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Preface 

From 26 to 28 March 2008, a conference entitled “Fiabilité des matériaux et des 
structures” (“Reliability of materials and structures”, JNFiab’08)1 took place at the 
University of Nantes, France, bringing together the French scientific communities 
interested in reliability and risk analysis, as applied to materials and structures. This 
colloquium followed on from several different events: the fifth “Reliability of 
materials and structures” conference, the second Méc@proba training day2 and the 
second scientific session in the subject area of “Understanding risk in civil 
engineering” (MRGenCi scientific interest group3).  

It combined their themes and concerns as an extension of the first shared 
workshop between the Associations Françaises de Génie Civil (AFGC, or French 
Associations of Civil Engineering4) and the Associations Françaises de Méchanique 
(AFM, or French Associations of Mechanical Engineering)5, during the twenty-fifth 
annual meeting of the Association Universitaire de Génie Civil (AUGC, Universities 
civil engineering association6) held on 23–25 May 2007, in Bordeaux, France. 

This book was first conceived during these sessions, organized by the MRGenCi 
and Méc@Proba scientific interest groups, where the authors gave presentations on 
the advances they have made in their respective fields. 

Although the examples of structures that can be found in this book fall under the 
umbrella of civil engineering (nuclear and oil industries, buildings and dams), the 

                                   
1 http://www.sciences.univ-nantes.fr/jfms2008/DownloadJFMS2008.pdf. 
2 http://www.lamsid.cnrs-bellevue.fr/vf/actualites/journee_proba/plaquette_proba.pdf. 
3 http://www.mrgenci.u-bordeaux1.fr/. 
4 http://www.afgc.asso.fr/. 
5 http://www.afm.asso.fr/. 
6 http://www.augc.asso.fr/. 
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methods we consider are just as applicable to any sort of complex mechanical 
system involving a large number of uncertainties. Thus the book is of interest to the 
civil engineering community but also to mechanical engineers or those interested in 
reliability theory, whether their background is in industry or academia, who have 
been exposed to research and development processes. Masters students, engineering 
students and doctoral students, engineers and research associates will all find a 
detailed discussion of methods and applications.  

The authors are indebted to the two main proofreaders, with their complementary 
backgrounds. The first is Maurice Lemaire, a university professor who teaches at the 
Institut Français de Mécanique Avancée (IFMA, French Institute for Advanced 
Mechanical Engineering7) and at the Blaise Pascal University8 (UBP) at Clermont-
Ferrand, and who is consultant to the company Phimeca9 which he co-founded. The 
second is André Lannoy, Vice-President of the Institut pour la Maîtrise des Risques 
(IMdR, Institute for Risk Management10), who built his career as a research engineer 
and subsequently as scientific adviser to the research and development section of 
EDF. In particular, André Lannoy co-organizes the working group “Sécurité et 
sûreté des structures” (GTR 3S, Safety and reliability of structures11), a group which 
counts several of the authors of this book among its members. 

The authors would like to express their particular gratitude to Maurice Lemaire 
for his contributions to the development of the field of structural reliability. The few 
brief paragraphs below give a short overview of his career and his contributions to 
scientific production, advocacy and above all to training, which has inspired several 
of the authors to pursue their career paths.  

After receiving his diploma from the Institut National des Sciences Appliquées, 
(INSA12, National Institute for Applied Sciences), in Lyon in 1968, followed by 
further studies in applied mathematics (1969), Maurice Lemaire received his 
doctorate in engineering (1971). Following his higher state doctorate (1975), he was 
appointed a position at CUST (the engineering school that became the Polytech’ 
Clermont-Ferrand13), within the Blaise Pascal University (1976). He was involved in 
the founding of the IFMA (1987), where he has been a professor since 1991.  

                                   
7 http://www.ifma.fr/. 
8 http://www.univ-bpclermont.fr/. 
9 http://www.phimeca.com/. 
10 http://www.imdr.eu. 
11 http://www.imdr.eu/v2/extranet/detail_gtr.php?id=36. 
12 http://www.insa-france.fr/. 
13 http://www.polytech-clermontferrand.fr/. 



Preface     xv 

Maurice Lemaire founded the Laboratoire de Recherches et applications en 
Mécanique Avancée (LaRAMA, Research and applications in advanced mechanics 
research group) in 1989 (and the IFMA/UBP laboratory, which is now LaMI14), 
where he has been a director since 2005. Head of research at IFMA from 1991 to 
2007, he has supervised 44 doctoral students and participated in 180 thesis 
examinations. 

Co-founder of the “Fiabilité des matériaux et des structures” symposium15 
(Cachan, 1994), co-organizer of the 7th International Conference on Applications of 
Statistics and Probability in Civil Engineering (ICASP16, 1995 in Paris), and then 
president of the International Civil Engineering Risk and Reliability Association 
(CERRA17) from 1995 to 1999, he is a member of the scientific committee of the 
International Federation for Information Processing’s working group 7.5 (IFIP WG 
7.5) on the reliability and optimization of structural systems18. Maurice Lemaire is 
also a founder of the Méc@proba meetings19 (Marne-la-Vallée, France, 2006). 

He is a promoter for the scientific commission “Mécanique probabiliste des 
matériaux et des structures” (Probabilistic mechanics of materials and structures20) 
of the AFM), and is responsible for numerous industrial research projects. He also 
contributes scientific insight and ongoing supervision into the growth of the 
company Phimeca Engineering, which he co-founded in 2001. 

There can be no doubt that Maurice Lemaire has contributed to the development 
of the science of structural reliability at a national and international level. 

The authors therefore recommend that readers consult his publications, which are 
cited throughout this book. 

The authors would like to express their gratitude towards the MRGenCi 
scientific interest group which made it possible to write this book. That group, 
created on the initiative of Messrs Breysse (Professeur at University of Bordeaux I), 
Boissier (Professeur at UBP), Melacca (SMA-BTP) and Gérard (PDG OXAND SA), 
now consists of more than 30 industrial companies, learned societies, universities 
and engineering schools.  

                                   
14 www.ifma.fr/lami/. 
15 www.sciences.univ-nantes.fr/jfms2008/DownloadJFMS2008.pdf. 
16 www.icassp2011.com/. 
17 www.ce.berkeley.edu/ projects/cerra/. 
18 www.era.bv.tum.de/IFIP/. 
19 www.lamsid.cnrs-bellevue.fr/vf/actualites/journee_proba/plaquette_proba.pdf. 
20 www.afm.asso.fr/PrésentationdelAFM/Commissions/MPMS. 
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We cannot speak highly enough of the authors, proofreaders and all the other 
people who have contributed to this book and to ensuring that it is received by a 
wide audience. 

Julien BAROTH 
Franck SCHOEFS 
Denys BREYSSE 

JUNE 2011 



 

Introduction  

Background and objectives 

This book describes and illustrates methods to improve prediction of the lifetime 
and management of civil engineering structures. This contributed collection aims to 
complete the existing literature and to provide access to both recent scientific 
approaches and examples of applications in study cases. The authors are drawn from 
amongst university academics, senior engineers and scientific managers in 
companies. Amongst others, Ditlevsen & Madsen [DIT 96], Melchers [MEL 99] and 
Lemaire [LEM 09] have already made significant contributions to structural 
reliability, that is to say, the study of the ability of a structure to perform a function 
(depending on its environment, life, etc.). Favre [FAV 04], [SUD 08b], by contrast, 
studied geotechnical structures. These last books introduced concepts of uncertainty 
related to materials and loads, as well as statistical and probabilistic methods applied 
to civil engineering. This book also uses these basic concepts, and notions of 
uncertainty or reliability, in particular, are discussed in this introduction.  

The authors’ main objective in this book is the presentation of recent methods of 
data processing and computation which have not been widely disseminated. Many of 
these methods have already been used in industrial applications: this book aims to 
present these applications through case studies and examples over a wide set of 
materials, buildings and structures in civil engineering. 

If the examples of structures presented in the following pages are limited to the 
field of civil engineering (whether in nuclear, oil, or dam building applications), the 
methods presented are applicable to any complex mechanical system in an uncertain 
environment. This book is mainly intended for those familiar with civil engineering, 
engineering mechanics or the theory of reliability, both from industry and academia, 

                                   
Introduction written by Julien BAROTH, Alaa CHATEAUNEUF and Franck SCHOEFS. 
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involved in research and development. Students, especially engineering students and 
PhD students, engineers and research fellows may also have an interest in the book. 

A civil engineering project is considered here to be a system that ensures one or 
more global functions. It consists of components, sub-structures, structures, human 
actors, procedures, and organization in a given environment. It performs the basic 
functions that contribute to the achievement of these global functions. The system is 
identifiable, and can be broken down into the functions it performs (a functional 
approach), or into structurally interdependent elements or subsystems (a structural 
approach). A civil engineering project is considered safe when it is fit for duty for 
the duration of its service life, without damage to itself or to its environment (French 
norm X60-010). The safety of a structure can be quantified by its probability of not 
providing any of its functions, at any moment of its expected lifetime.  

This probability of failure, denoted Pf, is mathematically complementary to the 
system reliability, often denoted R = 1-Pf.  

The objective of this book is to present the methods of functional analysis (Parts 
1, 4 and 5) and those of structural analysis (throughout the entire book), when the 
systems studied are in a working condition that does not induce damage to people, 
property or the environment. These systems are then considered to be safe. A 
significant section of the book is devoted to the calculation of reliability, which may 
or may not be dependent on time (see Parts 3 and 4). 

Some of the concepts developed throughout the book are introduced in the 
following section, which also raises a number of questions that the book later tries to 
answer and illustrate. 

Qualitative and quantitative methods of safety assessment for a construction 
project 

The study of the safety of a civil engineering structure may be conducted by 
system analysis, followed by an analysis of failure modes and modeling of failure 
scenarios, in order to answer some crucial questions: 

Question 1. How can we highlight the most likely failures and the most critical 
failure scenarios, which could potentially be the basis of risk analysis? 

Question 2. What are the preventive measures that can improve system safety? 

Part 1 of this book addresses these issues. It presents some methods of 
qualitative assessment of structural safety. These methods allow us to analyze a 
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system, its failure modes, and to model the failure scenarios in order to evaluate 
their criticality. An application of methods to assess the criticality of scenarios is 
then proposed for a hydro civil engineering work. 

Moving beyond qualitative methods, quantitative methods are also presented in 
Parts 2 to 5.  

For a given failure scenario, a third question might be: 

Question 3. How can we evaluate and reduce, when possible, the probability of 
events causing failure or, again when possible, how can we evaluate and reduce the 
gravity of failure consequences? 

Some answers to this question are given by an analysis of uncertainties in 
knowledge of a structure and the actions applied to it. It has been a deliberate choice 
in this book to focus on early uncertainties, in particular focusing on uncertainties in 
our knowledge of building materials. With regard to the study of applied actions, 
readers can refer to the following sources: [CEN 03], [CEN 05] on snow and wind 
climate loads, [SCH 08], [SMI 96] for wave action, or [PEY 09] regarding loads 
from hydrology. 

Materials with uncertain properties 

There are many sources of uncertainty related to materials. Being aware of them, 
or reducing them, will achieve greater safety [FAV 04]. Thus, the whole book 
attempts to answer the following questions: 

Question 4. How can we represent and use uncertain data, describing the 
geotechnical characteristics of materials? What are the consequences of 
heterogeneity and variability for structural safety? 

A first classification consists of combining uncertainties into two categories 
concerning the condition of the work considered: 

– uncertainties related to internal variables affecting the internal condition of the 
structure, such as material properties (elastic modulus, Poisson’s ratio, density, 
coefficient of thermal expansion, etc.), geometrical parameters (dimensions, 
moments of inertia, etc.), internal boundary conditions (excluding actions on areas 
or volumes) and internal links; 

– uncertainties related to external variables beyond the internal condition of the 
structure, such as natural actions (wind, waves, snow, temperature, earthquake, etc.) 
and operating loads (loads, operating loads, etc.). 
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In some cases these differences may be small, e.g. for a metal sheet pile wall, 
where uncertainty about the weight of the soil near the wall is external if we 
consider the resistance of the curtain, and internal if we consider stability (sliding). 
Table I.1 provides a more detailed typology of uncertainties that are not problematic. 

Type of uncertainty Nature of uncertainty Way to reduce uncertainty 

Aleatoric 
Inherent 
uncertainties 
(natural) 

Environmental 
parameters, spatial or 
temporal variability of 
material properties 

Cannot be reduced or 
eliminated; can only be 
quantified (development of 
knowledge, data 
acquisition) and taken into 
account1 

Epistemic 

Model 
uncertainties:  

Physical model 

Empirical and theoretical 
relationships to describe 
physical processes 
(adequacy between 
model and reality) 

Can be reduced by 
improving knowledge and 
models 

Model 
uncertainties: 
Statistical 
distribution 

Related to the limited 
data available 
(sampling), method of 
collection, etc. 

Can be reduced by treating 
the collection of data (more 
numerous, more accurate) 

Ontologic 
Human and 
organizational 
errors 

Human error and 
organizational operators, 
procedures, equipment 
and coordination among 
stakeholders  

Can be reduced through 
better organization and 
increased skills (monitoring, 
quality, training) 

1A better quality of processes and control scans reduce variability and remove glaring defects. 

Table I.1. Typology of uncertainties and means of action  

A second classification distinguishes random (or intrinsic) uncertainties and 
epistemic uncertainties, which are sometimes measurable and are likely to be 
modeled by random variables. This probabilistic format is easier to introduce into 
behavior models and to propagate through structural analyses. Amongst the 
uncertainties, we encounter the physical uncertainties that are inherent to the nature 
of a system, such as uncertain parameters: strength, loads, environment, geometric 
characteristics, boundary conditions, etc. However, uncertainties due to lack of 
knowledge of physical phenomena are epistemic because they can be reduced by 
getting more information, or by doing further research. 
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However, the gap between a real system and a model, whether simple or 
complicated, can also lead to uncertainty. This type of model uncertainty is 
epistemic: it can sometimes be incorporated into a calculation of reliability through 
the introduction of additional random variables to represent the dispersion of the 
model results (analytical, numerical or experimental) compared to the physical 
phenomenon. 

Table I.1 presents more ontological (or phenomenological) uncertainties, harder 
to identify than others. It describes the uncertainties attached to random processes or 
systems which have not been imagined (for example, the Concorde crash in Paris in 
2000) or which are too complex to be modeled [TAN 07]. 

Engineers should adopt an alternative attitude, just as philosophers should avoid 
the question: is reality random or not? Engineers are simply interested in objects, 
processes and phenomena that are not entirely predictable: uncertainty concerns 
engineers to the extent that it limits their ability to forecast [MAT 08]. More than the 
classification of uncertainties (which depends on a refinement of the models used), 
the priority is how to reduce or control them (as raised in Questions 3 and 4). 

Eurocode principles  

The European building code (Eurocodes) has been developed over the last 20 
years. This code allows the variability of materials in a deterministic formalism to be 
better accounted for, based on values defined on a probabilistic basis. This 
formalism is also based on failure situations formalized according to their 
consequences in terms of Serviceability Limit States (SLS) and Ultimate Limit 
States (ULS). SLS correspond to conditions beyond which the serviceability 
requirements specified for the work (or a part of it) are not met. These statements are 
generally related to demands of comfort (vibration, deflection), aesthetics (excessive 
distortion), durability (cracking, corrosion), the proper functioning of equipment 
(insulation, sealing, etc.), without resulting in short-term collapse of a structure. 
ULS are associated with the collapse of a structure, or other forms of structural 
failure: loosing the equilibrium of the work, reaching the maximum strength of a 
part of the structure, failure of the subgrade; it is defined as the accidental limit state 
(or progressive failure) for systems exposed to variable loads and to a fatigue limit 
state (condition of sustainability). The principle of the Eurocodes can be 
summarized as: 

– proposing an appropriate limit state for each failure scenario; 

– characterizing the parameters affecting the considered limit state criteria, using 
probabilistic and statistical tools; 



xxii     Construction Reliability 
 

– replacing the complete distributions of the probabilistic variables by average 
values and dispersion or, by characteristics values; 

– neglecting the dispersion of some data, considering them as deterministic; 

– taking into account the other neglected uncertainties, by introducing fixed 
coefficients. 

This regulatory approach is characterized as semi-probabilistic, because it 
incorporates a probabilistic modeling of uncertain parameters (b), while introducing 
partial safety factors (e). The second part of the Code recalls the definitions of 
particular values (characteristics values), (c), and uses the concept of semi-
probabilistic design. The Eurocodes are a compromise between inadequate 
deterministic design, and impractical probabilistic design.  

We can also make a distinction between four levels of reliability methods: 

– Level I: methods using some specific values for the variables (resistance and 
load, for example); each random variable is represented by a characteristic value 
with statistical content which is often poorly defined; 

– Level II: methods devoted to characterizing the random variables by their 
mean and variance; 

– Level III: methods requiring more knowledge of the joint probability 
distribution of all the random variables, and allowing a reliability index and failure 
probability to be obtained as a measure of safety; 

– Level IV: methods intending to provide a level of reliability integrating 
economic criteria: for example, taking into account the costs of construction, 
maintenance, repairs, failure consequences, etc. 

One or other of these four levels of reliability methods may be considered, 
depending on the size of the problem to be analyzed. 

For example, Level IV methods are devoted to the analysis of nuclear power 
plants, whilst Level I methods are applied when studying simple structures with 
lower stakes (warehouse storage products that are safe, etc.). The reliability 
assessment of structures with high stakes is theoretically Level III. However, a 
simplification is necessary, because the joint probability distribution of variables is 
difficult to assess. We usually just know the marginal distributions, sometimes with 
correlation coefficients to model the interdependence between variables. Such 
methods are called advanced Level II methods. 
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Variability and heterogeneity of materials 

Part 2 of this book seeks to answer Question 3 by showing how to use available 
data to describe their heterogeneity and variability. Chapter 4 deals with the 
characterization of uncertainty in geotechnical data. This part provides a complete 
set of methods: the identification of sources of uncertainty described above, the 
classification of data (outliers, censored and poor data), and statistical representation 
and modeling of these data (possibilistic or probabilistic). Readers are referred to 
other publications on this topic including [CEL 06], [LEM 99], where answers to 
Question 3, and to Question 5 (below) can be found. 

Question 5. How can we use limited or censored data? 

Chapter 5 presents estimates related to material variability (average,  
characteristic values), introduces geostatistical modeling tools (variograms, 
estimation and simulation methods) [MAR 09]. Chapter 6 provides an example of a 
shallow footing for which reliability is considered; the effect of soil variability on 
the variability of the bearing capacity and safety of the footing is studied; finally, the 
spatial correlation is taken into account to study its influence on the safety of the 
linear footing. 

Part 4, devoted to problems of time-variant reliability, completes Part 2 by 
showing how the enrichment of statistical analysis and the use of Bayesian 
approaches can be applied to samples of a small size (Chapter 11). 

The computation of reliability-coupled mechanical and reliability models  

Parts 2 to 5 of the book use the calculation of reliability indicators and answer 
the question: 

Question 6. How can we quantify the reliability of a system or a structure? 

This calculation involves various levels of complexity, concerning mechanical 
and probabilistic analyses. The complexity of the probabilistic model depends on the 
distributions of the variables, their physical limitations and their interdependence. 
The complexity of the mechanical behavior stems from its size (number of 
components), its transients and nonlinearities, etc.  

When an operating system depends on its mechanical condition, there is an 
interdependence between the roles of mechanical and reliability variables; this is 
called “mechanical-reliability coupling” [LEM 00], which can be described in five 
stages: 
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– identify the purpose of the structure: its function, behavior, operating 
conditions and possible failures (resulting from failure analysis); 

– develop predictive models of mechanical behavior with and without defects, 
and probability distributions of the design variables; 

– identify the possible failure scenarios. The appropriate functioning of the 
system is defined by the performance function Gi (or limit state) to be complied 
with. Failure is reached if one of these limit-states is exceeded. This analysis, often 
overlooked, is crucial and must be as thorough as that undertaken in (b); 

– for each failure scenario, determine the reliability level and the sensitivity 
factors. These latter are very useful in decision making for quality control and 
system optimization; finally, 

– assess the overall failure probability of the structural system and define the 
partial factors to be used for the calibration of the codes and regulations. 

We take x to be the vector of a model’s uncertain parameters ,ix  e.g. external 

actions (load, wind, wave, earthquake) or geometrical characteristics (size, area and 
moment of inertia of cross-sections), material properties (yield stress, Young’s 
modulus, Poisson’s ratio, etc.). We model each parameter with a random variable

,iX  characterized by a probability distribution representing the uncertainty related 

to this parameter (probabilistic model). This can be done using statistical studies, 
physical observations, or expert advice (usually a possibilistic model in that case). 

Each failure scenario is associated with a performance function (also known as a 
limit state function, or a safety margin), denoted G. The inequality G > 0 indicates 
the safety domain Ds, and inversely G ≤ 0 indicates the failure domain Df. The 
objective is to evaluate the probability Pf that the realizations of random variables 
belong to the failure domain. In the simple case of two variables representing the 
resistance R and load S, the performance function (or safety margin) is written as 
G (R, S) = R-S. In practice, the statistical parameters of the stress S, and sometimes 
those of the resistance R, are not directly accessible, because the measurements and 
observations are made only for the basic uncertain parameters of the vector x from 
which R and S originate. The variable G and the random vector X modeling x are 
connected by a mechanical transformation: G(R, S) = G(X). 

We can consider that this transformation is known (e.g. calculating a loading 
effect from a given depth of snow), although in some cases it is only available using 
an algorithm, as for example, using finite element software. In this book, the 
reliability indicators most often used are failure probability and reliability indices 
(both Cornell and Hasofer–Lind; see [LEM 09] for a detailed presentation):  
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– the probability of failure is evaluated by integrating the joint density function 
over the failure domain Df, where: 

[ ]Prob 0fP = G ≤  

– the Cornell index is the distance between the median point of the G margin and 
the point where the margin becomes zero (i.e. the failure point); this distance is 
measured in terms of number of standard deviations. In other words, if mG and σG 
represent the mean and the standard deviation of G, respectively, the Cornell index 
βC is written as: βC = mG / σG. If the margin is normally distributed, we can easily 
show that the failure probability is: 

( )f CP =Φ β−  

where Φ  is the standard normal cumulated distribution function. This expression is 
accurate when the distribution of G is Gaussian (a linear combination of two 
Gaussian variables, such as R-S, is Gaussian). If this condition is not verified, the 
Cornell index only gives a measurement that is no longer explicitly linked to the 
probability of failure. It is even less useful, as it implies assumptions such as the 
linearity of the margin and the normality of distributions; 

– the Hasofer–Lind reliability index [HAS 74] is an invariant estimator of 
reliability. Hasofer & Lind proposed it to change physical variables into standard 
Gaussian variables (i.e. with zero means and unit of standard deviation) and so that 
they would be statistically independent. In this so-called standard space, the failure 
probability is written according to the failure domain 0≤H  so that: 

n 1 nφ (u) du du  

where nφ  is the probability density function of the n-variate standard normal 

distribution. According of Hasofer–Lind’s definition, the reliability index β is the 
minimum distance between the origin and the limit state surface in the standard 
space. This distance is deduced from a hyperplane tangent to the limit state function 
at a point P*, called the “design point”. Finding β is thus just a question of solving 
the following optimization problem:  

( ) 2  with 0i i i
i

d u = u H(u ) ≤  



xxvi     Construction Reliability 
 

Reliability methods  

Different approaches are possible for coupling mechanical and reliability 
methods, each offering various levels of compromise between accuracy, cost and 
reliability indicators, with regard to the range of validity of the methods (strongly or 
weakly nonlinear (y=x^1.1 is weakly nonlinear, y=x^5 is strongly nonlinear) 
mechanical calculations, or a more or less reduced number of random variables, 
etc.). 

Two classes of conventional methods cover the majority of current developments 
and applications: the Monte Carlo method and First/Second Order Reliability 
Methods (FORM/SORM approximations). These are introduced and used in Parts 2 
to 5. 

Monte Carlo simulations are the most robust method to assess the failure 
probability of a complex system. They enable the achievement of reference results 
and control other types of approximation. However, they are often expensive. In 
general, to properly assess probability of the order of n−10 , we must perform 210 +n

to 310 +n mechanical calculations. It is obvious that this method is impossible to use 
for large systems with a low probability of failure. More efficient techniques such as 
modified Latin Hypercube, used in [SCH 08], can be considered as alternatives. 

In a standard space, the FORM/SORM methods are based on the evaluation of a 

reliability index, denoted β , followed by an approximation of the probability of 

failure. The Hasofer–Lind Index [HAS 74] is the most commonly used. The search 
for the design point P introduced earlier can be performed by an optimization 
method appropriately chosen with respect to the particular form of the problem.  

A first approximation of fP is obtained by replacing the boundary condition 

0iH(u ) =  by a tangent hyperplane at the design point; this approximation is known 

as the First Order Reliability Method (FORM). Taking into account the rotational 
symmetry property of the standard probability density, we can estimate this 
probability by [DIT 96]: 

( )fP Φ β≈ −  

where Φ  is the standard cumulative distribution function. The accuracy of this 
approximation depends on the nonlinearity of the limit state, especially in the 
vicinity of P*. 
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The purpose of Part 3 of the book is to present another class of methods for 
calculating reliability, called “response surfaces”, since the mechanical response, 
usually not explicit, is approximated by a meta-model, which is often reduced to an 
explicit analytical polynomial function. This group of methods has been the subject 
of recent developments, which are applied to examples of a truss, then to the 
skeleton of a building on several floors. Therefore, Part 3 answers the question: 

Question 7. How do we evaluate the reliability of very expensive mechanical 
models? 

Time variant reliability methods  

Part 4 outlines the problems of time-dependent reliability using a number of 
different methods. The topics discussed include answers to the following questions: 

Question 8. How do we implement a calculation of time-dependent reliability? 

Question 9. How do we use additional information gained over time to update 
reliability calculations? 

Modeling time-dependent variability is first done using methods of aggregation 
and unification of data (Chapter 9). These approaches are applied to assess the time 
taken to evacuate a building during a fire.  

Time-dependent problems can also be analyzed using probabilistic concepts such 
as stochastic processes, as is the case for the study of climate change and the 
evolution of spatial characteristics of components. These processes can be defined 
by an infinite number of random variables indexed on time. In addition to the mean 
and standard deviation which can be time-variant, stochastic processes are 
characterized by auto-correlation, which implies certain dependence between 
neighboring points (in time) of the same process. In particular, in the problem of 
safety margins discussed above, R and S are modeled by stochastic processes and 
denoted R(t) and S(t). At time t during the life of a structure, the instantaneous 
probability of failure is: 

( ) ( ) ( )[ ]fP t = P R t S t≤  

If the instantaneous densities Rf (x, t)  and Sf (x, t)  are known, the instantaneous 

probability of failure fP (t) can be calculated by the integral: 

( ) ( )R SF x, t f x, t dx  
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In practice, it is not possible to detect failure continuously on the time axis. If the 
overload is not applied in increments, we can discretize the time into small intervals 
in which the stress level is considered as constant, which can then approximate the 
instantaneous probability of failure. 

Chapter 10 (especially Figure 10.5) provides an example of how to calculate 
instantaneous probability, not to be confused with the cumulative probability of the 
form: 

( ) ( )[0, ] / 0f,cP t = P t t G t∃ ∈ ≤    

Another approach is based on the consideration of the evolution of a safety 
margin G(t) over the lifetime of a structure. In this case, the margin is modeled by a 
stochastic process. We therefore seek the probability that the margin is negative or 
zero over the observation interval. This approach is called the method of zero-
crossing. The time at which the margin becomes negative or zero for the first time is 
called time-to-failure, which is a random variable. The corresponding probability 

[ ]0P G(t) ≤  is called the probability of first zero-crossing; for non-repairable 

systems, it is called the probability of failure. The corresponding distribution is 
called the distribution of lifetime. 

Methods, based on stochastic processes, exist to model degradation with or 
without monotonic loading, and they are introduced in Chapter 10. They can make 
demands in line with the actual physical/habitat conditions of the structure. 
Theoretically, component failure can occur at any time after its commissioning. 
Methods of stochastic processes [SHI 91] can reproduce loads that comply with the 
best environmental conditions of usual structures. These phenomena can be 
statistically described from measurements taken for the process over time (e.g. 
measurements of temperature, relative humidity, maximum stress, etc.).  

The recently developed “PHI2” method [AND 04], [SUD 08a] (see Chapter 10), 
as well as the Monte Carlo Markov Chains (Chapter 11) are then presented. The 
main applications in this part of the book are a serial system (for both poor and 
censored data), a truss structure, and a containment building in a nuclear power plant 
(Chapter 12).  

Resistance can sometimes be assumed to be invariant over time, but it remains 
dependent on the weather in general, in the case of corrosion processes e.g. 
[BOÉ 09]. It is also possible to adopt a pessimistic assumption associated with the 
distribution of extreme values (i.e. minimum) of resistance. 
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Lifecycle optimization  

Part 5, the final part of the book, describes maintenance optimization using 
reliability methods. It presents the concepts of maintenance and lifecycle costs for a 
system. The cost models of maintenance for components and systems are defined in 
order to allow an optimal maintenance policy to be selected. The applications in this 
part of the book cover several issues related to corrosion of reinforced concrete (pre-
stressed beam, cooling tower, etc.). The following paragraphs (below) present some 
background on the analysis of the lifecycle of construction works. 

During the lifecycle of a construction project, the failure rate follows the bathtub 
curve, shown in Figure I.1. After a phase of early failure due to design and 
construction errors, the failure rate is almost constant for a large part of the 
structural life, as the degradation mechanisms have not yet emerged. After some 
time, the phenomenon of degradation starts, leading to increasing rates of failure; it 
is during this stage that preventive maintenance can improve structural reliability 
and extend the service life. 

 

Figure I.1. Evolution of the failure probability of a civil engineering work  

The optimization of a structure must take into account all the costs at stake 
throughout the structure’s lifetime. 

Management of service-life must take into account the level of reliability based 
on structural age, costs associated with various potential events (loss of function, 
failure, inspection, repair, etc.), the benefits given to society by the existence of the 
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structure, and its interaction with the environment in the context of sustainable 
development.  

 

Figure I.2. Flowchart of reliability analysis 

Given that the total cost is highly affected by uncertainties, the optimization of 
design and maintenance must take into account the random dimension of the total 
cost, in order to ensure the necessary margins and to maximize the expectation of 
socio-economic utility. While design consists of optimizing the distribution of 
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materials in a structural system, maintenance seeks to optimize the methods and 
schedules for inspection and repair, depending on the state of degradation (estimated 
or observed) and the interactions between components in the structural systems. 

Conclusion  

This introductory chapter presented the framework and overall organization of 
the book. It addresses the qualitative methods for analyzing failure modes and their 
criticality (Part 1), and the quantitative methods of reliability (Parts 2 to 5). The 
notion of uncertainty related to the data of building materials is introduced and 
applied (Parts 2 and 4). Then, reliability methods without and then with a 
consideration of time scale are introduced (Parts 3 and 4, respectively). Finally, and 
throughout the book, an overview of system reliability is presented, first in a 
functional study of a dam (Part 1), second by including the study of the life cycle of 
civil engineering works in Part 5 (with studies of the maintenance of a stretch of 
motorway and of a cooling tower). 

Figure I.2 provides a summary of the principles of a reliability analysis. The first 
step is to analyze the mechanical system, using functional and structural approaches. 
This first step includes the collection of available information on the system and the 
identification of possible failure scenarios and their criticality. A second step is to 
define the mechanical and probabilistic (or possibilistic) models for analysis. These 
two models are completed by the definition of the possible failure scenarios, to make 
up a coupled mechanical reliability model. In the absence of the direct integration of 
failure probability (which is very rare), Monte Carlo techniques can be used, 
provided that the cost of the mechanical analysis remains low. The use of meta-
models allows us to reduce the cost of mechanical analyses by introducing an 
approximate analytical model. 

In many real cases, calculating the reliability index is an effective means for 
analyzing industrial systems. A design point is obtained using a specific 
optimization algorithm, which can drive the mechanical model either directly or 
indirectly. After this step, probability can be estimated using the FORM/SORM 
techniques or using importance samplings in the neighborhood of the design point. 
In addition to reliability, this procedure allows designers access to the important 
mechanical and probabilistic parameters. This information is essential for optimizing 
the system, by taking into account the uncertainties at different levels of design, 
manufacturing, installation and maintenance. 
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Introduction to Part 1 

Structural reliability is a major concern for civil engineers, both during the 
design and construction of structures and throughout their working life. The way to 
gain a clear picture of this issue is through an understanding of a structure’s 
operation and failure modes over time. Part 1 considers qualitative methods for 
evaluating the reliability of civil engineering structures. These methods can be used 
to analyze the operation of structures, their failure modes and failure scenarios that 
can lead to degraded function and to hazardous situations. These methods lead to a 
model of operational reliability for a structure, which consists of a representation of 
the modes of operation and malfunction of the system. These are qualitative 
concepts, and operational reliability models that serve as the basis for a quantitative 
analysis are built on the methods and tools developed in subsequent parts of this 
book. 

Part 1 of this book is divided into three chapters. Chapter 1 discusses methods 
for system analysis and failure analysis, which can be used to obtain the failure 
modes. Chapter 2 presents the three main methods (the event tree, cause tree and 
bow-tie methods) that can be used to construct scenarios based around failure 
modes, followed by a presentation of methods for evaluating the criticality of a 
scenario. In an engineering context, these latter methods can be used to eliminate the 
least critical scenarios, enabling us to focus on analyzing those scenarios that pose 
the greatest risks. Chapter 3 gives an example application of the methods developed 
in the first two chapters, in the form of a hydraulic civil engineering installation. 



Chapter 1  

Methods for System Analysis  
and Failure Analysis 

1.1. Introduction 

System analysis methods can be used to develop an operational model for a 
system, known as a functional model, in order to describe its interactions with its 
environment. Building on this functional model, failure analysis methods aim to 
identify failure modes for a system, as well as their causes and consequences.  

A range of failure analysis methods exist, such as preliminary hazard analysis 
[HAD 97], [MOR 02], [MOR 05], hazard and operability study [DES 06], [IMD 04], 
hazard analysis critical control point, or hazard identification [DES 03], etc. Later in 
this chapter, we will describe Failure Modes and Effects Analysis (FMEA), which is 
one of the most commonly-used of these techniques. 

A system is defined in terms of the structural components (or their sub-systems) 
that it is constituted of and the functions that it performs, along with the temporal, 
spatial and functional boundaries used in the study. At each level of decomposition 
of the system (Figure 1.1), the structural components each perform functions that 
contribute to the global function of the system [CRE 03].  
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Figure 1.1. Components and functions of a specific civil engineering structure: 
an example of a dam [PEY 03] 

System analysis consists of two phases: 

– structural analysis; and 

– functional analysis. 

NOTE: System analysis only has any meaning in the context of a particular 
concern or problem to be solved. The components and their inter-relationships 
cannot therefore be fully defined in a generic manner without reference to a specific 
problem. 

In civil engineering, the systems under study are unique in terms of their 
geometry and their interactions with the environment, and so particular attention 
must be paid to structural analysis before beginning a functional analysis.  

Structural analysis determines the most appropriate level of detail, or granularity, 
for the study that will enable the failure modes to be identified with an appropriate 
level of precision (the the most relevant to the goals of the user) during failure 
analysis.  

The time taken by this study can be reduced if the system under study is 
geometrically similar to a system that has previously been studied. 
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1.2. Structural analysis 

Structural analysis involves defining the bounds of a system, the scale of the 
study and the content of the system. 

In the context of risk analysis, a system can be broken down into a set of sub-
systems, an environment of causes and an environment of consequences (which may 
or may not be the same as the environment of causes, see Figure 1.2). 

 

Figure 1.2. System diagram in the context of risk analysis 

The shaded part of Figure 1.2 represents the system under study along with its 
boundaries. This shaded part only covers the set of sub-systems and environments 
that will be taken into account in the study. 

It should also be noted that these three domains (sub-systems, environment of 
causes and environment of consequences) will evolve over time, since the sub-
systems may be modified (repaired or maintained), the environment of causes may 
be modified (by climatic changes, or change of purpose of a subsystem), and the 
environment of consequences may also be modified (by construction of other 
products, change of standards or evolution in mentalities). 

NOTE: The knowledge available on a system and the environment of causes and 
consequences may evolve over time. 

1.2.1. The sub-systems 

The sub-systems contain all the components (material, human, organizational 
and procedural) that can be acted upon (for example, a construction or an 
infrastructure for which the dimensions are controlled, inhabitants, skiers who can 
be directed using signage, or watercourses that can be controlled using hydraulic 

Sub-systems
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engineering works). Note that it is not necessarily possible to perform the same 
actions on every element that makes up the sub-system. 

1.2.2. Environments 

This describes all the elements of a given problem that are out of our control, 
such as rain, earthquakes, fire, conditions of use, etc. 

The environment of causes includes all those components that have an effect on 
the sub-system. The environment of consequences includes all those elements on 
which the subsystem may have an effect. A given element, whether or not it belongs 
to a particular subsystem, may be both a cause and a consequence. 

EXAMPLE 1.1. A sub-system could be an accommodation block. An element of the 
environment of causes could be the outbreak of a fire. The scenario of dangerous 
events could be the propagation of a fire that burns combustible materials within the 
accommodation and causes the release of toxic gases. The environment of 
consequences may include the occupants (asphyxiated as a result of this dangerous 
scenario) and the atmosphere (pollution by release of toxic gases and local heating 
due to the heat of the fire) and possibly even the fire-starter(s) themselves. 

1.2.3. Bounding the analysis 

In any analysis it is crucial to identify the boundaries of the system. Three 
different types of boundaries can be identified: spatial, temporal and engineering 
boundaries. 

Spatial boundaries provide a geometric or geographical definition for the study. 
For example, we could consider the risk of collapse of an inhabited building. Here, 
the subsystem includes the foundations, the load-bearing structure and the roofing of 
the building. The spatial boundary of the subsystem could be the building envelope 
or, in another problem, it could be the plot of land, the city block, etc. Thus the 
environment of causes includes normal climatic conditions (precipitation, wind, 
snow, etc.), exceptional environmental conditions (earthquakes, fire, flood, etc.) and 
usage conditions (inhabitants, floors, etc.). The environment of consequences can be 
spatially restricted to the scope of the building and its users, and may or may not 
consider residents, cars, passers-by, groundwater, the ozone layer, etc. 

Temporal boundaries define the time period over which the system is to be 
studied. This may be one or more years, one or more cycles, etc. For example, we 
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are interested in the risk of collapse of a particular building during its service life, 
but not when it is being demolished. 

The engineering boundaries reduce the scope of the investigation and analysis to 
match the abilities of the people performing the analysis and to the domain of 
definition of the decision variables. For example, in fire safety engineering there is 
little interest in evaluating the consequences of a building fire on the ozone layer; it 
is also pointless to propose a technical solution that cannot be implemented in 
practice. 

1.2.4. Scales of a study 

Five scales for a study can be identified: 

– functional scale: this type of analysis aims to study the response of a system in 
terms of the purposes for which it was built. Depending on the problem in question, 
this analysis may include all the functions of a system (safety of goods and people), 
or only its primary functions (structural stability, acoustic insulation, etc.), or focus 
on just one particular function identified by the decision maker; 

– temporal scale: the reliability of a system in fulfilling the functions for which it 
was or will be constructed depends on the time interval that is considered; 

– geometric scale: a system analysis does not necessarily encompass the entire 
project; expertise or preliminary analysis may enable us to isolate within the project 
a specific geometric entity that is the key to our analysis; 

– phenomenological scale: an undesirable scenario (series of events) is often the 
result of multiple causes, but more importantly it sets in motion a very wide range of 
natural phenomena: physical, behavioral, organizational, etc. These phenomena can 
be considered over a range of different scales (e.g. the initiation, bifurcation and 
propagation of a crack or length of a crack, or the amount of cracking within a 
structure); 

– logistic scale: this analysis considers the availability, durability and 
maintainability of a system. 

Once the boundaries and scales have been defined for the study, the content of 
the system(s) and the environment of causes and consequences must be determined. 
This phase involves listing all the components that make up each subsystem, 
defining their physical position and determining their interactions with other sub-
systems or components of sub-systems. 

EXAMPLE 1.2. Structural breakdown of an embankment dam with chimney drain into 
five components (Figure 1.3). 
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Figure 1.3. Structural breakdown of an embankment dam with chimney drain [PEY 03] 

Once the interactions between components of a subsystem are known, the 
distribution of forces, temperature flows, etc., can be identified for the case of 
normal working and, consequently, the impact of the failure of a particular 
component on the other components of the subsystem can also be identified. An 
understanding of interactions between the subsystem and the environment of causes 
enables us to describe the effects of the environment on the subsystem, while an 
understanding of the interactions between the subsystem and the environment of 
consequences can be used to focus the study of the impact of failure of a subsystem 
on the components that make up this environment of consequences. 

1.3. Functional analysis 

1.3.1. Principles of functional analysis 

Functional analysis helps us to understand the behavior of a system under study 
and to describe its behavior in a concise manner, and formally and exhaustively 
establishes the functional relationships within and outside a system. Functional 
analysis consists of two phases: 

– external functional analysis; and 

– internal functional analysis. 

A wide range of methods of functional analysis exist that are well suited to 
industry, services or organizations, such as Reliasep, FAST, DEN, SADT, etc., but 
no specific method has been developed for civil engineering. An examination of 
various different functional analysis techniques reveals that these value analysis 
issues are widely applicable and are ideally suited to mechanical systems.  
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Of these, the APTE method (Application aux Techniques d’Entreprise, or 
Application of Corporate Techniques) has been used and adapted with success to 
civil engineering systems, particularly in applications involving the structural 
elements of a building [LAI 00] and hydraulic works [PEY 03], [SER 05].  

1.3.2. External functional analysis 

In external functional analysis, the work under study is treated as a “black box”, 
and it is the interactions of this black box with its environment that are studied.  

External functional analysis can be used to determine the functions performed by 
a system, which is treated in a global manner through the use of functional block 
diagrams. 

The principal functions are the essential functions for which the system was 
designed: these are obtained by examining the environments interacting with the 
system.  

EXAMPLE 1.3. The principal functions of a dam are to: 

– store water within a reservoir; 

– cope with flooding; and 

– supply water to a manufacturing plant (or other external systems). 

 

Figure 1.4. Definition and limits of a gravity dam [PEY 03] 
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Secondary functions result from the response of the system to externally imposed 
stresses, and are obtained by examining the interactions with the external 
environment.  

EXAMPLE 1.4. The secondary functions of a dam are to withstand, evacuate, retain, 
drain, filter, etc. 

The functional block diagram for the dam shown in Figure 1.4 is given in 
Figure 1.5. 

 

Figure 1.5. Functional block diagram for a dam [PEY 03] 

1.3.3. Internal functional analysis 

Following a global system analysis phase, internal functional analysis aims to 
identify the functions of each of its components. Flow analysis can be used to 
identify the secondary functions of the components.  

Three types of flow can be identified: 

– transport flows, which can be used to identify in functional terms the 
propagation of flows from the environment to the system components (for example, 
the functions of water-tightness or air-tightness for a window);  
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– load flows, which can be used to identify the functions of resistance to loads 
applied by the environment of causes or by connected components (for example, a 
dam’s function of resistance to hydrostatic pressure); 

– contact flows, which can be used to identify the functions that involve the 
mechanical and physiochemical properties of the components (for example, the 
function of resistance of steel damaged by corrosion caused by chloride ions in 
seawater). 

Component Functions 

Impervious 

core 

1 – Resistance to mechanical loads 

1.1 – The impervious core resists the hydrostatic pressure transmitted by 

the upstream embankment 

1.2 – The impervious core resists the under-pressure from the upstream 

foundations 

1.3 – The impervious core resists the force of the upstream embankment 

1.4 – The impervious core resists the force of the downstream 

embankment 

1.5 – The impervious core resists the forces transmitted by the crest 

2 – Limit hydraulic flows 

2.1 – The impervious core limits infiltration from the upstream 

embankment 

2.2 – The impervious core limits infiltration from the upstream foundation 

2.3 – The impervious core limits infiltration of rainwater  

from the crest 

Table 1.1. Functions of the impervious core of an embankment dam [PEY 03] 

These various flows can be represented in the form of functional block diagrams; 
an example of this is given in Figure 1.6 for an embankment dam. 

At the end of functional analysis, all the functions achieved by the components 
of the subsystem(s) have been determined. These are combined to give functional 
analysis tables; an example of this is shown in Table 1.1 for an embankment dam. 
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Figure 1.6. Functional block diagram for hydraulic flow transport  
in an embankment dam with upstream facing [PEY 03] 

1.4. Failure Modes and Effects Analysis (FMEA) 

1.4.1. Principles of FMEA 

Failure Modes and Effects Analysis (FMEA) has a range of applications in civil 
engineering. Particularly worthy of mention are its uses in hydraulic engineering 
works [PEY 06], [PEY 03], [SER 05] and building components [LAI 00], 
[TAL 06a], [TAL 07].  

It has attracted the interest of several national and international research centers 
in the field of civil engineering. The state of the art for these approaches was the 
subject of CIB report W80 “Service Life Methodologies – Prediction of Service Life 
for Buildings and Components” [TAL 06b], with the aim of encouraging the 
application of this method in the construction industry. 

 

4. Plot no. i

2. Downstream
foundations 
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FMEA, as it has been developed and standardized in industry [DEP 80], 
[IEC 85], [AFN 86], is a method of inductive analysis for potential system failures. 
It systematically considers each {function; component} pair for a system, one after 
the other, along with analysis of its failure modes.  

The results of FMEA analysis are presented in tabular form, specially tailored to 
the system of system under study, and their format can vary considerably from one 
field to another [FAU 04], [ISD 90].  

In industry, FMEA studies fit in with a production objective, where the number 
one aim is to eliminate failures associated with each stage of manufacturing, e.g. 
design and implementation errors, and deviations from the standards and rules of 
hygiene and safety. 

In civil engineering, it has been necessary to adapt FMEA in order for it to be 
applied to the field of structures and buildings. The FMEA approach used in civil 
engineering consists of two phases, which are summarized in Figure 1.7.  

 

Figure 1.7. FMEA approach applied to civil engineering 
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Process FMEA considers a structure after construction has been completed, and 
looks for potential failure modes associated with design and construction defects.  

Product FMEA then considers a structure whose quality may vary depending on 
how it was built and reveals, in addition to failures associated with use of the 
structure, the influence of the design and construction process on its future behavior, 
up until the point at which it may be demolished. 

1.4.2. Process FMEA 

Process FMEA involves determining, with the help of a table, the main 
operations of the design and construction process for each component of the 
structure, the failure modes of these operations and the effects of these failure 
modes. 

EXAMPLE 1.5. Process FMEA applied to embankment dams. 

Process FMEA results in a description of the structure once its construction has 
been completed. In particular, it can be used to determine the potential failure modes 
associated with design and construction failures that would become the causes of 
failures during the usage phase. 

Component Process operation Failure mode Failure effects 

Grout 

curtain 

Design: 

– geological surveying 

– geotechnical study 

– study of 

reinforcement (depth, 

density, grout, etc.). 

Construction: 

– drilling operations 

– grouting operations. 

Design: 

– insufficient surveying 

– limited geotechnical study 

– inadequate reinforcement 

study. 

Construction: 

– insufficient density 

– insufficient depth 

– inappropriate grout quality 

– inappropriate grouting 

pressure, 

– insufficient lateral extension.

– insufficiently 

watertight 

– lateral bypassing 

– bypassing 

underneath 

– disintegration of 

grout curtain 

– cracking of grout 

curtain. 
 

Table 1.2. Process FMEA (extract for the grout curtain of an embankment dam) [PEY 03] 
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1.4.3. Product FMEA 

The aim of Product FMEA is to identify the various failure modes of each 
subsystem when it is in service. This is connected to the design and construction 
process, but also to hazards that may occur during its use.  

The results are presented in the form of a table showing: 

– components of the system; 

– functions of each component, obtained through functional analysis; 

– failure modes for each component, corresponding to failures or degradation of 
a function; 

– possible causes of failure, determined using functional block diagrams, and 
originating from the various flows (loads, hydraulic, hydrodynamic and thermal), 
contact with external environment or neighboring components, the intrinsic state of 
the component or the design or construction process for the component; 

– possible consequences of the failure, determined in a deductive manner. 

In summary, Process and Product FMEA reveal the failure modes of a system, 
their causes, their consequences, and potentially series of failure modes.  

In practice, two formats for the Product FMEA tables are used, with the first 
being more useful for the design phase and the other more useful for the usage 
phase: 

– “function” analysis: the aim here is to identify the failure modes leading to 
reduced performance of functions of the system under study; thus the table consists 
of columns for “function”, “component”, “stage”, “mode”, “cause” and “effect”; an 
example of this is shown in Table 1.3; 

– “component” analysis: the aim here is to identify the failure modes that affect 
each component of the system under study; thus the table consists of columns for 
“component”, “function”, “mode”, “cause” and “effect”; this format has been used 
for hydraulic works. 

EXAMPLE 1.6. FMEA for a concrete wall. 

This example illustrates the application of FMEA to a concrete wall, performed 
at the granularity of the wall over its service lifetime, and including causes having 
their origin in the construction phase. The function of the wall that we will consider 
here is its mechanical resistance. Several different failure modes can be imagined for 
this: segregation, defect of coating, carbonation, cracking, etc.  
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The aim is to identify causes of failure modes. These may have their origins 
within the design/construction phase, identified using Process FMEA (concrete 
construction), in the environment of causes for the system (humidity, rainfall), or in 
the intrinsic state of the system (corrosion, salt swelling, concrete spalling).  

The effects of failure modes involve a loss of mechanical resistance: cracking, 
irreversible movements, etc., and they may in the most severe cases lead to a loss of 
stability. 

Function Component Stage Failure mode Cause Effect 

Mechanical 
resistance 

Structure 0 Segregation Construction 

Reduction in 
mechanical 
resistance 

Structure 0 
Insufficient 

cladding 
Construction 

Reinforcement of 
external skin 

1 Corrosion 
Carbonation of the 

structure (etc) 
Stage 1 

Structure 2 Cracking 

Corrosion of the 
reinforcement of 

external skin (etc) 
Stage 2 

Interface between 
structure and 

reinforcement of 
external skin 

3 Alkali reaction 
Structural cracking 

(etc) Stage 3 

Structure 4 Spalling 
Formation of 

swelling salts (etc) 
Stage 4 

Structure 5 Pieces falling off
Structural spalling 

(etc) Stage 5 

Structure 1 Lixiviation Rainfall, pure water

Insulation 1 Crushing 
Hard shock (high 

intensity) 

Lining 2 Crushing 
Crushing of 

insulation (etc) 
Stage 1 

Adhesive layer 3 Crushing 
Crushing of lining 

(etc) Stage 2 

Table 1.3. Extract from the FMEA for a concrete wall [TAL 06a] 
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The column entitled “Stage” in Table 1.3 makes it easier to identify a series of 
failure modes. For example, the effect of “corrosion of reinforcement of the external 
skin” in Stage 2 leads to the effect of “structural cracking” in Stage 3. Stage 0 
corresponds to effects that take place during the construction phase of the concrete 
wall, while Stages 1 to 6 correspond to effects taking place during the service life of 
the wall. 

The main advantages and limits of FMEA are as follows: 

– the exhaustive nature of the results (failure modes, causes, effects): this is the 
main advantage of the method, which involves a systematic approach to the 
identification of failure modes; it represents the current understanding, at a given 
moment, of the functioning and failure modes of a system; 

– the corollary to this advantage is that it is entirely built on the structural and 
functional understanding of the system under study, and hence also on the quality of 
the preliminary system analysis that has been performed; it is therefore necessary to 
take particular care during the system analysis phase; 

– the FMEA approach can be used to develop a basis of information to define, 
improve, correct and validate a design, process or method right through from its 
design to the end of its service life; 

– combined or dynamic effects are difficult to take into account; for this reason, 
FMEA is generally followed by a method that enables failure scenarios to be 
modeled. 
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Chapter 2  

Methods for Modeling 
Failure Scenarios 

2.1. Introduction 

Once the failure modes of a system have been identified, methods for modeling 
failure scenarios can be used to build series of failure modes – failure scenarios – 
that may lead to global system failure. Of the various methods for modeling failure 
scenarios (such as the reliability diagram method, the failure combination method, 
the cause-effect diagram method, etc.) this chapter will only consider the three main 
methods that are most widely used in industry and civil engineering: 

– the event tree method, which can be used to describe the scenarios that ensue 
from an initial trigger event; 

– the fault tree method, which gives a detailed description of the scenario leading 
up to an unwanted event; 

– the bow-tie method, which describes the scenarios leading to an unwanted 
event (fault tree) and the series of effects resulting from that same event (event tree). 

The use of these three methods in the field of civil engineering is analogous to 
the way they are employed in industry, and no specific adaptations are required in 
order to apply them to civil engineering.  
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2.2. Event tree method  

The event tree method is an inductive method: it starts with an event at the top of 
the tree, and consists of all the combinations of events that are triggered by the 
occurrence of this initial event. It is often used to determine all the consequences of 
an unwanted event. 

The event tree method finds applications in the operational reliability of systems 
whose functioning is roughly binary (either “running” or “broken”) or discrete (the 
events or changes occur at specific dates in time), and submitted to time evolution. 
This method is described in a wide range of texts, such as [MOR 05], [IMD 04], 
[DES 03], [MOR 02], [MOR 01], [ZWI 96], [MOD 93], [VIL 88]. 

Event trees are conventionally constructed horizontally, from left to right, 
starting from an initiating event. The tree is built up chronologically in an inductive 
manner, by studying the behavior (functioning or malfunction) of each system 
component. The functioning or malfunction of a component thus corresponds to an 
event, and a scenario is formed of a combination of several events. Event trees can 
be used to determine the sequence of events leading up to a final event. 

The quality of the operational reliability model obtained for a system, based on 
an event tree, depends on the quality of the preliminary functional analysis and 
failure analysis. In order to ensure that the failure analysis is exhaustive, it is 
recommended that a FMEA be performed before following the event tree method. 
Prior application of FMEA has the advantage that the event tree is built up naturally 
from sequences of failure modes obtained through FMEA. 

In the course of a quantitative risk analysis, the probability of each event in the 
tree occurring is evaluated, and the probability of a scenario occurring is then equal 
to the product of the probabilities that each individual event making up the scenario 
will occur1. The event tree method can be used to explore how a scenario unfolds, 
and to evaluate the effect of the introduction of barriers2 on the frequency of 
appearance of the scenario and on its consequences. 

As an illustration, Figure 2.1 shows an event tree corresponding to the effects of 
an initiating event (fire door left propped open) on a system (fire door and user).  

On the topmost branch of this tree, all the barriers that are in place (fire alarm, 
fire detection, etc.) function correctly and, as a result, nobody will be injured.  

                                   
1 Assuming that each event is independent in probabilty terms. 
2 A barrier is a component whose aim is to reduce or eliminate a risk. 
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Figure 2.1. Qualitative event tree for a “fire door propped open” scenario, 
for a “fire door and user” system 

Conversely, a failure (lowermost branch of the tree) of every safety barrier may 
lead to a significant number of injuries. The set of possible failure/non-failure 
combinations for the safety barriers is shown between these uppermost and 
lowermost branches.  

This is a very easy method to employ, being based on an intuitive approach. It 
enables the building of failure scenarios from chained sequences of events. The 
quality of the analysis depends on the quality and exhaustivity of events that are 



24     Construction Reliability 
 

considered, representing the interactions between the environment and the system, 
and the potential behavior of the system.  

This analysis, preferably a group analysis, then provides information to lead a 
preliminary system quality analysis and a failure analysis method such as FMEA. 

2.3. Fault tree method 

The fault tree method (or cause tree method) is a deductive method: it starts with 
an event lying at the top of the tree, and determines all the combinations of causes 
that could explain the occurrence of this event. It is often used to determine all the 
causes that can lead to an unwanted event.  

Drawing up a fault tree has long been considered an art practiced by an 
analyst, and as such it can be difficult to ensure that all failure modes are considered 
exhaustively. This method is widely described; see in particular [GIR 06], 
[MOR 05], [MOR 01], [MOR 02], [VIL 88], [ZWI 99]. 

The fault tree approach includes an information acquisition phase and a tree 
construction phase. In what follows we will only consider fault trees associated with 
unwanted events. 

2.3.1. Information acquisition 

Failure causes that contribute to the occurrence of a failure in the fault tree 
method are generally determined through practice feedback. Causes can also be 
recognized directly through discussions and interviews with experts in the field. 

Use of the FMEA method is an alternative, complementary approach for 
obtaining information. 

It is also recommended that a complete system analysis be conducted before 
applying the fault tree method. 

2.3.2. Fault tree construction 

By convention, a fault tree is presented vertically, with the final failure under 
study lying at the top of the tree. The first phase of fault tree construction therefore 
involves determining the eventual failure modes that it is hoped will be avoided. 
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The second phase involves tracing back, step by step, to the originating causes. 
At each phase of construction, the aim is to answer the question “what must have 
happened in order that…?” Other questions that must then be answered are “are 
there any other causes?” and “could the failure we are interested in have occurred if 
one of the causes had not been present?” 

Construction of the tree is stopped when original causes are reached that are not 
an inherent part of the system under study (external circumstances). In practice, the 
analysis is stopped when the causes found can be eliminated or their probability 
reduced through industrial or technological solutions. 

EXAMPLE 2.1. Metal facing screwed to wooden beams. 

This example uses the fault tree method to study the fall of a piece of metal 
facing fixed to wooden beams, which can be explained by causes associated with 
exceptional external stresses, unanticipated aging of the system or a construction 
fault (Figure 2.2). 

 

Figure 2.2. Example fault tree for a metal facing screwed to wooden wall plates 

The main points of interest of this method are: 

– it is easy and intuitive to implement; 

– it favors use of expertise to identify causes; and 

– it favors investigation and evaluation of prevention or protection measures 
intended to avoid the appearance of the unwanted outcome. 
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The main limitations of this method are that: 

– investigation of causes does not occur in a systematic manner, and does not 
therefore guarantee exhaustive consideration of failure modes. It must therefore 
draw on expertise and a well-documented experience feedback; 

– it does not offer a chronological representation of events; 

– it is a binary method, in other words it involves events that either do or do not 
occur; there is no intermediate state. 

2.4. Bow-tie method 

The bow-tie method describes accident scenarios that may unfold, starting from 
the initial causes of an accident and tracing them forwards to their consequences, 
according to the identified goals. The “bow-tie” is a tree-type approach that 
combines a fault tree and an event tree (Figure 2.3). 

 

UE: Unwanted Event; OE: Ongoing Event; IE: Initiating Event;  
PUE: Primary Unwanted Event; SUE: Secondary Unwanted Event;  

DE: Dangerous effect; ME: Major effect 

Figure 2.3. Scenario representation using a bow-tie diagram [COM 08] 

This method is described in a range of publications, in particular [PRE 09], 
[COM 08], [COU 04], [INE 03]. The central point in the bow-tie diagram is the 
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primary unwanted event (PUE). The left-hand part of the bow-tie then takes the 
form of a failure tree, whose aim is to identify the causes (initiating events – IE) of 
this primary unwanted event. The right-hand part of the bow-tie investigates the 
consequences of this primary unwanted event, and potentially secondary unwanted 
events (SUE), using an event tree. On this diagram, safety barriers are shown in the 
form of vertical lines in order to symbolize the fact that they guard against the 
development of an accident scenario. In this representation, each route leading from 
an originating failure (undesirable or ongoing) to the appearance of visible problems 
(major effects), represents a specific scenario associated with the primary unwanted 
event under consideration. 

The bow-tie, which makes direct use of failure and event trees, should be built 
up according to the same guidelines. Since it is a relatively cumbersome tool to 
employ, its use is generally restricted to events that are considered particularly 
critical, for which a high level of understanding of the risks is required. 

The bow-tie method is employed following an initial study of failures and 
primary unwanted events, carried out using methods such as preliminary risk 
analysis or FMEA. The principles for implementing the bow-tie method (Figure 2.4) 
follow below. 

Stage 1 involves a system analysis followed by failure mode analysis, which 
might for example be performed using FMEA. 

Stage 2 uses failure tree and event tree methods (defined earlier). 

Stage 3 involves a criticality analysis, described in section 2.5. This analysis 
draws on practice feedback and expertise. 

Stage 4 involves identifying prevention and protection barriers. Prevention 
barriers are intended to reduce the probability of failure causes occurring. For 
example, preventative avalanche initiation (artificial triggering) and ski run signage 
are preventative barriers against the dangers of an avalanche. Protection barriers are 
intended to limit the consequences of a failure. For example, the installation of snow 
nets and construction of an avalanche protection gallery are protective barriers 
against the effects of an avalanche. 

Stage 5 involves re-evaluating the system to take account of the effects of 
preventative and protective barriers, and to obtain a new estimate for the 
probabilities of failures occurring, along with their severities. The effectiveness of 
the barriers is, however, variable. 
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Depending on the result of Stage 5, Stage 6 can be used to confirm or reject the 
preventative and protective barriers that have been proposed. If the criticality of the 
failures is considered acceptable, then the process moves on to Stage 7, otherwise 
new barriers must be introduced (which involves returning to Stage 4). 

Stage 7 generates a summary of the risk analysis as performed using the bow-tie 
method, for example by writing a risk prevention plan. 

The bow-tie method can be illustrated with a simplified example of the use of an 
embankment dam: 

 

Figure 2.4. Principles of the bow-tie method [COU 04] 

Stage 1: the main mechanisms for dam failure during use are internal erosion, 
external erosion and sliding collapse. The unwanted effects are: 

– flooding of downstream elements; and 

– degradation that prevents use of the retained water supply. 

Stage 1: Identify failure modes 

Stage 2: Built failure and event trees 

Stage 3: Evaluate and select the most critical failures 

Stage 4: Define the barriers of prevention and protection

Stage 5: Reevaluate the severity and probability of the most 
critical failures, taking into account the effects of the barriers 
of prevention and protection 

Stage 6: Acceptable risk? 

Stage 7: Define a prevention plan 

Yes

No 
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Stage 2: see sections 2.2 and 2.3 – the failure and event trees are not repeated 
here. 

Stage 3: the three failure mechanisms are considered “extremely serious” but to 
have a low probability of occurring. For this illustration we will only consider the 
failure mechanism involving internal erosion. 

Stage 4: the risks associated with internal erosion can be reduced by: 

– monitoring the drainage rate; 

– monitoring the piezometry; and 

– monitoring the water level behind the dam. 

Barriers that can limit the risk level may include: 

– the drainage rate, which must be kept below a predetermined limit; 

– the interstitial pressure, which must not exceed a threshold level for the 
pressure cells and pressure meters built into the embankment of the dam; and 

– the floodwater level, which must not be higher than the maximum water level. 

Stage 5: as long as these thresholds are respected, it can be assumed that the 
probability of failure will remain low, as long as the interval between two 
inspections is shorter than the interval between the thresholds being exceeded and 
the occurrence of the unwanted event. Conversely, when these thresholds are 
exceeded, a state of unacceptable risk develops. 

Stage 6: under these conditions, the risk is now acceptable.  

The bow-tie method offers a concrete visualization of accident scenarios that 
may unfold, starting from the initial causes of the accident and following them 
through to consequences in terms of the identified roles of the structure. Because of 
this, this tool clearly highlights the operation of safety barriers that guard against 
such accident scenarios, and can be used to demonstrate that the risks have been 
managed appropriately. 

2.5. Criticality evaluation methods 

In its original form, criticality involves quantifying the consequences of failure 
modes identified through FMECA (Failure Modes, Effects and Criticality Analysis). 
The concept of criticality can be generalized to failure scenarios for a system: it 
involves measuring the risk associated with the occurrence of a particular scenario. 
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This section summarizes the various formulations developed to evaluate the 
criticality of a particular scenario, along with practical considerations relevant to 
civil engineering applications. 

2.5.1. Criticality formulation 

The criteria used to evaluate criticality depend on the systems under study. 
Formulations involving two and three criteria are often used, and these will be 
described below. 

2.5.1.1. Two-criteria formulation 

The criticality formulation introduced in [SCT 03] and [FAU 04], and by Farer 
in the 1960s, takes into account the frequency of occurrence of a failure, and the 
severity of its consequences. These two criteria are evaluated using scoring grids, 
which may be qualiative or quantitative (Tables 2.1 and 2.2). The criticality is then 
determined using a grid that combines the values of these two criteria (Figure 2.5). 
The two scoring grids in Tables 2.1 and 2.2 were developed to estimate the 
frequency of occurrence and severity of consequences for failure modes of double 
glazing (identified using FMEA). Estimates for the frequency of occurrence and 
their severity are based on information obtained from double glazing manufacturers. 
Depending on the available information, the scoring grids may be quantitative 
(Table 2.1) or qualitative (Table 2.2). 

Occurrence Frequency of failure 

0 Physically impossible 

1 1 in 1 million 

3 1 in 100,000 

5 1 in 10,000 

7 1 in 1,000 

8 1 in 100 

9 1 in 10 

10 1 in 2 

Table 2.1. Scoring grid for occurrence rate – double glazing [HAG 02] 
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Severity Severity of consequences for failure modes 

1 Effects present but not visible 

3 Minor inconvenience for the client 

5 Significant inconvenience for the client 

9 Injury 

10 Serious injury 

Table 2.2. Scoring grid for severity – double glazing [HAG 02] 

Several different scales are in common use, from 0 to 100, from 0 to 10 and from 
0 to 4; the choice of scale must depend on the detail available in the estimation that 
is desired or feasible to obtain. 

Figure 2.5 shows a three-level criticality grid (pale gray, darker gray and very 
dark gray) obtained by combining the frequency, estimated on a six-level scale, and 
the severity, also estimated on a six-level scale. This criticality grid has the 
advantage of being progressive, in contrast to a binary approach where something is 
“acceptable or unacceptable”. For example, according to a maintenance budget 
distribution policy, those scenarios whose criticality is marked in very dark gray 
should be dealt with within a year, those scenarios in medium gray should be dealt 
with in the next three years, and those scenarios in light gray need not be dealt with.  

2.5.1.2. Three-criteria formulation 

The three criteria considered here are the frequency/occurrence of failures, their 
severity and their detectability or otherwise. There are then various approaches for 
evaluating and combining these criteria. 

2.5.1.2.1. First approach [PEL 97], [LAS 01], [FAU 04], [GAB 09] 

The most commonly used approach involves evaluating each criterion (O – 
Occurrence, S – Severity, D – Detectability) independently with the help of 
qualitative or quantitative scoring grids. The criticality (C) is defined as the product 
of these three criteria: 

C = O × S × D [2.1] 

Each failure is then classified in a binary manner using a criticality threshold, 
written Cthresh,, that is selected by the analyst: 

– if C < Cthresh, then the failure is considered acceptable; 

– otherwise the failure is considered unacceptable (critical failure). 
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2.5.1.2.2. Second approach [BOW 95], [PIL 03], [GUI 04] 

The values for the three criteria of criticality are evaluated with the help of two-
level scoring grids. Thus, the occurrence, severity and undetectability of each failure 
mode are quantified on a scale of 1 to 10. These three values are then transformed 
into five qualitative classes (minor, weak, moderate, high and very high) in the case 
of occurrence and severity, and six classes (very high, high, moderate, weak, very 
weak and undetectable) in the case of undetectability. The confidence function 
associated with detectability is shown in Figure 2.6 as an example. 

Frequency        

1. Failure 
very frequent 16 26 36 46 56 66  

2. Failure 
fairly frequent 15 25 35 45 55 65  

3. Failure 
infrequent 14 24 34 44 54 64  

4. Failure very 
infrequent 13 23 33 43 53 63  

5. Failure  
rare 12 22 32 42 52 62  

6. Failure 
extremely rare 11 21 31 41 51 61  

 
1. 

Negligible
effect 

2. 
Minor 
effect 

3. 
Significant 

effect 

4. 
Serious 
effect 

5. 
Major 
effect 

6. 
Catastrophic 

effect 
Severity 

Figure 2.5. Example criticality matrix – ammonia refrigeration plane [PEL 97] 

 

Figure 2.6. Mapping function for detectability, taken from [BOW 95] 
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Criticality is defined on a scale of ten values, in terms of six qualitative classes 
(unimportant, minor, weak, moderate, high and very high); its value is obtained 
either: 

‒ using predefined rules determining the classes to which each of these three 
criteria belong (Table 2.3); for example, if the occurrence is weak, the severity is 
very high and the detectability is low, then the risk and hence the criticality are both 
high; or 

‒ using the maximum likelihood method [BOW 95] applied to fuzzy subsets. 

Rule Occurrence Severity Detectability Risk 

1 Low Moderate Undetectable → Moderate Moderate 

2 Low High Undetectable → Moderate High 

3 Low Very high Undetectable → Low Very high 

4 Low Very high Moderate High 

5 Moderate Moderate Low → Moderate Moderate 

6 Moderate High Undetectable → Weak Very high 

7 Moderate High Moderate → Very high High 

8 Moderate Very high Undetectable → Moderate Very high 

Table 2.3. Rules for determining criticality [BOW 95] 

2.5.1.2.3. Third approach [TAL 06] 

Detectability may be integrated into the severity criterion and the duration of a 
scenario may be relevant in determining its criticality. Thus, this third approach 
assumes that the criticality depends on three criteria: the probability of occurrence 
of a scenario, its duration and its severity. 

This approach was introduced in the construction domain [TAL 06]. The criteria 
of probability of occurrence and duration of the scenario may either be estimated 
with the help of scoring grids, or evaluated by data fusion (see Part 2).  
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The severity of a scenario is evaluated using six criteria which correspond to six 
essential requirements of the construction products directive [CST 93]. These 
criteria are evaluated using scoring grids. Criticality evaluation thus involves: 

– a brief evaluation where the scenarios are classified into three categories of 
criticality (major, significant and minor) using criticality thresholds determined by 
the analyst; and 

– a deeper evaluation where scenarios are prioritized in terms of their criticality, 
determined by the weighted product of the probability, duration of the scenario and 
the severity of its consequences. 

2.5.2. Civil engineering considerations 

The most widely used methods of evaluating criticality in the field of civil 
engineering are criticality grids (Figure 2.5) and the product of the occurrence, 
severity and detectability. These criteria are evaluated using scoring grids, tailored 
to the specific application. Prioritization of scenarios is determined either using 
thresholds on the criticality grids or based on the product of the three criteria 
(occurrence, severity and detectability, or probability, duration and severity). 

Examples of criticality evaluation, using criticality grids, can be found in: 

‒ [PEY 03] for dams;  

‒ [CHO 07] for fire risk on construction sites. 

Examples of criticality evaluation, using the product of three criteria, can be 
found in [LAI 00], [HAG 02], [LAI 02a], [LAI 02b], [LAI 03a], [LAI 03b], 
[LAY 98], [TAL 04], [TAL 06] for sealed systems, wooden and PVC windows, 
double glazing, metal cladding, solar collectors, brick and concrete walls. 
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Chapter 3  

Application to a Hydraulic 
Civil Engineering Project 

3.1. Context and approach for an operational reliability study 

This case study illustrates an operational reliability study through its application 
to a hydraulic civil engineering project. Methodological developments are discussed 
in terms of an industrial study that the authors carried out on a flood protection 
system [PEY 06a]. Note that today operational reliability studies, in the form of 
hazard studies, are required in France under the laws relating to the safety of large 
hydraulic installations (dams and dykes) (edict on safety of hydraulic installations, 
dated 11 December 2007). 

Following catastrophic events on 3 October 1988, a number of hydraulic 
installations were constructed around the town of Nîmes (France) with the aim of 
providing flash flood protection in times of flooding. The installation considered 
here relates to a catchment area to the east of Nîmes, covering a surface area of 
16 km² (Figure 3.1). It consists of two upstream flood prevention dams with a 
capacity of 90,000 m3, two downstream flood prevention dams with a capacity of 
400,000 m3, several kilometers of open channels and buried collectors that permit 
flow between the dams, and a range of other civil works (openings, grates, bypass 
channels, sand catchers, etc.). 
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Figure 3.1. General map of the hydraulic installation 

An evaluation of the operational reliability of such a system involves the three 
phases described in the preceding chapters: functional analysis and failure mode 
analysis (section 2.1), construction of scenarios (sections 2.1 to 2.4) and scenario-
based criticality analysis (section 2.5). 

For the purposes of the study, a panel of experts was formed consisting of three 
senior engineers specializing in dam engineering, a hydraulic engineer and a 
hydrologist, and it was chaired by an operational reliability specialist. This panel 
was consulted at the various different stages of the study, and in particular during 
the qualitative analysis, in order to determine the technological failure modes of the 
installation, and during the quantitative analysis for expert evaluation of subjective 
probabilities for technological failures, in cases where feedback was lacking. 
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3.2. Functional analysis and failure mode analysis 

3.2.1. Functional analysis of the system 

In the system under study, the hydraulic installation consisted of a succession of 
linear structures (buried collectors and open-air flood channels), punctuated by 
generic civil works (dams, flow division structures, gratings, etc.).  

Three levels of granularity were used to describe the installation: the system as a 
whole (the hydraulic installation), the individual structures within the system (dams, 
collectors) and the components of each structure (sluices, spillways, filters etc.).  

The geographical contours of the hydraulic installation were defined, and this 
then naturally led on to consideration of the external environment that it interacts 
with (Table 3.1). 

Type External media 

Water 
environment 

– upstream part of the rural catchment areas surrounding the hydraulic 
installation 

– downstream part of the urban catchment areas surrounding the hydraulic 
installation 

– geology, geological engineering 

Environment 
close to the 
installation 

– private residences, apartments and urban structures 

– rural zone, fields, cultivation, woodland, wasteland 

– vegetation, chokepoints, sediment and silt 

– airfields, railways 

– highways: minor roads, national roads and motorways 

Table 3.1. External environment interacting with the installation (extract) 

External functional analysis can be used to obtain its main functions 
(representing the primary purpose of the system) and its limiting functions 
(representing the responses of the system to environmental stresses): 

– buffering water flow and flooding from upstream rural and urban catchment 
areas;  

– resisting external environmental stresses: it must not become obstructed by any 
sort of obstruction/sediment/deposition, nor collapse or degrade, etc. 
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Internal functional analysis can then be used to study the internal behavior of the 
system. This consists of a structural analysis: the system is broken down into generic 
civil engineering structures or works, geographically distributed around the 
installation (Figure 3.2).  

 

Figure 3.2. Structural analysis of the hydraulic installation (extract) 

Such a study determines the interactions between the structures and the external 
environment, and finishes with the functions performed by each structure. 

At the end of the functional analysis, an understanding will have been developed 
of the operation of the system, the functions of each structure and their interactions 
with the environment.  

This is the starting point for the failure mode analysis. 
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3.2.2. Failure mode analysis, and effects 

For each structure we must determine its failure modes, their causes and their 
possible effects. This investigation takes place in a systematic procedure by 
application of the FMEA method (section 1.3), adapted to civil engineering systems 
[PEY 06b], [TAL 06]. FMEA was applied to the various structures within the 
hydraulic installation, and its conclusions are listed in Table 3.2. 

Structure Failure mode Causes Effects 

Flood 
protection 

dam 

Does not buffer flood 
wave, or does so 
inadequately 

– sluice/grating obstructed 
– outflow obstructed 
– outflow exit obstructed 
– downstream water level 
too high (failure of 
dissipater) 

– premature filling 
of the reservoir with 
limited buffering 

Technological failure, 
does not resist internal 
erosion: 
– in the embankment 
– in the foundation 
– along the outflow 

– erosion due to piping 
effects in the embankment 
foundation or along the 
outflow channel 

– dam failure due to 
internal foundation 
erosion or erosion 
along the outflow 
channel 

Table 3.2. FMEA applied to a flood protection dam (extract) 

The failure mode analysis provides an appreciation of all the potential failure 
modes of the structures that make up the hydraulic installation. This systematic 
analysis can be used to examine all the failure modes of the system and the elements 
that it is made up of. The FMEA analysis is then subjected to expert examination, 
with the aim of only retaining the most relevant failure modes, in other words those 
that can realistically be expected to occur (including ones associated with 
particularly rare events). This part of the study involves individual interviews with 
experts as well as collective discussions leading to an expert review of all the 
structures. 

Based on the outcome of the FMEA analysis, the experts can draw conclusions 
on the failure modes of the works that should be considered further, their causes and 
their possible effects. 

In this application, the effects are considered in terms of the downstream flow 
from the hydraulic installation, without considering the consequences of those flows 
on the environment that may be flooded by them. 
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Finally, a list is obtained of the operational modes that can reasonably be 
anticipated for the works within the system, of both their nominal performance and 
their degraded performance.  

Combining the operating modes then gives all the possible configurations of the 
hydraulic installation (Table 3.3). 

Structure Possible behavior and configuration 

Sluice and outflow of 
the Vallat Riquet dam 

- nominal operation 

- degraded operation: sluice 50% obstructed 

Sluice gate on the Vallat 
Riquet dam 

- nominal operation 

- degraded operation: gate stuck open 

- degraded operation: gate stuck closed 

Conduit channel to 
aerodrome dams 

- nominal operation 

- degraded operation: channel 50% obstructed 

Table 3.3. Operating configurations for various structures  
(extract could represent many of the dams shown in Figure 3.2) 

3.3. Construction of failure scenarios 

The information required for constructing failure scenarios was obtained during 
the previous system analysis stage: the realistic failure modes and the corresponding 
configurations of the works. The failure scenarios for the system can be modeled 
using the event tree method. 

Under this method, the sequence of events in the tree is built up in an inductive 
manner, starting from the initiating event and continuing until the final events.  

The use of the event tree method is easy once a complete system analysis and 
FMEA analysis have been completed: it involves combining successive failure 
modes of different structures within the hydraulic installation, while respecting the 
laws of cause and effect in the chronology of the failures (Figure 3.3). 

The initiating event in this application is systematically linked to a hydraulic 
event that produces a flood wave whose intensity depends on the return period T 
(where T is the inverse of the annual frequency) of the hydrological event.  
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Figure 3.3. Representation of failure scenarios  
using the event tree method 

Successive individual events are the ones obtained through FMEA and its 
analysis by the panel of experts; they correspond to operational configurations of the 
hydraulic installation. 

Scenario construction may prove challenging in the case of complex systems 
consisting of many different components, and hence of multiple failure modes 
(Figure 3.4). 

 

Figure 3.4. Representation of complex failure scenarios 

 

H.E. 100 years Scenario 1: Flow: **m3/s; probability: ** 

Scenario 2: Flow: **m3/s; probability: ** 

Scenario 3: Flow: **m3/s; probability: ** 

Scenario 4: Flow: **m3/s; probability: ** 

Scenario 5: Flow: **m3/s; probability: ** 

Scenario 6: Flow: **m3/s; probability: ** 
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3.4. Scenario criticality analysis 

Scenario criticality analysis for the hydraulic installation involves a probabilistic 
approach for evaluating the probabilities of occurrence of individual hydrological 
events, combined with an expert approach for estimating the probabilities of 
occurrence of technological failures within the structures. 

The analysis of the consequences of the various scenarios is quantified in terms 
of the water flow rate into the environment outside the network, and is obtained by 
hydraulic modeling of the installation. It therefore involves the two-criteria 
criticality formulation (see section 2.5.1.1). 

3.4.1. Hydrological study 

A hydrological study defines the reference rainfall events corresponding to the 
various return periods examined in the operational reliability study. It describes the 
reference rainfall levels (characterized in terms of IDF: intensity/duration/frequency) 
and the associated hydrographs (QDF: discharge/duration/frequency) corresponding 
to the discharge response of the various catchment areas for each return period from 
a hydrological event. 

 

Figure 3.5. Reference hydrograph for a specific basin  
and a given return period (T = 50 years) [ARN 02] 
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The computations were performed using a probabilistic hydrological method 
based on stochastic event simulations – the SHYREG method [ARN 02]. This 
method is built around a stochastic generator for hourly rainfall, calibrated for the 
Languedoc–Roussillon and Provence–Alpes–Côte d’Azur regions of France using 
data from 556 rainfall stations. The hourly rainfall histories that are generated from 
this model are then used to calculate the peak discharges (at 1, 2… 72 hours and for 
return periods from 2 to 1,000 years) on a 1 km² grid. The discharges are aggregated 
over each catchment basin using a statistical transfer function. 

The reference rainfalls and the hydrographs are characterized by the IDF and 
QDF data output from the SHYREG method over the study region (Figure 3.5). 

3.4.2. Hydraulic model and quantitative consequence analysis 

Consequence analysis for a hydraulic installation considers the discharge from 
the system into its environment outside the water network, which represents a 
malfunction of the system.  

In this case study, it is obtained by hydraulic modeling of the installation, which 
requires two different models: 

– a numerical model of open surface flow (channels) and subterranean flow 
(collectors), using topographical data for the catchment area, and which can be used 
to describe the hydraulic behavior at particular points (gravel trap, diversion 
structures, etc.); 

– a second model reproducing the hydraulic behavior of the hydraulic 
installations, transport within the network and flood wave buffering in dams. It is 
formed of computational nodes, corresponding to the input points for flood 
hydrographs, beyond which there may be flood protection dams, and linking 
channels enabling exchanges between nodes, with all these nodes being able to 
represent malfunctions of particular installations. 

The hydraulic models simulate, for a nominal or degraded configuration of the 
hydraulic installation, and for a given hydrological event, the response of the system 
in terms of volume transported within the network and/or discharged into the 
external environment. They can be used to evaluate the consequences of a particular 
scenario. 
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Figure 3.6. Hydraulic modeling of flow within the installation 

3.4.3. Evaluation of probability of technological failure 

The probabilities of occurrence of technological failures of the installations 
(structural failures) are evaluated through expertise, individual and collective 
interviews with experts, and consideration of expert verdicts. For each of the failures 
under consideration, each expert is questioned on their understanding of the 
probability of occurrence. The responses from the experts are subjected to 
quantitative treatment, using our proposed analysis grid, shown in Table 3.4. 

The probabilities of occurrence of technological failures considered for the 
installations are generally determined by the hydrological event under analysis. 
They are evaluated as a function of the return period of the hydrological event. 
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Expert verdict on 
probability of occurrence 

Quantitative treatment of expert 
verdict in terms of probability of 

occurrence 

Very probable 0.60 

Probable 0.40 

Fairly probable 0.20 

Unlikely 0.10 

Very unlikely 0.01 

Table 3.4. Analysis grid for expert verdicts (from [PEY 06a]) 

Finally, the scenarios are evaluated using the event tree method (Figure 3.7): the 
aggregations of conditional probabilities obtained at each node of the tree 
(corresponding to the individual failure probabilities for the installations) can be 
used to obtain the global probability for the scenario (the occurrence of the terminal 
event) and the associated consequences, expressed in terms of flow discharged into 
the environment, possibly in terms of areas flooded or even number of victims. 

 

Figure 3.7. Quantitative evaluation of failure scenarios using the event tree method 
(data used purely as an example) 

The dams within the hydraulic installation are the subject of a separate 
evaluation. This is partly due to their much greater reliability compared to the other 
components in the installation, and partly due to their complex failure methods that 
require detailed analysis on the scale of the individual components of the dam. 
Because of this, it is necessary to break down the dams into their elementary 
components and analyze their failure modes individually (Figure 3.8). 

H.E. 100 years Scenario 1: Flow: 30 m3/s; probability: 0.54 

Scenario 2: Flow: 56 m3/s; probability: 0.06 

Scenario 4: Flow: 30 m3/s; probability: 0.36 

Scenario 5: Flow: 56 m3/s; probability: 0.04 
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Figure 3.8. Structural analysis of a dam within a hydrological installation 

Starting from the analysis of failure modes of the dams and their detailed review 
by the panel of experts, the annual probability of dam failure is evaluated in terms of 
the different failure modes. As an example, we will summarize the quantitative 
analysis of a dam in the form of a retaining embankment.  

For this installation it was the overflow mechanism, evaluated in the context of 
various extreme hydrological events corresponding to various different return 
periods (T = 1,000 years to 10,000 years), that proved to be the most critical (see 
Table 3.5). 

Failure mechanism for retaining dam (x) Annual probability of failure 

Landslide less than 10-6 

Internal erosion of embankment less than 10-6 

Internal erosion of foundations less than 10-6 

“Piping” erosion along the outflow less than 10-6 

External erosion less than 10-6 

Overflow less than 10-5 

Table 3.5. Example of results of quantitative reliability analysis  
for a retaining embankment dam 
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3.4.4. Representing the criticality of a scenario 

Using an event tree, it is possible to class each scenario in two ways, firstly from 
the most probable to the least probable, and secondly from the most serious to the 
least serious. For each scenario, it is also possible to see the implications of failure 
of each installation in the probability of occurrence of the scenario. 

These results can be summarized using severity–frequency curves. The criticality 
inherent in the hydraulic installation is shown as a function of the initiating 
hydraulic events associated with different return periods T (Figure 3.9). 

 

Figure 3.9. “Severity–frequency” curves as a function of the hydrological event  
for different return periods 

These curves show the annual cumulative frequencies for the peak flow at a 
strategic point downstream of the hydraulic installation, for rainfall events with 
return periods of between 10 years and 1,000 years. They can be used to understand 
the global effectiveness of the installation by integrating the failure probabilities of 
each of the components of the system. 

The analysis of these curves is particularly instructive. It can be shown logically 
that, as the consequences of failure of the installation (expressed here in terms of 
peak flow released into the downstream environment) become more serious, the 
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associated annual cumulative frequency decreases. But, above all, it shows that 
technological failures of the installations have a higher impact on the global risk 
during rare hydrological events. Thus, in order to reduce the risks, it is important to 
protect the structures that make up the installation by taking extremely unusual 
rainfall events into consideration. 

Furthermore, the probability of occurrence of floods and the probabilities of 
technological failure of the installation can be combined in order to obtain a global 
expression for the risk, taking into account all the different hazards and failure 
modes (Figure 3.10). This summarization of the risk inherent to the installation does 
not contain detailed information on the various failures, but it has the advantage of 
making it easy to appreciate the global operational reliability for the hydraulic 
installation, combined with the potential consequences to the environment. It 
typically corresponds to the results obtained in summary risk analysis performed in 
the industrial sector [VIL 88]. 

 

Figure 3.10. Summary “probability–severity” curves at a point in the network 

3.5. Application summary 

In the face of a complex civil engineering system, such as a hydraulic installation 
comprising several interconnected structures, the purpose of a reliability study is to 
demonstrate the most probable malfunctions and the most critical scenarios. The 
underlying aim is, of course, ultimately to improve the reliability of the installation 
and its component parts. 
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In this application, the most probable technological failures have been shown to 
be associated with the connecting components (openings, flow division structures, 
etc.), which might at first glance appear to be subsidiary to the main installations 
(the flood control dams); however, our studies have shown that failures of these 
structures are nevertheless liable to jeopardize the entire operation of a hydraulic 
installation. Our study has enabled us to propose improvements and to evaluate their 
benefits in terms of gains in operational reliability. 

Through exhaustive examination of the environment of the system during the 
functional analysis, the study enabled us to identify a hitherto rather neglected risk 
associated with flows coming from a nearby catchment area which may, under certain 
conditions, interfere with the functioning of particular structures. In response to this, 
corrective measures have been proposed and their effectiveness evaluated. 

Finally, analysis of the most probable scenarios leading to a significant risk or a 
major degradation in the effectiveness of the hydraulic installation has made it 
possible to propose preventative measures that can improve the reliability of the 
system. These measures of course include improvements to the civil engineering 
projects that comprise the installation, with the aim of significantly improving their 
reliability in the face of exceptional hydrological events that they prove particularly 
vulnerable to. Other measures consist of preventative inspection and maintenance 
actions that can be used to ensure the continued effectiveness of the dams in times of 
flood. 
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Introduction to Part 2 

In the majority of cases, failures in construction projects result from the 
combined effects of several deleterious factors. These factors may be related to how 
particular actions (unanticipated or underestimated) are taken into account. They 
may also be related to the way material capabilities and limitations have been taken 
into account: insufficient surveying, poor understanding of novel materials, or the 
use of materials under conditions that are outside of their design specification. 
Calculation or modeling errors can also be a source of problems. These factors are 
often compounded by a lack of care during construction and inadequate oversight. 
Every one of these factors has implications on the level of safety inherent in the final 
structure. 

Consequently, in order to reduce the level of risks (and to quantify it as precisely 
as possible) it is essential to specify the role played by each factor. Ultimately, aside 
from cases where static equilibrium is lost, a failure will occur because the effects of 
external sources acting on the materials exceed what the materials are capable of 
tolerating, whether due to exceptional forces or because the properties of the 
materials are insufficient.  

Part 2 considers how the variability and heterogeneity of soil or construction 
materials can be taken into account, and their consequences for structural safety. 

Chapter 4 considers the characterization of uncertainty in geotechnical data, the 
identification of sources of uncertainty, data classification (aberrant, censored and 
sparse), and the statistical representation and modeling of these data. Chapter 5 gives 
some estimates on material variability (mean or characteristic values) and includes a 
case study of a geostatistical study in an urban environment. Chapter 6 illustrates 
these concepts with the example of a shallow foundation footing, the reliability of 
which is investigated: first the available models of bearing capacity are described, 
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then the effects of soil variability on variations in bearing capacity and the safety of 
the footing is investigated; finally, the structure of the spatial correlation is taken 
into account in order to study its influence on the safety of the footing. 



Chapter 4  

Uncertainties in Geotechnical Data 

4.1. Various sources of uncertainty in geotechnical engineering 

Civil engineering projects all share the one similarity that they use a wide variety 
of construction materials (concrete, steel, wood, masonry, polymers, etc.) and that 
they are built on the ground, whether this be natural terrain or artificial foundations. 
A lack of knowledge or a poor understanding of the properties of these materials is a 
source of risk. In particular, the properties of the ground material, which has an 
impact on the strength of a structure, depends on the entire history of its formation 
(tectonics, erosion, transport, sedimentation, etc.). The ground also includes 
“heterogeneities” in the form of continuous variations (rigidity varying with depth, 
cohesion, Poisson coefficient, friction, etc.), or discrete variations (fractures, 
watercourses, “hard” points or areas of weakness). A thorough appreciation of 
geotechnical considerations is thus crucial in order to minimize the uncertain 
character of predictions of the behavior of the ground or an installation that is built 
upon it. 

In the first section in this chapter, we will discuss different categories of terrain, 
in terms of “degree of uncertainty” [FAV 04], which increases as a result of sources 
of heterogeneity and variability. We will then define various types of data and 
sources of uncertainty. 

                                   
Chapter written by Denys BREYSSE, Julien BAROTH, Gilles CELEUX, Aurélie TALON and 
Daniel BOISSIER. 
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4.1.1. Erratic terrain, light disorder and anthropogenic terrain 

Jean-Louis Favre distinguishes various degrees of uncertainty within the ground 
[FAV 04]: 

– highly erratic terrain, with strong heterogeneities, whose geometry and 
properties are highly inhomogeneous (with fractures, areas of weakness or “hard 
points” etc.). In this case, the behavior of installations is more likely to involve 
“accidents”, in other words extreme (and improbable) values rather than middle-of-
the-road values. The most appropriate way of addressing this situation involves 
correct surveying of the soil in order to detect these accidents, by combining 
geological information with geophysical or geotechnical data. Deterministic 
representation of “accidents” and their consequences is the logical approach to take; 

– lightly disordered terrain, with regular stratification, for which each layer has 
properties that only vary to a limited extent, but which are significantly different 
from the neighboring layers. In this case, we can establish a mechanical model of the 
terrain, combining geological and geotechnical information, and exploit it in a 
statistical manner. Probabilistic approaches prove particularly suitable in this 
context. One of the areas where researchers are most active is the possibility of soil 
liquefaction. The susceptibility of the soil to liquefaction (in other words, the loss of 
all bearing capacity in the event of a dynamic action such as an earthquake) can be 
estimated using measurements obtained through penetrometry. The method then 
involves processing geotechnical data and modeling their spatial variability in order 
to build up a map of the risk of liquefaction [HIC 05]; 

– anthropogenic terrains, whose construction process (embankments, dams, etc.) 
is well understood, and for which there may be a wide selection of test data. 
Statistical methods can also, of course, be applied to this situation as well.  

4.1.2. Sources of uncertainty, errors, variability  

Geotechnical surveying does inevitably introduce a range of errors. In addition to 
the limited scope of the survey area and the number of tests (sampling density), 
testing errors may result in unsuitable or poorly interpreted tests [JCS 06]. These 
errors include:  

– observation errors: measurement errors associated with the test device 
(calibration, zeroing, etc.), temporal errors (due to variations between the time of 
measurement and the time when the data is exploited, during the service lifetime of 
the structure); 

– surveying errors, which arise from the fact that the volumes investigated are 
not necessarily appropriate (surveying to insufficient depth, for example); 
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– uncertainties within materials can also be classified in terms of aleatory and 
epistemic uncertainties. 

Aleatory (or statistical) uncertainties can be ascribed to natural (intrinsic) 
variability of materials. Ostensibly comparable samples will in fact have different 
responses. These differences may have natural explanations in the case of soil (the 
properties of which result from geological erosion, transport and sedimentation 
processes) or wood (whose properties result from the growth process). They may 
alternatively be explained by the construction process: during the fabrication of 
concrete for example (and depending on the sophistication of the plant equipment), 
tolerances are specified on the composition of each batch but the actual water 
content of the aggregates cannot be precisely known. A standard exists [CEN 06] to 
impose a maximum value on the water to cement ratio, with a tolerance of 0.02 for 
each load of concrete produced (verification requires systematic availability of 
weight certificates for each load of concrete used in the installation, whether the 
concrete is mixed on site or in a factory). 

In addition to aleatory uncertainties there are also epistemic (or systematic) 
uncertainties, associated with a lack of understanding, which may for example result 
from having taken limited samples. The physical or financial means available to 
acquire information are of course limited and, as a result, a small number of sample 
measurements may not necessarily be representative of the population. The statistics 
of standard surveys indicate, for example, that the ratio of the volume of samples 

taken to the volume of the foundation loaded by a dam is equal to around  
[FAV 99]. The properties of the whole foundation must therefore be estimated from 
limited sampling, when it may be extremely heterogeneous. This is a major source 
of uncertainty in geotechnical engineering, where the variability of material is high.  

An additional uncertainty factor results from the measurement itself: for a value 
of X which is assumed to be the “true” value of the parameter under study, the 
measurement protocol (probe, electronic device, etc.) provides a measured random 
value x for which X is only, in the case of unbiased measurements, the expected 
value. In the absence of bias, an infinite number of repeated measurements should 
cause x to tend towards the value of X. In reality, the estimation of X is less accurate 
if the degree of repeatability of the measurements is lower. For example, it can be 
estimated that the coefficient of variation in the measurement of a plate bearing test, 
a standard geotechnical measurement, is of the order of 30%. For such a coefficient 
of variation, a measurement of x < 0.5 X or x > 1.5 X could be obtained in 10% of 
cases! In practice, the degree of repeatability of the measurement is in general 
unknown, and this source of uncertainty cannot be distinguished from natural 
variability, despite its fundamentally different origin. 

510−
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In addition to individual uncertainties, multiple biasing factors may also exist: a 
poor physical understanding, or imperfections in theoretical models for the 
interpretation and use of measurements, inappropriate simplifications of the actual 
scenario, tests affected by systematic errors, etc. These aspects are not discussed 
here, and we will restrict ourselves to discussing the effects of natural variability. 

There are therefore a range of arguments justifying the modeling of material 
properties as random variables. Table 4.1 gives the estimated orders of magnitude 
for the variability of various common properties of materials.  

Material Property Coefficient of variation (cv) References 

Concrete 

Compression strength 

4 to 10% (laboratory) 

17% 

8 to 11% (HPC on site) 

5 to 7% (HPC in laboratory) 

[IND 93] 

[TOR 50] 

Compression strength 
9 to 25% (fiber-reinforced 
concrete, depending on mean 
resistance) 

[BRE 96] 

Wood 

Longitudinal modulus 
of elasticity 

23% (high grade spruce) [ROU 93] 

Longitudinal tensile 
strength 

33% (high grade spruce) [ROU 93] 

Bending strength 
24 to 41% (timber, depending on 
quality of wood) 

[REN 97] 

Soil 

Density 5 to 10% [JCS 06] 

Undrained cohesion 
23% (fine compacted soil) 

10 to 40% (clay) 

[KOU 98] 

[PHO 96] 

Coefficient of 
permeability 

68 to 90% (saturated clay) [DUN 00] 

Table 4.1. Order of magnitude of variability in mechanical properties  
of construction materials (HPC: High Performance Concrete) 

Model errors can also be included under the umbrella of epistemic errors in the 
case where a model is used to interpret the results of a test that does not directly give 
the value of the property of interest [DNV 07]. This is the case, for example, in the 
Ménard pressuremeter modulus, which stems from an analysis of the results of 
pressuremeter tests and their interpretation (see Chapter 5). The mean values that are 
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generally taken for the Poisson coefficient are generally ~ 0.3, except in the case 
of saturated soils where ~ 0.5. Other parameters that may have uncertainties 
associated with them [MAG 07] include the void index e, the water content w  
(cv ~ 20%), the dry volumic weight , water volumic weight , grain volumic 

weight  (cv ~ 5%), the shear resistance parameters (cv ~ 30%), etc. It is thus 

useful to take into account the relationships that may exist between some of these 
parameters. 

4.1.3. Correlations between material properties 

The correlations between properties can be expressed in terms of a range of 
equations [MAG 07]: 

– exact mathematical equations, including those representing the physical state 
of soils:  

e = n/(1-n);   

  

  

where Sr is the degree of saturation and n is the porosity; 

– evolution equations as a function of depth: the stresses increase with depth. In 
the case of homogeneous deposits of fine soils whose state has stabilized, the 
effective stresses, consolidation pressures, moduli and resistances also increase with 
depth; 

– empirical equations (or “correlations”): in order to simultaneously analyze the 
values of several properties of the same soil, it is generally assumed that the desired 
equations are linear. This assumption does not exclude the existence of nonlinear 
relationships between soil properties: the random variables linked by linear 
equations may be nonlinear functions of the soil properties (logarithms, power 
functions, exponentials, etc.), which imbues this type of linear analysis with a great 
flexibility. Statistical studies can, for example, give various empirical correlations 
[MAG 07] between what the Eurocodes refer to as measured parameters and derived 
parameters (for example the void ratio in a clay, and its permeability), or between 
different measurements: maximum measured pressure and cone resistance to a static 
penetrometer, or, alternatively, static and dynamic cone resistances, etc. 
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4.2. Erroneous, censored and sparse data 

In order to evaluate the failure scenarios for civil engineering installations, it is 
useful to collect and process the available experimental data. The characterization of 
these data is, however, particularly challenging in the case of erroneous, censored or 
sparse data.  

4.2.1. Erroneous data 

A series of measurements of a property sometimes reveal the presence of 
erroneous values or outliers, whose probability of occurrence would appear to be 
extremely low if the distribution of properties were to follow a regular distribution. 
This is, for example, the case when a batch exhibits properties that are much lower 
than what would be expected, or when a sample core indicates that the 
characteristics of the terrain are very different to those nearby. 

“Measurement errors” are often invoked as an explanation for the presence of 
such values, but they may also be the result of accidents, either technological ones (a 
bad batch, for example), or geological ones. In that case, even though the outlier 
may be significantly different from the rest of the population of data points, it may 
nevertheless be crucial since it indicates a potential weakness that could be the cause 
of a later failure. For example, [LEM 99] studied the consequence of low-strength 
events corresponding to the occurrence of a very weak value of concrete strength for 
a particular batch. The difficulty lies in processing this information in an appropriate 
manner: should they be integrated into the body of the data set? Should they be 
eliminated? Should they be given special treatment? In such a way, very high 
coefficients of permeability at the surface of a concrete facing could be explained in 
terms of structural micro-cracking, rather than by a strong porosity that would 
reduce the durability of the material. The tendency is to reject such results, arguing 
that the aim is to identify the properties of the material, but is this not then taking a 
risk, if such cracking does exist? 

Many methods exist that can be used to test such aberrant points from a 
statistical point of view, and these can easily be found in the literature. 
Consequently, we will not discuss them in this book. These methods include the 
Student test, the Dixon test [FAV 04], [PLA 05] or, alternatively, Principal 
Component Analysis (PCA) or Factorial Correspondence Analysis (FCA) [BEN 73], 
not to mention the “engineer’s instinct”. These methods must be used in conjunction 
with expert insight into the possible origins of these values (potential measurement 
problems, variability that could be explained in terms of material characteristics, 
etc.).  
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[MAG 00] showed the extent to which the apparently incongruous character of a 
localized region of soil, with very contrasting properties relative to the immediate 
environment, may disappear following detailed expert geological consideration in 
conjunction with appropriate data processing: he mentions a case where the analysis 
of geotechnical data confirmed the presence of a region (an ancient alluvial plain) 
whose properties were clearly distinct from its immediate environment. On another 
scale, analysis of the variation in air permeability of concrete in a structure results in 
a set of outlying values if the experimental device is placed in a region where a 
macro fissure is present. Should these values be retained? If they are retained, we 
should probably take into account the bimodal structure of the statistical distribution 
(regions with and without fissures). If they are eliminated, this move must be 
justified, for example by the limited extent of these fissures which are not expected 
to compromise the global properties of the structure. 

4.2.2. Bounded data 

Data may sometimes only provide partial information. Thus, in terms of 
reliability, it is often the case that data for a property x of the material (but also for a 
lifetime, see section 4.3) are bounded and hence contain little information. Recall 
that the property x is bounded:  

– on the right side (or left, respectively) by c if it is known for certain that x > 
c (or x < c); 

– by an interval if it is known for certain that a < x < b. 

Two classic examples of bounded data are: 

– lifetimes measured by fatigue: when the number of repetitions of the action 
leading to failure is too high, the test may be halted, in other words Nfailure>Nhalt 

(upper bound on the period of correct operation); and 

– data obtained through observations carried out during scheduled operations 
(SO) at particular intervals. It is then known that t(SOi-1) < tfailure < t(SOi): bounding 
by interval. 

4.2.3. Sparse data 

There are many dangers of small sample sizes and data carrying little 
information for a statistical analysis: strong variability in estimates, high sensitivity 
to atypical values, exaggeration of contrasts, etc. Thus, when faced with such sample 
sets, it can be useful to bolster the reliability of the analysis in a number of different 
ways:  
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– we could abandon the analysis. This is a logical attitude but often one that is 
over-cautious; 

– it may be possible to bypass the difficulty. This is a common attitude in the 
context of statistical learning or data mining. For example, in the case of missing or 
inadequate data, interpolation or extrapolation could be used. Then, however, there 
is a need to attempt to estimate the quality of the values obtained. It is also possible 
to generate additional fictitious values that conform to the statistical distribution of 
the available data, which is one way of generating a large number of new samples 
and to perform statistical analysis. This technique, known as bootstrap resampling, 
has for example been used to perform reliability analyses in geotechnical 
engineering, in a situation where there are only a small number of survey data 
points; 

– regularization of statistical estimates. This attitude is often the best choice. It 
involves the introduction of external information (real or artificial information, or 
information based on expert opinion) to supplement the data. Thus, this strategy 
often naturally leads to the adoption of a Bayesian approach. 

Finally, we should mention a class of techniques that are intended to enhance the 
contribution of certain points or suppress the influence of aberrant points within the 
sample set. This type of approach falls into the classification of robust statistical 
analysis [HAM 86] and it is, by definition, particularly useful in the presence of 
aberrant or poor quality data. In all cases, a preliminary sensitivity analysis can be 
used to identify the most useful data points (see Figure I.2 in the Introduction to this 
book). 

In the rest of this second part of the book, we will assume that the data are 
“complete” or, in other words, that “there are a sufficient number of data points”. 
For example, in order to estimate the mean and standard deviation of a parameter, 
Eurocode 7 [CEN 07] recommends at least five samples. Conversely, in order to 
have an idea of the statistical distribution of a parameter, no less than 20 samples are 
often required. Bayesian inference, particularly useful for this type of analysis, is 
introduced in Part 4 of this book. An example of an analysis of bounded and sparse 
data is given in section 4.3.  

4.3. Statistical representation of data 

4.3.1. Notation  

Let x = (x1…, xi…,xN) be a vector of N values for a physical property (cohesion, 
modulus of elasticity, friction angle, etc.). This parameter x is known at n points, 
obtained through a measurement process such as, for example, event counting 
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(earthquakes, rockfalls, etc.) over a given period, or obtained from sample 
measurements. In order to model this discrete parameter, it is helpful to interpret the 
measured data (statistical studies) and to define suitable hypotheses. For this, a 
histogram is often employed. The data are sorted in increasing order. They are then 
grouped into classes: the spread of measurements xmax – xmin is divided into r 
intervals Ij of equal size. For each interval, the absolute frequency (or number of 
measurements) nj and relative frequency fj = nj/n, which defines the histogram, are 

determined, such that  The cumulative frequency then 

gives the cumulative frequency curve. 

After having chosen r classes1, the standard estimators are determined:  

– central estimators, such as the mean: , the mode 

 , most observed value, in other words i=1,..n, the median

, the value such that 50% of the observed values are below this value (in 

other words  and  );  

– spread estimators: variance within a sample of n known values: 

 

and  the unbiased estimator of the complete population; 

– shape estimators (coefficients of asymmetry or flatness); 

– variation estimators (coefficient of variation cv = s/ ). 

These parameters are evaluated by statistical estimation (samples, 
measurements) and/or according to prescribed rules (for example, Eurocode [CEN 
07]). Section 4.4.5 illustrates these concepts using resistance measurements for 
samples of concrete. Chapter 5 will extend this initial analysis in order to estimate 
the variability in material characteristics.  

                                   
1 The Sturges formula [STU 26] may be useful: r ~ 1+ 3.22 log10 n. For example, if n ~ 10, 
r ~ 4. It is also often considered that there should be at least five elements in most classes, and 
no gaps. 
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4.3.2. Spatial variability of material properties 

In certain soils, properties measured more than 50 cm apart may have no 
correlation between them. In other soils, on the other hand, the properties are largely 
the same over several meters, or even several tens of meters. The autocorrelation 
distance of a property reflects the degree of similarity of this property between two 
points as a function of the distance that separates them. Several authors have stated 
values for the autocorrelation distances for soil cohesion, based on test 
measurements in the laboratory and in situ. We note that the scale of horizontal 
fluctuation (5–50 m) is much greater than the vertical scale (0.5–5 m). The quantity 
of information on autocorrelation distances is limited; to establish it precisely 
requires a large number of measurements, and no “general rule” is currently known 
that is applicable to all types of soil. The values for autocorrelation distances used in 
geotechnical calculations must therefore be validated through a detailed 
investigation to identify these distances. The value of the estimator for the 
fluctuation scale is strongly influenced by the sampling interval (the interval over 
which the survey has been performed) [FEN 99]. Thus, during a measurement 
campaign, in order to obtain a good value for the correlation values, it is necessary 
to perform measurements separated by distances smaller than the autocorrelation 
distance δ. The maximum sampling distance that is often recommended for a soil in 
the vertical direction, is of the order of Δv = δv/2, whilst in the horizontal direction it 
is more like δh/8 < Δh < δh/4 [POP 95]. 

A tool widely used in geo-statistics to characterize spatial variability is the 
variogram. The next chapter describes this and illustrates it with an analysis of 
piezometric measurements in an urban environment. In other structured construction 
materials (concrete, wood), the concept of the autocorrelation distance is of course 
relevant, but there is very little information available on plausible values for this 
distance. 

4.4. Data modeling 

Data collected in order to evaluate failure scenarios for civil engineering works 
may take a wide range of different forms: experimental data, expert opinion, data 
from mechanical models, sounding tests, etc. Similarly, a wide range of tools are 
available to model these data. In the next section we will discuss probabilistic and 
possibilistic approaches; focusing on possibilistic description in the next section. 
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4.4.1. Probabilistic and possibilistic approaches 

Probabilistic data modeling makes use of probability theory. A distinction is 
made between discrete random variables and continuous random variables. In this 
book we will not discuss the discrete case (binomial distributions, Poisson 
distributions, etc.). X is defined as a continuous random variable if the set of 
possible values it can take consists of a continuous interval of values. Such a 
variable can be defined in terms of the probability that X will take a value in all 
intervals [x, x + h ], where h is real.  

This is expressed in terms of the partition function of X, written FX and defined 
by FX(x) = p [X < x]. This can be used to calculate p [x ≤ X < x + h] = FX(x + h) – 
FX(x), where p [X = x] = 0. If the partition function for X is continuous, we have 

FX(x) = , where the probability density function fX is characterized by a 

number of parameters (mean μ, standard deviation σ, etc.). The coefficient of linear 
correlation  is used to describe correlations in the variation 

of two random variables X and Y, where ,  represent the standard deviations 

of X and Y and  their covariance. 

Probability theory is very widely used to describe the propagation of 
uncertainties by way of a mechanical model or to estimate a risk. However, not all 
types of data are applicable to such an approach. For example, expert opinion 
[TAL 06], [CUR 08] may prove difficult to quantify. Expert opinion can be defined 
as the combination of experimental data and experience: for example, if there is a 
brownish stain on a rendered facade (fact) then this may be due to the presence of 
humidity and microorganisms (experience) [TAL 06]. 

Possibilistic approaches have more limited application and are awkward to 
apply, but they can be used to represent the main types of experimental data 
[HRY 06], [MAS 06] or expert opinion within the same formalism, as fuzzy subsets.  

Associated with any expert opinion is an uncertainty which is completely 
unrelated to the uncertainty resulting from the (intrinsic) variability of the estimated 
parameters. Fuzzy subsets, which have their roots in the theory of fuzzy logic, can 
be used to formalize expert opinion by taking into account this uncertainty and 
inaccuracy. A trapezoidal fuzzy subset A of X is described by several characteristics 
(Figure 4.1): 

– its kernel: ( ) ( ){ }| 1AKern A x X xμ= ∈ = ; 

– its support: ; 
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– its height:  (a fuzzy subset is normalized if h(A)=1); 

– its cardinality: ; 

– its α-cut: . 

 

Figure 4.1. Characteristics of a trapezoidal fuzzy subset A of X 

For further information, readers are referred to Chapter 9, which discusses an 
application in greater detail (in a study into the evacuation time for a building 
following the outbreak of a fire). 

4.4.2. Useful random variables (Gaussian, Weibull)  

The Gaussian, or normal, random variable, written X, is one of the most widely 
used random variables, and it is represented by the following probability density: 

 [4.1] 

This distribution is thus entirely represented by two parameters: its mean μ and 

its standard deviation σ. It is also written as N (μ, ). If a normal distribution is to 
be used, it is useful to confirm that the variables under study are continuous and are 
fairly numerous (>20–30 data samples). 
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In addition, the random variable U, the reduced centered normal distribution, is 
defined by the following probability density:  

 [4.2] 

This distribution, written as N(0,1), is indispensible in statistics and all types of 
computational code. It can be found in the form of the reduced centered normal 
distribution table [VER 07]. This distribution is used in many places in this book; in 
particular, it is used to represent the mean distribution of material properties. It is, 
however, important to be aware of the potential problems that may be encountered if 
a normal distribution is used to represent a random variable that must remain 
positive for physical reasons (density, modulus of elasticity, dimension of a 
component, etc.), particularly when the variance is high (greater than 0.3, for 
example). In that case, there may be a significant probability of generating negative 
values, and it is useful to bound the distribution with a minimum value, an action 
which therefore alters the observed distribution. 

The Weibull distribution2 is one of three distributions (along with the Gumbel 
and Fréchet distributions) that can be used to describe the statistical distribution of 
“extreme” phenomena such as the resistance to breaking of a material. Note that 
x=(x1…, xn) for n measured resistances. This distribution has the form: 

FW (x) = 1 - exp (- [ ( x – a )/η  ] β)  

where β, a and η are three real numbers (β >0 and η>0), which are known as the 
shape, location and scale parameters. The probability of exceeding a given value can 
also be expressed by writing P[x] = 1 – FW(x). A two parameter Weibull distribution 
refers to the case where a is zero, and a three parameter Weibull distribution refers 
to the more general situation. Determination of the parameters from experimental 
data is simple in the case of a two parameter distribution (if a = 0) by rewriting the 
expression for the distribution such that: 

ln ( - ln [ 1 – F(x) ] ) = β  ln x – β  ln η 

                                   
2 Waloddi Weibull, a Swedish engineer, worked between 1937 and 1939 on the statistical 
distribution of the elastic limits and mechanical resistances of steel. He showed that “his” 
distribution was equally suitable for describing the resistance of steel, the height of adult 
British males or the size of bean seeds [WEI 51].  
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β  and η can then be identified by plotting the values for the partition function on a 
diagram where ln x is used for the horizontal axis and ln ( - ln [ 1 – F(x) ] ) for the 
vertical axis. If a is non-zero, it is less simple to identify the parameters, and a 
minimization procedure (least squares) must be used. The probability density then 
becomes: 

 [4.3] 

Weibull’s statistical model has various advantages [LAM 07]: 

– it has a simple form. In the case of a two parameter distribution (a = 0), the two 
other parameters can be estimated very easily from the partition function. This is 
why it is easy to interpret, and is used by a wide range of researchers and engineers; 

– it can be used to describe the statistical distribution of resistances to breakage 
of a large number of samples, under simple force conditions (single-axis traction, for 
example); 

– it can be used to estimate a wide range of distributions (extreme wind speeds, 
flood wave heights, etc.) and can be used to estimate the reliability of a component.  

4.4.3. Maximum likelihood method 

In order to extract useful information from a sample of data (x1…, xn) belonging 
to Rp, statistical modeling involves assuming that the data are drawn from an 
unknown probability function of density f(x). It is usually assumed that this density 
function belongs to a parametric family that is suitable for representing and 
summarizing the observed phenomenon. Thus, we assume that f(x) = f(x; θ), where θ 
is an unknown vector parameter that must be estimated from (x1…, xn). 

Suppose, for example, that the data (x1…, xn) represent the resistance to breakage 
of n samples. If these resistances follow a normal distribution of mean μ and 
variance σ2, the parameter to be estimated is θ = (μ, σ2). If the resistances follow a 
Weibull distribution, then the parameter to be estimated is θ = (β, η). A widely-used 
approach for estimating the parameters of a statistical model is maximum likelihood 
estimation [VER 07]. The likelihood of the parameter associated with the data 
(complete in this case) is written: 
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This function contains all the information provided by (x1…, xn) about the 
parameter θ. The maximum likelihood method involves estimating θ using: 

 

This estimator has useful properties when n is large compared to the dimensions 
of θ: it converges to the optimum value of the parameter and has minimal variance. 
Conversely, in the case where n is small, the likelihood estimator may prove 
unstable (see [BAC 98] for illustrations of this issue for situations relevant to 
industrial experience feedback). We have, for example, already given the maximum 
likelihood estimator  for the case of a normal distribution, where and s² 
are defined, in section 4.3.1. In the case of a two parameter Weibull distribution 

, its maximum likelihood is obtained by iteratively solving the following 

equations: 

 and  [4.4] 

When the problem becomes rather more complex, which is commonly the case 
for industrial experience feedback data, it is necessary to use several different 
models in parallel in order to achieve reliable and useful statistical inference. The 
choice of model is thus an important phase in a good statistical analysis. 

We will not consider various contemporary statistical techniques that are useful 
for validating the choice of model. 

4.4.3.1. Data adequacy testing:  test 

The  test, amongst others, gives a measure of the adequacy between a 
frequency histogram and a probability density function, characterized by a 
distribution and m parameters. We can, for example, consider a normal distribution 
or a Weibull distribution, characterized by a mean and a standard distribution 
(m = 2), or alternatively by (m = 3) parameters. The spread is divided into r intervals 
of equal size (Sturges rule [STU 26]: 5 for n = 20, 6 for n = 30). Let pi be the 
theoretical probability that a value will belong to class i, ni the absolute observed 
frequency and υ = r – 1 – m the number of degrees of freedom. The D² statistic is 
then calculated, and this is compared to the value  of the Pearson variable, for 

a fixed confidence level (which is often 1–5%). If , the candidate 
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distribution is rejected. Table 4.2 gives various values of  for common values 

of α and υ [VER 07]: 

;  where   [4.5] 

α(%) 1 5 1 5 1 5 1 5 

ν 3 3 4 4 5 5 6 6 

2
, %Xν α  11.3 7.81 13.3 9.49 15.1 11.1 16.8 12.6 

Table 4.2. Common values of extracted from the Pearson distribution table 

This test can be used for n > 20, but works best for n > 30 [FAV 04].  

4.4.3.2. Likelihood ratio test 

In order to choose between two models, M0 and M1, whose parameter spaces are 
nested, the likelihood ratio test is used: 

 

If we assume that the data result from the distribution f(x, θ0), then -2 ln Λ 
asymptotically (as n tends to infinity) follows a distribution of χ2 with dim θ1 - dim 
θ0 degrees of freedom. 

4.4.3.3. Penalized likelihood criteria 

Penalized likelihood criteria are used to choose a model from a set of models that 
are not necessarily nested. The most widely used [PER 08] are the AIC (Akaike 
Information Criterion) and the BIC (Bayesian Information Criterion). For a model 
M, these are written: 
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These criteria to be minimized are obtained using asymptotic arguments and are 
optimal when the size of the data sample is large enough. 

Thus, statistical inference from probabilistic models is based on the convergence 
of observed frequencies to the probabilities that they estimate. When the user has a 
wide range of data that provides definite and precise information, there is generally a 
broad choice of available statistical models, and the user is free to use relatively 
complex methods to analyze the data.  

In such cases, statistical analysis offers a powerful tool for extracting the most 
important and relevant elements in order to solve difficult problems and make robust 
decisions. The difficulties begin when there is only a small amount of available data, 
or the data does not contain much information about the phenomenon under study. 
The latter case will be considered in the next section. 

4.4.4. Example: resistance measurements in concrete samples  

Table 4.3 gives n = 27 measurements of compressive resistance of concrete 
samples, performed on control samples that were cast at the same time as a 
construction. These were arbitrarily divided into r = 6 classes. For each class, the 
medians xi and the relative frequencies fi, i=1,.., n = 6 were determined, and the 
mean was found to be 31.2 MPa, the standard deviation s = 1.7 MPa (variance s/
 6%), and the median and mode estimated to be around 31 MPa.  

Classes (MPa) 27–28.5 28.5–30 30–31.5 31.5–33 33–34.5 34.5–36 

Effective ni  1 6 9 6 3 1 

Relative frequency fi 

and cumulative 
frequency (Fi) 

0.04 
(0.04) 

0.23 
(0.27) 

0.345 
(0.615) 

0.23 
(0.845) 

0.115 
(0.96) 

0.04 
(1) 

Table 4.3. Measurements of compressive resistance of concrete samples 
divided into classes of resistance, along with relative and cumulative frequencies 

Consider the test of a normal distribution to model this distribution. The normal 
distribution is described by m = 2 parameters: a mean μ =  and a standard 
deviation σ = s. For a class i, of frequency ni, the probability pi = is defined 

by equation [4.1].  

Using equation [4.1], the adequacy between this frequency histogram and the 
normal distribution is estimated using the statistic D² = 5.9 defined in equation [4.5], 
by assuming that  such that X ~ N(31 MPa; 1.7 MPa). It can be confirmed 
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that D² < 2
3.5% 7.8vX = =  (Table 4.3). Thus the normal distribution tested here is not 

rejected, with parameters ˆ (31;1.7)θ = . The Weibull distribution with three 

parameters is not rejected either, for which we obtain D ² = 6.9, where pi =

defined in equation [4.3] such that . Conversely, in this 

example the trial of a two parameter Weibull distribution is rejected (D² = 156), for 
.  

4.5. Conclusion 

The primary aim of this chapter was to summarize the preliminary approach 
taken in all studies that take into account the variability and heterogeneity of 
material properties: identifying the uncertainties, gathering and classifying the 
available data, and then modeling these data using a model that is consistent with the 
data. This chapter included several samples which serve as an introduction to the 
discussions that will follow.  
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Chapter 5  

Some Estimates on the Variability  
of Material Properties 

5.1. Introduction 

In this chapter, we will consider, through a number of examples, the issue of 
estimating the mean and the representative values of a material property in the 
presence of variability. We will discover the role played by sample size (number of 
measurements) and the level of confidence that is expected. We will then consider 
the question of spatial correlation of properties, which can be modeled in order to 
reproduce, through simulation, the behavior of materials and structured 
heterogeneous media. A range of civil engineering materials have structures of this 
type, often for physical, geological or biological reasons. This is obvious in the cases 
of soils and rocks, wood or concrete, for example. This spatial structuring may also 
result from the fabrication process: batch production, layer-based construction, 
compacting, etc. 

5.2. Mean value estimation 

5.2.1. Sampling and estimation 

Suppose that measurements of simple compressive strength are performed on 
three batches of concrete, giving the following results: 53.8 MPa, 62.7 MPa, 
49.3 MPa. What can we conclude about the properties of the batch of concrete that 
these samples are taken from? 
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If we assume that the strength rc can be described by a random variable, we have 
three instances of this random variable, Rc1, Rc2 and Rc3, which we can use to 
determine an empirical mean cr  = (Rc1 + Rc2 + Rc3)/3 = 55.3 MPa. Obviously three 

different samples, selected at random from the same population, would have yielded 
different results. The question we must therefore ask is how representative the result 
we have obtained is: to what extent is cr  a good estimate of the true mean, which 

we will write as μ(rc)? 

The empirical mean gives an estimate of the true mean value for the population. 
This estimate converges towards the exact solution as the sample size becomes very 
large. In fact, there is a specific probability that the exact value lies within an 
interval I = [ cr – Δ, cr  + Δ] about the empirical mean: by writing the probability 

in the form 1-α (α is the risk that we are wrong) we can define a confidence interval 
for the estimate [RUE 89]. 

The equality of the estimate is obtained by calculating the confidence interval (at 
the 1-α level). It can be shown that the extent of the confidence interval depends on: 

– the standard deviation σ(rc) of the distribution of the variable; 

– N, the number of samples: as the number of samples increases, the risk of error 
decreases; 

– the desired confidence level (if a high confidence level is required), in other 
words if there is a need to have a very small chance of error in the estimate, then a 
larger sample size is required. 

The expression for the interval exploits the characteristics of the convergence of 
the estimated value towards its exact value (central limit theorem). It is as follows: 

]   / )( )+  , / )( )= Ν rf(α rΝ r  -f(αr I cccc σσ[  [5.1] 

The exact expression varies depending on whether the standard deviation σ(rc) is 
known or not: 

– if it is known, the function f(α) is given by the values of the normal 
distribution: 

f(α) = zα/2 = φ−1(α/2) 

Table 5.1 gives some values of zα/2 for common values of 1-α; 
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– if the standard deviation is not known (which is more commonly the case), an 
uncertainty on the estimate of the variance must be added to that on the estimate of 
the mean.  

1 - α 0.999 0.995 0.99 0.95 0.90 0.80 

zα/2 3.29 2.807 2.576 1.96 1.645 1.282 

Table 5.1. Common values of zα/2 taken from the normal distribution table 

The expression for the interval is then written as: 

 [5.2] 

where s(rc) is the estimated standard deviation (or empirical standard deviation), 
which replaces the true mean, and where tα/2 is a coefficient obtained from the 
Student’s t-distribution. Table 5.2 gives values of tα/2 as a function of the number of 
degrees of freedom (the number of samples minus one). Note that as the number of 
samples increases, the value of tα/2 approaches that of zα/2. 

Thus, if these equations are applied to the data at the start of this section, the 
empirical standard deviation is equal to 6.82 MPa1. If we assume that the variance is 
unknown, then for two degrees of freedom and at the following confidence levels we 
have: 

– level 1 - α = 50%, tα/2 = 0.8165, which gives I = [52.1; 58.5], 

– level 1 - α = 90%, tα/2 = 2.920, which gives I = [43.8; 66.7]. 

Both intervals are centered on the empirical mean, and the numerical values 
confirm that, if we want to increase the confidence level, then the width of the 
interval also increases. Conversely, if the confidence level is reduced then this is 
represented with a “risk of error” in the estimate.  

In our example, the values of the resistance of the three samples were in reality 
“drawn at random” from a population with a Gaussian distribution, with a mean of 
50 MPa and a standard deviation of 5 MPa. It can therefore be seen that the interval 
of the estimate at a confidence level of 50% does not contain the true value of the 
mean, which is consequently overestimated. Figure 5.1 shows the result of a 

                                   
1 The standard deviation of the population is evaluated based on the sample (Eurocode 0, 
Appendix D) [CEN 03]. 

]   / )(  +  , / )( = Ν rst rΝ rs  -tr I cccc 2/2/[ αα



80     Construction Reliability 

numerical simulation illustrating the process of convergence to the mean, as the 
number of measurements in the sample set is increased. 

 Confidence level 1 - α 

Num DoF 0.99 0.95 0.90 0.75 0.50 

1 63.6559 12.7062 6.3137 2.4142 1.0000 

2 9.9250 4.3027 2.9200 1.6036 0.8165 

3 5.8408 3.1824 2.3534 1.4226 0.7649 

4 4.6041 2.7765 2.1318 1.3444 0.7407 

5 4.0321 2.5706 2.0150 1.3009 0.7267 

6 3.7074 2.4469 1.9432 1.2733 0.7176 

7 3.4995 2.3646 1.8946 1.2543 0.7111 

8 3.3554 2.3060 1.8595 1.2403 0.7064 

9 3.2498 2.2622 1.8331 1.2297 0.7027 

10 3.1693 2.2281 1.8125 1.2213 0.6998 

12 3.0545 2.1788 1.7823 1.2089 0.6955 

15 2.9467 2.1315 1.7531 1.1967 0.6912 

20 2.8453 2.0860 1.7247 1.1848 0.6870 

25 2.7874 2.0595 1.7081 1.1777 0.6844 

30 2.7500 2.0423 1.6973 1.1731 0.6828 

40 2.7045 2.0211 1.6839 1.1673 0.6807 

50 2.6778 2.0086 1.6759 1.1639 0.6794 

75 2.6430 1.9921 1.6654 1.1593 0.6778 

100 2.6259 1.9840 1.6602 1.1571 0.6770 

1,000 2.5807 1.9623 1.6464 1.1510 0.6747 

Table 5.2. Standard values of tα/2 taken from the table of the Student distribution  
for five different confidence levels, as a function of the number of degrees of freedom 
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Figure 5.1. Simulation of convergence of the estimate for the mean, as a function of the 
sample size – in other words the number of measurements (99% confidence level) 

5.2.2. Number of data points required for an estimate 

The theory used for the estimation can also be used to quantify the number of 
samples required to obtain an estimate of the properties with a previously-
determined level of confidence. For this, we simply need to refer back to 
equation [5.1], which gives the confidence interval (for a confidence level 1-α) as a 
function of N.  

We will apply this approach to the case of estimating the speed of propagation of 
ultrasonic waves in concrete (which is a common method of indirectly and non-
destructively measuring the modulus of elasticity of the material). If we know that 
the velocity V can be treated as a random variable with a mean equal to 4,200 m/s 
and standard deviation 100 m/s, how many measurements should we perform in 
order to estimate the mean to +/- 50 m/s at a confidence level of 95%? What if we 
increase the confidence level to 99%? The precision of the estimate is 
Δ = +/- zα/2 σ(V)/√N. We therefore have a minimum value of N = [ zα/2 σ(V)/Δ ]². 

With a confidence level of 95%, we have zα/2 = 1.96, Δ = 50 and σ(V) = 100, so 
that N = (1.96 × 100/50)² = 16 measurements. If the required confidence level is 
99%, we have zα/2 = 2.58 and N = 27 measurements. 
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5.3. Estimation of characteristic values 

5.3.1. Characteristic value and fractile of a distribution 

Eurocode 0 [CEN 03] states that the characteristic value of a material or product 
is the value that has “a prescribed probability of not being attained in a hypothetical 
unlimited test series. This value generally corresponds to a specific fractile of the 
assumed statistical distribution of the particular property of the material or product”. 

We therefore often want to obtain representative values of these properties, 
which would be “safe” values (reasonably pessimistic), in other words ones 
corresponding to a lower fractile of the distribution (in this case of quantities such as 
resistance). The term “characteristic value” is then used for these material 
properties.  

Fractile 10% 5% 0.1% 10% 5% 0.1% 

No. 
samples 

Known standard deviation Unknown standard deviation 

1 1.81 2.31 4.36 - - - 

2 1.57 2.01 3.77 3.77 7.73 - 

3 1.48 1.89 3.56 2.18 3.37 - 

4 1.43 1.83 3.44 1.83 2.63 11.40 

5 1.40 1.80 3.37 1.68 2.33 7.85 

6 1.38 1.77 3.33 1.56 2.18 6.36 

8 1.36 1.74 3.27 1.51 2.00 5.07 

10 1.34 1.72 3.23 1.45 1.92 4.51 

20 1.31 1.68 3.16 1.36 1.76 3.64 

30 1.30 1.67 3.13 1.33 1.73 3.44 

∞ 1.28 1.64 3.08 1.28 1.64 3.08 

Table 5.3. Values of coefficient kn for three fractiles 

In practice, this series of unlimited tests is not just hypothetical: it is impossible. 
Estimating the characteristic value (corresponding to a fixed lower fractile) requires 
estimating both the empirical mean value m(x) and the dispersion of the property 
(empirical standard deviation s(x) or variance var(x)). The quality of the estimate 
then depends, for a chosen level of risk, on the size of the sample set. Eurocode 0 
(Appendix D (Informative): Dimensioning Assisted by Experiment) states how these 
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fractiles may be estimated. The generic expression for a characteristic value Xk has 
the form: 

Xk = m(x) – kn s(x) = m(x) (1 – var(x)) [5.3] 

where the value of the coefficient kn depends on the level of confidence (Appendix 
D of Eurocode 0 [CEN 03] states that the estimate corresponds to a confidence level 
of 75%), on the number of tests, the desired fractile and on whether the standard 
deviation is assumed to be known (or that a realistic upper bound for it is known) or 
not. Table 5.3 summarizes the values given for kn.  

5.3.2. Example: resistance measurements for wood samples  

Flexion tests performed on six samples of wood yielded the following values 
(MPa): 

152.2; 139.9; 152.4; 130.6; 184.1; 125.5. 

Let us estimate the characteristic bending strength corresponding to the 5% 
fractile. 

We calculate the empirical mean and the empirical standard deviation: 

– with six tests: kn = 2.18, m(x) = 147.5 MPa, s(x) = 21.0 MPa  

It follows that: 

Xk = 147.5 – 2.18 x 21.0 = 101.6 MPa 

Four additional tests give new results:  

137.3; 158.3; 94.4; 75.3. 

How do these results modify the estimate obtained from the first six tests? 

We can calculate the new empirical mean and empirical standard deviation: 

With ten tests: 

kn = 1.92, m(x) = 135.0 MPa, s(x) = 31.5 MPa.  

It follows that: 

Xk = 135.0 – 1.92 x 31.5 = 74.6 MPa 
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Note that for a modest number of samples (as is common in civil engineering 
contexts) the estimate of the fractile is very sensitive to the individual results 
obtained from the samples taken. The fact that the ninth and tenth samples 
encountered had much smaller characteristics has significantly lowered the value of 
the estimated fractile.  

It is not, of course, possible to determine the “true” solution experimentally. In 
this case, however, we can state that the ten random values were “drawn at random” 
from a Gaussian distribution with a mean of 120 MPa and a standard deviation of 
20 MPa, which corresponds to a theoretical 5% fractile equal to 87.1 MPa. 

5.3.3. Optimization of number of useful tests 

In the previous section we considered the question of the number of tests 
required to achieve a particular precision. Another question to consider is the 
“optimal” number of tests required in order to characterize the properties of a 
construction material or a soil. The final cost of the construction is assumed to result 
from the sum of the cost of the tests (laboratory investigations, program of terrain 
surveying, etc.) and the cost of building the structure. We have also just seen that a 
more precise and more optimistic estimate of the characteristic properties is possible 
if more test results are available. Table 5.3 gives the value of kn that can be taken in 
order to estimate the characteristic value, depending on the number of tests 
available. This value is higher if the number of tests is larger, since that enables us to 
estimate the value for a given fractile with a greater degree of confidence. A higher 
value for the characteristic value therefore makes it possible, during the design of 
the structure, to reduce the construction cost, since less material is required in the 
dimensioning of the structure (reduction of cross sections, masses, etc.). 

We will show that the optimum number of tests depends on the level of 
variability within the material, by assuming that the global cost can be written in the 
very simplified form Ctot = Ctests + Cconstruction, and assuming that the standard 
deviation is known. We also assume that the unit cost of a test is equal to Cunit test = 1 
U and that the cost of construction has the form Cconstruction = 200/Xk U, where U is 
the unit of cost. We will also assume here that the tests lead in every case to the 
same construction solution being selected. The cost of failure is therefore not a 
variable. 

The expression for the global cost can be written: 

Ctot = N Cunit test + 200/Xk  
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where the first term is an increasing (linear) function of N and the second is a 
decreasing function of N. The value of Xk corresponding to the 5% fractile is 
determined from Table 5.3, under the assumption that the standard deviation is 
known. The sum of these two terms will thus always possess an optimum value, 
representing the number of tests that results in a global minimum cost, as can be 
seen in Figure 5.2. We find that, as the variability increases, it makes economic 
sense to increase the number of tests in order to obtain a more accurate estimate of 
the characteristic value and reduce the design cost. The additional cost of the tests is 
compensated by the gains resulting from reductions in other costs. 

 

Figure 5.2. Variation in global cost as a function of the number of tests  
for various degrees of material variability (example). Cv for coefficient of value 

5.3.4. Estimate of in situ concrete mechanical strength 

The need to evaluate the mechanical resistance of concrete in situ in a structure 
presents a major challenge. A recent standard [CEN 07] suggests two ways of 
carrying out this evaluation.  

The “reference” (direct) method involves removing samples (cores) and 
performing statistical analysis on the results. Depending on the number of cores N, 
the equations used to estimate the characteristic resistance fck,is vary slightly (the 
subscript “is” stands for “in situ”): 

– if N > 14: fck,is = min (fm(n),is - k2 s; fis, min + 4 ); where s = Max (s, 2 MPa) and  
k2 = 1.48; 

cv = 8 %

cv = 12 %

cv = 15 %

cv = 20 %

cv = 30 %

total cost
(tests + design)

number of tests
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– if N < 14: fck,is = min (fm(n),is – k(N); fis, min + 4 ); where k(N) = 7 if N lies 
between 3 and 6, k(N) = 6 if N lies between 7 and 9, and k(N) = 5 if N lies between 
10 and 14. 

In these equations, s is the empirical standard deviation and fis, min is the smallest 
of the measured values for the cores and all the strengths are in MPa. 

The indirect method involves use of non-destructive testing techniques 
(measurement of propagation speed of ultrasonic waves, rebound measurements or 
pullout tests), along with a model M that is be used to determine the strength from 
the values of the non-destructive measurements. The standard proposes 
“standardized” models which must then be subjected to a calibration procedure that 
is used to adapt the standardized distribution to the particular concrete in the 
structure under study.  

This calibration procedure also requires a minimum number of cores, at points 
where both the strength and the value of the non-destructive measurement have been 
identified. The calibration involves the empirical mean and standard deviation of the 
differences between the measured value of the strength and the value estimated 
using the standardized model. 

The quality of the final estimate depends for the most part on three factors: the 
number of measurements, the quality of these measurements, and the quality of the 
standardized model. The calibration procedure is, however, designed to reduce the 
effects of an inadequate model [BRE 10]. 

To follow on from our discussion of statistical estimation, we will now describe 
the geostatistical approach for studying spatial or temporal variability. 

5.4. Principles of a geostatistical study 

5.4.1. Geostatistical modeling tools 

Various tools exist to help characterize the spatial and/or temporal variability of 
properties. Here we will mostly consider geostatistics, focusing on those aspects that 
have direct consequences on reliability problems. From a geostatistical point of 
view, the terms “spatial” and “temporal” have the same significance, a variable 
sampled over time being treated using similar tools to a spatially sampled variable. 

Furthermore, here we will only consider the analysis of the variability of a single 
variable. It should be remembered, however, that the tools described here can also 
be applied to the study of several correlated variables (multivariable geostatistics 
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[WAC 03]) and can take account of possible differences in the support of the 
measurements. 

Geostatistics aims to reveal spatial relationships that may exist between data in 
order to understand the structure of such data [CHI 99], [MAT 62]. Thus, we will 
study a natural phenomenon distributed over space or time, known as a regionalized 
phenomenon. A regionalized variable, numerical in type, is used to describe the 
regionalized phenomenon over a bounded domain. In geostatistics, the regionalized 
variable is treated as a random field Z(x) with realization z(x). This field is assumed 
to be characterized by an appropriate probability space, with a mean (or expected 
value) of , a standard deviation and an autocorrelation function 

. The field is said to be homogeneous (or stationary, in the case of a 

stochastic process) if it is translation invariant over space; it has the same statistical 
moments at all points in space. It is second order stationary if it only possesses a 
first order moment m1 (mean) and a centered second order moment m2. The 
autocorrelation function  of the field thus only depends on the distance h = x’ – x 

that separates the two points with coordinates x’ and x: 

; ;   

A wide range of functions can be used to describe the correlation structure 
[BAR 05]. Furthermore, we will consider stationary processes as ergodic: their 
spatial means converge towards their mathematically expected values. 

The tool that enables us to study the structure of a regionalized variable, treated 
as a random field, is the variogram γ(h) (or, in fact, the semi-variogram; see equation 
[5.4]). The variogram can be combined with other functions that can be used to 
characterize the variability of a variable, such as the autocorrelation function or the 
covariance function, but it can be shown that the variogram is a more general tool 
than either of these alternatives [CHI 99]: 

  [5.4] 

The parameter h corresponds to a distance that is regularly increased during the 
calculation of the variogram. We then plot γ(h) as a function of h (Figure 5.3). A 
random field is stationary if its variogram is bounded. In this case, the variogram 
reaches a plateau whose value is equal to the variance of the variable, at a distance h 
known as the range (in the example shown in Figure 5.3, the plateau is equal to 1 
and the range equal to 5). Beyond the range (or correlation length), there is 
negligible spatial correlation between the two points. If the variogram is unbounded, 
the random field is intrinsically of zero order if the growth of the variogram is less 
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rapid than that of h2, or of order k in the inverse case. This latter type of variogram is 
observed in the case of data that includes a general overall trend, which is for 
example the standard situation in geotechnical engineering due to weight effects (a 
“geostatic” trend in parameters that increase naturally with depth). In that case, we 
can either work with a non-stationary random field, or filter the global trend 
(characterized, for example, by regression) and work with the residual variable, 
which generally speaking offers the advantage of giving access to more detailed 
structural information that would have been masked by the broad trend before it was 
filtered. 

 

Figure 5.3. Examples of stationary and non-stationary variograms 

Experimentally, the variogram is estimated through the following equation: 

 [5.5] 

where xi and xj represent the positions of each point of the pair and Nh is the number 
of such pairs of points that are separated by h. A certain tolerance is allowed on the 
distance h, in order to consider the full set of possible pairs of points within the 
domain of the study. Generally speaking this calculation is performed up to 
distances h that are as large as half the largest distance between points (the size of 
the domain to be explored). Furthermore, it is possible either to calculate an 
omnidirectional variogram by taking into account all pairs of points in any possible 
orientation, or alternatively to calculate a directional variogram by only counting the 
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pairs of points that correspond to a predefined direction (again, with a certain 
tolerance). This second mode of calculation can be used to reveal any potential 
anisotropy in the spatial structure of the data. 

During analysis of an experimental variogram with the aim of characterizing the 
variability of the parameter under study, the following questions must be answered 
(Figure 5.4): 

– is the variable stationary, and what are the values of the range and the plateau? 

– are there nested structures present (structures of different scales which leave an 
imprint on the variogram in the form of several different ranges, in this case equal to 
5 and 15)? 

– is there periodicity (hole effect) in the data (here, a periodicity of 12.6, the 
value of h for which γ(h)=γ(0))? 

– what is the behavior of the variogram at the origin? Three classical behaviors 
can be identified which characterize the continuity of the field. A continuous field is 
characterized by a parabolic behavior of its variogram at the origin, whereas a 
discontinuous field shows a nugget effect (equal to 0.5 in Figure 5.4); between these 
two lies the possibility of linear behavior at the origin. In addition, the nugget effect 
may also represent a measurement error: due to such an error, two infinitely close 
points, whose true properties are in fact identical, exhibit apparently different 
properties. The nugget effect may thus provide information on strong differences in 
value at very short distances, or on a defect, or alternatively on a measurement error 
or an erroneous measurement. 

 

Figure 5.4. Illustration of nested structures, the nugget effect,  
and periodicity, using two examples of variograms 
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To apply the modeling tools described in the next section, the experimental 
variogram cannot be used directly. There must be an intermediate phase involving 
modeling of the experimental variogram. A wide range of variogram models can be 
found in the literature, each meeting particular constraints [CHI 99] and offering a 
variety of forms that can be used to fit any type of experimental variogram. The aim 
is to obtain an optimal fitting up to a distance h that is consistent with the extent of 
the neighborhood used for the modeling (the neighborhood being the set of 
experimental points that is used to determine the value of a variable at a position that 
has not been sampled). 

5.4.2. Estimation and simulation methods  

Geostatistical modeling tools can be used to estimate or simulate the value of a 
parameter at a location that has not been sampled, by taking into account the 
structural information provided by the variogram. There are numerous methods that 
can be used to model a continuous or discrete variable. We will not attempt to 
discuss all such methods here, and will focus simply on those that are of interest in 
the reliability of civil engineering structures. The spectrum of available modeling 
methods can be divided into two subsets: estimation methods and simulation 
methods. 

Geostatistical estimation methods are all build upon a base method known as 
kriging2 [MAT 62]. This is a linear, unbiased estimator that ensures minimal 
estimation variance. Furthermore, it is an exact interpolator (one that exactly 
reproduces the experimental data it is based on) and one that takes into account the 
position of each experimental point during the estimation process. Kriging is thus 
the optimal estimation method if the variogram model used is a good representation 
of the spatial or temporal variability of the data. Nevertheless, kriging and the 
methods developed from it provide a smoothed representation of reality, which is a 
significant drawback when considering reliability problems, problems where the 
extreme values are of very high importance. For this same reason, if the variable 
being modeled is going to be used as an input to further calculations, it can be 
shown that estimation methods do not deliver optimal results [CHI 99]. 

One way of addressing this smoothing problem is to use a simulation method 
that can introduce greater variability into the results than an estimation method can. 
Moreover, in contrast to kriging, every time a simulation is performed it will give a 
different result, which makes it possible to process the results in a statistical manner 
after a large number of simulations have been carried out (a number determined 

                                   
2 The term kriging is derived from the name of a South African mining engineer, Daniel 
Gerhardus Krige. It also finds applications in meteorology, electromagnetism, etc.  
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based on the convergence criteria of the results). Geostatistical simulation methods 
can be divided into non-conditional simulations, whose results reproduce the spatial 
structure described by the variogram, and conditional simulations that, in addition to 
reproducing the spatial structure described by the variogram, are consistent with the 
experimental data and reproduce their statistical distribution. Whether conditional or 
non-conditional, all such simulation techniques [CHI 99] can also be described as 
Gaussian (turning bands, sequential Gaussian method, etc.) or non-Gaussian 
methods (sequential indicator simulation, for example). In the Gaussian case, the use 
of these methods requires that the variable being modeled follows a Gaussian 
distribution in order for the result to reproduce the statistical distribution of the 
experimental data; if the distribution is not Gaussian to begin with, an anamorphosis 
(or Gaussian normalization [LEM 09]) is required before the simulation can be 
performed. 

Of the methods currently available, we feel that methods based on the use of 
indicators [JOU 82] are particularly promising for reliability problems. In the case of 
these methods, the variable Z(x) under study is encoded in the form of a binary 
indicator variable according to a threshold (or cutoff value): 

( ) ( )
( ) ( )

, 1   

, 0   

I x c if Z x c

I x c if Z x c

= ≤


= >
 [5.6] 

This encoding of the variable is of particular interest for reliability problems, 
where the intention is generally that certain critical thresholds should not be 
exceeded. Thus, a set of cutoff values are defined as a function of the variable being 
studied. Following this encoding, the experimental variograms for the indicators are 
calculated. It can also be shown that the variograms for the indicators are generally 
less erratic than those of the raw variable, for which extreme or aberrant values can 
contribute to a high variability in the variogram. 

A multivariate variogram model of the indicators can then be developed (with as 
many variables as there are cutoff values). However, in many cases this multivariate 
model is difficult to develop, and a simplified version of the method involves 
limiting oneself to a variogram model based on a single cutoff value representative 
of the entire system. A practical example of a sequential indicator simulation is 
presented in the next section. 

5.4.3. Study of pressuremeter measurements in an urban environment 

The example discussed in this section is taken from the RIVIERA project 
(RIsques en VIlle, Équipements, Réseaux, Archéologie) [THI 06]. It involves three-
dimensional modeling of a geotechnical parameter in an urban environment 
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[MAR 09]. The parameter chosen is the pressuremeter modulus, for which it is well 
known that the smaller it is, the more the soil will have poor characteristics with 
respect to settlement. It would therefore be impossible to study the reliability of 
structures built upon soil susceptible to settlement without very precise modeling of 
the variability of the geological engineering properties of the soil. 

Over the study area, the town of Pessac (in Gironde, France), there are 127 sites 
where pressuremeter measurements were performed, yielding 772 pressuremeter 
modulus values (Figure 5.5). It can be seen from the figure that the density of 
available data is much greater in the eastern part of the district than in the western 
part, where there is a much sparser density of buildings. The three-dimensional 
model of the pressuremeter modulus extends between the surface of the ground (an 
upper bound provided by a digital elevation model adjusted to the scale of the site) 
and the basement of the quaternary formations, which is the lower bound 
reconstructed by kriging under inequality constraints (a geostatistical method that 
ensures that all the input data is respected, whether or not boreholes have reached 
the lower limit: for a given borehole, if the basement of the quaternary formations is 
reached, the surface reconstructed by kriging corresponds to this interface, and if the 
drilling stops before reaching this interface, the reconstructed surface must pass 
below the end of this borehole). 

The thickness of the terrain between these two limits varies from 0 m to 15 m. 
Since the details of how these limits are reconstructed are not the topic of this 
present book, readers are referred to [MAR 09] for further details. 

 

Figure 5.5. Location of 127 pressuremeter measurements within Pessac  
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Figure 5.6. Experimental indicator variograms and variogram models 
for the cutoff value of 12 MPa in the three principal directions 

of anisotropy (N0 = North–South, N90 = East–West) 

As we discovered in the previous section, a wide range of geostatistical methods 
are available for reconstructing a three-dimensional image of a geotechnical 
parameter. In light of our interest in reliability studies, we feel it is essential both to 
take correct account of extreme values of the parameter under study and to obtain 
probabilistic results. The modeling method we selected was the conditional 
sequential indicator simulation. Indicator methods require cutoff values to be 
defined, and these values were chosen according to geotechnical classifications of 
the pressuremeter modulus: 0 MPa, 4 MPa, 12 MPa and 36 MPa [PHI 00]. Since it 
is not easy to find a multivariable variogram model with as many variables as there 
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are cutoff values, it is common to build the variogram model using a single cutoff 
value that is representative of the whole dataset. In this case, the value 12 MPa is 
used (in order to establish the variogram model, therefore, the pressuremeter 
modulus is encoded in the form of a binary variable using a threshold of 12 MPa). 
Experimental variograms are used to establish a model in the three directions of 
anisotropy (Figure 5.6) that takes account of the observed ranges and plateaux. As is 
often the case with geotechnical datasets, fittings in the horizontal directions are not 
easy, because of the high lateral variability in the parameters (even over short 
distances) and the rapid decrease in the number of pairs of points as the 
computational lag in the variogram increases. 

Following the variographical analysis, one hundred conditional indicator 
simulations were performed, taking into account the variogram model that was 
obtained and an appropriate neighborhood. Figure 5.7 shows two examples of 
simulation results corresponding to a cross-section along the line A-B. Since each 
simulation result is a realization with an equal probability, by repeating the 
simulations it is possible to calculate the probability of encountering a given class of 
pressuremeter modulus within a given region. Figure 5.8 shows the regions where 
there is a probability of at least 80% that the pressuremeter modulus is less than 
4 MPa (the size of a simulated block is in this case 25×25×1 m3). 

 

Figure 5.7. Examples of simulation results for classes 
of pressuremeter modulus along the line AB 
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In conclusion, we have used this example to show how the spatial variability of a 
property can be modeled with the help of geostatistical tools. This modeling 
example could be made more complex in order to improve the results, by resorting 
to more complex methods such as, for example, taking into account auxiliary 
variables (other geotechnical parameters, lithology, etc.) in the modeling of the 
principal variable. 

 

Figure 5.8. Regions where there is a probability of at least 80% 
that the pressuremeter modulus is smaller than 4 MPa 



96     Construction Reliability 

Results such as these may be used as decision-making tools, for example in the 
case of decisions to deploy additional boreholes, or to identify regions with 
particularly poor geotechnical characteristics, zones where there are direct 
consequences for the safety and reliability of structures that are built on the soil. 
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Chapter 6  

Reliability of a Shallow Foundation Footing 

6.1. Introduction 

This chapter considers the reliability of a shallow footing. We will study the 
effect of soil variability on the variability of the bearing capacity and safety of the 
foundation. Subsequently, the structure of the spatial correlation is considered in 
order to study its influence on the safety of the footing. Our analysis considers: 

– the effects of modeling errors and variability in mechanical properties; 

– a probabilistic approach that is used to characterize the statistical distribution 
of the bearing capacity. It highlights the need to quantify in detail the variability in 
mechanical properties (cohesion and friction angle); 

– inclusion of correlations between these two parameters, which significantly 
modifies the result (based on reliable statistical data); 

– the “Eurocode” semi-probabilistic approach, which appears ill-suited to taking 
account of correlations between different parameters; and 

– spatial correlation, which is a crucial consideration for questions of differential 
settlement between neighboring footings, or in the context of soil-structure 
interaction modeling. 

The example used to illustrate this approach is, as indicated, that of a foundation 
footing, but all the concepts considered here (model errors, dispersion of material 
properties, spatial correlation) can be treated in a similar manner and also apply to 
other problems associated with construction materials such as, for example, 
                                   
Chapter written by Denys BREYSSE. 

Construction Reliability: Safety, Variability and Sustainability             Edited by Julien Baroth, Franck Schoefs and Denys Breysse
© 2011 ISTE Ltd.  Published 2011 by ISTE Ltd.



98     Construction Reliability 

estimation of the longevity of reinforced concrete in the face of carbonation or 
chloride ingress. In the latter case, the properties that determine the behavior of the 
system are the diffusion rate, the cover thickness, the chloride ion concentration, etc. 
– but the analysis takes exactly the same form. 

6.2. Bearing capacity models for strip foundations – modeling errors 

Modeling the bearing capacity of a shallow strip foundation footing is a classic 
geotechnical problem. We will approach it by first analyzing the role of mechanical 
modeling and then of data modeling. The problem we will analyze is that of a strip 
foundation of infinite length and of width B = 1 m, buried to D = 1 m under the 
surface, in soil of weight per unit volume γ = 22 kN/m3. We begin by comparing the 
values obtained using various common mechanical models, and we then consider the 
effects of variation in soil properties (friction angle and cohesion). We will consider 
the differences between correlated and uncorrelated random variable modeling, and 
random field modeling. We will treat two separate base configurations: 

– configuration A, a purely frictional soil (friction angle φ’ = 35°);  

– configuration B, a cohesive soil with cohesion C’ = 20 kPa and φ’ = 25°. 

The case of a footing on purely cohesive soil has only recently been treated in 
the literature [ORR 08] and we will not consider it here. We will compare the results 
from our calculations to the values that an engineer would use in probabilistic 
dimensioning using Eurocode 7 [CEN 07]. 

The bearing capacity of a shallow foundation can be expressed in terms of the 
friction angle and cohesion of the soil (mechanical characteristics that can be 
determined in a laboratory) using a generic formula which we can be written as: 

qtot = 0.5 γ B Nγ (φ’) + ( q + γD ) Nq (φ’) + C Nc (φ’)   [6.1] 

where a distinction is made between “surface”, “depth” and “cohesive” terms. The 
coefficients Nγ, Nq and Nc are all expressed as a function of the friction angle, but the 
expressions for these coefficients vary depending on the model that is chosen. 
[MAG 04] lists the most popular models, of which we consider five here.  

These five models share the same coefficient Nc: 

Nc = (Nq - 1) cotan φ’   [6.2] 
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There are two different possible expressions for Nq: 

Nq = exp [ (3π/2 - φ’) tan φ’ ]/[2 cos² (π/4 + φ’/2 )]  [TER 43] 

Nq = exp ( π tan φ’ ).tan² (π/4 + φ’/2 )  [MEY 63] 

It is in their definition of the coefficient N that the five models differ: 

Nγ = 0.5 tan φ’. (kp/cos²φ’ - 1), where kp is the passive earth pressure 
coefficient whose value is obtained from tables [TER 43] 

Nγ = (Nq - 1).tan (1.4 φ’)  [MEY 63] 

Nγ = 2 (Nq + 1).tan (φ’)  [VES 73] 

Nγ = 1,5 (Nq - 1).tan (φ’) [BRI 70] 

Nγ = 2 (Nq - 1).tan (φ’) [CEN 07] 

Figure 6.1 compares the values of Nγ for the five different models, for a friction 
angle φ’ varying between 15° and 40°. This confirms the nonlinear nature of the 
relationship, and shows the differences between models. Figure 6.2 shows the result 
obtained for the bearing capacity qtot for a cohesion C’ = 20 kPa, an angle φ’ of 
between 15° and 40°, and dimensions B = D = 1 m.  

The values of qtot are also listed for the two reference configurations and the five 
models (Table 6.1). According to the “Eurocode 7” model [CEN 07], the differences 
(compared to the Terzaghi model [TER 43], which gives fairly large values) are no 
more than –7% (Meyerhof [MEY 63]) and +2.5% (Vesic [VES 73]) in configuration 
A, and range from –3% (Meyerhof) to +3% (Vesic) in configuration B. These 
differences are representative of the error in the mechanical model; the choice of 
model leads to an error on the estimate, which may be reduced by improving the 
model.  

Furthermore, if there are uncertainties inherent in the model (we know which of 
the models is closest to reality), the discrepancies that result from repeated use of 
that one model forms a statistical bias (always in the same direction). Here, it is 
more important to note that these discrepancies are smaller than the variation in qtot 

that results from a change of 1° in the value of the friction angle – and yet, this 
parameter is not known to such a high precision. We will therefore study the effects 
of variability in the mechanical properties of the soil in more detail. 
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Figure 6.1. Variation of Nγ for the five models considered, 
as a function of the friction angle φ’ (in degrees) 

 

Figure 6.2. Variation of qtot (in kPa) for the five models considered (C’ = 20 kPa),  
as a function of the friction angle φ’ (in degrees) 
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Model 
Configuration A 

φ’ = 35°, C’ = 0 kPa 

Configuration B 

φ’ = 25°, C’ = 20 kPa 

Terzaghi 1378 889 

Meyerhof 1141 723 

Brinch Hansen 1105 723 

Vesic 1261 769 

Eurocode 7 1230 748 

Table 6.1. Summary of values for bearing capacity (in kPa) 

6.3. Effects of soil variability on variability in bearing capacity and safety of the 
foundation 

6.3.1. Methodology 

Bearing capacity is calculated using the “Eurocode 7” model. We consider the 
random nature of the variation in properties, by assuming that the mathematical 
distribution of the friction angle and cohesion are known, and performing Monte 
Carlo simulations. A total of 3,000 numerical experiments are performed, from 
which the mean values, standard deviations and coefficients of variation of the 
results are all extracted. The friction angle φ’ is assumed to follow a distribution 
such that tan φ’ has a normal distribution, whose mean and standard deviation are 
μ[tan φ’] and σ[tan φ’]. The cohesion C’ is assumed to follow a log-normal 
distribution. We are giving μ[ln(C’)] and σ[ln(C’)]. The values for these parameters 
are listed in Table 6.2. 

Configuration A 

φ’ = 35°, C’ = 0 kPa 

Configuration B 

φ’ = 25°, C’ = 20 kPa 

μ[tan φ’ ] = 0.70 μ [tan φ’ ] = 0.47 

σ[tan φ’ ] = 0.05 σ[tan�φ’ ] = 0.033 

C’ = 0 μ [ ln(C’)] = 2.75 

 σ[ ln(C’)] = 0.70 

Table 6.2. Statistical properties of the mathematical distributions 
of the relevant random parameters 
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Configuration A corresponds to a mean value of φ’ that is close to 35°, with a 
standard deviation of φ’ that is of the order of 2°. Configuration B corresponds to a 
mean value of φ’ close to 25°, and a standard deviation of φ’ of around 1.6° and a 
mean value of C’ close to 20 kPa, with a standard deviation of the order of 16 kPa 
(the coefficient of variation is close to 100%, which is a consequence of the log-
normal distribution of C’), which results in a few extremely large values being 
generated. 

An additional degree of freedom for the simulation is the possibility of 
considering that the two properties of friction and cohesion could be independent or 
could be correlated.  

A correlation could be present between the two quantities for two completely 
different reasons: 

– a statistical reason: if the results of shear tests, performed on a particular soil 
sample, are used to identify C’ and φ’ by constructing the Mohr rupture diagram, 
there will be a specific uncertainty that results from variability within the samples 
and the uncertainties within the tests. An infinite number of lines are possible, and 
the estimates for C’ and φ’ are linked: if a smaller value is taken for the friction 
angle, this will result in a larger value for cohesion. This leads to an inverse 
correlation between these two properties; 

– the second reason is a geotechnical one. If we now consider a set of samples 
obtained from sampling performed in situ in the soil, and we bear in mind the 
heterogeneity of the soil, this heterogeneity may be linked to a variable fraction F of 
clay particles. As F increases, the friction angle will tend to fall while the cohesion 
tends to increase. The result of this is that, for a heterogeneous soil sample, a 
dispersion between the two properties will be seen, with an inverse correlation. 

In what follows, we assume that the negative correlation results from the 
geotechnical explanation. For configuration B, we will allow the degree of 
correlation r (φ’, C’) to vary, considering three different variants: 

B1: r = 0 (independent parameters); B2: r = -0.50; B3: r = - 0.75 

The statistical distributions of C’ are identical in all three cases, as can be seen 
from comparison of the cumulative distributions FC’(C’) (Figure 6.3), but the 
correlation introduced between the two mechanical properties (Figure 6.4(a) and 
6.4(b)) has important consequences for estimating the bearing capacity.  

In fact, when a negative correlation is introduced, the largest values of φ’ 
correspond to the smallest values of C’. The coefficients Nγ , Nq and Nc are 
monotonically increasing functions of φ’ and the cohesion acts in the same manner 
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on the bearing capacity. The existence of this negative correlation leads to a specific 
effect where the C’ Nc (φ’) term may decrease as φ’ increases. 

 

Figure 6.3. Similarity between the cumulative distribution of C’ for variants  
B1, B2 and B3, where pcum represents the cumulative distribution FC’(C’) 

 

Figure 6.4a. Illustration of the relationship between the φ’ and C’ parameters: 
B1 variant (no correlation, r = 0) 

0

10

20

30

40

50

60

70

80

90

100

20 22 24 26 28 30 32

phi (°)

C
' (

kP
a)



104     Construction Reliability 

 

Figure 6.4b. Illustration of the relationship between the φ’ and C’ parameters: 
B3 variant (negative correlation r = -0.75) 

6.3.2. Purely frictional soil 

Figure 6.5 shows the results for two series of 3,000 simulations. The mean value 
is 1,273 kPa, and the standard deviation is 353 kPa, implying a coefficient of 
variation of 27.7%. The distribution is not, however, symmetric, which can be 
explained by the highly nonlinear nature of the mechanical model. 

For the same reasons, the mean value of qtot corresponds to a value of friction 
angle φ’ that is slightly greater than the mean value of φ’. Strictly, this asymmetry 
formally precludes the use of the properties of the normal distribution to determine a 
given fractile using: qtot k = 5% = μ (qtot k ) – 1.645 σ (qtot k ), but this would give a value 
close to 700 kPa. 

If we instead identify the qtot k = 5% fractile from the distribution produced by the 
simulation, then we obtain a value of around 780 kPa (Figure 6.5). 
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Figure 6.5. Cumulative distribution for the load-bearing capacity, configuration A 

6.3.2.1. Comparison with the semi-probabilistic approach from the Eurocode 7 
regulations 

Eurocode 7 offers the designer a choice between several modeling approaches. 
Worthy of specific mention are [BRE 09]: 

– approach 2, which involves applying a partial factor (PF) of 1.40 directly to the 
global value of the resistance output from the calculation, taking the characteristic 
values of the mechanical properties and the resistance model; and 

– approach 3, which involves applying partial factors to the material properties, 
and then using these to determine the calculated value of the global resistance, by 
feeding these values into the mechanical model. 

In our case, approach 2 involves determining φ’k and then determining qtot 

(φ’k) using a Gaussian distribution of tan(φ’).  

We have: 

[tan(φ’)] k = 5% = μ (tan(φ’)) – 1.645 sd (tan(φ’)) = (0.7 – 1.645 x 0.05) = 0.617 

where sd is the standard deviation. The result is: φ’k = 31.7° and qtot (φ’k ) = 783 kPa. 
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We then have:  

qtot d = qtot k = 5%/1.40 = 559 kPa 

Approach 3 uses the identified value of φ’k = 31.7°, so that, with PF (φ’) = 1.25: 
[tan(φ’)]d = [tan(φ’)] k = 5%/1.25 = 0.4942. 

This results in φ’d = 26.3°. If we feed this value into the computational model, we 
obtain qtot (φ’d ) = 392 kPa. This value is notably smaller than that obtained from the 
“global” calculation of Approach 2. 

6.3.3. Soil with friction and cohesion 

Figure 6.6(a) and (b) illustrate how the calculated bearing capacity correlates 
with the friction angle, for the cases with and without correlation. As might be 
anticipated in light of the results in Figure 6.4(a) and (b), the influence of the 
correlation between the two properties is significant.  

In the absence of correlation, the monotonically increasing nature of the 
expressions that make up the mechanical model results in positive correlation 
between φ’ and qtot.  

If we consider the case with correlation present (in this case, r = -0.75), the effect 
is counteracted by the greater probability of finding weak cohesions as φ’ increases. 
That then results in an overall negative correlation between φ’ and qtot 
(Figure 6.6(b)). This modification is accompanied by a reduction in the variability of 
qtot, due to the mutual counterbalancing of the effects of φ’ with those of C’.  

Table 6.3 summarizes some of these results. 

 r = 0 r = -0.5 r = -0.75 

μ (qtot) (kPa) 765 756 747 

σ (qtot) (kPa) 348 293 249 

cv (qtot) 0.455 0.389 0.334 

μ (qtot) – 1.645 σ(qtot) (kPa) 192 274 337 

Table 6.3. Variation in statistical properties of the simulated carrying capacity (kPa) 
with correlation between cohesion and friction angle 
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a) 

 
b) 

Figure 6.6. Relationship between qtot and C’: (a) r = 0; and (b) r = -0.75  
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Figure 6.7. Cumulative distribution F(q) for the bearing capacity (and contributing terms) 
with and without correlation between friction and cohesion 

Figure 6.7 plots the cumulative distributions of the three components of the 
bearing capacity (surface, depth and cohesion terms, written ql(B), ql(D) and ql(C), 
respectively) and the total value qtot, with and without correlation r. The first two 
terms ql(B) and ql(D) range from 0 to 200 kPa and are unchanged regardless of the 
degree of correlation that is present or otherwise. The overall distribution ql(C) for 
the cohesion term remains almost unchanged, but conversely a difference appears in 
the qtot term: when the correlation is considered, there is a slight reduction in the 
frequency of the smallest values, since the effect of a small value of φ’ on the first 
two terms is compensated by a larger value for the cohesion term. 

6.3.3.1. Comparison with the Eurocode 7 semi-probabilistic approach 

In terms of approach 2 (global), due to the dependencies between variables it is 
no longer possible, as it was with configuration A, to find a simple expression for 
the characteristic value qtot (C’k , φ’k). It is however possible to extract qtot k from the 
results of simulations, using the 5% fractiles of the simulated distributions (the 
equation Xk = μ (X) – 1.645 σ(X) cannot be used, since that assumes a normal 
distribution). The design value is qtot d = qtot k/1.40.  

We find: 

– r = 0  qtot k = 404 kPa qtot d = 404/1.40 = 289 kPa; 

– r = -0.50  qtot k = 460 kPa qtot d = 460/1.40 = 329 kPa; 

– r = -0.75  qtot k = 508 kPa qtot d = 508/1.40 = 363 kPa. 
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Approach 3 involves identifying the characteristic values and then the calculated 
values for the properties, and using these to determine the overall calculated value 
for the resistance. This approach does not allow us to take account of any correlation 
there may be between variables. The approach followed for configuration B gives: 

[tan(φ’)] k = 5% = μ (tan(φ’)) – 1.645 σ (tan(φ’)) = ( 0.47 – 1.645 x 0.033) = 0.415 

which results in φ’k = 22.6°, such that, with PF (φ’) = 1.25; 

[tan(φ’)]d = [tan(φ’)] k = 5%/1.25 = 0.333  

which gives φ’d = 18.4°. 

For the cohesion, we make use of the log-normal character of the distribution: 

Ck = exp (μ (C’) – 1.645 σ (C’)) = exp (2.75 – 1.645 x 0.7) = 5 kPa  

such that C’d = C’k/1.25 = 4 kPa. 

It then follows that qtot (C’d , φ’d) = 207 kPa. 

This value is (as for configuration A) much lower than that obtained using 
approach 2. It is also impossible to take account of correlations between variables, 
which is an important limitation of semi-probabilistic approaches, and one that in 
our case justifies the use of a probabilistic approach involving the use of Monte 
Carlo simulations. 

6.4. Taking account of the structure of the spatial correlation and its influence 
on the safety of the foundation 

6.4.1. Spatial correlation and reduction in variance 

The Eurocode documents [CEN 07] introduce the concept of an “extended 
parameter” to take into account the fact that certain limit states are not defined in 
terms of the local value taken by a property at a given point, but rather by a 
representative value of this parameter over a volume of a particular size.  

In order to identify the representative value, we must investigate both the spatial 
variability of the property and the manner in which this property affects the 
mechanical response of the system [BRE 09]. 
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The properties of soils, as with many heterogeneous materials, can be described 
using regionalized variable theory [MAT 65]. The structure of the spatial correlation 
of these properties (friction angle, cohesion) is then represented by the choice of an 
autocorrelation distance and a correlation function.  

In what follows, we will describe the structure of the spatial correlation of the 
friction angle, and we consider cohesion as a random variable that is correlated to 
the friction angle, using the same variance reduction technique. We will assume an 
autocorrelation function with an exponential form: 

ρ(τ) = exp (- 2τ/lc) [6.3] 

where lc is the autocorrelation distance for the “friction angle” and “cohesion” 
properties (in order to keep things simple we will assume that both these properties 
have the same structure of spatial variability). This quantity is analogous to the 
range of the variogram discussed in section 5.4.1.  

Note that the definition of the autocorrelation distance may vary significantly if 
an alternative correlation model is chosen [BAR 05]. For example, in the case of an 
exponential function, there is never, in a truly rigorous sense, an asymptotic limit, 
and a conventional definition of the range must be used. 

It can be shown that there is a variance reduction function that corresponds to 
this autocorrelation function [TAN 84]: 

Γ²(L) = lc²/2L² (2 L/lc – 1 + exp (- 2L/lc) ) [6.4] 

This indicates that, if we assume the true variance of the property V∞ to be 
known over a support of infinite extent, the variance observed over a finite support L 
will be smaller, and can be written in the form: 

VL = (1 - Γ²(L)) V∞ [6.5] 

The complementary variance V∞ - VL = Γ²(L) V∞ represents the variance that will 
be observed between two samples of size L (in our case, between two different 
foundations).  

If, on the other hand, we assume that the variance between samples of size 
Llabo can be identified in the laboratory, then: 

 Vexp = V∞ - VLlabo = Γ²( Llabo ) V∞  [6.6] 
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If we assume that a volume characterized by a dimension L is “affected” by 
movement in the foundation footing, the complementary variance can be expressed 
as:  

V∞ - VL = Γ²(L) V∞ = Vexp Γ²(L)/Γ²(Llabo) [6.7] 

This equation can be used to express the variance in terms of the experimental 
variance measured in the laboratory and the three dimensions lc, L and Llabo.  

We have already shown [BRE 05], [BRE 07] that it is in fact the ratios between 
these various dimensions that determines the degree of spatial variability. 

The quantity L is not known explicitly. It represents the size of the volume of 
soil “governing the occurrence of a limit state” (as it is phrased in Eurocode). In the 
case of the bearing capacity of a foundation footing, it is logical to relate this volume 
to the size of the blocks involved in the limit analysis failure mechanisms. This size 
is linked to the length of the boundaries between blocks, and therefore to the 
dimensions B and D. 

In what follows, we write L = αB, where α is a scalar variable that takes the 
values 1, 3 and 5. Figure 6.8 illustrates the variance reduction function for 8 values 
of lc lying between 1 m and 128 m (it is assumed that Llabo = 0.15 m). 

As lc tends to infinity (here 128 m), we recover the global variance. If, on the 
other hand, lc is not infinitely large compared to B, we must take into accounts the 
effects of variance reduction. Specifically, this means that the variance associated 
with the “friction angle” parameter depends on the size of the volume being 
considered: averaging effects appear if a region of significant size is considered. The 
expression for the complementary variance can be used to quantify the amplitude of 
the variance that must be considered for an “extended” parameter, representing the 
“friction angle” property over a region of size L.  

For the foundation problem, we therefore no longer need to consider the initial 
variance in the friction angle, but a reduced variance that takes account of this 
extended nature. The simulations must be supplied with the values of lc and α. The 
result is a reduction in the variability of qtot, which we have shown is directly linked 
to the variability of φ’. 
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Figure 6.8. Variance reduction Γ²(L=αB) for eight different values 
of the correlation length lc between 1 and 128 m 

6.4.2. Taking account of the spatial correlation, and results 

The principles of these numerical simulations are exactly the same as in the 
previous cases. We vary: (a) the degree of correlation r; (b) the spatial correlation 
length lc; and (c) the dimension α of the volume affected by a failure. We will only 
comment here on the results for configuration B, with those obtained for 
configuration A leading to similar conclusions. Figures 6.9 and 6.10 show the 
cumulative distribution for the bearing capacity for three different degrees of 
correlation r and for two different cases, without spatial correlation and with strong 
spatial correlation (lc = 2m). When we take account of the spatial correlation, this 
significantly reduces the variance in the calculated bearing capacity, without 
modifying the mode of the distribution. Consequently, the values corresponding to 
outlying fractiles are significantly improved, as shown in Figure 6.10. 

Figures 6.11 and 6.12 show, for r = - 0.75, the variation in the standard deviation 
σ(qtot) and the value [μ(qtot) – 1.645 σ(qtot)] for different values of lc and α. 

It can be observed that, as lc tends to infinity, we recover the values given in 
Table 6.3 for the case of random variables (249 kPa for the standard deviation, 
337 kPa for [μ(qtot) – 1.645 σ(qtot) ]). In this situation, the spatial variations in φ’ are 
very slow: the values and distributions observed on the scale of laboratory samples 
can be used in calculations performed on the scale of the entire foundation footing. 
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This is no longer the case as the ratio lc/αB decreases in value, either because lc 
decreases or because α increases. In that case, the variability of qtot is reduced and 
the value of [μ (qtot) – 1.645 σ(qtot)] steadily increases in a significant manner. 

We note, however, that the computed values for [μ (qtot) – 1.645 σ (qtot)] do not 
represent fractiles in the rigorous sense of the term (we have a non-Gaussian 
distribution). More precise analysis of the fractiles can only be achieved by 
considering more detailed results from the simulations (or by assuming that the 
distribution is log-normal).  

For example, in the case where r = -0.75 we find that the 5% fractile changes 
from 508 kPa without spatial correlation to 526 kPa if lc = 8 m and to 554 kPa if 
lc = 2 m, an increase of 10%.  

When we take into account the spatial correlation in the soil properties (by 
reducing the variance to be considered in the calculation) this results in an 
improvement to the statistical distribution of the bearing capacity. If we do not take 
it into account, this represents a conservative approach that may lead to unnecessary 
overspending. 

 

Figure 6.9. Cumulative distributions Fq for the bearing capacity, 
with and without spatial correlation (lc=0 m and lc=2 m), for three 

levels of correlation (r = 0, -0.5, -0.75 m) between cohesion and friction 
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Figure 6.10. Zoom view of the cumulative distributions Fq for the bearing capacity,  
with and without spatial correlation (lc=0 m and lc=2 m), for three levels 

of correlation (r=0, -0.5, -0.75 m) between cohesion and friction 

 

Figure 6.11. Variation in standard deviation σ (qtot) for various values of lc and α 
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Figure 6.12. Variation in [μ (qtot) – 1.645 sd(qtot)] for various values of lc and α 

6.5. Conclusions 

6.5.1. Conclusions drawn from case study 

Our analysis of the problem of the bearing capacity of a shallow foundation 
footing, including variability in spatial properties, leads to some important 
conclusions (but ones that are restricted to this example): 

– the effects of model errors are negligible compared to errors in the variability 
of mechanical properties; 

– a probabilistic approach (involving Monte Carlo simulations, since explicit 
solutions cannot be developed for this highly nonlinear problem) enables us to 
characterize the statistical distribution of the bearing capacity. It demonstrates the 
need to quantify in detail the variability of the mechanical properties of cohesion 
and friction angle; 

– correct treatment of correlations between two parameters leads to very 
significant modifications to the result. This can only be achieved by building on 
statistically reliable raw data; 
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– the “Eurocode” semi-probabilistic approach yields results which are highly 
dependent on the approach used (the values obtained depend strongly on the values 
of the partial coefficients, which have been calibrated for the general case and are 
not necessarily appropriate for the specific case of interest). It is also incapable of 
taking account of correlations between parameters; 

– correct treatment of spatial correlation also has a positive effect on the outlying 
fractiles for the bearing capacity, by reducing its variance. Not considering spatial 
correlation is a conservative approach, which may lead to unnecessary overspend. 
The main challenge is in identifying a realistic value for the correlation length. It 
should, however, be added that correct treatment of spatial correlation becomes 
indispensible when treating the questions involving differential settlement between 
neighboring foundation footings or when modeling soil-structure interactions, which 
is outside the scope of the present study [BRE 05], [BRE 07]. 

6.5.2. General conclusions 

As was indicated in the introduction, our intention here was to illustrate the 
effects of taking into account material variability when considering the variability in 
the response of the mechanical system. To do this we considered the example of the 
bearing capacity of a shallow foundation footing. However, other problems can be 
treated using the same process: estimating the maximum bearing capacity of a 
reinforced concrete or wooden structure, estimating the lifetime of a reinforced 
concrete structure undergoing corrosion, evaluating the stability of a cut-off slope, 
etc. For every one of these problems: 

– there is a need for a deterministic type of model (mechanical, chemical, etc.) 
that can describe the most important aspects of the phenomenon under study 
(resistance to flexion, penetration of aggressive agents, stability against slippage, 
etc.);  

– there must be sufficient information available on the material properties to 
which the system in question is most sensitive: a statistical distribution but also any 
structure for the spatial correlation. 

It is only when equal care is devoted both to the physical/mechanical description 
of the system and to the representation of material properties that it is possible to 
make a reasonable estimate of the reliability of the system under study. Of course, 
given the generally high cost of data acquisition (soil survey programs, laboratory 
tests, etc.), it is necessary to tailor efforts to real-world needs. Standards (such as 
Eurocode) are generally sufficient to treat contemporary problems, admittedly with 
many simplifications. Things are different when material variability is a key 
parameter determining the solution: problems of differential settlement, in situ 
evaluation of properties, etc. In such cases there is a need to use more sophisticated 
modeling approaches. 
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Introduction to Part 3 

Part 3 considers a class of reliability models known as “metamodels”, or 
response surfaces. This application of response surfaces to the problem of structural 
reliability has its origin in the need to represent the response of a system (a 
mechanical system but also a living biological system, a social system, or an 
economic system) under the influence of stimuli. These stimuli are the input 
parameters to the system, and they may be poorly known or uncertain. The response 
surface is not therefore an exact representation of the response of the system, but 
rather an approximation – the quality and range of validity which we would like to 
evaluate. The main motivation in structural reliability is, in the case of analytical 
(and hence explicit) response surfaces, to facilitate the coupling of probabilistic 
algorithms with the model (assumed exact) that determines the response of the 
system. 

This part is divided into two chapters. Chapter 7 introduces physical and 
polynomial response surfaces, along with reliability calculations as applied to those 
surfaces. Chapter 8 discusses reliability calculations that use polynomial chaos 
expansion of the response surfaces. A range of analytical examples are presented. A 
trellis beam and a building framework are used to illustrate the concepts presented in 
these two chapters. 



Chapter 7  

Physical and 
Polynomial Response Surfaces 

7.1. Introduction 

Generally, structural reliability analysis is based on the supply of mechanical and 
probabilistic models and a limit state function. In this chapter, we first define a 
mechanical model that describes structural behavior. In a general sense, the 
mathematical transfer function  allows us to evaluate the influence of loading 
with the knowledge of input parameters (or stimuli) that describe the structure and 
its environment. These parameters constitute the vector . The model response is 
denoted here as .  

Next, we define a probabilistic model for the input parameters that are 
considered to be poorly known or uncertain, even from a statistical analysis of data 
samples when they are available, or by expert judgment and a database [JCS 02]. 
This probabilistic model is characterized by the joint density of the input random 
variable , denoted . 

Thirdly, and finally, we define a limit state function that mathematically 
translates the failure criterion against which the structure must be justified. This 
function is written with the general form  and is based on the effect of 

loading to which we fix limits, gathered in a vector .  
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By denoting fX,X' the joint density of vectors X and X', the objective of the 
analysis is to evaluate the structural reliability through one estimate such as the 
probability of failure  defined by:  

 [7.1] 

Several methods exist for solving the problem [DIT 96], [LEM 09]. Among 
them, in this chapter, only a Monte Carlo simulation and FORM method are 
presented and used. 

7.2. Background to the response surface method 

Many scientific fields and trends of thought have contributed to the elaboration 
of the so-called Response Surface Methodology (RSM). The beginnings of the 
response surface approach appeared a few years before Box & Wilson’s 
developments [BOX 50]. Various scientific fields were involved: 

– animal and vegetal biology, and the building of growth curves [REE 29], 
[WIN 32], [WIS 39]; 

– human sciences and the analysis of the response of a population to stimuli 
[BLI 35a], [BLI 35b], [GAD 33]; these works were based on those of the 
psychiatrist Fechner in 1860; 

– agronomy and the study of soil fertilization [CRO 41], [MIT 30], [STE 51]. 

These approaches were based mainly on the basic assumption (mathematically 
justified by the Weierstrass’s theorem) that, under some conditions of regularity, a 
response can be represented by polynomials. Thus, within this context, in 1951 the 
chemists Box and Wilson developed the concept of a response surface, relying both 
on analytical regression techniques and the building of experiences. In particular, 
they had already carefully described the need to pay attention to the choice of 
stimuli variables, and to the allocation of their relative weight. The empirical models 
they developed have been enriched by the definition of observation periods 
[BOX 55] and by error computation [BOX 57]. With the increase of the number of 
potential models, selection criteria were provided [BOX 59a] such as the generalized 
variance minimization of variable estimation [BOX 59b]. The period 1950–1970 
was a fruitful one with the appearance of three major scientific developments with 
probabilistic insights: 

– research into optimal functional representation through stochastic 
approximation in the presence of outliers; an expansion to multivariate problems 
was proposed [KIE 52], [ROB 51]; 
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– the comparison of growth curves in biometry [ELS 62], [RAO 58], where 
response functions come from projections on a family of orthogonal polynomials. 
Their coefficients are then used for forecast studies; 

– the theory of optimal models under constraint in the case of linear models 
[KIE 60]. The optimization of a response function was linked to the minimization of 
the generalized variance of parameters. 

This last trend of thought offers a well-structured theoretical contribution that 
was soon used as a reference by others. Numerous works about optimization 
appeared after it [ANS 63], [NEL 65], [POW 65]. The end of this period saw the 
emergence of non linear models. The most significant works were certainly carried 
out on inverse polynomials [NEL 66] and the statistical estimation of parameters 
from experimental processes [ATK 68]. Nevertheless, the increase in use of 
nonlinear models was really significant, due to the increase in computational 
capacity of computers. The criteria for model validation appear to be very specific to 
each application field; review papers in biometry [MEA 75] and in the nuclear field 
[HEL 93] can be cited as examples. 

7.3. Concept of a response surface 

7.3.1. Basic definitions 

The term “response surface” denotes the wish to develop a formal representation 
based on geometrical ideas; it is surface building in the probabilistic space of the 
response of a physical process to stimuli. The property being studied, or response Y, 
is the result of a transfer function that characterizes the sensitivity of a system to 
input parameters. This response then varies with the variation of input parameters 
known as stimuli. These are modeled by random fields or variables, denoted Xi, 
i=1,..,n, and then characterized by a set of available statistical information, denoted 
θj, j=1,.., p, (independent or correlated probability density functions, normalized 
moments, etc.). These random variables (or fields) are called basic random variables 
(or fields). This transfer is represented in Figure 7.1. 

 

Figure 7.1. Response of a transfer function to stimuli,  
modeled by random fields or variables  
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The modeling of random fields is sometimes needed for the representation of 
spatio–temporal variations of uncertain input parameters. Modeling with random 
variables, which is simpler, is nevertheless sufficient for specific problems. For 
simplicity in the following sections, we use random variables to represent input 
parameters. 

Generally, knowledge of a transfer function as an explicit form of basic random 
variables is not available. We therefore look for an approximation, called a response 
function, M, which is often selected from amongst a family of usual functions, linear 
or not, characterized by random or deterministic parameters χk, k=1,..,l. These 
parameters are deduced from the fitting of the response to the experimental data. 
The geometrical representation, with a curve, a surface, or a hypersurface, is called a 
response surface. The introduction of geometrical tools such as contour lines onto 
this response surface can then be used as frontiers of the safety domain. To build a 
response surface, we must provide: 

– X ={X1…, Xn}, a ranked set of representative random variables; 

– θ={θ1…,θp}, a set of statistical information about X (independent or correlated 
probability density functions, normalized moments, etc.);  

– M(X/θ), an approximation of the response Y, formulated as an explicit function 
of X knowing θ, and obtained by the fitting of the set of parameters χ; 

– |.|, a metric in the probabilistic space of basic random variables and responses.  

The quality of fit of the approximation M to the response Y is then measured. 

The response function can then be formally written as in Figure 7.2. 

 

Figure 7.2. Formal writing of a response function 

7.3.2. Various formulations 

The choice of the type of formulation for the response function is made on the 
basis of specific criteria coming from the selected scientific methodology for 
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studying the phenomenon. The first questions are the conceivable level of 
complexity, the availability of a complementary experimental approach and the 
actual state of knowledge. Two methods are possible but the building of a response 
surface is more and more frequently based on a mixed solution: 

– the matching of an approximated model of the transfer by using usual 
mathematical functions (especially polynomials) and a selected database. [SCH 96] 
presents and compares the usual models used; 

– the use of underlying deterministic physical laws in which random variables 
are introduced to account for intrinsic variations (height and period of a wave, speed 
of the wind for instance) or for uncertainties on modeling parameters [LAB 96]. 
Two issues then govern the building of the response surface, the physical meaning 
of the deterministic models and the selection of the random variables, i.e. those that 
govern the variations of the studied quantities. 

Finally, the difficulty of statistically characterizing the basic variables adds to the 
difficulty of selecting the analytical formulation of the transfer. In the case of 
response surfaces that describe limit states, this question conditions the reliability 
measure. For instance, in the field of unidirectional laminated composite materials 
loaded in the direction or orthogonal to the direction of fibers, we consider generally 
that a limit state can be deduced from three criteria: stresses, external loading and 
the geometrical size of the material. Various assumptions on the number of random 
variables and the typology of their distribution can lead to variations of more than 
30% of the value of corresponding safety factors [NAK 95]. 

7.3.3. Building criteria 

Building criteria are specific to each application field. Thus, in the following 
discussion, criteria are ranked according to their importance for problems relative to 
the safety of buildings and structures. These criteria nevertheless raise questions that 
can be extended to other fields. Further, it would be wrong to consider that a unique 
solution exists. The final choice is the result of an optimization under constraints 
that we have proposed. 

We aim especially to take benefit of the increased power and computational 
capacities of computers which offer the ability to refine the mathematical 
representation and control the intrinsic uncertainties due to model fitting. However, 
one must always keep in mind the requirement of the physical meaning. Thus, the 
major elements in our approach are: 

– the physical meaning of the representation; 

– the effects of the choice of probabilistic modeling; 
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– the measure of the quality of the fit; 

– a reduction of the level of complexity, consistent with acceptable 
computational costs. 

7.3.3.1. Physical meaning of the representation 

An understanding of the physical mechanism that underlies the physical 
phenomenon is fundamental when choosing the set of input variables and the 
approximation function. This criterion can lead to the necessity to base the 
formulation of the function on deterministic relationships. Intrinsic randomness is 
then introduced through random variables and we account for the model uncertainty 
through random parameters. The use of deterministic relationships and a careful 
selection of basic variables, if an analytical relationship is available, are shown to be 
more realistic than the use of fitted models with the usual mathematical 
formulations.  

7.3.3.2. Effects of the choice of probabilistic modeling 

The probability law of the system response depends on the probabilistic 
characterization of the input parameters (probability distribution, scatter, skewness, 
kurtosis, etc.). In a simple case where the transfer function M is a linear function of 
normally distributed random variables, the response is normally distributed too. In 
the general case, random variables are non-normally distributed and the transfer 
function is more or less nonlinear.  

To control the effect of this degree of nonlinearity of the transfer function, 
several works suggest approaching this function with a polynomial approximation 
(generally linear, quadratics or cubic). A linear approximation is usually not 
sufficient [BOU 95]; cubic or fifth order approximations allow us to assess in some 
cases the moments of third and forth order in a satisfactory way. Polynomial 
approximations can be of high order and costly in terms of identification of their 
parameters. 

Actually, to guarantee the transfer of distribution laws, it is necessary to control 
the good fit of the Jacobian matrix [D(X)/D(Y)] [LAB 95], [SCH 08]. We then 
consider a response surface with a single variable of the form Y = M(X) with M, a 
bijective monotonic function which can be derived, and X a basic variable. Knowing 
the probability density fX of X, we can compute fY, the probability density of Y. G is 
the cumulative function associated with the probability density function g, and we 
know that: 

GY (y) =  and fY (y) =  )( yYP < )yY(P
dy

d
<



Physical and Polynomial Response Surfaces     129 
 

fY (y) = P[X < M -1(y)] and finally  fY (y) = fX [M -1(y)]   

where |.| denotes the absolute magnitude. 

In the more general case of a multivariate problem for which X and Y are 
vectors, probability density functions of random input and output are linked by the 
relationship: 

fY (y) = fX (x) [M -1(y)]  

Thus, to obtain a good approximation of PY, a good fit of function M should be 
reached as well as a fitting of the partial derivatives. The linear, quadratic or cubic 
polynomial functions described before have, respectively, constant, linear and 
quadratic derivatives. The difference between these three functions is generally 
significant near the bounds of the studied domain (realizations of basic variables), 
and the perturbations on distribution tails can be significant and thus modify the 
results of reliability computation. Thus, the choice of low order polynomial, very 
convenient from a computational point of view, can lead to false probability 
functions for the response even they seem to correctly represent the trend. Such a 
choice is very sensitive to the effects of the choice of probabilistic modeling of input 
parameters. 

7.3.3.3. Measurement of the quality of fit 

We aim here to define a metric (a measuring tool) that gives a rational tool to 
quantify the quality of fit. Usual metrics, known as second order metrics, allow us to 
obtain the variables that are dominant in the response because we can quantify their 
influence on the variance of the response. They are thus not very effective when 
singular events external to the distribution functions of the input variables occur, and 
they only give an indication of the measure of uncertainty [BIE 83], [IMA 87]. To 
solve these shortcomings, metrics based on inter-quantile discrepancies [KHA 89] or 
on the measurement of the system entropy [PAR 94] are available. 

Another approach consists of the use of regression metrics. Let us denote the 
response function for which we want to fit the parameters as f, and the error as ε. Let 
us consider, for example, a regression model such as: 

Y = M (X/θ) + ε 

(y)]-[M
'
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When the error ε is supposed to be normally distributed with 0 mean and a 
diagonal covariance matrix, then the fitting of f with least square and maximum 
likelihood methods are identical. The L2 metric (integration of the square of the 
residual u) is then the most efficient. The L1 metric (integration of the norm of the 
residual) is more efficient for an exponential distribution of the error, which is then 
more scattered.  

It has been shown in the previous section that the fitting of a Jacobian matrix of 
partial derivatives is very interesting. Thus, it also seems very interesting to choose a 
metric already available in variational theory: 

 

with .. . L2
, L2 norm in the Sobolev space H1 : 

H1 = {  (second order integrable) for α = 0, 1 and i = 1…,n} 

The underlying idea of this choice of metric is thus to prefer the better control of 
the distributions tails through successive transfers, in comparison to the control of 
the central part, by the fitting of the first moments. Every building of a response 
surface should be suggested with a metric that conditions the sense of the 
approximation and allows us to explain some limits in the representation.  

7.3.3.4. Reduction of complexity level and tractability for computations 

To gain accuracy, models of a high order could be interesting. This increase in 
the computational procedures (optimization algorithms for the fitting under 
constraint) must, however, be justified: this increase in the complexity level leads to 
an increase of the computational costs that should be kept as reasonable as possible. 

For more details, this question is illustrated in [SCH 07] through several studies 
concerning wave–structure interaction, which look at the effects of the order of the 
Stokes kinematics model, of accounting for the inertia term in load computing, and 
the number of elements needed for the integration of distributed loading on the 
beam.  
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7.4. Usual reliability methods 

7.4.1. Reliability issues and Monte Carlo simulation 

Structural reliability aims to assess the failure probability of a mechanical system 
in a probabilistic framework according to a failure scenario. Structural reliability 
methods allow not only the probability of failure to be computed for a single 

component of a system, or for a system as a whole then involving several interacting 
components, but also the sensitivity of this probability against each random variable 
of the problem to be determined [DIT 96], [LEM 09].  

A failure criterion can be expressed thanks to a performance function
 conventionally described by parameters in such a way that 

 defines the failure domain and defines the 

safety domain. The frontier  is the limit state surface. The 

probability of failure is:  

 [7.2] 

where  is the probability density function of .  

When the performance function is analytically expressed, for instance when a 
response surface is implicated in the expression of g, then the integral over the 
implicitly defined integration domain is numerically feasible from Monte Carlo 
simulation: simulations of the input vector  are supplied, and for each of 

them g is evaluated. If 
 
is the number of simulations for which g is negative, the 

probability of failure 
 
is approximated by the ratio . The method is 

fairly simple but computationally very costly: about  samples are 

required if a 5% accuracy is expected when is about . In usual practical 

applications, k lies from 2 to 6, which compromises the use of the method, except if 
a consistent response surface is available. Among methods which have been 
developed to circumvent this drawback, the First Order Reliability Method (FORM) 
is one of the most employed. 

7.4.2. FORM 

FORM provides an approximate value of the failure probability by recasting the 
problem in a reduced centered Gaussian space, where all random variables  are 
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Gaussian with zero mean and unit standard deviation. An iso-probabilistic 
transformation T is needed for this goal . For independent random 

variables with marginal cumulative probability function , this 

transformation simply reads 
 
where  is the cumulative reduced 

centered Gaussian probability function. For correlated random variables, Nataf or 
Rosenblatt transformations can be resorted to [LEM 09], (Chapter 4). Equation [7.2] 
then becomes: 

 [7.3] 

where  is the performance function in the reduced space and  

is the reduced centered multinormal probability density function of dimension , 

defined by .  

A maximum value of is encountered at the origin of the reduced space, and 

 exponentially decreases with respect to the distance from the origin, all the 

more since the number of variables is high. In the failure domain, the points 
contributing most to the integral [7.3] are therefore those which are closest to the 
origin. The second stage of FORM is to determine the so-called design point  
which is the point of closest to the origin, and so the most probable failure point. 

This point is the solution of the optimization problem: 

 [7.4] 

A suitable optimization under constraint algorithm can solve [7.4]. The 
reliability index  is then defined as the algebraic distance from the origin to the 

limit state surface : . Once  is determined, the limit state 

surface  is approximated by a hyper-plan tangential at . The integral [7.3] is 
then reduced to . The linearized limit state is expressed by 

 . The unit vector of direction, cosine , which is perpendicular 

to the hyper-plan, allows the sensitivity factors to be computed by  for each 

independent random variable Xi. 
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FORM is fruitful because it leads to a fairly good approximate value of  with a 

reasonable computational cost. The approximation is better when β is large, and is 
often relevant and satisfactory provided that the design point  is consistent (i.e. 
with no local minima). Moreover, sensitivity measures and importance factors are 
given which are matters of interest for the designer.  

Readers are invited to refer to [LEM 09] to investigate SORM (Second Order 
Reliability Method), based on a quadratic approximation of the limit state function. 
SORM is a priori more costly than FORM, but also more accurate. 

7.5. Polynomial response surfaces 

Amongst other possible forms of response surfaces (RS), polynomial response 
surfaces have been widely used for reliability problems in mechanics. In the 
following section, only simple polynomial response surfaces are addressed, in 
contrast to those based on polynomial chaos in Chapter 8. 

7.5.1. Basic formulation 

If X={Xi,i=1,…,M} is the random variables vector, the quadratic response 
surface ( )Xĝ  of the true limit state function g(X) is expressed by: 

( ) j
M

i
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M

ij
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M

i
iii

M

i
i XXaXaXaaĝ  +++=

= ≠=== 1 1

2

11
0X  [7.5] 

where a={a0,ai,aii,aij}
T is the vector of unknown coefficients. These coefficients are 

obtained by least square method from the Numerical Experimental Design (NED) 
{x(k), k=1,…,N}, where the number of sampling points N is at least equal to the 
dimension of a: 

( )( )( )
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k
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where ( )( )k
k gy x=  is the value of the true limit state function at point x(k). From

( ) { }{ } ( ) aXBX TT
0

21 == jiiiijiii a,a,a,aXX,X,X,ĝ , a is computed by [FAV 89] 

as: 

( ) yCCCa T1−
= T  [7.7] 
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where C is the matrix whose rows are the vectors ( )( )TkxB  and y is the vector of 

components yk. 

The basic formulation is simple. Nevertheless, some difficulties and 
controversial discussions arise when we consider the following points: 

– working space. In order to assure the consistency of the NED, in such a way 
that the mechanical model behaves well, a physical space is preferable. Nonetheless, 
building the NED in a standardized space is easier. Indeed such a space is non-
dimensional and allows the distance between sampling points to be efficiently 
controlled, which is useful to avoid the ill-conditioning of C. Moreover, it is a 
natural space for determining the reliability index; 

– number of sampling points. When increasing the number of sampling points 
the least squares regression is improved (F-statistics and variance of the unknown 
coefficients a) but not necessarily the quality of the approximation (adjusted R2 or 
crossed Q2 correlation coefficients), which is better if the number of sampling points 
is just equal to the number of unknown coefficients. Outside of the NED, the 
relevance of the RS (Response Surface) is improved when the number of sampling 
points is higher, but if reducing the computational cost is an aim (compared to the 
cost obtained when the true failure function is used), then the number of sampling 
points should be minimized; 

– topology of the NED. When the NED is compact, the quality of the 
approximation is improved but the domain of suitability is reduced. The location of 
the sampling points should depend on the behavior (the sensitivity) of the true limit 
state function; 

– validity of the RS. Depending on what is being sought (reliability index and/or 
assessment of the failure probability) the validity of the RS should be estimated 
locally or globally; 

– adaptability of the RS. It is often necessary to rebuild the NED because the 
domain of final utilization of the RS (the region of the most probable failure point) 
is far from the mean point (in case of low failure probability), which usually plays 
the role of initial central point of the sampling grid. A sequential procedure is 
therefore needed to rebuild the NED with respect to criteria for the consistency of 
the RS and in conjunction with probabilistic results or procedures; 

– the order of the polynomial should be less than or equal to the unknown degree 
of nonlinearity of the true failure function, in order to facilitate the solving of the 
linear system; 

– the presence of mixed terms in the expression of the RS contributes to 
capturing the effect of interaction between variables. 
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7.5.2. Working space 

In the framework of structural reliability two working spaces are possible: the 
physical space X (dimensional random variables with any distribution and possible 
correlation) and the standardized space U (reduced centered Gaussian and 
uncorrelated random variables). Both spaces are simultaneously required to compute 
the unknown coefficients only if the RS is built in a standardized space (i.e. if the 
mechanical model is indeed defined in a physical space). The transformation from 
X-space to U-space is nonlinear, and modifies the topology of the NED and the 
failure surface as well [DEV 97] (see Figure 7.3 in the case of a factorial design). 
Numerous authors have hence chosen to operate in a physical space [BUC 90], 
[GAV 08], [KAY 04], [KIM 97], [MUZ 93], [RAJ 93]. If the searching procedure 
for the reliability index is associated with the sequential procedure for building the 
NED, it is, however, clearly preferable to operate in a standardized space [DEV 97], 
[DUP 06], [ENE 94], [GAY 03], [GUP 04], [NGU 09].  

 

Figure 7.3. Effect of the space shift 

7.5.3. Response surface expression 

Whatever the working space chosen, the objective is to provide a satisfactory 
estimate of the reliability and, if possible, with a lower computational cost than that 
resulting from the use of the true limit state function. To do this, if second order 
estimates of the reliability are sought, linear and quadratic polynomial RS are good 
candidates. Respectively, the expressions of the RS are: 
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Nevertheless if Monte Carlo simulations are expected to be used to assess the 
failure probability in a more or less large zone around the most probable failure 
point, or if the degree of nonlinearity of the failure function is from evidence higher 
than 2, increasing the order of the polynomial could be required [GAV 08], 
[GUP 04]. One method proposed to select the best-fitted order of polynomial 
involves the use of Chebyshev polynomials, a statistical analysis of the Chebyshev 
polynomial coefficients, and a statistical analysis of high-order RS [GAV 08]. The 
increase in accuracy brought by high-order RS is, however, counteracted by the 
added computational cost of the selecting procedure. 

7.5.4. Building the numerical experimental design  

7.5.4.1. Number and layout of the sampling points 

The minimum number of points is the number of unknown coefficients, namely 
N = (M+1) for a linear RS, N = (2M+1) for a quadratic RS without mixed terms and 
N = (M+1)(M+2)/2 for a quadratic RS with mixed terms. With such a minimum 
number of points, only an interpolation is provided and the statistical significance of 
the coefficients is very poor. On the other hand, the use of the RS beyond the 
frontier of the NED is not expected to be consistent. Even if saving runs of the true 
failure function is one of the objectives, it is not desirable to limit the number of 
points to the minimum, due to the resulting poor quality and suitability of the RS. 

A uniform layout of the sampling points around a central point is commonly 
adopted at the initial stage of building (central, central composite or factorial 
design). The number of sampling points of the NED depicted in Figure 7.3 is equal 
to (2M+1+2M) or (3M) depending on whether one or more points are located out of 
the axes. Along the axis i the distance between points is stated as a function of the 
standard deviation of the variable: 

( )
iii,C

k
i hXx σ±=  [7.9] 

where x(k) is the kth point of the NED and XC is the central point. Similarly, in a 
standardized space: 

( )
ii,C

k
i hUu ±=  [7.10] 

Except in the case of adaptive procedures, the factor hi is constant (hi=h).  

Too large or too small values of h compromise the quality of the RS and lead to 
erroneous results. An example is given in [GUA 01] where 21 random variables are 
involved (for the reliability of a portal frame) and a quadratic RS without mixed 
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terms is employed: the failure probability shifts from 10-4 to 0.94 when h varies 
globally from 0.1 to 5. When h varies locally from 1.8 to 2.2, the failure probability 
and the reliability index, respectively, shift from 9.3×10-5 to 0.37 and from 0.06 
to 4.47.  

In order to avoid the ill-conditioning of the system C [1.7] the value of h must be 
large enough. Values of h lying in the range 1 to 3 are often suggested [BUC 90], 
[DEV 97], [DUP 06], [ENE 94], [KAY 04], [KIM 97], [MUZ 93], [NGU 09], 
[WON 05]. Minimum values of h have been also proposed in the range 0.2 to 0.5 
[DUP 06], [ENE 94].  

7.5.4.2. Adaptive procedures 

The main goal of adaptive procedures is to combine a satisfactory approximation 
of the true failure function, at least in the neighborhood of the most probable failure 
point, with a limited computational cost. The following items are part of the 
adaptation: 

– shape of the RS. A first linear ( ( )XIĝ ) or quadratic without mixed terms 

( ( )XIIĝ  with aij=0) RS is attractive due to the small number of unknown 

coefficients and the computational cost needed to determine the most probable 
failure point. A refinement can be then undertaken with a quadratic with mixed 
terms RS [GAY 03], [NGU 09]; 

– initial NED. If the role played by the random variables is known a priori (for 
instance from the engineer’s knowledge), a first central point XC1 can be located at 

iiii,C hX σ−μ=1  if Xi contributes to the non-failure and at iiii,C hX σ+μ=1 if Xi 

contributes to the failure. When no information is available on the role of variables, 
a pre-selecting procedure can also be employed with a few runs of the true limit 
state function [GAY 03]; 

– second central point. This can be located with respect to the first most probable 
failure point thanks to an interpolation [BUC 90] or found at the same location 
provided that the latter is situated inside the first NED [DEV 97], [ENE 94]; 

– mesh of the sampling grid. The size of the mesh is generally reduced as 
iterations proceed, in order to concentrate the NED in the region of the most 
probable failure point [DEV 97], [ENE 94], [GAY 03], [KAY 04], [MUZ 93]. Some 
considerations can be added in order to refine the mesh according to the number of 
random variables [KIM 97], the sensitivity of the RS towards the variables 
[DUP 06], [NGU 09], or specific statistics (confidence interval on the coordinates of 
the most probable failure point) [GAY 03]; 

– weighting of the sampling points. The unknown coefficients are computed, 
introducing a weighting diagonal matrix in equation [7.7]. The weighting factors 
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depend on the closeness of points to the failure surface [KAY 04] or to the last most 
probable failure point [NGU 09]; 

– update of the NED. In order to limit the computational cost, it is of interest to 
keep in the NED all the points where the value of the true limit state function has 
already been computed. However, some of them, that could harm the quality of the 
RS, must be excluded according to suitable criteria [DEV 97], [DUP 06], [ENE 94], 
[GAY 03], [NGU 09].  

7.5.4.3. Quality of the approximation 

In order to verify the quality of the response surface, a classic measure of the 
correlation between the approximate and the exact value of the limit state function is 
the adjusted correlation factor: 
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where ymean is the mean value of the limit state function over the NED. If R2 is less 
than 0.9, the quality of the response surface has to be improved. The cross 
correlation factor Q2 is also employed (see Chapter 8). 

7.5.5. Example of an adaptive RS method  

7.5.5.1. General description [NGU 09] 

7.5.5.1.1. First iteration 

The NED is centered at UC and comprises UC and one point along each axis 
located at: 
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where u(k) is the kth point of the NED and h0 lies basically between 1 and 3. For the 
first iteration, the RS is linear in the standardized space ( ) ( )UU Iĝĝ = , the central 

point is the origin of the space UC1=U0 and a fictitious gradient of ( )1Cĝ U  is 

considered, based on engineering knowledge in such a way that hi=±1. 
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According to [KAY 04], the weighting diagonal matrix W is introduced in 
equation [7.7] which becomes: 

( ) yWCWCCa T1−
= T  [7.13] 

where the weighting factors are expressed by  
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In [7.14], ymin is the minimum value of the true limit state function over the NED. 
Once the unknown coefficients a of ( )Uĝ  are computed by [7.13] the first most 

probable failure point U*(1) is determined by FORM. 

7.5.5.1.2. Second iteration 

For the second and further iterations, the RS has a quadratic form ( ) ( )UU IIĝĝ =  

with (M+1)(M+2)/2 being unknown coefficients. As suggested in [BUC 90], the 
central point of the second NED is stated by: 

( )( ) ( )
( ) ( )( )1
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−+=  [7.15] 

which is closer to the true failure surface than U*(1) (g(U*(1))≠0 most of the time). 

All the points of the first NED are maintained in the second and 
( )( ) ( )( )1221 +−++ M/MM  complementary points are added, in a half-star shape 

design around UC2. Among the complementary points, M points are located 
according to [7.12] which implies that points are situated towards the failure region 
with respect to the central point and at a distance from the latter proportional to the 
local sensitivity of the RS. The ( )( ) ( )( )12221 +−++ M/MM  remaining 

complementary points are again generated from the M previous ones, each of them 
playing the role of a new local central point. When applying equation [7.12], the 
axes are considered in descending order with respect to the components of the 
gradient vector ( )2Cĝ U∇ . The point U*(1) is kept in the second NED under the 

condition: 

 ( )
0

1
2 h*

C ≤− UU  [7.16] 
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The weighting factors are now computed by: 
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in which the last term allows the closeness to the previous most probable failure 
point to be accounted for. If the condition [7.16] is not fulfilled, U*(1)=UC2 in [7.17]. 
Once the unknown coefficients of ( )Uĝ  are computed by equation [7.13], the 

second most probable failure point U*(2) is determined by FORM. 

7.5.5.1.3. Further iterations (iter>2) 

The NED is enriched with the point U*(iter-1). The weighting factors and the 
coefficients of ( )Uĝ  are updated by equations [7.17] and [7.13] respectively. A new 

most failure point is determined. The convergence of the procedure is achieved 
when: 
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7.5.5.2. Examples 

Two examples are reported here in order to show the interest but also the limit of 
the polynomial response surface method. The method described above is referred to 
as RSDW (Response Surface with Double Weighting). 

7.5.5.2.1. Example 1 

A simple explicit limit state function is considered in a standardized space: 

( ) ( )( ) ( ) 20053026240 12 −+−++= U.exp.U.expg U  [7.19] 

The results are reported in Table 7.1 where Nr denotes the number of runs of the 
true limit state function. It can be seen that the values of the reliability index are 
very close to each other for all the methods under consideration. In the same way, 

the values of ( ) ( )0UU g/g *  are close to zero and express a good closeness of the 

most probable point with regard to the failure surface. The cumulative formation of 
the RS is depicted in Figure 7.4. The effect on the quality and efficiency of the 
initial grid size h0 can be seen in Tables 7.2 and 7.3. It is worth noting that the use of 
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a weighting system allows this effect to be mitigated and a satisfactory closeness to 
the true failure surface to be obtained 

Method β U*1 U*2 ( ) ( )0UU g/g *  Nr 

Adaptive MC[KAY 04] 2.710 0.969 -2.531 3.36×10-5 - 

RS [KIM 97] 2.691 - - - - 

RS [KAY 04] 2.686 0.820 -2.558 5.84×10-3 8 

RS [DUP 06] 2.710 0.951 -2.538 9.10×10-4 21 

RSDW (R2 = 0.997) 2.707 0.860 -2.567 8.48×10-4 12 

Table 7.1. Comparison between several RS methods (Example 1) 

 

Figure 7.4. Cumulative formation of the response surface (Example 1) 

h0 1 2 3 4 

β 2.707 2.724 2.713 2.714 

( ) ( )0UU g/g *  8.48×10-4 4.06×10-4 8.02×10-4 6.88×10-4 

R2 0.997 0.999 0.999 0.930 

Nr 12 10 11 13 

Table 7.2. Influence of h0 with a weighting system (Wk≠1) (Example 1) 
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h0 1 2 3 4 

β 2.707 2.715 2.715 2.726 

( ) ( )0UU g/g *  1.15×10-3 1.45×10-3 1.12×10-3 3.16×10-3 

R2 0.997 0.999 0.999 0.885 

Nr 14 11 11 15 

Table 7.3. Influence of h0 without weighting system (Wk=1) (Example 1) 

umax (cm) 4 5 6 

β 
RSDW 2.19 2.86 3.28 

FORM 2.20 2.86 3.40 

( ) ( )0UU g/g *  
RSDW 5.39×10-3 2.80×10-3 1.06×10-3 

FORM 6.03×10-6 6.25×10-4 1.72×10-5 

Nr 
RSDW 256 258 255 

FORM 80 75 104 

R2 0.993 0.994 0.993 

Table 7.4. Comparison between RS and direct FORM (Example 2) 

7.5.5.2.2. Example 2 

An implicit limit state function is considered which involves the top 
displacement of a multi-storey and multi-span steel frame. This example is also 
presented in Chapter 8 (section 8.4.2) where the distributions of 21 correlated 
variables can be found. The results are reported in Table 7.4, where umax denotes the 
threshold value of the displacement. As far as the convergence and closeness to the 
failure surface are concerned, it can be noted that RSDW is satisfactory. From a 
comparison with direct FORM (direct coupling between the Rackwitz–Fiessler 
algorithm and the true limit state function) it can be said that, on one hand the RS 
method supplies consistent values of the reliability index but, on the other hand, the 
computational cost is significantly higher. For such an example, RSDW is therefore 
less efficient than direct FORM. 
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7.6. Conclusion 

The response surface method was first developed for any system whose response 
to stimuli could not be satisfactorily captured by explanatory models, and was 
employed for biological systems. When applying the response surface method to 
mechanical systems, the main goal is to reduce the computational cost resulting, for 
example, from the use of finite element explanatory models. Some specific 
developments of the response surface method have been carried out in the context of 
probabilistic reliability analysis. The examples reported in this chapter show that 
these developments are not fully efficient in terms of computational cost if the 
number of variables exceeds twenty. Nonetheless, the quality of the adaptive 
response surface presented above is sufficiently good for the probabilistic results to 
be very close to those obtained by the use of the true limit state function. Moreover, 
having an explicit approximate failure function in the region where the most failure 
point is located facilitates probabilistic post-processing, including assessment of the 
failure probability, sensitivity analysis, etc. 
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Chapter 8  

Response Surfaces based on Polynomial 
Chaos Expansions 

8.1. Introduction 

8.1.1. Statement of the reliability problem 

Let us recall the problem stated in the introduction to Chapter 1. Of interest is a 
building or a part of a building reduced to a mechanical structure, whose behavior 
may be represented by a mechanical model. The latter is described by a transfer 
function  (often known implicitly, e.g. under the form of a finite element code) 
that allows the effects of the loading (e.g. displacements, strains, stresses) to be 
evaluated, depending on input parameters which describe the structure and its 
environment, that is the geometrical properties (e.g. dimensions, cross-section areas 
and moments of inertia of the beam elements), the material properties (e.g. Young’s 
modulus, Poisson’s coefficient) and the loading (e.g. applied loads, thermal 
loading). All these input parameters are gathered in a vector . The model response 
is denoted by .  

A probabilistic model is then defined for the input parameters. In this context, 
the latter are described by a random vector (of size ) with a prescribed joint 
probability density function (PDF) of . 

Lastly, a limit state function is defined which mathematically represents the 
failure criterion with respect to which the structure has to be assessed. This function 
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which is denoted by  accounts for the effects of the loading (e.g. 

displacements, stresses) to which (probabilistic or deterministic) limits – gathered in 
a vector – are assigned. It is conventionally defined in such a way that its 
negative values correspond to realizations  of the input parameters which lead to 
failure. 

Denoting by fX,X' the joint PDF of X and X', the reliability analysis aims at 
evaluating the probability of failure of the structure under consideration that 

reads: 

 [8.1] 

Many methods may be used to solve this problem, such as Monte Carlo 
simulation, FORM/SORM methods, directional simulation, subset simulation; see 
for example the references Ditlevsen & Madsen [DIT 96], and Lemaire [LEM 09].  

8.1.2. From Monte Carlo simulation to polynomial chaos expansions  

The Monte Carlo method is well known in structural reliability and more 
generally in probabilistic mechanics. It relies upon the generation of a random 
sample of the input variables, denoted by . For each sample , 

first the mechanical response  then the limit state function is evaluated. 

The number of samples  that leads to a negative value of  is computed. Then 

the probability of failure is estimated by . The Monte Carlo method is 

easy to implement and also robust since it provides confidence intervals for the 
estimate . However it is computationally very expensive, especially when low 

probabilities of failure are sought (with orders of magnitude ranging from  to 

 in practice). Indeed, it is shown that an accurate estimation (say, with a relative 

accuracy of 5%) of a probability of magnitude  requires about  
points in the sample set. 

From another point of view, the Monte Carlo method consists of characterizing 
the random response of a structure  pointwise in its domain of variation, 

i.e. from a given set of random realizations of Y. Thus a large number of simulations 
is expected in order to accurately estimate the probabilistic content of , e.g. 
through its PDF  which may be estimated by the histogram of the sample 

. In an industrial context, most models are of the finite 
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element type and necessitate a significant CPU time (say from a few minutes to a 
few hours), hence this approach cannot be applied. 

As an alternative,  can be considered intrinsically as a random variable 
belonging to a specific space (such as the space of random variables with a finite 
variance), and can be represented in a suitable basis for this space. Thus the response 
is cast as a converging series, as follows: 

 [8.2] 

where  is a set of random variables that form the basis and where 

 is the set of the “coordinates” of in this basis. In particular, a special 

focus is given to bases made of orthonormal polynomials of random variables. The 
series in [8.2] is then referred to as polynomial chaos (PC) expansion.  

In the remainder of this chapter, the building of a PC basis (section 8.2), then the 
computation of the PC coefficients and their post-processing, dedicated to reliability 
analysis (section 8.3) are each described. Lastly, two application examples are 
addressed in section 8.4. 

8.2. Building of a polynomial chaos basis 

8.2.1. Orthogonal polynomials 

For the sake of simplicity, the input random variables are assumed to be 
independent. Their marginal PDF is denoted by , thus their joint PDF reads

. For each input random variable , a family of orthonormal 

polynomials  can be defined, such that  and the degree of each 

polynomial  is , . The orthonormality property is defined by: 

 [8.3] 

where  if  and 0 otherwise, and  is the support of the random 

variable . In practice, classical families of orthonormal polynomials can be 

associated with usual continuous random variables. If  is Gaussian, the 

corresponding family is that made of Hermite polynomials. If it uniformly 
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distributed, the corresponding family is that made of Legendre polynominals [ABR 
70], [SCH 00]. 

Then a basis made of multivariate polynomials  can be easily built 

up by tensorization, that is, by multiplying the univariate polynomials as follows: 

 [8.4] 

It has been shown by Soize & Ghanem [SOI 04] that the family 
form an appropriate countable basis to represent the random 

response  of a mechanical model. In addition, this basis is orthonormal 
with respect to the inner product in the space of random variables, with a finite 
variance defined by the mathematical expectation . Indeed, from 

equations [8.3] and [8.4], we get: 

 [8.5] 

The elements of the basis (indexed by their multi-index ) are classically 

ordered according to their increasing total degree , and are 

enumerated from  to infinity, as in equation [8.2] (an algorithm allowing a 

systematic building of the basis may be found in [SUD 06]).  

In practice, it is necessary to retain only a finite number of terms in the PC basis. 
Then the series is generally truncated in such a way that only those basis 
polynomials with a total degree not greater than a given  are retained. Hence, 

the truncated series containing terms is: 

 [8.6] 

where it is shown that .  

8.2.2. Example 

Let us consider the random response  of a mechanical model 

depending on two Gaussian random variables  and , with mean value  and 
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standard deviation , . When applying the linear mapping , 

the response can be recast in terms of standard Gaussian random variables, that is 

. 

The family of orthogonal polynomials with respect to the standard Gaussian PDF 

 is the family of Hermite polynomials . They 

are defined by the following recurrence relationship: 

 [8.7] 

The resulting polynomials are orthogonal but not orthonormal. They have 
various specific properties, as shown in [BAR 05]. In particular, it is shown that 

. Therefore the family  is orthonormal. The 

four first normalized Hermite polynomials are thus . 

Assume that the expansion of the random response  onto a PC basis of 
maximal degree  is of interest. The retained polynomials are built from 

products of Hermite polynomials in  and  (Table 8.1). Hence an approximation 

of the model response (a stochastic response surface) is sought under the form: 

 [8.8] 

where the coefficients  must be determined. 

8.3. Computation of the expansion coefficients 

8.3.1. Introduction 

Polynomial chaos expansions were originally introduced to represent random 
fields [WIE 38]. They have been used more recently for solving Stochastic Partial 
Differential Equations (SPDE) [GHA 91]. In this setup, investigations have been 
conducted in many fields such as biology, mechanics, fluid mechanics and thermal 
physics [GHA 98], [ISU 98], [KNI 06], [SUD 04], [WIN 85], [XIU 03]. The weak 
formulation of these SPDEs is discretized both in the physical space (e.g. by finite 
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elements) and in the probabilistic space (e.g. onto the PC basis). The coefficients 
arising from equation [8.6] are obtained by a Galerkin method [GHA 91], and are 
obtained by solving a large system of coupled linear equations, which may reveal 
time and memory consumption [PEL 00]. This method is referred to as intrusive due 
to the coupled nature of the system. The application of intrusive spectral methods to 
structural reliability analysis were initially proposed in [SUD 00], [SUD 02]. 

   

0 [0,0]  

1 [1,0]  

2 [0,1]  

3 [2,0]  

4 [1,1]  

5 [0,2]  

6 [3,0]  

7 [2,1]  

8 [1,2]  

9 [0,3]  

Table 8.1. Examples of polynomial chaos of degree 3 with 2 input variables   

On the other hand, non intrusive methods have recently received increasing 
interest. They allow the coefficients in equation [8.6] to be computed by means of a 
set of deterministic calculations, i.e. a set  of evaluations of 

the model response at suitably chosen values of the input variables. The non-
intrusive label indicates that these methods can be applied using the deterministic 
code associated with the model  without modification. 

Two classes of approach may be distinguished among the non intrusive methods, 
namely the projection approach [BAR 05], [BAR 06], [BLA 07], [LEM 01] and the 
regression approach [BER 05], [BER 06]. These are detailed below in turn. 
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8.3.2. Projection methods 

The so-called projection methods take benefit of the orthonormality of the PC 
basis. Indeed, by multiplying the expansion [8.2] by  and by integrating with 

respect to the joint PDF  of , we achieve:  

 [8.9] 

In practice, the above expression is estimated using classical methods for 
numerical integration, which consist of approximating the multi-dimensional 
integral by a weighted sum, as follows: 

 [8.10] 

Several techniques can be considered which differ from the choice of the 
integration points  and weights .  

The so-called simulation method relies upon the choice of  random 
integration points and integration weights equal to , which leads to:  

 [8.11] 

This corresponds to the application of Monte Carlo simulation to the estimation 
of the expectation in [8.9]. The accuracy of the coefficient estimators depends on the 
sampling strategy adopted. In case of a standard random sample (classical Monte 
Carlo simulation), a relatively low convergence rate in  is obtained. The 
convergence speed may be increased using stratified sampling techniques, such as 
latin hypercube sampling [MCK 79]. Moreover, it is shown that the use of quasi-
random numbers [NIE 92], which are generated from deterministic low discrepancy 
sequences, guarantees a better filling of the domain of variation of the parameters 
and lead to faster convergences [BLA 07]. 

As an alternative, the integral in equation [8.9] can be approximated by a Gauss 
quadrature scheme. Its principle is well known in the unidimensional case: the 
integral of a function  (weighted by a function ) is estimated by a sum of 

evaluations of  in a set of quadrature points: 

 [8.12] 
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The Gauss method allows us to integrate exactly any polynomial function of a 
degree not greater than  with  suitable integration points, namely the roots 
of the orthogonal polynomials with respect to the weight function  in the sense 

of equation [8.3]. The extension to the multi-dimensional case (integral [8.9]) is 
obtained by tensorizing the univariate quadrature rules: 

 [8.13] 

Isotropic formulae are commonly used, that is formulae which satisfy 
. It is shown that this scheme allows us to integrate exactly any 

multivariate polynomial of a partial degree not greater than . Now, if the 
model response is approximated by a PC expansion of degree , then the integrand 

in [8.9] is a polynomial of total degree . Therefore, a tensorized quadrature rule 

with  points is used in order to estimate the coefficients. Such a strategy 

leads to the performance of  model evaluations, which may prove to be 

cumbersome in the presence of a large number of input parameters (say, ). 

The computational effort may be dramatically reduced by replacing the full 
tensor product [8.13] with the so-called Smolyak scheme [SMO 63], also known as 
sparse quadrature. This technique has been applied in relation to PC expansions in 
[KEE 03], [SUD 07]. 

8.3.3. Regression methods 

8.3.3.1. Direct approach 

An alternative method to projection consists of computing the coefficients which 
provide the best approximation of  in the least squares sense by a 

truncated PC expansion containing a fixed number  of terms. Using the following 
vector notation: 

 [8.14] 

 [8.15] 

equation [8.6] is re-written as:  

 [8.16] 
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Let us consider a set of realizations of the input random vector, 

which is an experimental design. Let us denote the set of corresponding model 
evaluations by . The experimental design may be built either from a random or a 
quasi-random sample (see section 8.3.2), or from the roots of the orthogonal 
polynomials that are used to build the basis [BER 05].  

The problem consists of finding the vector of coefficients  that minimize the 
sum of squared errors (see Chapter 1, sections 1.6–1.7); that is: 

 [8.17] 

It is shown that the solution can be obtained in closed form as follows:  

 [8.18] 

where the generic entry of matrix  is given by: 

 [8.19] 

It is necessary that the number N of model evaluations be greater than the 
number P of unknown coefficients in order to make the problem “well-posed”. In 
the case of a random or a latin hypercube [MCK 79] experimental design, the rule-
of-thumb that  generally leads to satisfactory results. As shown in 
[BER 05], [BER 06], regression methods appears to be particularly efficient at 
computing PC coefficients. It also allows us to define a posteriori error estimates as 
well as an adaptive strategy for building the PC basis, which is outlined in the 
following sections [BLA 09]. 

8.3.3.2. Error estimation  

The approximation error of a PC expansion can be quantified by the coefficient 
of determination, R2, which is currently used in regression analysis. This coefficient 
depends on the sum of squared deviations between the “true” model response and 
the PC representation: 

 [8.20] 
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 [8.21] 

Thus, corresponds to a perfect adequation, whereas  indicates a 
very poor approximation. However, the R2 coefficient should be used with caution, 
as it tends to under-predict the genuine approximation error. In the extreme case of 

, the PC approximation interpolates the model realizations, which leads to 
 even if the error may reveal significant points that do not belong to the 

experimental design . This phenomenon is known as overfitting. 

As a consequence, a more robust error estimate is used, which is based on a cross 
validation technique named leave-one-out [ALL 71], [SAP 06]. In this setup, for any 
point in the experimental design , we compute the deviation  between the 

observation  and the evaluation in  of a PC expansion denoted by 

, whose coefficients are computed from the experimental design  

obtained by removing the point  from . By analogy with the  coefficient, 

the  coefficient are defined as follows: 

 [8.22] 

8.3.3.3. Adaptive approach 

Section 8.3.3.1 has shown that the size  of the experimental design has to be 
greater than the number  of terms in the truncated PC series in order to solve the 
regression problem. Now,  strongly increases with both the maximal degree  

of the PC expansion and the number  of input random variables, according to the 

formula = . Thus the regression method may lead to intractable 

calculations in high dimensions (say ). In order to reduce the number of 
model evaluations, a sparse PC approximation of the response Y is sought, that is, a 
PC representation which only contains a small number of nonzero coefficients. Of 
course it is not possible to determine a priori the significant terms. Hence an 
iterative procedure has been proposed in [BLA 08], [BLA 09], [BLA 10b] to build 
up a sparse PC expansion step-by-step. The algorithm is outlined in Figure 8.1. 

First, an initial experimental design  is considered and the associated model 
evaluations are gathered in . The model response is approximated by a PC 
expansion of degree  (i.e. the current basis is a constant term). Then, terms 
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corresponding to polynomials with increasing degree  and interaction order  

are proposed. Two steps can be distinguished: 

– a forward step: all the candidate terms are added in turn to the current basis. 
The changes in  due to the addition of each term are evaluated. Eventually all 
those terms which lead to a significant increase of  are retained; 

– a backward step: all the terms in the current basis are removed in turn, and the 
associated changes in  are computed. Eventually all those terms which lead to an 
insignificant decrease of  are discarded. 

 

Figure 8.1. Computational flowchart of the procedure to build up  
an adaptive sparse polynomial chaos expansion  

As well as this adaptation of the PC basis, the experimental design is 
systematically enriched in such a way that the various regression problems are 
always well-posed. For this purpose, sequential sampling strategies are adopted 
which are based either on quasi-random numbers or nested LHS (Latin Hypercube 
Sampling) [BLA 10b], [WAN 03]. The algorithm stops when the  coefficient 

related to the current PC approximation has reached a target accuracy .  

8.3.4. Post-processing of the coefficients 

As mentioned previously, the random variable  is thoroughly defined 

by its coefficients  which can be estimated by means of several non-intrusive 

methods. In particular, the mean and the variance  can be derived analytically 
from these coefficients due to the orthonormality of the basis:  
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 [8.23] 

For reliability analyses, the model response is substituted by a PC decomposition 
into the limit state function which describes the system failure. Considering, for 
simplicity, a failure criterion associated with a deterministic maximum admissible 
threshold , the limit state function reads:  

 [8.24] 

Substituting the model response  by a PC expansion  into 

equation [8.24], we get the analytical limit state function: 

 [8.25] 

This quantity corresponds to a stochastic response surface which replaces the 
original limit state function, that is, an analytical (polynomial) expression whose 
evaluation cost is negligible. Thus the probability of failure may be estimated 
inexpensively by applying the classical reliability methods (e.g. direct Monte Carlo 
simulation, FORM and importance sampling). 

It should be noted that the PC-based approximation [8.25] differs from the 
quadratic response surfaces used in reliability analysis, which are local 
approximations, i.e. in the vicinity of the design point when using FORM (see 
Chapter 1 for more details). In this context, a parametric study (e.g. changing the 
threshold  in equation [8.24]) leads to a new response surface being built for 

each value of the parameter, in contrast to the PC approach. 

8.4. Applications in structural reliability 

8.4.1. Elastic engineering truss 

8.4.1.1. Problem outline 

We will now consider an elastic engineering truss, represented in Figure 8.2 
[BLA 07], [SUD 07]. Ten input random variables are used, whose distribution, 
means and standard deviations are reported in Table 8.2. The quantity which is of 
interest is the (random) maximum vertical displacement of the structure, denoted by 
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8.4.1.2. Reliability analysis 

Of interest is the reliability of the truss structure with respect to an admissible 
maximal displacement. The associated limit state function reads:  

 [8.26] 

 

Figure 8.2. Truss structure with 23 bar elements 

Variable Distribution Mean Standard 
Deviation 

E1, E2 (MPa) LogNormal 210,000 21,000 

A1 (cm²) LogNormal 20 2 

A2 (cm²) LogNormal 10 1 

P1- P6 (kN) Gumbel 50 7.5 

Table 8.2. Elastic truss – random input variables 

The reference value of the probability of failure is obtained by direct Monte 
Carlo simulation using  samples. The reliability analysis is carried out from 
various PC approximations of the response (denoted by ) made of 

normalized Hermite polynomials. To this end, the input random vector  
X= {E1,E2,A1,A2,P1,…,P6}

T is transformed into a random vector containing 10 
independent standard Gaussian variables.  

A PC expansion of degree 3 is considered. The PC coefficients are computed by 
Smolyak sparse quadrature (  calculations were performed). The reference 
results are obtained by applying an importance sampling strategy (the importance 
PDF is centered on the design point determined by FORM), from which a 

max max( ) ( ) 0 11 cmg v v= −| | ≤ , =X X

610N =
( )PC X

1,771
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generalized reliability index is obtained. The results are gathered in table 8.3. A 2% 
accuracy on the reliability index is obtained for all the admissible thresholds in the 
interval [10–16] cm. 

The results obtained from a PC expansion whose coefficients have been 
estimated by regression are reported in Table 8.4. Precisely, the reliability indices 
are alternatively computed from a full PC expansion of degree  and from a 

sparse PC representation. Whatever the approach, the coefficients have been 
calculated from an experimental design made of quasi-random numbers. It appears 
that both the full and the sparse PC approximation yield accurate estimates of , 

with a relative error less than 3.5%. 

Threshold 
(cm) 

Reference Smolyak Projection 

 Pf β Pf β 

10 4.31 x 10-2 1.715 4.29 x 10-2 1.718 

11 8.70 x 10-3 2.378 8.73 x 10-3 2.377 

12 1.50 x 10-3 2.967 1.47 x 10-3 2.974 

14 3.49 x 10-5 3.977 2.83 x 10-5 4.026 

16 6.03 x 10-7 4.855 4.01 x 10-7 4.935 

Table 8.3. Elastic engineering truss – reliability results obtained using a third order 
polynomial chaos expansion based on a Smolyak Projection 

Threshold 
(cm) 

Reference Full PC Sparse PC 

   (%)  (%)

10 1.715 1.71 0.6 1.72 0.0 

11 2.378 2.38 0.0 2.38 0.0 

12 2.967 2.98 0.3 2.99 0.7 

14 3.977 4.04 1.5 4.07 2.3 

16 4.855 4.95 2.1 5.02 3.5 

Error 1 – Q² 1 x 10-6 9 x 10-5 

Number of terms 286 114 

Number of model evaluations 443 207 

Table 8.4. Elastic engineering truss – reliability results obtained using a full (with p=2) 
and a sparse PC expansion based on regression 

3p =

β

REFβ β̂ ε β̂ ε
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It is observed that the sparse PC approach only requires half as many 
calculations as the full PC approach based on regression. It only requires one eight 
as many calculations as the full PC approach based on Smolyak quadrature). 

8.4.2. Frame structure 

The frame structure represented in Figure 8.3 is now considered [BLA 10b], 
[LIU 91]. The frame beam elements are made of 8 different materials, whose 
properties are gathered in Table 8.5. 

 

Figure 8.3. Example of a frame structure subjected to lateral loads 

Element Young’s modulus Moment of inertia Cross-sectional area 

    

    

    

    

    

    

    

    

Table 8.5. Frame structure: element properties  

1B 4E 10I 18A

2B 4E 11I 19A

3B 4E 12I 20A

4B 4E 13I 21A

1C 5E 6I 14A

2C 5E 7I 15A

3C 5E 8I 16A

4C 5E 9I 17A
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The response of interest is the horizontal component  of the top-floor 
displacement at the top right corner. The 3 applied loads, the 2 Young’s moduli, the 
8 moments of inertia and the 8 cross-section areas of the frame components are 
assumed to be random. They are collected in the random vector 

 of size . The properties of the 

random variables are reported in Table 8.6. 

Variable Distribution Mean † Standard Deviation † 

 (kN)  133.454 40.04 

 (kN) Lognormal 88.970 35.59 

 (kN)  71.175 28.47 

 (kN/m²) Truncated normal over 2.17375 x 107 1.9152 x 106 

 (kN/m²) [0, )+∞  2.37964 x 107 1.9152 x 106 

 (m4)  8.13443 x 10-3 1.08344 x 10-3 

 (m4)  2.13745 x 10-2 2.59609 x 10-3 

 (m4)  2.59610 x 10-2 3.02878 x 10-3 

 (m4) Truncated normal over 1.08108 x 10-2 2.59610 x 10-3 

 (m4) [0, )+∞  1.41055 x 10-2 3.46146 x 10-3 

 (m4)  2.32785 x 10-2 5.62487 x 10-3 

 (m4)  2.59610 x 10-2 6.49024 x 10-3 

 (m4)  2.13745 x 10-2 2.59609 x 10-3 

 (m²)  3.12564 x 10-1 5.58150 x 10-2 

 (m²)  3.72100 x 10-1 7.44200 x 10-2 

 (m²)  5.06060 x 10-1 9.30250 x 10-2 

 (m²) Truncated normal over 5.58150 x 10-1 1.11630 x 10-1 

 (m²) [0, )+∞  2.53020 x 10-1 9.30250 x 10-2 

 (m²)  2.91168 x 10-1 1.02323 x 10-1 

 (m²)  3.73030 x 10-1 1.20933 x 10-1 

 (m²)  4.18600 x 10-1 1.95375 x 10-1 

† The mean value and the standard deviation of the cross-sections, moments of inertia and 
Young’s moduli are those of the untruncated Gaussian distributions 

Table 8.6. Frame structure: random input variables  

u

{ }
T

1 2 3 6 13 14 21P P P I I A A= , , ,..., , ..., , , ...,X 21M =
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Moreover, the random input variables are correlated as follows: the correlation 
coefficients between the cross-section areas and the moments of inertia of a given 
element are equal to 0.95

i iA Iρ = , the correlation coefficients related to the other 

geometrical properties are equal to 0.13
i j i j i jA I I I A Aρ ρ ρ= = = , the correlation 

coefficient between the two Young’s moduli is equal to 
4 5

0.9E Eρ = . The random 

vector  is transformed into a vector of independent standard Gaussian random 
variables by means of a Nataf transform  [NAT 62] prior to building the 

PC expansion. 

Let us study the serviceability of the frame structure with respect to the limit 
state function: 

 [8.27] 

where  is a maximal admissible horizontal displacement. It is approximated by 

an analytical function by replacing the model  with its PC representation 

made of Hermite polynomials, denoted by . A parametric study is carried 

out varying the threshold  from 4 to 8 cm. The generalized reliability indices 

are estimated by post-processing a full third-order PC as well as a sparse PC. The 
results are reported in Table 8.7.  

Threshold (cm) Reference Full PC Sparse PC 

   (%)  (%) 

4 2.27 2.26 0.4 2.29 0.9 

5 2.96 3.00 1.4 3.01 1.7 

6 3.51 3.60 2.6 3.61 2.8 

7 3.96 4.12 4.0 4.11 3.8 

8 4.33 4.58 5.8 4.56 5.3 

Error 1 – Q² 1 x 10-3 1 x 10-3 

Number of terms 2,024 138 

Number of model evaluations 3,724 450 

Table 8.7. Frame structure: estimates of the generalized reliability index  
for various values of threshold displacement  

X
( )T ξ=X

max( ) ( ( ))g u T ξ= −X 

maxu
( ( ))T ξ

( )PC ξ

maxu

REFβ β̂ ε β̂ ε

1( )fPβ −= −Φ
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As observed in the truss example, the estimation error of the reliability index 
slightly increases with the threshold value. Both types of PC approximation yield 
relative errors for  of less than 5% when the threshold ranges from 4 to 8 cm. The 
sparse PC approach reveals much more efficiently than the full PC approach, with a 
gain factor of 8 in terms of the number of model evaluations (only 450 finite 
element runs instead of 3,724). 

8.5. Conclusion 

The methods based on polynomial chaos expansions have motivated many 
investigations over the last few years. Their application to structural reliability is 
quite novel and can be viewed as a particular type of stochastic response surface (for 
application in geotechnical engineering, see [SUD 08]). This chapter has shown the 
principles of these methods with respect to the simulation techniques classically 
used in reliability analysis, and has introduced their formalisms. 

The two application examples have shown the interest in using PC-based 
response surfaces for reliability analysis. Indeed, with a computational cost varying 
from 200 model evaluations for the elastic truss involving 10 input random 
parameters) to 450 (for the frame structure involving 21 input random parameters), 
the probabilities of failure associated to various thresholds were obtained. In 
practice, the parametric study is carried out at a negligible cost with respect to a 
single reliability analysis, as the polynomial chaos expansion is built once and for 
all, and is then post-processed for the various threshold values. 

In addition to probabilities of failure, polynomial chaos expansion can also be 
used in order to study the sensitivity of a response, by evaluating its probability 
density function, its statistical moments and the sensitivity indices to the input 
variables, still without requiring any additional model evaluation [BAR 07], 
[SUD 07]. [BAR 07] has also shown that the use of a basis made of Lagrange 
polynomials may be a relevant alternative to Hermite polynomials when the number 
of input parameters remains low (say M < 4-5). 

Finally, the building of adaptive sparse polynomial bases paves the way to the 
solving of high-dimensional problems (M ~ 50–100) at a reasonable computational 
cost (N<1,000), in particular thanks to the introduction in probabilistic mechanics of 
advanced statistical regression methods such as Least Angle Regression (LAR) 
[BLA 11]. 

β
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Introduction to Part 4 

In order to predict the behavior and the degree of reliability of a component or a 
structure, we require a precise understanding of the properties of the materials and 
the actions that are applied to them. Reliability must be ensured throughout the 
entire service life of the structure. Moreover, civil engineering typically involves 
very long service lives for its structures (several tens or even hundreds of years). As 
a result, the potential evolution of properties over time must also be appreciated, 
whether this is through “natural” ageing, the response of materials to extreme 
environmental loads, or simply fatigue caused by normal actions. 

Thus, this part of the book will consider the changes in state of various structures 
over time, by presenting and applying a range of methods. 

Chapter 9 presents and uses data aggregation and unification to evaluate the 
evacuation time of a building following the outbreak of a fire. Chapter 10 introduces 
probabilistic methods used for reliability studies of mechanical problems over time, 
illustrated using the example of the engineering truss already considered in Part 3 
but in this case subject to a time-varying load. Chapter 11 considers Monte Carlo 
methods using Markov chains and includes an example which considers the lifetime 
of a system in series, in the case of sparse and censored data. Finally, Chapter 12 
considers reliability updating using real-world feedback, presenting an example 
which considers the prediction of creepage in the pressure vessel of a nuclear power 
station.  

 



Chapter 91  

Data Aggregation and Unification 

9.1. Introduction 

The data collected to evaluate failure scenarios for civil engineering works may 
take a variety of different forms: experimental data, expert opinion, output from 
mechanical models, data from auscultation. They may be deterministic or random. It 
is generally difficult to simultaneously manipulate data in disparate formats. This 
course of action is, however, essential when there is insufficient information of a 
given type available to carry out a detailed study, or when there is a need to obtain a 
“rapid” estimate of the consequences of failure scenarios from the available 
information; this same approach applies to a brief criticality analysis. 

9.2. Methods of data aggregation and unification  

Data aggregation and unification methods manipulate heterogeneous data, giving 
consideration to their format, their level of precision and their relevance to the 
questions to be answered in terms of quantification of scenario consequences. 
Because of this, it is crucial to evaluate the relative quality of these data. 

This information on quality is referred to as the belief mass and it can be 
evaluated using a data quality analysis scheme such as NUSAP (Numerical Unit 
Spread Assessment and Pedigree). This is a means of representing their scientific 
information content, taking into account the various qualitative and quantitative 
aspects of their uncertainty. It was introduced in 1990 by Funtowicz & Ravertz 
[FUN 90] and is still used today [CUR 08], [LAI 00], [SLU 07], [TAL 06a]. 
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This tool is built around the key concept of qualifying the five criteria contained 
within the NUSAP acronym: Numerical, Unit, Spread, Assessment and Pedigree. 
The first two criteria, “Numerical” and “Unit” refer to the quantitative aspect of the 
information. This could for example be a service life of 60, along with its units: 
years. The three other criteria represent the qualitative aspects of uncertainty 
[SLU 96]: 

– “spread” represents the uncertainty (± 10 years); this uncertainty could be 
represented in terms of fuzzy subsets, probability distributions, etc.; 

– “assessment” expresses a judgment on the reliability, representing the strength 
of the data point: it symbolizes the state-of-the-art of production science; 

– “pedigree” represents the quality of the evaluation process used on the 
information, and indicates the “scientific status” of the available knowledge, in other 
words the context in which it is used, and the general culture from which the data 
point has been drawn. 

Data unification and aggregation methods exploit the complementary nature of 
multi-source data. The choice of method – unification or aggregation of the data – 
will depend on the problem to be solved and on the available data: 

– application of unification: when several different data sets are available from 
various sources, all of which relate to the same problem; 

– application of aggregation: when several different data sets are available 
relating to different sub-problems of the problem to be solved. 

We can also apply first one and then the other method if several data sets are 
available from different sources and refer to different sub-problems of the problem 
to be solved. 

Consider, for example, the following problem: “Determine the evacuation time 
from an apartment by a wheelchair-bound individual following an outbreak of fire”. 
The problem can be broken down into four sub-problems: 

1: “Determine the time to perceive the alarm”; 

2: “Determine the time to move to the elevator”; 

3: “Determine the time to descend in the elevator”; 

4: “Determine the time to exit the elevator and leave the building”. 

Let us assume that we have ten pieces of data available (Table 9.1). Figure 9.1 
shows a diagram representing how we can tackle the problem using these data.  
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Sub-problem Data 

Perceive alarm D1. Statistics 
D2. Data from 

constructor 

D3. Comments 
from apartment 

occupant 

Move to elevator 
D4. Theoretical 

model 
D5. Comments from 
apartment occupant 

 

Descend in elevator D6. Statistics 
D7. Data from 

constructor 

D8. Comments 
from elevator 

maintenance staff 

Exit elevator and 
leave building 

D9. Theoretical 
model 

D10. Comments from 
apartment occupant 

 

Table 9.1. Time data for the evacuation problem 

 

Figure 9.1. Approach used to solve evacuation problem 

9.2.1. Data unification methods 

Data unification refers to data fusion, drawing on Dempster–Shafer theory 
[SHA 76].  

We will consider two pieces of data (or evidence) D1 and D2 belonging to two 
subsets S1 and S2 of the frame of discernment, with which are associated the belief 
masses m(S1) and m(S2), determined from the data quality analysis. Then, the fusion 
of these two data aims to determine firstly the belief masses that can be attributed to 



176     Construction Reliability 
 

the intersection of these two subsets and to what is not known, and secondly the 
value of their consensus.  

Table 9.2 shows the principle of mass allocation (Dempster–Shafer theory) for 
concordant data D1 and D2. We will not discuss the case of discordant evidence, 
which is discussed in [SHA 76]. 

 S1 S1∩S2 ≠ ∅ S2 Ignorance  

Data D1 m(S1) m(S1) 1 – m(S1) 1 – m(S1)  

Data D2 1 – m(S2) m(S2) m(S2) 1 – m(S2)  

Consensus m(S1) × 
(1 – m(S2)) 

m(S1) × 
m(S2) 

(1 – m(S1)) ×
m(S2) 

(1 – m(S1)) × 
(1 – m(S2)) 

Σ = 1 

Table 9.2. Mass allocation for two concordant pieces of evidence 

The consensus of a subset (S1, S2, S1∩S2 and /ignorance) is equal to the 
product of the belief masses assigned to this subset by each of the pieces of 
evidence.  

The fusion (or combination) of n pieces of evidence is obtained by performing 
n-1 successive fusions of two pieces of evidence.  

This can be formalized as follows: 

 [9.1] 

where  represents the operation of combining two pieces of evidence. 

As noted by J. Lair [LAI 00], this approach (Dempster’s rule of combination) is 
unsatisfactory if two strongly conflicting pieces of evidence are being combined. 
This leads to inconsistencies, which is particularly unfortunate since data collected 
in construction contexts can involve strong conflicts.  

In order to remedy this limitation, J. Lair studied various alternative data 
assembly rules and proposed assembly strategies, a selection algorithms to 
determine the assembly rules that are most appropriate to the data being combined 
(extract shown in Figure 9.2). 

Θ

( )( )( ) nDDDD ⊕⊕⊕ ...321

⊕
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Figure 9.2. Assembly strategy selection algorithm (from [LAI 00]) 

The cardinality is the number of pieces of data available to be combined. Data 
are in conflict when they have a null intersection. The conflict between two pieces 
of data (subsets) S1 and S2 is defined by [SHA 76] through the equation: 

  [9.2] 

where mc represents the mass assigned to the empty set. 

Fusion example: suppose we have three data to combine, D1, D2 and D3, all of 
which are durations. The frame of discernment associated with these three pieces of 
data is [0; 60] min. 

 

Figure 9.3. Example of three pieces of evidence to be combined 
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Preparation of these pieces of data leads to the results shown in Figure 9.4. The 
data preparation involves transforming a possibility distribution into a set of 
“nested” intervals using α-cuts. The aim of this preparation is to avoid centering the 
entire belief mass on a single point or on too narrow an interval, which could result 
in a conflict during the data fusion phase. For example, it could be difficult to 
achieve a consensus when the output from the preparation procedure leads to a 
significant and similar belief mass for two intervals of [5; 7] min and [15; 16] min, 
since their intersection is the empty set. 

D1  D2  D3 

Interval Mass  Interval Mass  Interval Mass 

[5; 20] 0.45  [10; 40] 0.40  [25; 50] 0.35 

[0; 30] 0.45  Θ = [0; 60] 0.60  [20; 60] 0.35 

Θ = [0; 60] 0.10  Total: 1  Θ = [0; 60] 0.30 

Total: 1     Total: 1 

Figure 9.4. Results of pieces of data preparation for the three data in Figure 9.3 

We now combine data D1 and D2 in accordance with Dempster’s rule 
(Figure 9.5). 

 Interval Mass   

 

Interval Mass 

D1 

[5; 20] 0.45 

[10; 20]  
([5; 20]∩[10; 40]) 

[5; 20] [5; 20] 0.27 

0,18 (0.45×0.40) 0.27 [10; 20] 0.18 

[0; 30] 0.45 
[10; 30] [0; 30] [10; 30] 0.18 

0.18 0.27 [0; 30] 0.27 

[0; 60] 0.10 
[10; 40] [0; 60] [10; 40] 0.04 

0.04 0.06 [0; 60] 0.06 

  Mass 0.40 0.60 Total: 1 

  Interval [10; 40] [0; 60]   

   D2   

Figure 9.5. Fusion of data D1 and D2 by intersection (see Table 9.2) 

We then combine the result of this first fusion with data D3, according to 
Dempster’s intersection rule (Figure 9.6). 
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 Interval Mass    

 

Interval Mass 

D1 ⊕ 
D2 

[5; 20] 0.27 
{Empty} {20} [5; 20] {20} 0.1575 

0.0945 0.0945 0,.81 [0; 30] 0.0810 

[10; 20] 0.18 
{ Empty } {20} [10; 20] [5; 20] 0.0810 

0.063 0.063 0.054 [10; 20] 0.0540 

[10; 30] 0.18 
[25; 30] [20; 30] [10; 30] [10; 30] 0.0540 

0.063 0.063 0.054 [10; 40] 0.0120 

[0; 30] 0.27 
[25; 30] [20; 30] [0; 30] [20; 30] 0.1575 

0.0945 0.0945 0.081 [20; 40] 0.0140 

[10; 40] 0.04 
[25; 40] [20; 40] [10; 40] [20; 60] 0.0210 

0.014 0.014 0.012 [25; 30] 0.1575 

[0; 60] 0.06 
[25; 50] [20; 60] [0; 60] [25; 40] 0.0140 

0.021 0.021 0.018 [25; 50] 0.0210 

  Mass 0.35 0.35 0.30 [0; 60] 0.0180 

  Interval [25; 50] [20; 60] [0; 60] {Empty} 0.1575 

   D3 Total: 1 

Figure 9.6. Fusion of the result of D1⊕ D2 with data D3 by intersection (Table 9.2) 

The conflict resulting from this fusion is equal to: 

1 2 3
1

( , , ) ln 0.17
1 0.1575

Conf D D D  = = − 
  [9.3] 

The conflict is in this case fairly weak and the consistency between the three data 
is not weak, and so in accordance with the algorithm in Figure 9.2 we follow 
strategy number 2, indicating that the fusion of these three data is complete. The 
result of this fusion is the set of intervals and their associated belief weights, which 
are listed in Figure 9.6. 

9.2.2. Data aggregation methods 

Data aggregation involves making best use of the set of available data for 
individual sub-problems of the problem to be solved. Aggregation enables us to 
obtain consensual data and an indication of the quality of the result. Data 
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aggregation varies depending on the type of data to be aggregated, whether these be 
durations, probabilities or values of a particular criterion. Rather than providing an 
exhaustive list of all existing aggregation methods without further discussion, we 
will discuss just one such method here in detail: duration aggregation. 

Duration aggregation involves obtaining the duration of a problem (scenario), 
and its accompanying quality, using the durations of each sub-problem (or 
phenomenon) that makes up the problem, the qualities associated with these 
durations and the transition values between each sub-problem [TAL 06b], [TAL 07]. 
This principle of duration aggregation is shown in Figure 9.7 for our problem 
(“determine the evacuation time from an apartment by a wheelchair-bound 
individual following an outbreak of fire”) which was outlined at the start of 
section 9.2. 

 

Figure 9.7. Illustration of the principle of data aggregation 

The duration of each phenomenon can be given in the form of a discrete value or 
in the form of an interval. The quality associated with the duration of each 
phenomenon is: 

– its belief mass, obtained by evaluating the quality of this data, in the case 
where a single data point is available to characterize this phenomenon; 

– its Smets probability (hypothesis proposed in [TAL 06a]) as defined in 
section 9.3 (below), in the case where several data are available to characterize this 
phenomenon. 
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Let: 

– ,  be the duration for scenario j (to be calculated) and for 

phenomenon i; 

– n be the number of phenomena making up scenario j; 

– ,  be the quality for scenario j (to be calculated) and the known qualities 

for phenomenon i, equal either to its belief mass (one data point available) or to its 
Smets probability (more than one data point available). 

Then: 

  [9.4] 

  [9.5] 

Equation [9.5] is inspired by the addition formula for fuzzy subsets given in 
[BOU 95]. 

9.3. Evaluation of evacuation time for an apartment in case of fire 

There are four main quantities that can be used to characterize the results of data 
unification and aggregation: consensus, plausibility, belief and Smets probability. 
The consensus sums up the belief masses associated with the set of intervals 
resulting from the fusion. casein the example we considered earlier, the intervals 
obtained from the fusion operations, along with their belief masses, are listed in the 
table on the right of Figure 9.6. The consensus curve is a simple and rapid means of 
determining a consensual duration and indications of conflict and ignorance in a data 
set: it is defined by: 

  [9.6] 

where  is a fuzzy subset and  is the set of intervals resulting from data fusion. 

The consensus curve for the result of combining the three data in Figure 9.3 is 
shown in Figure 9.8. 
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Figure 9.8. Consensus curve for the three data in Figure 9.3 

If we consider Figure 9.8, we can conclude that there are two intervals that 
represent the maximum areas of consensus, the singleton of 20 years and the interval 
[25; 30] years. The existence of this singleton ({20} years) is biased by the fact that 
the Dempster intersection method concentrates the mass, “logically” assigned to 
ignorance, in singletons. 

The belief associated with a subset , written , sums up all the reasons to 

support . It is the sum of the belief masses mc associated with the subsets strictly 
included in ; we can formalize this as follows: 

  [9.7] 

The cumulative sum of the belief masses resulting from the fusion of the three 
pieces of data in Figure 9.3 is shown in Figure 9.9. The plausibility of a subset , 
written , expresses the strength with which we should support the subset . It 

corresponds to the sum of the belief masses associated with the non-null 
intersections of the subsets  and , in other words: 

  [9.8] 

The cumulative sum of the plausibilities resulting from the fusion of the three 
data in Figure 9.3 is shown in Figure 9.9. The (belief, plausibility) pair is 
approximated by a probability that divides equally the mass assigned to each , 

other than the singleton, among the  that comprise it [INR 03]. This is the Smets 
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probability [DUB 90], or pignistic probability, written  when it is associated 

with a subset ; this is defined by: 

  [9.9] 

The belief, the Smets probability and the plausibility of a subset  satisfy: 
. 

As can be seen from Figure 9.9, the cumulative sums of the plausibility, the 
Smets probability and the belief are not exactly 1: this is due to Dempster’s 
intersection rule, which assigns a mass to the empty set in case of conflict between 
data. 

 

Figure 9.9. Cumulative sums of belief, Smets probability and plausibility  
resulting from fusion of the three data shown in Figure 9.3 

Starting with these four quantities (consensus, plausibility, Smets probability and 
belief) that characterize the data fusion results, there are several different approaches 
for interpreting the results. We will discuss only one such approach here: obtaining 
an interval of values (for example, an interval of durations) for a given value of the 
plausibility, Smets probability and belief. Lair [LAI 00] uses these three quantities 
(plausibility, Smets probability and belief) to determine a characteristic service life 
with a probability of k%, along with its uncertainty interval (plausible characteristic 
service life; credible characteristic service life), by plotting the cumulative 
distributions of these three quantities (like those shown in Figure 9.9 for the three 
data in Figure 9.3). This percentage indicates that k% of observations should have a 
duration less than the characteristic service life, with a probability of k%. 
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For example, we estimate that failure may be observed (Figure 9.9): 

– in less than 19 min with 40% plausibility; 

– in less than 20 min with 40% Smets probability; 

– in less than 29 min with 40% belief. 

Further to the evaluation of the quality of the fusion result using plausibility 
indicators, Smets probability and belief, Lair [LAI 00] also proposed a method that 
can be used to evaluate the quality of the fusion procedure itself, with the help of a 
grid (Figure 9.10). 

 

Figure 9.10. Quality grid for the fusion process [LAI 00] 

The grid in Figure 9.10 represents the quality of the fusion process in the form of 
a letter, with A being the best and F the worst, as a function of the ignorance 
resulting from this fusion and the conflict it engenders (if strategy 2 or 3 was used), 
the percentage of mass not represented (if strategy 4, 5 or 6 was used), or the 
unrepresented mass and the conflict (if strategy 7 was used). These numbered 
strategies can be found in the full selection algorithm from which Figure 9.2 is 
extracted. For example, in the case of fusion of the three data in Figure 9.2, strategy 
2 is followed, the ignorance is 0.018 (weight assigned to the set [0; 60] min – see 
Figure 9.6) and the conflict is 0.17. As a result, this fusion is represented by the 
quality letter A. 
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9.4. Conclusion 

Data unification and aggregation methods enable the manipulation of a set of 
heterogeneous data (in terms of their format, origin and scale), and can also be used 
to evaluate the quality of the underlying data in order to obtain an estimate for the 
confidence that can be ascribed to the final result. Data unification can be used to 
manage a set of data from different sources in order to obtain consensual data from 
them. Data aggregation enables the scale of the analysis to be changed, for example 
obtaining an evaluation of the service life of a structure from the service lives of its 
components. It is possible to use the consensus, the plausibility, the Smets 
probability and the belief to interpret the result output from a data unification or 
aggregation process. 
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Chapter 10  

Time-Variant Reliability Problems 

10.1. Introduction 

Although more or less ignored so far in this book, the time dimension is often 
present in structural reliability problems and has to be properly taken into account. 
Let us go back to the most basic formulation known as “R-S”, in which failure 
occurs when a demand S is greater than a capacity R. It is clear here that for real 
structures both quantities may depend on time. Indeed: 

– the resistance (or capacity) R of the structure (i.e. its material properties) may 
be degrading in time. Degradation mechanisms usually present an initiation phase 
and a propagation phase. Examples of such mechanisms are crack initiation and 
propagation in fracture mechanics, corrosion of steel structures and reinforced 
concrete rebars, decrease in steel toughness under irradiation in nuclear components, 
concrete creep and shrinkage, etc.; 

– the load effect (or demand) S may randomly vary in time due to the time 
variation of the loading, e.g. environmental loads (wind velocity, temperature, wave 
height, etc.) or service loads (traffic, occupancy loads, etc.). 

Both types of time dependency may be present simultaneously or not, and their 
nature is different: while degradation phenomena are usually monotonic and 
irreversible (corresponding to a decrease of resistance), loads are usually 
“oscillating” in nature and should be modeled by random processes. 
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The aim of this chapter is not to fully cover the theory and tools of time-variant 
reliability problems, which is beyond the scope of the book. In contrast, it aims to 
define the basic concepts and focuses on a specific approach known as “PHI2 
method”, which allows the analyst to solve time-variant reliability problems using 
time-invariant tools such as the FORM method. For a more complete treatment of 
time-variant reliability problems, readers are referred to the numerous publications 
by Rackwitz [RAC 01], [RAC 04] and the books by Ditlevsen & Madsen ([DIT 96], 
Chapter 15) and Melchers ([MEL 9], Chapter 6).  

10.2. Random processes  

Random processes allow us to mathematically describe loads that are randomly 
varying in time [CRA 67], [LIN 67]. In the sections below, the basic notions are 
introduced without too much mathematical rigor. 

10.2.1. Definition and elementary properties 

A random process is a set of random variables indexed by the time 

instant with values in . In this notation  denotes the 

elementary events of an abstract probability space ( ), ,Ω   . At each time instant 

the process reduces to a random variable ( )
0t

X ω which is assigned some prescribed 

distribution. Conversely, a realization or trajectory of the process corresponds to the 
usual function for a given 0ω . This is simply denoted by small letters, 

say . In order to define a random process completely, the full set of joint 

probability distribution functions of any finite subset of random variables 

for any time instants are prescribed. For 

structural reliability purposes, however, specific types of processes are of common 
use, e.g. Poisson, rectangular renewal wave or Gaussian processes, whose 
description is much easier, as seen below. 

The usual definitions of marginal probability density functions (PDFs), statistical 
moments (mean value , standard deviation , etc.) that are already well 

known for random variables naturally exist for random processes “at each time 
instant”. Also of crucial importance is the autocorrelation function, defined as 
follows: 

 [10.1] 

( )tX ω

[ ]0,t T∈ X ⊂  ω ∈ Ω

( )0tt X ω→

( )0,x t ω

( ) ( ){ }
1

, ,
Nt tX Xω ω 10 Nt t T≤ < < ≤

( )X tμ ( )X tσ

( )
1 21 2, EXX t tR t t X X =  
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where  denotes the mathematical expectation. This function represents the 

statistical dependence of points of trajectories considered at time instants . 

Similarly, the autocorrelation coefficient function is defined by:  

 [10.2] 

Loosely speaking, a random process is said to be stationary if its 
“characteristics” are invariant in time. Various rigorous definitions may be given. 
We will limit ourselves here to second-order stationarity, which implies that the 
statistical moments E , 1, 2k

tX k  =  do not depend on time and that the 

autocorrelation function is invariant under time shift: . 

The latter equation implies that the autocorrelation function only depends on the 
time interval .  

A random process is said to be differentiable if the following limit, 

 , exists in the mean-square sense. The limit process is denoted by 

and satisfies: 

 [10.3] 

Due to linearity, the mean value of the derivative process is equal to 

. It may easily be shown that its autocorrelation function reads:  

 [10.4] 

In particular, for a stationary process, the following relationship holds: 
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10.2.2. Gaussian random processes 

In contrast to other fields (e.g. in quantitative finance), the random processes that 
are used in engineering in order to model time-varying loads (wind velocity, wave 
height, etc.) show some regularity that is related to the underlying physical 
phenomena. In practice, Gaussian random processes are of great importance in this 
field. 

A scalar random process  is said to be Gaussian if the random vector 

 
is a Gaussian vector for any finite set of instants

. It is completely defined by prescribing its mean value  

and standard deviation at each time instant, as well as its autocorrelation 

coefficient function . Classic forms of autocorrelation coefficient functions 

are the exponential type ( ), the square-exponential type 

( ) and the cardinal sine type (  ). 

Once the process is defined through these properties, trajectories may be simulated 
for computational purposes by various methods (Fourier decomposition, Karhunen–
Loève expansion, EOLE decomposition, etc. [PRE 94], [SUD 07]). 

10.2.3. Poisson and rectangular wave renewal processes 

Point processes appear in numerous situations when similar events occur 
randomly in time (computer connections to a server, customers arriving at a booth, 
etc.). In structural reliability problems, they allow the analyst crossings through a 
limit state surface. 

Let us denote by 
 
the time of the i-th occurrence of an event under 

consideration (with values in ). The counting function ( )tN ω is defined by: 

 [10.5] 

This is a random process whose trajectories are piecewise constant and take 
integer values, with discontinuities at the time instants where there is an occurrence 
of the observed phenomenon. Such a process is a Poisson process if it satisfies the 
following properties: 

− for any finite set of instants , random variables 

 are independent (assuming ); 

tS

( ) ( ){ }
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, ,
Nt tX Xω ω
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–  random variable follows a Poisson distribution with 

parameter , where is called process intensity. Thus: 

( ) ( )
!

n
t

t

t
N n e

n
λ λ−= =  [10.6] 

For such processes, it may be proven that the time to first occurrence has an 
exponential distribution with parameter , (i.e. ( )1 1 tT t e λ−≤ = − ). The time 

between two successive occurrences  also follows an exponential 

distribution. 

Poisson processes are useful for constructing rectangular renewal wave processes 
that are piecewise constant (e.g. exploitation or traffic loads) while changing their 
amplitude at random time instants. Such processes may be used to model traffic or 
exploitation loads. 

Such a process is defined by (a) the probability density function of the load 
amplitude (thus of the “jumps” in between) and (b) the Poisson process intensity. A 
trajectory is depicted in Figure 10.1. 

 

Figure 10.1. Example of trajectory of a rectangular renewal wave process 

Rectangular renewal wave and Gaussian processes, as well as those obtained by 
simple transforms (such as lognormal processes obtained by exponentiation of 
Gaussian processes), allow the analyst to model a large variety of loads for practical 
applications.  

Finally, note that the parameters that define the processes (e.g. mean value) may 
be random variables as well. This happens for instance in offshore engineering when 

0 ,s t∀ ≤ < t sN N−

( )t sλ − λ

λ

1n nT T+ −
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the environmental loads (wave height) are modeled for different sea states which 
also occur with some randomness in large time scales. 

10.3. Time-variant reliability problems  

10.3.1. Problem statement  

As for time-invariant reliability problems, we assume now that the failure of the 
structure under consideration is characterized by a limit state function, which may 
depend on time in two ways: either time may be an input parameter of the function 
or there are some random processes in its definition (the latter being stationary or 
non-stationary with time-dependent hyperparameters). Let us denote this limit state 

function by , where  is a random 

vector, and ) is a set of scalar random processes, with 

prescribed joint probability density function. 

The main difference between a time-invariant and a time-variant problem lies in 
the fact that the time instant when failure occurs is not known in the latter case. This 
instant is the smallest [ ]0,T∈  such that the limit state function takes a negative 

value. This leads to the definition of the cumulative probability of failure:  

 [10.7] 

In the general case this quantity should not be confused with the instantaneous 
probability of failure denoted by 

 
and defined as: 

 [10.8] 

The latter quantity, which could be computed by “freezing” time in the limit 
state function and using classic methods (Monte Carlo simulation, FORM/SORM, 
importance sampling, etc.), does not have any particular interpretation, except for 
right-boundary problems which are defined in the next section. In particular, the 
following inequality holds: 

 [10.9] 

This lower bound is usually very poor and there is little interest in its 
computation.  
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10.3.2. Right-boundary problems 

As noted in the introduction, the degradation of material properties introduces 
some time dependence into reliability problems. By definition however, this 
degradation tends to decrease the material resistance so that a limit state function of 
type “R - S” decreases monotonically in time. A reliability problem in which all the 
trajectories of the limit state function are monotonically decreasing is called a right-
boundary problem. In this specific case only, one can prove that the cumulative 
failure probability is equal to the instantaneous failure probability computed at the 
right-boundary of the time interval (and hence the name): 

 [10.10] 

thus solving the time-variant reliability problem reduces to a solving time-invariant 
problem in this case, possibly for various values of T. Classic methods such as 
FORM/SORM and Monte Carlo simulation may be directly applied.  

As an example, consider a steel rebar in a reinforced concrete structure which 
corrodes in time under the effect of concrete carbonation and/or chloride ingress. 
The uncorroded rebar cross section ( )tφ may be modeled by:  

 [10.11] 

where is the initial rebar diameter,  is the initiation time for corrosion (i.e. the 

time required for the carbonated layer to attain the rebar), is the corrosion 

current density and κ is a constant.  

The performance of the concrete structure may be related to the uncorroded rebar 
cross section ( )tφ : indeed the corroded external layer loses its mechanical resistance 

and the resulting rust tends to expand into the concrete pores and to crack and 
shatter the concrete surface (“spalling”). Thus the failure with respect to spalling 
may be defined by an inequality: where 0.05λ = is a typical value 

for a service limit state. In this setting, the associated limit state function may be cast 
as , which is clearly decreasing monotonically in time for 

any realization of the (positive in nature) random variables . 
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10.3.3. General case 

As already mentioned, the unique feature of time-variant reliability analysis lies 
in the fact that the time-to-failure is random and not known in advance: 

depending on the realizations of the random processes , failure may happen more 

or less early. This time-to-failure satisfies: 

( ) [ ] ( ) ( )( )( ) def

0, : , , 0 (0, )ft t g P tττ ω ω τ≤ = ∃ ∈ ≤ =R S   [10.12] 

From the above equation it is clear that the cumulative probability of failure 

( )0,fP t  is nothing but the cumulative distribution function (CDF) of the time-to-

failure ( )ω , i.e. the time required for the structure to “cross” the limit state 

surface. Computing this quantity relies on the evaluation of the mean outcrossing 
rate which is defined in the next section. 

10.3.3.1. Outcrossing rate 

Let us denote by  the number of outcrossings of the zero-level by the 

limit state function (i.e. when the structure passes from the safe domain to the failure 
domain) within the time interval . Failure occurs within this time interval either 

if it occurs at the initial instant  or if there is at least one crossing of the zero-
value by the limit state function before time instant t. Thus: 

( ) ( )( ){ } { }( )0(0, ) , , 0 0 0f tP t g t Nω ω += = ≤ >R S   [10.13] 

After some derivations one can prove that the right-hand side of the expression 
may be upper bounded as follows [DIT 96], [SUD 07]: 

 [10.14] 

where  stands for the expected number of outcrossings within . The 

outcrossing rate ( )tν +  is defined by:  

( )( ) ( )+
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, 1
( ) lim where , t h t

h

N t t h
t N t t h N N

h
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+
+ + +
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
 [10.15] 
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This quantity corresponds to the probability of having exactly one outcrossing in 
the infinitesimal interval , divided by h. We also consider that the stochastic 

processes involved in the calculation are regular so that 
( )( )

0

, 1
lim 0
h

N t t h
h+

+

→

+ >
=


. 

Under this regularity condition, and due to the additivity property of the counting 
variable in time, we prove that: 

 [10.16] 

By substituting [10.16] into [10.14] and recalling [10.9], we can finally obtain 
the following bounds on the cumulative failure probability: 

 [10.17] 

thus solving a time-variant reliability problem (or at least obtaining an upper bound 
to ) “reduces” to computing the outcrossing rate. Some important analytical 

results related to simplified problems are now presented, which are used in the 
following as basic ingredients to solve general problems. 

Stationary time-variant reliability problems correspond to cases when the limit 
state function does not depend explicitly on time and the input random processes 
(gathered in ) are stationary. The limit state function is formally denoted by 

. In this specific case the outcrossing rate does not depend on time 

and may be evaluated at any time instant (e.g. ). Equation [10.17] reduces to:  

( ), 0f iP t = ≤  [10.18] 

NOTE: In the case when the limit state function does not depend on random 
variables but only on stationary random processes (which is formally denoted by

) the number of outcrossings  is a Poisson process of constant 

intensity . In that case, a result that is better than the above upper bound is 

available, namely . However this approximation is no 

longer valid when g also depends on random variables  since the outcrossings 

no longer occur independently in time (  is not a Poisson process anymore). 
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The correct estimation is in this case and may be 

computed by specific methods. In the latter equation is the conditional 
outcrossing rate and denotes the expectation with respect to these variables; 

see details in [RAC 98], [SCH 91]. 

Computing the outcrossing rate of a scalar (vector, respectively) random process 
through a given threshold (a given hypersurface, respectively) is a complex matter 
and beyond the scope of this chapter. Readers are referred to [DIT 96], [RAC 04] for 
a complete treatment. In this chapter we limit the presentation to the classic Rice’s 
formula, [RIC 44] which serves as a basis of more advanced results.  

Let be a scalar differentiable random process and its derivative 

process. We can denote their joint probability density function by
 

. Of 

interest is the outcrossing rate of this process through a (possibly varying in 

time) threshold denoted by . Rice’s formula reads: 

 [10.19] 

In case of a stationary random process and a constant threshold (say  in the 
case of a limit state function for reliability analysis), the above formula reduces to 

. As an example, if is a stationary Gaussian process with 

mean value and standard deviation , we can prove that the outcrossing rate for 

a threshold a is , aussian 1

2
G S S

a
S S

aσ μν ϕ
σ σπ

+  −
=  

 



 

where denotes 

the standard normal PDF. If the Gaussian process is not stationary and if the 
threshold is time-dependent, then the outcrossing rate is equal to 
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[CRA67]. 

The calculation of outcrossing rates of vector processes through hypersurfaces 
makes use of the so-called Belayev’s formula, which is presented in [DIT 96], 
[RAC 04]. 
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10.4. PHI2 method 

In the previous section, the basic concepts that are useful for posing and solving 
time-variant reliability problems have been introduced, namely random processes, 
outcrossing rate, the cumulative probability of failure and its associated bounds. In 
order to evaluate equation [10.17] in practice, the outcrossing rate of the limit state 
function through the zero-level must be computed. As already mentioned, analytical 
results are available only in very specific cases. Otherwise the analyst has to resort 
to numerical methods. 

Two classes of approaches are well established today in order to solve time-
variant reliability problems: 

– the so-called asymptotic method developed by Rackwitz and co-authors, which 
estimates the outcrossing rate and its time integral from Rice’s formula and various 
asymptotic approximations, such as the Laplace integration (see [RAC 98], 
[RAC 04] for details);  

– the so-called PHI2 method, which is based on solving a system reliability 
problem and which has been developed in [AND 02], [AND 04], [SUD 08], based 
on similar work by [HAG 92], [LI 95]. As is explained below, this approach allows 
us to solve time-variant problems using only the tools available for solving time-
invariant problems, namely the First Order Reliability Method (FORM) for systems. 
Thus it may be applied using classic reliability software such as PhimecaSoft 
[LEM 06] or Open TURNS (www.openturns.org). 

By definition, the outcrossing rate is computed from the probability of having 
one crossing of the limit state surface (zero-level of the limit state function) within 
two neighbor instants t and  (equation [10.15]). In the reliability context, such 
a crossing means that the structure was in the safe domain at time instant t and in the 
failure domain at time instant . Thus the outcrossing rate may be evaluated as 

follows (the notation  is introduced for the sake of 

clarity): 

( )( ){ } ( )( ){ }( )
+

0

, 0 , 0
( ) lim

t t h

h

g t g t h
t

h

ω ω
ν

+

+

→

> + ≤
=

X X 
 [10.20] 

The numerator of the above equation is nothing but the probability of failure of a 
two-component parallel system which may be estimated by the FORM method for 
systems ([LEM 09], Chapter 9).  

Each component-reliability problem (i.e. at time instants t and ) is first 
solved using FORM. Let us denote by and  (  and  

t h+

t h+

( ) ( ) ( ){ },t tω ω ω=X R S
T

t h+
( )tβ ( )tα ( )t hβ + ( )t h+α



198     Construction Reliability 
 

respectively) the reliability index and the unit normal vector at the design point that 

are related to the limit state function  (  

respectively). 

The system probability of failure may be computed within the first order 
approximation by: 

( )( ){ } ( )( ){ }( )
( )

FORM

2

, 0 , 0

( ), ( ), ( ) ( )

 t t hg t g t h

t t h t t h

ω ω

β β
+> + ≤

= Φ − + ⋅ +

X X

α α


 [10.21] 

where  denotes the 

cumulative distribution function of the binormal distribution. By combining [10.20] 
and [10.21], we can prove that the outcrossing rate reads [SUD 08]: 

  where   [10.22] 

For stationary time-variant problems, the outcrossing rate does not depend on 
time and thus simplifies into: 

 [10.23] 

We can note the similarity between the two above equations and those given at 
the end of section 10.3 for the application of Rice’s formula to Gaussian processes. 
In order to give an interpretation of [10.22], we can consider that the FORM method 
consists of “scalarizing” the outcrossing problem by considering the limit state 
function as an equivalent scalar process, whose outcrossing of the threshold ( )tβ is 

of interest.  

10.4.1. Implementation of the PHI2 method – stationary case  

In case of a stationary problem the outcrossing rate is constant in time. It may be 
computed from equation [10.23] by approximating it by a finite difference scheme: 
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 [10.24] 

To do so a sufficiently small time increment  should be selected. The rule of 
thumb has proved to be efficient and accurate in applications. In this 

equation, minλ is the smallest correlation length among all the random processes 

involved in the limit state function [SUD 08]. The various steps for evaluating 
[10.24] are now summarized: 

– the Gaussian vectors  and  corresponding to the Gaussian 

process at time instants  and  are first defined. The components  

and are correlated pairwise with correlation coefficient , where

is the autocorrelation coefficient function of  (equation [10.2]). Note that if the 

components Sj of  are correlated, this so-called cross-correlation has to be taken 

into account as well; 

– the “instantaneous” limit state function is defined at time 

instant t by replacing the random processes  by vector in and 

FORM is applied, which yields the reliability index and the unit normal vector

; 

– the “instantaneous” limit state function is defined at time 

instant t t+Δ  by replacing the random processes  by vector in 

and FORM is applied, which yields the reliability index and 

the unit normal vector ; 

– from these results, the outcrossing rate [10.24] is evaluated, then the cumulative 
failure probability is calculated: 

            [10.25] 

It is clear that the upper bound linearly increases with T. In order to interpret the 
result conveniently, the upper bound may be transformed into a “generalized 
reliability index” . From the relationship between 

the probability of failure and the reliability index, the above value is a lower bound 
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to the reliability index, hence the notation . The upper bound reliability index 

associated to the lower bound in equation [10.17] is simply equal to . 

Note that two different correlation coefficients are used in the analysis, which 
should not be confused: the first is the autocorrelation coefficient of each input 
random process denoted by ; the second is the correlation between the 

linearized limit state surfaces at time instants t and t t+Δ , which is given by the 

scalar product . . 

10.4.2. Implementation of the PHI2 method – non-stationary case  

In this case, the limit state function explicitly depends on time and/or the input 
random processes show non-stationarity. Thus the outcrossing rate is evolving in 

time and should be computed at different time instants, then integrated over 

(equation [10.17]) in order to get the upper bound to ( )0,fP t . In practice the time 

interval is discretized, say and the procedure described in 

section 10.4.2 is applied at each time instant. The upper bound to ( )0,fP t  may be 

computed using the trapezoidal rule: 

 [10.26] 

Note that the time increment  used to compute the integral is not of the 
same order of magnitude as the time increment  which is used for evaluating the 
outcrossing rate. 

10.4.3. Semi-analytical example  

Let us consider a cantilever beam of length L and flexural modulus EI that is 
submitted to a pinpoint load F at its free extremity. The maximum deflection of the 

beam under quasi-static conditions is equal to  (the variation of the load in 

time is assumed slow enough so as to ignore dynamic effects). Of interest is the 
reliability of the beam with respect to an admissible threshold for the maximal 

deflection. The flexural modulus is supposed to be lognormally distributed 
(parameters ). It is also supposed that the logarithm of the load is a 
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stationary Gaussian process Ss of mean value , standard deviation  and 

autocorrelation coefficient function , where is the correlation 

length. To be able to perform analytical derivations, the limit state function 
associated with the criterion “the maximal deflection is below the admissible 
threshold” may be cast as: 

  [10.27] 

Let us select a particular instant . Random variable  is Gaussian by 

definition and may be cast as follows: , where  ~ N(0,1) is a 

standard normal variable. Similarly, is a Gaussian variable of parameters

 that may be cast as
 

, where  ~ N(0,1). After 

substituting for these expressions in [10.27], the limit state function is revealed to be 
linear in the reduced variables . FORM is exact in this case and the associated 

reliability index reads: 

 [10.28] 

The coordinates of the unit normal vector to the limit state surface at the design 

point reads: . 

In order to “freeze” the limit state function [10.27] at time instant , we 

should notice that and 
 
are correlated Gaussian variates with correlation 

coefficient (this number depends on the user choice of Ft τΔ  , e.g. 
310 Ft τ−Δ = as suggested above). The isoprobabilistic transform required by FORM 

in order to handle dependent Gaussian variates leads to the introduction of 

 ~ N(0,1) and reads (after using the Cholesky decomposition of the correlation 
matrix): 

 [10.29] 
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The instantaneous limit state function at time instant  is revealed to be 

linear in the three reduced variables . The (exact) reliability index is 

identical to that obtained at time instant t (equation [10.28]), which is logical since 
the problem is stationary. The unit normal vector now reads:  

 

In order to finish the computation, numerical values should be given to the 
various parameters. Then is computed from equation [10.28]. The -

vectors are evaluated and the values are used to compute the outcrossing rate and the 
probability of failure using [10.25]. 

10.5. Industrial application: truss structure under time-varying loads  

Consider the elastic 23-bar truss depicted in Figure 10.2 that has already been 
presented in Chapter 8. 

Of interest is the time-variant reliability of such a truss structure under time-
varying loads applied on the upper part. 

 

Figure 10.2. 23-bar truss structure 

The input random variables are described in Table 10.1. The six vertical loads 
are modeled by a single stationary Gaussian process Pt with mean value 50 kN, 
standard deviation 7.5 kN, and Gaussian autocorrelation coefficient function
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where the correlation length is 1 dayPτ = . According to this value 

the time variation of the load is sufficiently slow so that inertial effects can be 
neglected: the quasi-static solution is thus valid. The time-variant reliability of the 
truss with respect to an admissible maximal deflection reads: 

 [10.30] 

where  is the maximal deflection computed by finite element 

analysis. Due to stationarity, a single evaluation of the outcrossing rate is necessary. 

The initial problem has 4 basic random variables and a single random process. 
Using the PHI2 method, it is transformed into two (time-invariant) FORM analyses 
which involve 4+2 = 6 random variables (including one for and one for ). 

The time increment is .  

Random 
variable 

Distribution 
Mean 
value 

Standard 
deviation 

E1, E2 (MPa) LogNormal 210,000 21,000 

A1 (cm²) LogNormal 20 2 

A2 (cm²) LogNormal 10 1 

Pt (kN) Gaussian 
process 

50 7.5 

Table 10.1. 23-bar truss: description of the random variables 

The instantaneous reliability analysis yields β = 4.032 and α(1) = {-0.533447, 
-0.067651, -0.533447, -0.067651, 0.649397, 0.}T. At time instant the same 

reliability index is obtained and the unit normal vector is α(2) = {-0.533447, 
-0.067651, -0.533447, -0.067651, 0.649396 0.000918}T.  

It may be observed that only the last two components of the α-vector (i.e. the 
ones related to the random process) change between the two time instances. Using 

equation [10.18] yields the outcrossing rate 54.3.10v+ −= /day. The upper bound to 
the cumulative failure probability is obtained from [10.25].  

( ) 2( / )Pt
P t e τρ −=

1 1 2 2 max 1 1 2 2 max( , , , , ) ( , , , , ) 0 16 cmt tg E A E A P v E A E A P v= −| | ≤ , =

1 1 2 2( , , , , )tE A E A P

tP t tP+Δ
310t −Δ =

t t+ Δ
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The evolution in time of this quantity is plotted in Figure 10.3. These results 
show that the cumulative failure probability may be greater than the instantaneous 
probability of failure by orders of magnitude. Note that the latter corresponds to the 
time-invariant case when the loads are modeled by a single random variable. 

 

Figure 10.3. 23-bar truss: cumulative probability of failure  

10.6. Conclusion  

Structural reliability methods are now well established for time-invariant 
problems and they are used on a regular basis in industrial applications, as shown 
throughout this book. Time-variant reliability analysis is far less mature. First, the 
handling of random processes instead of random variables introduces some 
additional abstract concepts. Moreover, the quantity that is of interest, namely the 
cumulative probability of failure, is rather difficult to compute. 

In this chapter, only the basic concepts have been introduced. Stochastic 
dynamics problems, in particular, have not been addressed. Specific methods have 
been introduced for solving such problems, see e.g. [KRE 83], [LUT 03], [SOI 01]. 
Only the PHI2 method has been presented in detail: it allows the analyst to compute 
the outcrossing rate using FORM for systems. This means that only classical time-
invariant tools may be used for solving time-variant problems, which are available 
within many reliability softwares.  

Finally, note that the Monte Carlo method has not been presented here in the 
context of time-variant problems. Its use would require sampling trajectories of 
random processes and then the solution of transient mechanical problems. This is 
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obviously a very tedious and costly approach that should be used only as a last 
resort, especially for nonlinear dynamics treated in the time domain (e.g. for seismic 
analysis of structures). 
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Chapter 11 

Bayesian Inference and 
Markov Chain Monte Carlo Methods  

11.1. Introduction 

Many different types of failure data appear in civil engineering studies. In the 
specific case of lifetime analysis, data are often censored (see Chapter 4) and thus 
are not very informative. When data does not provide much information, for 
whatever reason, it is said that the data are poor. It appears that Bayesian inference 
through Markov Chain Monte Carlo (MCMC) simulation methods could be useful 
in such cases. 

These methods allow Probability Density Functions (PDF) to be simulated by 
generating a Markov chain whose stationary distribution is the target PDF. A 
Markov chain is a discrete time random process such that its current value is only 
dependent on the past through its previous value.  

Section 11.2 introduces the Bayesian inference context underlying MCMC 
methodology. MCMC methods to update input parameters in the setting of poorly 
informative data sets are presented in section 11.3. Finally, an application to lifetime 
estimation for an in series system with censored and missing data is presented in 
section 11.4. Another application of MCMC methods, relating to a case study for 
warping prediction in nuclear power plant containment components, is presented in 
Chapter 12. 
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11.2. Bayesian Inference  

Bayesian methodology [ROB 06] allows prior knowledge of the parameters of 
the density of a random vector to be combined with observed values of that vector. 
Let X  be a random vector with PDF ( );fX x θ  characterized by a hyperparameter 

vector θ  of size nθ , with a priori distribution ( )pΘ θ  defined by 
nD R θ

Θ ⊂ , and a 

set of observations 
(1) ( )Q_ 

 
 

= , ,ξ ξX . Using the Bayes theorem, we get a posterior 

distribution derived from the prior distribution and from the observations density 
/qp (q c) :  

1
/q qp (q c)= p (q)L(q;c)

c
  [11.1] 

where 
L

 is the likelihood function, defined with independent observations by:  

( ) ( )( )

1

;
Q

q

q

L f
=

= ;∏ Xθ x θ   [11.2] 

and where c  is the normalizing constant defined by ( ) ( )
D

c p L d
Θ

= ; Θ θ θ θ .  

This leads to the predictive density of the random vector X  :  

( ) ( ) ( )p

D
f f f d

Θ
Θ= ,X Xx x θ θ θ ,  [11.3] 

which is also known as the integrated likelihood of the model under discussion. This 
integrated likelihood can be regarded as a Bayesian criterion to select a relevant 
model (see [ROB 06]).  

Several examples will be considered in this chapter: 

– the observations (x1, …, xn) are the lifetimes of n pieces of equipment, and a 
standard distribution to model these lifetimes is the Weibull distribution. It is 
parameterized with a scale parameter η and a shape parameter β. Its PDF (with 
θ = (β, η)  denoting its parameters) is: 

   
1 β(β

x )x ηf(x;θ)= β e
η

−−
 
 
 

 



Bayesian Inference and Markov Chain Monte Carlo Methods     209 
 

– the observations (x1,…, xn) are the weights of n manufactured objects, 
assumed to arise from a Gaussian distribution with mean μ and variance σ2 with 
PDF:  

21
1 2
2π

x μ( )
σf(x;θ)= e

σ

−
−

, 

and with a vector parameter to be estimated, θ = (μ, σ2).  

11.2.1. Bayesian estimation of the mean of a Gaussian distribution 

Let N(θ, σ2) be the distribution of a Gaussian variable with unknown mean θ 
and with known variance σ2. A prior distribution Π() = N (μ, τ2) is assumed for θ , μ 
andτ2, being the hyperparameters to be fixed by experts (described below). Thus, 
the posterior distribution of θ knowing the observations x have a Gaussian 
distribution is: 

2 2 2

2 2

2

2 2
σ μ+nτ x σ τN(θ,τ)= N( , )
σ +nτ σ +nτ

   

where 
1

1
n

i
i=

x = x
n  is the empirical mean of the data.  

An example concerning wood flexion test can be found in section 5.3.2. The 
empirical mean from six measurements is 147.5 MPa with a standard deviation of 
21 Mpa, and the prior distribution was θ ∼ N (μ = 140, τ = 20). Thus, the posterior 

distribution of the mean is 2
6 6 146.3 7.9 ²N(θ ,τ )= N( ; )  .  

This example illustrates the role and impact of hyperparameters on Bayesian 
parameter estimation. The Bayesian estimator appears to give a compromise 
between the empirical mean and the prior parameter guess θ. Thus the Bayesian 
estimator has a shrinking effect on the empirical estimator. Analyzing the posterior 
distribution form shows the effect of the prior variance τ2 on the Bayesian estimator. 
If τ2 is chosen too small, the prior distribution will be too great with regard of the 
observed sample. Typically, τ2 has to be large to ensure that the effect of the prior 
distribution is not too great. In the same way, the effect of the sample size n is 
apparent. The greater n is, the smaller the effect of the prior distribution. And, when 
n is large, as is desirable, there is little difference between maximum likelihood and 
Bayesian estimators. 
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Thus, Bayesian inference is definitively the most natural and efficient approach 
for a relevant and useful statistical inference with small sample sizes. However, 
Bayesian inference has some disadvantages that are now considered: 

– translating prior information in prior distributions (choosing the form of the 
prior densities, and especially the values of the hyperparameters, etc.) is a sizeable 
task; 

– what happens when no prior information is available? How can we design non-
informative prior distributions? 

– deriving the normalizing constant c in [11.1] often involves quite difficult 
multivariate integration in order to compute the posterior distribution of the 
parameters to be estimated; 

– approximating posterior distributions can be achieved through Monte Carlo 
methods. But an efficient use of Monte Carlo algorithms involves numerical and 
computational difficulties. Overcoming those difficulties can be costly and requires 
very specific skills. 

11.3. MCMC methods for weakly informative data 

11.3.1. Weakly informative statistical problems 

The main source of wealth for a statistician is available data. The more complex 
a probabilistic model is, the more numerous the data that are needed for a relevant 
statistical analysis. Thus, to assess the validity of a statistical analysis, the sample 
size n should be compared to the number ν of parameters of the model at hand. 
Typically with a two-parameter probability distribution R, difficulties can arise as 
soon as n < 20. Problems become serious when ν ≈ n. These days, statisticians are 
increasingly facing sample sizes smaller than the dimension p of the data set. 
Moreover, it can happen that each data brings only partial information about the 
model. For instance, in reliability, many lifetime data could be censored. Remember 
that a lifetime datum is right censored in c, if we simply know that x > c (and left 
censored in c, if we simply know that x < c). A lifetime x is interval censored if we 
simply know that a < x < b.  

Latent structure models are another example of missing data models. These 
models are concerned with situations where some label data related to observed data 
are missing. In reliability, competing risk models are an example of latent structure 
models. Let i be a piece of equipment made of k components C1, …, Ck arranged in 
series. The complete data are (xi, zi), i =1, …, n, xi being the lifetime of equipment i 
and zi being the label of the component which has caused the equipment failure. But 
often the zi’s are missing… 
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Small and poorly informative samples jeopardize statistical analysis in several 
ways, from the high variability of parameter estimates, the high influence of outliers, 
or through contrast exaggeration, etc. In what follows, we focus on Bayesian 
inference which provides a well-grounded and relevant framework to statistical 
analysis from such samples.  

11.3.2. From prior information to prior distributions 

The first task is to choose the form of prior distribution. It is not a too sensitive 
task and, as we will see, choosing values for prior hyperparameters is a more 
sensitive. Typically for a real-value parameter, a prior distribution with two 
parameters should be chosen. This allows information on the mean value of the 
parameter given by an expert in reliability to be entered, and the variability of this 
mean value (given by the expert) to be taken into account. Thus, using two 
hyperparameters allows the statistician to quantify his confidence level on the prior 
information provided by the expert in reliability. The statistician has to give a 
reasonable weight to the prior information with respect to the information provided 
by observations. In particular, this uncertainty hyperparameter allows the impact of 
a doubtful expert to be reduced, without biasing his opinion. 

Sensitivity analyses are needed to choose the hyperparameters in a proper way to 
get stable Bayesian estimates which do not give too important a weight to the 
opinion of the expert in reliability. Those sensitivity analyses are usually done on an 
empirical basis by trial and error. For many standard models (except Weibull 
models), conjugate prior distributions are available. These conjugate prior 
distributions are probability distributions such that the posterior distribution belongs 
to the same parametric family of distributions as the prior distributions. Readers can 
find a list of the most used prior conjugate families of distribution in [ROB 06]. 
Some examples include: 

– a univariate Gaussian model, with a Gaussian prior for the mean and inverse 
gamma prior for the variance; 

– a multivariate Gaussian model, with a Gaussian prior for the mean vector and 
Wishart distribution for the variance matrix;  

– an exponential model, with a Gamma prior. 

It is important to say that the most delicate and sensitive step is choosing the 
hyperparameters of the prior distribution. Readers can find prior choices for Weibull 
lifetime models in [BAC 98] and an example of choosing prior hyperparameters for 
a simple conjugate prior distribution is given below.  
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An example of hyperparameter choice: consider a piece of equipment whose 
lifetime follows an exponential distribution with mean η. The chosen prior 
distribution is a conjugate gamma distribution Π(η) = G(a, b), with mean a/b and 
variance a/b2. The hyperparameters to be fixed are a and b. First, the ratio a/b is 
chosen in order to take into account the opinion of expert(s) in reliability on the 
mean lifetime of this equipment. Then, the statistician’s viewpoint is taken to fix a 
small b value in order to get a prior distribution with a large enough variance. A 
default choice is to ensure that the prior information does not exceed the information 
provided by an observed lifetime value. In the present case, this rule leads to us 
taking b ≤ 1 (see [BAC 98], for more details).  

Non-informative prior distributions are a general and important family of prior 
distributions. They are useful when no prior information on the process described 
with the data at hand is available. In such cases, the prior distribution should express 
our ignorance on the model parameters but it must not depend on the 
parameterisation. An apparently natural choice consists of assuming a uniform 
distribution for the parameter. But this is controversial since it depends on the 
parameterisation. For instance, a “uniform” prior for the dispersion parameter 
around a mean will be different if we consider that this parameter is the variance σ2, 
or the standard deviation σ , or the precision 1/ σ2. 

The Jeffreys solution to this invariance problem (see [ROB 06]) consists of 
considering a distribution proportional to the square root of the Fisher information 
I(θ) of the parameter θ: 

2
=- log .2

¶I(q) E[ (f(x;q)]
¶q

 

For a Gaussian distribution N(μ,σ2), the Jeffreys prior distribution is Π(θ) ∝1/σ2, 
whilst for a Weibull distribution with shape parameter β and scale parameter η, the 
Jeffreys prior distribution is Π(β, η) ∝1/(ηβ). 

Notice that, in general, Jeffreys priors are not probability distributions. They are 
said to be improper prior distributions. This is not a problem because the associated 
posterior distribution is a proper probability distribution.  

11.3.3. Approximating a posterior distribution 

The most difficult task is to approximate a posterior distribution given, for 
example, by [11.1]. Calculating the posterior distribution involves computing a 
highly multivariate integral as soon as the probabilistic model becomes somewhat 
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complex. This difficulty has limited the impact of Bayesian inference for a long 
time. But, since the early 1990s, Markov Chain Monte Carlo (MCMC) methods 
have become a popular and efficient tool to approximate integrals and posterior 
distributions. Consequently, Bayesian inference has dramatically increased its 
influence on applications and methodological developments.  

Standard numerical integration tools are limited to small dimension settings, 
while Laplace approximation is essentially efficient to recover posterior 
distributions close to a multivariate Gaussian distribution. Thus, these deterministic 
methods are being replaced more and more by Monte Carlo methods making use of 
random simulations. There are two kinds of Monte Carlo methods: MCMC methods 
consisting of simulating Markov chains whose stationary distribution is the posterior 
distribution to be estimated, while “Importance Sampling” methods compare the 
target distribution to an instrumental distribution which is supposed to be easy to 
generate and close to the target distribution.  

11.3.4. A popular MCMC method: Gibbs sampling 

The principle of MCMC methods is to simulate a Markov chain whose limit 
distribution is the posterior distribution at hand. Gibbs sampling is certainly the most 
popular MCMC method and it can be regarded as a specific case of the general 
Metropolis–Hastings algorithm that we present in the next subsection. Starting from 
a vector θ0 = (θ1

0,…, θυ
0), Gibbs sampling consists of drawing a new realisation of 

each vector coordinate at random according to its full conditional posterior 
distribution knowing the data and the other vector θ coordinates, and repeating those 
random drawings a large number of times. Thus, the iteration (i + 1) of Gibbs 
sampling consists of simulating: 

– θ1
i + 1 according to the conditional posterior distribution Π(θ1/θ2

i ,…, θυ
i, x),  

– θ2
i + 1 according to the conditional posterior distribution Π(θ2/θ1

i+1 , θ3
i ,…, θυ

i, x),  

– ... 

– θd
i + 1 according to the conditional posterior distribution Π(θd/θ1

i+1,…, θυ−-1
i+1, x). 

Obviously, a burn-in period L is necessary before the generated Markov chain is 
in its stationary distribution. Then the sequence (θL+1, …, θL+M) is a non independent 
sample from the limit distribution of the Markov chain and can be regarded as a non 
independent sample of the posterior distribution Π(θ/x) [ROB 04].  

In order to get an independent sample from this correlated sequence, only one 
value among t values is considered (typically t = 5 or 10.) Thus, for any function of 
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interest h, the empirical mean 1 1

1

L+M
L+ +(i L )t

i=L+

t h(θ )
M

− −  tends toward the posterior 

expectation ΠE (h(θ))  as M tends to infinity. 

The reason for the success of Gibbs sampling lies in the fact that, in most 
situations, simulating a full conditional distribution is easier than simulating from a 
joint or a marginal distribution. Since each step of Gibbs sampling is simple, it does 
not require specific technical skill. However, in some cases, there is the need to use 
a general Metropolis–Hastings algorithm inside a Gibbs sampling iteration to 
simulate some particular conditional posterior distributions. The Metropolis–
Hastings algorithm, which is a more general simulation method than Gibbs 
sampling, is now presented.  

11.3.5. Metropolis–Hastings algorithm  

The Metropolis–Hastings algorithm is probably the oldest MCMC method (the 
Metropolis article dates to 1953, whilst the Hastings one dates from 1970). This 
method has links to the accept–reject method for simulating a PDF, and that method 
is presented first below. Next, a detailed balance condition ensuring that a Markov 
chain converges to its unique stationary distribution is presented, before the 
Metropolis–Hastings algorithm itself.  

11.3.5.1. Accept–reject method  

Let f(x) = g(x)/K, be a PDF of interest, K being a normalizing constant, possibly 
unknown. We assume that a PDF h(x), easy to simulate (for instance by the direct 
inversion method) is available and that there a constant c such that g(x) ≤ c h(x) for 
any x also exists. The accept–reject algorithm to simulate a sample from the PDF 
f(x) is then as follows: 

– generate z according to h and u according to a uniform distribution of [0, 1]; 

– if u ≤ g(z)/ch(z), accept z as a realisation from f otherwise go back to the 
previous step. 

It can be easily shown (for example, see [ROB 04]) that the accepted value is 
actually drawn from PDF f. 

This procedure is iterated until the number n of realisations from f is obtained. 
The value of the constant c is clearly important since the expectation of the 
acceptation frequency is 1/c. Thus, choosing h “near” g is desirable. 
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11.3.5.2. MCMC and detailed balance condition 

To generate a sample from PDF f, MCMC methods consist of generating a 
Markov chain with stationary distribution f. The problem is thus to choose the 
transition kernel P(x,dy) of a Markov chain with stationary distribution f. For that 
purpose, the Metropolis–Hastings algorithm has to check the following detailed 
balance condition. Assume that the transition kernel can be written as: 

(dy)r(x)+y)p(x,=dy)P(x, xδ  

with p(x, x) = 0, δx(dy) = 1, if x belongs to dy and 0 otherwise, and where  
r(x) = 1-∫p(x, y)dy is the probability that the chain stays in x. Then, if the function 
p(x, y) satisfies the following detailed balance condition: 

f(x)p(x, y)= f(y)p(y,x)  

where f is the unique stationary distribution of the chain with transition kernel P(x,.) 
(see, for example, [ROB 04]). 

11.3.5.3. The Metropolis–Hastings algorithm itself 

We are now in position to describe the Metropolis–Hastings algorithm. Assume 
that a PDF q(x, y) (∫q(x,y)dy = 1), is available which is easy to simulate. This PDF 
can be interpreted as follows: as the generated process is x, the next point y is 
generated according to q(x, y). Now, q(x, y) does not check (in general) the detailed 
balance condition. For instance, (x, y) exists such that: 

.f(x)q(x, y) > f(y)q(y,x)  [11.4] 

This inequality means that the process generated allows more moves from x to y 
than from y to x. In order to correct this, a probability a(x, y) < 1 to move from x to y 
is introduced. If a move from x to y is not allowed, the chain stays in x. Thus, in the 
Metropolis–Hastings (MH) process, a move from x to y, x ≠ y occurs with the 
probability: 

.MHp (x, y)= q(x, y)a(x, y)  

Notice that there is a difference here to the accept–reject method which, unlike 
MH, does not accept to stay in the same position.  

Now, the move probability a has to be specified. First, to get balanced moves, 
the reverse probability of move a(y, x) has to be as great as possible, that is to say 
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that a(y, x) = 1. In addition, a has to be chosen to ensure the detailed balance 
condition for pMH: 

.f(x)q(x, y)a(x, y)= f(y)q(y,x)a(y,x)= f(y)q(y,x)  

This leads to a(x, y) = f(y)q(y, x)/f(x)q(x,y). Since inequality [11.4] can be 
reversed, we finally get:  

min 1
f(y)q(y,x)a(x, y)= ,
f(x)q(x, y)

 
 
 

, if f(x)q(x,y) > 0 and 1 otherwise. 

To terminate the transition kernel definition of the MH chain, the probability r(x) 
to remain in x has to be given. This is:  

1 .r(x) = q(x, y)a(x, y)dy−   

Finally, the transition kernel of the MH chain can be written as: 

1MH xP (x,dy)= q(x, y)a(x, y)dy+[ q(x, y)a(x, y)dy]d (dy)−   

and has the desired form. Consequently, it implies that f is the stationary distribution 
of the MH chain. 

Note that: 

– since a(x, y) is a ratio not dependent on any normalizing constant, it appears 
that the Metropolis–Hastings algorithm does not need to know the normalizing 
constant of the target PDF f; 

– if q is symmetric, where q(x,y)=q(y,x) for any (x, y), the Metropolis–Hastings 
algorithm accepts a move with probability f(y)/f(x); 

– the MH chain converges to its limit distribution f if it is irreducible and 
aperiodic. This is ensured by the fact that q(x, y) is positive on the support of f 
(namely the set where f is positive). 

Choosing a good instrumental density q(x, y) is clearly quite important. Three 
standard choices are as follows: 

– an independent sampler where q(x, y) = q(y) does not depend on x. In such a 
case, q is commonly chosen as the PDF of a Gaussian distribution. It is often an 
excellent choice, but it could be a poor choice; 
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– a random walk which, by its very nature, takes into account the previously 
simulated value to generate the following value is also a standard choice; 

– a strategy inspired by the accept–reject algorithm is choosing a PDF q(x) 
dominating h(x) = f(x)K. In such a case, it is crucial that the PDF q has heavier tails 
than the target PDF f. 

Other choices of the “instrumental” PDF q are described in books dealing with 
MCMC methods, such as [ROB 04]. Moreover, readers will find an example of the 
use of a particular Metropolis–Hastings algorithm in the following chapter of this 
book.  

11.3.6. Assessing the convergence of an MCMC algorithm 

For any MCMC method (Gibbs sampling, Metropolis–Hastings algorithm or 
more sophisticated samplers), there is the need to assess the convergence of the 
generated Markov chain. More precisely the user has to answer the following 
questions:  

– how many iterations L are needed to ensure that the chain has converged to its 
stationary distribution? then, 

– how many iterations M are needed to get a good approximation of the target 
distribution f? 

These difficult questions have received a lot of attention and an excellent 
account of the most useful available methods is presented in [ROB 04] (see also 
[ELA 06]). However, no reference method supported by strong theoretical results is 
really available. Thus, the convergence of MCMC chains is often assessed on 
pragmatic grounds. Here, we confine ourselves to the presentation of simple popular 
heuristics to assess MCMC convergence: 

– it is necessary to run several MCMC chains in parallel. If the numbers L and 
especially M have been properly chosen, Bayesian inference should not be very 
sensitive to the selected MCMC chain; 

– the burn-in length L is fixed from simple figures displaying the evolution of 
some parameter values as a function of the number of iterations. The value of L is 
chosen to ensure that the corresponding values fluctuate symmetrically around their 
mean; 

– the number M has to be large enough to ensure that the MCMC chain has been 
simulated a sufficient number of times to get a reasonable image of the target 
posterior distribution. A simple way to proceed is to increase M and to stop when the 
posterior parameter means become stable. 
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In any case, it is important to keep in mind that there is a price to be paid when 
using an MCMC method. It is true that MCMC algorithms avoid difficult 
calculations, numerical difficulties (degenerate solutions, dividing by zero 
occurrences, etc.) or painful coding time. But MCMC algorithms can often converge 
quite slowly and need to be run a tremendous number of iterations to provide good 
results. Roughly speaking L is about several thousand of iterations and M is about 
several ten thousand iterations in many cases. Moreover, it is important to keep in 
mind that assessing the convergence of an MCMC chain is quite a difficult task, 
especially for complex models with small sample sizes. 

11.3.7. Importance sampling 

Importance sampling is a Monte Carlo simulation tool that differs by its very 
nature from MCMC methods. Importance sampling aims to approximate integrals of 
the form:  

/T(Φ) = Φ(θ)π(θ x)dθ  

via an instrumental distribution ρ(θ), by using the identity: 

/Φ(θ)π(θ x)T(Φ)= ρ(θ)dθ
ρ(θ) . 

More precisely, importance sampling consists of two steps and can be completed 
with an additional simulation step from the instrumental distribution ρ(θ): 

1. Generate M independent realisations (θ1, ..., θM) from the PDF ρ(θ); 

2. Compute the importance weights wi proportional to 
/i

i
p(q x)
ρ(q )

 for i = 1, …, M, 

and the probabilities pi =wi /∑
j=1

M

w j ;  

3. Generate 1 ... L(θ , ,θ )   an independent sample from (θ1, ..., θM) according to the 

distribution: (pi, i = 1, ..., M), L < M.  
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This leads to an approximation of the integral T(Φ) with the empirical mean 

1

M

i i
i=

pΦ(θ ) . This approximation can be regarded as a standard numerical 

approximation where the integration nodes are the points θi
i with coefficients pi.  

Choosing an instrumental density is obviously crucial to ensure good 
performances. First, it is important to notice that the convergence of the integral 
T(Φ) occurs only if the support of the importance density ρ(θ)  includes the support 
of the posterior density Π(θ/x) (see, for example, [ROB 04]). Now, the nearer the 
instrumental density is from the posterior density, the better the importance 
sampling approximation is. The art of importance sampling is to propose efficient 
means to design a relevant instrumental density. In general, importance sampling is 
considered to perform quite well when the instrumental density is chosen properly; 
however, it can be terrible otherwise. Moreover, it is important to remark that 
importance sampling often performs poorly in high dimensions. In the case study in 
the next section, we present an adaptive importance sampling method in a hidden 
structure model context. 

11.4. Estimating a competing risk model from censored and incomplete data 

To illustrate Bayesian inference via Monte Carlo methods, an in series 
component is considered. For instance, this piece of equipment could be part of a 
pipeline or a drainage element. For simplicity, we will restrict our attention to two-
component systems.  

The problem is to characterize the equipment’s lifetime T. It is assumed that the 
component lifetimes C1 and C2 follow independent Weibull distributions W1 and W2 
(see Chapter 4) with densities: 

1
βi(βi

iW i ii i

x )
x ηf (x;θ )= β e
η

−−
 
 
 

 ; i =1,2 [11.5] 

where iθ , i=1, 2 are the parameters to be estimated, with i i iθ = (β ;η ) , iβ and η i  
being, respectively, the shape and scale parameters of the Weibull random variable 
Wi. These parameter have to be estimated from n observed lifetimes (x1, …, xn) of 
the whole equipment. In the case considered, we have β1 = 1.5, η1 = 100,  
β2 = 2.5 and η2 = 120, with a sample size of n = 100, and a fixed censoring time  
c = 40. In those conditions r = 30 failure times were observed, 26 caused by the 
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component C1 and 4 by the component C2.. But the labels of the component causing 
the failures are unknown.  

Thus, the observed data are (t1, …, tr, c1, …,cn-r), that is, the r failure times 
smaller than c are ranked in increasing order, and there are (n – r) right censored 
data. The completed data are (t1, e1),…, (tn, en), where the ti’s are the n failure times, 
and the ei’s indicate the labels of the component which have caused the failure: ei =1 
or ei =2 and ei = 0 for a censored time. If the ei labels were available, it would be 
simple to estimate the parameters (β1, η1) and (β2, η2). But the estimation problem 
becomes difficult when the ei labels are missing and the number r failure times is 
low.  

This model is a competing risk model where the random variable density to be 
estimated is T = min (W1, W2), which is the minimum of two Weibull random 
variables. Since the failure labels are unknown, the maximum likelihood could be 
derived using the Expectation Maximization (EM) algorithm [DEM 77], which is a 
reference algorithm for hidden structure models, or with its stochastic version the 
Stochastic Expectation Maximization (SEM) algorithm. Details of the equations of 
these two maximum likelihood algorithms are not detailed here but they can be 
found in [BAC 98]. However, we will analyse the performances of the maximum 
likelihood approach in the ill-posed setting under consideration (a small sample 
sizes, highly censored lifetimes, unknown failure origins). Without anticipating the 
numerical experimental results, there is a concern that the maximum likelihood 
methodology will provide large variance estimations. Thus, Bayesian inference 
could be expected to be useful.  

Bayesian inference is now described in three steps. First, the prior distributions 
are defined; secondly, Gibbs sampling is designed, and finally an alternative 
adaptable importance sampling procedure is described. 

11.4.1. Choosing the prior distributions 

Four prior distributions will be chosen for the four model parameters: the scale 
parameters 1 2(η ;η )  and the shape parameters 1 2(β ; β )  from the two Weibull 

distributions. Since the two components of the competing risk model are assumed to 
be independent, the prior distributions can be chosen independently for each 
component. For the Weibull distribution there is no conjugate prior distribution for 
(β, η). However, for a fixed β, the gamma distribution is a conjugate prior for 
parameter η. Thus, it is natural to choose a prior on (β, η)  

/π(β,η)= π(β)π(η β)  
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where π(η/β) is a G(a, b). The prior distribution of the shape parameter β is then 
chosen. Typically, this parameter is bound between two values βg and βd. A natural 
choice for π(β) is then a beta distribution with parameters p and q for the interval 
[βg, βd]. The beta distribution is a versatile distribution and, by varying p and q, we 
can get quite different distributions (see [BAC 98], p.52 for illustrations). This prior 
distribution is denoted as B(p, q, βg, βd). 

11.4.2. From prior information to prior hyperparameters 

The hyperparameters of the prior distributions a, b, p, q, βg are βd are fixed. 
They have to take into account the expert opinions and the uncertainty concerning 
those opinions in order to lead to a relevant statistical analysis. Since the mean of a 
Gamma distribution G(a, b) is a/b and its variance is a/b2, we consider an equation 
a/b = m to enter the expert opinion on the mean value m of the component. Since the 
variance is a/b2, b has to be chosen small enough to ensure that the expert opinion 
does not bring more information than the observed data. In the present case, the 
mean lifetime given by the expert was 125 for both components. This leads to 
choosing the same prior gamma G(12.5, 0.1) for both components. 

The differences between the components concerned, as is often the case, are the 
shape parameters of the Weibull distributions. The expert does not know if the first 
component will have teething problems and thinks that its ageing effect is moderate. 
This leads to choosing a prior distribution of B(1.5, 2 , 0.5, 3). Taking βg = 0.5 
means that a youth default occurrence remains possible and βd = 3 corresponds to a 
somewhat standard value for ageing. The second component is known to have no 
more teething problems, but the expert has not indicated a precise opinion about 
ageing. This leads to the prior choice B(1.2, 1.5,1, 5). Choosing βg = 1 is a direct 
consequence of the absence of a youth default and βd = 5 is a large value for the 
shape parameter of a Weilbull distribution in an industrial context. Finally, the 
resulting prior distributions appear to be moderately informative. It is expected that 
degenerate estimates for the scale parameters will be avoided, as can occur with 
maximum likelihood estimates from poorly informative and highly censored data. In 
fact, choosing two different priors for the shape parameters could help to contrast 
the two components.  

11.4.3. Gibbs sampling 

Starting from an initial guess θ0 = (β1
0, η1

0, β2
0, η2

0) = (1.5, 100, 2.5, 120) the 
Gibbs sampler can be described as follows, with the exponent q denoting the 
iteration index: 
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– generate the failure labels ei
q according to their conditional distribution, 

knowing the current value θq of the parameters. This conditional distribution is a 
Bernoulli distribution with parameter, for i= 1, …, r 

1
1 1 1

1 2
1 1 1 2 2

1
/ /

1 .
1 1

/ / / /

qβq q q
iq

i q qβ βq q q q q q
i i2

β η (t η )
p(e = )=

β η (t η ) + β η (t η )

−

− −
 

– generate the shape parameters β1
q+1and β2

q+1 according to their conditional 
posterior distributions, knowing the current values of the scale parameters and the 
failure labels ei

q. Since the prior beta is not conjugate, these conditional posterior 
distributions are not standard and this step involves the use of the Metropolis–
Hastings algorithm. An instrumental distribution is possibly the product of the 
maximum likelihood function and of the prior distribution of the parameter to be 
simulated; 

– generate the scale parameters η1
q+1 and η2

q+1 according to their conditional 
posterior distributions, knowing the current values of the shape parameters and the 
failure labels ei

q. Since, for fixed shape parameters, the prior distribution on the scale 
parameter is conjugate, this step becomes a simulation of a gamma distribution 
whose hyperparameters are dependent on the data, the simulated labels and the 
shape parameters values, and obviously of the chosen prior hyperparameters a and b.  

Thus, Gibbs sampling takes advantage of the missing data structure of the 
competing risk model by simulating the missing labels of the components causing 
the failures with the model parameters, at each iteration. This occurrence of Gibbs 
sampling requires a Metropolis–Hastings step and choosing the instrumental 
distribution for that step can involve difficulty. In such cases, a random walk for this 
instrumental distribution from the previous values could be recommended since it 
leads to quicker convergence than the product of the likelihood and the prior.  

11.4.4. Adaptive Importance Sampling (AIS) 

The importance sampling we now present also takes advantage of the model’s 
missing data. The procedure is detailed in [CEL 06]. It is an adaptive procedure 
mimicking Gibbs sampling by simulating the unknown labels and the parameters 
according to their conditional posterior distributions. The procedure is as follows, in 
which e = (ei, i = 1, …,n): 

Initialization: Choice of (θ0
(1),…, θ0

(M)) through M independent random samples 
taken from the prior distribution of θ. 
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1
1 1 1

1 2
1 1 1 2 2

1
/ /

Step 1, : 1
1 1

qβq q q
iq

i q qβ βq q q q q q
i i2

β η (t η )
q  (q = , Q) p(e = )=

β η (t η ) + β η (t η )

−
…

− −
 

(a) for i = 1, …, M, we simulate eq
(i) and θq

(i) according to their conditional 
distributions. In practice, this stage consists of repeating the simulations performed 
with the Gibbs sampler M times. We then compute the weights, for i =1, …, M: 

/

/ /

(i) (i) (i)
q q q(i)

q (i)(i) (i) (i)
q q qq 1

g(t,e θ )π(θ )
p =

k(e t,θ )π(θ t,e )−

  

where t = (t1,…, tr, c,…,c), g(t,e) is the completed likelihood knowing the model 
parameters and k(e/t,θ) is the conditional density of the labels, knowing t and θ. 
These weights are then normalized, such that: 

1

/
M

(i) (i) (j)
q q q

j=
w = p p  

(b) Simulation of θq
(i) according to the distribution defined by wq

(i)s. 

In practice M has to be large (several hundred). Here, we have taken M = 500. 
By contrast, the number of iterations, Q, for this adaptive procedure can be small. 
We have chosen Q = 10 here1.  

We now take the estimates produced by the EM algorithm, its stochastic version 
(SEM) in a maximum likelihood setting, then estimates obtained with the Gibbs 
sampling (GIBBS) and the adaptive importance sampling (AIS) described above, 
with the prior as detailed in section 11.4.2. The EM estimates are β1 = 1.59, 
η1  = 109.4, β2 = 1.64 and η2  = 78.5, and they are not very satisfying. Typically, 
these estimates highlight the tendency of EM to provide almost equal shape 
parameters for competing risk models.  

From SEM, we get the following estimates (the standard errors due to the 
random simulations are given in brackets): β1 = 1.16 (0.12), η1  = 94.6 (6.15), 
β2 = 3.60 (0.28) and η2  = 185.1 (5.40). This illustrates the tendency of SEM to 
assign each point to the same component, implying an overestimation of neglected 

                                   
1 It is possible that only a few weights w are non-zero, especially when the number of 
observed failures is small. To avoid this, the weights are normalized for each iteration 
[CMR 06].  
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components while the parameters of other components are well estimated. Finally, 
this case highlights the fact that maximum likelihood is jeopardized by small and 
poorly informative samples. In fact, EM and SEM give quite different estimates.  

Table 11.1 displays the estimates of the posterior mean and posterior standard 
error for each component provided by the GIBBS and AIS methods. The columns m 
and σ give, respectively, the estimated posterior mean and standard error. Both 
methods provide analogous and satisfying estimates. 

Reference β1 =1.5  η1 =100  β2 =2.5  η2 =120  

mβ1  σ β1  mη1  σ η1  mβ2  σ β2  mη2  σ η2  

GIBBS 1.75 0.24 88.8 7.8 2.41 0.47 100.5 10.7 

EPA 1.7 0.21 91.5 10.1 2.26 0.46 103.9 12.2 

EM 1.59  109.4  1.64  178.5  

SEM 1.16  94.6  3.6  185.1  

Table 11.1. Maximum likelihood estimates through EM and SEM algorithms, Bayesian 
posterior means and standard errors through GIBBS and AIS methods for the Weibull 

competing risk model 

This difference in performance between maximum likelihood and Bayesian 
estimates increases when the sample size and the number of observed failure times 
decrease. But, it is important to note that a good result from the Bayesian approach 
is highly dependent on reasonable choices for the prior densities (namely a prior 
with large variances and realistic mean values).  

When no expert opinion is available, it is recommended that a non-informative 
prior distribution is used. In a small sample setting, this will lead to more stable and 
reliable estimates than the maximum likelihood estimates. But, clearly, more 
relevant estimates are expected when relevant prior information is well calibrated in 
a prior distribution. From this point of view, it is important to understand that any 
Bayesian inference has a price to be paid. MCMC algorithms or importance 
sampling procedures are expensive and difficult to properly control. Moreover, a 
good calibration of prior distributions requires careful sensibility analyses of the 
prior hyperparameters, after much trial and error.  
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11.5. Conclusion  

In this chapter, our analysis of statistical inference from small data sets has 
restricted its attention to simple problems, and many questions have not been 
tackled. Regularization methods for multivariate decisional statistics, for example, 
have not been introduced. Is it possible to draw useful and trivial information from 
data when the number of variables is dramatically greater than the number of data? 
Answering this question is more and more important since it is now possible to get a 
lot of information about complex characters in genetics, image analysis, data from 
the web, etc. Regularization methods are, for example, used in the optimization of 
Kernel methods such as Support Vector Machines or regression models such as 
ridge regression, Lasso or Elastic Net methods, etc. This domain of statistical 
research receives a lot of interest today, and soon quite efficient regularization tools 
will be routinely available. Interested readers will find a clear and precise 
presentation of prominent regularization methods in [HAS 09].  

The chapter has also shown the great interest in Bayesian inference when dealing 
with small samples. It is worth indicating a few books devoted to Bayesian 
inference. We have already cited the excellent [ROB 06] many times, which is 
essentially a French translation of the book in English [ROB 01]. Other less 
complete but valuable, and somewhat more affordable, books on Bayesian inference 
can also be recommended, such as [MAR 07], [PAR 07] or [PRO 09]. The next 
chapter of this book presents readers with an example of an application of Bayesian 
inference concerning warping prediction in a nuclear power plant’s containment 
components. Finally, [ROB 04] contains a complete presentation of Monte Carlo 
methods in a Bayesian context, whilst [NTZ 09] has a description of MCMC method 
implementation in the Winbugs software and a concise self-contained entry on 
commented R programs.  
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Chapter 12 

Bayesian Updating Techniques 
in Structural Reliability  

12.1. Introduction 

Computer simulation models such as finite element models are nowadays 
commonly used in various industrial fields in order to optimize the design of 
complex mechanical systems as well as civil engineering structures. In the latter 
case, the structures under consideration (e.g. cable-stayed bridges, dams, tunnels, 
etc.) are often one of a kind. Thus, they are usually monitored during their 
construction and after, so that experimental measurement data (displacement, 
strains, etc.) are collected all along their lifetime. 

These measurements are traditionally used to detect a possible unexpected 
behavior of the system (e.g. a temporal drift of some indicator). In this case, data is 
processed using classical statistical methods without any physical modeling of the 
structure. However, this data could be used together with a computational model 
elaborated at the design stage in order to update the model predictions. Classical 
approaches in this field are purely deterministic: the analyst tries to select the set of 
model parameters that best fit the available data by minimizing the discrepancy 
between measurements and model prediction (e.g. using least-square minimization), 
without taking into account possible sources of error or uncertainty such as 
measurement error, model uncertainty, etc. 

In this chapter, section 12.1 describes a probabilistic framework that allows us to 
combine computational model (e.g. a finite element model), a prior knowledge on its 
                                   
Chapter written by Bruno SUDRET. 
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input parameters and experimental database. This framework makes use of Bayesian 
statistics, which is rigorously presented Chapter 13. Section 12.2 presents a retained 
probabilistic model for the interaction between measurements and model 
predictions. Section 12.3 recalls how to compute the probability of failure of a 
structure and how to update it using additional measurement data. Section 12.4 
describes how to “invert” the reliability problem and compute quantiles of the 
mechanical response instead. Section 12.5 presents the Markov Chain Monte Carlo 
(MCMC) simulation method – which has already been introduced in the previous 
chapter – and how it may be used for Bayesian updating problems. Finally, 
section 12.6 describes an application example related to the durability of concrete 
containment vessels in French nuclear power plants. 

12.2. Problem statement: link between measurements and model prediction 

Let us consider a mathematical model ( )t,x  that represents the temporal 

evolution of the response ( ) Nt ∈y  of a mechanical system as a function of a vector 

of input parameters M∈x  . These basic parameters are supposed to be uncertain or 

not well known. They are modeled by a random vector { }1 MX … X= , ,X T whose 

joint Probability Density Function (PDF) is prescribed. This PDF may be selected at 
the design stage from available data (see Chapters 4 and 5) or from expert judgment. 
In this context, the model response at time instant t is a random vector denoted by

( ) ( )t t= ,Y X . The collection of random vectors [ ]{ }( ) 0t t T, ∈ ,Y is a random 

process (see Chapter 10 for a rigorous definition).  

Let ( )ty be the “true” value of the system response at time instant t, i.e. the value 

that would be measured by a perfect, infinitely accurate device (with no 
measurement error). This value is usually different from the observed value ( )obs ty
which was obtained by the measurement device at hand.  

If a perfect model of the system behavior was available, there would exist a 
vector of basic parameters denoted by x  such that ),~()(~ tMt xy = . However models 

are always simplified representations of the real world and contain unavoidable 
approximations. Thus a so-called measurement/model error term is introduced in 
order to characterize the discrepancy between the model output and the 

corresponding observation. Considering various time instants ( ) , 1, ,qt q Q=  , this 

assumption reads: 

( ) ( ) ( )q q q
obs t 

  
 

= , +y x e   [12.1] 
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In the latter equation, the observed value ( )obs ty and the (implicit or explicit) 

definition of the model  are known, whereas x and ( )qe are unknown. If one 

assumes that the error ( )qe is a realization of a random vector ( )qE that characterizes 

the measurement/model error (usually a Gaussian vector of zero mean value and 

covariance matrix C ) the above equation means that ( )q
obsy is a realization of a 

random vector ( )q
obsY whose conditional distribution reads: 

xXY =)(q
obs  ~ ( )( ( , ), )qM tx C  [12.2] 

where ( ),μ C  denotes a multinormal distribution with mean value μ  and 

covariance matrix C.  

In practice, depending on the problem under consideration, the error term ( )qE
may represent either the measurement uncertainty, the model error, or both. These 
two quantities are usually independent so that this error may be broken down again 
as the sum of two terms. The total covariance may be split as modmes= +C C C , 

where mesC  represents the covariance matrix of the sole measurement error. 

12.3. Computing and updating the failure probability 

12.3.1. Structural reliability – problem statement 

Structural reliability analysis aims to compute the probability of failure of a 
mechanical system whose parameters are uncertain and modeled within a 
probabilistic framework. Reliability methods that lead to computing a probability of 
failure with respect to a scenario are well documented in the books by Ditlevsen & 
Madsen [DIT 96] and Lemaire [LEM 09]. 

Let X denote the vector of input random variables describing the problem (which 
usually includes the input parameters of some mechanical model ), and let us 
denote its support by M⊂X  . A failure criterion may be mathematically cast as a 

limit state function, ( )g∈ Xx x   such that ( ){ }: 0fD g= ≤x x is the failure 

domain and ( ){ }: 0sD g= >x x  is the safe domain. The boundary between both 

domains is called the limit state surface, D∂ . The failure probability is then defined 
by: 

( )( )0 ( )
f

f D
P g f d= ≤ =  XX x x  [12.3] 
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where f X  is the joint PDF of X .  

As the integration domain fD  is implicitly defined from the sign of the limit 

state function g and the latter is usually not analytical, a direct evaluation of the 
integral in equation [12.3] is rarely possible. It can be numerically estimated using 
Monte Carlo simulation (MCS): simN realizations of the input random vector X  are 

drawn according to its joint PDF f X , and for each sample the g-function is 

computed. The probability of failure is estimated by the ratio /f simN N where fN is 

the number of samples (among N) that have lead to failure (i.e. a negative value 
of g).  

This method, which is rather easy to implement, may be unaffordably costly in 

practice. Indeed, suppose that a probability of failure of the order of magnitude 10 k−  
is to be estimated with a relative accuracy of 5%: a number of 2

sim 4.10kN +≈

simulations is then required. As failure probabilities usually range from 210− to 610− it 
is clear that MCS will not be directly applicable for industrial problems, for which a 
single run of the model  and the associated performance g may require hours of 

CPU. In order to bypass this difficulty, alternative approximate methods have been 
introduced such as the First Order Reliability Method (FORM).  

FORM allows us to approximate the failure probability by recasting the integral 
in equation [12.3] in the standard normal space, i.e. a space in which all random 
variables ξ are normal with zero mean value and unit standard deviation. To this 

aim an isoprobabilistic transform ( )T : →X ξ X is used.  

If the basic random variables gathered in X are independent with respect to the 
marginal cumulative distribution function (CDF) ( )

iX iF x , this transform reads:

( )1 ( )
ii X iF xξ −= Φ , where Φ is the standard normal CDF. In the general case, the 

Nataf or Rosenblatt transforms may be used; see ([LEM 09], Chapter 4) for details. 
After mapping the basic variables X into standard normal variables ξ , equation 
[12.3] can be rewritten as: 

( ) ( )( ){ } ( )1 1: 0f M MG g T
P d …dϕ ξ ξ

−≡ ≤
=  ξ ξ ξ

ξ  [12.4] 

where ( ) ( )( )1G g Tξ ξ−=  is the limit state function in the standard normal 

space and Mϕ  is the multinormal (M-dimensional) PDF defined by
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( ) ( ) 2 2 2
1

1
exp2

2

M

M M…
 −   

     

= − + +ξϕ ξ ξπ . This PDF is maximal for =ξ 0
 

and 

decreases exponentially with 2 .ξ  Thus the points that contribute most to the 

integral in equation [12.4] are those points of the failure domain that are close to the 
origin of the space.  

The next step of FORM consists of determining the so-called design point *ξ , i.e. 
the point of the failure domain fD that is closest to the origin. This point is the 

solution of the following optimization problem: 

( )21
Argmin / 0

2M
G∗

∈

 = ≤ 
 ξ

ξ ξ ξ


 [12.5] 

Dedicated constrained optimization algorithms may be used to solve it. The 
minimal (algebraic) distance from the limit state surface D∂  to the origin is called 

the Hasofer–Lind reliability index: ( )( )sign G 0 .β ξ ∗=  Once *ξ  has been 

computed, the limit state surface D∂  is linearized around this point and replaced by 
a tangent hyperplane. The failure domain is then substituted by the half space 
defined by this hyperplane. The approximation of the integral in [12.4] by 
integrating over the half space leads to the FORM approximation 

( )f f FORMP P β,≈ = Φ − .  

The equation of the linearized limit state (i.e. the hyperplane) may be cast as 

( )G β= − ⋅ξ α ξ T . In this expression, the unit vector (which is orthogonal to the 

hyperplane) contains the cosines of the angles defining the direction of the design 
point. The square cosines 2

iα are called importance factors since they allow one to 

break down the variance of the (approximate) performance ( )G ξ  into contributions 

of each variable iξ  and, by extension, to quantify the impact of each basic variable 

Xi onto the reliability. 

The First Order Reliability Method allows the analyst to get an approximation of

fP  at a reasonable computational cost (usually, from a few tens to a few hundreds of 

evaluations of g). The approximation is all the better since the reliability index β is 
large. Moreover, the approach yields importance factors. Sensitivity measures that 
quantify how the probability of failure changes when some assumption of the basic 
random variables is changed are also interesting quantitative indicators for the 
designer.  
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12.3.2. Updating failure probability 

The failure probability, as defined in the previous section, is usually computed at 
the design stage. For an already existing system for which additional information is 
available (e.g. measurements of response quantities in time), it is possible to update 
the probability of failure by accounting for this data. 

Let us consider a set of observations1 (1) ( )Q
obs obsy … y 

 
 

= , ,
T

 collected at time 

instants ( ) 1qt q … Q, = , ,  along the lifetime of the structure. Confronting this data with 

model simulation results leads to the introduction of so-called measurement events
{ }0qH =  [DIT 96] using the following notation:  

( )( ) ( )q q q
q obsH t y E= , − +X  [12.6] 

In this equation ( )qE denotes a Gaussian random variable that characterizes the 

measurement/model error. The updated failure probability ( )upd
fP t  is now defined as 

the following conditional probability: 

( ) ( )( )10 | 0 0upd
f QP t g t H … H= , ≤ = ∩ ∩ =X  [12.7] 

When recasting the measurement events as the limit, { }
0

lim 0qH
θ

θ
→

− < ≤ , we get:  

( )
( ){ } { } { }( )

{ }
1

0

1

0 0 0
lim

0

Qupd
f Q

q
q

g t H … H
P t

H
θ

θ θ

θ
→

=

, ≤ ∩ − < ≤ ∩ ∩ − < ≤
=

 
− < ≤ 

 

X

 
 [12.8]  

In the above equation both the numerator and denominator are failure 
probabilities of parallel systems (intersections of events) that may be estimated by 
an extension of the FOR method to systems ([LEM 09], Chapter 9). After some 
algebra, equation [12.8] reduces to [MAD 87]: 

( ) ( )upd upd
fP t tβ 

 
 

= Φ −   with 

( )
0

2

( ) ( )
( )

1 ( ) ( )

upd t tt
t t

ββ − ⋅ ⋅
=

− ⋅ ⋅

z R β

z R z

T

T
 [12.9]  

                                   
1 From this point on, the response quantity under consideration and the associated 
measurements are taken to be scalar quantities, for the sake of simplicity. 
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In this equation 0 ( )tβ  is the initial reliability index associated with the event 

{ }( ) 0g t, ≤X and 1 Qβ β 
 
 

= ,...,β
T

gathers the reliability indices related to the events

{ }0qH ≤ . Moreover, 1( ) ( ) ( )Qt z t z t 
 
 

= , ...,z is the vector of correlations between the 

linearized margins { }0qH =  and { }( ) 0g t, =X
 

whose components are

0( ) ( )j jz t t= ⋅α α . Finally R is the correlation matrix of the linearized measurement 

margins, whose generic entry reads kl k l= ⋅R α α . Thus the updated failure probability 

may be computed only from a set of FORM analyses. 

12.4. Updating a confidence interval on response quantities 

12.4.1. Quantiles as the solution of an inverse reliability problem 

Suppose the random response of a mechanical model ( ) ( )Y t t= ,X is of 

interest. Its variability may be fruitfully grasped through the computation of a 
confidence interval on the prediction, which means computing quantiles of ( )Y t . For 

instance, a 95%-confidence interval (i.e. a range such that the probability of ( )Y t
being in this range is 95%) is obtained by computing the 2.5% and 97.5% quantiles 
of ( )Y t . As a consequence, the computation of α-quantiles ( )y tα  defined by: 

( ) ] [( ) ( ) ; 0,1Y t y tα α α≤ = ∈  [12.10]  

is of interest. By introducing the mechanical model  in the previous equation, we 
obtain ( )y tα as the solution to the following: 

( )( ) ( ) 0M t y tα α, − ≤ =X  [12.11]  

Equation [12.11] may be considered for each time instant t as an inverse 
reliability problem [DER 94], in which the value of a parameter (here, yα ) is looked 

for so that a given “failure probability” is attained (here, α) for a given limit state 
function (in this case, ( ; ) ( )t y t yα α, ≡ , −X X  ). In order to solve this problem 

efficiently an extension of FORM has been proposed in [DER 94]. Within the 
FORM approximation the problem is recast as: 

find ( )( ; ) 0 ( )f FORM cy P g t yα α β,: , ≤ = Φ −X  [12.12] 
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where 1 ( )cβ α−= −Φ  is the target reliability index associated with the α-quantile of 

interest. The algorithm used for computing quantiles is presented in detail in 
[PER 07], [PER 08].  

12.4.2. Updating quantiles of the response quantity 

The “inverse FORM” approach may be elaborated one step further in order to 
compute “updated quantiles”, which are defined as quantiles computed conditionally 
to observations. When combining [12.9] and [12.12] the “updated” version of the 
latter reads: 

( )1find ( ; ) 0 | 0 0 ( )f FORM Q cy P g t y H … H,: , ≤ = ∩ ∩ = = Φ −Xα α β  [12.13] 

where the measurement events are defined in equation [12.6]. The “updated inverse 
FORM” algorithm as originally proposed in [SUD 06] couples the inverse FORM 
algorithm with equation [12.9] by modifying in each iteration the target reliability 

index )1( +k
cβ which is equal at iteration k+1 to: 

( ) ( )2( 1) 1 ( ) ( )( ) ( )1 ( )( ) ( )k k kk k
c tt tβ α+ −= −Φ − + ⋅ ⋅⋅ ⋅ z R βz R z TT  [12.14] 

In the above equation, matrix R does not change from one iteration to the other, 
in contrast to vectors z and β . Note that the convergence of the algorithm is not 

proven, although numerous application examples have shown the efficiency of the 
method. 

12.4.3. Conclusion 

The method proposed in the previous section allows us to update the failure 
probability of a structure or, indirectly, to update the confidence intervals of the 
prediction of a mechanical model by using measurement data gathered all along the 
lifetime of the structure. 

This approach enables the reconciliation of the prior model predictions 

( ) ( )Y t t= ,X and the observed data (1) ( )Q
obs obsy … y 

 
 

= , ,
T

in order to better estimate 

the probability of failure of the real structure (“as built”) under consideration. 
However it does not bring any additional information to the basic variables X. An 
alternative approach based on Markov Chain Monte Carlo simulation is presented in 
the next section for this purpose. 
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12.5. Bayesian updating of the model basic variables 

12.5.1. A reminder of Bayesian statistics 

Bayesian statistical methods [OHA 04], [ROB 92] are usually used in order to 
combine prior information on parameters of a random vector with data, i.e. 
realizations, of that random vector. Let us denote by (1) ( )Q… 

 
 

= , ,x x  a set of 

observations that will be modeled by a PDF ( );fX x θ , whereθ  is the vector of 

hyperparameters of size nθ . Bayesian statistics assumes that some prior information 

on θ  exists that may be modeled by a prior distribution ( )pΘ θ of support nD R θ
Θ ⊂ . 

Bayes’ theorem, in its continuous setting, combines both sources of information in 

order to yield a posterior distribution ( )fΘ θ : 

( ) ( ) ( )1
;f p L

c
=Θ Θθ θ θ    [12.15] 

In this equation L is the likelihood of the observations which is defined in case of 
independent observations by: 

( ) ( )( )

1

;
Q

q

q
L f

=

= ;∏ Xθ x θ   [12.16] 

and c  is a normalizing constant defined by ( ) ( )
D

c p L d
Θ

= ; Θ θ θ θ . From [12.15] 

and [12.16] we can further obtain the predictive distribution of X , namely:  

( ) ( ) ( )p

D
f f f d

Θ
Θ= ,X Xx x θ θ θ   [12.17] 

More directly the point posterior distribution of X reads ( ) ( )ˆˆ ff = ,XX
x x θ , 

where θ̂  is a characteristic value of the posterior distribution ( )fΘ θ , e.g. the mean 

or median value. 

12.5.2. Bayesian updating of the model basic variables 

As observed from equation [12.2], each measurement data may be modeled by a 
random variable whose conditional distribution with respect to the vector of input 
variables reads:  
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( ) ( )

( )( ) ( )( )
( )

/ 2 1/ 2 1

; ;

1
(2 ) (det ) exp

2

q
obs

q q
M

q qM

f t t

t t

ϕ

π

    
        |     

   − − −
      
   

, = − ,

 ≡ − − , ⋅ ⋅ − ,  

Y X
y x y x C

C y x C y x



 
T   [12.18] 

Let us denote by ( )pX x  the prior distribution of the input random vector X , i.e. 

the one used in reliability analysis before introducing measurement data. Using 

Bayes’s theorem, we can evaluate the posterior distribution denoted by ( )fX x
through the likelihood of the measurement data gathered in  : 

( ) ( ) ( ) ( ) ( )( )

1

1 1
;

Q
qq

M obs
q

f p L p t
c c

ϕ   
      =

= ; = − ,∏X X Xx x x x y x C    [12.19] 

The normalizing constant c in the above equation ensures that ( )fX x is a 

distribution (of integral 1). Its computation may be carried out using simulation 
methods (such as Monte Carlo simulation, Latin Hypercube Sampling, etc.) or 
numerical integration (e.g. the Gauss quadrature method). However, this is a rather 
complex computational task. 

Another approach consists of sampling according to this posterior distribution by 
using a method that does not require the computation of the normalizing constant c. 
This is one feature of the so-called Markov Chain Monte Carlo simulation methods 
presented in the previous chapter.  

Various algorithms such as the Gibbs sampler or the Metropolis–Hastings 
algorithm [HAS 70] are available; see a review in [NTZ 09]. The Metropolis–
Hastings algorithm is an acceptance/rejection algorithm that works as follows. 
Suppose a random vector X of prescribed PDF ( )f X x  is to be sampled, and 

suppose the PDF has a complex expression that may be evaluated for any value x up 

to a constant. A Markov chain is initiated (value ())x ). At the current state of the 

chain ( )kx  at iteration k, the next point ( 1)k+x  is evaluated as follows: 

 ( ) ( )( ) ( )
( 1)

( )

x x | x with probability x , x ,
x

x otherwise

k k
k

k

q α+

= 


  [12.20] 

In this equation )( )(kq xx  is the transition (or proposal) distribution that is 

selected by the analyst and )~,( )( xx kα is the acceptance probability. A common 

transition is obtained by generating the candidate x~  by adding to each component a 
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random disturbance to ( )kx according to a prescribed (e.g. zero-mean Gaussian) 
distribution.  

( )( ) ( ) ( ) 2x x ; 0,k k k
i i iζ ζ σ= +     [12.21] 

This is the so-called random walk algorithm. In this case the acceptance 
probability is reduced to: 

( )
( )

(x)
(x , x) min 1,

(x )

k X
k

X

f
f

α
  =  
  

  [12.22] 

In order to decide whether the candidate point x~  is retained with the acceptance 

probability )~,( )( xx kα , a random number ( )ku  is uniformly sampled between 0 and 

1. The candidate is accepted if )~,( )()( xx kku α< and rejected otherwise. Thus a 

sequence of points is simulated, which is proven to behave asymptotically as 
realizations of the random vector X. We must check if the Markov chain has attained 
its stationary state, i.e. that a sufficiently large number of points has been simulated. 
Various heuristic control methods have been proposed in the literature; see for 
instance a review in [ELA 06]. 

The Metropolis–Hastings algorithm may also be used in a cascade version in 
which the candidate point is first accepted or rejected with respect to the ratio of 
prior distributions, then with respect to the likelihood ratio. The algorithm proposed 
by Tarantola [TAR 05] for this purpose is now described. 

[Initialization] 0k =  : The Markov chain is initialized by (0)x  which can be 
randomly selected or deterministic (i.e. the vector mean value). 

While MCMCk N≤ ( NMCMC is the size of the MCMC sample set) DO 

1. Generate a random increment )(kζ ~ N(0,σ²) and a candidate 
)()(~ kk ζ+= xx .  

2. Evaluate the prior acceptance probability: 












=
))((

)~(
,1min)~,( )(

k
Xf

Xf
P

k

x

x
xxα  

3. Randomly generate up~ [0,1]. If )~,( )( xx k
PPu α<

 
then x~  is accepted (Go to 

4.) otherwise it is rejected (Go back to 1.) 



238     Construction Reliability 
 

4. Evaluate the likelihood acceptance probability 

{ }( ) ( ; )
( , ) min 1,

( )( ; )

k L
L kL

α =
x

x x
x






 , where the likelihood function L has been 

defined in equation [12.19]. This step requires a run of the deterministic model . 

5. Randomly generate uL ~ [0,1]. If )~,( )( xx k

LLu α<  then x~  is accepted:  

( 1)k+ ←x x  and 1k k← + . Otherwise x~ is rejected. 

Coming back to the initial problem of updating the predictions of a model by 
using observation data, the MCMC algorithm is applied in a cascade to the posterior 
distribution of the random vector X, as defined in equation [12.19]. The sample set 
of points that is obtained, say { }( )(1)' , , MCMCN= x x  , is then used as input of a 

Monte Carlo simulation of the model . In practice the evaluations of  onto the 

sample set ’ have already been carried out during the process of generating ’. 

Computing the updated confidence intervals of the model prediction reduces to an 
estimation of the related empirical quantiles on the already available response 

sample set ( ) ( ){ }( )(1) , , MCMCNx x  .  

In conclusion, the Bayesian approach based on Markov Chain Monte Carlo 
simulation allows us to update the distribution of the input random vector by 
incorporating the observations made on the system response. From this updated (i.e. 
posterior) distribution, updated confidence intervals may be computed that compare 
with those obtained by the “updated inverse FORM” algorithm. Both approaches 
will now be benchmarked on an industrial example in the following section. 

12.6. Updating the prediction of creep strains in containment vessels of nuclear 
power plants  

12.6.1. Industrial problem statement  

The containment vessel of a nuclear power plant contains the reactor pressure 
vessel and the components of the primary circuit, namely pumps, steam generators 
and pipes. The leak tightness of this vessel is guaranteed in case of a hypothetical 
accident such as a loss of coolant accident (LOCA) that could happen when a pipe is 
ruptured, thus generating a rapid pressure increase within the vessel while possibly 
releasing radioactive products from the primary circuit. 
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The containment vessels of French pressurized water reactors (PWRs) are made 
of one or two walls, each made of reinforced and pre-stressed concrete. The so-
called concrete creep phenomenon, which corresponds to delayed strains in concrete 
due to ageing, leads to a decrease of the tension of the pre-stressing cables over 
time. In order to assess the safety of the containment vessel all along the lifetime of 
the plant in the context of hypothetical LOCA accidents, it is necessary to accurately 
predict the evolution over time of the delayed stresses and associated loss of cable 
pre-stress. 

However, the creep phenomenon is very complex in nature. Its physical origins 
are not fully understood, especially when its kinetics over long-term time scales is 
concerned. In order to bypass the lack of detailed modeling, a detailed monitoring of 
the containment vessels has been installed. Thus measurements of the delayed 
strains in standard conditions are carried out on a regular basis. The Bayesian 
framework that has been presented in the previous sections is well adapted to exploit 
this experimental feedback together with physical models of creep. 

12.6.2. Deterministic models 

Let us consider a cylindrical portion of the containment vessel that is sufficiently 
far away from local geometrical details (reinforcements, material hatch, etc.) so that 
it is relevant to consider that the concrete stress tensor under cables pre-stress is bi-
axial (the pre-stress cables are vertical and circumferential in this zone). The 
mechanical model used in the sequel for delayed stresses is defined in the French 
standard BAEL [BAE 99] although it takes into account specific modifications as 
investigated by Granger for containment walls [GRA 95].  

Accordingly the total strain tensor ε  can be broken down into the elastic, creep 
and shrinkage components: 

( ) ( ) ( ) ( ) ( ) ( )el as ds bc dc
d l d d l d lt t t t t t t t t t t t t, , = + , + , + , + , ,ε ε ε ε ε ε   [12.23] 

where: 

– t  is the time spent starting from the concrete casting, dt  denotes the time when 

drying starts and lt  denotes the time of loading, i.e. cable tensioning in the present 

case; 

– ( )el tε  is the elastic strain; 

– ( )as
dt t,ε  is the autogenous shrinkage, corresponding to the shrinkage of 

concrete when insulated from humidity changes; 
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– ( )ds
dt t,ε  is the drying shrinkage; 

– ( )bc
lt t,ε  is the basic creep corresponding to the creep of concrete when 

insulated from humidity changes; 

– ( )dc
d lt t t, ,ε  is the drying creep.  

The following models are used for each component. The elastic strains are 
related to the stress tensor σ  by Hooke’s law: 

1
(tr )

el el
el

i iE E
ν ν+= −ε σ σ 1   [12.24] 

where iE is the elastic Young’s modulus (measured at lt t= ) and elν is the Poisson’s 

ratio. The autogenous and drying shrinkage are modeled (with a time unit of one 
day) by:  

2

100
( ) ( )

50 50 45 4
as as ds dsd d

d d
d m d

t t t tRHt t t t
t t R t t∞ ∞

− −−, = , =
+ − / + −

ε ε 1 ε ε 1    

 [12.25] 

In these equations 
as
∞ε  is the asymptotic autogeneous shrinkage and ds

∞ε  the 

asymptotic drying shrinkage, RH is the relative humidity in %, Rm is the drying 
radius (half of the containment wall thickness, in cm) and 1 is the unit strain tensor, 
meaning that these strains are isotropic. The basic creep is modeled by:   


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 [12.26] 

where cν  is the creep Poisson’s ratio. The drying creep is modeled by:  

( )tr 2
( ) 3200 ( ) ( )dc ds ds

d l d l d
i

t t t t t t t
E

/, , = , − ,σε ε ε 1  [12.27] 

In a pre-stressed concrete containment vessel, the stress tensor may be regarded 
as bi-axial in the current zone, i.e. having a vertical component 0 9.3zzσ =  MPa and 

an orthoradial component 0 13.3θθσ =  MPa. The drying radius, which is equal to half 
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of the wall thickness, is 0.6 m. The cable tensioning is supposed to occur two years 
after the casting of concrete ( 2 years).l dt t− =  

Due to the presence of reinforcing bars and pre-stressed cables, the above 
equations for creep and shrinkage (initially obtained for unreinforced concrete) are 
corrected by a multiplying factor λ = 0.82 obtained from the design code and 
experimental results [GRA 95]. The other parameters are modeled by independent 
random variables, whose parameters are gathered in Table 12.1.  

Parameter Notation Distribution Mean value Coefficent of 
variation 

Concrete Young’s 
modulus i

E  LogNormal 33,700 MPa 7.4 % 

Poisson’s ratio elν  
Truncated normal 

[0; 0.5] 
0.2 50 % 

Creep Poisson’s ratio cν  
Truncated normal 

[0; 0.5] 
0.2 50 % 

Relative humidity RH  
Truncated normal 

[0; 100%] 
40% 20 % 

Max. autogenous 
shrinkage strain 

asε ∞  LogNormal 6
90 10

−×  10 % 

Max. drying shrinkage 
strain 

dsε ∞  LogNormal 6
526 10

−×  10 % 

Table 12.1. Concrete creep model – probabilistic description of the parameters 

A fictitious containment vessel is considered for which it is supposed that 
experimental measurements of the axial strain zzε are available. Measurements are 

supposed to have been carried out approximately every 150 days from 1,500 and 
2,500 days after the concrete structure was loaded. They are reported in Table 12.2. 

The measurement/model error is supposed to be normally distributed with zero 

mean value and standard deviation 6
15 10

−. . The various errors at different time 
instants are assumed to be independent.  
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Measurement Date (days) Value (10-6) 

#1  1152  497  

#2  1303  523  

#3  1451  590  

#4  1601  652  

#5  1750  685  

#6  1900  756  

#7  2054  777  

#8  2201  822  

#9  2153  858  

#10 2501  925  

Table 12.2. Concrete creep model – fictitious strain measures 

12.6.3. Prior and posterior estimations of the delayed strains 

All the simulation results have been obtained using the probabilistic model 
reported in Table 12.1. The prior 95% confidence interval on the vertical strain zzε  

is computed by the “inverse FORM” approach. Results are gathered in Figure 12.1, 
in which the measurement values from Table 12.2 have also been plotted. These 
results have been validated by Brute Force Monte Carlo simulation [PER 08].  

It can be observed that using the prior estimation of the parameters’ distribution 
(Table 12.1) leads to a large underestimation of the vertical delayed strains of 
c.40%. This can be explained by the fact that the values of the prior model 
parameters have been taken from a building code (BAEL) and thus are not well 
adapted to the specific concrete used for containment vessels. 

The “updated inverse FORM” approach is then applied using the measurement 
values in Table 12.2. Results are plotted in Figure 12.2. It can be observed that the 
posterior 95% confidence interval now covers the experimental data and that it is 
much smaller than the prior interval. The Bayesian framework has allowed us to 
reconcile the experimental data with the model and to reduce the uncertainty in the 
prediction of the long-term behavior of the structure. It has been shown in [SUD 06] 
that the posterior result is not very sensitive to the number of data used for the 
updating process since the time variation of creep is rather slow and smooth. 



Bayesian Updating Techniques in Structural Reliability     243 

 

Figure 12.1. Prior predictions of the vertical total strain zzε  
and fictitious experimental results  

The MCMC approach for updating the distributions of the input parameters has 
also been applied. The results are plotted in Figure 12.3 and corroborate those 
obtained by the “inverse FORM” approach, the maximal discrepancy between the 
updated quantiles obtained by each approach being less than 4%. The obtained 
updated confidence interval is slightly tighter than that obtained by inverse FORM 
(Figure 12.2) and four times smaller than the prior interval. 

 

Figure 12.2. Prior/posterior predictions of the vertical total strain zzε  obtained by the 
“updated inverse FORM” approach and experimental results  
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Figure 12.3. Prior/posterior predictions of the vertical total strain zzε  obtained by MCMC and experimental results  

 

Figure 12.4. Prior and posterior distributions of selected random variables  
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As indicated in section 12.5, the MCMC method yields the posterior distribution 
of the various input random variables of the problem. Some of these distributions are 
plotted in Figure 12.4. We can observe that all the posterior distributions are less 
scattered than the corresponding priors: adding information within the 
computational model has reduced the uncertainty. 

12.7. Conclusion 

Structural reliability methods are usually used when designing a complex 
structure so as to guarantee that the failure probability associated with various 
criteria is sufficiently low. For exceptional civil engineering structures such as 
cable-stayed bridges or nuclear concrete containment vessels, monitoring is usually 
established from construction of the system. Thus a large amount of data is collected 
all along the lifetime of the system. In this chapter it has been shown that this data 
may be used in order to refine the long-term evolution of the structure.  

The Bayesian updating techniques presented in this chapter allow the analyst to 
address this question efficiently. The “inverse FORM” approach only updates the 
quantiles of the model response, without yielding any additional information on the 
model input variables. By contrast, the Markov Chain Monte Carlo simulation 
allows the distributions of the input variables to be updated from a prior to a 
posterior estimate. The latter posterior distributions may be re-propagated through 
the mechanical model in order to obtain updated quantiles. 

The same methods have been used successfully to predict the crack propagations 
in steel structures [SUD 07] and the delayed strains of a concrete containment vessel 
by using a detailed (finite element) model for creep and shrinkage [BER 11]. In the 
latter case, the computational cost of a single run of the model is rather large. Thus a 
surrogate model of the finite element model was built first, namely a polynomial 
chaos expansion (see Chapter 8 for details). This surrogate, which is essentially a 
polynomial function of the input variables, may then be used straightforwardly 
within the MCMC algorithm. 

In conclusion, it should not be forgotten that the Bayesian framework, although 
an elegant approach for integrating experimental feedback into computational 
models, cannot completely replace proper physical modeling: in particular, a 
physical model  should at least describe the general trend of the time evolution of 

structural behavior in order to obtain relevant results. 
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Introduction to Part 5 

To cope with structural degradation, maintenance operations aim to preserve an 
acceptable level of reliability over all the desired service life. Preventive 
maintenance allows us to considerably reduce failure probability but leads to 
additional costs which are, in many cases, due to benefit losses resulting from 
system unavailability. The objective of a maintenance policy is therefore to search 
for the best compromise between the conflicting requirements of cost and reliability. 
An optimal maintenance plan has to ensure the best reliability/availability at the 
lowest possible cost. 

This part of the book aims to provide an understanding and basic illustration of 
the application of reliability-based maintenance optimization. Chapter 13 introduces 
maintenance concepts by describing various types of maintenance to be applied, 
with the corresponding maintenance models to be used, in order to improve 
structural reliability. Chapter 14 provides a detailed look at maintenance cost models 
and describes criteria for choosing the appropriate policy, where an illustrative 
example is provided for tubular pipe under corrosion. Finally, Chapter 15 presents 
two industrial applications and discusses the limits of this type of study in the 
context of multiple criteria, focusing on studies of the maintenance of a highway 
concession and of a cooling tower in a nuclear power plant, to illustrate the main 
concepts presented in Chapters 13 and 14. 



Chapter 13  

Maintenance Policies 

13.1. Maintenance 

Maintenance can be defined as the combination of operations allowing the 
system being considered to be maintained in a desired state of performance. The 
possible operations include inspections, repairs and replacements. This chapter 
defines various types of maintenance, as well as some definitions related to 
structural lifetime, T. Remember that the failure probability is denoted as Pf and 
reliability by R = 1-Pf. The failure rate, given as )(tλ , and measured at time t, can be 

simply defined as the number of failed items per unit time. Readers can refer to a 
number of works [LAN 05], [MOR 01], [NAK 02] for more details concerning the 
concepts related to the evaluation and management of ageing industrial systems, in a 
wider scope than just for construction. 

13.1.1. Lifetime distribution 

Distribution of lifetime T, denoted fT, can be estimated either by a physics 
approach or by statistical approaches. For most industrial systems, the specification 
of “mean lifetime” mT does not present a useful indicator (Figure 13.1), as a very 
high failure probability leads to undesired consequences in terms of economic and 
life losses. By contrast, the specification of “guaranteed lifetime”, corresponding to 
very low failure rate, implies the under use and underating of a system, and 
consequently leads to economic losses that could be avoided. We can therefore 
define the “technical–economic lifetime” as the service time behind which either the 
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industrial risk is considered very high, or required additional investments cannot be 
refunded during the system’s future life. An optimal compromise can be found on 
the basis of this technical–economic lifetime, corresponding to the minimum 
expected total cost. This solution can be obtained by optimal balancing of initial and 
additional investments, risk of losses and costs of monitoring and maintenance 
actions. 

 

Figure 13.1. Lifetime distribution 

13.1.2. Maintenance cycle 

At the beginning of a service life, a structure is in a state of good operation until 
the occurrence of its first failure (Figure 13.2). In many cases, a system is partially 
or totally repairable (or replaceable) and can re-start a new life-cycle until the next 
failure. The consideration of failure in service is generally accompanied by some 
administrative and technical delay which should be taken into account before 
starting effective repair operations which themselves require a specific time interval. 
Knowing that uncertainties cannot be avoided, the duration corresponding to each 
state is intrinsically random and, consequently, we should not only consider the 
mean values but also the associated dispersions. Figure 13.2 illustrates the evolution 
of a system in service, and we can distinguish the following periods: 

– Mean Time To (first) Failure (MTTF): corresponding to the expected time for 
the occurrence of the first failure after the beginning of the system’s operation. For 
unrepairable systems, the MTTF corresponds to the expected lifetime; 

– Mean Time Between Failures (MTBF): corresponding to the expected time 
between two successive failures of the same component/structure, including the 
down time during maintenance (i.e. this time is defined by the interval between the 
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moments of the occurrence of successive failures). The MTBF is divided into an 
operation period, known as the Mean Up Time (MUT), and a non-operating period, 
known as Mean Down Time (MDT); 

– Mean Up Time (MUT): corresponding to the expected operation time from the 
end of repair till the next failure; 

– Mean Down Time (MDT): corresponding to the expected time during which 
the system is stopped, from the occurrence of failure till the effective re-start of 
operation after repair. MDT itself can be divided into two parts: Mean Waiting Time 
(MWT) and Mean Time To Repair (MTTR); 

– Mean Waiting Time (MWT): corresponding to the lapse of time before 
discovering the failure, for administrative procedures and for waiting for ordered or 
transported spare parts; 

– Mean Time To Repair (MTTR): corresponding to the time necessary to carry 
out the repair operation, after having the material and human resources, until the 
total recovery of the service. 

 

Figure 13.2. Maintenance cycle for repairable systems 

13.1.3. Maintenance planning 

The utility of a structure depends on its capability to ensure good operation on 
one hand, and the socio-economic conditions, on the other hand. The capability of 
ensuring good operation is generally sensitive to the use conditions, the environment 
(especially climatic and geotechnical), the quality applied (materials, methods of 
analysis, transport or construction, etc.) and the procedures of maintenance and 
inspection. The use conditions are often affected by climatic, geotechnical and 
socio-economic environment. The maintenance itself is affected by the environment 
and by the applied quality (Figure 13.3). 
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Figure 13.3. Inter-dependence of the conditions defining a structure’s utility 

Maintenance planning should be based on equilibrated combination of 
preventive and corrective operations, in coherence with inspection results. The 
maintenance policy provides the sequence of decisions at various stages of the 
structure’s life. At the design stage, the maintenance parameters should be defined in 
an optimal way. At the operation stage, the designer and the user/owner should 
specify the inspections and actions in order to allow for better knowledge and 
management of the structure’s lifetime and performance (Figure 13.4).  

 

Figure 13.4. Decision tree for inspections 

The inspection parameters are the time span between successive inspections on 
one hand, and the depth of those inspections on the other hand. The inspection depth 
depends on the methods to be applied and their quality (i.e. technique, operator 
qualifications, etc.). The inspection results should lead to enough information to 
allow a decision to be made, with more or less precision, about whether maintenance 

Maintenance

Climatic and 
geotechnical 
environment

STATE 
of the stucture Utility

Socio-economic
environment

Operating
conditions

Quality



Maintenance Policies     257 

actions should or should not be performed. The main objective in this tree consists 
of minimizing the maintenance cost1, by taking into account safety constraints, and 
respect of standards, codes and regulations, without forgetting the limits of the 
available budget. 

Therefore, the objective of a maintenance policy is to maintain the structure in a 
state of “good operation”. The aim is to keep “the observed reliability during 
operation”, called “operational reliability”, higher than the “target reliability”, called 
“intrinsic reliability”. This reliability-based maintenance policy consists of defining 
the tasks related to the following aspects: 

– failure modes; 

– failure causes;  

– detection tools; 

– maintenance tools; 

– procedures, methods and systems provided to realize maintenance; 

– quantities (in terms of the outcome of maintenance and inspections), as well as 
the corresponding decisions. 

13.2. Types of maintenance 

Various classifications of maintenance action appear in the literature. According 
to Figure 13.5, the maintenance can be either preventive or corrective. Preventive 
maintenance can be either systematic, according to a time schedule defined in 
advance, or conditional, continuous or on request, or scheduled as a function of the 
information collected during the service life. At the same time, corrective 
maintenance can be either delayed, if the system can operate without risk until the 
scheduled time, or performed urgently, when repair is necessary to ensure safety and 
good operation. 

13.2.1. Choice of the maintenance policy 

The choice of a maintenance policy depends on at least three criteria: (i) the 
impact of maintenance on the requirements of safety, availability and cost; (ii) the 
data characterizing the degradation; and (iii) the quality of performed inspections. 
When the impact of preventive maintenance is low, we prefer to wait until failure; 
corrective maintenance must be adopted for failed components (Figure 13.6). 
                                   
1 The terminology of optimization under maintenance constraint (i.e. minimization of the 
expected total cost or maximization of expected utility) will be specified in Chapter 14. 



258     Construction Reliability 
 

However, if the failure cost is high, then preventive maintenance becomes 
necessary. If the mean time to failure can be estimated, verified or checked, 
preventive maintenance can be planned at regular time intervals (whether calendar 
time, real operation time, or any other specific time function).  

 

Figure 13.5. Classification of various types of maintenance [CEN 01] 

If the degradation can be inspected or monitored, preventive maintenance should 
be based on the knowledge of the real state of the system. However, in some cases, 
the programming of maintenance is not possible, due to large uncertainties regarding 
failure rates. We may face this situation when the induced failure cost is very high 
although the state of the system cannot be inspected, or when the failures are 
recurrent with low costs. In this latter case, the system should be re-designed in 
order to ensure appropriate robustness. 

In addition to safety obligations, which are often mandatory and dominant, 
preventive maintenance is justified by the economic consequences when the 
following two conditions are satisfied: 

– the preventive operations, or inspections, planned at fixed dates, cost globally 
less than the inevitable random corrective operation that could sometimes be 
performed at critical moments; 

– the failure rate of the system for which we intend to apply a program of 
preventive maintenance, increases due to degradation of the components of the 
system with an increase in financial consequences. 

In continuous production sectors, such as energy production plants and 
petrochemical plants, economic dependence is a result of production losses when the 
system is down, during corrective or preventive maintenance. In the case of 
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corrective downtime, additional costs have to be supported to take into account the 
direct and indirect consequences of failure (i.e. delay, de-damaging, urgent 
operation, etc.). During preventive or corrective operations, maintenance allows 
either the complete restoration of the components concerned or just the repair of the 
failure, with or without modifications of the ageing mechanisms. During corrective 
maintenance of a component, it is possible to take the opportunity of replacing other 
components of the same system preventively; in that case, we talk about 
“opportunistic maintenance”. 

Finally, maintenance actions remain possible right until the stage of high 
degradation, whether this involves regular inspections of a system to know its state 
and the quality of its previous maintenance, in order to decide about the correction 
to perform on the observed damage, or what to repair in order to bring the system 
back to a state close to its initial state, or, ultimately, the replacement of components 
when they reach a state of technical obsolescence. 

 

Figure 13.6. Flowchart of the choice of maintenance policy 
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determine the best possible decisions concerning the type of actions, including 
renovation and recertification of the inspected structure.  

13.2.2. Maintenance program  

A maintenance program consists of actions performed preventively (systematic 
or conditional) or correctively [ZWI 96]. Although systematic maintenance is 
performed at pre-defined times, conditional maintenance is performed when the 
acceptance criterion is reached, and corrective maintenance is performed urgently 
when failure occurs. Observations and inspection results lead to identification of the 
following states: acceptable operation, system to be monitored, or failed system. On 
the basis of the available information, (inspection results, experience feedback, 
expert opinion, etc.), the possible decisions concern the programming of alternatives 
(i.e. tasks of preventive and corrective maintenance) are made. 

 

Figure 13.7. Flowchart of maintenance program 
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13.2.3. Inspection program  

An inspection program starts by defining the system and the performance 
criteria (Figure 13.8); this step implies the collection of data concerning the system 
and its environment. A Qualitative Risk Analysis (QRA) is therefore performed to 
determine the failure modes, as well as their causes and consequences (using, for 
example, RAMS methods, as described in Part One). In this step, the logical 
representation of the system must be established, in order to define the required 
functions and the interactions between components and sub-systems. The next step 
consists of estimating the failure rates and consequences, in order to allow for 
ranking according to risk levels. 

 

Figure 13.8. Flowchart of an inspection plan. (“Defining the possible damage” implies 
the definition of degradation mechanisms; counting failures and degradations 

is usually sufficient, compared to evaluation of the failure rate)  
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We can therefore distinguish between two cases: 

– the case where defect measurement is sufficient to indicate the level of 
degradation and performance (direct evaluation of the limit state); and 

– the case where measurement, using models, can help to evaluate the limit state 
(by measurement of material properties, degradation parameters, etc.); this case is 
most commonly observed in real systems. 

An inspection program can be defined in terms of available tools and methods 
for each type of degradation. It is also important to take into account the positive 
impact (improvement of the state of knowledge; see “Model 1” below) or negative 
impact (system degradation) of inspections on the failure probability of the system. 
A comparison between different strategies allows us to make a judicious choice and 
to study the sensitivity of the results in terms of inspection parameters, leading to 
decisions regarding the maintenance plan and actions to be undertaken. 

An inspection result is itself a product of modeling and operation, for a given 
context. We can therefore mention two families: 

– Model 1: the inspection indicates the state of the system with negligible error. 

– Model 2: in situ inspection is affected by non negligible errors, either at the 
detection level, or in the measured defect. 

Besides updating the limit state function, Model 1 allows us to update the 
degradation model itself. In particular, we can use the collected information to 
update the probabilistic model of the measured parameter. This can be performed, 
for example, by means of Bayes theorem (Part Four, Chapters 10 to 12). Model 2 is 
more frequently met in industrial cases. It requires a probabilistic modeling of the 
inspection process itself (see Chapter 2). In fact, much research has been carried out 
to measure the possibilities of updating the probabilistic model in this case, though 
the problem is not considered in this book. 

13.3. Maintenance models 

Preventive and corrective actions can be classified in terms of their effect on the 
operational performances of a structural system: 

– perfect maintenance: As Good As New (AGAN), where the system is brought 
back to its new state; 

– minimal maintenance: As Bad as Old (ABAO), where the system is brought to 
its state just before failure; 
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– imperfect maintenance: Better than Old (BTO), where the performances are 
improved significantly; 

– bad maintenance: Worse than Old (WTO), where performances deteriorate 
after maintenance. 

It is clear that the classification should also take into account the physical aspects 
of the structure and the complexity of the system, in addition to the performed 
actions (repair, replacement of failed components, general or partial revisions, etc.). 
If the system is more or less complex, the maintenance is rather ABAO than AGAN. 

It should be noted that maintenance models can also be established on the basis 
of the As Low As Reasonably Practicable (ALARP) concept. 

13.3.1. Model of perfect maintenance: AGAN 

A perfect maintenance is one which restores a system to its new state; we can say 
that the system becomes “as good as new” (AGAN). This model is particularly 
convenient for replacement of structures or members without any effect on the rest 
of the system (Figure 13.9).When perfect maintenance is performed at time ti, the 
state of the system depends only on its history between ti and t. Knowing that the 
system is perfectly repaired at each failure, its state can be described by “a renewal 
point process”: the failure rate ( )λ ⋅

 
is therefore a function of the time elapsed since 

the last failure/repair action: 

( ) ( )it tthHt −=λ  [13.1] 

where ( )h ⋅  is the hazard function, tH  is the history of the structure, t indicates the 

time and ti is the time at the last operation. 

 

Figure 13.9. “As good as new” maintenance model 
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This scheme implies that the time intervals between successive failures 

1−−= iii ttz  are independent variables which are identically distributed. There is no 

trend for evolution of this variable with time. A special form of this process 
corresponds to a constant failure rate. In that case, the time intervals between 
failures are exponentially distributed. The assumption of perfect maintenance is not 
always verified by observations on real ageing systems; it is generally unproven to 
say that a repair operation makes a system new, unless we only look at it at the 
component or member scale. 

13.3.2. Model of minimal maintenance: ABAO 

Minimal repair is generally a corrective maintenance operation allowing a 
system to be restored to its state just before failure; we can say that the system 
becomes “as bad as old” (ABAO). When minimal maintenance is performed at it , 

the failure rate ( )⋅λ
 
after repair is identical to the one just before failure: 






=







−+
−+

ii titi HtHt λλ  [13.2] 

where −
it  and +

it  are respectively the times just before the i-th failure and just after 

the i-th repair. 

In this type of maintenance, the reliability function is not affected by the events: 
failure–repair and the system have the property of “memory loss”. If the system is 
subject to minimal maintenance at each failure without applying preventive 
maintenance, the failure rate remains a continuous function for the whole lifetime of 
the structure and does not depend on the history of the process, but only on the 
operating time: 

( ) ( )tHt t ρλ =  [13.3] 

where )(tρ  is the failure intensity, defined as the number of failures per unit time. 

The assumption of minimal repair leads to a Poisson process (i.e. a counting 
process where the increments are independent and distributed according to Poisson 
law). The occurrence probability of k events in the interval [ ]ttt Δ+,  can be written 
as: 

[ ] [ ] ( ) 0 1 2
kM ( t ,t t )

P N( t ,t t ) k exp M ( t ,t t ) for k , , ,
k !

Δ
Δ Δ

+
+ = = − + =   
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where ),( tttN Δ+  is the number of failures in the interval [ ]ttt Δ+,  and 

),( tttM Δ+  is the mathematical expectation of this number during the same 

interval, obtained by: ( ) ( )[ ] 
Δ+

=Δ+=Δ+
tt

t
duutttNEtttM )(,, ρ   

Let Z be the Poisson process modeling the evolution of time intervals between 
failures. The random variables )( ii tZZ =  can be neither identical nor independent. 

The conditional probability density function ( )1−iZ tzf
i

 of iZ  depends on the last 

failure time, noted as 1−it : 

( ) ( ) ( )1 1 1
0

for 0
i

z
Z i i if z t t z exp t u du zρ ρ− − −

 = + − + ≥ 
   [13.4] 

Contrary to renewal processes, only the first interval ],0[ 1t  is characterized by a 

failure rate equal to )(tρ . 

13.3.3. Model of imperfect or bad maintenance: BTO/WTO 

In most cases, maintenance operations lead to an improvement of the state of the 
system, without making it new; we say that the system is “better than old” (BTO). 
Among the possible reasons for this situation, we can mention imperfections in 
repair methods, defects induced by the operation itself, the effect of human factors, 
the impact of the procedures on the rest of the system (e.g. assembly, disassembly), 
etc. In some cases, maintenance can be bad when the induced errors and defects are 
significant, if the maintenance staff is not qualified or has insufficient experience, or 
the working conditions are difficult or inappropriate; in such cases we say that the 
maintenance is “worse than old” (WTO). Another reason for BTO/WTO 
maintenance is the application of a “minimal repair time” policy instead of a 
“minimal repair” policy, in order to increase system availability. Several models 
have been developed to describe this type of maintenance. 

13.3.3.1. Arithmetic Reduction of Age (ARA) model 

The Arithmetic Reduction of Age (ARA) model consists of a reduction of the 
structural age with an amount proportional to the operation time elapsed since the 
last maintenance action [DOY 04]. In other words, each maintenance operation 
allows us to reduce the damage developed since the previous maintenance. The age 
reduction can be obtained by the expression: 

( ) ( ) 10 1t i it H h t t for and t t tιλ γ γ−1 −= − ≤ ≤ ≤ ≤  [13.5] 



266     Construction Reliability 
 

where γ  is the efficiency parameter. In this case, the failure rate contains jumps at 

each maintenance operation. The special cases of minimal or perfect repairs are 
obtained when the efficiency parameter is equal to 0 or 1, respectively. 

13.3.3.2. Non Homogeneous Gamma Process (NHGP) 

The effect of imperfect or inefficient maintenance can be considered by 
assuming that the system is subject to jumps, also called “shocks”, which happen 
according to a Non Homogeneous Poisson Process (NHPP) of intensity ( )tρ . The 

failure takes place, not at all the jumps, but only at the k-th jump. For k > 1, the 
component is in a better state after maintenance and, consequently, the process 
describes the case of imperfect maintenance. However, for k < 1, the state of the 
component is degraded after each maintenance operation (i.e. in the case of WTO 

maintenance). The random variable “numbers of jumps”: ( )
−

= i

i

t

ti dttN
1

ρ  is 

independent and identically distributed according to Gamma law with identical scale 
and shape parameters, equal to k. The failure rate is given by: 

( )
( )( ) ( )( )

( )

( )( ) ( )( )
( )

1 1
1

1
1 1

1

k i
i

t i
k i

it

exp E N t ,t
( t ) E N t ,t

k
t H for t t

exp E N t ,z
( z ) E N t ,z dz

k

ρ
Γ

λ

ρ
Γ

− −
−

−
∞ − −

−

 −    
= >

 −    
 [13.6] 

with ( )[ ] ( )
−

=−

t

ti
i

dzzttNE
1

,1 ρ  the expectation of the number of jumps between the 

last failure and the time t. The process indicated above is called a Non 
Homogeneous Gamma Process (NHGP). For k = 1, this process is reduced to a Non 
Homogeneous Poisson Process (NHPP), corresponding to minimal repair; when 

( ) ct =ρ , the process becomes a renewal process with times between failures 

distributed according to Gamma distribution, with scale parameter c and shape 
parameter k. 

13.3.3.3. Lawless-Thiagarajah model 

An interesting form of the failure rate which allows the inclusion of time 
dependence and the effect of observed failures can be written as: 

( ) 









= 

=

n

i
iit tgHt

1

)(exp θλ   [13.7] 
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where iθ are the model parameters and )(tgi are functions depending on the time 

and on the history of the process Ht. Particular forms of this equation can be written: 

– ( ) ( ) ∞<<∞−++= γβαγβαλ ,,)(exp withtutHt t   

– ( ) ( ) 0,0)( 11 >+>= −− δβγγλ δβ withtutHt t  

– ( ) ( ) [ ] 0,,)(exp 1 >∞<<∞−+= − δβθβθδλ δ withtutHt t   

where u(t) is a time function. The two last forms of the failure rate are, respectively, 
associated with renewals of the Weibull and Weibull log-linear models. 

13.3.3.4. Arithmetic Reduction of Intensity (ARI) model 

Another way to take into account the beneficial effect of maintenance consists of 
reducing the failure rate, either by a constant quantity, or proportional to the failure 
rate before maintenance. The intensity reduction can be obtained by: 

( ) ( ) 0
i i

i it tt H t H withλ δ λ δ+ −
+ −= >  [13.8] 

The parameter δ indicates the maintenance efficiency, while 1<δ  corresponds 
to imperfect maintenance, 1>δ  indicates worse than old maintenance, and 1=δ  
corresponds to minimal repair. At the ith failure, the failure rate is written as: 

( ) ( ) 1+≤<= ii
i

t
tttwithtHt ρδλ  [13.9] 

where ( )tρ  is the failure intensity before the first failure. 

13.3.4. Complex maintenance policy 

A complex maintenance policy is made up of a combination of elementary 
maintenance actions, in order to minimize the cost or to increase availability. 
Various maintenance policies can be introduced, as summarized in Figure 13.10. 

13.3.4.1. Sequence of perfect and minimal repairs, without preventive maintenance 

Consider the following case: a structure is repaired when failure occurs, without 
preventive actions. The system is assumed to be subject to two types of failure: 
catastrophic with probability p and minor with probability 1-p. The latter is 
corrected with minimal repair. A Non-homogeneous Poisson Process (NHPP) starts 
at each perfect repair. The distribution of times between successive perfect repairs is 
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given as: ( ) [ ]p
p tFtF )(11 1−−=  and the corresponding failure rate is: ( ) )(1 tptp λλ = . 

The intensity is given by: 

( ) ( ) iiit
tttwithtthHt ≤<−= −− 11λ  [13.10] 

This quantity is numerically equal to the failure rate of the first failure, with age 
given as 1−− itt .  

13.3.4.2. Minimal repairs with perfect preventive maintenance 

In this scheme, preventive maintenance renews the state of a structure. In each 
time interval, a minimal repair is performed when failure occurs. In other words, at 
each maintenance cycle, a piecewise Non-Homogeneous Poisson Process (NHPP) 
can be defined. The variations of operating and environmental conditions between 
different cycles can be considered by introducing a covariance between the cycles:  

( ) 







= 

j
jijji tcthth ,0, exp)(  [13.11] 

where ( )th ji ,
 is the failure rate of the “time at the jth failure” during the “ith cycle of 

maintenance”, jit , are the corresponding times and jc are regression coefficients. 

13.3.4.3. Imperfect repairs with perfect preventive maintenance 

This scheme consists of performing repairs of type BTO when failure occurs, 
combined with component renewal during preventive maintenance of type AGAN. 
This policy represents the case of repairs in difficult conditions, the case of incident 
events, and complete replacement at planned times as part of preventive 
maintenance. 

Type of 
maintenance 

Policy 1 Policy 2 Policy 3 Policy 4 

Corrective 
Maintenance 

Perfect 
or minimal 

Minimal Imperfect Minimal 

  
Preventive 

Maintenance 
Nothing Perfect Imperfect Imperfect 

Figure 13.10. Examples of maintenance policies 
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13.3.4.4. Minimal repair with imperfect preventive maintenance 

This policy is probably the closest one to real structures. A minimal repair can 
always be expected in case of failure, while preventive maintenance cannot often be 
perfect. This policy aims at minimizing the down time due to failures and 
consequently maximizing system availability. 

13.4. Conclusion 

This chapter has introduced the vocabulary related to maintenance of structural 
components and infrastructures. Corrective or preventive maintenance can be 
divided into many types of actions, to be selected in an optimal way. The rich 
literature available should be consulted to provide simple analytical models. These 
models should be completed to include degradation mechanisms which are defined 
by complex phenomena with large uncertainties. A solution can therefore be 
obtained by applying numerical methods and optimization algorithms. The 
probabilistic approach allows us to take account of uncertainties related to 
degradation processes and to inspection and maintenance operations. 

A probabilistic model of failures and degradations can be a decision-making tool 
for engineers and decision-makers, allowing the selection of an appropriate 
maintenance strategy. This choice can be a delicate one, for example, choice 
between valid techniques for which there is field experience and new techniques for 
which other advantages are interesting (in terms of performance, economy, etc.).  

Finally, throughout the optimization process, we have to be aware of the 
comparison between the efficiency of various maintenance operations, and the 
consequences of heavy and delayed investments. 
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Chapter 14  

Maintenance Cost Models 

14.1. Preventive maintenance 

Preventive maintenance allows us to ensure an acceptable level of reliability 
during the structural lifecycle. A conditional maintenance policy is based on 
periodic inspections of degradation, which eventurally trigger alarms related to 
repairs and replacements. In practice, however, quantitative knowledge of the state 
of degradation and operation conditions presents many uncertainties, which leads to 
a difficult decision-making process. Therefore, reliability-based maintenance 
becomes mandatory for decision-making. 

The total maintenance cost can be written in the form: 

REPINSPMFM CCCCC +++=  [14.1] 

where MC  is the expected total maintenance cost, FC  is the expected failure cost 

(including operation losses, production losses, and the direct and indirect damages 
due to failure), PMC  is the expected preventive maintenance cost, INSC  is the 

expected inspection cost, and REPC  is the expected repair cost. These costs are 

affected by uncertainties related to the state of degradation of the structure, the 
results of inspections and to repair/replacement methods. Moreover, these 
parameters may vary in terms of socio-economic environment, such as the discount 
rate, inflation and the fluctuations of market prices. 

                                   
Chapter written by Alaa CHATEAUNEUF and Franck SCHOEFS. 
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The failure cost is related to direct damage (human lives, economic losses, loss 
of benefits, environment degradation, etc.) and to indirect damage (procedure fees, 
commercial impact, market losses, expert works, long term effects, etc.). Depending 
on the industry concerned, some costs may increase in an exponential way in terms 
of the failure rate. For example, the public relations/marketing impact, and therefore 
market losses, can jump considerably when the number of failed products becomes 
significant (which is the case in mass production, the automotive industry, 
aeronautics, etc.) or because the perception of risks makes them unacceptable 
(which is the case for nuclear power plants, dams, railways, etc.). In energy 
production industries (e.g. power plants, petro-chemical plants, etc.) the main losses 
are due to benefit losses when production is stopped. Moreover, during the last 
decade, the public has become more sensitive to aspects related to the environment; 
failures inducing pollution are severely punished by justice, politics and public 
opinion. 

Figure 14.1 illustrates the costs of preventive and corrective maintenance, in 
terms of the level of planning. A low level of planning leads to larger number of 
emergency repairs and consequently to a larger total cost. Conversely, a high level 
of planned maintenance costs more and leads to losses due to over-maintenance. The 
optimization of the total maintenance cost allows us to find the best equilibrium in 
terms of the risks to be considered. 

 

Figure 14.1. Illustration of maintenance costs 
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For a maintenance cycle [ ]τ,0  under the assumption of an infinite horizon1, the 

expectation of the maintenance cost per unit time takes the form: 

( )
( ) ( )c p

f
M

C P C R
C

τ τ
τ

τ

+
=  [14.2] 

where τ  is the maintenance interval, cC  is the corrective maintenance cost, pC  is 
the preventive maintenance cost2 and ( )fP τ  is the accumulated failure probability at 

time τ ; reliability is given by the survival probability ( ) 1 ( )fR Pτ τ= − . The choice 

of maintenance strategy depends on the ratio between preventive and corrective 

costs; when cp CC < , preventive maintenance becomes useful, otherwise, 
maintenance should only be performed when the component fails. 

14.2. Maintenance based on time  

Under this policy, preventive maintenance is performed periodically at 
predefined times τk . When a component fails during an interval ( )[ ]ττ kk ;1− , 

corrective maintenance is performed at the failure time. The advantage of this policy 
lies in its simplicity of application for the management of industrial systems, as 
preventive maintenance is previously planned and there is no need to monitor the 
ageing of components. Three versions of the model (I, II, III) can be considered: 

– Model I: the failed component is instantaneously replaced when failure occurs; 

– Model II: the failed component remains unrepaired until the next preventive 
maintenance; 

– Model III: the failed component is subject to minimal repair until the next 
preventive maintenance. 

                                   
1 The hypothesis of infinite horizon admits that the maintenance cycles are repetitive and 
identical at each renewal of the system. By contrast, the hypothesis of finite horizon admits 
that each maintenance cycle is different from a stochastic or economic point of view. 
2 Unlike the notation PMC  and FC  which indicate the mathematical expectation of 

preventive maintenance and failure costs, respectively. The notation pC  and cC  indicate the 
deterministic costs of preventive and corrective maintenance (including the cost of failure), 

respectively. In other words, pC  and cC  are paid only when an event occurs. 
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14.2.1. Model I 

In this model, the failed component is replaced by a new one during the 
maintenance interval, and all the components are systematically replaced at time 
intervals τ . According to renewal theory, the cost per unit time is obtained by: 

( ) [ ]( )c p

M
C E N C

C
τ

τ
τ

+
=  [14.3] 

with [ ] ( )
∞

=

=
1

)()(
i

i
fPNE ττ  being the expectation of the number of failures in the 

interval [ ]τ;0  and ( )τ)(i
fP  indicating the probability of having i failures in the 

interval (i.e. ( ) ( )[ ]iNPP i
f == ττ)( ).  

Under the assumption of only one failure of the same component during the 
interval, the above equation takes the form: 

( ) ( )
τ
τ

τ
p

f
c

M
CPC

C
+

=
 

[14.4] 

with cC  being the corrective maintenance cost and pC  the preventive maintenance 
cost. 

14.2.2. Model II 

In Model I, the component failure is immediately detected when failure occurs. 
In the absence of monitoring devices, it can be assumed that failure is detected only 
at the planned maintenance times τk . In Model II, the failed component remains 
unusable or unoperating after failure, until its detection. The expectation of the 

duration between failure and detection times is given by: ( )
τ

0
dttPf . Therefore, 

the maintenance cost per unit time is written as: 

( )
( )
τ

τ
τ p

f
ct

M

CdttPC
C

+
= 0  [14.5] 

with ctC  being the corrective cost per unit time. 
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14.2.3. Model III 

In Model III, it is assumed that the component undergoes minimal repair when 
failure occurs. The process of the number of failures ( )tN  is not perturbed by the 

failure–repair couple of events. A Non-Homogeneous Poisson Process (NHPP) 
represents the behavior, where the expectation of the failure rate is given by: 

( ) ( )=Λ
t

duuht
0  

[14.6] 

with ( ) ( ) ( )tRtfth /= , called “the hazard function” and ( )tΛ  “the cumulated hazard 

function”. The total cost per unit time is therefore: 

( ) ( )
τ
ττ

pcm

M
CCC +Λ=  [14.7] 

where cmC  indicates the corrective cost of minimal repair. 

14.3. Maintenance based on age 

In this model, only the components which have survived till the planned time of 
preventive maintenance are replaced by new components, otherwise replacement is 
performed at failure. The advantage of this model is particularly significant when 
the only considered actions are replacement by a new component (i.e. repair is not 
considered to be alternative). The total cost per unit time is therefore: 

( ) ( ) ( )
( )
+

= τ

ττ
τ

0
dttR

RCPC
C

p
f

c

M
 

[14.8] 

When the investment is damped for a long duration, it is necessary to update the 
cost by a factor r, called the “discount rate”, taking into account the interest rate, 
inflation and other economic parameters. The present value of a cost is obtained by 

multiplying by the discount function ( )tr+1/1 , which can be replaced by a 

continuous function ( )rt−exp . Under the assumption of infinite horizon, the 

updated expected cost is given by:  
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[14.9] 

14.4. Inspection models 

14.4.1. Impact of inspection on costs 

An optimal maintenance policy minimizes the total cost, including inspection 
and failure costs. A small time span between inspections leads to high costs of 
inspection operations, while a large time interval does not allow for timely detection 
of failures, therefore increasing the possibility of failure. 

The first modeling consists of performing inspections at specific times, where 
each inspection is considered as instantaneous and perfect. The policy considers the 

inspection cost ic
 
and the failure cost .fc  The expected total inspection cost is 

written: 

( ) ( )[ ]
∞

=
+

+
−++=

0
1

1

)(1
k

t

t
fkfiIC

k

k

tdPttckcC  
 

[14.10] 

The solution of this leads to a recursive equation of the time intervals between 
inspections: 

f

i

k

kfkf
kk c

c
tf

tPtP
tt −

−
=− −

+ )(

)()( 1
1  

 
[14.11] 

with the first interval defined as: =
1

0
)(

t
ffi dttPcc  

To simplify the solution method, some approximate formulations of the total cost 
have been proposed in the literature. 

If we let )(tn  be the approximate number of inspections per unit time, the 

expected cost until the detection of the failure can be approximated by: 

( ) 
∞∞

+=
00

)(
)(2

1
)()()( tdP

tn
cdttRtnctnC ffiIC  [14.12] 
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which can be minimized to give: 

( ) ( ) ( ) ( ) / ( )
2

f

i

c
n t h t with h t f t R t

c
= =  [14.13] 

The inspection times thus satisfy the equation: =
kt

dttnk
0

)(  where k is an 

integer.  

14.4.2. The case of imperfect inspections 

In situ inspection of structures is performed in conditions that are far from the 
ideal conditions found in a laboratory. When the operator has an important influence 
on the inspection result (precision and disposition of the material, visual reading, 
etc.), the working conditions directly affect the measurements. External factors such 
as fog, extreme temperatures, difficult working positions or internal factors such as 
fatigue and concentration level can be mentioned here as examples. In such cases, 
we talk about imperfect inspections. 

We can use a probabilistic format to define the corresponding quantities of 
Probability of Detection (PoD) of a defect, and Probability of False Alarm (PFA). 
The calibration of these probabilities can be performed, either on the basis of 
statistical analysis, or by signal analysis. It should be noted that, in the case of 
PFA = 0, a Bayesian updating can be performed on the inspection results in order to 
modify the distribution of defects after inspection. 

The technical performance of Non-Destructive Testing (NDT) devices and the 
chain of decision processes to achieve the information required are generally 
observed from two objectives regarding (i) the presence of defects (capacity of 
detection) and (ii) the measurement of the defect (capacity of measuring the physical 
or geometrical properties, such as the length and the depth of a crack). We can easily 
understand that a measurement (e.g. in the case of a lock or immersed piles of a 
wharf) realized at a number of meters depth is subject to large uncertainties, related 
to the following events:  

– the diver gives s signal to the ground operator (beginning time of measurement 
t0); 

– the diver can handle the NDT device in operation more or less easily 
(depending on complexity of inspected joints, agitation due to waves and marine 
currents); 

– the diver’s vision is strongly reduced; 
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– the quality of the decision is based on the quality of cleaning of the surface to 
be inspected, especially of bio-dirtiness; 

– diver fatigue and respiration difficulties come to increase the above difficulties. 

Details on the available techniques, and their respective advantages and 
disadvantages, for the example of offshore platforms can be found in [ROU 01]. 

14.4.2.1. Basic concepts and the Non-Destructive Testing (NDT) approach 

The application of the concept of Probability of Detection (PoD) was first raised 
in the 1980s [MAD 87], and then became more popular in the middle of the 1990s, 
especially in the planning of inspections according to the Risk Based Inspection 
(RBI) approach [FAB 02a], [FAB 02b], [MOA 97]. [MOA 98], [MOA 99].  

Let us assume that a crack has been detected and we are considering the 
measurement of uncertainties. Let da  be the detection threshold, that is, the size 

under which no crack can be detected. If unknown the distribution of defect d is 
called signal and measured defect “d hat” signal plus noise. The noise is the 
mathematical notion that allows us to model the errors of measurement, 
interpretation, see section 14.4.2. The probability of detection of a measured random 

defect d̂ is therefore defined by: 

( ) [ ]dadPa ≥= ˆPoD  
 

[14.14] 

This definition is practical as long as the defect a can be described by a random 
variable. However, in the operational framework of inspection of real structures, 
defects are generally classified by groups and we prefer a Bayesian 
definition [ROU 03]: 

( ) [ ]11)(PoD === XXdPX  
 

[14.15] 

where X is the event of “defect existence” and d(.) the event “decision”. The 
realization “X = 1” indicates the existence of a defect and “X = 0” the absence of a 
defect. The interest of this formulation lies in the fact that it offers a clear definition 
of the Probability of False Alarm (PFA): 

( ) [ ]01)(PFA === XXdPX  [14.16] 
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If the defect is an event with non-discrete values where the distribution of the 
signal is known, and the distribution of the noise is known, the theory of detection 
leads to the following definitions of the two probabilities, PoD and PFA:  

( ) 
+∞+∞

==
dd a

N
a

SN dfdddf ηη)(PFA;ˆˆPoD  
 

[14.17] 

where fSN and fΝ  indicate, respectively, the probability densities of the variables 
“signal + noise” and “noise”. We can note that the probability density of the noise 
can be defined by the probability conditioned by the measured value. We shall not 
detail these considerations because it is extremely difficult to prove and even to 
quantify them. We can simply note that, physically, for many measurement devices, 
the operator can tune the signal gain more and more finely, if defects are not 
detected with the original settings. In this case, the noise evolves with the 
adjustment and consequently with the defect that we are measuring. The formulas 
PoD and PFA can be modified to include this information in the conditional 
probabilities. 

For a given size or class of measured defect, we can plot the curve relating to the 
points with coordinates (PFA; PoD), by modifying the parameters affecting the 
measurements (according to the case concerned, the parameters can be device 
adjustment, visibility, operator experience, etc.). This curve, Figure 14.2, is 
obtained, in a continuous form, by varying the threshold da ; the curve is called the 

curve of Receiver Operating Characteristics, or simply the “ROC curve”. 

 

Figure 14.2. Receiver Operating Characteristic (ROC) curve: evolution of the probability 
of detection (PoD) versus the probability of false alarm (PFA) [ROU 01] 
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Note that, in case of inspections under severe in situ conditions, such as in high 
mountains, offshore platforms and marine structures, the performance of 
measurement devices is strongly affected (be agitation of waves and storms, 
visibility, temperature, experience and state of fatigue of divers, quality of the link 
with platform supervisor, etc.). Campaigns of inter-calibration of type – 
InterCalibration of NDT for Offshore Structures (ICON) – become necessary, by 
which we measure, for each class of defect (size and typology), the numbers of good 
and bad detections, and calculate the observed probabilities corresponding to the two 
cases: 
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where )(cnb , )(cnF , )(cnn  and )(cnr  are, respectively, the number of existing 

and detected defects, the number of non-existing and detected defects, the number of 
existing and undetected defects, and finally the number of non-existing and 
undetected defects. According to these definitions, )(cpF  is the PFA and )(cpb  is 

the PoD. We can, depending on the considered class of defects, build discrete ROC 
curves. 

14.4.2.2. New concepts for decision-making 

For a structure manager, the questions are often different and new probabilities 
have to be introduced [ROU 03]. In fact, when using Bayesian modeling, we have to 
define the conditional probabilities associated to the following events: 

– E1: non-existence of a crack knowing that a crack is not detected; 

[ ]0)(0][ 11 ==== XdXPPEP  

– E2: non-existence of a crack knowing that a crack is detected; 

[ ]1)(0Pr][ 22 ==== XdXPEP   

– E3: existence of a crack knowing that a crack is not detected; 

[ ]0)(1Pr][ 33 ==== XdXPEP  
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– E4: existence of a crack knowing that a crack is detected; 

[ ]1)(1Pr][ 44 ==== XdXPEP  

Some of these events are complementary and we can deduce the relationship 
between their probabilities: 

P1 + P3 = 1 ; P2 + P4 = 1
 

[14.20] 

We can write these probabilities in terms of PoD and PFA to find: 
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These equations introduce a new measure of probability: the Probability of Crack 
Existence (PCE), so named because these definitions were initially developed for the 
detection of cracks in the oil structure industry. The presence of only probabilities 
PoD and PFA in the same decision scheme is not, therefore, satisfactory. Moreover, 
considering only the PoD is equivalent to considering that PoD = P(d(X) = 1). This 
implies that the two conditions: {PCP = 1 ; PFA = 0}, are satisfied, which are strong 
assumptions. Parametric studies can thus be performed, in order to identify (for 
example) the importance of the PFA. Hence, the information transfer during 
inspection can be drawn as indicated in Figure 14.2, where F1 is an unknown 
function and F2 is described by the nonlinear equations above. 

We note that the laboratory generated Probability of Detection (PoD) is 
discontinuous by class of defects, while the decision-maker needs continuous 
information scales, integrable and differentiable for a numerical analysis. 



282     Construction Reliability 

 

Figure 14.3. Inspection information transfer in the decision process 

Figure 14.4 depicts the evolution of probabilities P2 and P3 for the Probabilities 
of Crack Existence (PCE) varying from 0.1 to 0.5. The ROC curves are therefore 
defined by projections in the plane (PoD, PFA) of the inspection operating curves on 
these surfaces. Three of the ROC curves are illustrated in Figure 14.4.  

  

 

Figure 14.4. Variations of P2 (left) and P3 (right) in the plane (PoD; PFA) for the 
probabilities of crack existence PCE=γ= 0.1 (top figures) and 0.5 (bottom figures) 

F1 

F2
Laboratory 

PoD(lab) 

In situ conditions

Diver + NDT 
Performance + 
Inspection 

Structure 
history  

Planning of 
inspections 

Decision-maker 
In situ conditions



Maintenance Cost Models     283 
 

 

Figure 14.5. Evolution of the Probability of Detection (PoD) as a function of the probability 
of false alarm (PFA): Receiver Operating Characteristic (ROC) curves for the Probabilities 

of Crack Existence (PCE) under various conditional probabilities Pi 

From the curves in Figure 14.5, it can be observed that ROC curves are highly 
sensitive to the variations of PCE and to the studied conditional probabilities Pi.  

14.5. Structures with large lifetimes 

For structures with large lifetimes, such as civil engineering structures and 
infrastructures, it is necessary to take into account the evolution of monetary values, 
which is performed by the mean of discount functions, including interest and 
inflation rates. Moreover, the assumption of infinite horizon cannot usually be 
allowed, as the number of actions is often limited during the lifetime of the structure. 
In this case, the total cost concerning the whole lifetime of the structure should be 
considered, and should include discount effects. When failure occurs between two 
inspections at times 1−it  and it , the expected failure cost is written as: 
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[14.21] 

where )( if tC  is the cost of failure consequences. Moreover, for a number of 

inspections INSN , the expression of the total inspection cost is written: 
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where ( )qC i
ins  is the cost of the thi  inspection which depends on type and the 

quality q , )( itF  is the cumulated failure probability at the thi  inspection and r  is 

the discount rate (often considered between 0.01 and 0.05, and up to 0.09 in the 
nuclear industry). At the end of each inspection, we can associate the Probability of 
Detection PoD(ti) and the Probability of False Alarm PFA(ti); a decision should then 
be taken regarding the system repair, taking account for PoD(ti) and PFA(ti). This 
decision is generally based on admissible reliability levels. The repair and 
replacement cost REPC  depends on the nature and number of actions lNSN  to be 

performed: 
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where )(qC i
rep
′  is the replacement cost at the thi  inspection and ( )iREP tP  is the 

corresponding repair probability.  

14.6. Criteria for choosing a maintenance policy 

Maintenance policies can be based on various criteria to define optimal strategy. 
Garabatov & Guedes Soares [GAR 01] compared strategies based on the following 
criteria: 

– pure economic criterion: the time intervals between inspections and 
replacements are defined by optimal cost of maintenance without constraints on the 
required reliability level; 

– economic criterion with minimal interval: in order to avoid closely scheduled 
operations, a constraint on the minimum time interval between successive operations 
is introduced in the cost optimization problem; 

– pure operational criterion: for a better management of the system and its 
availability, a constant time interval is often adopted for maintenance operations; the 
choice of this interval is based on a minimization of the total maintenance cost; 

– pure reliability criterion: the time interval is determined by the time at which 
the system reliability reaches the minimum acceptable level; due to system 
degradation, the time intervals vary along the lifetime of the structure; 
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– reliability criterion based on inspection quality: in this case, the 
inspection/replacement intervals are regular, but the quality of the operation is 
adjusted such that minimum reliability is ensured over the whole lifetime. 

In general, the purely economic criterion leads to a large reduction of costs, but 
implies frequent maintenance actions. The choice of a specific policy strongly 
depends on the nature of the system and the failure consequences. A reliability 
criterion with consideration of maintenance quality seems to be a reasonable 
compromise to reduce costs, while ensuring appropriate reliability levels. 

14.7. Example of a corroded steel pipeline 

To illustrate some of the above concepts, consider a simple example of a steel 
pipeline subject to corrosion. The system variables and their distribution parameters 
are given in Table 14.1 (for simplicity, all the probability distributions are 
considered as normal). In this example, the tube wall thickness loss is given by the 
corrosion law of type ktn for t > 1, where t is the time in years, and k and n are the 
parameters of the corrosion model. 

By considering the safety margin corresponding to the material strength 
regarding hoop stress, the reliability index is found to be 3.904 (the mean of the 
margin is 4.5 and its standard deviation is 1.153). In the corroded state, the safety 
margin, the reliability index and the failure probability are given by: 
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Variable Symbol Mean Standard 
deviation 

Units 

 

Internal pressure p 4.5 0.9 MPa 

Yield stress fy 360 28.8 MPa 

Mean radius r 200 - mm 

Thickness e0 5 - mm 

Parameter 1 k 0.005 - mm/yr1.4 

Parameter 2 n 1.4 - - 

Table 14.1. Geometrical and mechanical characteristics of the pipeline 

r

e

p
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Figure 14.6 depicts the evolution of the reliability index β as a function of the 
age of the structure t. Table 14.2 indicates various costs involved along the lifetime 
of the pipe. 

 

Figure 14.6. Reliability index as function of the pipe age 

Initial cost of manufacturing and installation C0 = 600 k€ 

Failure cost CF = 30000 k€ 

Perfect preventive maintenance cost CPM = 20 k€ 

Imperfect preventive maintenance cost CIM = 10 k€/mm 

Table 14.2. Costs involved during the pipe’s life 

In this example, perfect maintenance corresponds to replacement of the pipe by a 
new one, and imperfect maintenance consists of applying a coating with cost equal 
to 10 k€ per mm of additional thickness. Without maintenance, the total cost of the 
pipe is composed of the initial and failure costs. The expected total cost is plotted in 
Figure 14.7 as a function of the pipe age, where a minimum is observed at 41 years, 
corresponding to its economic lifetime without maintenance. 
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Figure 14.7. Total cost without maintenance 

Figures 14.8 and 14.9 depict the costs per unit time in the case of perfect and 
imperfect maintenance, respectively. In the case of perfect maintenance, optimal 
maintenance is located at 23 years with a total cost of 1.34 k€/yr. In the case of 
imperfect maintenance, we have chosen to add 0.3 mm of coating, representing a 
repair cost of 3 k€. The optimum is located at 16 years with a total cost of 
0.49 k€/yr. It is important to note that these values are based on the assumption of an 
infinite horizon. It can easily be demonstrated that this assumption does not apply in 
the case of imperfect maintenance, as the maintenance cycles are not identical. In 
other words, imperfect maintenance is only valid for the first cycle. 

 

Figure 14.8. Perfect maintenance cost according to time interval between operations 
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By considering the case of a finite horizon, the curves in Figures 14.10 and 14.11 
show the evolution of the failure probabilities associated with different perfect and 
imperfect maintenance policies, respectively. In this case, we have to calculate the 
total cost over the service life, which is taken here as 50 years. In the case of perfect 
maintenance, Table 14.3 indicates various policies and their corresponding costs. 

 

Figure 14.9. Imperfect maintenance cost according to time interval between operations 
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time (k€/yr) 
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One action 
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with the assumption 
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25 47.9 0.958 Interval at 50% of the 
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Two actions 16 and 32 55.7 1.114 Low degradation 
levels, but high cost 
of maintenance 

Table 14.3. Maintenance costs in terms of the number of actions and type of horizon 
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As the two cycles are supposed to start with a new structure, the failure costs are 
minimized when the two cycles are identical (i.e. a maintenance operation at 
25 years), which explains why the consideration of finite horizon allows us to reduce 
the total cost. The application of two maintenance actions leads to a significant 
increase in the maintenance costs, which is not recovered by the benefits of reducing 
the failure costs.  

 

Figure 14.10. Evolution of the failure probability (perfect maintenance) 

In the case of imperfect maintenance, the assumption of an infinite horizon 
allows us to optimize the first cycle, but the increase of the failure probability at the 
end of the lifetime (i.e. at 50 years) leads to very large failure costs. When the 
maintenance intervals are chosen to balance the failure probabilities by using 
0.5 mm of coating, at 15 and 35 years, we obtain a total costs of 18.9 k€ instead of 
44 k€. The same strategy is applied with four operations, leading to a higher cost of 
21.2 k€.  

Imperfect maintenance 

Policy Maintenance 
times (years) 

Total cost 
(k€) 

Cost per 
unit time 
(k€/yr) 

Remarks 

Two actions 
(coating = 0.3mm) 

16 and 32 44.7 0.894 
Intervals obtained by 
the infinite horizon 
assumption  

Three actions 
(coating = 0.5mm) 

15 and 35 18.9 0.37 
Intervals that balance 
the maximum failure 
probabilities 

Four actions 
(coating = 0.28mm) 

10, 20, 30 and 
40 

21.2 0.424 
Low degradation 
levels 

Table 14.4. Maintenance costs in terms of the number of actions and type of horizon  
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Figure 14.11. Evolution of the failure probability (imperfect maintenance) 

14.8. Conclusion 

This chapter has introduced several types of reliability-based maintenance 
models. The main difficulty lies in the estimation of direct and indirect costs of 
failure, especially when immaterial losses are involved (i.e. human lives, public 
relations effects, etc.). The formulation of the maintenance cost becomes more 
difficult when multi-component systems are considered, as economic and stochastic 
interactions make the analysis very complex. Interested readers can consult the 
specialized literature, such as [CRE 03], dedicated to the management of 
infrastructures by considering inspection tool performance, determination of 
degradation laws, reliability assessment and the choice of maintenance actions. 
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Chapter 15  

Practical Aspects: Industrial Implementation 
and Limitations in a Multi-criteria Context 

15.1. Introduction 

If the consideration of a purely economic criterion can be the optimal solution 
for a simple and well-known system, in practice, things are rarely as easy as a result 
of interactions with other systems. This is particularly the case for any complex 
industrial system. 

To illustrate this, we can take the example of optimizing a system of waterworks 
in a city: this system includes elements (pipes) of different ages and different types 
depending on the development of the city and neighborhoods, different loads (low or 
high road traffic), and a different environment (more or less aggressive soil in the 
case of metallic pipes for example), to illustrate only a few parameters among many 
others. 

The economic optimization of the maintenance of such a system is theoretically 
possible, provided sufficient information is available. Such information concerns the 
physical behavior, economic valuation, the failure rate or the kinetics of degradation 
by the factors mentioned above. However, this system also interacts with other 
systems in the city – sewage, electricity, and gas systems for example – which 
theoretically have their own optimal maintenance frequency. 

We must therefore consider economic optimization from a global point of view 
at the city scale or (more practically) the neighbourhood scale to avoid digging 
                                   
Chapter written by Franck SCHOEFS and Bruno CAPRA. 
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through a road that was renovated a year ago in order to replace some pipes. In 
addition, other parameters that are not purely technical come into play: noise, traffic 
problems, serviceability or, more generally, anything that is related to users can also 
impact the optimization system if social criteria are integrated. 

Finally, other even more uncertain aspects are to be considered: investment 
opportunities (loss of revenue in crisis period), the change of development strategy 
related to a change of government, etc. 

This small example shows that it rapidly becomes very difficult to optimize a 
complex multi-criteria system. It is even possible for contradictory stakes to appear 
that must then be studied in different ways: global optimization weighted in 
accordance with the stakes considered, or separation and optimization of some main 
stakes. In summary, any optimization process should be understood in the context of 
a very specific reference framework that takes into account the most important 
stakes for the operator. 

An important aspect in the development of a methodology for industrial 
optimization of maintenance concerns, as outlined in the previous chapters, is the 
quantity and quality of data. Frequently, if we consider the case of large industrial 
assets, management practice is to follow the hierarchy of needs presented in 
Figure 15.1.  

 

Figure 15.1. Pyramid of needs for the management  
of industrial assets (from [BOE 09]) 
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Traditionally, the manager of an industrial asset follows the pyramid from the 
base to the top (arrow 1, Figure 15.1):  

– knowledge: what is the asset to be managed? The answer to this question is not 
always evident for an old structure for which the history could have been lost with 
time (fire, war, relocation, etc.). It is necessary to clearly define the perimeter of the 
asset to study before any other action is taken;  

– survey: what is the condition of the asset? This question is often perceived as 
the most important because it is prior to any optimization phase. However, it does 
not always need to be answered fully (100% of the known assets) as we shall see 
later. This step allows us to define the state of degradation of the progressively 
ageing asset or to identify the current service life of elements;  

– maintenance/repair: how will we maintain or recover the asset? To optimize 
the overall cost of maintenance actions, it is necessary to know the different 
possibilities (options) for maintaining or repairing the system, and the individual 
costs associated. In the case of infrastructure, for the same failure mode, different 
levels of maintenance actions may be available. These may have varying costs, but 
also varying efficiency. In the case of a cost/benefit approach, this element should 
not be forgotten when deciding on optimal maintenance actions;  

– ranking: what actions should be taken first? This phase requires the definition 
of one or more limit states and corresponding thresholds for optimization. In the 
context of industrial infrastructure, criteria related to safety, availability and cost are 
commonly considered;  

– decision: the final stage of the process. All previous steps provide key elements 
for decision support in relation to the various stakes considered.  

This classic bottom-up approach is often seen as applicable only if the state of 
the system is perfectly known, which is not necessarily the case. Therefore, if ageing 
is controlled, the different steps generally involve the prior knowledge of the whole 
system before continuing the process (inspection). This is disadvantageous because 
it requires potentially significant investment and time before the definition of the 
maintenance master plan. 

Approaches for risk-based maintenance, such as Failure Mode, Effects and 
Criticality Analysis (FMECA, see Part 1) or Reliability Centered Maintenance 
(RCM, see Chapter 13) for example, can address the problem of optimizing 
maintenance without first having complete knowledge of the system (arrow 2, 
Figure 15.1). Given the priorities in terms of maintenance policy, the various stakes 
considered, and partial knowledge of the asset, it is possible to define an action plan 
which recommends improving knowledge of the asset or monitoring some targeted 
elements only, rather than the whole system. 
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Considering the previous example, if we consider a sewer network, it is not 
necessary to know the current status of the entire system by inspection, which would 
be very expensive and time consuming, before taking action. A preliminary risk 
analysis is used to define the highest risk areas, with some degree of uncertainty 
given partial existing data, and then enables the definition of the main areas to 
inspect in order to refine the analysis and optimize the corresponding maintenance 
actions. 

In summary, the industrial application of maintenance optimization methods 
based on a single economic optimum is difficult to implement from a practical point 
of view: given the uncertainties and complex phenomena involved, it is often more 
convenient to reason with respect to different scenarios that can encompass various 
alternatives. The following paragraph gives some examples of maintenance 
optimization in different industrial contexts. 

15.2. Motorway concession with high performance requirements 

15.2.1. Background and stakes 

This study concerns the concession of a European motorway section for which 
the contractor must provide the entire integrated project design, construction, 
financing, maintenance and operation over the next thirty years. To ensure network 
availability, security and quality for users, a penalty system was introduced at the 
initiative of the public authority. Given the significant penalties for non-compliance 
with the criteria of availability, the contractor faces a high risk potential associated 
with unplanned outages, despite the precautions taken to ensure reliable operation. 
Therefore, there is a strong challenge for the contractor, during the call for tender, to 
fund the cost of risk associated with unavailability of the motorway network. 

Unavailability can be of two different types: planned (for maintenance 
intervention) or unplanned. The challenge is to assess the residual risk associated 
with these unplanned outages. In particular, the following steps must be undertaken: 

– identify and assess the risk: 

- frequency of occurrence: identify the ageing mechanisms that might call into 
question the availability criteria, evaluate their kinetics, and determine the associated 
probability of failure; 

- severity: identify the different scenarios of penalties; 

– monetize the risk: financially quantify the amount of risk; 

– characterize the quantitative risk over 30 years. This enables us to know how 
and when to plan for risks. 
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In a second phase, the objective is to optimize the overall forecast operating 
costs over the operating period. These costs include:  

– construction costs, depending on the chosen design;  

– maintenance costs over the entire concession time;  

– operating costs over the entire concession time; and 

– the cost of risk associated with unavailability.  

The results of the study lead to a connection between a financially quantified 
residual risk, relative to unplanned unavailability, and different scenarios related to 
the quality of design and maintenance levels implemented. The more robust the 
design choices are, and the greater the level of maintenance, the lower the residual 
risk, and vice versa. The final design and maintenance choices are taken with a view 
to achieving the optimum scenario to minimize the total cost of the project. 

The asset studied consists of a 40-year old highway network of about 15 km that 
connects three highways and crosses a canal through an underwater tunnel of about 
600 m length. The existing tunnel has two partitions of one-way traffic made of two 
lanes in each direction. The decision was taken to build a new tunnel with two 
partitions parallel to the former (see Figure 15.2). 

 

Figure 15.2. Studied system: existing and new tunnel (from [AUG 09]) 

To minimize the possibility that the tunnel undergoes multiple unplanned 
maintenance periods, the contract for construction and operation includes a penalty 
clause related to unavailability but also some quality and comfort criteria. About 
thirty operational requirements were defined in the technical specifications, from the 
pavement quality (roughness, drainage, etc.) to the proper operation of safety 
systems (lighting, ventilation, light signals, etc.). For each of these criteria, beyond a 
certain level of system failure (such as the number of lights out of service) or 
degradation of the roadway (such as time of drainage of rain water), maintenance is 
imposed and the section over which the failure occurs is considered to be 
unavailable, triggering penalties. 
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The severity of the penalty applied depends on several factors, including the 
duration of the unavailability of the section concerned, the number of lanes closed, 
the time at which the unavailability occurs (peak, off peak, night, etc.). These 
penalties can quickly reach several million euros. 

A possible preventative measure consists of anticipating failures and planning 
maintenance actions before they are imposed. The system operator is allowed 35 
nights per year of downtime for maintenance without penalty. The challenge is to 
find the optimum maintenance program to balance the anticipation of works, which 
helps to avoid unplanned outages, and postponement, avoiding the proliferation of 
maintenance actions. 

15.2.2. Methodology 

A preliminary analysis showed the requirements of the most critical operation:  

– pavement roughness;  

– accumulation of water on the roadway;  

– operation of the ventilation system in tunnels;  

– operation of traffic detectors;   

– operation of the monitoring and management system (control room).  

The approach adopted for the study of unavailability related to a problem of 
pavement roughness and to failure of the ventilation is presented below. In general, 
the probability of failure over time was calculated initially on the basis of available 
feedback. The probability of failure was then used to determine the cumulative 
probability of a failure during the concession period of 30 years. 

15.2.2.1. Roughness of the pavement 

The roughness of a roadway increases during the first year of operation due to 
the gradual erosion of the binder around the aggregates, which then become sharper. 
The initial friction coefficient may therefore be relatively low and the probability of 
non-compliance with the roughness requirement is then non-zero. When the surface 
binder has disappeared, the coefficient of friction decreases due to aggregate 
polishing and stabilizes after about 5 years. The probability of failure increases 
during this period until the road surface is renovated (≈ 10 to 13 years). 
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Figure 15.3. Cumulative probability of unavailability  
due to the roughness of the pavement [AUG 09] 

The cumulative penalties cost, shown in Figure 15.4, is based on the number of 
lanes that would be impacted by the unavailability and takes into account the 
specificities of different sections of the roadway. 

 

Figure 15.4. Cumulative penalty costs for unavailability  
due to non-compliance with roughness requirements 

15.2.2.2. Ventilation system in tunnels 

For these kinds of systems, the probability of failure was determined according 
to the manufacturers’ data using a Weibull type law. The probability distribution for 
each component was fitted on the basis of expected lifetimes (frequency of planned 
replacement), the mean time between failures (MTBF) provided by manufacturers, 
and usual lifetimes during which a failure is very unlikely to occur.  
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For ventilators, the combination of the probability of failure of the devices 
themselves (wear of propellers) and electronic and electrical components is 
considered.  

 

Figure 15.5. Probability of failure of a ventilator  
(no electronic or electrical device considered) 

To calculate the probable cost of penalties, several design choices were available 
including possible redundancy of ventilators (Figure 15.6). 

 

Figure 15.6. Cumulative cost of residual risk of unavailability due to failure 
of ventilators depending on the design choices 

15.2.3. Results 

The approach taken has helped to assign a financial cost to the risk of 
unavailability associated with performance requirements, in terms of quality and 
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comfort for users, throughout the concession period. For each requirement, the 
accumulation of penalties has been estimated to determine the full cost penalties 
associated with the residual risk of unavailability considering the planned 
maintenance (Figure 15.7). 

 

Figure 15.7. Cost of residual risk of unavailability for different requirements 

 

Figure 15.8. Cost of residual risk associated with unplanned unavailabilities of the road 

The calculation of the total cost of penalties for unavailability was used to 
validate design choices: between an optimum design resulting in less downtime but 
with higher initial cost (e.g. redundant systems) and the gain provided by this 
solution in terms of cost of risk associated with these penalties. Similarly, the 
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residual cost of risk was also calculated by considering different maintenance 
intervals. 

At the end of the study, the contractor obtained a probabilistic estimate of the 
penalties they would have to pay with costs distributed over the 30 years of 
operation. This allows identification of periods where preventive maintenance would 
have to be done to avoid “peaks” of failure. The results obtained lead to a 
quantitative view of the residual risk associated with unplanned unavailability of the 
motorway network. In addition, knowledge of the potential penalty distribution for 
the next 30 years enables the optimized programming of budgets. 

The resulting value of around €35 million over 30 years (averaging close to €1 
million per year) is significant compared to the magnitude of the total project cost of 
approximately €500 million. This result is related to the very high penalties for non-
compliance with the availability criteria. The benefit of such a comprehensive 
approach to infrastructure lifecycle management applies to the building owner, 
prime contractor, contractor or operator. In all cases, the method has many 
advantages: 

– clear definition of performance objectives, criteria and associated indicators;  

– clear allocation of responsibilities to each party;  

– transparency towards the identified risks and their methods of treatment (who 
is responsible? What actions should be implemented?)  

– argued defense of budgets;  

– optimization of the total costs of infrastructure projects in relation to the entire 
life cycle;  

– consideration and preservation of the specific stakes of each party;  

– risk-based monitoring and maintenance of infrastructure driven by the dual 
consideration of ageing mechanisms and impacted stakes, according to the parties 
and the periods considered.  

This example shows the importance of proper consideration of short-term 
choices (design, construction methods) and short-term stakes (from day-to-day 
availability), and the long-term implications of these choices (maintenance costs and 
condition of the structure at the end of the concession contract) as well as long-term 
challenges (asset condition, sustainable management). 
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15.3. Ageing of civil engineering structures: using field data to update 
predictions 

15.3.1. Background and stakes 

Risk management of ageing assets, particularly civil engineering infrastructure, 
is an important issue for the future. The technical challenge is not only to build new 
infrastructure but also to maintain what already exists because the economic stakes 
are considerable. The prediction of ageing through modeling allows management of 
the risks associated with the expected service life of infrastructure. The use of 
updating techniques enables the best use to be made of monitoring instrumentation 
and inspection data in order to define optimized maintenance strategies. Benefits for 
the asset owners include better risk management and savings on maintenance 
budgets. To anticipate and optimize these costs, it is necessary to use ageing models 
which are as representative as possible of the real physical asset, and input data 
which is as reliable as possible. 

In the field, some characteristic ageing parameters can be measured more or less 
accurately. Bayesian approaches (Chapter 11, section 11.3) are a technique well 
adapted to this type of problem to update the ageing prognosis. This kind of 
prediction is generally based on the use of physical models where various 
parameters of the models may be uncertain. This uncertainty can be divided into two 
types: 

– the inherent variability of these parameters, such as the compressive strength of 
concrete which will vary within a single mix because of the heterogeneity of the 
material;  

– uncertainty of measurement linked to the device used to quantify the parameter 
or a lack of knowledge about these parameters.  

In practice, some physical material characteristics can be measured, as well as 
the consequences of ageing. However, like any measurement, these parameters have 
some uncertainty. In addition, there are generally relatively few measurements made 
because the techniques are expensive and of varying accuracy. It is therefore 
important to use them effectively with proper data processing. Bayesian methods 
can be used to process data and update the ageing prognosis. 

15.3.2. Corrosion risk of a cooling tower 

The physical phenomenon considered here is the carbonation of concrete. 
Carbon dioxide from the atmosphere penetrates concrete due to its porosity and 
dissolves in the pore solution. The carbonic acid formed then reduces the pH of the 
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concrete. If the carbonation front reaches the rebars, they are no longer protected by 
the highly basic pH of sound concrete and will therefore gradually be affected by 
corrosion. Corrosion is the most common cause of deterioration of reinforced 
concrete structures and also the most expensive to repair. It is therefore crucial to 
assess the risk of corrosion to optimize the maintenance of structures that may be 
susceptible to this pathology [ELL 95]. 

The example presented here concerns a nuclear plant’s cooling tower [CAP 07]. 
Considering the dimensions of the structure (height greater than 100 m) and the 
environment to which it is subject over time (wetting/drying cycles, temperature 
gradients, moisture, etc.) material properties and solicitations vary in time and space. 
During an inspection campaign after 25 years of operation, samples of concrete were 
taken from the structure. The values of compressive strength and carbonation depth 
were measured and are summarized in Table 15.1. 

 Mean 
value 

Standard 
deviation 

Number of 
measurement 

Compressive strength Rc (MPa) 48.8 4.7 15 

Carbonatation depth X (mm) 6.3 2.8 9 

Table 15.1. Statistics derived from the experimental campaign 

In parallel, measurements of concrete cover (d) were also carried out (see Figure 
15.9). 

 

Figure 15.9. Experimental data and modeling of the statistical distribution 
of concrete cover (d) 
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An exhaustive visual inspection of the structure was carried out to measure the 
total length of the unprotected steel reinforcement. Rebar corrosion causes cracking 
of the concrete cover because the volume occupied by the corroded steel is larger 
than that occupied by sound steel. The inspection determined that the total length of 
exposed steel was 115 m out of a total of about 500 km of reinforcing steel in the 
whole outer wall of the cooling tower. This means the order of magnitude of the 
proportion of exposed rebars to the cumulated length of steel is 10-4. We can 
therefore deduce that the real proportion of corroded reinforcement at 25 years is 
greater than this value of 10-4 because a certain amount of steel is corroded without 
external signs, i.e. having yet reached the pressure needed to produce cracking or 
spalling of the concrete cover. 

15.3.3. Bayesian updating 

To cope with uncertainty about the parameters of the carbonation model used to 
describe the evolution of phenomena and reflect data from the experimental field, an 
updating technique based on a Bayesian network was developed using a Monte 
Carlo Markov Chain (MCMC) approach, given the available measurements at 
different nodes of the network (Figure 15.10). 

 

Figure 15.10. Bayesian network used for the carbonation model  
(RH: relative humidity) 

The graph of this Bayesian network represents a carbonation model developed to 
calculate the probability of corrosion initiation of steel in reinforced concrete 
considering existing measurements of Rc (concrete compressive strength) and X 
(depth of carbonation). Nodes linked by solid lines represent physically dependent 
random or deterministic variables; the dotted lines represent the links between 
random variables and parameters. The model inputs, i.e. RH (relative humidity) and 
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Rc (compressive strength), are modeled by conditional laws depending on a number 
of parameters p 1, ..., p 4. Each of these parameters is modeled by a random variable. 
Each measurement is modeled by a random variable depending on the input it 
measures. In addition, the output variables X (depth of carbonation) and X> d (limit 
state function: depth of carbonation X greater than concrete cover d = initiation of 
corrosion), and measurement variables of X , depend on time t. 

To calculate the probability of corrosion initiation over time, a Beta distribution 
law has been postulated for the variability of the compressive strength according to 
data from Table 15.1 and the fact that, physically, this parameter is bounded by 
minimum and maximum values (estimated from Table 15.1). 

A deterministic approach is not capable of representing the apparent ratio of 
corroded steel observed on the structure (approximately 10-4 after 25 years) as it 
does not take into account the variability that affects the corrosion process. The 
probability of corrosion initiation obtained by using the carbonation model in the 
probabilistic approach gives a value of about 10-2 after 25 years. This value is higher 
than the observed ratio because it does not correspond to the same indicator: the 
corrosion process has to be sufficiently advanced (a certain amount of corrosion 
products i.e. of steel loss) before cracks appear at the surface of the structure. The 
order of magnitude predicted here is a good estimate if we consider that cracks 
appear for a loss of steel cross-section of about 100 to 200 μm. 

 

Figure 15.11. Probability of corrosion initiation over time, P(X(t) > d) 

A Bayesian network is a probabilistic graphical model that can acquire and use 
information to update system knowledge. In this example, forecasting the evolution 
of carbonation depth based on experimental data collected after 25 years of 
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operation and estimated initial data has been updated (Figure 15.12). Compared to 
the initial prediction of carbonation depth, it can be seen that feeding field data into 
the updating process has led to a decrease of the mean value but also the uncertainty 
associated to the carbonation front (time fractiles at 5 and 95% are closer to the 
mean). 

 

Figure 15.12. Initial and updated evolutions of the depth of carbonation  
(mean value and fractiles at 5% and 95%) 

The use of techniques such as Bayesian networks, amongst others, is a useful 
way to consider real data from the field. These tools help to update the knowledge of 
the system, and then to predict its future state, which is particularly interesting for 
the aim of optimizing maintenance actions, for example. These techniques are 
particularly useful when few data are available (meaning the statistical approach is 
difficult to implement). Nevertheless, despite the usefulness of this type of approach, 
it must be noted that the model must be as representative as possible in its 
description of the phenomena modeled in order to be reliable. 

15.4. Conclusion 

In the global process of the management of maintenance of civil engineering 
structures, there are opportunities for optimization from the design stage to the 
extension of the life span, as illustrated by the two previous examples. 

Like any complex system evolving with time, there is some uncertainty about the 
condition of structures and, generally, few experimental data to characterize them as 
these are costly to obtain and may require costly unavailability periods. 
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Therefore, numerical modeling of the ageing process is one solution for the 
structure’s owner to estimate the future evolution of their asset. Many uncertainties 
exist related to the parameters of these models, and reliability approaches can 
provide richer results for decision-making than purely deterministic approaches. 
When field data exist, it is possible to update the initial prediction and therefore 
adapt the planned maintenance schedule. The combination of these different 
approaches enables the acquisition of a maximum amount of elements that are 
helpful for the manager in their decision-making process. 
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Conclusion   

This book has described and illustrated a number of different methods to assess 
the reliability, and to improve the prediction of lifetime and the management of civil 
engineering structures in an uncertain context. It has supplied answers to questions 
such as: 

– how can the most likely failures and the most critical failure scenarios, which 
could optionally be the basis of risk analysis, be highlighted? 

– how can uncertain data, describing the geotechnical characteristics of 
materials, be represented and used?  

– what are the consequences of heterogeneity and variability for structural 
safety? 

– how can the reliability or durability of a system be quantified?  

– how can information gained over time be used to update reliability 
calculations?  

– how can a policy of inspection and maintenance be optimized?   

Part 1 presented methods of qualitative assessment for structural safety. In an 
engineering context, these methods allow us to analyze a system, its failure modes, 
and to model the failure scenarios in order to evaluate their criticality. In this first 
section, the authors stressed the advantages and limitations of the different methods, 
and then presented an application of the methods, assessing the criticality of the 
various scenarios for a hydro civil engineering work. 

Part 2 showed how to use available data to describe their heterogeneity and 
variability. It dealt with the characterization of uncertainty in geotechnical data. This 
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part of the book offers a complete set of methods: from the identification of sources 
of uncertainty, to the classification of data and its statistical representation, through 
to the modeling of these data. Estimates related to material variability (both average 
and characteristic values) are provided in this section and, to illustrate the points,  a 
geostatistical study for urban soils (Chapter 5) and another for a shallow footing 
(Chapter 6), for which reliability aspects are considered, are presented. 

Part 3 presented another class of methods for calculating the reliability, called 
“response surfaces” because the mechanical response of a system, usually not 
explicit, is approximated by a meta-model, often reduced to an explicit analytical 
polynomial function. This group of methods has been the subject of recent 
developments, which are applied in this section to examples of a truss structure, and 
then to the ossature of a building over several floors. Response surfaces often seem 
appropriate for problems with a low number of random variables (M <20), but 
recent methods using polynomial chaos are also able to resolve large stochastic 
problems (M ~ 50–100), at a reasonable computational cost (N <1000). 

Part 4 of the book outlined the problems of time-dependent reliability through a 
number of methods. The aggregation and unification of data was applied in Part 
Four to assess the evacuation time required to leave a building on fire (Chapter 9). 
Then, Bayesian methods and the “PHI2” method, recently developed [AND 04], 
[SUD 08a] (Chapter 10), as well as Markov Chains Monte Carlo (Chapter 11) were 
presented. The main applications demonstrated in this part of the book are a serial 
system, in the case of poor and censored data, a truss structure, and a containment 
building for a nuclear power plant (Chapter 12). 

Finally, Part 5 described maintenance optimization using reliability methods, 
including a presentation of the concepts of maintenance and lifecycle costs of a 
system. Cost models for the maintenance of components and systems were defined 
in order to allow the selection of an optimal maintenance policy. Applications 
demonstrated in this part of the book cover several issues related to the corrosion of 
reinforced concrete (a pre-stressed beam and cooling tower, for example).  

Users of the methods presented should remain cautious: the result of any study 
are highly dependent on assumptions made and models used (whether physical, 
mechanical or probabilistic). Readers should keep in mind the following questions:  

– is the problem well-posed and the system being studied well defined, and 
analyzed by structural and functional approaches? An analysis of a system makes 
sense only for the problem being solved, especially in the context of a multicriteria 
analysis. There is not one single unique definition of components and their 
relationships (see Parts 1 and 5, in particular); 



Conclusion     313 

 
– what is the domain of validity of models, and how representative is the data? 

Questions about the relevance of statistical data and models must always be raised. 
It is always advisable to use some kind of probabilistic reasoning; however, the 
approaches described here (whether or not they use probability theory) are not 
always applicable.  

The regulatory framework for the design of structures (such as Eurocode) is 
framed on a semi-probabilistic basis, and can take into account various uncertainties. 
The calculation rules proposed, however, may be insufficient when the variability of 
the materials is a key parameter governing the response, and the use of a more 
sophisticated modeling is then necessary.  

Beyond the applications proposed in this book, there is also ongoing research 
being conducted in various fields, such as: 

– the optimization of reliability based structural design; 

– the optimizing of campaigns of inspection or repair;  

– the formalization of expert judgments;  

– building databases (of material properties, geometry, stresses, boundary 
conditions, etc.) and updated models which progressively integrate new data; and  

– the prediction of the reliability of ageing structures.  

Prediction is difficult, requiring a number of assumptions and extrapolations to 
be made. This last point is crucial, since these methods are often the only ones to 
offer a theoretical framework for evaluating the performance of existing structures, 
which is a major challenge for the development of our societies. 

The authors are convinced that the methods presented in this book are applicable 
to any complex mechanical system in an uncertain environment, although the 
examples presented are limited to the field of civil engineering (whether for nuclear 
industry, oil industry, or dam building applications).  
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C=Cov[X,X] ;    

[ ]jiij XX ,Cov=C   

Statistics 

N   Sample size 

{ }Nxx ,..,1  Sample 

θ = {θq, q=1,..,N} Parameters of the probabilistic model  

θ̂   Parameter estimator 

x   Empirical mean of the sample { }Nxx ,..,1   
2s , 2s′   Empirical biased and non-biased variance  

Structural reliability 

)( Xg   Performance function  

fD  , sD  Domains of failure and safety 
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)(ξX T=   Isoprobabilistic transformation 

fP  ,  

fP̂  

Exact probability of failure  

Estimated probability of failure  

FORMfP , , SORMfP ,  Probabilities of failure approximated by FORM and 
SORM, respectively 

FORMβ   Hasofer–Lind reliability index (FORM) 

SORMβ   
Generalized reliability index (after SORM 
calculation) 

P* Design point 

X*  Coordinates of the design point (physical space) 
∗ξ   Coordinates of the design point (standard space) 

α   Vector of direction cosine of the design point 
2
iα   Importance factor of the i-th variable 

Common acronyms 

Maintenance strategies 

ABAO As Bad As Old 

AGAN As Good As New 

ALARP 
As Low As Reasonably 
Practicable 

BTO Better than Old 

CM  Corrective Maintenance 

NBU/NWU  
New is Better/Worse than 
Used 

PM Preventive Maintenance 

WTO Worse Than Old 

Mean times 

MDT  Mean Down Time 

MTTF  Mean Time To Failure 
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MTBF  
Mean Time Between 
Failures 

MTTR  Mean Time To Repair 

MUT  Mean Up Time 

MWT  Mean Waiting Time 

Other acronyms 

AIC 
Akaike Information 
criterion 

AIS 
Adaptative Importance 
Sampling 

ARA  
Arithmetic Reduction of 
Age 

BIC 
Bayesian Information 
Criterion 

PC Polynomial chaos 

SLS Service Limit State 

ULS Ultimate Limit State 

EM 
Expectation 
Maximization 

FMEA 
Failure Modes and 
Effects Analysis 

FORM 
First Order Reliability 
Method 

LHS 
Latin Hypercube 
Sampling 

MCMC 
Markov Chain Monte 
Carlo  

NDT 
Non-Destructive Testing 
(Device) 

PCA 
Principal Component 
Analysis 

PCP 
Probability of Crack 
Presence 

PFA 
Probability of False 
Alarm 
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PDRS 
Polynomial Development 
Response Surface 

PO Planned Operation 

PoD Probability of Detection 

PRA 
Preliminary Risk 
Assessment 

QRA Qualitative Risk Analysis 

RBI Risk Based Inspection 

RCM 
Reliability Centered 
Maintenance 

ROC 
Receiver Operating 
Characteristic  

SEM 
Stochastic Expectation 
Maximization 

SORM 
Second Order Reliability 
Method 

SR Response surface 
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