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Preface
There is a staggering number of research studies on the vibration of structures. 
Based on a simple search using the Science Citation Index, the numbers of references 
associated with the following words are 1,000 for “vibration and string,” 2,000 for 
“vibration and membrane,” 7,000 for “vibration and plate,” and 16,000 for “vibration 
and beam, bar or rod.” This clearly illustrates the importance of the subject of free 
and forced vibrations for analysis and design of structures and machines.

The free vibration of a structural member eventually ceases due to energy dissipation, 
either from the material strains or from the resistance of the surrounding fluid. The fre-
quency of such a system will be lowered by damping. But since damping also causes the 
amplitude to decay, the resonance with a forced excitation of a strongly damped system 
will not be as important as the weakly damped system. In this book, we shall consider the 
undamped system, which models the weakly damped system, and only focus on the exact 
solutions for free transverse vibration of strings, bars, membranes, and plates because 
these solutions elucidate the intrinsic, fundamental, and unexpected features of the solu-
tions. They also serve as benchmarks to assess the validity, convergence, and accuracy 
of numerical methods and approximate analytical methods. We define exact solutions to 
mean solutions in terms of known functions as well as those solutions determined from 
exact characteristic equations. However, this book will not cover longitudinal in-plane/
translational vibrations, shear waves, torsional oscillations, infinite domains (wave propa-
gation), discrete systems (such as linked masses), and frames. The exact solutions for a 
wide range of differential equations are useful to academics teaching differential equa-
tions, as they may draw the practical problems associated with the differential equations.

There are seven chapters in this book. Chapter 1 gives the introduction to struc-
tural vibration and the importance of the natural frequencies in design. Chapter 2 
presents the vibration solutions for strings. Chapter 3 presents the vibration solu-
tions for membranes. Chapter 4 deals with vibration of bars and beams. Chapter 5 
gives the vibration solutions for isotropic plates with uniform thickness. Chapter 6 
deals with plates with complicating effects such as the presence of in-plane forces, 
internal spring support, internal hinge, elastic foundation, and nonuniform thickness 
distribution. Chapter 7 presents vibration solutions for nonisotropic plates, such as 
orthotropic, sandwich, laminated, and functionally graded plates.

Owing to the vastness of the literature, there may be relevant papers that escaped 
our search in the Science Citation Index. To these authors, we offer our sincere apol-
ogy. Such omissions shall be rectified in a future edition.

Finally, we wish to express our thanks to Dr. Tay Zhi Yung and Mr. Ding Zhiwei 
of the National University of Singapore for checking the manuscript and plotting 
the vibration mode shapes and also to Dr. Liu Bo of The Solid Mechanics Research 
Centre, Beihang University, China, for contributing the sections on rectangular iso-
tropic and orthotropic Mindlin plates.

C. Y. Wang and C. M. Wang
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1 Introduction to 
Structural Vibration

1.1  WHAT IS VIBRATION?

Vibration may be regarded as any motion that repeats itself after an interval of time, 
or one may define vibrations as oscillations of a system about a position of equilib-
rium (Kelly 2007). Examples of vibratory motion include the swinging of a pen-
dulum, the motion of a plucked guitar string, tidal motion, the chirping of a male 
cicada by rubbing its wings, the flapping of airplane wings in turbulence, the sooth-
ing motion of a massage chair, or the swaying of a slender tall building due to wind 
or an earthquake.

The key parameters in describing vibration are amplitude, period, and frequency. 
The amplitude of vibration is the maximum displacement of a vibrating particle or 
body from its position of equilibrium, and this is related to the applied energy. The 
period is the time taken for one complete cycle of the motion. The frequency is the 
number of cycles per unit time or the reciprocal of the period. The angular (or cir-
cular) frequency is the product of the frequency and 2π, and hence its unit is radians 
per unit time.

Vibrations may be classified as either free vibration or forced vibration. Free vibra-
tion takes place when a system oscillates under the action of forces inherent within 
the system itself—when externally imposed forces are absent. A system under free 
vibration will vibrate at one or more of its natural frequencies, which are dependent 
on the mass and stiffness distributions as well as the boundary conditions. In con-
trast, forced vibration occurs when an external periodic force is applied to the system.

When the effects of friction can be neglected, the vibrations are referred to as 
undamped. Realistically, all vibrations are damped to some degree. If a free vibra-
tion is only slightly damped, its amplitude gradually decreases until the motion 
comes to an end after a certain time. If the damping is sufficiently large, vibration is 
suppressed, and the system then quickly regains its original equilibrium position. A 
damped forced vibration is maintained so long as the periodic force that causes the 
vibration is applied. The amplitude of the vibration is affected by the magnitude of 
the damping forces.

From an energy viewpoint, vibration may be defined as a phenomenon that 
involves alternating interchange of potential energy and kinetic energy. If the system 
is damped, then some energy is dissipated in each cycle of the vibration, and the 
vibratory motion will ultimately come to an end. If a steady motion of vibration is 
to be maintained, then the energy dissipated due to damping has to be compensated 
by an external source.
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1.2 � BRIEF HISTORICAL REVIEW ON VIBRATION OF 
STRINGS, MEMBRANES, BEAMS, AND PLATES

According to Rao (1986, 2005), it is likely that the interest in vibration dates back to 
the time of the discovery of early musical instruments such as whistles, strings, or 
drums, which produce sound from vibration. Drawings of stringed instruments have 
been found on the walls of Egyptian tombs that were built around 3000 BC.

In the course of seeking why some notes sounded more pleasant than others, the 
Greek mathematician and philosopher Pythagoras (582–507 BC) conducted experi-
ments on vibrating strings, and he observed that the pitch of the note (the frequency 
of the sound) was dependent on the tension and length of the string. Galileo (1638), 
the Italian physicist and astronomer, took measurements to establish a relation-
ship between the length and frequency of vibration for a simple pendulum and for 
strings; he also observed the resonance of two connecting bodies. Marinus Mersenne 
(1636), a French mathematician and theologian, also studied the behavior of vibrat-
ing strings. English scientist Robert Hooke (1635–1703) and French mathematician 
and physicist Joseph Sauveur (1653–1716) performed further studies on the relation-
ship between the pitch and frequency of a vibrating taut string. Sauveur is noted for 
introducing the terms nodes (stationary points), loops, fundamental frequency, and 
harmonics, and he is the first scientist to record the phenomenon of beats.

The breakthrough in formulating the governing equations for structural vibra-
tion problems may be attributed to Sir Isaac Newton (1687), who was the first to 
formulate the laws of classical mechanics, and to Gottfried Leibniz (1693) as well as 
Newton for creating calculus. Euler (1744) and Bernoulli (1751) discovered the dif-
ferential equation governing the lateral vibration of prismatic bars and investigated 
its solution for the case of small deflections. Lagrange (1759) also made important 
contributions to the theory of vibrating strings. Euler (1766) derived the equations 
for the vibration of rectangular membranes under uniform tension as well as for the 
vibration of a ring. Poisson (1829) derived the governing equation for vibrating circu-
lar membranes and gave the solutions for the axisymmetric vibration mode. Pagani 
(1829) worked out the nonaxisymmetric vibration solution for circular membranes. 
Coulomb (1784) investigated the torsional oscillations of a metal cylinder suspended 
by a wire.

The German physicist Chladni observed nodal patterns on flat square plates at 
their resonant frequencies using sand spread evenly on the plate surface. The sand 
formed regular patterns as the sand accumulated along the nodal lines of zero ver-
tical displacements upon induction of vibration. Figure  1.1 shows the patterns of 
square plates that were originally published in Chladni’s book (Chladni 1802). In 
1816, Sophie Germain successfully derived the differential equation for the vibra-
tion of plates by means of calculus of variations. However, she made a mistake in 
neglecting the strain energy due to the twisting of the plate mid-plane. The cor-
rect version of the governing differential equation, without its derivation, was found 
posthumously among Lagrange’s notes in 1813. Thus, Lagrange has been credited as 
being the first to present the correct equation for thin plates. By using trigonometric 
series introduced by Fourier around that time, Navier (1823) was able to readily 
determine the exact vibration solutions for rectangular plates with simply supported 
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edges. Poisson (1829) extended Navier’s work to circular plates. The extended plate 
theory that considered the combined bending and stretching actions of a plate has 
been attributed to Kirchhoff (1850). His other significant contribution is the applica-
tion of a virtual displacement method for solving plate problems.

Lord Rayleigh (1877) presented a theory to explain the phenomenon of vibra-
tion that to this day is still used to determine the natural frequencies of vibrating 
structures. Based on the plate assumptions made by Kirchhoff (1850) and Rayleigh’s 
theory, early researchers used analytical techniques to solve the vibration problems 
of plates. For example, Voigt (1893) and Carrington (1925) successfully derived the 
exact vibration frequency solutions for a simply supported rectangular plate and a 
fully clamped circular plate, respectively. Ritz (1909) was one of the early research-
ers to solve the problem of the freely vibrating plate, which does not have an exact 
solution. He demonstrated how to reduce the upper-bound frequencies by including 
more than a single trial (admissible) function and performing a minimization with 
respect to the unknown coefficients of these trial functions. The method became 
known as the Ritz method. Liew and Wang (1992, 1993) automated the Ritz method 
for analysis of arbitrarily shaped plates.

80c80b80a79b79a

74b 75 76 77 78

74a73b73a72b72a

69 70 71a 71b 71c

68b68a67c67b67a

63 64 65 66a 66b

FIGURE 1.1  Chladni’s original figures of vibrating square plates showing nodal lines. 
Source: http://en.wikipedia.org/wiki/File:Chladini.Diagrams.for.Quadratic.Plates.svg.
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The theories of vibration of beams and plates were investigated further by 
Timoshenko (1921) and Mindlin (1951), and their theories allow for the effects of 
transverse shear deformation and rotary inertia. Other, more refined beam and plate 
theories that do away with the need for a shear correction factor were developed by 
Bickford (1982), Reddy (1984), and Reddy and Phan (1985), who employed higher-
order polynomials in the expansion of the displacement components through the 
beam or plate thickness. Leissa (1969) produced an excellent monograph entitled 
“Vibration of Plates,” which contains a wealth of vibration solutions for a wide range 
of plate shapes and boundary conditions. Originally published by NASA in 1969, 
Leissa’s monograph was reprinted in 1993 by the Acoustical Society of America due 
to popular demand.

1.3 � IMPORTANCE OF VIBRATION ANALYSIS 
IN STRUCTURAL DESIGN

When designing structures, the effect of vibration on them is a very important factor 
to consider. Obviously, structures used to support heavy centrifugal machines like 
motors and turbines are subjected to vibration. Vibration causes excessive wear of 
bearings, material cracking, fasteners to become loose, noise, and abrasion of insula-
tion around electrical conductors, resulting in short circuiting (Wowk 1991). When 
cutting a metal, vibration can cause chatter, which affects the quality of the surface 
finish. Structural vibration may cause discomfort and even fear in the occupants 
working in the building, make it difficult to operate machinery, and cause malfunc-
tioning of equipment.

The natural frequencies of a structure are very important to structural and 
mechanical engineers when designing for human comfort, structural serviceability 
and operational requirements, and against the occurrence of resonance. Resonance 
occurs when the natural frequency of the structure coincides with the excitation 
frequency. This resonance phenomenon has to be avoided so as to prevent exces-
sive deformation, fatigue cracks, and even the collapse of the entire structure. For 
example, the spectacular collapse of the Tacoma Narrows suspension bridge (that 
spanned the Tacoma Narrows strait of Puget Sound between Tacoma and the Kitsap 
Peninsula in the U.S. state of Washington) in 1940 was a result of resonance caused 
by strong wind gusts. Therefore, structural engineers design their structures to have 
a fundamental natural frequency of vibration that satisfies a specific minimum 
frequency given in design codes. For instance, the American Association of State 
Highway and Transportation Officials (AASHTO) specifies the minimum frequency 
for a pedestrian bridge to be 3 Hz. For office buildings, it is recommended that the 
natural frequency of floor structures be kept to within 4 Hz, whereas for perfor-
mance stages and dance floors, this minimum limit of natural frequency may be 
raised to 8.4 Hz (Technical Guidance Note 2012).

Given the undesirable and devastating effects that vibrations can have on machines 
and structures, vibration analysis and testing have become a standard procedure 
in the design of structures (Richardson and Ramsey 1981; McConnell and Varoto 
2008). Vibration may be reduced by using the illustrative vibrating mechanical 
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system shown in Figure 1.2, where the forcing excitations f(t) to the mechanical sys-
tem S cause the vibration response x(t). The problem at hand is to suppress x(t) to an 
acceptable level. The three general ways to do this are:

	 1.	 Isolation. Suppress the excitations of the vibration. This method deals with 
the forcing excitation f(t)

	 2.	Design modification. Modify or redesign the mechanical system so that for 
the same levels of excitation, the resulting vibrations are acceptable. This 
method deals with the mechanical system S, which has a mass m, stiffness 
k, and damping coefficient c.

	 3.	Control. Absorb or dissipate the vibrations using external devices, through 
implicit or explicit sensing and control. This method deals with the vibra-
tion response x(t).

Within each category, there are several approaches for mitigating vibration. Actually, 
each of these approaches needs either redesign or modification. It is to be noted 
that the removal of faults (e.g., misalignments and malfunctions by repair or parts 
replacement) can also reduce vibrations. This approach may be included in any of the 
three categories listed here (De Silva 2007).

In order to understand isolation well, we need to know the concept of mechanical 
impedance (Wowk 1991). When vibrations travel through different materials and 
metal interfaces, they get reduced or attenuated. With the concept of impedance, we 
can insert materials into the force transmission path so as to reduce the amplitude 
of the vibration. Generally, any material with a lower stiffness than the adjacent 
material will function well to attenuate the force, and it works in both directions. 
Mechanical springs, air springs, cork, fiberglass, polymer, and rubber are the typical 
isolator materials. The performance of the isolator is a function of frequency.

On the other hand, vibration can also be useful in several industrial applica-
tions. For example, compactors, vibratory conveyors, hoppers, sieves, and washing 
machines take advantage of vibration to do the job. More interestingly, vibrations 
are found to be able to improve the efficiency of certain machining, casting, forging, 
and welding processes. Vibration is also used in nondestructive testing of materials 
and structures, in vibratory finishing processes, and in electronic circuits to filter out 
the unwanted frequencies (Rao 1986). It is also employed in shake tables to simulate 

m
k

Mechanical
vibrating system (S)

Vibration
response

x(t)Vibration
excitation

f(t)

c

FIGURE 1.2  A vibrating mechanical system.
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earthquakes for testing structural designs against seismic action. Of course, most 
people enjoy the vibration of a massaging chair/device on their bodies.

1.4  SCOPE OF BOOK

In this book, we focus our attention on the free, harmonic, and flexural vibration of 
strings, membranes, beams, and plates. Damping is assumed to be small, and hence it 
is neglected. In each of the many structural vibration problems treated herein, we pres-
ent the exact natural angular (or circular) frequencies and their accompanying mode 
shapes. Exact solutions are very important, as they clearly reveal the intrinsic fea-
tures of the solutions and provide benchmarks to assess the validity, convergence, and 
accuracy of numerical solutions. Here, we define an exact solution as one that can be 
expressed in terms of a finite number of terms, and the proposed solution may contain 
elementary or common functions such as harmonic or Bessel functions. Special func-
tions, such as hypergeometric functions, are excluded. Analytical solutions that are 
not exact, such as infinite series solutions and asymptotic solutions, are also excluded.

The governing differential equations of motion for the problems treated herein 
are obtained by using the method of elementary analysis, and the equations are 
solved for different boundary conditions. Analytical vibration solutions of structures 
with complicated geometries and boundary conditions are difficult or impossible to 
obtain. In such cases, numerical methods are required. However, for some cases of 
structural geometries and boundary conditions, it is possible to solve the differential 
equations exactly in a closed form. In this book, the authors present as many analyti-
cal vibration solutions as possible in one single volume for ready use by engineers, 
academicians, and researchers in structural dynamic analysis and design. This book 
addresses a variety of boundary conditions, restraints, and mass and stiffness dis-
tributions in the hope that the reader may better understand the effects of shape, 
restraints, and boundary conditions on vibration frequencies and mode shapes.

The numerous differential equations and their solutions presented in this book are 
also useful for academicians, especially when they wish to provide practical prob-
lems to the differential equations that they present to students of engineering science.
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2 Vibration of Strings

2.1  INTRODUCTION

Strings are basic structural elements that support only tension. They also approxi-
mate cables, with negligible bending, and chains, with numerous links. There seems 
to be no exact solution to the vibration of strings where the static shape deviates from 
a straight line. We assume that the tension, density, and deflection are continuous 
functions of position along the string, except perhaps at a single point in the interior 
span of the string. Thus, we limit our presentation to a string with at most two con-
nected segments. For example, we include a string composed of two segments of 
different constant densities, but not multiple segments, since the solution of the latter 
can be extended similarly.

In the tables and figures of this chapter, we present the first five natural frequen-
cies of vibration. The lowest one is the fundamental frequency, below which no natu-
ral vibration would occur.

2.2  ASSUMPTIONS AND GOVERNING EQUATIONS FOR STRINGS

A string is slender, i.e., its lateral dimensions are infinitesimal compared to the lon-
gitudinal length. It does not admit any bending moment, shear, or axial compression. 
Rotational inertia is negligible. We assume that there is a stable equilibrium straight 
state. The vibrations, mainly lateral, are small compared to the string length, which 
is finite.

One can derive the string equations by considering the dynamic balance on an 
elemental segment as shown in Figure 2.1, or if damping is absent, by the energy 
method. The governing equation of a string, derived in many texts (e.g., see Magrab 
2004), is given by

	 x
T x

w

x
x

w

t
( ) ( )

2

2

∂
∂ ′

′ ′ ∂ ′
∂ ′





 = ρ ′ ∂ ′

∂ ′ 	
(2.1)

Here w′ is the lateral deflection, x′ is the distance from one end, T ′(x′) > 0 is the ten-
sion, ρ(x′) > 0 is the density (mass per unit length), and t′ is the time. The tension is 
governed by the static force balance, i.e.,

	

dT

dx
f x( ) 0

′
′

+ ′ ′ =
	

(2.2)
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where f ′ is the force per length acting along the string. Of particular interest is when 
the string is hanging (i.e., f ′ is constant).

By normalizing all lengths by the string length L, the tension by the maximum 
tension T0, the density by the maximum density ρ0, and the time by L T/0 0ρ and 
dropping the primes, Equation (2.1) becomes

	 x
T

w

x

w

t

2

2

∂
∂

∂ ′
∂





 = ρ ∂ ′

∂ 	
(2.3)

For free vibrations, we can assume that

	 w x t w x e, ( ) i t( )′ ′ ′ = ω ′
	 (2.4)

where i 1= −  and ω  is the angular frequency of vibration. Let w w L T T T/ , / ,0= = ′
t t L T/( / ),0 0= ′ ρ  L T/ ,0 0ω = ω ρ  and recognizing that only the real part of w has 
significance, Equation (2.3) becomes

	

d

dx
T

dw

dx
w 02



 + ρω =

	
(2.5)

2.3  BOUNDARY CONDITIONS

The boundary conditions at an end of a string include

•	 Fixed end, where

	 w = 0	 (2.6)

•	 Sliding end, where there is no transverse resistance

	

dw

dx
0=

	
(2.7)

’’

L
T´ T´

T´

T´ T´

x´

∂w´

∂w´ ∂w´
∂x´ ∂x´ ∂x́

∂+

∂x´

w´

T´

dx

dx´
dw´

T´

FIGURE 2.1  String under tension and an elemental segment of string.
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•	 Massed end, where, by transverse force balance,

	
T

w

x
m

w

t

2

2∓′ ∂ ′
∂ ′

= ∂ ′
∂ ′ 	

(2.8)

	 or in a nondimensional form

	
T

dw

dx
w 02∓ αω =

	
(2.9)

	� where m is the point mass at the end, m L/ 0α = ρ  is a mass ratio, the top 
sign is for an end with the normal in the x-direction, and the bottom sign 
otherwise.

•	 Elastically lateral supported end, where

	
T

w

x
kw∓′ ∂ ′

∂ ′
= ′

	
(2.10)

	 or in a nondimensional form

	
T

dw

dx
w∓= β

	
(2.11)

	� where k is the spring constant and kL T/ 0β =  is a normalized spring constant.

There are other boundary conditions, such as viscous dashpots, which are not as 
important. The aforementioned boundary conditions can be combined into a canoni-
cal form, i.e.,

	
T

dw

dx
w( ) 02∓ αω + β =

	
(2.12)

For a fixed end, α or β is infinite, and for a sliding end, α = β = 0.

2.4  CONSTANT PROPERTY STRING

In this case, the tension and density are constants. By setting T = ρ = 1, Equation 
(2.5) becomes

	

d w

dx
w 0

2

2
2+ ω =

	
(2.13)
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Let α0,β0 be the values at x = 0, and α1,β1 be the values at x = 1. The solution of 
Equation (2.13) is

	 w C x C xsin( ) cos( )1 2= ω + ω 	 (2.14)

In view of the boundary conditions in Equation (2.12), one obtains

	 C C( ) 01 0
2

0 2ω − α ω − β = 	 (2.15)

	
C C C C(cos sin ) ( )(sin cos ) 01 2 1

2
1 1 2ω ω − ω − α ω − β ω + ω =

	 (2.16)

For nontrivial C1,C2, the exact characteristic equation for the frequency ω is

[( )cos sin ] ( )[ cos ( )sin ] 01
2

1 0
2

0 1
2

1ω α ω − β ω + ω ω − α ω − β ω ω − α ω − β ω = 	
(2.17)

If both ends are fixed, set α0 or β0, and α1 or β1 to infinity. Thus, we obtain 
sin ω = 0 or ω = nπ, where n is a positive integer. The fundamental frequency, or the 
frequency below which the string would not vibrate, is ω = π. If both ends are sliding, 
set α0 = β0 = 0 and α1 = β1 = 0, and the frequencies are the same, i.e., ω = nπ. For one 
end fixed and one end sliding, we find cos ω = 0 or ω = (n − 1/2)π. The frequencies 
for other combinations can be generated from Equation (2.17). Strings with different 
end conditions are shown in Figure 2.2. Mode shapes for strings with different end 
conditions are shown in Figures 2.3a, 2.3b, and 2.3c. Since the vibration amplitudes 
are arbitrary, they are made equal in the figures.

2.5  TWO-SEGMENT CONSTANT PROPERTY STRING

We consider a composite string composed of two connected constant-property seg-
ments. Let a subscript 1 denote the segment 0 ≤ x ≤ b and a subscript 2 denote the 
segment b ≤ x ≤ 1. At the joint, the string is continuous

	 w b w b( ) ( )1 2= 	 (2.18)

(a) String with fixed ends (b) String with sliding ends

(c) String with one end fixed and the other end sliding

FIGURE 2.2  Strings with different end conditions.



13Vibration of Strings

© 2010 Taylor & Francis Group, LLC

Also there may be a point mass and a supporting spring at the joint. By carrying out 
a transverse force balance at x = b, one obtains

	
T

dw

dx
T

dw

dx
w( ) 02

2
1

1 2− + αω − β =
	

(2.19)

Three important cases will be illustrated. In each case we assume that the tension 
is the same, i.e., T1 = T2 = 1, and the ends are fixed.

2.5.1  Different Densities

Figure  2.4 shows a two-segment composite string. Segment 1 has the maximum 
density (ρ1 = 1), whereas segment 2 has the smaller density (ρ2 < ρ1).

Let / 12 1γ = ρ ρ ≤ . The governing equations are

	

d w

dx
w 0

2
1

2
2

1+ ω =
	

(2.20)

	

d w

dx
w 0

2
2

2
2

2+ γω =
	

(2.21)

The boundary conditions are that the deflections are zero at the ends, i.e.,

	
w w(0) 0, (1) 01 2= =

	 (2.22)

10.8

ω1 = 3.1416
ω2 = 6.2832
ω3 = 9.4248

ω4 = 12.566
ω5 = 15.708

0.60.40.20

1

0.5

0

–0.5

–1

FIGURE 2.3  (a) Mode shapes for a string with fixed ends. (continued)
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1

Density ρ1 Density ρ2

b

FIGURE 2.4  Composite string with two segments of different densities.

10.80.60.40.20

10.80.60.40.20

1

0.5

0

–0.5

–1

1

0.5

0

–0.5

–1

ω1 = 3.1416
ω2 = 6.2832
ω3 = 9.4248
ω4 = 12.566
ω5 = 15.708

ω1 = 1.5708
ω2 = 4.7124
ω3 = 7.8540
ω4 = 10.996
ω5 = 14.137

FIGURE 2.3  (b) Mode shapes for a string with sliding ends. (c) Mode shapes with one end 
fixed and one end sliding. 
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The solutions for the foregoing governing equations and boundary conditions are

	
w C x w C xsin( ), sin 11 1 2 2 ( )= ω = γ ω −  	 (2.23)

At the joint, we have from Equation (2.19)

	

dw

dx
b

dw

dx
b( ) ( )1 2=

	
(2.24)

Equations (2.18) and (2.24) yield the characteristic equation

	
b b b bsin( )cos 1 cos( )sin 1 0( ) ( )γ ω γ ω −  + ω γ ω −  =

	
(2.25)

Equation (2.25) is equivalent to that found by Levinson (1976).
The first five frequencies for various γ and b are given in Table 2.1. Notice that the 

higher the average density, the lower is the frequency. Figure 2.5 shows sample mode 
shapes of a two-segment string with γ = 0.5, b = 0.5.

TABLE 2.1
Frequencies for Two-Segment String

b ω γ = 0.1 γ = 0.3 γ = 0.5 γ = 0.7 γ = 0.9

0.1 ω1

ω2

ω3

ω4

ω5

9.5592
16.112
23.223
32.944
42.260

5.6896
11.063
15.872
20.714
26.121

4.4281
8.7665

12.941
16.994
21.109

3.7497
7.4690

11.136
14.754
18.358

3.3103
6.6140
9.9067

13.189
16.464

0.3 ω1

ω2

ω3

ω4

ω5

5.5976
12.929
17.060
25.060
29.373

4.7628
8.9029

14.192
17.955
23.387

4.1072
7.6873

12.906
15.794
19.622

3.6338
7.0030

10.651
14.270
17.641

3.2841
6.4982
9.7650

13.062
16.284

0.5 ω1

ω2

ω3

ω4

ω5

3.9648
9.4712

15.065
19.354
23.038

3.7728
8.4791

12.024
16.060
20.681

3.5799
7.5415

10.840
14.888
18.314

3.3945
6.8937

10.191
13.771
17.010

3.2221
6.4531
9.6663

12.906
16.111

0.7 ω1

ω2

ω3

ω4

ω5

3.3401
7.2563

11.455
15.743
20.042

3.2984
7.0657

11.029
14.480
18.299

3.2552
6.8509

10.506
13.864
17.052

3.2106
6.6226

10.002
13.181
16.434

3.1648
6.3939
9.5921

12.741
15.945

0.9 ω1

ω2

ω3

ω4

ω5

3.1505
6.3462
9.6043

12.918
16.275

3.1486
6.3331
9.5694

12.854
16.175

3.1466
6.3196
9.5318

12.782
16.061

3.1446
6.3054
9.4913

12.702
15.930

3.1426
6.2908
9.4477

12.614
15.785
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2.5.2  A Mass Attached on the Span

Consider a string of constant property with a mass m attached on the span as shown 
in Figure 2.6. The solution is given by Equation (2.23) with γ = 1. The condition at 
the joint is

	

dw

dx

dw

dx
w 02 1 2− + αω =

	
(2.26)

Equations (2.18) and (2.26) yield

	 αω sin(ωb) sin[ω(1 − b)] − sin ω = 0	 (2.27)

Equation (2.27) is equivalent to that found by Chen (1963).
Table 2.2 shows the results. Since symmetry is present, the frequencies are evalu-

ated only for b ≤ 0.5. Frequency decreases with increased mass and more centered 
location. Notice that the fifth frequency of b = 0.2 and b = 0.4 is 15.708 regardless of 
the attached mass. This is because the mass is at one of the nodes of the fifth mode. 
Similarly for the centered mass (b = 0.5), the second and the fourth frequencies are 
independent of mass. Sample mode shapes for a string with an attached mass at its 
mid-span are shown in Figure 2.7.

mass m 

b

FIGURE 2.6  String with an attached mass m.

1.5

1.0

0.5

0

–0.5

–1.0

–1.5
0 0.2 0.4 0.6 0.8 1.0

ω1 = 3.5799
ω2 = 7.5415
ω3 = 10.840
ω4 = 14.888
ω5 = 18.314

FIGURE 2.5  Mode shapes for two-segment string (γ = 0.5, b = 0.5).
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1

0

–1
0 0.2 0.4 0.6 0.8 1

ω1 = 1.7207
ω2 = 6.2832
ω3 = 6.8512
ω4 = 12.566
ω5 = 12.875

FIGURE 2.7  Mode shapes of string with an attached mass at mid-span (i.e., α = 1, b = 0.5).

TABLE 2.2
Frequencies for String with a Mass

b ω α = 0.5 α = 1 α = 1.5 α = 2 α = 2.5 α = 3

0.1 ω1

ω2

ω3

ω4

ω5

2.9370
4.7680
7.3897

10.700
14.123

2.6444
4.0682
7.1643

10.583
14.043

2.3602
3.8227
7.0981

10.545
14.016

2.1306
3.7159
7.0669

10.526
14.003

1.9503
3.6593
7.0488

10.515
13.995

1.8066
3.6249
7.0370

10.508
13.989

0.2 ω1

ω2

ω3

ω4

ω5

2.5525
4.6365
8.1506

11.957
15.708

2.1099
4.2830
8.0087

11.878
15.708

1.8226
4.1589
7.9583

11.847
15.708

1.6241
4.0980
7.9326

11.832
15.708

1.4777
4.0622
7.9170

11.822
15.708

1.3644
4.0387
7.9066

11.815
15.708

0.3 ω1

ω2

ω3

ω4

ω5

2.3116
5.0394
9.1778

11.780
13.694

1.8662
4.7902

9.01010
10.789
13.575

1.6013
4.6943
9.0661

10.685
13.537

1.4230
4.6442
9.0463

10.632
13.518

1.2930
4.6136
9.0337

10.560
13.507

1.1930
4.5930
9.0248

10.579
13.500

0.4 ω1

ω2

ω3

ω4

ω5

2.1906
5.6780
8.3965

10.802
15.708

1.7539
5.5013

8.01525
10.636
15.708

1.5014
5.4242
8.0583

10.580
15.708

1.3330
5.3816
8.0090

10.553
15.708

1.2106
5.3546
7.9787

10.536
15.708

1.1167
5.3360
7.9584

10.526
15.708

0.5 ω1

ω2

ω3

ω4

ω5

2.1538
6.2832
7.2872

12.566
13.157

1.7207
6.2832
6.8512

12.566
12.875

1.4720
6.2832
6.6774

12.566
12.774

1.3065
6.2832
6.5846

12.566
12.723

1.1865
6.2832
6.5271

12.566
12.692

1.0943
6.2832
6.4880

12.566
12.672
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2.5.3  A Supporting Spring on the Span

Figure 2.8 shows a string being supported by an elastic spring with a spring constant 
k. The condition at the joint is

	

dw

dx

dw

dx
w 02 1− − β =

	
(2.28)

Equations (2.18), (2.23), and (2.28) with γ = 1 give

	 β sin(ωb) sin[ω(1 − b)] + ω sin ω = 0	 (2.29)

The frequencies are shown in Table 2.3. In this case, the frequency is increased by 
the stiffness of the spring and by a more centered location. Again at the nodal points, 
the spring has no effect on the frequency. Sample mode shapes for string supported 
by a lateral spring with b = 0.5, β = 20 are shown in Figure 2.9.

2.6 � TRANSFORMATION FOR NONUNIFORM 
TENSION AND DENSITY

If tension and/or density vary along the string, Equation (2.5) may not have an exact 
solution. The following transformation, somewhat more general than that suggested 
by Horgan and Chan (1999), reduces it to the Liouville normal form. Let

	 w(x) = W(z)	 (2.30)

	
z x

z T s
ds( )

1 1
( )

,
x

1 0∫≡
  

z
T s

ds
1
( )

1
0

1

∫≡
	

(2.31)

We see that z is also in [0,1]. Then Equation (2.5) becomes

	

d W

dz
z T W( ) 0

2

2 1
2 2+ ρ ω =

	
(2.32)

Spring with
constant k 

b

FIGURE 2.8  Fixed-ended string with lateral spring support.
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With the boundary condition at any end, Equation (2.12) becomes

	

dW

dz
z z W( ) 01

2
1∓ αω − β =

	
(2.33)

In the special case,

	 z x T x( ) ( ) 11
2ρ = 	 (2.34)

and if α and β is adjusted to z1α and z1β , then the nonuniform problem reduces 
exactly to the uniform string problem. The frequencies ω are exactly the same. Two 
different problems having exactly the same eigenvalues or frequencies are called iso-
spectral problems. Therefore, for tension inversely proportional to density (there are 
infinite different combinations), the frequency of the uniform string can be applied. 
There are, however, other cases where the product ρT is not constant.

TABLE 2.3
Frequencies for Spring-Supported String

b ω β = 5 β = 10 β = 15 β = 20 β = 25 β = 30

0.1 ω1

ω2

ω3

ω4

ω5

3.2482
6.4855
9.7004

12.880
16.013

3.3053
6.6006
9.8734

13.106
16.273

3.3408
6.6735
9.9874

13.266
16.480

3.3650
6.7234

10.067
13.381
16.638

3.3824
6.7596

10.125
13.466
16.759

3.3957
6.7870

10.168
13.530
16.852

0.2 ω1

ω2

ω3

ω4

ω5

3.4742
6.8328
9.9048

12.718
15.708

3.6134
7.1362

10.325
12.894
15.708

3.6881
7.3121

10.648
13.086
15.708

3.7343
7.4225

10.884
13.280
15.708

3.7657
7.4970

11.053
13.468
15.708

3.7883
7.5503

11.176
13.642
15.708

0.3 ω1

ω2

ω3

ω4

ω5

3.7640
6.9506
9.4782

12.692
16.017

4.0104
7.4562
9.5360

12.795
16.295

4.1355
7.8130
9.5964

12.878
16.535

4.2097
8.0633
9.6569

12.946
16.736

4.2585
8.2411
9.7154

13.001
16.901

4.2930
8.3700
9.7703

13.047
17.036

0.4 ω1

ω2

ω3

ω4

ω5

4.0621
6.5559
9.5936

12.919
15.708

4.4690
6.7925
9.7311

13.244
15.708

4.6813
6.9765
9.8394

13.528
15.708

4.8065
7.1153
9.9244

13.770
15.708

4.8874
7.2205
9.9915

13.974
15.708

4.9434
7.3017

10.045
14.146
15.708

0.5 ω1

ω2

ω3

ω4

ω5

4.2128
6.2832
9.9186

12.566
16.018

4.7613
6.2832

10.327
12.566
16.303

5.0906
6.2832

10.652
12.566
16.559

5.3073
6.2832

10.909
12.566
16.783

5.4596
6.2832

11.113
12.566
16.977

5.5719
6.2832

11.277
12.566
17.146
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2.7  CONSTANT TENSION AND VARIABLE DENSITY

By setting T = 1, Equation (2.5) gives

	

d w

dx
x w( ) 0

2

2
2+ ρ ω =

	
(2.35)

Depending on the form of the density, there are many exact solutions to Equation 
(2.35). We shall discuss the more important cases, namely, the power law density 
distribution and the exponential density distribution. Some specific examples were 
given by Horgan and Chan (1999).

2.7.1 P ower Law Density Distribution

In this case,

	 cx(1 )mρ = − 	 (2.36)

Let the maximum density be at x = 1. If m is positive, 1 > c > 0, whereas if m is nega-
tive, c < 0. If m ≠ −2, let

	 c
cx(1 )

m

2

2
η = ω



 −

+

	
(2.37)

1

0.8

1

0.6

0.4

0.2

–0.2

–0.4

–0.6

–0.8

–10 0.2 0.4 0.6 0.8

0

ω1 = 5.3073
ω2 = 6.2832
ω3 = 10.909
ω4 = 12.566
ω5 = 16.783

FIGURE 2.9  Mode shapes of a string supported by a spring at mid-length (b = 0.5, β = 20).
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Then Equation (2.35) becomes

	

d w

d
w 0m

2

2η
+ η =

	
(2.38)

The solution is given by (e.g., Murphy 1960)

	
w C J

p
C J

p

2 2
p

p

p

p

1 1/
2

2 1/
2= η η







+ η η




−

	

(2.39)

where p = m + 2 and J’s are Bessel functions. In the case of 1/p being an integer, J−1/p 
is replaced by the second kind Y1/p. From the end conditions, we can determine the 
constants C1, C2. Suppose the ends are fixed (other boundary conditions may apply). 
At the ends, let

	 c c
c, (1 )

m m
0

2

2
1

2

2
η = ω



 η = ω



 −

+ +

	
(2.40)

Then for nontrivial values of C1,C2, Equation (2.39) gives the characteristic equation

	 J
p

J
p

J
p

J
p

2 2 2 2
0p

p

p

p

p

p

p

p

1/ 0
2

1/ 1
2

1/ 0
2

1/ 1
2η







η






− η






η






=− −

	

(2.41)

If m = 1, the Bessel functions in Equation (2.41) can be expressed in Airy func-
tions. This special case was given by Fulcher (1985). If m = −4, the Bessel functions 
reduce to harmonic functions

	
sin

1 1
0

0 1η
−

η






=
	

(2.42)

or

	 n c1( )ω = π − 	 (2.43)

This solution was found by Borg (1946).
If m = −2, let

	 η = 1 − cx	 (2.44)

Equation (2.35) becomes

	

d w

d c
w

1
0

2

2

2

2η
+ ω



 η

=
	

(2.45)
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The solutions are in terms of η powers. If ω < |c|/2, the solution is

	 w C C1 2

c c1 1 4 2 / 2

2
1 1 4 2 / 2

2= η + η
+ − ω + − ω

	
(2.46)

If ω > |c|/2, the solution is

	

w C
c

C
c

sin
4 / 1

2
1n cos

4 / 1

2
1n1

2 2

2

2 2

= η
ω −

+ η












+ η
ω −

+ η












	

(2.47)

If ω = |c|/2, the solution is

	
w C C ln1 2= η + η η

	 (2.48)

If both ends are fixed, only Equation (2.47) can have nontrivial solutions. The 
frequency is governed by

	

c
c n

4 / 1

2
ln(1 )

2 2ω −
− = π

	
(2.49)

or the frequency is

	

c n

c

| |

2
1

2
ln(1 )

2

ω = + π
−







	
(2.50)

Tables 2.4 and 2.5 show the vibration frequencies for various m and c values. 
All entries are from Equation (2.41), except for the m = −2 case, which is from 
Equation (2.50).

In particular, if m = 1 the density describes a homogeneous string with a cross sec-
tion of constant width and a height that tapers linearly along the axis. If m = 2, the cross 
section is similar along the axis, and both width and height taper linearly. Sample mode 
shapes for a string with a constant tension and variable density are shown in Figure 2.10.

2.7.2 E xponential Density Distribution

Consider the case when the density decreases exponentially, i.e.,

	 e bxρ = −
	 (2.51)

Let

	 e bx /2η = −
	 (2.52)
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and Equation (2.35) becomes the Bessel equation

	

d w

d

dw

d b
w

4
0

2

2

2

2η
η

+
η

+ ω η =
	

(2.53)

The solution is

	
w C J

b
e C Y

b
e

2 2bx bx
1 0

/2
2 0

/2= ω



 + ω





− −

 	
(2.54)

The characteristic equation is

	 J
b

Y
b

e Y
b

J
b

e
2 2 2 2

0b b
0 0

/2
0 0

/2ω





ω



 − ω





ω



 =− −

	
(2.55)

The results are shown in Table 2.6. Sample mode shapes for a string with an expo-
nential density distribution are shown in Figure 2.11.

TABLE 2.4
Frequencies for Power Law Density m ≥ 0

m ω c = 0.2 c = 0.4 c = 0.6 c = 0.8 c = 1

0.5 ω1

ω2

ω3

ω4

ω5

3.2256
6.4528
9.6797

12.907
16.133

3.3224
6.6537
9.9832

13.312
16.641

3.4364
6.9000

10.359
13.816
17.272

3.5743
7.2179

10.854
14.486
18.116

3.7486
7.6664

11.590
15.515
19.441

1 ω1

ω2

ω3

ω4

ω5

3.3106
6.6252
9.9388

13.252
16.566

3.5077
7.0359

10.560
14.083
17.605

3.7402
7.5434

11.336
15.126
18.913

4.0181
8.1920

12.352
16.505
20.654

4.3537
9.0486

13.755
18.464
23.174

1.5 ω1

ω2

ω3

ω4

ω5

3.3969
6.8002

10.202
13.604
17.005

3.6971
7.4294

11.155
14.878
18.601

4.0519
8.2109

12.354
16.491
20.626

4.4703
9.1962

13.905
18.604
23.297

4.9579
10.430
15.919
21.413
26.907

2 ω1

ω2

ω3

ω4

ω5

3.4841
6.9780

10.470
13.961
17.452

3.8905
7.8338

11.767
15.698
19.627

4.3702
8.8998

13.408
17.909
22.404

4.9286
10.223
15.499
20.764
26.022

5.5614
11.811
18.083
24.361
30.640
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TABLE 2.5
Frequencies for Power Law Density m ≤ 0

m ω c = −0.5 c = −1 c = −1.5 c = −2 c = −2.5

−0.5 ω1

ω2

ω3

ω4

ω5

3.3178
6.6312
9.9455

13.260
16.575

3.4649
6.9164

10.371
13.826
17.281

3.5927
7.1617

10.736
14.311
17.886

3.7064
7.3786

11.058
14.738
18.420

3.8095
7.5743

11.347
15.123
18.900

−1 ω1

ω2

ω3

ω4

ω5

3.5001
6.9920

10.486
13.980
17.474

3.8094
7.5932

11.383
15.173
18.965

4.0862
8.1252

12.174
16.226
20.279

4.3394
8.6079

12.891
17.179
21.468

4.5745
9.0531

13.552
18.055
22.561

−1.5 ω1

ω2

ω3

ω4

ω5

3.6802
7.3657

11.046
14.726
18.407

4.1746
8.3139

12.461
16.610
20.760

4.6216
9.1755

13.744
18.317
22.891

5.0401
9.9751

14.933
14.897
24.863

5.4367
10.727
16.050
21.380
26.714

−2 ω1

ω2

ω3

ω4

ω5

3.8821
7.7522

11.625
15.498
19.372

4.5599
9.0785

13.606
18.136
22.667

5.1973
10.313
15.447
20.585
25.725

5.8060
11.482
17.187
22.899
28.614

6.3927
12.601
18.850
25.108
31.372

0.2

0.1

0

–0.1

–0.2

0 0.2 0.4 0.6 0.8 1

ω1 = 4.3702
ω2 = 8.8998
ω3 = 13.408
ω4 = 17.909
ω5 = 22.404

FIGURE 2.10  Constant tension and variable density with m = 2, c = 0.6.
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2.8  VARIABLE TENSION AND CONSTANT DENSITY

We shall only consider the most important variable tension case, i.e., the self weight 
acting on a vertically hanging string. The integration of Equation (2.2) gives the 
linear distribution

	 T T g L x( )1 0′ = + ρ − ′ 	 (2.56)

where T1 is the tension at the lower end and g is the gravitational acceleration. The 
maximum tension is at the upper end

	 T T gL0 1 0= + ρ 	 (2.57)

Thus

	
T

T

T
ax1

0

= ′ = −
	

(2.58)

TABLE 2.6
Frequencies for String with Exponential Density Distribution

b 0.5 1.0 1.5 2.0 2.5 3.0

ω1

ω2

ω3

ω4

ω5

3.5478
7.0999

10.651
14.202
17.753

3.9797
7.9780

11.972
15.966
19.958

4.4349
8.9149

13.386
17.854
22.321

4.9107
9.9072

14.888
19.863
24.836

5.4046
10.951
16.472
21.985
27.495

5.9142
12.040
18.133
24.214
30.289

0.90.80.70.60.50.40.30.20.1
–0.1

–0.05

0.05

0.1

0.15

0

0 1

ω1 = 4.4349
ω2 = 8.9149
ω3 = 13.386
ω4 = 17.854
ω5 = 22.321

FIGURE 2.11  Mode shapes of string with exponential density distribution b = 1.5.
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where

	

a T

gL

1

1
1

1

0

=

ρ
+

<

	

(2.59)

By integrating, Equation (2.31) gives

	
z

az ax
z

a a

1
ln

1
1

,
1

ln
1

11
1=

−




 =

−




 	

(2.60)

from which we find

	 T e az z1= −
	 (2.61)

By letting y = z1z, Equation (2.32) gives

	

d W

dy
e W 0ay

2

2
2+ ω =−

	
(2.62)

This is exactly the governing equation for the exponential density distribution in 
Section 2.7.2. The solution is

	 W C J C Y( ) ( )1 0 2 0= υ + υ 	 (2.63)

where

	 a
e

2 az z /21υ = ω −

	
(2.64)

2.8.1  Vertical String Fixed at Both Ends

Consider the case when a string with fixed ends is oriented vertically as shown in 
Figure 2.12. Denote

	 a
e

a
a

2 2
1z

az
1 1

/21υ = υ = ω = ω −=
−

	
(2.65)

Since the deflection is zero at z = 0 and z = 1, Equation (2.63) yields the character-
istic equation

	
J

a
Y

a
a

2 2
10 0

ω





ω −



 − Y

a
J

a
a

2 2
1 00 0

ω





ω −



 =

	
(2.66)

The results are shown in Table 2.7. Note that frequencies decrease due to self 
weight. Sample vibration mode shapes for a vertical string fixed at both ends with 
self weight a = 0.5 are shown in Figure 2.13
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String with mass
per unit length ρ0 

L

x´

g

FIGURE 2.12  Vertical string with fixed ends.

TABLE 2.7
Frequencies for a Vertical String Fixed at Both Ends

a 0.1 0.3 0.5 0.7 0.9

ω1

ω2

ω3

ω4

ω5

3.0609
6.1219
9.1829

12.244
15.305

2.8839
5.7695
8.6547

11.540
14.425

2.6775
5.3610
8.0432

10.725
13.407

2.4202
4.8567
7.2897
9.7218

12.154

2.0355
4.1169
6.1901
8.2606

10.330

–0.4        –0.2 0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

ω1 = 2.6775
ω2 = 5.3610
ω3 = 8.0432
ω4 = 10.725
ω5 = 13.407

FIGURE 2.13  Mode shapes of string with self weight a = 0.5.
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2.8.2 � Vertical String with Sliding Spring on Top 
and a Free Mass at the Bottom

Figure 2.14 shows a hanging string with a spring-supported sliding top end and mass 
m hanging at the lower end (Wang and Wang 2010). This situation models a cantile-
ver crane lift.

Now T1 = mg and

	
a

1
1

=
α + 	

(2.67)

and α is defined as in Section 2.3. The solution is still Equation (2.63). The boundary 
condition at the top is

	

dW

dz
z W 01+ β =

	
(2.68)

where β is the normalized spring constant. The bottom boundary condition is

	

dW

dz
z W 01

2− αω =
	

(2.69)

Let v0 = 2ω/a. The characteristic equation is

	
a J J a Y Y

a Y Y a J J

[ ( )/2 ( )][ ( )/2 ( )]

[ ( )/2 ( )][ ( ) / 2 ( )] 0

0 1 0 0 0 1 1 1
2

0 1

0 1 0 0 0 1 1 1
2

0 1

υ υ + β υ υ υ − αω υ −

υ υ + β υ υ υ − αω υ =
	

(2.70)

Table 2.8 shows the results. In the special case of β = ∞, Equation (2.70) reduces 
to a characteristic equation derived by Sujith and Hodges (1995), who used a 

String with mass
per unit length ρ0

k

L

x´

Mass m

Spring

FIGURE 2.14  Hanging string with a tip mass.
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slightly different normalization. When α = 0, it corresponds to the simple hanging 
string problem that was first solved by Bernoulli. The frequencies are the roots of 
J0(2ω) = 0. Notice that the fundamental frequency (the simple pendulum mode) 
decreases while the higher frequencies (string vibrations) increase with increased 
end mass.

TABLE 2.8
Frequencies of the Hanging String with End Mass

α ω β = 0 β = 5 β = 10 β = 15 β = 20 β = ∞

0 ω1

ω2

ω3

ω4

ω5

1.9159
3.5078
5.0867
6.6619
8.2353

1.3260
3.0210
4.6193
6.3350
7.9592

1.2637
2.8978
4.5351
6.1665
7.7904

1.2431
2.8525
4.4694
6.0856
7.6992

1.2328
2.8295
4.4347
6.0407
7.6460

1.2024
2.7600
4.3269
5.8958
7.4655

0.5 ω1

ω2

ω3

ω4

ω5

1.6757
3.9089
6.3137
8.7581

11.217

0.9743
3.1905
5.7719
8.3408

10.882

0.9293
2.9976
5.5078
8.0722

10.631

0.9150
2.9286
5.3889
7.9247

10.472

0.8873
2.7923
5.1279
7.5504
9.9994

0.8873
2.7923
5.1279
7.5504
9.9994

1 ω1

ω2

ω3

ω4

ω5

1.6349
4.1395
6.7755
9.4368

12.107

0.8232
3.3526
6.2103
9.0096

11.767

0.7833
3.1264
5.9145
8.7194

11.502

0.7708
3.0453
5.7770
8.5531

11.327

0.7647
3.0048
5.7026
8.4541

11.213

0.7470
2.8862
5.4712
8.1175

10.781

1.5 ω1

ω2

ω3

ω4

ω5

1.6171
4.2663
7.0205
9.7934

12.573

0.7282
3.4459
6.4450
9.3620

12.230

0.6917
3.2009
6.1330
9.0613

11.959

0.6804
3.1129
5.9854
8.8854

11.776

0.6749
3.0690
5.9051
8.7795

11.655

0.6590
2.9409
5.6549
8.4163

11.191

2 ω1

ω2

ω3

ω4

ω5

1.6071
4.3469
7.1739

10.016
12.863

0.6605
3.5064
6.5924
9.5820

12.519

0.6267
3.2493
6.2705
9.2750

12.244

0.6163
3.1568
6.1165
9.0931

12.056

0.6112
3.1107
6.0325
8.9829

11.931

0.5967
2.9764
5.7702
8.6026

11.445

2.5 ω1

ω2

ω3

ω4

ω5

1.6007
4.4027
7.2793

10.168
13.061

0.6090
3.5487
6.6939
9.7328

12.717

0.5773
3.2832
6.3653
9.4217

12.440

0.5676
3.1875
6.2069
9.2358

12.248

0.5629
3.1399
6.1203
9.1225

12.120

0.5494
3.0012
5.8495
8.7305

11.620

3 ω1

ω2

ω3

ω4

ω5

1.5962
4.4437
7.3562

10.279
13.206

0.5680
3.5801
6.7682
9.8429

12.861

0.5381
3.3083
6.4346
9.5289

12.582

0.5290
3.2103
6.2731
9.3399

12.388

0.5246
3.1614
6.1845
9.2245

12.258

0.5119
3.0196
5.9075
8.8237

11.747
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2.9  FREE-HANGING NONUNIFORM STRING

Consider a free-hanging nonuniform string with no end mass (Wang 2011). In this 
case, both density and tension vary, but they are related by

	

T x s ds( ) ( )
x

1

∫= ρ
	

(2.71)

Let the string have a power density distribution and be pointy at the free end, i.e.,

	 x x( ) (1 )nρ = − 	 (2.72)

where n is any positive number. Then from Equation (2.71)

	
T x

x

n
( )

(1 )
1

n 1

= −
+

+

	
(2.73)

Equation (2.5) becomes

	
z

d w

dz
n

dw

dz
n w( 1) ( 1) 0

2

2
2+ + + + ω =

	
(2.74)

where z = 1 − x. The bounded solution is

	 w Cz J n z(2 1 )n
n

/2= + ω−
	 (2.75)

If the top is fixed, the characteristic equation is

	 J n(2 1 ) 0n + ω = 	 (2.76)

Table 2.9 shows the first five frequencies for various n values.

TABLE 2.9
Frequencies of the Hanging Pointy Nonuniform String

n 0 0.5 1 1.5 2

ω1

ω2

ω3

ω4

ω5

1.2024
2.7600
4.3269
5.8958
7.4655

1.2826
2.5651
3.8477
5.1302
6.4128

1.3547
2.4804
3.5969
4.7106
5.8233

1.4209
2.4429
3.4482
4.4481
5.4457

1.4825
2.4299
3.3544
4.2712
5.1846
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The n = 0 case represents the uniform string of Bernoulli; n = 1 gives a string with 
linear taper in one direction (wedgelike); and n = 2 yields a string with linear taper 
in two transverse directions (conelike). Note that as n increases, the fundamental 
frequency increases while all higher frequencies decrease.

2.10  OTHER COMBINATIONS

We did not exhaust all combinations of the product ρ(x)T(x) that exactly solve Equation 
(2.32). Some forms may lead to Kummer functions, Mathieu functions, and hypergeo-
metric functions (e.g., Murphy 1960). These special functions are usually not included 
as computer library functions, and their evaluations are very tedious and error prone, 
which deviates from our purpose of presenting benchmark exact solutions.

As noted in Section 2.6, there are infinitely many density-tension distributions 
that are isospectral to known frequencies. Most of these distributions are in unusual 
forms, and will not be presented here. For further research into isospectral strings, 
see Gottlieb (2002) and the references therein.
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3 Vibration of Membranes

3.1 � INTRODUCTION

A membrane is a two-dimensional surface whose equilibrium shape is maintained by 
tension. We shall restrict our study to flat membranes. There are inflated membranes, 
such as balloons, but there seem to be no exact vibration solutions. Membranes are used 
in drums, receivers, diaphragms, drapes, and tents, and they also model nets. Membrane 
vibration is related to the vibration of some simply supported plates (see Chapter 5) and 
also the TM (transverse magnetic) waves of electromagnetic waveguides.

3.2 � ASSUMPTIONS AND GOVERNING EQUATIONS

We assume that the thickness of a membrane is small compared to its lateral dimen-
sions and that the membrane has a finite area. The membrane cannot admit compres-
sive stress and have no bending resistance. The vibrations are mainly normal to the 
membrane and thus do not appreciably affect the tension. By balancing an elemental 
area, or setting the moment terms in the plate equations to zero (Chapter 5), one can 
show that the membrane equation is

	

∂
∂ ′

′ ∂ ′
∂ ′





 + ∂

∂ ′
′ ∂ ′

∂ ′






+ ∂
∂ ′

′ ∂ ′
∂ ′







+ ∂
∂ ′

′ ∂ ′
∂ ′





 = ′ρ ∂ ′

∂ ′x
T

u

x y
T

u

y x
T

u

y y
T

u

x

u

t
xx yy xy xy

2

2 	 (3.1)

Here ′ ′T T,xx yy  are the normal stresses (force per length) in the Cartesian x′,y′ direc-
tions, and ′Txy  is the shear stress. Of course, the stresses are in static equilibrium, 
and can be derived from a plane stress function (e.g., Timoshenko and Goodier 
1970). Traditionally, one considers membranes with equal and constant normal stress 
and zero shear stress, but there is no reason to limit to such a case (Soedel 2004). 
However, there seems to be no exact solution if the shear stress is not zero (Leissa 
and Ghamat-Rezaei 1990). Thus we shall consider normal stresses only.

We normalize all lengths by a membrane dimension L, the stresses by the maximum 
stress T0, the density by the maximum density ρ0, and the time by ρL T/0 0 and drop 
the primes. For vibrations, set = ωu w x y e( , ) ,i t  and Equation (3.1) becomes

	

∂
∂

∂
∂





 + ∂

∂
∂
∂





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+ ρω =
x

T
w

x y
T

w

y
w 0xx yy

2 	 (3.2)

Notice that if there is no stress in one direction, say Tyy = 0, then Equation (3.2) 
reduces to the string equation studied earlier.
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The boundary conditions are usually fixed, i.e.,

	 w = 0	 (3.3)

But there are special cases where sliding, joined, or massed boundary conditions are 
used, which we shall develop as needed.

3.3 � CONSTANT UNIFORM NORMAL STRESS 
AND CONSTANT DENSITY

We consider equal uniform stresses, = =T T 1xx yy and constant density ρ = 1. Equation 
(3.2) simplifies to the Helmholtz equation

	

∂
∂

+ ∂
∂

+ ω =w

x

w

y
w 0

2

2

2

2
2 	 (3.4)

where ω is the frequency normalized by ρT L/0 0
2 . For fixed boundaries, Equation 

(3.3) holds.
If the membrane is stretched by constant but unequal amounts in the x and y 

directions that results in different uniform stresses, say Txx = T1 and Tyy = T2, then one 
can redefine a new independent variable

	
=y T T y/2 1 	 (3.5)

Equation (3.2) then becomes

	

∂
∂

+ ∂
∂

+ ω =w

x

w

y
w 0

2

2

2

2
2 	 (3.6)

which is the same as Equation (3.4). Thus in this section, without loss of generality, 
we can assume that tensions are uniform and equal.

Even for uniform stress and density, there are only a few membrane shapes that 
admit exact solutions.

3.3.1 �R ectangular Membrane

Consider a rectangular membrane whose normalized length is 1 and normalized 
width a (i.e., aspect ratio a ≤ 1). Let Cartesian coordinates be placed at the lower 
corner as shown in Figure 3.1. The exact solution to Equations (3.3) and (3.4) is

	
= π π



w n x

m y

a
sin( )sin 	 (3.7)

where n, m are nonzero integers that give the number of half waves in the x, y direc-
tions, respectively.
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The exact natural frequency of vibration of the rectangular membrane is given by

	
ω = π + 



n

m

a
2

2

	 (3.8)

Although the fundamental (lowest) frequency is always due to the (m, n) = (1, 1) 
mode, the next few frequencies are not obvious, as reflected by Table 3.1. Typical 
mode shapes of a rectangular membrane (with a = 0.6) are shown in Figure 3.2.

3.3.2 �T hree Triangular Membranes

By combining two modes of the square membrane, such that w = 0 on the diagonal 
x = y, one obtains the solution to the (45°, 45°, 90°) triangular membrane as shown in 
Figure 3.3a

	 w = sin(nπx) sin(mπy) − sin(mπx) sin(nπy)	 (3.9)

where n ≠ m. The frequency is

	 ω = +n mπ 2 2 	 (3.10)

TABLE 3.1
Frequencies for Rectangular Membranes

a = 0.2 0.4 0.6 0.8 1

16.019 (1,1) 8.459(1,1) 6.106 (1,1) 5.029(1,1) 4.443 (1,1)

16.918 (1,2) 10.058 (1,2) 8.179 (1,2) 7.409 (1,2) 7.025 (1,2) (2,1)

18.315 (1,3) 12.268 (1,3) 10.782 (1,3) 8.459 (2,1) 8.886 (2,2)

20.116 (1,4) 14.819 (1,4) 10.933 (2,1) 10.058 (2,2) 9.935 (1,3) (3,1)

22.214 (1,5) 16.019 (2,1) 12.212 (2,2) 10.210 (1,3) 11.327 (2,3) (3,2)

Note: Mode numbers (m,n) are given in parentheses.

1

a

y

x

FIGURE 3.1  Rectangular membrane and coordinate axes.
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Let us designate the mode by (n, m). The first five frequencies are 7.025 (1,2) (2,1), 
9.935 (1,3) (3,1), 11.324 (2,3) (3,2), 12.953 (1,4) (4,1), and 14.050 (2,4) (4,2). Note that 
the frequencies of the 45°, 45°, 90° triangular membrane constitute only a subset of 
the square membrane. Thus, these shapes are not isospectral to each other.

The equilateral triangular shape (60°, 60°, 60°), as shown in Figure 3.3b, was first 
considered by Schelkunoff (1943), who gave an exact solution to the electromagnetic 
wave propagation (TM mode), which is analogous to the vibrating membrane. The 
length scale is the height of the triangle.

= +
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( 2 )π

3 3
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π(2 )
3

cos
( )π

3 3
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( )π(2 )
3

cos
(2 )π

3 3
sin

π(2 )
3

	(3.11)

Here m and n are integers that are nonzero and do not add up to zero. The fre-
quency is

	
ω = + +m mn n

2π
3 3

2 2 	 (3.12)

m = 1, n = 1
ω = 6.106

m = 1, n = 2
ω = 8.179

m = 1, n = 3
ω = 10.782

m = 2, n = 1
ω = 10.933

m = 2, n = 2
ω = 12.212

FIGURE 3.2  Mode shapes of rectangular membrane with a = 0.6.

x

y

1

1

FIGURE 3.3a  Right angle triangular (45°,  45°,  90°) membrane. (continued)
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Equation (3.11) is symmetric about y = 0 and does not include the antisymmetric 
modes. To complete the solution, we must add the analogous frequencies of the 30°, 
60°, 90°triangular membrane (see Figure 3.3c), first given by Seth (1947).
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	 (3.13)

60°

60°

1–2 x

y

60°

FIGURE 3.3b  Equilateral triangular membrane.

x

y

–2 1

90°

60°

30°

FIGURE 3.3c  Right angle triangular (30°, 60°, 90°) membrane.
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Note that n and m can be interchanged, and so we consider only n ≥ m. The lowest 
frequencies of the equilateral triangular membrane are 2.0944 (1,1) (2,−1), 3.1992 (2,1) 
(3,−2) (3,−1), 4.1888 (2,2) (4,−2), 4.3598 (3,1) (4,−3) (4,−1), and 5.2708 (3,2) (5,−2) (5,−3). 
The lowest frequencies of the 30°, 60°, 90° membrane are 3.1992 (2,1) (3,−2) (3,−1), 
4.3598 (3,1) (4,−3) (4,−1), 5.2708 (3,2) (5,−2) (5,−3), and 6.7325 (5,1) (6,−1) (6,−5).

3.3.3 �C ircular and Annular Membranes

In polar coordinates (r,θ), the uniformly stretched membrane satisfies

	

∂
∂

+ ∂
∂

+ ∂
∂θ

+ ω =w

r r

w

r r

w
w

1 1
0

2

2 2

2

2
2 	 (3.14)

We normalize the lengths by the maximum radius. The general solution is

	 = θ ω + ωw n C J r C Y rcos( )[ ( ) ( )]n n1 2 	 (3.15)

where n ≥ 0 is an integer and Jn,Yn are Bessel functions. For a circular membrane 
(Figure 3.4a), C2 is zero, and the fixed outer boundary gives

	 ω =J ( ) 0n 	 (3.16)

Let ωp be the pth root of Equation (3.16) in ascending order. Let (n, p) denote the 
mode shape, i.e., n radial nodes and p concentric nodes including the outer boundary. 
The first five lowest frequencies are 2.4048 (0,1), 3.8317 (1,1), 5.1356 (2,1), 5.5201 
(0,2), and 6.3802 (3,1).

Consider an annular membrane with an outer normalized radius 1 and inner radius 
b < 1 (Figure 3.4b). The application of the fixed boundary conditions on Equation 
(3.15) gives the characteristic equation

	 ω ω − ω ω =Y J b J Y b( ) ( ) ( ) ( ) 0n n n n 	 (3.17)

Table 3.2 shows the results. Notice that the fundamental frequency rises sharply 
from the no-core value of 2.4048. Mode shapes for a circular membrane and an 
annular membrane (with b = 0.5) are shown in Figure 3.5 and Figure 3.6, respectively.

The exact solution for an annular membrane with a solid core was given by 
Wang (2003).

r1
r

θ

FIGURE 3.4a  Circular membrane with a radius of one unit. (continued)
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b

θ
r

1

FIGURE 3.4b  Annular membrane with inner to outer radius ratio of b.

TABLE 3.2
Frequencies for Annular Membranes

b = 0.01 0.1 0.3 0.5 0.7 0.9

2.8009 (0,1) 3.3139 (0,1) 4.4124 (0,1) 6.2461 (0,1) 10.455 (0,1) 31.412 (0,1)

3.8329 (1,1) 3.9409 (1,1) 4.7058 (1,1) 6.3932 (1,1) 10.522 (1,1) 31.429 (1,1)

5.1356 (2,1) 5.1424 (2,1) 5.4702 (2,1) 6.8138 (2,1) 10.720 (2,1) 31.482 (2,1)

6.0109 (0,2) 6.3805 (3,1) 6.4937 (3,1) 7.4577 (3,1) 11.042 (3,1) 31.570 (3,1)

6.3802 (3,1) 6.8576 (0,2) 7.6229 (4,1) 8.2667 (4,1) 11.476 (4,1) 31.693 (4,1)

Note:	 Mode numbers (n,p) are given in parentheses.

n = 0, p = 1
ω = 2.4048

n = 1, p = 1
ω = 3.8317

n = 2, p = 1
ω = 5.1356

n = 0, p = 2
ω = 5.5201

n = 3, p = 1
ω = 6.3802

FIGURE 3.5  Mode shapes of circular membrane.
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3.3.4 �C ircular Sector Membrane and Annular Sector Membrane

For sector membranes (Figure  3.7), let θ0 be the opening angle. The solution to 
Equation (3.14) is represented by

	 = βθ ω + ωβ βw C J r C Y rsin( )[ ( ) ( )]1 2 	 (3.18)

n = 0, p = 1
ω = 6.2461

n = 1, p = 1
ω = 6.3932

n = 2, p = 1
ω = 6.8138

n = 3, p = 1
ω = 7.4577

n = 4, p = 1
ω = 8.2667

FIGURE 3.6  Mode shapes of annular membrane with b = 0.5.

FIGURE 3.7  Circular sector membrane.

TABLE 3.3
Frequencies for Circular Sector Membranes

θ0 = 30° 45° 60° 90° 180° 360°

9.9361 (1,1) 7.5883 (1,1) 6.3802 (1,1) 5.1356 (1,1) 3.8317 (1,1) 3.1416 (1,1)

13.589 (1,2) 11.065 (1,2) 9.7610 (1,2) 7.5883 (2,1) 5.1356 (2,1) 3.8317 (2,1)

16.698 (2,1) 12.225 (2,1) 9.9361 (2,1) 8.4172 (1,2) 6.3802 (3,1) 4.4934 (3,1)

17.004 (1,3) 14.373 (1,3) 13.015 (1,3) 9.9361 (3,1) 7.0156 (1,2) 5.1356 (4,1)

20.321 (1,4) 16.038 (2,2) 13.354 (3,1) 11.065 (2,2) 7.5883 (4,1) 5.7635 (5,1)

Note:	 Mode numbers (n, p) are in parentheses.
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where β = nπ/θ0, and n is a nonzero integer. Notice that the sine function is needed 
for sectors.

For a circular sector membrane, C2 = 0. The boundary condition requires

	 ω =βJ ( ) 0 	 (3.19)

Table 3.3 presents the natural frequencies of circular sector membranes. When 
θ = °3600 , it is a circular membrane with a radial constraint.

Let the opening angle of the annular sector membrane be θ0 and bounded by the 
outer radius r = 1 and the inner radius r = b < 1. The characteristic equation is

	 ω ω − ω ω =β β β βY J b J Y b( ) ( ) ( ) ( ) 0 	 (3.20)

Table 3.4 shows the results. Note the switching of modes and the same fre-
quencies for certain shapes. Mode shapes for a circular membrane and an annular 
membrane with θ = °900  are shown in Figure 3.8a and Figure 3.8b, respectively.

TABLE 3.4
Frequencies for Annular Sector Membranes

b θ0 = 30° 45° 60° 90° 180° 360°

0.1 9.9361 (1,1)
13.589 (1,2)
16.698 (2,1)
17.004 (1,3)
20.321 (1,4)

7.5884 (1,1)
11.065 (1,2)
12.225 (2,1)
14.374 (1,3)
16.038 (2,2)

6.3805 (1,1)
9.7641 (1,2)
9.9361 (2,1)

13.030 (1,3)
13.354 (3,1)

5.1424 (1,1)
7.5884 (2,1)
8.4574 (1,2)
9.9361 (3,1)

11.065 (2,2)

3.9409 (1,1)
5.1424 (2,1)
6.3808 (3,1)
7.3306 (1,2)
7.5864 (4,1)

3.4907 (1,1)
3.9409 (2,1)
4.5223 (3,1)
5.1424 (4,1)
5.7649 (5,1)

0.3 9.9386 (1,1)
13.633 (1,2)
16.698 (2,1)
17.245 (1,3)
20.790 (2,2)

7.6229 (1,1)
11.348 (1,2)
12.225 (2,1)
15.246 (1,3)
16.042 (2,2)

6.4937 (1,1)
9.9386 (2,1)

10.371 (1,2)
13.354 (3,1)
13.633 (2,2)

5.4702 (1,1)
7.6229 (2,1)
9.6003 (1,2)
9.9386 (3,1)

11.348 (2,2)

4.7056 (1,1)
5.4702 (2,1)
6.4937 (3,1)
9.1042 (1,2)
9.6003 (2,2)

4.4880 (1,1)
4.7058 (2,1)
5.0427 (3,1)
8.9760 (1,2)
9.1042 (2,2)

0.5 10.189 (1,1)
15.110 (1,2)
16.706 (2,1)
20.652 (1,3)
20.963 (2,2)

8.2667 (1,1)
12.311 (2,1)
13.742 (1,2)
16.706 (3,1)
16.841 (2,2)

7.4577 (1,1)
10.189 (2,1)
13.232 (1,2)
13.403 (3,1)
16.706 (4,1)

6.8138 (1,1)
8.2667 (2,1)

10.189 (3,1)
12.311 (4,1)
12.856 (1,2)

6.3932 (1,1)
6.8138 (1,2)
7.4577 (2,1)
8.2667 (3,1)
9.1900 (4,1)

6.2832 (1,1)
6.3932 (1,2)
6.5720 (2,1)
6.8138 (3,1)
7.1116 (4,1)

0.7 12.635 (1,1)
17.581 (2,1)
22.125 (1,2)
23.527 (3,1)
25.367 (2,2)

11.476 (1,1)
14.092 (2,1)
17.581 (3,1)
21.472 (1,2)
21.490 (4,1)

11.042 (1,1)
12.635 (2,1)
14.906 (3,1)
17.581 (4,1)
20.489 (5,1)

10.720 (1,1)
11.476 (2,1)
12.635 (3,1)
14.092 (4,1)
15.763 (5,1)

10.522 (1,1)
10.720 (2,1)
11.042 (3,1)
11.476 (4,1)
12.012 (5,1)

10.472 (1,1)
10.522 (2,1)
10.605 (3,1)
10.720 (4,1)
10.866 (5,1)

0.9 32.041 (1,1)
33.859 (2,1)
36.688 (3,1)
40.319 (4,1)
44.548 (5,1)

31.693 (1,1)
32.522 (2,1)
33.859 (3,1)
35.646 (4,1)
37.819 (5,1)

31.570 (1,1)
32.041 (2,1)
32.811 (3,1)
33.859 (4,1)
35.160 (5,1)

31.482 (1,1)
31.693 (2,1)
32.041 (3,1)
32.522 (4,1)
33.130 (5,1)

31.429 (1,1)
31.482 (2,1)
31.570 (3,1)
31.693 (4,1)
31.850 (5,1)

31.416 (1,1)
31.429 (2,1)
31.451 (3,1)
31.482 (4,1)
31.522 (5,1)

Note:	 Mode numbers (n, p) are in parentheses.
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3.4 � TWO-PIECE CONSTANT-PROPERTY MEMBRANES

The two-piece membrane has constant tension, but each separate piece has different 
constant properties. Thus the deformation of each piece satisfies different Helmholtz 
equations. At the joint or common boundary, we require the deformations and the nor-
mal derivatives (force components) to match. The two-piece rectangular membrane 
was first studied analytically by Gottlieb (1986), and the two-piece circular membrane 
by Spence and Horgan (1983), but only for some extreme density ratios. The two-piece 
annular membrane was considered by Laura, Rossit, and La Malfa (1998).

3.4.1 �T wo-Piece Rectangular Membrane

Figure 3.9 shows a composite rectangular membrane with a normalized Cartesian 
coordinate system at one corner. Region 1 (0 ≤ x ≤ b, 0 ≤ y ≤ a) has the larger density, 
while Region 2 (b ≤ x ≤ 1, 0 ≤ y ≤ a) has the smaller density.

n = 1, p = 1
ω = 6.8138

n = 2, p = 1
ω = 8.2667

n = 3, p = 1
ω = 10.189

n = 4, p = 1
ω = 12.311

n = 1, p = 2
ω = 12.856

FIGURE 3.8b  Mode shapes for annular sector membrane with θ0 = 90° and b = 0.5.

n = 1, p = 1
ω = 5.1356

n = 2, p = 1
ω = 7.5883

n = 1, p = 2
ω = 8.4172

n = 3, p = 1
ω = 9.9361

n = 2, p = 2
ω = 11.065

FIGURE 3.8a  Mode shapes for circular sector membrane with θ0 = 90°.



43Vibration of Membranes

© 2010 Taylor & Francis Group, LLC

The governing equations are

	 + + ω =w w w 0xx yy1 1
2

1 	 (3.21)

	 + + γω =w w w 0xx yy2 2
2

2 	 (3.22)

where γ = ρ ρ ≤/ 12 1 . The boundary conditions are

	
= = =w x w x a w y( ,0) 0, ( , ) 0, (0, ) 01 1 1 	 (3.23)

	
= = =w x w x a w y( ,0) 0, ( , ) 0, (1, ) 02 2 2 	 (3.24)

and at the joint

	 =w b y w b y( , ) ( , )1 2 	 (3.25a)

	 =w b y w b y( , ) ( , )x x1 2 	 (3.25b)

The solutions that satisfy Equations (3.21) to (3.24) are

	 = αw C y F xsin( ) ( )1 1 1 	 (3.26a)

	 = αw C y F xsin( ) ( )2 2 2 	 (3.26b)

where α = nπ/a and

	

( )

( )
=

ω − α ω > α

ω = α

α − ω ω < α














F x

x

x

x

( )

sin

sinh

1

2 2

2 2

	 (3.27)

x

y

1

b

a

Region 1

Region 2

FIGURE 3.9  Two-piece rectangular membrane.
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( )

( )

=

γω − α −



 γ ω > α

− γ ω = α

α − γω −



 γ ω < α














F x

x

x

x

( )

sin 1

1

sinh 1

2

2 2

2 2

	 (3.28)

For nontrivial C1, C2, Equations (3.25a) and (3.25b) yield the condition

	 F1(b)F ′2(b)–F2(b)F ′1(b) = 0	 (3.29)

Table 3.5 shows some representative results. The parentheses show the mode n 
at which the frequency occurs. Mode shapes of two-piece rectangular membrane 
for γ = 0.5, b = 0.5, and a = 1 are shown in Figure 3.10.

3.4.2 �T wo-Piece Circular Membrane

Figure  3.11 shows a circular membrane comprising two concentric homogeneous 
pieces. Let the interior circular piece be denoted by the subscript 1 and the exterior 
annular piece by the subscript 2. The governing equations are given by

	 ∇ + γ ω =w w 02
1 1

2
1 	 (3.30)

	 ∇ + γ ω =w w 02
2 2

2
2 	 (3.31)

TABLE 3.5a
Frequencies for the Two-Piece Rectangular Membrane (γ = 0.25)

b a = 0.25 a = 0.50 a = 1.00 a = 2.00

0.25 12.566 (1)
15.746 (1)
23.415 (1)
25.133 (1,2)
26.564 (1)

6.2832 (1)
10.186 (1)
12.566 (1,2)
14.986 (1)
15.746 (2)

3.1416 (1)
6.2832 (1,2)
7.2447 (1)
9.4248 (3)

10.186 (2)

1.5708 (1)
3.1416 (1,2)
4.7124 (3)
5.9275 (1)
6.2832 (2,3)

0.50 12.566 (1)
13.656 (1)
16.606 (1)
20.756 (1)
25.133 (1,2)

6.2832 (1)
7.8802 (1)

11.778 (1)
12.566 (1,2)
13.656 (2)

3.1416 (1)
5.2491 (1)
6.2832 (1,2)
7.8802 (2)
9.4248 (3)

1.5708 (1)
3.1416 (1,2)
4.2378 (1)
4.7124 (3)
5.2491 (2)

0.75 12.566 (1)’
13.112 (1)
14.654 (1)
16.964 (1)
19.805 (2)

6.2832 (1)
7.1860 (1)
9.5686 (1)

12.566 (1,2)
14.654 (2)

3.1416 (1)
4.5732 (1)
6.2832 (1,2)
7.1860 (2)
7.6034 (1)

1.5708 (1)
3.1416 (1,2)
3.6231 (1)
4.5732 (2)
4.7124 (3)

Note:	 Mode number n is in parentheses.
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TABLE 3.5b
Frequencies for the Two-Piece Rectangular 
Membrane (γ = 0.5)

b a = 0.25 a = 0.50 a = 1.00 a = 2.00

0.25 12.566 (1)
15.334 (1)
17.772 (1)
18.677 (1)
20.747 (1)

6.2832 (1)
8.8858 (1)
9.1618 (1)

11.235 (1)
12.566 (2)

3.1416 (1)
4.4429 (1)
5.9443 (1)
6.2832 (2)
8.8067 (1)

2.2214 (1)
3.1416 (2)
4.4429 (2)
4.7124 (3)
4.7228 (1)

0.50 12.566 (1)
13.581 (1)
16.275 (1)
17.772 (1)
19.255 (1)

6.2832 (1)
7.7005 (1)
8.8858 (1)

10.795 (1)
12.566 (2)

3.1416 (1)
4.4429 (1)
5.0033 (1)
6.2832 (2)
7.7005 (2)

1.5708 (1)
2.2214 (1)
3.1416 (2)
3.9901 (1)
4.4429 (2)

0.75 12.566 (1)
13.089 (1)
14.560 (1)
16.750 (1)
17.772 (1)

6.2832 (1)
7.1460 (1)
8.8858 (1)
9.3528 (1)

12.262 (1)

3.1416 (1)
4.4429 (1)
4.5342 (1)
6.2832 (2)
7.1460 (2)

1.5708 (1)
2.2214 (1)
3.1416 (2)
3.5882 (1)
4.4429 (2)

Note:	 Mode number n is in parentheses.

TABLE 3.5c
Frequencies for the Two-Piece Rectangular 
Membrane (γ = 0.75)

b a = 0.25 a = 0.50 a = 1.00 a = 2.00

0.25 12.566 (1)
14.462 (1)
14.510 (1)
15.577 (1)
17.498 (1)

6.2832 (1)
7.2552 (1)
7.9617 (1)
9.8257 (1)
12.537 (1)

3.1416 (1)
3.6276 (1)
5.0475 (1)
6.2832 (2)
7.2552 (2)

1.8138 (1)
3.1416 (2)
3.6276 (2)
3.9925 (1)
5.0475 (2)

0.50 12.566 (1)
13.429 (1)
14.510 (1)
15.340 (1)
16.792 (1)

6.2832 (1)
7.2552 (1)
7.4210 (1)
9.6332 (1)
12.077 (1)

3.1416 (1)
3.6276 (1)
4.7260 (1)
6.2832 (2)
7.2552 (2)

1.8138 (1)
3.1416 (2)
3.6276 (2)
3.7431 (1)
4.7124 (3)

0.75 12.566 (1)
13.047 (1)
14.387 (1)
16.331 (1)
18.538 (1)

6.2832 (1)
7.0940 (1)
9.1447 (1)
11.797 (1)
12.566 (2)

3.1416 (1)
3.6276 (1)
4.4909 (1)
6.2832 (2)
7.0940 (2)

1.8138 (1)
3.1416 (2)
3.5513 (1)
3.6276 (2)
4.4909 (2)

Note:	 Mode number n is in parentheses.
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Here all quantities have been normalized as before, and γ represents the density 
ratio. If the inner piece has the higher density, then γ = γ = ρ ρ <1, / 11 2 2 2 . If the outer 
piece has the higher density, then γ = γ = ρ ρ <1, / 12 1 1 2 . The solution to Equation 
(3.30) satisfying the bounded condition at the center is

	
= θ γ ωw C n J rcos( ) ( )n1 1 1 	 (3.32)

The solution to Equation (3.31) satisfying the zero condition at the rim is

	
= θ γ ω γ ω − γ ω γ ωw C n Y J r J Y rcos( )[ ( ) ( ) ( ) ( )]n n n n2 2 2 2 2 2 	 (3.33)

At the joint (r = b), the displacements and tension match

	 θ = θw b w b( , ) ( , )1 2 	 (3.34a)

	 θ = θw b w b( , ) ( , )r r1 2 	 (3.34b)

n = 1, ω = 3.1416 n = 1, ω = 4.4429 n = 1, ω = 5.0033 n = 2, ω = 6.2832 n = 2, ω = 7.7005

FIGURE 3.10  Mode shapes of two-piece rectangular membrane for γ = 0.5, b = 0.5, a = 1.

b

1

ρ2

ρ1

FIGURE 3.11  Two-piece circular membrane.
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Equations (3.34a) and (3.34b) yield the characteristic equation

	

γ γ ω γ ω ′ γ ω − γ ω ′ γ ω

− γ ′ γ ω γ ω γ ω − γ ω γ ω =

J b Y J b J Y b

J b Y J b J Y b

( )[ ( ) ( ) ( ) ( )]

( )[ ( ) ( ) ( ) ( )] 0

n n n n n

n n n n n

2 1 2 2 2 2

1 1 2 2 2 2 	 (3.35)

The results are given in Tables 3.6a and 3.6b. The parentheses show the mode 
n at which the frequency occurs. Mode shapes for two-piece circular membrane 
with γ1 = 1, γ2 = 0.5, b = 0.5 are shown in Figure 3.12.

3.5 � NONHOMOGENEOUS MEMBRANES

We consider nonuniform membranes with continuously varying density (or thick-
ness). The tension is constant. Equation (3.2) becomes

	 ∇ + ω ρ =w w 02 2 	 (3.36)

TABLE 3.6a
Frequencies for the Two-Piece Circular Membrane, γ1 = 1
b γ2 = 0.1 γ2 = 0.3 γ2 = 0.5 γ2 = 0.7 γ2 = 0.9

0.1 6.3364 (0)
12.040 (1)
12.803 (0)
16.238 (2)
20.176 (3)

4.1985 (0)
6.9862 (1)
9.1004 (0)
9.3760 (2)

11.649 (3)

3.3379 (0)
5.4158 (1)
7.2628 (2)
7.4819(0)
9.0229(3)

2.8517(0)
4.5787(1)
6.1382(2)
6.4822(0)
7.6258(3)

2.5298(0)
4.0387(1)
5.4134(2)
5.7926(0)
6.7253(3)

0.3 3.6770 (0)
7.6836 (1)

11.485 (0)
12.086 (2)
14.304 (1)

3.2868 (0)
6.2578 (1)
8.0435 (0)
9.0881 (2)
9.9098 (1)

2.9628 (0)
5.1968 (1)
6.7993 (0)
7.1896 (2)
8.7003 (1)

2.7030 (0)
4.5040 (1)
6.1143 (2)
6.1384 (0)
7.6192 (3)

2.4942 (0)
4.0223 (1)
5.4082 (2)
5.6972 (0)
6.7239 (3)

0.5 2.8261 (0)
5.1438 (1)
7.5893 (2)
8.0728 (0)

10.075 (3)

2.7282 (0)
4.8414 (1)
7.0592 (2)
7.3605 (0)
9.3598 (3)

2.6314 (0)
4.5266 (1)
6.4362 (2)
6.6496 (0)
8.3544 (3)

2.5376 (0)
4.2259 (1)
5.8462 (2)
6.0938 (0)
7.4164 (3)

2.4479 (0)
3.9547 (1)
5.3491 (2)
5.6839 (0)
6.6818 (3)

0.7 2.5020 (0)
4.1616 (1)
5.8022 (2)
6.2649 (0)
7.4559 (3)

2.4811 (0)
4.0942 (1)
5.6749 (2)
6.1176 (0)
7.2669 (3)

2.4598 (0)
4.0229 (1)
5.5333 (2)
5.9552 (0)
7.0429 (3)

2.4381 (0)
3.9483 (1)
5.3797 (2)
5.7830 (0)
6.7892 (3)

2.4160 (0)
3.8711 (1)
5.2180 (2)
5.6072 (0)
6.5179 (3)

0.9 2.4089 (0)
3.8475 (1)
5.1721 (2)
5.5643 (0)
6.4468 (3)

2.4080 (0)
3.8441 (1)
5.1644 (2)
5.5550 (0)
6.4331 (3)

2.4071 (0)
3.8406 (1)
5.1565 (2)
5.5454 (0)
6.4187 (3)

2.4062 (0)
3.8371 (1)
5.1483 (2)
5.5355 (0)
6.4038 (3)

2.4053 (0)
3.8335 (1)
5.1399 (2)
5.5253 (0)
6.3882 (3)

Note:	 Mode numbers n is in parentheses.
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TABLE 3.6b
Frequencies for the Two-Piece Circular Membrane, γ2 = 1

b γ1 = 0.1 γ1 = 0.3 γ1 = 0.5 γ1 = 0.7 γ1 = 0.9

0.1 2.4438 (0)
3.8336 (1)
5.1357 (2)
5.7068 (0)
6.3812 (3)

2.4353 (0)
3.8332 (1)
5.1357 (2)
5.6676 (0)
6.3802 (3)

2.4267 (0)
3.8328 (1)
5.1357 (2)
5.6271 (0)
6.3802 (3)

2.4180 (0)
3.8323 (1)
5.1357 (2)
5.5852 (0)
6.3802 (3)

2.4092 (0)
3.8319 (1)
5.1356 (2)
5.5420 (0)
6.3802 (3)

0.3 2.7464 (0)
3.9448 (1)
5.1698 (2)
6.3896 (3)
6.8517 (0)

2.6678 (0)
3.9219 (1)
5.1630 (2)
6.3877 (3)
6.5340 (0)

2.5966 (0)
3.8978 (1)
5.1558 (2)
6.2036 (0)
6.3857 (3)

2.5140 (0)
3.8724 (1)
5.1481 (2)
5.8978 (0)
6.3836 (3)

2.4405 (0)
3.8456 (1)
5.1399 (2)
5.6348 (0)
6.3813 (3)

0.5 3.4397 (0)
4.4830 (1)
5.5386 (2)
6.6250 (3)
7.7339 (4)

3.1509 (0)
4.3472 (1)
5.4672 (2)
6.5821 (3)
7.4654 (0)

2.8921 (0)
4.2029 (1)
5.3811 (2)
6.5256 (0)
6.5334 (3)

2.6714 (0)
4.0540 (1)
5.2892 (2)
5.9953 (0)
6.4780 (3)

2.4861 (0)
3.9050 (1)
5.1888 (2)
5.6527 (0)
6.4149 (3)

0.7 4.9826 (0)
6.1148 (1)
7.0688 (2)
8.0037 (3)
8.9477 (4)

3.9007 (0)
5.4613 (1)
6.6355 (2)
7.6752 (0)
7.6932 (3)

3.2386 (0)
4.8616 (1)
6.1697 (2)
6.7637 (0)
7.3354 (3)

2.8162 (0)
4.3755 (1)
5.7197 (2)
6.1779 (0)
6.9501 (3)

2.5217 (0)
3.9925 (1)
5.3166 (2)
5.7184 (0)
6.5652 (3)

0.9 7.4523 (0)
11.359 (1)
14.079 (2)
14.836 (0)
15.865 (3)

4.3703 (0)
6.9100 (1)
9.1582 (2)
9.8075 (0)

11.204 (3)

3.3944 (0)
5.3920 (1)
7.1972 (2)
7.7258 (0)
8.8949 (3)

2.8720 (0)
4.5703 (1)
6.1154 (2)
6.5698 (0)
7.5821 (3)

2.5344 (0)
4.0368 (1)
5.4083 (2)
5.8124 (0)
6.7156 (3)

n = 0, ω = 2.6314 n = 1, ω = 4.5266 n = 2, ω = 6.4362 n = 3, ω = 6.6496 n = 4, ω = 8.3544

FIGURE 3.12  Mode shapes for two-piece circular membrane with γ1 = 1, γ2 = 0.5, b = 0.5.
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where the normalized density ρ is a function of space. So far, exact solutions with 
density varying in only one direction have been found, except for the work of Gottlieb 
(2004), who studied isospectral membranes through conformal mapping.

3.5.1 �R ectangular Membrane with Linear Density Distribution

Wang (1998) found the solution to the rectangular membrane with density varying 
linearly and parallel to an edge. However, that source only presented the results for 
the fundamental frequencies. The density is

	 ρ = 1 − bx,  for  b < 1	 (3.37)

which is a linear taper. Note that Wang (1998) used a density with constant mass, 
which is slightly different. We shall similarly develop the solution. Assume that

	 w = sin(αy)f(x)	 (3.38)

where α = nπ/a. Equation (3.36) becomes

	
+ ω − − α =d f

dx
bx f[ (1 ) ] 0

2

2
2 2 	 (3.39)

Let

	
= = ω − − α ω −f x h z z bx b( ) ( ), [ (1 ) ]( )2 2 2 2/3 	 (3.40)

Then Equation (3.39) becomes the Stokes equation

	
+ =d h

dz
zh 0

2

2 	 (3.41)

The solution satisfying the conditions of f being zero on the boundary is

	 = −− −f z J p J p J p J p[ ( ) ( ) ( ) ( )]1/3 0 1/3 1/3 0 1/3 	 (3.42)

where

	
= = == =p z p p p p

2
3

, ,x x
3/2

0 0 1 1 	 (3.43)

The characteristic equation is

	 − =− −J p J p J p J p( ) ( ) ( ) ( ) 01/3 0 1/3 1 1/3 0 1/3 1 	 (3.44)

Table 3.7 shows the frequency results. Mode shapes for rectangular membranes 
with a linear density distribution (i.e., b = 0.5 and a = 1) are shown in Figure 3.13.
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TABLE 3.7
Normalized Frequencies ω for Rectangular Membrane with Various Aspect 
Ratio a and Taper b Values

a\b 0 0.1 0.25 0.5 0.75 0.9

0.25 12.953 (1)
14.050 (1)
15.708 (1)
17.772 (1)
20.116 (1)

13.276 (1)
14.470 (1)
16.120 (1)
18.237 (1)
20.642 (1)

15.052 (1)
16.825 (1)
19.028 (1)
21.533 (1)
24.247 (1)

18.312 (1)
20.694 (1)
23.398 (1)
26.332 (1)
29.426 (1)

29.303 (1)
32.718 (1)
36.262 (1)
39.900 (1)
43.610 (1)

43.361 (1)
47.380 (1)
51.457 (1)
55.579 (1)
59.737 (1)

0.5 7.0248 (1)
8.8858 (1)

11.327 (1)
12.953 (2)
14.050 (1,2)

7.2052 (1)
9.1179 (1)

11.623 (1)
13.276 (2)
14.417 (1)

7.4934 (1)
9.5090 (1)

12.122 (1)
15.034 (1)
15.052 (2)

10.311 (1)
13.151 (1)
16.309 (1)
18.312 (2)
19.636 (1)

14.569 (1)
18.081 (1)
21.770 (1)
25.563 (1)
26.001 (2)

23.564 (1)
27.685 (1)
31.874 (1)
36.107 (1)
40.371 (1)

0.75 5.2360 (1)
7.5515 (1)
8.9473 (2)

10.314 (1)
10.472 (2)

5.3711 (1)
7.7484 (1)
9.1752 (2)

10.583 (1)
10.746 (2)

5.5907 (1)
8.0789 (1)

11.035 (1)
11.211 (2)
13.498 (2)

6.0068 (1)
8.7530 (1)

10.657 (2)
11.964 (1)
12.163 (2)

9.6505 (1)
13.235 (1)
17.016 (1)
19.483 (2)
20.891 (1)

14.261 (1)
18.378 (1)
22.590 (1)
26.855 (1)
28.814 (2)

1 4.4429 (1)
7.0248 (1,2)
8.8858 (2)
9.9346 (1,3)

11.327 (2,3)

4.5578 (1)
7.2052 (2)
7.2080 (1)
9.1176 (2)

10.194 (1)

4.7454 (1)
7.4934 (2)
7.5147 (1)
9.5090 (2)

10.629 (1)

5.1060 (1)
8.1390 (1)

10.311 (2)
11.520 (1)
13.151 (2)

8.9709 (1)
12.737 (1)
16.628 (1)
18.081 (2)
20.576 (1)

13.721 (1)
17.952 (1)
22.241 (1)
23.564 (2)
26.559 (1)

1.5 3.7757 (1)
5.2560 (2)
6.6231 (1)
7.0248 (3)
7.5515 (2)

3.8735 (1)
5.3711 (2)
6.7957 (1)
7.2052 (3)
7.7484 (2)

4.0339 (1)
5.5907 (2)
7.0845 (1)
7.4934 (3)
8.0789 (2)

4.3449 (1)
7.6710 (1)
8.7530 (2)

10.311 (3)
11.193 (1)

4.7245 (1)
8.4522 (1)
9.6505 (2)

12.370 (1)
13.235 (2)

9.0599 (1)
13.321 (1)
14.261 (2)
17.642 (1)
18.378 (2)

2 3.5124 (1)
4.4429 (2)
5.6636 (3)
6.4766 (1)
7.0248 (2)

3.6034 (1)
4.5578 (2)
5.8096 (3)
6.6453 (1)
7.2080 (2)

3.7529 (1)
4.7455 (2)
6.0460 (3)
6.9276 (1)
7.5147 (2)

4.0437 (1)
5.1060 (2)
7.5004 (1)
8.1390 (2)
9.1060 (3)

4.4012 (1)
8.2630 (1)
8.9709 (2)

10.040 (3)
12.239 (1)

8.8572 (1)
13.179 (1)
13.721 (2)
17.533 (1)
17.952 (2)

3 3.3115 (1)
3.7757 (2)
4.4429 (3)
5.2360 (4)
6.1062 (5)

3.3973 (1)
3.8735 (2)
4.5578 (3)
5.3711 (4)
6.2634 (5)

3.5384 (1)
4.0339 (2)
4.7455 (3)
5.5907 (4)
6.5170 (5)

3.8137 (1)
4.3449 (2)
5.1060 (3)
6.0068 (4)
7.3762 (1)

4.1537 (1)
4.7245 (2)
8.1252 (1)
8.4522 (2)
8.9709 (3)

4.3975 (1)
8.7095 (1)
9.0599 (2)
9.6500 (3)

13.076 (1)

Note: The vertical mode number n is in parentheses.
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3.5.2 �R ectangular Membrane with Exponential Density Distribution

Rectangular membrane with an exponential density distribution was studied by 
Wang and Wang (2011a). The normalized density is given by

	 ρ = −e bx 	 (3.45)

where b > 0. In view of Equation (3.38), Equation (3.36) gives

	
+ ω − α =−d f

dx
e f( ) 0bx

2

2
2 2 	 (3.46)

Let

	
= = −f x h z z

b
e( ) ( ),

2 bx /2 	 (3.47)

After some work, Equation (3.46) becomes

	
+ + ω − α





=d h

dz z

dh

dz b z
h

1 4
0

2

2
2

2

2 2 	 (3.48)

The exact solution to Equation (3.48) is

	 = = ω + ωα αf h C J z C Y z( ) ( )b b1 2 / 2 2 / 	 (3.49)

The boundaries are at x = 0, 1 or

	
= = −z

b
z

b
e

2
,

2 b
0 1

/2 	 (3.50)

n = 1, ω = 5.1060 n = 1, ω = 8.1390 n = 2, ω = 10.311 n = 1, ω = 11.520 n = 2, ω = 13.151

FIGURE 3.13  Mode shapes for rectangular membrane with linear density distribution 
(b = 0.5, a = 1).
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The boundary conditions give the exact mode shape

	 = ω ω − ω ωα α α αf Y z J z J z Y z( ) ( ) ( ) ( )b b b b2 / 0 2 / 2 / 0 2 / 	 (3.51)

and the exact characteristic equation

	
ω ω − ω ω =α α α αY z J z J z Y z( ) ( ) ( ) ( ) 0b b b b2 / 0 2 / 1 2 / 0 2 / 1 	 (3.52)

The five lowest frequencies are shown in Table 3.8. The b = 0 column is from the 
frequency of the uniform membrane, Equation (3.8). Mode shapes for a rectangular 
membrane with α = 0.5, b = 0.5 are shown in Figure 3.14.

3.5.3 �N onhomogeneous Circular or Annular Membrane

Consider a membrane with radius R, under uniform stress T0 and maximum density 
T0. The normalized membrane equation in polar coordinates (r,θ) is

	

∂
∂

+ ∂
∂

+ ∂
∂θ

+ ω ρ =w

r r

w

r r

w
r w

1 1
( ) 0

2

2 2

2

2
2 	 (3.53)

where w is the transverse deflection, ρ is the density, a function of radius and normal-
ized by ρ0, and ω is the frequency normalized by ρT R/0 0

2 . The boundary condi-
tions are that w = 0 on the boundaries. The following solutions are mostly from Wang 
and Wang (2012).

3.5.3.1 � Power Law Density Distribution
Let the normalized density (or thickness) be given by

	 ρ = νcr 	 (3.54)

where ν is a constant exponent, and c = 1 if ν ≥ 0. If ν < 0, the density is unbounded 
at the origin, and only the annular membrane is appropriate. In that case, let the inner 
radius of the annular membrane be bR, where the maximum density occurs, and set 
c = b|v|.

For full membranes, let the solution of Equation (3.53) be

	 w = cos(nθ)f(r)	 (3.55)

where n is an integer. Equation (3.53) becomes

	 ′′ + ′ − + ω =ν+r f rf n f cr f 02 2 2 2 	 (3.56)
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TABLE 3.8
Normalized Frequencies ω for Rectangular Membrane with Various Aspect 
Ratio a and Exponential Index b Values

a/b 0 0.10 0.25 0.50 0.75 1.00

0.25 12.953 (1)
14.050 (1)
15.708 (1)
17.772 (1)
20.116 (1)

13.268 (1)
14.407 (1)
16.106 (1)
18.221 (1)
20.624 (1)

13.705 (1)
14.966 (1)
16.726 (1)
18.916 (1)
21.408 (1)

14.355 (1)
15.937 (1)
17.817 (1)
20.132 (1)
22.770 (1)

14.931 (1)
16.917 (1)
18.977 (1)
21.421 (1)
24.068 (1)

15.461 (1)
17.878 (1)
20.192 (1)
22.785 (1)
25.721 (1)

0.50 7.0248 (1)
8.8858 (1)

11.327 (1)
12.953 (2)
14.050 (1,2)

7.2001 (1)
9.1103 (1)

11.613 (1)
13.268 (2)
14.404 (1)

7.4615 (1)
9.4560 (1)

12.053 (1)
13.705 (2)
14.948 (1)

7.8913 (1)
10.056 (1)
12.813 (1)
14.355 (2)
15.888 (1)

8.3122 (1)
10.684 (1)
13.610 (1)
14.931 (2)
16.869 (1)

8.7232 (1)
11.337 (1)
14.442 (1)
15.461 (2)
17.878 (2)

0.75 5.2360 (1)
7.5515 (1)
8.9473 (2)

10.314 (1)
10.472 (2)

5.3673 (1)
7.7420 (1)
9.1690 (2)

10.574 (1)
10.737 (2)

5.5656 (1)
8.0343 (1)
9.4936 (2)

10.973 (1)
11.147 (2)

5.8990 (1)
8.5389 (1)

10.012 (2)
11.661 (1)
11.862 (2)

6.2348 (1)
9.0651 (1)

10.502 (2)
12.377 (1)
12.610 (2)

6.5719 (1)
9.6124 (1)

10.967 (2)
13.123 (1)
13.382 (2)

1.00 4.4429 (1)
7.0248 (1,2)
8.8858 (2)
9.8346 (1,3)

11.327 (2,3)

4.5545 (1)
7.2001 (2)
7.2020 (1)
9.1103 (2)

10.180 (3)

4.7238 (1)
7.4615 (2)
7.4734 (1)
9.4560 (2)

10.569 (1)

5.0107 (1)
7.8913 (2)
7.9410 (1)

10.056 (2)
11.092 (3)

5.3026 (1)
8.3122 (2)
8.4276 (1)

10.684 (2)
11.609 (3)

5.5987 (1)
8.7232 (2)
8.9327 (1)

11.337 (2)
12.094 (3)

1.5 3.7751 (1)
5.2560 (2)
6.6231 (1)
7.0248 (3)
7.5515 (2)

3.8707 (1)
5.3673 (2)
6.7900 (1)
7.2001 (3)
7.7420 (2)

4.1052 (1)
5.5656 (2)
7.0456 (1)
7.4615 (3)
8.0343 (2)

4.2614 (1)
5.8990 (2)
7.4852 (1)
7.8913 (3)
8.5389 (2)

4.5138 (1)
6.2348 (2)
7.9418 (1)
8.3122 (3)
9.0651 (2)

4.7718 (1)
6.5719 (2)
8.4151 (1)
8.7232 (3)
9.6124 (2)

2 3.5124 (1)
4.4429 (2)
5.6636 (3)
6.4766 (1)
7.0248 (2)

3.6008 (1)
4.5545 (2)
5.8055 (3)
6.6398 (1)
7.2001 (4)

3.7355 (1)
4.7238 (2)
6.0192 (3)
6.8896 (1)
7.4615 (4)

3.9653 (1)
5.0107 (2)
6.3768 (3)
7.3191 (1)
7.8913 (4)

4.2615 (1)
5.3626 (2)
6.7347 (3)
7.7649 (1)
8.3122 (4)

4.4436 (1)
5.5987 (2)
7.0918 (3)
8.2266 (1)
8.9327 (2)

3 3.3115 (1)
3.7757 (2)
4.4429 (3)
5.2360 (4)
6.1062 (5)

3.3949 (1)
3.8707 (2)
4.5545 (3)
5.3673 (4)
6.2590 (5)

3.5220 (1)
4.0152 (2)
4.7238 (3)
5.5656 (4)
6.4884 (5)

3.7392 (1)
4.2614 (2)
5.0107 (3)
5.8990 (4)
7.1981 (1)

3.9628 (1)
4.5138 (2)
5.3026 (3)
6.2348 (4)
7.6360 (1)

4.1925 (1)
4.7718 (2)
5.5987 (3)
6.5719 (4)
8.0894 (1)

Note:	 Transverse mode number n is in parentheses.
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Let

	
γ = ν +

2
1 	 (3.57)

The solution to Equation (3.56) is

	

= ω
γ







+ ω
γ





γ

γ
− γ

γf C J
c

r C J
c

rn n1 / 2 / 	 (3.58)

provided that γ ≠ 0. Here J is the Bessel function of the first kind. If n/γ is an integer, 
the second solution is replaced by the Bessel function Y.

For a full circular membrane, ν ≥ 0 and c = 1. The boundary condition at r = 0 
gives C2 = 0. The boundary condition at r = 1 gives the frequency equation

	

ω
γ







=γJ 0n / 	 (3.59)

Thus (ω/λ) are the zeros of Equation (3.59). Table 3.9 shows the results. The ν = 0 case 
is the uniform membrane, whose frequencies are governed by Jn(ω) = 0. The ν = 1 case 
is a membrane with linear density (or thickness). Mode shapes are shown for circular 
membrane with power law density at ν = 1.5 in Figure 3.15.

TABLE 3.9
Frequencies for the Full Circular Membrane with Power Law Density

ν = 0 0.5 1 1.5 2 3

2.4048 (0)
3.8317 (1)
5.1356 (2)
5.5201 (0)
6.3802 (3)

3.0060 (0)
4.4497 (1)
5.7790 (2)
6.9001 (0)
7.0486 (3)

3.6072 (0)
5.0634 (1)
6.4130 (2)
7.7034 (3)
8.2801 (0)

4.2084 (0)
5.6743 (1)
7.0406 (2)
8.3487 (3)
9.6178 (4)

4.8097 (0)
6.2836 (1)
7.6634 (2)
8.9868 (3)

10.271 (4)

6.0121 (0)
1.4971 (1)
8.8995 (2)

10.248 (3)
11.558 (4)

Note:	 The azimuthal mode n is in parentheses.

n = 1, ω = 7.8913 n = 1, ω = 10.056 n = 1, ω = 12.813 n = 2, ω = 14.355 n = 1, ω = 15.888

FIGURE 3.14  Mode shapes for rectangular membrane with α = 0.5, b = 0.5.
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For an annular membrane, ν can be either positive or negative. The boundary 
condition at the inner edge gives

	

= ω
γ







ω
γ







− ω
γ







ω
γ















− γ

γ
γ

γ
γ

γ
− γ

γf C J
c

b J
c

r J
c

b J
c

rn n n n1 / / / / 	 (3.60)

If n/γ is an integer, then J–n/γ is changed to Y–n/γ.
The boundary condition at the outer edge then gives the characteristic equation

	

ω
γ







ω
γ







− ω
γ







ω
γ















 =− γ

γ
γ γ

γ
− γJ

c
b J

c
J

c
b J

c
0n n n n/ / / / 	 (3.61)

If ν = −2, γ = 0, Equation (3.56) degenerates to

	
+ − + ω =r

d f

dr
r

df

dr
n f b f 02

2

2
2 2 2 	 (3.62)

The solution was first found by De (1971)

	
( )= ω −f C b n rsin ln2 2 2 	 (3.63)

By setting f = 0 at r = b, the frequencies are found to be in a closed form given by

	

ω = 



 +









b

m

b
n

1 π
ln

2
2

1/2

	 (3.64)

Here m is a positive integer. Some results for the annular membrane are given in 
Table 3.10. Mode shapes for annular membrane with power index ν = −2 and inner 

n = 0, ω = 4.2084 n = 1, ω = 5.6743 n = 2, ω = 7.0406 n = 3, ω = 8.3487 n = 4, ω = 9.6187

FIGURE 3.15  Mode shapes for circular membrane with power law density ν = 1.5.
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radius b = 0.5 are shown in Figure 3.16. The frequencies of a membrane with power 
ν = −4 are isospectral to those of a homogeneous membrane (Gottlieb 1992).

For circular sector or annular sector membranes, let the opening angle be β. Let

	 w = sin(αθ)f(r)	 (3.65)

where α = nπ/β. Note that n is a nonzero positive integer. Then the frequency equa-
tion is similar to that for the full membrane, only with n replaced by α. For example, 
Equation (3.59) becomes

	

ω
γ







=βγJ 0nπ/( ) 	 (3.66)

Table 3.11 shows the frequencies for the circular sector membrane.

TABLE 3.10
Normalized Frequencies ω for the Full Annular Membrane with Power Index ν

b\ν −2 −1 0 1 2

0.1 13.644 (0)
16.916 (1)
24.211 (2)
27.288 (0)
29.062 (1)

7.1519 (0)
8.7465 (1)

12.075 (2)
14.465 (0)
15.454 (1)

3.3139 (0)
3.9409 (1)
5.1424 (2)
6.3805 (3)
6.8576 (0)

4.4410 (0)
5.1412 (1)
6.4165 (2)
7.7035 (3)
8.9552 (4)

5.6018 (0)
6.3467 (1)
7.6658 (2)
8.9869 (3)

10.271 (4)

0.3 8.6979 (0)
9.3147 (1)

10.959 (2)
13.253 (3)
15.920 (4)

6.3125 (0)
6.7526 (1)
7.9181 (2)
9.5241 (3)

11.357 (4)

4.4124 (0)
4.7058 (1)
5.4702 (2)
6.4937 (3)
7.6229 (4)

5.4451 (0)
5.7830 (1)
6.6464 (2)
7.7678 (3)
8.9708 (4)

6.5309 (0)
6.9046 (1)
7.8420 (2)
9.0296 (3)

10.280 (4)

0.5 9.0647 (0)
9.2827 (1)
9.9080 (2)

10.871 (3)
12.090 (4)

7.5730 (0)
7.7542 (1)
8.2734 (2)
9.0715 (3)

10.080 (4)

6.2461 (0)
6.3932 (1)
6.8138 (2)
7.4577 (3)
8.2667 (4)

7.7162 (0)
7.3615 (1)
7.8327 (2)
8.5495 (3)
9.4422 (4)

8.1954 (0)
8.3776 (1)
8.8950 (2)
9.6763 (3)

10.640 (4)

0.7 12.583 (0)
12.664 (1)
12.903 (2)
13.293 (3)
13.820 (4)

11.490 (0)
11.563 (1)
11.782 (2)
12.137 (3)
12.617 (4)

10.455 (0)
10.522 (1)
10.720 (2)
11.042 (3)
11.476 (4)

11.333 (0)
11.405 (1)
11.618 (2)
11.964 (3)
12.431 (4)

12.243 (0)
12.320 (1)
12.548 (2)
12.918 (3)
13.417 (4)

0.9 33.131 (0)
33.149 (1)
33.205 (2)
33.298 (3)
33.427 (4)

32.265 (0)
32.283 (1)
32.337 (2)
32.427 (3)
32.554 (4)

31.412 (0)
31.429 (1)
31.482 (2)
31.570 (3)
31.693 (4)

32.226 (0)
32.244 (1)
32.298 (2)
32.388 (3)
32.514 (4)

33.051 (0)
33.069 (1)
33.125 (2)
33.217 (3)
33.346 (4)

Note:	 The azimuthal mode number n is in parentheses.
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n = 0, ω = 9.0647 n = 1, ω = 9.2827 n = 2, ω = 9.9080 n = 3, ω = 10.871 n = 4, ω = 12.090

FIGURE 3.16  Mode shapes for annular membrane with power index ν = –2 and inner radius 
b = 0.5.

TABLE 3.11
Frequencies for Circular Sector Membranes

β\ν 0 0.5 1 1.5 2 3

π/4 7.5883 (1)
11.065 (1)
12.225 (2)
14.373 (1)
16.038 (2)

8.2803 (1)
12.531 (1)
12.997 (2)
16.612 (1)
17.535 (3)

8.9552 (1)
13.742 (2)
13.977 (1)
18.338 (3)
18.832 (1)

9.6178 (1)
14.467 (2)
15.411 (1)
19.115 (3)
20.643 (2)

10.271 (1)
15.177 (2)
16.835 (1)
19.872 (3)
22.129 (2)

11.558 (1)
16.561 (2)
19.662 (1)
21.341 (3)
25.061 (2)

π/2 5.1356 (1)
7.5883 (2)
8.4172 (1)
9.9361 (3)

11.065 (2)

5.7790 (1)
8.2803 (2)
9.8312 (1)

10.671 (3)
12.531 (2)

6.4130 (1)
8.9552 (2)

11.236 (1)
11.383 (3)
13.742 (4)

7.0406 (1)
9.6178 (2)

12.078 (3)
12.636 (1)
14.467 (4)

7.6634 (1)
10.271 (2)
12.760 (3)
14.031 (1)
15.177 (4)

8.8995 (1)
11.558 (2)
14.097 (3)
16.561 (4)
16.814 (1)

π 3.8317 (1)
5.1356 (2)
6.3802 (3)
7.0156 (1)
7.5883 (4)

4.4497 (1)
5.7790 (2)
7.0486 (3)
8.2803 (4)
8.4071 (1)

5.0634 (1)
6.4130 (2)
7.7034 (3)
8.9552 (4)
9.7954 (1)

5.6743 (1)
7.0406 (2)
8.3487 (3)
9.6178 (4)

10.859 (5)

6.2832 (1)
7.6634 (2)
8.9868 (3)

10.271 (4)
11.527 (5)

7.4971 (1)
8.8995 (2)

10.248 (3)
11.558 (4)
12.839 (5)

2π 3.1416 (1)
3.8317 (2)
4.4934 (3)
5.1356 (4)
5.7635 (5)

3.7486 (1)
4.4497 (2)
5.1240 (3)
5.7790 (4)
6.4195 (5)

4.3539 (1)
5.0634 (2)
5.7476 (3)
6.4130 (4)
7.0640 (5)

4.9582 (1)
5.6743 (2)
6.3665 (3)
7.0406 (4)
7.7004 (5)

5.5618 (1)
6.2832 (2)
6.9820 (3)
7.6634 (4)
8.3309 (5)

6.7677 (1)
7.4971 (2)
8.2064 (3)
8.8995 (4)
9.5793 (5)

Note:	 The number n is in parentheses.
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The substitution is similar for the annular sector. For example, for ν = −2, the 
formula is

	

ω = 



 +

β
















b

m

b

n1 π
ln

π2 2 1/2

	 (3.67)

Owing to the presence of many parameters, we present only some representative 
cases in Table 3.12.

3.5.3.2 � A Special Annular Membrane
The annulus is between r = b < 1 and r = 1. Let the density distribution be

	
ρ =

+b c r b

r

[1 ln( / )]2

2 	 (3.68)

For the density to be positive, c > 1/lnb. In view of Equation (3.55), Equation 
(3.53) becomes

	
+ − + ω + =r

d f

dr
r

df

dr
n f b c r b f[1 ln( / )] 02

2

2
2 2 2 	 (3.69)

The solution is

	 = −− −f C z J p J p J p J p[ ( ) ( ) ( ) ( )]1 1/3 0 1/3 1/3 0 1/3 	 (3.70)

TABLE 3.12a
Frequencies for Annular Sector Membranes, β = π/4

b\ν −2 −1 0 1 2

0.25 18.389 (1)
24.180 (1)
31.552 (1)
33.259 (2)
39.632 (1)

12.311 (1)
16.841 (1)
21.086 (2)
21.972 (1)
25.443 (2)

7.5984 (1)
11.169 (1)
12.225 (2)
14.765 (1)
16.038 (2)

8.9592 (1)
13.742 (2)
14.011 (1)
18.338 (3)
18.957 (1)

10.273 (1)
15.177 (2)
16.849 (1)
19.872 (3)
22.129 (2)

0.50 12.090 (1)
18.389 (2)
19.816 (1)
24.180 (2)
25.655 (3)

10.080 (1)
15.243 (2)
16.583 (1)
20.268 (2)
21.075 (3)

8.2667 (1)
12.311 (2)
13.742 (1)
16.706 (3)
16.843 (2)

9.4422 (1)
13.781 (2)
15.939 (1)
18.340 (3)
19.539 (2)

10.640 (1)
15.197 (2)
18.289 (1)
19.873 (3)
22.337 (2)

0.75 15.567 (1)
18.050 (2)
21.634 (3)
25.829 (4)
29.605 (1)

14.413 (1)
16.774 (2)
20.694 (3)
23.986 (4)
27.526 (1)

13.366 (1)
15.548 (2)
18.616 (3)
22.184 (4)
25.546 (1)

14.278 (1)
16.593 (2)
19.836 (3)
23.597 (4)
27.326 (1)

15.218 (1)
17.664 (2)
21.075 (3)
25.007 (4)
29.178 (1)

Note:	 Mode number n is in parentheses.
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TABLE 3.12b
Frequencies for Annular Sector Membranes, β = π/2

b\ν −2 −1 0 1 2

0.25 12.090 (1)
18.389 (2)
19.816 (1)
24.180 (2)
25.655 (3)

8.2667 (1)
12.311 (2)
13.742 (1)
16.706 (3)
16.841 (2)

5.3199 (1)
7.5984 (2)
9.1444 (1)
9.9365 (3)

11.169 (2)

6.5327 (1)
8.9592 (2)

11.383 (3)
11.658 (1)
14.011 (2)

7.7518 (1)
10.273 (2)
12.760 (3)
14.301 (1)
15.177 (4)

0.50 9.9080 (1)
12.090 (2)
15.039 (3)
18.389 (4)
18.566 (1)

8.2734 (1)
10.080 (2)
12.568 (3)
15.243 (4)
15.533 (1)

6.8138 (1)
8.2667 (2)

10.189 (3)
12.311 (4)
12.856 (1)

7.8327 (1)
9.4422 (2)

11.528 (3)
13.781 (4)
14.893 (1)

8.8950 (1)
10.640 (2)
12.853 (3)
15.197 (4)
17.074 (1)

0.75 14.803 (1)
15.507 (2)
16.614 (3)
18.050 (4)
19.743 (5)

13.760 (1)
14.413 (2)
15.441 (3)
16.774 (4)
18.345 (5)

12.761 (1)
13.366 (2)
14.320 (3)
15.547 (4)
16.990 (5)

13.635 (1)
14.278 (2)
15.287 (3)
16.593 (4)
18.129 (5)

14.537 (1)
15.218 (2)
16.285 (3)
17.664 (4)
19.281 (5)

Note:	 Mode number n is in parentheses.

TABLE 3.12c
Frequencies for Annular Sector Membranes, β = π
b\ν −2 −1 0 1 2

0.25 9.9080 (1)
12.090 (2)
15.039 (3)
18.389 (4)
18.566 (1)

6.8138 (1)
8.2667 (2)

10.189 (3)
12.311 (4)
12.851 (1)

4.4475 (1)
5.3199 (2)
6.4265 (3)
7.5984 (4)
8.5369 (1)

5.5557 (1)
6.5327 (2)
7.7270 (3)
8.9592 (4)

10.180 (5)

6.7021 (1)
7.7518 (2)
9.0017 (3)

10.273 (4)
11.527 (5)

0.50 9.2827 (1)
9.9080 (2)

10.871 (3)
12.090 (4)
13.497 (5)

7.7542 (1)
8.2734 (2)
9.0715 (3)

10.080 (4)
11.241 (5)

6.3932 (1)
6.8138 (2)
7.4577 (3)
8.2667 (4)
9.1900 (5)

7.3615 (1)
7.8327 (2)
8.5495 (3)
9.4422 (4)

10.450 (5)

8.3776 (1)
8.8950 (2)
9.6763 (3)

10.640 (4)
11.715 (5)

0.75 14.621 (1)
14.803 (2)
15.100 (3)
15.507 (4)
16.014 (5)

13.591 (1)
13.760 (2)
14.036 (3)
14.413 (4)
14.885 (5)

12.606 (1)
12.790 (2)
13.017 (3)
13.345 (4)
13.784 (5)

13.470 (1)
13.635 (2)
13.907 (3)
14.278 (4)
14.741 (5)

14.362 (1)
14.537 (2)
14.825 (3)
15.218 (4)
15.707 (5)

Note:	 Mode number n is in parentheses.
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where

	

= = =

= ω ω + η − − −

= ω ω − = ω ω − −

η = +

−

− −

p z p z p z

z b c b c b n

z b c b n z b c b c b n

r

2 /3, 2 /3, 2 /3

( ) { [1 ( 1 ln )] }

( ) [ ], ( ) [ (1 ln ) ]

1 ln

3/2
0 0

3/2
1 1

3/2

2 2 2/3 2 2 2

0
2 2 2/3 2 2 2

1
2 2 2/3 2 2 2 	 (3.71)

The frequency equation is

	
− =− −J p J p J p J p( ) ( ) ( ) ( ) 01/3 0 1/3 1 1/3 0 1/3 1 	 (3.72)

For sector membranes, we use Equation (3.65) instead of Equation (3.55). All n 
are replaced by nπ/β, and for nontrivial solutions n ≥ 1. Owing to the fact that the 
density distribution of Equation (3.68) is somewhat rare, we shall not tabulate the 
corresponding frequencies here.

3.6 � HANGING MEMBRANES

The vertically hanging membrane under the action of gravity is important in the 
modeling of drapes, curtains, nets, and fabric panels. Pioneering work in this area 
was done by Soedel, Zadoks, and Alfred (1985), who studied the natural frequencies 

TABLE 3.12d
Frequencies for Annular Sector Membrane, β = 2π
b\ν −2 −1 0 1 2

0.25 9.2827 (1)
9.9080 (2)

10.871 (3)
12.090 (4)
13.497 (5)

6.3932 (1)
6.8138 (2)
7.4577 (3)
8.2667 (4)
9.1900 (5)

4.1888 (1)
4.4475 (2)
4.8382 (3)
5.3199 (4)
5.8577 (5)

5.2583 (1)
5.5557 (2)
5.9979 (3)
6.5327 (4)
7.1183 (5)

6.3755 (1)
6.7021 (2)
7.1812 (3)
7.7518 (4)
8.3680 (5)

0.50 9.1197 (1)
9.2827 (2)
9.5483 (3)
9.9080 (4)

10.352 (5)

7.6187 (1)
7.7542 (2)
7.9747 (3)
8.2734 (4)
8.6419 (5)

6.2832 (1)
6.3932 (2)
6.5720 (3)
6.8138 (4)
7.1116 (5)

7.2379 (1)
7.3615 (2)
7.5621 (3)
7.8327 (4)
8.1648 (5)

8.2414 (1)
8.3776 (2)
8.5982 (3)
8.8950 (4)
9.2579 (5)

0.75 14.576 (1)
14.621 (2)
14.697 (3)
14.803 (4)
14.937 (5)

13.549 (1)
13.591 (2)
13.662 (3)
13.760 (4)
13.885 (5)

12.566 (1)
12.634 (2)
12.671 (3)
12.713 (4)
12.877 (5)

13.428 (1)
13.470 (2)
13.539 (3)
13.635 (4)
13.758 (5)

14.317 (1)
14.362 (2)
14.435 (3)
14.537 (4)
14.667 (5)

Note:	 Mode number n is in parentheses.
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of a vertical rectangular membrane fixed at the top and two sides, but free at the 
bottom edge. The following subsections are mostly from Wang and Wang (2011b).

3.6.1 � Membrane with a Free, Weighted Bottom Edge

Figure 3.17 shows a vertical rectangular membrane of height L and width bL and 
with constant density ρ. Let (x′,y′) be Cartesian axes at the upper left corner as shown 
in the figure.

Since gravity is nonnegligible, the vertical direction tensile stress is

	 = − ρ ′T T gyy 0 	 (3.73)

where T0 is the tension at the upper edge and g is the gravitational acceleration. We 
assume that the horizontal tension is constant, Tx = cT0.

In the case considered, the top edge and the two vertical sides are fixed, while the 
bottom edge is weighted down by a continuous string of masses, such that the total 
mass is mL (m is mass per length). Thus the tension at the bottom is

	 = − ρ =T T gL mg1 0 	 (3.74)

A dynamic balance of vertical force at the bottom edge gives

	

∂ ′
∂ ′

= ω ′T
w

y
m w1

2 	 (3.75)

where ω  is the frequency. Now if there is no hanging mass, m = 0 and T1 = 0. The 
boundary condition Equation (3.75) is automatically satisfied. This would be the case 

x´

y´

L g

bL

FIGURE 3.17  Hanging membrane with a weighted bottom edge.
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studied by Soedel, Zadoks, and Alfred (1985), where the only requirement at the bot-
tom edge is that the amplitude is finite.

By normalizing all lengths by L, the tension by T0, and dropping the primes, 
Equation (3.2) becomes

	

∂
∂

+ ∂
∂

− ∂
∂









 + ω =c

w

x y
ay

w

y
w(1 ) 0

2

2
2 	 (3.76)

Here

	

= ρ ≤a
gL

T
1

0

	 (3.77)

is a ratio representing the importance of gravity to tension. Since the deflections on 
the side edges are zero, let

	 w = sin(βx)f(y)	 (3.78)

where β = nπ/b. Equation (3.76) becomes

	
−









 + ω − β =d

dy
ay

df

dy
c f(1 ) ( ) 02 2 	 (3.79)

Equation (3.79) has the general solution (Murphy 1960)

	
= −



 + −



f C J

k

a
ay C Y

k

a
ay

2
1

2
11 0 2 0 	 (3.80)

where J0, Y0 are Bessel functions and

	
= ω − β = ω −k c c b n( / ) π2 2 2 2 2 2 	 (3.81)

The boundary condition on the top is

	 f(0) = 0	 (3.82)

This gives

	
= 



 −



 − 



 −











f C Y
k

a
J

k

a
ay J

k

a
Y

k

a
ay

2 2
1

2 2
10 0 0 0 	 (3.83)
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where C is a constant. After normalization, Equation (3.75) is

	
− ∂

∂
= ωa

w

y
x w x(1 ) ( ,1) ( ,1)2 	 (3.84)

By using Equation (3.78), the condition is

	 − ′ = ωa f f(1 ) (1) (1)2 	 (3.85)

or the exact characteristic frequency equation is

	





 −



 − 



 −









 −

+

ω 



 −



 − 



 −











=

Y
k

a
J

k

a
a J

k

a
Y

k

a
a

ak

a

Y
k

a
J

k

a
a J

k

a
Y

k

a
a

2 2
1

2 2
1

1

2 2
1

2 2
1 0

0 1 0 1

2
0 0 0 0 	 (3.86)

Notice that the normalized lateral tension c and the normalized width b come in 
the combination (c/b2). If there is no added weight, m = 0, and a = 1, we have the case 
studied by Soedel, Zadoks, and Alfred (1985). Equation (3.86) degenerates to

	 =J k(2 ) 00 	 (3.87)

The results from Equation (3.86) are shown in Table 3.13. Notice that an increase 
in the parameter ξ = b c/  lowers the frequencies. For small ξ (small width or large 
lateral tension), the mode shapes all correspond to n = 1, or half a sine wave in the 
horizontal direction. For large ξ, the first five modes correspond to n = 1, 2, 3, 4, 5, 
or multiple nodal lines in the horizontal direction. The frequencies decrease with 
gravity, which is reflected in the parameter a. Mode shapes for a hanging membrane 
with a free weighted bottom edge (i.e., a = 0.5, ξ = 0.5) are shown in Figure 3.18.

3.6.2 � Vertical Membrane with All Sides Fixed

Consider a membrane with all sides fixed on a rectangular frame. In the supine state, 
the membrane is stretched with stress T1 in the y direction and cT1 in the x direc-
tion. Now, if the membrane is raised vertically as in Figure 3.19, what would be the 
changes in frequency?

In this case, it is more natural to normalize by the bottom stress T1. Equations 
(3.74) and (3.2) give

	
= + −T T a y[1 (1 )]y 1 	 (3.88)

	

∂
∂

+ ∂
∂

+ − ∂
∂









 + ω =c

w

x y
a ay

w

y
w(1 ) 0

2

2
2 	 (3.89)



64 Structural Vibration

© 2010 Taylor & Francis Group, LLC

TABLE 3.13
Frequencies for Weighted, Hanging Membranes

ξ a a = 0.1 0.3 0.5 0.7 0.9 1

0.1 31.565 (1)
32.007 (1)
32.730 (1)
33.717 (1)
34.945 (1)

31.548 (1)
31.941 (1)
32.586 (1)
33.467 (1)
34.568 (1)

31.530 (1)
31.870 (1)
32.428 (1)
33.194 (1)
34.154 (1)

31.509 (1)
31.788 (1)
32.249 (1)
32.883 (1)
33.681 (1)

31.482 (1)
31.684 (1)
32.018 (1)
32.480 (1)
33.065 (1)

31.439 (1)
31.537 (1)
31.713 (1)
31.964 (1)
32.291 (1)

0.2 16.003 (1)
16.858 (1)
18.194 (1)
19.914 (1)
21.929 (1)

15.970 (1)
16.732 (1)
17.930 (1)
19.485 (1)
21.319 (1)

15.934 (1)
16.594 (1)
17.640 (1)
19.010 (1)
20.639 (1)

15.892 (1)
16.436 (1)
17.307 (1)
18.458 (1)
19.842 (1)

15.837 (1)
16.231 (1)
16.869 (1)
17.725 (1)
18.770 (1)

15.754 (1)
15.949 (1)
16.293 (1)
16.778 (1)
17.392 (1)

0.5 6.9863 (1)
8.7668 (1)

11.121 (1)
12.933 (2)
13.756 (1)

6.9052 (1)
8.5126 (1)

10.675 (1)
12.892 (2)
13.120 (1)

6.8165 (1)
8.2289 (1)

10.170 (1)
12.394 (1)
12.846 (2)

6.7147 (1)
7.8955 (1)
9.5653 (1)

11.515 (1)
12.795 (2)

6.5789 (1)
7.4409 (1)
8.7197 (1)

10.268 (1)
11.980 (1)

6.3972 (1)
6.8627 (1)
8.6162 (1)
9.7576 (1)

11.005 (1)

1 4.3748 (1)
6.8691 (1)
6.9863 (2)
8.7668 (2)
9.9084 (3)

4.2295 (1)
6.5306 (1)
6.9052 (2)
8.5126 (2)
9.1756 (1)

4.0677 (1)
6.1414 (1)
6.8165 (2)
8.2289 (2)
8.5742 (1)

3.8285 (1)
5.6652 (1)
6.7147 (2)
7.8330 (1)
7.8955 (2)

3.6233 (1)
4.9737 (1)
6.5789 (2)
6.7392 (1)
7.4409 (2)

3.3638 (1)
4.1818 (1)
5.3471 (1)
6.3972 (2)
6.6805 (2)

2 3.4167 (1)
4.3748 (2)
5.6138 (3)
6.3050 (1)
6.8691 (2)

3.2060 (1)
4.2295 (2)
5.5087 (3)
5.9279 (1)
6.5306 (2)

2.9598 (1)
4.0677 (2)
5.3933 (3)
5.4861 (1)
6.1414 (2)

2.6581 (1)
3.8784 (2)
4.9295 (1)
5.2601 (3)
5.6652 (2)

2.2610 (1)
3.6233 (2)
4.0818 (1)
4.9737 (2)
5.0814 (3)

1.9782 (1)
3.1757 (1)
3.3638 (2)
4.1818 (2)
4.6032 (1)

5 3.0929 (1)
3.2821 (2)
3.5740 (3)
3.9450 (4)
4.3748 (5)

2.8421 (1)
3.0565 (2)
3.3781 (3)
3.7767 (4)
4.2295 (5)

2.5345 (1)
2.7888 (2)
3.1525 (3)
3.5867 (4)
4.0677 (5)

2.1349 (1)
2.4547 (2)
2.8799 (3)
3.3618 (4)
3.8785 (5)

1.6319 (1)
2.0209 (2)
2.5176 (3)
3.0595 (4)
3.6233 (5)

1.3567 (1)
1.7392 (2)
2.2358 (3)
2.7861 (4)
2.8307 (1)

Note:	 Parentheses denote lateral mode number n.
a	 Values for ξ = b c/  and a = 1 are from Equation (3.87).
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n = 0, ω = 6.8165 n = 1, ω = 8.2289 n = 1, ω = 10.170 n = 1, ω = 12.394 n = 2, ω = 12.846

FIGURE 3.18  Mode shapes for hanging membrane with a free weighted bottom edge (a = 
0.5, b = 1, ξ = 0.5).
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y

L

bL

g

FIGURE 3.19  Vertical membrane with all sides fixed.
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where

	

= ρ ω = ω
ρ

a
gL

T T L
,

/( )1 1
2

 

	 (3.90)

Equations (3.78) and (3.89) give

	
+ −









 + ω − β =d

dy
a ay

df

dy
c f(1 ) ( ) 02 2 	 (3.91)

The solution that satisfies zero deflection on the top edge is

	
= +



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

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2
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		  (3.92)

The zero deflection at the bottom edge yields the frequency equation

	
+









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
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
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a J
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a Y

k
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2
1

2 2
1

2
00 0 0 0 	 (3.93)

When there is no gravity, a = 0. Then Equation (3.91) gives the solution

	 f = C sin(ky),  where k = mπ	 (3.94)

The frequency is

	 ω = +m c b nπ ( / )2 2 2 	 (3.95)

The general results from Equation (3.93) are given in Table 3.14. Note that for 
an originally uniformly stressed membrane, c = 1. The frequencies increase with 
the gravity parameter a. Mode shapes for a vertical membrane with all sides fixed 
(a = 0.5, b = 1, ξ = 0.5) are shown in Figure 3.20.

3.7 � DISCUSSION

Being two dimensional, a membrane always has two sets of nodes, one in each 
direction. An example is m and n for the uniformly stretched rectangular membrane 
shown in Equation (3.8). In order to be useful, an exact solution must yield the com-
plete frequency spectrum. We did not include the exact solutions that only give par-
tial frequency spectrums. The first kind of partial spectrum considers vibrations that 
are dependent on only one set of nodes, such as axisymmetric vibrations of circular 
or annular membranes. The second kind of partial spectrum uses the frequencies 
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TABLE 3.14
Frequencies when Vertical Membrane Is Fixed on All Sides

ξ a = 0 a 0.25 0.5 0.75 1 2 5

0.1

31.573 (1)
32.038 (1)
32.799 (1)
33.836 (1)
35.124 (1)

31.592 (1)
32.113 (1)
32.963 (1)
34.118 (1)
35.548 (1)

31.610 (1)
32.184 (1)
33.119 (1)
34.385 (1)
35.948 (1)

31.627 (1)
32.252 (1)
33.268 (1)
34.640 (1)
36.329 (1)

31.643 (1)
32.318 (1)
33.412 (1)
34.886 (1)
36.694 (1)

31.706 (1)
32.565 (1)
33.950 (1)
35.798 (1)
38.043 (1)

31.871 (1)
33.223 (1)
35.363 (1)
38.159 (1)
41.477(1)

0.2

16.019 (1)
16.918 (1)
18.319 (1)
20.116 (1)
22.214 (1)

16.056 (1)
17.059 (1)
18.611 (1)
20.587 (1)
22.879 (1)

16.092 (1)
17.192 (1)
18.885 (1)
21.027 (1)
23.496 (1)

16.125 (1)
17.320 (1)
19.145 (1)
21.441 (1)
24.074 (1)

16.158 (1)
17.442 (1)
19.394 (1)
21.836 (1)
24.622 (1)

16.279 (1)
17.896 (1)
20.306 (1)
23.265 (1)
26.590 (1)

16.599 (1)
19.067 (1)
22.591 (1)
26.756 (1)
31.307 (1)

0.5

7.0248 (1)
8.8858 (1)

11.327 (1)
12.953 (2)
14.050 (1)

7.1094 (1)
9.1515 (1)

11.794 (1)
12.992 (2)
14.219 (2)

7.1888 (1)
9.3976 (1)

12.222 (1)
13.043 (2)
14.379 (2)

7.2640 (1)
9.6284 (1)

12.620 (1)
13.084 (2)
14.531 (2)

7.3359 (1)
9.8468 (1)

12.995 (1)
13.125 (2)
14.676 (1)

7.5998 (1)
10.630 (1)
14.321 (1)
13.274 (2)
15.213 (2)

8.2627 (1)
12.502 (1)
17.409 (1)
13.664 (2)
16.575 (2)

1

4.4429 (1)
7.6248 (1)
8.8858 (2)
9.9346 (1)

11.327 (2)

4.5755 (1)
7.1694 (2)
7.3581 (1)
9.1515 (2)

10.464 (1)

4.6978 (1)
7.1888 (2)
7.6620 (1)
9.3976 (2)

10.944 (1)

4.8122 (1)
7.2640 (2)
7.9434 (1)
9.6284 (2)

10.105 (3)

4.9201 (1)
7.3359 (2)
8.2067 (1)
9.8468 (2)

10.157 (3)

5.3055 (1)
7.5998 (2)
9.1321 (1)

10.349 (3)
10.630 (2)

6.2180 (1)
8.2627 (2)

10.845 (3)
11.256 (1)
12.502 (2)

2

3.5124 (1)
4.4429 (2)
5.6636 (3)
6.4766 (1)
7.0248 (2)

3.6787 (1)
4.5755 (2)
5.7682 (3)
6.8366 (1)
7.1094 (4)

3.8298 (1)
4.6978 (2)
5.8657 (3)
7.1627 (1)
7.1888 (4)

3.9692 (1)
4.8122 (2)
5.9577 (3)
7.2640 (4)
7.4629 (1)

4.0994 (1)
4.9201 (2)
6.0452 (3)
7.3359 (4)
7.7426 (1)

4.5548 (1)
5.3055 (2)
6.3628 (3)
7.5998 (4)
8.7174 (1)

5.5912 (1)
6.2180 (2)
7.1415 (3)
8.2627 (4)
9.5120 (5)

5

3.2038 (1)
3.3836 (2)
3.6637 (3)
4.0232 (4)
4.4429 (5)

3.3853 (1)
3.5559 (2)
3.8234 (3)
4.1692 (4)
4.5755 (5)

3.5489 (1)
3.7120 (2)
3.9690 (3)
4.3031 (4)
4.6978 (5)

3.6989 (1)
3.8557 (2)
4.1037 (3)
4.4276 (4)
4.8122 (5)

3.8383 (1)
3.9896 (2)
4.2297 (3)
4.5447 (4)
4.9201 (5)

4.3213 (1)
4.4563 (2)
4.6725 (3)
4.9594 (4)
5.3055 (5)

5.4026 (1)
5.5112 (2)
5.6874 (3)
5.9254 (4)
6.2180 (5)

Note:	 Lateral mode number n is in parentheses.
a	 The column for a = 0 is from Equation (3.95).
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of a smaller membrane to predict the frequencies of a larger membrane that is com-
posed of several joined smaller membranes. Such an endeavor misses a great number 
of frequencies, especially the important fundamental frequency.
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4 Vibration of Beams

4.1  INTRODUCTION

A beam or rod is a slender elastic body where the variations of all properties are neg-
ligible across the cross section. A beam can admit bending moment, axial force, and 
transverse shear. There are tens of thousands of publications on the vibrations of rods 
and beams. Notable treatises include Gorman (1975), Magrab (1980), and Karnovsky 
and Lebed (2004a, 2004b), where many exact solutions are given.

4.2  ASSUMPTIONS AND GOVERNING EQUATIONS

We consider only small transverse vibrations of originally straight beams of finite 
length. The effects of rotary inertia and transverse shear deformation are assumed to 
be negligible. Figure 4.1 shows an elemental segment of the beam.

The beam has the Euler-Bernoulli property that the local moment m′ is propor-
tional to the local curvature

	
′ = ′ ∂ ′

∂ ′
m EI x

y

x
( )

2

2
	 (4.1)

where EI is the flexural rigidity, x′ is the longitudinal coordinate, and y′ is the trans-
verse displacement. The axial compressive force F ′ is constant, and the net trans-
verse shear V′ balances the transverse acceleration

	
− ′ = ρ ′ ′ ∂ ′

∂ ′
dV x dx

y

t
( )

2

2
	 (4.2)

where ρ is the density (mass per length) and t′ is the time. Considering a moment 
balance, we have

	

′
′

+ ′ ′
′

− ′ =dm

dx
F

dy

dx
V 0 	 (4.3)

Equations (4.1) to (4.3) combine to give

	

∂
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2 	 (4.4)
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Let

	
′ = ′ ρ ′ = ρ ′EI x EI l x x r x( ) ( ), ( ) ( )0 0 	 (4.5)

where EI0 is the maximum of EI, and ρ0 is the maximum of ρ. Consider a harmonic 
vibration with frequency ω′, i.e.,

	 ′ = ′ ′ ′ω ′y w x e( ) i t 	 (4.6)

By normalizing all length variables by the beam length L (e.g., x = x′/L), and the 
time by ρL EI/2

0 0 , and dropping the primes, Equation (4.4) becomes

	







 + − ω =d

dx
l x

d w

dx
a

d w

dx
r x w( ) ( ) 0

2

2

2

2

2

2
2 	 (4.7)

Here,

	
= ′ ω = ′ω ρa

F L

EI
L EI, /

2

0

2
0 0 	 (4.8)

are nondimensional compressive force and nondimensional frequency, respectively.
At the ends of the beam, the classical boundary conditions are as follows:

For a clamped end (C),

	
= =w

dw

dx
0, 0 	 (4.9)

For a pinned end (P),

	
= =w

d w

dx
0, 0

2

2 	 (4.10)

dx´

dy´

m´+ dm´

V´+ dV´

V´

m´

F´

F´

FIGURE 4.1  Elemental segment of beam.
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For a free end (F),

	





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+ = =d

dx
l

d w

dx
a

dw

dx

d w

dx
0, 0

2

2

2

2
	 (4.11)

For a sliding end (S),

	





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+ = =d

dx
l

d w

dx
a

dw

dx

dw

dx
0, 0

2

2 	 (4.12)

Other nonclassical boundary conditions include the elastically supported end, 
where one of the boundary conditions is

	
∓





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+ =
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
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d

dx
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dx

k L

EI
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2
1

3

0
	 (4.13)

Here, k1 is the elastic spring constant, and the top and bottom signs refer to left or 
right ends, respectively. For a rotational spring,

	
= ±



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l
d w

dx

k L

EI

dw

dx

2

2
2

0
	 (4.14)

where k2 is the rotational spring constant. For a mass M attached at the end

	


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ρ
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ωd

dx
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dx

M
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2

2
0

2 	 (4.15)

Equation (4.7) needs two boundary conditions at each end. For nontrivial solu-
tions, the eigenvalues or the nondimensional frequencies ω are determined.

4.3  SINGLE-SPAN CONSTANT-PROPERTY BEAM

4.3.1 G eneral Solutions

For the constant-property beam, l = 1 and r = 1. Equation (4.7) becomes

	
+ − ω =d w

dx
a

d w

dx
w 0

4

4

2

2
2 	 (4.16)

The general solution is

	 = α + α + β + βw c x c x c x c xcosh( ) sinh( ) cos( ) sin( )1 2 3 4 	 (4.17)
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where

	
α = + ω − β = + ω +a a a a4

2
,

4
2

2 2 2 2
	 (4.18)

The two general boundary conditions can be written as

	
+ + + =s w s

dw

dx
s

d w

dx
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+ + + =s w s

dw

dx
s

d w
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d w
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2

2 4

3

3 	 (4.20)

Here, i = 0 for the left end and i = 1 for the right end. The substitution of Equation 
(4.17) into Equations (4.19) and (4.20) yields the exact characteristic equation

	

=

c c c c

c c c c

c c c c

c c c c

0

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

	 (4.21)

where
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	 (4.22)

The frequencies are obtained by solving Equation (4.21) for ω using a root search 
algorithm. Since there are numerous combinations of the boundary conditions, we 
shall concentrate on only a few examples.
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4.3.2 C lassical Boundary Conditions with Axial Force

There are 10 combinations of C, P, F, S boundary conditions (Figure 4.2). We shall 
include the effects of axial force, which are seldom considered in the literature.

	 1.	Both ends are clamped (C-C).
	 Guided by Equation (4.9), the nonzero coefficients are

	
= = = =s s s s1, ˆ 1, 1, ˆ 11

0
2
0

1
1

2
1 	 (4.23)

	 Equations (4.21) and (4.22) then give the frequencies in Table 4.1. The mode 
shapes for a C-C beam with a = −20 are shown in Figure 4.3. Positive a 
means that the beam is in compression, and negative a means the beam is in 
tension. At a = 39.4784, the beam buckles, showing a frequency of zero for 
the first mode. However, buckling does not mean that higher mode vibra-
tions do not exist.

C-C P-S

C-S P-F

C-P S-S

C-F S-F

P-P F-F

FIGURE 4.2  Ten combinations of C, P, F, S boundary conditions.

TABLE 4.1
Frequencies for the C-C Beam

a = −40 −20 0 20 39.478

31.347 27.274 22.373 15.848 0

75.040 68.708 61.673 53.650 44.363

136.26 128.82 120.90 112.42 103.48

216.34 208.27 199.86 191.08 182.12

315.74 307.27 298.56 289.58 280.56
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	 2.	One end is clamped and one end pinned (C-P).
	 The nonzero coefficients are

	
= = = =s s s s1, ˆ 1, 1, ˆ 11

0
2
0

1
1

3
1 	 (4.24)

	 The frequency results are shown in Table  4.2. Mode shapes for the C-P 
beam with a = 10 are shown in Figure 4.4. At a = 20.190, the beam buckles, 
showing a zero frequency for the first mode

	 3.	One end is clamped and one end sliding (C-S).
	 The nonzero coefficients are

	
= = = =s s s s1, ˆ 1, 1, ˆ 11

0
2
0

2
1

4
1 	 (4.25)

	 The results are shown in Table  4.3. Mode shapes for a C-S beam with 
a = −10 are shown in Figure 4.5. The beam buckles at a = 9.8696.

1

0.5

0

–0.5

–1
0 0.2 0.4 0.6 0.8 1

ω1 = 27.274
ω2 = 68.708
ω3 = 128.82
ω4 = 208.27
ω5 = 307.27

FIGURE 4.3  Mode shapes for C-C beam at a = –20.

TABLE 4.2
Frequencies for the C-P Beam

a = −20 −10 0 10 20.190

21.556 18.760 15.418 11.021 0

57.906 54.085 49.965 45.468 40.374

112.91 108.66 104.25 99.635 94.703

187.29 182.84 178.27 173.58 168.67

281.27 276.69 272.03 267.29 262.38
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2

0.5

1.5

1

0

–0.5

–1.5

–1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ω1 = 11.021
ω2 = 45.468
ω3 = 99.635
ω4 = 173.58
ω5 = 267.29

FIGURE 4.4  Mode shapes for C-P beam at a = 10.

TABLE 4.3
Frequencies for the C-S Beam

a = −10 −5 0 5 9.8696

7.8368 6.8186 5.5933 3.9619 0

34.065 32.204 30.226 28.105 25.871

78.935 76.817 74.639 72.394 70.139

143.29 141.06 138.79 136.48 134.20

227.30 225.00 222.68 220.34 218.03

2

1

0

–1

0 0.2 0.4 0.6 0.8 1

ω1 = 7.8368
ω2 = 34.065
ω3 = 78.935
ω4 = 143.29
ω5 = 227.30

FIGURE 4.5  Mode shapes for C-S beam at a = –10.
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	 4.	One end is clamped and one end free (C-F).
	 The nonzero coefficients are

	
= = = = =s s s s a s1, ˆ 1, 1, , ˆ 11

0
2
0

4
1

2
1

3
1 	 (4.26)

	 Sample frequencies are presented in Table 4.4, and mode shapes for a C-F 
beam with a = 0 are shown in Figure 4.6. The beam buckles at a = 2.4674.

	 5.	One end is sliding and one end free (S-F).
	 The nonzero coefficients are

	
= = = = =s s s s a s1, ˆ 1, 1, , ˆ 12

0
4
0

4
1

2
1

3
1 	 (4.27)

	 Sample frequencies are presented in Table 4.5, and mode shapes for an S-F 
beam with a = 2.4674 are shown in Figure 4.7.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
–2.5

–2

–1.5

–1

–0.5

0

0.5

1

1.5

2

ω1 = 3.5160
ω2 = 22.035
ω3 = 61.697
ω4 = 120.90
ω5 = 199.86

FIGURE 4.6  Mode shapes for C-F beam at a = 0.

TABLE 4.4
Frequencies for the C-F Beam

a = −2 −1 0 1 2.4674

4.6066 4.1102 3.5160 2.7536 0

23.453 22.757 22.035 21.285 20.129

62.937 62.321 61.697 61.068 60.132

122.08 121.49 120.90 120.31 119.44

201.00 200.43 199.86 199.29 198.45
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	 6.	One end is pinned and one end free (P-F).
	 The nonzero coefficients are

	
= = = = =s s s s a s1, ˆ 1, 1, , ˆ 11

0
3
0

4
1

2
1

3
1

	 (4.28)

	 Sample frequency results for a P-F beam are presented in Table 4.6, and 
mode shapes with a = 0 are shown in Figure 4.8. Notice that for zero axial 
force, the buckling load is zero. Higher mode vibrations still exist.

TABLE 4.5
Frequencies for the S-F Beam

a = −2 −1 0 1 2.4674

7.4575 6.5991 5.5933 4.3357 0

31.731 30.988 30.226 29.442 28.252

75.974 75.309 74.639 73.962 72.957

140.04 139.42 138.79 138.16 137.24

223.88 223.28 222.68 222.08 221.20

ω2 = 28.252
ω3 = 72.957
ω4 = 137.24
ω5 = 221.20

FIGURE 4.7  Mode shapes for S-F beam at a = 2.4674.

TABLE 4.6
Frequencies for the P-F Beam

a = −8 −4 −2 0

4.6948 3.3708 2.4168 0

21.219 18.582 17.084 15.418

55.351 52.733 51.369 49.965

109.30 106.80 105.53 104.25

183.10 180.70 179.49 178.27
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	 7.	Both ends are free (F-F).
	 The nonzero coefficients are

	
= = = = = =s s a s s s a s1, , ˆ 1, 1, , ˆ 14

0
2
0

3
0

4
1

2
1

3
1

	 (4.29)

	 Sample frequency results for an F-F beam are presented in Table 4.7, and 
mode shapes with a = −2 are shown in Figure 4.9. For a = 0, the resonance 
frequencies are the same as in the case of its C-C beam counterpart (cf. 
Table 4.1 and Table 4.7 for a = 0), except that in this case we have the two 
rigid body modes (translation and rotation at ω = 0), since it is allowed by 
the boundary conditions.

	 8.	Both ends are pinned (P-P).
	 In this case, the frequencies are in closed form. Consider first Equation 

(4.16). Under P-P conditions and no axial force, the solution is

	
= ω ω =w x nsin( ), π0 0

2 2
	 (4.30)

ω2 = 15.418
ω3 = 49.965
ω4 = 104.25
ω5 = 178.27

FIGURE 4.8  Mode shapes for P-F beam at a = 0.

TABLE 4.7
Frequencies for the F-F Beam

a = −8 −4 −2 0

9.6433 6.8684 4.8768 0

29.830 26.396 24.476 22.373

68.335 65.100 63.412 61.673

126.93 123.95 122.44 120.90

205.47 202.69 201.28 199.86
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	 Now, if axial force is present, the solution is still given by Equation (4.30). 
But its substitution into Equation (4.16) gives

	 ω − ω − ω =a 00
2

0
2 	 (4.31)

	 or

	 ω = ω ω − ≤ ωa a( ) ,0 0 0 	 (4.32)

	 Note that for n > 1, ω0 may be a higher mode. Thus we have a relation 
between the frequency with axial load and that without an axial load. 
Equation (4.32) is somewhat simpler than the formula of Galef (1968), who 
used energy integrals and the buckling load.

	 9.	Both ends are sliding (S-S).
	 The formula in Equation (4.32) still holds. Here, ω = πn .0

2 2

	 10.	One end pinned and one end sliding (P-S).
	 The formula in Equation (4.32) holds with ω = − πn( 1/2) .0

2 2

For symmetrical end conditions, the mode shapes alternate between symmetric 
and antisymmetric as the frequency is increased. One can separate a symmetric 
mode or an antisymmetric mode into two mirror halves, with the middle end condi-
tion being sliding or pinned. The following relations can be established:

•	 For the C-C beam, the symmetric mode is equivalent to the C-S beam and 
the anti-symmetric mode equivalent to the C-P beam, with the axial force 
divided by 4 and the frequency divided by 4.

•	 For the F-F beam, the symmetric mode is equivalent to the F-S beam and 
the anti-symmetric mode equivalent to the F-P beam, with the axial force 
divided by 4 and the frequency divided by 4.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
–3

–2

–1

0

1

2

3

4

ω1 = 4.8768
ω2 = 24.476
ω3 = 63.412
ω4 = 122.44
ω5 = 201.28

FIGURE 4.9  Mode shapes for F-F beam at a = –2.
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•	 For the P-P beam, the symmetric mode is equivalent to the P-S beam and 
the anti-symmetric mode equivalent to the P-P beam, with the axial force 
divided by 4 and the frequency divided by 4.

•	 For the S-S beam, the symmetric mode is equivalent to the S-S beam and 
the anti-symmetric mode equivalent to the P-S beam, with the axial force 
divided by 4 and the frequency divided by 4.

4.3.3 E lastically Supported Ends

We consider a beam with both ends constrained by elastic translational and rota-
tional springs (Figure 4.10). In the limit of zero or infinite spring constants, some of 
the classical boundary conditions will be recovered. Consider a case with zero axial 
force where the spring constants at both ends are symmetrical. Let

	
γ = γ =k L

EI

k L

EI
,1

1
3

0
2

2

0

	 (4.33)

The boundary conditions given by Equations (4.13) and (4.14) become

	
∓± γ = γ =d w

dx
w

d w

dx

dw

dx
0, 0

3

3 1

2

2 2
	 (4.34)

and the nonzero coefficients are

	

s s s s

s s s s

, 1, ˆ , ˆ 1

, 1, ˆ , ˆ 1

1
0

1 4
0

2
0

2 3
0

1
1

1 4
1

2
1

2 3
1

= γ = = −γ =

= −γ = = γ =
	 (4.35)

Equation (4.21) then furnishes the characteristic calculation. The results are given 
in Table 4.8, and mode shapes for a beam with elastically restrained ends (γ1 = 1, 
γ2 = 10) are shown in Figure 4.11.

Note that when both γ1 and γ2 are zero, the beam is an F-F beam with two 
zero frequencies, representing a rigid body translation and a rigid body rotation. 
Normally we don’t accept rigid body motion as a vibration mode. The zero fre-
quencies are included because they morph into slow vibration modes as soon as 
γ1 becomes nonzero. We find the following limits. When 01γ =  and γ → ∞2 , it’s 
an S-S beam; when γ → ∞1  and γ → 02 , it’s a P-P beam; and when γ → ∞1  and 
γ → ∞2 , it’s a C-C beam.

γ1
γ2

γ1
γ2

FIGURE 4.10  Beam with elastically restrained ends.
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4.3.4 C antilever Beam with a Mass at One End

The cantilever is an important structural member. Consider one end pinned with a 
rotational spring k2 and the other end free but with an attached mass M, as shown in 
Figure 4.12. There is no axial force.

Define the mass ratio as

	
ν =

ρ
M

L0

	 (4.36)

TABLE 4.8
Frequencies for the Symmetrically Elastically Supported Beam

γ2\γ1 0 1 10 100 1,000 ∞

0

0 1.4025 4.1304 8.2757 9.6787 9.8696

0 2.4466 7.6541 21.751 36.446 36.478

22.373 22.552 24.141 36.920 73.369 88.826

61.673 61.738 62.326 68.482 112.59 157.91

120.90 120.94 121.24 124.34 158.18 246.74

1

0 1.4058 4.2190 9.1789 11.251 11.552

4.3931 4.9877 8.6041 21.753 37.637 41.309

25.490 25.635 26.933 38.017 73.687 90.713

65.174 65.233 65.769 71.326 112.67 159.83

124.54 124.57 124.86 127.79 159.40 248.66

10

0 1.4106 4.3608 11.298 16.344 17.269

8.3363 8.6046 10.699 21.757 42.604 49.959

34.097 34.176 34.892 41.764 75.096 101.32

77.974 78.103 78.359 81.894 113.04 171.74

140.51 140.54 140.74 142.83 165.67 261.51

100

0 1.4121 4.4047 12.234 19.887 21.542

9.6778 9.8859 11.580 21.760 47.051 59.447

38.724 38.778 39.269 44.268 76.460 116.66

87.154 87.179 87.403 89.693 113.41 193.04

154.99 155.00 155.13 156.44 252.35 288.64

1,000

0 1.4122 4.4100 12.361 20.482 22.284

9.8499 10.051 11.698 21.760 47.879 61.427

39.400 39.451 39.912 44.590 76.724 120.42

88.650 88.673 88.878 90.984 113.48 199.06

157.60 157.61 157.73 158.90 172.01 297.35

∞

0 1.4123 4.4106 12.376 20.552 22.373

9.8696 10.070 11.712 21.760 47.980 61.673

39.478 39.529 39.987 44.635 76.756 120.91

88.826 88.849 89.052 91.137 113.49 199.86

157.91 157.93 158.04 159.20 172.14 298.56
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The nonzero coefficients are

	
= = −γ = = = νω =s s s s s s1, ˆ , ˆ 1. 1, ˆ , ˆ 11

0
2
0

2 3
0

3
1

1
1 2

4
1 	 (4.37)

Equation (4.21) is then solved for the frequency. The results are given in Table 4.9, 
and the mode shapes for the cantilever beam with a mass at one end with γ2 = 1000 
and ν = 10 are shown in Figure 4.13. Notice that when γ2 = 0 and ν = 0, it is a P-F 
beam; when γ2 = ∞ and ν = 0, it is a C-F beam; when γ2 = 0 and ν = ∞, it is a P-P 
beam; and when γ2 = ∞ and ν = ∞, it is a C-P beam. Notice also that the end mass 
decreases frequency, especially the fundamental frequency.

4.3.5 F ree Beam with Two Masses at the Ends

Figure 4.14 shows a completely free beam with masses M1 and M2 at the ends. This 
case models the vibration of a two-atom molecule. The nonzero coefficients are

	
= = −ν ω = = = ν ω =s s s s s s1, ˆ , ˆ 1. 1, ˆ , ˆ 13

0
1
0

1
2

4
0

3
1

1
1

2
2

4
1 	 (4.38)

where the ν’s are defined by Equation (4.36). Without loss of generality, we can consider 
ν1 ≥ ν2. Equation (4.21) gives the results presented in Table 4.10. Mode shapes for a free 
beam with two masses at the ends with ν1 = 0.1, ν2 = 0.1 are shown in Figure 4.15.

1

0.5

0

–0.5

–1

0 0.2 0.4 0.6 0.8 1

ω1 = 1.4106
ω2 = 8.6046
ω3 = 34.176
ω4 = 78.103
ω5 = 140.54

FIGURE 4.11  Mode shapes for beam with elastically restrained ends (γ1 = 1, γ2 = 10).

M

FIGURE 4.12  Cantilever beam with a mass at one end and the other end pinned with a 
rotational restraint.
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Notice that when ν1 = 0 and ν2 = 0, it is an F-F beam; when ν1 = ∞ and ν2 = 0, it is 
a P-F beam; and when ν1 = ∞ and ν2 = ∞, it is a P-P beam. We have omitted the zero 
frequencies of rigid translation and rotation.

4.4  TWO-SEGMENT UNIFORM BEAM

There are two types of two-segment beams. In one type, the equation of motion is 
the same, but some condition is imposed in mid-span. In another type, the equation 
of motion is different for two different segments, including the stepped beam and the 
beam on a partial elastic foundation.

TABLE 4.9
Frequencies for the Cantilever with Mass and Rotational Spring

ν\γ2 0 1 10 100 1,000 ∞

0

0 1.5573 2.9678 3.4477 3.5090 3.5160

15.418 16.250 19.356 21.620 21.991 22.035

49.965 50.896 55.518 60.570 61.575 61.697

104.25 105.20 110.71 118.76 120.66 120.90

178.27 179.23 185.35 196.42 199.47 199.86

1

0 0.7577 1.3553 1.5330 1.5548 1.5573

10.714 11.524 14.219 15.949 16.219 16.250

40.399 41.311 45.621 49.968 50.796 50.896

89.773 90.715 96.022 103.33 104.99 105.20

158.87 159.83 165.80 176.13 178.88 179.23

10

0 0.2698 0.4744 0.5334 0.5406 0.5414

9.9678 10.808 13.519 15.218 15.481 15.512

39.578 40.497 44.818 49.144 49.965 50.064

88.926 89.872 95.191 102.48 104.14 104.35

158.01 158.97 164.95 175.28 178.02 178.37

100

0 0.0865 0.1517 0.1705 0.1727 0.1730

9.8796 10.724 13.439 15.135 15.397 15.428

39.488 40.408 44.732 49.055 49.876 49.975

88.836 89.783 95.103 102.40 104.05 104.26

157.92 158.88 164.87 175.19 177.93 178.28

1,000

0 0.0274 0.0480 0.0540 0.0547 0.0548

9.8706 10.715 13.431 15.177 15.389 15.419

39.479 40.400 44.723 49.046 49.867 49.966

88.827 89.774 95.094 102.39 104.04 104.25

157.92 158.88 164.86 175.18 177.92 178.27

∞

0 2.7 × 10−5 4.8 × 10−5 5.4 × 10−5 5.5 × 10−5 5.5 × 10−5

9.8696 10.714 13.430 15.126 15.388 15.418

36.478 40.399 44.722 49.045 49.866 49.965

88.826 89.773 95.093 102.39 104.04 104.25

157.91 158.87 164.86 175.18 177.92 178.27



86 Structural Vibration

© 2010 Taylor & Francis Group, LLC

4.4.1 B eam with an Internal Elastic Support

Figure 4.16 shows a uniform beam subjected to compressive forces. On the span, 
there is an elastic translational spring that divides the beam into two segments. Let 
the subscripts 1 and 2 represent the two segments. For 0 ≤ x < b, the general solution 
to Equation (4.16) is

	 = α + α + β + βw s x s x s x s xcosh( ) sinh( ) cos( ) sin( )1 11 12 13 14 	 (4.39)

where α and β are given in Equation (4.18). For b < x ≤ 1, we write

	
= α − + α − + β − + β −w s x s x s x s xcosh[ ( 1)] sinh[ ( 1)] cos[ ( 1)]) sin[ ( 1)]2 21 22 23 24 	(4.40)

At the joint, we require

	
= =w b w b

dw

dx
b

dw

dx
b( ) ( ), ( ) ( )1 2

1 2 	 (4.41)

	
= − γ =d w

dx
b

d w

dx
b

d w

dx
b w

d w

dx
b( ) ( ), ( ) ( )

2
1

2

2
2

2

3
1

3 1 1

3
2

3
	 (4.42)

M1 M2

FIGURE 4.14  Free beam with two different masses at the ends.

ω1 = 0.5406
ω2 = 15.481
ω3 = 49.965
ω4 = 104.14
ω5 = 178.02

FIGURE 4.13  Mode shapes for cantilever beam with a mass at one end at γ2 = 1,000 
and ν = 10.
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Here, γ1 is as defined in Equation (4.33). There are two boundary conditions at each 
end and four conditions at the joint. The following 8 × 8 determinant is obtained for 
the eight nontrivial constants sij:

	

=
E

E

I

0

0 0
1

2 	 (4.43)

TABLE 4.10
Natural Frequencies for Beams with Two Different Masses 
Attached at the Ends

ν2\ν1 0 0.1 1 10 100 ∞
22.373 19.627 16.336 15.522 15.429 15.418

61.673 55.501 50.892 50.064 49.975 49.965

0 120.90 110.71 105.20 104.35 104.26 104.25

199.86 185.35 179.27 178.37 178.28 178.27

298.56 279.55 273.00 272.13 272.04 272.03

17.270 14.293 13.528 13.440 13.430

49.960 45.618 44.818 44.731 44.722

0.1 101.32 96.023 95.191 95.103 95.093

171.75 16.580 164.95 164.87 164.86

261.53 255.12 254.26 254.17 254.16

11.552 10.811 10.724 10.714

41.310 40.497 40.408 40.399

1 90.715 89.872 89.783 89.773

159.83 158.97 158.88 158.87

248.67 247.81 247.72 247.71

10.066 9.9778 9.9678

39.677 39.588 39.578

10 89.025 88.936 88.926

158.11 158.02 158.01

246.94 246.85 246.84

9.8896 9.8796

39.498 39.488

100 88.846 88.836

157.93 157.92

246.76 246.75

9.8696

39.478

∞ 88.826

157.91

246.74
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Here E1 and E2 are 2 × 4 matrices from the left and right end conditions, 0 is the null 
2 × 4 matrix, and I is a 4 × 8 matrix from the joint conditions. We find

		  (4.44)

	

=
α β













=












=












= α
α α +

−β
−β β −













E

E

E

E
a a

1
0

0 1
0

0
for a clamped end

1
0

0
0

0
1

0
0

for a pinned end

0
0

1
0

0
0

0
1

for a sliding end

0

0

( ) 0

0

( )
for a free end

2

2

2

2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
–5

–4

–3

–2

–1

0

1

2

3

4

5

ω1 = 17.270
ω2 = 49.960
ω3 = 101.32
ω4 = 171.75
ω5 = 261.53

FIGURE 4.15  Mode shapes for free beam with two masses at ends at n1 = 0.1, n2 = 0.1.

k

bL

Segment 1 Segment 2F´ F´

FIGURE 4.16  Beam with an internal elastic support.
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Let

	

= α = α = β = β

= α − = α − = β − = β −

C b C b C b C b

C b C b C b C b

cosh( ), sinh( ), cos( ), sin( )

cosh[ ( 1)], sinh[ ( 1)], cos[ ( 1)], sin[ ( 1)]

11 12 13 14

21 22 23 24 		
		  (4.45)

Equations (4.41) and (4.42) give the matrix I

	

=
α α −β β

α α −β −β

α − γ α − γ β − γ −β − γ











− − − −
−α −α β −β

−α −α β β

−α −α −β β











I

C C C C

C C C C

C C C C

C C C C C C C C

C C C C

C C C C

C C C C

C C C C

11 12 13 14

12 11 14 13

2
11

2
12

2
13

2
14

3
12 1 11

3
11 1 12

3
14 1 13

3
13 1 14

21 22 23 24

22 21 24 23

2
21

2
22

2
23

2
24

3
22

3
21

3
24

3
23

		
		  (4.46)

We shall consider only the case for equal span (b = 0.5) and when both ends are 
pinned or both ends are clamped. Table 4.11 shows the results for the P-P case. The 
γ1 = 0 case is the one-span P-P beam, and the frequencies are given by Equation (4.32). 
For small γ1, the fundamental mode is symmetric, the next mode antisymmetric, etc. 
For high γ1, the sequence is reversed, with the fundamental mode antisymmetric. 
The frequencies of the antisymmetric modes are independent of the spring constant, 
since the spring is at a node. The zero entry means that the mode has buckled. Mode 
shapes for a P-P beam with a translational support at mid-span with a = 5 and γ1 = 10 
are shown in Figure 4.17.

The results for the clamped-clamped beam are shown in Table 4.12. Mode shapes 
for a C-C beam with translational support at mid-span and a = −20, γ1 = 10 are shown 
in Figure 4.18.

4.4.2 B eam with an Internal Attached Mass

Figure 4.19 shows a beam with an internal attached mass. The analysis is the same 
as in the previous section, except γ1 is replaced by −νω2, where ν is defined in 
Equation (4.36).

Equation (4.43), the exact-frequency equation, furnishes the results for b = 0.5 for a 
P-P beam and a C-C beam in Tables 4.13 and 4.14, respectively. The results for the zero-
mass case and for the infinite-mass case are identical to those for the translational spring. 
Except for the infinite-mass case, the fundamental mode is symmetric. The frequencies 
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TABLE 4.11
Frequencies for the P-P beam with Translational Elastic Support at Mid Span

γ1\a −10 −5 0 5 10

0

14.004 12.114 9.8696 6.9526 0
44.197 41.904 39.478 36.894 34.114
93.693 91.292 88.826 86.290 83.677

162.84 160.39 157.91 155.39 152.83
251.69 249.23 246.74 244.23 241.69

10

14.699 12.911 10.833 8.2461 4.3181
44.197 41.904 39.478 36.894 34.114
93.800 91.402 88.939 86.406 83.797

162.84 160.39 157.91 155.39 152.83
251.73 249.27 246.78 244.27 241.73

100

19.763 18.466 17.070 15.548 13.859
44.197 41.904 39.478 36.894 34.114
94.773 92.402 89.968 87.466 84.891

162.84 160.39 157.91 155.39 152.83
252.09 249.63 247.15 244.64 242.10

1,000

41.231 40.400 39.478 36.894 34.114
44.197 41.904 39.531 38.640 37.663

105.25 103.20 101.11 98.982 96.819
167.84 160.39 157.91 155.39 152.83
255.83 253.41 250.97 248.50 246.01

∞

44.197 41.904 39.478 36.894 34.114
65.292 63.510 61.673 59.775 57.810

162.84 160.39 157.91 155.39 152.83
204.11 201.99 199.86 197.70 195.52

360.27 357.80 355.30 352.80 350.27

ω1 = 8.2461
ω2 = 36.894
ω3 = 86.406
ω4 = 155.39
ω5 = 244.27

FIGURE 4.17  Mode shapes for P-P beam with translational support at mid span at a = 5, 
γ1 = 10.
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ω1 = 27.723
ω2 = 68.708
ω3 = 128.90
ω4 = 208.27
ω5 = 307.30

FIGURE 4.18  Mode shapes for C-C beam with translational support at mid span at a = –20, 
γ1 = 10.

TABLE 4.12
Frequencies for the C-C Beam with Translational Support at 
Mid Span

γ1\a −40 −20 0 20 40

0

31.347 27.274 22.373 15.848 0

75.040 68.708 61.673 53.650 44.086

136.26 128.82 120.90 112.42 103.23

216.34 208.27 199.86 191.08 181.87

315.74 307.27 298.56 289.58 280.31

10

31.733 27.723 22.929 16.642 4.4461

75.040 68.708 61.673 53.650 44.086

136.33 128.90 120.99 122.51 103.32

216.34 208.27 199.86 191.08 181.87

315.77 307.30 298.59 289.61 280.35

100

34.964 31.421 27.357 22.466 15.950

75.040 68.708 61.673 53.650 44.086

137.01 129.61 121.73 113.29 104.15

216.34 208.27 199.86 191.08 181.87

316.06 307.60 298.89 289.92 280.67

1,000

55.444 53.291 51.020 48.605 44.086

75.040 68.708 61.673 53.650 46.014

144.20 137.20 129.81 121.94 113.51

216.34 208.27 199.86 191.08 181.87

319.03 310.64 302.02 293.14 283.99

∞

75.040 68.708 61.673 53.650 44.086

99.830 94.817 89.493 83.796 77.639

216.34 208.27 199.86 191.08 181.87

261.17 254.04 246.69 239.10 231.24

434.66 425.92 416.99 407.87 398.54
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for symmetrical modes decrease with increased mass. The fundamental (symmetric) 
mode becomes a very slow oscillation for large ν. Mode shapes for a P-P beam with a 
mass at mid-span when a = 5, v = 10 are shown in Figure 4.20, and mode shapes for a 
C-C beam with a mass at mid-span when a = −40, v = 1 are shown in Figure 4.21.

M

F´ F´

FIGURE 4.19  Beam with an internal attached mass.

TABLE 4.13
Frequencies for the P-P Beam with a Mass at Mid Span

ν\a −10 −5 0 5 10

14.004 12.114 9.8696 6.9326 0

44.197 41.904 39.478 36.894 34.114

0 93.693 91.292 88.826 86.290 83.677

162.84 160.39 157.91 155.39 152.83

251.69 249.23 246.74 244.23 241.69

8.0366 6.9614 5.6796 3.9958 0

44.197 41.904 39.478 36.894 34.114

1 71.694 69.819 67.888 65.899 63.844

162.84 160.39 157.91 155.39 152.83

211.08 208.95 206.79 204.61 202.41

3.0192 2.6186 2.1395 1.5076 0

44.197 41.904 39.478 36.894 34.114

10 66.088 64.297 62.452 60.546 58.574

162.84 160.39 157.91 155.39 152.83

204.90 202.78 200.05 198.49 196.30

0.9749 0.8457 0.6911 0.4872 0

44.197 41.904 39.478 36.894 34.114

100 65.374 63.591 61.753 59.854 57.889

162.84 160.39 157.91 155.39 152.83

204.19 202.07 199.94 197.78 195.60

0.3089 0.2680 0.2190 0.1544 0

44.197 41.904 39.478 38.640 34.114

1,000 65.300 63.518 61.681 59.783 57.818

162.84 160.39 157.91 155.39 152.83

204.11 202.00 199.87 197.71 195.53

44.197 41.904 39.478 36.894 34.114

65.292 63.510 61.673 59.775 57.810

∞ 162.84 160.39 157.91 155.39 152.83

204.11 201.99 199.86 197.70 195.52

360.27 357.80 355.30 352.80 350.27
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4.4.3 B eam with an Internal Rotational Spring

Figure 4.22 shows a beam with an internal rotational spring, which models a partial 
crack. The condition at the spring is

	
= = γ −



w b w b

d w

dx
b

dw

dx
b

dw

dx
b( ) ( ), ( ) ( ) ( )1 2

2
1

2 2
2 1 	 (4.47)

	
= + = +d w

dx
b

d w

dx
b

d w

dx
b a

dw

dx
b

d w

dx
b a

dw

dx
b( ) ( ), ( ) ( ) ( ) ( )

2
1

2

2
2

2

3
1

3
1

3
2

3
2 	 (4.48)

TABLE 4.14
Frequencies for the C-C Beam with a Mass at Mid Span

ν\a −40 −20 0 20 40

31.347 27.274 22.373 15.848 0

75.040 68.708 61.673 53.650 44.086

0 136.26 128.82 120.90 112.42 103.23

216.34 208.27 199.86 191.08 181.87

315.74 307.27 298.56 289.58 280.31

16.673 14.463 11.818 8.3296 0

75.040 68.708 61.673 53.650 44.086

1 106.95 101.52 95.757 89.592 82.932

216.34 208.27 199.86 191.08 181.87

268.40 261.18 253.73 246.05 238.10

6.0691 5.2649 4.3025 3.0325 0

75.040 68.708 61.673 53.650 44.086

100.68 95.620 90.428 84.499 78.288

10 216.34 208.27 199.86 191.08 181.87

261.98 254.84 247.48 239.88 232.02

1.9507 1.6923 1.3831 0.9749 0

75.040 68.708 61.673 53.650 44.086

100 99.916 94.899 89.570 83.868 77.706

216.34 208.27 199.86 191.08 181.87

261.25 254.12 246.27 239.18 231.32

0.6179 0.5361 0.4381 0.3088 0

75.040 68.708 61.673 53.650 44.086

1,000 99.838 94.825 89.301 83.803 77.646

216.34 208.27 199.86 191.08 181.87

261.18 254.05 246.70 239.11 231.25

75.040 68.708 61.673 53.650 44.086

99.830 94.817 89.493 83.796 77.639

∞ 216.34 208.27 199.86 191.08 181.87

261.17 254.04 246.69 239.10 231.24

434.66 425.92 416.99 407.87 398.54



94 Structural Vibration

© 2010 Taylor & Francis Group, LLC

ω1 = 1.5076
ω2 = 36.894
ω3 = 60.546
ω4 = 155.39
ω5 = 198.49

FIGURE 4.20  Mode shapes for P-P beam with mass at mid span at a = 5, v = 10.

ω1 = 16.673
ω2 = 75.040
ω3 = 106.95
ω4 = 216.34
ω5 = 368.40

FIGURE 4.21  Mode shapes for C-C beam with mass at mid span at a = –40, v = 1.

γ2

FIGURE 4.22  Beam with an internal rotational spring at mid span.
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The matrix I becomes

=
α + γ α α + γ α −β − γ β −β + γ β

α α −β −β
α α + α α + β β − −β β −










− − − −
−γ α −γ α γ β − γ β

−α −α β β

−α α + −α α + −β β − β β −











I

C C C C

C C C C C C C C

C C C C

a C a C a C a C

C C C C

C C C C

C C C C

a C a C a C a C

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

11 12 13 14

2
11 2 12

2
12 2 11

2
13 2 14

2
14 2 13

2
11

2
12

2
13

2
14

2
12

2
11

2
14

2
13

21 22 23 24

2 22 2 21 2 24 2 23

2
21

2
22

2
23

2
24

2
22

2
21

2
24

2
23

		
		  (4.49)

The results for b = 0.5 are given for a P-P beam and a C-C beam in Tables 4.15 
and 4.16, respectively. The fundamental mode is always symmetrical. As before, 
the antisymmetrical mode is independent of the spring constant. When γ2 = 0, the 
joint is a free hinge (Wang and Wang 2001), and when γ2 = ∞, the beam becomes 
entirely continuous. Mode shapes for a P-P beam and a C-C beam with an inter-
nal rotational spring at the mid-span at a = 0, γ2 = 1 are shown in Figure 4.23 and 
Figure 4.24, respectively.

4.4.4 S tepped Beam

Figure 4.25 shows a stepped beam, where the density and the rigidity are different 
for the two segments. We normalize with the properties of the (larger) segment 1, 
and let

	
ρ ρ = µ ≤ = λ ≤EI EI/ 1, / 12 1 2 1 	 (4.50)

If the two segments are made of the same material, λ = μn, where n = 1 if the 
width of segment 2 is smaller (with the same height), n = 2 if cross sections of the two 
segments are similar, and n = 3 if the height of segment 2 is smaller (with the same 
width). The governing equations, without axial force, are

	
− ω =d w

dx
w 0

4
1

4
2

1
	 (4.51)

	
− µ

λ
ω =d w

dx
w 0

4
2

4
2

2
	 (4.52)

The solutions are

	 = + + +w s px s px s px s pxcosh( ) sinh( ) cos( ) sin( )1 11 12 13 14 	 (4.53)

= − + − + − + −w s q x s q x s q x s q xcosh[ ( 1)] sinh[ ( 1)] cos[ ( 1)]) sin[ ( 1)]2 21 22 23 24 	(4.54)
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where

	
= ω = µ λ ωp q, ( / )

1
4 	 (4.55)

At the joint, we require

	
= =w b w b

dw

dx
b

dw

dx
b( ) ( ), ( ) ( )1 2

1 2 	 (4.56)

	
= λ = λd w

dx
b

d w

dx
b

d w

dx
b

d w

dx
b( ) ( ), ( ) ( )

2
1

2

2
2

2

3
1

3

3
2

3
	 (4.57)

TABLE 4.15
Frequencies for the P-P Beam with a Rotational 
Spring at Mid Span

γ2\a −10 −5 0 5 10

10.747 7.6643 0 0 0

44.197 41.904 39.478 36.894 34.114

0 69.889 65.925 61.673 57.071 52.036

162.84 160.39 157.91 155.39 152.83

206.85 203.39 199.86 196.27 192.60

11.789 9.2730 5.6796 0 0

44.197 41.904 39.478 36.894 34.114

1 75.020 71.553 67.888 63.991 59.817

162.84 160.39 157.91 155.39 152.83

213.38 210.11 206.79 203.41 199.96

13.431 11.436 9.0078 5.6101 0

44.197 41.904 39.478 36.894 34.114

10 87.421 84.791 82.075 79.265 76.349

162.84 160.39 157.91 155.39 152.83

235.61 232.91 230.17 227.90 224.59

13.936 12.035 9.7723 6.7931 0

44.197 41.904 39.478 36.894 34.114

100 92.879 90.455 87.965 85.402 82.760

162.84 160.39 157.91 155.39 152.83

249.38 246.90 244.38 241.85 239.28

14.004 12.114 9.8696 6.9326 0

44.197 41.904 39.478 36.894 34.114

∞ 93.693 91.292 88.826 86.290 83.677

162.84 160.39 157.91 155.39 152.83

251.69 249.23 246.74 244.23 241.69

Note:	 Entries with a zero indicate that the beam has buckled.
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ω1 = 5.6796
ω2 = 39.478
ω3 = 67.888
ω4 = 157.91
ω5 = 206.79

FIGURE 4.23  Mode shapes for P-P beam with a rotational spring at mid span at 
a = 0, γ2 = 1.

TABLE 4.16
Frequencies for the C-C Beam with a Rotational Spring at Mid Span

γ2\a −40 −20 0 20 40

28.670 23.073 14.064 0 0
75.040 68.708 61.673 53.650 44.086

0 113.18 101.62 88.138 71.852 52.005
216.34 208.27 199.86 191.08 181.87
270.63 259.01 246.79 233.93 220.37

29.261 24.161 16.875 0 0
75.040 68.708 61.673 53.650 44.086

1 117.24 106.75 94.813 80.821 63.880
216.34 208.27 199.86 191.08 181.87
276.49 265.41 253.81 241.61 228.77

30.649 26.341 20.998 13.308 0
75.040 68.708 61.673 53.650 44.086

10 128.99 120.76 111.88 102.18 91.400
216.34 208.27 199.86 191.08 181.87
298.09 288.76 279.10 269.07 258.66

31.256 27.158 22.211 15.578 0
75.040 68.708 61.673 53.650 44.086

100 135.26 127.73 119.72 111.12 101.78
216.34 208.27 199.86 191.08 181.87
313.09 304.53 295.72 286.63 277.25

31.347 27.274 22.373 15.848 0
75.040 68.708 61.673 53.650 44.086

∞ 136.26 128.82 120.90 112.42 103.23

216.34 208.27 199.86 191.08 181.87

315.74 307.27 298.56 289.58 280.31
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The characteristic equation is still Equation (4.43), with the end conditions

	

=












=












=












= −
−













E

E

E

E

1
0

0
1

1
0

0
1

for a clamped end

1
0

0
0

0
1

0
0

for a pinned end

0
0

1
0

0
0

0
1

for a sliding end

1
0

0
1

1
0

0
1

for a free end

	 (4.58)

ω1 = 16.879
ω2 = 61.673
ω3 = 94.813
ω4 = 199.86
ω5 = 253.81

FIGURE 4.24  Mode shapes for C-C beam with a rotational spring at the mid span at 
a = 0, γ2 = 1.

Segment 1 Segment 2

FIGURE 4.25  Beam with two segments of different densities and rigidities.
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The I matrix is

=
−

− −

−











− − − −
− − −

−λ −λ λ λ

−λ −λ −λ λ











I

C C C C

pC pC pC pC

p C p C p C p C

p C p C p C p C

C C C C

qC qC qC qC

q C q C q C q C

q C q C q C q C

11 12 13 14

12 11 14 13

2
11

2
12

2
13

2
14

3
12

3
11

3
14

3
13

21 22 23 24

22 21 24 23

2
21

2
22

2
23

2
24

3
22

3
21

3
24

3
23

	
		  (4.59)

where

	

= = = =

= − = − = − = −

C pb C pb C pb C pb

C q b C q b C q b C q b

cosh( ), sinh( ), cos( ), sin( )

cosh[ ( 1)], sinh[ ( 1)], cos[ ( 1)], sin[ ( 1)]

11 12 13 14

21 22 23 24 		
		  (4.60)

The following results are for the same material and similar cross sections where 
λ = μ2.

Table 4.17 is for the P-P case. When b = 1, it is a uniform P-P beam, and the fre-
quencies are given by Equation (4.30), which also describes the μ = 1 entries. When 
b = 0, it is again a uniform beam but with smaller cross section. The frequencies are 
decreased by a factor of λ µ/ , or in our case µ .

Table 4.18 gives the clamped-free case. Mode shapes for a C-F beam with μ = 
0.5, b = 0.5 are shown in Figure 4.26. When b = 1, it is a uniform C-F beam with 
frequencies given by Table 4.4 (a = 0). Similarly, b = 0 frequencies are those of b = 1 
multiplied by µ .

Table 4.19 shows the clamped-pinned case. Mode shapes for a C-P beam with 
μ = 0.5, b = 0.5 are shown in Figure 4.27. The values for the uniform beam are given 
in Table 4.2 with a = 0.

Table 4.20 gives the results for the clamped-clamped case. The limits for b = 0, 
b = 1, and μ = 1 can be obtained from Table 4.1

As we can see from these tables, the frequency variation with increased b is not 
quite monotonically increasing. This property is peculiar to stepped beams.

4.4.5 B eam with a Partial Elastic Foundation

We consider the Winkler foundation, where resistance is linearly proportional to 
the deflection. Let c be the force per width of foundation per displacement. For a 
uniform beam with no axial force, the equation governing the beam on the founda-
tion is

	
− ω + ξ =d w

dx
w w 0

4

4
2 	 (4.61)
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where

	
ξ = cL

EI

4

	 (4.62)

is a nondimensional parameter describing the foundation. For a full foundation, the 
frequency is simply

	
ω = ω + ξ0

2 	 (4.63)

where ω0 is the frequency of the same beam without the foundation. For partial 
foundations as shown in Figure 4.28, let the subscript 1 represent the left segment 
that has the foundation, and the subscript 2 represent the right segment that has no 
foundation.

TABLE 4.17
Frequencies for a Stepped Beam with P-P Ends

μ\b 0.1 0.3 0.5 0.7 0.9

3.0475 2.3714 2.1686 2.9177 7.6245

11.614 11.669 20.010 29.702 24.757

0.1 25.505 33.355 54.329 56.081 64.063

46.038 67.565 70.684 101.40 128.93

74.223 113.17 131.96 173.20 217.78

5.3834 5.1532 5.3510 6.8157 9.5905

21.362 22.597 31.122 31.059 35.966

0.3 47.884 57.617 62.093 78.214 77.535

85.509 107.65 114.10 122.47 138.89

135.09 159.04 182.61 203.99 223.41

6.9743 6.9850 7.4268 8.6532 9.7934

27.880 29.709 34.527 33.988 38.438

0.5 62.831 70.786 71.894 81.764 84.762

112.22 125.04 134.45 141.06 149.06

176.54 189.23 203.27 217.72 233.17

8.2600 8.3553 8.7573 9.4319 9.8467

33.080 34.609 36.566 36.698 39.153

0.7 74.608 79.193 80.234 84.452 87.458

133.09 139.02 145.37 150.32 154.55

208.78 215.97 223.68 231.90 240.75

9.3656 9.4236 9.5873 9.7779 9.8654

37.490 38.095 38.497 38.719 39.416

0.9 84.448 85.800 86.416 87.350 88.549

150.33 151.92 153.91 155.75 157.18

235.17 237.61 240.11 242.67 245.30
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TABLE 4.18
Frequencies for a Stepped Beam with C-F Ends

μ\b 0.1 0.3 0.5 0.7 0.9

1.3691 2.2365 4.1786 6.1240 4.2326

8.5715 13.643 13.205 13.433 26.261

0.1 23.974 32.768 29.211 43.286 71.494

46.915 45.296 72.898 126.01 111.64

77.421 79.635 92.724 211.87 155.10

2.3241 3.4869 5.0254 5.1228 4.0376

14.449 18.309 15.509 20.705 24.842

0.3 40.169 39.548 46.865 47.429 67.919

77.722 75.658 85.944 105.16 127.10

126.53 132.85 142.82 157.86 193.58

2.8879 3.8155 4.5371 4.4650 3.8663

17.805 19.276 18.342 22.217 25.779

0.5 49.038 47.663 53.139 53.547 65.326

94.267 94.679 98.269 109.65 124.92

152.55 158.86 169.52 180.31 200.33

3.2416 3.7743 4.0548 4.0034 3.7145

19.943 20.322 20.357 22.344 22.959

0.7 54.943 54.358 56.809 58.047 63.529

106.02 107.33 109.27 114.13 122.98

172.99 176.70 186.86 190.41 200.78

3.4513 3.6105 3.6742 3.6585 3.5787

21.429 21.471 21.619 22.159 22.310

0.9 59.592 59.567 60.084 60.800 62.224

116.16 116.78 117.61 118.74 121.51

191.33 192.45 194.79 196.96 200.23

ω1 = 4.5371
ω2 = 18.342
ω3 = 53.139
ω4 = 98.269
ω5 = 169.52

FIGURE 4.26  Mode shapes for a Stepped C-F beam at μ = 0.5, b = 0.5.
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TABLE 4.19
Frequencies for a Stepped Beam with C-P Ends

μ\b 0.1 0.3 0.5 0.7 0.9

5.9994 9.6374 12.083 7.7981 11.117

19.421 28.642 21.692 40.550 31.953

0.1 40.468 40.858 61.455 59.305 77.974

69.090 69.333 88.252 123.01 148.94

105.20 115.52 134.47 177.90 243.57

10.132 13.583 12.154 11.142 14.812

32.559 33.774 36.311 41.395 44.810

0.3 67.224 64.387 77.576 89.264 90.808

113.35 117.06 123.59 138.21 157.82

233.40 182.51 205.56 229.35 248.17

12.512 14.231 13.165 13.476 15.253

39.888 39.178 42.818 43.800 48.380

0.5 81.691 80.978 85.750 91.098 99.095

136.81 141.79 149.31 157.47 168.16

204.35 212.40 227.50 241.99 257.48

14.019 14.635 14.231 14.680 15.369

44.676 44.167 46.266 46.573 49.462

0.7 91.750 92.345 94.118 99.501 102.47

154.76 158.06 163.93 169.01 174.28

233.72 238.44 246.99 255.74 265.36

15.027 15.139 15.085 15.260 15.410

48.337 48.2580 48.802 48.973 49.867

0.9 100.27 100.71 101.26 102.65 103.88

170.79 171.81 173.93 175.75 177.38

259.98 261.68 264.51 267.39 270.38

ω1 = 13.165
ω2 = 42.818
ω3 = 85.750
ω4 = 149.31
ω5 = 227.50

FIGURE 4.27  Mode shapes for a C-P beam at  μ = 0.5, b = 0.5.
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The governing equations are

	
− ω − ξ =d w

dx
w x b( ) 0, 0 <

4
1

4
2

1 ≤ 	 (4.64)

	
− ω =d w

dx
w b x0, < 1

4
2

4
2

2 ≤ 	 (4.65)

Segment 1
Segment 2

b 1 – b

x

FIGURE 4.28  Beam with partial foundation on left segment.

TABLE 4.20
Frequencies for a Stepped Beam with C-C Ends

μ\b 0.1 0.3 0.5 0.7 0.9

8.7037 13.867 13.305 9.2518 15.015

23.964 32.754 29.530 43.453 39.427

0.1 46.916 45.292 72.872 79.855 82.543

77.421 79.636 92.721 126.01 152.21

115.38 129.00 154.19 211.81 247.07

14.676 18.670 15.341 15.544 17.649

40.092 39.548 47.257 47.098 53.246

0.3 77.723 75.649 85.937 105.88 105.51

126.53 132.85 142.80 158.34 174.29

184.84 198.55 222.34 242.76 263.74

18.090 19.652 18.034 18.779 19.073

49.016 47.677 53.447 52.673 56.271

0.5 94.268 94.670 98.298 110.13 112.98

152.55 158.86 169.50 180.78 188.00

223.16 231.37 246.72 262.87 281.20

20.263 20.675 20.195 20.533 20.505

54.919 54.366 56.991 57.261 58.490

0.7 106.02 107.32 109.31 114.37 116.60

172.99 176.70 183.84 190.72 194.20

256.00 261.37 270.81 281.36 290.86

21.765 21.808 21.765 21.803 21.802

59.568 59.546 60.127 60.475 60.631

0.9 116.16 116.78 117.63 118.79 119.51

191.33 192.45 194.78 197.07 198.16

285.21 287.29 290.54 293.95 296.44
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If ω > ξ2 , let

	
= ω − ξ = ωp q( ) ,2 1

4 	 (4.66)

The general solutions are

	 = + + +w s px s px s px s pxcosh( ) sinh( ) cos( ) sin( )1 11 12 13 14 	 (4.67)

= − + − + − + −w s q x s q x s q x s q xcosh[ ( 1)] sinh[ ( 1)] cos[ ( 1)] sin[ ( 1)]2 21 22 23 24 	 (4.68)

The condition at the joint at x = b is that w is completely continuous. The char-
acteristic equation is the 8 × 8 determinant as Equation (4.43), where E1 and E2 are 
given by Equation (4.58) and

=
−

− −

−











− − − −
− − −

− −

− − −











I

C C C C

pC pC pC pC

p C p C p C p C

p C p C p C p C

C C C C

qC qC qC qC

q C q C q C q C

q C q C q C q C

11 12 13 14

12 11 14 13

2
11

2
12

2
13

2
14

3
12

3
11

3
14

3
13

21 22 23 24

22 21 24 23

2
21

2
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2
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2
24

3
22

3
21

3
24

3
23

	
		  (4.69)

Here,

	

= = = =

= − = − = − = −

C pb C pb C pb C pb

C q b C q b C q b C q b

cosh( ), sinh( ), cos( ), sin( )

cosh[ ( 1)], sinh[ ( 1)], cos[ ( 1)], sin[ ( 1)]

11 12 13 14

21 22 23 24 		
		  (4.70)

The forms are different for the foundation segment when ω < ξ2 . Let

	
= ξ − ω

r
( )

2

2 1
4

	 (4.71)

The general solution is

	

= +

+ +

w s rx rx s rx rx

s rx rx s rx rx

cosh( )cos( ) cosh( )sin( )

sinh( )sin( ) sinh( )cos( )

2 11 12

13 14

	 (4.72)
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We find for the left end
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−













E

E

E

E

1
0

0
1

1
0

0
1

for a clamped end

1
0

0
0

0
1

0
0

for a pinned end

0
0

1
0

0
0

0
1

for a sliding end

1
0

0
1

1
0

0
1

for a free end

C

P

S

F

	 (4.73)

The I matrix is

=
− + + −

− −
− + − − − +











− − − −
− − −

− −

− − −










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t t t t t t t t
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24
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23

	
		  (4.74)

where

	
= = = =t rb t rb t rb t rbcosh( ), sinh( ), cos( ), sin( )1 2 3 4 	 (4.75)

We shall present only the results for the C-C, C-P, C-F, P-P, P-F, and F-F cases. 
Table 4.21 shows the C-C case with a partial support in between 0 ≤ x ≤ b. Let ω0 rep-
resent the frequencies for the C-C beam with neither axial force nor elastic support 
(Table 4.1). Then ω0 represents the frequencies for either b = 0 or ξ = 0 in Table 4.21. 
If b = 1, the beam is fully supported, and Equation (4.63) holds. If ξ = ∞, the beam 
is equivalent to a shorter C-C beam, with frequencies ω0/(1 − b)2. Mode shapes for 
a partially supported C-C beam with ξ = 10,000, b = 0.5 are shown in Figure 4.29.
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Table 4.22 gives the results for the C-P case. Again, if ω0 represents the frequen-
cies for no axial force in Table 4.2, then the limits are similarly obtained as in the 
C-C case in Table 4.21. Mode shapes for a partially supported C-P beam with ξ = 
10,000, b = 0.5 are shown in Figure 4.30.

TABLE 4.21
Frequencies for a Partially Supported Beam, C-C case

ξ\b 0.1 0.3 0.5 0.7 0.9

22.374 22.394 22.485 22.575 22.595

61.673 61.696 61.713 61.731 61.754

10 120.90 120.92 120.92 120.93 120.94

199.86 199.87 199.87 199.88 199.88

298.56 298.56 298.56 298.57 298.57

22.375 22.580 23.453 24.312 24.505

61.677 61.901 62.081 62.252 61.475

100 120.91 121.05 121.11 121.18 121.31

199.87 199.93 199.99 200.04 200.10

298.56 298.60 298.64 298.68 298.71

22.390 24.191 30.797 37.360 38.727

61.711 63.896 65.940 67.239 69.274

1,000 120.96 122.35 122.96 123.61 124.91

199.94 200.57 201.12 201.66 202.27

298.64 299.03 299.39 299.75 300.14

22.535 30.636 50.185 87.252 102.43

62.036 78.050 104.58 108.49 117.28

10,000 121.48 136.28 140.94 148.04 156.43

200.60 207.62 212.95 217.72 222.79

299.40 303.33 306.86 310.37 314.03

ω1 = 50.185
ω2 = 104.58
ω3 = 140.49
ω4 = 212.95
ω5 = 306.86

FIGURE 4.29  Mode shapes for a partially supported C-C beam at ξ = 10,000, b = 0.5.
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The results for the C-F case are given in Table 4.23. Similar limiting properties 
apply using ω0 from Table 4.4. Mode shapes for a partially supported C-F beam with 
ξ = 10, b = 0.7 are shown in Figure 4.31.

The results for the P-P case are given in Table 4.24. For the limiting cases, we use 
ω0 = n2π2 from Equation (4.30), except when ξ = ∞, where the shorter C-P frequencies apply.

TABLE 4.22
Frequencies for a Partially Supported Beam, C-P Case

ξ\b 0.1 0.3 0.5 0.7 0.9

15.418 15.435 15.528 15.667 15.736

49.965 49.989 50.020 50.029 50.062

10 104.25 104.26 104.27 104.28 104.29

178.27 178.28 178.28 178.29 178.30

272.03 272.04 272.04 272.04 272.05

15.419 15.587 16.465 17.741 18.348

49.968 50.202 50.521 50.603 50.926

100 104.25 104.42 104.47 104.58 104.70

178.28 178.35 178.42 178.48 178.53

272.04 272.08 272.12 272.16 272.20

15.430 16.859 22.736 31.122 35.027

49.997 52.234 55.678 56.231 58.874

1,000 104.30 105.93 106.48 107.58 108.68

178.34 179.11 179.75 180.33 180.82

272.12 272.54 272.91 273.29 273.67

15.534 21.371 35.465 66.255 100.50

50.275 64.758 94.532 105.64 110.33

10,000 104.77 121.05 127.92 136.95 142.45

178.98 187.67 193.48 198.22 202.36

272.86 277.16 280.82 284.44 288.03

ω1 = 34.465
ω2 = 94.532
ω3 = 127.92
ω4 = 193.48
ω5 = 180.82

FIGURE 4.30  Mode shapes for a partially supported C-P beam at ξ = 10,000, b = 0.5.
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The P-F case is given in Table 4.25. Notice that the ω0 from Table 4.6 starts with 
a zero frequency, which is a rigid body rotation. With the elastic support, the fun-
damental frequency is also very low, especially for small b or small ξ. The limiting 
cases are similarly obtained as in the C-F case.

The results for the F-F case are given in Table 4.26.

TABLE 4.23
Frequencies for a Partially Supported Beam, C-F Case

ξ\b 0.1 0.3 0.5 0.7 0.9

3.5161 3.5227 3.5868 3.8207 4.3438

22.035 22.054 22.134 22.195 22.207

10 61.698 61.720 61.738 61.753 61.765

120.90 120.92 120.92 120.93 120.94

199.86 199.87 199.87 199.88 199.88

3.5163 3.5806 4.1223 5.7127 8.7035

22.036 22.231 23.012 23.631 23.731

100 61.701 61.926 62.110 62.250 62.369

120.91 121.04 121.11 121.17 121.27

199.87 199.93 199.99 200.04 200.09

3.5193 4.0071 6.1982 11.006 22.871

22.051 23.777 29.998 35.930 36.875

1,000 61.735 63.930 66.013 67.066 68.256

120.96 122.35 122.96 123.62 124.50

199.94 200.57 201.12 201.67 202.11

3.5465 5.0288 8.4995 17.669 53.176

22.192 30.105 49.198 84.860 101.30

10,000 62.061 78.103 104.70 108.59 114.61

121.48 136.27 140.95 148.18 154.09

200.60 207.62 212.95 217.79 221.51

ω1 = 3.8207
ω2 = 22.195
ω3 = 61.753
ω4 = 120.93
ω5 = 199.88

FIGURE 4.31  Mode shapes for a partially supported C-F beam at ξ = 10, b = 0.7.
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4.5  NONUNIFORM BEAM

Nonuniform beams are those where the density and flexural rigidity vary along the 
beam axis. The first solution of the vibration of a nonuniform beam was due to 
Kirchhoff (1882). He studied beams with linear taper in one or both cross-sectional 
directions, and expressed the solutions in what are now known as Bessel functions. 
In this section, we shall study three types of exact solutions: Bessel-type solutions, 
polynomial solutions, and exponential solutions. We exclude solutions that are in 
terms of hypergeometric functions or Jacobi functions, since they are uncommon 
and very tedious to evaluate numerically.

We assume that the left end of the beam has the higher density and flexural rigidity. 
Equation (4.7) without axial force is

	







 − ω =d

dx
l

d w

dx
rw 0

2

2

2

2
2

	 (4.76)

Since l and r vary with x, this fourth-order differential equation has very few 
exact solutions. The boundary conditions could be clamped, pinned, free, or 
sliding.

TABLE 4.24
Frequencies for a Partially Supported Beam, P-P Case

ξ\b 0.1 0.3 0.5 0.7 0.9

9.8729 9.9444 10.119 10.292 10.361

39.482 39.522 39.542 39.561 39.602

10 88.829 88.845 88.855 88.864 88.880

157.92 157.92 157.93 157.94 157.94

246.74 246.75 246.75 246.75 246.76

9.9021 10.577 12.090 13.496 14.027

39.509 39.917 40.121 40.299 40.695

100 88.854 89.014 89.108 89.203 89.360

157.94 158.00 158.07 158.15 158.21

246.76 246.80 246.84 246.88 246.92

10.182 14.592 21.940 30.015 33.027

39.782 43.760 46.508 47.293 50.339

1,000 89.104 90.769 91.610 92.609 94.024

158.16 158.75 159.51 160.24 160.81

246.94 247.35 247.75 248.16 248.56

12.123 21.369 35.416 66.238 100.04

42.159 64.100 93.877 102.64 106.26

10,000 91.465 112.00 116.54 126.01 131.83

160.30 167.47 174.84 180.49 184.84

248.77 252.81 256.75 260.60 264.36
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4.5.1 B essel-Type Solutions

Many papers have extended Kirchhoff’s work, notably Cranch and Adler (1956) and 
Sanger (1968). Let

	 z = 1 − cx, for 0 ≤ c ≤ 1	 (4.77)

Equation (4.76) becomes

	







 − ω =c

d

dz
l z

d w

dz
r z w( ) ( ) 04

2

2

2

2
2

	 (4.78)

Assume

	 = =l z z r z z( ) , ( )m n 	 (4.79)

If

	 m = n + 2	 (4.80)

TABLE 4.25
Frequencies for a Partially Supported Beam, P-F Case

ξ\b 0.1 0.3 0.5 0.7 0.9

0.1000 0.5171 1.1060 1.8336 2.6941

15.421 15.481 15.589 15.632 15.656

10 49.968 50.001 50.010 50.035 50.046

104.25 104.26 104.07 104.28 104.29

178.27 178.28 178.28 178.29 178.30

0.3152 1.5680 3.1958 5.3215 8.3494

15.449 16.034 17.085 17.584 17.723

100 49.995 50.331 50.422 50.666 50.778

104.28 104.40 104.50 104.56 104.66

178.29 178.34 178.40 178.47 178.52

0.9101 3.6628 6.1934 10.930 22.805

15.714 20.276 27.832 33.080 33.791

1,000 50.264 53.657 54.909 56.667 57.825

104.52 105.78 106.80 107.36 108.37

178.50 179.01 179.61 180.26 180.78

2.4733 5.0038 8.4815 17.669 53.176

17.751 30.100 49.151 84.846 100.50

10,000 52.670 76.541 101.66 104.13 109.22

106.84 123.65 128.24 135.07 141.48

180.57 186.22 192.37 198.08 202.24
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Equation (4.78) can be factored into

	





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

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
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=− + − +z
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dz
z

d

dz c
z

d

dz
z

d
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w 0n n n n1

2
1

2
	 (4.81)

Each one of the brackets in Equation (4.81) is a Bessel operator. When n is an 
integer, the solution is

	
= + + + = ω−w z C J u C Y u C I u C K u u z c[ ( ) ( ) ( ) ( )], 2 /n

n n n n
/2

1 2 3 4 	 (4.82)

Here, J and Y are Bessel functions, and I and K are modified Bessel functions. If an 
end is clamped, the boundary condition is

	
= =w

dw

dz
0, 0 	 (4.83)

Using the properties of Bessel functions and simplifying, we obtain the coefficient matrix

	

=
−











+ + + +
E u

J u Y u I u K u

J u Y u I u K u
( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
n n n n

n n n n
C

1 1 1 1
	 (4.84)

TABLE 4.26
Frequencies for a Partially Supported Beam, F-F case

ξ\b 0.1 0.3 0.5 0.7 0.9

0.0539 0.3265 0.8145 1.5494 2.5583

1.8491 2.7471 3.0535 3.1453 3.1618

10 22.428 22.440 22.485 22.530 22.542

61.687 61.699 61.713 61.728 61.740

120.91 120.92 120.92 120.93 120.94

0.1704 1.0167 2.4702 4.6746 7.9903

5.7055 8.5346 9.6222 9.9445 9.9985

100 22.943 23.087 23.481 23.940 24.036

61.811 61.930 62.081 62.224 62.345

120.95 121.05 121.11 121.08 121.27

0.5347 2.8143 5.8044 10.832 22.735

13.791 20.247 27.746 31.366 31.618

1,000 29.392 33.592 33.839 36.267 36.996

63.232 64.251 65.940 67.030 68.236

121.43 122.34 122.96 123.63 124.50

1.5729 4.8749 8.4806 17.666 53.175

17.430 29.514 49.114 84.801 99.982

10,000 51.921 76.270 99.721 100.18 101.33

88.518 101.52 105.11 108.45 114.60

128.97 136.52 140.86 148.18 154.09
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If an end is pinned,

	
= =w

d w

dz
0, 0

2

2 	 (4.85)

This gives
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If an end is free,
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This gives
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For the sliding end
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whose corresponding matrix is simplified to
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
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E u

J u Y u

I u K u
( )

( ) ( ) 0 0

0 0 ( ) ( )
n n

n n
S

1 1

1 1
	 (4.90)

For the single-span beam, there are 16 different combinations of clamped, pinned, 
sliding, or free end conditions. Let the end values be

	 = ω = ω −u c u c c2 / , 2 (1 ) /0 1 	 (4.91)

The exact characteristic equations are obtained by setting the following determinant 
to zero, i.e.,

	

=
E u

E u

( )

( )
0

s

t

0

1
	 (4.92)

where (s,t) could indicate any of the C, P, S, F conditions.
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4.5.1.1  The Beam with Linear Taper
We shall consider the three important cases with linear taper. Figure 4.32a shows a 
beam with tapered height and constant width, in which case m = 3, n = 1. If both width 
and height are linearly tapered with similar cross sections, as shown in Figure 4.32b, 
then m = 4, n = 2. For open-web or constant-width I-beams with linear height and 
negligible bracing, as shown in Figure 4.32c, then m = 2, n = 0.

We present frequency results for the more common C-C, C-P, C-F, P-P, P-F, and 
F-F cases. Table 4.27 shows the first five frequencies for m = 3, n = 1. The c = 0 case 
is the uniform beam, whose frequencies can be obtained from Section 4.3.2, with no 
axial force. The c = 1 case is a beam that tapers to a point at the right end, and is not 
too practical. Notice that when taper increases, the frequencies decrease, except for 
the fundamental frequency of the C-F beam.

Table 4.28 shows the results for the linearly tapered beam with similar cross sec-
tions, including the rectangular and circular cross sections. For this case, m = 4, 
n = 2. Note that the frequencies for m = 4, n = 2 are slightly larger than those of 
m = 3, n = 1. Also, the frequencies decrease with increased taper, except for the first 
two modes of the C-F or P-F beams. Table 4.29 gives the frequencies for m = 2, n = 0.

Mode shapes for a linear taper height (m = 3, n = 1) C-F beam with c = 0.5 are 
shown in Figure 4.33. Mode shapes for a beam with linear taper in both height and 
width with similar cross section (m = 4, n = 2) at c = 0.5 are shown in Figure 4.34. 
Mode shapes for a composition beam with linear taper in height and constant cross-
sectional area (m = 2, n = 0) at c = 0.5 are shown in Figure 4.35.

FIGURE 4.32a  A beam with tapered height and constant width (m = 3, n = 1).

FIGURE 4.32b  A beam with both tapered height and width (m = 4, n = 2).

FIGURE 4.32c  A beam composed of two constant-width plates (m = 2, n = 0).
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4.5.1.2  Two-Segment Symmetric Beams with Linear Taper
It is possible to join two segments of different taper into one beam. At the joint, the dis-
placement, slope, moment, and shear are equal. A special case is the stepped uniform 
beam (zero taper) of Section 4.4.3. We shall present only some symmetric beams of lin-
ear taper shown in Figure 4.36. Since there is geometrical symmetry, the beam can only 
vibrate either symmetrically, where the midpoint is equivalent to a sliding end condition, 
or antisymmetrically, where the midpoint is equivalent to a pinned end condition.

Consider a C-C symmetrically tapered beam with the largest cross section at 
the ends, as shown in Figure  4.36a. Let the half-length of the beam be L. Then 

TABLE 4.27
Frequencies for a Beam with Linear Taper in Height 
Only (m = 3, n = 1)

c 0.1 0.3 0.5 0.7 0.9

21.241 18.879 16.336 13.483 9.8846

58.550 52.026 44.981 37.053 27.008
C-C 114.78 101.98 88.138 72.537 52.708

189.74 168.57 145.67 119.83 86.933
283.43 251.80 217.57 178.94 129.70

14.849 13.640 12.300 10.737 8.6301
47.637 42.774 37.527 31.633 24.204

C-P 99.172 88.567 77.122 64.265 48.099
169.44 151.00 131.07 108.66 80.402
258.46 230.07 199.40 164.86 121.18

3.5587 3.6668 3.8238 4.0817 4.6307
21.338 19.881 18.317 16.625 14.931

C-F 58.980 53.322 47.265 40.588 32.833
115.19 103.27 90.451 76.182 58.917
190.15 169.86 148.00 123.54 93.388

9.3675 8.3019 7.1215 5.7454 3.8895
37.484 33.352 28.952 24.094 18.123

P-P 84.335 74.992 64.979 53.834 40.011
149.92 133.27 115.35 95.308 70.241
234.25 208.18 180.09 148.57 108.92

14.854 13.693 12.494 11.291 10.357
47.645 42.855 37.801 32.349 26.316

P-F 99.180 88.655 77.419 65.035 50.346
169.45 151.09 131.39 109.46 82.723
258.47 230.17 199.72 165.68 123.55

21.253 18.997 16.724 14.461 12.491
58.566 52.186 45.503 38.344 30.399

F-F 114.80 102.15 88.711 73.959 56.490
189.76 168.75 146.27 121.33 90.964

283.45 251.99 218.19 180.49 133.90
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the frequencies for the antisymmetrical modes can be found from the single-taper 
C-P beam in the previous section. The frequencies for the symmetrical mode can 
be found from the single-taper C-S beam. Tables 4.30, 4.31, and 4.32 are for the 
single-taper C-S, S-C, P-S, S-P, S-F, and P-C cases for (m = 3, n = 1), (m = 4, n = 2), 
and (m = 2, n = 0), respectively. By themselves, these results have few applications. 
However, in conjunction with a companion end condition, they represent the com-
plete spectrum of a symmetric tapered beam.

For the C-C symmetrically tapered beam of Figure 4.36a, for the m = 3, n = 1 
beam, the frequencies are the union of the C-S case in Table 4.30 and the C-P case 
in Table 4.27. For the m = 4, n = 2 beam, we take the C-S case in Table 4.31 and the 

TABLE 4.28
Frequencies for a Beam with Linear Taper in Both Height 
and Width and with Similar Cross Sections (m = 4, n = 2)

c 0.1 0.3 0.5 0.7 0.9

21.245 18.923 16.479 13.835 10.764

58.556 52.086 45.176 37.533 28.235
C-C 114.79 102.04 88.353 73.068 54.101

189.74 168.63 145.89 120.39 88.429
283.44 251.87 217.81 179.52 131.26

14.955 13.962 12.851 11.557 9.9086
47.742 43.128 38.199 32.744 26.109

C-P 99.279 88.938 77.851 65.523 50.384
169.55 151.38 131.84 110.01 82.947
258.57 230.46 200.18 166.26 123.91

3.6737 4.0669 4.6252 5.5093 7.2049
21.550 20.556 19.548 18.641 18.680

C-F 58.189 54.015 48.579 42.810 37.124
115.40 103.98 91.813 78.521 63.505
190.36 170.58 149.39 125.95 98.166

9.3624 8.2562 6.9566 5.3589 3.0513
37.489 33.401 29.110 24.480 19.094

P-P 84.342 75.069 65.228 54.438 41.494
149.93 133.36 115.65 96.030 72.044
234.26 208.28 180.41 149.36 110.94

14.962 14.049 13.189 12.594 13.246
47.754 43.253 38.634 33.932 29.879

P-F 99.292 89.074 78.316 66.759 54.240
169.57 151.52 132.32 111.27 86.824
258.58 230.61 200.67 167.54 127.79

21.263 19.102 17.079 15.412 15.206
58.580 52.326 45.963 39.502 33.621

F-F 114.81 102.31 89.214 75.216 59.958
189.77 168.91 146.80 122.65 94.595

283.47 252.16 218.74 181.85 137.65
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C-P case in Table 4.28. For the m = 2, n = 0 beam, we take the C-S case in Table 4.32 
and the C-P case in Table 4.29.

Other symmetrically tapered beams with P-P, S-S, or F-F end conditions may be 
similarly constructed using single-taper results.

4.5.1.3  Linearly Tapered Cantilever with an End Mass
If a mass is attached to an end, Equation (4.15) gives
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TABLE 4.29
Frequencies for a Composite Beam with Linear Taper in 
Height and Constant Cross-Sectional Area (m = 2, n = 0)

c 0.1 0.3 0.5 0.7 0.9

21.240 18.864 16.288 13.371 9.6280
58.548 52.006 44.916 36.894 26.613

C-C 114.78 101.96 88.067 72.360 52.251
189.73 168.54 145.59 119.64 86.439
283.43 251.78 217.49 178.75 129.18

14.744 13.326 11.784 10.031 7.7891
47.535 42.450 36.949 30.749 22.910

C-P 99.068 88.232 76.509 63.289 46.534
169.34 150.66 130.44 107.64 78.660
258.35 229.73 198.76 163.80 119.31

3.4466 3.2984 3.1336 2.9442 2.7100
21.128 19.228 17.169 14.856 12.010

C-F 58.775 52.666 46.072 38.677 29.497
114.98 102.60 89.225 74.188 55.339
189.94 169.19 146.76 121.50 89.658

9.3706 8.3330 7.2219 5.9871 4.4640
37.481 33.323 28.859 23.877 17.674

P-P 84.330 74.946 64.830 53.479 39.196
149.92 133.21 115.17 94.878 69.204
234.25 208.12 179.89 148.09 107.73

14.746 13.350 11.863 10.229 8.2965
47.539 42.489 37.076 31.062 23.715

P-F 99.073 88.275 76.650 63.641 47.462
169.35 150.70 130.59 108.01 79.663
258.367 229.78 198.91 164.18 120.37

21.245 18.923 16.479 13.835 10.764
58.556 52.086 45.176 37.533 28.235

F-F 114.79 102.04 88.353 73.018 54.101
189.74 168.63 145.89 120.39 88.429

283.44 251.87 217.81 179.52 131.26
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ω1 = 3.8238
ω2 = 18.317
ω3 = 49.265
ω4 = 90.451
ω5 = 148.00

FIGURE 4.33  Mode shapes for C-F beam with linear tapered height (m = 3, n = 1) at c = 0.5.

ω1 = 12.851
ω2 = 38.199
ω3 = 77.851
ω4 = 131.84
ω5 = 200.18

FIGURE 4.34  Mode shapes for C-P beam with linear taper in both height and width with 
similar cross section (m = 4, n = 2) at c = 0.5.

ω1 = 16.288
ω2 = 44.916
ω3 = 88.067
ω4 = 145.59
ω5 = 217.49

FIGURE 4.35  Mode shapes for C-C beam with linear taper in height and constant cross-
sectional area (m = 2, n = 0) at c = 0.5.
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L

FIGURE 4.36a  Symmetrically tapered beam with the largest cross section at the ends.

FIGURE 4.36b  Symmetrically tapered beam with the smallest cross section at the ends.

TABLE 4.30
Frequencies for a Beam with Linear Taper in Height Only (m = 3, n = 1)
c 0.1 0.3 0.5 0.7 0.9

5.4591 5.1976 4.9573 4.7766 4.8275
28.850 25.999 22.973 19.694 16.092

C-S 71.014 63.456 55.340 46.321 35.482
131.92 117.56 102.08 84.751 63.324
211.56 188.31 163.20 135.00 99.686

5.1693 4.3227 3.4717 2.5969 1.6126
28.550 25.092 21.427 17.399 12.458

S-C 70.713 62.549 53.793 44.018 31.766
131.62 116.65 100.53 82.446 59.588
211.26 187.40 161.66 132.69 95.945

2.2910 1.9169 1.5033 1.0251 0.4170
21.039 18.651 16.182 13.627 11.141

P-S 58.519 51.960 44.992 37.372 28.518
114.74 101.91 88.155 72.876 54.271
189.70 168.50 145.69 120.18 88.521

2.3910 2.2170 2.0033 1.7231 1.2841
21.138 18.941 16.620 14.068 10.897

S-P 58.619 52.254 45.454 37.904 28.548
114.84 102.20 88.630 73.463 54.522
189.80 168.80 146.17 120.80 88.933

5.5559 5.4911 5.4565 5.5057 5.8656
28.956 26.359 23.657 20.809 17.891

S-F 71.121 63.835 56.088 47.607 37.757
132.03 117.95 102.86 86.128 65.904
211.67 188.70 164.00 136.43 102.47

14.426 12.371 10.183 7.7681 4.7875
47.238 41.576 35.524 28.807 20.482

P-C 98.772 87.363 75.100 61.379 44.136
169.04 149.79 129.05 105.74 76.271
258.06 228.87 197.36 161.91 116.93
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where = ρv M L/ 0  and the top and bottom signs are for the left or right ends, respec-
tively. If the mass is at a free end, after some work, the boundary condition is

=
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TABLE 4.31
Frequencies for a Beam with Linear Taper in Both 
Height and Width (m = 4, n = 2)

c 0.1 0.3 0.5 0.7 0.9

5.5616 5.5527 5.6728 6.0781 7.2980
28.959 26.392 23.788 21.221 19.394

C-S 71.123 63.856 56.178 47.908 39.045
132.03 117.96 102.93 86.362 66.983
211.67 188.71 164.06 136.62 103.39

5.0783 4.0838 3.1310 2.1942 1.1483
28.459 24.877 21.195 17.323 12.984

S-C 70.623 62.342 53.587 44.014 32.528
131.53 116.45 100.34 82.476 60.477
211.17 187.20 161.47 132.74 96.915

2.2888 1.8951 1.4367 0.8874 0.2450
21.046 18.736 16.486 14.478 13.661

P-S 58.529 52.066 45.352 38.327 31.389
114.75 103.02 88.539 73.879 57.258
189.71 168.62 146.09 121.21 91.563

2.3888 2.1945 1.9317 1.5572 0.9333
21.146 19.011 16.830 14.534 11.914

S-P 58.628 52.349 45.748 37.578 30.067
114.85 102.31 88.963 74.247 56.364

189.81 168.91 146.53 121.66 90.997
5.6586 5.8490 6.1859 6.8556 8.4742

29.068 26.778 24.541 22.466 21.421
S-F 71.235 61.270 57.028 49.402 41.689

132.14 118.39 103.83 87.998 70.058
211.78 189.15 164.99 138.35 106.77

14.320 12.054 9.6496 6.9976 3.6988
47.144 41.333 35.212 28.578 20.816

P-C 98.679 87.135 74.837 61.265 44.756
168.95 149.57 128.81 105.69 77.045
257.96 228.65 197.14 161.89 117.80
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We shall consider two relevant cases. Figure 4.37 shows a tapered cantilever beam 
with a mass at the smaller free end. The characteristic equation is

	

=
E u

E u

( )

( )
0

C

M

0

1
	 (4.96)

Table 4.33 shows the results for m = 3, n = 1. Notice that the ν = 0 (no end mass) 
case is the C-F case of Table 4.27. For larger mass, the results quickly approach those 
of the C-P case. Notice also that the effect of a small end mass on the fundamental 
frequency is not monotonic as the taper is increased.

TABLE 4.32
Frequencies for a Beam Composed of Two Constant-
Width Plates (m = 2, n = 0)

c 0.1 0.3 0.5 0.7 0.9

5.3591 4.8707 4.3460 3.7632 3.0585

28.745 25.649 22.302 18.539 13.831

C-S 70.909 63.104 54.659 45.138 33.088

131.81 117.21 101.40 83.557 60.881

211.45 187.95 162.52 133.80 97.219

5.2625 4.5804 3.8591 3.0700 2.1148

28.645 25.347 21.791 17.791 12.708

S-C 70.809 62.802 54.146 44.383 31.922

131.71 116.90 100.88 82.798 59.695

211.35 187.65 162.00 133.04 96.022

2.2924 1.9301 1.5448 1.1187 0.5889

21.034 18.600 16.002 13.134 9.6579

P-S 58.513 51.897 44.777 36.803 26.825

114.73 101.84 87.925 72.277 52.499

189.69 168.43 145.45 119.57 86.709

2.3924 2.2305 2.0473 1.8290 1.5329

21.134 18.899 16.497 13.811 10.452

S-P 58.613 52.198 45.278 37.507 27.725

114.83 102.14 88.430 72.996 53.469

189.79 168.73 145.96 120.30 87.726

5.4558 5.1620 4.8355 4.4595 3.9909

28.849 25.981 22.906 19.489 15.334

S-F 71.013 63.445 55.295 46.177 34.873

131.92 117.55 102.05 84.640 62.828

211.56 188.30 163.18 134.91 99.271

14.532 12.691 10.722 8.5333 5.8115

47.335 41.850 35.939 29.299 20.881

P-C 98.868 87.629 75.491 61.815 44.398

169.14 150.06 129.42 106.15 76.460

258.15 229.13 197.73 162.30 117.07
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Table 4.34 shows the results when both height and width are tapered. The fre-
quencies are in general higher than those with tapered height only.

The results for the composite beam with constant area (m = 2, n = 0) are shown 
in Table 4.32.

Mode shapes for a C-F beam tapered in height only (m = 3, n = 1) with an end 
mass at c = 0.5, v = 1 are shown in Figure 4.38. Mode shapes for a C-F beam tapered 
in both height and width (m = 4, n = 2) with an end mass c = 0.5, v = 10 are shown in 
Figure 4.39. Mode shapes for a composite beam with linear taper in height and con-
stant cross-sectional area (m = 2, n = 0) at c = 0.5, v = 0.1 are shown in Figure 4.40.

The second case studied is the F-F linearly tapered beam with a mass at the larger 
end shown in Figure 4.41. The characteristic equation is
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FIGURE 4.37  Tapered cantilever beam with a mass at the smaller free end.

TABLE 4.33
Frequencies for the C-F Beam Tapered in Height Only 
(m = 3, n = 1) with an End Mass

ν\c 0.1 0.3 0.5 0.7 0.9

3.5587 3.6668 3.8238 4.0817 4.6307
21.338 19.881 18.317 16.625 14.931

0 58.980 53.322 47.265 40.588 32.833
115.19 103.27 90.451 76.182 58.917
190.15 169.86 148.00 123.54 93.388

2.9591 2.9304 2.8737 2.7494 2.3864
18.533 16.766 14.776 12.432 9.3434

0.1 52.660 46.696 40.299 33.229 24.688
104.91 92.849 79.976 65.778 48.493
175.65 155.51 133.55 110.13 80.750

1.5121 1.4084 1.2804 1.1112 0.8435
15.587 14.195 12.681 10.957 8.7053

1 48.441 43.342 37.887 31.817 24.254
99.983 89.126 77.464 64.432 48.139

170.26 151.55 131.90 108.82 80.437

0.5212 0.4770 0.4258 0.3626 0.2700
14.931 13.700 12.340 10.760 8.6377

10 47.722 42.834 37.564 31.652 24.209
99.256 88.624 77.156 64.282 48.103

169.53 151.06 131.11 108.68 80.405
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The frequencies are given in Tables 4.36 to 4.38. The changes in the fundamental 
frequency for this mode are not monotonic with increased taper.

Mode shapes for an F-F beam tapered in height only (m = 3, n = 1) with an end 
mass at the larger end at c = 0.5, v = 1 are shown in Figure 4.42. Mode shapes for an 
F-F beam tapered in both height and width (m = 4, n = 2) with a mass at the larger 
end at c = 0.5, v = 1 are shown in Figure 4.43.

4.5.1.4  Other Bessel-Type Solutions
Cranch and Adler (1956) gave some power relations such as m = −n, m = n + 6, m = 
(n + 8)/3, which also lead to exact Bessel-type solutions. However, these solutions are 
physically less relevant and shall not be presented here.

4.5.2 P ower-Type Solutions

Cranch and Adler (1956) noted that Equation (4.78) is homogeneous when

	 = =+l z r z,n n4 	 (4.98)

TABLE 4.34
Frequencies for the C-F Beam Tapered in Both Height 
and Width (m = 4, n = 2) with an End Mass

ν\c 0.1 0.3 0.5 0.7 0.9

3.6737 4.0669 4.6252 5.5093 7.2049

21.550 20.556 19.548 18.641 18.680

0 58.189 54.015 48.579 42.810 37.124

115.40 103.98 91.813 78.521 63.505

190.36 170.58 149.39 125.95 98.166

3.0114 3.0612 3.0000 2.6732 1.7036

18.542 16.728 14.649 12.364 10.018

0.1 52.525 46.340 39.949 33.378 26.176

104.67 92.308 79.540 66.080 50.436

175.34 154.84 133.49 110.52 82.992

1.5035 1.3685 1.1869 0.9370 0.5468

15.643 14.394 13.080 11.644 9.9194

1 48.480 43.550 38.400 32.810 26.115

100.02 89.347 78.037 65.580 50.389

170.30 115.78 132.01 110.06 82.952

0.5147 0.4555 0.3861 0.2996 0.1732

15.030 14.007 12.874 11.566 9.9097

10 47.820 43.171 38.219 32.750 26.109

99.356 88.980 77.870 65.528 50.385

169.63 151.42 131.85 110.01 82.948
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TABLE 4.35
Frequencies for a C–F Beam with Linear Taper in Height 
and Constant Cross-Sectional Area and with End Mass 
(m = 2, n = 0)

ν\c 0.1 0.3 0.5 0.7 0.9

3.4466 3.2984 3.1336 2.9442 2.7100

21.128 19.228 17.169 14.856 12.010

0 58.775 52.666 46.072 38.677 29.497

114.98 102.60 89.225 74.188 55.339

189.94 169.19 146.76 121.50 89.658

2.9047 2.7692 2.6171 2.4390 2.2088

18.518 16.757 14.842 12.668 9.9055

0.1 52.796 47.101 40.939 33.992 25.205

105.15 93.536 80.967 66.796 48.827

175.98 156.40 135.20 111.30 80.934

1.5194 1.4375 1.3445 1.2333 1.0824

15.534 14.030 12.393 10.533 8.1556

1 48.409 43.207 37.579 31.239 23.226

99.957 88.992 77.132 63.761 46.819

170.24 151.42 131.06 108.10 78.929

0.5276 0.4978 0.4639 0.4234 0.3679

14.832 13.405 11.851 10.086 7.8284

10 47.628 42.531 37.016 30.800 22.943

99.161 88.311 76.573 62.338 46.563

169.43 150.74 130.51 107.68 78.688

ω1 = 1.2804
ω2 = 12.681
ω3 = 37.887
ω4 = 77.464
ω5 = 131.90

FIGURE 4.38  Mode shapes for C-F beam tapered in height only (m = 3, n = 1) with an end 
mass at c = 0.5, v = 1.
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but they did not give any details. Here we shall give explicit polynomial-type solu-
tions and the results for several applications (Wang and Wang 2013). Let

	 = λy z 	 (4.99)

and one obtains the indicial equation

	 λ λ − λ + + λ + + − ω =c n n( 1)( 2)( 1) 04 2
	 (4.100)

ω1 = 0.3861
ω2 = 12.874
ω3 = 38.219
ω4 = 77.870
ω5 = 131.85

FIGURE 4.39  Mode shapes for C-F beam tapered in both height and width (m = 4, n = 2) 
with an end mass at c = 0.5, v = 10.

ω1 = 2.6171
ω2 = 14.842
ω3 = 40.939
ω4 = 80.967
ω5 = 135.20

FIGURE 4.40  Mode shapes for C–F beam with linear taper in height and constant cross-
sectional area (m = 2, n = 0) at c = 0.5, ν = 0.1.

FIGURE 4.41  Free tapered beam with a mass at the larger (left) end.
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The formal solution of this fourth-order algebraic equation is extremely tedious. 
However, we are fortunate to factor Equation (4.100) as follows:

	

λ + + − + +  − +
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 − ω =n n n
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The solutions are

	
λ = − + ± + + + + + ω
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
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λ = − + ± + + − + + ω
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
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n n n n c
1
2

( 1) ( 4 5) 4 ( / 2 1) /3,4
2 2 2 4

	 (4.103)

The general solution is thus

	 = + + +λ λ λ λy C z C z C z C z1 2 3 4
1 2 3 4

	 (4.104)

TABLE 4.36
Frequencies for an F-F Beam Tapered in Height Only 
(m = 3, n = 1) with an End Mass at the Larger End

ν\c 0.1 0.3 0.5 0.7 0.9

21.253 18.997 16.724 14.461 12.491

58.566 52.186 45.503 38.344 30.399

0 114.80 102.15 88.711 73.959 56.490

189.76 168.75 146.27 121.33 90.964

283.45 251.99 218.19 180.49 133.90

18.719 16.885 15.030 13.184 11.628

52.837 47.349 41.569 35.344 28.418

0.1 105.30 94.064 82.069 68.843 53.111

176.19 157.13 136.65 113.86 86.001

265.65 236.66 205.44 170.52 127.23

15.695 14.384 13.041 11.697 10.629

48.519 43.621 38.453 32.878 26.697

1 100.09 89.468 78.130 65.631 50.795

170.38 151.93 132.13 110.10 83.215

259.40 231.02 200.48 166.34 124.07

14.949 13.772 12.556 11.336 10.388

47.738 42.931 37.871 32.406 26.357

10 99.275 88.741 77.494 65.098 50.393

169.55 151.18 131.46 109.53 82.774

258.56 230.26 199.80 165.74 123.60
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The quantity under the outer square root of Equation (4.103) may be negative. In 
such a case, we set

	
= − + = + + ω − + +a

n
b n c n n

1
2

, ( / 2 1) / ( 4 5) / 42 2 4 2 	 (4.105)

and Equation (4.104) is replaced by

	 = + + +λ λy C z C z C z b z C z b zcos( ln ) sin( ln )a a
1 2 3 4

1 2 	 (4.106)

We shall consider the end conditions C-C, C-P, C-F, P-P, P-F, and F-F. For non-
trivial solutions, the determinant of the coefficients of C1 to C4 is set to zero, giving 
the frequencies ω. Since n is arbitrary, there are infinite solutions. We shall present 
three cases that have parabolic axial variation.

TABLE 4.37
Frequencies for an F-F Beam Tapered in Both 
Height and Width (m = 4, n = 2) with a Mass 
at the Larger End

ν\c 0.1 0.3 0.5 0.7 0.9

21.263 19.102 17.079 15.412 15.206

58.580 52.326 45.963 39.502 33.621

0 114.81 102.31 89.214 75.216 59.958

189.77 168.91 146.80 122.65 94.595

283.47 252.16 218.74 181.85 137.65

18.745 17.030 15.441 14.188 14.323

52.879 47.563 42.132 36.608 31.687

0.1 105.35 94.321 82.718 70.259 56.687

176.26 157.41 137.36 115.38 89.790

265.72 236.97 206.20 172.12 131.18

15.779 14.680 13.656 12.916 13.457

48.615 43.982 39.230 34.392 30.192

1 100.19 89.859 78.983 67.299 54.626

170.48 152.34 133.03 111.86 87.261

259.50 231.44 201.41 168.16 128.27

15.055 14.120 13.242 12.630 13.269

47.846 43.331 38.698 33.981 29.912

10 99.386 89.156 78.386 66.816 54.281

169.66 151.61 132.39 111.33 86.870

258.67 230.69 200.75 167.60 127.84
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TABLE 4.38
Frequencies for an F-F Beam Tapered in Height and 
Constant Cross Sectional Area (m = 2, n = 0) with 
an End Mass at the Larger End

ν\c 0.1 0.3 0.5 0.7 0.9

21.245 18.923 16.479 13.835 10.764

58.556 52.086 45.176 37.533 28.235

0 114.79 102.04 88.353 73.018 54.101

189.74 168.63 145.89 120.39 88.429

283.44 251.87 217.81 179.52 131.26

18.696 16.769 14.728 12.501 9.8885

52.799 47.173 41.136 34.419 26.187

0.1 105.25 93.849 81.560 67.784 50.596

176.14 156.88 136.09 112.71 83.289

265.59 236.39 204.84 169.30 124.37

15.612 14.108 12.507 10.749 8.6728

48.426 43.294 37.789 31.670 24.186

1 99.988 89.115 77.406 64.298 47.985

170.27 151.56 131.37 108.69 80.216

259.30 230.65 199.70 164.88 120.94

14.844 13.437 11.936 10.289 8.3400

47.634 42.575 37.153 31.128 23.766

10 99.168 88.363 76.730 63.710 47.518

169.44 150.79 130.67 108.08 79.721

258.45 229.87 198.99 164.26 120.43

ω1 = 13.041
ω2 = 38.453
ω3 = 78.130
ω4 = 132.13
ω5 = 200.48

FIGURE 4.42  Mode shapes for F-F beam tapered in height only (m = 3, n = 1) with an end 
mass at the larger end at c = 0.5, v = 1.
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4.5.2.1  Results for m = 6, n = 2
Figure 4.44 shows the variable-thickness beam with constant width. Let the height 
vary parabolically as z2. Then

	
l z r z,6 2= = 	 (4.107)

The exponents are

	
λ = − ± ± + ω



c

1
2

3 17 4 4 /k
2 4

	 (4.108)

The results are given in Table 4.39. Mode shapes are shown in Figure 4.45a for a 
beam of which the cross section is solid rectangular with constant width and height 
varying parabolically as z2 for c = 0.5 for the C-C condition, while the mode shapes 
for the F-F condition are shown in Figure 4.45b. Notice that they have the same fre-
quencies but have different mode shapes.

4.5.2.2  Results for m = 8, n = 4
Figure 4.46 shows the beam’s cross section is similar, where both width and height 
vary parabolically. The density is proportional to h2 and the rigidity proportional to 
h4. Thus

	
l z r z,8 4= = 	 (4.109)

ω1 = 13.656
ω2 = 39.230
ω3 = 78.983
ω4 = 133.03
ω5 = 201.41

FIGURE 4.43  Mode shapes for F-F beam tapered in both height and width (m = 4, n = 2) 
with a mass at the larger end at c = 0.5, v = 1.

FIGURE 4.44  Variable-thickness beam with constant width.
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TABLE 4.39
Frequencies for Variable Thickness Beam with Constant 
Width, m = 6, n = 2 Case

c 0 0.1 0.3 0.5 0.7 0.9

22.373 20.178 16.040 12.247 8.8189 5.7931

C-C
F-F

61.673 55.589 43.917 32.887 22.420 12.084

120.90 108.95 85.846 63.781 42.578 21.313

199.86 180.08 141.72 104.91 69.349 33.494

298.56 268.99 211.55 155.29 102.76 48.655

15.418 14.297 12.048 9.8026 7.5956 5.4611

C-P
P-F

49.965 45.413 36.576 28.059 19.756 11.212

104.25 94.320 75.031 56.440 38.348 19.816

178.27 160.00 127.42 95.030 63.508 31.325

272.03 245.47 193.77 143.86 95.290 45.785

3.5160 3.5978 3.7754 3.9706 4.1717 4.3017

22.035 20.653 17.832 14.905 11.787 8.1260

C-F 61.697 56.366 45.925 35.711 25.534 14.628

120.90 109.71 87.851 66.626 45.745 23.951

199.86 180.84 143.73 107.77 72.546 36.186

9.8696 8.8778 6.8658 4.8183 2.7474 0.7304

39.478 35.581 28.084 20.982 14.251 7.7893

P-P 88.826 80.043 63.071 46.862 31.301 15.767

157.91 142.28 111.98 82.915 54.849 26.591

246.74 222.30 174.85 129.20 84.995 40.338

ω1 = 12.247
ω2 = 32.887
ω3 = 63.781
ω4 = 104.91
ω5 = 155.29

FIGURE 4.45a  Vibration modes for C-C beam (m = 6, n = 2) at c = 0.5. (continued)
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The exponents are

	
λ = − ± ± + ω



c

1
2

5 37 4 9 /k
2 4 	 (4.110)

The results are given in Table 4.40.
Mode shapes are shown in Figure 4.47a for a beam whose cross section is similar, 

where both width and height vary parabolically and the density is proportional to h2 
and the rigidity proportional to h4 for c = 0.5 for the C-C condition, while the mode 
shapes for the F-F condition are shown in Figure 4.47b. Notice that they have the 
same frequencies but have different mode shapes.

We find the frequencies of the C-C and F-F cases, and also the C-P and P-F cases, 
are identical. This is due to the fact that the characteristic determinants are identical, 
even for our nonuniform beams. For uniform beams, it is easy to show this equiva-
lence (e.g., Magrab 1980).

In general, as the taper or c increases, the frequency decreases, except the funda-
mental frequency of the C-F case.

4.5.3 I sospectral Beams and the m = 4, n = 4 Case

Isospectral beams are two different beams that have exactly the same spectrum of 
frequencies. The most important work is due to Gottlieb (1987), who found seven 
kinds of nonuniform beams that are isospectral to a uniform beam, but only for 

ω1 = 12.247
ω2 = 32.887
ω3 = 63.781
ω4 = 104.91
ω5 = 155.29

FIGURE 4.45b  Vibration modes for F-F beam (m = 6, n = 2) at c = 0.5.

FIGURE 4.46  Variable-diameter beam (m = 8, n = 4).
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ω1 = 13.030
ω2 = 33.841
ω3 = 64.812
ω4 = 105.98
ω5 = 157.40

FIGURE 4.47a  Vibration modes for C-C beam (m = 8, n = 4) at c = 0.5. (continued)

TABLE 4.40
Frequencies for Variable Thickness Beam, m = 8, n = 4 Case

c 0 0.1 0.3 0.5 0.7 0.9

22.373 20.206 16.298 13.030 10.618 9.4309

C-C
F-F

61.673 55.626 44.255 33.841 24.359 15.577

120.90 108.99 86.215 64.812 44.625 37.076

199.86 180.12 142.11 105.98 71.472 52.293

298.56 269.03 211.95 157.40 104.94 70.494

15.418 14.505 12.678 10.985 9.7056 9.2242

C-P
P-F

49.965 45.631 37.336 29.520 22.137 14.933

104.25 94.544 75.850 58.043 40.933 23.649

178.27 161.23 128.28 96.716 66.230 35.284

272.03 245.70 194.64 145.60 98.107 49.852

3.5160 3.8303 4.5928 5.5808 6.8534 7.0875

22.035 21.065 19.066 17.007 14.873 8.4151

C-F 61.697 56.779 47.240 38.017 28.904 12.406

120.90 110.12 89.212 69.044 49.296 19.110

199.86 181.26 145.12 110.25 76.211 28.610

9.8696 8.8585 6.6952 4.3751 2.0356 0.2426

39.478 35.599 28.255 21.497 15.473 10.770

P-P 88.826 80.072 63.332 47.604 32.835 18.708

157.91 142.32 112.29 83.777 56.577 29.652

246.74 222.34 175.18 130.14 86.852 43.524
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the C-C boundary conditions. His indices ν,μ correspond to our powers m,n in 
Table 4.41.

Notice that cases 1 and 3 in Table 4.41 belong to special cases of a family of Bessel 
function solutions given by Equation (4.82). Cases 2, 4, 6, 7 are special cases of exact 
Bessel solutions given by Cranch and Adler (1956) (see Section 4.5.1.4). These half 
orders of Bessel functions yield harmonic and exponential functions related to the 
uniform beam. The only case not already solved is case 5, where m = n = 4, which 
does have some physical meaning, and we shall analyze this in more detail.

For m = 4, n = 4, one can envision a beam with constant thickness, and the width 
decreases as − cx(1 )4 (Figure 4.48), yielding

	
= =l z r z,4 4 	 (4.111)

ω1 = 13.030
ω2 = 33.841
ω3 = 64.812
ω4 = 105.98
ω5 = 157.40

FIGURE 4.47b  Vibration modes for F-F beam (m = 8, n = 4) at c = 0.5.

TABLE 4.41
Exponents for Isospectral Beams

Case ν,μ m,n Subcase of

1 0, −1 3/2, −1/2 m = n + 2

2 −1, 2 4, −4 m = −n

3 −1, −1 5/2, ½ m = n + 2

4 −2, 3 5/2, −7/2 m = n + 6

5 −2, 0 4, 4 …

6 −3, 3 3/2, −9/2 m = n + 6

7 −3, 2 0, −8 m = (n + 8)/3
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Let

	
=w

U z

z

( )
2 	 (4.112)

Equation (4.78) reduces to

	
− ω =d U

dx
U 0

4

4
2 	 (4.113)

which governs a uniform beam with the same frequency ω, provided the ends are 
all clamped.

Based on the isospectral transform, we generalize the exact solutions for the beam 
described by Equation (4.111) with arbitrary boundary conditions. Using Equations 
(4.112) and (4.113), the exact solution is

{ }( ) ( )=
−

ω  + ω  + ω −  + ω − w
cx

C x C x C x C x
1

(1 )
cos sin cosh 1 sinh 12 1 2 3 4

	
		  (4.114)

This particular form is most suitable for evaluation. The boundary conditions then 
yield a 4 × 4 determinant for the frequencies. The results are shown in Table 4.42. 
Note that c does not affect the frequency of the C–C case.

4.5.4 E xponential-Type Solutions

Suppiger and Taleb (1956) and Cranch and Adler (1956) also considered exponential-
type solutions, where

	 = =− −l e r e,cx cx 	 (4.115)

in Equation (4.76). This represents a beam with constant height and exponentially 
decaying width similar to Figure 4.48. The complete solution is as follows (Wang 
and Wang 2012). Let

	 = λw e x 	 (4.116)

FIGURE 4.48  Beam with variable Width m = 4, n = 4.
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The indicial equation is

	 λ − λ − ω =c( ) 02 2 2 	 (4.117)

Let

	
α = ω + β = ω − γ = − ωc c c4

2
,

4
2

,
4

2

2 2 2

	 (4.118)

TABLE 4.42
Frequencies for a Beam with Constant Thickness 
and Fourth-Power Width (m = 4, n = 4)

c 0.1 0.3 0.5 0.7 0.9

22.373 22.373 22.373 22.373 22.373

61.673 61.673 61.673 61.673 61.673

C-C 120.90 120.90 120.90 120.90 120.90

199.86 199.86 199.86 199.86 199.86

298.56 298.56 298.56 298.56 298.56

15.859 16.857 18.054 19.511 21.313

50.394 51.476 53.005 55.294 58.970

C-P 104.68 105.82 107.55 110.43 115.98

178.71 179.88 181.72 185.01 192.27

272.47 273.66 275.58 279.17 287.94

3.9944 5.3361 7.5577 11.483 18.129

22.925 25.194 28.651 35.105 50.070

C-F 62.570 64.914 68.715 76.293 98.610

121.78 124.19 128.19 136.42 164.22

200.74 203.18 207.30 215.95 247.64

9.8524 9.6759 9.1757 8.0294 5.2628

39.495 39.660 40.116 41.090 42.969

P-P 88.852 89.115 89.868 91.620 95.606

157.94 158.26 159.18 161.43 167.27

246.77 247.12 248.14 250.75 258.20

15.880 17.157 19.450 24.481 36.033

50.427 51.884 54.702 61.165 80.841

P-F 104.72 106.26 109.34 116.54 142.28

178.75 180.33 183.56 191.23 221.26

272.51 274.13 277.45 285.45 318.50

22.422 22.944 24.619 29.410 42.203

61.739 62.434 64.565 70.549 91.190

F-F 120.98 121.74 124.07 130.68 156.96

199.94 200.74 203.20 210.21 240.42

298.63 299.46 302.01 309.31 342.29
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If ω > c /42 , the general solution is

	 = α + α + β + βw e C x C x C x C x[ cosh( ) sinh( ) cos( ) sin( )]cx /2
1 2 3 4 	 (4.119)

If ω = c /42 , the general solution is

	 = + + +w e C cx C cx C C x[ cosh( / 2) sinh( / 2) ]cx /2
1 2 3 4 	 (4.120)

If ω < c /42 , the general solution is

	 = α + α + γ + γw e C x C x C x C x[ cosh( ) sinh( ) cosh( ) sinh( )]cx /2
1 2 3 4 	 (4.121)

Although ω > c /42  in most cases, there are situations where ω < c /42 . Table 4.43 
shows the results for some common end conditions. Mode shapes for a C-C beam 
with constant height and exponentially decaying width at c = 0.5 are shown in 
Figure 4.49a. The mode shapes for the F-F beam, having exactly the same frequen-
cies, are shown in Figure 4.49b.

For the C-F beam with an end mass M on the smaller end, the boundary condition 
in view of Equation (4.15) is

	 ′′ = ′′′ + νω =−w e w w(1) 0, (1) (1) 0c 2 	 (4.122)

where ν = M/ρ0L. Table 4.44 shows the results.

TABLE 4.43
Frequencies of an Exponential Beam

c 0 0.1 0.5 1 2

22.373 22.375 22.408 22.512 22.938

C-C
F-F

61.673 61.675 61.720 61.860 62.423

120.90 120.91 120.96 121.11 121.72

199.86 199.86 199.91 200.07 200.72

298.56 298.56 298.61 298.78 299.44

15.418 15.524 15.955 16.512 17.720

C-P
P-F

49.965 50.066 50.499 51.103 52.527

104.25 104.35 104.79 105.42 106.95

178.27 178.37 178.82 179.46 181.04

272.03 272.13 272.58 273.23 274.85

P-P 9.8696 9.8686 9.8454 9.7729 9.4873

39.478 39.479 39.501 39.570 39.852

88.826 88.828 88.862 88.971 89.405

157.91 157.92 157.96 158.08 158.60

246.74 246.74 246.79 246.93 247.49
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4.6  DISCUSSION

We did not include beam models other than the Euler-Bernoulli model. The most 
important is the Timoshenko beam, which admits some exact solutions.

As in other chapters, we excluded solutions that only yield a partial frequency 
spectrum, since such results would not be useful practically or be suitable as accu-
racy standards. We also excluded exact solutions limited to beams that taper to a 
sharp point at one end, beams with specific end loads, and beams with no physical 
application (see Section 4.5.1.4).

ω1 = 22.408
ω2 = 61.720
ω3 = 120.96
ω4 = 199.91
ω5 = 298.61

FIGURE 4.49a  Mode shapes for C-C beam with constant height and exponentially decay-
ing width at c = 0.5.

ω1 = 22.408
ω2 = 61.720
ω3 = 120.96
ω4 = 199.91
ω5 = 298.61

FIGURE 4.49b  Mode shapes for F-F beam with constant height and exponentially decaying 
width at c = 0.5.
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5 Vibration of 
Isotropic Plates

5.1 � INTRODUCTION

In this chapter, the governing equations for free vibration of isotropic plates of uni-
form thickness are presented, and the exact vibration solutions for plates of vari-
ous geometries and boundary conditions are given. For a detailed derivation of the 
governing equations of plate motion, the reader may consult standard textbooks on 
plates such as Timoshenko and Woinowsky-Krieger (1959), Szilard (1974), Ugural 
(1981), Liew et al. (1998), Soedel (2004), and Reddy (2007).

5.2 � GOVERNING EQUATIONS AND BOUNDARY 
CONDITIONS FOR VIBRATING THIN PLATES

The classical thin-plate theory is based on the Kirchhoff (1850) hypothesis:

•	 Straight lines perpendicular to the mid-surface of the plate (i.e., the trans-
verse normals) before deformation remain straight after deformation.

•	 The transverse normals rotate such that they remain perpendicular to the 
mid-surface after deformation.

•	 The transverse normals do not experience any elongation (i.e., they are 
inextensible).

The consequence of the Kirchhoff hypothesis is that the transverse strains are zero, 
and hence the transverse stresses do not appear in the formulation of the classical 
thin-plate model.

Consider an elastic, isotropic, thin plate of uniform thickness h, Young’s modulus 
E, Poisson ratio ν, and mass density (per unit volume) ρ. By adopting the rectangular 
coordinates system as shown in Figure 5.1 and assuming the natural vibration solu-
tion to be periodic, i.e.,

	 w x y t w x y e( , , ) ( , ) i t= ω 	 (5.1)

where w is the transverse displacement (i.e., displacement in the z-direction), = −i 1 , ω 
is the frequency of natural vibration associated with the mode shape w, and t is the time.
The governing equation of motion of a vibrating thin plate may be expressed as

	 ∇ − ρ ω =ωD w x y h w x y e{ ( , ) ( , )} 0i t4 2 	 (5.2)
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In Equation (5.2), the biharmonic operator ∇ • = ∂ • ∂ + ∂ • ∂ ∂ +x x y( ) ( )/ 2 ( )/4 4 4 4 2 2

∂ • ∂y( )/4 4, and = − νD Eh /[12(1 )]3 2  is the flexural rigidity. Since Equation (5.2) is 
valid for any time t, we have

	
∇ − = = ω ρ

w x y k w x y k
h

D
( , ) ( , ) 0, where4 2 2 2 	 (5.3)

Note that the aforementioned governing equation for the classical thin-plate model 
does not include the effect of rotary inertia. To allow for this effect, the left-hand side 
of Equation (5.3) has to be augmented by + ρ ∇h D w( /12 )3 2 , where the Laplacian 
operator ∇ •( )2  = ∂ • ∂ + ∂ • ∂x y( )/ ( )/2 2 2 2 .

The problem at hand is to determine the natural frequencies ω of the thin plate 
such that Equation (5.3) has a nontrivial solution w. In order to solve Equation (5.3), 
it is necessary to specify the boundary conditions for the plate.

The boundary conditions may be classified as essential or natural. Essential bound-
ary conditions involve deflection w and slope ∂w/∂n, where n is the direction normal to 
the plate edge (see Figure 5.1). Natural boundary conditions involve the normal bend-
ing moment Mnn and the effective shear force Vn, where (for a straight edge)

	

= − ∂
∂

+ ν ∂
∂







M D
w

n

w

s
nn

2

2

2

2 	 (5.4a)

and

	
( )= − ∂

∂
+ − ν ∂

∂ ∂






V D
w

n

w

n s
2n

3

3

3

2 	 (5.4b)

where s is the direction tangential to the plate edge (see Figure 5.1). The common types 
of boundary conditions for a plate are (a) a free edge, (b) a clamped edge, and (c) a 
simply supported edge. At a free edge, the boundary conditions are Mnn = 0 and Vn = 
0. At a clamped edge, w = 0 and ∂w/∂n = 0, and at a simply supported edge, w = 0 and 
Mnn = 0.

x

s n
h

y
z

FIGURE 5.1  Plate showing the rectangular coordinates system.
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For circular and annular plates, the analysis is more expediently carried out in the 
polar coordinates (r,θ). The governing equation of plate motion, in polar coordinates, 
takes the form of

	 ∇ θ − θ =w r k w r( , ) ( , ) 04 2 	 (5.5)

where = ω ρk h D/2 2 , the biharmonic operator ∇ • = ∇ ∇ •( ) ( )4 2 2 , and the Laplacian 
operator ∇ • = ∂ ∂ • ∂ ∂ + ∂ • ∂θr r r r r( ) (1/ ) ( ( )/ )/ (1/ ) ( )/2 2 2 2. At a free edge, the boundary 
conditions are Mrr = 0 and Vr = 0. At a clamped edge, w = 0 and ∂w/∂r = 0, and at a 
simply supported edge, w = 0 and Mrr = 0. The bending moment Mrr and the effective 
shear force Vr are, respectively, given by

	

= − ∂
∂

+ ν ∂
∂θ

+ ∂
∂
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2 	 (5.6a)

and
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	 (5.6b)

5.3 � EXACT VIBRATION SOLUTIONS FOR THIN PLATES

Except for some plate shapes and boundary conditions that will be discussed here for 
cases where exact vibration solutions are obtainable, the vibration problems of plates are 
usually solved via numerical techniques such as the finite element method, the finite dif-
ference method, the differential quadrature method, and the Ritz method. (For details 
of these methods, one may refer to the book edited by Shanmugam and Wang [2007].)

5.3.1 �R ectangular Plates with Four Edges Simply Supported

Consider a rectangular plate of length a and width b with its four edges simply sup-
ported, as shown in Figure 5.2.

The solution (or vibration mode shape) that satisfies the boundary conditions w = 
0 and Mnn = 0 for all four edges is given by Navier (1823)

	
= π π

w x y A
m x

a

n y

b
( , ) sin sinmn 	 (5.7)

where Amn are the unknown coefficients (or amplitudes of vibration), m is the number 
of half waves in the x-direction, and n is the number of half waves in the y-direction. 
By substituting Equation (5.7) into Equation (5.3), we obtain the exact vibration fre-
quency solution for simply supported rectangular plates in terms of m and n

	
ω =

ρ
π



 + π















D

h

m

a

n

b
mn

2 2

	 (5.8)
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The fundamental frequency of vibration is obtained by minimizing ωmn with respect 
to m and n. For a square plate (a = b), it can be readily shown that the fundamental 
frequency is ω = π

ρb
D
h11

2 2

2 . Table 5.1 presents the first six natural frequencies values

ω = ω ρb h D/mn mn
2  and the corresponding mode shapes for rectangular plates with 

all edges simply supported. The number of half waves (m, n) in the x- and y-directions 
is given in parentheses.

5.3.2 �R ectangular Plates with Two Parallel Sides Simply Supported

Exact vibration solutions are also possible for rectangular plates with two paral-
lel sides simply supported, while the other two sides can take any combination of 
clamped, simply supported, and free boundary conditions. As pointed out by Levy 
(1899), the partial differential equation for such plates may be converted into an 
ordinary differential equation, since the two simply supported parallel edges (say, 
parallel to x-axis) allow the mode shape to be made separable in the form

	
= π

w x y W x
n y

b
( , ) ( ) sinn 	 (5.9)

where it satisfies the simply supported boundary conditions w = 0 and Myy = 0 at y = 0 
edge and y = b edge.

By substituting Equation (5.9) into Equation (5.3), we obtain the following fourth-
order ordinary differential equation:

	
− π



 + π



 −









 = = ω ρd W

dx

n

b

d W

dx

n

b
k W k

h

D
2 0, wheren n

n

4

4

2 2

2

4
2 2 2 	 (5.10)

The form of the solution to Equation (5.10) depends on the nature of the roots λ 
of the equation

	
λ − π



 λ + π



 −









 =n

b

n

b
k2 04

2
2

4
2 	 (5.11)

a

b

y

x

FIGURE 5.2  Rectangular plate with all edges simply supported.
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There are two distinct cases. The first case is when ≥ πk n b( / )2 4 , and the second case 
is when < πk n b( / )2 4 . The general solution for Equation (5.10) when ≥ πk n b( / )2 4  is 
given by Voigt (1893)

	
= λ + λ + λ + λW x A x A x A x A x( ) cosh sinh cos sinn 1 1 2 1 3 2 4 2 	 (5.12)

whereas the solution for Equation (5.10) when < πk n b( / )2 4  is given by

	
( ) = λ + λ + λ + λW x A x A x A x A xcosh sinh cosh sinhn 1 1 2 1 3 2 4 2 	 (5.13)

where =A i, 1,2,3,4i  are the integration constants and

	
λ = + π



k

n

b
( )1

2
2

	 (5.14)

	
λ = − π



k

n

b
( )2

2
2

	 (5.15)

TABLE 5.1
Natural Frequencies ω = ω ρ /2b h Dmm mn  and Mode Shapes for Rectangular 
Plates with Simply Supported Edges

a/b Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6

0.5

49.348
(1, 1)

78.957
(1, 2)

128.305
(1, 3)

167.783
(2, 1)

197.392
(1, 4)

197.392
(2, 2)

1.0

19.739
(1, 1)

49.348
(1, 2)

49.348
(2, 1)

78.957
(2, 2)

98.696
(1, 3)

98.696
(3, 1)

2.0

12.337
(1, 1)

19.739
(2, 1)

32.076
(3, 1)

41.946
(1, 2)

49.348
(4, 1)

49.348
(2, 2)
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Consider a rectangular plate with three edges—x = 0, y = 0, and y = b—that are 
simply supported, whereas the edge x = a is free, as shown in Figure 5.3. The bound-
ary conditions on the edges are

	 w = 0 and = − ∂
∂

+ ν ∂
∂







=M D
w

y

w

x
0yy

2

2

2

2  for simply supported edges

	 y = 0 and y = b	 (5.16)

	 w = 0 and = − ∂
∂

+ ν ∂
∂







=M D
w

x

w

y
0xx

2

2

2

2  for simply supported edge x = 0	 (5.17)

	
( )= = − ∂

∂
+ − ν ∂

∂ ∂






= xM V D
w

x

w

y x
0 and 2 0 for free edge = axx x

3

3

3

2 	 (5.18)

By substituting Equation (5.12) into Equations (5.17) and (5.18) and solving the equa-
tions for nontrivial solutions, we obtain the following exact characteristic equation:

	

( ) ( )λ + − ν π













 λ λ − λ − − ν π















× λ λ =

k
n

b
a a k

n

b

a a

1 sinh( )cos( ) 1

cosh( )sin( ) 0

2

2 2

1 2 1

2 2

1 2 	 (5.19)

The substitution of Equation (5.13) into Equations (5.17) and (5.18) yields the fol-
lowing exact characteristic equation

	

( )λ + − ν π













 λ λ − λ − − ν π















× λ λ =

k
n

b
a a k

n

b

a a

(1 ) sinh( )cosh( ) 1

cosh( )sinh( ) 0

2

2 2

1 2 1

2 2

1 2 	 (5.20)

Equations (5.19) and (5.20) are to be solved by using, for example, the false-
position method for the roots ω for a given number of half waves n in the y-direction 
with the prescribed geometrical and material properties of the plate.

a

b

y

x

Free edge
Simply

supported
edges

FIGURE 5.3  Rectangular plate with three simply supported edges and one free edge.
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The mode shape for the case k2 ≥ (nπ/b)4 is given by

	
= λ λ + λ λ π

w x y k a x x a
n y

b
( , ) [sinh( )sin( ) sinh( )sin( )]sin1 2 1 2 	 (5.21)

and for the case < πk n b( / )2 4 , the mode shape is given by

	
= λ λ + λ λ π

w x y k a x x a
n y

b
( , ) [sinh( )sinh( ) sinh( )sinh( )]sin1 2 1 2 	 (5.22)

Table 5.2 presents the first six natural frequencies ω = ω ρb h D/2  and modes 
shapes  for rectangular plates with three edges simply supported and one edge 
free. The number of half waves (n) is given in parentheses, and the Poisson ratio 
is taken as ν = 0.3. All the frequency values presented in Table 5.2 have been 
obtained from solving Equation (5.19).

Next, we consider a rectangular plate with two edges (y = 0, y = b) simply sup-
ported, the edge x = 0 clamped, and the remaining edge x = a free, as shown in 
Figure 5.4.

TABLE 5.2
Natural Frequencies ω = ω ρ /2b h D  for Rectangular Plate with Three Edges 
Simply Supported and One Edge Free

a/b Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6

0.5

16.135 (1) 46.738 (2) 75.283 (1) 96.041 (3) 111.025 (2) 164.696 (3)

1.0

11.685 (1) 27.756 (1) 41.197 (2) 59.066 (2) 61.861 (1) 90.294 (3)

2.0

10.299 (1) 14.766 (1) 23.621 (1) 37.127 (1) 39.770 (2) 44.524 (2)
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The boundary conditions on the edges are

	 = = − ∂
∂

+ ν ∂
∂







=w M D
w

y

w

x
0 and 0yy

2

2

2

2  for simply supported edges y = 0 and y = b
	 	 (5.23)

	
= ∂

∂
= =xw

w

x
0 and 0 for clamped edge 0 	 (5.24)
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∂

+ ν ∂
∂


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
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∂
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

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
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M D
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V D

w

x
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y x
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for free edge

xx x
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2

2

2

3

3

3

2

	 (5.25)

The substitution of Equation (5.12) into Equations (5.24) and (5.25) yields the fol-
lowing exact characteristic equations

( )

λ λ − − ν π
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
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		  (5.26b)

Table 5.3 presents the first six natural frequencies values ω = ω ρb h D/2  and 
mode shapes for rectangular plates with two parallel edges simply supported, 
one edge clamped, and one edge free. The number of half waves (n) is given in 

a

b

y

x

Clamped
edge Free edge

FIGURE 5.4  Rectangular plate with two simply supported edges, a clamped edge, and a free edge
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parentheses, and the Poisson ratio is taken as ν = 0.3. All the frequency values pre-
sented in Table 5.3 are obtained from solving Equation (5.26a).

Let us consider a rectangular plate with two parallel edges (y = 0, y = b) simply 
supported and the other two parallel edges (x = 0, x = a) clamped, as shown in 
Figure 5.5. The boundary conditions on the edges are

	
= = − ∂

∂
+ ν ∂

∂






= = =w M D
w

y

w

x
y y b0 and 0 for simply supported edges 0 andyy

2

2

2

2

	
 	 (5.27)

	 w = 0 and 
∂
∂

=w

x
0   for clamped edges x = 0 and x = a	 (5.28)

The substitution of Equation (5.12) into Equation (5.28) yields the following exact 
characteristic equation

	
( )λ λ − λ λ + λ − λ λ λ =a a a a2 [1 cosh( )cos( )] sinh( )sin( ) 01 2 1 2 1

2
2
2

1 2 	 (5.29)

TABLE 5.3
Natural Frequencies ω = ω ρ /2b h D  for Rectangular Plate with Two Parallel 
Edges Simply Supported, One Edge Clamped, and One Edge Free

a/b Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6

0.5

22.815 (1) 50.748 (2) 98.778 (3) 99.777 (1) 132.255 (2) 166.812 (4)

1.0

12.687 (1) 33.064 (1) 41.702 (2) 63.014 (2) 72.395 (1) 90.610 (3)

2.0

10.426 (1) 15.753 (1) 25.790 (1) 39.826 (2) 40.592 (1) 45.106 (2)
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whereas the substitution of Equation (5.13) into Equation (5.28) yields the following 
characteristic equation

	
( )λ λ − λ λ + λ + λ λ λ =a a a a2 [1 cosh( )cosh( )] sinh( )sinh( ) 01 2 1 2 1

2
2
2

1 2 	 (5.30)

Table 5.4 presents the first six natural frequencies values ω = ω ρb h D/2  and mode 
shapes for rectangular plates with two parallel edges simply supported and the other 
two parallel edges clamped. The number of half waves (n) is given in parentheses. All 
the frequencies presented in Table 5.4 are obtained from solving Equation (5.29).

For the next case, consider a rectangular plate with three edges (y = 0, y = b, and 
x = a) simply supported and the other remaining edge (x = 0) clamped as shown in 
Figure 5.6. The boundary conditions on the edges are

	 w = 0 and Myy = 0 for simply supported edges y = 0, y = b	 (5.31a)

	 w = 0 and Mxx = 0 for simply supported edge x = a	 (5.31b)

	 w = 0 and 
∂
∂

=w

x
0  for clamped edge x = 0	 (5.32)

The substitution of Equation (5.12) into Equations (5.31b) and (5.32) yields the 
following exact characteristic equation

	 λ λ λ − λ λ λ =a a a acosh( )sin( ) sinh( )cos( ) 01 1 2 2 1 2 	 (5.33)

The characteristic equation obtained from using Equation (5.13) is

	 λ λ λ − λ λ λ =a a a acosh( )sinh( ) sinh( )cosh( ) 01 1 2 2 1 2 	 (5.34)

Table 5.5 presents the first six natural frequencies values and mode shapes for 
rectangular plates with three edges simply supported and one edge clamped. The 
number of half waves (n) is given in parentheses. All the frequency values presented 
in Table 5.5 are obtained from solving Equation (5.33).

a

b

y

x

FIGURE 5.5  Rectangular plate with two simply supported edges and two clamped edges.
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TABLE 5.4
Natural Frequencies ω = ω ρ /2b h D  for Rectangular Plate with Two Parallel 
Edges Simply Supported and the Other Two Parallel Edges Clamped

a/b Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6

0.5

95.263 (1) 115.803 (2) 156.357 (3) 218.972 (4) 254.138 (1) 277.308 (2)

1.0

28.951 (1) 54.743 (2) 69.327 (1) 94.585 (2) 102.216 (3) 129.100 (1)

2.0

13.686 (1) 23.646 (1) 38.694 (1) 42.587 (2) 51.674 (2) 58.646 (1)

a

b

y

x

FIGURE 5.6  Rectangular plate with three simply supported edges and a clamped edge.
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Finally, we consider a rectangular plate with two parallel edges (y = 0, y = b) sim-
ply supported, while the other two parallel edges (x = 0, x = a) are free, as shown in 
Figure 5.7. The boundary conditions on the edges are

w = 0 and = − ∂
∂

+ ν ∂
∂







=M D
w

y

w

x
0yy

2

2

2

2  for simply supported edges y = 0, y = b,
		  (5.35)
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=M V D
w

x

w

y x
0 and 2 0xx x

3

3

3

2  for free edges x = 0, x = a	 (5.36)

The substitution of Equation (5.12) into Equation (5.36) yields the following exact 
characteristic equation
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4 2

1 2 	(5.37a)

TABLE 5.5
Natural Frequencies ω = ω ρ /2b h D  for Rectangular Plate with Three Edges 
Simply Supported and One Edge Clamped

a/b Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6

0.5

69.329 (1) 94.581 (2) 140.203 (3) 206.698 (4) 208.407 (1) 234.589 (2)

1.0

23.646 (1) 51.674 (2) 58.646 (1) 86.130 (2) 100.267 (3) 113.229 (1)

2.0

12.918  (1) 21.533 (1) 35.211 (1) 42.239 (2) 50.431 (2) 53.823 (1)
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whereas the substitution of Equation (5.13) into Equation (5.36) yields the following 
characteristic equation:
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Table  5.6 presents the first six natural frequencies ω = ω ρb h D/2  and mode 
shapes for rectangular plates with two parallel edges simply supported and the other 
two parallel edges free. The number of half waves (n) is given in parentheses, and the 
Poisson ratio is taken as ν = 0.3. Note that the frequency values without the asterisk 
are obtained from Equation (5.37a), whereas the frequency values with the asterisk are 
obtained from Equation (5.37b).

It is worth noting that there are 21 cases involving the possible combinations of 
free, simply supported, and clamped edge conditions for the free vibration of rectan-
gular plates. Exact characteristic equations are given for these six cases having two 
opposite sides simply supported. By using the symplectic dual method, Xing and Liu 
(2009a) were able to obtain the exact vibration solutions for rectangular plates with 
any combination of clamped and simply supported edges (i.e., two adjacent edges 
simply supported and the other two edges clamped, one edge simply supported and 
the other three edges clamped, and all four edges clamped). Vibration results for the 
remaining cases have to be determined using numerical techniques such as the Ritz 
method and the finite element method. Sample vibration frequencies for all 21 cases 
are presented in a paper by Leissa (1973).

5.3.3 �R ectangular Plates with Clamped but Vertical Sliding Edges

It is well known that the hollow TM (transverse magnetic) waveguide problem is 
analogous to the vibration problems of polygonal thin plates with simply supported, 

a

b

y

x

Free edges

FIGURE 5.7  Rectangular plate with two simply supported edges and two free edges.
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straight edges and of prestressed membranes (e.g., see Conway [1960] and Ng [1974]). 
Recently, Wang, Wang, and Tay (2013) pointed out that the TE (transverse electric) 
waveguide problem is analogous to the vibration problem of thin plates with zero 
slope and zero twisting moment at the edges, which are allowed to slide freely in 
the vertical (transverse) direction. Such a plate problem is found in vibrating piston 
heads. Following is the proof for this analogy.

The wave propagation of the TE waveguide is governed by the Helmholtz equa-
tion (Conway 1960; Pnueli 1975), i.e.,

	 k 02 2∇ φ + φ = 	 (5.38)

where ∇ = +∂
∂

∂
∂x y

2 2

2

2

2  is the Laplacian operator. Here, ϕ is the scalar wave amplitude

function, and k is the wave frequency parameter (Wang 2010)

	 c= πk f2 ( ) 	 (5.39)

TABLE 5.6
Natural Frequencies ω = ω ρ /2b h D  for Rectangular Plate with Two Parallel 
Edges Simply Supported and Two Parallel Edges Free

a/b Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6

0.5

9.513* (1) 27.522 (1) 38.526* (2) 64.539 (2) 87.285* (3) 105.490 (1)

1.0

9.631* (1) 16.135 (1) 36.726 (1) 38.945* (2) 46.737 (2) 70.740 (2)

2.0

9.736* (1) 11.685 (1) 17.685 (1) 27.756 (1) 39.188* (2) 41.197 (2)
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where f is the frequency of the wave propagation, and c is the inductivity capacity. 
The boundary condition for the TE modes is (Pnueli 1975)

	

∂φ
∂

=
n

0 at the edge 	 (5.40)

where n is the normal to the cross section of the waveguide. Equation (5.40) is also 
known as the Neumann boundary condition. The eigenvalues k and the correspond-
ing mode shapes ϕ are sought by solving the Helmholtz equation (Equation [5.38]) 
with the boundary condition of Equation (5.40).

The aforementioned TE waveguide problem will be shown to be analogous to 
a classical thin-plate vibration problem with zero slope and zero twisting moment 
at the edges that are allowed to slide freely in the vertical (transverse) direction. 
According to the classical thin-plate theory, the governing equation for a vibrating 
plate with thickness h, mass density ρ, Young’s modulus E, and Poisson ratio ν, is 
given by (Szilard 1974).

	 ∇ − χ =w w 04 2 	 (5.41)

where w is the transverse displacement, and χ is the frequency parameter of the thin 
plate defined by

	

h
D

χ = ω ρ
	 (5.42)

in which ω is the angular frequency of the thin plate, and = − νD Eh /[12(1 )]3 2 , the 
flexural rigidity. At the plate edges, the boundary conditions are

	

∂
∂

=w

n
0 	 (5.43)

	
= − ∂

∂
∇ =Q D

n
w( ) 0n

2 	 (5.44)

where Qn is the transverse shear force. Note that the additional shearing force at the 
edge ∂ ∂M s/ns  is zero because the twisting moment is zero along the edge of the plate.

The fourth-order governing differential Equation (5.41) may be factorized as 
(Liew et al. 1998)

	 ∇ − χ ∇ + χ =w( )( ) 02 2 	 (5.45)

Alternatively, Equation (5.45) may be written as two second-order differential equations

	 ∇ − χ =w w( )2 	 (5.46)

	 ∇ + χ =w( ) 02 	 (5.47)
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If we differentiate Equation (5.46) with respect to n, we get

	

∂
∂

∇ − χ ∂
∂

= ∂
∂n

w
w

n

w

n
( )2 	 (5.48)

By substituting the boundary conditions given in Equations (5.43) and (5.44) into 
Equation (5.48), we get

	

∂
∂

=w

n
0 at the edge 	 (5.49)

This implies that the governing equation and boundary condition of the afore-
mentioned vibration thin-plate problem may be expressed by Equations (5.47) and 
(5.49), respectively. The governing equation and boundary condition are mathemati-
cally similar to their counterparts for the TE waveguide problem (see Equations 
[5.38] and [5.40]). Therefore, it has been proved that the TE waveguide problem 
is analogous to the vibration problem of plates with a zero slope and zero twisting 
moment at the freely vertically sliding edges. This analogy implies that

	
= χk 	 (5.50)

i.e., the wave frequency parameters of the waveguides are equal to the square root 
of the corresponding plate vibration frequency parameters, and the TE mode shapes 
correspond to their thin-plate vibration mode shape counterparts.

Now, consider a rectangular domain enclosed by the lines

	 x = −b/2, x = b/2, y = −a/2, and y = a/2	 (5.51)

where the origin is located at the centroid of the rectangular domain. The exact solu-
tions for TE modes ϕ for the rectangular waveguide with an aspect ratio b/a ≥ 1 are 
given as follows (Schelkunoff 1943):

•	 For S-S mode (i.e., symmetric about both x- and y-axes),

	
φ = α β α = π β = π

x y
m

b

n

a
m ncos( )cos( ) where

2
and

2
, ( , ) are integers except zero.

		  (5.52)

•	 For A-S mode (i.e., antisymmetric about x-axis and symmetric about y-axis),

φ = α β α = π β =
+ π

x y
m

b

n

a
m ncos( )sin( ) where

2
and

2( 1/2)
, ( , ) are integers 	 (5.53)

•	 For S-A mode (i.e., symmetric about x-axis and antisymmetric about y-axis),

φ = α β α =
+ π

β = π
x y

m

b

n

a
m nsin( )cos( ) where

2( 1/2)
,

2
, ( , ) are integers

	
(5.54)
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•	 For A-A mode (i.e., antisymmetric about both x- and y-axes),

φ = α β α =
+ π

β =
+ π

x y
m

b

n

a
m nsin( )sin( ) where

2( 1/2)
and

2( 1/2)
, ( , ) are integers

		  (5.55)

and the exact frequency parameter is given by

	
= α + βk 2 2 	 (5.56)

The foregoing exact mode shapes and frequency parameter are also valid for the 
corresponding vibrating thin plates with sliding boundary conditions. Tables 5.7 and 
5.8 present the exact mode shapes and the frequency values = χka a  of TE square 
and rectangular waveguides or clamped square and rectangular plates with sliding 
edges. The bracketed values represent (m, n). The symbol S denotes symmetrical 
mode and the symbol A the antisymmetrical mode.

5.3.4 �T riangular Plates with Simply Supported Edges

Conway (1960) pointed out the analogies between the vibration and buckling prob-
lems of simply supported polygonal plates and the vibration problem of uniformly 
prestressed membranes. Owing to these analogies, one may obtain the exact solu-
tions for any two of the problems upon having derived the exact solution of one of 
these three problems using the following relationships:

	
ω ρ = = ω µh

D

N

D T
ˆn

n
n 	 (5.57)

TABLE 5.7
Exact Mode Shapes and Frequency Parameters for Square Thin Plate 
with Sliding Boundary Condition

Mode 1
(S-A)

Mode 2
(A-S)

Mode 3
(A-A)

Mode 4
(S-S)

Mode 5
(S-S)

Mode 6
(S-A)

Mode 7
(A-S)

(–1, 0)
(0, 0)

(0, –1)
(0, 0)

(–1, –1)
(–1, 0)
(0, –1)
(0, 0)

(0, –1)
(0, 1)

(–1, 0)
(1, 0)

(–1, –1)
(–1, 1)
(0, –1)
(0, 1)

(–1, –1)
(–1, 0)
(1, –1)
(1, 0)

3.1416 3.1416 4.4429 6.2832 6.2832 7.0248 7.0248
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where ωn is the nth angular frequency of vibration of the simply supported polygonal 
plate, Nn is the buckling load for the nth mode of the simply supported plate under 
hydrostatic in-plane load, ω̂n  is the nth angular frequency of vibration of the pre-
stressed membrane, μ is the mass density per unit area of membrane, and T is the 
uniform tension per unit length of membrane.

In Section 3.3.2, exact solutions for prestressed membranes are presented for 
three triangular shapes (45°, 45°, 90°), (60°, 60°, 60°), and (30°, 60°, 90°), as shown 
in Figure 5.8. In view of Section 3.3.2 and the membrane frequencies, one may 
obtain the exact frequencies for the three triangular plates with simply supported 
edges. Table 5.9 furnishes the first six natural frequencies and their corresponding 
mode shapes for the three aforementioned simply supported triangular plates.

Some authors patched right triangles to form a larger shape. All the little triangu-
lar edges are nodal lines, and thus the frequencies are the same. It would give some 
degenerate higher exact frequencies for the composite shape, but never the important 
lower ones, such as the fundamental frequency.

45°, 45°, 90°
Isosceles right angled

triangular plate

60°, 60°, 60°
Equilateral triangular

plate

30°, 60°, 90°
Right angled

triangular plate

a b = a/ 3

aa

a 

45° 60° 60°

FIGURE 5.8  Triangular plates.

TABLE 5.8
Exact Mode Shapes and Frequency Parameters for Rectangular Thin Plate 
with Sliding Boundary Condition (aspect ratio b/a = 2)

Mode 1
(S-A)

Mode 2
(S-S)

Mode 3
(A-S)

Mode 4
(A-A)

Mode 5
(A-S)

Mode 6
(S-A)

(–1, 0)
(0, 0)

(–1, 0)
(1, 0)

(0, –1)
(0, 0)

(–1, –1)
(–1, 0)
(0, –1)
(0, 0)

(–1, –1)
(–1, 0)
(1, –1)
(1, 0)

(–2, 0)
(1, 0)

1.5708 3.1416 3.1416 3.5124 4.4429 4.7124
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5.3.5 �C ircular Plates

For a circular thin plate with radius R, the vibration mode shape may be expressed as

	
θ = θw r W r n( , ) ( )cosn 	 (5.58)

By substituting Equation (5.58) into Equation (5.5), the fourth-order partial differ-
ential equation may be converted into the following two second-order ordinary dif-
ferential equations:

	

+ − −






=d W

dr r

dW

dr

n

r
k W

1
0n n

n

2
1

2
1

2

2 1 	 (5.59)

	

+ − +






=d W

dr r

dW

dr

n

r
k W

1
0n n

n

2
2

2
2

2

2 2 	 (5.60)

TABLE 5.9
Natural Frequencies for (45°, 45°, 90°), (60°, 60°, 60°), and (30°, 60°, 90°) 
Triangular Plates with Simply Supported Edges

Triangular
Plate Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6

45°, 45°, 90°

5π2 98.696 128.303 167.792 197.405 246.747

60°, 60°, 60°

16π2/3 122.824 210.568 228.111 333.436 368.490

30°, 60°, 90°

92.181 171.167 250.209 276.492 368.666 408.149
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The exact solutions for Equations (5.59) and (5.60) are, respectively,

	 = +W r A J r k A Y r k( ) ( ) ( )n n n1 1 2 	 (5.61)

	 = +W r A I r k A K r k( ) ( ) ( )n n n2 3 4 	 (5.62)

where Jn and Yn are the Bessel function of the first kind and second kind, respec-
tively; In and Kn are the modified Bessel function of the first kind and the second 
kind, respectively; Ai, i = 1,2,3,4 are the unknown coefficients that are to be solved 
from the boundary conditions; and n is the circumferential wave number.

In order to avoid a singularity at the center of the circular plate, the Bessel func-
tion and the modified Bessel function of the second kind must be dropped. In view 
of this, the typical vibration mode shape for a circular vibrating plate is given by

	 ( ) ( )θ = θ = + θw r W r n A J r k A I r k n, cos [ ( ) ( )]cosn n n n1 3 	 (5.63)

For a circular plate with a clamped edge, the boundary conditions are

	
= = r RW

dW

dr
0 and 0 at =n

n
	 (5.64)

By substituting Equation (5.63) into the boundary conditions of Equation (5.64), and 
for nontrivial solution, we obtain the following exact characteristic equation

	 α α + α α = α =+ +J I I J R k( ) ( ) ( ) ( ) 0, wheren n n n1 1 	 (5.65)

The roots of the characteristic equation—Equation (5.65)—furnish the vibration 
frequencies. It is interesting to note that the nondimensional frequency parameter 
α of the clamped circular plate is independent of the Poisson ratio, but this is not 
the case for a simply supported circular plate, as shown in the following discussion. 
Table 5.10 presents the first six natural frequencies ω = ω ρR h D/sn sn

2  and mode 
shapes for a clamped circular plate. Note that s represents the number of nodal cir-
cles and n the number of nodal diameters.

TABLE 5.10
Natural Frequencies = ρ /2R h Dsn sn  for a Clamped Circular Plate

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6

51.030
(s = 0, n = 3)

60.828
(s = 1, n = 1)

39.771
(s = 1, n = 0)

34.877
(s = 0, n = 2)

21.261
(s = 0, n = 1)

ω = 10.216
(s = 0, n = 0)
–
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For a circular plate with a simply supported edge, the boundary conditions are

	
= = − ∂

∂
+ ν ∂

∂
+ ∂

∂θ














 = =W M D

w

r r

w

r r

w
r R0 and

1 1
0 atn rr

n n n
2

2 2

2

2 	 (5.66)

By substituting Equation (5.63) into the boundary conditions of Equation (5.66), and for 
nontrivial solution, we obtain the following exact characteristic equation:

	

α
α

+ α
α

− α
− ν

= α =+ +J

J

I

I
R k

( )
( )

( )
( )

2
1

0 wheren

n

n

n

1 1 	 (5.67)

The roots of the characteristic equation—Equation (5.67)—furnish the vibration 
frequencies of the simply supported circular plates. Table 5.11 presents the first six 
natural frequencies ω = ω ρR h D/sn sn

2  and mode shapes for a simply supported 
circular plate with Poisson ratio ν = 0.3.

For a circular plate with a completely free edge, the boundary conditions are

	

= − ∂
∂

+ ν ∂
∂

+ ∂
∂θ















 =M D

w

r r

w

r r

w1 1
0rr

n n n
2

2 2

2

2

and

	
= − ∂

∂
∇ + − ν ∂

∂θ
∂
∂ ∂θ

− ∂
∂θ















 = r = RV D

r
w

r r

w

r r

w
( )

1 1 1
0 atr

2
2

2

 
	 (5.68)

Examples of a completely free circular plate are a flying circular plate and a pon-
toon-type circular floating structure. By substituting Equation (5.63) into Equation 
(5.68), we obtain the following characteristic equation:

	

( )
( )

( )
( )

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

α α + − ν α ′ α − α
α α − − ν α ′ α − α

− α ′ α + − ν α ′ α − α
α ′ α − − ν α ′ α − α

=J J n J

I I n I

J n J J

I n I I

1 [ ]
1 [ ]

1 [ ]
1 [ ]

0n n n

n n n

n n n

n n n

2 2

2 2

3 2

3 2

		  (5.69)

TABLE 5.11
Natural Frequencies = ρ /2R h Dsn sn  for a Simply Supported Circular Plate

39.957
(s = 0, n = 3)

48.479
(s = 1, n = 1)

29.720
(s = 1, n = 0)

25.613
(s = 0, n = 2)

13.898
(s = 0, n = 1)

ω = 4.9351
(s = 0, n = 0)
–
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Itao and Crandall (1979) gave some values for the exact frequencies of a completely 
free circular plate with Poisson ratio ν = 0.33. Table 5.12 presents the first six natural 
frequencies ω = ω ρR h D/sn sn

2  and mode shapes for a free circular plate with ν = 0.3.

5.3.6 � Annular Plates

As for the circular plates, exact vibration solutions are possible for annular plates. 
The solution for Equation (5.5) is given by

	
( ) ( ) ( ) ( )

( )θ = θ

= + + +



 θ

w r W r n

A J r k A Y r k A I r k A K r k n

( , ) cos

cos

n n

n n n n1 2 3 4
	
(5.70)

The substitution of Equation (5.70) into the boundary conditions for the inner 
edge (r = b) and outer edge (r = a) of the annular plates yields four equations. The 
frequency determinant is constructed from these four equations. The characteristic 
equation becomes rather lengthy and complex to display. We shall adopt Vogel and 
Skinner’s (1965) method of presentation of these equations for nine combinations 
of inner edge and outer edge boundary conditions. Since the boundary conditions 

involve =M 0rr , =V 0r , w = 0, and ∂w/∂r = 0, we first note that

	 = + + +W r A J r k A Y r k A I r k A K r k( ) ( ) ( ) ( ) ( )n n n n n1 2 3 4
	 (5.71)

( ) = −





+ −





+ +





+ −





+ +

+ +

k

dW r

dr
A

n

r k
J r k J r k A

n

r k
Y r k Y r k

A
n

r k
I r k I r k A

n

r k
K r k K r k

1
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

n
n n n n

n n n n

1 1 2 1

3 1 4 1

		  (5.72)

TABLE 5.12
Natural Frequencies = ρ /2R h Dsn sn  for a Free Circular Plate

21.835
(s = 0, n = 4)

33.495
(s = 0, n = 5)

20.475
(s = 1, n = 1)

12.439
(s = 0, n = 3)

9.0031
(s = 1, n = 0)

ω = 5.3584
(s = 0, n = 2)
–
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		  (5.73)
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		  (5.74)

In view of Equations (5.71) to (5.74), we develop the eigenvalue equation for the 
annular plates with nine combinations of inner and outer boundary conditions, as 
shown in Table 5.13. The first description indicates the boundary condition for the 
outer edge, and the second description is the boundary condition for the inner edge.

Tables  5.14 to 5.22 present the first six natural frequencies ω = ω ρa h D/2  and 
mode shapes of annular plates with inner radius to outer radius ratios b/a = 0.3, 0.5, 
0.7, Poisson ratio ν = 0.3, and various combinations of inner to outer edge boundary 
conditions.

5.3.7 � Annular Sector Plates

For circular or annular sector plates, exact solutions exist only for simply supported 
radial edges. Leissa (1969) noted that if the opening angle of the sector is π/N, where 
N is an integer, then all the vibration modes of the sector plate can be found from the 
higher modes of the full plate. For circular sector plates with opening angle larger 
than 180°, or with a reentrant vertex, Huang, Leissa, and McGee (1993) showed that 
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it is necessary to appropriately retain the two singular Bessel functions (ignored for 
full plates) for the correct frequency.

In this section, we present the exact solutions for the vibration of the annular sec-
torial plates with simply supported radial edges (Figure 5.9a) for opening angles of 
50°, 90°, 180°, 270°, 360°, 720°, and 1440°. Note that except for the 90° and 180° sec-
tors, the frequencies of the other shapes are not a subset of those of the full annulus. 
For annular sector plates with angles more than 360°, one can envision a helical coil 
of low pitch (Figure 5.9b), important in enhancing heat transfer.

All length variables are normalized by the outer radius of curvature R. By using cylin-
drical coordinates, the plate is bounded by r = b, r = 1, θ = ±α/2, where α is the opening 
angle. Let the plate have a uniform density ρ, thickness h, and flexural rigidity D and 
vibrating with a circular frequency ω. The governing equation for vibration is given by

	 ∇ − =w k w 04 4 	 (5.75)

where ∇ = ∇ ∇4 2 2 , ∇ = + +∂
∂

∂
∂

∂
∂θr r r r

2 1 12

2 2

2

2 , w(r,θ) is the vibration amplitude, and 
= ω ρk R h D/2 2  is the normalized frequency. The general solution to Equation 

(5.75) is given by

	 = µθ + µθw C C u r[ cos( ) sin( )] ( )1 2 	 (5.76)

	 = + + +µ µ µ µu A J kr A Y kr A I kr A K kr( ) ( ) ( ) ( )1 2 3 4 	 (5.77)

Here J, Y are Bessel functions, and K, I are modified Bessel functions. For simply 
supported radial edges and if the vibration is symmetric with respect to θ, cos(μθ) 
and μ = (2n − 1)π/α are chosen, where n is a nonzero positive integer. For vibrations 
antisymmetric with respect to θ, sin(μθ) and μ = 2nπ/α are selected instead.

TABLE 5.13
Nine Combinations of Boundary Conditions for Annular Plates and 
Equations Forming the Eigenvalue Problem

Annular 
Plates Four Equations That Make Up the Eigenvalue Problem

1 Free-Clamped =M a( ) 0rr =V a( ) 0r =w b( ) 0 =dw b

dr

( )
0

2 Clamped-Clamped =w a( ) 0 =dw a

dr

( )
0 =w b( ) 0 =dw b

dr

( )
0

3 Free-Free =M a( ) 0rr =V a( ) 0r =M b( ) 0rr =V b( ) 0r

4 Simply Supported =w a( ) 0 =M a( ) 0rr =w b( ) 0 =M b( ) 0rr

5 Free-Simply Supported =M a( ) 0rr =V a( ) 0r =w b( ) 0 =M b( ) 0rr

6 Simply Supported-Free =w a( ) 0 =M a( ) 0rr =M b( ) 0rr =V b( ) 0r

7 Simply Supported-Clamped =w a( ) 0 =M a( ) 0rr =w b( ) 0 =dw b

dr

( )
0

8 Clamped-Free =w a( ) 0 =dw a

dr

( )
0 =M b( ) 0rr =V b( ) 0r

9 Clamped-Simply Supported =w a( ) 0 =dw a

dr

( )
0 =w b( ) 0 =M b( ) 0rr
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The boundary conditions on the curved boundaries could be clamped (C), simply 
supported (S), or free (F). The first letter will be used for the outer boundary at r = 1, 
and the second letter for the inner boundary at r = b. There are nine different cases: 
C-C, S-S, F-F, C-S, S-C, C-F, F-C, S-F, and F-S.

The normalized radial bending moment is given by

	
= + ν − µ






M u

d u

dr r

du

dr r
u( )

12

2

2

2 	 (5.78)

The normalized effective shear force is given by

	
V u

d u

dr r

d u

dr r

du

dr r
( )

1
[1 (2 )]

1
(3 )

3

3

2

2
2

2
2

3= + − + µ − ν + µ − ν µ
	 (5.79)

TABLE 5.14
Natural Frequencies ω = ω ρ /2a h D  for Annular Plate with Free Outer Edge 
and Clamped Inner Edge

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6

0.7

36.953 37.498 39.277 42.654 48.071 55.880

0.5

13.024 13.290 14.704 18.562 25.596 35.730

0.3

6.552 6.660 7.956 13.276 22.076 33.567

a
b
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Here, ν is the Poisson ratio, taken to be 0.3 in our computations. For a clamped 
edge, let the submatrix be

	

=
′ ′ ′ ′

















µ µ µ µ

µ µ µ µ

Q r
J kr Y kr I kr K kr

J kr Y kr I kr K kr
( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
C 	 (5.80)

For a simply supported edge, the submatrix is

	

Q r
J kr Y kr I kr K kr

M J kr M Y kr M I kr M K kr
( )

( ) ( ) ( ) ( )

( ( )) ( ( )) ( ( )) ( ( ))
S =











µ µ µ µ

µ µ µ µ

	 (5.81)

TABLE 5.15
Natural Frequencies ω = ω ρ /2a h D  for Annular Plate with Clamped Outer 
Edge and Clamped Inner Edge

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6

0.7

248.402 249.164 251.481 255.444 261.197 268.921

0.5

89.251 90.230 93.321 98.928 107.567 119.697

0.3

45.346 46.644 51.139 60.033 73.945 92.495

a
b
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For a free edge, the submatrix is

	

=

















µ µ µ µ

µ µ µ µ

Q r
M J kr M Y kr M I kr M K kr

V J kr V Y kr V I kr V K kr
( )

( ( )) ( ( )) ( ( )) ( ( ))

( ( )) ( ( )) ( ( )) ( ( ))
F 	 (5.82)

Thus the exact characteristic equations for the aforementioned nine cases are
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		  (5.83)

TABLE 5.16
Natural Frequencies ω = ω ρ /2a h D  for Annular Plate with Free Outer Edge 
and Free Inner Edge

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6

0.7

3.573 9.859 13.163 18.697 21.914 30.025

0.5

4.271 9.313 11.425 17.198 21.067 31.115

0.3

4.906 8.353 12.266 18.292 21.783 32.973

a
b
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We choose b, n and thus μ. Then from Equation (5.83), the normalized frequen-
cies k2 are obtained by a root search algorithm to any desired accuracy.

The frequency equations do not include the circular sector plate, for which b = 
0. However, by decreasing the inner radius b = − − − −10 , 10 , 10 , 102 4 6 8 , one finds that 
the results become independent of the inner edge conditions. Table 5.23 shows all 
three cases F-C, F-S, F-F converged to the same values, which are comparable to the 
exact results of the free outer edge circular sector plate of Huang, Leissa, and McGee 
(1993). The results for the clamped or simply supported outer edges are similar. 
Thus, the adopted root search algorithm is accurate to at least five significant figures.

The first five natural frequencies for three representative inner radii of b = 0.1, 
0.5, 0.9 will be presented. Let n be the nth harmonic in the θ direction and m be the 
mth root of k in the radial direction. The mode shapes are given as (n,m) or [n,m], 
where the parentheses denote symmetric mode, and the brackets denote antisym-
metric mode. Figure 5.9c shows schematically the mode shapes. Tables 5.24 to 5.32 
show the frequencies of the nine cases.

TABLE 5.17
Natural Frequencies ω = ω ρ /2a h D  for Annular Plate with Simply 
Supported Outer Edge and Simply Supported Inner Edge

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6

0.7

110.063 111.443 115.585 122.493 132.173 144.626

0.5

40.043 41.797 47.089 55.957 68.379 84.257

0.3

21.079 23.317 30.273 41.910 57.546 76.427

a
b
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Note that since frequencies are based on the outer radius, in general they 
increase with a smaller area, i.e., larger b and smaller α. Frequencies also increase 
with stiffer boundary constraints. From high to low, the frequencies of the fol-
lowing curved edge conditions are ordered as follows: C-C, C-S, S-C, S-S, C-F, 
S-F, F-C, F-S, F-F (there are a few exceptions). The frequencies of C-S are larger 
than those of S-C, since the former has a longer clamped boundary. Similarly, 
the frequencies of C-F and S-F are larger than F-C and F-S, respectively. These 
differences are peculiar to annular sector plates and do not apply to rectangular 
plates. Exact solutions for other opening angles are given by Ramakrishnan and 
Kunukkasseril (1973).

Does a very slender annular sector mimic a long straight strip? The characteristic 
equation of a straight strip with C-C edges is

	 cos λ cosh λ − 1 = 0	 (5.84)

TABLE 5.18
Natural Frequencies ω = ω ρ /2a h D  for Annular Plate with Free Outer Edge 
and Simply Supported Inner Edge

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6

0.7

6.187 8.351 13.427 20.454 29.403 40.387

0.5

4.121 4.862 7.986 14.035 22.788 34.047

0.3

3.374 3.422 12.611 21.876 31.603

a
b

6.080
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By using our normalization, the frequency is given by

	
= λ

−
k

b(1 )
2

2

2 	 (5.85)

The first nonzero root of Equation (5.84) is λ = 4.7300. For b = 0.9, Equation 
(5.85) yields 2237.3, which compares favorably with the large α values in Table 5.24, 
where the first five frequencies cluster together. For the C-F or F-C cases, the straight 
strip equation is

	 cos λ cosh λ + 1 = 0	 (5.86)

TABLE 5.19
Natural Frequencies ω = ω ρ /2a h D  for Annular Plate with Simply 
Supported Outer Edge and Free Inner Edge

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6

0.7

6.931 13.311 24.329 37.097 51.713 68.502

0.5

5.077 11.607 22.357 35.636 52.032 65.842

0.3

4.664 12.816 24.116 37.042 38.775 45.837

a
b
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The first root is λ = 1.8751, giving a frequency of 351.60 for b = 0.9. This approxi-
mates the values in Tables 5.29 and 5.30, with the difference attributed to the curva-
ture of the sector. For C-S and S-C cases, the equation is

	 sin λ cosh λ − cos λ sinh λ = 0	 (5.87)

with the first root λ = 3.9266. The frequency for large α and b = 0.9 is estimated to 
be 1541.8. For the S-S case, λ = nπ, which furnishes a frequency of 986.96 for slen-
der sectors. Most interesting are the F-F, F-S, S-F cases for which the strip would 
give a zero frequency, which is often discarded due to zero deformation. But this 
zero frequency corresponds to small, nontrivial vibrations for the slender sector (see 
Tables 5.26, 5.31, 5.32).

TABLE 5.20
Natural Frequencies ω = ω ρ /2a h D  for Annular Plate with Simply 
Supported Outer Edge and Clamped Inner Edge

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6

0.7

168.524 169.489 172.414 177.380 184.511 193.952

0.5

59.820 60.987 64.631 71.107 80.802 93.988

0.3

29.978 31.403 36.243 45.459 59.273 77.133

a
b
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Does the simply supported condition on the radial edges of a slender sector influ-
ence the frequencies? The answer is probably very little. One can either invoke Saint 
Venant’s principle or actually compute the frequencies of a long rectangle, with vari-
ous boundary conditions on the short edges. Note that the Ritz method can be used 
on long rectangular plates but not on sector plates with α > 360°.

Consider the mode shapes. It is generally believed that the fundamental mode 
(corresponding to the lowest frequency, including zero) does not have internal nodal 
lines. The work of Wang and Wang (2005) showed that, for a full annular plate, the 
fundamental mode may have two internal radial nodes. Although the fundamental 
mode with no internal nodes (1,1) is prevalent, there are exceptions. For example, the 
α > 180° of the F-F case has [1,1] or one internal radial node as fundamental mode. 
The fundamental [1,1] mode also occurs in F-S and F-C cases. They also find funda-
mental modes of (2,1), [2,1], (3,1), and (5,1), especially at higher α and lower b situ-
ations. Since the fundamental mode may have internal nodal lines, it is concluded 

TABLE 5.21
Natural Frequencies ω = ω ρ /2a h D  for Annular Plate with Clamped Outer 
Edge and Free Inner Edge

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6

0.7

43.142 45.332 51.585 61.290 74.009 89.579

0.5

17.715 22.015 32.116 45.812 63.018 83.814

0.3

11.424 19.540 32.594 49.069 51.745 59.759

a
b
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TABLE 5.22
Natural Frequencies ω = ω ρ /2a h D  for Annular Plate with Clamped Outer 
Edge and Simply Supported Inner Edge

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6

0.7

174.408 175.516 178.866 184.530 192.612 203.233

0.5

63.973 65.486 70.136 78.182 89.857 105.253

0.3

33.765 35.906 42.731 54.609 71.063 91.216

a
b

(1,1)

(1,2)

(2,1)

(c)(b)(a)

R

bR

r'

α

[1,1]

[1,2]

[2,1]

θ

FIGURE 5.9  (a) The annular sector plate. (b) A coil with α = 1440°, b = 0.5.  (c) Mode 
shapes with internal nodal lines and their designations.
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that, for the same plate, an increase in nodal lines does not necessarily imply an 
increase in the frequency.

If the opening angle of the annular sector is π/N, where N is an integer, can all 
the frequencies of the annular sector plate be found from those of the full annular 
plate? This seems to be true. Consider an F-F plate with α = 90° and b = 0.5. The 
results are given in Table 5.33. In the table, the full annular plate frequency values 
with asterisks agree with Gabrielson (1999), which are more accurate than any of the 
results collated in Leissa’s book (1969). The results for the annular sector plate are 
from Table 5.26, which are slightly more accurate than those of Ramakrishnan and 
Kunukkasseril (1973), whose results are in parentheses.

Table 5.34 lists the frequencies of the C-C full annular plate and those of the α = 
360° sector plate, both with b = 0.5. The shapes are the same, except the sector has 
a simply supported radial slit. We find the fundamental frequencies are different. 
Also, the sector plate has a lot more frequencies than the full annulus for the same 
range, opposite to Table 5.33.

The F-F sector plate has an interesting application. Transverse vibrations of the 
F-F long sector are equivalent to the longitudinal vibrations of a coil. Consider the 
case where α = 1440° and b = 0.5 coil, as shown in Figure 5.9b. The fundamental fre-
quency (Table 5.26) is 0.2861 (1,1). This means that the lowest frequency for longitu-
dinal oscillations of the coil is 0.2861, with no fixed points. The second frequency is 
0.5184 [1,1], for which the longitudinal wave has a fixed point at the middle, separat-
ing waves propagating in opposite directions.

Annular sector plates are important as curved girders and heat-transfer fins 
(inside or outside a cylinder). Their frequencies and mode shapes are decidedly dif-
ferent from those of the full annular plate.

5.4 � GOVERNING EQUATIONS AND BOUNDARY 
CONDITIONS FOR VIBRATING THICK PLATES

For thick plates, it is necessary to allow for the effects of transverse deformation 
and rotary inertia due to their significant influences on the vibration frequencies. In 
order to accommodate the allowance of the former effect, the Kirchhoff hypothesis 

TABLE 5.23
First Two Roots of k2 Using b = 10−8 
as Inner Radius

α F-C, F-S, F-F Free Outer Edge a

270°
2.75856 2.75864

20.7230 20.7233

360°
3.22484 3.22484

20.8057 20.8057

a	 Data for free outer edge is from Huang, Leissa, 
and McGee (1993).
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TABLE 5.24
Frequencies for the C-C Sector Plate with Mode Shapes

α\b 0.1 0.5 0.9

50° 61.955 (1,1)
128.46 (1,2)
145.51 [1,1]
214.75 (1,3)
250.54 [1,2]

103.72 (1,1)
159.74 [1,1]
262.67 (2,1)
264.97 (1,2)
326.15 [1,2]

2245.1 (1,1)
2269.2 [1,1]
2310.7 (2,1)
2371.0 [2,1]
2452.2 (3,1)

90° 36.617 (1,1)
69.678 [1,1]
90.448 (1,2)

114.21 (2,1)
140.23 [1,2]

93.321 (1,1)
107.57 [1,1]
135.60 (2,1)
178.82 [2,1]
236.18 (3,1)

2239.6 (1,1)
2247.0 [1,1]
2259.3 (2,1)
2276.9 [2,1]
2299.9 (3,1)

180° 28.916 (1,1)
36.617 [1,1]
51.219 (2,1)
69.678 [2,1]
90.448 [1,2]

90.230 (1,1)
93.321 [1,1]
98.928 (2,1)

107.57 [2,1]
119.70 (3,1)

2237.8 (1,1)
2239.6 [1,1]
2242.3 (2,1)
2247.0 [2,1]
2252.5 (3,1)

270° 27.919 (1,1)
30.614 [1,1]
36.617 (2,1)
45.792 [2,1]
57.048 (3,1)

89.683 (1,1)
91.010 [1,1]
93.321 (2,1)
96.748 [2,1]

101.45 (3,1)

2237.5 (1,1)
2238.3 [1,1]
2239.6 (2,1)
2241.5 [2,1]
2244.0 (3,1)

360° 27.621 (1,1)
28.916 [1,1]
31.778 (2,1)
36.617 [2,1]
43.261 (3,1)

84.493 (1,1)
90.230 [1,1]
91.491 (2,1)
93.321 [2,1]
95.778 (3,1)

2237.3 (1,1)
2237.8 [1,1]
2238.6 (2,1)
2239.6 [2,1]
2241.0 (3,1)

720° 27.361 (1,1)
27.621 [1,1]
28.114 (2,1)
28.916 [2,1]
30.113 (3,1)

89.311 (1,1)
89.493 [1,1]
89.799 (2,1)
90.230 [2,1]
90.793 (3,1)

2237.2 (1,1)
2237.3 [1,1]
2237.5 (2,1)
2237.8 [2,1]
2238.1 (3,1)

1440° 27.300 (1,1)
27.361 [1,1]
27.466 (2,1)
27.621 [2,1]
27.834 (3,1)

89.266 (1,1)
89.311 [1,1]
89.387 (2,1)
89.493 [2,1]
89.630 (3,1)

2237.2 (1,1)
2237.2 [1,1]
2237.3 (2,1)
2237.3 [2,1]
2237.4 (3,1)

Note: The parentheses denote symmetric mode; the brackets denote antisym-
metric mode.
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TABLE 5.25

Frequencies for the S-S Sector Plate
α\b 0.1 0.5 0.9

50° 49.790 (1,1)
110.55 (1,2)
127.30 [1,1]
190.84 (1,3)
226.26 [1,2]

62.988 (1,1)
130.56 [1,1]
183.69 (1,2)
235.98 (2,1)
259.72 [1,2]

1001.6 (1,1)
1044.7 [1,1]
1116.5 (2,1)
1217.0 [2,1]
1346.3 (3,1)

90° 25.936 (1,1)
56.842 [1,1]
76.687 (1,2)
97.995 (2,1)
121.71 [1,2]

47.089 (1,1)
68.379 [1,1]
103.44 (2,1)
166.35 (1,2)
189.60 [1,2]

991.70 (1,1)
1005.0 [1,1]
1027.2 (2,1)
1058.2 [2,1]
1098.1 (3,1)

180° 16.776 (1,1)
25.936 [1,1]
39.976 (2,1)
56.507 (1,2)
56.842 [2,1]

41.797 (1,1)
47.089 [1,1]
55.957 (2,1)
68.379 [2,1]
84.257 (3,1)

988.38 (1,1)
991.70 [1,1]
997.24 (2,1)
1005.0 [2,1]
1015.0 (3,1)

270° 15.374 (1,1)
19.043 [1,1]
25.936 (2,1)
34.940 [2,1]
45.313 (3,1)

40.822 (1,1)
43.166 [1,1]
47.089 (2,1)
52.603 [2,1]
59.706 (3,1)

987.76 (1,1)
989.24 [1,1]
991.70 (2,1)
995.15 [2,1]
999.58 (3,1)

360° 14.953 (1,1)
16.776 [1,1]
20.499 (2,1)
25.936 [2,1]
32.545 (3,1)

40.481 (1,1)
41.797 [1,1]
43.998 (2,1)
47.089 [2,1]
51.075 (3,1)

987.55 (1,1)
988.38 [1,1]
989.76 (2,1)
991.70 [2,1]
994.20 (3,1)

720° 14.594 (1,1)
14.953 [1,1]
15.649 (2,1)
16.776 [2,1]
18.314 (3,1)

40.153 (1,1)
40.481 [1,1]
41.029 (2,1)
41.797 [2,1]
42.787 (3,1)

987.34 (1,1)
987.55 [1,1]
987.90 (2,1)
988.38 [2,1]
989.00 (3,1)

1440° 14.511 (1,1)
14.594 [1,1]
14.738 (2,1)
14.953 [2,1]
15.253 (3,1)

40.071 (1,1)
40.153 [1,1]
40.289 (2,1)
40.481 [2,1]
40.728 (3,1)

987.29 (1,1)
987.34 [1,1]
987.43 (2,1)
987.55 [2,1]
987.70 (3,1)

Note:	 The parentheses denote symmetric mode; the brackets 
denote antisymmetric mode.
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TABLE 5.26
Frequencies for the F-F Sector Plate

α\b 0.1 0.5 0.9

50° 17.802 (1,1)
64.993 (1,2)
66.932 [1,1]
129.83 (1,3)
144.22 (2,1)

16.929 (1,1)
58.629 (1,2)
66.769 [1,1]
137.20 (1,3)
144.21 (2,1)

12.303 (1,1)
53.353 [1,1]
122.10 (2,1)
161.03 (1,2)
218.81 [2,1]

90° 5.3034 (1,1)
21.835 [1,1]
34.931 (1,2)
47.378 (2,1)
73.540 [1,2]

4.2711 (1,1)
21.067 [1,1]
31.115 (1,2)
47.063 (2,1)
66.722 [1,2]

2.9338 (1,1)
15.503 [1,1]
36.604 (2,1)
66.228 [2,1]
93.796 (1,3)

180° 5.3034 [1,1]
12.437 (2,1)
20.406 (1,1)
21.835 [2,1]
33.495 (3,1)

4.2711 [1,1]
11.425 (2,1)
17.198 (1,1)
21.067 [2,1]
32.982 (3,1)

2.9338 [1,1]
8.1440 (2,1)
15.503 [2,1]
24.990 (3,1)
55.720 (1,1)

270° 5.3034 (2,1)
9.8117 [2,1]
15.316 (3,1)
16.942 (1,1)
21.835 [3,1]

0.6115 (1,1)
1.0613 [1,1]
4.2711 (2,1)
8.7499 [2,1]
13.346 (1,2)

0.3744 (1,1)
0.7023 [1,1]
2.9338 (2,1)
6.1663 [2,1]
10.360 (3,1)

360° 1.8005 (1,1)
2.4814 (2,1)
5.3034 [2,1]
8.5939 (3,1)
12.437 [3,1]

0.7044 (1,1)
1.7353 (2,1)
4.2711 [2,1]
7.5187 (3,1)
11.425 [3,1]

0.4183 (1,1)
1.1615 (2,1)
2.9338 [2,1]
5.2673 (3,1)
8.1440 [3,1]

720° 1.0504 (2,1)
1.1989 (3,1)
1.8005 [1,1]
1.8813 (1,1)
2.4814 [3,1]

0.5075 (2,1)
0.5184 (1,1)
0.7044 [1,1]
0.7588 (3,1)
1.7353 [3,1]

0.2942 (1,1)
0.3150 (2,1)
0.4183 [1,1]
0.4989 (3,1)
1.1615 [3,1]

1440° 1.2861 (1,1)
1.4769 (3,1)
1.8005 [2,1]
1.8813 [1,1]
1.9714 (2,1)

0.2861 (1,1)
0.5184 [1,1]
0.6498 (3,1)
0.6619 (2,1)
0.7044 [2,1]

0.1598 (1,1)
0.2942 [1,1]
0.3838 (2,1)
0.3949 (3,1)
0.4183 [2,1]

Note:	 The parentheses denote symmetric mode; the brackets 
denote antisymmetric mode.
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TABLE 5.27
Frequencies for the C-S Sector Plate

α\b 0.1 0.5 0.9

50° 213.78 (1,1)
250.54 [1,1]
259.48 (2,1)
319.35 (1,2)
372.97 [1,2]

84.742 (1,1)
151.76 [1,1]
225.44 (1,2)
260.62 (2,1)
250.54 [1,2]

1560.7 (1,1)
1593.9 [1,1]
1650.3 (2,1)
1731.0 [2,1]
1837.5 (3,1)

90° 35.406 (1,1)
69.667 [1,1]
86.716 (1,2)
114.21 (2,1)
140.13 [1,2]

70.136 (1,1)
89.858 [1,1]
124.31 (2,1)
172.68 [2,1]
209.21 (1,2)

1553.1 (1,1)
1563.3 [1,1]
1580.3 (2,1)
1604.4 [2,1]
1635.7 (3,1)

180° 25.283 (1,1)
35.406 [1,1]
51.065 (2,1)
69.667 [2,1]
90.448 [1,2]

65.486 (1,1)
70.136 [1,1]
78.182 (2,1)
89.858 [2,1]
105.25 (3,1)

1550.6 (1,1)
1553.1 [1,1]
1557.4 (2,1)
1563.3 [2,1]
1571.0 (3,1)

270° 23.724 (1,1)
27.775 [1,1]
35.406 (2,1)
45.459 [2,1]
56.982 (3,1)

64.643 (1,1)
66.676 [1,1]
70.136 (2,1)
75.106 [2,1]
81.663 (3,1)

1550.1 (1,1)
1551.2 [1,1]
1553.1 (2,1)
1555.8 [2,1]
1559.1 (3,1)

360° 23.247 (1,1)
25.283 [1,1]
29.378 (2,1)
35.406 [2,1]
42.785 (3,1)

64.349 (1,1)
65.486 [1,1]
67.404 (2,1)
70.136 [2,1]
73.718 (3,1)

1550.0 (1,1)
1550.6 [1,1]
1551.6 (2,1)
1553.1 [2,1]
1555.0 (3,1)

720° 22.830 (1,1)
23.247 [1,1]
24.033 (2,1)
25.283 [2,1]
27.061 (3,1)

64.067 (1,1)
64.349 [1,1]
64.821 (2,1)
65.486 [2,1]
66.345 (3,1)

1549.8 (1,1)
1550.0 [1,1]
1550.2 (2,1)
1550.6 [2,1]
1551.1 (3,1)

1440° 22.733 (1,1)
22.830 [1,1]
22.998 (2,1)
23.247 [2,1]
23.588 (3,1)

63.997 (1,1)
64.067 [1,1]
64.185 (2,1)
64.349 [2,1]
64.562 (3,1)

1549.8 (1,1)
1549.8 [1,1]
1549.9 (2,1)
1550.0 [2,1]
1550.1 (3,1)

Note:	 The parentheses denote symmetric mode; the brackets 
denote antisymmetric mode.
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TABLE 5.28
Frequencies for the S-C Sector Plate

α\b 0.1 0.5 0.9

50° 49.807 (1,1)
110.72 (1,2)
127.30 [1,1]
191.56 (1,3)
226.26 [1,2]

76.517 (1,1)
135.50 [1,1]
217.89 (1,2)
237.10 (2,1)
282.25 [1,2]

1554.7 (1,1)
1576.6 [1,1]
1630.8 (2,1)
1708.5 [2,1]
1811.4 (3,1)

90° 26.717 (1,1)
56.848 [1,1]
74.631 (1,2)
97.995 (2,1)
121.78 [1,2]

64.631 (1,1)
80.803 [1,1]
110.75 (2,1)
154.68 [2,1]
204.05 (1,2)

1537.4 (1,1)
1547.1 [1,1]
1563.5 (2,1)
1586.7 [2,1]
1616.7 (3,1)

180° 26.717 [1,1]
40.062 (2,1)
56.848 [2,1]
63.243 (1,1)
74.631 [1,2]

60.987 (1,1)
64.631 [1,1]
71.107 (2,1)
80.803 [2,1]
93.988 (3,1)

1535.0 (1,1)
1537.4 [1,1]
1541.4 (2,1)
1547.1 [2,1]
1554.5 (3,1)

270° 18.418 (1,1)
21.041 [1,1]
26.717 (2,1)
35.135 [2,1]
45.349 (3,1)

60.336 (1,1)
61.912 [1,1]
64.631 (2,1)
68.608 [2,1]
73.964 (3,1)

1534.5 (1,1)
1535.6 [1,1]
1537.4 (2,1)
1539.9 [2,1]
1543.2 (3,1)

360° 18.125 (1,1)
19.394 [1,1]
22.159 (2,1)
26.717 [2,1]
32.830 (3,1)

60.109 (1,1)
60.987 [1,1]
62.481 (2,1)
64.631 [2,1]
67.489 (3,1)

1534.3 (1,1)
1535.0 [1,1]
1536.0 (2,1)
1537.4 [2,1]
1539.2 (3,1)

720° 17.869 (1,1)
18.125 [1,1]
18.609 (2,1)
19.394 [2,1]
20.558 (3,1)

59.892 (1,1)
60.109 [1,1]
60.473 (2,1)
60.987 [2,1]
61.655 (3,1)

1534.2 (1,1)
1534.3 [1,1]
1534.6 (2,1)
1535.0 [2,1]
1535.4 (3,1)

1440° 17.809 (1,1)
17.869 [1,1]
17.972 (2,1)
18.125 [2,1]
18.335 (3,1)

59.838 (1,1)
59.892 [1,1]
59.983 (2,1)
60.109 [2,1]
60.273 (3,1)

1534.2 (1,1)
1534.2 [1,1]
1534.3 (2,1)
1534.3 [2,1]
1534.5 (3,1)

Note:	 The parentheses denote symmetric mode; the brackets 
denote antisymmetric mode.
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TABLE 5.29
Frequencies for the C-F Sector Plate

α\b 0.1 0.5 0.9

50° 61.909 (1,1)
128.09 (1,2)
145.51 [1,1]
213.22 (1,3)
259.48 (2,1)

55.702 (1,1)
134.56 (1,2)
140.73 [1,1]
234.61 [1,2]
258.36 (2,1)

375.25 (1,1)
419.55 [1,1]
492.59 (2,1)
594.13 [2,1]
724.43 (3,1)

90° 34.535 (1,1)
69.660 [1,1]
83.478 (1,2)
114.21 (2,1)
140.08 [1,2]

32.116 (1,1)
63.018 [1,1]
107.49 (1,2)
107.96 (2,1)
143.04 [1,2]

364.96 (1,1)
378.73 [1,1]
401.56 (2,1)
433.31 [2,1]
473.90 (3,1)

180° 21.195 (1,1)
34.535 [1,1]
50.990 (2,1)
60.061 (1,2)
69.663 [2,1]

22.015 (1,1)
32.116 [1,1]
45.812 (2,1)
63.018 [2,1]
83.814 (3,1)

361.50 (1,1)
364.96 [1,1]
370.70 (2,1)
378.73 [2,1]
389.02 (3,1)

270° 18.077 (1,1)
24.997 [1,1]
34.535 (2,1)
45.277 [2,1]
52.681 (1,2)

19.728 (1,1)
24.918 [1,1]
32.116 (2,1)
40.868 [2,1]
51.148 (3,1)

360.86 (1,1)
362.40 [1,1]
364.96 (2,1)
368.53 [2,1]
373.12 (3,1)

360° 16.409 (1,1)
21.195 [1,1]
27.195 (2,1)
34.535 [2,1]
42.508 (3,1)

18.871 (1,1)
22.015 [1,1]
26.559 (2,1)
32.116 [2,1]
38.539 (3,1)

360.64 (1,1)
361.50 [1,1]
362.94 (2,1)
364.96 [2,1]
367.54 (3,1)

720° 12.959 (1,1)
16.409 [1,1]
18.837 (2,1)
21.195 [2,1]
23.967 (3,1)

18.010 (1,1)
18.871 [1,1]
20.233 (2,1)
22.015 [2,1]
24.142 (3,1)

360.42 (1,1)
360.64 [1,1]
361.00 (2,1)
361.50 [2,1]
362.15 (3,1)

1440° 11.051 (1,1)
12.959 [1,1]
14.856 (2,1)
16.409 [2,1]
17.687 (3,1)

17.789 (1,1)
18.010 [1,1]
18.373 (2,1)
18.871 [2,1]
19.494 (3,1)

360.37 (1,1)
360.42 [1,1]
360.51 (2,1)
360.64 [2,1]
360.80 (3,1)

Note:	 The parentheses denote symmetric mode; the brackets 
denote antisymmetric mode.
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on the normality assumption has to be relaxed so that the normals to the unde-
formed mid-surface remain straight and unstretched in length but not necessarily 
normal to the deformed mid-surface. This assumption implies a nonzero transverse 
shear strain, but it also leads to the statical violation of the zero shear-stress condi-
tion at the free surfaces, since the shear stress becomes constant through the plate 

TABLE 5.30
Frequencies for the F-C Sector Plate

α\b 0.1 0.5 0.9

50° 17.804 (1,1)
65.044 (1,2)
66.932 [1,1]
130.20 (1,3)
144.22 (2,1)

22.395 (1,1)
67.581 [1,1]
106.88 (1,2)
144.29 (2,1)
173.88 [1,2]

354.39 (1,1)
385.36 [1,1]
439.68 (2,1)
519.78 [2,1]
627.36 (3,1)

90° 5.6627 (1,1)
21.836 [1,1]
47.378 (2,1)
73.557 [1,2]
81.704 [2,1]

14.704 (1,1)
25.596 [1,1]
48.673 (2,1)
82.106 [2,1]
91.738 (1,2)

347.47 (1,1)
356.76 [1,1]
372.57 (2,1)
395.32 [2,1]
425.45 (3,1)

180° 3.4781 (1,1)
5.6227 [1,1]
12.451 (2,1)
27.673 (1,2)
36.941 [1,2]

13.290 (1,1)
14.704 [1,1]
18.562 (2,1)
25.596 [2,1]
35.730 (3,1)

345.17 (1,1)
347.47 [1,1]
351.32 (2,1)
356.76 [2,1]
363.83 (3,1)

270° 3.4847 [1,1]
3.8100 (1,1)
5.6227 (2,1)
9.8528 [2,1]
15.320 (3,1)

13.128 (1,1)
13.572 [1,1]
14.704 (2,1)
16.938 [2,1]
20.547 (3,1)

344.74 (1,1)
345.76 [1,1]
347.47 (2,1)
349.86 [2,1]
352.96 (3,1)

360° 3.4781 [1,1]
3.7434 (2,1)
3.9821 (1,1)
5.6227 [2,1]
8.6634 (3,1)

13.080 (1,1)
13.290 [1,1]
13.774 (2,1)
14.704 [2,1]
16.257 (3,1)

344.59 (1,1)
345.17 [1,1]
346.12 (2,1)
347.47 [2,1]
349.20 (3,1)

720° 3.4267 (3,1)
3.4781 [2,1]
3.7185 (2,1)
3.7434 [3,1]
3.9821 [1,1]

13.038 (1,1)
13.080 [1,1]
13.160 (2,1)
13.290 [2,1]
13.487 (3,1)

344.45 (1,1)
344.59 [1,1]
344.83 (2,1)
345.17 [2,1]
345.60 (3,1)

1440° 3.4165 (5,1)
3.4267 [5,1]
3.4781 [4,1]
3.5310 (6,1)
3.5865 (4,1)

13.028 (1,1)
13.038 [1,1]
13.055 (2,1)
13.080 [2,1]
13.115 (3,1)

344.41 (1,1)
344.45 [1,1]
344.51 (2,1)
344.59 [2,1]
344.70 (3,1)

Note:	 The parentheses denote symmetric mode; the brackets denote 
antisymmetric mode.



180 Structural Vibration

© 2010 Taylor & Francis Group, LLC

TABLE 5.31
Frequencies for the S-F Sector Plate

α\b 0.1 0.5 0.9

50° 49.783 (1,1)
110.48 (1,2)
127.30 [1,1]
190.44 (1,3)
226.26 [1,2]

45.082 (1,1)
109.59 (1,2)
124.62 [1,1]
211.36 [1,2]
234.90 (2,1)

89.072 (1,1)
182.75 [1,1]
290.78 (2,1)
417.84 [2,1]
567.53 (3,1)

90° 25.394 (1,1)
56.840 [1,1]
69.260 (1,2)
97.995 (2,1)
121.69 [1,2]

22.357 (1,1)
52.032 [1,1]
81.100 (1,2)
94.183 (2,1)
118.33 [1,2]

51.180 (1,1)
98.914 [1,1]
150.17 (2,1)
205.34 [2,1]
265.28 (3,1)

180° 13.872 (1,1)
25.394 [1,1]
39.935 (2,1)
48.012 (2,1)
56.840 [2,1]

11.607 (1,1)
22.357 [1,1]
35.636 (2,1)
52.032 [2,1]
71.638 (3,1)

29.769 (1,1)
51.180 [1,1]
74.562 (2,1)
98.914 [2,1]
124.10 (3,1)

270° 11.414 (1,1)
17.124 [1,1]
25.394 (2,1)
34.838 [2,1]
41.706 (1,3)

8.5788 (1,1)
14.944 [1,1]
22.357 (2,1)
30.884 [2,1]
40.739 (3,1)

23.828 (1,1)
36.514 [1,1]
51.180 (2,1)
66.642 [2,1]
82.585 (3,1)

360° 10.224 (1,1)
13.872 [1,1]
19.027 (2,1)
25.394 [2,1]
32.385 (3,1)

7.2502 (1,1)
11.607 [1,1]
16.705 (2,1)
22.357 [2,1]
28.635 (3,1)

21.366 (1,1)
29.769 [1,1]
40.069 (2,1)
51.180 [2,1]
62.725 (3,1)

720° 7.6085 (1,1)
10.224 [1,1]
11.980 (2,1)
13.872 [2,1]
16.235 (3,1)

5.6963 (1,1)
7.2502 [1,1]
9.2979 (2,1)
11.607 [2,1]
14.086 (3,1)

18.690 (1,1)
21.366 [1,1]
25.206 (2,1)
29.769 [2,1]
34.776 (3,1)

1440° 5.8376 (1,1)
7.6085 [1,1]
9.1052 (2,1)
10.224 [2,1]
11.131 (3,1)

5.2385 (1,1)
5.6963 [1,1]
6.3884 (2,1)
7.2502 [2,1]
8.2315 (3,1)

17.959 (1,1)
18.690 [1,1]
19.849 (2,1)
21.366 [2,1]
23.172 (3,1)

Note:	 The parentheses denote symmetric mode; the brackets 
denote antisymmetric mode.
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TABLE 5.32
Frequencies for the F-S Sector Plate

α\b 0.1 0.5 0.9

50° 17.803 (1,1)
65.008 (1,2)
66.932 [1,1]
129.95 (1,3)
144.22 (2,1)

18.977 (1,1)
67.081 [1,1]
88.589 (1,2)
144.24 (2,1)
164.88 [1,2]

73.178 (1,1)
150.75 [1,1]
242.84 (2,1)
353.60 [2,1]
486.08 (3,1)

90° 5.4277 (1,1)
21.835 [1,1]
35.774 (1,2)
47.378 (2,1)
73.544 [1,2]

7.9861 (1,1)
22.788 [1,1]
47.688 (2,1)
69.766 (1,2)
81.794 [2,1]

42.619 (1,1)
81.210 [1,1]
123.51 (2,1)
169.80 [2,1]
220.89 (3,1)

180° 2.4377 (1,1)
5.4277 [1,1]
12.441 (2,1)
21.835 [2,1]
24.244 (1,2)

4.8616 (1,1)
7.9861 [1,1]
14.035 (2,1)
22.788 [2,1]
34.047 (3,1)

25.894 (1,1)
42.619 [1,1]
61.397 (2,1)
81.210 [2,1]
101.90 (3,1)

270° 2.6524 [1,1]
2.8451 (1,1)
5.4277 (2,1)
9.8250 [2,1]
15.317 (1,3)

4.4183 (1,1)
5.5806 [1,1]
7.9861 (2,1)
11.705 [2,1]
16.664 (3,1)

21.458 (1,1)
31.076 [1,1]
42.619 (2,1)
55.003 [2,1]
67.901 (3,1)

360° 2.4377 [1,1]
3.0852 (1,1)
3.1054 (2,1)
5.4277 [2,1]
8.6173 (3,1)

4.2812 (1,1)
4.8616 [1,1]
6.0576 (2,1)
7.9861 [2,1]
10.656 (3,1)

19.674 (1,1)
25.894 [1,1]
33.847 (2,1)
42.619 [2,1]
51.852 (3,1)

720° 2.4377 [2,1]
2.5113 (3,1)
2.7214 (2,1)
3.0852 [1,1]
3.1054 [3,1]

4.1592 (1,1)
4.2812 [1,1]
4.5065 (2,1)
4.8616 [2,1]
5.3723 (3,1)

17.788 (1,1)
19.674 [1,1]
22.473 (2,1)
25.894 [2,1]
29.730 (3,1)

1440° 2.4129 (5,1)
2.4377 [4,1]
2.5113 [5,1]
2.5535 (4,1)
2.7214 [3,1]

4.1304 (1,1)
4.1592 [1,1]
4.2087 (2,1)
4.2812 [2,1]
4.3793 (3,1)

17.285 (1,1)
17.788 [1,1]
18.597 (2,1)
19.674 [2,1]
20.979 (3,1)

Note:	 The parentheses denote symmetric mode; the brackets denote antisym-
metric mode.
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thickness. In order to compensate for this error, Mindlin (1951) proposed a shear 
correction factor κ2 to be applied to the transverse shear force. Therefore, in the 
open literature, vibrating plates based on the first-order shear deformation plate 
theory assumptions, including the effect of rotary inertia, are widely referred to as 
Mindlin plates.

TABLE 5.33
Comparison of Frequencies for the Full Annulus and α = 90° 
Sector Plate with F-F Curved Boundaries and b = 0.5
Full Annulus Annular Sector

4.2711*
9.3135*

11.425*
17.198*
21.067*
31.115*
32.982*
47.063
63.273
66.722

4.2711 (4.2708)
21.067 (21.068)
31.115 (31.119)
47.063 (47.062)
66.722

Note:	 The full-annulus plate frequency values with asterisks agree with Gabrielson 
(1999). The results for the annular sector plate are from Table 5.24, which are 
slightly more accurate than those of Ramakrishnan and Kunukkasseril (1973), 
whose results are in parentheses.

TABLE 5.34
Frequencies of the Full Annulus 
and Those of the 360° Sector 
Plate with C-C edges and b = 0.5

Full Annulus Annular Sector

89.251
90.230
93.321
98.928

84.493
90.230
91.491
93.321
95.778
98.928
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The governing equations of motion of Mindlin plates are given by
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where G is the shear modulus, and ψx, ψy are the bending rotations of a transverse 
normal about the y- and x-axes, respectively.

The common edge conditions for Mindlin plates are given as follows:

•	 For a free edge (F)
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•	 For a simply supported edge, there are two kinds.
The first kind (S), which is referred to as the hard type simple support, 

requires that

	 = ψ = =M w0, 0, 0nn s 	 (5.92)

The second type (S*), commonly referred to as the soft-type simple support, 
requires that

	
= = =M M w0, 0, 0nn ns 	 (5.93)

•	 For a clamped edge (C)

	 ψ = ψ = =w0, 0, 0n s 	 (5.94)
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5.5 � EXACT VIBRATION SOLUTIONS FOR THICK PLATES

Exact vibration solutions for thick plates are obtainable for the same shapes and 
boundary conditions as those considered in the thin-plate section. In the following 
discussion, the exact vibration solutions are presented based on the Mindlin plate 
theory.

5.5.1 �P olygonal Plates with Simply Supported Edges

Wang (1994) presented an exact relationship between the frequencies of Mindlin 
plates and the Kirchhoff (classical thin) plates for simply supported polygonal plates. 
This relationship is given by
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where ω is the angular frequency of the Mindlin plate, 
�ω  is the angular frequency 

of the corresponding Kirchhoff plate, and N = 1,2,…,n corresponds to the mode 
sequence number. So by supplying the exact frequency value of the Kirchhoff 
plate, the corresponding exact frequency value for the Mindlin plate is readily 
obtained from the aforementioned frequency relationship. The frequency rela-
tionship between Mindlin and Kirchhoff plates is shown in a graphical form in 
Figure 5.10. It is clear that Mindlin plate frequency is lower than its corresponding 
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FIGURE 5.10  Frequency relationship between Mindlin and Kirchhoff plates.
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Kirchhoff plate counterpart because of the allowance for the effect of transverse 
shear deformation in the former plate theory that makes the plate more flexible. 
Wang, Kitipornchai, and Reddy (2000) derived a similar frequency relationship 
for the third-order shear deformable (Reddy) plate theory and the Kirchhoff plate 
theory.

Some vibration frequencies (not exact solution but highly accurate) are given for 
simply supported Kirchhoff plates for triangular and rectangular plates in Table 5.35, 
parallelogram plates in Table  5.36, trapezoidal plates in Table  5.37, and regular 
polygonal plates in Table 5.38. When substituted in Equation (5.95), the Kirchhoff 
plate frequencies in these tables furnish the corresponding frequencies for Mindlin 
plates.

5.5.2 �R ectangular Plates

Exact vibrations solutions for simply supported rectangular thick plates were 
obtained by Mindlin, Schacknow, and Deresiewicz (1956). Hashemi and Arsanjani 
(2005) derived exact vibrations solutions for rectangular thick plates with two paral-
lel sides simply supported. Xing and Liu (2009b, 2009c) simplified the exact expres-
sions obtained by Hashemi and Arsanjani (2005).

TABLE 5.35
Frequencies of Triangular and Rectangular Kirchhoff Plates with Simply 
Supported Edges

Plate Shapes Frequency Parameters ωna2 ρh/D

ρh

Triangle

d/a b/a Mode Sequence Number Source
1 2 3 4 5 6

1/4 2/5
1/2
2/3
1.0

2.0

23.75
27.12
33.11
46.70
53.78
101.5

40.80
49.47
65.26
100.2
115.9
195.8

60.54
75.18
88.68
117.2
134.7
275.0

70.33
78.27
106.1
171.8
198.1
315.6

83.39
107.4
141.2
197.0
229.2
427.7

101.8
117.4
156.4
220.4
252.0
464.2

Liew
(1993a)

1/2 2/5
1/2
2/3
1.0

2.0

23.61
26.91
32.72
45.83
52.64
98.57

40.70
49.33
65.22
102.8
122.8
197.4

60.55
76.29
87.83
111.0
122.8
256.2

69.78
76.30
106.0
177.3
210.5
335.4

83.42
108.0
142.5
199.5
228.1
394.8

101.5
116.4
154.8
203.4
228.1
492.5

Rectangle
22

+=
b

nπ
a

mπ
D

ωn

where m and n are the number of half waves

Leissa
(1969)

xado

y

a

b

2/ 3

2/ 3
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According to Liu (from Beihang University, China), the general exact solutions 
for vibration of rectangular Mindlin plates with two simply supported edges x = 0 
and x = a may be expressed as

	
ψ = ∂

∂
+ ∂

∂
− ∂

∂
g

w

x
g

w

x

w

y
x 1

1
2

2 3
	 (5.96)

	
ψ = ∂

∂
+ ∂

∂
+ ∂

∂
g

w

y
g

w

y

w

x
y 1

1
2

2 3 	 (5.97)

	 = +w w w1 2 	 (5.98)

TABLE 5.36
Frequencies of Parallelogram Kirchhoff Plates with Simply Supported Edges

Plate Shape

Parallelogram

a/b β Mode Shape Number Source
1 2 3 4 5 6

1.0 15
30
45
60
15
30
45
60
15
30
45
60

20.87
24.98
35.33
66.30

48.20
52.63
66.27
105.0

56.12
71.87
100.5
148.7

79.05
83.86
108.4
196.4

104.0
122.8
140.8
213.8

108.9
122.8
168.3
250.7

Liew, Xiang, 
Kitipornchai,

and Wang (1993)

1.5 15.10
18.17
25.96
48.98

28.51
32.94
42.39
70.51

46.96
53.48
64.80
96.99

49.76
58.02
84.18
127.3

61.70
76.05
93.31
162.3

75.80
78.61
107.5
171.1

2.0 13.11
15.90
23.01
44.00

20.66
23.95
32.20
56.03

33.08
36.82
46.21
72.79

44.75
52.64
63.50
92.80

50.24
56.63
82.08
117.4

52.49
63.26
83.00
151.7

a

β

b

Frequency Parameters ωnb2 ρh/D

TABLE 5.37
Frequencies of Symmetrical Trapezoidal Kirchhoff Plates with Simply 
Supported Edges

Plate Shape

Symmetric
Trapezoid

a/b c/b Mode Shape Number Source
1 2 3 4 5 6

1.0 1/5
2/5
3/5
4/5

3.336
2.198
1.654
1.356

4.595
3.479
3.066
2.833

6.860
5.499
3.728
2.879

10.19
5.789
5.394
4.560

10.23
7.737
6.037
5.086

11.53
9.027
6.156
5.192

Liew and Lim
(1993)

1.5 1/5
2/5
3/5
4/5

6.158
3.703
2.636
2.089

7.269
5.175
4.313
3.802

9.507
7.390
5.971
4.494

12.85
9.272
6.575
6.121

17.30
10.63
9.787
7.257

20.42
14.22
10.05
8.000

2.0 1/5
2/5
3/5
4/5

9.919
5.351
3.680
2.856

10.76
7.575
5.793
5.053

13.17
9.633
8.255
6.187

16.51
.12.83
8.398
7.452

20.99
13.69
11.41
10.32

26.74
17.07
14.48
10.64

a

b

c

Frequency Parameters ωnb2 ρh/D
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where

	
= β + β 



w A y A y

m x

a
( sin cos )sin

π
1 1 1 2 1 	 (5.99)

	
( )= β + β 



w A y A y

m x

a
sinh cosh sin

π
2 3 2 4 2 	 (5.100)

	
= β + β 



w A y A y

m x

a
( sinh cosh )cos

π
3 5 3 6 3 	 (5.101)

	

= − ω ρ
κ







+
κ

β + 









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











−

g
h

G

D

Gh

m

a
1

12
π

1

2 2

2 2 1
2

2
1

	 (5.102)

	

= − ω ρ
κ







−
κ

β − 























−

g
h

G

D

Gh

m

a
1

12
π

2

2 2

2 2 2
2

2
1

	 (5.103)

	

β = σ + − ω ρ
κ

+ σ












ω ρ − 





h

G

h

D

m

a
1

12
π

1

2 2

2
2

2 2

	 (5.104)

	

β = −σ + − ω ρ
κ

+ σ












ω ρ + 



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h

G

h

D

m

a
1

12
π

2

2 2

2
2

2 2

	 (5.105)

	
( )β = − ω ρ

κ






κ
− ν

+ 





h

G

Gh

D

m

a
1

12
2
1

π
3

2 2

2

2 2

	 (5.106)

	
σ =

κ
+







ω ρD

Gh

h h

D

1
2 122

2 2

	 (5.107)

TABLE 5.38
Frequencies of Regular Polygonal Plates with Simply Supported Edges

Plate Shape

Regular Polygon Number of
Mode Shape Number

Source1 2 3 4 5 6
3 52.6 122 122 210 228 228 Liew

(1993a)
4 19.7 49.3 49.3 79.0 98.7 98.7

6 28.9 73.0 73.2 130 130 151 Liew and
Lam

(1991)8 22.2 57.8 57.8 102 102 117

bb

b

n = 6 n = 8

n = 3 n = 4

b

Frequency Parameters ωnb2 ρh/D
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Consider a rectangular thick plate with three edges (x = 0, x = a, y = 0) simply 
supported, whereas the edge y = b is clamped. The substitution of Equations (5.96) 
to (5.98) into the boundary conditions (5.92) and (5.94) yields the following charac-
teristic equation:

	
[ ]

β β − β β β β β

− − π



 β β =

g b g b b b

g g
m

a
b b

[ sin( ) cos( ) tanh( )] tanh( )

sin( ) tanh( ) 0

2 2 1 1 1 1 2 3 3

2 1

2

1 2

	 (5.108)

and the following coefficients of the vibration mode shape

	

= 



 β β − β β β β









A g

m

a
b b b b

π
cosh( )sinh( ) cosh( )sinh( )1 2

2

3 2 2 3 2 3 	 (5.109a)

	 A2 = 0	 (5.109b)

	

= β β β β − 



 β β









A g b b

m

a
b bcos( )sinh( )

π
cosh( )sin( )3 1 1 3 1 3

2

3 1
	 (5.109c)

	 A4 = 0	 (5.109d)

	 A5 = 0	 (5.109e)

	
= 



 β β β − β β βA g g

m

a
b b b b

π
[ cos( )sinh( ) cosh( )sin( )]6 1 2 1 1 2 2 2 1 	 (5.109f)

Consider a rectangular thick plate with three edges (x = 0, x = a, y = 0) simply sup-
ported, whereas the edge y = b is free. The characteristic equation can be obtained as

( )

( ) ( )

( ) ( )

{ }

{ }
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	 	 (5.110)

and the coefficients of mode shape as

	

= β β β 



 + + β −









A b b

m

a
g gcosh( )cosh( )

π
(1 ) (1 )1 2 2 3

2

2 3
2

2
	 (5.111a)

	 A2 = 0	 (5.111b)
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( )= −β β β 



 + + β −









A b b

m

a
g gcos( )cosh

π
(1 ) (1 )3 1 1 3

2

1 3
2

1 	 (5.111c)

	 A4 = 0	 (5.111d)

	 A5 = 0	 (5.111e)

	
= − β β 



 β βA g g

m

a
b b2( )

π
cos( )cosh( )6 1 2 1 2 1 2 	 (5.111f)

For rectangular plates with two edges (x = 0 and x = a) simply supported, 
whereas the other two edges (y = 0 and y = b) are both clamped or both free, the 
characteristic equation and coefficients of mode shape can be obtained in similar 
form as the two aforementioned cases after some simplifications. Consider shift-
ing the origin of the y-coordinate to the center of the side x = 0, as shown in 
Figure 5.11.

The mode shapes of w that are antisymmetric with respect to the x-axis can be 
expressed as

	
= β + β 



w A y A y

m x

a
( sin sinh )sin

π
1 1 3 2 	 (5.112a)

	
ψ = β + β − β β


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
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a
g A y g A y A y

m x
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( sin sinh ) sinh cos

π
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(5.112b)

	
ψ = β β + β β − β









g A y g A y

m

a
A y

m x

a
cos cosh

π
cosh sin

π
y 1 1 1 1 2 2 3 2 6 3 	 (5.112c)

The mode shapes of w that are symmetric with respect to the x-axis can be writ-
ten as

	
= β + β 



w A y A y

m x

a
( cos cosh )sin

π
2 1 4 2 	 (5.113a)

x

y
h

a b
z

FIGURE 5.11  Mindlin plate and coordinates.



190 Structural Vibration

© 2010 Taylor & Francis Group, LLC

	
ψ = β + β − β β
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(5.113c)

Consider a rectangular plate with two edges (x = 0 and x = a) simply supported, 
whereas the other two edges are clamped. The characteristic equation and coeffi-
cients of mode shape for the antisymmetric case are given by

	
( )

β β β



 − β β





β













− π



 − β





β



 =

g
b

g
b b

m x

a
g g

b b

cos
2

coth
2

sin
2

coth
2

sin
2

0

3 1 1
1

2 2
2 1

2

1 2
3 1

	 (5.114)

	
= π





β





β



 − β β β





β













A g

m

a

b b b b
cosh

2
sinh

2
cosh

2
sinh

2
1 2

2
3 2

2 3
2 3

	 (5.115a)

	 =A 02 	 (5.115b)
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	 =A 04 	 (5.115d)

	 =A 05 	 (5.115e)

	
= π



 β β





β



 − β β





β











A g g

m

a

b b b b
cos

2
sinh

2
cosh

2
sin

2
6 1 2 1

1 2
2

2 1
	 (5.115f)

The characteristic equation and coefficients of mode shape for the symmetric 
case can be obtained as
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	 =A 01 	 (5.117a)
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	 =A 03 	 (5.117c)
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	 =A 06 	 (5.117f)

Consider a rectangular plate with two edges (x = 0 and x = a) simply supported, 
whereas the other two edges are free. The characteristic equation and coefficients of 
mode shape for the antisymmetric case can be obtained as
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The characteristic equation and coefficients of mode shape for the symmetric 
case can be obtained as
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	 A3 = 0	 (5.121c)
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	 A6 = 0	 (5.121f)

Consider a rectangular plate with two edges (x = 0 and x = a) simply supported, 
whereas the edge y = −b/2 is clamped and the edge y = b/2 is free. In order to facili-
tate the computation of the results, let
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In view of Equation (5.122), Equation (5.101) can be written as
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The substitution of Equations (5.96) to (5.100) and (5.123) into the boundary con-
ditions yields the following matrix:
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The natural frequencies are obtained by setting the determinant of the matrix 
of Equation (5.124) to zero and solving the characteristic equation for the 
frequencies.

Nondimensional frequency parameters ω  are presented in Tables 5.39 to 5.43 
for rectangular thick plates with an aspect ratio b/a = 0.5; thickness-to-length ratios 
h/a = 0.01, 0.1, and 0.2; and various combinations of boundary conditions. The fre-
quency parameters match with those obtained by Hashemi and Arsanjani (2005). It 
may be seen from the tables that β3 is much larger than β1 and β2 for h/a = 0.01. This 
implies that the magnitude of Equation (5.101) is much larger than the magnitudes 
of Equations (5.99) and (5.100), and this point should be noted when performing the 
calculations for thin plates.

Vibration solutions for thick rectangular plates of other combinations of boundary 
conditions may be obtained from Liew, Xiang, and Kitipornchai (1993).

TABLE 5.39
Natural Frequencies ω = ω ρ /2a h D  for Rectangular Plate with Edges x = 0, 
x = a, y = b Simply Supported, and Edge y = 0 Clamped (b/a = 0.5)

h/a 1 2 3 4 5 6

m 1 2 3 4 1 2

β1b/π 1.22678 1.18086 1.13999 1.11063 2.24121 2.22162

0.01 β2b/π 1.41444 1.84020 2.40455 3.03234 2.34179 2.62416

β3b/π 51.3284 51.3357 51.3478 51.3647 51.3282 51.3354

ω 69.1986 94.3686 139.782 205.851 207.400 233.353

m 1 2 3 1 4 2

β1b/π 1.19144 1.13851 1.09383 2.15774 1.06382 2.13395

0.1 β2b/π 1.26438 1.65147 2.13189 1.75581 2.62706 2.00512

β3b/π 5.13617 5.19282 5.27522 5.02147 5.37220 5.06548

ω 59.4801 79.1951 112.678 151.182 156.813 167.125

m 1 2 3 1 4 2

β1b/π 1.12978 1.08145 1.04735 2.06342 1.02796 2.04940

0.2 β2b/π 1.01976 1.37891 1.79106 1.07233 2.20149 1.35295

β3b/π 2.51916 2.59666 2.69208 2.10638 2.79040 2.16340

ω 45.0569 59.1227 81.1493 99.7234 107.726 109.747
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TABLE 5.40
Natural Frequencies ω = ω ρ /2a h D  for Rectangular Plate with Edges x = 0, 
x = a Simply Supported and the Other Two Edges Clamped (b/a = 0.5)

h/a 1 2 3 4 5 6

0.01 m 1 2 3 4 1 2

β1b/π 1.46956 1.38887 1.30586 1.24121 2.48439 2.45096

β2b/π 1.62832 1.97911 2.48662 3.08181 2.57185 2.81753

β3b/π 51.3284 51.3357 51.3478 51.3647 51.3281 51.3353

ω 94.9657 115.392 155.714 217.884 252.397 275.275

0.1 m 1 2 3 4 1 2

β1b/π 1.38423 1.28718 1.19643 1.13294 2.29989 2.25956

β2b/π 1.37958 1.70925 2.15496 2.63545 1.80739 2.03951

β3b/π 5.12373 5.18215 5.26663 5.36554 4.99160 5.03831

ω 75.1962 90.0396 119.150 160.554 166.781 180.228

0.2 m 1 2 3 1 4 2

β1b/π 1.26070 1.16625 1.09667 2.11210 1.05680 2.09145

β2b/π 1.05050 1.38617 1.79064 1.06384 2.19998 1.34531

β3b/π 2.48603 2.57473 2.67880 2.07114 2.78243 2.13326

ω 52.1283 62.9729 82.9509 102.737 108.577 112.166

TABLE 5.41
Natural Frequencies ω = ω ρ /2a h D  for Rectangular Plate with Edges x = 0, x = a, 
y = 0 Simply Supported and Edge y = b Free (b/a = 0.5)

h/a 1 2 3 4 5 6

0.01 m 1 2 1 3 2 3

β1b/π 0.39732 0.42705 1.28597 0.42454 1.34337 1.38257

β2b/π 0.81094 1.47662 1.46582 2.16146 1.94771 2.52728

β3b/π 51.3285 51.3358 51.3284 51.3479 51.3357 51.3478

ω 16.0971 46.6393 75.0554 95.7777 110.504 163.809

0.1 m 1 2 1 3 2 3

β1b/π 0.38862 0.41312 1.27843 0.40267 1.32525 1.35933

β2b/π 0.79341 1.41557 1.31713 2.01036 1.72404 2.19245

β3b/π 5.15551 5.21849 5.13107 5.30857 5.17903 5.25061

ω 15.4054 42.8870 66.3720 82.7190 92.9718 130.346

0.2 m 1 2 1 3 2 3

β1b/π 0.38050 0.40254 1.27288 0.38951 1.31271 1.34432

β2b/π 0.75651 1.29906 1.05299 1.78191 1.39527 1.78392

β3b/π 2.60532 2.69637 2.48261 2.80251 2.53074 2.59962

ω 14.1341 36.1646 52.8012 63.7960 69.9757 92.8079
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TABLE 5.42
Natural Frequencies ω = ω ρ /2a h D  for Rectangular Plate with Edges x = 0, 
x = a Simply Supported and the Other Two Edges Free (b/a = 0.5)
h/a 1 2 3 4 5 6
0.01 m 1 1 2 2 3 1

β1b/π 0.09552 i 0.66586 0.15711 i 0.79257 0.20119 i 1.55421

β2b/π 0.70057 0.97092 1.40498 1.62001 2.11013 1.70457

β3b/π 51.3285 51.3285 51.3358 51.3357 51.3479 51.3284

ω 9.5078 27.3597 38.4774 64.2036 87.0926 105.035

0.1 m 1 1 2 2 3 1

β1b/π 0.09846 i 0.64108 0.16981 i 0.76100 0.22553 i 1.54652

β2b/π 0.69456 0.92435 1.36148 1.51302 1.98048 1.47096

β3b/π 5.15639 5.15325 5.22163 5.21065 5.31444 5.10975

ω 9.3306 24.9711 35.9987 56.5363 76.2163 89.5926

0.2 m 1 1 2 2 3 1

β1b/π 0.10021 i 0.61198 0.17708 i 0.73390 0.23710 i 1.55290

β2b/π 0.67913 0.84233 1.27194 1.33894 1.77602 1.09251

β3b/π 2.61090 2.59349 2.71157 2.66269 2.82461 2.38612

ω 8.9007 21.3271 31.0963 45.3418 59.6198 68.8138

TABLE 5.43
Natural Frequencies = ρ /2a h D for Rectangular Plate with Two Edges x = 0, 
x = a Simply Supported, Edge y = 0 Clamped, and Edge y = b Free (b/a = 0.5)

h/a 1 2 3 4 5 6
0.01 m 1 2 3 1 2 4

β1b/π 0.57143 0.53200 0.49854 1.50727 1.52918 0.46938

β2b/π 0.90888 1.51020 2.17710 1.66220 2.07912 2.86274

β3b/π 51.3285 51.3358 51.3479 51.3284 51.3357 51.3648

ω 22.7512 50.6057 98.4649 99.3823 131.485 166.117

0.1 m 1 2 1 3 2 4

β1b/π 0.55420 0.49965 1.45142 0.45519 1.45721 0.41432

β2b/π 0.87546 1.43572 1.41811 2.01644 1.77488 2.56597

β3b/π 5.15427 5.21712 5.11836 5.30728 5.16686 5.41184

ω 21.1870 45.5725 81.0357 84.0786 103.590 132.299

0.2 m 1 2 1 3 2 4

β1b/π 0.53062 0.46545 1.36352 0.42077 1.37525 0.38214

β2b/π 0.81088 1.30581 1.06956 1.78251 1.39766 2.21966

β3b/π 2.59874 2.69180 2.45516 2.79976 2.50944 2.90608

ω 18.4903 37.5487 57.8767 64.2947 73.0862 94.1986
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5.5.3 �C ircular Plates

Mindlin and Deresiewicz (1954) showed that the governing equations of motion for 
thick circular plates given by Equations (5.88) to (5.90) may be recast into polar coor-
dinates (r, θ) and three harmonic equations involving potentials Θ1, Θ2, Θ3 defined as

	
ψ = σ − ∂Θ
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+ σ − ∂Θ
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r 1
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	 = Θ + Θw 1 2 	 (5.127)
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= χ = τ = λ = ω ρ
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in which w is the transverse deflection, r is the radial coordinate, R is the plate radius, 
h is the plate thickness, ω is the circular frequency, D is the flexural rigidity, ρ is the 
mass density per unit volume, and the subscripts r,θ denote the quantities in the radial 
and circumferential directions, respectively. Note that λ is the frequency parameter.

Based on the aforementioned three potentials, the governing equations of vibrat-
ing plates, in polar coordinates, can now be expressed as

	
( )∇ + δ Θ = 02

1
2

1 	 (5.132)

	
( )∇ + δ Θ = 02

2
2

2 	 (5.133)

	
( )∇ + δ Θ = 02

3
2

3 	 (5.134)

where the Laplacian operator ∇ • = ∂ • ∂χ + χ ∂ • ∂χ + χ ∂ • ∂θ( ) ( )/ (1/ ) ( )/ (1/ ) ( )/2 2 2 2 2 2 . 
The solutions to Equations (5.132) to (5.134) are given by
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	 Θ = δ χ θ + δ χ θA J n B Y n( )cos ( )cosn n1 1 1 1 1 	 (5.135)

	 Θ = δ χ θ + δ χ θA J n B Y n( )cos ( )cosn n2 2 2 2 2 	 (5.136)

	 Θ = δ χ θ + δ χ θA J n B Y n( )sin ( )sinn n3 3 3 3 3 	 (5.137)

where Ai and Bi are arbitrary constants; •J ( )n  and •Y ( )n  are the Bessel functions of 
the first and second kinds of order n, respectively; and n corresponds to the number 
of nodal diameters.

The boundary conditions for circular Mindlin plates at the edge r = R (i.e., for χ = 1) 
are given by

	 = = =θM M Q0, 0, 0 for a free edgerr r r  
	 (5.138)

	 = = =θM M w0, 0, 0 for a simply supported edge (soft type)rr r 	 (5.139)

	 = ψ = =θM w0, 0, 0 for a simply supported edge (hard type)rr 	 (5.140)

	 ψ = ψ = =θ w0, 0, 0 for a clamped edger  
	 (5.141)

For solid circular plates with the previously mentioned boundary conditions, the 
constants Bi are set to zero in Equations (5.135) to (5.137) so as to avoid infinite 
displacements, slopes, and bending moments at r = 0. The frequency parameter λ 
can then be determined by substituting Equations (5.135) to (5.137) into Equations 
(5.132) to (5.134) to yield the determinant equation given by

= ⇒ − − −

+ − =
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C C C
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C C C C C

0 ( ) ( )

( ) 0

11 12 13
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11 22 33 23 32 12 21 33 23 31

13 21 32 22 31

� (5.142)

•	 For a circular plate with a free edge, the elements of the determinant of 
Equation (5.142) are

	
= σ − ′′ δ + ν ′ δ − ν δ C J J n J( 1) ( ) ( ) ( )i i n i n i n i1

2 	 (5.143a)

	 = − σ − ′ δ − δC n J J2 ( 1)[ ( ) ( )]i i n i n i2 	 (5.143b)

	 = σ ′ δC J ( )i i n i3 		  (5.143c)

	 = − ν ′ δ − δC n J J(1 )[ ( ) ( )]n n13 3 3 	 (5.143d)

	 = − ′′ δ + ′ δ − δC J J n J( ) ( ) ( )n n n23 3 3
2

3 	 (5.143e)
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	 = δC nJ ( )n33 3 	 (5.143f)

•	 For a circular plate with a soft-type simply supported edge, the elements of 
the determinant are

	
( ) ( ) ( )= σ − ′′ δ + ν ′ δ − ν δ C J J n J( 1)i i n i n i n i1

2 	 (5.144a)

	 = − σ − ′ δ − δC n J J2 ( 1)[ ( ) ( )]i i n i n i2 	 (5.144b)

	 = σ δC J ( )i i n i3 		  (5.144c)

	 = − ν ′ δ − δC n J J(1 )[ ( ) ( )]n n13 3 3 	 (5.144d)

	 = − ′′ δ + ′ δ − δC J J n J( ) ( ) ( )n n n23 3 3
2

3 	 (5.144e)

	 =C 033 		  (5.144f)

•	 For a circular plate with a hard-type simply supported edge, the elements 
of the determinant are

	
= σ − ′′ δ + ν ′ δ − ν δ C J J n J( 1) ( ) ( ) ( )i i n i n i n i1

2 	 (5.145a)

	 = − σ − δC n J2 ( 1) ( )i i n i2 	 (5.145b)

	 = δC J ( )i n i3 	�  (5.145c)

	 = − ν ′ δ − δC n J J(1 )[ ( ) ( )]n n13 3 3 	 (5.145d)

	 = ′ δC J ( )n23 3 	 	 (5.145e)

	 C 033 = 		  (5.145f)

•	 For a circular plate with a clamped edge, the elements of the determinant are

	 = σ − ′ δC J( 1) ( )i i n i1 	 (5.146a)

	 = σ − δC n J( 1) ( )i i n i2 	 (5.146b)

	 = δC J ( )i n i3 	 (5.146c)

	 = δC nJ ( )n13 3 	 (5.146d)

	 = ′ δC J ( )n23 3 	 (5.146e)

	 =C 033 	 (5.146f)

where i = 1,2.
Tables  5.44 to 5.46 present some values of the natural frequency parameters 

λ = ω ρR h D/ /2  for circular plates of radius R, thickness h, and with free, soft sim-
ply supported, and clamped edges, respectively. The Poisson ratio is taken as ν = 0.3 
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and the shear correction factor as κ = π /122 2 . The frequency parameters for classi-
cal thin plates are also given under the column heading τ = h/R = 0 in the tables. In 
the tables, n refers to the number of nodal diameters, while s denotes the number of 
nodal circles excluding the boundary circle.

5.5.4 � Annular Plates

Irie, Yamada, and Takagi (1982) derived the exact vibration solutions for thick annu-
lar plates with nine combinations of boundary conditions for the inner and outer 
edges. The boundary conditions are given in Equations (5.138) to (5.141). The poten-
tials given in Equations (5.135) to (5.137) are valid for the annular plates. Unlike the 
circular plate solutions where the constants Bi are set to zero to eliminate singulari-
ties at the plate origin (i.e., r = 0 or χ = 0), these constants are nonzero for annular 
plates. By substituting Equations (5.135) to (5.137) into Equations (5.125) to (5.127) 
and then into the appropriate boundary conditions for each of the nine annular plate 
cases, one obtains the characteristic equation that, upon solving, yields the natural 
frequencies of vibration of annular thick plates based on the Mindlin plate theory. 

TABLE 5.44
Frequency Parameter λ of Circular 
Plates with Free Edge

n s τ = 0 τ = 0.1 τ = 0.2

0 1 9.003 8.868 8.505

2 38.443 36.041 31.111

3 87.750 76.676 59.645

4 156.82 126.27 90.059

1 1 20.475 19.711 17.978

2 59.812 54.257 44.434

3 118.96 99.935 74.331

4 197.87 152.75 105.03

2 0 5.358 5.278 5.114

1 35.260 33.033 28.668

2 84.366 73.875 57.722

3 153.31 123.77 88.530

3 0 12.439 12.064 11.214

1 53.008 48.227 39.960

2 111.95 94.531 70.862

3 190.69 147.99 102.27

4 0 21.835 20.801 18.816

1 73.543 64.891 51.545

2 142.43 115.96 83.801

3 231.03 172.45 115.57
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The elements of the determinantal equation are given in a paper by Irie, Yamada, 
and Takagi (1982).

Tables 5.47 to 5.55 present sample frequency parameters λ = ω ρa h D/ /2 , which 
were obtained by Irie, Yamada, and Takagi (1982), for the nine combinations of 
boundary conditions for annular plates. The annular plates have an outer radius a, 
inner radius b, thickness h, and with free, hard simply supported, and clamped edges, 
respectively. The Poisson ratio is taken as ν = 0.3 and the shear correction factor as 
κ = π /122 2 . In the tables, n refers to the number of nodal diameters, while s denotes 
the number of nodal circles.

5.5.5 �S ectorial Plates

Huang, McGee, and Leissa (1994) derived the exact vibration solutions for thick 
sectorial plates having a sector angle α, radius R, thickness h, simply supported 
radial edges, and a circular edge that may be clamped, simply supported, or free. The 
boundary conditions for the radial simply supported edges are given by

TABLE 5.45
Frequency Parameter λ of Circular Plates 
with Soft Simply Supported Edge

n s τ = 0 τ = 0.1 τ = 0.2

0 1 4.935 4.894 4.777

2 29.720 28.240 24.994

3 74.156 65.942 52.514

4 138.32 113.57 82.766

1 1 13.898 13.510 12.620

2 48.479 44.691 37.537

3 102.77 87.994 66.946

4 176.80 139.27 97.873

2 0 25.613 24.313 21.687

1 70.117 62.552 50.126

2 134.30 110.66 80.950

3 218.20 165.02 112.43

3 0 39.957 36.962 31.547

1 94.549 81.526 62.675

2 168.68 133.77 94.597

3 262.49 190.77 126.53

4 0 56.842 51.158 41.908

1 121.70 101.37 75.137

2 205.85 157.20 107.94

3 309.61 216.47 140.25
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TABLE 5.46
Frequency Parameter λ of Circular Plates with Clamped Edge

n s τ = 0 τ = 0.1 τ = 0.2

0 1 10.216 9.941 9.240

2 39.771 36.479 30.211

3 89.104 75.664 56.682

4 158.18 123.32 85.571

1 1 21.260 20.232 17.834

2 60.829 53.890 42.409

3 120.08 97.907 70.473

4 199.05 148.70 100.12

2 0 34.877 32.406 27.214

1 84.583 72.368 54.557

2 153.82 120.55 83.937

3 242.72 174.05 114.24

3 0 51.030 46.178 37.109

1 115.02 91.712 66.667

2 190.30 143.50 97.152

3 289.18 199.36 128.02

4 0 69.666 61.272 47.340

1 140.11 111.74 78.733

2 229.52 116.69 110.16

3 338.41 224.61 141.53

TABLE 5.47
Frequency Parameter λ of Annular Plates with Free Inner Edge 
and Free Outer Edge

b/a = 0.3 b/a = 0.5 b/a = 0.7

n s h/a = 0.1 h/a = 0.2 h/a = 0.1 h/a = 0.2 h/a = 0.1 h/a = 0.2

0 1 8.23 7.89 9.10 8.55 12.46 10.89

2 46.63 39.57 81.03 64.01 188.95 131.06

1 1 17.02 15.13 15.76 13.77 19.12 15.27

2 52.50 43.17 83.48 65.32 190.04 131.38

2 1 4.80 4.61 4.17 4.00 3.47 3.29

2 30.77 26.63 28.05 23.64 31.83 24.19
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TABLE 5.48
Frequency Parameter λ of Annular Plates with Free Inner Edge and 
Simply Supported Outer Edge

b/a = 0.3 b/a = 0.5 b/a = 0.7

n s h/a = 0.1 h/a = 0.2 h/a = 0.1 h/a = 0.2 h/a = 0.1 h/a = 0.2

0 1 4.63 4.53 5.03 4.91 6.81 6.49

2 34.92 30.49 59.53 48.56 139.61 97.41

1 1 12.19 11.19 10.90 9.95 12.29 10.90

2 41.45 34.80 62.28 50.22 140.90 98.04

2 1 23.07 20.71 20.92 18.56 22.01 18.86

2 57.18 45.73 70.09 55.00 144.71 99.90

TABLE 5.49
Frequency Parameter λ of Annular Plates with Free Inner Edge 
and Clamped Outer Edge

b/a = 0.3 b/a = 0.5 b/a = 0.7

n s h/a = 0.1 h/a = 0.2 h/a = 0.1 h/a = 0.2 h/a = 0.1 h/a = 0.2

0 1 11.12 10.35 17.02 15.40 39.37 32.44

2 46.25 36.77 77.24 55.27 165.42 99.31

1 1 18.12 15.87 20.48 17.94 40.85 33.35

2 51.74 40.18 79.41 56.57 166.42 99.85

2 1 30.08 25.33 29.02 24.33 45.19 36.08

2 66.24 49.74 85.76 60.44 169.38 101.49

TABLE 5.50
Frequency Parameter λ of Annular Plates with Simply Supported 
Inner Edge and Free Outer Edge

b/a = 0.3 b/a = 0.5 b/a = 0.7

n s h/a = 0.1 h/a = 0.2 h/a = 0.1 h/a = 0.2 h/a = 0.1 h/a = 0.2

0 1 3.40 3.33 4.09 4.01 6.10 5.86

2 29.79 25.89 55.12 44.64 134.41 92.39

1 1 3.33 3.23 4.79 4.65 8.09 7.63

2 32.29 27.87 56.87 45.85 135.50 92.99

2 1 5.96 5.74 7.79 7.42 12.79 11.79

2 39.64 33.52 61.99 49.35 138.71 94.78
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TABLE 5.51
Frequency Parameter λ of Annular Plates with Simply Supported 
Inner Edge and Simply Supported Outer Edge

b/a = 0.3 b/a = 0.5 b/a = 0.7

n s h/a = 0.1 h/a = 0.2 h/a = 0.1 h/a = 0.2 h/a = 0.1 h/a = 0.2

0 1 20.22 18.21 37.33 31.87 93.26 70.06

2 71.71 56.08 127.17 90.64 280.58 162.31

1 1 22.30 19.98 38.86 33.04 94.27 70.70

2 73.99 57.60 128.46 91.39 281.24 162.70

2 1 28.67 25.22 43.45 36.49 97.30 72.60

2 80.78 62.11 132.29 93.64 283.19 163.90

TABLE 5.52
Frequency Parameter λ of Annular Plates with Simply Supported Inner 
Edge and Clamped Outer Edge

n s
b/a = 0.3 b/a = 0.5 b/a = 0.7

h/a = 0.1 h/a = 0.2 h/a = 0.1 h/a = 0.2 h/a = 0.1 h/a = 0.2

0 1 31.01 25.68 55.09 41.62 124.94 80.34

2 85.50 61.56 145.82 95.27 300.62 171.69

1 1 32.84 72.04 56.26 42.41 125.61 80.78

2 87.52 62.87 146.89 95.93 301.17 172.06

2 1 38.64 31.32 59.84 44.85 127.64 82.13

2 93.61 66.81 150.10 97.89 302.80 173.17

TABLE 5.53
Frequency Parameter λ of Annular Plates with Clamped Inner Edge 
and Free Outer Edge

b/a = 0.3 b/a = 0.5 b/a = 0.7

n s h/a = 0.1 h/a = 0.2 h/a = 0.1 h/a = 0.2 h/a = 0.1 h/a = 0.2

0 1 6.52 6.14 12.57 11.46 33.87 28.05

2 37.89 29.76 69.58 49.27 156.63 93.37

1 1 6.31 5.79 12.71 11.43 34.16 28.13

2 39.54 31.20 70.80 50.25 157.45 93.96

2 1 7.55 6.89 13.79 12.14 35.23 28.63

2 44.83 35.68 74.48 53.15 159.91 95.71
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	 = α =w r w r( ,0) 0, ( , ) 0 	 (5.147a)

	 = α =θ θM r M r( ,0) 0, ( , ) 0 	 (5.147b)

	 ψ = ψ α =r r( ,0) 0, ( , ) 0r r 	 (5.147c)

The potentials that satisfy the foregoing boundary conditions are given by

•	 For the case δ > δ < δ <0, 0, 01
2

2
2

3
2

TABLE 5.54
Frequency Parameter λ of Annular Plates with Clamped Inner Edge 
and Simply Supported Outer Edge

b/a = 0.3 b/a = 0.5 b/a = 0.7

n s h/a = 0.1 h/a = 0.2 h/a  = 0.1 h/a  = 0.2 h/a  = 0.1 h/a  = 0.2

0
1 27.38 22.44 51.22 38.36 119.99 76.76

2 82.17 59.38 142.71 93.78 297.80 172.17

1
1 28.60 23.52 52.14 39.12 120.61 77.26

2 83.71 60.62 143.65 94.45 298.34 172.49

2
1 32.89 27.32 55.05 41.51 122.15 78.78

2 88.59 64.42 146.51 96.46 299.95 173.45

TABLE 5.55
Frequency Parameter λ of Annular Plates with Clamped Inner Edge 
and Clamped Outer Edge

n s

b/a = 0.3 b/a = 0.5 b/a = 0.7

h/a = 0.1 h/a = 0.2 h/a = 0.1 h/a = 0.2 h/a = 0.1 h/a = 0.2

0
1 39.40 30.04 70.28 48.31 152.15 90.20

2 95.59 64.23 159.78 97.39 314.09 172.31

1
1 40.37 30.77 70.90 48.73 152.49 90.41

2 96.99 65.36 160.60 98.02 314.57 172.66

2
1 43.98 33.67 72.96 50.18 153.57 91.12

2 101.43 68.81 163.08 99.90 316.03 173.70
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Θ = δ χ + δ χ πθ

αµ µA J B Y
n

[ ( ) ( )]sin1 1 1 1 1 	 (5.148a)

	
Θ = δ χ + δ χ πθ

αµ µA I B K
n

[ ( ) ( )]sin2 2 2 2 2 	 (5.148b)

	
Θ = δ χ + δ χ πθ

αµ µA I B K
n

[ ( ) ( )]cos3 3 3 3 3 	 (5.148c)

•	 For the case δ > δ > δ <0, 0, 01
2

2
2

3
2

	
Θ = δ χ + δ χ θ

αµ µA J B Y
n

[ ( ) ( )]sin
π

1 1 1 1 1 	 (5.149a)

	
Θ = δ χ + δ χ θ

αµ µA J B Y
n

[ ( ) ( )]sin
π

2 2 2 2 2 	 (5.149b)

	
Θ = δ χ + δ χ θ

αµ µA J B Y
n

[ ( ) ( )]cos
π

3 3 3 3 3 	 (5.149c)

where µ µ µ µJ Y I K, , ,  are ordinary and modified Bessel functions of the first and 
second kinds, and Ai,Bi (i = 1,2,3) are arbitrary constants of integration. Note 
that μ is not, in general, an integer, and Bi (i = 1,2,3) are not necessarily set equal 
to zero.

By substituting Equations (5.148a) to (5.148c) or Equations (5.149a) to (5.149c) into 
Equations (5.125) to (5.127) and then into the appropriate boundary conditions for 
each of the three circular edge cases,

	 θ = ψ θ = ψ θ =θw R R R( , ) 0, ( , ) 0, ( , ) 0 for clamped circular edger 	 (5.150a)

	 θ = θ = ψ θ =θw R M R R( , ) 0, ( , ) 0, ( , ) 0 for simply supported circular edger  
	(5.150b)

	 θ = θ = θ =θM R M R Q R( , ) 0, ( , ) 0, ( , ) 0 for free circular edger r r  
	 (5.150c)

one obtains the characteristic equation that, upon solving, yields the natural frequen-
cies of vibration of thick sectorial plates. The details for the characteristic equations 
are given in a paper by Huang, McGee, and Leissa (1994).

Tables 5.56 to 5.58 present sample frequency parameters λ = ω ρR h D/ /2 , which 
were obtained by Huang, McGee, and Leissa (1994), for the clamped, simply sup-
ported, and free circular edge for sectorial plates with simply supported radial edges. 
The Poisson ratio is taken as ν = 0.3 and the shear correction factor as κ2 = π2/12. 
In the tables, s denotes the number of nodal circles. The mode shapes have no radial 
nodal lines.
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TABLE 5.56
Frequency Parameter λ of Sectorial Plates with Simply 
Supported Radial Edges and a Clamped Circular Edge

λ = ω ρR h D/ /2

α μ s h/R = 0.1 h/R = 0.2

60° 3 1 45.8329 36.8449

2 91.5849 66.5856

3 143.520 97.2196

4 199.374 128.142

5 257.924 159.012

120° 1.5 1 26.0100 22.3729

2 63.0436 48.4416

3 109.203 77.2641

4 161.544 107.330

5 217.563 137.828

180° 1 1 20.2500 17.8084

2 53.8756 42.3801

3 98.0100 70.5600

4 148.840 100.200

5 203.918 130.645

270° 0.6667 1 18.7907 16.2102

2 50.5139 39.4485

3 93.0316 66.7843

4 142.641 95.9219

5 196.836 125.931

330° 0.5455 1 18.7246 15.7963

2 49.6543 38.3595

3 91.4357 65.3261

4 140.429 94.2448

5 194.153 124.142

Source:	 Huang, McGee, and Leissa (1994).
Note:	 The Poisson ratio is taken as ν = 0.3 and the shear correction factor as 

κ2 = π2/12. The variable s denotes the number of nodal circles. The 
mode shapes have no radial nodal lines.
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TABLE 5.57
Frequency Parameter λ of Sectorial Plates with 
All Edges Simply Supported

R h D/ /2

α μ s h/R = 0.1 h/R = 0.2

60° 3 1 37.4544 32.1489

2 81.9025 63.0436

3 134.096 94.8686

4 190.992 126.788

5 250.906 158.508

120° 1.5 1 18.8356 17.2225

2 53.5824 43.9569

3 99.4009 74.1321

4 152.276 105.473

5 209.670 136.890

180° 1 1 13.6161 12.7449

2 44.7561 37.6996

3 88.1721 67.0761

4 139.476 98.0100

5 195.720 129.277

270° 0.6667 1 12.3598 11.2021

2 41.6562 34.6347

3 83.2835 63.1562

4 133.239 93.5760

5 188.457 124.570

330° 0.5455 1 12.3463 10.8524

2 40.9486 33.5701

3 81.7788 61.6466

4 131.054 91.8415

5 185.753 122.730

Source:	 Huang, McGee, and Leissa (1994).
Note:	 The Poisson ratio is taken as ν = 0.3 and the shear correction 

factor as κ2 = π2/12. The variable s denotes the number of 
nodal circles. The mode shapes have no radial nodal lines.
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5.6 � VIBRATION OF THICK RECTANGULAR PLATES 
BASED ON 3-D ELASTICITY THEORY

In very thick plates, there are symmetric thickness vibration modes that even the 
Mindlin plate theory is unable to identify. Srinivas, Joga Rao, and Rao (1970) 
derived the exact vibration solutions for very thick rectangular plates based on the 
three-dimensional (3-D), linear, small-deformation theory of elasticity. This section 
is based on that work.

TABLE 5.58
Frequency Parameter λ of Sectorial Plates with Simply 
Supported Radial Edges and a Free Circular Edge

= ρR h D/ /2

α μ s h/R = 0.1 h/R = 0.2
60° 3 1 12.0645 11.3138

2 48.2275 39.9601

3 94.5309 70.8627

4 147.992 102.271

5 205.725 132.874

120° 1.5 1 2.6651 2.6195

2 26.1080 23.2208

3 63.9168 51.0925

4 111.797 81.4903

5 166.008 112.256

180° 1 1 Rigid body rotation Rigid body rotation

2 19.7109 17.9784

3 54.2580 44.4342

4 99.9360 74.3320

5 152.752 105.034

270° 0.6667 1 2.0614 1.8052

2 17.8576 15.8946

3 50.6900 41.2080

4 94.7738 70.3547

5 146.388 100.719

330° 0.5455 1 2.5769 2.2498

2 17.6299 15.2906

3 49.7738 40.0081

4 93.0921 68.7747

5 144.052 98.9829

Source:	 Huang, McGee, and Leissa (1994).
Note:	 The Poisson ratio is taken as ν = 0.3 and the shear correction factor 

as κ2 = π2/12. The variable s denotes the number of nodal circles. 
The mode shapes have no radial nodal lines.



210 Structural Vibration

© 2010 Taylor & Francis Group, LLC

The basic equations of elasticity in terms of displacements for a thick rectangular 
plate executing simple harmonic motion with angular frequency ω are

	
∇ +

− ν
∂
∂

+ ρ ω =u
e

x G
u

1
1 2

02
2

	 (5.151)

	
∇ +

− ν
∂
∂

+ ρ ω =v
e

y G
v

1
1 2

02
2

	 (5.152)

	
∇ +

− ν
∂
∂

+ ρ ω =w
e

z G
w

1
1 2

02
2

	 (5.153)

where u, v, and w are the displacements in the x-, y-, and z-directions, respectively; G 
is the shear modulus; ν is the Poisson ratio; ρ is the mass density; and

	
= ∂

∂
+ ∂

∂
+ ∂

∂
e

u

x

v

y

w

z
	 (5.154)

Referring to Figure 5.2, the edge conditions for the simply supported rectangular 
plate, of length a and width b, are

	
x x v wat 0 and a: 0 , 0 and 0x= = σ = = = 	 (5.155)

	 at y = 0  and  y = b: σy = 0, u = 0  and  w = 0	 (5.156)

The boundary conditions, given in Equations (5.155) and (5.156), can be satisfied 
by setting

	

∑∑
( )
( )
( )

















=
ϕ π π
ψ π π
χ π π



















=

∞

=

∞u
v
w

h

z m x n y

z m x n y

z m x n y

cos sin

sin cos

sin sinnm 11

	 (5.157)

where h is the plate thickness and = = =z z h x x a y y b/ , / , / .
By substituting Equation (5.157) into Equations (5.151) to (5.153) and using the 

stress-displacement relationships and the stress-free surface condition at

	 z = 0 and z = h: σx = 0, τxz = 0 and τyz = 0	 (5.158)

one obtains the characteristic equation

{ }+ − + + +  =g rs r g r s g r s r g r s r8 ( ) (1 cosh cosh ) 16 ( ) sinh sinh sinh 02 2 2 2 4 2 2 2 2 4

		  (5.159)

where
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= 



 + 



g

m h

a

n h

b
π π2 2

	 (5.160)

	
= − ω ρ

r g
h

G
2 2

2

	 (5.161)

	
= − ω ρ − ν

− ν
s g

h

G

1 2
2(1 )

2 2
2

	 (5.162)

The solution to this characteristic equation for each combination of (m, n) yields 
an infinite number of natural frequency values. A sample of the first six frequency 
values, extracted from a paper by Srinivas, Joga Rao, and Rao (1970), is given in 
Table 5.59. These values are compared with all three of the frequency values fur-
nished by the Mindlin plate theory with κ = π /122 2 . The Poisson ratio ν is taken as 
0.3. Note that A and S denote modes that are antisymmetric and symmetric about 
the mid-plane, respectively. The frequencies under column II-A of the 3-D elastic-
ity theory are associated with thickness-twist modes. It can be seen that the first 
flexural frequencies of the Mindlin plate theory are only slightly lower than the first 
3-D elasticity theory frequencies. However if we assume a Mindlin shear correction 
factor of κ2 = 0.88, the Mindlin frequencies can be made almost equal to the 3-D 
elasticity theory results.
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6 Vibration of Plates with 
Complicating Effects

6.1 � INTRODUCTION

In Chapter 5, plates with classical boundary conditions such as clamped, simply 
supported, sliding, or free are treated. In this chapter, we present exact vibration 
solutions for plates with complicating effects such as the presence of in-plane forces, 
internal spring supports, internal hinge, elastic foundation, and nonuniform thick-
ness distribution. When these complicating effects are removed, the solutions reduce 
to those presented in Chapter 5.

6.2 � PLATES WITH IN-PLANE FORCES

With in-plane forces, there are basically two types of plate problems with exact solu-
tions. They are (a) rectangular plates with two parallel sides simply supported and 
(b) circular and annular plates with uniform normal stress.

6.2.1 �R ectangular Plates with In-Plane Forces

Consider the rectangular plate shown in Figure 6.1. The edges at =y 0  and =y b 
are simply supported. The plate is under uniform compressive forces N N,1 2  in the 
x , and y -directions, respectively.

Similar to Section 5.2, the governing equation for a vibrating rectangular plate 
with in-plane forces is given by

	
D w N

w

x
N

w

y
h w 04

1

2

2 2

2

2
2∇ + ∂

∂
+ ∂

∂
− ρ ω =

	
(6.1)

Let =x x a/ , =y y a/ . Since the horizontal sides are simply supported, we set

	 w(x,y) = W(x) sin(αy)	 (6.2)

where α = nπa/b. In view of Equation (6.2), Equation (6.1) becomes

	
+ − α − ω + α − α = ≤ ≤d W

dx
N

d W

dx
N W x( 2 ) ( ) 0, 0 1

4

4 1
2

2

2
2

2
2 4

 
	 (6.3)
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Here the nondimensional parameters are

	
= = ω = ρ ωN N a D N N a D h a D/ , / , /1 1

2
2 2

2 2 2 4

 
	 (6.4)

Note that the frequency is normalized with respect to the width a instead of the 
height b as in Chapter 5.

The boundary conditions for a variety of edges are as follows:

•	 For a clamped vertical edge

	
= =W

dW

dx
0, 0

	
(6.5)

•	 For a simply supported vertical edge

	
= − α ν =W

d W

dx
W0, 0

2

2
2

	
(6.6)

•	 For a sliding vertical edge

	

dW

dx

d W

dx
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dx
N
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0, (2 ) 0
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3
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1= − α − ν + =
	

(6.7)

•	 For a free vertical edge

	

d W

dx
W

d W

dx

dW

dx
N

dW

dx
0, (2 ) 0

2

2
2

3

3
2

1− α ν = − α − ν + =
	

(6.8)

•	 For a spring-supported sliding edge with translational spring constant k1

	

dW

dx

d W

dx

dW

dx
N

dW

dx
W0, (2 )

3

3
2

1 ∓= − α − ν + = ξ
	

(6.9)

a

b

x

y

x

N1

N2

FIGURE 6.1  Vibration of rectangular plate with in-plane forces.
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Here k a D/1
3ξ = , and the top and bottom signs are for the left and right 

edges, respectively.

•	 For a simply supported edge with torsional spring constant k2

	
= − α ν = ±ςW

d W

dx
W

dW

dx
0,

2

2
2 	 (6.10)

where ς = k a D/2 .
Other boundary conditions are possible.

6.2.1.1 � Analogy with Beam Vibration
The vibration of a uniform beam with axial compressive force is given in Equation 
(4.16), i.e.,

	

d w

dx
a

d w

dx
w x0, 0 1b

b
b

b b

4

4

2

2
2+ − ω = ≤ ≤

 	
(6.11)

where the subscript b refers to the beam and

	
= ′ ω = ω ρa F L EI L EI/ , /b b b b

2 2 2 4 	 (6.12)

Here F ′ is the axial compressive force, L is the length of the beam, ρb is the mass 
per length, and EI is the flexural rigidity. The boundary conditions are as follows:

•	 For a clamped end

	
w

dw

dx
0, 0b

b= =
	

(6.13)

•	 For a simply supported vertical edge

	
w

d w

dx
0, 0b

b
2

2= =
	

(6.14)

•	 For a sliding vertical edge

	

dw

dx

d w

dx
a

dw
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0, 0b b

b
b

3
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(6.15)



218 Structural Vibration

© 2010 Taylor & Francis Group, LLC

•	 For a free vertical edge

	

d w

dx

d w

dx
a

dw

dx
0, 0b b

b
b

2

2

3

3= + =
	

(6.16)

•	 For a spring-supported sliding end with translational spring constant k1b

	

dw

dx

d w

dx
a

dw

dx
w0,b b

b
b

b b

3

3 ∓= + = ξ
	

(6.17)

where k L EI/b b1
3ξ = .

•	 For a simply supported end with torsional spring constant k2b

	
= = ±ςw

d w

dx

dw

dx
0,b

b
b

b
2

2 	 (6.18)

where k L EI/b b2ς = .
By comparing Equations (6.3) and (6.11) and their respective boundary condi-

tions, an analogy exists between a vibrating plate with two parallel simply supported 
sides and a vibrating beam. The boundary conditions need to be one of the follow-
ing: clamped, simply supported, sliding, sliding with translational spring, and simply 
supported with torsional spring. Then

	 N a2 b1
2− α = 	 (6.19)

	 N b
2

2
2 4 2ω + α − α = ω 	 (6.20)

	 ,b bξ = ξ ς = ς 	 (6.21)

Given the plate parameters α and N1,N2, one can find the analogous beam com-
pression force ab from Equation (6.19), and from Chapter 4 the frequencies ωb. Then 
plate frequencies ω can be obtained from Equation (6.20). Since an analogy exists, 
we shall not present the numerical results for these cases here.

6.2.1.2 � Plates with Free Vertical Edge
If the plate has two horizontal simply supported edges and at least one free verti-
cal edge, then the analogy of the previous section does not apply. We shall solve 
Equations (6.3) and (6.8) directly as follows. Let W e x= λ  and

	
A

N
B N

2
,2 1 2

2
2 4= α − = ω + α − α

	
(6.22)

Equation (6.3) yields

	 A A B2λ = ± ± + 	
(6.23)



219Vibration of Plates with Complicating Effects

© 2010 Taylor & Francis Group, LLC

Let

	
A A B A A B,1

2
2

2λ = + + λ = − +
	

(6.24)

which in some cases may be complex. If B > 0, W can be expressed in a linear com-
bination of x x x xcosh( ), sinh( ), cos( ), sin( )1 1 2 2λ λ λ λ . If B < 0, W can be expressed in 
a linear combination of x x x xcosh( ), sinh( ), cosh( ), sinh( )1 1 2 2λ λ λ λ .

We consider the following three cases: Case 1, with left side simply supported and 
right side free; Case 2, with left side clamped and right side free; and Case 3, with 
left side sliding and right side free. In all three cases, the solution that satisfies the 
left-side conditions is in the form

	
W c f x c g x( ) ( )1 2= + 	 (6.25)

For nontrivial solutions, the right-side free-boundary conditions of Equation (6.8) 
give the exact characteristic equation

	

f f g g

f N f g N g[ (2 ) ] [ (2 ) ]
0
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2
1

2
1

1

′′ − α ν ′′ − α ν
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=

= 	

(6.26)

The frequencies are obtained from Equation (6.26).

6.2.1.2.1 � Case 1: Left Side Simply Supported and Right Side Free
The solution that satisfies the left-side boundary conditions is

	

f x g
x B

x B
sinh( ),

sin( ) 0

sinh( ) 0
1

2

2

= λ =
λ >

λ <





 	

(6.27)

Usually B > 0, except at very low frequencies. Typical normalized frequencies 
ω of rectangular plates with equal in-plane forces, i.e., N1 = N2 = N, are given in 
Table 6.1. The number in parentheses is the vertical number of half waves n. The 
asterisk denotes that the plate has buckled. The frequencies corresponding to the 
zero-force N = 0 case agrees with those presented in Table 5.2, in which the frequen-
cies should be multiplied by (a/b)2 due to the different normalization. The number of 
internal horizontal nodes is n − 1.

Note that tensile force (N < 0) increases frequency, since the plate is stiffened, 
whereas compressive force (N > 0) reduces frequency. If the compressive force is 
large enough, buckling may occur. The fundamental mode is always at n = 1. Notice 
also that some frequencies are repeated, due to reflections about the simply sup-
ported edges.
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6.2.1.2.2 � Case 2: Left Side Clamped and Right Side Free
The solution that satisfies the left-side boundary conditions is

	

f x
x

x
g x

x B

x B
sinh( )

sin( )

sinh( )
, cosh( )

cos( ) 0

cosh( ) 0
2 1 1

2

2
1

2

2

= λ λ − λ
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
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

 		
		  (6.28)

Table  6.2 shows the normalized frequencies obtained from solving Equation 
(6.26) with Equation (6.28) and N N N1 2= = .

6.2.1.2.3 � Case 3: Left Side Sliding and Right Side Free
The solution that satisfies the left-side boundary conditions is

	

f x g
x B

x B
cosh( ),

cos( ) 0

cosh( ) 0
1

2

2

= λ =
λ >

λ <






	 (6.29)

TABLE 6.1
Normalized Frequency ω for Plate with Three Sides 
Simply Supported and One Side Free with In-Plane 
Forces, N1 = N2 = N

N a/b = 0.5 a/b = 1 a/b = 2

−10

8.2676 (1)
16.224 (2)
25.287 (1)
28.767 (3)
33.501 (2)

13.808 (1)
33.501 (1)
46.067 (2)
62.411 (2)
68.002 (1)

46.067 (1)
64.236 (1)
99.994 (1)

154.18 (1)
164.08 (2)

0

4.0337 (1)
11.685 (2)
18.821 (1)
24.010 (3)
27.756 (2)

11.685 (1)
27.756 (1)
41.197 (2)
59.066 (2)
61.861 (1)

41.197 (1)
59.066 (1)
94.484 (1)

148.51 (1)
159.08 (2)

10

	 *	 (1)
2.3732 (2)
7.6883 (1)

17.975 (3)
20.192 (2)

2.3732 (1)
20.192 (1)
35.643 (2)
53.360 (2)
54.961 (1)

35.643 (1)
53.360 (1)
88.595 (1)

142.59 (1)
153.91 (2)

Note:	 The values in parentheses represent n, the vertical number of half 
waves. An asterisk denotes that the plate has buckled.
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Table 6.3 shows the frequency results obtained by solving Equation (6.26) with 
Equation (6.29) and N1 = N2 = N.

We add that the frequencies of a plate with two opposite simply supported sides 
and two free sides can be constructed by combining the simply supported–free 
results (x-antisymmetric mode) and the sliding–free (x-symmetric mode) results. 
The method can be extended to unequal in-plane forces, although the tables are for 
N1 = N2.

6.2.2 �C ircular Plates with In-Plane Forces

There are no analogies for circular plates. Exact solutions are possible if the plate 
is under uniform in-plane forces. The governing equations are derived following 
Leissa (1969).

Figure 6.2 shows a circular plate with radius R under uniform compressive force 
N . If the vibration frequency is ω , the deflection amplitude is governed by

	 D w N w h w 04 2 2∇ + ∇ − ρ ω = 	 (6.30)

TABLE 6.2
Normalized Frequency ω for Plate with 
Opposite Sides Simply Supported and Other 
Two Sides Clamped and Free, N1 = N2 = N

N a/b = 0.5 a/b = 1 a/b = 2

−10

9.7247 (1)
17.170 (2)
29.429 (3)
30.922 (1)
38.569 (2)

14.004 (1)
38.569 (1)
46.563 (2)
68.089 (2)
78.121 (1)

46.563 (1)
68.089 (1)

108.49 (1)
162.84 (2)
167.81 (1)

0

5.7039 (1)
12.687 (2)
24.694 (3)
24.944 (1)
33.065 (2)

12.687 (1)
33.065 (1)
41.702 (2)
63.015 (2)
72.398 (1)

41.702 (1)
63.015 (1)

103.16 (1)
159.30 (2)
162.37 (1)

10

*	 (1)
4.4032 (2)

16.589 (1)
18.704 (3)
26.151 (2)

4.4032 (1)
26.151 (1)
34.114 (2)
57.442 (2)
66.122 (1)

36.161 (1)
57.442 (1)
97.499 (1)

154.14 (2)
156.72 (1)

Note:	 The values in parentheses represent n, the vertical 
number of half waves. An asterisk denotes that the 
plate has buckled.
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Normalize the radial coordinate by R and let

	 w = W(r) cos(nθ)	 (6.31)

Equation (6.30) then becomes

	 W A W W2 04 2 2∇ + ∇ − ω = 	 (6.32)

where

	

d

dr r

d

dr

n

r
A

NR

D

hR

D

1
,

2
,2

2

2

2

2

2
2

4 2

∇ = + − = ω = ρ ω

	
(6.33)

R

N
r θ

FIGURE 6.2  Circular plate under uniform compressive force.

TABLE 6.3
Normalized Frequency ω for Plate with Opposite 
Sides Simply Supported and the Other Sides 
Sliding and Free, N1 = N2 = N

N a/b = 0.5 a/b = 1 a/b = 2

−10

5.5325 (1)
13.934 (2)
14.936 (1)
22.861 (2)
26.252 (3)

13.934 (1)
21.731 (1)
43.964 (2)
48.432 (1)
52.956 (2)

43.964 (1)
51.665 (1)

124.72 (1)
162.23 (2)
171.30 (2)

0

2.4079 (1)
9.1814 (1)
9.7362 (2)

17.685 (2)
21.997 (3)

9.7362 (1)
17.685 (1)
39.188 (2)
42.384 (1)
47.967 (2)

39.188 (1)
47.967 (1)

119.10 (1)
157.26 (2)
166.29 (2)

10

*	 (1)
*	 (1)
*	 (2)
9.7574 (2)

16.103 (3)

*	 (1)
9.7574 (1)

33.730 (2)
35.167 (1)
42.367 (2)

33.730 (1)
42.367 (1)
68.712 (1)

113.18 (1)
152.13 (2)

Note:	 The values in parentheses represent n, the vertical number of 
half waves. An asterisk denotes that the plate has buckled.
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Then Equation (6.32) can be factored into

	
W 02

1
2 2

2
2( )( )∇ + λ ∇ − λ = 	 (6.34)

where

	
A A A A,1

2 2 2
2
2 2 2λ = + ω + λ = + ω −

 	
(6.35)

The solution of W is a linear combination of the Bessel functions J r Y r( ), ( ),n n1 1λ λ  
I r K r( ), ( )n n2 2λ λ . For a full circular plate, n is an integer, and Yn, Kn are not used.

The bending moment Mr and the effective shear force Vr are given by

	

M
D

R

d W

dr r

dW

dr

n

r
Wr 2

2

2

2

= − + ν −














 	 (6.36)
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If the edge is clamped, the boundary condition is

	
W

dW

dr
r0, 0 at 1= = =

	
(6.38)

This yields the characteristic equation

	 J I J I( ) ( ) ( ) ( ) 0n n n n2 1 2 1 1 2λ λ ′ λ − λ ′ λ λ = 	 (6.39)

Table 6.4 shows the frequency results. The number of diametric nodes n is in 
parentheses. Our values for A = 0, i.e., no in-plane force, agrees with Table 5.10. The 
plate buckles for A larger than 7.3410.

TABLE 6.4
Frequency ω for a Clamped Circular Plate under 
Uniform Compressive In-Plane Force

A = 5 A = 0 A = −5 A = −10

5.8274 (0)
16.821 (1)
30.356 (2)
35.316 (0)
46.446 (3)

10.216 (0)
21.261 (1)
34.877 (2)
39.771 (0)
51.030 (3)

13.146 (0)
24.881 (1)
38.852 (2)
43.769 (0)
55.220 (3)

15.490 (0)
28.011 (1)
42.438 (2)
47.423 (0)
59.100 (3)

Note:	 The value of n (number of diametric nodes) is in parentheses.



224 Structural Vibration

© 2010 Taylor & Francis Group, LLC

If the plate is simply supported, the boundary conditions are

	
W

d W

dr

dW

dr
r0, 0 at 1

2

2= + ν = =
 	

(6.40)

Using the Bessel functions Jn, In and their properties, Equation (6.40) yields the 
characteristic equation

	 I J J I J I(1 )[ ( ) ( ) ( ) ( )] ( ) ( ) ( ) 0n n n n n n1 2 1 2 1 2 1
2

2
2

1 2− ν λ λ ′ λ − λ λ ′ λ + λ + λ λ λ = 	 (6.41)

Table 6.5 shows the frequencies. The number of diametric nodes n is in paren-
theses. The simply supported plate buckles when the compressive force A > 2.0989.

If the edge is sliding, the boundary conditions are reduced to

	

dW

dr

d W

dr

d W

dr
n W r0, (3 ) 0 at 1

3

3

2

2
2= + + − ν = =

	
(6.42)

The characteristic equation is

n I J J I J I(1 ) [ ( ) ( ) ( ) ( )] ( ) ( ) ( ) 0n n n n n n
2

1 2 1 2 1 2 1 2 1
2

2
2

1 2− ν λ λ ′ λ − λ λ ′ λ + λ λ λ + λ ′ λ ′ λ = 	 (6.43)

Since the sliding case with in-plane force is somewhat rare, the numerical results 
are not presented here. The free plate with in-plane force is also rare, and is unsta-
ble for compressive forces. The frequency equations for annular plates can be simi-
larly constructed.

6.3 � PLATES WITH INTERNAL SPRING SUPPORT

We consider plates with no in-plane forces but with an internal translational spring 
support for vibration control. For rectangular plates, the internal line spring is per-
pendicular to two simply supported edges, as shown in Figure  6.3a. For circular 
plates, the spring support is on an internal concentric circle, as shown in Figure 6.3b. 

TABLE 6.5
Frequency ω for a Simply Supported Circular Plate 
under Uniform Compressive In-Plane Force

A = 2 A = 0 A = −5 A = −10

1.0714 (0)
11.591 (1)
23.462 (2)
27.593 (0)
37.864 (3)

4.9351 (0)
13.898 (1)
25.613 (2)
29.720 (0)
39.957 (3)

9.0732 (0)
18.442 (1)
30.330 (2)
34.468 (0)
44.764 (3)

11.843 (0)
22.069 (1)
34.406 (2)
38.637 (0)
49.102 (3)

Note:	 The value of n (number of diametric nodes) is in parentheses.
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If the normalized spring constant ξ is zero, it is a plate without a support. If the 
spring constant is infinity, it is a plate with a rigid line support.

6.3.1 �R ectangular Plates with Line Spring Support

Consider the rectangular plate shown in Figure 6.3a. The edges at =y 0  and =y b 
are simply supported, and there is an internal line spring support at =x c . Our deri-
vation mostly follows the work of Li (2003), who gave characteristic formulas but no 
numerical results.

Normalize all lengths by the width a as in Section 6.2.1, and let β = c/a. Separate 
the plate into two regions, where the subscript 1 denotes 0 ≤ x ≤ β and the subscript 2 
denotes β ≤ x ≤1. By using Equation (6.2), the governing equations are

	

d W

dx

d W

dx
W i2 ( ) 0 1,2i i

i

4

4
2

2

2
2 4− α − ω − α = =

	
(6.44)

The boundary conditions at the vertical edges could be any of the Equations (6.5–
6.10). At the support x = β, we need continuity of displacement, slope, and moment, 
but vertical shear is affected by the spring.

	 W W1 2= 	 (6.45)

	

dW

dx

dW

dx
1 2=

	
(6.46)

	
− α ν = − α νd W

dx
W

d W

dx
W

2
1

2
2

1

2
2

2
2

2
	

(6.47)

	

d W

dx

dW

dx
W

d W

dx

dW

dx
(2 ) (2 )

3
1

3
2 1

1

3
2

3
2 2− α − ν − ξ = − α − ν

	
(6.48)

(a) (b)

R
r θ

Internal concentric
spring supporta

b

y

xc

Internal line
spring support

FIGURE 6.3  (a) Rectangular plate with two opposite sides simply supported and an internal 
line spring support, and (b) circular plate with an internal concentric spring support.
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Suppose

	
W c f x c g x W c h x c k x( ) ( ), ( ) ( )1 1 2 2 3 4= + = + 	 (6.49)

which satisfy the boundary conditions at x = 0 and x = 1, respectively. Then the con-
tinuity equations give the characteristic equation

	

f g h k

df

dx

dg

dx

dh

dx

dk

dx

d f

dx

d g

dx

d h

dx

d k

dx

d f

dx
f

d g

dx
g

d h

dx

d k

dx

0

x

2

2

2

2

2

2

2

2

3

3

3

3

3

3

3

3

− −

− −

− −

− ξ − ξ − −

=

=β 	

(6.50)

The parameters for the problem include the aspect ratio a/b, the location of the 
line spring β, the normalized spring constant ξ, and the various combinations of left- 
and right-edge conditions (there are 10 classical combinations). Here we shall only 
present two cases where the support is at the midpoint: (a) where the vertical edges 
are either both simply supported or (b) where both are clamped.

6.3.1.1 � Case 1: All Sides Simply Supported
Let

	
,1

2
2

2λ = ω + α λ = ω − α
	

(6.51)

The solutions that satisfy the left and right boundary conditions are, respectively,

	

= λ =
λ ω > α

λ ω < α






f x g

x

x
sinh( ),

sin( )

sinh( )
1

2
2

2
2

	 (6.52)

	

h x k
x

x
sinh[ ( 1)],

sin[ ( 1)]

sinh[ ( 1)]
1

2
2

2
2

= λ − =
λ − ω > α

λ − ω < α






	 (6.53)

For a given α,ξ, the frequency is obtained from Equation (6.50), and these are 
presented in Table  6.6 as well as the value of n (in parentheses). Some frequen-
cies are duplicated for different aspect ratios, and some are duplicated for different 
modes. Also, if a node is right on the line support, the frequency will be independent 
of the spring constant ξ.
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6.3.1.2 � Case 2: Both Horizontal Sides Simply Supported 
and Both Vertical Sides Clamped

We take

	

= λ λ − λ
λ
λ






= λ −

λ

λ






f x

x

x
g x

x

x
sinh( )

sin( )

sinh( )
, cosh( )

cos( )

cosh( )
2 1 1

2

2
1

2

2

	 (6.54)

	

= λ λ − − λ
λ −
λ −






= λ − −

λ −
λ −






h x

x

x
k x

x

x
sinh[ ( 1)]

sin[ ( 1)]

sinh[ ( 1)]
, cosh[ ( 1)]

cos[ ( 1)]

cosh[ ( 1)]
,2 1 1

2

2
1

2

2
 	

		  (6.55)

where the upper form is for ω > α2 and the lower form for ω < α2. Equation (6.50) 
gives the results in Table 6.7, where the value of n is in parentheses.

6.3.2 Circular Plates with Concentric Spring Support

We extend the work of Wang and Wang (2003). Consider a circular plate of radius 
R with internal elastic spring support on a concentric circle of radius βR. Normalize 

TABLE 6.6
Frequencies for the Simply Supported Plate with an 
Internal Line Spring Support at Mid-Span

ξ a/b = 0.5 a/b = 1 a/b = 2

0

12.337 (1)
19.739 (2)
32.076 (3)
41.946 (1)
49.348 (2)

19.739 (1)
49.348 (1)
78.597 (2)
98.696 (1)

128.30 (2)

49.348 (1)
78.957 (1)

128.30 (1)
167.78 (2)
197.39 (1)

200

23.007 (1)
27.736 (2)
37.572 (3)
41.946 (1)
49.348 (2)

27.736 (1)
49.348 (1)
53.112 (2)
78.957 (2)

100.77 (1)

53.112 (1)
78.957 (1)

129.88 (1)
168.95 (2)
197.39 (1)

∞

41.946 (1)
49.348 (2)
61.685 (3)
63.534 (1)
78.957 (4)

49.348 (1)
69.327 (1)
78.957 (2)
94.586 (2)

128.30 (3)

94.586 (1)
78.957 (1)

197.39 (1)
234.58 (1)
260.70 (2)

Note:	 The value of n (number of vertical half waves) is in parentheses.
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the radial coordinate by R. Let the subscript 1 denote the region 0 ≤ r ≤ β and the 
subscript 2 denote the region β < r ≤ 1. Similar to Section 6.2.2, the governing equa-
tion for the vibration of such a spring-supported circular plate is given by

	
∇ − ω = =W W i0, 1,2i i

4 2 	 (6.56)

The solutions are

	 W c J r c I r( ) ( )n n1 1 2= ω + ω 	 (6.57)

	 W c J r c I r c Y r c K r( ) ( ) ( ) ( )n n n n2 3 4 5 6= ω + ω + ω + ω 	 (6.58)

Continuity at r = β simplifies to

	
= = =W W

dW

dr

dW

dr

d W

dr

d W

dr
, ,1 2

1 2
2

1
2

2
2

2
 
	 (6.59)

	

d W

dr
W

d W

dr

3
1

3 1

3
2

3− ξ = 	 (6.60)

Here, k R D/1
3ξ =  is the normalized spring constant.

TABLE 6.7
Frequencies for the Plate with Opposite Sides Simply 
Supported and Opposite Sides Clamped and with an 
Internal Line Spring Support at Mid-Span

ξ a/b = 0.5 a/b = 1 a/b = 2

0

23.816 (1)
28.951 (2)
39.089 (3)
54.743 (4)
63.535 (1)

28.951 (1)
54.743 (2)
69.327 (1)
94.585 (2)

102.22 (3)

54.743 (1)
94.585 (1)

154.78 (1)
170.35 (2)
206.70 (2)

200

32.434 (1)
36.293 (2)
44.713 (3)
58.822 (4)
63.535 (1)

36.293 (1)
58.822 (2)
69.327 (1)
94.585 (2)

104.39 (3)

58.822 (1)
94.585 (1)

156.13 (1)
171.63 (2)
206.70 (2)

∞

63.535 (1)
69.327 (2)
79.525 (3)
90.872 (1)
94.585 (4)

69.327 (1)
94.585 (2)
95.263 (1)

115.80 (2)
140.20 (3)

94.585 (1)
115.80 (1)
206.70 (2)
218.97 (2)
234.59 (1)

Note:	 The value of n (number of vertical half waves) is in parentheses.
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6.3.2.1 � Case 1: Plate Is Simply Supported at the Edge
The boundary condition at r = 1 is

	
W

d W

dr

dW

dr
0, 02

2
2

2
2= + ν = 	 (6.61)

Let

	
S J r S I r S Y r S K r( ), ( ), ( ), ( )n n n n1 2 3 4= ω = ω = ω = ω 	 (6.62)

From Equations (6.59) and (6.60), we can construct the submatrix

=

− − − −

− − − −

− − − −

− ξ − ξ − − − −



























=β

U

S S S S S S
dS

dr

dS

dr

dS

dr

dS

dr

dS

dr

dS

dr
d S

dr

d S

dr

d S

dr

d S

dr

d S

dr

d S

dr
d S

dr
S

d S

dr
S

d S

dr

d S

dr

d S

dr

d S

dr
r

1 2 1 2 3 4

1 2 1 2 3 4

2
1

2

2
2

2

2
1

2

2
2

2

2
3

2

2
4

2

3
1

3 1

3
2

3 2

3
1

3

3
2

3

3
3

3

3
4

3

		  (6.63)

and from Equation (6.61), we can construct the submatrix

=
+ ν + ν + ν + ν

















=

V

S S S S

d S

dr

dS

dr

d S

dr

dS

dr

d S

dr

dS

dr

d S

dr

dS

dr

0 0

0 0
r

1 2 3 4

2
1

2
1

2
2

2
2

2
3

2
3

2
4

2
4

1

		  (6.64)

Then the frequencies are obtained from the determinant equation

	

U
V

0= 	 (6.65)

Table 6.8 shows the results. When ξ = 0 or the spring is absent, the frequencies are 
the same for all support locations.

6.3.2.2 � Case 2: Plate Is Clamped at the Edge
Since W = 0 and dW/dr = 0 at r = 1, U is same as before, but

	

V
S S S S

dS

dr

dS

dr

dS

dr

dS

dr

0 0

0 0
r

1 2 3 4

1 2 3 4

1

=














=

	 (6.66)

Equation (6.65) yields the frequency results that are presented in Table 6.9.
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TABLE 6.8
Frequencies for the Simply Supported Circular Plate 
with an Internal Ring Spring Support

ξ β = 0.25 β = 0.5 β = 0.75

0

4.9351 (0)
13.898 (1)
25.613 (2)
29.720 (0)
39.957 (3)

200

14.994 (0)
16.729 (1)
26.085 (2)
35.544 (0)
40.024 (3)

17.754 (0)
23.950 (1)
30.628 (0)
31.259 (2)
42.808 (3)

10.680 (0)
20.677 (1)
32.277 (2)
35.766 (0)
45.955 (3)

∞

21.089 (0)
24.527 (1)
31.029 (2)
42.101 (3)
72.492 (0)

27.800 (0)
45.447 (1)
52.594 (0)
53.979 (2)
63.071 (3)

15.458 (0)
32.774 (1)
54.535 (2)
61.923 (0)
80.627 (3)

Note:	 The value of n (number of diametric nodes) is in parentheses.

TABLE 6.9
Frequencies for the Clamped Circular Plate with an 
Internal Ring Spring Support

ξ β = 0.25 β = 0.5 β = 0.75

0

10.216 (0)
21.261 (1)
34.877 (2)
39.771 (0)
51.030 (3)

200

21.047 (0)
24.689 (1)
35.566 (2)
43.043 (0)
51.143 (3)

18.805 (0)
30.327 (1)
41.130 (2)
42.607 (0)
54.687 (3)

11.795 (0)
23.824 (1)
38.085 (2)
43.105 (0)
54.552 (3)

∞

32.573 (0)
36.640 (1)
43.308 (2)
54.677 (3)
89.030 (0)

30.628 (0)
60.625 (1)
74.979 (0)
76.942 (2)
86.983 (3)

15.974 (0)
33.658 (1)
55.780 (2)
63.508 (0)
82.293 (3)

Note:	 The value of n (number of diametric nodes) is in parentheses.
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6.3.2.3 � Case 3: Free Plate with Support
The boundary conditions at r = 1 simplify to

	

d W

dr

dW

dr
n W L W( ) 0,

2

2
2

1+ ν −



 ≡ = 	 (6.67)

	

d W

dr
n

dW

dr
n W L W[1 (2 ) ] 3 ( ) 0

3

3
2 2

2− + ν + − ν + ≡ = 	 (6.68)

where L1, L2 are differential operators as defined. We take

	

V
L S L S L S L S

L S L S L S L S

0 0 ( ) ( ) ( ) ( )

0 0 ( ) ( ) ( ) ( )
x

1 1 1 2 1 3 1 4

2 1 2 2 2 3 2 4
1

=










=

	 (6.69)

Equation (6.65) furnishes the frequencies, which are listed in Table 6.10. Notice 
the changes in mode shapes, especially the fundamental mode of vibration. The fre-
quencies depend on both the location and stiffness of the ring support.

TABLE 6.10
Frequencies for the Free Circular Plate with an 
Internal Ring Spring Support

ξ β = 0.25 β = 0.5 β = 0.75

0

5.3584 (2)
9.0031 (0)

12.439 (3)
20.475 (1)
21.835 (4)

200

5.4961 (2)
12.448 (3)
19.362 (0)
21.836 (4)
23.649 (1)

6.5636 (0)
7.9133 (2)

17.923 (0)
22.068 (4)
28.841 (1)

8.3897 (0)
16.775 (1)
17.127 (0)
17.135 (2)
19.876 (3)

∞

4.5339 (0)
30.410 (0)
35.057 (1)
43.403 (2)
56.713 (3)

6.9296 (0)
11.790 (2)
16.602 (3)
24.369 (4)
31.343 (0)

8.5270 (0)
20.067 (1)
30.200 (2)
31.177 (0)
38.835 (3)

Note:	 The value of n (number of diametric nodes) is in parentheses.
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6.4 � PLATES WITH INTERNAL ROTATIONAL HINGE

An internal rotational hinge models a partial crack. If the rotational spring constant 
is infinite, the plate is continuous. If the rotational spring constant is zero, it is a 
swivel for doors and panel sections. Exact solutions exist for rectangular plates with 
two parallel sides simply supported and for circular or annular plates.

6.4.1 �R ectangular Plates with Internal Rotational Hinge

Similar to Figure 6.3a, the edges at =y 0  and =y b  are simply supported, and 
there is an internal rotational spring at =x c . Normalize all lengths by the width 
a as in Section 6.2.1, and let β = c/a. Separate the plate into two regions, where the 
subscript 1 denotes 0 ≤ x ≤ β and the subscript 2 denotes β ≤ x ≤ 1. The governing 
equations of motion are given by

	
− α − ω − α =d W

dx

d W

dx
W i2 ( ) 0, where = 1,2i i

i

4

4
2

2

2
2 4 	 (6.70)

At the hinge, we have continuity of displacement, bending moment, and shear 
force, i.e.,

	

= − α ν = − α ν

− α − ν = − α − ν

W W
d W

dx
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d W

dx
W
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dx
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(2 ) (2 )

1 2
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2
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2 1
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2

3
2 2 	 (6.71)

Also, the bending moment is proportional to the difference in slope

	

d W

dx
W

dW

dx

dW

dx

2
1

2
2

1
2 1− α ν = ς −



 	 (6.72)

where ς is the normalized rotational spring constant defined after Equation (6.10).
Suppose

	
W c f x c g x W c h x c k x( ) ( ), ( ) ( )1 1 2 2 3 4= + = + 	 (6.73)

which satisfy the boundary conditions at x = 0 and x = 1, respectively. Then Equations 
(6.71) and (6.72) give the characteristic equation
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		  (6.74)
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We shall only present some cases where the hinge is at the midpoint and where 
both vertical edges are either simply supported or clamped.

6.4.1.1 � Case 1: All Sides Simply Supported
We use Equations (6.51) to (6.53) and substitute them into Equation (6.73). The 
results are given in Table 6.11. The ς = ∞ case is the simply supported plate without 
the rotational spring. Note that the frequency is sensitive to the spring constant at 
small ς.

6.4.1.2 � Case 2: Two Parallel Sides Simply Supported, with a Midline 
Internal Rotational Spring Parallel to the Other Two Clamped Sides

We use Equations (6.54), (6.55) and (6.73) to obtain the frequencies presented in 
Table 6.12.

6.4.2 Circular Plates with Concentric Internal Rotational Hinge

We extend the work of Wang (2002). As in Section 6.3.2, the plate is separated 
into two regions. The general solutions are given by Equations (6.57) and (6.58). 
At the joint r = β, the displacement, bending moment, and shear force are con-
tinuous, i.e.,

	
= + ν −
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





W W
d W

dr r

dW

dr

n

r
W

d W

dr r

dW

dr

n

r
W,1 2

2
1

2
1

2

1

2
2

2
2

2

2

  
	 (6.75)

	

+ − + − ν + − ν
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Also, the bending moment is proportional to the difference in slopes, i.e.,

	
+ ν −
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Define Si as in Equation (6.62) and the operators
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n d

dr
Z

d

dr

n
,

1 1 (2 )
,1

2

2 2

3

3

2

2

2

2 3

2

2= + ν
β

= +
β

− + − ν
β

= ς − ν
β

	 (6.78)
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TABLE 6.12
Frequencies for the Plate with Two Parallel Sides 
Simply Supported and Two Sides Clamped with a 
Midline Rotational Spring

ς a/b = 0.5 a/b = 1 a/b = 2

0

16.194 (1)
22.815 (2)
34.280 (3)
63.535 (1)
69.327 (2)

22.815 (1)
50.749 (2)
69.327 (1)
94.585 (2)
98.777 (3)

50.749 (1)
94.585 (1)

132.26 (1)
166.81 (2)
206.70 (2)

5

21.529 (1)
26.862 (2)
37.223 (3)
63.535 (1)
69.237 (2)

26.862 (1)
53.012 (2)
69.327 (1)
94.585 (2)

100.46 (3)

53.012 (1)
94.585 (1)

143.59 (1)
168.33 (2)
206.70 (2)

∞

23.816 (1)
28.951 (2)
39.089 (3)
54.743 (4)
63.535 (1)

28.951 (1)
54.743 (2)
69.327 (1)
94.585 (2)

102.22 (3)

54.743 (1)
94.585 (1)

154.78 (1)
170.35 (2)
206.70 (2)

Note:	 Number of vertical half waves n is in parenthesis.

TABLE 6.11
Frequencies for the Rectangular Plate with All Sides 
Simply Supported with a Midline Rotational Spring

ς a/b = 0.5 a/b = 1 a/b = 2

0

6.8805 (1)
16.135 (2)
29.208 (3)
41.946 (1)
46.738 (4)

16.135 (1)
46.738 (2)
49.348 (1)
75.283 (1)
78.957 (2)

46.738 (1)
78.957 (1)

111.03 (1)
164.79 (2)
197.39 (1)

5

10.982 (1)
18.598 (2)
31.005 (3)
41.946 (1)
48.243 (4)

18.598 (1)
48.243 (2)
49.348 (1)
78.957 (2)
88.714 (1)

48.243 (1)
78.957 (1)

119.97 (1)
166.08 (2)
197.39 (1)

∞

12.337 (1)
19.739 (2)
32.076 (3)
41.946 (1)
49.348 (2)

19.739 (1)
49.348 (1)
78.957 (2)
98.696 (1)

128.30 (2)

49.348 (1)
78.957 (1)

128.30 (1)
167.78 (2)
197.39 (1)

Note:	 Number of vertical half waves n is in parenthesis.
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Then Equations (6.75) to (6.77) lead to the submatrix

	

U

S S S S S S

Z S Z S Z S Z S Z S Z S

Z S Z S Z S Z S Z S Z S

Z Z S Z Z S
dS

dr

dS

dr

dS

dr

dS

dr
( ) ( )

r

1 2 1 2 3 4

1 1 1 2 1 1 1 2 1 3 1 4

2 1 2 2 1 1 2 2 2 3 2 4

1 3 1 1 3 2
1 2 3 4

=

− − − −
− − − −
− − − −

+ + −ς −ς −ς −ς





















=β

		  (6.79)

6.4.2.1 � Case 1: Plate Is Simply Supported at the Edge
The V matrix is given by Equation (6.64), and with Equation (6.79), we solve Equation 
(6.65) to obtain the frequency results. In Table 6.13, we observe that the frequencies 
are very sensitive to small ς. For large ς, the frequencies rapidly approach the no-
hinge values presented in Chapter 5.

6.4.2.2 � Case 2: Plate Is Clamped at the Edge
We use Equation (6.66) and Equation (6.79) to obtain the frequency results presented 
in Table 6.14.

TABLE 6.13
Frequencies for Simply Supported Circular Plate 
with an Internal Ring Hinge

ς β = 0.25 β = 0.5 β = 0.75

0

4.1409 (0)
12.865 (1)
25.613 (2)
27.383 (0)
39.910 (3)

3.3722 (0)
9.2188 (1)

22.126 (2)
24.345 (0)
38.242 (3)

3.3233 (0)
8.1628 (1)

13.974 (0)
17.887 (2)
30.955 (3)

1

4.3887 (0)
13.163 (1)
25.613 (2)
28.019 (0)
39.916 (3)

4.0846 (0)
10.793 (1)
23.058 (2)
26.282 (0)
38.628 (3)

4.4390 (0)
10.911 (1)
19.626 (0)
20.465 (2)
33.261 (3)

∞

4.9351 (0)
13.898 (1)
25.613 (2)
29.720 (0)
39.957 (3)

Note:	 The value of n (number of diametric nodes) is in parentheses.
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6.4.2.3 � Case 3: Plate Is Free at the Edge
We use Equation (6.69) and Equation (6.79) to obtain the results presented in 
Table 6.15.

6.5 � PLATES WITH PARTIAL ELASTIC FOUNDATION

An elastic foundation model supports over such areas as soils or rubber material. We 
shall consider only the Winkler foundation, where the restoring force is proportional 
to the displacement. The equation of motion for a plate with a Winkler foundation, 
as shown in Figure 6.4, is given by

	 D w kw h w 04 2∇ − − ρ ω = 	 (6.80)

where k is the foundation stiffness.
By normalizing the lengths by a characteristic length a, Equation (6.80) becomes

	 w w( ) 04 2∇ − ω − η = 	 (6.81)

where ω is defined as in Equation (6.4), and η = ka4/D is the normalized stiffness.

TABLE 6.14
Frequencies for Clamped Circular Plate with an 
Internal Ring Hinge

ς β = 0.25 β = 0.5 β = 0.75

0

9.0247 (0)
18.974 (1)
34.827 (2)
37.973 (0)
50.992 (3)

9.8593 (0)
15.999 (1)
28.239 (0)
28.795 (2)
46.831 (3)

8.3916 (0)
21.236 (1)
33.444 (2)
34.945 (0)
46.123 (3)

1

9.3728 (0)
19.606 (1)
34.836 (2)
38.465 (0)
50.997 (3)

10.014 (0)
17.628 (1)
30.303 (2)
31.791 (0)
46.831 (3)

9.0873 (0)
21.245 (1)
33.917 (2)
36.617 (0)
47.445 (3)

∞

10.216 (0)
21.261 (1)
34.877 (2)
39.771 (0)
51.030 (3)

Note:	 The value of n (number of diametric nodes) is in parentheses.
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6.5.1 �P lates with Full Foundation

Let w0 denote the solution without a foundation with frequency ω0. The governing 
equation of motion is given by

	 w w 04
0 0

2
0∇ − ω = 	 (6.82)

By comparing Equations (6.81) and (6.82), we find that the frequency of a plate 
with a full foundation (see Figure 6.4a) is related to the frequency without foundation 
(Leissa 1969) as follows:

	 0
2ω = ω + η 	 (6.83)

But for partial foundations, the relation in Equation (6.83) does not hold.

TABLE 6.15
Frequencies for Free Circular Plate with an 
Internal Ring Hinge

ς β = 0.25 β = 0.5 β = 0.75

0 5.2954 (2)
7.2987 (0)

12.417 (3)
18.120 (1)
21.830 (4)

5.2739 (2)
6.4490 (0)

12.347 (3)
13.099 (1)
21.762 (4)

5.3494 (2)
7.8007 (0)

12.436 (3)
14.614 (1)
21.835 (4)

1 5.3066 (2)
7.8125 (0)

12.420 (3)
18.773 (1)
21.830 (4)

5.3004 (2)
7.6828 (0)

12.368 (3)
15.505 (1)
21.775 (4)

5.3536 (2)
8.7739 (0)

12.437 (3)
18.109 (1)
21.835 (4)

∞ 5.3584 (2)
9.0031 (0)

12.439 (3)
20.475 (1)
21.835 (4)

Note:	 The value of n (number of diametric nodes) is in parentheses.

(a) (b)

Winkler foundationPlate

FIGURE 6.4  Plate with (a) full Winkler foundation and (b) partial Winkler foundation.
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6.5.2 �R ectangular Plates with Partial Foundation

Consider the simply supported, rectangular plate, where there is a foundation sup-
porting region 1 for which 0 ≤ x ≤ β and no foundation for β ≤ x ≤ 1. Here, x is the 
normalized length, and β = c/a. Since all the edges are simply supported, we use 
Equation (6.31) to obtain

	

d W

dx

d W

dx
W2 ( ) 0

4
1

4
2

2
1

2
4 2

1− α + α − ω + η = 	 (6.84)

	

d W

dx

d W

dx
W2 ( ) 0

4
2

4
2

2
2

2
4 2

2− α + α − ω = 	 (6.85)

At the joint, the plate is completely continuous

	
W W

dW

dx

dW

dx

d W

dx

d W

dx

d W

dx

d W

dx
, , ,1 2

1 2
2

1
2

2
2

2

3
1

3

3
2

3= = = = 	 (6.86)

Of course, W1 also satisfies the boundary conditions at the left edge and W2 at the 
right edge.

The general solution to Equation (6.85) depends on whether ω > α2, ω = α2, or 
ω < α2. The general solution to Equation (6.84) depends on the relative magnitudes 
of ω η, ,  and α + η.4  The independent solutions are products of hyperbolic and 
circular functions. The characteristic determinant is still exact, but we shall not gen-
erate numerical solutions for this section.

6.5.3 �C ircular Plates with Partial Foundation

Figure 6.5 shows a circular plate of radius R with a concentric region of radius βR 
supported by a partial elastic Winkler foundation.

RβR

Region 2

Region 1

FIGURE 6.5  Circular plate with partial Winkler foundation.
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Here, we extend the work of Wang (2005). Let subscript 1 denote the inner region 
and 2 denote the outer region. The equations of motion are

	 w w( ) 04
1

2
1∇ − ω − η = 	 (6.87)

	 w w 04
2

2
2∇ − ω = 	 (6.88)

By using Equation (6.31), the general solution to Equation (6.88) is

	 W c S c S c S c S2 1 1 2 2 3 3 4 4= + + + 	 (6.89)

where Si is defined as in Equation (6.62). Let

	
ˆ 2 1/2
ω = ω − η 	 (6.90)

The bounded general solution to Equation (6.87) is

	

W c S c S

c J r c I r

c r c r

c J i r c J i r

( ˆ ) ( ˆ ),

,

Re ( ˆ ) Im ( ˆ ) ,

n n

n n

n n

1 5 5 6 6

5 6

5 6
2

5 6

= + =

ω + ω ω > η

+ ω = η

ω



 + ω



 ω < η













+
	 (6.91)

Continuity relations as in Equations (6.86) give the matrix

	

U

S S S S S S

dS

dr

dS

dr

dS

dr

dS

dr

dS

dr

dS

dr

d S

dr

d S

dr

d S

dr

d S

dr

d S

dr

d S

dr

d S

dr

d S

dr

d S

dr

d S

dr

d S

dr

d S

dr
r

5 6 1 2 3 4

5 6 1 2 3 4

2
5

2

2
6

2

2
1

2

2
2

2

2
3

2

2
4

2

3
5

3

3
6

3

3
1

3

3
2

3

3
3

3

3
4

3

=

− − − −

− − − −

− − − −

− − − −



























=β 	

(6.92)

The outer-edge boundary conditions then give a submatrix V, and the characteris-
tic determinant is given by Equation (6.65).
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6.5.3.1 � Case 1: Plate Is Simply Supported at the Edge
The submatrix V is given by Equation (6.64). Table  6.16 gives the results. When 
the stiffness is zero, it is a homogeneous simply supported plate, as considered in 
Chapter 5. When the stiffness is infinity, it is the clamped, simply supported annular 
plate. However, the approach to the inner-edge clamped case is very slow, as indi-
cated by the η = 10,000 entries.

6.5.3.2 � Case 2: Plate Is Clamped at the Edge
The V submatrix is given in Equation (6.66). The results are shown in Table 6.17.

6.5.3.3 � Case 3: Plate Is Free at the Edge
The V submatrix is given in Equation (6.69). The results are shown in Table 6.18. Notice 
the switching of modes, especially the fundamental mode, as the stiffness is increased. 
For the η = 0 case, we have omitted the zero frequency associated with rigid body motion.

TABLE 6.16
Frequencies for Simply Supported Circular Plate with 
a Concentric Elastic Foundation

η β = 0.25 β = 0.5 β = 0.75

0

4.9351 (0)
13.898 (1)
25.613 (2)
29.720 (0)
39.957 (3)

100

6.6081 (0)
14.025 (1)
25.625 (2)
30.298 (0)
39.958 (3)

9.2282 (0)
15.132 (1)
26.001 (2)
30.512 (0)
40.092 (3)

10.855 (0)
16.706 (1)
27.090 (2)
31.004 (0)
40.820 (3)

10,000

17.998 (0)
19.068 (1)
26.507 (2)
40.064 (3)
56.853 (4)

33.948 (0)
35.212 (1)
39.250 (2)
47.332 (3)
60.337 (4)

76.284 (0)
77.008 (1)
79.237 (2)
83.476 (3)
90.741 (4)

∞

25.980 (0)
27.474 (1)
32.755 (2)
42.935 (3)
57.836 (4)

59.845 (0)
61.012 (1)
64.654 (2)
71.126 (3)
86.821 (4)

243.42 (0)
244.34 (1)
247.13 (2)
251.83 (3)
258.52 (4)

Note: The value of n (number of diametric nodes) is in parentheses.
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6.6 � STEPPED PLATES

A stepped plate describes a plate consisting of regions of different constant thick-
nesses. Although the analysis can be generalized to plates with regions of different 
materials, here we consider only a plate with the same material properties but two 
different thicknesses. A representative reference is Xiang and Wang (2002).

6.6.1 �S tepped Rectangular Plates

Consider a rectangular plate with two horizontal edges simply supported, as shown 
in Figure 6.6. Assume that the only difference between the two regions is the thick-
ness. Let the left side be of thickness h1 and the right side h2 and

	
h h/ 12 1γ = ≤ 	 (6.93)

TABLE 6.17
Frequencies for Clamped Circular Plate with Concentric 
Elastic Foundation

η β = 0.25 β = 0.5 β = 0.75

0

10.216 (0)
21.261 (1)
34.877 (2)
39.771 (3)
51.030 (4)

100

11.546 (0)
21.410 (1)
34.894 (2)
40.191 (0)
51.032 (3)

13.507 (0)
22.472 (1)
35.345 (2)
40.311 (0)
51.217 (3)

14.251 (0)
23.407 (1)
36.164 (2)
40.884 (0)
51.864 (3)

10,000

27.337 (0)
28.144 (1)
36.223 (2)
51.214 (3)
69.511 (0)

49.846 (0)
50.912 (1)
54.359 (2)
62.037 (3)
75.189 (4)

96.398 (0)
109.36 (1)
122.09 (2)
125.48 (0)
140.25 (3)

∞

39.442 (0)
40.836 (1)
45.876 (2)
56.016 (3)
71.482 (4)

89.251 (0)
90.230 (1)
93.321 (2)
98.928 (3)

107.57 (4)

357.79 (0)
358.51 (1)
360.69 (2)
364.38 (3)
369.67 (4)

Note:	 The value of n (number of diametric nodes) is in parentheses.
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TABLE 6.18
Frequencies for Free Circular Plate with Concentric 
Elastic Foundation

η β = 0.25 β = 0.5 β = 0.75

0

5.3584 (2)
9.0031 (0)

12.439 (3)
20.475 (1)
21.835 (4)

100

0.6185 (1)
2.1896 (0)
5.3616 (2)

10.155 (0)
12.439 (3)

2.3709 (1)
3.8348 (0)
5.5416 (2)

11.898 (0)
12.469 (3)

5.3250 (1)
6.1988 (0)
6.9671 (2)

12.421 (0)
12.999 (3)

10,000

3.5427 (1)
4.3148 (0)
5.6000 (2)

12.452 (3)
21.836 (0)

7.8578 (0)
7.8724 (1)
9.1565 (2)

13.889 (3)
22.314 (4)

20.924 (0)
21.295 (1)
22.681 (2)
25.775 (3)
31.346 (4)

∞

5.8384 (0)
5.6101 (1)
7.1027 (2)

12.855 (3)
21.921 (4)

13.024 (0)
13.290 (1)
14.704 (2)
18.562 (3)
25.596 (4)

53.624 (0)
54.230 (1)
56.131 (2)
59.555 (3)
64.802 (4)

Note:	 The value of n (number of diametric nodes) is in parentheses.

Region 1 Region 2

h1 h2 x

1
β

Simply
supported

edges

FIGURE 6.6  Rectangular plate with two piecewise constant-thickness distributions.
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The governing equations for the vibration of the considered stepped rectangular 
plate are

	 D w h w 01
4

1 1 1
2

1∇ − ρ ω = 	 (6.94)

	 D w h w 02
4

2 2 2
2

2∇ − ρ ω = 	 (6.95)

Since D ~ h3, normalize with the properties of the left region to obtain

	 w w 04
1

2
1∇ − ω = 	 (6.96)

	
w w 04

2

2

2 2∇ − ω
γ

= 	 (6.97)

In view of Equation (6.2), one can write the governing equations of motion as

	

d W

dx

d W

dx
W2 ( ) 0

4
1

4
2

2
1

2
2 4

1− α − ω − α = 	 (6.98)

	

d W

dx

d W

dx
W2 0

4
2

4
2

2
2

2 2

2
4

2− α − ω
γ

− α






= 	 (6.99)

At the junction x = β, we require continuity of displacement, slope, bending 
moment, and shear force, i.e.,

	 W W1 2= 	 (6.100)

	

dW

dx

dW

dx
1 2= 	 (6.101)

	

d W

dx
W

d W

dx
W

2
1

2
2

1
3

2
2

2
2

2− α ν = γ − α ν






	 (6.102)

	

d W

dx

dW

dx

d W

dx

dW

dx
(2 ) (2 )

3
1

3
2 1 3

3
2

3
2 2− α − ν = γ − α − ν







	 (6.103)

Let

	
W c f x c g x W c h x c k x( ) ( ), ( ) ( )1 1 2 2 3 4= + = + 	 (6.104)

which satisfy the boundary conditions at x = 0 and x = 1, respectively. Define the operators

	
L

d

dx
L

d

dx

d

dx
, (2 )3

2

2
2

4

3

3
2= − α ν = − α − ν 	 (6.105)
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then the continuity equations give the following characteristic equation

	

f g h k

df

dx

dg

dx

dh

dx

dk

dx

L f L g L h L k

L f L g L h L k

0

x

3 3
3

3
3

3

4 4
3

4
3

4

− −

− −

−γ −γ

−γ −γ

=

=β

	 (6.106)

We present some special cases in the following subsections.

6.6.1.1 � Case 1: Plate Is Simply Supported on All Sides
Let

, , ( / ) , ( / )1
2

2
2

3
2

4
2λ = ω + α λ = ω − α λ = ω γ + α λ = ω γ − α 	 (6.107)

The solutions that satisfy the left and right boundary conditions are

	

= λ =
λ ω > α

λ ω < α






f x g

x

x
sinh( ),

sin( )

sinh( )
1

2
2

2
2

 

	 (6.108)

	

h x k
x

x
sinh[ ( 1)],

sin[ ( 1)] /

sinh[ ( 1)] /
3

4
2

4
2

= λ − =
λ − ω γ > α

λ − ω γ < α






	 (6.109)

Then Equation (6.106) gives the vibration results presented in Table 6.19 for the 2:1 
rectangular plate a/b = 2 and β = c/a.

6.6.1.2 � Case 2: Plate Is Simply Supported on Opposite 
Sides and Clamped on Opposite Sides

We take

	

= λ λ − λ
λ
λ






= λ −

λ

λ






f x

x

x
g x

x

x
sinh( )

sin( )

sinh( )
, cosh( )

cos( )

cosh( )
2 1 1

2

2
1

2

2
 

	 (6.110)

	

= λ λ − − λ
λ −
λ −






= λ − −

λ −
λ −






h x

x

x
k x

x

x
sinh[ ( 1)]

sin[ ( 1)]

sinh[ ( 1)]
, cosh[ ( 1)]

cos[ ( 1)]

cosh[ ( 1)]
,4 3 3

4

4
3

4

4
	

	  	 (6.111)
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where the top and bottom forms are similarly differentiated in Equations (6.108) and 
(6.109). The results are shown in Table 6.20.

6.6.2 �S tepped Circular Plates

Consider Figure 6.7, where the inner region of the circular plate has a higher density. 
The governing equations are Equations (6.98) and (6.99). Similar to Section 6.3.2, 
the solutions are given by

	 W c J r c I r c S c S( ) ( )n n1 1 2 1 1 2 2= ω + ω = + 	 (6.112)

	

W c J r c I r c Y r c K r

c S c S c S c S

( / ) ( / ) ( / ) ( / )n n n n2 3 4 5 6

3 3 4 4 5 5 6 6

= ω γ + ω γ + ω γ + ω γ

= + + + 	 (6.113)

Continuity at r = β yields

	
W W

dW

dr

dW

dr
,1 2

1 2= = 	 (6.114)

	
L W L W L W L W,5 1

3
5 2 6 1

3
6 2= γ = γ 	 (6.115)

TABLE 6.19
Frequencies for the 2:1 Stepped Rectangular 
Plate with All Edges Simply Supported

β = 0.25 β = 0.5 β = 0.75

γ = 0.25

15.381 (1)
29.971 (1)
44.486 (2)
49.757 (1)
59.118 (2)

22.687 (1)
43.309 (1)
51.370 (2)
60.466 (1)
84.598 (2)

40.031 (1)
61.348 (1)
81.048 (1)
90.688 (2)

131.73 (1)

γ = 0.5

28.620 (1)
48.583 (1)
74.442 (1)
87.997 (2)

113.56 (2)

35.447 (1)
55.536 (1)
92.404 (1)
98.973 (2)

134.32 (1)

48.848 (1)
67.797 (1)

110.53 (1)
138.62 (2)
161.95 (1)

γ = 0.75

39.291 (1)
63.665 (1)

103.07 (1)
129.29 (2)
158.45 (2)

42.724 (1)
68.730 (1)

110.58 (1)
138.76 (2)
171.35 (1)

46.589 (1)
73.424 (1)

119.67 (1)
158.67 (2)
184.45 (1)

Note: The value of n (number of diametric nodes) is in parentheses.
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TABLE 6.20
Frequencies for the 2:1 Stepped Rectangular Plate with 
Two Opposite Edges Simply Supported and the Other 
Two Opposite Edges Clamped

β = 0.25 β = 0.5 β = 0.75

γ = 0.25

34.339 (1)
45.332 (2)
58.271 (1)
61.902 (2)
81.294 (1)

27.357 (1)
47.914 (1)
54.320 (2)
71.048 (1)
92.546 (2)

42.606 (1)
73.559 (1)

100.80 (1)
108.86 (2)
150.92 (1)

γ = 0.5

31.948 (1)
57.989 (1)
89.479 (2)
89.956 (1)

118.34 (2)

39.906 (1)
65.513 (1)

103.40 (2)
110.40 (1)
151.93 (2)

47.194 (1)
79.591 (1)

133.09 (1)
148.41 (2)
182.82 (2)

γ = 0.75

43.724 (1)
76.186 (1)

123.80 (1)
131.13 (2)
164.90 (2)

47.468 (1)
82.208 (1)

133.07 (1)
142.31 (2)
182.04 (2)

51.670 (1)
87.835 (1)

143.94 (1)
163.24 (2)
194.15 (2)

Note:	 The value of n (number of vertical half waves) is in parentheses.

1

β

FIGURE 6.7  Stepped circular plate.
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where

= + ν −




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3

3

2

2
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2

2

3

 
	 (6.116)

From Equations (6.114) and (6.115), one can construct the matrix

	

U

S S S S S S

dS
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dS
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dS
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dS
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dS
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dS
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1 2 3 4 5 6
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3

5 3
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5 4
3

5 5
3

5 6

6 1 6 2
3

3
3

4
3

5
3

6
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− − − −
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−γ −γ −γ −γ

−γ −γ −γ −γ























=β

		  (6.117)

We shall illustrate with the following three cases.

6.6.2.1 � Case 1: Circular Plate with Simply Supported Edge
The submatrix is

=
+ ν + ν + ν + ν

















=

V

S S S S

d S

dr

dS

dr

d S

dr

dS

dr

d S

dr

dS

dr

d S

dr

dS

dr

0 0

0 0
r

3 4 5 6

2
3

2
3

2
4

2
4

2
5

2
5

2
6

2
6

1

		  (6.118)

Then Equation (6.65) gives the frequencies as shown in Table 6.21.

6.6.2.2 � Case 2: Circular Plate with Clamped Edge
The submatrix is

	

V
S S S S

dS

dr

dS

dr

dS

dr

dS

dr

0 0

0 0
r

3 4 5 6

3 4 5 6

1

=














=

	 (6.119)

Then Equation (6.65) gives the frequencies in Table 6.22.

6.6.2.3 � Case 3: Circular Plate with Free Edge
The submatrix is

	

V
L S L S L S L S

L S L S L S L S

0 0

0 0
r

1 3 1 4 1 5 1 6

2 3 2 4 2 5 2 6
1

=










=

	 (6.120)
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TABLE 6.22
Frequencies for Clamped Stepped Circular Plate

β = 0.25 β = 0.5 β = 0.75

γ = 0.25

2.2507 (0)
5.1137 (1)

11.124 (2)
11.209 (0)
13.898 (3)

2.6273 (0)
5.1629 (1)

15.779 (2)
20.156 (0)
22.422 (3)

4.4420 (0)
8.5725 (1)

14.330 (2)
19.106 (0)
24.114 (3)

γ = 0.5

5.1088 (0)
10.642 (1)
19.780 (2)
22.371 (0)
26.863 (3)

5.7929 (0)
11.723 (1)
20.989 (2)
26.826 (0)
32.405 (3)

6.5751 (0)
15.464 (1)
24.933 (2)
29.895 (0)
35.880 (3)

γ = 0.75

7.7816 (0)
16.052 (1)
27.200 (2)
31.535 (0)
38.971 (3)

8.1032 (0)
17.161 (1)
28.085 (2)
33.174 (0)
41.355 (3)

8.2558 (0)
18.544 (1)
30.844 (2)
36.179 (0)
44.999 (3)

Note:	 The value of n (number of diametric nodes) is in parentheses.

TABLE 6.21
Frequencies for Simply Supported Stepped Circular Plate

β = 0.25 β = 0.5 β = 0.75

γ = 0.25

1.1437 (0)
3.3927 (1)
7.9779 (0)
7.9786 (2)

11.739 (1)

1.3461 (0)
3.3234 (1)

12.361 (2)
14.464 (0)
16.529 (3)

2.5383 (0)
5.0863 (1)

11.060 (2)
16.177 (0)
21.031 (3)

γ = 0.5

2.5287 (0)
6.9563 (1)

14.407 (2)
16.357 (0)
24.804 (1)

3.0155 (0)
7.4651 (1)

15.913 (2)
20.661 (0)
25.311 (3)

4.1634 (0)
10.373 (1)
17.741 (2)
22.103 (0)
27.583 (3)

γ = 0.75

3.8058 (0)
10.470 (1)
19.942 (2)
23.442 (0)
37.199 (1)

4.1622 (0)
11.080 (1)
20.622 (2)
24.873 (0)
41.689 (1)

4.6394 (0)
12.768 (1)
22.713 (2)
27.262 (0)
43.866 (1)

Note:	 The value of n (number of diametric nodes) is in parentheses.
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where L1,L2 are defined in Equations (6.67) and (6.68). The results are shown in 
Table 6.23.

6.7 � VARIABLE-THICKNESS PLATES

We consider plates whose thicknesses vary continuously. The solutions have impli-
cations for plates made of functionally graded materials. So far, there are no exact 
solutions for variable-thickness rectangular plates or circular plates. Annular plates 
with power law thickness or rigidity have been presented by Lenox and Conway 
(1980) and Wang, Wang, and Chen (2012). Figure 6.8 shows the two kinds of vari-
able-thickness plates considered.

The dynamic equation in polar coordinates for a plate with radial variable prop-
erty is given by (Leissa 1969)

	

D w
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r r
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r r

w
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w
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w
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w

r r

w
h

w

t

2
2 1 2 34

3

3

2

2 2 2

3

2 3

2

2

2

2

2

2 2

2

2

2

2

∇ + ∂
∂

+ + ν ∂
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




+ ∂
∂

+ ν ∂
∂

+ ν ∂
∂θ







= −ρ ∂
∂

	 (6.121)

We normalize all lengths by the outer radius R and drop the over-bars. Let

	 w W r n t( )cos( )cos( )= θ ω 	 (6.122)

TABLE 6.23
Frequencies for Free Stepped Circular Plate

β = 0.25 β = 0.5 β = 0.75

γ = 0.25

1.7350 (2)
2.2814 (0)
3.2050 (3)
4.9775 (1)
5.4785 (4)

3.3127 (2)
3.7298 (0)
4.4835 (3)
5.6396 (1)
6.3162 (4)

6.5795 (2)
9.8710 (0)

11.362 (3)
14.174 (1)
14.237 (4)

γ = 0.5

3.1327 (2)
4.8367 (0)
6.3335 (3)

10.293 (1)
10.941 (4)

4.4781 (2)
6.7306 (0)
7.7202 (3)

11.920 (4)
12.030 (1)

5.7593 (2)
9.6940 (0)

11.669 (3)
17.933 (4)
19.807 (1)

γ = 0.75

4.2484 (2)
7.0919 (0)
9.3891 (3)

15.488 (1)
16.389 (4)

4.8290 (2)
8.1514 (0)

10.057 (3)
16.890 (4)
17.048 (1)

5.3685 (2)
9.1773 (0)

11.636 (3)
19.375 (4)
20.318 (1)

Note:	 The value of n (number of diametric nodes) is in parentheses.
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where ω  is the frequency. Let D0 be the maximum rigidity; let ρh0 be the maximum 
mass per area; and define normalized parameters ϕ, ψ, ω

	
= φ ρ = ρ ψ ω = ω ρD D r h h r R h D( ), ( ), /0 0

2
0 0 	 (6.123)

Then Equation (6.121) becomes
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Note that if

	
φ = ψ =α α−r r, 4 	 (6.125)

then Equation (6.124) yields solutions in the form

	 W r= λ 	 (6.126)

where λ satisfies the algebraic equation

	

n n n n

n

( )[( 2) ] [ ( 1)(2 2 ) (1 2 ) 3 ]

( 1)[ ( 1) ( )] 0

2 2 2 2 2 2

2 2

λ − λ − − + α λ λ − λ − + ν − + λ +

+ α α − λ λ − + ν λ − − ω = 	 (6.127)

Since a singularity exists at r = 0, only annular plates are considered. Let the inner 
radius be βR. Although α can be any exponent, we shall only present some physically 
meaningful cases.

(a)

b
1

(b) (c)

FIGURE 6.8  (a) Nonuniform thickness annular plate, (b) constant density with parabolic 
thickness, and (c) parabolic sandwich plate.
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6.7.1 �C ase 1: Constant Density with Parabolic Thickness

For this case, α = 6. Let

	
= + − ν = − ν − − ν + ω = −b n b n d b b14 2 6 , 4[9(1 ) 8 (1 3 ) ],1

2
2

2 2 2
1 2  

	 (6.128)

The roots of Equation (6.127) are

	
λ = − ± + λ = − ± −b b b b2 ( )/2, 2 ( )/21,2 1 2 3,4 1 2  

	 (6.129)

The general solution is

	

W c r c r c
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d r r
c
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1 2 3 2 4 2

1 2

3 4

= + +





+






λ λ

λ λ

	 (6.130)

where the top form is used if d > 0 and the bottom form if d < 0. Using the inner- 
and outer-edge conditions, Equation (6.130) gives the characteristic equation for fre-
quency. Table 6.24 shows the results for both edges clamped (C-C), both edges simply 
supported (S-S), or both edges free (F-F). Notice the mode changes for the F-F case.

TABLE 6.24
Frequencies for the Annular Plate with 
Parabolic Thickness

β = 0.25 β = 0.5 β = 0.75

C-C

15.666 (0)
16.489 (1)
19.054 (2)
23.544 (3)
30.082 (4)

50.126 (0)
50.768 (1)
52.760 (2)
56.269 (3)
61.513 (4)

273.73 (0)
274.30 (1)
276.01 (2)
278.92 (3)
283.08 (4)

S-S

5.7272 (0)
7.2019 (1)

12.205 (2)
18.555 (3)
23.571 (0)

19.244 (0)
20.732 (1)
24.889 (2)
31.195 (3)
39.346 (4)

117.73 (0)
118.82 (1)
122.06 (2)
127.45 (3)
134.93 (4)

F-F

2.6553 (2)
4.5145 (0)
7.1587 (1)
7.4035 (3)

12.197 (2)

2.6550 (2)
5.9863 (0)
7.3980 (3)
9.5876 (1)

14.145 (4)

2.6545 (2)
7.3801 (3)

12.016 (0)
14.076 (4)
19.181 (1)

Note:	 The value of n (number of diametric nodes) is in 
parentheses.
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6.7.2 �C ase 2: Parabolic Sandwich Plate

Consider a sandwich plate with high-density surface laminates separated by a web or 
foam of negligible density. For this case, α = 4. From Equation (6.127), the roots are

	
λ = − ± + λ = − ± −b b b b1 ( )/2, 1 ( )/21,2 1 2 3,4 1 2 	 (6.131)

where

	 b n b n6 2 4 , 16[(1 ) (1 2 )] 41
2

2
2 2 2= + − ν = − ν − − ν + ω 	 (6.132)

Then the solution is given by Equation (6.130) with r2 replaced by r. Table 6.25 shows 
the results.

6.8 � DISCUSSION

We have described the methods for obtaining exact characteristic equations for some 
basic complicating factors and presented some specific samples. Of course, there are 
many other boundary conditions and combinations, such as “vibration of a stepped 
plate with in-plane force and rotational springs on the boundary.” No doubt, the 
reader can extend the method presented in this chapter and generate exact frequen-
cies to suit particular needs.

TABLE 6.25
Frequencies for a Sandwich Annular Plate

β = 0.25 β = 0.5 β = 0.75

C-C

13.034 (0)
13.782 (1)
16.179 (2)
20.511 (3)
26.940 (4)

47.906 (0)
48.513 (1)
50.403 (2)
53.768 (3)
58.853 (4)

271.66 (0)
272.22 (1)
273.91 (2)
276.78 (3)
280.89 (4)

S-S

5.2168 (0)
6.7998 (1)

10.698 (2)
16.322 (3)
23.690 (4)

20.465 (0)
21.649 (1)
25.099 (2)
30.627 (3)
38.104 (4)

119.13 (0)
120.17 (1)
123.26 (2)
128.41 (3)
135.60 (4)

F-F

2.6558 (2)
3.1405 (0)
5.1541 (1)
6.7380 (2)
7.4160 (3)

2.6552 (2)
5.1889 (0)
7.4043 (3)
8.3575 (1)

14.168 (4)

2.6545 (2)
7.3801 (3)

11.668 (0)
14.079 (4)
18.630 (1)

Note:	 The value of n (number of diametric nodes) is in parentheses.



253Vibration of Plates with Complicating Effects

© 2010 Taylor & Francis Group, LLC

REFERENCES

Leissa, A. W. 1969. Vibration of plates. NASA SP-160. Washington, DC: U.S. Government 
Printing Office. Repr. Sewickley, PA: Acoustical Society of America, 1993.

Lenox, T. A., and H. D. Conway. 1980. An exact closed form solution for the flexural vibration 
of a thin annular plate having a parabolic thickness variation. J. Sound Vibr. 68:231–39.

Li, Q. S. 2003. An exact approach for free vibration analysis of rectangular plates with line-
concentrated mass and elastic line support. Int. J. Mech. Sci. 45:669–85.

Wang, C. Y. 2002. Fundamental frequency of a circular plate weakened along a concentric 
circle. Z. Angew. Math. Mech. 82:70–72.

———. 2005. Fundamental frequency of a circular plate supported by a partial elastic founda-
tion. J. Sound Vibr. 285:1203–9.

Wang, C. Y., and C. M. Wang. 2003. Fundamental frequencies of circular plates with internal 
elastic ring support. J. Sound Vibr. 263:1071–78.

Wang, C. Y., C. M. Wang, and W. Q. Chen. 2012. Exact closed form solutions for free vibra-
tion of non-uniform annular plates. IES J. Part A: Civil and Structural Engineering 5 
(1): 50–55.

Xiang, Y., and C. M. Wang. 2002. Exact buckling and vibration solutions for stepped rectan-

gular plates. J. Sound Vibr. 250: 503–17.





255

© 2010 Taylor & Francis Group, LLC

7 Vibration of 
Nonisotropic Plates

7.1  INTRODUCTION

In the previous Chapters 5 and 6, we have assumed the plate material to be isotropic, 
which means that the material properties at a point are the same in all directions. 
However, certain materials have properties that are not independent of the direction. 
These materials are said to be anisotropic. Examples of anisotropic materials are 
two-way reinforced concrete slabs, plywood, and fiber-reinforced plastics. Structural 
anisotropy is also introduced by means of ribs or corrugations. Consequently, to 
obtain a reasonable agreement between analysis and the actual behavior, it is neces-
sary to consider the anisotropy of such plates in the calculations.

In this chapter, we consider the vibration problems of nonisotropic plates such as 
orthotropic, sandwich, laminated, and functionally graded plates, and we provide the 
exact vibration solutions for some plate shapes and boundary conditions.

7.2  ORTHOTROPIC PLATES

If a plate has different elastic properties in two orthogonal directions, it is called an 
orthotropic plate (i.e., orthogonally isotropic). In practice, two forms of orthotropy 
may be identified: material orthotropy and shape orthotropy. A plywood sheet is 
orthotropic because of different elastic properties in two perpendicular directions, 
whereas a voided concrete slab is orthotropic because cross sections in the two 
orthogonal directions are essentially different.

7.2.1 G overning Vibration Equation

The stress-strain relationships for an orthotropic material for plates are given by 
(Szilard 1974)

	
σ =

− ν ν
ε + ν εE

(1 )
[ ]xx

x

x y
x y y 	 (7.1)

	
σ =

− ν ν
ε + ν ε

E

(1 )
[ ]yy

y

x y
y x x 	 (7.2)

	 σ = γ = εG G2xy xy xy 	 (7.3)
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where σ σ,xx yy  are the normal stresses in the x- and y-directions, respectively; 
ε ε,xx yy  are the normal strains in the x- and y-directions; σxy is the shearing stress; 
γxy is the corresponding shearing strain; E E,x y  are the moduli of elasticity in the 
x- and y-directions; ν ν,x y  are the Poisson ratios in the x- and y-directions; and

≈ + ν ν G E E 2(1 )x y x y .
Based on Betti’s reciprocal theorem, we have

	
ν = ν ν = νE E D Dorx y y x x y y x 	 (7.4)

and then Equations (7.1) and (7.2) can be written as

	
�

σ = ε + εE Exx x x y 	 (7.5)

	
�

σ = ε + εE Eyy y y x 	 (7.6)

where E  and E
�

 are defined in Equation (7.17).
Thus, for an orthotropic plate, there are four material constants ν νE E( , , , )x y x y  as 

opposed to two material constants ( )νE,  for an isotropic plate.
As in the isotropic classical thin-plate theory, which is based on Kirchhoff’s 

assumptions, the strain-displacement relations for orthotropic plates are given by
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x
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2

2 	 (7.7a)

	
ε = − ∂

∂
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y
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2

2 	 (7.7b)

	
ε = − ∂

∂ ∂
z

w

x y
xy

2

	 (7.7c)

where w is the transverse displacement, and z is the coordinate measured from the 
mid-plane of the plate.

The bending moments and twisting moments are given by

	
∫= σ

−

M z dzxx xx

h

h

/2

/2

	 (7.8a)

	
∫= σ

−

M z dzyy yy

h

h

/2

/2

	 (7.8b)

	
∫= σ = −

−

M z dz Myx xy

h

h

yx

/2

/2

	 (7.8c)

where h is the plate thickness.
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By substituting Equations (7.7a), (7.7b), (7.7c), (7.5), (7.6), and (7.3) into Equations 
(7.8a) to (7.8c), we have the following moment curvature relationships
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∂
+ ∂

∂
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M D
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where

	
( )= = = ν = ν = − ν νD

E h
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E h
D D D D D D

12
,

12
, , 2 1x

x
y

y
y x x y xy x y x y

3 3

1 	 (7.10)

Dx,Dy are the flexural rigidities of the orthotropic plate, and 2Dxy is the torsional 
rigidity. For an orthotropic plate of uniform thickness, the torsional rigidity can be 
written as Dxy = Gh3/12.

The equations of free harmonic motion of classical thin plates are given by
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By substituting Equations (7.9a), (7.9b), and (7.9c) into Equations (7.11) and (7.12), 
we obtain
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where

	
= + = ν + ν +H D D D D D2

1
2

( ) 2xy y x x y xy1 	 (7.15)

Note that H is the effective torsional rigidity of the orthotropic plate.
The substitution of Equations (7.14a) and (7.14b) into Equation (7.13) furnishes the 

governing plate equation for the vibrating orthotropic plate
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w

x
H

w

x y
D

w

y
h w2 0x y

4

4

4

2 2

4

4
2 	 (7.16)

Note that for the isotropic plate case,
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	 (7.17)

and Equation (7.16) reduces to Equation (5.3) in Chapter 5.

7.2.2 P rincipal Rigidities for Special Orthotropic Plates

7.2.2.1  Corrugated Plates
Corrugated plates and plates with stiffeners are frequently treated mathematically 
as orthotropic plates. Certainly, these stiffened plates have varying rigidities in the 
directions perpendicular and parallel to the stiffeners. Often these plates are mod-
eled by equivalent orthotropic plates with elastic properties equal to the average 
properties of the various plate components.

Consider the corrugated plate having a sinusoidal form of corrugation as shown 
in Figure  7.1. The estimated principal rigidities are given by (Timoshenko and 
Woinowsky-Krieger 1959; Szilard 1974)

	
=
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= = = µ
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=D

s Eh
D EI H D
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, 0x y xy
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1 	 (7.18)

where E is the Young’s modulus of the plate material, ν is the Poisson ratio of the 
plate material, s is the half wavelength of the corrugated wave, H  is the amplitude of 
the corrugated wave, h is the thickness of the corrugated plate, and
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µ = +
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= −
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Consequently, the net bending stiffness of the corrugated plate and the ortho-
tropic model are made equal. It is evident that this procedure could yield poor results 
in certain local areas and yet give a good description of the overall plate stiffness. 
The precise meaning of the expression “equivalent orthotropic plate” becomes vague 
when a stiffened plate is modeled by an orthotropic plate. The orthotropic model 
can be structured in such a manner that a certain quantity, such as stress or deflec-
tion, in the orthotropic plate matches the corresponding quantity in the stiffened 
plate. However, it is not guaranteed that stresses will match if deflections are made 
to match and vice versa. Of course, the ideal situation is to closely match all the 
plate variables. It has been observed that a satisfactory matching of the overall plate 
behavior can be obtained if s/a << 1 and s/b << 1, where s is the distance between 
stiffeners and a and b are the overall plate dimensions.

7.2.2.2  Plate Reinforced by Equidistant Ribs/Stiffeners
Consider a plate reinforced by equidistant ribs/stiffeners in one direction, as shown 
in Figure  7.2. For such a plate, the principal rigidities may be approximated by 
(Timoshenko and Woinowsky-Krieger 1959)

	
= =

− ν
=

− ν
+D H
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Eh E I
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,
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x y
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s s 	 (7.20)
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FIGURE 7.1  Corrugated plate.
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FIGURE 7.2  Plate with ribs/stiffeners.
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where E and Es are the Young’s moduli of plate and stiffeners, respectively, ν is 
the Poisson ratio of the plate, s is the spacing between stiffeners, and Is is the 
moment of inertia of a stiffener taken with respect to the middle plane of the 
plate.

If the plate is reinforced by two perpendicular sets of equidistant stiffeners, again 
assumed to be symmetric with respect to the middle surface of the plate, the ortho-
tropic elastic constants are approximated by (Timoshenko and Woinowsky-Krieger 
1959)

	
=
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+ =
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in which Is1 and s1 are, respectively, the second moment of area and the spacing of the 
stiffeners that run parallel to the y-axis, and Is2 and s2 are, respectively, the second 
moment of area and the spacing of the stiffeners that run parallel to the x-axis.

7.2.2.3  Steel-Reinforced Concrete Slabs
For a slab with two-way reinforcement in the x- and y-directions, as shown in 
Figure  7.3, the principal rigidities may be approximated by (Timoshenko and 
Woinowsky-Krieger 1959; Reddy 2007)
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c
2 c s 1 c
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	(7.22)

in which Es is the Young’s modulus of steel; Ec is the Young’s modulus of concrete; 
νc is the Poisson ratio of concrete; n = Es/Ec; and Icx and Icy are the moment of areas 
of the slab material and Isx and Isy are the moment of areas of the reinforcement bars, 
both taken about the neutral axis in the section x and section y, respectively. Note that �
ν = E E E/ x yc  is assumed.

x

y

z

FIGURE 7.3  Concrete slab with two-way steel reinforcement.
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7.2.2.4  Multicell Slab with Transverse Diaphragm
When closely spaced transverse diaphragms are incorporated into a multicell slab 
(as shown in Figure 7.4), local bending of the cell walls is largely prevented. The 
principal rigidities can be estimated from (Cope and Clark 1984)
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where B is the total width of the slab between the outer web centerlines, d is the depth 
of the section between flange centerlines, ds/t is the length-to-thickness ratio of a rect-
angle making up the perimeter if the flange and outer webs are all of the same thickness 
t, and Σ = +ds t B d t/ 2( ) / . Note that the flange width is to be increased by − ν1 / (1 )2  
when determining Ix and Iy about the centroid of the cross section.

7.2.2.5  Voided Slabs
For a slab with one-way circular voids as shown in Figure 7.5, the principal rigidities 
can be estimated from (Cope and Clark 1984)
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The formulae in Equation 7.24 are calibrated for slabs with 0.47 < d/h < 0.81.
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FIGURE 7.4  Multicell slab with transverse diaphragm and portion of a multicell slab.

hd
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s Iy

FIGURE 7.5  One-way circular voided slab.
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7.2.3 S imply Supported Rectangular Orthotropic Plates

Exact vibration solutions may be obtained for simply supported rectangular ortho-
tropic plates of length a and width b. The following deflection function w satisfies the 
simply supported boundary conditions

	
=w A

m x

a

n y

b
sin

π
sin

π
mn 	 (7.25)

By substituting Equation (7.25) into Equation (7.16), the natural frequency of 
vibration of the simply supported rectangular orthotropic plate is given by
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Sample frequency values ω = ω ρa h H/11 11
2  for isotropic plates Dx/H = Dy/H 

= 1 and orthotropic plates with various combinations of Dx/H and Dy/H ratios are 
given in Table 7.1.

7.2.4 �R ectangular Orthotropic Plates with Two 
Parallel Sides Simply Supported

Exact vibration solutions are also possible for rectangular plates with two paral-
lel sides simply supported, while the other two sides can take any combination of 
clamped, simply supported, and free boundary conditions using the Levy (1899) 
approach. The partial differential equation for such plates may be converted into an 
ordinary differential equation, since the two simply supported parallel edges (say, 
parallel to the x-axis) allow the mode shape to be made separable in the form

	
=w x y W x

n y

b
( , ) ( ) sin

π
n 	 (7.27)

TABLE 7.1
Frequency == ωω ρρω a h H/11 11

2  of Orthotropic 
Rectangular Plates with Simply Supported Edges

a/b

=

=

D H

D H

1 2

1

x

y

=

=

D H

D H

1

1

(isotropic case)

x

y =

=

D H

D H

1

2

x

y

=

=

D H

D H

2

1

x

y

0.5 10.173 12.337 12.581 15.799

1.0 18.464 19.739 22.069 22.069

2.0 48.852 49.348 63.196 50.325



263Vibration of Nonisotropic Plates

© 2010 Taylor & Francis Group, LLC

where it satisfies the simply supported boundary conditions w = 0 and Myy = 0 at 
y = 0 edge and y = b edge (see Figure 7.6).

By substituting Equation (7.27) into Equation (7.16), we obtain the following 
fourth-order ordinary differential equation:
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The form of the solution to Equation (7.27) depends on the nature of the roots λ 
of the equation
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There are two distinct cases. Case 1 is when ( )ω ≥ ρn b D h( π/ ) /y
2 4 , and Case 2 

is when ( )ω < ρn b D h( π/ ) /y
2 4 . The general solution for Equation (7.28) is given by 

(Voigt 1893)
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( ) = λ + λ + λ + λW x A x A x A x A xcosh sinh cosh sinhn 1 1 2 1 3 2 4 2   for Case 2	 (7.31)

where Ai,i = 1,2,3,4 are the integration constants and
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FIGURE 7.6  Rectangular plate with simply supported edges parallel to x-axis and the other 
two edges parallel to y-axis may be clamped, simply supported, or free.
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In a similar manner as in Chapter 5, the characteristic equations for the various 
combinations of orthotropic rectangular plates with two parallel edges (i.e., y = 0, 
and y = b) simply supported are given in the following discussion. Note that the 
boundary conditions for a clamped, a simply supported, and a free edge at x = 0, and 
x = a for the edges are given by
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7.2.4.1 � Two Parallel Edges (i.e., y = 0 and y = b) Simply 
Supported, with Simply Supported Edge x = 0 and 
Free Edge x = a (designated as SSSF plates)

	 ( ) ( ) ( ) ( )λ Ω Ω λ λ − λ Ω Ω λ λ =a a a asinh cos cosh sin 0 for Case 12 1 2 1 2 1 2 1 1 2 	 (7.35a)
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7.2.4.2 � Two Parallel Edges (i.e., y = 0, and y = b) Simply Supported, with 
Clamped Edge x = 0 and Free Edge x = a (designated as SCSF plates)
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7.2.4.3 � Two Parallel Edges (i.e., y = 0 and y = b) Simply Supported, with 
Clamped Edges x = 0 and x = a (designated as SCSC plates)
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7.2.4.4 � Two Parallel Edges (i.e., y = 0 and y = b) Simply 
Supported, with Clamped Edge x = 0 and Simply 
Supported Edge x = a (designated as SCSS plates)

	
λ λ λ − λ λ λ =a a a acosh( )sin( ) sinh( )cos( ) 0 for Case 11 1 2 2 1 2 	 (7.38a)

	
λ λ λ − λ λ λ =a a a acosh( )sinh( ) sinh( )cosh( ) 0 for Case 21 1 2 2 1 2 	 (7.38b)

7.2.4.5 � Two Parallel Edges (i.e., y = 0 and y = b) Simply Supported, 
with Free Edges x = 0 and x = a (designated as SFSF plates)
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Sample vibration results for orthotropic plates are given in Tables 7.2 to 7.6, where 
m = n = 1. When Dx/H = Dy/H = 1, the plate is isotropic, and the frequency values 
reduce to those given in Tables 5.2 to 5.6.

7.2.5 R ectangular Orthotropic Thick Plates

The exact solutions for free vibration of rectangular Mindlin plates with all edges 
simply supported were first obtained by Mindlin and Deresiewicz (1955). The 
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derivation of the characteristic equations for other boundary conditions was recog-
nized as too complex. With the recent development of symbolic manipulations, it 
becomes possible to derive the exact characteristic equations of orthotropic Mindlin 
plates as shown by Liu and Xing (2011).

Consider a thick rectangular plate of length a, width b, and uniform thick-
ness h, oriented so that its undeformed middle surface contains the x- and y-axes 

TABLE 7.2
Frequency ωω == ωω ρρa h H/11 11

2  of Orthotropic 
SSSF Plates with νν == νν νν == 0.3xy x y
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=
=
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y =
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2
x

y
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x

y

0.5 4.168 4.034 4.511 3.799

1.0 11.868 11.685 14.957 11.347

2.0 41.467 41.197 56.441 40.704

TABLE 7.3
Frequency ωω == ωω ρρa h H/11 11
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SCSF Plates with νν == νν νν = 0.3xy x y
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0.5 5.273 5.704 5.945 6.474

1.0 12.583 12.687 15.641 12.777

2.0 41.840 41.702 56.735 41.346

TABLE 7.4
Frequency ωω ωω ρρ= a h H/11 11

2  of Orthotropic 
SCSC Plates
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0.5 17.797 23.816 23.943 32.678

1.0 24.200 28.951 30.587 36.606

2.0 52.221 54.743 67.493 59.258
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of a Cartesian coordinate system (x, y, z), as shown in Figure  7.7. According to 
the Mindlin plate theory, the displacements along the x-, y-, and z-directions are 
assumed to be

	 = − ψ = − ψ =u z x y z t v z x y z t w w x y z t( , , , ), ( , , , ), ( , , , )x y 	 (7.40)

where t is the time coordinate, w is the deflection, and ψx and ψy are the angles of 
rotations of a normal line due to plate bending with respect to y- and x-coordinates, 
respectively.

x
yh

a b

z

FIGURE 7.7  Mindlin plate and coordinates.

TABLE 7.5
Frequency ωω ωω ρρ= a h H/11 11

2  of Orthotropic SCSS Plates
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0.5 13.466 17.332 17.507 23.200

1.0 20.928 23.646 25.623 28.255

2.0 50.360 51.674 65.029 54.044

TABLE 7.6
Frequency ωω ωω ρρ= a h H/11 11

2  of Orthotropic SFSF Plates 
(obtained from Equation 7.39b) with νν νν νν= = 0.3xy x y

a/b

=
=

D H

D H

1 2

1
x

y

=
=

D H

D H

1

1

(isotropic case)

x

y =
=

D H

D H

1

2
x

y

=
=

D H

D H

2

1
x

y

0.5 2.395 2.378 3.358 2.366

1.0 9.703 9.631 13.589 9.549

2.0 39.127 38.945 54.950 38.665
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The relations between the stress resultants and the displacements for orthotropic 
Mindlin plates are given by
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where the bending and shear rigidities are defined as
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and κ is the shear correction factor. In view of Betti’s principle, the product νyEx = 
νxEy, and therefore D12 = D21. The foregoing bending and shear rigidities are given 
for one layer. The formulations of rigidities for laminates can be found in textbooks 
or research papers (see, for example, the paper by Liew [1996]).

The governing equations of motion in terms of displacements are given by
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where the normalized material parameters and frequency parameters are defined as
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As the governing differential equations (7.43a) to (7.43c) are in total of the sixth 
order, there are three boundary conditions on each edge. The boundary conditions 
are given as follows:

	 1.	Simply supported edge (S),
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=
	 (7.45)

	 2.	Clamped edge (C),

	 = ψ = ψ =w 0, 0, 0s n 	 (7.46)

	 3.	Free edge (F), where stress resultants, Mn, Mns, and Qn are assigned zeros 
values, i.e.,
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Derived in the following discussion are exact solutions for Equations (7.43a) to 
(7.43c) for rectangular plates with one pair of opposite edges being simply supported, 
while the other pair of opposite edges can take any combination of the three types 
of boundary conditions.

By eliminating ψy from Equation (7.43a) by using Equation (7.43c), one gets
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Similarly, we can obtain
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The differentiation of Equation (7.43c) with respect to both x and y results in
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Equations (7.48a) to (7.48c) may also be written as
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where
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The elimination of both ψx and ψy from Equations (7.49a) to (7.49c) results in
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Similarly, we can obtain
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Assume the pair of opposite edges of x = 0 and a as simply supported. By using 
the separation-of-variables solution w = eμxeλy—where μ = iα, = −i 1, α = mπ/a, 
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and m is the number of half waves in the x-direction—Equation (7.51a) may be 
expressed as

	 λ + λ + λ + =a b c d 06 4 2 	 (7.52)

where
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Let

	
λ = −s
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a3
2 	 (7.54)

The substitution of Equation (7.54) into Equation (7.52) yields
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The roots of Equation (7.55) are given by
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So the roots of Equation (7.52) can be expressed as
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From the foregoing derivations, one cannot directly determine whether βj, j = 
1,2,3 is real, imaginary, or complex. We shall assume that they are real or imaginary 
but not complex, the correctness of which can be verified through calculations. The 
eigenfunctions w, ψx, and ψy (in a separation of variable form) can then be expressed 
in terms of the eigenvalues by three potentials Wj, j = 1,2,3, i.e.,
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where
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The substitution of Equations (7.62) into Equations (7.49a,b) leads to
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where j = 1, 2, 3.
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For plates with simply supported edges at (x = 0, a) while the edges at (y = 0, b) 
have arbitrary boundary conditions, the exact eigenequations and eigenfunctions can 
be obtained by substituting Equations (7.62a) to (7.62c) into the boundary conditions. 
The eigenequations and coefficients of eigenfunctions for the cases with y = 0, b 
being S-C and S-F are listed as follows:
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Case S-F
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where

	
d g v h e g h f h, ( ) , (1 )j j y j j j j j j j j j

2 2= α + β = + αβ = − β 	 (7.69)

and j = 1,2,3.
For rectangular plates with two simply supported edges x = 0 and x = a, whereas 

the other two edges y = 0 and y = b are both clamped (C-C) or both free (F-F), the 
characteristic equation and coefficients of mode shape can be obtained in a simi-
lar form as the two foregoing cases after some simplifications, i.e., by moving the 
origin of the y coordinate to the center of the side x = 0, as shown in Figure 7.8.
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The mode shapes of w that are antisymmetric with respect to the x-axis can be 
written as
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The mode shapes of w that are symmetric with respect to the x-axis can be 
written as
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( )= β α�W x y B y x( , ) cos( )sinj j j 	 (7.73)

Consider a rectangular plate with two simply supported edges x = 0 and x = a, 
whereas the two edges y = −b/2 and y = b/2 are both clamped. The characteristic 
equation and coefficients of mode shape for the symmetric case are given by
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where 
�
b  = b/2

x

yh

a b
z

FIGURE 7.8   Mindlin plate and coordinates.
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Consider a rectangular plate with two simply supported edges x = 0 and x = a, 
while the other two edges y = −b/2 and y = b/2 are free. The characteristic equation 
and coefficients of mode shape for the symmetric case are given by
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The dj, ej, fj, j = 1,2,3 in Equations (7.76) and (7.77) are given by Equation (7.69). 
For antisymmetric cases of Equations (7.74) to (7.77), one only needs to change 
sin(bβj), cos(bβj), tan(bβj), and cot(bβj) by cos(bβj), sin(bβj), cot(bβj), and tan(bβj), 
respectively.

For a rectangular plate with two edges x = 0 and x = a simply supported, whereas 
the edge y = −b/2 is clamped and the edge y = b/2 is free, the same procedure as in 
Equations (5.122) to (5.124) can be used.

Consider thick symmetric three-ply laminates with layers of equal thickness and 
stacking sequence (0°, 90°, 0°). The material properties for all layers of the laminates 
are identical: Ex/Ey = 40, G23 = Ey/2, G12 = G31 = 3Ey/5, νx = 1/4, and νy = 0.00625. The 
exact frequency parameters Ω

	
Ω = ω ρb h
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2

2
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	 (7.78)

where h is the total thickness and
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− ν ν
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y

x y
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are tabulated in Tables 7.7 to 7.12 for square plates with various combinations of 
boundary conditions and h/b = 0.05, 0.10, and 0.2. The shear correction factor κ 
is taken as π2/12. The eigenvalues αa/π and βjb/π, j = 1,2,3 are also included in 
Tables 7.7 to 7.12, and they can be used to obtain the mode shapes. The assumption 
that βj cannot be complex, but is either real or imaginary, is verified. It may be seen 
that β2 and β3 are imaginary in general, while β1 is usually real, but it may become 
imaginary, as can be seen from Table 7.9.
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TABLE 7.7
Frequency Parameters ωω ρρ= b h DΩ ( /π )2 2

0  for Three-Ply Laminated 
(0°, 90°, 0°) Square SSSS Plates

Mode Sequence Number

h/b 1 2 3 4 5 6 7 8

0.050 αa/π 1 1 1 2 2 1 2 2

β1b/π 1 2 3 1 2 4 3 4

Ω 6.161 8.899 15.085 19.572 20.872 23.970 24.506 31.094

0.100 αa/π 1 1 1 2 2 2 1 3

β1b/π 1 2 3 1 2 3 4 1

Ω 5.218 7.773 12.844 13.313 14.606 17.915 19.292 21.562

0.200 αa/π 1 1 2 2 1 2 3 3

β1b/π 1 2 1 2 3 3 1 2

Ω 3.652 5.759 7.578 8.809 9.025 11.224 11.505 12.363

TABLE 7.8
Frequency Parameters ωω ρρ= b h DΩ ( /π )2 2

0  for Three-Ply Laminated 
(0°, 90°, 0°) Square SCSC Plates

Mode Sequence Number

h/b 1 2 3 4 5 6 7 8

0.05 αa/π 1 1 1 2 2 2 1 2

β1b/π 1.425 2.440 3.424 1.341 2.400 3.400 4.396 4.379

β2b/π 21.540i 21.533i 21.516i 2.100i 25.587i 3.503i 21.481i 25.540i

β3b/π 1.716i 2.532i 3.302i 25.593i 2.800i 25.571i 3.989i 4.148i

Ω 6.907 11.230 18.578 19.833 21.984 26.789 28.058 34.307

0.10 αa/π 1 1 2 1 2 2 1 3

β1b/π 1.408 2.368 1.368 3.306 2.350 3.295 4.240 1.345

β2b/π 12.791i 12.762i 18.800i 12.693i 18.779i 18.731i 12.572i 1.771i

β3b/π 1.548i 2.183i 1.684i 2.663i 2.274i 2.730i 2.989i 25.864i

Ω 5.905 9.412 13.594 14.712 15.522 19.267 20.952 21.735

0.20 αa/π 1 1 2 2 1 2 3 3

β1b/π 1.344 2.217 1.325 2.211 3.128 3.126 1.305 2.205

β2b/π 9.383i 9.313i 16.652i 16.612i 9.169i 16.531i 24.342i 24.314i

β3b/π 1.227i 1.546i 1.276i 1.584i 1.643i 1.678i 1.339i 1.635i

Ω 4.165 6.411 7.828 9.238 9.476 11.583 11.664 12.665
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TABLE 7.9
Frequency Parameters ωω ρρ= b h DΩ ( /π )2 2

0  for Three-Ply Laminated 
(0°, 90°, 0°) Square SFSF Plates

Mode Sequence Number

h/b 1 2 3 4 5 6 7 8

0.05 αa/π 1 1 1 1 2 2 1 2

β1b/π 0.115i 0.732 1.591 2.543 0.168i 0.807 3.531 1.669

β2b/π 21.541i 21.541i 21.539i 21.532i 25.594i 25.594i 21.513i 25.592i

β3b/π 0.992i 1.234i 1.845i 2.614i 1.642i 1.828i 3.381i 2.302i

Ω 5.756 5.929 7.357 11.864 19.339 19.479 19.519 20.244

0.10 αa/π 1 1 1 1 2 2 2 2

β1b/π 0.105i 0.689 1.574 2.547 0.132i 0.751 1.615 2.570

β2b/π 12.797i 12.796i 12.788i 12.752i 18.804i 18.803i 18.797i 18.771i

β3b/π 0.819i 1.061i 1.664i 2.286i 1.116i 1.330i 1.837i 2.393i

Ω 4.834 4.968 6.324 10.311 13.118 13.210 13.898 16.233

0.20 αa/π 1 1 1 2 2 1 2 2

β1b/π 0.077i 0.609 1.574 0.075i 0.686 2.570 1.602 2.587

β2b/π 9.402i 9.400i 9.370i 16.663i 16.661i 9.266i 16.643i 16.584i

β3b/π 0.556i 0.796i 1.335i 0.706i 0.940i 1.609i 1.397i 1.648i

Ω 3.279 3.365 4.645 7.385 7.451 7.552 8.154 10.117

TABLE 7.10
Frequency Parameters ωω ρρ= b h DΩ ( /π )2 2

0  for Three-Ply Laminated 
(0°, 90°, 0°) Square SSSF Plates

Mode Sequence Number

h/b 1 2 3 4 5 6 7 8

0.05 αa/π 1 1 1 1 2 2 2 2

β1b/π 0.418 1.310 2.275 3.266 0.427 1.356 2.305 3.284

β2b/π 21.541i 21.540i 21.535i 21.520i 25.594i 25.593i 25.588i 25.574i

β3b/π 1.081i 1.628i 2.398i 3.182i 1.702i 2.109i 2.734i 3.423i

Ω 5.801 6.650 10.278 17.223 19.377 19.848 21.681 26.076

0.10 αa/π 1 1 1 2 2 1 2 2

β1b/π 0.403 1.296 2.275 0.419 1.322 3.274 2.288 3.282

β2b/π 12.797i 12.792i 12.766i 18.804i 18.800i 12.696i 18.781i 18.732i

β3b/π 0.914i 1.468i 2.126i 1.193i 1.656i 2.649i 2.240i 2.725i

Ω 4.870 5.669 8.965 13.143 13.549 14.516 15.341 19.208

0.20 αa/π 1 1 1 2 2 2 1 3

β1b/π 0.375 1.285 2.285 0.410 1.304 2.294 3.291 0.439

β2b/π 9.402i 9.385i 9.305i 16.662i 1.266i 16.606i 9.135i 24.349i

β3b/π 0.665i 1.196i 1.561i 0.805i 16.652i 1.601i 1.639i 0.944i

Ω 3.303 4.058 6.624 7.403 7.808 9.419 10.056 11.381
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TABLE 7.11
Frequency Parameters ωω ρρ= b h DΩ ( /π )2 2

0  for Three-Ply Laminated 
(0°, 90°, 0°) Square SSSC Plates

Mode Sequence Number

h/b 1 2 3 4 5 6 7 8

0.05 αa/π 1 1 1 2 2 2 1 2

β1b/π 1.203 2.221 3.215 1.158 2.198 3.201 4.201 4.192

β2b/π 21.540i 21.536i 21.521i 25.593i 25.589i 25.575i 21.489i 25.547i

β3b/π 1.548i 2.354i 3.143i 1.997i 2.659i 3.365i 3.858i 4.030i

Ω 6.450 9.983 16.796 19.675 21.369 25.594 26.012 32.676

0.10 αa/π 1 1 2 1 2 2 1 3

β1b/π 1.200 2.190 1.177 3.158 2.179 3.152 4.124 1.165

β2b/π 12.793i 2.074i 18.801i 12.707i 2.178i 18.741i 12.590i 1.670i

β3b/π 1.400i 12.770i 1.567i 2.598i 18.784i 2.671i 2.956i 25.865i

Ω 5.496 8.577 13.426 13.796 15.041 18.593 20.145 21.632

0.20 αa/π 1 1 2 2 1 2 3 3

β1b/π 1.175 2.116 1.164 2.113 3.066 3.065 1.153 2.109

β2b/π 9.390i 9.324i 16.655i 16.618i 9.181i 16.538i 24.344i 24.318i

β3b/π 1.137i 1.521i 1.197i 1.561i 1.643i 1.678i 1.270i 1.613i

Ω 3.880 6.103 7.687 9.031 9.256 11.408 11.574 12.518

TABLE 7.12
Frequency Parameters ωω ρρ= b h DΩ ( /π )2 2

0  for Three-Ply Laminated 
(0°, 90°, 0°) Square SCSF Plates

Mode Sequence Number

h/b 1 2 3 4 5 6 7 8

0.05 αa/π 1 1 1 1 2 2 2 2

β1b/π 0.552 1.509 2.492 3.477 0.515 1.522 2.499 3.480

β2b/π 21.541i 21.539i 21.533i 21.515i 25.594i 25.592i 25.586i 25.569i

β3b/π 1.139i 1.781i 2.574i 3.341i 1.725i 2.209i 2.871i 3.559i

Ω 5.842 7.124 11.548 19.041 19.393 20.037 22.329 27.309

0.10 αa/π 1 1 1 2 2 1 2 2

β1b/π 0.554 1.486 2.456 0.535 1.494 3.423 2.459 3.425

β2b/π 0.985i 12.790i 12.757i 18.804i 18.798i 12.681i 18.775i 18.722i

β3b/π 12.797i 1.602i 2.234i 1.234i 1.762i 2.712i 2.334i 2.782i

Ω 4.910 6.091 9.847 13.160 13.736 15.458 15.862 19.912

0.20 αa/π 1 1 1 2 2 2 1 3

β1b/π 0.563 1.433 2.389 0.563 1.443 2.394 3.344 0.567

β2b/π 9.401i 9.379i 9.292i 0.876i 1.330i 16.599i 9.123i 0.995i

β3b/π 0.7686i 1.271i 1.581i 16.662i 16.648i 1.620i 1.636i 24.349i

Ω 3.348 4.339 6.956 7.424 7.954 9.649 10.246 11.395
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7.2.6 C ircular Polar Orthotropic Plates

For polar orthotropic circular plates, exact fundamental frequency is possible only 
for a special case of circumferential rigidity to radial rigidity ratio, and the plate edge 
must be simply supported.

The governing differential equation for the vibration of a polar orthotropic circu-
lar plate is given by (Elishakoff and Pentaras 2006)
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where w is the deflection, Dr and Dθ are, respectively, the radial and circumferential 
rigidities, which vary with respect to radial coordinate r; νr, and νθ are the Poisson 
ratios in the radial and circumferential direction, respectively; ρ is the material den-
sity; h is the thickness; and ω is the angular frequency.

By using a semi-inverse method, Elishakoff and Pentaras (2006) showed that an 
exact fundamental frequency solution is possible for a simply supported, circular, 
polar orthotropic plate by assuming that
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which satisfies Equation (7.80). The fundamental frequency of vibration is given by
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where α is coefficient, = = ν νθ θk D D/ /r r , and the radial flexural rigidity takes 
on the following expression:
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A few other variations of circumferential rigidity to radial rigidity ratio also give 
exact fundamental frequencies, and the associated complicated variations of radial 
rigidity are presented in the paper by Elishakoff and Pentaras (2006).

7.3  SANDWICH PLATES

Exact vibration solutions are available for a simply supported polygonal plate of a 
sandwich construction with core thickness hc, core modulus of elasticity Ec, core 
shear modulus Gc, core Poisson ratio νc, core mass density ρc, facing thickness hf, 
facing modulus of elasticity Ef, facing shear modulus Gf, facing Poisson ratio νf, and 
facing mass density ρf, as shown in Figure 7.9.

Wang (1996) showed that an exact relationship exists between the frequencies 
ωs of such a sandwich plate based on the Mindlin plate theory and the correspond-
ing frequencies ω of the isotropic plate based on the Kirchhoff (classical thin) plate 
theory. This relationship is given by
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where h is the plate thickness of the isotropic thin plate, D is the flexural rigidity of 
the isotropic thin plate, ρ is the mass density of the isotropic thin plate, and
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By providing exact frequencies of the simply supported, polygonal, isotropic thin 
plate, such as those given in Tables 5.35 to 5.38, Equation (7.84) furnishes the cor-
responding exact frequencies of the sandwich plate.

7.4  LAMINATED PLATES

Consider a laminate of total thickness h comprising N orthotropic layers, as shown in 
Figure 7.10. A typical lamina, say the kth layer (k = 1, 2, …, N), has a uniform thick-
ness hk; material properties E E,k k

1 2 ; and principal material coordinates oriented at an 
angle θ1 = k with respect to the laminate (global) coordinate x.

In the development of the classical thin-plate theory for laminated plates, the fol-
lowing assumptions are made:

•	 Layers are perfectly bonded together.
•	 Material of each layer is linearly elastic and orthotropic.
•	 Each layer has a uniform thickness.
•	 Strains are small.
•	 The Kirchhoff hypothesis is adopted.

In view of the foregoing assumptions, the governing equations of motion for a 
laminated plate are given by (Reddy and Miravete 1995)
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where t is the time; u, v, and w are the displacements in the x-, y-, and z-directions, 
respectively; and Ii are the mass inertias given by
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Aij denotes the extensional stiffnesses, Dij denotes the bending stiffnesses, and 
Bij denotes the bending-extensional coupling stiffnesses of a laminate. Note that for 
symmetric laminates, the coupling stiffnesses vanish. These stiffnesses are given by
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where 
�
Qij

k( ) denotes the material stiffnesses of the kth layer given by
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and the plane stress-reduced stiffnesses Qij involve four independent material con-
stants—E1, E2, ν12, and G12—shown as follows:
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=Q G66 12 	 (7.93d)

Exact vibration solutions are possible for rectangular plates with simply sup-
ported edges of the type that satisfy the following boundary conditions:
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The Navier solutions for rectangular laminated plates with these simply supported 
edges exist only when the laminate stacking sequences are such that

	
= = = = = =A A B B D D0, 0, 0, 0, 0, 016 26 16 26 16 26 	 (7.95)

This means that plates with a single, generally orthotropic layer; symmetrically lam-
inated plates with multiple specially orthotropic layers; and antisymmetric cross-ply 
laminated plates admit the Navier solution for the simply supported boundary condi-
tions given by Equation (7.94).

By assuming a harmonic solution of the form
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where = −i 1  and ω is the frequency of natural vibration, Equations (7.87) to (7.89) 
reduce to
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where
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For nontrivial solution, the determinant of the coefficient matrix in Equation (7.97) 
should vanish, thereby furnishing the characteristic equation. The frequencies are 
obtained by solving the characteristic equation.

In the case of specially orthotropic laminated plates, the only nonzero stiffnesses 
are A11, A12, A22, A66, D11, D12, D22, and D66. Therefore, C13 = 0 and C23 = 0, and so 
Equation (7.97) yields the following characteristic equation

	

C I I
m

a

n

b
C I C I C C

π π
033

2
0 2

2 2

11
2

0 22
2

0 12 12( )( )− ω + 



 + 



































− ω − ω −  =
		

		  (7.99)

The three roots of the characteristic equation are
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The frequencies given by Equation (7.100) correspond to flexural vibration, whereas 
the frequencies furnished by Equations (7.101) and (7.102) correspond to in-plane 
vibration, which has higher values than those of the flexural vibration. Equation 
(7.100) gives the frequencies of flexural vibration for specially orthotropic lami-
nated, simply supported rectangular plates
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7.5  FUNCTIONALLY GRADED PLATES

Functionally graded materials (FGMs) are new composite materials where the material 
property changes smoothly from one surface to the other as a result of gradually chang-
ing the volume fraction of the constituent materials, usually in the thickness direction. 
An example of FGMs is a mixture of ceramics and metal, as shown in Figure 7.11.

Consider the Young’s modulus E and density ρ per unit volume varying continu-
ously through the plate thickness according to the power-law distribution given by

	 ( )( ) ( )= − +E z E E V z Ef1 2 2 	 (7.104)

	 ( )( ) ( )ρ = ρ − ρ + ρz V zf1 2 2 	 (7.105)

in which the subscripts 1 and 2 refer to constituent 1 and constituent 2, respectively, 
and the volume fraction Vf  (z) may be given by
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where α is the gradient index and takes only positive values. Poisson ratio ν may be 
assumed to be the same for the two constituents in order to simplify the formulation.

The governing equations of motion of functionally graded rectangular plates, 
according to the first-order shear deformable plate theory, are given by (Hosseini-
Hashem et al. 2010)
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For a rectangular plate where the edges x = 0 and x = a are simply supported as 
shown in Figure 7.11, the boundary conditions at these two edges are

	
= ϕ = =M w0, 0, 0xx y 	 (7.111)

The boundary conditions along the edges y = 0 and y = b are given by

	
M M Q0, 0, 0 for a free edgexx xy y= = = 	 (7.112)

	
= ϕ = =M w0, 0, 0 for a simply supported edgeyy x 	 (7.113)

	
w0, 0, 0 for a clamped edgex yϕ = ϕ = = 	 (7.114)

The general solutions to Equations (7.107) to (7.109) in terms of three nondimen-
sional potentials Θ1, Θ2, Θ3 may be expressed as
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In view of the three nondimensional potentials, the governing equations (7.107) 
to (7.109) may be written as

	

∂ Θ
∂

+ 





∂ Θ
∂

= −α Θ
x

a

b y

2
1

2

2 2
1

2 1
2

1 	 (7.123)

	

∂ Θ
∂

+ 





∂ Θ
∂

= −α Θ
x

a

b y

2
2

2

2 2
2

2 2
2

2 	 (7.124)

	

∂
∂

+ 





∂
∂

= Θw

x

a

b

w

y
B

2

2

2 2

2 1 3 	 (7.125)

One set of solutions to Equations (7.123) to (7.125) is
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where Ai, i = 1, 2, …, 12 are unknown coefficients, λi, i = 1, 2, 3, and μi, i = 1, 2, 3 are 
related by
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In view that the edges x = 0 and x = a are simply supported, Equations (7.126) to 
(7.128) reduce to
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By substituting Equations (7.130) to (7.132) into Equations (7.115) to (7.117), and 
then into the appropriate boundary conditions for edges y = 0 and y = b, one obtains 
six homogeneous equations. To obtain nontrivial solutions, the determinant of the 
coefficient matrix must vanish, which furnishes the characteristic equations for rect-
angular FGM plates. Some vibration frequencies are computed for two FGMs (i.e., 
Al/Al2O3 and Al/ZrO2) by Hosseini-Hashemi et al. (2010). In the aforementioned 
paper, the effect of a two-parameter elastic foundation is also considered.

7.6  CONCLUDING REMARKS

Approximate and numerical vibration results of nonisotropic plates may be obtained 
from books by Reddy (2007), Qatu (2004), Reddy and Miravete (1995), Yu (1996), 
and Leissa (1969) and from papers published in journals such as Journal of 
Sound and Vibration, Journal of Vibration and Acoustics, Composite Structures, 
International Journal of Solids and Structures, Journal of Applied Mechanics, and 
the International Journal of Structural Stability and Dynamics.
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“… This book presents a collection of exact solutions for vibration of strings, beams 
(bars), and plates, which are very common both in engineering and natural science. 
Complicating effects can be involved, however, including non-uniform geometry, 
non-homogeneous material property, internal support, elastic foundation, etc. 
The mathematical techniques used to obtain the solutions are very attractive 
and mathematically strict, and will provide a base for the study of more involved 
problems. The book should be very useful for researchers, engineers and students 
in various engineering areas such as aerospace, civil engineering, mechanical 
engineering, ocean engineering, chemical engineering, etc. It can also be used as a 
reference for those who are working in physics, biology, geology, materials science, 
and nanotechnology.”
—W. Q. Chen, Department of Engineering Mechanics, Zhejiang University, Hangzhou, China

“… The authors have done an admirable job in the organization and the flow of the 
book. Direct explanations tell the story of structural vibrations, moving from basic 
string model to more complex non-uniform plates.”
—Huseyin Yuce, New York City College of Technology, Brooklyn, USA

“This book is a new reference on a special topic (exact eigensolutions for certain 
structural components), which can be quite useful for people in R&D of structural 
systems, educators of engineering vibrations, and developers of numerical 
algorithms for structural vibration problems.”
—Bingen Yang, Dept. of Aerospace and Mechanical Engineering, University of Southern California, 

Los Angeles, USA

Structural Vibration: Exact Solutions for Strings, Membranes, Beams, and Plates offers 
an introduction to structural vibration and highlights the importance of the natural 
frequencies in design. It focuses on free vibrations for analysis and design of 
structures and machines and presents the exact vibration solutions for strings, 
membranes, beams, and plates.
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