crack closure followed by compressive loading is treated as isotropic linear elastic with

stress–strain relations according to Eq. (6.33) or Eq. (1.45), respectively. Unloading in the
compressive range follows the same relations until the zero-state with ε1 = 0.

The principal strain ε1 alters into w1 with the transition into tensile reloading. The
“damage” path is followed again with stress–strain relations and crack width according to
Eqs. (6.39) until the crack width w1 reaches the value of the state variable w̄1. A state of
loading follows with ongoing softening ruled by Eqs. (6.35–6.37) with increasing values of w̄1

and decreasing values of σ̄1.
Finally, the state of macrocracking is reached with w1 = wcr. Crack tractions become

zero. A further unloading will occur with zero crack tractions until the zero-state is reached
again with a crack closure. Compression states are again ruled by the linear elastic isotropic
law. A further reloading follows the previous path in the opposite direction.

Regarding a point with a crack in the principal 1-direction a further crack may arise
in the principal 2-direction in the case of biaxial principal tension leading to a multiple
cracking. This is covered by Eq. (5.136) for general cases but is reformulated in the current
context. Multiple cracks are dual cracks in 2D states. Dual cracks are orthogonal in the
case of rotating cracks with the Rankine cracking criterion. The states as have been listed
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in Section 6.2 also apply to the second crack and the relations derived subsequently are the
same for both directions. A further assumption is made.

• In the case of dual cracking a decoupling of principal directions with neglecting Poisson’s
ratio ν = 0 considerably simplifies the relations for stresses, crack widths and tangential
stiffness.

As a consequence, the basic equations (6.33) are modified as

εi =
1

E
σi (6.40)

with i = 1, 2. Thus, the state of loading is described by

σi = fct
1− αεi
1− αεct

wi =
εi − εct
1− αεct

Lc

CT =
E

1− αεct

[
−αεct 0

0 −αεct

] (6.41)

with α = Lc/wcr and E εct = fct. The state of unloading before crack closure is described by

σi =
εi

1 + β
E

β

wi =
εi

1 + β
E

L

Ctan =
1

1 + β
E

[
E + β 0

0 β

] (6.42)

and finally crack closure and compression again with Eq. (6.40). This approach also covers
a mixture of states, e.g., one direction in the loading softening state and the other direction
in the unloading state or crack closure state. Such mixtures will occur in plates due to a
considerable redistribution of stresses during the formation of cracks.

All these relations are derived in a local coordinate system aligned to the principal axes of
strain. Principal stresses are determined in the same system by definition. This is admissible
due to the Rankine crack criterion and the rotating crack approach. Stresses and tangential
material stiffness have to be transformed to the global system for usage with Eqs. (1.58)1
and (1.65). The transformation is performed using Eqs. (5.16, 5.17) with the transformation
matrix Q for 2D states according to Appendix C, Eq. (C.11) with the orientation angle ϕ of
the principal strain state.

All derived relations include a characteristic length Lc according to Eq. (6.32) of the
particular quad element under consideration. This ensures the recovery of crack energy and
accomplishes the regularization, see Section 5.9.2, of the softening with model crack-traction–
crack-width relations Eq. (6.29).
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6.4 2D Modeling of Reinforcement and Bond
To start with a single reinforcement bar may be modeled with 2D bar elements, see Section
1.3. The material behavior of rebars is uniaxial and may be described by the uniaxial
elastoplastic law, see Section 2.3. Thus, modeling of rebars may be considered as a special
case of a elastoplastic truss, which has already been discussed in Section 4.3. But this truss
is embedded in concrete and interacts with it via bond.

Basic mechanisms of bond have already been discussed in Section 2.4. Two approaches
have to be distinguished with respect to modeling with finite elements:

– Rigid bond:

It is assumed that slip between concrete and reinforcement can be disregarded. As a
consequence, finite elements for reinforcement on one hand and concrete on the other
hand share the same nodes, see Fig. 6.8a. This enforces the same displacements of
concrete and reinforcement in nodes. There might be minor displacement differences
along a rebar axis between nodes, but this is not significant if the mesh is not too
coarse.

– Flexible bond:

Slip between concrete and reinforcement in the longitudinal direction is regarded while
both have the same displacement in the lateral direction. As a consequence finite
elements for reinforcement on one hand and concrete on the other hand have to have
their own nodes, see Fig. 6.8b. Concrete nodes and reinforcement nodes have to be
connected by a special type of spring elements, see Section 1.3. This type of element is
a so-called bond element, which is constrained or very stiff in the lateral rebar direction
and has a bond law, see Fig. 2.11b, in the longitudinal direction.

For the sake of brevity and simplicity a rigid bond will be assumed in the following, if not
otherwise stated.

Reinforcement meshes are predominantly used for plates beneath single rebars or groups
of a few rebars. A reinforcement mesh consists of two orthogonal reinforcement groups, see
Section 6.1.2. The rebars of a group have a relatively small diameter and a narrow spacing.

Figure 6.8: Bond (a) Rigid. (b) Flexible.
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To model each bar of a reinforcement group with a number of finite element bars is very
elaborate.

A smeared model is used instead, i.e., reinforcement bars of a group are modeled as a
reinforcement sheet. The cross section of a reinforcement mesh is given by the cross section
As of a single bar and the bar spacing s. This leads to a sheet thickness

bs =
As
s

(6.43)

and a reinforcement ratio
ρ =

bs
b

(6.44)

with a thickness b of the plate. A more common notation is used with as which denotes the
total reinforcement cross section in cm2 related to a width of 1 m, i.e., as = 100 b if b is
measured in m. Anyway, the sheet has to be implemented into the model.

• A reinforcement sheet is regarded as a plate. The numerical model may be established
with quad elements. This has to be combined with uniaxial behavior as a special case
of anisotropy.

It is assumed that a reinforcement sheet has an orientation ϕs given by the direction of its
bars. This is measured positive counterclockwise starting from the global x-direction. A
rotated Cartesian coordinate system is assigned with the x̃-axis in the bar direction.

A given global strain state ε =
(
εx εy γxy

)T can be transformed to the rotated
system using Eq. (5.15)

ε̃ = Q · ε (6.45)

with

Q =

 cos2 ϕs sin2 ϕs cosϕs sinϕs
sin2 ϕs cos2 ϕs − cosϕs sinϕs

−2 cosϕs sinϕs 2 cosϕs sinϕs cos2 ϕs − sin2 ϕs

 (6.46)

see Appendix C, Eq. (C.13). This leads to a strain ε̃x which can be used to determine
a stress σ̃x according to the uniaxial material law (Eqs. (2.39, 2.40)) appropriate for the
reinforcement. The rotated stress state is given by σ̃ =

(
σ̃x 0 0

)T . This is transformed
back to the global system with Eq. (5.16)

σ = QT · σ̃ (6.47)

The tangential material stiffness in the rotated system is given by

C̃T =

 CT 0 0
0 0 0
0 0 0

 (6.48)

with CT = Es in the case of loading below the yield limit and unloading and CT = ET at
the yield limit, see Fig. 2.10. This is transformed to the global system with Eq. (5.17)

CT = QT · C̃T ·Q = CT

 cos4 ϕs cos2 ϕs sin2 ϕs cos3 ϕs sinϕs
cos2 ϕs sin2 ϕs sin4 ϕs sin3 ϕs cosϕs
cos3 ϕs sinϕs sin3 ϕs cosϕs cos2 ϕs sin2 ϕs

 (6.49)
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Figure 6.9: Overlay of elements.

leading to a symmetric but fully occupied matrix CT . With Eqs. (6.45)–(6.49) the required
components are given for modeling a reinforcement sheet using quad elements or other ele-
ment types for 2D states.

The procedure for a reinforcement sheet covers a particular reinforcement group out of
the two groups of a reinforcement mesh. The two reinforcement sheets and the model for
concrete with stress–strain relations as have been described, e.g., in the previous Section 6.3
have to be combined to complete the model for a reinforced concrete plate.

This is performed with an overlay of elements, see Fig. 6.9. Each part is modeled sepa-
rately with its own finite element mesh as has been described before. These parts share the
same geometry and – assuming a rigid bond – the same nodes. They are simply added in
the assembling process, see Section 1.5. Finally, bar elements for single reinforcement bars
may be superposed.

Cracking of the concrete part may be considered with the smeared crack model also in the
case of overlays with reinforcement sheets and single rebars. Increased smeared strains due
to concrete cracking are coupled to the reinforcement strains. Concrete and reinforcement
parts influence each other whereby deformation modeling is integral due to smearing of crack
strains.

The application of the basic set of constituents – limit tensile strength of concrete, load-
induced anisotropy, smeared crack model, reinforcement sheets with rigid bond – is demon-
strated with the following example.

Example 6.3 Simulation of cracked reinforced deep beam
We refer to the deep beam example given in Fig. 4.1 and already treated in Example 6.2
with a limit analysis. In contrast to Example 6.2, the nonlinear stress–strain behavior of
concrete and reinforcement will be considered to some extent. System and loading are shown
in Fig.4.1a. The thickness of deep beam is b = 0.6 m. The following material properties are
assumed:

– The concrete material model is chosen according to Section 6.3. The following material
parameters are used: Young’s modulus Ec = 31 900 MN/m2, Poisson’s ratio ν = 0.2,
and tensile strength fct = 1.0 MN/m2.
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– Crack energy has a magnitude of roughly 100 Nm/m2, see [18, 5.1.5.2]. A value of Gf =
50 Nm/m2 is chosen for the following. Furthermore, a crack band width bw = 0.02 m
is chosen. This leads to a critical crack width wcr = 0.1 mm according to Eq. (6.30).

– The reinforcement material model is chosen according to Section 2.3. As parameters
are used: Young’s modulus Es = 200 000 MN/m2, initial yield limit fyk = 500 MN/m2,
ultimate strength ft = 550 MN/m2, strain at ultimate strength εu = 0.05. The latter
values lead to a hardening modulus ET = 1053 MN/m2.

The reinforcement is modeled with two orthogonal reinforcement sheets with indices i = 1, 2.
The parameters are chosen with ϕs1 = 0, bs1 = 0.006 m and ϕs2 = π/2, bs2 = 0.006 m which
corresponds to reinforcement ratios of ρs1 = ρs2 = 1 %. Plane stress conditions are assumed
for the concrete part.

The loading is applied by displacement control of a node, where a concentrated load acts
upon, see Fig. 4.1a. Distributed loads are neglected. The actual loading is given by the
reaction force of the displaced node. In contrast to load control the control of displacements
allows to model limit states of a structure, i.e., limited loading with increasing displacements.
The term loading is also maintained for control of displacements. The target displacement
of the loaded node is prescribed with 0.04 m.

The discretization is shown in Fig. 6.10a. It consists of 209 nodes and 3 × 176 + 1
quad elements, see Section 1.3, of uniform size and quadratic shape. Thereof, 176 elements
are used for the concrete layer and 176 elements each for the two reinforcement directions.
The integration order, see Eq. (1.68), is generally chosen with ni = 1 leading to 2 × 2
integration within a particular element. The characteristic element length is determined
with Lc = 0.25 m following Eq. (6.32). Special care has to be given for the lower left-hand
support. A nodal support of the reinforced concrete deep beam itself is not appropriate as
this leads to concentrated high tensile stresses. A more realistic approach is given with a
support by an extra element, whereby this element is assumed as linear elastic with Ec =
31 900 M/m2, ν = 0.2 and with a vertical nodal support of its lower two nodes. This support
may move freely in the horizontal direction.

The solution procedure deserves remarks. The problem is physically nonlinear due to
concrete cracking and elastoplastic reinforcement behavior and requires and incrementally

Figure 6.10: Example 6.3 (a) Discretization. (b) Load–displacement relation.
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iterative approach, see Section 1.6. Cracking will start in an early stage of loading. In the
case of a detection of a new crack an equilibrium iteration sequence is performed without
applying a load increase. A new loading increment is only applied on a cracked system in
equilibrium. This procedure is separately performed for each new crack.

• A new crack generally leads to state changes, see Section 6.2, in previously existing
cracks, e.g., a loading state of a previously existing crack changes into unloading or
crack closure with the initiation of a new crack.

This leads to a nonsmooth, rough load–displacement behavior leading to derivatives with
jumps. Thus, special care has to be given to the iteration matrix in the incrementally iterative
solution method. The BFGS method, see Appendix A, is used instead of the Newton–
Raphson method, as the latter often will not lead to convergence during the equilibrium
iterations.

A proper selection of load or pseudo time step increments is a matter of experience and
sometimes intuition is required in such problems. A value ∆t = 0.01 is chosen here with a tar-
get value t = 1.0 and 100 iteration sequences arise caused by load increments. But there are
roughly 500 more iteration sequences caused by cracking. Each iteration sequence may have
a large number of single iterations before it reaches convergence or equilibrium, respectively.
Taking all together the computation time is large compared to all other examples.

Computational results are described in the following. The computed curve for the load
depending on the displacement of the loaded node is shown in Fig. 6.10b. Four stages can
be seen as is typical for reinforced concrete:

– Uncracked state I.

– Crack formation state IIa with elastic reinforcement behavior.

– Stabilized cracking state IIb with elastic reinforcement behavior.

– Stabilized cracking state III with yielding reinforcement.

This is basically the same behavior as for the reinforced concrete tension bar, see Example 2.4.
But the transitions are gradual in the current example, as a larger number of elements are
included in a state change, each with a differentiated behavior. The loading for a displacement
of 4 cm is computed with P = 14.3 MN. This should be near to the ultimate limit load of
this model due to the horizontal characteristic of the load–displacement curve.

Computed concrete stresses of the last computed step are shown in Fig. 6.11a. Low tensile
stresses remain according to the prescribed tensile strength. The minimum concrete stress
(→ maximum compression) is computed with −96 MN/m2 near the load application point.
This computed value is beyond the compressive strength of normal graded concrete, but a
linear elastic behavior is assumed for compressive concrete in the current model. On the other
hand, a concentrated point load as assumed does not occur in reality. Furthermore, a biaxial
compressive state is given which leads to some amount of strength increase of concrete, see
Fig. 5.7a.

The computed reinforcement stresses in the last computed step are shown in Fig. 6.11b.
Horizontal lines belong to the stresses of the horizontal reinforcement direction, vertical lines
to the stresses of the vertical stress direction. Horizontal stresses reach the yield strength
in the lower midspan area and the upper right side support area. Small reinforcement areas
have compression due to bond with concrete.
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Figure 6.11: Example 6.3 principal stresses. (a) Concrete. (b) Reinforcement.

Figure 6.12: Example 6.3 beam model.

Some simple manual comparative calculations are recommended for nonlinear numerical
calculations if possible. The external loading connected with the prescribed displacement of
4 cm is determined with P = 14.3 MN at the point of application in the last computed step
and the vertical support reaction on the left-hand lower support with A = 7.46 MN.
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A manual calculation with a simple beam model – span L = 10.5 m measured from inner
support edges, loaded at Lp = 3.5 m, hinge support at the lower left side, fully restrained on
right side, see Fig. 6.12 – leads to a left-hand support reaction of A = 7.41 MN and a mid-span
moment Mf = 25.9 MNm. An internal lever arm of d = 3 m between resulting compression
and tension forces is assumed regarding the cross section below the loaded node. This leads
to a reinforcement force of Fs = 25.9/3 = 8.6 MN and a reinforcement of As ≈ 170 cm2

assuming a reinforcement stress of 500 MN/m2. With a reinforcement ratio ρ = 1 % and a
deep beam thickness b = 0.6 m this requires a reinforcement area of 170/0.6 ≈ 2.8 m in the
vertical direction beginning from the bottom. This roughly matches to the area of computed
reinforcement yielding, see Fig. 6.11b.

End Example 6.3

The model of Example 6.3 combines equilibrium, nonlinear material behavior with limited
material strength and – in contrast to the companion Example 6.2 – kinematic compatibility.
An issue remains with the actually limited compressive strength of concrete, which has not
been considered.

6.5 Embedded Reinforcement

The combination of concrete and reinforcement for the case of rigid bond has been demon-
strated with the overlay approach, see Fig. 6.9. This can be applied for reinforcement sheets
as well as for bar elements representing single rebars. An alternative for rigid bond is given
by the embedding of reinforcement.. This is again demonstrated with the quad element, see
Section 1.3. Such an element has a part of a rebar embedded whose position is given as a
line with an arbitrary orientation.

The overlay approach introduces position constraints insofar as nodes of the concrete part
and the reinforcement part coincide. An embedded reinforcement may have an arbitrary
position, see Fig. 6.13a. A unique element without overlays is used for the interpolation of
displacements according to Eqs. (1.18, 1.35). This leads to continuous strains according to

Figure 6.13: Reinforcement embeddings. (a) 2D. (b) 3D.
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Eq. (1.40). Strains lead to stresses and stresses have to be transformed into internal nodal
forces by integration, see Eq. (1.9).

Standard numerical integration, with, e.g., Gauss integration, see Eq. (1.68), relies on
smooth stress fields to yield reliable integration results. This is generally the case for homo-
geneous materials but not for materials with reinforcing embeddings.

• Stress discontinuities arise within elements with an embedded reinforcement.

Such stress continuities are given with the stress along the rebar line. We assume the position
of the rebar line in global coordinates x, y with

y = a x+ b (6.50)

with constant coefficients a, b. This can be transformed into a rebar line position described
with local coordinates r, s

s = ã r + b̃, −1 ≤ r ≤ 1 (6.51)

using Eq. (1.36). Strains along the rebar line can be determined by Eq. (1.40) using these local
coordinates. As rebar stress are uniaxial the global strains εx, εy, γxy have to be transformed
into the direction ϕs of the rebar according to Eq. (6.45). The resulting strains ε̃x, ε̃y, γ̃xy
are not principal strains (γ̃xy 6= 0), but only the component ε̃x is relevant for a rebar stress
state σ̃x 6= 0 and σ̃y = σ̃xy = 0. The stress component σ̃x is derived from the material law
for the reinforcement, see Section 2.3. Finally, the the stress discontinuity along the rebar
line is determined transforming the stress state σ̃ back to the global system using Eq. (6.47)
leading to a rebar stress σs.

As the position of the rebar line is arbitrary its contribution to internal forces, see
Eq. (1.9), is generally not captured, with, e.g., Gauss integration according to Eq. (1.68)
which covers the concrete part only.

• The contribution of rebar stresses to the internal nodal forces have to be superposed
to the contribution of concrete stresses with their own integration procedure.

An additional Gauss integration along a line in analogy to Eq. (1.68)∫ +1

−1

σs(r) J(r)As dr = As

ni∑
i=0

ηi σs(ξi) J(ξi) (6.52)

may be used for this purpose. This uses the rebar cross-sectional area As, sampling points
ξi and sampling weights ηi according to Table 1.1 and a Jacobian J(r), see Eqs. (1.20,1.23),
relating the local coordinate r to the global coordinate x. An integration order ni = 1 with
two integration points should be adequate for embedded rebars in quad elements also with
integration order 1 and 2× 2 integration points.

Contributions of rebar lines to tangential stiffness matrices, see Eq. (1.65), can be con-
sidered in an analogous way. In contrast to reinforcement overlays which allow for a flexible
bond, see Fig. 6.8, an embedded reinforcement is restricted to rigid bond only. On the other
hand, an overlay of rebars with rigid bond may be considered as a special case of an embed-
ded reinforcement where the rebar line coincides with element boundaries. The embedding
approach may be generalized for 3D states, see Fig. 6.13b.
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Slabs

7.1 A Placement

Elementary structural types treated up to now have been bars, beams, and plates. First of
all these types are characterized by their geometric properties. Two geometric dimensions
of bars and beams – height and width – are small compared to the length. One geometric
dimension of plates – width – is small compared to height and length or span, respectively.

Slabs, as a further structural type has the height as small geometric dimension compared
to width and span. The placement in a common geometric frame is shown in Fig. 7.1a.
The name width is not really appropriate to denote the second long dimension. Actually it
becomes another span in an area. Due to their geometric properties plates and slabs may be
classified as plane surface structures while bars and beams are line structures. The difference
between plates and slabs is given through the way a loading is applied: the loading direction
for a plate is in-plane while the loading direction of a slab is normal to the slab’s plane.

A position on the surface area of a slab is determined through coordinates x, y, see
Fig. 7.1b. A position has cross sections with a z-direction and a corresponding coordinate.
These coordinates form a Cartesian system. In contrast to beams an indefinite number of

Figure 7.1: (a) Structural types. (b) Coordinate system for slabs.

Computational Methods for Reinforced Concrete Structures. First Edition. Ulrich Häussler-Combe.
© 2015 Ernst & Sohn GmbH & Co. KG. Published 2015 by Ernst & Sohn GmbH & Co. KG.
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cross sections exists in a position x, y which are characterized by an in-plane direction angle
ϕ, see Fig. 7.1. Two cross sections are regarded as representative: the first with ϕ = 0 and
a normal in the x-direction and the second with ϕ = π/2 and normal in the y-direction.

7.2 Cross-Sectional Behavior

7.2.1 Kinematic and Kinetic Basics

Each structural type is characterized by a kinematic assumption restraining the mathematical
description of its displacements. The kinematic assumption for slabs is basically the same as
for beams, see Section 3.1.1.

• The Bernoulli–Navier hypothesis states that undeformed plane cross sections of a slab
remain plane during a deformation.

A reference axis has been chosen for beams as a reference to describe the displacement of
plane cross sections. A plane surface area or reference plane is used for the same purpose
regarding slabs. A coordinate system has already been defined in the previous section. The
reference plane is placed in the midst of a slab. Bottom and top coordinates are given by
z1 = −h/2, z2 = h/2 with the slab height h. A synonym for the height of slabs is thickness.

The displacements of every material point of a slab with the coordinates x, y, z are given
with the horizontal displacements u(x, y, z) in the x-direction and v(x, y, z) in the y-direction
and furthermore with the lateral displacement or deflections w(x, y, z) in the z-direction. The
Bernoulli hypothesis for slabs is included in the following formulation:

w(x, y, z) = w(x, y, 0)

= w̄(x, y)

u(x, y, z) = ū(x, y)− z φy

= ū(x, y)− z
[
∂w̄(x, y)

∂x
− γx(x, y)

]
v(x, y, z) = v̄(x, y)− z φx

= v̄(x, y)− z
[
∂w̄(x, y)

∂y
− γy(x, y)

]
(7.1)

with cross-section rotation angles φx(x, y), φy(x, y), shear angles γx(x, y), γy(x, y) and dis-
placements ū(x, y), v̄(x, y), w̄(x, y) of the reference plane.

– Equation (7.1)1 states that every material point in a cross section has the same deflec-
tion but it may change with the reference plane coordinates.

– Equation (7.1)3 states that the cross section with x-normal rotates by an angle φy
during a deformation.

– Equation (7.1)5 states that the cross section with y-normal rotates by an angle φx
during a deformation.
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– Equations (7.1)4,6 decouple the rotations of the cross sections φy, φx and the slopes of
the reference plane ∂w̄/∂x, ∂w̄/∂y by the angles γx, γy. The relations are

φy =
∂w̄

∂x
− γx, φx =

∂w̄

∂y
− γy (7.2)

compare Eq. (3.2). The connection of γ with shear becomes evident with its relation
to the shear strain, see Eqs. (7.3)4,5.

– The case γx � φy, γy � φx with the assumption γx, γy = 0 leads to the Kirchhoff
slab where cross sections remain rectangular to the reference plane after deformation.
The inclusion of shear deformation leads to the Reissner–Mindlin slab. Cross sections
remain plane after deformation but are not rectangular to the reference plane after
deformation for the Reissner–Mindlin slab.

Slab kinematics may be considered as extension of beam kinematics, see Eq. (3.3), in two
directions. Thus, slab strains are defined as

εx =
∂u

∂x
=
∂ū

∂x
− z

[
∂2w̄

∂x2
− ∂γx

∂x

]
εy =

∂v

∂y
=
∂v̄

∂y
− z

[
∂2w̄

∂y2
− ∂γy

∂y

]
γxy =

∂u

∂y
+
∂v

∂x
=
∂ū

∂y
+
∂v̄

∂x
− z

[
2
∂2w̄

∂x∂y
− ∂γx

∂y
− ∂γy

∂x

]
γxz =

∂u

∂z
+
∂w

∂x
= −∂w̄

∂x
+ γx +

∂w

∂x
= γx

γyz =
∂v

∂z
+
∂w

∂y
= −∂w̄

∂y
+ γy +

∂w

∂y
= γy

(7.3)

The strains of the reference plane are given by

ε̄x =
∂ū

∂x
, ε̄y =

∂v̄

∂y
, γ̄xy =

∂ū

∂y
+
∂v̄

∂x
(7.4)

With the inclusion of shear deformations curvature is advantageously defined as

κx =
∂2w

∂x2
− ∂γx

∂x

κy =
∂2w

∂y2
− ∂γy

∂y

κxy = 2
∂2w

∂x∂y
− ∂γx

∂y
− ∂γy

∂x

(7.5)

The quantities ε̄x, ε̄x, ε̄xy and κx, κy, κxy each form the components of a symmetric second-
order tensor defined by a displacement direction and the direction of a reference plane.

• The variables ε̄x, ε̄x, ε̄xy, κx, κy, κxy, γx, γy which depend on x, y only are chosen as
generalized strains for slabs whereby ε̄x, ε̄x, ε̄xy indicate the strain of the reference plane,
κx, κy, κxy the curvatures of deformed cross sections and γx, γy the shearing angles of
deformed cross sections relative to the reference plane.
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224 Chapter 7 Slabs

Combining Eqs. (7.3, 7.5) leads to strain formulations

εx = ε̄x − z κx, εy = ε̄y − z κy, γxy = γ̄xy − z κxy (7.6)

with εx, εy, γxy linearly varying along the beam height with extremal values at the top and
bottom of the cross section and constant γxz = γx, γyz = γy along the beam height. Never-
theless, all these strains are varying with the reference plane coordinates x, y.

At a given location x, y these strains may be transformed to other directions leading to
values ε′x, ε′y, γ′xy. The orientation is measured by the angle ϕ counterclockwise against the
x-axis. The transformation rule is given by ε̃x

ε̃′y
γ̃xy

 =

 cos2 ϕ sin2 ϕ cosϕ sinϕ
sin2 ϕ cos2 ϕ − cosϕ sinϕ

−2 cosϕ sinϕ 2 cosϕ sinϕ cos2 ϕ− sin2 ϕ

 ·
 εx

εy
γxy

 (7.7)

see Appendix C, Eq. (C.13). This transformation is connected with a principal direction ϕε
with γ̃xy = 0 and principal strains ε1, ε2. For a given x, y the principal values ε1, ε2, ϕε may
vary along the height z.

Regarding the reference plane strains ε̄x, ε̄y, γ̄xy and curvatures κx, κy, κxy they have the
same transformation rule (Eq. (7.7)). Thus, they also have principal values and directions
ε̄1, ε̄2, ϕε̄ and κ1, κ2, ϕκ, respectively. But the orientation of the principal systems must not
be the same, i.e., ϕε, ϕε̄ and ϕκ may have different values. But ϕε = ϕε̄ in the case of
κx = κy = κxy = 0 and ϕε = ϕκ in the case of ε̄x = ε̄y = ε̄xy = 0 due to Eq. (7.6).

Generalized slab strains have to be connected to generalized slab stresses or internal forces,
respectively, to describe the material behavior. At a slab position x, y such internal forces
are defined as

nx =

∫ h/2

−h/2
σx dz, ny =

∫ h/2

−h/2
σy dz, nxy =

∫ h/2

−h/2
σxy dz

mx = −
∫ h/2

−h/2
σx z dz, my = −

∫ h/2

−h/2
σy z dz, mxy = −

∫ h/2

−h/2
σxy z dz

vx =

∫ h/2

−h/2
σxz dz, vy =

∫ h/2

−h/2
σyz dz

(7.8)

see Figs. 7.2 and 7.4. In analogy to generalized strains the quantities nx, ny, nxy and
mx,my,mxy each form a symmetric second-order tensor defined by a force direction and
the direction of a reference plane.

Cauchy stresses σx, σy, σxy, σxz, σyz depend on εx, εy, γxy, γxz, γyz through a material law.
Biaxial stress–strain relations are at least required in contrast to bars and beams. Such
laws may be derived as special cases of multiaxial stress–strain relations, see Chapter 5.
The corresponding relations between internal forces and generalized slab strains are derived
through integration along slab thickness. This is exemplary demonstrated for linear elastic
behavior in the following Section 7.2.2.

Equation (7.8) is a generalization of the corresponding relations for beams, see Eq. (3.9),
and generalized pairs (nx, ε̄x), . . ., (mx, κx), . . . and (vx, γx), . . . are conjugate with respect to
internal energy.
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Figure 7.2: Stresses on slab element.

7.2.2 Linear Elastic Behavior
We consider linear isotropic elasticity under plane stress conditions, see Eq. (1.45). The
combination with Eq. (7.6) yields normal stresses

σx =
E

1− ν2
(εx + ν εy)

=
E

1− ν2
[(ε̄x + νε̄y)− z (κx + ν κy)]

σy =
E

1− ν2
[(ε̄y + νε̄x)− z (κy + ν κx)]

(7.9)

and as a shear stress in planes parallel to the reference plane

σxy = Gγxy = G (γ̄xy − z κxy) (7.10)

with G = E/2(1 + ν). The both remaining out-of-plane shear stress components are derived
from Eq. (5.24) as

σxz = Gγxz = Gγx, σyz = Gγyz = Gγy (7.11)

Stresses from Eqs. (7.9–7.11) are used to determine internal forces from Eq. (7.8) leading to

nx =
E

1− ν2
(ε̄x + ν ε̄y)

∫ h/2

−h/2
dz = Kn (ε̄x + ν ε̄y)

ny = Kn (ε̄y + ν ε̄x)

nxy =
E

2(1 + ν)
ε̄xy

∫ h/2

−h/2
dz = (1− ν)Kn

ε̄xy
2

mx =
E

1− ν2
(κx + ν κy)

∫ h/2

−h/2
z2 dz = K (κx + ν κy) (7.12)

my = K (κy + ν κx)

mxy =
E

2(1 + ν)
κxy

∫ h/2

−h/2
z2 dz = (1− ν)K

κxy
2

= (1− ν)K
∂2w

∂x∂y
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vx = αGγx

∫ h/2

−h/2
dz = αGhγx

vy = αGhγy

regarding
∫ h/2
−h/2 zdz = 0 and with the slab stiffness

Kn =
E h

1− ν2
, K =

E h3

12(1− ν2)
(7.13)

see also [31, Section 189], Young’s modulus E, Poisson’s ratio ν, and the shear reduction
factor α, see Section 3.1.2. This is again an extension of the corresponding beam relations,
see Eqs. (3.9–3.13). In order to determine solutions, we regard a balance of variables and
equations:

– Variables: Three displacement variables ū, v̄, w, eight deformation variables ε̄x, ε̄y, γ̄xy,
κx, κy, κxy, γx, γy, 8 force variables nx, ny, nxy,mx,my,mxy, vx, vy, which makes to-
gether 19 variables.

– Equations: Eight force–displacement relations (7.12), six kinematic relations (7.4),
(7.5), which makes together 14 equations. This is complemented with five equilibrium
conditions, see Eqs. (7.16)–(7.18).

The slopes ∂w/∂x, ∂w/∂y need not to be addressed in this particular balance. In case the
enumerated variables are directly determined from the enumerated equations, the slopes
result from the derivatives of the deflection surface w(x, y).

Plates are included as a special case with κx = κy = κxy = 0 and γx = γy = 0 leading to
mx = my = mxy = 0 and vx = vy = 0.

7.2.3 Reinforced Cracked Sections
The limited strength of concrete and in particular its limited tensile strength has again to
be regarded. The uniaxial case has already been treated in Section 3.1.3. An outline for a
biaxial generalization is described in the following. We regard an arbitrary slab position x, y.

A layer model is applied in this position with respect to cross sections. The slab thickness
is subdivided into layers, see Fig. 7.3. The strain of each layer is determined by the kinematic
relations Eqs. (7.3). Furthermore, the stress of each layer is computed from strains with an
appropriate material law. This has the following aspects:

– The in-plane reaction – stresses from εx, εy, γxy – is decoupled from vertical shear
reaction – stresses from γxz, γyz. This corresponds to the approach for beams, see
Sections 3.1.3.1 and 3.5.4.

– The in-plane reaction is biaxial. Each layer is regarded as a plate. Thus, a biaxial
material law can be used.

– Each layer may have its own material law which allows one to distinguish between
concrete layers and reinforcement layers. This implies rigid bond due to the Bernoulli–
Navier hypothesis for slab cross sections, see Eqs. (7.1).
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Figure 7.3: Layer model.

– Regarding concrete, a first approach to model cracks in a biaxial setting has been
described in Section 6.2. This includes limited tensile strength, the Rankine crack
criterion, smeared cracks, crack orientation, crack width, crack tractions, and softening.

In difference to plates cracking states will generally vary for different layers along
the slab thickness in a slab position. This concerns the event of cracking itself, but
furthermore actual values for crack orientation and crack width.

– Regarding the reinforcement, smeared layers or reinforcement sheets are appropriate
as have been described in Section 6.4.

This approach yields stresses σx, σy, σxy for every layer in a slab position x, y. Internal
forces nx, ny, nxy and mx,my,mxy are determined according to Eqs. (7.8). An integration
of stresses is performed along thickness to determine resulting internal forces according to
Eq. (7.8). The integrations along the thickness coordinate z has to be performed numerically.
One-dimensional integration with the schemes of Gauss, Simpson, Newton–Cotes, or Labatto
may be used.

Internal shear forces vx, vy remain to be treated. A layer is not capable to cover transverse
shear with stress components σxz, σyz. Transverse shear for reinforced concrete has already
been discussed in Section 3.5.4 in the context of structural beams. Structural beams and
slabs both rely on the assumption of plane deformed cross sections. Regarding transverse
shear behavior of slabs a substantially better approach as the strut-and-tie model for beam
shear is not yet available. This leads to a proposal adopted from Eq. (7.12) with

vx = αGhγx, vy = αGhγy, G =
Ec

2(1 + ν)
(7.14)

with a shear modulus G, a reduction factor α, and the initial values of Young’s modulus Ec
and Poisson’s ratio ν of the respective concrete. The reduction factor may be chosen with
α = 0.5 according to Section 3.5.4.

A tangential material stiffness can be derived in analogy or extension, respectively, of the
tangential material stiffness for reinforced concrete beams, see Eqs. (3.53–3.56). The general
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form for an incremental internal forces–generalized strain relation is given by

nx
ny
nxy
mx

my

mxy

vx
vy


=



CT11 CT12 CT13 CT14 CT15 CT16 0 0
CT21 CT22 CT23 CT24 CT25 CT26 0 0
CT31 CT32 CT33 CT34 CT35 CT36 0 0
CT41 CT42 CT43 CT44 CT45 CT46 0 0
CT51 CT52 CT53 CT54 CT55 CT56 0 0
CT61 CT62 CT63 CT64 CT65 CT66 0 0

0 0 0 0 0 0 CT77 0
0 0 0 0 0 0 0 CT88


·



ε̄x
ε̄y
γ̄xy
κx
κy
κxy
γx
γy


(7.15)

within the actually given framework. This includes a coupling between internal normal forces
and internal moments which is characteristic for cracked reinforced concrete cross sections,
see Section 3.1.3.2.

The coefficients CTij of the tangential material stiffness matrix to a large extent have to
be derived each with its particular numerical integration. Thus, the layer model is compu-
tationally expensive.

A partially decoupled model may be derived as follows. This is based on principal values
for strains ε̄x, ε̄y, γ̄xy and curvatures κx, κy, κxy of the reference plane. It is assumed that
the principal directions of strains and curvature are at least approximately the same. Thus,
a transformation to a common principal system is possible. Furthermore, each principal
direction is treated like a beam cross section with unit width, see Section 3.1.3. Thus, lateral
expansion or Poisson’s effects are disregarded. The stresses along the cross section in each
principal direction are determined as for cracked reinforced concrete beams. The integration
of stresses over slab thickness leads to principal moments m1,m2 and principal normal forces
n1, n2. Finally, the principal values are transformed back to the global system to yield
internal moments mx,my,mxy and internal normal forces nx, ny, nxy.

7.3 Equilibrium of Slabs

7.3.1 Strong Equilibrium

Equilibrium has to be regarded as the third item beneath kinematic compatibility and mate-
rial laws. The symbols u, v will be used for the displacements of the reference plane instead
of ū, v̄ in the following to simplify the notation. We regard a position x, y of the reference
plane with a distributed loading px, py, pz. Other descriptions use an opposite sign conven-
tion for z-coordinate and the corresponding displacement w. This reverses the sign in the
moment–curvature relations.

The strong differential formulation of static equilibrium for an infinitesimal section of a
slab is at first considered. The internal forces are shown in Fig. 7.4. Equilibrium of normal
forces in the x- and y-directions is given by

∂nx
∂x

+
∂nxy
∂y

+ px = 0,
∂ny
∂y

+
∂nxy
∂x

+ py = 0 (7.16)
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Figure 7.4: Slab equilibrium.

equilibrium of shear forces in the z-direction with

∂vx
∂x

+
∂vy
∂y

+ pz = 0 (7.17)

and equilibrium of moments with

∂mx

∂x
+
∂mxy

∂y
+ vx = 0,

∂my

∂y
+
∂mxy

∂x
+ vy = 0 (7.18)

These equilibrium conditions are independent from kinematic assumptions and material laws.
The case of plates is included as a special case with pz = 0. This leaves Eqs. (7.16) only.

We regard the linear elastic Kirchhoff slab as a commonly used but another special case.
The combination of Eqs. (7.18, 7.17) yields

∂2mx

∂x2
+ 2

∂2mxy

∂x∂y
+
∂2my

∂y2
= pz (7.19)

Shear deformations are neglected. Thus, Eq. (7.5) leads to

κx =
∂2w

∂x2
, κy =

∂2w

∂y2
, κxy = 2

∂2w

∂x∂y
(7.20)

Using this for Eqs. (7.12)4−6 leads to

∂2mx

∂x2
= K

(
∂2κx
∂x2

+ ν
∂2κy
∂x2

)
= K

(
∂4w

∂x4
+ ν

∂4w

∂x2∂y2

)
∂2my

∂y2
= K

(
∂2κy
∂y2

+ ν
∂2κx
∂y2

)
= K

(
∂4w

∂y4
+ ν

∂4w

∂y2∂x2

)
∂2mxy

∂x∂y
= (1− ν)

K

2

∂2κxy
∂x∂y

= (1− ν)K
∂4w

∂x2∂y2

(7.21)

The combination of Eqs. (7.19) and (7.21) finally gives

∂4w

∂x4
+ ν

∂4w

∂x2∂y2
+ 2(1− ν)

∂4w

∂x2∂y2
+
∂4w

∂y4
+ ν

∂4w

∂y2∂x2
=
pz
K

(7.22)
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or the well-known relation

∂4w

∂x4
+ 2

∂4w

∂x2∂y2
+
∂4w

∂y4
=
pz
K

(7.23)

with the stiffness K from Eq. (7.13). Boundary conditions are given with appropriate com-
binations of w, ∂w∂x ,

∂2w
∂x2 ,

∂3w
∂x3 . The physical meaning of the latter comes from the relations

like

mx = K

(
∂2w

∂x2
+ ν

∂2w

∂y2

)
, vx = −

(
∂mx

∂x
+
∂mxy

∂y

)
(7.24)

and similar relations for the other internal forces, see Eqs. (7.12). The determination of ana-
lytical solutions for the partial differential equation of fourth-order Eq. (7.23) is challenging
from a mathematical point of view. A comprehensive discussion is given in [31].

7.3.2 Weak Equilibrium

Equilibrium again has to be reformulated as weak integral equilibrium. To start with, we
reconsider the kinematic relations (7.2, 7.5) as

φy =
∂w

∂x
− γx → γx =

∂w

∂x
− φy

φx =
∂w

∂y
− γy → γy =

∂w

∂y
− φx

κx =
∂2w

∂x2
− ∂γx

∂x
=
∂φy
∂x

κy =
∂2w

∂y2
− ∂γy

∂y
=
∂φx
∂y

κxy =
∂φy
∂y

+
∂φx
∂x

(7.25)

An equivalent to the strong differential equilibrium formulation (Eqs. (7.16–7.18)) is given
by the weak integral equilibrium formulation for a slab of area A with a potential coupling of
normal forces and moments∫

A

δu

(
∂nx
∂x

+
∂nxy
∂y

+ px

)
dA

+

∫
A

δv

(
∂ny
∂y

+
∂nxy
∂x

+ py

)
dA+

∫
A

δw

(
∂vx
∂x

+
∂vy
∂y

+ pz

)
dA

+

∫
A

δφy

(
∂mx

∂x
+
∂mxy

∂y
+ vx

)
dA+

∫
A

δφx

(
∂my

∂y
+
∂mxy

∂x
+ vy

)
dA

= 0

(7.26)
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with test functions δu, δv, δw, δφy, δφx. This is a generalization of the approach for beams, see
Section 3.2. Those terms with derivatives of internal forces are partially integrated leading to∫

A

δu

(
∂nx
∂x

+
∂nxy
∂y

)
dA = −

∫
A

(
∂δu

∂x
nx +

∂δu

∂y
nxy

)
dA+

∮
S

δu(nxex + nxyey)dS∫
A

δv

(
∂ny
∂y

+
∂nxy
∂x

)
dA = −

∫
A

(
∂δv

∂y
ny +

∂δv

∂x
nxy

)
dA+

∮
S

δv(nxyex + nyey)dS∫
A

δw

(
∂vx
∂x

+
∂vy
∂y

)
dA = −

∫
A

(
∂δw

∂x
vx +

∂δw

∂y
vy

)
dA+

∮
S

δw(vxex + vyey)dS∫
A

δφy

(
∂mx

∂x
+
∂mxy

∂y
+ vx

)
dA = −

∫
A

(
∂δφy
∂x

mx +
∂δφy
∂y

mxy − δφyvx
)

dA

+

∮
S

δφy(mxex +mxyey)dS∫
A

δφx

(
∂my

∂y
+
∂mxy

∂x
+ vy

)
dA = −

∫
A

(
∂δφx
∂y

my +
∂δφx
∂x

mxy − δφxvy
)

dA

+

∮
S

δφx(mxyex +myey)dS

(7.27)
with line integrals

∮
along the slab’s boundary S and a unit normal vector e with components

ex, ey along the boundary. Combining Eqs. (7.26, 7.27) yields∫
A

(δεxnx + δεyny + δγxynxy + δκxmx + δκymy + δκxymxy + δγxvx + δγyvy) dA

=

∫
A

(δu px + δv py + δw pz) dA

+

∮
S

[
δu(nxex + nxyey) + δv(nxyex + nyey) + δw(vxex + vyey)

+δφy(mxex +mxyey) + δφx(mxyex +myey)
]
dS

(7.28)

with virtual strains

δεx =
∂δu

∂x
, δεy =

∂δv

∂y
, δγxy =

∂δu

∂y
+
∂δv

∂x
(7.29)

and virtual curvatures

δκx =
∂δφy
∂x

, δκy =
∂δφx
∂y

, δκxy =
∂δφy
∂y

+
∂δφx
∂x

(7.30)

and virtual shear deformations

δγx =
∂δw

∂x
− δφy, δγy =

∂δw

∂y
− δφx (7.31)

A generalizing matrix notation of Eq. (7.28) is given by∫
A

δεT · σ dA =

∫
A

δuT · p dA+

∮
S

δUT · t dS (7.32)

mailto:Ulrich.Haeussler-Combe@tu-dresden.de
http://www.tu-dresden.de/biwitb/mbau
http://www.tu-dresden.de


232 Chapter 7 Slabs

with
ε =

(
εx εy γxy κx κy κxy γx γy

)T
σ =

(
nx ny nxy mx my mxy vx vy

)T
u =

(
u v w φy φx

)T
p =

(
px py pz 0 0

)T
U =

(
us vs ws φsy φsx

)T
t =

(
nsx nsy vs msx msy

)T
(7.33)

with the displacement boundary values us, vs, ws, φsy, φsx and forces at boundaries

nsx = nxex + nxyey
nsy = nxyex + nyey
vs = vxex + vyey
msx = mxex +mxyey
msy = mxyex +myey

(7.34)

A coupling of normal forces and moments – as arises with reinforced cracked concrete, see
Section 3.1.3.2 – occurs with a dependence of normal forces on strains and additionally
curvatures and also of moments on curvature and strains.

7.3.3 Decoupling
A decoupling is generally practiced for plane surface structures. In case normal forces do
not depend on curvature and moments do not depend on strains – e.g., for a linear elastic
material behavior – weak equilibrium can be formulated independently for Eq. (7.16) and
for Eqs. (7.17, 7.18). Regarding normal forces this leads to

ε =
(
εx εy γxy

)T
σ =

(
nx ny nxy

)T
u =

(
u v

)T
p =

(
px py

)T
U =

(
us vs

)T
t =

(
nsx nsy

)T
(7.35)

to be used for Eq. (7.32). This describes plates with biaxial plane strain or plane stress.
Regarding bending only leads to

ε =
(
κx κy κxy γx γy

)T
σ =

(
mx my mxy vx vy

)T
u =

(
w φy φx

)
p =

(
pz 0 0

)
U =

(
ws φsy φsx

)T
t =

(
vs msx msy

)T
(7.36)

to be used for Eq. (7.32). These relations correspond to the Reissner–Mindlin slab. It is
characterized by decoupling the deflection w from the slopes φy, φx by the shear deformation
γx, γy, see Eq. (7.25). Thus, w, φy, φx may be interpolated as independent displacement
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variables within the finite element approach. As a further consequence, C0-continuity is
sufficient for the interpolation of w, φy, φx, see also Section 1.7.

The common approach is given with the Kirchhoff slab which disregards shear deforma-
tions. It has the assumptions ∂w

∂x = φy → γx = 0, ∂w∂y = φx → γy = 0 and is a special case
of the Reissner–Mindlin slab from a purely mechanical point of view. Thus, Eq. (7.36) is
modified as

ε =
(
κx κy κxy

)T
σ =

(
mx my mxy

)T
u =

(
w φy φx

)
p =

(
pz 0 0

)
U =

(
ws φsy φsx

)T
t =

(
vs msx msy

)T
(7.37)

to be used for Eq. (7.32). The relations between curvatures and deflections are given by

κx =
∂2w

∂x2
, κy =

∂2w

∂y2
, κxy = 2

∂2w

∂x∂y
(7.38)

according to Eq. (7.5). We close this classification assuming a linear elastic material behav-
ior according to Eqs. (7.12)4−6. The relation between generalized stresses and generalized
stresses for the Kirchhoff slab can be formulated as

σ = C · ε, C = K

 1 ν 0
ν 1 0
0 0 1−ν

2

 , K =
E h3

12(1− ν2)
(7.39)

with Young’s modulus E, Poisson’s ratio ν, and the slab height h. The set of Eqs. (7.32, 7.37,
7.39) in the framework of weak equilibrium is equivalent to the classical partial differential
equation for Kirchhoff slab Eq. (7.23). But the former allows for arbitrary geometries and
boundary conditions in combination with numerical methods while the latter is restricted to
relatively simple cases in spite of the mathematical challenge it involves.

The Kirchhoff slab described by Eqs. (7.32, 7.37) will be treated in the following of this
chapter because of its current practical importance. This must ignore the coupling of bending
moments and normal. This coupling is expressed, e.g., by the occupation of the tangential
material stiffness (Eq. (7.15)). The effects of this characteristic of cracked reinforced concrete
sections has been demonstrated for beams with Example 3.2. In this example it is shown
that the activation of normal forces in the case of lateral loading depends on the displacement
boundary conditions.

• Restrained horizontal displacements in most case lead to a slight normal compression
of cracked reinforced cross sections.

Thus, the coupling effect is generally ignored for beams and slabs. The Kirchhoff approach
for slabs is appropriate under this condition. The special case derived from Eq. (7.15) mx

my

mxy

 =

 CT11 CT12 CT13

CT21 CT22 CT23

CT31 CT32 CT33

 ·
 κx

κy
κxy

 (7.40)

is used with adapted notations for the coefficients CTij . This is a generalization of Eq. (7.39).
The coupling effect will be again considered in the context of shells, see Section 8.
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7.4 Structural Slab Elements

7.4.1 Area Coordinates

Equations (7.37, 7.38) define the variables of the Kirchhoff slab. The definition of generalized
strains (Eq. (7.38)) requires a C1-continuity of the interpolation functions for w to ensure
compatibility and integrability of Eq. (7.32), see also Section 1.7. This corresponds to the
continuity of slopes φy, φx and some more constraints along inter element boundaries. This
requirement is not trivial to fulfill within the two-dimensional setting [99, 1.1,1.2]. Thus, the
continuity requirement has to be relaxed leading to nonconforming element formulations.

Three independent interpolation variables are given by w, φy, φx, see Eq. (7.37)3. Tri-
angular areas or elements are a first choice in order to approach continuity requirements.
Furthermore, usage of area coordinates Li, i = 1, . . . , 3 instead of length coordinates is ap-
propriate to indicate a position within triangle. They are defined with

x = L1x1 + L2x2 + L3x3

y = L1y1 + L2y2 + L3y3

L1 + L2 + L3 = 1
(7.41)

with the coordinates xI , yI of a node I = 1, . . . , 3. The values of Li denote relative areas,
see Fig. 7.5. The definition leads to

L1 = a1 + b1x+ c1y, L2 = a2 + b2x+ c2y, L3 = a3 + b3x+ c3y (7.42)

with

a1 =
y3x2 − y2x3

2∆
, b1 =

y2 − y3

2∆
, c1 =

x3 − x2

2∆

a2 =
y1x3 − y3x1

2∆
, b2 =

y3 − y1

2∆
, c2 =

x1 − x3

2∆

a3 =
y2x1 − y1x2

2∆
, b3 =

y1 − y2

2∆
, c3 =

x2 − x1

2∆

(7.43)

Figure 7.5: Triangular element and area coordinates.
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and

∆ =
1

2
det

∣∣∣∣∣∣
1 x1 y1

1 x2 y3

1 x2 y3

∣∣∣∣∣∣
= area123

=
1

2
(y1x3 + y3x2 + y2x1 − y2x3 − y3x1 − y1x2)

(7.44)

Area coordinates of nodes are given by

x = x1, y = y1 → L1 = 1, L2 = 0, L3 = 0
x = x2, y = y2 → L1 = 0, L2 = 1, L3 = 0
x = x3, y = y3 → L1 = 0, L2 = 0, L3 = 1

(7.45)

and derivatives of area coordinates with respect to length coordinates

∂Li
∂x

= bi,
∂Li
∂y

= ci (7.46)

with bi, ci according to Eq. (7.43)

7.4.2 A Triangular Kirchhoff Slab Element

We consider a triangular element with three corner nodes and nine nodal degrees of freedom.
Thus, an interpolation approach for the deflections w on area coordinates is given by, e.g.,

w = α1L1 + α2L2 + α3L3 + α4L1L2 + α5L2L3 + α6L3L1

+ α7L
2
1L2 + α8L

2
2L3 + α9L

2
3L1

φy =
∂w

∂x
=

∂w

∂L1

∂L1

∂x
+

∂w

∂L2

∂L2

∂x
+

∂w

∂L3

∂L3

∂x

=
(
α1 + α4L2 + α6L3 + 2α7L1L2 + α9L

2
3

)
b1

+
(
α2 + α4L1 + α5L3 + α7L

2
1 + 2α8L2L3

)
b2

+
(
α3 + α5L2 + α6L1 + α8L

2
2 + 2α9L1L3

)
b3

φx =
∂w

∂y
=

∂w

∂L1

∂L1

∂y
+

∂w

∂L2

∂L2

∂y
+

∂w

∂L3

∂L3

∂y

=
(
α1 + α4L2 + α6L3 + 2α7L1L2 + α9L

2
3

)
c1

+
(
α2 + α4L1 + α5L3 + α7L

2
1 + 2α8L2L3

)
c2

+
(
α3 + α5L2 + α6L1 + α8L

2
2 + 2α9L1L3

)
c3

(7.47)

This yields for node 1 with L1 = 1, L2 = L3 = 0

w1 = α1

φ1y = α1b1 + (α2 + α4 + α7) b2 + (α3 + α6) b3
φ1x = α1c1 + (α2 + α4 + α7) c2 + (α3 + α6) c3

(7.48)
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see Fig. 7.5, and for node 2 with L2 = 1, L2 = L3 = 0

w2 = α2

φ2y = (α1 + α4) b1 + α2b2 + (α3 + α5 + α8) b3
φ2x = (α1 + α4) c1 + α2c2 + (α3 + α5 + α8) c3

(7.49)

and finally for node 3 with L3 = 1, L1 = L2 = 0

w3 = α3

φ3y = (α1 + α6 + α9) b1 + (α2 + α5) b2 + α3b3
φ3x = (α1 + α6 + α9) c1 + (α2 + α5) c2 + α3c3

(7.50)

The solution for the coefficients of the interpolation approach is

α1 = w1

α2 = w2

α3 = w3

α4 = −c3φ2y + w2 − w1 + b3φ2x

α5 = −φ3yc1 − w2 + w3 + b1φ3x

α6 = −c2φ1y + w1 − w3 + b2φ1x

α7 = −b3φ2x + c3φ2y − b3φ1x + c3φ1y − 2w2 + 2w1

α8 = −b1φ2x + c1φ2y − b1φ3x + φ3yc1 + 2w2 − 2w3

α9 = −b2φ1x + c2φ1y − b2φ3x + c2φ3y − 2w1 + 2w3

(7.51)

leading to

w =− L1(−1 + L2 − 2L1L2 − L3 + 2L2
3)w1 + L1(c3L1L2 + L2

3c2 − L3c2)φ1y+

− L1(b2L
2
3 + b3L1L2 − b2L3)φ1x + L2(−2L2

1 − L3 + L1 + 1 + 2L2L3)w2+

L2(−c3L1 + c3L
2
1 + c1L2L3)φ2y +−L2(−b3L1 + b3L

2
1 + b1L2L3)φ2x+

L3(L2 + 2L3L1 − 2L2
2 + 1− L1)w3 + L3(c1L

2
2 + c2L3L1 − c1L2)φ3y+

− L3(b1L
2
2 + b2L3L1 − b1L2)φ3x

(7.52)

Generalized strains or curvatures, see Eq. (7.38), are derived with

∂2w

∂x2
=

∂2w

∂x∂L1

∂L1

∂x
+

∂2w

∂x∂L2

∂L2

∂x
+

∂w2

∂x∂L3

∂L3

∂x
= κx

∂2w

∂y2
=

∂2w

∂y∂L1

∂L1

∂y
+

∂2w

∂y∂L2

∂L2

∂y
+

∂w2

∂y∂L3

∂L3

∂y
= κy

∂2w

∂x∂y
=

∂2w

∂x∂L1

∂L1

∂y
+

∂2w

∂x∂L2

∂L2

∂y
+

∂w2

∂x∂L3

∂L3

∂y
=
κxy
2

∂2w

∂y∂x
=

∂2w

∂x∂y

(7.53)

or
κx = B11w1 +B12φ1y +B13φ1x +B14w2 +B15φ2y +B16φ2x +B17w3 +B18φ3y +B19φ3x

κy = B21w1 +B22φ1y +B23φ1x +B24w2 +B25φ2y +B26φ2x +B27w3 +B28φ3y +B29φ3x

κxy
2

= B31w1 +B32φ1y +B33φ1x +B34w2 +B35φ2y +B36φ2x +B37w3 +B38φ3y +B39φ3x

(7.54)
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with
B11 = −8b3b1L3 + 4b21L2 + 2(4b2b1 − 2b23)L1 + 2(−b2b1 + b3b1)

B12 = 4b1c2b3L3 + 2c3b
2
1L2 + 2(2c3b1b2 + c2b

2
3)L1 − 2b1c2b3

. . .

(7.55)

These derivations demonstrate the basic procedure. Obviously the issue becomes elaborate.
The selection of higher order polynomial terms becomes a delicate question with several
options [99, 1.5].

The particular approach (Eq. (7.47)) belongs to the class of nonconforming elements, i.e.,
C1-continuity is not strictly given. This must not be a criterion for exclusion. A severe
drawback is that the patch test, see Section 1.7, is not fulfilled for arbitrary element shapes.
Improved forms with efficient performance are proposed by [87] using fourth-order terms
instead of cubic terms in Eq. (7.47)1.

7.5 System Building and Solution Methods
System building for system with structural elements like beams and slabs has some specialties.
General aspects have already been treated in Section 1.6, particular items regarding beams
have been discussed in Section 3.4. They are shortly rephrased and specified with respect to
slabs.

Generalized strains are approximated with finite element approximations

ε = B · υe (7.56)

see Eq. (1.21), with υe according to Eq. (7.33)3, (7.36)3, or (7.37)3 applied to all nodes of
an element and ε according to Eq. (7.33)1, (7.36)1 or (7.37)1 for the coupled problem, the
Reissner–Mindlin slab or the Kirchhoff slab, respectively. In the case of a Kirchhoff slab, the
matrix B is determined, e.g., by Eq. (7.54).

Numerical integration of triangular elements has to be treated differently compared to
four-sided elements. Area coordinates, see Section 7.4.1, are used to mark a position within
an triangular element. Sampling points and weights, compare Section 1.6, are used for
the numerical integration of internal nodal forces, external loads, and stiffness matrices.
Regarding area coordinates they are given in Table 7.1 up to integration order 2, compare
also Table 1.1.

ni L1 L2 L3 ηi
0 1/3 1/3 1/3 1
1 1/ 2 1/2 0 1/3

0 1/2 1/2 1/3
1/ 2 0 1/2 1/3

2 1/3 1/3 1/3 −27/48
0.6 0.2 0.2 25/48
0.2 0.6 0.2 25/48
0.2 0.2 0.6 25/48

Table 7.1: Sampling points and weights for triangular numerical integration.
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The integration of the weak equilibrium condition (Eq. (7.32)) has to be performed ele-
ment by element. Assembling of element contributions, see Section 1.5, leads to

r(υ) = f(υ)− p = 0 (7.57)

with nodal internal forces f , nodal displacements υ of all elements and external nodal loads
p, compare Eq. (1.69). In the case of linear material behavior internal nodal forces may be
written as

f(υ) = K · υ → K · υ = p (7.58)

with a constant stiffness matrix K assembled from element stiffness matrices

KI =

∫
VI

BT ·C ·B dV (7.59)

compare Eqs. (1.61, 1.62), with C according to Eq. (7.39) in the case of a Kirchhoff slab.
This yields an immediate solution for the displacement with a given load p

υ = K−1 · p (7.60)

whereby an inversion is not explicitly performed but a Gauss triangularization and backsub-
stitution.

Kinematic boundary conditions have to provide a stable support and to prevent rigid
body motions. Boundary forces are given by Eq. (7.34) with a unit normal vector e with
components ex, ey along the boundary. To simplify the formulations a boundary edge parallel
to the global y-axis with x = const., ex = 1, ey = 0 is considered exemplary, i.e.,

vs = vx, msx = mx, msy = mxy (7.61)

along the boundary edge. The following cases are considered:

– Free edge:
Values vs,msx,msy are prescribed – in most cases with 0 – and go directly into the
boundary force vector t, see Eqs. (7.36)6 and (7.37)6. Their mutual dependency given
by Eq. (7.18) must be regarded if necessary in cases they are not zero. This corresponds
to the notion of compensatory shear forces within the theory of Kirchhoff slabs.

– Simply supported edge:
Regarding Eqs. (7.36)5 and (7.37)5 kinematic boundary conditions w = ws = 0 and
ϕy = φsx = 0 characterize the simply supported edge. On the other hand, ϕx is not
prescribed and the corresponding force msx = mx has to be prescribed, generally with
a value 0.
But as φx is prescribed the corresponding boundary force msy = mxy has to result
from the computation and is transmitted to the slab’s support. It is connected to a
compensatory shear force which is combined with the internal shear force vx.

– Clamped edge:
Regarding Eqs. (7.36)5, (7.37)5 kinematic boundary conditions w = ws = 0 and ϕx =
φsy = 0, ϕy = φsx = 0 are given. All the corresponding boundary forces are determined
from the computation, whereby msy = mxy = 0 as ∂φy/∂y = 0.
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A boundary edge parallel to the global x-axis with y = const. is treated in the same way
with indices exchanged. A straight skew or curved boundary edge with, e.g., simply support
leads to a prescribed coupling of φy, φx and mx,my,mxy along the boundary. These may be
regarded as additional constraint conditions.

Kinematic boundary conditions are applied to nodes and directly implemented upon
assembling the system by the modification of the system’s stiffness matrix and load vector,
see Section 3.4.3 for the basic approach. Boundary forces or reactions, respectively, are
automatically computed as internal nodal forces for those boundary degrees of freedom which
have kinematic boundary conditions prescribed. These particular internal nodal forces are
not equilibrated by external nodal loads.

The computation of slabs arises as an everyday task. Linear elastic behavior is generally
assumed in practical problems. Nevertheless geometric properties and boundary conditions
prevent an analytical treatment and only numerical methods may provide useful solutions.
This is demonstrated with the following example.

Example 7.1 Linear elastic rectangular slab with opening and free edges
The slab’s geometry with opening and boundary conditions is shown in Fig. 7.6a. A single
support is given in the lower left corner. The left and the lower edges are not supported. The
upper and right edges are simply supported (hinged). The material properties are assumed
with a Young’s modulus E = 31 900 MN/m2 and a Poisson’s ratio ν = 0.2. The slab thickness
is h = 0.3 m. A uniform loading is given by p = 10 kN/m2 which does not act in the opening
area.

Kirchhoff slab theory is assumed and only moments will be directly considered as internal
forces, see Eq. (7.37). A triangular slab element is chosen according to Section 7.4.2 in the
variant proposed by [87]. The discretization is given by 132 elements which are shown in
Fig. 7.6b. The computation leads to the following results:

– Principal moments – derived from mx,my,mxy in analogy to principal stresses, see
Eqs. (6.4, 6.5) and Eq. (7.66) – give instructive information about the load-bearing
behavior. The computed values are shown in Fig. 7.6b whereby the arrow direction

Figure 7.6: Example 7.1 (a) System. (b) Discretization and principal moments.
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Figure 7.7: Example 7.1 (a) Deflections (opening not shown). (b) Boundary support reac-
tions.

indicates the stress direction caused by the respective moment. Positive values have
compressive stresses on the upper side and tensile stresses on the lower side, negative
values the opposite. Principal moments are basically aligned to the free edges and are
connected with a uniaxial behavior along the free edges.

A skew orientation of principal moments with opposite sign and approximately the
same absolute value arises in the upper right corner and reversed near the lower left
single support. This indicates the effect of twisting.

– The computed deflections are shown in Fig. 7.7a. They obviously conform to prescribed
boundary conditions. The maximum deflection is in the range of 3 cm, i.e., wmax/L ≈
1/230. Thus, thickness and stiffness are too low for serviceability.

– The computed reaction forces in the boundary nodes are listed in Fig. 7.7b. Number 1
belongs to the lower left single support, the numbers 2–6 to the right edge, the number
7 to the right upper corner and the numbers 8–14 to the upper edge.

The sum of all reaction forces equals 330 kN and thus equals the total loading. The by
far largest reaction force is given the simple support. The upper right reaction force
corresponds to uplift. This conforms to the theory of slabs with twisting stiffness.

End Example 7.1

A redistribution of moments generally occurs with nonlinear material behavior. An approach
for nonlinear behavior for slabs is described in Section 7.7.

7.6 Lower Bound Limit Analysis

7.6.1 General Approach and Principal Moments
Principles of a lower bound limit analysis have already been described in Section 6.1.1 regard-
ing plates. Internal forces are determined with a linear elastic computation with a unit load
applied. Internal forces can be scaled with a loading factor. The loading factor is adapted
such that the cross-sectional resistance resulting from thickness, concrete strength, and the
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strength of reinforcement – basically by its amount – is not exceeded in every position of the
slab reference plane (→ admissible load proof) or the design of thickness, concrete strength
and amount of reinforcement is adapted to a given loading factor (→ design procedure).

The key item is again to find an appropriate combination of concrete and reinforcement
strength as reference values for the calculated state of internal forces. This needs the de-
termination of principal moments as prerequisites. The task has basically been treated in
Section 6.1.2.

Momentsmx,my,mxy as they are defined by Eq. (7.8) and Fig. 7.4 behave as components
of a second-order tensor in the same way as the components of a plane stress tensor do as they
are directly derived from stress components. This has some side effects: the transformation
of a second-order moment tensor or its corresponding principal values into a moment vector
similar to Eq. (5.5) does not directly lead to a rotating moment vector in the classical sense.
In addition a rotation with π/2 has to be performed due to the lever arm z.

The transformation of tensorial moments into a coordinate system rotated by an angle ϕ
(positive counterclockwise, see Eq. (C.11)) is given by

m̃ = T ·m (7.62)

in the same way as for stresses with

m̃ =

 m̃x

m̃y

m̃xy

 , T =

 cos2 ϕ sin2 ϕ 2 cosϕ sinϕ
sin2 ϕ cos2 ϕ −2 cosϕ sinϕ

− cosϕ sinϕ cosϕ sinϕ cos2 ϕ− sin2 ϕ

 , m =

 mx

my

mxy


(7.63)

The principal direction is defined with the condition of vanishing shear components√
1− cos2 2ϕ · my −mx

2
+ cos 2ϕ ·mxy = 0 (7.64)

Within a range 0 ≤ ϕ ≤ π/2 a unique solution ϕ is determined by

cos 2ϕ =

mx −my

2√
(
mx −my

2
)2 +m2

xy

(7.65)

for mxy 6= 0. Principal moments are already given by mx,my for mxy = 0. A solution ϕ
multiplied by the sign of mxy indicates the direction of a principal moment m1. A second
principal moment m2 is perpendicular. They have the values

m1 =
mx +my

2
+

√(
mx −my

2

)2

+m2
xy, m2 =

mx +my

2
−

√(
mx −my

2

)2

+m2
xy

(7.66)
According to the definition of Eq. (7.8) and Fig. 7.4 a moment mx leads to stresses σx, my to
σy and mxy to σxy. Assigning an internal lever arm z yields the corresponding couple force
resultants

tx = ±mx

z
, ty = ±my

z
, txy = ±mxy

z
(7.67)
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Each of the two components may be attached to a lower and upper layer of the slab.

• All considerations regarding reinforcement design of plates, see Section 6.1, may be
applied to the layer forces and the required upper or lower reinforcement, respectively.

This is summarized in the following, which has to be applied to the upper and lower layer in
the same way.

7.6.2 Design Approach for Bending
An approach combining an admissible load proof regarding concrete together with a design
procedure regarding the reinforcement is developed in the following. Upper and lower rein-
forcements have to be distinguished whereby each of them is connected with layer forces for
a given position of the reference plane. The procedure is the same for both.

Layer forces have principal values as the moments have they are derived from. The values
tx, ty, txy are connected to the principal values t1, t2 by

tx = t1 cos2 ϕ+ t2 sin2 ϕ
ty = t1 sin2 ϕ+ t2 cos2 ϕ
txy = (t1 − t2) sinϕ cosϕ

(7.68)

according to Eq. (6.7) with the angle ϕ measured from the x-axis to the 1-axis (counterclock-
wise positive, see Eq. (C.12)). This form may also be derived in analogy to Eq. (7.63) with
a sign reversal of ϕ and a zero mixed component.

Two reinforcement directions ϕs1, ϕs2 and a concrete direction ϕc are considered. These
directions describe the principal 1-directions for each part. The corresponding principal stress
values are transformed to the global directions applying Eq. (7.68) to each part, whereby the
stresses in the principal 2-directions vanish due to the uniaxial behavior of each part. This
leads to

tc,x = tc,1 cos2 ϕc, tc,y = tc,1 sin2 ϕc, tc,xy = tc,1 sinϕc cosϕc
ts1,x = ts1,1 cos2 ϕs1, ts1,y = ts1,1 sin2 ϕs1, ts1,xy = ts1,1 sinϕs1 cosϕs1
ts2,x = ts2,1 cos2 ϕs2, ts2,y = ts2,1 sin2 ϕs2, ts2,xy = ts2,1 sinϕs2 cosϕs2

(7.69)

see also Eqs. (6.8, 6.9). A notation tc = tc,1, ts1 = ts1,1, ts2 = ts2,1 will be used in the fol-
lowing. Reinforcement forces are connected to reinforcement stresses through reinforcement
cross sections as1, as2 per unit width with

ts1 = as1 σs1, ts2 = as2 σs2 (7.70)

The parts contribute to total forces in analogy to Eq. (6.11)

tc,x + ts1,x + ts2,x = tx
tc,y + ts1,y + ts2,y = ty

tc,xy + ts1,xy + ts2,xy = txy

(7.71)

The usage of Eqs. (7.69, 7.70) in Eq. (7.71) first of all yields three equations for the variables
tc, ϕc, σs1, as1, ϕs1, σs2, as2, ϕs2 and the lever arm z. Three further Eqs. (7.67) connect
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tx, ty, txy to moments mx,my,mxy by the internal lever arm z. Thereby mx,my,mxy are
given, e.g., from a linear elastic FE-calculation which has been performed in advance. It is
reasonable to prescribe the four values σs1, ϕs1, σs2, ϕs2. Thus, the parameters tc, ϕc, as1, as2
and z remain open for design purposes.

Again a special but common case is considered. It is assumed that the reinforcement
directions are aligned to global coordinate axes, i.e., ϕs1 = 0, ϕs2 = π/2 and therefore
sinϕs1 = 0, cosϕs1 = 1, sinϕs2 = 1, cosϕs2 = 0. This leads to

ts1,x = tsx = asx σsx, ts1,y = 0, ts1,xy = 0
ts2,y = tsy = asy σsy, ts2,x = 0, ts2,xy = 0

(7.72)

with σsx = σs1, asx = as1 , σsy = σsy, asy = asy. Insertion into Eq. (7.71) together with
Eq. (7.69)1 yields

tc cos2 ϕc + asx σsx = tx
tc sin2 ϕc + asy σsy = ty
tc sinϕc cosϕc = txy

(7.73)

To exploit the reinforcement’s load carrying capacity stresses σs1 = σs2 = fyk are used with
the reinforcement yield limit fyk.

The concrete force – negative by definition with an appropriate choice of ϕc for a given
txy – is determined by

tc =
txy

sinϕc cosϕc
(7.74)

according to Eq. (7.73)3. The bearing capacity of the compression zone can be estimated
with some assumptions about the values and the distribution of concrete stresses. A constant
concrete stress distribution is assumed with a value σc = −χfc, a zero line of bending x
measured from the compressed side and the compression stress zone height k x, see Fig. 7.8.
Values χ = 0.95, k = 0.8 can be used supported by [26, 3.1.7]. This leads to tc = −χfck x.
Furthermore, z = d − k x/2 with the structural height d. Finally, a concrete moment mc =

Figure 7.8: Slab reinforcement.
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tc z = −χfck xz is introduced. The last two equations yield

x =
d

k

(
1−

√
1 +

2mck

f̄cd2

)
, z =

d

2

(
1 +

√
1 +

2mck

f̄cd2

)
(7.75)

with f̄c = χfck and mc < 0 by definition.
The amount of required reinforcement can be determined using Eq. (7.73)

asx =
tx − tc cos2 ϕc

fy
=
±mx −mc cos2 ϕc

z fy

asy =
ty − tc sin2 ϕc

fy
=
±my −mc sin2 ϕc

z fy

(7.76)

whereby the positive sign is used for the lower slab side and the negative sign for the upper
side, see Fig. 7.4, with

mc sinϕc cosϕc = ±mxy (7.77)

derived from Eqs. (7.74, 7.67) and tc = mc/z. Setting z = 1,m = σ recovers the approach
for the reinforcement design of plates, see Section 6.1.2.

Summarizing, four equations given by Eqs. (7.75)2 and (7.77, 7.76) are available the five
remaining variables asx, asy,mc, z, ϕc. Regarding ϕc a first choice

ϕc =

 −
π

4
for mxy ≥ 0

π

4
mxy < 0

(7.78)

is appropriate as has been shown in Section 6.1.2. This leads to tc = −2|txy| and mc =
−2|mxy|. The internal lever arm z can be determined with Eq. (7.75)2 and finally the
required reinforcement with asx = ±mx + |mxy|/(z fy) and asy = ±my + |mxy|/(z fy) with
Eqs. (7.76).

A computed value asi < 0, i = x, y indicates that the concrete stress direction should
be changed, the angle ϕc has to be modified to reach asi = 0. This case is covered by the
nonlinear system of four equations (7.75)2, (7.76) with asi = 0 and (7.77) for four unknowns
ϕc,mc, z and asj with i 6= j. This system has to be solved iteratively in a similar way as has
been demonstrated for plates, see Section 6.1.3.

The concrete compression height has to be restricted to assure a sufficient rotation capac-
ity. The zero line x of bending measured should not exceed ≈ d/2 supported by [26, 5.6.3].
A condition x ≤ d/2 leads to

|mc| ≤
1−

(
1− k

2

)2
2

f̄cd
2 = 0.32 f̄cd

2 (7.79)

with k = 0.8. A sufficient rotation capacity enables deformations that are necessary for a
redistribution of internal forces to adjust to the conditions caused by a prescribed value of
ϕc. The design approach is demonstrated with the following example.
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Example 7.2 Reinforcement design for a slab with linear elastic internal forces
We refer to Example 7.1 with the same system and loading. Moments have been calculated for
each element integration point with a linear elastic calculation. The reinforcement strength is
assumed with fyk = 435 MN/m2 and the uniaxial concrete compressive strength (unsigned)
with fc = 17.0 MN/m2 leading to f̄cd = 12.92. The structural height of the slab is d = 0.25 m.
Safety factors are not explicitly regarded for the loading.

Computed principal moments and the required lower side reinforcement for a section left
to the opening are shown in Fig. 7.9a. The vertical number indicates the required amount
of reinforcement in cm2/m in the y-direction, the horizontal number in x-direction. The
relatively rough discretization with four integration points per element is also indicated.
Lower reinforcement (first number in a pair) and upper reinforcement (second number in a
pair) are shown in Fig. 7.9b for selected points. Their different characteristics of bending are
described in the following.

Figure 7.9: Example 7.2 (a) Required lower reinforcement of the left section. (b) Required
reinforcement of selected points.
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– Position x = 0.17, y = 2.5 near midspan left free edge.

Computed moments are mx = 0.001 MNm/m,my = 0.051,mxy = 0.020 leading to
principal moments m1 = 0.058,m2 = −0.006 with a direction ϕ = 71°.
Lower reinforcement: Assuming ϕ = −45° yields asx = 2.02 cm2/m, asy = 6.87 with
z/d = 0.95 and x/d = 0.10.
Upper reinforcement: ϕc = 45° leads to asy < 0. Thus, an iteration has to be performed
leading to asx = 0.67 cm2/m, asy = 0 with z/d = 0.92, x/d = 0.16 and ϕc = 69°
computed.

– Position x = 6.5, y = 4.17 near upper right corner of simple line support.

Computed moments are mx = 0.004 MNm/m,my = 0.004,mxy = −0.028 leading to
m1 = 0.032,m2 = −0.024 with ϕ1 = −45°. The curvature is negative in the corner’s
diagonal direction and positive lateral to it. This indicates a load transfer “over edge”
supporting a load transfer in the corner’s diagonal and corresponds to a twisting effect.
Lower reinforcement: ϕ = 45° yields asx = 3.21 cm2/m, asy = 3.14 with z/d =
0.0.93, x/d = 0.14.
Upper reinforcement: ϕ = −45° yields asx = 2.32 cm2/m, asy = 2.39 with z/d =
0.93, x/d = 0.14 (must here be the same as the upper values).

– Position x = 3.5, y = 0.17 near midspan lower free edge.

Computed moments are mx = 0.060 MNm/m,my = 0.007,mxy = 0.008 leading to
m1 = 0.061,m2 = 0.006 with ϕ1 = 8°. Lower reinforcement: ϕ = 45° yields asx =
6.33 cm2/m, asy = 1.39 with z/d = 0.98, x/d = 0.04.
An upper reinforcement is not necessary as both principal stresses are positive and lead
to a upper biaxial compressive stress state.

– Position x = 0.5, y = 0.17 near lower left single support.

Computed moments are mx = 0.02 MNm/m,my = 0.011,mxy = 0.046 leading to
m1 = 0.061,m2 = −0.030 with ϕ1 = 42°. The curvature is positive in the corner’s
diagonal direction and negative lateral to it. This corresponds to the major load transfer
along the free edges compared to the diagonal.
Lower reinforcement: ϕc = −45° yields asx = 6.94 cm2/m, asy = 5.89 with z/d =
0.88, x/d = 0.24.
Upper reinforcement: ϕc = 45° yields asx = 2.63 cm2/m, asy = 3.68 with z/d =
0.88, x/d = 0.24 (must here be the same as the upper values).

As compressive heights are computed with x/d < 0.5 for all points the required load bearing
capacity of concrete, see Eq. (7.79), is provided.

End Example 7.2

The same comments as for plates regarding concrete strength, ductility requirements, and
crack width estimation, see Section 6.1.3, are also valid for slabs.
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7.6.3 Design Approach for Shear

Shear has to be considered as further action beneath bending. In the case of Kirchhoff slabs,
shear forces have to be calculated as derivatives of bending moments

vx = −∂mx

∂x
− ∂mxy

∂y
, vy = −∂my

∂y
− ∂mxy

∂x
(7.80)

see Eq. (7.18). Bending moments itself are determined from curvature using Eq. (7.39) in
the case of linear elastic material behavior. Furthermore, curvature is determined from finite
element interpolation with Eq. (7.56). Summarized, another derivative has to be determined
from B · υe. This might be elaborate regarding, e.g., relations like Eqs. (7.54, 7.55). In
addition the accuracy decreases with computation of higher displacement derivatives.

A separate interpolation or approximation of moments within elements should be less
expansive and yield sufficiently reliable shear force values. This may base on a linear approach

m = a x+ b y + c (7.81)

and
∂m

∂x
= a,

∂m

∂y
= b (7.82)

where m stands for mx,my,mxy. The coefficients a, b, c need at least three computed values,
e.g., from three integration points within triangular elements and the integration order ni = 1,
see Table 7.1. In the case of more integration points a linear regression analysis may be
used to determine the three coefficients, see Appendix D. These coefficients immediately
lead to shear force values vx, vy regarding Eqs. (7.80, 7.82) which are constant within the
interpolation area.

Similar to the transformation rules for moments (Eq. (7.63)) a transformation rule
for shear forces is required in the following. A cross section with normal vector e =
( cosϕ sinϕ )T is regarded, whereby ϕ denotes the angle with the global x-axis. The
shear force in this cross section is calculated from vx, vy, see Fig. 7.4, by

vϕ = vx cosϕ+ vy sinϕ (7.83)

This corresponds to Eq. (7.34)3.
Shear forces become relevant near supported edges or supported points. Shear arises

from change of longitudinal forces resulting from change of moments. This change of forces
in adjacent positions leads to forces in horizontal cross sections and adjoined shear forces
in vertical cross sections, see Fig. 7.10. In the case of reinforced concrete these forces are
realized by concrete struts and reinforcement ties. The mechanisms are basically the same
for beams and slabs.

Principal longitudinal forces t1, t2 computed from tx, ty, txy are used in the case of slabs.
The force t1 acts at a cross section with a normal directed with an angle ϕt against the x-axis,
the force t2 at a cross section perpendicular to it. Each of these has an opposite longitudinal
force – both forming a couple for moments m1,m2 – and a shear force vϕ computed with
Eq. (7.83). This completes a principal cross section of a slab from an internal force point of
view.
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Figure 7.10: Shear mechanism.

• Regarding shear design a principal cross section of a slab is treated like a beam cross
section of unit width.

Thus, the strut and tie approach for beam shear should also be applicable for principal cross
sections of slabs. The value of vϕ is used for an appropriate procedure. Following [26, 6.2.1]
shear reinforcement is not necessary for slabs in case vϕ does not exceed a threshold value
vRd,c. Due to current state of knowledge this threshold depends on concrete strength, slab
thickness and the amount of longitudinal reinforcement.

The amount of longitudinal reinforcement needs some specification in the context of prin-
cipal cross sections. Reinforcement relations are determined by tsx = asxfy, tsx = asxfy, see
Eq. (7.72). The transformation of reinforcement forces to the principal system is performed
according to Eq. (7.63) and leads to

tsϕ = tsx cos2 ϕt + tsy sin2 ϕt (7.84)

This transformation differs from Eq. (7.83), as tsx, tsy are in plane and subject to a trans-
formation of both direction and reference length, while vx, vy are orthogonal to plane and
subject to transformation of reference length only. A principal reinforcement amount is
defined in analogy to Eq. (7.84) as

asϕ = asx cos2 ϕt + asy sin2 ϕt (7.85)

The value can be used to determine the threshold value for vRd,c according to, e.g., [26,
6.2.2]. Larger values asϕ lead to larger threshold values vRd,c. An abundant value asϕ might
be useful to avoid a slab shear reinforcement which generally is considered as inconvenient
on construction sites.

In case shear reinforcement is unavoidable its amount within this setting may be deter-
mined in a similar way as for beam cross sections. The relations for the web of a beam which
have been derived in Section 6.1.2 – see Eqs. (6.16) applied to unit width – may be used for
this purpose whereby V is replaced by vϕ. Shear proof and design has to be performed for
both principal directions. The shear reinforcement, if necessary, has to be superposed.

Example 7.3 Computation of shear forces and shear proof
We refer to Examples 7.1 and 7.2 with the same system and loading. With four integration
points for a triangular element, see Table 7.1 and Fig. 7.9a, four sets of mx,my,mxy are
computed for each element.
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Figure 7.11: Example 7.3 (a) Computed shear forces. (b) Critical shear points.

A linear approximation of moments is performed within each element according to
Eq. (7.81) with details given in Appendix D. Derivatives of moments are determined accord-
ing to Eqs. (D.17,D.18), which are constant within an element. Thus, shear forces vx, vy
computed with Eq. (7.80) are also constant within an element but may differ from element
to element. The results are shown in Fig. 7.11a.

Shear forces within elements adjacent to the right and upper boundary edge correspond
to support reactions. Regarding an element base length of 1 m these values match to support
reactions from nodal forces, see Fig. 7.7b. The positive sign of shear forces, see Fig. 7.4 for
sign conventions, corresponds to the negative (downward) external loading. Larger negative
shear forces prevail around the left lower single support. This also corresponds to the negative
external loading. Shear forces distribution looks somehow confuse around the central opening.
A finer discretization may presumably help to have more evidence regarding this area.

A shear proof can be performed according to the outline given before. A basic proof
value is determined with the shear force admitted in case without shear reinforcement, see
[26, 6.2.2]

vRd,c = 0.10 · κ · (100ρs · fck)1/3 · d (7.86)
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with fck = 30 MN/m2, d = 0.25 m and κ = 1.89 for the current example. The prefactor is
chosen according to [24, 6.2.2]. The parameter ρs denotes the reinforcement ratio, that is
ρs = asϕ/d in the current context. A typical value is given by as = 5 cm2/m and ρs =
5 · 10−4/0.25 = 0.002. This leads to vRd,c = 0.086 MN/m2. A value vϕ is computed
throughout the slab with Eq. (7.83) and compared to the admissible shear force according
to Eq. (7.86) with the reinforcement from Eq. (7.85).

The points computed with |vϕ| > vRd,c are shown in Fig. 7.11b whereby the values
indicate the ratio |vϕ|/vRd,c. Most of them are insofar not critical as the computed necessary
bending reinforcement is low, i.e., the necessary shear bearing capacity may be reached with
larger bending reinforcement, which is built in anyway to have a minimum uniform bending
reinforcement.

End Example 7.3

A particular occurrence of shear is given with punching, i.e., shear forces are regarded with
respect to single supports. A design value for punching results from a computed support
reaction force. Design of slabs regarding punching obeys the common methods of reinforced
concrete [26, 6.4].

7.7 Kirchhoff Slabs with Nonlinear Material Behavior
Analysis of Kirchhoff slabs is based on Eqs. (7.32, 7.37). A linear elastic material behavior
according to Eq. (7.39) has been used in the preceding examples of this chapter. A sim-
plified approach to describe nonlinear moment–curvature behavior will be described in the
following. Nonlinear behavior in a general form is covered by the tangential material stiffness
(Eq. (7.40)) . An incremental simplified approach formally following Eq. (7.39) with ν = 0
is chosen as

σ̇ = CT · ε̇, CT =

 KTx 0 0
0 KTy 0
0 0 KTxy

 (7.87)

with the bending stiffness KTx, KTy derived from uniaxial beam behavior. This corresponds
to an orthotropic behavior. An approach for the twisting stiffness CT33 = KTxy may be
based on the theory of orthotropic slabs [31, 119.] leading to

KTxy =
1

2

√
KTxKTy (7.88)

The slab’s cross sections with normals in the x- and y-directions, see Fig. 7.1b, are treated
separately to derive KTx, KTy and each is derived as for a beam cross section of unit width.

An elastoplastic moment–curvature relation is assumed for the following, see Fig. 2.10
and Fig. 3.3 with N = 0. Material behavior in each direction is described by

– initial bending stiffness Ks,

– initial yielding moment myk,

– hardening bending stiffness KT ,

– current plastic curvature κp as state parameter
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in analogy to uniaxial elastoplastic behavior, see Section 2.3. These values are related in
analogy to Eqs. (2.39, 2.40). Regarding reinforced concrete these values may be determined
with an analysis of moment–curvature relations as was demonstrated with Example 3.1.

An alternative approach is based upon the setup shown in Fig. 7.8 of Section 7.6. To
simplify the description a reinforcement is assumed on the tension side only, a reinforcement
on the compression side may be included as an extension. Basic relations for the simplified
case have already been discussed in Section 7.6.2. A yield moment myk is given by

myk = tr z, tc = −tr (7.89)

with the reinforcement tension force tr, the concrete compression force tc and the internal
lever arm z. Assuming a constant concrete stress distribution these forces are

tr = as fyk, tc = −f̄c x, f̄c = χfck (7.90)

with the reinforcement cross-sectional area per unit width as, the strength of the reinforce-
ment fyk, the concrete strength fc, the compression zone height x and coefficients χ, k, see
Section 7.6.2. These equations are solved for

x = as
fyk
f̄c

(7.91)

The internal lever arm is given by

z = d− k x

2
(7.92)

with the constructive height d and the yield moment by

myk = asfyk z = asfyk

(
d− k

2

asfyk
f̄c

)
(7.93)

and finally the initial yield curvature by

κyk =
εyk
d− x

=

fyk
Es

d− asfyk
f̄c

(7.94)

see Eq. (3.18), with Young’s modulus Es of the reinforcement. It has to be considered that
as is the cross-sectional area of reinforcement per unit slab width.

The initial bending stiffness is further determined by

Ks =
myk

κyk
(7.95)

A hardening can be considered with a hardening of the reinforcement stress up to reaching its
strength ft. This leads to mt, κt using Eqs. (7.93, 7.94) and to a hardening bending stiffness

KT =
mt −myk

κt − κyk
(7.96)

These equations can be applied to each cross-section direction with its own as and d. The
initial stiffness Ks as well as the hardening stiffness KT are used for KTx, KTy in their
appropriate range. The application is demonstrated with the following example.
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Example 7.4 Elastoplastic rectangular slab with opening and free edges
We refer to Example 7.1 with the same geometry, boundary conditions and loading. The
height of the slab is h = 0.3 m.

Furthermore, a reinforced concrete is assumed with the following parameters:

fc = 17 MN/m2, χ = 0.95, k = 0.8 → f̄c = 12.92 MN/m2 (7.97)

for the concrete and

Es = 200 000 MN/m2, fyk = 435 MN/m2, ft = 480 MN/m2 (7.98)

and
asx = asy = 5.13 cm2/m, dx = dy = 0.25 m (7.99)

for the reinforcement. With Eq. (7.91) this leads to a compression zone height

xi = 5.13 · 10−4 · 435

12.92
= 0.0173 m, i = x, y (7.100)

with Eq. (7.93) to a yield moment

myk,i = 5.13 · 10−4 · 435

(
0.25− 0.8

2

5.13 · 10−4 · 435

12.92

)
= 0.054 MNm/m (7.101)

and with Eq. (7.94) to yield a curvature

κyk,i =
435

200 000

0.25− 0.0173
= 0.935 · 10−2 m−1 (7.102)

The initial bending stiffness is given with

Ks,i =
0.054

0.935 · 10−2
= 5.80 MNm2/m (7.103)

according to Eq. (7.95) and in a similar way the hardening bending stiffness with KT,i =
0.12 MNm2/m, i = x, y similar to Eq. (7.96). Actually the initial bending stiffness should
be larger due to tension stiffening effects, see Sections 2.7 and 3.5.3. But this effect should
loose its influence in the range of yielding.

The same discretization is used as in Example 7.1. An incrementally iterative scheme
with Newton–Raphson iteration within each loading increment, see Section 1.6, is used as
the solution method. The load increment size is controlled with the arc length method, see
Appendix A.

The computed principal moments for the final loading are shown in Fig. 7.12a and the
deflection in Fig. 7.12b. The maximum displacements increase by a factor of approximately
12 compared to the linear elastic case of Example 7.1. This corresponds to bending stiffness
relations which are 72.5 MNm2/m, see Eq. (7.13), for the linear elastic case and 5.8 MNm2/m
for the current example. Slight redistributions of moments can be observed, compare Fig. 7.6b
for the linear elastic case with Fig. 7.12a. But moments mx, my do not exceed the prescribed
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Figure 7.12: Example 7.4 (a) Discretization and principal moments. (b) Deflections (opening
not shown).

yield limit of my,i = 0.054 MNm/m while maximum values are in range of 0.06 MNm/m in
the case of the linear elastic calculations.

The potential for moment redistribution compared to the linear elastic case is limited in
this particular example due to the boundary conditions with free edges and a single support.
Furthermore, the results are quite sensitive with respect to the twisting stiffness Kxy in this
example.

End Example 7.4

Proof and design regarding shear can be performed according to Section 7.6.3 whereby elastic
moments in Eq. (7.80) have to be replaced by elastoplastic moments.

The approach for moments depending on curvature according to Eq. (7.87) is not isotropic
according to Section 5.3.1. A transformation of, e.g., the data of Example 7.4 in a rotated
coordinate system, then applying Eq. (7.87) in the diagonal form followed the the back
transformation of results in analogy to Eqs. (7.62, C.12) will lead to different moments
compared to Example 7.4.

Equation (7.87) is related to a coordinate system which is aligned to orthogonal rein-
forcement directions. Such a coordinate system may be considered as local and corotational
allowing for a variation of reinforcement directions. Thus, the material behavior in a slab
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position is described in a local system and the relation to the global system is ruled in analogy
to Eqs. (5.15, 5.16, 5.41) with generalized strains and stresses and transformation matrices
according to Eqs. (C.13, C.12). Nonorthogonal reinforcement directions in a slab position
may be treated with different local coordinate systems in the same slab position.

Elastoplasticity of moments may also be covered within the framework for multiaxial
elastoplasticity as has been described in Section 5.5.1 with σ, ε according to Eq. (7.37), C
from Eq. (7.39) replacing E and appropriate formulations 1 for the yield function F and the
flow potential G.

1 The plastic state parameter κp should be distinguished from plastic curvature if necessary.
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Chapter 8

Shells

8.1 Approximation of Geometry and Displacements
Finally, thin shells are treated as further structural element type. Shell kinematics is quite
complex [34]. Thus, deviating from the standard way for structural elements up to now
– kinematics, generalized material behavior, equilibrium formulated in generalized forces,
appropriate element types – a short track coupled to a simple standard finite shell element
is described in the following. We use the continuum-based four-node shell element as is
discussed in [25], [2, 5.4.2].

Shells include plates and slabs as special cases. In particular, they can model slabs
exposed to the combined action of lateral and in-plane actions. This effect has already been
discussed for cracked reinforced concrete beams in a simpler setup, see Examples 3.2 and 3.4,
and will be extended to cracked reinforced surface structures.

Shells in a first approach can be considered as an extension of slabs whereby the reference
plane becomes a simply or doubly curved reference surface. The geometry of a surface in
space is described by coordinates

x1 = x1(r, s), x2 = x2(r, s), x3 = x3(r, s) (8.1)

in a global Cartesian system with base vectors e1, e2, e3. The indication of the global coordi-
nate directions is changed compared to previous sections to facilitate the notation. Isopara-
metric coordinates r, s serve as independent variables. Thus, a pair r, s identifies a point of
the reference surface or a shell position. Every shell position has a thickness h. Reference
surface and thickness occupy a shell body.

Furthermore, every shell position has a shell director. This is a unit vector Vn describing
a direction of a cross section.

• The validity of the Bernoulli–Navier hypothesis – stating that undeformed plane cross
sections remain plane during a deformation – in the case of thin shells is assumed for
cross sections defined by shell directors.

A shell director may be chosen independently from the geometry definition given by Eq. (8.1).
But generally it coincides more or less with the normal of the reference surface in the case
of smooth geometries.

Computational Methods for Reinforced Concrete Structures. First Edition. Ulrich Häussler-Combe.
© 2015 Ernst & Sohn GmbH & Co. KG. Published 2015 by Ernst & Sohn GmbH & Co. KG.

mailto:Ulrich.Haeussler-Combe@tu-dresden.de
http://www.tu-dresden.de/biwitb/mbau
http://www.tu-dresden.de


256 Chapter 8 Shells

A local Cartesian coordinate system is defined for a shell position using, e.g., the unit
vector e2 of the global coordinate system with the vector cross product × leading to a unit
vector Vα

Vα =
e2 ×Vn

|e2 ×Vn|
, e2 ×Vn =

 Vn3

0
−Vn1

 (8.2)

see Fig. 8.1, and another unit vector Vβ

Vβ = Vn ×Vα =

 Vα3Vn2

Vα1Vnz − Vα3Vn1

−Vα1Vn2

 (8.3)

Vectors Vα,Vβ ,Vn in this sequence form an orthogonal, normalized, right-handed coordi-
nate system which more or less leans against the reference surface.

A shell geometry is approximated by an isoparametric finite element interpolation. Nodes
are placed in the reference surface spanning a mesh of quadrilateral elements whereby each
element has four nodes. The reference surface of a quadrilateral element must not be plane
in space. The geometry of the undeformed shell is interpolated by

xi(r, s, t) =
∑4

K=1
NK(r, s)xiK +

t

2

∑4

K=1
hKNK(r, s)VniK , i = 1, . . . , 3 (8.4)

see Fig. 8.1a, with

xi ith coordinate of shell body
r, s local isoparametric coordinates within the reference surface
t local isoparametric coordinate lateral to the reference surface
NK(r, s) = 1

4 (1 + rKr)(1 + sKs) according to Eq. (1.19)
rK , sK local isoparametric coordinates of node K
xiK ith coordinate of node K
hK shell thickness at node K
VniK ith component of director at node K

Figure 8.1: Shell element [25] (a) Element geometry. (b) Local coordinate system.
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8.1 Approximation of Geometry and Displacements 257

The quantities xi, xiK , hK have dimensions of [length] while −1 ≤ r, s, t ≤ 1 and rK , sK = ±1
are dimensionless. Equation (8.4) leads to the Jacobian similar to Eq. (1.37)

J =

 J11 J12 J13

J21 J22 J23

J31 J32 J33

 =


∂x1

∂r
∂x1

∂s
∂x1

∂t

∂x2

∂r
∂x2

∂s
∂x2

∂t

∂x3

∂r
∂x3

∂s
∂x3

∂t

 (8.5)

connecting global coordinates with local isoparametric coordinates. Its components are given
by

∂xi
∂r

=
∑4

K=1
brK xiK +

t

2

∑4

K=1
brK hKVniK

∂xi
∂s

=
∑4

K=1
bsK xiK +

t

2

∑4

K=1
bsK hKVniK

∂xi
∂t

=
1

2

∑4

k=1
NK hKVniK

i = 1, . . . , 3 (8.6)

with

brK =
∂NK
∂r

=
1

4
rK(1 + sKs), bsK =

∂NK
∂s

=
1

4
sK(1 + rKr) (8.7)

Shell displacements have to be approximated in the next step. For this purpose, we introduce
a small rotation α around the vector Vα, see Eq. (8.2), and a small rotation β around the
vector Vβ , see Eq. (8.3). This leads to a vector v

v = −αVβ + βVα (8.8)

lying in the plane spanned by Vα,Vβ , see Fig. 8.1b. The vector v is in particular given at
nodes with vK = −αVβK + βVαK and VβK , VαK determined from Eqs. (8.2, 8.3) using
the particular director VnK . A vector vK with components viK is used to displace a director
VnK leading to an interpolation of displacements

ui(r, s, t) =
∑4

K=1
NK(r, s)uiK +

t

2

∑4

K=1
hKNK(r, s) viK , i = 1, . . . , 3 (8.9)

in the same way as coordinates whereby

ui ith component of displacement
uiK ith component of displacement of node K
viK = −αKVβiK + βKVαiK ith component of director change at node K

This approach realizes the Bernoulli–Navier hypothesis with respect to cross sections defined
by shell directors.
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258 Chapter 8 Shells

8.2 Approximation of Deformations
Shell deformations are derived from shell displacements by their derivatives with respect to
spatial coordinates. We start regarding the local isoparametric coordinates

∂ui
∂r
∂ui
∂s
∂ui
∂t

 =
4∑

K=1

 brK t gαiKbrK t gβiKbrK
bsK t gαiKbsK t gβiKbsK
0 gαiKNK gβiKNK

 ·
 uiK

αK
βK

 , i = 1, . . . , 3 (8.10)

with scaled rotation axes

gαK = −1

2
hK VβK ,

 gα1K

gα2K

gα3K

 = −1

2
hK

 Vβ1K

Vβ2K

Vβ3K


gβK =

1

2
hK VαK ,

 gβ1K

gβ2K

gβ3K

 =
1

2
hK

 Vα1K

Vα2K

Vα3K

 (8.11)

Equation (8.10) is transformed into derivatives with respect to global coordinates with the
inverse of the Jacobian 

∂ui
∂x1
∂ui
∂x2
∂ui
∂x3

 = J−1 ·


∂ui
∂r
∂ui
∂s
∂ui
∂t

 i = 1, . . . , 3 (8.12)

with

J−1 =

 J−1
11 J−1

12 J−1
13

J−1
21 J−1

22 J−1
23

J−1
31 J−1

32 J−1
33

 =


∂r
∂x1

∂r
∂x2

∂r
∂x3

∂s
∂x1

∂s
∂x2

∂s
∂x3

∂t
∂x1

∂t
∂x2

∂t
∂x3

 (8.13)

Equations (8.10, 8.12, 8.13) may be used to obtain the interpolation of the small strain tensor
components

εij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
, i, j = 1, . . . , 3 (8.14)

This is identical to the strains of a three-dimensional body. The difference arises from
the constrained freedom to deform according to Eq. (8.9) including the Bernoulli–Navier
hypothesis. The second-order strain tensor as a whole is given by

E =
∑3

i=1

∑3

j=1
εij eiej (8.15)

whereby eiej is the tensor product of the global system unit vectors ei and ej . Deformations
according to Eq. (8.14) are measured in the global Cartesian system and are inconvenient for
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8.2 Approximation of Deformations 259

thin curved shell bodies. A covariant or so-called natural coordinate system is more suitable
[2, p. 425]. Its base vectors are formed by the Jacobian J as

G1 =

 G11

G12

G13

 =

 J11

J21

J31

 ,G2 =

 G21

G22

G23

 =

 J12

J22

J32

 ,G3 =

 G31

G32

G33

 =

 J13

J23

J33


(8.16)

with jth component Gij of base vector i measured in the absolute Cartesian system.

• G1 is the tangential vector along the space curve given with varying r while s, t are
hold constant, G2 the tangential vector along the curve with varying s and r, t constant
and G3 with varying t and r, s constant.

The covariant system generally is skew and not normalized, i.e., Gi ·Gj 6= 0 for i 6= j and
Gi ·Gj 6= 1 for i = j.

Thus, a contravariant coordinate system is introduced with base vectors

G1 =

 G11

G12

G13

 =

 J−1
11

J−1
12

J−1
13

 ,G2 =

 G21

G22

G23

 =

 J−1
21

J−1
22

J−1
23

 ,G3 =

 G31

G32

G33

 =

 J−1
31

J−1
32

J−1
33


(8.17)

utilizing the inverse J−1 of the Jacobian. Due to the definitions of Gi,G
j the properties

Gi ·Gj = 0 hold for i 6= j and Gi ·Gj = 1 for i = j. The components Gij of the covariant
base form a second-order tensor. But it is not symmetric, i.e., Gij 6= Gji. The same holds for
the contravariant base: Gij 6= Gji. Contravariant and covariant systems may also formally
be derived for Cartesian coordinate systems, but then they coincide due to normalization
and orthogonality.

Following the approach in [2, 2.4, 6.5.2], [25] the strain as a whole is described as

E =
∑3

i=1

∑3

j=1
ε̃ij GiGj (8.18)

with so-called covariant strain components ε̃ij or natural strains. Writing indices of ε̃ij as
subscripts and thus making these quantities “contravariant” is pure convention but quite
convenient in the context of tensor calculus. Another view on strains is

εij =
3∑
i=1

3∑
j=1

ei ·E · ej , ε̃ij =
3∑
i=1

3∑
j=1

Gi ·E ·Gj (8.19)

Natural strain components have a dimension of [length2] as Gi,Gj each have a dimension of
[length−1]. Identity of Eqs. (8.15, 8.18) together with Eq. (8.14) leads to

ε̃ij =
3∑
r=1

3∑
s=1

GirGjs εrs =
1

2

3∑
k=1

(
Gik

∂uk
∂ξj

+ Gjk
∂uk
∂ξi

)
, i, j = 1, . . . , 3 (8.20)

with ξ1 = r, ξ2 = s, ξ3 = t. This may be shown using (1) Gi · Gj = 0 for i 6= j, (2)
ej ·Gi = Gi · ej = Gij and (3) Gij = Jji = ∂xj/∂ξi.
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260 Chapter 8 Shells

Combining Eqs. (8.10, 8.20) the interpolation of contravariant strain components is given
by

ε̃ =
4∑

K=1

BK · uK (8.21)

with
ε̃ =

(
ε̃11 ε̃22 ε̃33 2ε̃23 2ε̃13 2ε̃12

)T
BK =

 G11brK G12brK G13brK t brKH11K t brKH12K

G21bsK G22bsK G23bsK t bsKH21K t bsKH22K

...
...

...
...

...


uK =

(
u1K u2K u3K αK βK

)T
(8.22)

and

H11K = G11 gα1K + G12 gα2K + G13 gα3K , H12K = G11 gβ1K + G12 gβ2K + G13 gβ3K

H21K = G21 gα1K + G22 gα2K + G23 gα3K , H22K = G21 gβ1K + G22 gβ2K + G23 gβ3K

...
...

...
...

(8.23)
with Gij according to Eqs. (8.5, 8.16), brK , bsK according to Eq. (8.7), both depending
on r, s, and gixK , giyK according to Eq. (8.11) whereby K indicates the element’s nodes.
The approach (Eq. (8.22)) still includes a nonzero strain component ε̃33 normal to the shell’s
reference surface. This results from the continuum-based approach. Its absolute value should
be considerably smaller compared to the other components in practical applications.

Regarding Eq. (8.22), the discretized strain state of every position in the shell body is
ruled by five degrees of freedom per node. A so-called five-parameter shell model is given
corresponding to the Reissner–Mindlin shell kinematics.

8.3 Shell Stresses and Material Laws

Strains have to be related to stresses to derive a structural resistance. The concept of
Cauchy stresses, see Section 5.2.2, is used for continuum-based shell formulations in contrast
to beams and slabs. Stress components have been introduced with respect to the global
Cartesian system. The stress tensor as whole is given by

S =
3∑
i=1

3∑
j=1

σij eiej (8.24)

in analogy to Eq. (8.15). Within the context of shells it is appropriate to use the covariant
system (Eq. (8.16)) as a base for stress components

S =
3∑
i=1

3∑
j=1

σ̃ij GiGj (8.25)
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with so-called contravariant stress components σ̃ij . The identity of Eqs. (8.24, 8.25) leads to

σ̃ij =
3∑
r=1

3∑
s=1

GirGjs σrs (8.26)

This may be shown using (1) Gi ·Gj = 0 for i 6= j, (2) ej ·Gi = Gi · ej = Gij .
The motivation of introducing contravariant stress components is given by formulating

the rate of internal specific strain energy. It is defined as

u̇ =
3∑
i=1

3∑
j=1

σij ε̇ij (8.27)

in the global Cartesian system, see Section 5.10. This particular formulation of the strain
energy establishes the formulation of the principle of virtual displacements, see Eq. (1.52),
which on the other hand is a basis for the finite element method.

Using the transformation rules (Eqs. (8.20, 8.26)) and regarding Gi ·Gj = 0 for i 6= j
and Gi ·Gj = 1 for i = j it can be shown that

3∑
i=1

3∑
j=1

σij ε̇ij =
3∑
i=1

3∑
j=1

σ̃ij ˙̃εij (8.28)

i.e., contravariant stress components are complementary to covariant strain components from
an energetic point of view.

• When using covariant or natural strain components to describe shell deformations it is
mandatory to use contravariant stress components for weak equilibrium conditions like
the principle of virtual displacements.

To enable a comprehensible description of the material behavior of shells it is appropriate
to use the local system Vα,Vβ ,Vn as has been introduced with the shell director Vn and
Eqs. (8.2, 8.3). The local system is an orthogonal, normalized, and right handed or Cartesian
coordinate system, respectively. On one hand it leans against the shell’s reference surface,
thus it may change with every point of the reference surface and in this way forms a local
corotational coordinate system. On the other hand, it is appropriate for the description of
material behavior due to its normalization and orthogonality.

To facilitate the notation V1 = Vα, V2 = Vβ , V3 = Vn is used in the following for the
local Cartesian coordinate system.

• Local stress components σ̄ij and local strain components ε̄ij related to the local coro-
tational Cartesian system are appropriate to formulate the stress–strain relations for
thin shells.

In analogy to Eqs. (8.15, 8.24) these stress and strain components are given by

S =
3∑
i=1

3∑
j=1

σ̄ij ViVj , E =
3∑
i=1

3∑
j=1

ε̄ij ViVj (8.29)

mailto:Ulrich.Haeussler-Combe@tu-dresden.de
http://www.tu-dresden.de/biwitb/mbau
http://www.tu-dresden.de


262 Chapter 8 Shells

As they are referenced in a Cartesian system no distinction between contravariant and co-
variant components is necessary.

To determine local material behavior the natural strains ε̃ as they are derived from nodal
displacements using Eq. (8.21) have to be transformed into local strains ε̄. The identity of
Eq. (8.29)1 and Eq. (8.18) leads to

ε̄ij =
3∑
r=1

3∑
s=1
TirTsj ε̃rs (8.30)

with
Tij = Vi ·Gj , Tij 6= Tji (8.31)

This may be written as a matrix operation

ε̄ = T · ε̃ (8.32)

with ε̄, ε̃ ordered according to Eq. (5.3) and the components of T derived from Eq. (8.31).
To begin with a linear elastic material behavior is considered. The shell body differs from

the three-dimensional continuum ruled by the linear elastic law (Eq. (5.24)) insofar as its
normal stress in a plane normal to the reference surface should be negligible compared to all
other stress components. Thus, we use

σ̄ = C̄ · ε̄ (8.33)

with σ̄ ordered as in Eq. (5.7) and

C̄ =



E(1−ν)
(1+ν)(1−2ν)

Eν
(1+ν)(1−2ν) 0 0 0 0

Eν
(1+ν)(1−2ν)

E(1−ν)
(1+ν)(1−2ν) 0 0 0 0

0 0 0 0 0 0
0 0 0 E

2(1+ν) 0 0

0 0 0 0 E
2(1+ν) 0

0 0 0 0 0 E
2(1+ν)


(8.34)

according to Eq. (5.24) whereby the influence of the collateral components ε̄33, σ̄33 has been
neglected due to the assumption of thin shells. Relation (8.33) may be generalized in the
incremental form as

˙̄σ = C̄T · ˙̄ε (8.35)

see also Eq. (5.13), with the tangential material stiffness C̄T covering nonlinear behavior as
desired. Local stress components σ̄ij have to be transformed into contravariant components
σ̃ij , see Section 8.4. It can be shown that

σ̃ = TT · σ̄ (8.36)

with σ̃ ordered as in Eq. (5.7) and the transposed of the transformation matrix T from
Eq. (8.32). This bases on the identity of Eqs. (8.29)2 and (8.26). Finally, the combination
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of Eqs. (8.36, 8.33, 8.32) leads to

σ̃ = TT · C̄ ·T · ε̃ = C̃ · ε̃ (8.37)

which yields a transformation law

C̃ = TT · C̄ ·T (8.38)

for the material matrix. This transformation law is also valid for a tangential and nonlinear
material matrix. Material matrices are required to determine the tangential stiffness of
discretized systems, see Section 1.5.

8.4 System Building

The current theory treats the shell body as a continuum with constraints regarding defor-
mations. Thus, in a first approach the general form (Eq. (1.52)) is used to describe weak
equilibrium ∫

V

δε̃T · σ̃ dV +

∫
V

δuT · ü %dV =

∫
V

δuT · p̄ dV +

∫
At

δuT · t̄ dA (8.39)

whereby the product δε̃T · σ̃ replaces δεT ·σ with ε̃ according to Eq. (8.21) and σ̃ according
to Eq. (8.36).

For the evaluation of integrals, see Eqs. (1.58–1.60). Integration is performed by numerical
methods, the basic approach has been described in Section 1.6. It will be extended to the
case of continuum-based shells. The integration of internal nodal forces is performed with

fI =

∫
VI

BT (r, s, t) · σ̃(r, s, t) dV =

+1∫
−1

+1∫
−1

+1∫
−1

BT (r, s, t) · σ̃(r, s, t) J(r, s, t) dtdrds (8.40)

see Eq. (1.58), with B assembled with the BK ’s from Eq.(8.22) and σ̃ from Eq. (8.36). The
local isoparametric coordinates are given by r, s, t and the determinant J = detJ of the
Jacobian is given by Eq. (8.5). Internal nodal forces are determined numerically by

fI =

nu∑
i=0

nu∑
j=0

nv∑
k=0

ηiηjηk BT (ri, sj , tk) · σ̃(ri, sj , tk) J(ri, sj , tk) (8.41)

with integration orders nu, nv, sampling points ri, sj , tk and weighting factors ηi,j,k. Let us
assume that a Gaussian integration is used. Then it may be appropriate to use different
integration orders nu along the reference surface with local coordinates r, s and nv along the
collateral direction with the local coordinate t.

• The collateral direction of thin shells needs a different treatment compared to the
in-surface directions due to shell bending with transverse linear strains.
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In the case of linear elastic material behavior integration orders nu = nv = 1 with two
sampling points in each direction, see Table 1.1, are appropriate as stresses appear linearly.
In the case of nonlinear material behavior stresses may vary nonlinearly with kinks and
jumps. This occurs in particular for the cross sections of cracked reinforced concrete and
requires a higher integration order for the collateral direction, e.g., nv = 4 with 5 sampling
points while the in-surface directions may remain with nu = 1 and 2 sampling points in
each direction. It may also be appropriate to choose a different integration scheme for the
collateral directions, e.g., a Lobatto scheme which yields a higher accuracy in cases with
extreme integrand values on the boundary.

As every node has five kinematic degrees of freedom the Equation (8.40) leads to five
components for internal forces fI at every node I. That are three force components with
respect to the global coordinate system and two bending moment components with respect
to the local directions Vα,Vβ , see Eqs. (8.2, 8.3).

Prescribed distributed loads p̄, see Eq. (1.52), are given as forces per volume and pre-
scribed surface tractions t̄ are given as forces per area, each with directions related to the
global coordinate system. The corresponding nodal forces, see Eq. (1.58), again have five
components for each node. Element stiffness and mass matrices have 20×20 entries with the
four node element. Assembling of element contributions is performed in the standard way,
see Section 1.5.

Due to the continuum-based approach structural response is described by strains and
stresses varying with the position in the reference surface and the collateral direction dis-
tance. Regarding shells and slabs a more familiar approach is given with internal forces
such as normal forces, moments, and shear forces. It is appropriate to refer them to the local
corotational system, see Section 8.3. In an analogous way as for slabs, see Eq. (7.8), resulting
local internal forces are derived from local stresses σ̄, see Eq. (8.33), by

n̄1 =
h

2

∫ 1

−1

σ̄11 dt, n̄2 =
h

2

∫ 1

−1

σ̄22 dt, n̄12 =
h

2

∫ 1

−1

σ̄12 dt

m̄1 = −h
2

4

∫ 1

−1

σ̄11 tdt, m̄2 = −h
2

4

∫ 1

−1

σ̄22 tdt, m̄12 = −h
2

4

∫ 1

−1

σ̄12 tdt

v̄1 =
h

2

∫ 1

−1

σ̄13 dt, v̄2 =
h

2

∫ 1

−1

σ̄23 dt

(8.42)

with the local shell thickness h and the isoparametric local coordinate −1 ≤ t ≤ 1. In
practice, the integration is again performed numerically. Thus, nonlinear materials are au-
tomatically covered. For integration method and order see the remarks above concerning
integration of system integrals.

8.5 Slabs and Beams as a Special Case
A rectangular slab element of constant thickness h is considered as a special case of the
general shell element, see Fig. 8.2. The director indicating cross-sectional directions is given
by VN = V3 =

(
0 0 1

)T and completed to a local coordinate system by Vα = V1 =(
1 0 0

)T , Vβ = V2 =
(

0 1 0
)T . The local system coincides with the global

coordinate system. Thus, after some calculations the matrix B of interpolation functions
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Figure 8.2: Slab element as a special case of a shell element.

(Eq. (8.22)) is written as

BK =



J11brK 0 0 0 t
h

2
J11brK

0 J22bsK 0 −t h
2
J22bsK 0

0 0 0 0 0

0 0 J33bsK −h
2
J22NK 0

0 0 J33brK 0
h

2
J11NK

J11bsK J22brK 0 −t h
2
J22brK t

h

2
J11bsK


(8.43)

with the components Jij of the Jacobian according to Eq. (8.5), bsK , brK according to
Eq. (8.7) and NK according to Eq. (8.4). This element formulation is suitable to treat
coupled normal forces and bending moments for slabs.

A plane beam element is derived as a special case assuming that a displacement in
the x1 − x3-plane is applied with u1 = u4 =

(
u1 0 w1 0 β1

)T , u2 = u3 =(
u2 0 w2 0 β2

)T leading to


ε̃11

ε̃22

ε̃33

2ε̃23

2ε̃13

2ε̃12

 =



− 1
2J11u1 − t

h

4
J11β1 +

1

2
J11u2 + t

h

4
J11β2

0
0
0

− 1
2J33w1 +

h

4
J11(1− r)β1 +

1

2
J33w2 +

h

4
J11(1 + r)β2

0


(8.44)

see Eqs. (8.4–8.7, 8.21). Furthermore, we have J11 = L1/2, J33 = h/2, see Eq. (8.5), with
the element length L1, see Fig. 8.2.
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It is convenient to transform natural strain components ε̃ij back into the global Cartesian
coordinate system for the cases under consideration. Transformation rules are again derived
by the identity of Eqs. (8.15, 8.18). Thus, the transformation is given by

ε11 =
(
G11
)2
ε̃11 =

4

L2
1

ε̃11, ε13 = G11 G33 ε̃13 =
4

L1h
ε̃13 (8.45)

This finally leads to

(
ε11

2ε13

)
=

1

L1

[
−1 0 −t h

2
1 0 t

h

2
0 −1 L1

2 (1− r) 0 1 L1

2 (1 + r)

]
·


u1

w1

β1

u2

w2

β2

 (8.46)

This interpolation of strains corresponds to the interpolation of strains of the 2D Timoshenko
beam element, see Eq. (3.97). It becomes obvious with (1) setting 2ε13 = γ, (2) regarding
the reversed orientation of rotations, see Eq. (8.8), and (3) adopting Eq. (3.5) ruling beam
kinematics to the current case with ε11 = ε+ t h2 κ, −1 ≤ t ≤ 1.

8.6 Locking

Problems of artificial stiffening or locking have already been mentioned for the Timoshenko
beam element, see Section 3.3.3. They will be demonstrated within the context of the thin
shell element whereby using the aforementioned simplified cases to make the locking problem
comprehensible within a limited frame.

A state of uniform bending in the longitudinal x1-direction is applied to Eq. (8.46) with
β2 = −β1 = β/2 and u1 = w1 = u2 = w2 = 0. Equation (8.46) yields

ε11 = t
h

2

β

L1
, γ13 =

1

2
β r, −1 ≤ r, t ≤ 1 (8.47)

with a longitudinal local coordinate r and a collateral local coordinate t. The term z = t h2
with the thickness h describes the distance from the reference plane and β

L1
corresponds to a

curvature. A linear elastic behavior is assumed with ν = 0 to simplify the discussion leading
to

σ11 = E ε11 = E t
h

2

β

L1
= E z

β

L1
, σ13 = Gγ13 =

1

2
G β r (8.48)

with a normal stress σ11 in the longitudinal x1-direction, a shear stress σ13 in the vertical
x3-direction, Young’s modulus E and G = E

2 , see Eqs. (5.3, 5.7, 5.14, 5.24). This corresponds
to stresses in beams with κ = β

L1
, see Eqs. (3.7, 3.8) and leads to a resulting moment and

shear force per unit width

m = E
h3

12

β

L1
, v =

1

2
Ghβr (8.49)
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Thus, the applied deformation results in a constant bending moment and a linearly varying
shear force along the element. This obviously violates equilibrium conditions locally, as a
zero shear force is required throughout the element in the case of constant bending moment.
A spurious transverse shear force arises with this type of element. The local error shall be
measured by

v

m
= 3

L1

h2
r, −1 ≤ r ≤ 1 (8.50)

It becomes larger with more slender elements, i.e., with decreasing thickness or increasing
element length.

Local or strong equilibrium is not enforced within the finite element method, but weak
or integral equilibrium, see Section 1.5. As a consequence, nodal forces resulting from inte-
gration of internal forces have to be in equilibrium. For the case under consideration nodal
forces according to Eq. (8.40) are given by

r =

1∫
−1

1∫
−1

1

L1


−1 0
0 −1
−t h2

L1

2 (1− r)
1 0
0 1
t h2

L1

2 (1 + r)

 ·
(
E t h2

β
L1

1
4 E β r

)
h

2
dt
L1

2
dr = E



0
0

−h
3

12
β
L1
− h

24 L1β

0
0

h3

12
β
L1

+ h
24 L1β


(8.51)

The nonzero nodal forces are conjugate to the applied rotation angle −β/2 on the left-hand
side r = −1 and β/2 on the right-hand side r = 1. Insofar moments are justified from a
mechanical point of view whereby forming an equilibrated system. As has been mentioned
β/L1 is a curvature. Furthermore, Eh3/12 is the bending stiffness per unit width. Thus, the
first term in each entry corresponds to a reasonable mechanical behavior.

The second part ±EhL1β/24 leads to an additional spurious moment resulting from the
spurious shear force. This moment corresponds to an additional spurious stiffness of this
element. The influence of these effects increase with decreasing thickness h and a constant
element length L1, i.e., with increasing element slenderness. The spurious effects reduce with
finer discretizations, i.e., decreasing L1 for a constant h. A convergence is basically given,
but it is reached very slowly with a large parameter c, see Section 1.7, Eq. (1.118).

• The thin continuum-based shell element as has been defined in Section 8.1 yields much
too stiff models in practical applications due to spurious transverse shear forces. A
transverse shear locking occurs.

A number of locking phenomena are known, e.g.,

– transverse shear locking, i.e., spurious transverse shear forces in the case of transverse
bending,

– in-plane shear locking, i.e., spurious in-plane shear forces in the case of in-plane bending,

– membrane locking, i.e., spurious membrane forces in the case of transverse bending,

and others [11, 6.4].
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Transverse shear locking is a major cause for deficiencies of slab and shell elements.
But nevertheless, it has the property that spurious shear stresses disappear in distinguished
points of an element, e.g in the point r = 0 for the case under consideration in Section 8.5.
On the other hand, such shear forces that are reasonable from a mechanical point of view
yield a value in these distinguished points. This motivates established approaches to avoid
locking.

– Reduced integration of system integrals, see Eqs. (1.58, 1.65, 1.68).

This corresponds to an integration at r = 0, s = 0 for the current element. Reduced
integration does not affect integration order along the local t-axis. Albeit, a numerical
instability of results, so-called hour glassing, may occur with reduced integration. The
occurrence of hour glassing depends on the discretized geometry and applied boundary
and loading conditions

– Transverse shear strains are approximated with their own fields applying a mixed in-
terpolation.

These fields are connected to the fields given by Eq. (8.21) through the values of
ε̃13, ε̃23 in those distinguished points with vanishing spurious transverse shear forces.
These points are given by the coordinates A : r = 0, s = 1, B : r = −1, s = 0,
C : r = 0, s = −1 and D : r = 1, s = 0 for the element under consideration. The
particular strains determined by Eq. (8.21) are given by ε̃A13, ε̃

B
13, ε̃

C
13, ε̃

D
13 and regarding

ε̃23 in a corresponding way. Anchored by these values the fields for transverse shear
strains are assumed with

ε̃13(r, s) =
1

2
(1 + s) ε̃A13 +

1

2
(1− s) ε̃C13

ε̃23(r, s) =
1

2
(1 + r) ε̃D23 +

1

2
(1− r) ε̃B23

(8.52)

The approach is called assumed natural strain (ANS) method [25] and leads to a
modification of the rows 4 and 5 of the matrix BK , see Eq. (8.22). This modification is
straightforward with evaluating Eq. (8.21) in points A,B,C,D and combining it with
Eq. (8.52).

Assuming strains partially independent from displacements or applying mixed interpolations
in a first instance is not covered by the principle of virtual displacements Eqs. (1.52, 1.53).
Thus, an extended weak form like the principle of Hu-Washizu [2, 4.4.2] might be required,
see also Section 1.7. This involves fields for stresses and strains as independent solution
variables.

The application of assumed strains requires an additive split of the matrix B from
Eq. (8.22). The current approach of Eq. (8.52) leading to an extension of Eq. (8.22) as
indicated above allows such a split. Independent parts of the stress field are eliminated in
advance applying reasonable assumptions. Thus, the mixed interpolation may finally be
applied in the framework of the principle of virtual displacements.

The effects of shear locking and the cure with ANS is demonstrated with the following
example.
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Example 8.1 Convergence study for linear simple slab
We consider a quadratic linear elastic slab with a span L = L1 = L2 = 8.0 m, a thickness
h = 0.25 m and material parameters E = 33 000 MN/m2, ν = 0.2 in accordance with common
concrete grades. The slab is simply supported along its edges, i.e., hinged with zero vertical
displacements. A constant vertical loading is assumed with q = 16 kN/m2 downward.

Assuming the Kirchhoff theory, see Section 7.3.3, an exact solution for this problem is
described in [31, 78.b)] whereby neglecting shear deformations. The maximum deflection in
the center point is given by an infinite double sum

wemax =
16q L4

K π6
,
∑
m

∑
n

sin nπ
2 sin mπ

2

mn(m2 + n2)2
, K =

1

1− ν2

E h3

12
(8.53)

This yields a converged value wemax = 5.95 · 10−3 m. A small convergence study is performed
with meshes of 1 element up to 16 elements whereby quarter symmetry is used. Figure 8.3
shows the meshes. Boundary conditions of nodes along symmetry axes are given by prescrib-
ing appropriate zero rotations. The maximum deflection wmax arises at right lower corner
node. Computed values are

Figure 8.3: Example 8.1 discretizations.

Discretization 1× 1 2× 2 3× 3 4× 4
wmax [m] 5.39 · 10−3 5.87 · 10−3 5.95 · 10−3 5.98 · 10−3

whereby the ANS method, see Eq. (8.52), has been applied to avoid transverse shear locking.
If it is not applied, i.e., Eq. (8.22) is used as is without modifications regarding the entries
for ε̃23, ε̃13, the computed maximum deflection would be wmax = 1.44 · 10−3 m for the 4× 4-
discretization. That is an error of roughly 80%. Inclusion of shear deformations leads to
slightly larger converged displacement compared to Kirchhoff theory.

End Example 8.1
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8.7 Reinforced Concrete Shells

8.7.1 The Layer Model
Aspects of local behavior of cracked reinforced concrete have been described from several
points of view up to now:

– Cross-sectional behavior of tension bars in Section 2.6.

– Cross-sectional behavior of beams in Section 3.1.3.

– Biaxial behavior of plates in Sections 6.3 and 6.4.

– Elastoplastic behavior of Kirchhoff slabs in Section 7.7.

– An outline of cross sectional behavior of slabs based on the layer model was given in
Section 7.2.3.

The layer model is also suitable for continuum-based thin shells. In contrast to slabs aspects
of reference or coordinate systems have to be regarded. A local corotational system, see
Section 8.3, is appropriate implying local stress components σ̄ij and local strain components
ε̄ij .

Basically the approach Eq. (8.33)

σ̄(r, s, t) = C̄ · ε̄(r, s, t) (8.54)

with local isoparametric coordinates r, s, t or its incremental form

˙̄σ(r, s, t) = C̄T · ˙̄ε(r, s, t) (8.55)

allow for an arbitrary material behavior with variable material stiffness C̄ or tangential
material stiffness C̄T within the context of continuum mechanics, see Eq. (5.13). Local
isoparametric coordinates translate into global coordinates with Eq. (8.4). Regarding a shell
position r, s in the reference surface it is suitable to use the concept of layers.

• A layer is a plane through the point r, s, t with the shell director Vn(r, s) as normal.
Every thickness coordinate t has its own layer whereby it shares the normal with all
layers of the same shell position r, s.

A layer is comparable to a slab sector as indicated in Figs. 7.2 and 7.3, whereby stress and
strain component indices are replaced with x→ 1, y → 2, z → 3. Material behavior with re-
spect to a layer is based on stress components σ̄11, σ̄22, σ̄12 and strain components ε̄11, ε̄22, γ̄12.
Furthermore, for reinforced cracked concrete it is appropriate to decouple transverse shear
characterized by σ̄13, σ̄23, γ̄13, γ̄23 from layer behavior. These assumptions motivate a gener-
alization

C̄ =


C11 C12 0 0 0 C16

C21 C22 0 0 0 C26

0 0 0 0 0 0
0 0 0 c44 0 0
0 0 0 0 c55 0
C61 C62 0 0 0 C66

 (8.56)
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of Eq. (8.34) with component ordering according to Eqs. (5.3, 5.7). Uppercase coefficients
mark layer behavior while lowercase coefficients mark transverse shear behavior.

The transverse shear stiffness has already been discussed in Section 3.5.4 in the context of
structural beams. This was rephrased in the context of slabs in Section 7.2.3. The approach
for slabs (Eq. (7.14)) is also used for the layers of shells leading to

c44 = c55 = αG, G =
Ec

2(1 + ν)
(8.57)

with a reduction factor α and the initial values of Young’s modulus Ec of concrete, its
Poisson’s ratio ν and the resulting shear modulusG. According to Section 3.5.4, the reduction
factor may be chosen with α = 0.5.

The in-plane stress–strain relations in a general form are given by σ̄11

σ̄22

σ̄12

 =

 C11 C12 C16

C21 C22 C26

C61 C62 C66

 ·
 ε̄11

ε̄22

γ̄12

 (8.58)

or the corresponding incremental form. This corresponds to a biaxial plane stress state and
has been discussed for plates, see Chapter 6. The thickness of a counterpart plate corresponds
to the “thickness” of a layer. Such a thickness is a matter of t-integration of stresses into
nodal forces, see Eq. (8.40), or resulting internal forces, see Eq. (8.42). The thickness is
implicitly included in a numerical integration process.

Taking this into account the following procedure is appropriate for reinforced concrete
shell layers:

– Modeling of cracks due to limited tensile strength of concrete is treated in Sec-
tion 6.2. This leads to a stress–strain relation in a principal local coordinate system,
see Eqs. (6.35–6.37). This material relation is based on principal strains ε1, ε2 derived
from ε̄11, ε̄22, γ̄12. Principal strain directions also rule crack directions.

The application of such relations requires the coordinate system transformations “natu-
ral system” → “local system” → “principal system” and backward. This looks elaborate
but is justifiable to cover geometrical and physical complexity. The back transformation
to the local system leads to a form conforming to Eq. (8.58). This may be transferred
to the form Eq. (8.56) and finally be used in Eq. (8.33).

Such calculations are performed for each concrete layer t. A principal strain direction
may change with t for a given shell point r, s, i.e., crack faces may become curved
surfaces in space.

– Reinforcement and bond are treated in Section 6.4. Rigid bond is assumed in the
following. Regarding thin reinforcement meshes the same procedure as described for
plates, see Section 6.4, may be applied for reinforced shell layers.

A difference is given as shell reinforcement layers are not implemented as separate
elements but subject to integration along the collateral t-direction within the frame
given by Eqs. (8.40, 8.42). A reinforcement layer of sheet thickness hR, see Eq. (6.43),
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is regarded with a collateral coordinate tR. The contribution of this layer to internal
forces, see Eq. (8.42), is given by

n̄R1 = hR σ̄R11, n̄R2 = hR σ̄R22, n̄R12 = hR σ̄R12

m̄R1 = −h
2
R

2
tR σ̄R11, m̄R2 = −h

2
R

2
tR σ̄R22, m̄R12 = −h

2
R

2
tR σ̄R12

(8.59)

with local reinforcement stresses σ̄R11, σ̄R22, σ̄R12 determined in analogy to Eq. (6.47)
and its related equations. Thin reinforcement layers do not contribute to transverse
shear forces. The described approach may be applied to multiple reinforcement lay-
ers while adding up their contributions. It corresponds to the concept of embedded
reinforcement, see Section 6.5.

Reinforcement strains and stresses are subject to the same transformations as for con-
crete layers.

Larger reinforced concrete shells were built in a large number for a wide span of applications
during the twenties up to the sixties of the 20th century [48]. Due to expensive formwork
and other upcoming restrictions their application mainly reduced to cooling towers of large
power plants nowadays. A future perspective may arise with, e.g., upwind solar chimneys.

8.7.2 Slabs as Special Case
The relevance of the shell approach for reinforced concrete arises with the combination of
bending with normal or membrane forces, respectively. This has to be regarded for folded
plates or plates with an orientation in 3D space. A special case of these setups is given with
widely used T-beams. Plates act simultaneously as slabs in these cases and combined actions
will arise anyway.

Regarding the structural behavior of simple slabs bending and membrane forces may
interact in the case of cracked reinforced concrete sections. This has already been shown for
plane beams in Example 3.2 and will be demonstrated for slabs with the following example.

Example 8.2 Nonlinear calculation for a simple slab
We consider the system of Example 8.1 with the same dimensions. Material properties,
reinforcement and loading are chosen as follows:

– A concrete grade C30/37 according to EC2 [26, 3.1] with Young’s modulus
Ec = 33 000 MN/m2 and a characteristic concrete strength of fck = 30 MN/m2.

– Reinforcing steel properties from EC2 [26, 3.2] with Young’s modulus
Es = 200 000 MN/m2, yield strength fyk = 500 MN/m2 and tensile strength
ft = 525 MN/m2 at a strain of εuk = 25 · 10−3. Reinforcement cover with c = 0.02 m
and the effective depth of cross section with d ≈ 0.22 m.

– Self-weight is given by g = 0.25 · 25 = 6.25 kN/m2 and a variable service load of
q = 5.0 kN/m2 is assumed. These are characteristic values, see Section 9.3, and are
multiplied by safety factors for a design load of, e.g.,
p = 1.35 · 6.25 + 1.50 · 5.0 = 16 kN/m2.
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A reinforcement has to be determined in advance. This is performed according to [26, 6.1].
Internal forces for a predesign are computed based on Eqs. (7.12)4−6 whereby deflections
and curvatures are determined with an extension of Eq. (8.53) taking variable coordinates
into account. Standard tables for slabs may be used instead. The decisive values of bending
moments and twisting moment are given by

mx = my = 45.3 kNm/m, mxy = 38.0 kNm/m (8.60)

Reinforcement forces are determined with fs = m/z with the internal lever arm z. A good
estimation is given by z = 0.8 d. The design value for the reinforcement strength is chosen
with fyd = 500/1.15 = 435 MN/m2. Finally, the required reinforcement cross section area as
is ruled byfyd as = m/(0.8 d). This yields

asx = asy =
1

435

45.3 · 10−3

0.8 · 0.22
→ 5.9 cm2/m

asxy =
1

435

38.0 · 10−3

0.8 · 0.22
→ 5.0 cm2/m

(8.61)

Twisting moments may be seen as skew principal moments which are directed along the
diagonals of the slab’s corners. This leads to, e.g., upper diagonal tension which is hold by
reinforcement in the x- and y-direction. Transformation of stresses and of their reference
length leads to the relation for asxy.

Bending moments mx,my occur in the slab midpoint while the twisting moments occur
in the corner points. The bending moments require a bottom reinforcement while the twist-
ing moment also requires an upper reinforcement. A bottom reinforcement of asx,lower =
asy,lower = 6.0 cm2/m and an upper reinforcement asx,upper = asy,upper = 5.0 cm2/m are
chosen for the whole slab in the following.

A closer look shows that the failure of this slab occurs due reinforcement failure while
concrete compression remains approximately in the elastic regime. But the concrete will crack
due to tensile stresses. This activates the reinforcement and leads to a different behavior
compared to the elastic case. The approach of Section 8.7.1 with cracked concrete behavior
as described in Section 6.2 will be used in the following. The tension stress of concrete is
restricted to a value of fct = 1 MN/m2. Reinforcement is regarded as has been determined
before. This leads to the following model parameters:

– The reinforcement layers are chosen with

sheet thickness aR (m) sheet height coordinate tR (m)
lower x-direction 0.6 · 10−3 −0.10
lower y-direction 0.5 · 10−3 −0.10
upper x-direction 0.5 · 10−3 0.10
upper y-direction 0.5 · 10−3 0.10

Sheet height coordinates tR are assumed to be the same in the x- and y-directions to
preserve symmetry. The tension stiffening effect, see Section 2.7, is regarded.

– A quarter slab is discretized with 4 × 4 elements. Due to the physical nonlinearities
the loading is applied in 10 steps. An equilibrium iteration has to be performed within
each loading step leading to an incrementally iterative scheme, see Section 1.6.
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– A Gaussian quadrature is used for integration of system matrices and vectors. Integra-
tion orders, see Section 8.4, Eq. (8.40), are chosen with an order nu = 1 in the reference
surface directions and with nv = 4 in the collateral direction. Collateral integration
of reinforcement contributions is performed separately while considering their discrete
positions tR.

The results of the numerical computation are described in the following.

– The load factor depending on midpoint deflection is shown in Fig. 8.4a. The staggered
course is caused by the prescription of the load factor. Every load factor increment
requires an adaption of cracking leading to a jump in deflection. Again three stages
can be seen: Stage I with basically linear behavior and only sporadic cracking.

Stage IIa with crack formation leading to a nearly final state of cracking. The load
level is hold constant during this stage. Deflections increase to a multiple of the value
at the end of stage I, which may happen rapidly due to constant loading.

Stage IIb of a nearly final cracking state with a much lower stiffness compared to stage
I. A few more cracks arise connected with the staggered course.

Figure 8.4: Example 8.2 (a) Load factor–deflection relation. (b) Principal strains in upper
and lower concrete layer.
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The final deflection of wmax = 5.15 · 10−2 m is roughly 8 times higher compared to the
linear elastic case of Example 8.1 and leads to deflection-span ratio of ≈ 1/150. This
looks not admissible according to [26, 7.4.1(4)] which prescribes a ratio of 1/250 for
ordinary cases. But such a value has to be reached with a load safety factor 1.

– Cracking is modeled as smeared, see Section 6.2. It is extended as biaxial cracking
with two cracking directions. Smeared strains in cracked integration points are shown
in Fig. 8.4b. The top and bottom layers are chosen out of the five concrete layers. The
lateral thickness direction has a different scale as the ground directions.

Length and orientation of spatial crosses indicate size and orientation of principal values
of smeared strains. Cracks are not shown explicitly but arise orthogonal to the strain
directions. Top and bottom show a different behavior due to bending.

The bottom layer has two orthogonal cracks in the central region from bending moments
and single cracks in diagonal direction in corner regions from twisting moments. The
corresponding principal strains are across the diagonal direction for the latter.

The top layer has no cracks in the central region as it is under compression. But it
has single cracks across the corner’s diagonal direction from twisting moments. The
corresponding principal strains are in diagonal direction.

– The principal moments are shown in Fig. 8.5a. Bar directions indicate the directions
of the corresponding stresses. A positive moment has tension on the lower surface and
compression on the upper surface.

Skew principal moment directions with opposite signs in the corner region correspond
to twisting moments. The negative moment in the diagonal direction has diagonal
tension on the upper side which is compensated by upper x- and y-reinforcement. The
positive moment across the diagonal direction has the corresponding tension on the
lower side. It is compensated by lower x- and y-reinforcement.

Central areas also have skew principal moments but with the same sign and nearly
same size. Thus, there will be only minor twisting moments. Lower surface tension is
compensated by lower x- and y-reinforcement.

– A new phenomenon compared to Example 8.1 is given with membrane forces, which
are determined in analogy to the internal forces n̄1, n̄2, n̄12 of Eq. (8.42)1−3. They are
caused by the elongation effect of cracked reinforced cross sections which has already
been discussed for beams in Example 3.2, Section 3.4.3. In contrast to beams an
elongation may have a different direction for every point of the slab’s reference surface
as the crack directions may be different.

This leads to eigenstresses, i.e., self-equilibrating internal forces without reaction forces
on supports. Thus, kinematic compatibility is preserved even in case local elongations
or contractions. The corresponding principal membrane forces are shown in Fig. 8.5b.
In case that horizontal movements of the slab are prevented on the supporting edges
horizontal reaction forces will arise and the whole slab will come under compression.
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Figure 8.5: Example 8.2 with quarter of slab. (a) Principal moments. (b) Principal membrane
forces.

End Example 8.2

8.7.3 The Plastic Approach

Nonlinear calculations for cracked reinforced concrete slabs as a special case of shells may
become complex even for simple geometries. This has been demonstrated with Examples 7.4
and 8.2. A plastic analysis is also permitted by current codes [26, 5.6]. It bases upon the
limit theorems of plasticity, see Section 4.4. The application has been demonstrated with

– rigid plastic strut-and-tie models, see Section 4.4 with Example 4.3,

– lower bound limit analysis for plates, see Section 6.1 with Example 6.2,

– lower bound limit analysis for slabs, see Section 7.6 with Examples 7.2 and 7.3.

Another application is given with the yield line method. This method divides a slab into
rigid parts connected by lines where moments have their ultimate limit value when exposed
to an external loading. The choice of such lines is basically arbitrary. The external loading
is given by p = λ p0 with a distributed reference loading p0 and a scalar loading factor λ.

The corresponding system of external loading and internal forces generally cannot be
assumed to be in equilibrium. It is difficult to find an equilibrating system for slabs as they
are highly statically indeterminate. Thus, the lower bound theorem 1, see Section 4.4, cannot
be applied. On the other hand, the lines of yielding act as plastic hinges and the kinematic
compatibility is preserved. This makes the upper bound theorem 2, see again Section 4.4,
applicable. Regarding slabs with yield lines the procedure can be outlined as follows:

– With thickness, concrete cover, reinforcement and concrete grade given the ultimate
limit values of moments mu can be determined.

– A yield line geometry is assumed parametrized by shape parameters which serve as
minimization variables. The path along the yield lines is measured with a variable s.
With shape parameters given the deflection is ruled by the deflection w? of one distinct
point in the slab’s reference plane.
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– Under the assumption of small displacements the rotations θ along the yield lines
depend on w? in a linear way. Furthermore, the integration of

∫
muθ ds leads to an

internal work WI .

– The deflections w of all rigid parts of the slab also linearly depend on w?. Furthermore,
integration

∫
p0w da with a indicating area leads to an external work WE .

– In analogy to Eq. (4.32) an upper limit of the admissible loading factor λ is given by

upper limit of λ =
WI

WE
=

∫
muθ ds∫
p0w da

(8.62)

The upper limit has to be minimized with respect to the shape parameters to gain a
reliable estimation of the loading factor λ.

Single items will be explained with a simple setup in the following. This starts with the limit
moment mu. The corresponding relations have been already been described in Section 7.7
with Eqs. (7.89–7.93). This leads to

mu,i = asify z, z = di −
x

2
, x = asi

fy
χk fc

, i = x, y (8.63)

with my replaced by the limit moment in each direction mu,i. The quantities have the
following meaning whereby the index i indicates the direction: asi is the cross-sectional
area of reinforcement per unit slab width, fy the yield strength of the reinforcement, z the
internal lever arm, di the structural height, x the height of the compressive zone, fc the
concrete compressive strength, and χ, k are accounting for the assumed rectangular stress
distribution [26, 3.1.7(3)].

We regard a rectangular slab as shown in Fig. 8.6, see also [65, 24.5.3]. It is simply
supported along its edges, i.e., hinged without vertical displacements. A constant distributed
reference loading q0 is used. Figure 8.6 also shows a sketch of assumed yield lines which are
determined to a large extent by symmetry in this simple case. A single shape parameter

Figure 8.6: Simple slab with yield lines.

mailto:Ulrich.Haeussler-Combe@tu-dresden.de
http://www.tu-dresden.de/biwitb/mbau
http://www.tu-dresden.de


278 Chapter 8 Shells

is given with the distance c. The deflection w? is determined with the displacement of the
center line. It is connected with rotations

φ1 = 2
2w?

b
, φ2−5 =

2w?

b

1

cosϕ
, ϕ = arctan

b

2c
(8.64)

along the yield lines. The lengths of the yield lines are given by

s1 = a− 2c, s2−5 = c
1

cosϕ
(8.65)

and finally, the directions of the yield lines by

ϕ1 = 0, ϕ2 = ϕ4 = ϕ, ϕ3 = ϕ5 =
π

2
+ ϕ (8.66)

The ultimate limit moments of the x- and y-directions have to be transformed into a moment
with stress components normal to the cross section inclined with an angle ϕ against the x-
axis. Thus, they have to be transformed with a rotation ϕ− π/2. The transformation rules
are given by Eq. (7.63) with mu,xy = 0. For the case under consideration this yields

mu,i = cos2
(
ϕi −

π

2

)
mu,x + sin2

(
ϕi −

π

2

)
mu,y

= sin2 ϕimu,x + cos2 ϕimu,y

i = 1, . . . , 5 for yield lines (8.67)

see also [65, Fig. 24.27, 24.5.2.1]. This leads to

mu,1 = mu,y

mu,2−5 = sin2 ϕmu,x + cos2 ϕmu,y
(8.68)

With the foregoing results the internal work is given by

WI =
5∑
i=1

mu,iφisi =

(
4a

b
mu,y +

2b

c
mu,x

)
w? (8.69)

The external work remains to be determined. This requires at first the ground areas of the
four rigid parts

a1,3 =
1

2
(a− c) b, a2,4 =

1

2
bc (8.70)

The loading assigned to each part has a resultant in its respective gravity center. They are
also shown in Fig. 8.6. The deflections of these centers are given by

w1,3 =
1

6

3a− 4c

(a− c)
w?, w2,4 =

1

3
w? (8.71)

With the foregoing results the external work is determined by

WE = p0

4∑
i=1

aiwi = p0b
(a

2
− c

3

)
w? (8.72)
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Equation (8.62) finally yields the upper limit of the loading, see also [65, 24.5.3]

upper limit of p = upper limit of λp0 =

4a

b
mu,y +

2b

c
mu,x

b
(a

2
− c

3

) (8.73)

The minimum of the upper limit has to be determined to derive an approximation for the
admissible loading. The minimum value of Eq. (8.73) is derived by differentiation with
respect to the shape parameter and equating the result to zero. This leads to

c =
b

2

√
m2
uxβ

2 + 3muymux −muxβ

muy
, β =

b

a
(8.74)

This value has to inserted into Eq. (8.73) to gain the minimum of the upper value. The
application is demonstrated with the following example.

Example 8.3 Simple slab with yield line method
We consider the system of Example 8.2 with the same dimensions, concrete grade and rein-
forcement. The following parameters are used

a = b = 8.0 m, dx = dy = 0.225, asx = asy = 6.0 cm2/m (8.75)

and
fyk = 500 MN/m2, fc = 30 MN/m2 (8.76)

Safety factors are not explicitly taken into consideration. The ultimate limit moments are
determined by Eq. (8.63) and f̄c = χfck, χ = 0.95, k = 0.8 leading to

x = as
fy
f̄c

= 0.013 m, z = d− x

2
= 0.218 m (8.77)

and
mu = asfy z = 0.065 MNm/m (8.78)

The shape parameter c is determined by Eq. (8.74) and mux = muy = mu and β = 1 leading
to c = b/2 = 4.0 m. Finally, the admissible loading is given with the insertion of c into
Eq. (8.73)

p =

 4a

b
+

2b

c

b
(a

2
− c

3

)
 mu = 0.0246 MN/m2 → 24.6 kN/m2 (8.79)

This value has to be compared to the design loading of 16 kN/m2, see Example 8.2.
End Example 8.3

A hand calculation of the yield line method has to be performed with some care. An as-
sumed yield line scheme may severely deviate from the real failure mechanism of that case.
Problems are generally not so simple as with Fig. 8.6. Thus, even large variations of shape
parameters do not allow modeling the real mechanism. This will lead to an overestimation
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of the admissible loading even in the case of correct determination of the minimum of an
optimization.

A systematic approach for slabs is described in [22] fulfilling both the upper bound the-
orem and the lower bound theorem. Thus, rigid plastic solutions are derived which fulfill
equilibrium, kinematic compatibility, and material limit states, compare Section 4.4 regard-
ing rigid plastic solutions for strut-and-tie models.

In case the method leads to a correct estimation of the admissible loading a sufficient
ductility has to be provided by reinforcement design to allow for the rotations φ which
are necessary to yield the ultimate limit moments according to Eq. (8.63). This issue has
already been addressed for strut-and-tie models in Section 4.5 and for plates and slabs in
Section 6.1.3. The yield line method is basically applicable regarding ultimate limit loads of
structures. Aspects of serviceability are not covered. A comprehensive presentation of yield
line methods is given in [71].
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Chapter 9

Randomness and Reliability

9.1 Basics of Uncertainty and Randomness

We rely on models relating properties, see Section 1.1. A property is either an input parame-
ter or a response variable. A variable is derived with the solution for the mathematical model
whereby parameters determine the model’s coefficients. It is assumed that the mathematical
model can be solved with a desired degree of accuracy. Thus, the solution is solely depending
on the parameters.

We use parameters like material properties, geometric dimensions, loadings, and con-
straints and up to now assumed determined parameter values to make deterministic predic-
tions for variables. But this assumption does not care for uncertainty.

• Predictions will be uncertain due to deviations of real parameter values from assumed
parameter values.

A parameter may be identified as variable in another context. Material stiffness and strength,
e.g., may be solutions in a microscopic material model. On the other hand, we do not have
models in the sense of Section 1.1 for, e.g., construction site processes leading to deviations
of real geometric dimensions from dimensions in design documents. Thus, uncertainty is
classified as epistemic or aleatoric [82].

– Aleatoric uncertainty comes from fundamental unpredictability of single phenomena or
events, respectively.

– Epistemic uncertainty comes from insufficient knowledge.

Both types more or less mixed in real phenomena. Aleatoric uncertainty is also regarded as
randomness which is strongly connected to the probability of events.

The distinction between input parameters and response variables will not be pursued in
the following, both are subsumed as random variables. To start with, we regard a population
of, e.g., cantilever columns exposed to a concentrated top load due to supporting weights of
other parts. The loading in a first approach has two parameters, the magnitude of the load
and the magnitude e of the eccentricity with respect to the center of the cross-sectional area.

Computational Methods for Reinforced Concrete Structures. First Edition. Ulrich Häussler-Combe.
© 2015 Ernst & Sohn GmbH & Co. KG. Published 2015 by Ernst & Sohn GmbH & Co. KG.
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Both are regarded as random. We consider the population E of eccentricities as univariate
random variable. Its probability is described by a distribution function

FE(e) = P (E ≤ e) (9.1)

whereby 0 ≤ P (E ≤ e) ≤ 1 denotes the portion of events from E with eccentricities smaller
than e. The distribution function is the integral of the probability density function fE(e)

FE(e) =

∫ e

−∞
fE(e) de, fE(e) =

dfE(e)

de
(9.2)

The probability density function is determined from measurements on real samples out of
the population. Such samples should yield a sound assessment of the distribution type and
its parameters like mean µE and standard deviation σE . A prominent type is given with the
normal distribution, see Fig. 9.1a. Samples also mark the range of feasible realizations.

Figure 9.1: (a) Normal distribution. (b) Correlation.

Regarding randomness for structures generally multivariate random variables or random
vectors have to be considered. A simple one is given by a bivariate random variable with
random components, lets say R and E. The concepts of distribution functions and proba-
bility density functions are generalized with joint functions having vector arguments. The
components of a random vector may exhibit a correlation. This is measured by a scalar
−1 ≤ ρ ≤ 1 for bivariate random variables and indicates a degree of dependence. A value
ρ = −1 is for full reverse correlation, ρ = 0 for independent or uncorrelated variables and
ρ = 1 for full concordant correlation, see Fig. 9.1b.

An extension of random variables is given by random fields whereby randomness of a prop-
erty extends over space, i.e., along a line, a plane or over a volume of a structure [86]. An
example is shown for the tensile strength of samples of concrete bars in Fig. 9.2. Strength is a
one-dimensional random field within a single bar. The correlation of the strength of neighbor
points is described by the correlation length. Samples of two populations with different corre-
lations lengths are shown in Fig. 9.2. Furthermore, randomness extends over the population
of bars with five samples in Fig. 9.2 for each case. A random field may be seen as a high-
dimensional random vector in the case of spatially discretized systems whereby correlation
between spatially neighbored property values is described by the correlation length.

mailto:Ulrich.Haeussler-Combe@tu-dresden.de
http://www.tu-dresden.de/biwitb/mbau
http://www.tu-dresden.de


9.2 Failure Probability 283

Figure 9.2: Uniaxial random fields.

Randomness is qualitatively treated with stochastics which embraces probabilistics and
statistics [54, G]. Randomness of model input parameters will lead to randomness of response
variables or model solutions. The model may be regarded as filter transforming distributions
of parameters into distributions of responses. Regarding structural analysis the filter may
become complex in the form of finite element methods. The process of filtering is performed
with stochastic finite element methods [88]. General aspects of stochastics are discussed in
[1], issues of building structures and concrete are treated in [18, Chapter 4], [35]. A particular
aspect – failure probability – will be described in the following [14, Chapter 6].

9.2 Failure Probability
We consider a population of systems with random variables for the action and for the resis-
tance. A normal distribution is assumed for the resistance R with realizations r, a mean µR
and a standard deviation σR.

fR(r) =
1

σR
√

2π
e
− 1

2

(
r−µR
σR

)2

(9.3)

It is standardized with a transformation

R̄ =
R− µR
σR

, (9.4)

leading to a transformed mean µR̄ = 0, a transformed standard deviation σR̄ = 1 and a
probability density function

fR̄(r̄) =
1√
2π

e−
r̄2

2 , (9.5)

Furthermore, a reference period TE is considered. Each sample of the population is exposed
to the random action during the reference period. This yields a extreme maximum action
E during the reference period, see Fig. 9.3, which is a random variable as its base action is.
We also assume a normal distribution for the extreme action E with realizations e, a mean
value µE and a standard deviation σE .
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Figure 9.3: (a) Actions and their extreme values. (b) Joint probability density of resistance
and extreme actions.

• The mean and the standard deviation of the extreme action may depend upon the
value of the reference period TE for a given distribution type.

Larger values lead to larger means and larger standard deviations of the extreme action. It
is again standardized with a transformation

Ē =
E − µE
σE

(9.6)

leading to µĒ = 0, σĒ = 1 and a probability density

fĒ(ē) =
1√
2π

e−
ē2

2 (9.7)

Regarding structural systems it may be assumed that R and E are statistically independent.
This yields a joint probability density function as a product of the single probability densities

fRE(R,E) = fR(R) fE(E) =
1

2π
e
− 1

2

(
r−µR
σR

)2

e
− 1

2

(
e−µE
σE

)2

(9.8)

or

fR̄Ē(r̄, ē) = fR̄(r̄) fĒ(ē) =
1

2π
e−

r̄2

2 e−
ē2

2 (9.9)

see Fig. 9.3, with a rotational symmetry with respect to the origin r̄ = 0, ē = 0.
A limit-state condition is described with the limit-state function g(R,E) and a curve

g(R,E) = R− aE − b = 0 (9.10)

separating the failure domain g ≤ 0 in the R,E-plane from the domain of nonfailure. The
limit-state condition may also be standardized with Eqs. (9.4, 9.6) leading to

β + αR r̄ + αE ē = 0 (9.11)
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in the r̄, ē-plane with the reliability index

β =
µR − aµE − b√
σ2
R + a2σ2

E

(9.12)

and the sensitivity parameters

αR =
σR√

σ2
R + a2σ2

E

, αE =
−aσE√
σ2
R + a2σ2

E

(9.13)

with
α2
E + α2

R = 1 (9.14)

The sensitivity parameters αR, αE indicate the influence of R and E on the system’s ran-
domness. In case σR � σE is αR → 1, αE → 0 and the randomness depends on R only. In
case σR � σE is αR → 0, αE → −1 and the randomness depends on E only. The sensitivity
parameters correspond to an angle ϕ with cosϕ = αR, sinϕ = αE , whereby ϕ indicates the
inclination of the linear standardized limit-state condition (Eq. (9.11)) against the ē-axis. A
further simplification is reached with a transformation to variables r̃, ẽ

r̄ = r̃ αR − ẽ αE , ē = r̃ αE + ẽ αR (9.15)

corresponding a rotation of the r̄, ē-coordinate system with the angle ϕ. The limit-state
condition (Eq. (9.11)) can be written as

r̃ + β = 0 (9.16)

in the r̃, ẽ-coordinate system whereby the failure domain is given by

r̃ ≤ −β (9.17)

The failure probability for the population of systems with respect to the reference period is
derived from the integration of the joint probability density fR̃Ẽ in the range defined by
Eq. (9.17). The functions fR̄Ē , see Eq. (9.9) and fR̃Ẽ are basically the same due to their
rotational symmetry. Therefore, the failure probability is given by

pF =

∫ ∞
−∞

∫ −β
−∞

fR̃Ẽ dr̃ dẽ =

∫ −β
−∞

fR̄ dr̄ (9.18)

with fR̄ according to Eq. (9.5) leading to

pF = Φ(−β) (9.19)

with the probability function Φ of the standardized normal distribution.

• The failure probability depends only on the the reliability index β for normal distribu-
tions of the extreme action E and the resistance R. Larger values of β lead to a smaller
failure probability.
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The reliability index increases with increasing distance between mean values of resistance and
extreme actions and decreases with increasing standard deviations of resistance and extreme
actions.

Finally, we consider a distinguished realization:

• The design point (rd, ed) is the realization of random variables with the highest prob-
ability or the highest value of the joint probability density function whereby fulfilling
the limit-state condition g(rd, ed) = 0.

For the current setup, the design point may be located in the r̃, ẽ-coordinate system with
the condition

r̃d = −β, ẽd = 0 (9.20)

It is transformed into the plane of standardized r̄, ē-variables using the transformation equa-
tion (9.15)

r̄d = −β αR
ēd = −β αE

(9.21)

Finally, using Eqs. (9.4, 9.6) the design point for the origin variables is given by

rd = µR + σR r̄d = µR − βαR σR
ed = µE + σE ēd = µE − βαE σE

(9.22)

This realization of the random variables fulfills the limit-state condition (Eq. (9.10)) with
g(rd, ed) = 0 as is required. The determination of the design point is not so straightforward
for more general cases.

• Basically an optimization for the joint probability density function of the random vari-
ables has to be performed to determine the design point whereby the optimization has
the constraint of the limit-state function.

Standard optimization techniques may be used for this purpose.
Regarding the current setup the determination of failure probability is demonstrated with

the following simple example.

Example 9.1 Analytical failure probability of cantilever column
We consider a population of reinforced concrete cantilever columns with a height of L = 5 m
and a constant cross section. The dimensions of the cross section and the material properties
chosen as in Example 3.1. The corresponding moment–curvature relation is shown in Fig. 3.3.
The maximum momentM which can be sustained by this particular cross section is assumed
as random variable.

A concentrated permanent downward loading of P = 2 MN is given on top the cantilever
beam. It has some eccentricity e regarding the centered reference axis whereby e is oriented
along the larger cross-sectional dimension of h = 0.4 m. This eccentricity is assumed as
random variable for the action. This leads to a realized random moment P e. Second order
effects are not regarded in a first approach. The limit-state condition is given by

g = M − |P | e = 0 (9.23)
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M e
Mean µ (MNm)/(m) 0.27 0.1
Standard deviation σ (MNm) 0.015 0.02
Sensitivity parameter α – 0.351 −0.936
10%-Quantile (MNm) 0.251
90%-Quantile (MNm) 0.126
Design point (MNm)/(m) 0.261 0.131

Table 9.1: Parameters of Example 9.1.

A normal distribution is assumed for resistance (→ M) and action (→ e) with parameters
given in Table 9.1. The quantile value Sk,x% of a random variable S has the following
meaning: x percent of all samples of S have a value below Sk,x%. On the other hand,
100− x% of all samples of S have a value above Sk,x%. Quantile values are derived from the
inverse of the probability function of S qith Sk,x% = F−1

S (x).
The reliability index is determined from Eq. (9.12) with β = 1.6386 leading to a design

point also given in Table 9.1 and a failure probability of

pF = 0.0506 (9.24)

using Eq. (9.19). A portion of 5 % of the population of cantilever columns under consideration
will fail according to this model. In this special case the failure probability is independent
from the reference period TE , see Section 9.2, as the action is assumed as permanent and is
constant during any reference period.

End Example 9.1

The evaluation of the failure probability may be generalized regarding multivariate random
variables, see Appendix E.

Furthermore, nonnormal distributions and nonlinear limit-state functions have to be con-
sidered. A linear or nonlinear limit-state function yields a scalar value z = g(r, e) which
may be seen as safety margin. The relation between z and r, e may be approximated with a
Taylor expansion with an expansion point z0 = g(r0, e0)

z = z0 +
∂g

∂r

∣∣∣∣
r0,e0

(r − r0) +
∂g

∂e

∣∣∣∣
r0,e0

(e− e0) + · · · (9.25)

The safety margin corresponds to a dependent random variable Z. Its mean µZ and standard
deviation σZ may be approximated from the means µR, µE and standard deviations σR, σE
based on the Taylor expansion. A normal distribution is assumed for the safety margin in a
further step. Thus, the failure probability is determined as

pF =

∫ 0

−∞

1√
2σZ

e
− 1

2

(
z−µZ
σZ

)2

dz = Φ

(
−µZ
σZ

)
(9.26)

with the probability function Φ of the standardized normal distribution. Equation (9.26) is
also used as an approximation for failure probabilities in case that basic variables R,E do
not follow a normal distribution and are more or less correlated.
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A specification is given with the first-order reliability method (FORM). Distributions for
the basic random variables are transformed into standardized uncorrelated normal distribu-
tions whereby the limit-state function or safety margin is transformed accordingly. Regarding
all points fulfilling the limit-state condition the design point, see Section 9.2, has the shortest
distance β to the origin in the transformed system. It is chosen as expansion point for a linear
Taylor expansion. This finally yields a failure probability

pF =

∫ −β
−∞

1√
2

e−
z̃2

2 dz̃ = Φ (−β) (9.27)

similar to Eq. (9.18). The approach may be extended to multivariate random variables.
The major problem concerns the determination of the design point in the case of nonlinear
limit-state functions.

The methods based on expansions of the limit-state function require its differentiability.
This might be a limitation, e.g., when a distinction of cases has to be done. An alternative
formulation for the limit-state condition

Ig(r, e) =

{
1 if g(r, e) ≤ 0
0 else (9.28)

avoids the differentiation of g and allows for general formulations of the limit-state function.
The failure probability is determined as

pF =

∫ ∞
−∞

∫ ∞
−∞

fRE(r, e) Ig(r, e) drde (9.29)

with the joint probability density function fRE of the basic random variables. This is ap-
proximately evaluated with

pF ≈
1

m

m∑
i=1

Ig(ri, ei) (9.30)

using m sample pairs (ri, ei) according to a joint distribution probability fRE . This type
of numerical evaluation of the failure probability belongs to Monte Carlo simulations. A
variant is given by importance sampling

pF =

∫ ∞
−∞

∫ ∞
−∞

fRE(r, e)

hRE(r, e)
hRE(r, e) Ig(r, e) drde (9.31)

extending Eq. (9.29) with another arbitrary joint distribution probability function hRE lead-
ing to

pF ≈
1

m

m∑
i=1

fRE(ri, ei)

hRE(ri, ei)
Ig(ri, ei) (9.32)

whereby samples are determined according to the distribution probability hRE . It should be
chosen such that most samples are taken in the area with the largest probability of failure,
i.e., around the design point. The application is demonstrated with the following example.
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9.2 Failure Probability 289

Example 9.2 Approximate failure probability of cantilever column with a Monte Carlo
simulation.
We refer to Example 9.1 and treat the same problem. The limit-state function from Eq. (9.23)
is not changed at first. The samples are generated on the basis of a random number generator
G[0, 1] which provides real equally distributed random numbers in the interval [0, 1]. Random
numbers of a normal distribution with mean µ and standard deviation σ are determined with

µ+ σΦ−1(G[0, 1]) → sample (9.33)

with the inverse distribution function Φ−1 of the standardized normal distribution. This
is applied with two independent generators G to each of M and e with the parameters of
Table 9.1. An example of a set with m = 100 samples is shown in Fig. 9.4 together with the
linear limit-state function g. The evaluation of Eq. (9.30) leads to pf = 0.03, i.e., 3 samples
out of m = 100 are detected in the failure domain.

Figure 9.4: Example 9.2 (a) Sampling around mean. (b) Importance sampling.

This indicates a weakness of the method. The event of failure has a small probability
and only a relatively few numbers of samples determine the approximate value of the failure
probability. This leads to relatively large errors. Importance sampling may be used to shift
the area of sampling which is at first centered around the mean (µe, µM ). A shift to the
design point, see Section 9.2, should lead to a relatively large number of samples from the
failure domain. This is reached based on the joint probability density function fMe whereby
the design values ed andMd replace the mean values µe and µM to derive the joint probability
density hMe, see Eq. (9.32). An example withm = 100 samples is shown in Fig. 9.4b whereby
the evaluation of Eq. (9.32) leads to pf = 0.055. Importance sampling generally leads to a
significant improvement of the failure probability estimation for a given number m.

Second-order effects basically have to be regarded for a cantilever column, see Section 3.7
with Example 3.8. We assume a simplified quadratic limit-state condition

g(M, e) = M − |P | e1

(
e

e1
− e2

e2
1

)
−M1

e2

e2
1

(9.34)

which resembles the linear limit-state condition for e = 0 with the same tangent but otherwise
approximately covers second-order effects with a representative limit state e = e1, M = M1
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for the behavior of the cantilever column model. In contrast to Example 3.8, where the
structural limit load is reached before a local-bearing capacity of cross sections is exhausted,
the quantity M1 shall correspond to cross-sectional failure. The values are assumed with
e1 = µe, M1 = 0.23, i.e., a 15% increase of moment at the mean eccentricity due to second-
order effects. The nonlinear limit-state condition is shown in Fig. 9.5.

Figure 9.5: Example 9.2 with nonlinear limit-state condition.

The corresponding design point can determined with an optimization of the joint prob-
ability density function fMe under the constraint of the limit-state function (Eq. (9.34))
whereby fMe is given according to Eq. (9.8) with the parameters from Table 9.1. An approx-
imate solution is ed = 0.114, Md = 0.268 which is used for importance sampling. The results
for an example set with m = 100 samples are shown in Fig. 9.5. The probability failure is
determined with pf = 0.20 according to Eq. (9.32). Thus, a second-order analysis leads to a
considerably higher failure risk for the current setup.

We considered sets with m samples. Actually the chosen number m = 100 is too low to
reproduce the results for the failure probability, especially with ordinary sampling according
to Eq. (9.30). A convergence study is necessary to determine a magnitude of m which yields
the same failure probability for each set of samples within a given tolerance. This exceeds
the scope of the current example.

End Example 9.2

Monte Carlo methods have the following properties regarding the evaluation of failure prob-
abilities:

– Model behavior is ruled through a limit-state condition which relates the models prop-
erties and variables and leads to the result 1/0 or failure/nonfailure, respectively.

– Multivariate random variables are allowed composed of model parameters.

– Any type of joint probability density function is possible. Random variables may be
correlated.

On the other hand, the demand for computational resources may become very high due to
the required large number of evaluations of the limit-state function: each evaluation may
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become very elaborate for complex nonlinear models. This might be prohibitive for a Monte
Carlo analysis. Response surface methods may be a workaround.

Another issue concerns the availability of distribution data or samples of involved random
variables in the case of building structures. Often the number of available samples is not
large enough to gain reliable results. Concepts of confidence have to be incorporated and
statements about a failure probability are supplied with a probability. Randomness, which is
quantified with statistical methods by definition, expands into a wider scope of uncertainty.
Concepts of fuzziness may be used to quantify this [68].

9.3 Design and Safety Factors
Up to now we described the analysis of the failure probability for a population of structures
with the same model and with given properties for the involved random variables. On the
other hand, a design has to adjust properties such that a target failure probability is not
exceeded. This may be reached with a trial and error approach. But such a way is generally
not reasonable. Concepts based on safety factors are used for practical design which are
intuitive and practiced in building design based on long time experience. But safety factors
should be related to failure probability in a quantitative manner.

To begin with, we have to consider different aspects of the action E. Loading and internal
forces have to be distinguished. A loading is transformed into internal forces with a structural
analysis. Deformation parameters, e.g., edge strains, may replace internal forces as a measure.
Anyway, a linear relation is assumed.

• All structural analysis for the present is linear.

Furthermore, it is deterministic: a deterministic loading leads to a deterministic internal force
or deformation e in some critical position of a structure. This position has a deterministic
resistance r – with the same measure as e – and a limit-state function

g(r, e) = r − e (9.35)

whereby failure shall again be given for g(r, e) ≤ 0.

• A deterministic design has to fulfill the condition

r > e (9.36)

The corresponding methods are straightforward with e resulting from a structural analysis
and r from mechanics of materials.

But we should consider the bivariate random variable (R,E) instead with a limit-state
function g(r, e) for the realizations. The safety margin, see Section 9.2, is derived with

Z = R− E (9.37)

and the failure domain is given with realizations z ≤ 0. In the case of uncorrelated normal
distributions for R and E the random variable Z follows also a normal distribution and has
as mean and standard deviation

µZ = µR − µE , σZ =
√
σ2
R + σ2

E (9.38)
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The failure probability of the position under consideration is given according to Eq. (9.26)

pF = Φ

(
−µZ
σZ

)
= Φ(−β) (9.39)

with the reliability index β from Eq. (9.12) and leads to the same result as Eq. (9.19).

• A probabilistic design states a target failure probability and determines the parameters
of the involved random variables such that the corresponding failure probability does
not exceed the target value.

The failure probability pF is often replaced with the reliability index β within this context
using Eq. (9.39). Action parameters µE , σE are practically prescribed and a designing en-
gineer has only small influence on σR. Thus, a probabilistic design practically determines
µR.

A probabilistic design is generally considered as inconvenient with the background of
traditional design practice. A link to safety factors has to be derived. We consider an
example of probability density functions of R and E as shown in Fig. 9.6. The overlap of
these functions corresponds to the failure probability. On the other hand, the overlap is
related to the “distance” between fR and fE .

• A semiprobabilistic design adjusts the “distance” between the probability densities of
resistance and action such that a target failure probability is not exceeded.

The “distance” or global safety factor is measured by the ratio

γ =
rk
ek

> 1 (9.40)

of characteristic values for resistance rk and action ek. Quantile values, see Section 9.2,
are used as characteristic values. Common choices are the 5% quantile for R (5% of the
population of resistances fall below this value) and the 95% quantile for E (95% of the
population of the actions fall below this value). In the case of normal distributions they are
given by

rk = µR − δ5% σR, ek = µE + δ95% σE (9.41)

Figure 9.6: Safety margin.
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The quantile coefficients δ5% = −(rk,5% − µR)/σR and δ95% = (ek,95% − µE)/σE correspond
to standardized distances similar to the reliability index β. They are determined from the
inverse Φ−1 of the standardized normal distribution with Φ(−δ5%) = 0.05 and Φ(δ95%) = 0.95
leading to δ95% = δ5% = δ = 1.65.

It is appropriate to relate characteristic values to design values, see Section 9.2, and the
global safety factor is reformulated as

γ = γR γE (9.42)
with partial safety factors

γR =
rk
rd

> 1, γE =
ed
ek

> 1 (9.43)

whereby using the limit-state condition g(rd, ed) = rd − ed = 0. The partial safety factor for
the resistance is given by

γR =
µR − δ σR

µR − βαR σR
=

1− δ νR
1− β νRαR

(9.44)

and for the action by

γE =
µE − βαE σE
µE + δ σE

=
1− β νEαE

1 + δ νE
(9.45)

see Eqs. (9.22), with the coefficients of variation

νR =
σR
µR

, νE =
σE
µE

(9.46)

Some care has to be taken for γR according to Eq. (9.44) with large values νR and/or small
values αR which might lead to values γR < 1. This is not reasonable. There is no similar
risk regarding γE as αE < 0 by definition, see Eq. (9.13).

In the end, the safety factors depend on the reliability index β or the failure probability,
the coefficients of variation νR, νE , the sensitivity parameters αR, αE and the parameter δ
for quantile values. Within limits the choice for δ is a matter of convention only. The choice
for the failure probability reflects a desired overall safety standard. Unique values of the
coefficients of variation and sensitivity should be valid for the populations of the involved
resistances and actions in an ideal scenario.

• A semiprobabilistic design with constant, predefined safety factors yields a failure prob-
ability not exceeding the target in an ideal scenario.

Thus, a semiprobabilistic design is performed such that required characteristic values for the
resistance are derived from prescribed characteristic values of actions through safety factors.
The attribute “semi” reflects deviations between the ideal scenario and the reality. Anyway,
a design procedure is summarized as follows whereby an alternative has to be chosen, e.g.,
from the following a), b) or c):

1. Determination of characteristic values for the loading

a) Compute design values for the loading with partial safety factor γE .
b) Do nothing.
c) Compute nominal value for the loading with safety factor γ.
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2. Computation of internal forces with a structural analysis

a) Design values of internal forces ed are already there.
b) Internal forces are characteristic values ek and have to be modified with partial

safety factors γE for design values ed.
a/b) Design values for the resistance according to rd > ed used for characteristic values

rk with partial safety factors γR.
c) Characteristic values of internal forces rk are already there.

3. Construction detailing according to mechanics of materials to reach a required value rk

All three alternatives should be equivalent in the case of a linear model with a linear structural
analysis but this will change for a nonlinear case, see later remarks. Partial safety factors are
useful regarding different models for the resistance while retaining one model for the action.
Aspects of safety factors will be demonstrated with the following example.

Example 9.3 Bounds for safety factors for single span beam with distributed loading
We consider the population of single span beams with distributed vertical loading. Loading
is random due to its magnitude and leads to a random mid-span moment. The resistance is
given by the moment bearing capacity.

The target is that no more than 1 beam out of 106 should fail within a year. A service life
or reference period of TE = 50 years is assumed. This leads to a target failure probability of
pF = 50 · 10−6 or a safety index β = 3.9. The value for δ is chosen with 1.65, see Eq. (9.41).

We consider the probability of realizations of a normal distributed random variable in a
bandwidth of, e.g., ±10 % around its mean. The probability is given by

P = Φ

(
(µ+ 0.1µ)− µ

σ

)
− Φ

(
(µ− 0.1µ)− µ

σ

)
= Φ

(
0.1

ν

)
− Φ

(
−0.1

ν

)
(9.47)

with the coefficient of variation ν = σ/µ and the standardized normal distribution function
Φ. The function P (ν) is shown in Fig. 9.7. It allows making estimations for ν. We assume

Figure 9.7: Example 9.3 function P (ν).
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Figure 9.8: Example 9.3 safety factors (a) νR = 0.1. (b) νR = 0.2.

that 70% of the resistance are within the bandwidth and 15% of the action leading to νR =
0.1, νE = 0.5. The sensitivity coefficients (Eqs. (9.13, 9.14)) remain to be determined with
a = 1, b = 0. They are reformulated as

αR =
1√

1 + κ2
, αE = −

√
1− α2

R, κ =
σE
σR

(9.48)

The ratio κ of standard deviations is still not determined and kept open. Partial safety
factors are given by

γR =
0.835

1− 0.39√
(1+κ2)

, γE = 0.55 + 1.07

√
1− 1

1 + κ2
(9.49)

according to Eqs. (9.44, 9.45). The partial safety factors and the global safety factor γ =
γR γE are shown in Fig. 9.8 depending on the ratio κ of standard deviations. One might argue
over the chosen lower limit κ ≥ 0.5. On the other hand, the assumed standard deviations are
σR = 0.1µR, σE = 0.5µE . This requires µE ≥ 0.1µR which is reasonable as the required
safety distance obviously is not endangered. The choice of maximum values with γR = 1.3
and γE = 1.5 is on the safe side.

Another construction type shall be considered with a coefficient of variation νR = 0.2.
The corresponding safety factors are shown in Fig. 9.8b. The required relation µE ≥ 0.2µR
still seems to be reasonable. The partial safety factor γE for the action is influenced to a
minor extent but γR for the resistance increases considerably together with γ. The safe side
choice is γR = 2.2 and γE = 1.5.

End Example 9.3

“Safe” assumptions regarding αE , αR whereby violating Eq. (9.14) are generally used for
the determination of partial safety factors, see Appendix E, instead of treating σE/σR as
unknown variable as in Example 9.3.

A linear structural behavior or linear structural analysis, respectively, was assumed for
the design procedure with safety factors as has been summarized before. Lower bound limit
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analysis for plates, see Section 6.1, and slabs, see Section 7.6, are based on a linear structural
analysis. But this is a special case in the context of nonlinear models for reinforced concrete
structures.

Regarding nonlinear structural analysis the different aspects of action – loading and
internal forces or deformations – become an issue. The coefficients of variation of a loading
type may undergo modifications due to the “filter” of nonlinear structural analysis leading
to different coefficients of variation on the level of internal forces or deformations. Thus,
the alternatives a) and b) from the design procedure described before – applying the partial
safety factor γE on the load level or on the level of internal forces – might lead to different
failure probabilities using the same partial safety factors γE , γR. Furthermore, usage of
forces or deformations as measure in the limit-state function g, see Eq. (9.35), may lead to
significant differences.

Partial safety factors γE are generally applied on the load level which corresponds to
alternative a) of the design procedure. But a recalibration of safety factors might be neces-
sary to compensate the nonlinear relations between loading and internal forces. This should
advantageously be performed with modifications of the partial safety factors γR on the re-
sistance side maintaining the same safety factors on the action side for linear and nonlinear
analysis of different construction types. Regarding reinforced concrete structures rules for
the determination of partial safety factors on the resistance side in the case of nonlinear
computations are given in [16, 3.6], [18, 7.11.3], [24, 5.7]. These rules are based on mean val-
ues of the material strength of concrete and reinforcement whereby the resulting integrated
resistance is divided by one partial safety factor γR covering both components.

Up to now safety has been regarded as a matter of local behavior, i.e., failure of a whole
structure is defined to occur with a failure – r = e – in the most critical part of a structure.
But a structure as a whole may still maintain some integrity in the case of ductile statically
indeterminate systems. This may lead to safety margins which are generally not explicitly
taken into account for the design of structures.
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Appendix A

Solution of Nonlinear Algebraic
Equation Systems

The majority of the example problems are nonlinear due to nonlinear material behavior.
Nonlinear material behavior is not only characteristic for cracked reinforced concrete but also
occurs with all other solid materials at the latest with approaching strength. Discretization
of nonlinear problems in space and time leads to a form

r(υ) = p− f(υ) = 0, r, p, f , υ, 0 ∈ Rn (A.1)

with a prescribed p an unknown υ, see Eq. (1.69) for quasistatic problems, Eq. (1.80) for
transient problems, and Eq. (1.95) for dynamic problems. Nonlinear problems also arise
with the deformation state of cracked reinforced cross sections, see Section 3.1.3.3, or the
determination of an equilibrium system for local strut-and-tie models, see Section 6.1.3.

We assume that Eq. (A.1) has a solution for υ, e.g., the underlying structural system
has to be supported such that rigid body motions are prevented in the case of quasistatic or
transient problems and the loading of a system should not exceed its load-bearing capacity.

A solution method has already been mentioned with the Newton–Raphson method, see
Eqs. (1.70–1.72). We will illustrate this method in the following and describe some variations.
This is based on the scalar form n = 1 of Eq. (A.1)

r(υ) = p− f(υ) = 0 (A.2)

A first guess of the unknown is on hand with υ(0) with a residual r(υ(0)). Equation (A.2) is
expanded with a linear Taylor row

r(υ(ν) + δυ) = r(υ(ν)) +
dr(υ)

dυ

∣∣∣∣
υ=υ(ν)

δυ, (A.3)

to determine a correcting change δυ. The condition r(υ(ν) + δυ) = 0 leads to

δυ = − dr(υ)

dυ

∣∣∣∣−1

υ=υ(ν)

r(υ(ν))

=
[
K

(ν)
T

]−1

r(υ(ν)), K
(ν)
T =

df(υ)

dυ

∣∣∣∣
υ=υ(ν)

(A.4)

Computational Methods for Reinforced Concrete Structures. First Edition. Ulrich Häussler-Combe.
© 2015 Ernst & Sohn GmbH & Co. KG. Published 2015 by Ernst & Sohn GmbH & Co. KG.
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Figure A.1: (a) Newton–Raphson method. (b) Modified Newton–Raphson method.

with [x]−1 = 1/x and an improved solution should be given by

υ(ν+1) = υ(ν) + δυ (A.5)

Equations (A.4, A.5) define an iteration sequence with an index (i) starting with i = 0. This
is illustrated in Fig. A.1. The iteration stops if the iterated residual is small compared to,
e.g., the initial residual r(0).

Equations (A.3–A.5) correspond to Eqs. (1.70-1.72) which are for n > 1. The reciprocal
of the scalar stiffness df/dυ becomes the inverse K−1

T of the tangential stiffness matrix KT ,
see Eq. (1.71). The tangential stiffness matrix has a dimension n×n. The solution correction
is determined with

δυ = K−1
T · r, δυ ∈ Rn, KT , K−1

T ∈ Rn×n (A.6)

in the i-iteration as a generalization of Eq. (A.4). But the inversion is quite expensive from
a computational point of view for large values of n.

A LU decomposition is performed instead using a Gaussian elimination which requires
considerably less operation compared to an inversion. The matrix KT is decomposed into

KT = L ·U, L, U ∈ Rn×n (A.7)

with a lower triangular matrix L with components Lij = 0, j > i and Lii = 1 and an upper
triangular matrix U with components Uij = 0, j < i. Thus, the task of a particular iteration
is reformulated as

L · ω = r, U · δυ = ω, ω ∈ Rn (A.8)

or a sequence of forward and backward substitutions which for given L, U, r is computation-
ally relatively inexpensive due to the triangular structure of L, U. The computational costs
can be further reduced with the modified Newton–Raphson method. The LU decomposition
is performed only once for a iteration sequence. The scalar version derived from Eq. (A.4) is
given by

δυ =
[
K

(0)
T

]−1

r(υ(ν)) (A.9)
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Figure A.2: Secant method.

and illustrated in Fig. A.2. On the other hand, the modified Newton–Raphson method
requires more iterations than the Newton–Raphson method to reach convergence r→ 0. But
the convergence of the iterative approach to solve linear equations cannot be guaranteed.

• The Newton–Raphson method generally converges for a predominant smooth depen-
dence of f on υ.

This is the case with Example 2.2, see Fig. 2.9, or Example 4.2, see Fig. 4.7a. But convergence
will not be reached for “rough” dependence of f on υ. This is the case with Example 2.4, see
Fig. 2.14b, or Example 6.3, see Fig. 6.10b, in the states of crack formation.

• In the cases of rough f−υ-behavior, i.e., the tangential stiffness does not approximately
indicate the actual f−υ-path, the Newton–Raphson method generally will not converge
to a solution υ with a residual r→ 0.

A further variation is given with secant methods. We consider again the scalar forms
Eqs. (A.2–A.5) which are condensed as

δυ =
[
K

(ν)
S

]−1

r(υ(ν))

υ(ν+1) = υ(ν) + δυ
(A.10)

with KS replacing KT . The choice of KS is basically arbitrary as long as it leads to a
convergence of the sequence υ(ν+1) to the solution of r(υ) = p− f(υ) = 0. A secant method
defines a sequence of secant stiffnesses KS with

K
(ν+1)
S δυ = δr, δυ = υ(ν+1) − υ(ν), δr = r(υ(ν))− r(υ(ν+1)) (A.11)

see Fig. A.2. The secant stiffness K(ν+1)
S is used for the following iteration according to

Eq. (A.10):

υ(ν+2) = υ(ν+1) +
[
K

(ν+1)
S

]−1

r(υ(ν+1)) (A.12)

The generalization of the condition Eq. (A.11) for n > 1 is given by

K
(ν+1)
S δυ = δr, δυ = υ(ν+1) − υ(ν), δr = r(υ(ν))− r(υ(ν+1)) (A.13)
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300 Appendix A Solution of Nonlinear Algebraic Equation Systems

but in contrast to the scalar case n = 1 this has not a unique solution for K
(ν+1)
S anymore.

This is already easily demonstrated for n = 2. Assuming a symmetric but otherwise unknown
secant stiffness matrix and known vectors δυ, δr there are two equations for three unknown
components of the secant stiffness.

This gives room for alternatives. A popular approach is given with the BFGS method
which defines the secant stiffness matrix by

K
(ν+1)
S = K

(ν)
S +

δr · δrT

δrT · δυ
−

K
(ν)
S · δυ · δυ

T ·K(ν)
S

δυT ·K(ν)
S · δυ

(A.14)

whereby the secant stiffness fulfills Eq. (A.13)1. Furthermore, the inverse is given with the
so-called BFGS normal form[

K
(ν+1)
S

]−1

=

(
I− δυ · δrT

δrT · δυ

)
·
[
K

(ν)
S

]−1

·

(
I− δr · δυT

δrT · δυ

)
+
δυ · δυT

δrT · δυ
(A.15)

with the unit matrix I. This is used with the iteration rule

υ(ν+2) = υ(ν+1) +
[
K

(ν+1)
S

]−1

· r(υ(ν+1)) (A.16)

as the generalization of Eq. (A.12). The computation of the sequence of the BFGS normal
forms may be efficiently implemented on the basis of the LU decomposition of a given K

(0)
S

– the initial tangential stiffness is appropriate – with a recursion on vector products like
δυ · δrT [63, S.269], [66, (5)]. A description of details exceeds the current scope.

• The BFGS method – with the option to combine it with a so-called line search – might
converge to a solution υ with a residual r→ 0 in cases of rough f − υ-behavior where
the Newton–Raphson method fails.

It has been successfully used for, e.g., Examples 2.4, 6.3, each with pronounced crack forma-
tion.

All described iteration methods are generally embedded in an incrementally iterative
approach, see Section 1.6, whereby the “load” terms p or p are prescribed with increments
to reach a target value. The size of increments is fixed starting from zero and uniformly
approaching a target value. Such a type of incrementing will not work with, e.g., snap-back
behavior of structures, see Example 2.1 with Fig. 2.5a. The size of loading increments has
to be reduced after reaching the peak in order to follow the load–displacement behavior.

The arc length method can be used to reach variable loading increments. We consider the
general form Eq. (A.1) slightly modified as

r(λ, υ) = λp0 − f(υ) = 0 (A.17)

with a target load p0 and a loading factor λ. The loading history is discretized with

λi+1 = λi + ∆λ, i = 0, 1, 2, . . . (A.18)

with λ0 = 0 and variable λi+1,∆λi. In the same way υ is discretized with respect to loading
history

υi+1 = υi + ∆υ (A.19)

with υ0 = 0 and variable υi+1,∆υ.
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• The vector increment ∆υ related to an increment of loading indicates an arc in the
vector space Rn.

Starting from a known state i the application of Eq. (A.17) on the following unknown state
i+ 1 yields

r(λi+1, υi+1) = λi+1 p0 − f(υi+1) = 0 (A.20)

This generally nonlinear equation is solved with iteration sequences υ(0)
i+1,υ

(1)
i+1, . . . and

λ
(0)
i+1, λ

(1)
i+1, . . . whereby

δυ = υ
(ν+1)
i+1 − υ(ν)

i+1

∆υ(ν+1) = υ
(ν+1)
i+1 − υi = ∆υ(ν) + δυ

(A.21)

and
δλ = λ

(ν+1)
i+1 − λ(ν)

i+1

∆λ(ν+1) = λ
(ν+1)
i+1 − λi

(A.22)

The iteration rule is given in analogy to Eq. (A.6) with

δυ = [K]
−1 · r(λ

(ν+1)
i+1 ,υ

(ν)
i+1)

= λ
(ν+1)
i+1 [K]

−1 · p0 − [K]
−1

f(υ
(ν)
i+1)

= δλ [K]
−1 · p0 + [K]

−1 · r(λ
(ν)
i+1,υ

(ν)
i+1)

(A.23)

with some kind of stiffness K according to the Newton–Raphson method, the modified
Newton–Raphson method or a secant method. The inversion is not explicitly performed
but a LU decomposition is used instead. The iteration starts with υ(0)

i+1 = υi, ∆υ(0) =

0, λ
(0)
i+1 = λi.
The iteration rule may be rewritten as

δυ = δλ υ0 + δυ(ν) (A.24)

with
υ0 = [K]

−1 · p0

δυ(ν) = [K]
−1 · r(λ

(ν)
i+1,υ

(ν)
i+1)

(A.25)

A further condition is needed to determine the variable λi+1. It is derived from

∆υ(ν+1)T ·∆υ(ν+1) = γ2 (A.26)

with ∆υ(ν+1) according to Eq. (A.21) and a scalar γ controlling the arc length size. The
evaluation yields a quadratic equation for the correction δλ of the loading factor

a δλ2 + b δλ+ c+ d = γ2 (A.27)

with
a = υ0

T · υ0

b = ∆υ(ν)T · υ0 + δυ(ν)T · υ0

c = 2∆υ(ν)T · δυ(ν) + δυ(ν)T · δυ(ν)

d = ∆υ(ν)T ·∆υ(ν)

(A.28)
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These coefficients are determined with the results of the ν-iteration whereby b = c = d = 0

and a > 0 for ν = 0. Furthermore, r(λ
(0)
i+1,υ

(0)
i+1) = r(λi,υi) ≈ 0 is reasonable. Equa-

tion (A.27) can be further simplified with d = γ2 for ν > 0 as the prescribed arc length size
should not change during the iteration. Two real solutions are given with

δλ =
−b±

√
b2 − ac′
a

(A.29)

in case b2 − ac′ > 0 with c′ = c+ d− γ2. The scalar product

g = ∆υ(ν)T ·∆υ(ν+1) = ∆υ(ν)T ·
(

∆υ(ν) + δλυ0 + δυ(ν)
)

(A.30)

may be used to determine the solution to choose. That with a larger value g makes the actual
arc ∆υ(ν+1) more similar to the previous arc ∆υ(ν) and is generally the choice. It is finally
used in Eq. (A.24) to determine the correction δυ. In case ν = 0 with ∆υ(0) = 0 the ∆υ of
the previous loading increment may be used. In case i = 0, ν = 0 the choice δλ = +γ/

√
a is

appropriate.
The case b2 − ac′ < 0 remains to be treated. The prescribed arc length γ cannot be

reached with any length of δλ for given directions υ0 and δυ(ν). In most cases it may be
reached with an increased γ. An alternative approach is to minimize the left-hand side of
Eq. (A.27). This yields the smallest value γ which can be reached.

For more details about the arc length method see [9, 6.5.3], [3, 8.4.3]. It has been used
for Examples 2.1 and 4.2.
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Appendix B

Crack Width Estimation

Formation of cracks is a characteristic property of structural reinforced concrete. It influ-
ences the local stiffness of structures. The stiffness is reduced in areas with high tension
leading to a redistribution of stresses within statically indeterminate structures: softer areas
are relieved while stiffer areas gain stresses compared to a linear elastic calculation. Further-
more, stresses from constraints like settlements or temperatures are reduced. Insofar crack
formation leads to favorable effects. On the other hand, the overall deformation of cracked
structures increases, the corrosion risk of steel reinforcement grows in cracked areas and the
visual impression suffers with larger cracks. Thus, crack width has to be controlled and
methods to predict crack width are required.

The direct computation of crack width has been demonstrated with Example 2.4 with a
fine discretization using an element length in the order of 1 cm. Such a fine discretization
practically leads to a discrete modeling of cracks, see Section 5.7.1. But such fine discretiza-
tions are not appropriate for the modeling or structures like plates, slabs, and shells. Crack
modeling is generally performed with the smeared crack model for such structures, see Sec-
tions 5.7.2, 6.2, and 6.3, with characteristic elements lengths considerably larger than 1 cm.
Therefore, an alternative model for crack width estimation is required. This will be described
in the following.

This model is based on the uniaxial tension bar whereby analytical crack width relations
are derived with some simplifying assumptions. This leads to crack width estimations which
primarily depend on the reinforcement stress. On the other hand, crack situations in, e.g.,
plates may be considered as uniaxial in the context of the Rankine criterion, see Section 5.7.1.

• Crack width estimations for uniaxial tension bars may also be applied to cracked plates
locally with rebar stresses and reinforcement parameters given.

Furthermore, such estimations may also be transferred to slabs and shells in the context of
layer models, see Sections 7.2.3 and 8.7.1. The simplified model for crack width estimations is
also suitable for reinforced concrete beams when applied to the tension zone or the immediate
surrounding of rebars in cracked cross sections.

Details of the uniaxial tension bar have been described in Section 2.6. The current
setup refers to Fig. 2.17a with a cracked reinforced cross section and is shown in Fig. B.1a.

Computational Methods for Reinforced Concrete Structures. First Edition. Ulrich Häussler-Combe.
© 2015 Ernst & Sohn GmbH & Co. KG. Published 2015 by Ernst & Sohn GmbH & Co. KG.
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304 Appendix B Crack Width Estimation

Figure B.1: (a) Strains at cracked cross section. (b) Equilibrium with bond stresses.

Assuming a centered symmetry the width w of the crack can be determined as

w = 2

∫ lt

0

(εs(x)− εc(x)) dx (B.1)

with the force transfer length lt, the rebar strain εs(x), and the concrete strain εc(x) which
are variable in the longitudinal direction. The transfer length corresponds to the length from
the crack to the position with constant strains or local extrema of strains. Mean strains
within the transfer length are given by

εsm =
1

lt

∫ lt

0

εs(x) dx, εcm =
1

lt

∫ lt

0

εc(x) dx (B.2)

and crack width may be rewritten as

w = 2lt (εsm − εcm) (B.3)

Strains εs(x), εc(x) are related to rebar stresses σs(x) and concrete stresses σc(x). The
following stress–strain relations are assumed

σs = Es εs, σc =

{
Ec εc εc ≤ fct/Ec
0 else

(B.4)

Regarding the crack position x = 0 the concrete stress is zero and the rebar stress has its
maximum value σs(0) = σsc. The rebar stress decreases with x and reaches its minimum
value with x = lt. We use a rebar stress difference

∆σs = σsc − σs(lt) (B.5)

and determine the mean rebar stress along lt with

σsm = σsc − βt ∆σs (B.6)

compare also Fig. 2.17a. The parameter βt has already been used in Section 2.7. It encom-
passes the extent of load transfer between rebar and concrete or bond quality, respectively. A
value βt = 0 denotes no stress transfer and no effective bond, a value βt = 1 immediate stress
transfer and perfect bond. The values are generally assumed in the range 0.4 ≤ βt ≤ 0.6 [26,
7.3.4], [18, 7.6.4.4].
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For reasons of equilibrium, see Fig. B.1b, the concrete stress along the longitudinal di-
rection is given by

σc(x) = ρeff [σsc − σs(x)] (B.7)

whereby ρeff = As/Ac,eff is the effective reinforcement ratio with the cross section area As of
the rebar and the effective cross section area Ac,eff of the concrete. The cross section area
Ac,eff has already been discussed in Section 2.7. The concrete stress has its maximum at
x = lt with a value

σc,max = ρeff ∆σs (B.8)

Using Eqs. (B.6,B.7) the mean concrete stress results to

σcm =
1

lt

∫ lt

0

σc(x) dx = ρeff βt ∆σs (B.9)

The load transfer between concrete and reinforcement is connected with bond stresses τ(x).
For reasons of equilibriums, see Fig. B.1b, it is related to the rebar stress difference ∆σs
through

As ∆σs = Cs

∫ lt

0

τ(x) dx (B.10)

with the reinforcement circumference Cs. Using the mean bond stress τm this can be written
as

∆σs =
Cs
As

lt τm =
4lt
ds

τm (B.11)

with the reinforcement diameter ds and Cs/As = 4/ds. The mean bond stress τm is assumed
to be proportional to the concrete tensile strength fct according to [26, 8.4.2]

τm = η fct (B.12)

with η in the range of 2. More data about bond are given in [18, 6.1.1]. Equation (B.11)
leads to a relation for the stress transfer length

lt =
ds

4τm
∆σs (B.13)

This yields the first part of Eq. (B.3) determining the crack width. The mean reinforcement
strain

εsm =
σsm
Es

=
1

Es
(σsc − βt ∆σs) (B.14)

using Eq. (B.6) and the mean concrete strain

εcm =
σcm
Ec

=
1

Ec
ρeff βt ∆σs (B.15)

using Eq. (B.9) complete the second part. This finally yields

w =
ds

2τm

∆σs
Es

[σsc − βt (1 + αeρeff) ∆σs] (B.16)
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with a priori known or assumed parameters ds, ρeff , τm and the stiffness ratio αe = Es/Ec.
The rebar stress σsc in the crack’s cross section is determined through the external loading.
The rebar stress difference ∆σs remains to be determined. Thus, two limiting cases are
regarded which are the state with single cracks and the state with stabilized cracking.

A tension bar is in the uncracked state at load initiation whereby concrete properties are
subject to scatter. A first single crack will arise in the cross section with the smallest overall
tensile strength due to increasing loading starting from zero. The softening behavior, see
Fig. 5.16, is neglected for crack width estimation as the critical crack width wcr generally
does not exceed 0.1 mm while the relevant crack width is in the range considerably above 0.1
mm within this context. Perfect brittle tensile behavior of concrete behavior, see Fig. 5.14b,
is assumed for the following.

A single crack is characterized by

εs(lt) = εc(lt) (B.17)

whereby strains of concrete and reinforcement match beyond the stress transfer length. Re-
placing strains with stresses whereby using Eqs. (B.5, B.7) leads to

1

Es
(σsc −∆σs) =

1

Ec
ρeff ∆σs (B.18)

and
∆σs =

σsc
1 + αeρeff

(B.19)

and the crack width of the first single crack can finally be determined with Eq. (B.16).
Further cracks develop with slightly increasing loading in the cross sections with the

currently smallest tensile strength. With a rising number of cracks we have to introduce
crack spacing sc. Crack spacing on one hand has the condition

sc ≥ lt (B.20)

as a crack is not possible within lt because of the decreasing concrete stresses towards the
crack. On the other hand, crack spacing reduces with an increasing number of cracks.
Cracking will occur as long as sc ≥ 2lt with slightly increasing loading whereby reducing
crack spacing and will finally reach a stabilized state with sc < 2lt. The concrete stress
will not reach the tensile strength anymore under this condition. The process has been
demonstrated with all its stages in Example 2.4.

The state of stabilized cracking is characterized by

lt ≤ sc < 2lt (B.21)

Loading may further considerably increase but the maximum concrete stress, see Eq. (B.8),
will not exceed fct. This leads to a condition ∆σs ≤ fct/ρeff for stabilized cracking. We
assume the equality

∆σs =
fct
ρeff

(B.22)

for usage with the crack width relation (B.16). This finally yields the crack width estimation
for stabilized cracking

w =
ds

2τm

fct
ρeff

1

Es

[
σsc − βt (1 + αeρeff)

fct
ρeff

]
(B.23)
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Figure B.2: Crack states. (a) Single cracks. (b) Stabilized cracks.

Stabilized cracking is characterized by the following properties:

– Increased loading is completely carried by the reinforcement until its load-bearing ca-
pacity is reached.

– Between two cracks, a position exists where the slip between concrete and reinforcement
is equal to zero. This position margins the force transfer lengths of the cracks to the
left and to the right, see Fig. 2.16b for an example.

– At this position the reinforcement stress has a minimum while the concrete stress has
a maximum, which does not reach the concrete tensile strength, see Fig. 2.15a for an
example.

– The reinforcement strain increases compared to the concrete strain, which retains its
course. This distinguishes the state of stabilized cracking from the state of single cracks,
see Fig. B.2.

The crack width of stabilized cracking has to be considered as relevant. Thus, variations
of Eq. (B.23) are used in codes for crack width estimation [26, 7.3.4], [18, 7.6.4.4]. For a
discussion of the influence of imposed strains from temperature and shrinkage on the crack
width estimation see [42].

The application of all these rules is generally stipulated for reinforced concrete beams.
The predominant variable is given with the rebar stress σsc in the cracked cross section,
compare also Fig. 3.2, while the parameters ds, τm, fct, ρeff , Es, βt, αe are assumed to be
known within this simplified setup.

The estimation may also be directly applied for cracked positions in plates or layers of
slabs or shells when the reinforcement direction is orthogonal to the crack direction. This
should the case for the positions with the largest stresses. In case that principal tension or
crack normals deviates by more than 15° from reinforcement directions rules for crack width
estimations are given in [26, 7.3.4(4)] or [18, 7.6.4.4.3].
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Appendix C

Transformations of Coordinate
Systems

Cartesian coordinate systems are used throughout this textbook to describe space if not
otherwise stated. Coordinates xi are measured with respect to three (3D space) or two (2D
plane) orthogonal base vectors ei of unit length. Orthogonality of unit vectors leads to

ei · ej = ej · ei =

{
1 i = j
0 i 6= j

(C.1)

with the vector product ·. The sequence of base vectors has a right-hand orientation.
We restrict to the 2D plane in the following. A vector x describing a position is written

as
−→r = x1 e1 + x2 e2 (C.2)

or alternatively in another Cartesian system rotated by an angle ϕ
−→r = x̃1 ẽ1 + x̃2 ẽ2 (C.3)

positive in the counterclockwise direction, see Fig. C.1. The base vectors ẽ1, ẽ2 are still
orthogonal according to Eq. (C.1). The rotated coordinates are given by

x̃1 = x1 e1 · ẽ1 + x2 e2 · ẽ1

= x1 cosϕ+ x2 cos(π/2− ϕ)
= x1 cosϕ+ x2 sinϕ

x̃2 = x1 e1 · ẽ2 + x2 e2 · ẽ2

= x1 cos(π/2 + ϕ) + x2 cosϕ
= −x1 sinϕ+ x2 cosϕ

(C.4)

after applying Eq. (C.1). This may be written as

x̃ = Q · x (C.5)

with
x̃ =

(
x̃1

x̃1

)
, Q =

[
cosα sinα
− sinα cosα

]
, x =

(
x1

x1

)
(C.6)

Computational Methods for Reinforced Concrete Structures. First Edition. Ulrich Häussler-Combe.
© 2015 Ernst & Sohn GmbH & Co. KG. Published 2015 by Ernst & Sohn GmbH & Co. KG.
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Figure C.1: Plane coordinate transformation.

collecting the coordinate components in a vector notation. The back transformation is given
as

x = QT · x̃ (C.7)

as Q−1 = QT . Any other vector – e.g., displacement, velocity, force – of a form corresponding
to Eq. (C.2) has as transformation rules for its components

ã = Q · a, a = QT · ã, (C.8)

with ã =
(
ãx ãy

)T and a =
(
ax ay

)T .
We have to consider second-order tensors beneath vector or first-order tensors. A second-

order tensor is given with the Cauchy stress σ, see Section 5.2.2. Regarding plane states the
stress tensor is written as

S = σ11 e1e1 + σ12 e1e2 + σ21 e2e1 + σ22 e2e2 (C.9)

with an outer or dyadic base e1e1, e1e2, e2e1, e2e2, compare also Eq. (8.24). The dyadic base
emerges from force direction and direction of the normal of the reference plane, see Eq. (5.5).
The second-order tensor is described alternatively in another Cartesian system rotated by
an angle ϕ

S = σ̃11 ẽ1ẽ1 + σ̃12 ẽ1ẽ2 + σ̃21 ẽ2ẽ1 + σ̃22 ẽ2ẽ2 (C.10)

The identity of these formulations may be used to expose the values of the tensor compo-
nents in the rotated system. Applying vector products with ẽ1, ẽ1 whereby exploiting their
orthogonality and the symmetry of tensor components σ12 = σ21 leads to σ̃11

σ̃22

σ̃12

 =

 cos2 ϕ sin2 ϕ 2 cosϕ sinϕ
sin2 ϕ cos2 ϕ −2 cosϕ sinϕ

− cosϕ sinϕ cosϕ sinϕ cos2 ϕ− sin2 ϕ

 ·
 σ11

σ22

σ12

 (C.11)

in analogy to Eq. (C.4). The inversion is derived in the analogous way and yields σ11

σ22

σ12

 =

 cos2 ϕ sin2 ϕ −2 cosϕ sinϕ
sin2 ϕ cos2 ϕ 2 cosϕ sinϕ

cosϕ sinϕ − cosϕ sinϕ cos2 ϕ− sin2 ϕ

 ·
 σ̃11

σ̃22

σ̃12

 (C.12)
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Strain tensor components ε11, ε12 = ε21, ε22 as a subset of Eq. (5.2) are transformed in the
same way. This leads to ε̃11

ε̃22

γ̃12

 =

 cos2 ϕ sin2 ϕ cosϕ sinϕ
sin2 ϕ cos2 ϕ − cosϕ sinϕ

−2 cosϕ sinϕ 2 cosϕ sinϕ cos2 ϕ− sin2 ϕ

 ·
 ε11

ε22

γ12

 (C.13)

regarding the definition γij = 2εij , i 6= j for strain components in engineering notation.
This transformation matrix is transposed to the back-transformation matrix of stresses
(Eq. (C.12)). The inversion is again derived in the analogous way and yields ε11

ε22

γ12

 =

 cos2 ϕ sin2 ϕ − cosϕ sinϕ
sin2 ϕ cos2 ϕ cosϕ sinϕ

2 cosϕ sinϕ −2 cosϕ sinϕ cos2 ϕ− sin2 ϕ

 ·
 ε̃11

ε̃22

γ̃12

 (C.14)

This back-transformation matrix is transposed to the transformation matrix of stresses
(Eq. (C.11)).

Cartesian transformations of vectors and second-order tensors in 3D space are derived
in a similar way based on extended formulations of Eqs. (C.2,C.3) and (C.9,C.10) whereby
involving three rotation angles and again exploiting orthogonality of base vectors.
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Appendix D

Regression Analysis

Regression analysis leads to an approximation of multiple given data by combining functions
with a few degrees of freedom. We consider n discrete data fi determined from a survey over
a plane in positions xi, yi. A linear approximation leads to errors

ri = a xi + b yi + c− fi, i = 1, . . . , n (D.1)

We search for the optimal coefficients a, b, c. The problem may be also written as

r(a) = X · a− f (D.2)

with

X =


x1 y1 1
x2 y2 1
...

...
...

xn yn 1

 , a =

 a
b
c

 , f =


f1

f2

...
fn

 (D.3)

The error shall be zero r(a) = 0, i.e.,

X · a = f (D.4)

This is an overdetermined set of linear equations for n > 3 and will not have a solution for a.
Thus, we will minimize the error with minimizing the error length e(a) = rT · r. The error
length is given by

e = (X · a− f)
T · (X · a− f)

= aT ·XT ·X · a− 2aT ·XT · f + fT · f (D.5)

The error length is minimized under the condition

∂e

∂a
= 0 (D.6)

leading to
XT ·X · a = XT · f (D.7)

This corresponds to the well-known method of the least squares.
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314 Appendix D Regression Analysis

The basic approach allows for many specifications. We consider n discrete data fi along
a line in positions xi. A quadratic approximation leads to errors

ri = a x2
i + b xi + c− fi, i = 1, . . . , n (D.8)

This may be written in the same way as Eq. (D.2) with

X =


x2

1 x1 1
x2

2 x2 1
...

...
...

x2
n xn 1

 (D.9)

and may be solved for the optimal coefficients a, b, c with Eq. (D.2).
The dimension of the underlying space is arbitrary. We use area coordinates L1, L2, L3,

see Section 7.4.1 with Eq. (7.42), for a linear approximation of a given field m

r = aL1 + b L2 + cL3 −m (D.10)

defined over a triangle, see Fig. 7.5. Four survey points are used due to four sampling points
Li of a numerical integration. The sampling points have the coordinates

L1 =

 1/3
1/3
1/3

 , L2 =

 0.6
0.2
0.2

 , L3 =

 0.2
0.6
0.2

 , L4 =

 0.2
0.2
0.6

 (D.11)

This may be written as
r(a) = X · a−m (D.12)

with

X =


1/3 1/3 1/3
0.6 0.2 0.2
0.2 0.6 0.2
0.2 0.2 0.6

 , a =

 a
b
c

 , m =


m1

m2

m3

m4

 (D.13)

and Eq. (D.7) yields
A · a = XT ·m (D.14)

with

A = XT ·X =
1

225

 124 88 88
88 124 88
88 88 124

 , A−1 =
1

6

 53
2 −11 −11
−11 53

2 −11
−11 −11 53

2

 (D.15)

and finally

a =
1

4

 1 23
3 − 7

3 − 7
3

1 − 7
3

23
3 − 7

3
1 − 7

3 − 7
3

23
3

 ·m (D.16)
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Appendix D Regression Analysis 315

whereby m is given from the field m evaluated in the sampling points. The three rows of
the matrix each add up to 1 with the prefactor. With known coefficients a, the derivatives
of the field m with respect to global coordinate axes x, are determined by

∂m

∂x
=

∂m

∂L1

∂L1

∂x
+
∂m

∂L2

∂L2

∂x
+
∂m

∂L3

∂L3

∂x
= a b1 + b b2 + c b3

(D.17)

and
∂m

∂x
= a c1 + b c2 + c c3 (D.18)

with bi, ci according to Eq. (7.46).
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Appendix E

Reliability with Multivariate
Random Variables

We consider a structure with n random properties or variables X1, X2, . . . , Xn with a joint
probability density function

fX(x1, x2, . . . , xn) (E.1)

Nonnormal distributions may be transformed into normal distributions using the model of
Nataf [62]. Furthermore, correlated multivariate normal distributions may be transformed
into uncorrelated normal distributions based on the spectral decomposition of the covariance
matrix. Thus, we assume the following form for the joint probability function:

fX(x1, y2, . . . , xn) =
1

σ1

√
2π

e
− 1

2

(
x1−µ1
σi

)2 1

σ2

√
2π

e
− 1

2

(
x2−µ2
σi

)2

· · · 1

σn
√

2π
e
− 1

2

(
xn−µn
σi

)2

(E.2)
for uncorrelated random variables X1, X2, . . . , Xn of normal distribution each with a mean µi
and a standard deviation σi. The failure behavior of a structure is ruled through a limit-state
function

g(x1, x2, . . . , xn) = a0 + a1 x1 + a2 x2 + · · ·+ an xn (E.3)

with
g ≤ 0 (E.4)

indicating failure. The function g may have undergone transformations due to the aforemen-
tioned transformations of random variables.

The random variables are standardized with

Yi =
Xi − µi
σi

, i = 1, . . . , n (E.5)

leading to a joint probability density function

fY (y1, y2, . . . , yn) =
1

(2π)
n
2

e−
1
2 (y2

1+y2
2+···+y2

n) (E.6)
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318 Appendix E Reliability with Multivariate Random Variables

This function is characterized by radial symmetry, i.e., all arguments with the same distance
r =

√
y2

1 + y2
2 + · · ·+ y2

n to the origin have the same function value. This corresponds to
hyperspheres in the n-dimensional space of the random variables.

The standardization (Eq. (E.5)) leads to a standardized limit-state function

h(y1, y1, . . . , yn) = β + α1y1 + α2y2 + · · ·+ αnyn (E.7)

with a reliability index
β =

a0 + a1µ1 + a2µ2 + · · ·+ anµn√
a2

1σ
2
1 + a2

2σ
2
2 + · · ·+ a2

nσ
2
n

(E.8)

and sensitivity parameters

αi =
aiσi√

a2
1σ

2
1 + a2

2σ
2
2 + · · ·+ a2

nσ
2
n

(E.9)

with
α2

1 + α2
2 + · · ·α2

n = 1 (E.10)

and h ≤ 0 again indicating failure. The limit-state function may also be written as

h = β +αT · y (E.11)

with

α =


α1

α2

...
αn

 , y =


y1

y2

...
yn

 (E.12)

The condition h = 0 defines a limit-state hyperplane with the unit normal α. We define
another coordinate transformation, i.e., a hyperrotation with

y1e1 + y2e2 + · · ·+ ynen = ỹ1ẽ1 + ỹ2ẽ2 + · · ·+ ỹnẽn (E.13)

with unit vectors ei, ẽi of Cartesian coordinate systems, see also Section C, and choose
ẽ1 = α. The application of the orthogonality condition, see Eq. (C.1), leads to

y = A · ỹ (E.14)

with

A =


α1 γ12 · · · γ1n

α2 γ22 · · · γ2n

...
...

. . .
...

αn γn2 · · · γnn

 , ỹ =


y1

y2

...
yn

 (E.15)

The (n− 1)n unknown coefficients γij are determined with the 2(n− 1) orthogonality con-
ditions α · ẽi = 0, ẽi · ẽi = 1, i = 2, . . . , n with coefficients of ẽi measured in the original
system with base vectors ei. This is under determined with a degree n2 − 3n+ 2 and leaves
free choices. The limit-state hyperplane is given by

β +αT ·A · ỹ = β + ỹ1 = 0 (E.16)

regarding orthogonality of rotated base vectors and Eq. (E.10).
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The failure probability is given by

pF =

∫
. . .

∫
h≤0

∫
fY (y1, y2, . . . , yn) dy1dy2 · · ·dyn (E.17)

This may also be written as

pF =

∞∫
−∞

. . .

∞∫
−∞

−β∫
−∞

fY (ỹ1, ỹ2, . . . , ỹn) dỹ1dỹ2 · · ·dỹn (E.18)

due to the radial symmetry of fY and finally leads to

pF =

−β∫
−∞

1√
2π

e−
ỹ2
1
2 dỹ1 = Φ(−β) (E.19)

with the probability function Φ of the standardized normal distribution.
The design values – the realization of random variables fulfilling the limit-state condition

h = 0 with the highest failure probability – are given by

ỹ1d = −β, ỹ2d = 0, . . . , ỹnd = 0 (E.20)

in the transformed system. This is the point with the smallest hyperdistance to the origin.
Back transformation using Eq. (E.14) leads to

yid = −β αi (E.21)

The design values in the original system are finally determined as

xid = µi − βαi σi, i = 1, . . . , n (E.22)

using Eq. (E.5). The value of a sensitivity parameter αi is in the range

− 1 ≤ αi ≤ 1 (E.23)

A value |αi| � 1 indicates that the random variable Xi has only a small contribution to the
randomness of the structure; a value approaching ±1 indicates a predominant contribution
compared to all other random variables. The influence of Xi may be classified as favorable
in case αi > 0 and unfavorable in case αi < 0. Random variables for material strength
are generally favorable. Random variables for actions may be unfavorable or favorable. An
increasing loading in certain cases may lead to decreasing internal forces at critical points of
statically indeterminate systems. Nevertheless, such a loading is classified as unfavorable to
preserve consistency.

Characteristic values are defined as quantile values

xik = µi + δi σi (E.24)
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320 Appendix E Reliability with Multivariate Random Variables

with quantile coefficients δi. They are determined as

δi = Φ−1(Pi) (E.25)

with the inverse of the probability function Φ and the quantile probability Pi. A common
choice is Pi = 0.05 – 5% of all samples of Xi are below xik – in the case of a favorable Xi

leading to δi = −1.65 and furthermore Pi = 0.95 – 95% of all samples of Xi are below xik –
in the case of an unfavorable Xi leading to δi = 1.65.

A partial safety factor for a favorable random variable is defined as

γi =
xik
xid

=
µi − |δi|σi
µi − βαi σi

=
1− |δi| νi
1− βαi νi

> 1 (E.26)

and for an unfavorable random variable as

γi =
xid
xik

=
1− βαi νi
1 + δi νi

> 1 (E.27)

with the coefficient of variation
νi =

σi
µi

(E.28)

Such an approach may result in different partial safety factors for the same action in cases
when the action is favorable in one position of the structure and unfavorable in another
position. A global safety factor

γ =
x1k

x2k
=
x1k

x1d

x2d

x2k
= γ1 γ2 (E.29)

can be derived in the very special case of n = 2 with a favorable resistance random variable
X1 and another unfavorable action random variable X2 and a0 = 0, a2 = −a1 regarding the
limit-state function (Eq. (E.3)).

Two significant aspects have to be regarded while deriving partial safety factors. The
failure probability or reliability index β, respectively, and the quantile coefficients δi are
generally prescribed. More or less reliable estimations can be made for coefficients of variation
νi based on statistical data. A first aspect is that the sensitivity parameters αi are often
afflicted with a major uncertainty.

A second aspect concerns the dependences between sensitivity parameters, see Eq. (E.9).
Such dependences are inconvenient properties regarding partial safety factors for resistances
and actions. The latter ones should be chosen independent from the construction type.
But this is not possible for a given target reliability index due to the dependences between
sensitivity parameters. Thus, sensitivity parameters are assumed on the “safe” with relatively
large absolute values concerning Eq. (E.26) and relatively small absolute values concerning
Eq. (E.27) while not fulfilling Eq. (E.10) [35, B.5]. On the other hand, additional safety is
created with this approach as the reliability index β increases as a side effect.

A final issue concerns the combination of different random variables into one in order to
facilitate practical design. So-called combination coefficients are used to combine actions like
live load with, e.g., wind load using the respective characteristic values instead of using own
partial safety factors [35, B.8].
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Appendix F

Programs and Example Data

A computational model, see Fig. 1.1, should be available under the website

• http://www.concrete-fem.com.

It is written as Python 2.7 source code

• (→ http://www.python.org)

whereby using parts of

• NumPy (→ http://www.numpy.org),

• Scipy (→ http://www.scipy.org),

• matplotlib (→ http://matplotlib.org).

It is provided as a number of modules. The modules all have a prefix X. This is a placeholder
and might be subject to change. The following modules are currently used:

X-Fem Main module inluding all described analysis types
with finite elements

X-SimFem Simplified main module with reduced analysis possibilities
X-FemBasics Basic finite element procedures
X-FemInOut Input, output and plotting of data
X-FemMat Procedures related to material types
X-FemElem Procedures related to element types
X-FemSteps Procedures related to loadings and boundary conditions
X-PlaD Reinforcement design for plates and slabs based on

linear elastic analysis
X-Simplex Ideal plastic analysis for 2D trusses with the Simplex method
X-ExpliFem Main module for explicit dynamic analysis
X-PostPlot Plot of given results only
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These modules altogether form the X-package. Modules may be edited and executed using
an integrated development environment (IDE) like

• Idle

Idle is part of the basic python package. An alternative IDE is given as

• Eclipse

which has to be installed separately with Python support as plug-in.
Most of the examples of this textbook are computed executing one of the above listed

modules. Corresponding data are also available under http://www.concrete-fem.com and
are organized with a leading name according to a scheme

• <name> := E<chapter>-<example>

whereby <chapter> and <example> have to be replaced with their actual numbers and
<name> is a prefix for files belonging to a particular example problem.

Some examples are not connected with computations. A rest of examples is treated with
the computer algebra system (CAS) Maple 7. The corresponding sheets should also be
available under http://www.concrete-fem.com.

A list of all examples follows ordered with <Chapter>.<Example> with a notation of a
used module or other program:

2.1 Concrete tensile bar with localization X-Fem
2.2 Concrete tensile bar with creep and imposed strains X-Fem
2.3 Simple uniaxial smeared crack model -
2.4 Reinforced concrete tension bar X-Fem
3.1 Computation of moment-curvature relations for given

normal forces X-FemMat
3.2 Simple reinforced concrete beam X-Fem
3.3 Creep deformations of reinforced concrete beam X-Fem
3.4 Effect of temperature actions on a reinforced concrete beam X-Fem
3.5 Effect of tension stiffening on a reinforced concrete beam

with external and temperature loading X-Fem
3.6 Prestressed reinforced concrete beam X-Fem
3.7 Stability limit of cantilever column Maple
3.8 Ultimate limit for reinforced concrete cantilever column X-Fem
3.9 Beam under impact load X-Fem
4.1 Deep beam with strut-and-tie model X-Fem
4.2 Corbel with an elastoplastic strut-and-tie model X-Fem
4.3 Corbel with rigid-plastic strut-and-tie model X-Simplex
5.1 Modeling of biaxial stress–strain behavior with

orthotropic hypoelasticity -
5.2 Mises elastoplasticity with special consideration

of uniaxial behavior -
5.3 Uniaxial stress–strain relations with Hsieh–Ting–Chen damage Maple
5.4 Gradient damage formulation for the uniaxial two-node bar –

mailto:Ulrich.Haeussler-Combe@tu-dresden.de
http://www.tu-dresden.de/biwitb/mbau
http://www.tu-dresden.de
http://www.concrete-fem.com
http://www.concrete-fem.com


Appendix F Programs and Example Data 323

6.1 Continuous interpolation of stress fields with the quad element –
6.2 Reinforcement design for a deep beam with

linear elastic internal forces X-PlaD
6.3 Simulation of cracked reinforced deep beam X-Fem
7.1 Linear elastic rectangular slab with opening and free edges X-SimFem
7.2 Reinforcement design for a slab with linear elastic internal forces X-PlaD
7.3 Computation of shear forces and shear proof X-PlaD
7.4 Elastoplastic rectangular slab with opening and free edges X-Fem
8.1 Convergence study for linear simple slab X-SimFem
8.2 Nonlinear calculation for a simple slab X-Fem
8.3 Simple slab with yield line method -
9.1 Analytical failure probability of cantilever column Maple
9.2 Approximate failure probability of cantilever column

with a Monte Carlo simulation Maple
9.3 Safety factors for single span beam with distributed loading Maple

The data of a particular problem treated by the X-package are given with plain ASCII
files with a naming scheme

• <name>.<type>.txt

They should be editable with basic editors on all systems, but should remain as plain ASCII
files after editing. The types for the problem data are as follows:

<type> user defined written
by a module

input Model data mandatory –
opt Options for written files optional –
plt Scaling factors for plots optional –
protocol Protocol of computation – always
elemout Results for element integration points – always
nodeout Results for nodes – always
timeout Results for every time increment for

selected nodes – if opt exists

An optional file <name>.pkl contains restart data.

Files of type input are organized through sections. Every section starts with a key word
which may be followed by options. The following section keywords are currently used:

followed by
*NODE Nodal data
*SOLID SECTION Definitions for bars, trusses, plates with reference

to material types and element types
*BEAM SECTION Definitions for beam structures with reference

to material types and element types
*SHELL SECTION Definitions for slab and shell structures with reference
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*MATERIAL Material types and their parameters
*ELEMENT Elements with their nodes
*STEP Definitions for type of simulation, the incrementally

iterative procedure to be used, boundary conditions,
loading and output intervals

Simulation steps have to be distinguished from time or load factor increments.

• A step defined by a section keyword *STEP comprises a period with a application of
a particular simulation type on the model defined by the other section keywords. It
contains a sequence of time or load factor increments as defined within a step.

A whole simulation must have at least one step but may consist of a sequence of steps, e.g.,
a step with a dynamic simulation may follow a quasistatic simulation whereby the final state
of the former define the initial state of the latter.

Each section in files of type input may be followed by further keywords each begin-
ning with a *. Further documentation about keywords should be available under http:
//www.concrete-fem.com. A line with leading ** may be used as comment line and is
ignored. Leading blanks and blank lines are generally ignored.

Files for results are organized as follows.
Files with a type nodeout have superordinated output sections for every point in time

or load history defined for output in the *STEP-section of input-files. Every node has a line
within every output section with data for coordinates, values for nodal degrees of freedom
and internal nodal forces. Types of nodal degrees of freedom and nodal forces depend on the
element type, i.e., are different for, e.g., beam elements and plate elements.

Files with a type elemout also have superordinated output sections for every point in time
or load history defined for output in the *STEP-section of input-files. Subsections correspond
to every element. Every element integration point has a line within every element subsection
with data for coordinates and further values like, e.g., generalized strains and stresses and
further values depending on the element and material type.

Files with a type timeout have a line for all computed time increment with values of
every nodal degree of freedom as is defined in a file of type opt.

Further documentation about contents of the file types elemout and timeout and about
the syntax of files of type opt should be available under http://www.concrete-fem.com.

mailto:Ulrich.Haeussler-Combe@tu-dresden.de
http://www.tu-dresden.de/biwitb/mbau
http://www.tu-dresden.de
http://www.concrete-fem.com
http://www.concrete-fem.com
http://www.concrete-fem.com


Bibliography

[1] B. Ayyub and R. McCuen. Probability, statistics and reliability for engineers and scien-
tists. Chapman & Hall/CRC, Boca Raton, FL, 2nd edition, 2003.

[2] K. Bathe. Finite Element Procedures. Prentice-Hall, Englewood Cliffs, NJ, 1996.

[3] K. Bathe. The inf-sup condition and its evaluation for mixed finite element methods.
Computers and Structures, 79:243–252, 2001.

[4] Z. P. Bažant and S. Baweja. Creep and shrinkage prediction model for analysis and
design of concrete structures – model b3. Materials and Structures, 28(6):357–365,
1995.

[5] Z. P. Bažant, F. Caner, I. Carol, M. D. Adley, and S. A. Akers. Microplane model
m4 for concrete. i. formulation with work conjugate deviatoric stress, ii: Algorithm and
calibration. Journal of Engineering Mechanics, 126:944–980, 2000.

[6] Z. P. Bažant and J. Planas. Fracture and Size Effect in Concrete and Other Quasibrittle
Materials. CRC Press, Boca Raton, FL, 1998.

[7] A. Belarbi and T. Hsu. Constitutive laws of concrete in tension and reinforcing bars
stiffened by concrete. ACI Structural Journal, 91(4), 1994.

[8] T. Belytschko, Y. Krongauz, D. Organ, M. Fleming, and P. Krysl. Meshless methods:
an overview and recent developments. Comput. Methods Appl. Mech. Eng., 139:3–46,
1996.

[9] T. Belytschko, W. Liu, and B. Moran. Nonlinear Finite Elements for Continua and
Structures. John Wiley & Sons, Chichester, 2000.

[10] J. M. Biggs. Introduction to Structural Dynamics. McGraw-Hill, New York, 1964.

[11] M. Bischoff. Theorie und Numerik einer dreidimensionalen Schalenformulierung. Insti-
tut für Baustatik, Bericht Nr.30, Universität Stuttgart, 1999.

[12] P. Bischoff. Effects of shrinkage on tension stiffening and cracking in reinforced concrete.
Can. J. Civ. Eng., 28:363–374, 2001.

[13] A. Bower. Applied mechanics of solids. CRC Press, Boca Raton, FL, 2010.

Computational Methods for Reinforced Concrete Structures. First Edition. Ulrich Häussler-Combe.
© 2015 Ernst & Sohn GmbH & Co. KG. Published 2015 by Ernst & Sohn GmbH & Co. KG.

mailto:Ulrich.Haeussler-Combe@tu-dresden.de
http://www.tu-dresden.de/biwitb/mbau
http://www.tu-dresden.de


326 Bibliography

[14] C. Bucher. Computational Analysis of Randomness in Structural Mechanics. CRC Press,
2009.

[15] I. Carol, E. Rizzi, and K. Willam. On the formulation of anisotropic elastic degradation.
I. Theory based on ap seudo-logarithmic damage tensor rate.II.Generalized pseudo-
Rankine model for tensile damage. International Journal of Solids and Structures, 38:491
– 546, 2001.

[16] CEB-FIP. Practitioners’ guide to finite element modelling of reinforced concretestruc-
tures. Bulletin Nr. 45. International Federation for Structural Concrete FIB, Lausanne,
2008.

[17] CEB-FIP. Design examples for strut-and-tie-models. Bulletin Nr. 61. International
Federation for Structural Concrete FIB, Lausanne, 2011.

[18] CEB-FIP. Model Code for Concrete Structures 2010. International Federation for Struc-
tural Concrete (FIB), Lausanne, Switzerland, 2012.

[19] L. Cedolin and S. D. Poli. Finite element studies of shear-critical r/c beams. Journal of
Engineering Mechanics, 103:395–410, 1977.

[20] J. Cervenka and V. K. Papanikolaou. Three dimensional combined fracture-plastic
material model for concrete. International Journal of Plasticity, 24(12):2192 – 2220,
2008.

[21] W. Chen and A. Saleeb. Constitutive Equations for Engineering Materials, Volume 1:
Elasticity and Modeling. Elsevier Science B.V., Amsterdam, 2nd edition, 1994.

[22] L. Damkilde and S. Krenk. Limits – a system for limit state analysis and optimal
material layout. Computers & Structures, 64(1-4):709 – 718, 1997.

[23] R. Desmorat, F. Gatuingt, and F. Ragueneau. Nonlocal anisotropic damage model
and related computational aspects for quasi-brittle materials. Engineering Fracture
Mechanics, 74:1539–1560, 2007.

[24] DIN EN 1992-1-1. Bemessung und Konstruktion von Stahlbeton- und Spannbetontrag-
werken - Teil 1-1: Allgemeine Bemessungsregeln und Regeln für den Hochbau, Januar
2011.

[25] E. Dvorkin and K. Bathe. A continuum mechanics based four-node shell element for
general nonlinear analysis. Eng. Comput., 1:77–88, 1984.

[26] EN 1992-1-1. Eurocode 2: Design of concrete structures – Part 1-1: General rules
andrules for buildings, December 2004.

[27] K. Fields and P. Bischoff. Tension stiffening and cracking of high-strength reinforced
concrete tension members. ACI Structural Journal, 101(4), 2004.

[28] P. Folino and G. Etse. Performance dependent model for normal and high strength
concretes. International Journal of Solids and Structures, 49:701–719, 2012.

mailto:Ulrich.Haeussler-Combe@tu-dresden.de
http://www.tu-dresden.de/biwitb/mbau
http://www.tu-dresden.de


Bibliography 327

[29] S. Foster, P. Marti, and N. Mojsilovic. Design of reinforced concrete solids using stress
analysis. ACI Structural Journal, 100:758–764, 2003.

[30] M. Geers, R. de Borst, W. Brekelmans, and R. Peerlings. Strain-based transient-gradient
damage model for failure analyses. Comput. Methods Appl. Mech. Eng., 160:133–153,
1998.

[31] K. Girkmann. Flächentragwerke. Springer-Verlag, Wien, 6th edition, 1974.

[32] P. Grassl, K. Lundgren, and K. Gylltoft. Concrete in compression: a plasticity theory
with a novel hardening law. International Journal of Solids and Structures, 39:5205–
5223, 2002.

[33] P. Grassl, D. Xenos, U. Nystrom, R. Rempling, and K. Gylltoft. Cdpm2: A damage-
plasticity approach to modelling the failure of concrete. International Journal of Solids
and Structures, 50:3805–3816, 2013.

[34] A. E. Green and W. Zerna. Theoretical Elasticity. Clarendon Press, Oxford, 1954.

[35] J. Grünberg. Grundlagen der Tragwerksplanung - Sicherheitskonzept und Bemes-
sungsregeln für den konstruktiven Ingenieurbau / Erläuterungen zu DIN 1055-100.
Beuth Verlag, Berlin, 1st edition, 2004.

[36] F. Gruttmann and W. Wagner. Shear correction factors in timoshenko’s beam theory
for arbitrary shaped cross-sections. Computational Mechanics, 27(3):199–207, 2001.

[37] H. Bachmann et.al. Vibration Problems in Structures – Practical Guidelines. Birkhäuser
Verlag, Basel, Boston, Berlin, 1995.

[38] T. Hampel, K. Speck, S. Scheerer, R. Ritter, and M. Curbach. High-performance con-
crete under biaxial and triaxial loads. J. Eng. Mech., 135(11):1274–1280., 2009.

[39] D. Han and W. Chen. A non uniform hardening plasticity model for concrete materials.
Mechanics of Materials, 4:283–302, 1985.

[40] J. Hartig, U. Häussler-Combe, and K. Schicktanz. Influence of bond properties on
the tensile behaviour of textile reinforced concrete. Cement and Concrete Composites,
30(10):898 – 906, 2008.

[41] U. Häussler-Combe and J. Hartig. Formulation and numerical implementation of a
constitutive law for concrete with strain-based damage and plasticity. International
Journal of Non-Linear Mechanics, 43(5):399–415, 2008.

[42] U. Häussler-Combe and J. Hartig. Evaluation of concrete cracking due to restrained
thermal loading and shrinkage. ACI Structural Journal, 109(1), 2012.

[43] J. He and Z. Fu. Modal Analysis. Elsevier B.V., Amsterdam, 2001.

[44] G. Hofstetter and H. A. Mang. Computational Mechanics of Reinforced Concrete Struc-
tures. Vieweg, Braunschweig; Wiesbaden, 1995.

mailto:Ulrich.Haeussler-Combe@tu-dresden.de
http://www.tu-dresden.de/biwitb/mbau
http://www.tu-dresden.de


328 Bibliography

[45] S. Hsieh, E. Ting, and W. Chen. A plasticity fracture-model for concrete. Int. J. Solids
Structures, 18:181–197, 1982.

[46] T. Hsu. Unified Theory of Reinforced Concrete. CRC Press, Boca Raton, FL, 1993.

[47] M. Jirasek. Nonlocal models for damage and fracture: comparison of approaches. In-
ternational Journal of Solids and Structures, 35:4133–4155, 1998.

[48] J. Joedicke. Schalenbau. Dokumente der Modernen Architektur 2. Karl Krämer Verlag,
Stuttgart, 1962.

[49] B. L. Karihaloo. Fracture Mechanics and Structural Concrete. Longman Scientific &
Technical Harlow, Essex, England, 1st edition, 1995.

[50] B. L. Karihaloo and Q. Z. Xiao. Accurate simulation of frictionless and frictional co-
hesive crack growth in quasi-brittle materials using xfem. In A. Carpinteri, P. Gam-
barova, G. Ferro, and G. Plizzari, editors, Fracture Mechanics of Concrete and Concrete
Structures – New Trends in FractureMechanicsofConcrete, pages 99–110, London, 2007.
Taylor & Francis Group.

[51] K.B. Gerstle et.al. Behavior of concrete under multiaxial stress states. Journal of the
Engineering Mechanics Division, 106(6):1383–1403, 1980.

[52] M. Kitzig and U. Häußler-Combe. Modeling of plain concrete structures based on an
anisotropic damage formulation. Materials and Structures, 44:1837–1853, 2011.

[53] W. B. Krätzig and H. J. Niemann. Dynamics of Civil Engineering Structures. A.A.
Balkema, Rotterdam, 1996.

[54] E. Kreyszig. Advanced Engineering Mathematics. John Wiley & Sons, 9th edition
edition, 2006.

[55] E. Kuhl, E. Ramm, and R. de Borst. An isotropic gradient damage model for quasi-
brittle materials. Comput. Methods Appl. Mech. Eng., 183:87–103, 2000.

[56] E. Kuhl, E. Ramm, and K. Willam. Failure analysis of elasto-plastic material models on
different levels of observation. International Journal of Solids and Structures, 37:7259–
7280, 2000.

[57] H. Kupfer, H. Hilsdorf, and H. Rüsch. Behavior of concrete under biaxial stresses. ACI
Journal, 66:656–666, 1969.

[58] G. Lee, H. Chung, and C. Choi. Adaptive crack propagation analysis with the element-
free galerkin method. Int. J. Numer. Meth. Eng., 56:331–350, 2003.

[59] J. Lemaitre and R. Desmorat. Engineering Damage Mechanics. Springer-Verlag, Berlin,
2005.

[60] M. Leukart and E. Ramm. Identification and interpretation of microplane material laws.
Journal of Engineering Mechanics, 132:295–305, 2006.

mailto:Ulrich.Haeussler-Combe@tu-dresden.de
http://www.tu-dresden.de/biwitb/mbau
http://www.tu-dresden.de


Bibliography 329

[61] K. Liao, P. Chang, Y. Peng, and C. Yang. A study on characteristics of interfacial
transition zone in concrete. Cement and Concrete Research, 34:977–989, 2004.

[62] P. Liu and A. Kiureghian. Multivariate distribution models with prescribed marginals
and covariances. Probabilistic Engineering Mechanics, 1:105–112, 1986.

[63] D. G. Luenberger. Linear and Nonlinear Programming. Addison-Wesley, Reading, MA,
2. Auflage edition, 1984.

[64] L. E. Malvern. Introduction to the Mechanics of a Continuous Medium. Prentice-Hall,
Englewood Cliffs, NJ, 1st edition, 1969.

[65] P. Marti. Theory of Structures – Fundamentals, Framed Structures, Plates and Shells.
Ernst & Sohn, Berlin, 2013.

[66] H. Matthies and G. Strang. The solution on nonlinear finite element equations. Inter-
national Journal for Numerical Methods in Engineering, 14:1613–1626, 1979.

[67] G. Mehlhorn and J. Kollegger. Anwendung der Finite Elemente Methode im Stahlbe-
tonbau. In G. Mehlhorn, editor, Der Ingenieurbau - Rechnerorientierte Baumechanik,
pages 293–425. Ernst & Sohn, 1996.

[68] B. Möller and M. Beer. Fuzzy randomness / uncertainty in civil engineering and com-
putational mechanics. Springer, Berlin; Heidelberg [u.a.], 2004.

[69] T. Mori and K. Tanaka. Average stress in matrix and average elastic energy of materials
with misfitting inclusions. Acta Metallurgica, 21:571–574, 1973.

[70] J. Mosler and G. Meschke. Embedded crack vs. smeared crack models: a comparison of
elementwise discontinuous crack path approaches with emphasis on mesh bias. Comput.
Methods Appl. Mech. Eng., 193:3351–3375, 2004.

[71] M. P. Nielsen and L. C. Hoang. Limit Analysis and Concrete Plasticity. Taylor &
Francis, Boca Raton, FL, 3rd edition, 2010.

[72] J. Olivier, A. Huespe, M. Pulido, and E. Chavez. From continuum mechanics to fracture
mechanics: the strong discontinuity approach. Engineering Fracture Mechanics, 69:113–
136, 2002.

[73] N. Ottosen. A failure criterion for concrete. Journal of Engineering Mechanics, 103:527–
535, 1977.

[74] J. Pamin. Gradient plasticity and damage models: a short comparison. Computational
Materials Science, 32:472–479, 2005.

[75] R. Peerlings, R. de Borst, W. Brekelmans, and J. de Vree. Gradient enhanced damage
for quasi-brittle materials. Int. J. Numer. Meth. Eng., 39:3391–3403, 1996.

[76] R. Peerlings, M. Geers, R. de Borst, and W. Brekelmans. A critical comparsion of
nonlocal and gradient-enhanced softening continua. International Journal of Solids and
Structures, 38:7723–7746, 2001.

mailto:Ulrich.Haeussler-Combe@tu-dresden.de
http://www.tu-dresden.de/biwitb/mbau
http://www.tu-dresden.de


330 Bibliography

[77] S. Pijaudier-Cabot and Z. P. Bažant. Nonlocal damage theory. Journal of Engineering
Mechanics, 113:1512–1533, 1987.

[78] K. Rahal and M. Collins. Analysis of sections subjected to combined shear and torsion
– a theoreticalmodel. ACI Structural Journal, pages 459–469, 1995.

[79] K. Rahal and M. Collins. Combined torsion and bending in reinforced concrete beams.
ACI Structural Journal, March-April:157–165, 2003.

[80] J. Reddy. On locking-free shear deformable beam finite elements. Comp. Meth. Applied
Mech. Eng., 149:113–132, 1997.

[81] G. Rombach. Anwendung der Finite-Elemente-Methode im Betonbau. Ernst & Sohn,
Berlin, 2nd edition, 2006.

[82] C. J. Roy and W. L. Oberkampf. A comprehensive framework for verification, validation,
and uncertainty quantification in scientific computing. Comput. Methods Appl. Mech.
Eng., 200:2131–2144, 2011.

[83] L. E. Schwer. An overview of the ptc 60/v&v 10: guide for verification and validation
in computational solid mechanics. Engineering with Computers, 23(4):245–252, 2007.

[84] M. J. sek and Z. P. Bažant. Inelastic Analysis of Structures. John Wiley & Sons, New
York, 1st edition, 2001.

[85] G. Sih. Mechanics of Fracture Initiation and Propagation, volume 11 of Engineering
Applications of Fracture Mechanics. Springer, Netherlands, Amsterdam, 1991.

[86] P. Spanos and B. Zeldin. Monte carlo treatment of random fields: a broad perspective.
Appl. Mech. Rev., 51:219–237, 1998.

[87] B. Specht. Modified shape functions for the three-node plate bending element passing
the patch test. Int. J. Num. Meth. Eng., 26:705–715, 1988.

[88] G. Stefanou. The stochastic finite element method: Past, present and future. Comput.
Methods Appl. Mech. Eng., 198:1031–1051, 2009.

[89] M. Stolarska, D. L. Chopp, N. Moes, and T. Belytschko. Modelling crack growth by
level sets in the extended finite element method. Int. J. Numer. Meth. Eng., 51:943–960,
2001.

[90] J. van Mier. Multiaxial strain-softening of concrete. Materials and Structures, 19(3):190–
200, 1986.

[91] J. van Mier et. al. Strain-softening of concrete in uniaxial compression. Materials and
Structures, 30(3):195–209, 1997.

[92] F. Vecchio and M. Collins. The modified compression-field theory for reinforced concrete
elements subjected to shear. ACI Journal, 83-22:219–231, 1986.

[93] F. Vecchio and R. Selby. Toward compression-field analysis of reinforced concrete solids.
Journal of Structural Engineering, 117(6):1740–1758, 1991.

mailto:Ulrich.Haeussler-Combe@tu-dresden.de
http://www.tu-dresden.de/biwitb/mbau
http://www.tu-dresden.de


Bibliography 331

[94] K. Willam and E. Warnke. Constitutive model for the triaxial behavior of concrete. In
IABSE Proceedings Vol. 19. International Association for Bridge and Structural Engi-
neering, 1975.

[95] P. Wriggers. and S. Moftah. Mesoscale models for concrete: Homogenisation and damage
behaviour. Finite Elements in Analysis and Design, 42:623–636, 2006.

[96] W. Wunderlich andW. Pilkey. Mechanics of Structures – Variational and Computational
Methods. CRC Press, Boca Raton, FL, 2nd edition, 2003.

[97] H. Ziegler. An Introduction to Thermomechanics. North-Holland, Amsterdam, 1st
edition, 1977.

[98] O. C. Zienkiewicz and R. L. Taylor. The Finite Element Method, Volume 1. McGraw-
Hill, London, 4th edition, 1989.

[99] O. C. Zienkiewicz and R. L. Taylor. The Finite Element Method, Volume 2. McGraw-
Hill, London, 4th edition, 1991.

mailto:Ulrich.Haeussler-Combe@tu-dresden.de
http://www.tu-dresden.de/biwitb/mbau
http://www.tu-dresden.de


mailto:Ulrich.Haeussler-Combe@tu-dresden.de
http://www.tu-dresden.de/biwitb/mbau
http://www.tu-dresden.de


Index

A
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analysis

dynamic, 21, 71
limit, 193
modal, 110
quasistatic, 18, 71
second order, 104
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angle
dilatancy, 164
external friction, 162
internal friction, 161

anisotropy, 144
load-induced, 149, 176

approximation, 313
arc length method, 300
area coordinates, 234

B
beam, 55

Bernoulli beam, 56, 71
Timoshenko beam, 56, 71

behavior
long term, 27
short-term, 27

benchmark test, 3
Bernoulli beam element, 72

extended, 74, 76
Bernoulli–Navier hypothesis, 56, 222, 255
BFGS method, 50, 300
body, 3, 7, 138
bond, 213

flexible, 44

law, 44
perfect, 53

boundary conditions
Dirichlet, 23
displacements, 4, 80
essential, 4
forces, 5
natural, 5
Neumann, 23

C
calibration, 2
Clausius–Duhem inequality, 190
cohesive crack

law, 172
model, 136, 172

compliance, 13, 35
compression

field, 118
zone, 60

compression field theory
modified, 195

configuration, 138
reference, 138

consistency, 22
constraint

internal force, 87
stress, 39

continuity, 11, 25
convergence, 23, 25
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Cartesian, 7, 309
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correlation, 282
crack

closure, 177
cohesive, 33
energy, 33
fictitious, 32, 136, 172
fixed, 176, 206
formation, 53
initiation, 205
multiple, 176
propagation, 206
rotating, 206
single, 306
smeared, 45, 174
stabilized, 53, 90
strain, 174
tangential cracking plane, 172
width critical, 207

crack band, 30
width, 32

crack-band
method, 183

creep, 34
coefficient, 37
function, 34
linear, 34
time, 37

cross section
rotation angle, 56, 222

cross-section
height, 58
width, 58

D
damage, 137

anisotropic, 170
isotropic, 165
orthotropic, 170
scalar variable, 165
strain based, 166
stress-based, 168

damage function, 166
Hsieh–Ting–Chen, 166
Rankine, 166

damping, 114

design
deterministic, 291
point, 286
probabilistic, 292
semiprobabilistic, 292

deviatoric
angle, 150
length, 150
plane, 149
projection, 164
unit matrix, 140

dilatancy, 164
Dirac-Delta function, 35
discontinuum, 136
discretization, 1

spatial, 14, 24
temporal, 21

displacement, 138
distribution function, 282
dowel action, 176
Drucker stability postulate, 191
ductility, 33, 42, 133
durability, 3

E
eigenstress, 275
eigenvalue problem, 142
elastoplasticity, 41, 126

Drucker–Prager, 161
Mises, 158
Mohr–Coulomb, 161

element length
characteristic, 208

energy
dissipation, 42, 114
internal, 11, 141, 190

equilibrium
dynamic, 68
strong differential, 14, 228
weak integral, 14, 230

error
discretization, 23, 24
mathematical approximation, 2, 15
modeling, 2

evolution law, 148
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F
failure

brittle, 181
quasi-brittle, 180

failure probability, 285
fiber models, 68
flow rule, 126, 157, 163
fracture

brittle, 171
ductile, 172
mode, 171
quasi-brittle, 171
type, 171

function
shape function, 4
test function, 15
trial function, 15

G
gradient damage, 186

H
Haigh–Westergaard coordinates, 149
hardening, 28, 41

isotropic, 42
modulus, 160

Heaviside function, 35
homogeneity, 135
hour glassing, 268
hydrostatic

axis, 149
length, 150

hypoelasticity, 155

I
impact, 111
integration

Gauss integration, 17
numerical, 17

internal forces
beam, 58

interpolation, 3, 11
invariant, 143
isotropy, 143, 148

J
Jacobian, 7, 72

K
Kelvin Voigt

chain, 36
element, 36

kinematic assumption
bar, 8
beam, 56
continuum, 10
slab, 222
spring, 9
truss, 119

kinematic constraint, 178
Kuhn–Tucker condition

damage, 167
plasticity, 126, 157

L
layer model, 226
limit analysis

lower bound, 128, 193, 240
upper bound, 128, 276

limit state
stress, 148

limit theorems plasticity, 128
limit-state

condition, 284
function, 284

linearity
geometrical, 6, 101
physical, 6, 16

load path method, 117
localization, 30, 180
locking, 11, 26, 76, 78, 266

transverse shear, 267
LU decomposition, 298

M
macroscale, 29, 136
mass matrix, 15
material

evolution law, 13, 148
isotropic linear elastic, 144
law, 5
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matrix, 6
point, 7, 138
tangential stiffness, 13, 141, 147, 148,

164
Maxwell

element, 36
series, 36

meridian
compressive, 151
tensile, 151

mesh generation, 15
mesoscale, 29, 135
microscale, 29
model

computational, 2
conceptual, 1
mathematical, 1
numerical, 1

Monte Carlo simulation, 288

N
natural

circular frequency, 109
period, 108, 109

Newmark method, 21, 111
Newton–Raphson method, 18

modified, 298
nodal forces

external, 6, 15
internal, 6, 15

nonlinearity
geometrical, 101
physical, 6

nonlocal method, 184
differential form, 185

norm, 18, 24

O
orthotropy, 144
overlay

of elements, 215

P
parameter, 2
patch test, 26

plasticity, 41, 137
associated, 158
deviatoric, 165
nonassociated, 163

plate, 115, 193
prediction, 3
pressure, 140
prestressing

tendon, 95
with bond, 97
without bond, 97

principal
moments, 241
strain direction, 142
strain state, 142
stress, 142
stress direction, 142
stress space, 149
stress state, 115, 142
system, 142

probability, 281
density function, 282

process zone, 30
product

dyadic, outer, 158
property, 1
punching, 250

Q
quad element, 10

R
random variable

bivariate, 282
multivariate, 282
univariate, 282

randomness, 281
Rankine

criterion, 174, 205
limit function, 163

Rayleigh quotient, 110
realization, 282
reference

axis, 55
configuration, 143
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period, 283
plane, 222

regularization, 182
reinforcement

embedded, 219
group, 197
mesh, 213
sheet, 214, 227

relaxation, 34
function, 36

Rendulic
direction, 149
plane, 150

representative volume element, 135
residual, 18
rheological model, 36
rigid-plasticity, 126

S
safety

margin, 287, 291
safety factor

global, 320
partial, 293, 320

samples, 282
secant method, 299
serviceability, 3
shear

angle, 56, 222
modulus beam, 58
retention factor, 177

shell, 255
director, 255
displacement, 257
five parameter model, 260
geometry, 256

shrinkage, 38
simplex method, 127, 130
size effect, 138
slab, 221

Kirchhoff, 223, 229, 233
Reissner–Mindlin, 223, 232

snap-back, 31, 180, 181
Sobolev

function space, 23
norm, 24, 25

softening, 28, 163
space point, 138
split

normal tangential, 178
volumetric deviatoric, 179
volumetric deviatoric tangential, 179

stability
numerical, 22

state variable
internal, 13, 148, 166

static constraint, 178
stiffness matrix, 6

tangential, 16, 18
strain, 139

equivalent, 166
generalized, 11, 223
imposed, 38
measurable, 38, 86
plane, 11, 145
rate, 141
softening, 180
vector, 178
volumetric, 163

strength
biaxial, 153
condition, 126, 148
surface, 149
triaxial, 149
uniaxial, 154

stress
Cauchy stress, 11, 139
deviatoric, 140
generalized, 11, 224
plane, 11, 146
rate, 141

strut, 92, 117
strut-and-tie model, 117

T
temperature, 38
tension

softening, 30
stiffening, 52

test function, 23, 24, 69, 72
thickness, 222
tie, 92, 117
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trajectory
method, 117
principal stress, 116

transfer length, 304
trial function, 23, 24, 72
triaxial cell, 151

U
uncertainty

aleatoric, 281
epistemic, 281

unit loading, 193
updated Lagrangian discretization

corotational, 104

V
validation, 2
value

characteristic, 292, 319
design, 319

variables, 1
virtual work principle, 5, 13, 70
viscoelasticity, 36
Voigt notation

strain, 139
stress, 140

Y
yield function, 157

Drucker–Prager, 161
Mises, 158
Mohr–Coulomb, 161

yield line method, 276

Z
zero line, 59
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